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Preface

A few years ago one of us (AM) was giving a series of lectures on three-dimensional
(3D) radiative transfer in cloudy atmospheres at the Summer 1999 School “Explor-
ing the Atmosphere by Remote Sensing Techniques” hosted by the Abdus Salam
International Centre for Theoretical Physics in Trieste (Italy). By the end of the se-
ries, the instructor was asked by students for an available book on the subject. It
turned out that in spite of multiple decades of research, relative maturity of the field,
the involvement of dozens of scientists worldwide, and hundreds of journal papers,
there was in fact no tutorial book in existence. So there was nowhere for students and
young researchers to start or to use as a reference. One of the directors of the school,
Rodolfo Guzzi, and the editor of the physics section of Springer-Verlag, Christian
Caron, who was also there, suggested that we fill this gap by writing a monograph
on the subject.

We enthusiastically accepted the Springer-Verlag commission and attracted many
leading 3D radiative transfer scientists as co-authors: H. Barker, N. Byrne, R. Caha-
lan, E. Clothiaux, R. Davies, R. Ellingson, F. Evans, P. Gabriel, A. Heidinger, Y.
Knyazikhin, A. Korolev, R. Myneni, I. Polonsky, G. Stephens, E. Takara, and W.
Wiscombe. More than half of them are on the science team of the Atmospheric Ra-
diation Measurements (ARM) program sponsored by the U.S. Department of Energy
(DOE). A major goal of ARM is to further our understanding of radiative trans-
fer in the atmosphere – especially the role of clouds – and at the Earth’s surface.
The DOE’s ARM program has therefore provided generous funding for this book
project. We also greatly appreciate the ongoing support we receive from our home
institutions, Los Alamos National Laboratory and NASA’s Goddard Space Flight
Center, and the support received from the Joint Center for Earth Systems Technol-
ogy of UMBC, where one of us worked at the beginning of the project. Technical
expertise in Springer-Verlag’s LaTeX desktop publishing environment was ensured
by Lisa LeBlanc, now with the Canadian CLIVAR Network at McGill University;
without her help, we would not have been able to prepare this manuscript.

The title of this book is “Three-Dimensional Radiative Transfer in Cloudy At-
mospheres.” At one point, we were tempted to use the more provocative title “Real
Radiative Transfer in Cloudy Atmospheres.” Indeed, it is the 3D radiative transfer
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equation that determines the radiation processes in real cloudy atmospheres. By con-
trast, the standard 1D model, which can be traced back at least 100 years, is an ap-
proximation that should prove useful under certain circumstances. In other words, it
is time to think of 3D theory as the golden standard in atmospheric radiative transfer
rather than as a perturbation of standard 1D theory.

The book captures and preserves much of the best 3D cloud radiation work done
in the last couple of decades, and brings it to better maturity as authors took spe-
cial care to explain their discoveries and advances to a larger audience. Our primary
readership will be made of graduate students and researchers who specialize in at-
mospheric radiation and cloud remote sensing. However, we hope that remote sens-
ing scientists in other application areas (biosphere, hydrosphere, cryosphere, etc.)
will find many portions of the volume stimulating.

Beyond the two introductory chapters, the volume naturally divides into three
parts: Fundamentals, Climate, and Remote Sensing. The two last topics are indeed
the main concerns in atmospheric radiation science. The chapters are essentially in-
dependent but cross-reference each other. We tried our best to avoid overlap; in sev-
eral places, however, we found it more effective to repeat some material rather than
pointing to other portions of the book. Most chapters end with Notes and/or a Sug-
gested Reading list because they open more questions then they answer; these contain
input from the authors, the reviewers, and the editors. As much as possible, we tried
to use the same notation throughout the whole book. A list of notations and a subject
index can be found at the end of the volume. Each chapter has been peer-reviewed
by at least one reviewer internal to the author collective and one external reviewer.
We wish to thank all reviewers, especially the external ones: Larry Di Girolamo,
Qiang Fu, Jeff Haferman, Harshvardhan, Alexei Lyapustin, Andreas Macke, John
Martonchik, Lazaros Oreopoulos, Klaus Pfeilsticker, Bill Ridgway, Tamas Várnai,
and Tatyana Zhuravleva.

This project took us much longer than we initially anticipated. Being commit-
ted to other projects during the daytime, we mostly worked on the book during the
evenings and weekends at home, taking time from our families. We are very grateful
for their support and understanding. It was rewarding to work on this book, writing
our own chapters, reading and editing other chapters. We personally learned a lot and
we hope that the readers will enjoy it too.

Finally, we dedicate this book to the memory of two great radiative transfer sci-
entists, G. Pomraning and G. Titov. We consider ourselves lucky to have met them
and to have learned so much from them.

Greenbelt, Maryland Alexander Marshak
December, 2004 Anthony Davis
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4 W.J. Wiscombe

A 3D cloud scientist’s mental model of Earth, concocted from real AVHRR and
GOES data by Washington University, but with vertically exaggerated clouds to in-
dicate their true importance for global climate.1

“If the clouds could be rationally and convincingly explained, without re-
course to superstition and prejudice, then so could anything else in nature,
for they represented the most supreme manifestation of the ungraspable.”

René Descartes (1596–1650)

“Clouds themselves, by their very nature, are self-ruining and fragmentary.
They flee in haste over the visible horizons to their quickly forgotten denoue-
ments. Every cloud is a small catastrophe, a world of vapor that dies before
our eyes. [. . .] And as long as clouds, for the poetic imagination, stood as
ciphers of a desolate beauty, gathering in apparently random patterns only
to disperse with the wind, how could they ever be imagined as part of Na-
ture’s continuous scheme? What could there be to a cloud, beyond a vague
metaphorical allure?”

Richard Hamblyn, The Invention of Clouds (2001)

1 http://capita.wustl.edu/CAPITA/DataSets/MODIS/GlobFused/glob3d.html
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Fig. 1.1. The cloud theoretician’s worst nightmare: real 3D clouds as viewed from an aircraft
window ill-advisedly left unshuttered

A running joke among my colleagues, one that particularly amused 3D cloud ra-
diation pioneer (and author herein) Roger Davies, was my assertion in the 1980s that
all good cloud radiation modelers should close their airplane windowshades so as
not to be corrupted by the spectacle of real 3D clouds such as that in Fig. 1.1. With
a determined effort to dismiss real clouds as an evanescent illusion (a sentiment ex-
pressed much more poetically by Richard Hamblyn above), I was able to rationalize
my own simple models of clouds, both mental and computational.

My windowshade joke had a serious side, however, for at the time I believed – on
faith alone – that 3D cloud effects could be cleverly mimicked by 1D models, at least
with sufficient time- and space-averaging. In this belief, I was partly bending to the
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realities of climate models, which even now cannot afford to calculate full 3D radi-
ation; and partly espousing the time-tested strategy of simplifying a phenomenon to
the greatest extreme possible – the same strategy that occasionally leads us to model
ice crystals as spheres. However, Einstein’s dictum “simplify as far as possible, but
no farther” reminds us that scientists must always ascend a knife-edge ridge with the
chasms of oversimplification and overcomplexification yawning on either side. This
difficult ascent is nowhere more evident, nor are the falls from grace so great, than in
this field of 3D clouds, where firehoses of computer power seduce us toward overly
complex models on one side, and climate modeling presses us toward overly simple
models on the other.

This book is a testament to all those who refused to close their windowshades
or take a smeared-out, statistical view of clouds yet who also refused to succumb to
the allure of kitchen-sink modeling of every little detail. They stepped up to one of
the hardest problems in all of Earth science – fully 3D clouds – with courage and
perseverance, and their contributions in this book represent the cream of much of the
3D cloud radiation work of the past 15 years. Now is a good time to look back and
take stock of what has been accomplished in this incredible burst of creation.

I attribute this burst mainly to two factors: (a) real progress on understanding
cloud structure as a function of scale, and (b) the availability of new tools, both
theoretical and experimental. Those will be my main themes in this chapter – scale
and new tools. As prelude, however, I shall address the question “Why should we
care about clouds?” and then describe my personal odyssey which profoundly shaped
my admittedly unique view of this field.

Note that this book is not about all possible wavelengths of cloud radiation. In-
frared, microwave and radar wavelengths receive comparatively short shrift. The tilt
toward solar wavelengths (0.3 to 4 microns) accurately reflects the preponderance of
research in the 1990s. The infrared attracted less interest mainly because clouds act
primarily as near-blackbody blobs there and thus provide less theoretical challenge.
Takara and Ellingson (2000) and Ellingson (1982) showed that the errors from ne-
glecting finite clouds are typically no more than 20% in the longwave, whereas in the
shortwave they can easily be 100% and more. Longwave radiation responds differ-
ently to cloud 3D-ness than shortwave – it is much more affected by the actual shape
of the cloud, since it tends to come from the outermost 50 m of a cloud. Microwave
and millimeter-wave radar observations of clouds remain solidly in their infancy, in
spite of several decades of research, and it will probably be another decade before a
book like this one could be produced for that wavelength range.

This chapter will not treat cirrus clouds.2 The reasons are several. First, cirrus
cloud scientists tend to think that single scattering by ice crystals, which is not the
focus of this book, is at least if not more important than the 3D radiative effects
of cirrus. Second, most cirrus are optically thin to sunlight and this simple limiting

2 Cirrus are largely ignored in this book, except for Chaps. 2 and 10, and in much of the
3D radiative transfer literature. A rare exception is by Gu and Liou (2001) who investi-
gated the dynamical feedback of 3D radiative fluxes in cirrus evolution using a Large-Eddy
Simulation model.
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case is not of much interest for 3D cloud radiation theorists.3 Third, many of the
measurement systems I discuss don’t work well in ice clouds, and I don’t want to
make continual caveats about that. So let us agree that when I talk about clouds, I
mean liquid water clouds.

Acronyms are new language and can be useful as such, in spite of my occasional
outbursts against “encroaching acrobabble.” But their continual redefinition in long,
interruptive parenthetical expressions has become a plague upon scientific writing.
Most readers know what the usual acronyms mean in a specialized-topic book such as
this one. So, in an effort to recapture a free flow of narrative, I will take the shocking
step of omitting most of the parenthetical definitions. For the benefit of newcomers
to the field, all but the most familiar acronyms are listed with their meanings at the
end of the chapter.4

This chapter will look at some cloud issues that go beyond just cloud radiation,
but only eclectically. Even the treatment of cloud radiation is eclectic. For a com-
prehensive overview of cloud radiation from a climate viewpoint, I recommend the
paper by Wielicki et al. (1995). For a good overview of the entire cloud problem by
two titans in the field, I recommend the recent article by Randall et al. (2004) and
the older one by Hobbs (1991). Both articles are highly readable and comprehensive,
and their delightful styles reveal that scientific writing need not have every ounce of
humanity and passion ruthlessly expunged.

1.1 Why Should We Care About Clouds?

According to the remarkable historical book by Hamblyn (2001), before 1800 only
poets cared much about clouds. Shakespeare wrote more about them than all scien-
tists put together. Hard as it is to believe, until Luke Howard’s revolutionary classi-
fication of clouds based on their dynamical processes rather than their form, clouds
were barely studied at all. The 1800s then became somewhat of a Golden Age for
cloud physics; most of the laws used today were discovered then, and hilarious the-
ories of clouds as bubbles and such like faded into a well-deserved obscurity. In the
1900s clouds passed from a concern of physics and chemistry to a concern of me-
teorology. The flight of Nobel-Prize-winner C.T.R. Wilson, of cloud chamber fame,
from cloud physics to quantum mechanics around 1900 symbolized the end of an
era of physicist interest. Once a province of meteorology, cloud physics became pri-
marily involved with precipitation and thus with the rather limited class of strongly
convective clouds. Arrhenius, the inventor of simple climate modeling, knew in 1896

3 Optical thinness does allow cirrus to be probed by lidar, however, sometimes from top to
bottom, and thus their remarkably turbulent internal structure is better measured than that
of liquid water clouds.

4 Those who find undefined acronyms disturbing are invited to notch the page and return for
comfort as often as needed to this footnote: the sight of BNAs (Bare Naked Acronyms)
is anathema to the AGU (Acronym Generation Unit) of the AMS (Acronym Manufactur-
ing Society) and the growing dearth of FDAs (Fully Dressed Acronyms) has caused rapid
growth of the Bare-Acronym-Angst Anonymous Association (BAAAA).
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that clouds also affect the Earth’s energy budget, but, for many decades thereafter, no
one had the slightest idea by how much; there were guesstimations, but no solid data
until the first thorough satellite analyses were published by Vonder Haar and Suomi
(1971).

It is easy to understand the past neglect of clouds. Except when they rain on
us, they seem little more than insubstantial evanescences in the sky. Like atoms,
clouds are mostly empty space. Their solidity is an optical illusion. The authors in
this book know how that illusion is created, but that takes nothing away from its
wonder. A typical cloud droplet is about 10 microns in radius. A typical marine
stratocumulus cloud has about 50 such droplets per cubic centimeter, which therefore
fill only about one ten-millionth of the volume in which they reside. That’s pretty
empty! But what about the big rain clouds? Even they rarely have 1 g/m3 of liquid
water everywhere, but let’s suppose that this extreme value fills a cubic cloud 1 km
on a side. That’s 109 g or 109 cm3 of liquid, which would fill a cube 10 m on a side
and occupy only one millionth of the cloud volume. Yet a few hundred meters of
such tenuous cloudstuff can blot out the Sun and turn bright daylight to gray dusk.
Clouds are nothing if not a testament to the almost incredible extinction power of
fractionating a mass of material into micron-sized particles.

Now, let us try to sharpen the question in the section title: why have we created a
scholarly tome on such a seemingly esoteric subject as 3D cloud radiation, and why
now?

1.1.1 Climate

The short answer to the “Why?” question is that clouds are the greatest unknown
in all of physical climate modeling; they radically alter the distribution of radiant
energy and latent heating in ways that have proven devilishly hard to capture in
climate models.

The powerful visual effects of clouds translate into equally powerful energetic
effects. But amazingly, we couldn’t quantify these effects until the advent of the
ERBE (Earth Radiation Budget Experiment) three-satellite constellation in the mid-
1980s. We were in fact doubly ignorant. First, beyond crude visual observations by
weather observers (at most twice a day), and uncalibrated satellite observations that
could not be made sufficiently quantitative, we didn’t know how much cloud there
was at what altitude, nor how thick it was optically or geometrically.5 Second, since
clouds reflect sunlight but preserve infrared radiation to the Earth (by radiating to
space at a colder temperature than the surface they overlie), their solar and infrared
radiation effects work against each other, and we had only theoretical calculations
of which prevailed. So, as of the mid-1980s, we had only a crude idea of how much
cloud there was, and how it affected the total (solar plus infrared) radiation. Things
had not really advanced much since the simple models of Manabe and Wetherald

5 This lack was partly remedied beginning in the mid-1980s by the International Satellite
Cloud Climatology Program which now has a 20-year data record on certain cloud para-
meters (Rossow and Schiffer, 1999).
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(1967) and Schneider (1972) first elucidated the many ways clouds could modify the
climate.

The first numbers from ERBE were announced by Ramanathan et al. (1989).
Ramanathan was a strong advocate of processing the ERBE data in such a way that
the effect of clear sky could be subtracted out in order to manifest the effect of cloud
in stark relief. While the paper had complete results only for April 1985, tentative
results for three other months were reported, and all months indicated clouds had a
net cooling effect on the Earth. For the first time, a number could be given: clouds’
sunlight-reflection effect wins. It wins by about 20 W/m2, or five times the energy
effect of doubling CO2.

A clear understanding of the importance of cloud radiation had solidified by 1990
(e.g., Arking, 1991), partly as a result of the Ramanathan et al. paper and partly due
to Global Climate Model (GCM) intercomparisons (Cess et al., 1989) that showed
large disagreements caused mainly by GCM cloud treatments. Spurred by these de-
velopments, the rest of the 1990s were a period of intense activity in the subject, not
least the remarkable ARM (Atmospheric Radiation Measurements) Program of the
U.S. Dept. of Energy whose focus was entirely clouds and radiation (Ackerman and
Stokes, 2003). ARM and NASA in the U.S., and the Japanese, Canadian and sev-
eral European governments abroad, steadily and reliably supported cloud radiation
research, as well as its sibling, dynamical modeling for clouds beyond the traditional
towering rainclouds that had previously gotten most of the attention. We entered the
1990s at a relatively low level of theoretical and observational capability but as a
consequence of this steady support exited with an astoundingly better capability –
ranging from how we designed cloud field programs, to the sophistication of cloud
instruments, to understanding of how clouds scale, to the quality of cloud parameter-
izations in GCMs. Thus, in answer to the question “Why now?” there was a feeling
in the community that, after this intense burst of activity, it had reached somewhat of
a plateau of new knowledge, and that this would be a good time to collect what we
have learned in one place and survey the extent of our conquest.

Perhaps the most obvious application of this new knowledge is to the issue of
global warming (although it would be equally relevant to global cooling). Clouds,
or more precisely lack of knowledge of how clouds interact with the climate sys-
tem, impede useful forecasts of future global warming. All GCMs predict warming
in response to CO2 increase, but the warming ranges from moderate to severe de-
pending on how they treat clouds. The right part of Fig. 1.2 shows predictions of
global-average surface temperature warming for doubled CO2 as various feedbacks
are added to a single GCM, one by one. The range due to adding cloud feedback
is 2 to 5◦C, depending on what treatment is used. 2◦C would already be a serious
concern, but perhaps manageable with wisdom and foresight. 5◦C would be equiva-
lent to the warming since the last glacial retreat 10,000 years ago and, coupled with
the end of the fossil fuel era by the end of this century (Goodstein, 2004), would
certainly require unprecedented adaptations. 2◦C or 5◦C? Clouds hold the fate of the
Earth in their hands, and we don’t know which number they will pick, if either. They
are indeed the lever sought by Archimedes, with which one could move the Earth –
or at least the Earth’s climate.
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Fig. 1.2. (a) The temperature and precipitation responses of the leading coupled ocean-
atmosphere GCMs from many countries to an imposed doubling of CO2. No clustering is
evident in the range of responses. (Adapted from Stephens et al. (2002).) (b) The global-
average surface temperature response of a well-known British climate model to an imposed
doubling of CO2 with feedbacks added one by one: first no feedbacks; then water vapor feed-
back; then snow and ice albedo feedback; and finally different cloud feedbacks. (Adapted from
Senior and Mitchell (1993).)

The left part of Fig. 1.2 shows that this 2–5◦C range is not caused by a few
outlying models; the range is uniformly populated. Furthermore, a recent 19-GCM
comparison (Potter and Cess, 2004) reveals that this 2–5◦C range has not diminished
significantly in 14 years. This is surprising considering that most GCMs have worked
hard to improve their cloud parameterizations over those 14 years, especially by
introducing predictive equations for cloud liquid water. The “cloud radiative forcing”
in all the GCMs, a measure of the warming or cooling effect of clouds, differs widely
from the best satellite measurements. Thus, the cloud problem is proving a tougher
nut to crack than anyone suspected!

All the climate models represented in Fig. 1.2 use 1D radiation. Would using 3D
radiation make any difference? Figure 1.3 show how big the effect of 3D radiation
can be, although for a cubic cloud case which is admittedly extreme. The difference
between the Plane-Parallel Approximation commonly used in climate models and
the Independent Pixel Approximation is so large that it would change the results of
every climate model as well as the range of predicted temperature changes in Fig. 1.2.
The point labeled 3D is correct for this particular sun angle, but for other sun angles
and other situations could lie above the IPA point or even below the PPA point. In
this case IPA does not seem to be an improvement, but in more realistic cases we
find that IPA is a decided improvement for spatial averaged radiation. Indeed, for
marine stratocumulus, we find that the PPA differs from the IPA by only about 10%
and the IPA agrees with 3D to a few percent. Thus, in terms of the size of their
3D radiative effect, marine stratocumulus lie at one extreme and cubic clouds (or
popcorn cumulus) lie at the other.

We have assumed that as clouds in GCMs are better calculated, the 2–5◦C range
will narrow. Some even hope that the range will narrow to a single number. That it
has not, after over a decade of “improvements” in cloud treatments, raises another
specter: some range (hopefully not 2–5◦C!) may be intrinsic – a limit of predictability
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Fig. 1.3. (Left) A regular array of cloud cubes, each with optical depth 50, asymmetry fac-
tor 0.85 and single-scattering albedo 0.999, embedded in a vacuum. Solar zenith angle is 50
degrees and cloud fraction is 50%. (Right) Transmittance versus optical depth: solid curve
is for a 1D slab cloud and the three labeled points refer to the cloud array on the left, infi-
nitely repeated. The point labeled PPA (Plane Parallel Approximation) simply uses the mean
optical depth of the array (25) in 1D slab theory. The point labeled IPA (Independent Pixel
Approximation) averages the transmissions of each column separately. The ordering shown,
IPA above PPA, always holds because the curve of transmission versus optical depth is con-
cave. (Adapted from a presentation by Bernhard Mayer at the 2004 International Radiation
Symposium in Korea.)

if you will – and thus not “fixable” by improving the cloud treatments. After all,
clouds are a fast random component of the system, loosely analogous to the stochas-
tic “weather” term that was used in simple climate models of the 1970s (Hasselmann,
1976), and thus clouds may prevent a perfectly deterministic solution to the climatic
consequences of rising CO2. That is, the solution may never settle down to a pre-
dictable value that all models can agree upon because of the random jiggling of the
clouds. Clouds may indeed be completely deterministic in an ideal Laplacian uni-
verse, but in any conceivable modeling framework they will always have unknown
aspects which will have to be drawn from a probability distribution. This is already
true now for any GCM that uses “random overlap” of clouds or any of its variants.
Only time (and perhaps the super-parameterizations of Randall et al. (2004)) will tell
how far the 2–5◦C range can be narrowed, and how much it will resist narrowing no
matter how much resolution and how many new parameterizations we throw at it.

The 1990 version of the IPCC Report, in which the world’s climate scientists
first summarized the state of their knowledge, ranked cloud feedback on temperature
as the highest priority issue to resolve, just because of the 2–5◦C problem. But the
keystone importance of cloud radiation was increasingly obscured as the 1990s wore
on. During that decade, there was an increased clamor for attention and resources by
climate subfields which are, if truth be told, less important than clouds, even if more
loudly advocated. In the face of this clamor, the IPCC gave up on prioritizing and
fell back on mere list-making. But the cloud problem did not get solved in spite of its
loss of the IPCC’s number-one spot, nor has it gone away. As Randall et al. (2004)
said, it is the problem that refuses to die.
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Fig. 1.4. Global-mean-annual shortwave (left) and longwave (right) radiation absorbed at the
Earth’s surface calculated by a variety of Global Climate Models (ECHAM: Germany, LMD:
France, UKMO: England, CCC: Canada, GISS: NASA, GFDL: NOAA, and NCAR: NSF).
The most likely values from observations – 345–353 W/m2 for longwave, 143–147 W/m2 for
shortwave (Gilgen and Ohmura, 1999) – lie outside the range of GCM values and indicate a
major defect in GCM cloud treatment. (Plots taken from Ohmura et al. (1998).)

1.1.2 Surface Radiation Budget

The second important application of cloud radiation is to surface radiation budget.
Clouds are by far the greatest modulators of sunlight and infrared radiation reaching
the surface. I remember Richard Somerville once telling me at NCAR in the 1970s,
at a time when radiation was not as popular as it is now, that his weather prediction
colleagues would be hard pressed to explain the land surface temperature at night
without cloud radiation.

Figure 1.4 shows how poorly climate models agree among themselves about sur-
face radiation; they agree on only one thing – they are all far from the best ob-
servations. The disagreements are mainly because of clouds, although even climate-
model-predicted clear-sky shortwave and longwave radiation has apparently not fully
benefited from the ICRCCM activity of the 1980s (Ellingson and Fouquart, 1991).

Not getting surface radiation right can cause extreme downstream effects in cli-
mate models. Among many roles, surface radiation is the ultimate source of energy
for vegetation, for convection, and for ocean mixed layer warming. Up to the mid-
1990s, the climate of many coupled atmosphere-ocean models wandered further and
further off track because of getting surface radiation wrong. Some of this error was
due to the neglect of 3D cloud effects. These models felt compelled to make so-called
“flux corrections” whereby a tuned amount of energy, on the same order as the un-
tuned amount predicted by the models, was added to or subtracted from the surface
energy budget. While current climate models have largely gotten rid of flux correc-
tions, the range of results in Fig. 1.4 indicates that such models still have a problem
with surface radiation. What Wielicki et al. (1995) said a decade ago still holds to-
day: “. . . present-day GCMs produce unrealistic simulations of the surface energy
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fluxes associated with solar and terrestrial radiation, and especially the modulations
of surface radiation by clouds” (italics mine).

Let’s think about the nature of those “modulations” for a moment. Without
clouds, curves of solar and longwave surface radiation as a function of time look
smooth and slowly-varying. Clouds destroy that utterly. They make surface radiation
“turbulent,” mirroring turbulence in the clouds themselves. This turbulence mani-
fests itself as large vacillations in minute-to-minute measured surface fluxes and even
second-to-second variations in the direct beam of the Sun. Among many worthy ex-
amples, I cite two. First, Ockert-Bell and Hartmann (1992) showed that, throughout
vast areas of the tropics and subtropics, thick cumuliform clouds with small cloud
fractions explain most of the variance in solar radiation budgets. Second, Nunez
et al. (2005) found fractal behavior typical of turbulence in measured time series of
downward shortwave flux under stratocumulus, the most benign of all clouds! They
challenge the time resolution of current methods of retrieving surface radiation fluxes
from space and show that one-hour sampling gives unacceptably large rms errors of
20–36% in daily averages. Ten-minute sampling reduced the error to 5%, an accept-
able value considering uncertainties in other energy fluxes, but no extant satellite
system capable of retrieving surface radiation can provide such rapid sampling glob-
ally. We have barely begun to study the limitations caused by radiative turbulence. I
will briefly revisit the subject in Sect. 1.14.

“Global dimming”, the occasion of a session and much press coverage at the
Spring 2004 AGU Meeting, refers to a general multi-decade decline of surface solar
radiation (Liepert et al., 2003). The evidence is compelling and comes from a 50-year
record of pan evaporation as well as some (but not all) direct radiation measurements.
After eliminating other possible suspects, changes in cloud seem the most likely
cause. This seems to contradict ISCCP results showing cloud fraction has steadily
decreased since 1987 while cloud optical depth has not appreciably changed (Rossow
and Duenas, 2004; also Fig. 1.17 below). Current climate models with aerosol and
cloud parameterizations included cannot even come close to predicting the putative
dimming. While this issue is far from resolved, it perfectly illustrates the large and
poorly understood role of clouds in surface energy budget.

1.1.3 Radiative Heating Rates

A third application is to radiative heating rates in the atmosphere. Not everyone may
appreciate what was at stake in the recent “enhanced shortwave cloud absorption”
brouhaha that nearly ripped the radiation community apart. There isn’t much solar
heating of the atmosphere. Most sunlight gets absorbed at the surface or reflected
back to space. Therefore small changes in atmospheric heating, say 10 to 20 W/m2,
can have huge impacts. Dave Randall likes to bring home the relevance of radiational
heating by saying that when it changes by 1 W/m2, that causes a significant change
in rainfall somewhere else; radiative heating in the atmosphere and rainfall roughly
have to balance each other. Water vapor of course modulates this heating, especially
in the infrared and especially in the upper troposphere and stratosphere, but clouds
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are the dominant creators of variance in the lower troposphere where the main water
vapor absorption bands are saturated.

I cite one example among many worthy ones. Barker et al. (1999, 2003) have
shown the importance of cloud structure for radiative heating rate profiles in GCMs
and studied the effectiveness of the various bandaids (like cloud fraction and cloud
overlap assumptions) applied to 1D radiation schemes to mimic 3D effects. They
find major errors from the bandaids and a worse prognosis for a future in which
GCM voxel6 sizes shrink. They argue that these bandaids are a dead end and ad-
vocate that “unresolved horizontal variability and overlap be treated together within
1D algorithms.” Clouds make calculating surface radiation hard, as we have seen,
but this is as nothing compared to what they do to heating rates in the atmosphere.

1.1.4 Data Assimilation

A fourth application is to “data assimilation,” which is a way to improve weather
forecasts by inserting observational data (surface, radiosonde, satellite) at regular in-
tervals during a forecast model run. The data must be inserted carefully so as not to
shock the model or unbalance its conservation laws. Currently, assimilation is done
every six hours. Future plans call for one hour. Any data can be useful, even from
a single place (ECMWF assimilates ARM Oklahoma site data, for example), but
satellite data provide the biggest potential help. I say “potential” because throughout
the 1980s the forecast models basically rejected satellite retrievals of various quan-
tities like temperature and moisture profiles, often in a non-obvious way. You could
remove satellite data from the data mix and not perceptibly worsen the forecasts.

Gradually, it was realized that satellite retrievals lose some of the information
in the original radiance data, and that it would be better to assimilate the satellite
radiances directly. But the retrieval industry is jealous of its role as middleman and
has a lot of inertia, so it took time for this new idea to take hold. Now weather
assimilation systems routinely compute IR radiances so they can assimilate satellite
IR radiances directly (shortwave radiances are much harder to compute because of
clouds). Martin Miller of ECMWF says that much of the improvement in forecast
skill over the last decade comes from adding new satellite data to the mix, rather
than from model improvements. In the future, especially as model voxels shrink, an
understanding of 3D cloud radiation will be necessary in order to better assimilate
satellite radiances from clouds.

1.1.5 Cloud Shadows

Cloud shadows, so obvious in Fig. 1.1, are a distinctly 3D cloud radiation phenom-
enon that were impossible to even contemplate in a 1D mental and modeling frame-
work. I am convinced they will prove of use in the future, once the advances docu-
mented in this book become a routine part of the remote sensing arsenal. It is easy to

6 “Voxel” is a small volume, usually a rectangular parallelpiped; it is useful to distinguish
voxels from “pixels”, a dimensionally ambiguous term which may refer to a 2D polygon
or a 3D column.
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forget that cloud shadows are a distinct phenomenon with their own special behav-
ior. This was brought home to me when we were planning the Triana satellite for the
L-1 Lagrange point, which lies along the Earth-Sun line. Triana would see almost
no cloud shadows! That would have been a most unusual view of Earth. Cloud shad-
ows have been ignored in remote sensing because they are intrinsically 3D effects.
They occur in the infrared too, as slight changes in surface temperature which may
tell us something about surface heat conductivity and/or moisture. One possibility is
to observe the edges of cloud shadows, the counterpart of the fabled “cloud silver
lining.” Transmission through the cloud edges followed by surface reflection might
give qualitatively new information about clouds.

1.1.6 Multi-Angle Remote Sensing

Traditional satellite imagers can give no more than a 2D+ view of clouds,7 they see
a cloud pixel at only a single angle. But a new class of multi-angle instruments, pio-
neered by the European Along-Track Scanning Radiometer (Prata and Turner, 1997)
and JPL’s ground-breaking nine-camera Multi-Angle Imaging Spectroradiometer in-
strument (Diner et al., 1998)8 are providing a much more 3D-ish view of clouds.
These instruments are a largely-untapped gold mine of information and ideas for 3D
cloud radiation applications. It will take time for the radiation community to really
exploit these multi-angle data, however, and they will need the tools and methods in
this book to do so. Of course, the clouds will inevitably evolve in the few minutes
that the satellite takes to fly over and image the cloud from several angles, and so
radiation people will need to learn more about the time evolution of clouds than has
been their wont.

1.1.7 CloudSat

CloudSat9 (Stephens et al., 2002) is the centerpiece of the so-called “A-train” con-
stellation of satellites (Fig. 1.5) that will provide an unprecedented “X-ray view” of
clouds. CloudSat’s 3-mm-wavelength cloud radar shoots pulses vertically to create
cloud cross-sections of the kind illustrated in Fig. 1.5. CloudSat will reveal not just
the exterior of clouds – all that we can see easily with shortwave imagers or lidars –
but their interior structure as well. Admittedly radar backscatter measures the 6th
moment of the drop distribution while interest resides mainly in the zero-th through
third moments, but much work has gone into making this leap with some confidence.
Still, a single cloud drop 10 times bigger in radius than its brethren will give a radar
total return a million times bigger than one of them, and may even dominate the
return. Thus, cloud radar works better when there are no drizzle drops (100–300 mi-
crons) and, for that matter, no insects, spider webs, spores, and other objects about

7 “2D+” indicates that some vertical information is available: first, from cloud shadows; and
second, from infrared radiances that show cloud-top altitudes.

8 http://www-misr.jpl.nasa.gov/introduction/goals3.html/
9 http://cloudsat.atmos.colostate.edu/
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Fig. 1.5. CloudSat, carrying a 95 GHz cloud radar, in orbit with other satellites to form a
constellation-of-opportunity called the “A-train.” CloudSat is slated for a 2005 launch. The
satellites are not drawn to scale. Each satellite has capabilities which will complement Cloud-
Sat’s radar ex post facto, but the A-train was not designed ab initio as a real constellation and
thus does not have all the requisite coordination of time, space, and angle viewing

the size of a drizzle drop.10 Quibbles aside, however, CloudSat will provide an un-
precedented view of Earth’s 3D clouds, including the first global picture of cloud
geometric thicknesses.

The other members of the A-train can provide important complementary data
about clouds. CALIPSO is a lidar with a vertical-shot measurement strategy like
CloudSat. Sadly, NASA dropped CloudSat’s and CALIPSO’s accompanying oxy-
gen A-band spectrometers, which would have provided vital complementary infor-
mation on photon pathlengths. Aqua is a multi-purpose satellite carrying six dis-
parate instruments; the most significant for clouds are the MODIS imager and the
CERES radiation budget radiometers. The French Parasol satellite measures polar-
ization in reflected sunlight, a little-studied new variable for clouds, while Aura mea-
sures atmospheric chemical species. Because of cloud evolution, the data from other

10 The cm-wavelength rain radars developed just after World War II are basically blind to the
cloud particles that affect solar and infrared radiation; they measure only the precipitation-
sized drops of 500 microns and larger. So they see drizzle poorly, while cloud radar sees it
too well!
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satellites of the A-train diminish in value with every minute that elapses between
their overpass and CloudSat’s. There will be plenty of need for 3D cloud radiation
experts to make sense of this welter of data!

1.1.8 3D Clouds at Microwave Wavelengths

The rain community has its own cadre of 3D microwave cloud radiative transfer
experts. Their radiation problem is similar to the shortwave one in many respects, al-
though the high absorption of liquid water at microwave and radar wavelengths keeps
the amount of scattering low – six scatters at most. The rain community is not rep-
resented in this book, however; there is an estrangement between the rain and cloud
radiation communities (cf. Sect. 1.3). But the two communities certainly share a com-
mon interest in 3D cloud structure modeling. Rain heterogeneity is much greater than
cloud drop heterogeneity, but the two communities could probably develop common
multifractal cloud structure models, differing only in choice of parameters. There is,
after all, a continuum of states between a raining and non-raining cloud, although
from a casual perspective outside a cloud, there seems to be a quantum leap from
non-rain to rain. Both communities deal with sub-resolution variability, which the
rain community call “the beam-filling problem” since rain only partially fills the
field of view of their satellite microwave and radar instruments. Both communities
deal with the same drop size distribution, just different subsets of it (cf. Fig. 1.8).
Knyazikhin et al. (2002, 2005) and Marshak et al. (2005) have reached a hand across
the barrier in studying the clustering of the rare larger cloud drops, the ones that have
a chance to become rain, and how this affects radiative transfer and remote sensing.
This is an exemplar of how the two communities could cooperate more than they do
now.

1.1.9 Clouds and Detection of Ultra-Energetic Cosmic Rays

Recently our ARM research group received a delegation of Goddard space scientists
who represented the Orbiting Wide-angle Light-collectors, or OWL, mission. OWL
is a pair of stereo-viewing satellites designed to measure the spectacular cascade in
the Earth’s atmosphere caused by single ultra-high-energy cosmic rays (Sigl, 2001).
Satellites are needed because surface stations capture too few events – only about one
per year. Ultra-high-energy cosmic rays are theoretically impossible and could shake
the foundations of physics, making them of great interest. Each ray creates a glowing
pancake of particles a meter thick and 15 meters wide. Secondary collisions with N2

molecules in air release bursts of faint UV fluorescence, and there is also strongly
forward-directed Cerenkov radiation. The OWL delegation would in truth prefer a
cloudless Earth, but they came to us for help with the 3D cloud problem. They want
to know what they can learn from their satellites as an event propagates through
a cloud. This is the most complex 3D cloud radiation problem I have seen yet. It
illustrates the kind of new and unexpected applications that the tools and methods in
this book will be called upon to deal with.
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1.1.10 Earth-Like Planets

My personal favorite future application is to Earth-like planets. We will directly im-
age such planets, if they exist, sometime in this century. We already know that many
planets have clouds, mostly made of noxious chemicals not water. We will need to
be prepared to understand how 3D structure affects the observed spectra from these
planets! Any interpretation of the imagery and spectroscopy from such planets will
require the full arsenal of 3D cloud radiation methods.

1.1.11 Cloud Rendering

Just to see what people were doing with 3D clouds out in the wide world, I used
Google to search on all reasonable variants of the phrase “3D cloud” and got up to
3000 hits. My sampling indicated that many or even most are not, alas, about ap-
plications mentioned above but about computer-graphics renderings of cloudy skies.
Most of us have moved beyond our early concern with making our cloud structure
models look realistic to the eye, but a whole community of artists definitely worries
about it. Their clouds do not bear close inspection by those of us trained to look for
structure at all scales, however. Perhaps someday the work in this book will inform
cloud renderings in movies and make them more realistic.

1.1.12 A Personal Note

I will close this brief review of applications and future opportunities on a personal
note. From 1990 onwards, my ARM project, ably manned by Alexander Marshak,
Anthony Davis, Frank Evans, and Robert Pincus, proposed every three years a per-
fectly logical research plan of 3D cloud radiation studies. Some of the things we
actually accomplished, but others fell by the wayside because the field was develop-
ing so rapidly under the impetus of ARM that there were always new surprises and
new opportunities which we grabbed and ran with. It would have been impossible to
anticipate many of the things we wound up discovering. ARM furnished a milieu of
tool creation that led naturally to new discoveries, a theme I shall return to later. In
our 2001 proposal, as we analyzed the way we had operated, we concluded that our
zigzagging research path was mainly due to the fact that ARM frequently had to deal
with the fallout from 3D cloud radiation effects, whether they liked it or not. Oft-
times people would have preferred to use 1D models, but ARM data just couldn’t be
stuffed into a 1D framework very often – it was just too procrustean. So we became
like emergency workers who rushed to every new problem and tried to repair or at
least minimize the damage. Much was learned in that process. This book tells some
of that story.

1.2 My Life in Cloud Radiation

I have had a 33-year odyssey in cloud radiation, first as a theoretician and scientific
software developer, later as a field program participant and organizer, and supporter
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of new instrument development. I have tried to straddle theory, observation, com-
putation, modeling, and new platform and instrument development. This was an ex-
citing challenge, but probably my reach exceeded my grasp. Others have probably
succeeded better at Dido’s Problem – stretching limited resources to encompass a
vast territory. However, during my odyssey, I have seen almost everything that has
occurred for three decades and met most of the players. I hope that by sharing the
parts of my odyssey relevant to and parallel to the growth of 3D cloud radiation, I
can illuminate the larger milieu in which the fine contributions in this book are set.

In the early 1970s, I was seduced from a budding career in nuclear weapons ra-
diative transfer (yes, 3D) into the emergent field of climate. I had not been keen on
being part of the weapons establishment, but jobs for physicists were scarce when
I got my PhD in 1970. Luckily, my company won a grant from the ARPA Climate
Dynamics Program, the first major GCM-centered climate program and the first ma-
jor effort to lift climate from “the province of the halt and the lame,” as Ken Hare
once put it. The ARPA program embraced many of the pieces that we call “global
change” or “Earth System Science” today, including seminal work by John Imbrie
on ice ages and the Milankovitch theory. Our company’s proposal was to improve the
parameterizations of atmospheric radiation and mountain lee wave drag in the Mintz-
Arakawa two-layer GCM. I grabbed the radiation part when the scientist originally
committed to it left the company. With a PhD under Gerald Whitham in applied math
(applied to nonlinear waves in water and plasmas), plus one course in the Boltzmann
transport equation with an emphasis on neutrons from Noel Corngold at Caltech, I
was obviously ideally suited to the task! Perhaps having done a senior thesis at MIT
with Hans Mueller of Mueller matrix fame predisposed me to take up these radiation
cudgels.

Fortunately, I had the benefit of a remarkable mentor, Burt Freeman, who taught
me a great deal about radiation and about the Los Alamos-Livermore-General Atom-
ics axis from whose bowels our company and a lot of good but classified radiation
work had sprung. I learned Fortran in a trailer while waiting for my top-secret secu-
rity clearance, and my company offered a course in numerical methods at lunchtime
where I discovered not just a talent but a passion for numerical modeling.11 Later,
the mix of a classical analytic training and a talent for numerics enabled me to bring
a unique capability to my work.

1D plane-parallel radiative transfer was the norm in atmospheric science in those
days, and compared to what we had been doing for nuclear blasts, it at first seemed
almost too easy. (The reduced complexity in the spatial dimension was partly coun-
terbalanced by the extra complexity in the wavelength dimension and in the scat-
tering phase functions, though.) My detour into 1D plane parallel radiative transfer
lasted almost two decades, but when I finally got back to 3D radiative transfer as
a result of the birth of the Dept. of Energy ARM program in 1990, I was under no
illusion that we would need to invent the field from scratch.
11 Computer solutions were frowned upon at Caltech in favor of classical analysis, so what

little numerical analysis I learned was at night away from the prying eyes of my thesis
adviser.
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When I entered the atmospheric radiation field in 1970, it was so small that it
hadn’t even had its first AMS conference yet (Tom Vonder Haar organized one in
1972). The subject was primarily viewed as providing computer codes for GCMs –
and GCMs then were General Circulation Models, long before they made their clever
segue to become Global Climate Models. I was told upon entering the field that an
essential skill was reading a “radiation chart,” a kind of graphical parameterization
invented in the 1940s, but alas, mastery of the chart always eluded me. More creative
radiation work was going on among a small cadre of planetary scientists – William
Irvine, Jim Hansen, Carl Sagan, Richard Goody, and Jim Pollack come to mind – but
they spent little time worrying about the Earth since that was, with Voyager and other
probes, the heyday of planetary science. Radiation theory also guided remote sensing
instrument development and data interpretation, but remote sensing furnished little
data in return that was incisive and accurate enough to challenge, or cause the im-
provement of, radiation theory and models. Mainly, radiation played a service role
and was not regarded as a subject for real research and discovery. However, I saw it
as a subject ripe for renewed attention as a result of the incipient focus on climate in
1970.

In the 1970s I was able to master all that was known of atmospheric radiation,
which was very little, especially on the observational side. All the papers worth xe-
roxing fit in one drawer of my file cabinet. Being a plodding reader who can take
a good part of a day to absorb a single paper, radiation, with its thin literature, was
a good match for me. While the field was not popular, it offered plenty of untilled
ground, unlike older areas of atmospheric science. Even some of the simple things
hadn’t been done, and adapting and extending ideas and methods from other parts
of physics and mathematics could be a real contribution. Thus, I charged in with
gusto and made radiation my adoptive field, even to the point of becoming a rather
notorious radiation patriot in my earlier days (continuing a long tradition of zealous
converts).

While I ranged rather broadly, the energetic role of clouds has been my home
base in radiation. Clear sky radiation remains a fascination for some, but to me the
challenge was always clouds. Aerosols were a big topic in 1970, due mainly to Reid
Bryson and his “human volcano” slogan, but to me it seemed a tempest in a teapot.
Clouds are the primary atmospheric modulators of the flow of radiant energy from
the Sun back to space. They are more important even than water vapor because they
operate at all wavelengths and the Earth is 67% cloud-covered according to the latest
ISCCP results. Clouds’ role in energetics was known by the time Arrhenius published
his amazing energy-balance climate model calculations for doubled CO2 in 1896,
although he assumed a cloud albedo of 78% at all wavelengths and thus assigned
them a bizarrely low emissivity of 22% in the infrared.

Early in my career, when people still knew my background, they used to ask
me, “How does the state of radiation in the nuclear weapons field compare with that
in atmospheric cloud radiation?” The answer is easy, but not encouraging. In the
nuclear weapons field, the radiation models, exotic though they were, were tested,
refined against measurements, then tested again, in an iterative loop that eventu-
ally led to robust models that worked in all cases. Note that I said “all” not “most.”
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Model failure was not an option, since the consequences of failure were profound.
Unfortunately, this kind of urgency and demand for model verisimilitude was lack-
ing in cloud radiation for the first 15 years of my career. Until the advent of NASA’s
FIRE field program (1986-2000), DOE’s ARM (1990-present) and CloudSat (to be
launched soon), the resources put into the problem were underwhelming. Perhaps
clouds should have wrapped themselves in more weirdness and mystery, or had a
better public relations flak, to attract attention proportional to their importance. They
are probably more ubiquitous in the galaxy than short-lived elementary particles or
supernovae, which receive far greater funding. To my mind, this lack of attention re-
mains inexplicable, since the consequences of not knowing the radiative feedback of
clouds on climate are enormous; this uncertainty has brought long-term climate pre-
diction to a virtual standstill. Absent an effort of size appropriate to the importance
of the problem, cloud radiation will, sadly, remain somewhat of a wild card and a
tuning knob enabling an uncomfortably large range of climate change scenarios.

For the ARPA program, I wound up building the first atmospheric radiation
model that worked identically across the solar and IR spectrums – amazingly, so-
lar and IR radiation were separate communities with almost no communication at
that time! You had to add solar model results from one community to IR model
results from the other to get total radiation (what climate cares about), and worry
about the no-man’s land between 2.5 and 5 microns wavelength which both com-
munities disowned, and other disharmonies. I called my model ATRAD in an effort
to create new terminology without descending into acrobabble. ATRAD took ad-
vantage of the then-recent LOWTRAN model for atmospheric absorption from Bob
McClatchey and his group at Air Force Cambridge Research Labs (Pierluissi et al.,
1987; Dutton, 1993), and also of the elegant Grant-Hunt version of adding-doubling
for treating scattering (Hunt and Grant, 1969). Burt Freeman and I developed some
improvements for the doubling part in order to do thermal emission and specular
reflection correctly. I probably disappointed my ARPA employers by not producing
any GCM parameterizations, but that seemed to me startlingly premature consider-
ing the primitive state of atmospheric radiative transfer (especially in testing against
observations). Hopefully I have done other things which, in the fullness of time, may
compensate for that failure (Sect. 1.4–1.8).

At least some of the tools which I helped create, like the delta-Eddington approxi-
mation with Joachim Joseph and Jim Weinman, and various snow albedo approxima-
tions with Steve Warren, eventually wound up in some GCMs. It is in creating such
tools that I have found the most satisfaction, more so than in publishing papers, and
this theme runs right through to the present day with my efforts to help build ARM
and thereby a whole new paradigm in field observing; to provide useful scientific
software like my Mie code and DISORT; and recently to catalyze the development
of in situ multiple-scattering lidars (Davis et al., 1999; Evans et al., 2003) and minia-
turized cloud physics instruments for small UAVs with Paul Lawson. Since I have
often favored tool creation over paper publishing, but never discussed this choice
publicly before, I have taken the opportunity to do so as one major theme of this
chapter, below.
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In 1974, I took a 20% pay cut to join the fledging NCAR Climate Project in
Colorado at a time when immigration of bright scientists and engineers from other
fields was being actively encouraged by NCAR and NSF. Steve Schneider and Will
Kellogg were instrumental in bringing me to NCAR, after admiring some of my work
on Arctic stratus cloud radiation (Wiscombe, 1975) for the AIDJEX Program.12 I was
to become the first full-time cloud radiation modeler at NCAR. NCAR had many
cloud resources that brought me out my isolation from mainstream cloud physics,
including: (1) aircraft data from various field campaigns (on punched cards or pa-
per tables!); (2) Doug Lilly, whose seminal work on cloud-topped boundary layer
infrared cooling had put radiation on the map of cloud dynamicists; and (3) two pio-
neering and somewhat rival cloud dynamics modeling efforts, one by Deardorff and
Lilly (without microphysics) and one by Clark and Hall (with microphysics).

Compatriots at my company in La Jolla thought I was crazy to leave our idyl-
lic existence and retire my surfboard for a mile-high life in Colorado, but I was
captivated by visions of Earth System Science (before it was called that) resulting
from my experiences in the ARPA program. ARPA had introduced me to an amaz-
ingly broad range of Earth scientists – Jacob Bjerknes, Akio Arakawa, Larry Gates,
Mike Schlesinger, Murray Mitchell, Barry Saltzman, Bill Sellers, Norbert Unter-
steiner, Diran Deirmendjian, John Kutzbach and John Imbrie, among others – and
their influence, plus the seminal 1970 book “Study of Man’s Impact on Climate,”
was heady and seductive stuff for a young scientist. Thus NCAR, with its fledg-
ing climate program under Warren Washington, Bob Dickinson, Steve Schneider,
and Will Kellogg, seemed like a potential paradise. My fellow immigrants to NCAR
included Gerry North, Joe Klemp, Ramanathan, Jim Coakley, Steve Warren, Bob
Cahalan, and many others who became leading lights in climate and meteorology.
NCAR was a life-changing opportunity for me, as it was for them.

At NCAR, I continued several lines of theoretical investigation prompted by my
building of ATRAD. In truth, I never made much use of ATRAD itself, except as a
source of ideas for more fundamental work and algorithm improvements. Sometimes
I have chastised myself about this, since lying concealed within ATRAD were many
discoveries later made by others. Not least of these was a capability to study radiative
feedbacks in toto, in a single model, rather than just the shortwave or longwave parts
separately.

In spite of being looked upon with suspicion and occasional hostility by many of
the NCAR weather prediction crowd, I was given lots of freedom and little pressure
of the kind that bedevils young assistant professors today. I made good use of the
time to master not only the whole of the radiation field, small as it was then, but to
broaden my learning into paleoclimate and other subjects which now go to make up
Earth System Science.13

12 a sea-ice modeling and observational study including an ice camp in the early 1970s
13 and I even learned some traditional meteorology, starting with Forrester’s wonderful book

“1001 Questions Answered about the Weather” – although I found subfields of low pop-
ulation like atmospheric electricity and micrometeorology more interesting than crowded
fields like midlatitude stormology
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NCAR, with its own aircraft and a wealth of observational scientists visiting and
in residence, provided an ideal opportunity to learn all about cloud field programs
of that day. Most were single-aircraft, single-PI efforts, aimed at dynamics, turbu-
lence, and cloud microphysics. Radiation was, at best, an afterthought. Drops were
collected on sticky tape (Formvar replicators to be precise) and sized manually; thus
a single drop distribution, with hours of graduate student labor behind it, seemed
of much greater value than today! For a while, I indulged an obsession with gath-
ering drop distributions, calculating their various moments, and comparing them to
the distributions popular among cloud radiative transfer scientists. Rarely was there
a good match, and indeed for some distributions the famous effective variance para-
meter of Hansen and Travis (1974), a measure of the width of the drop distribution,
was far outside its theoretical range, indicating a much greater prevalence of larger
drops than could be accounted for by any exponential-tailed drop size distribution.
For years I carried around a set of 2000 punched cards containing manually-sized
drop distributions, until card readers went the way of the giant ground sloth.

At NCAR I also met Bill Hall (cf. Fig. 1.6), who with Terry Clark had built
one of the first dynamical cloud models complete with microphysics. Bill not only
patiently taught me as much as my poor brain could hold about cloud physics, but
also willingly collaborated with Ron Welch and me in our later work (Wiscombe
et al., 1984; Wiscombe and Welch, 1986) to furnish rising-parcel-model drop distrib-
utions for our radiation modeling, rather than the radiation-blessed drop distributions
which my own analyses of measured cloud data had shown to be woefully incom-
plete. A rising-parcel cloud model is 1D, which matched our 1D radiation model. I
saw nothing wrong in this; shaped by my experience in the ARPA Program, I always

Fig. 1.6. With Bill Hall in one of his infamous Hawaiian shirts. Bill was one of the earliest
cloud modelers to reach “hands across the water” and collaborate with cloud radiation scien-
tists, namely myself and Ron Welch
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approached clouds and cloud radiation from the point of view of a climate modeler.14

I wanted to extract the essence of clouds and avoid their details. In any case, using a
cloud dynamics model for input, Hall, Welch and I can claim paternity for much of
the current 3D cloud radiation work that draws input from 3D cloud models.

We also horizontally-averaged the drop distributions at various time steps in the
Clark-Hall 2D cloud model and made many radiation calculations and plots with
them, which were destined for Part II of our work, but Wiscombe et al. (1984) re-
mained a dangling Part I. I still have fat folders of Part II results in my file cabinet.
This taught me never to use “Part I” in a paper title! Viewing our abandonment of
Part II from this vantage point in time, I suspect that we felt overwhelmed by the
quantity of results that could pour forth from a radiation model taking input from
a time-stepping cloud model, and didn’t know quite how to extract the needle from
this vast haystack. This feeling must be magnified a hundredfold among the current
generation of 3D radiation modelers.

Until the late 1980s I avoided the 3D cloud problem, in spite of having a back-
ground in 3D radiative transfer. There were, after all, lots of other pressing prob-
lems, for example, cleaning up numerical problems in 1D radiative transfer, moving
beyond simple gas-absorption band models (eventually to k-distributions), studying
nonspherical particle scattering for ice and aerosols, and developing useful simple
approximations for all these things. In the 1970s, atmospheric radiative transfer was a
vast playground with many such things to be done. Even importing advanced numer-
ical techniques constituted progress. There were enough things to do with gaseous
absorption to fill a whole career, but they did not attract me as much as the hard prob-
lems posed by clouds. I realized by the mid-1980s that 3D clouds were the greatest
remaining frontier. While there had been pioneering early work by McKee and Cox
(1974) and others (cf. Chap. 3), it wasn’t until the 1980s that the geometric, compu-
tational, and observational tools really came together to make progress possible.

But here I saw a problem with the radiation community. Entering students were
cutting their teeth by writing 1D radiative transfer models, which then naturally came
to dominate their most productive early careers. Even many of my colleagues were
still fiddling with 1D methods. So I decided that something had to be done: provide
a nearly perfect 1D radiative transfer tool, one far superior to anything a graduate

14 In Wiscombe (1983), an invited review of the atmospheric radiation field, I mounted a
spirited defense of the simple 1D approach to clouds: “Most cloud-radiation models are
1D. This is the natural milieu in which to test many hypotheses about cloud radiation.
However, there has been an explosion of papers in 3D clouds, mostly cubical in shape
[. . .] The actual or implied denunciation of 1D cloud modeling in some finite cloud papers
requires comment. First, measurements are the acid test of any model; it is not enough
that a model simply ‘looks’ better. Perhaps weighting 1D albedos by the proper measure of
cloud fraction will correctly predict the albedo of patchy cloud fields. But more importantly,
our job is not to make our models as complicated as Nature herself; it is to simplify and
idealize, in order to gain understanding. 1D cloud modeling is an entirely acceptable way
to do this [. . .] Our job is to learn to make simple adjustments to 1D predictions to mimic
patchiness, not to reject this very valuable modeling approach out of hand.” (“1D” has been
substituted for the increasingly archaic term ‘plane-parallel’ in this quote.)
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student could write. I think I can admit here, for the first time, that this was one
of my main motivations for lavishing so much of my time and energy on DISORT:
to leverage the field out of its reinvention of the 1D wheel and thereby hasten the
movement into the world of 3D clouds. This, I am happy to say, is exactly what
occurred within a few years after the release of DISORT (Stamnes et al., 1988).

I also recall a kind of despair at ever completely specifying (for input to radiation
models) the 3D clouds I saw out my airplane windows. The customary cloud clas-
sifications provided no useful input to a radiation model. During his team’s 15-year
odyssey to create the most complete surface-based cloud climatology ever, I even
occasionally chided my colleague Steve Warren that those old cloud classifications
were like a strait jacket preventing us from finding more quantitative and mathe-
matical ways of classifying clouds. I was at the time thinking that clouds should be
classified by, for example, a set of multifractal parameters rather than by names. But
now I see that a rich tradition dating back to the seminal lecture by Luke Howard in
1802 would be lost if we threw out the old descriptions entirely. They contain funda-
mental process information that needs to be supplemented rather than supplanted.

So how did I get involved with 3D clouds? That is a strange, winding road in-
deed. It began with the earliest application I made of ATRAD outside the ARPA
Program – to Arctic stratus clouds. I compared the output of ATRAD to a few ra-
diative flux measurements by Gunter Weller in Wiscombe (1975), now somewhat
a classic in the polar community. One review of that paper stung me to the core,
though, and shaped my future in 3D clouds in ways I could never have envisioned
at the time. It simply remarked that ATRAD seemed an excessive load of machin-
ery to throw at a few pathetic broadband flux measurements. I spent the rest of the
1970s doing very theoretical things, but this criticism nucleated a growing conviction
that, by merely fiddling with models, I was increasingly part of the problem rather
than part of the solution. This discomfort finally led to action when our commu-
nity undertook the groundbreaking ICRCCM (Intercomparison of Radiation Codes
in Climate Models), led by Fred Luther, in the early 1980s. Many bizarre anom-
alies were discovered, including models that couldn’t calculate the Planck function
right, and models that differed by 100 W/m2, but our main discontent was a lack of
observations with sufficient spectral sophistication to incisively test the models.

The ICRCCM community asked Bob Ellingson and myself to do something
about this. Bob had done field work in BOMEX but, like me, had primarily been
engaged in theoretical pursuits before this happened. Some might have viewed us
as an unlikely pair to nucleate any kind of observational program, given our back-
grounds. How wrong any such judgment would prove to be! We both threw ourselves
wholeheartedly into learning about atmospheric instruments and what could be done
spectrally. We decided on the simplest possible problem for our first outing, the clear-
sky longwave measured with IR spectrometers, and created, after the usual setbacks
and false starts, the SPECTRE field program (Ellingson and Wiscombe, 1996). While
clouds had always been my main focus, clear sky was more appropriate for an effort
with the hidden agenda of demonstrating a quantum leap in the sophistication of field
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radiation measurements. SPECTRE attached itself to FIRE’s second field campaign
in the Fall of 1991.15

SPECTRE became the blueprint for ARM. Most of our SPECTRE instruments
survive to the present (in much improved form) in ARM, and some of our SPECTRE
documentation became part of the earliest ARM Science Plan. Little did the FIRE
participants, who generally viewed us as a rather odd and perhaps spurious appendix,
realize what an amazing and revolutionary observational program SPECTRE would
lead to.16 ARM quickly become the leading 3D cloud-radiation program of our time,
soon growing larger than the FIRE program within whose bowels it was uneasily
born. Of course, as ARM grew beyond its birth in SPECTRE, it adopted many in-
struments whose development paths began in the FIRE Program. And while FIRE
and ARM remained separate and distinct at the top level, there were too few people
involved in clouds to prevent a considerable merging at the working level.

My very first proposal to ARM in 1990 concerned 3D cloud radiation, with which
I have been more or less involved to the present day. So, my tortuous road to the 3D
cloud problem was: a critical review of a 1975 paper sparking a concern over lack of
good radiation observations, which grew to a point where I shelved my theoretical
work and co-led a clear-sky IR field program, which nucleated the cloud program
ARM, which funded me to work on 3D cloud radiation problems for 14 years.

While SPECTRE was hatching over a 6-year period, I made a determined effort
to transform myself into someone knowledgeable about observations, if not a true
observationalist. I even became somewhat of a pest to my fellow theoreticians, urging
them to “get out into the field” and away from their computers.17

As part of this makeover, I went in 1985 on my first cloud field program flight as
a guest of Vernon Derr, then Director of the NOAA Environmental Research Labs in
Boulder. Figure 1.7 shows me about to board a research aircraft in San Diego to fly
over stratocumulus clouds, which are abundant offshore and which attracted the first
FIRE field campaign two years later. This was the day one of the flight engineers
told me they shined a flashlight on the Eppley flux radiometers to make sure they
were working! Vernon told me radiation was not a high priority on these research
flights. By contrast, the turbulence probes on the nose barber pole, and the radar in-
side the nose cone, were state of the art. The radiation people who had grown up
inside atmospheric science were incapable of seeing the gross incongruity of $1000
commercial radiometers not adapted for aircraft use flying alongside much more
expensive instruments designed specifically for aircraft. It was an eye-opening ex-
perience, and as seminal in shaping my future drive for better radiation instruments
and experiments as the review of my 1975 paper had been.

15 just in time to witness the brilliant sunsets resulting from the Mt. Pinatubo eruption, whose
particles were fortunately too small to affect our IR measurements

16 One revolutionary aspect of ARM, little marked today because it is so well accepted, is its
insistence on a permanent presence in the field in order to gather long climatic datasets, as
opposed to the evanescence of typical field campaigns which took several years to organize
and only lasted several weeks.

17 I am happy to report that this has become more the norm in atmospheric radiation, rather
than the exception as in those days.
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Fig. 1.7. On the tarmac at North Island Naval Air Station in San Diego in 1985, ready to board
for my first cloud research flight, with the NOAA P-3 research aircraft in the background.
North Island was also the base for the first FIRE stratocumulus experiment in 1987, which I
attended in order to learn more about cloud measurements

While on the 1985 flight, we dived 3 km to perform what we nowadays call a “tip
calibration” on a prototype microwave radiometer, in order to point the (untiltable)
radiometer at the horizon. While not bungee jumping, this was certainly a thrill ride!
Months later, to my surprise, I got a hazardous duty citation in the mail. It taught me
a lesson I never forgot: aircraft are not vertical profiling platforms, and if we ever
want to know vertical profiles in clouds, we need other methods. Many of the so-
called vertical profiles published from aircraft field programs are in fact nothing of
the kind unless you accept an assumption of cloud horizontal homogeneity, since the
aircraft glides 50–100 m horizontally for every 1 m it travels vertically.18 Radar is
the method of choice for vertical profiling, of course, but at present we are frustrated
by ambiguities in the retrieval of cloud variables like droplet number concentration
and liquid water content from radar. These ambiguities are due not merely to the 6th-
moment problem mentioned earlier, but to the presence of objects in clouds which
give a larger radar return signal than typical cloud drops. Such objects include drizzle
drops, insects, spider webs, spores, and various other detritus small and light enough
to remain airborne for days.19 Thus I believe we will always need other methods to
supplement radar. This accounts for my advocacy of tethered balloons, small UAVs,

18 In a world obsessed with safety, dives like mine have become a thing of the past.
19 High quality polarized Dopper-radar spectra may someday enable us to disentangle the

return by these objects from the return by cloud drops.
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and cloud-physics dropsondes, all carrying miniaturized cloud physics instrumenta-
tion.

The last decade of my career has been spent on a deep involvement with ARM
and with trying to push new instruments, tools, observing strategies, and platforms,
and new ways of doing field science. I am very proud of the work of my ARM
group – Alexander Marshak, Anthony Davis, Frank Evans, Robert Pincus, and now
Yuri Knyazikhin and Christine Chiu – and am privileged to have been able to point
such talented people in promising directions and then give them their heads to run
like the wind. Out of this laissez-faire approach have come deep studies of cloud
scale, radiation scale, aircraft measurement strategy, innovative cloud lidar tech-
niques, and most recently the spatial distribution of larger drops – and other discov-
eries which can be found in this book now and which are destined for the textbooks
of ten years hence.

1.3 The Estrangement of Cloud Radiation, Cloud Physics,
and Rain Remote Sensing

3D cloud radiation scientists would ideally like to know where every drop is located
and the size of each one. Then they could average as they please, but always starting
from correct information rather than being forced to make uninformed and often
incorrect assumptions about cloud drops. In the best of all possible worlds, they
would have turned to cloud physicists and cloud dynamicists for this information.
This did not happen – hence the title of this section. It is a strange tale indeed.

Knowing the spatial distribution of cloud drops by size would enable the radi-
ation scientists to concentrate on what they do best. They would not have to know
the details of cloud physics and dynamics. This happened anyway – that is, radia-
tion people learned almost nothing about cloud physics – but not because they were
taking their input variables from cloud physics. In fact, they were relying on other
radiation people to invent mythological “radiation clouds” – pancakes with no spatial
variation and no variation in drop size distribution. This was convenient for getting
on with the radiation business, but so far from reality that communication between
the two communities remained virtually nonexistent until the early 1990s. As one
of the few who tried to learn something about cloud physics and cloud models and
interact with the cloud physics community, I witnessed this firsthand.

If we knew where every drop was located, and its size, we could do something
called a “first-principles Monte Carlo” in which photons interact with real drops, not
with fictitious “elementary volumes” as in standard radiative transfer theory. How-
ever, first-principles Monte Carlo is a far-off goal and in any case overkill for routine
work. Mostly, radiation people just want the probability distribution of drop sizes
(“drop distribution” for short) and from this they calculate all needed cloud optical
properties, mainly through the intermediary of Mie theory.20 “Drop distribution” is
20 Some didn’t want even that much contact with cloud physics, preferring instead to spec-

ify cloud optical properties directly. Especially popular was the Henyey-Greenstein phase
function, an angular scattering pattern that has never been realized in any known universe.
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devilishly difficult to define precisely, both theoretically and observationally, and is
the weakest link in standard radiative transfer theory, but its convenience made it a
mainstay of cloud radiative transfer modeling. I used it without much introspection
well into the 1990s even though I knew the functional forms used by my colleagues
to fit drop distribution tails were grossly inadequate.

From the 1970s to the present day, many cloud radiation people got their drop
distributions not from a cloud physicist but from radiation scientist Diran Deirmend-
jian (1969), the middleman who specified a few analytic functions based loosely on
drops collected on sticky tape by an aircraft. Deirmendjian’s distributions had sin-
gle humps with exponential tails toward large sizes.21 The exponential tails were not
based on any theory or analysis of observations but mere convenience, and had the
intentional side effect of saving radiation scientists from endless hours of Mie com-
putations for scattering by the larger drops. It’s hard to believe now, but in the late
1970s Mie computations could still drag down the world’s fastest computers. In 1979
I once used 8 hours of time on what was then the world’s fastest supercomputer, a
Cray-1 (now in the National Air & Space Museum), for Mie computations, and was
chastised for it by the head of the division.

Exponential-tailed drop distributions offered the further convenience of making
all moments of the distribution converge, since rn exp(−br) → 0 (for any n) as
r → ∞ where r is drop radius. In fact, the higher moments of many drop distribu-
tions that I processed diverged: that is, the contribution to higher moments from the
largest drops in the distribution were still increasing strongly. But common practice
developed into a mindset that exponential-tailed distributions represented reality, a
devilishly difficult misconception to dislodge after 30 years.

Later, Deirmendjian (1975) tried to atone for his neglect of larger drops by pre-
scribing rain distributions, for use by microwave radiation people. This time, how-
ever, his distributions had no small drops! This symbolized how the rain radiation
people (microwave and radar) and the cloud-climate radiation people (solar and IR)
lived out their lives on one side or the other of the “sub-millimeter divide.” And as far
as radiation people were concerned, drop distributions remained either cloud drops
below 15–20 microns, or rain drops above a few hundred microns. Drizzle drops in
the 100 micron range fell between the cracks – until millimeter-wave cloud radars
were invented and drizzle began, when present, to dominate their reflectivities. I call
all the analytic distributions invented by radiation people, with their arbitrary cut-
offs, “fantasy drop distributions” because their inventors didn’t care what the real
functional form was22 and they never bothered to analyze boatloads of cloud air-
craft data to learn the truth. The attitude was pretty much “any drop distribution
that smoothes out the awful Mie resonances, makes my Mie computations manage-
able, and isn’t obviously silly is just fine with me.” This was not an attitude likely to

21 Some daring souls switched to the Hansen and Travis (1974) analytic drop distributions,
again invented by radiation, not cloud, physicists – but in fact these were just repackagings
of the same old one-hump exponential-tailed distributions.

22 in particular they never bothered to determine if the tails were actually slow power laws
rather than fast exponentials
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Fig. 1.8. Past estrangement between cloud and rain scientists is mirrored in the assump-
tions they make about drop size distributions. On the left is a typical radiation size distrib-
ution of the 1980s, falling off exponentially with no possibility of larger drops, much less
rain. On the right are several traditional raindrop size distributions along with a distribution
(WWH = Wiscombe/Welch/Hall) taken from a rising-parcel cloud model; these distributions
are typically truncated with no extension to smaller sizes. There is a chasm between the two
types of distribution, which Nature fills with drizzle drops largely ignored by both groups, at
least until Bruce Albrecht called attention to their ubiquity and copious drizzle was observed
in field campaigns like DYCOMS (Stevens et al., 2003) and EPIC (Bretherton et al., 2004).
(From Wiscombe and Welch (1986).)

promote collaborations with cloud physicists, nor even with radiation brethren across
the “sub-millimeter divide.”

Figure 1.8 is taken from a paper (Wiscombe and Welch, 1986) which explored
the subject of real vs. fantasy drop distributions. It shows the gulf between typical
fantasy drop distributions used in solar and IR radiative transfer and typical raindrop
distributions based largely on surface measurements. This gulf is created by rather
arbitrary truncation decisions in each field. Figure 1.8 shows that the exponential-
tailed distributions of solar and IR radiative transfer fall off far too rapidly to ever link
up with reasonable raindrop distributions. Little has changed since that figure was
published. Our suggestion in 1986 of a steady state cloud in which larger drops are
continually being created, and in which the gulf shown in Fig. 1.8 does not exist, met
with a resounding silence from the radiation community, and so it was with pleasure
that I read of the discovery in the DYCOMS-II field program of stratocumulus clouds
which continually drizzled yet not only maintained themselves but were more robust
than their non-drizzling counterparts (Stevens et al., 1999).
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Just as there is a chasm between cloud physicists and cloud radiation scientists,
so also is there a chasm between scientists who study the interaction of microwave
radiation and radar with clouds and those who study the interaction of solar and
IR radiation with clouds (the two groups did interact in the ARM Program). The
two communities have separate literatures, separate favored journals, and separate
meetings. A leader of the microwave-precipitation field once came to me and a few
other cloud radiation people and practically begged us to join the TRMM team in
order to represent the small drops which his community completely ignores. It seems
bizarre that two communities which share a focus on radiation and clouds remain
almost completely isolated, like two religious sects shunning each other over small
doctrinal differences. Perhaps the budding theoretical and observational efforts in the
sub-millimeter wavelength region, lying between the IR and microwave, will help to
connect the two alienated communities and bridge the sub-millimeter divide.

The progress of cloud physics is leaving the fantasy drop distributions used by
radiation people increasingly in the dust. Those fantasy distributions were picked
hastily, for convenience rather than correctness. They may work for some applica-
tions, but they are just plain wrong in general. And the sad spinoff is that cloud
radiation scientists seem to have lost interest in doing better, or in accounting for the
complex way drops are spatially distributed in a cloud, differently for each drop size.
In reality, drops have a joint probability distribution in both space and size, and that
joint distribution cannot be separated into a function of size times a function of space
because of size-dependent spatial clustering.

Lest I let cloud physicists off the hook too lightly, or imply that they are all heroes
in this drama, let us be clear that 90% of cloud physicists have remained as militantly
ignorant of radiation as cloud radiation people have about cloud physics. The cloud
physics-dynamics field historically focused only on storm clouds and precipitation.
Anything that wasn’t evolving rapidly toward precipitation was not of interest to
them. Stratiform cloud – boundary layer, alto, cumulus outflow, or cirrus – remained
largely a niche field. Conventional wisdom holds that radiation can gain little grip on
a storm that lasts only an hour or two. Besides, the 1D radiation of the 1970s was of
little relevance to a patently 3D storm cloud whose sides quickly grow to be larger
than its top or bottom. The cubic-cloud ventures into 3D radiation in the 1970s and
1980s were too primitive to interest cloud physicists or seduce them to learn more
about radiation. And, since they were unable to solve the seemingly simple prob-
lems like warm rain and the initial broadening of the drop distribution, and since
they suspected turbulence as a root cause in both cases, they were much more moti-
vated to learn about turbulence than radiation. The few cloud physicists who learned
about and used radiation as a natural and normal part of their work, like Lilly, Betts,
Randall, and Cotton, were oddly little imitated.

Only in the latter half of the 1990s did cloud physicists and cloud radiation people
finally begin to link up, spurred in part by the increasing sophistication on each side.
ARM and FIRE actively facilitated that linking. Radiation people were finally ready
to handle realistic 3D clouds and actively sought input from cloud-resolving models.
For instance, such input is now being used in intercomparisons of 3D radiation codes
(the I3RC Project spearheaded by Bob Cahalan). Cloud-resolving models, although
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started in the 1970s, apparently weren’t ready to consider radiation until the 1990s.
And, it must be admitted, many cloud physicists still retain the inherited prejudice
that radiation is unimportant. But the work of Betts, Randall, and others has slowly
chipped away at this prejudice. In the new world of super-parameterization (Ran-
dall et al., 2003), not only radiation, but 3D radiation, will be essential. The fates
of cloud physicists, rain radiation scientists, and cloud radiation scientists will be
forever linked, and our professional grandchildren will look upon our past estrange-
ment as senseless and inexplicable. They will ask, how could three communities, all
basically working on clouds, not have talked to each other? I would be hard-pressed
to explain it to them.

1.4 The “Science as Tool-Driven” Viewpoint

Looking back over my career, I see that I have always unconsciously subscribed to
the idea that science is mainly tool-driven. Perhaps my applied mathematics back-
ground inclined me that way. I was furnishing software tools to the community long
before that was commonplace and long before I could have articulated any philoso-
phy justifying it as the best use of my time. I intuitively understood that if the tools
are not there, no amount of wishful thinking – and often, not even great ideas – will
lead to progress. In the case of 3D cloud radiation, I sniffed around the subject in
the 1970s and early 1980s, but turned away mainly because the tool situation was
so hopeless. Cubic clouds, the paradigm of those days, seemed too unrealistic geo-
metrically, and the paltry 50,000 Monte Carlo photons that we could throw at them
seemed too small to learn much other than that holes between clouds really do mat-
ter. The deep ideas of scaling necessary to properly model cloud structure were in
their infancy then. Starting in the late 1980s, through the ARM Program, I was able
to participate in creating new observational and theoretical tools for 3D clouds that
made the subject more tractable.

Some may say that the idea that science is tool-driven is too obvious to be worth
stating. Not so. The argument is not so much about whether tools are important –
everyone agrees on that – but whether tool creation in and of itself is a high prior-
ity activity, worth supporting for its own sake. Some famous scientists have argued
vigorously for this idea; they would hardly have bothered if it was universally ac-
cepted. Even at NASA, where I have worked for 20 years, I have seen a devaluation
of simply creating excellent tools – platforms, instruments, datasets, software – and
an increasing valuation placed on “science justification.” It’s a nice buzzphrase, but
nobody bothers to ask what actually moves science forward most effectively. And in
the view of many historians of science, developing science tools for their own sake
is the most demonstrably effective way to move science forward.

One of the most persuasive writers on this subject is Freeman Dyson, a legendary
physicist who became a big supporter of ARM.23 I never had a strong philosophical

23 Dyson once told me “you are smart to be involved with a great program like ARM” and I
think I glowed for a while afterwards.
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underpinning for my tendency toward tool-driven science until I read his recent book
(Dyson, 1999). I’ll briefly summarize his main points from that book.

Dyson says that new tools, much more than new concepts, power scientific revo-
lutions. Examples abound, beginning with Galileo’s adaptation of a Dutch telescope
design and ending with the double-helix revolution in biology and the big-bang revo-
lution in astronomy. Thomas Kuhn’s influential book The Structure of Scientific Rev-
olutions overemphasized the role of new ideas and almost ignored the role of new
tools in creating scientific revolutions. The most strongly growing areas of science
(e.g., astronomy and biology today) tend to be those which have new tools. Scientific
software is also a tool. The first extra-solar planets were found by a software program
analyzing a pulsar time series, not by a big telescope. Only software made possible
the Sloan Sky Survey and the Human Genome Project. Even plate tectonics, often
cited as the quintessential example of concept-driven science, in fact languished in
the dustbin until new tools like deep ocean drilling and sea-floor magnetometers re-
vived it.

Dyson’s opinion is strongly seconded by Harwit (2003), who wrote in Physics
Today that “progress [in physics] came primarily from the introduction of new obser-
vational and theoretical tools” which were created for their obvious general utility.
These tools were able to explore the time, wavelength, and angle dimensions much
better than before – something which is also vital in ARM. People tend to overem-
phasize the role of great ideas. Almost all the important discoveries in astronomy,
Harwit says, came as huge surprises; theoretical anticipation had little to do with it.
He points out that “at critical junctures [. . .] there is generally an overabundance of
ideas on how to move ahead [. . .] Resolution is usually attained only with the ar-
rival of new theoretical tools that can cut through to new understanding and set a
stagnating field in motion again.”

Of course, Dyson and Harwit tend to focus on revolutions or crises, since those
are the most dramatic events in science. 3D cloud radiation has not undergone a clas-
sic revolution, where a pre-existing theory is overthrown. No such dominant theory
existed – certainly not that old bugaboo 1D radiation. 1D radiation was merely a
waystation at which to bide time, and do what useful work could be done, until the
proper tools for 3D were available. No one seriously contended that 1D would suffice
for the 3D problem except in very circumscribed situations like GCMs. There was a
small scuffle in the 1980s between the Euclideanists and the fractalists over how best
to model 3D structure, but the Euclidean cloud shape model, like the 1D model, was
merely a waystation. It required only a slight push, not a revolution, to topple it.

So, there was really nothing to revolt against. The field of 3D cloud radiation
has been created ab initio in the past 30 years, and by a mere handful of people
including many authors in this book. These pioneers spent a goodly portion of their
time creating general tools. I would like to make a brief survey of some of those
new tools, in particular: new instruments and observing strategies; new models of
cloud structure based on fractal and other scaling concepts; and new radiative transfer
methods. My second major theme of scale will arise naturally in this survey. Let us
begin by first looking back at where we were in the 1970s.
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1.5 Tools for 3D Clouds, 1970s through 1990s

I would really prefer to skip the past and just read my crystal ball about future tools.
But as in so many endeavors, the past is prologue, and many of the issues we first
faced in the 1970s still haunt us today. The defects of the past are the spur to tools of
the future, and without some understanding of those defects, it is hard to appreciate
exactly what problems the new tools are fixing.

In the 1970s, we didn’t have any observational tools to characterize 3D clouds in
a way that would enable 3D radiation modeling. Precipitation or “weather” radars,
used since their accidental discovery in World War II, had centimeter wavelengths
too long to get a significant return from the 1–30 micron drops important for solar
and IR radiation, although they gave us our first look inside the bowels of a raincloud.
And the look was only semi-quantitative according to a weather radar pioneer I spoke
to, due to calibration and problems of data interpretation.

Microwave remote sensing was just getting started in the 1970s, both from the
ground and from satellites, leveraging off detector advances in astronomy and other
fields,24 but it would be a decade before any credible quantitative results for clouds
emerged. The microwave absorption line parameters and continuum were still be-
ing debated and regular bake-offs were held, usually as a spinoff of ICRCCM, with
the dozen people participating usually winding up at loggerheads. The spectroscopic
input to microwave radiative transfer models was sufficiently uncertain when ARM
fielded its first microwave radiometers in 1991 that the routine ARM microwave
retrieval algorithm for cloud liquid water path had to be empirical, with tunable pa-
rameters set for each location, and only recently has a “physically-based retrieval”
(one based on microwave radiative transfer theory) without tunable parameters been
used operationally.

For in situ measurements in clouds, we had only aircraft measuring liquid water
content with hot wires and collecting drops on sticky tape. Optical probes were just
coming into general use, but while they relieved graduate students of manual drop
sizing, they offered no meaningful increase in sample volume (in fact their sample
volume was kept purposely small so only one drop at a time could be in it). The
sample area of the FSSP, the standard optical probe for the past 25 years, is about
0.004 cm2, so on a typical flight leg of 100 km, 0.04 m3 of cloud volume is sampled.
At that rate, assuming an aircraft speed of 100 m/s, it would take 800,000 years,
or about 8 ice ages, to sample 1 km3 of cloud. Such sample volumes are so small
that they raise serious issues of statistical significance. Only by assuming spatial
homogeneity can such data be extrapolated to a whole cloud; but I challenge anyone
to find a spatially homogeneous cloud.

A little-discussed issue is how to bootstrap 1D aircraft data into a 3D picture of
cloud. This is not as simple as one might think. At the very least, the 1D view will
be biased. A famous math problem asks, “given a random distribution of nonover-
lapping circles on a plane, determine the probability distribution of circle diameters
by laying a straight line on the plane and measuring the chords where it intersects

24 another example of general tool creation making unexpected new science possible
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the circles.” It turns out that the answer inferred from the straight line is always bi-
ased. This is the simplest example I can find of “dimensional bootstrapping” – trying
to extrapolate to higher dimensions from lower ones. The problem of unbiased di-
mensional bootstrapping may be impossible in principle, but with enough 1D views
(lines), as in tomography, the problem seems to be tractable. It is faced in its fullest
severity only when one has a single line and wants to extrapolate not just to 2D but
to 3D, as in an aircraft probe of a cloud.

Abbott’s famous book Flatland (1884) is a whimsical commentary on the diffi-
culty of dimensional bootstrapping. The hero, A. Square, visits the 3D world and tries
to comprehend it, but is judged insane when he reports his findings back in Flatland.
The book reminds us that understanding things in 1D or 2D does not immediately
provide correct generalizations to 3D and 4D. Qualitatively new phenomena occur
when jumping to higher dimensions. A 4D sphere passing through our 3D world
would appear like a ghost, growing from a point to full size and then shrinking and
finally vanishing. No one would regard this as a trivial extension of a 3D sphere! We
can paper over this difficulty by assuming that higher dimensions are just a mathe-
matical cross-product of single dimensions, but such an assumption, tantamount to a
miracle, should not be accepted at face value without extensive proof.

We were in better shape on the theoretical than on the observational front, due
to the extensive work on 3D radiative transfer in the Manhattan Project and after
World War II, motivated by nuclear weapon and nuclear reactor problems. Because
the stakes were so high, there was a powerful incentive to get the models right, and
with an almost limitless supply of funding, progress was rapid. Around that time, the
field of radiative transfer, which had been entirely analytical since it was invented
around 1905 by Schuster, bifurcated into an analytical branch and a Monte Carlo
branch; the traditional analytical branch was strong, whereas the new Monte Carlo
branch, while weak, grew rapidly in order to solve Cold War problems that did not
yield easily to analytical methods. Both branches were woefully short of computer
power and thus had to make many numerical approximations. I highly recommend
Chap. 4 for a remarkably balanced introduction to both types of numerical radiative
transfer methods and the strengths and weaknesses of each.

Computer power for Monte Carlo was extremely limited, however, and great
emphasis was placed on either analytical brilliance (in the Russian school) or en-
gineering fixes (in the Los Alamos school) to reduce variance.25 It was a feat just
to calculate 20,000 trajectories, far fewer than were needed to beat errors down be-
low 10% except by extensive spatial and/or angular averaging. It was impossible to
calculate enough realizations to do proper ensemble-averages. Random number gen-
erators, the heart of every Monte Carlo model, were suspect and sometimes wrong.
There were pioneering Monte Carlo calculations for homogeneous cubic clouds (e.g.,
McKee and Cox, 1974), but the results were severely limited by computer power and
ignorance of 3D cloud structure, and thus only a few general conclusions could be

25 variance reduction is an attempt to milk the maximum information from every photon tra-
jectory without biasing the outcome
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reached – things we had more or less guessed already, such as that finite clouds
reflected less than their 1D counterparts with the same liquid water.

There is a fascinating contrast between the Russian approach to Monte Carlo,
which is highly mathematical, and the U.S. approach, which is highly practical. Rus-
sians object to variance reduction techniques that can’t be justified rigorously. They
claim these techniques are easy to think up, and mostly misbegotten. In the end, our
ARM group implemented rigorous techniques26 called “maximum-cross-section”
and “local estimation” which enabled us to perform Monte Carlo calculations that
we could only dream about a few years earlier.

The Russian approach to Monte Carlo states point-blank that Monte Carlo is just
a way of solving the integral form of the radiative transfer equation. At root, the
Russians say, Monte Carlo has nothing to do with “photons” propagating from one
“point scatter” to the next; these are merely convenient (but potentially misleading)
fictions for algorithmically calculating the Monte Carlo solution. Expressing the ra-
diative transfer equation with scattering in integral form leads to a sum of integrals
of increasing dimensionality, corresponding to higher and higher numbers of scat-
ters (sometimes called the Neumann series). There are no good quadrature methods
for such N -dimensional integrals except Monte Carlo and, for small N , a general-
ization of Trapezoidal Rule (Davis and Rabinowitz, 1984). All the elegant Gaussian
quadrature methods for one-dimensional integrals are useless for N -dimensional in-
tegrals. So, in the Russian view, “photons” are merely drunken census takers, ca-
reening around the medium to get a decent-enough sample to do the N -dimensional
integrals. Because the census takers are drunk and disorderly, their survey converges
ever so slowly to the correct solution. But a good part is: bias can only creep in if
the census takers are not sufficiently drunk – that is, if they actually try to purpose-
fully control their wanderings. Getting them drunk enough corresponds to using a
sufficiently good random number generator.

Americans may take umbrage at the idea that their loose language of photons and
trajectories is misleading. But it is easy to get confused when one talks about specific
typical wavelengths and specific types of scatterer. Suppose, for example, that one
wants to solve the radiative transfer equation for pure air at solar wavelengths. Both
the size of the scatterers (air molecules) and the distance between them are much
smaller than typical wavelengths of sunlight. In that case, how can one speak of a
point particle of light (a photon) caroming off a point scatterer? In fact, this situa-
tion is fully in the wave regime of light, and there are no definable trajectories in the
Monte Carlo sense.27 However, amazingly, Monte Carlo gives a perfectly valid and
acceptable solution to this radiative transfer problem, even though the words used to
describe the algorithm become meaningless and in fact false. Nothing could better
indicate the true character of Monte Carlo: a way of solving the radiative transfer

26 described in Marchuk et al. (1980)
27 Of course the light waves excite each air molecule to emit dipole radiation in all directions,

so the molecules can be viewed as point scattering centers. But a better mental model would
be one of throwing a handful of pebbles into a calm pond rather than firing bullets into a
vast empty space sparsely populated by point scatterers. It is also well to remember that
Rayleigh originally treated this problem in the continuum view.
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equation independent of wavelength, independent of type or size of scatterer, and
independent of the model of matter being used (continuous, discrete, or raisin pud-
ding). That is what allows Monte Carlo to be used by IR and microwave radiation
scientists without guilt.

Monte Carlo methods really excel when the interest is mainly in the radiance
escaping from the structure being sprayed with photons, or when only grand spatial
and/or angular averages are needed. If one is interested in internal radiances, or in
escaping radiances from every voxel at every angle, Monte Carlo will generally be
too inaccurate for any reasonable number of initial photons. For example, you can
launch 10M photons, but what if only 10 photons escape from a particular voxel in a
particular direction? Then the error in radiance will be 30% or more.

Analytic methods, the alternative to Monte Carlo, solved the radiative transfer
equation by a combination of special-function expansions and standard numerical
methods for linear integral and/or differential equations.28 This dichotomy continues
to the present day: analytical methods on one side, deterministic but at the mercy of
truncation errors; and Monte Carlo methods on the other side, simple to program (see
the simple one-page Monte Carlo code in this book) but often with large stochastic
errors.29 Most analytic methods made some use of spherical harmonics and/or dis-
crete ordinates ideas, although a few like the famous S-N method of the 1960s just
discretized everything in sight and solved gigantic systems of linear equations. The
actual 3D codes were usually classified because their DATA statements contained
top secret material and optical parameters, but the general techniques, under various
unmemorable names, were published mostly in the journal JQSRT in the 1960s and
1970s. The legendary Jerry Pomraning was a leader in this activity, and I remember
that he was one of the few radiation scientists that my mentor, Burt Freeman, really
looked up to. One characteristic of those early 3D methods, however, was a reliance
on radical simplifying assumptions. Computer power was far too limited to solve
the full 3D problem in all its glory – something we now take for granted with mod-
els like Spherical Harmonics Discrete Ordinate Method (SHDOM Evans, 1998), the
ultimate fulfillment of many of the dreams of those days.

In the 1970s, we even lacked a proper geometry to describe clouds. It was nascent
in the form of Mandelbrot’s monofractals, popularized in his famous book The Frac-
tal Geometry of Nature, but random monofractals turned out to be a poor represen-
tation of cloud liquid water structure although they could be tuned to create cloud
images of great visual verisimilitude. The movie industry is probably still using
monofractal clouds in animated films. But multifractals, adapted from new turbu-

28 There was an odd detour after Chandrasekhar’s book on radiative transfer was published in
1950. Following Chandrasekhar, scientists transformed the linear radiative transfer equa-
tion into a coupled set of nonlinear integral equations which were even less soluble than
the original equations. For obvious reasons, this didn’t last, but it did attract a lot of math-
ematicians who wrote several almost impenetrable books on radiative transfer and helped
create a misimpression that radiative transfer was an avant garde branch of mathematics.

29 Monte Carlo errors fall only as the inverse square root of the number of photons, except for
the intriguing quasi-random number approach recommended by O’Brien (1992) but, for
various reasons, little used.
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lence cascade models developed in the 1980s, were necessary to describe cloud liq-
uid water correctly.

We sent research aircraft into clouds regularly and tried not to think overly much
about the biases involved. Among these biases were avoiding icing conditions, high
winds, turbulence, rain, lightning, nighttime, high altitudes, and other conditions un-
pleasant or dangerous for humans. We mainly flew in benign clouds in the daytime.
Pilots were contractually entitled to their days off, whether or not the clouds were
good that day. Getting humans out of the plane will help remove some of these bi-
ases, in principle, but a concern with endangering the plane will not relieve other
biases. Progress in UAV development has been slow, due as much to FAA restric-
tions as to technological limitations, but UAVs are certainly a far preferable solu-
tion, not least because time on station goes up from a few hours to, potentially, days
(ARM has already done a 24-hr UAV research flight). Meanwhile, there has been
some progress with crewed aircraft. NOAA armored aircraft now routinely gather
data inside hurricanes. Daytime flights (typically clustered around local noon) have
remained the norm, but the DYCOMS-II field program in 2001 (Stevens et al., 1999)
figured out how to do night flights without incurring the usual punishment of long
stand-downs afterwards. Cirrus experiments were nonexistent in the 1970s, but now
cirrus clouds are routinely reached by instrumented jets, most recently in the phe-
nomenal CRYSTAL-FACE field campaign, although instruments for measuring ice
crystals are naturally less well developed than the time-tested instruments for liquid
drops.

Another bias is the preference in cloud field programs for “ideal” clouds over
the much more common “messy” clouds. Too many times I have overheard people
say, “we aren’t considering this dataset because the clouds were just too messy or
complicated.” Something about this always struck me wrong. Cloud modelers are
perfectly content to calculate messy, complicated clouds on the computer. Why then
prefer ideal ones in the field? Shouldn’t we rather observe typical, messy clouds in
the field, then distill what we observe into simple models on the computer? That’s
the normal process of science, whose main paradigm was established 400 years ago,
when Newton started with the messy planetary motions and captured them inside
simple dynamical laws. The whole process with clouds seems the opposite of that,
namely: study only the simplest data, then fit it into the most complex theories.
Just because it is easy to have complexity on the computer, doesn’t mean it is the
right thing to do. And just because it is hard to interpret observations of complicated
clouds in the field, doesn’t mean it should be eschewed.

It is possible to guess why cloud scientists avoid messy clouds in the field, even
though current models could handle them. The main reason may be because so many
measurement approaches to clouds make so many assumptions (e.g., constant drop
number concentration for some radar retrieval algorithms), and naturally one would
want to restrict observations to “ideal” clouds meeting the assumptions. A second
reason may be to test models in limiting cases, an important principle of scientific
software engineering. A third and little-discussed reason may be the dimensional
bootstrapping problem mentioned above. Cloud scientists believe that it is less diffi-
cult to extrapolate measurements from 1D or 2D up to 3D for ideal clouds, because
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ideal clouds are more homogeneous, or at least vary in more predictable ways, than
ordinary clouds. I suspect that ideal clouds are no more dimensionally bootstrap-
pable than ordinary clouds, however, because turbulence, the great de-homogenizer,
operates in all clouds.

Good as the reasons for targeting ideal clouds seem in principle, the practice
raises disturbing issues. One can wait a week or more for ideal clouds, meanwhile
passing up many ordinary cloud situations, and when ideal clouds do arrive, they
often fall short of ideality anyway. Ideal clouds often seem like a vanishingly small
subset of all clouds. In the end, our models have to work for a certain significant range
of clouds, not just a vanishingly small subset. Even stratiform clouds are messy.
Marine stratocumulus, the subject of many studies in this book because of its seeming
simplicity, is full of small pockets of convection and drizzle, to say nothing of factors
of four vacillations in optical depth over distances of 1 km or less.

Latterday field campaigns like SUCCESS, DYCOMS-II, and CRYSTAL-FACE
also have begun to remedy an issue which quietly plagued earlier field outings: not
getting enough data to make robust conclusions. Previously, a month in the field was
lucky to net a handful of “golden days” where instruments and logistics worked well
and the clouds were perfect or at least plentiful. One had to wonder whether issues
of global climatic significance could be decided based on a few days of data – that
is, whether an implicit assumption that “all clouds everywhere behaved like the ones
sampled” was true. Nowadays, a combination of longer times in the field and better
logistical organization nets a larger catch rate of data.

1.6 Current Cloud Observational Tools

Imagine my surprise, as I was working on this chapter, to open the Boulder Daily
Camera of 26 Mar 2004 and find an article on a breakthrough in weather radar. De-
veloped by a team of NCAR scientists, the new system piggybacks a 30-inch cloud
radar dish on a 30-foot scanning rain radar dish. “Together, the two radars of the S-
polka system can detect everything from baseball-sized hail to ice or water particles
10 microns in diameter,” the article trumpets. This was a powerful reminder that we
stand on the edge of finally being able to specify the 3D structure of a cloud, includ-
ing not just the big particles and not just the small ones but all of them. A unified
view of a cloud for the first time! The price: size, cost, and complexity. Tomography
is also a possibility, one which deserves its own section, later. So the technology is
there, if we think the cloud problem is worth the price.

If we ever want to “X-ray” a cloud, radar and microwave wavelengths are our
only choice. Wavelengths longer than weather radar simply pass through a cloud
as if it wasn’t there. Infrared wavelengths are so strongly absorbed that they barely
penetrate 50 meters into clouds. Solar wavelengths can penetrate even the thickest
clouds, but multiple scattering scrambles the information they might otherwise pro-
vide about spatial structure.

Let us look at some examples of state-of-the-art cloud radars and microwave
radiometers which go part way toward a complete X-ray of a cloud. Figure 1.9
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Fig. 1.9. Modern microwave (left column) and radar (right column) instruments for the study
of 3D clouds in the US DOE’s ARM Program (top row) and in Europe (bottom row). The
ARM two-channel microwave radiometer stands a little over 2 m tall and is modified from
a Radiometrics Corporation commercial product. The ARM cloud radar was developed by
NOAA Environmental Research Labs in Boulder. Both ARM instruments point vertically and
measure 2D time-height profiles. The European 2-mm-wavelength radar and 22-channel mi-
crowave radiometer scan together in lockstep, rapidly enough to capture the 3D structure of
clouds; both are described at http://www.meteo.uni-bonn.de/projekte/4d-clouds/tools/

shows the operational cloud radar and two-channel microwave radiometer deployed
at ARM sites around the world. Both are the results of development that began in
the 1970s at the NOAA Environmental Research Labs in Boulder. Also shown are
a corresponding cloud radar and microwave radiometer used in a 2003 campaign in
Holland as part of the European 4D-Clouds Project, an effort combining cloud mea-
surements, radiative transfer modeling and dynamical modeling with field outings in
2001 and 2003.

The Europeans obviously learned a lot from the ARM experience and built next-
generation instruments, which at this point the U.S. can only envy since there is
little funding for major new surface cloud instrument development. Both their radar
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and microwave radiometer scan fast enough to potentially map out a full 3D cloud
field, while the ARM instruments merely stare vertically and provide time-height
slices through a 4D cloud field. And the Europeans have aggressively tackled the
4th dimension, time, by taking data every second. Their outhouse-sized two-ton mi-
crowave radiometer has 22 polarized channels and is capable of scanning in lockstep
with the cloud radar! For years, we have been arguing in ARM about merely adding
a third channel to our microwave radiometer to better capture thin clouds; imagine
what we could do with 20 new channels! The Europeans have obviously showed us
one future in surface cloud observations, albeit a very expensive one. It is of course
well to remember that operational deployment of such large, complex instruments
would present severe difficulties.

Not all instruments have to be so high-tech or expensive. There is still room for
simple instruments and simple platforms. One example is the European tethered bal-
loon with cloud physics instruments, shown in Fig. 1.10. This is something I lobbied
for within ARM, but the FAA blocked us at every turn, carrying the bureaucratic
mantra “just say no” to new heights. ARM did manage to fly tethered balloons in at
least two field programs, although time on station was limited due to battery deple-
tion.30 For the Arctic sea-ice SHEBA experiment, I worked with Paul Lawson and
Knut Stamnes to develop a new kind of tether which sends power up and brings data
down using copper wire twisted together with the ordinary tether, eliminating the two
heaviest parts of a typical tethered balloon payload (the battery and the transmitter).
Much longer flights are possible with this unlimited supply of power. It would also
be much easier to deploy multiple instruments spaced along such a tether, since each
could draw power from the tether. In the end, only tethered balloons or cloud sondes
can provide true in situ vertical profiles – at least until we develop a capability to
hang a string of instruments more or less vertically below a slow-moving aircraft or
dirigible.

Cloud aircraft instruments have come a long way from the 1970s, although hot
wires and FSSPs are still lynchpins. But now there are many more instruments in-
cluding Hermann Gerber’s PVM which measures liquid water content and effective
radius thousands of times a second, allowing unprecedented spatial resolution; the
fast FSSP from the French allowing similar high spatial resolution in the drop size
distribution; and the Cloud Particle Imager of Paul Lawson, particularly useful for
looking at crystals in cirrus clouds. Several advanced spectrometers designed specif-
ically for aircraft use have followed the path blazed by Alex Goetz’s AVIRIS grating
spectrometer and Bill Smith’s HIS IR interferometer, which flew throughout most of
the 1980s. Mike King’s Cloud Absorption Radiometer brought the measurement of
cloud absorption to a new level of sophistication, and lately has found unexpected
use measuring surface BRDF! As a result of ARM’s ARESE field campaigns of
1995 and 2000, we learned a lot more about how to use flux radiometers on aircraft,
in particular about their thermal offsets, which also led to better surface flux mea-

30 In a 1997 deployment, Jay Mace brought down spider webs and other biological material
from the balloon that suggested to me a source of absorption in the atmosphere ignored in
all radiation models.
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Fig. 1.10. Tethered balloon with cloud physics instrument payload developed by the University
of Utrecht for the ASTEX field campaign in 1992, shown here participating in a 2003 field
outing as part of the European 4D Clouds Project

surements. By the time of CRYSTAL-FACE in 2003, cloud aircraft fairly bristled
with new kinds of instruments, although some say that funding agencies still un-
derappreciate the importance of continuous instrument development between field
campaigns.

There were also big advances in coordination and observing strategies. Earlier
cloud field programs had had a certain “sky-cowboying” aspect, chasing clouds
hither and yon at the behest of the aircraft scientist. NASA’s FIRE field program
pioneered a more orderly strategy, following in the footsteps of the famous GATE
program of the 1970s and various ocean programs where instruments were carefully
deployed according to theoretical and statistical guidelines. FIRE coordinated mul-
tiple aircraft with satellites and surface instruments, presumably in order to validate
aspects of the NASA satellite cloud climatology project called ISCCP but with real
science goals as well. FIRE fell short in many areas, and I was too quick to point
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these out in the early 1990s, but with the perspective of time I now see that FIRE
was pushing the envelope in so many areas that it was bound to stumble in some of
them. Just coordinating multiple disparate aircraft alone was a big advance.

One issue in FIRE concerned me greatly in the late 1980s: I dubbed it “scale-
babel.” Many instruments used in field campaigns tended to take data at time, space,
and angle scales which were convenient or natural for themselves, rather than at
the natural scales of clouds. Apparently experimenters expected someone (not them-
selves) to coordinate these scales later. The alternative, which seemed to have es-
caped notice, was for everyone to coordinate scales in advance. Scale-babel was
based on an untenable assumption of interpolability. It still goes on, and it is still a
Bad Thing, but I shouldn’t have expected FIRE to solve it – it is due to the obstinacy
of highly individualistic experimenters, not to the program which hosts them. Scale-
matching of (a) instrument with instrument, (b) instrument with natural cloud scales,
and (c) overall experiment design with cloud modeling scales, improved a lot by the
mid-1990s, however, and newer cloud field programs and EOS satellite instruments
are more sensitive to the issue of scale-babel.31

The one area where little observational progress was made in the 1980s was the
leap to 3D. Non-satellite measurements still remained determinedly 1D, whether it
was 1D horizontal (aircraft flight tracks) or 1D vertical (microwave radiometers and
radars, sondes). The aircraft flight tracks scrambled time and space because clouds
evolved while the flight proceeded, while vertical microwave and radar (and lidar
for thin clouds) at least capture the time dimension correctly, to build up a 2D time-
height projection of a 4D cloud – time being the 4th dimension. Radars and mi-
crowave radiometers can be scanned to add more dimensions, as the Europeans have
done in their 4D Clouds Project, but the cost involved is evident in Fig. 1.9.

Satellites gave us a 2D view, but it was hard to be sure what the satellite radiances
were really telling us about clouds other than their fraction and their temperature.
ISCCP (Rossow and Schiffer, 1999) continuously developed algorithms for giving
cloud optical depth in addition to the obvious parameters of cloud fraction and cloud
top temperature, but these optical depths had to rely on uncalibrated weather-satellite
channels and it was well into the 1990s before a reliable dataset was in hand. In any
case, satellite retrievals remain firmly grounded in 1D radiative transfer, with no
prospect of change any time soon, so 3D effects remain scrambled into the retrievals
in a poorly understood way. And satellites remain poor candidates to leverage us
into the time dimension, since revisit times are at least 10 min for geostationary
satellites32 and 90 minutes for polar-orbiting satellites. Triana, a satellite built to
observe Earth from the Earth-Sun Lagrange point L-1, would have given minute by
minute time resolution of the whole Earth, but, sabotaged by politics, it sits in a
warehouse like the Ark of the Covenant at the end of the first Indiana Jones movie.
31 although there is still a tendency to tiptoe around scale-babel, and to throw whatever is

ready to hand at the cloud problem whether or not it is scale-appropriate
32 except in so-called “rapid scan mode” used for very limited regions experiencing severe

storms
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Fig. 1.11. Two complete passes of the Global Laser Altimetry System (GLAS) from the Arctic
to the Antarctic and back on 6 Oct 2003. The inset map shows the satellite orbit segments. (top)
Lidar backscatter at 532 nm (units: 1/(m-sr)) from 21:13 to 22:49 GMT. (bottom) Same as top
but for 22:49 to 24:00 GMT. Note that the backscatter color scale is logarithmic. Aerosols as
well as clouds can be seen, albeit with lower backscatter values. Apparent returns from below
the Earth’s surface may be due to multiple scattering in clouds, which delays the returning
signal; this is not noise but actual information which can be used to learn more about clouds

The debate over “enhanced cloud absorption,” which played out over the years
since 1995, sparked two ARM aircraft field programs (ARESE I and II) to measure
cloud shortwave absorption. ARESE I indicated how poorly prepared we were to
deal with the real 4D complexities of the cloud problem. The aircraft couldn’t remain
stacked because of differing airspeeds. Aircraft roll, pitch, or yaw beyond a degree or
two invalidated the flux radiometer data or required extrapolating it to perfect level.
The aircraft were at different distances from the cloud so the flux radiometers saw
vastly differing areas of cloud. This experience forced us to a new and higher level,
both in quality of instruments, in theory, and in sampling strategy, and some gains
were realized in ARESE II, but at the same time we realized how far we still have to
go. Coordinating two aircraft (ARESE I), or one aircraft and a surface site (ARESE
II), required a careful experiment design incorporating the very best 3D radiative
transfer modeling. Marshak et al.’s (1997) work was seminal in this regard.

We round out our discussion of current satellite capabilities with two examples
of new kinds of satellite cloud data. Both are full of mysteries that have barely begun
to be studied. Figure 1.11 shows lidar profiles from the recently-launched IceSat,33

designed solely to measure the elevation of the world’s ice sheets, but, as a byproduct,
measuring global vertical profiles of clouds – the first satellite lidar profiles since Pat

33 http://glas.gsfc.nasa.gov/
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Fig. 1.12. Global map of monthly-average cloud optical depth retrieved using the Nakajima-
King algorithm for MODIS data of Nov. 2003. The retrieval may be inaccurate for low optical
depths and it saturates for large optical depths, but in the mid-range of values where most
clouds live, it represents the state-of-the-art in 1D cloud retrievals

McCormick’s pioneering Shuttle lidar mission of 1994.34 IceSat is a good example of
how tool creation can create benefits well beyond the originally intended application.
We haven’t had IceSat kind of cloud information in such abundance before, and so
far it remains a relatively unmined resource. Much more such information will come
from the CALIPSO35 lidar to be launched in 2005 on the same rocket as CloudSat.

The second example of new kinds of satellite cloud data, Fig. 1.12, shows a
recent retrieval of global cloud optical depth from MODIS using the most advanced
1D retrieval algorithm available, that of Nakajima and King (1990). This dataset is
entering its 5th reprocessing and represents the combined effort of a huge team. As
with IceSat, we simply haven’t had such datasets before, and it will take a while for
researchers to grow comfortable with them and exploit them fully. It is hard to learn
much of a fundamental nature directly from such maps, which often seem to dissolve
into Rohrschach blots – a quality they share with many GCM color contour plots.
However, there certainly is much to be learned by compositing the data in clever
ways and comparing it to surface and ISCCP retrievals.36 Such work is ongoing. It
is well to remember, though, that these data, like any cloud data retrieved using solar
radiation, are only available in the daytime (and not even near sunrise or sunset, at
which times the 1D retrieval breaks down); this diurnal bias may prevent accurate
climatic conclusions from being drawn.

34 Winker et al. (1996); http://www-lite.larc.nasa.gov/
35 http://www-calipso.larc.nasa.gov/
36 Jakob (2003) is exemplary in devising new ways to composite cloud information.
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If you couple the optical depths from MODIS with the cloud liquid water path
over oceans from microwave sensors (e.g., Greenwald et al., 1993), and are happy
with the 10s-of-km spatial resolution of the microwave data, you can learn about
effective radius as well. Of course, MODIS also retrieves effective radius from the
Nakajima-King algorithm, so the two methods can be compared. This is an example
of something that will be absolutely necessary to make progress on 3D clouds: cou-
pling of several instruments. This was a cornerstone of ARM as well: a cooperative
suite of instruments all co-measuring clouds, to produce an integrated data product
that no one instrument could possibly provide.

We are just beginning to exploit the time dimension of radiation. I have already
mentioned the movement toward faster-sampling cloud physics instruments, like the
fast FSSP and Gerber PVM, and hence toward smaller spatial scales. Another move-
ment is toward time-resolved multiple-scattering lidar (Davis et al., 1999). Lidar has
of course always used pulses whose return is timed, so time-resolution here is noth-
ing new. But conventional backscatter lidar cannot penetrate a cloud very far – a
few optical depths at most. Multiple scattered photons sample a whole cloud and,
when captured, carry information about their travels. Another advantage of multiple-
scattering lidar is that it works at night.

Two efforts which sprang from ARM projects at Goddard are exploiting multiple-
scattering lidar: the WAIL and THOR projects respectively at Los Alamos National
Laboratory (Love et al., 2001) and at Goddard (Cahalan et al., 2005). They have
learned to retrieve things like cloud optical and geometric depth from the returning
photons’ time history at a variety of angles away from the incident lidar beam. Both
of these exciting efforts have led to new instruments – new tools for understanding
3D clouds. The necessity to understand time-dependent radiative transfer, something
new for the vast majority of cloud radiation experts, is implicit in this new approach.

ARM sites, which everyone now takes for granted, were in 1990 a revolutionary
development. No one had ever thought of creating a “permanent field program” to
simultaneously furnish research and climate data. The novel idea underlying ARM
was that continual data-gathering would provide long, well-calibrated datasets which
could never be gathered in typically short field campaigns, and that discoveries of cli-
matic importance were certain to emerge from this. At the same time, IOPs (Intensive
Observational Periods) furnished an occasional field campaign milieu where extraor-
dinary scientist attention was brought to bear on clouds for a briefer period of time.
ARM had funding for both infrastructure and a science team, which were organized
to interact closely with one another. It would be superfluous to list the many ways
that ARM has promoted cloud science in the past 14 years. The concept has worked
so well that other countries are now copying it, and ARM sites have been designated
national facilities in the same category as astronomical observatories (with, naturally,
an expanded purview).

One cornerstone of ARM, not possible on satellites, is to compare observations
of the same quantity from multiple instruments. This was rare in field programs
of old, where one had to trust a single instrument not to have errors or misfea-
tures. Even getting cloud base altitude correctly from three different instruments
proved problematical in the early days of ARM, exposing our poor understanding of
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variables that we might have measured with but a single instrument in a field program
of old.

Cloud models were much readier to go 3D than the observations. Some calcu-
late full microphysics and some use parameterized microphysics where the drop size
distribution is, for example, a sum of a few simple analytic functions (but never as
simple as the one-humped Deirmendjian or Hansen-Travis distributions). Full mi-
crophysics slows down a model considerably and is thus not as popular. With the
exponential rise in computer power during the 1980s, 3D cloud models finally came
of age. Now there are a variety of models to pick from, with resolutions down to 10–
20 m.37 Radiation scientists are naturally taking advantage of this new capability to
provide input to radiation models, and soon they will have to reciprocate and provide
simple 3D radiation parameterizations to the cloud modelers.

1.7 Future Cloud Observational Tools

We tend to think of our field in isolation, and thus we miss common patterns of
development across fields. These common patterns enable us to improve our crys-
tal ball. In the cloud measurement field, progress generally follows the pattern in
astrophysics: arrays of identical sensors; complementary sensors; and increased res-
olution in wavelength, angle, and time. Examples are: in arrays of identical sensors,
tomography; in complementary sensors, any ARM site; in wavelength, O2 A-band
and sub-millimeter spectrometry; in angle, CAR and MISR; and in time, the fast
FSSP and multiple-scattering lidar.

There are no observational magic bullets for clouds. We have sought them ag-
gressively, but one after another has come up short. I remember when, in the ARM
Program, we hoped that our cloud radar would be just such a magic bullet. That was
before insects and other problems set in. Before long, we had to supplement the radar
with other instruments. Our hope now rests in combinations of very different kinds
of instruments, each filling a gap left by the others.

The ultimate combined set of instruments, although one that came together more
or less accidentally, is the satellite A-train shown earlier in Fig. 1.5. All in all, the
A-train is a formidable armada for cloud studies.

Armadas are one thing, but there are still new stand-alone instruments of great
promise. My favorite is the aircraft-borne in-situ lidar (Fig. 1.13; cf. Evans et al.
(2003)). This new lidar shoots sideways and, through intense scattering, nucleates
an expanding, diffusing near-sphere of photons.38 This near-sphere acts as a “short-
range scan” extending the observational reach of an aircraft well beyond its fuselage.
Detectors on the opposite wingtip measure the time-resolved returning photons to
retrieve the average extinction coefficient in spheres of radii 25 m, 50 m, 75 m, etc.,
centered near the aircraft. When the expanding sphere reaches a cloud boundary, the

37 At 10–20 m resolution, smaller than the photon mean-free-path in a typical cloud, 3D ra-
diative transfer effects will have to be accounted for in future 3D cloud modeling.

38 denser in the middle than at the edge, and with a fuzzy rather than a sharp edge
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Fig. 1.13. (Top) Schematic design of an in-situ lidar system using multiple scattering of time-
resolved returning photons to infer average extinction in expanding spheres around the air-
craft, as well as the location of cloud boundaries. A laser shoots pulses to the right, while up-
and down-looking detectors on the left wingtip record a time series of the multiply scattered
light. (From Evans et al. (2003).) (Bottom) Monte Carlo-simulated in-situ lidar time series for
up-pointing detectors at two locations within a stochastically-simulated 0.825-km-thick stra-
tocumulus field (StCu21), and for up- and down-pointing detectors at a single location in a
second 0.425-km-thick stratocumulus field (StCu6). In the simulation, the aircraft is near the
top of StCu6 and near the middle of StCu21. The aircraft horizontal position is halfway into
the 3.2×3.2 km periodically replicated cloud cell. The laser beamwidth is 2◦. The two detec-
tors are 8 m from the laser and have a full-width field of view of 0.5 rad. Time bins increase
by a factor of

√
2 in order to accumulate more photons. Error bars indicate uncertainty due to

Monte Carlo noise

curve of returning photons vs. time gradually steepens, since photons which would
otherwise have scattered back now escape. At absorbing wavelengths, a retrieval of
cloud absorption coefficient may also be possible.

Another new instrument is a multi-wavelength cloud extinctometer (Fig. 1.14).
This is designed to measure extinction directly, in a multi-pass cell with an 8-m
folded optical path. This is a much more direct measurement of extinction than the
traditional method of convolving the drop size distribution with Mie theory, with at a
much higher sampling rate. Hermann Gerber has developed a new Cloud Integrating
Nephelometer that measures not only extinction but also scattering phase function
asymmetry factor.
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Fig. 1.14. (Upper) Multiple-pass three-channel cloud extinctometer (Zmarzly and Lawson,
2000) which can sample extinction at a far higher rate than a traditional FSSP since it does
not need to wait for enough drops to be collected to form a stable, statistically significant
drop distribution, if one even exists. The instrument is designed to fit in a standard cloud
physics canister, shown slung under the aircraft in the middle photo. That aircraft also flew
a Russian two-pass transmissometer which bounced a 532-nm laser beam from inside the
plane off a retro-reflector on the side of the FSSP instrument. (Lower) This plot compares
extinction coefficient vs. time measured in a wave cloud over Colorado on 26 April 2000 by
the Russian transmissometer; also plotted are corresponding data from the new extinctometer
at 3 wavelengths, and values inferred indirectly from the FSSP using its measured drop size
distribution in Mie theory. (Original curves were in color but for present purposes it is not
essential to distinguish them.)

Why the interest in extinction? Cloud optical depth, the most important optical
property of a cloud for radiation, is still a poorly measured quantity in my opin-
ion. We have nothing that would rigorously qualify as a direct in situ measure-
ment since optical depth is a vertical integral and all cloud research aircraft travel
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horizontally.39 The only rigorous remote measurement would be to measure the
transmission of the Sun (or a man-made beam) through thin-enough clouds;40 other
remote measurements make the 1D-cloud and other assumptions leading to as-yet
poorly quantified errors.

Uncertainty about cloud optical depth lies at the heart of what I once dubbed
“the cloud-albedo paradox” – something that began to trouble me in the 1970s when I
made my first calculations of adiabatic liquid water content,41 integrated it vertically,
and found that a cloud only 200 m thick could easily have an optical depth of 10. At
the time, I thought that the global-annual-average value was about 10, so, since most
clouds seemed much thicker than 200 m,42 and must therefore have optical depths
larger than 10, I regarded this as a paradox. [Using the latest ISCCP value of 3.7
(Rossow and Schiffer, 1999) rather than 10 makes the paradox much worse.] After
sitting on my concern for a number of years, I finally made this statement near the
end of Wiscombe et al. (1984):

“[. . .] a paradox seems to be developing in cloud radiation studies: namely,
that optical depths computed from seemingly reasonable liquid water con-
tent profiles based on actual field measurements reach values of several hun-
dred for even moderately [1–2 km] thick clouds [. . .] To get the correct value
of planetary albedo, the 50% cloud cover may only, on average, have a 50%
albedo, a value which is consistent with optical depths on the order of 10.”

In that paper, I suggested unaccounted-for large drops as a possible resolution (pack-
ing the same liquid water into fewer, larger drops lowers the optical depth), but the
community has not embraced that idea. I wrote again of my concern in Wiscombe
and Ramanathan (1985):

“The second mystery concerns cloud optical depth. Cloud-physics models
and observations give us liquid-water amounts from which we can compute
optical depths. Observations of reflected solar radiation from space, on the
other hand, allow us to infer optical depths. These two ways of inferring
optical depth can differ by up to an order of magnitude!”

Furthermore, if 3.7 is the average cloud optical depth, then according to Bohren
et al.’s (1995) criterion that a cloud has to reach an optical depth of 10 to obscure the
Sun, one should be able to see the Sun through almost all clouds! Nothing could be
further from common experience.
39 Tethered balloons could be outfitted with miniature extinctometers spaced along the tether.

Free balloons or dropsondes carrying a single extinctometer could travel more vertically
but the cloud would evolve during their ascent or descent.

40 Bohren et al. (1995) showed that “thin enough” for solar wavelengths means optical depth
10, roughly.

41 This is the liquid water in a rising parcel of air starting at the surface and not entraining any
surrounding air; it is an upper limit but no more than twice the actual value in many clouds.
Cloud research aircraft have for decades searched for “pure adiabatic cores” in cumulus
clouds, and some have actually been found.

42 The sad truth is that we don’t know the global probability distribution of cloud geometric
thickness; IceSat, CloudSat and CALIPSO will provide the first such information.
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This issue of optical depth well illustrates the estrangement between the cloud
physics and cloud radiation communities. The radiation community seems unfazed
by weak, wimpy clouds with mean optical depth of 3.7. Yet real clouds typically
explode into existence and rapidly seek a fairly substantial optical depth above 5 or
10. Yes, a cloud must pass through a thinner stage while growing and dying, but it
spends only a small fraction of its lifetime in those phases, and the rest of the time it
is fairly thick – or as thick as the local water supply will allow. If the optical depth of
a typical cloud were graphed as a function of time, it would look like a plateau with
steep cliffs at the front and back end. Even water-starved popcorn cumulus clouds, so
ubiquitous in the subtropics, explode up to optical depths in the 5–9 range (Coakley
et al., 2005) and remain there for a long time. And it is no good blaming cirrus:
cirrus typically overlie lower clouds of more substantial optical depth, and cases of
pure cirrus don’t occur often enough to drag the whole planet’s cloud optical depth
below 4.

An explanation that I favor is that there is no paradox because we are comparing
apples with oranges: true optical depth with reflectional optical depth.43 True optical
depth could be measured by a fleet of drone aircraft stacked 10 m apart, and reporting
extinction as they fly through a cloud. Integrate the reported extinctions vertically and
presto, true optical depth! This would also be the optical depth predicted by a perfect
cloud model. “Reflectional optical depth” is retrieved from cloud reflection and is the
value that makes the planet’s radiation balance come out right. It owes zero allegiance
to non-radiational reality, including cloud physics. Cloud reflection reaches a near-
asymptote when the true optical depth reaches 50–100. But true cloud optical depth
can, invisibly to satellite sensors, grow into the hundreds (or even thousands in a
big storm). So reflectional optical depth will be biased low compared to true optical
depth, all else being equal. This bias may help explain the paradox – but my personal
belief is that it doesn’t go far enough, because clouds with optical depth over 100
only cover a few percent of the planet at any given moment. Something else is afoot
as well, I think.

Living with two different optical depths is not really disturbing. The issue only
becomes damaging if you deny the duality and expect the two optical depths to agree.
But it will take some education for climate modelers to realize that the growing
archives of satellite-retrieved cloud optical depth are not the same as the optical
depths that their cloud physico-dynamical parameterizations will produce. (The re-
lated duality in cloud fraction would be just as important, except that climate models
do not yet have a physically-based parameterization for cloud fraction.)

Alexander Marshak has developed a new method, briefly described in Chap. 14,
that will help us to better understand reflectional cloud optical depth (Marshak et al.,
2000, 2004). Current 1D retrieval methods assume no 3D effects. Marshak has in-
vented the first surface-based44 retrieval method that can recover reflectional optical

43 Stephens (1988b) has already proved a similar duality in cloud fraction: there is a true cloud
fraction, and there is a cloud fraction needed to make the radiation come out right, and they
are never the same.

44 Barker et al. (2002a) have extended Marshak’s method to work from above clouds.
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depths even in a 3D broken-cloud situation. His method uses surface reflection of
sunlight from vegetation as a source of illumination of the cloud base. It is not only
an important breakthrough, but it provides a reflectional optical depth from beneath
a cloud instead of from above; if the two differ markedly, it will be further evidence
that optical depth, in spite of its superficially trivial appearance, is a quantity with
multiple personalities.

Right through the 1990s, cloud observing systems and strategies were not de-
veloped ab initio from cloud theory. This is changing, however. Pincus et al. (2005)
illustrates the power of this new approach. They asked: to what degree can 3D ra-
diative transfer effects be estimated from the 2D time-height profiles of an ARM
or other surface radar? They worked entirely in a virtual world, sampling a Large-
Eddy-simulated field of small cumulus clouds with a simulated vertically-pointing
cloud radar. They made two sets of Monte Carlo radiative transfer calculations: one
for the full cloud structure and one for the cloud structure inferred from the radar.
The differences between these Monte Carlo calculations allowed them to disentan-
gle the relative importance of dimensionality, sampling, and the frozen turbulence
assumption.

Let me close this section with a plea for high measurement time resolution con-
sonant with time scales of cloud dynamics. Many instruments for looking at clouds
take data at a lazy pace appropriate for clear sky but not clouds. One-minute or longer
averages are typical; yet in one minute a tremendous amount of cloud variability
passes overhead with even a moderate wind. Our group lobbied hard at the inception
of ARM just to get 20-sec sampling by the microwave radiometer, a lynchpin instru-
ment for cloud studies and radar retrievals. Many instruments like lidars and radars
can sample rapidly, but the high-frequency fluctuations caused by clouds are often
viewed as just noise and not analyzed with powerful statistical tools. I would argue
that there is much information in that noise.

1.8 Tomography: The Ultimate Solution?

Tomography is a way of imaging the 3D structure of an object by probing it with
multiple beams and analyzing the multiple radiation beams emerging from it. You
can shoot the incident beams yourself, let the Sun do it, or let infrared emission
do it. The radiation can be anything from X-rays to microwaves, or even protons
and muons in exotic forms of tomography. Transmission tomography is the simplest
method, pioneered in the medical field. Emission tomography is harder, and multiple
scattering tomography is the hardest.

In the 1980s, Jack Warner and his collaborators wrote a memorable series of
papers on using microwave emission tomography to image 3D clouds (Warner et al.,
1985, 1986; Twomey, 1987). It was the capstone of Warner’s long career in cloud
physics. While many past papers have somewhat faded from my memory, this series
stood out in sharp relief because it offered a vision of the Holy Grail – complete
knowledge of the liquid water structure of any cloud. Figure 1.15 shows cartoons of
the three cloud tomography methods proposed by Warner and his collaborators. Also
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Fig. 1.15. Various strategies proposed by Warner et al. (1985, 1986) for “X-raying” a cloud
using microwave tomography, and the results of one experiment. In the top row, an aircraft
flies either over or under a cloud: if over, it emits microwave radiation in many directions to-
ward the ground where receivers measure the fraction transmitted; if under, it receives natural
microwave emission from the cloud. In the bottom row left, an array of scanning radiome-
ters receive natural microwave emission from the cloud. The various movements (scanning
and aircraft flight) are assumed to take place much faster than the time scale of cloud evolu-
tion. The bottom row right shows the results of the first-ever tomography of a real cloud in
Aug 1983 over Boulder, Colorado; the lines radiating from the surface radiometers show the
strength of the measured microwave emission, and the contours in the internal box (roughly
enclosing the observed cloud) show the values of liquid water content retrieved from those
emission measurements. Remember that microwaves are not appreciably absorbed or emitted
by ice, so no useful values are retrieved in the upper reaches of the cloud

shown is the historic first tomographic retrieval of cloud liquid water, obtained from
two surface microwave radiometers waiting for clouds to pass in between.45

In self-consistency tests using a 3D microwave radiative transfer model to pro-
duce simulated radiances, then applying tomographic retrieval methods to those

45 It was yet another case of “clouds abhor a cloud field program” – a month of operation
netted only three cases, two of which were marginal. Only the third case is shown.
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radiances, Warner was able to recover a known distribution of liquid water even
with a fairly primitive algorithm.46

The Warner and Twomey papers were of course just a glimmer of hope. Never-
theless, if we want to image 3D clouds, and especially if we want to add the time
dimension to test cloud models, tomography is the only game in town, although per-
haps we will need to supplement microwaves with other wavelength regimes in order
to measure ice better (cf. Yodh and Chance (1995) and Klose et al. (2002), for highly
scattering optical wavelengths). The cloud tomography idea has lain dormant since
the Warner and Twomey papers, perhaps due to complexity47 and technological im-
maturity, but microwave technology and spectroscopy have advanced considerably
since 1986. When it is finally decided that we are ready to properly test cloud mod-
els and/or remote sensing retrievals of cloud properties, then it will be time to revisit
tomography.

I have made a small hobby of collecting clippings about the use of tomogra-
phy in other science fields. Astronomers are using gravitational tomography to look
for invisible mass in the universe. Rock geophysicists use tomography by lowering
Ground Profiling Radar (GPR) down multiple boreholes, or dragging GPR sleds over
soil to study soil moisture vs. depth. The list is extensive. Soon the cloud subject may
be one of the last holdouts ignoring tomography.

What are the alternatives to tomography? We could fill a cloudy sky with manned
research aircraft. The recent CRYSTAL-FACE experiment in Florida, with six air-
craft, probably represented the epitome of this approach. It is far too expensive and
logistically complex a way to collect 3D cloud data regularly, and in the end six air-
craft is far too few even if all of them had been put into a cloud at the same time
(which never happened). But manned aircraft field campaigns are a vicious circle
from which little thought is given to escaping. Inertia favors repetition of the past.
By following that road, we will continue to fail to capture the 3D or 4D structure of
clouds predicted by cloud-resolving models, thus failing to validate them, and one
cannot help recalling the myth of Sisyphus.

One avenue for escaping this vicious circle is to develop fleets of small UAVs
carrying miniaturized cloud physics instruments. Small-UAV technology is becom-
ing available now due to pioneers like the Aerosonde Corporation (Holland et al.,
2001) and NASA Wallops, which has become NASA’s official UAV testing center.
NASA is just starting a program to develop science instruments for small UAVs. I
have helped start an SBIR project to miniaturize cloud physics instruments for small
UAVs, and the Phase II designs look not just promising but really exciting. Formation
flying a fleet of small UAVs inside a cloud may prove challenging, however it will
undoubtedly prove easier than flying large crewed aircraft in formation, and eventu-
ally we could penetrate clouds which crewed aircraft avoid. Anyway, we are entering
the steeply rising part of the technology curve for small UAVs. Already NASA has

46 Caveats: errors were up to 10% of the maximum liquid water; ice could not be seen (it’s
transparent in the microwave); rain invalidated the retrieval; and the cloud could evolve
significantly in the 2–3 min needed to complete a scan.

47 it involves either multiple surface sites and/or multiple aircraft
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shown it can power a model airplane with laser beams,48 and this may prove only a
foretaste of what is to come.

Fleets of small UAVs could help validate the complex tomographic remote sens-
ing methods. Tomographic methods could in turn help validate simpler remote sens-
ing methods like single cloud radars. This would establish an “audit trail” going back
to trusted in situ cloud measurements. Meanwhile, I’m sure my colleagues can think
of many other uses for fleets of small UAVs with such instrumentation. Each one is
a tiny miracle of efficiency, and the cost savings in the long run are substantial.

1.9 Cloud Structure Modeling: Introduction

Let us now turn to scale, the other main theme of this chapter. My concern with scale,
formed in the 1980s, more or less set my sails in the cloud area. A lot of my work,
and the work I have urged upon bright young people in the field, has had a strong
undercurrent of scale. I never worried about whether cloud radiation would progress
from 1D to 3D – that was the natural course of evolution – but I did worry that the
cloud structure required for input to 3D models would be unknown at the appropriate
scales.

Cloud structure models underlie everything we do in 3D cloud radiation. For at
least half of my career in cloud radiation, up through the mid-1980s, this subject
was little discussed. Structure models were the simplest possible: plane-parallel slab
clouds with no spatial variation and analytic one-humped exponential-tailed drop
size distributions loosely based on a few aircraft flights. This made sense from a re-
ductionist point of view, and also from an Occam’s Razor point of view. Efforts to
salvage this simplicity while moving into a 3D world, mainly by postulating cubic
clouds with no spatial or drop distribution variation, got us another decade further be-
fore fading. By the end of the 1980s, it became clear that we required cloud structure
models based more squarely on cloud observations, accounting properly for scaling
including giving at least a cursory acknowledgment to cloud turbulence, and hope-
fully more acceptable to cloud physicists so that a constructive dialogue could be
started where none had previously existed.

1.10 Cloud Structure Modeling: Luke Howard

I admit to almost complete ignorance of the 1802 origin of cloud structure modeling,
and indeed I had not thought of the traditional classification scheme as a “model”
because it was qualitative and I considered myself a quantitative modeler. In mid-
2003, all that changed when I stumbled across an ad for a $6 remainder book in the
Daedalus Books catalog titled “The Invention of Clouds” (Hamblyn, 2001). What
cloud person could resist a title like that? So I ordered the book and wound up reading
it cover to cover, a rare luxury for me these days. Hamblyn is a remarkably poetic

48 not in clouds of course, although microwave power beaming may be an alternative there
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science writer and the author of a quote at the beginning of this chapter. His book
describes the whole history of the traditional cloud classification scheme – cumulus,
cirrus, stratus, etc. – launched in an 1802 London lecture by Luke Howard. Howard’s
invention was much more revolutionary than I had realized. Thus, since the present
book is appearing not long after the 200th anniversary of Howard’s famous lecture,
I intended to celebrate the Howard saga at greater length. But an article by Graeme
Stephens (Stephens, 2003) anticipated me, and so I commend his article to the reader.
However, I will still give a condensed account of the saga.

Before 1750 or so, people held a static view of the universe: nothing had changed
since the dawn of time. Clouds were irrelevant in such a world. Only the growing
recognition of a dynamic universe following the work of Newton and Galileo permit-
ted clouds to become a legitimate subject of study. But even then, people despaired
of any kind of cloud classification because of clouds’ highly transitory and mutable
nature. Several classifications were put forward based on visual appearance, but all
failed because they merely described the static visual appearance of clouds – lumpy,
bumpy, clumpy, and such like. Then Luke Howard electrified the European com-
munity, scientists and general public alike, with his 1802 London lecture. What cap-
tured the public imagination was that Howard tied clouds firmly to dynamics. He saw
clouds as the same underneath, all subject to the same transformational processes, in
spite of their infinitude of forms. He brought clouds into physics. And to this day,
clouds remain the prime dynamic element in meteorology. Indeed, without clouds
and the attendant hydrologic cycle, Earth’s meteorology would be a much duller
business.

Howard’s work led eventually to the International Cloud Atlas, first published in
1896. It has gone through seven further English editions, the most recent appearing
in two volumes in 1995. It is still solidly based on Howard’s fundamental classifi-
cation, with minor additions (Sc, Ac, As), and remains the definitive work on the
nomenclature of clouds. The current tripartite structure by altitude, with 10 cloud
types, is actually simpler than in 1896!

In the long run, no one is interested in the 3D structure of every cloud that forms
on Earth. Clouds are the most changeable component of the Earth system, and indeed
until Luke Howard’s work, no one even imagined that they could be caged inside a
simple classification scheme. In the future we will, I am sure, rely upon empirical
statistical measures that summarize what is important about a cloud’s “3D-ness.”
However, there is still no agreement about what these measures are, and what char-
acteristics of 3D clouds can be safely disregarded. We will have to find this out. In
the farther future, we can aspire to “Laws of Clouds” wherein these empirical results
are put on a firmer foundation, but even then, I suspect, Howard’s classification will
still be with us as a kind of umbrella model.
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1.11 Cloud Structure Modeling: After Luke Howard

In cloud research, as in climate research, everything is called a “model” no matter
whether it aims for a crude or a nearly-exact description. Dyson (1999) points out
the vital distinction:

“A theory is a construction, built out of logic and mathematics, that is sup-
posed to describe the actual universe in which we live. A model is a con-
struction that describes a much simpler universe, including some features
of the actual universe, and neglecting others. Theories and models are both
useful tools for understanding nature. But they are useful in different ways
[. . .] A theory is useful because it can be tested by comparing its predictions
with observations of the real world [. . .] A model is useful because its behav-
ior is simple enough to be predicted and understood [. . .] On well-trodden
ground we build theories. On the half-explored frontier we build models.”

Not knowing the difference between a theory and a model has led some people
to view simple fractal-turbulent models of liquid water content and cloud-resolving
“models” as somehow akin, or even competitive so that one has to vanquish the other.
They are not. They serve different functions, so neither displaces the other. The goal
in a cloud-resolving model is perfection and completeness, within the limits of pre-
dictability. To achieve true perfection, cloud-resolving theories must eventually sim-
ulate fractal behavior – since such behavior is observed – but even if they do, fractal
models will remain as useful as they are today. A fractal model sums up thousands
of observed details into a few simple numbers and equations and thus enables one to
generate thousands of cloud realizations in a few seconds of computer time. Cloud-
resolving “models” attempt to explain all the details which are merely summarized
in a fractal model; details it can’t explain are handled by a “parameterization”, which
is actually a true model! Even the most detailed cloud “models” today have parame-
terizations and are thus not full theories, but they are as close as we can get, so I call
them “near-theories.”

Now let us look at the varieties of cloud models. The 2003 electronic version of
the Encyclopedia Brittanica identifies four basic models of a cloud: dynamical, ther-
modynamical, microphysical, and visual. I would add a fifth type, “fractal-turbulent”,
described below. Luke Howard’s models were the first and simplest dynamical mod-
els, albeit qualitative; dynamical models today are quantitative, of course, solving
some version of the equations of fluid mechanics. The Clausius-Clapeyron relation
wasn’t known in Howard’s day, but it plays a vital role in the thermodynamic model,
which is based on cooling and mixing of air masses. Pure thermodynamic models
hid inside GCM cloud parameterizations for many years; they simply created a strat-
iform cloud when the relative humidity crossed a certain threshold – no dynamics or
microphysics was involved. The microphysical model, in its simplest form, is based
on a rising adiabatic air parcel with 100% relative humidity in which water drops are
calculated explicitly as they condense, coalesce, and break up.
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Compound models combine two basic model types; for example, cloud-resolving
models combine dynamic and thermodynamic models but parameterize the micro-
physics; and 1D rising-parcel models combine microphysics and thermodynamics
but parameterize the dynamics. The near-theories combine three of the basic model
types: dynamic, thermodynamic, and microphysical. Such near-theories were de-
signed mainly to study precipitation and unfortunately are too slow to run for the vast
1000-km cloud systems that affect cloud radiation so profoundly; they are mainly
used to simulate small, intensely-convecting cloud systems.

Visual models are used mainly by weather observers and cloud radiation scien-
tists. These include the Euclidean-shape models and even the early fractal models
that just simulated cloud shape not internal structure. Visual models also survive in
the bowels of GCM radiation parameterizations, in the form of “cloud fraction” and
“cloud overlap.”

Since this is a book on 3D cloud radiation, we should take special note of the fact
that cloud radiation parameterizations in GCMs, an ultimate application for some of
this work, exist in a unique netherworld of visually-oriented cloud structure mod-
eling. Cloud fraction/overlap descriptors take a dimensionally decoupled view, with
cloud fraction describing the horizontal dimensions and cloud overlap describing the
vertical dimension. Often different groups of scientists provide algorithms for the
two descriptors! In my experience, the physically-based cloud modelers don’t take
cloud fraction or cloud overlap seriously and don’t validate their models against it,
except when forced. Their models are not visually oriented except when producing
conference movies. Thus, they probably feel that they wouldn’t know how to fix their
models if there were disagreements with the cloud fraction/overlap description, nor
that such fixes would necessarily improve their models. Worse, they don’t actively
participate in improving these GCM cloud structure schemes because such schemes
are so alien to their day-to-day research.

The cloud fraction/overlap structure model arose as part of the haphazard evolu-
tion of clouds in GCMs. Once GCMs abandoned fixed climatological clouds, they
were adrift without a clear route forward.49 Relative humidity, convective, and prog-
nostic liquid water parameterizations replaced fixed clouds, but were not designed to
provide cloud structure information for radiation parameterizations. Fractal geom-
etry, necessary to correctly describe cloud structure, failed to penetrate the GCM
world. If we were to start ab initio today, we would never follow this haphazard his-
torical route. We would instead take an integral view of the three spatial dimensions,
and at the same time develop cloud parameterizations that furnished enough infor-
mation for radiation. In clouds, turbulence always couples the vertical and horizontal
dimensions. The greater horizontal than vertical extent of non-cumuliform clouds
suggests some kinds of approximations, but not ones which entirely divorce vertical
from horizontal variability as the cloud fraction/overlap scheme does.

Other than ramifying Howard’s scheme, no progress was made in the understand-
ing of cloud spatial structure right up until the 1980s. No “laws of cloud structure”
were discovered or even sought. The near-theories produced cloud structure in a brute

49 super-parameterization (Randall et al., 2003) now offers such a route
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force way, but with no advance in understanding. There was no assurance that they
produced realistic 3D cloud structures anyway, since these couldn’t be measured by
any available instruments.50

Lacking any real theory of cloud spatial structure, Euclidean shapes, the assump-
tion of maximum ignorance, dominated early 3D cloud radiative transfer. These
Euclidean models only specified the exterior form of clouds; they had nothing to say
about their interior structure. One pioneering example was McKee and Cox (1974),
who did Monte Carlo radiation calculations for homogeneous cubic clouds. This
spawned a cottage industry, leading by the mid-1980s to randomly-spaced arrays of
randomly-sized cubes requiring 8 or more parameters to specify. Another early ex-
ample was Appleby and van Blerkom (1975), who used a 2D railroad-tie model for
the clouds of Jupiter that gave the first 3D radiative transfer explanation of observed
absorption line formation (which 1D theory had failed to account for).

Enter fractals. Fractals were invented by Mandelbrot in the 1970s (following lines
of mathematical thought going back to 1900). His most famous book (Mandelbrot,
1982), like his personal web site at Yale, continues to delight and madden readers.
Mention fractals in any group of scientists, and you are sure to get a wide spectrum
of reactions. Those who have heard messianic sermons on fractals will be apt to
cite their limitations, which are many. Others will call attention to the somewhat
empirical nature of fractals, springing as they do, and as Mandelbrot readily admits
in his book, from empirical investigations and log-log plots of data in a wide variety
of fields. Once one gets past such cavils, however, one is left with a sense of awe at an
intellectual edifice of great descriptive power and simplicity. If one invokes Occam’s
Razor to decide between competing descriptions, the fractal description usually wins
decisively. It gives us, for the first time, a tool which describes the spatial structure
of a host of natural phenomena from galaxy clusters to clouds.

Fractals had no impact on cloud structure modeling until the keystone paper of
Lovejoy (1982). This three-page paper in Science launched a revolution in thinking
about cloud structure as deep as Howard’s, and more useful to radiative transfer
modelers. Using satellite images, Lovejoy showed (see Fig. 1.16) over a range of
scales from 1 to 1000 km that the area of clouds did not go as their perimeter squared
(true for all Euclidean objects) but as their perimeter to the power 3/2. Later Cahalan
(1991) (see also Cahalan and Joseph, 1989) generalized this result down to Landsat
scales of about 30 m, finding however that the exponent changed abruptly from 1.5
to another value below 1 km. This is called a “scale break.”

The issue of scale breaks later became contentious, with Lovejoy and his follow-
ers maintaining that there were no scale breaks anywhere at any time, and the rest
of the community taking a somewhat less dogmatic position. To many, it probably
seemed like a tempest in a teapot, but underneath was a vital issue, namely, what are
the limits of the fractal picture of cloud structure? A given fractal picture is probably
good only over a scale range where the priority order of acting physical processes
is not changing. A scale break is a sign that new physics has come to the fore, or

50 weather radar could map out 3D rain structure, but was blind to non-precipitating cloud
drops
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Fig. 1.16. The famous Lovejoy (1982) plot showing that clouds and rain areas on satellite
images behave like fractals. If cloud shapes were Euclidean – circles, squares, and so forth –
their area would increase as their perimeter squared, but instead their area increases roughly
as the perimeter to the power 3/2

that the processes have re-ordered in the priority list. The fractal picture does not
break down, but it has to be modified to account for scale breaks and is no longer
so elegantly simple because more parameters must be specified. While scale breaks
are a fact of life in clouds, the remarkable thing is the large range of scales between
scale breaks – three orders of magnitude in the area-perimeter case and also in the
measurements of cloud liquid water content (Davis et al., 1994).
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Our group at Goddard became early adopters of multifractal models of cloud
structure which are richer and more complex than the monofractal models in Man-
delbrot’s book The Fractal Geometry of Nature. We developed our own variant, the
bounded cascade model, while Lovejoy preferred a model which jumped into Fourier
space, applied a power-law scaling, then jumped back to real space again. We even
have a fractal cloud web page.51 It took years for the community to absorb the new
models, and some are still not comfortable with them. But as the 1980s ended, the
number of Euclidean cloud papers began to decline dramatically, virtually dying out
by the mid-1990s.52 The multifractal model was simply superior in three important
respects: (1) the number of free parameters was considerably smaller, satisfying Oc-
cam’s Razor; (2) the internal (liquid water) structure of a cloud could be modeled
to agree with measurements, which all showed a fractal structure; and (3) it cap-
tured aspects of the turbulent cascade which we know occurs in clouds. Indeed, our
multifractal cloud models were closely related to the new fractal cascade models
developed by turbulence theorists in the 1980s.

Fractional cloudiness was harder to capture, since the multifractal models pro-
duced a positive optical depth everywhere; our group just applied a threshold below
which optical depth was set to zero. Other groups used other methods. Cloud top
bumpiness also required additions to the model – our group used fractional Brown-
ian motion – although it rarely proved of importance for stratiform clouds. In the
end, we used to joke that our fractal cloud models were a joint work of the three
dwarfs Lumpy, Clumpy, and Bumpy, with Lumpy handling the internal variation of
liquid water, Clumpy handling the gaps between clouds, and Bumpy handling the
cloud tops.

One of the most advanced fractal-like cloud models is that of Evans and Wis-
combe (2004), which generates 3D fields from cloud profiles obtained from ver-
tically pointing radar. We call this a “data generalization model” since it matches
statistics of observed input fields as closely as possible, and it can generate an ar-
bitrary cloud field satisfying the observed fractal characteristic of cloud extinction.
Venema (priv. comm.), working with the 4-D Clouds Project in Europe, has devel-
oped a general method which uses 1D or 2D input from a ground-based profiler and
searches through a space of 3D cloud models to find the best match capturing the
profiler statistics.

Fractal models are sufficiently mature now to qualify as the fifth and newest type
of basic cloud model: I would dub them “fractal-turbulent” although they have also
been called “fractal-statistical” because some of their parameters can be interpreted
in terms of means, variances, correlations, and other more esoteric statistical proper-
ties of clouds. Fractal-turbulent models not only contain real physics, through mim-
icking turbulent cascades, but they embody scaling, one of the profoundest concepts

51 http://climate.gsfc.nasa.gov/∼cahalan/FractalClouds/FractalClouds.html/
52 The driver then was the need for domain-average fluxes. Euclidean shapes may again

be useful for helping make sense of point-wise radiances in 3D cloud remote-sensing,
cf. Davis (2002) for an example using spherical clouds.
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of contemporary physics. This naturally leads us to consider the issue of scale, which,
after tools, is the other large theme of this chapter.

Recently, Petty (2002) came up with a new kind of cloud structure model which
he calls the “Independently Scattering Cloudlet model.” It doesn’t fit neatly into ei-
ther the Euclidean or fractal category, and in fact cannot be fractal without deep
modification. It composes a cloud from small units which are however much bigger
than the single-scattering “elementary volume” at the root of conventional radiative
transfer. To prosper, Petty’s model will have to capture the observed characteristics
of clouds as well and as simply as fractal models. If it can do so, it certainly offers
an attractive simplification of the radiative transfer.

1.12 Scale

Much of the discussion of scale has already taken place, mainly under the guise of
“cloud structure.” There are only a few somewhat disconnected points left to make.

“Scaling” is a term that is thrown around rather loosely, but in the multifractal
world it has a real meaning: namely, a phenomenon with no preferred scale. Power-
law statistics and scaling go together like love and marriage, because a power-law,
unlike an exponential, has no scale parameter anywhere. In spite of occasional super-
ficial similarities, there is a vast gulf between power-law spatial statistics and their
exponential counterparts. If a phenomenon is scaling, as cloud liquid water is over
several orders of magnitude of spatial scale, then the type of model you choose to
simulate it must reflect this characteristic. Choosing an exponential model introduces
a preferred scale where often none exists; it is not the choice of maximum ignorance,
as often thought, but actually the wrong choice in such cases.

Scaling ideas are crucial; they brought elegance and simplicity to a field where
distributions of Euclidean shapes were rapidly multiplying the number of needed
parameters and creating situations where it mattered if your photons hit this edge
or that corner. Arrays of Euclidean objects tended to have artificial preferred scales
(like “the mean cube size”), and this just doesn’t happen in natural clouds.

Stephens (1988a,b) was the first to introduce the idea of a scale hierarchy in 3D
cloud radiative transfer. He Fourier-transformed the radiative transfer equation in
space and grouped scales into various Fourier components. Then he looked at how
the transfer equation for each scale group couples to that for larger and smaller scale
groups. He concluded that “multiple scattering acts to filter out the smaller scale
contributions.” Stephens’ theory is not the same as the theory of scaling as it arose
in physics and particularly in turbulence, but it was a giant step away from implicit
assumptions of homogeneity.

Stephens’ conclusion that multiple scattering smoothes out small scales was con-
firmed by Cahalan’s (1991) discovery of the Landsat scale break. The break occurred
in a plot of the power spectrum of Landsat radiance versus spatial scale, shown in
Fig. 12.2 of this book, and consisted in a sudden steepening of the curve below 250 m,
indicating a strong smoothing effect. There were competing physical and instrumen-
tal theories for the scale break, but eventually the powerful analyses of Marshak et al.
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(1995) and Davis et al. (1997) won the day. They greatly extended and rigorized the
concept of “radiative smoothing” and, from 3D diffusion theory, derived a remark-
ably simple expression for the radiative smoothing scale (250 m in the Landsat case)
as the harmonic mean of the cloud geometric thickness and the transport mean free
path. Radiative smoothing theory was one of the major contributions to 3D cloud
radiation science in the last decade and was directly responsible for the development
of the new multiple-scattering lidars, discussed earlier.

Super-parameterization, also called MMFs or “multi-scale modeling framework”
(Randall et al., 2003), embeds cloud resolving models within the several-hundred-
km grid cells of a traditional GCM. MMFs resolve the cloud circulations explicitly
down to a scale of a few km, and so represent some aspects of the spatial struc-
ture explicitly. Early MMFs have limitations, such as that clouds can’t move from
one GCM column to the next, and they embed 2D rather than 3D cloud-resolving
models, but there are solutions to these problems if enough resources are made avail-
able. At least there is a foreseeable path forward, which is more than can be said
of other approaches to clouds in GCMs. When fully implemented, MMFs will pro-
vide cloud output over three orders of magnitude in scale – a veritable gold mine for
fractal-statistical analysis since scaling has not been built in ab initio yet should arise
naturally if the model has verisimilitude. MMFs offer tremendous job opportunities
to 3D cloud radiative transfer modelers, since on a 1-km scale no cloud can reason-
ably be approximated as 1D. They also make much less use of cloud fraction/overlap
assumptions, which in turn can cause much less damage.

There is also renewed attention to scales below those resolved in MMFs. The
review paper of Shaw (2003) exemplifies the struggle to understand what is going on,
microphysically, at small scales in clouds. This area remains somewhat in its infancy.
Fast-responding instruments like the Gerber PVM and the fast FSSP have only in the
past decade given us a glimpse of clouds at the centimeter level. The first question
is: is the small-scale structure Poissonian, i.e., perfectly random? This question was
being bruited about in the early 1990s53, but the answers were contradictory and the
data just weren’t good enough to decide. Now the answer seems to be that clouds are
far from Poissonian at small scales. That being the case, the next question is, what
effect does this have on larger-scale cloud optical properties like optical depth and
absorption? This is a subject of active research.

The DYCOMS-II field campaign in stratocumulus (Stevens et al., 1999) empha-
sized that even the flattest, most homogeneous-looking Sc harbors immense vari-
ability at all scales. Thus the infinite plane-parallel cloud of radiative transfer fantasy
finds no realization even in this most stratiform of all clouds – as was already dis-
covered during the first FIRE field phase. This is a fitting note on which to end our
discussion of scale.
53 Who can forget “inch clouds” (Baker, 1992; Baumgardner et al., 1993)? Inch clouds, or

more specifically centimeter-scale structure, fell out of favor for a while, but Pinsky and
Khain (2003) indicate a potential revivial.
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1.13 3D Radiative Transfer

A great part of this book is about 3D radiative transfer: fundamentals, algorithms,
and applications. There is no need to paraphrase that material; paraphrasing great
writing, like removing notes from a Mozart composition, can only deminish it.Yet I
felt a need to introduce the subject, especially since I have acted as spur and mentor
to several bright young people who made important contributions. I am also contin-
ually asked by young investigators what subjects they should be looking into and
writing proposals about. Thus I will do as I have done above – talk about the sub-
ject’s past including my experiences and impressions, then summarize where we are
now. Radiation challenge problems for the future are given in Sect. 1.17.

First, the past. One impression from looking through my collection of historic
papers on 3D cloud radiation, was how little really endured. There were gallant,
even heroic, efforts. But as in scattering by nonspherical particles, one could do gar-
gantuan calculations to achieve lilliputian results. Clean, simple, yet general conclu-
sions were elusive, at best. What was lacking, in the end, was any feeling that one
had made a breakthrough in understanding. Instead, the “progress” was like that in
World War I trench warfare – a yard at a time, with losses as well as gains. Large
subsets of literature became obsolete and are remembered only by old elephants like
me. For example, many early 3D Monte Carlo papers simply didn’t have the com-
puter horsepower to use enough photons, or enough cloud realizations, to obtain a
clean, statistically significant result, and are now little read. Euclidean cloud studies
are also little read although much cited today because their model of cloud struc-
ture is so disconnected from today’s multifractal, wavelet, and scaling models. And
as Evans (1998) has noted, “there are many hopelessly inefficient ways to compute
3D radiative transfer.” These inefficient methods now lie in the dustbin of history as
Evans’ SHDOM method has pretty much swept the field.

The past also saw a mini-rush to parameterization, an ancient curse on the radia-
tion field. Much of it depended on Euclidean concepts like face, corner, aspect ratio,
and mean cloud size – more useful for cities than for clouds – which have little utility
in a fractal cloud universe where the variation of optical depth within a cloud is just
as important as the shape of gaps between clouds.

As I look over my collection of old notes and papers on 3D cloud radiation, I
am struck with the enormous struggle to simplify the 5D problem (two angles plus
three spatial dimensions) enough to get some results. And this did not even consider
the 6th dimension, time! The simplifications in cloud shape have been discussed
above. Clouds were assumed internally homogeneous to further simplify the spa-
tial aspect of the problem. The angle dimensions were typically simplified using
delta-Eddington and diffusion approximations, requiring the cloud to be reasonably
optically thick.54

Several pioneering papers on 3D cloud radiation modeling stood out in my ad-
mittedly eclectic sampling; they give further early references. First, Weinman and

54 Diffusion approximations still have great utility, and have for example been used to under-
stand multiple scattering lidar observations of real 3D clouds.
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Swartztrauber (1968) used quasi-analytic radiative transfer methods to study a flat
cloud with sinusoidally varying cloud optical depth and isotropically scattering par-
ticles. This typified the many prescient contributions of Jim Weinman, who always
preferred elegance to brute force numerical solutions.

Second, Harshvardhan and Thomas (1984), one of the best of the Euclidean-era
papers, focuses on a single quantity, the effective cloud fraction, and repeatedly plots
it vs. the true cloud fraction (as viewed normally). Even in this paper, however, one
is bedeviled by Euclidean artifacts like edges and faces that become low enough
to start shadowing. Also, the proposed parameterization requires “the probability
that the Sun will directly illuminate cloud sides”, another Euclidean concept, like
shadowing, that becomes hard to define in a world of fractal clouds.

Third, Davies (1984) showed that 3D cloud angular reflectance patterns tend to
fall between those for a lambertian plane and a lambertian sphere; he also showed
that viewing a patchy cloud scene at 60◦ is the most useful for estimating the flux,
because the geometric details of the cloud field are the least important at 60◦.

Fourth, Barker and Davies (1989) showed the surprisingly long-range effects on
surface insolation of a surface albedo discontinuity under a cloud. This paper re-
minded us of the crucial interaction between 2D surface albedo variation and 3D
cloud variation. Barker et al. (2002b) later returned to this subject, expanding upon
Marshak et al.’s (2000) seminal work on using the “red-edge” near-discontinuity in
vegetation albedo to retrieve optical depths of 3D clouds from the surface. Chiu et al.
(2004), prompted by speculations that horizontally varying surface albedo increase
cloud absorption, studied the problem in stark relief by postulating a black-white
checkerboard surface.

I have already mentioned the work of Appleby and van Blerkom (1975) showing
that the actual shape of absorption lines observed in the clouds of Jupiter depends
on the 3D structure of the clouds. This was a novel idea at the time: that 3D spatial
structure could have a marked effect on the shape of spectra.55

Finally, as the issue of “enhanced shortwave cloud absorption” (Cess et al., 1995)
fades into history, I want to highlight its importance as a spur to the modern devel-
opment of 3D radiative transfer. Much of the funding and support that led to the
advanced situation portrayed in this book was a direct consequence of that 1995
claim, since, if there was enhanced absorption, most original bets (including mine)
were that it was mainly due to ignoring 3D effects in the 1D models of the time. To
our surprise, it turned out that 3D effects could not explain much enhanced absorp-
tion, but the advances made in discovering that fact led to permanent improvements
in all the tools of the field.

What sorts of tools do we have for 3D radiative transfer nowadays? Monte Carlo
methods of course date back to the 1940s. However, they only came of age for 3D
cloud problems recently, when billions of photon trajectories became possible. It was
interesting to look back at the growth in number of trajectories used. In 1947, Von
Neumann used 100 neutrons colliding 100 times each, which took 5 hours on an
ENIAC computer. Plass and Kattawar (1968), McKee and Cox (1974), and Davies

55 See Chap. 13 of this volume for a contemporary take on this idea using the oxygen A-band.
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(1984) all used between 30K and 100K photons. Bill Ridgway of Goddard set a new
speed record in 1991: 36M photons/Cray hour (but using various other computers
available to us at that time, the same code could be up to 50x slower). By 1994, our
group was achieving 100M photons/Cray hour. These gains brought Monte Carlo
power within the reach of laptop computers for many applications, since 100K pho-
tons is often enough for domain-average fluxes.

Thus, in Monte Carlo, advances in computer speed have made a qualitative dif-
ference; going from 10K to 1M photons buys a factor of 10 error reduction, which
can make the difference between a 10% and a 1% radiance error. Increasing the num-
ber of photons from 10M to 1B would only buy a further factor of 10 reduction in
the error, however, even though it is 990M more photons! And perhaps reducing ra-
diance error below 1% is overkill anyway, since radiance instruments rarely achieve
that accuracy. Thus we are now on the flat rather than the steep part of the Monte
Carlo progress curve for 3D clouds.

Concomitant with computer speed increases have been algorithmic improve-
ments in the random number generators at the heart of every Monte Carlo code. Press
et al. (2000) tells the fascinating story of bad early generators with hidden correla-
tions and biases that might not have ruined a 10K-photon run but could be disastrous
for a 1B-photon run.56 These problems have receded now, although each time the
number of photons increases by a factor of ten, one must reconsider them. In partic-
ular, one should always worry about how well the Fortran intrinsic random number
generator, not designed explicitly for unbiased Monte Carlo work, will function as
we move into an era of routine 1B-photon runs.

The other large class of 3D radiative transfer methods (what I call analytical-
numerical) take a more traditional approach: they approximate integrals by sums,
derivatives by differences, take Fourier transforms or make spherical harmonic ex-
pansions, and generally employ the standard grab-bag of classical applied mathemat-
ics and numerical analysis methods. The end result is often the need to solve large
sets of linear equations or eigen-problems. Errors are due to truncation (of infinite
series, or of approximations to derivatives) rather than, as in Monte Carlo, statistical
fluctuations in random number selection. The special functions used for represent-
ing radiances are chosen for their orthogonality properties and, in many cases, are
not particularly apt for representing radiances from turbulent scaling structures like
clouds. Thus, the expansions can take many terms to converge.

The best modern representative of analytical-numerical methods is SHDOM
(Evans, 1998), a well-documented program enjoying increasingly wide use due to its
great flexibility and generality. According to Evans, SHDOM “is the first explicit ra-
diative transfer model efficient enough to perform broadband 3D atmospheric radia-
tive transfer for significant sized domains.” It was also the first model to incorporate
adaptive gridding (putting more grids where needed) and even incorporated prescient
features like horizontally-varying surface reflectance. SHDOM represents a point of

56 No one has systematically explored the consequences of poor random number generators
in cloud Monte Carlo, although anecdotal evidence indicates that the cloud application is
rather forgiving.
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perfection, the culmination of two decades of struggles epitomized by the work of
Stephens in the 1980s (e.g., Stephens, 1988a,b), who emphasized the “many un-
solved numerical and mathematical issues that hopefully will challenge researchers
for some time to come.”

The 3D cloud radiation field has reached that state of maturity which prompts not
one but two model intercomparisons! The first, the Intercomparison of 3D Radiation
Codes,57 led by Bob Cahalan, uses 3D cloud structures taken from radar data, Land-
sat, and cloud-resolving models. The second, led by Howard Barker (Barker et al.,
2003), compares cloud radiation results from many GCM radiation packages, with
an emphasis on interpretation and handling of unresolved 3D cloud effects which
GCMs attempt to account for by various cloud fraction/overlap assumptions. Ac-
cording to Barker, overlap assumptions don’t work very well when compared to full
3D simulations and he concludes “. . . a paradigm shift is due for modeling 1D solar
fluxes for cloudy atmospheres.”

Cloud fraction is another nebulous concept which, like cloud overlap, has a
powerful visual appeal combined with an extreme difficulty of application in radia-
tive transfer practice. The papers of Stephens (1988a,b), still not fully appreciated,
showed that the “cloud fraction” approach used to leverage 1D theory into 3D was
doomed to ultimate failure because the “radiative cloud fraction” needed to fudge 1D
theory would never be the same as the cloud fraction we could define operationally
(e.g., from a sky-filling constellation of drones all reporting whether they were in
cloud or not). In any case, taking a linear combination of clear and cloudy radiation
with radiative cloud fraction as the weighting factor only has a prayer of working for
fluxes; it is utterly ludicrous for radiances. But we plod onward with cloud fraction,
by this time a sacred cow that cannot be killed no matter how much it fouls our yard,
and hope only that the next generation will have the courage to give it the quietus it
deserves.

The old joke about the weather, that “everyone complains about it but no one
does anything about it”, applies as well to cloud fraction. Lest I be lumped in with
the nabobs of negativism, let me offer a positive alternative: abandon cloud fraction
in favor of one or more fundamental measures of radiative turbulence. Cloud fraction
is, after all, only used by the radiation community, and it is only used to get the
radiation right – that is, to integrate either spatially or temporally, or both, across
a regime where the radiation is turbulent. If the highly developed tools of statistical
turbulence analysis, much improved in the 1980s, are applied to radiative turbulence,
we may find universal parameters with a sound measurement basis that can be used
to deal with patchy cloudiness. Such studies will require much higher sampling rates
than the one-minute averages often used in surface radiation measurements. New
techniques for measuring column-averaged atmospheric turbulence using cheap GPS
instruments may help us leap across this gap from “cloud fraction” to “radiative
turbulence.”

Lidar scientists pioneered the time dimension of radiation. They had to time-
resolve returning photon pulses at the microsecond level. But they remained an is-

57 http://i3rc.gsfc.nasa.gov/
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land in a sea of static, time-invariant radiation work. Now, however, a few cloud
radiation scientists are solving the time-dependent version of the radiative transfer
equation and applying it to remote sensing of clouds. Davis and Marshak (2002)
provide an excellent example of this new trend. Cahalan et al. (2005) describe a
new lidar concept in which a laser pulse is directed vertically down into a cloud
from an aircraft high above and then the time-resolved multiple-scattered photons
from increasingly wide angles away from the vertical are used to retrieve the cloud’s
geometric thickness. Love et al. (2001) had implemented the same concept with dra-
matically different – and already evolving (Polonsky et al., 2005) – technology and
retrieval methodology in a ground-based configuration that yields both geometrical-
and optical thicknesses of the cloud.58 Finally, Evans et al. (2003) have proposed an
“in-situ” cloud lidar for use by a microphysics-sampling aircraft (see Fig. 1.13). All
three efforts share a common origin in ARM projects at Goddard. What is important
is that all three lidars are backed up by extensive time-dependent 3D diffusion and
Monte Carlo calculations using realistic models of cloud structure; this would have
been unthinkable just a decade ago!

There is a duality between wavelength and time through the Laplace transform
of the time-dependent radiative transfer equation (cf. Min and Harrison, 1999; Hei-
dinger and Stephens, 2000; Portmann et al., 2001, and the chapter by Stephens et al.
in this volume). The photon-path-length-distribution (PPLD) is the inverse Laplace
transform of the ratio I/I0 where I is radiance at an absorbing wavelength and I0

is radiance at a non-absorbing wavelength. Extremely high spectral resolution mea-
surements, such as in the oxygen A-band, can give us the PPLD which in turn can
tell us much about cloud optical properties including absorption. Indeed, this would
be the next step beyond the current way of specifying clouds (optical depth and ef-
fective drop radius). PPLD theory is in place, and surface and aircraft instruments
have been built and deployed to measure it. Momentum is definitely building in the
PPLD area in spite of the deletion of oxygen A-band instruments from the CloudSat
and CALIPSO satellites.

Another time dimension is that of cloud dynamics, and that is on the order of sec-
onds. For most of my career, cloud radiation scientists have not tried to understand
or exploit this dynamical time-variation, but to freeze it – so-called “snapshot mode.”
In this, we became increasingly out of sync with cloud-resolving modelers who of
course regarded the time evolution of clouds as a primary goal. The fact that clouds
are tightly “wired together” in time was not even a part of the cloud radiation mind-
set, nor was any use whatsoever made of this fact. Most cloud radiation modelers
don’t even worry whether radiation instruments are adapted to cloud dynamics time
scales – which may partially explain the ubiquitous “one-minute average.” Sooner

58 The general concept of “off-beam” cloud lidar was introduced by Davis et al. (1999) who
also reported the first detection of highly-scattered lidar photons. They used a standard
(on-beam) research lidar system peering through the roof of Building 22 at Goddard but
purposely misaligned the transmitted beam with respect to the vertical axis of the receiver’s
field-of-view by up to 12◦. At that point, they lost the pulse-integrated multiple scattering
signal in the solar background. At night, they could have gone much further, and maybe
even resolved the shape of the stretched pulse.
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or later cloud radiation scientists must acknowledge that radiation is not just a series
of independent snapshots, but snapshots which are tightly glued together in time as
well as in space.

When Anthony Davis first joined our ARM group in 1992, he told us of his thesis
work with Shaun Lovejoy at McGill University showing non-exponential transmis-
sion in wildly multifractal media. For a decade, we would badger him to publish that
work, or argue with him that clouds were not intermittent enough to exhibit the phe-
nomenon. His fascination with non-exponential transmission helped reawaken my
slumbering interest in the real nature of the drop distribution and its spatial varia-
tion. Finally Alexander Marshak got interested, and now, a decade later, they have
not only published an extensive paper on the subject (Davis and Marshak, 2004) but
joined a group of young turks who are challenging some of the sacred foundations
of cloud radiative transfer – the notions of an “elementary volume” and of a Poisson
(homogeneous) spatial distribution of cloud drops. They have taken the old question
“are clouds like Swiss cheese, with actual holes, or like lumpy yogurt?” to a new
level: they show that the answer depends on drop size – creamy yogurt for small
drops, more and more holey Swiss cheese as drops grow over about 14 microns in
radius. The literature on this subject is growing exponentially, but a few recent ex-
amples include Kostinski and Jameson (2000); Kostinski (2002); Shaw et al. (2002);
Mishchenko et al. (2004); Marshak et al. (2005); Knyazikhin et al. (2005).

This re-examination of fundamentals is long overdue. The fact that clouds have
significant spatial structure on all scales down to millimeters is not a simple or triv-
ial overlay on notions of homogeneity but a radically different way of looking at
clouds, and every assumption containing a hidden sub-assumption of homogeneity
must be challenged . . . beginning with “elementary volume.” Homogeneity is a per-
fectly natural assumption in many fields, but when we see a plume of smoke rising
from a cigarette, we have to realize that all the complex folding and stretching we
see exists also inside a cloud, concealed by the greater optical depth. We continue to
hope that it can be captured by some simple assumption, but assuredly homogeneity
will not be among the candidates.

As a closing note, 3D radiative transfer has been vital in showing us the situations
in which 1D approaches actually work. Before, we just guessed and hoped about this.
We have learned, for example, that the Independent Column Approximation (ICA)
coupled with a proper distribution of cloud optical depths works in some situations –
the better, the larger the domain average. The ICA performs well even in certain
GATE simulations of scattered cumulus fields for domain averages (Barker et al.,
1999). For 3D cloud effects in the UV, Meerkotter and Degunther (2001) report “the
ICA causes maximum uncertainties up to 100% for a spatial resolution of 1 km, 10%
for a resolution of 15 km and below 5% for a resolution greater than 30 km.” This
is a quiet, little heralded gain from our newfound power in 3D cloud radiation that
allows us to leave behind the 1D vs. 3D battle and use each where appropriate.
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1.14 Turbulent Radiative Transfer

I have always been fascinated by the turbulent character of radiation, reflecting the
turbulence in the cloud medium. Stephens (1988b) gave the first formal develop-
ment, decomposing the radiance into mean and fluctuating components and working
out the consequences for the radiative transfer equations, which now, just as in fluid
dynamics, require some form of closure assumption. But because many of our radia-
tion instruments are so slow or average their data over such long periods, or because
we can’t follow the full 4D development of the cloud medium, this aspect of radiation
remains underexplored. Why do we care? Aside from the simple fact that it is a new
aspect of radiation whose understanding might lead to unexpected spinoffs, the anal-
ogy with fluid turbulence teaches us that being turbulent is a qualitative difference.
It matters that radiances are intermittent and not like white or red noise, and that
derivatives we confidently use in our differential equations only exist at scales we
generally do not resolve either computationally or observationally. The very essence
of the phenomenon is changed and, as a result, so should the mathematical represen-
tation we choose for it.

We have barely begun to understand the implications of the turbulence of surface
radiation caused by clouds. The time resolution of our surface instruments is usually
too coarse to capture it, or they are fast enough but the turbulence is hidden by the
long-time-averages usually reported. The 3D radiation models are ready to study the
problem, as this book demonstrates, but the cloud variables needed as input by those
models are not available from current observations – and certainly not second by
second as would be needed to simulate the turbulent spikiness in measured radiances
and fluxes.

We are also becoming more aware of the turbulent character of the drop size
distribution, which for decades was treated as a homogeneous variable by cloud ra-
diation modelers and remote sensing experts. Knyazikhin et al. (2005) and Marshak
et al. (2005) have shown that the conventional assumption, that number of drops of a
given radius is a power law in volume with exponent unity, is false; their analysis of
in situ FSSP data indicates the exponent depends on drop size, falling increasingly
below unity for drops larger than 14 microns. This can affect the radiative transfer in
significant ways.

1.15 Laws of Clouds

Save only for turbulence, there is a general impression that we know all the important
physical laws – dynamic, thermodynamic, microphysical – governing clouds. So,
from a reductionist point of view, the problem is solved. It should just be a matter
of software engineering to work out the details. Yet we are continually surprised by
clouds’ behavior, and we can’t seem to capture them inside a tight theoretical box.

I think the problem is that currently known laws only weakly constrain clouds.
These laws act more like inequalities than equalities, forbidding clouds from certain
regions of phase space but allowing too much free range within the rest of phase
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Fig. 1.17. The longest truly global cloud fraction and cloud optical depth data available, from
the International Satellite Cloud Climatology Project (ISCCP). (Left) Average cloud fraction
for 1983 to 2001; the persistent areas of cloud and no-cloud indicate that clouds are con-
strained by overall laws. (Right) Deviations of global-averaged monthly-mean cloud optical
depth from the 19-year average of 3.8; the relative stability of cloud optical depth cannot be
accidental but must be governed by unknown laws. A similar plot of cloud fraction would not
show such stability but rather a long-term decrease of about 6% since the mid-1980s, cause
unknown

space. This free range could only be narrowed by knowing more macroscopic Laws
of Clouds than we do now. The search has barely begun.

There is a kind of urgency to the search, because until the Laws of Clouds are
better known, our efforts to predict global change will remain stymied. The climate
community has long known that clouds are the lever Archimedes sought. Clouds can
move the climate in any direction – and without macroscopic Laws of Clouds in hand
to say otherwise, clouds will continue to be used as tuning knobs for pet theories and
explanations for climate changes. Recent examples include the brouhahas over global
dimming (Liepert, 2002), Earthshine (Palle et al., 2003), and the Iris Hypothesis (Lin
et al., 2002), all involving speculations on clouds as prime mover.

At the dawn of the satellite era, when we first saw that clouds appeared quasi-
organized on vast scales, there was hope that there might be simple governing laws.
Figure 1.17, showing cloud fraction averaged over 18 years (Rossow and Duenas,
2004, Fig. 2), does not show a uniform gray cloud cover, as one might naively ex-
pect from the Earthbound perspective that clouds come and go daily, weekly, and
seasonally. There are strong gradients between regions of high and low cloudiness,
and the gradients occur over relatively short distances compared to planetary scales.
It is most significant that these gradients remain sharp even in an 18-year average,
when one might have expected them to smear out as the climate vacillated – as El
Niños came and went, and so forth. This cloudiness pattern must reflect rather tight
control by underlying variables and processes which are stable in the face of mild
climate fluctuations. We see here the smile of that elusive Cheshire Cat, the Laws of
Clouds.

What do I mean by the Laws of Clouds? Just this: simple overall principles that
constrain what clouds can and cannot do – a kind of thermodynamics for clouds.
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An early example was Paltridge’s (1975) climate model based on maximum entropy
production.

What are some other concrete examples of such Laws? In the early days of cli-
mate modeling, in complete ignorance of clouds, people made arbitrary assumptions
which, they hoped, somewhat bookended the problem: Fixed Cloud Temperature
and Fixed Cloud Altitude (Schneider, 1972), meaning that temperature or altitude
remained the same as climate changed. There was no evidence that these were cor-
rect, but it was at least a start.

Scaling laws are another example. The radiation community has been the primary
force behind discovery of such laws. The cloud modeling community still seems
rather uninvolved, perhaps because their models have such a small range of scales
compared to Nature. Yet I think all would agree that knowing cloud scaling laws
would be a great benefit, not least because it might put certain parameterizations on
a more solid footing.

Another example springboards off the finding of Coakley et al. (2005) that “for
pixel-scale cloud fractions between 0.2 and 0.8, optical depth, droplet effective ra-
dius, and column droplet number concentration decrease slowly with decreasing
cloud cover fraction. The changes are only about 20–30% while cloud cover frac-
tion changes by 80%.” What we are seeing here, in my view, is the competition for
water in a water-starved situation (signaled by actual gaps between clouds) leading
to a quasi-equilibrium optical depth tightly constrained between roughly 5 and 8.
This curious phenomenon is not yet a Law, but may point the way toward one.

A recent example is Hartmann’s proposed Fixed Anvil Temperature law
(Hartmann and Larson, 2002), which is that cirrus anvil temperature in the trop-
ics is conserved during climate change. Hartmann seems particularly forthcoming in
looking for underlying Laws: Hartmann et al. (2001) tackle the problem of why the
radiation balance in the tropics is almost neutral.59 This fact has been known at least
since the ERBE era of the 1980s, but who bothered to look deeply or ask, why? It is
the nature of science that discovery of Laws favors the prepared mind – and the mind
which can see patterns as clues to underlying Laws, not mere inexplicable accidents.
After all, everyone had observed the motion of the planets before Newton, but only
Newton discerned the operation of a single law to bind them all.

Very few people, however, seem to be pursuing such simple Laws of Clouds. Per-
haps this is partly due to discouragement. There were attempts beginning in the 1960s
to put empirical relationships (such as between cloud fraction and relative humid-
ity) into global models. These attempts, while plausible, were less than successful –
albeit long-lived – and were premature considering that they had little observational
underpinning. As a result, effort was redirected to putting prognostic liquid water
into global models, which gained momentum in the 1990s even though the basic
scheme was proposed much earlier by Sundqvist (1978; cf. also Sundqvist et al.
(1989)). Prognostic cloud schemes represented an effort to insert a Law of Clouds
that, among many benefits, made clouds continuous in time (rather than blinkers as
formerly) and allowed them to move from one grid cell to the next. Yet, in another

59 longwave and shortwave contributions cancel
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intercomparison of GCMs in 2000, the climatic response to doubled CO2 remained
as stubbornly uncertain as in 1990, and the uncertainty was still due to differing
cloud treatments. The crucial 2–5◦C gap in predictions of global average surface
temperature change due to doubled CO2 barely closed at all.

Some people may simply feel that we won’t be able to discern the Laws of Clouds
until we have observations that can test current cloud models. While I would never
gainsay such a fundamental principle of science as comparison to observation, the
history of science shows that the great theoretical leaps forward were often based on
a thin helping of observational data and a gigantic dollop of intuition.

The Laws of Clouds can also tell us what cloud data to gather. This is a chicken
and egg situation, but science has always had to bootstrap itself in this way. We
are already running up against practical limits in cloud data-gathering: number of
aircraft we can field, number of surface sites with expensive active sensors, cost of
tomography, and so on. Future data-gathering exercises for clouds should aim toward
some proposed Law or empirical relation that needs testing. Random data-gathering
is never a very effective method of moving forward.

If we knew the Laws of Clouds, would we vividly need to explicitly manifest
clouds in climate models? I still remember a conversation with Suki Manabe, the
legendary climate modeler, in the 1970s. He said that he would prefer not to mani-
fest clouds explicitly in his models, as long as the three important functions of clouds
were calculated correctly: precipitation, latent heat release (with or without precipi-
tation), and radiation. He would be perfectly happy to have model rain coming down
from a model clear sky, he said! At the time, he was using fixed climatological clouds
in his models, a practice he defended vigorously for many years thereafter on the
grounds that this was better than any of the schemes he had seen for calculating
clouds.60 I often found Manabe’s idea preferable to a cloud paradigm dependent on
the concepts of cloud fraction and cloud overlap. I doubt if anything will stop the
momentum behind generating explicit clouds in climate models – but that should
just be a waystation toward finding the Laws of Clouds that fulfill Manabe’s three
functions.

One thing that inhibits the search for Laws of Clouds is that the subject is still
pursued as somewhat of a problem in geography. Discussions of clouds are rarely
couched in terms of general principles but of specific cases in specific places at spe-
cific altitudes. Clouds certainly change with region, but underneath this variety, as
Luke Howard knew, lies a cloud brotherhood which is much stronger than superfi-
cial differences. We need to understand clouds at a unified rather than a region by
region geographic level.

Perhaps also the known equations of clouds need to be re-formulated to mirror
the observed fractal geometry of clouds. Clouds, like strange attractors, exist “in
between” the normal integer dimensions of our Euclidean world. We don’t formulate
the equations to reflect the scaling-fractal nature of clouds. Perhaps the equations

60 Indeed, well into the 1990s GCM clouds blinked on and off like Christmas lights, an em-
barrassment so great that GCMers never showed any animations of their calculated cloud
fields.
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require fractional derivatives mirroring the fractal world in which clouds live. Yet
the textbook equations are derived by drawing infinitesimal Euclidean boxes and
reasoning about what is going in and out the faces of the boxes. No idealization
could be further from the true situation. Lagrangian models portray the situation
more truly, but when the geometry becomes too folded and stretched, models always
retreat (re-initialize) to comfortable Euclidean boxes. Our Euclidean mindset is a bed
of Procrustes preventing us from seeing the true geometry of clouds.

Why do I discuss Laws of Clouds in a book on 3D radiation? Isn’t that the job
of the cloud physicists and dynamicists? Yes and no. I see little evidence of a search
for new Laws among the builders of cloud models; they tend to be fascinated by
large complex software development rather than the search for new laws. Most of
the examples of proposed new Laws have come from radiation scientists or from
scientists outside the formal confines of cloud physics. One recent example is the
discovery by cloud radiation scientists Knyazikhin et al. (2005) and Marshak et al.
(2005) of an empirical scaling law governing clustering of drops in clouds. This
remarkable underlying scaling law now promises to cast light on problems as wide-
ranging as warm rain61 and the aerosol indirect effect.62 Kostinski and Shaw (2001)
provide some excellent speculations on possible clustering mechanisms.

Suppose the cloud physics agenda is successful without finding any new laws or
even reformulating their equations to be more geometrically a propos, and that cloud-
resolving models are miraculously able to replicate any behavior we can measure.
Would that be a satisfying conclusion to the cloud problem? From an engineering
point of view, yes; but from a discovery point of view, a model as impenetrable as
Nature herself offers little comfort. It is well to recall Feigenbaum’s warning about
numerical simulation (Horgan, 1996): “. . . people want to have fancier and fancier
computers to simulate fluids. There is something to be learned, but unless you know
what you’re looking for, you’re not going to see anything.” You still need the “third
eye” to tease out some general principle from a welter of data, whether those data
come from Nature or from a large model. These will remain rare gifts even as cloud
models become common.

I feel fortunate that the article by Jakob (2003) on evaluating cloud parameteri-
zations came out during the writing of this chapter. I tend to fall prey to pessimism
when contemplating what Jakob calls our “lack of strategy” and “lack of coherence”
in previous approaches to the cloud problem, and his insightful and courageous con-
tribution gives me hope. Jakob criticizes past comparisons of model to predicted
clouds in an average sense and says “these studies cannot provide crucial insights
into the reasons for the model failures” and “all one can learn is where, geograph-
ically, the general problems are.” Jakob advocates a “compositing” way of looking
at data or model output: examples include (a) sorting the data by dynamical regime,
and (b) co-plotting multiple cyclones around the point of highest cloud optical depth.

61 Warm rain has no ice phase. The speed of its evolution, a mere 20 minutes, has long eluded
cloud physics models.

62 in simplest terms, the effect of aerosol particles on cloud formation, persistence, precipita-
tion, and death



1 Scales, Tools and Reminiscences 75

Composites contain enough cases to be able to pick out a “typical” case. In using case
studies from field programs, the biggest and often insurmountable problem is select-
ing a typical case on which to base a change in the parameterization. Jakob advocates
using numerical weather prediction models rather than climate GCMs because “the
large-scale flow is captured more realistically” so that errors can be more easily as-
cribed to the cloud parameterization. It is from deep thinking like Jakob’s that the
Laws of Clouds will emerge.

Another good reason to know the Laws of Clouds more completely is that, bar-
ring a miracle, we will never have paleo-cloud data. Clouds leave no trace in any of
the layered records we use to infer past climate until they rain or snow, which tells us
little about their radiative effect. Clouds have likely been very different in the past,
since they can’t occur without aerosol, and we know aerosol has been very different
in the past. Thus, paleoclimate simulations will always have a cloud question mark
hanging over them.

1.16 Why Cloud Radiation is So Hard

“The reality is that clouds are highly complex turbulent media in which
physical, chemical, and probably biological, processes proceed at varying
rates, on different scales, and interact with each other. We have yet to grap-
ple with such complexity, although hopefully it is not beyond our wit to do
so.”

Hobbs (1991)

Clouds are fascinating, yet frustratingly difficult. The 3D cloud problem is a
poster child for the kind of hard, interdisciplinary problem that Earth science in-
creasingly faces. It is difficult to name an Earth phenomenon that changes faster on
such a vast range of spatial scales. There is difficult cross-cutting physics, and there
is difficult technology to somehow “X-ray” a cloud rapidly enough to see its internal
structure change from moment to moment.

We remotely sense clouds with electromagnetic radiation that always, madden-
ingly, gives ambiguous and/or incomplete information. I remember being struck, in
the first FIRE field campaign in marine stratocumulus off San Diego, how clouds
that had appeared unbroken from our aircraft appeared broken on Landsat images –
a consequence of “contrast stretching” which made the less white areas of the image
turn black. This simple optical illusion taught me a good lesson about the dangers of
remote sensing retrievals, which always contain buried and sometimes embarrassing
assumptions.

We model clouds with sophisticated physics and chemistry theories and vast
amounts of computer time, and yet know that, as of this writing, we can’t hope to
simulate a single individual cloud in all its details, or observe it sufficiently well to
incisively test the model’s predictions. We can still only hope for, at best, a statisti-
cally correct prediction. Thus, it seems, the study of 4D clouds (time being the 4th
dimension) comes as close to an ultimate act of hubris as the study of the cosmos.
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According to an apocryphal story, Heisenberg was asked what he would ask God,
given the opportunity. His reply: “When I meet God, I am going to ask him two
questions: Why relativity? And why turbulence? I really believe he will have an
answer for the first.” And he was speaking merely of ordinary homogeneous-gas
turbulence. Clouds are turbulent near-colloids with phase change!63

And clouds are by far the fastest component of the Earth system. If you want to
learn about clouds, you have to sample fast. Many of our observing systems including
those on satellites, whether by design or because of technological limitations, do not
even come close to sampling clouds at the necessary speed.

Clouds are cited, sometimes with despair, sometimes with pride, as pre-eminent
examples of a huge range of scales, from aerosol particles smaller than 0.1 micron
that nucleate cloud drops, up to the 1000-km scales on which the biggest cloud sys-
tems are organized. This is of course an opportunity as well as a burden, and nowhere
are the opportunities for discovering Laws of Clouds greater than in the scaling arena.

Cloud properties have proven devilishly hard to retrieve remotely – even “cloud
fraction”, which grew from 50% in my early career to 67% in my later career. This
growth is mainly due to changes (hopefully improvements) in remote sensing strate-
gies. Clouds’ 3D character, and other factors, conspire to make us worry whether
even the simplest characterizations like cloud fraction and cloud optical depth are
“apparent” or “real,” “reflectional” or “operational.” One can only envy the relative
simplicity of validating retrievals of land properties (e.g., Kustas et al., 2003, for soil
moisture). Their properties don’t change from minute to minute while they are mea-
suring them. They must deal with the same kinds of upscaling issues as for clouds,
but they don’t have to worry about whether their variables are “apparent” or “real;”
they can reach out and touch them.

Clouds are equally hard to characterize in situ. The instruments for so doing are,
by this point, quite technologically advanced, but their sample volumes, save only
for in situ lidar, are woefully small. Clouds are just too big! Characterizing the full
3D volume of even the smallest puffy cumulus, or its complete time dependence,
remains beyond our reach until we step up at least to tomography if not to some even
more advanced technology.

The whole “enhanced cloud absorption” debate was kicked off by several scien-
tists who certainly overstated their case – a common enough occurrence in the heat
of passion – but it was met by an equally passionate effort to stuff clouds back into
the comfortable model bags they no longer, for a while, seemed to fit into. That has
largely been accomplished, but just in case you think everything is just fine, con-
sider Fig. 1.18. This shows what I have dubbed a “Radiation Hole.” The two curves
in the figure each represent averages of groups of radiometers of very different de-
sign, which happened to be participating in an ARM intercomparison. There were
oral legends of such Holes in the surface radiation community, but they had been
dismissed as instrument artifacts. This Hole, however, was unambiguous, and lasted

63 I call them near-colloids because, as the DYCOMS-II (Stevens et al., 2003) and EPIC
(Bretherton et al., 2004) field campaigns found, many cloud systems are on the edge of
drizzling and thus often have falling droplets.
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Fig. 1.18. Measured downfluxes of broadband shortwave radiation on Aug. 3, 1998, at
Boulder, Colorado. Each curve is an average of several well-calibrated radiometers involved
in an intercomparison between the Scripps radiometers of Francisco Valero and the NOAA
radiometers of Ellsworth Dutton. The 10 W/m2 horizontal line is drawn simply to help delin-
eate the temporal extent of the Radiation Hole; it represents the outer limit of measurability
for standard field radiometers, given their inherent errors and thermal offsets, but not for these
research-quality radiometers. The Hole, lasting about 1/2 hr between 3:30 and 4:00 pm, was
seen during a mild thunderstorm. Radiation models are hard-pressed to explain this Hole with
any reasonable cloud input parameters

over half an hour. There was a mild raincloud overhead, but nothing even close to
the big thunderstorms of the Great Plains. 1D radiation models would require the
cloud to have an optical depth of 500 or more – an unlikely occurrence over Boulder,
Colorado, with its dry altiplano climate and mile-high altitude. 3D effects might ex-
plain some of the effect, but it cannot be dismissed with simple handwaving about
“photons escaping out the cloud sides.” It is likely that our cloud radiation models
still don’t work well for such extreme cases.

The full-time study of clouds involves only a tiny fraction of the people engaged
in the atmospheric science enterprise. What kind of people are attracted to such a
nearly impossible problem? They certainly require many unusual characteristics,
among them being an ability to live with an overwhelming lack of information, a
tolerance for falling discouragingly short of a complete solution, and a kind of hero-
ism in continuing to attack when sometimes all hope seems lost. Indeed, I sometimes
see these cloud warriors as Spartans defending the pass at Thermopylae – doomed,
but fighting gallantly to the last – and keeping clouds safe from the barbarians who
want to use them as arbitrary levers in the battle over global warming.
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The authors of this book are among these heroes. They are pioneers in the study
of 3D cloud radiation. Their chapters summarize the deep contributions they have
made. I commend them to your attention.

1.17 Cloud Challenge Questions for the 21st Century

In 1900, the great mathematician Hilbert posed 23 mathematical questions to his
colleagues as challenges for the 20th century. Some were very general, some very
specific. Some were relatively easy and solved within a few years, some so difficult
that they remain unsolved today – although the effort to solve them often led to im-
portant new mathematics anyway. In one stroke, Hilbert more or less set the agenda
for large parts of 20th century mathematics. I have no pretensions to Hilbert’s status,
but I felt I could not leave the cloud subject without offering a few challenges of my
own, most of which assume the field finally steps up to cloud tomography. As with
Hilbert’s challenges, the mere effort to attack these problems will certainly lead to
unexpected advances:

• Aim to measure the 4D evolution of a few cloud cases perfectly enough, and at the
right time and space scales, to incisively test both cloud-resolving models and 3D
cloud radiation models. Do not turn cloud field campaigns into an example of the
myth of Sisyphus by always going with insufficient resources to accomplish this
goal.

• Make photon path distribution the central concept of cloud radiation. This lessens
the artificial distinction between 1D and 3D and gets closer to the heart of the
problem. See Chap. 13 for an introduction to the subject.

• Use Observing System Simulation Experiments to design statistically significant
cloud field campaigns, then hew unswervingly to the calculated strategies.

• Coordinate the measurement scales (time, space, angle, wavelength) of instru-
ments in field campaigns in advance. Doing it ex post facto is very expensive
and often nearly impossible.

• Make better use of mini-UAVs and balloons in cloud field campaigns to help val-
idate tomography and provide a 4D view of a cloud. The 4D view can never be
achieved with large crewed aircraft alone.

• Increase sampling volumes of aircraft cloud instruments from cubic cm to cubic
m and eventually to cubic km, beginning with liquid water content and extinction.

• Make use of multiple scattering off-beam and in-situ cloud lidars to probe larger
cloud volumes rapidly, and find ways to beat down solar background.

• Formally intercompare the growing number of methods for reconstructing 3D or
4D clouds from dimensionally-challenged observations like 1D aircraft flights or
vertical radar profiles. Use predictions of spectral surface fluxes as the criterion to
judge models.

• Measure proper in situ vertical profiles in clouds for credible validation of radar
and other purposes. Stop deluding ourselves that a descending aircraft gives a true
vertical profile.
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• Develop an instrument or a method to directly measure radiative heating rates in
clouds, without the double-subtraction inherent in the present method.

• Make more use of Raman lidar remote sensing of cloud liquid water. This is an
elegant measurement that could teach us much about initial cloud evolution and
aerosol indirect effect.

• Explore other cloud phenomena, like fluorescence, which like Raman scattering
involve change of wavelength. Fluorescence is a powerful new method for study-
ing plankton from space.

• Explore cloud biology, both for its intrinsic interest and for its effect on cloud
radiation.

• Make more use of polarization in surface and aircraft radiation measurements of
clouds and cloud shadows. Cloud polarization is generally small, but ratios like
degree of polarization can be much more accurately measured than radiances and
may contain subtle new kinds of information. Use the partial polarization caused
by sunlight to illuminate clouds from underneath and see what can be learned from
this.

• Improve remote sensing retrieval of cloud properties to account for the fact that
cloud pixels are strongly correlated both in time and space, often over vast dis-
tances and long times. GCMs recognize this fact, and thus remote sensing and
GCMs lack comparability at a fundamental level. Comparisons between the two
are difficult to ascribe meaning to, when remote sensing lacks the time and space
coherence built into the equations in GCMs.

• Develop “cloud-shadow remote sensing.”
• Speed up cloud radiance and flux instruments to capture the turbulent temporal

character of cloud radiation and determine what can be learned from this sort
of data. A good place to start would be solar direct-beam measurements at the
surface.

• How much does reflectional cloud optical depth differ from true optical depth (the
integral of the vertical profile of extinction)?

• Wavelets are a natural way to represent the scaling nature of cloud structure vari-
ables like liquid water. Develop wavelet expansion solutions to the 3D radiative
transfer equation to mesh naturally with the true nature of the input variables.

• Develop equations for cloud evolution that reflect the underlying fractal geometry
of clouds.

• Can cloud fraction, used only for radiation purposes and not by any other com-
munity, be made a prognostic variable in climate models? Or, alternately, can it
be eliminated entirely in favor of a more robust measure of how clouds affect
radiation?

• What set of parameters is necessary and sufficient to specify a cloud’s 3D-ness
for climate model parameterization purposes? Think beyond “cloud fraction and
overlap”!

• What is the real nature of cloud gaps – their statistical structure, their pair correla-
tions, etc. How can cloud gap structure be correctly modeled?

• What causes Radiation Holes?
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• What causes the remaining biases in radiation model estimates of cloud shortwave
absorption?

• How do the empirically-observed and size-dependent laws of drop clustering af-
fect cloud radiation? As a corollary, find the consequences of Beer’s Law violation
in clouds.

• What are the consequences if the radiative-transfer assumption of “elementary
volume” fails?

• Make greater use of stochastic radiative transfer theory to explain time-averaged
cloud radiation observations. This theory has been almost completely ignored by
the 3D cloud radiation field.

• Make greater use of time-dependent radiative transfer and fast-response photon
detectors.

• Expose the unstated, often deeply buried assumptions or mental models about
cloud scale and structure that underlie the design of cloud instruments and field
programs – assumptions like stationarity, for example. How valid are these as-
sumptions and mental models?

1.18 Epilogue

I wanted to end this chapter with a tribute to one of our long-suffering editors,
Alexander Marshak, and give a final remonstrance. One of my favorite photos,
Fig. 1.19, shows Dr. Marshak and myself puzzling over “a strange alien object.” Dr.
Marshak, like myself, came from an applied mathematics background, so surely for
us this odyssey into field campaigns was even stranger than for other theoreticians.
Yet we both persevered and wound up having an effect on the course of instrument
development and even field program design.

What lessons can we draw from this photo? First, that radiation theoreticians have
gotten out from behind their computers and into the field – something for which the
ARM Program should take enormous credit. Second, that theoreticians have a hid-
den but often vital role to play in instrument development. In this case, we are gazing
at an advanced type of flux radiometer built by Francisco Valero, one which ARM
funded for a while but did not ultimately deploy; nevertheless it helped improve the
state of the art in instruments we did deploy, and I for one was glad that I vigor-
ously supported it in ARM’s early days. Experimenters will sometimes growl and
seem to rebuff any advice, but theoreticians must persevere because their input is
so absolutely vital. Indeed, surface radiation measurements languished for decades
because of lack of theoretician involvement. Photos like Fig. 1.19 must remain sym-
bolic of the cloud radiation subject if it is to remain vibrant.
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Fig. 1.19. Theoreticians Alexander Marshak (left) and the author puzzling over a strange alien
object at the Oklahoma ARM site, which after considerable study they determined to be an “in-
strument”, in this case a set of pyroelectric broadband flux radiometers designed by Francisco
Valero of Scripps. ARM brought many sallow-complexioned theoreticians out from behind
their computer screens and into “the field” with considerable salutary effects on the cloud
radiation subject
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2.1 Introduction: The Nature of the Problem

As we go about our business each day of our lives, we observe clouds of varying
shapes, sizes, brightness levels and altitudes. Indeed, clouds are so much a part of
our lives that we intuitively take them to be known, easily-characterized components
of our daily experience. However, when it comes to describing quantitatively the mi-
crophysical and radiative properties of clouds on a global scale, so that we might
observationally determine their impact upon, or changes in, the atmosphere, we im-
mediately discover that clouds, our constant companions in life, are not so easily
characterized.

One might ask the question why observational characterization of clouds is
important. One answer is that a quantitative, global characterization of the three-
dimensional (3D) spatial distribution of clouds over an extended period of time
would allow us to quantify more accurately the impact of clouds on the Earth’s ra-
diation budget, as well as changes in the radiation budget of Earth that result from
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changes in cloud properties. A second answer is that a high quality observational
database of 3D cloud properties for an extended period of time, at least at a few
locations, is necessary for improving the treatment of clouds in numerical cloud re-
solving, weather prediction and global climate models. For example, improving or
assessing numerical model heating rate computations requires characterization of the
fidelity of the model fields to observations and many issues arise regarding both the
model fields and the observations in these kinds of studies.

Surprisingly, and in spite of the fact that we deal with clouds on a daily basis,
to date there is no universal definition of a cloud. Usually, a cloud is referred to as
an ensemble of liquid and/or ice particles suspended in the atmosphere (e.g., AMS,
2000). However, such a definition does not characterize a cloud in any way that can
be quantified and hence it must be considered as incomplete. For example, is an
ensemble of particles having a concentration of one per cubic centimeter, or one per
cubic meter, or even one per cubic kilometer worthy of the label “cloud”? And what
moment of a particle size distribution should be used in the definition of a cloud, the
zeroth, second, third, or sixth moment?

Currently, each scientific community studying clouds employs its own definition
based on the instruments and methods it is using. The operational definition of cloud
that we use in casual life may be quite different from the definition used by investi-
gators who use radar-, lidar-, or satellite-based definitions of a cloud. For example,
clouds invisible to the human eye are easily detected by lidars, and clouds invisible
to radars can produce strong signals in microwave radiometers. Ultimately, the defin-
ition of a cloud depends on the threshold sensitivity of the instruments used in cloud
studies. Hereafter, we refer to a cloud as an ensemble of liquid and/or ice particles
that change the properties of the electromagnetic radiation field of interest.

Tropospheric clouds are dynamic, continuously changing objects. The forma-
tion, evolution and spatial distribution of cloud particles depend on many processes,
such as turbulence, vertical motions, entrainment and mixing with out-of-cloud air,
intensity of upwelling and downwelling radiation, and chemical and physical prop-
erties of liquid and ice nuclei. Interactions between cloud particles and the above
processes are quite complex, affecting the spatial and temporal variations of cloud
microphysical parameters, such as particle concentration, extinction coefficient, and
water content. The spatial scale of inhomogeneity of cloud microphysics ranges from
thousands of kilometers, for the case of cyclones, down to meters and centimeters
(e.g., Brenguier, 1993; Korolev and Mazin, 1993; Gerber et al., 2001). The temporal
variations of local cloud parameters are defined by a so called time of phase relax-
ation, typically changing from seconds for liquid clouds to tens of minutes for ice
clouds (Korolev and Mazin, 2003). The time of phase relaxation and the lifetime
of an individual cloud particle are usually much less than the lifetime of the whole
cloud. The characteristic lifetime of clouds varies from several minutes (e.g., cumu-
lus humilis) to several days (e.g., clouds associated with fronts and cyclones). As
these properties of clouds illustrate, clouds are characterized by a cascade of spatial
and temporal scales.

With existing ground- and satellite-based cloud remote sensing systems we are
currently unable to quantify the 3D distribution of clouds and their properties, even
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over a relatively small region. Present-day satellite sensors do allow us to identify
those atmospheric columns that contain clouds and the top heights of the highest
clouds in the cloudy columns. Using ground-based sensors, we are able to quantify
the vertical locations of cloud particles in a narrow column of the atmosphere and
estimate the vertically integrated amount of liquid water associated with the cloud
particles in the column. In addition, many scientists are working on retrieving column
ice-water particle amounts using either ground- or satellite-based observations and
algorithms for vertically distributing the retrieved column-integrated water amounts
are under development.

Overall, however, a synergy of the appropriate ground- and satellite-based obser-
vations that can produce, for example, reliable estimates of the amount of liquid and
ice water that advects into a domain with the dimensions of a global climate model
(GCM) grid cell, e.g., 200 km by 200 km, has yet to take place. To demonstrate just
how variable, both spatially and temporally, cloud properties are and the difficulties
these variations introduce into the retrieval of cloud properties using remotely sensed
data, we present and discuss ground-based observations from the United States (US)
Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program
(Stokes and Schwartz, 1994; Ackerman and Stokes, 2003), satellite-based observa-
tions from the US National Aeronautics and Space Administration (NASA) Earth
Observing System (EOS) Terra satellite program (Kaufman et al., 1998), and aircraft-
based in situ observations that are accessible to one of the authors.

To illustrate some of the problems in the retrieval of cloud properties consider
a satellite image of a typical boundary-layer cloud deck located just west of south-
ern California over the eastern Pacific Ocean. The size of the domain in Fig. 2.1a is
122.88 km by 122.88 km and each individual pixel in the image represents an area at
the surface of the Earth of 480 m by 480 m. Considering that global climate models
have resolutions ranging from approximately 50 km to 500 km, these models cannot
explicitly characterize the distribution of cloud in Fig. 2.1a. At best, they are capable
of producing parameterized estimates of the cloud fraction within the grid column,
so that the distribution of clouds in Fig. 2.1b is represented in global climate models
as Fig. 2.1c. At this point in the example we have not encountered any insurmount-
able problems: global climate models produce cloud fraction estimates within each
of their grid cells and satellite data with spatial resolutions of 1 km or better provide,
for the most part, an observational means for quantifying the vertically-integrated
cloud fractions on a global scale. Difficulties appear, however, both in the observa-
tions and models when the cloud fraction and variability of cloud condensate for
each atmospheric layer and the spatial correlations of clouds between vertical lay-
ers must be taken into account, as is the case for atmospheric radiation heating rate
computations.

For example, looking directly down upon the cloud in Fig. 2.1a, we find that 86%
of the pixels contain cloud according to a certain threshold, whereas the remaining
14% of the pixels are cloud free (Fig. 2.1b). We represent this state-of-affairs in the
global climate model as Fig. 2.1c. One possible configuration of clouds that can lead
to a cloud fraction of 86% is illustrated in the left column of Fig. 2.1d, where two
partially overlapping cloud layers, each with a cloud fraction of 60%, collectively
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(a) (b)

(c) (d)

(e) (f)

Fig. 2.1. (a) A mid-visible image of boundary-layer clouds off the coast of southern California
obtained by the LandSat satellite sensor. (b) A partitioning of the image in (a) into cloudy and
cloud-free atmospheric columns using a simple threshold – pixel radiances above 65 radiomet-
ric units (on a scale from 0 to 255 units) are taken to be cloudy, while pixel radiances less than
or equal to 65 radiometric units are taken to be cloud free; the cloud fraction for this scene is
86%. (c) Representation of a global climate model grid-column cloud fraction of 86% (white)
and cloud-free column percentage of 14% (black region on the right). (d) Given the same vol-
umes of cloudy air in two global climate model grid columns, the overlap of the cloudy layers
depends on many factors and assumptions, including the number of vertical layers. Again, the
black strips on the right sides of the two panels represent a clear-sky fraction of 14%. (e) A
blow-up of the pixel radiances within the black delineated square in (a); the domain size is
7.68 km by 7.68 km with a pixel size of 30 m by 30 m. (f) A partitioning of the image in (e)
into cloudy and cloud-free atmospheric columns using the same threshold as in (b)
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yield an overall cloud fraction of 86%. There is nothing unique about the choice
of layers and cloud fractions in the left column of Fig. 2.1d and there are many
combinations of cloud layers with different cloud fractions that can lead to an overall
cloud fraction of 86%.

Suppose that we double the number of global climate model vertical layers while
keeping the overall cloud fraction and the cloud fraction per vertical layer through the
atmosphere fixed. We now have the situation in the right hand column of Fig. 2.1d.
The total volume of cloudy air in the right hand column of Fig. 2.1d is the same as in
the left hand column of Fig. 2.1d and the cloud fraction for each model vertical layer
is 60%. We could arrange the cloudy layers in the right hand column to physically
match the distribution in the left hand column, or we could, as we have illustrated,
arrange the cloudy layers in a different configuration while keeping the total cloud
fraction and the cloud fraction per layer fixed. Again, there are many ways to arrange
the cloud layers and the cloud fraction per layer to obtain an overall cloud fraction
of 86%. Just how cloud layers should be vertically aligned within a global climate
model grid cell must ultimately be based upon schemes that take observations into
account (Chap. 9). But, as we will demonstrate, developing an accurate observational
database of the 3D distribution of clouds is difficult at best, even with today’s ground-
and satellite-based observational capabilities.

The black box illustrated within Fig. 2.1a contains 16 by 16 pixels covering a
domain of 7.68 km by 7.68 km, each pixel having a spatial resolution of 480 m by
480 m, which is typical of the spatial resolutions of present-day satellite instruments
whose data are used in analyses of cloud properties. At this moderate resolution the
brightness levels of the pixels fall into three groups: relatively dark clear-sky pixels,
low- and moderately-reflecting cloud pixels and brightly reflecting cloud pixels. If
we now expand these 256 pixels into their 65536 full-resolution 30 m by 30 m pixels,
a much richer cloud structure emerges (Fig. 2.1e) with more clear-sky gaps now
apparent in the cloud field (Fig. 2.1f). At a pixel resolution of 30 m by 30 m we are
now at the spatial scale of numerical cloud resolving models and within the range
of spatial scales for which radiation smoothing is dominant (Chap. 12). As Fig. 2.1e
illustrates, at these scales the distribution of cloud water is non-trivial. In fact, as
a result of radiative smoothing, the radiance field illustrated in Fig. 2.1e is actually
smoother than the underlying two-dimensional field of vertically integrated cloud-
liquid water amounts (mass per unit area, e.g., g m−2) that produces it.

There is a fundamental difference in the radiative properties of the domains il-
lustrated in Fig. 2.1a and Fig. 2.1e. As the domain horizontal size decreases and
the horizontal dimensions of the domain approach the vertical dimension of the do-
main, the horizontal transport of radiation across the lateral boundaries of the do-
main becomes more important. As one-dimensional (1D) radiative transfer theory,
with the dimension of importance being oriented vertically, does not account for the
horizontal transport of radiation, we find larger errors in domain-averaged heating
rates using 1D theory as the domain size decreases. Therefore, while 1D radiative
transfer may be adequate for estimating the domain-averaged heating rates for the
domain illustrated in Fig. 2.1a, it will produce significant errors for the domain illus-
trated in Fig. 2.1e for column sizes approaching 30 m by 30 m (see Chaps. 12 and 6).
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Moreover, 1D radiative transfer theory is completely inadequate for estimating ra-
diances emanating from the 30 m by 30 m columns towards space (Chap. 11). That
is, for small domains with high spatial resolutions, such as domains characteristic
of high spatial resolution cloud resolving model simulations, 3D radiative transfer
theory is a more appropriate theory for both heating rate and radiance calculations.
Evidence supporting this statement will be presented over and again in the following
chapters.

The internal variability in the distribution of cloud water within a cloud layer,
as illustrated in Fig. 2.1e, is another challenge for global climate models. Not only
must global climate models contain realistic assumptions about vertically-displaced,
overlapping cloud layers, they must also contain realistic assumptions about the hor-
izontal distribution of cloud water within each layer. If all clouds were composed
of uniform densities of identical liquid water drops, the difficulties in accounting
properly for the radiative effects of clouds in models would be limited primarily to
estimating cloud fractions for each layer and the overlap of clouds from one layer
to the next. But clouds consist of a myriad array of liquid- and ice-particle sizes,
with the ice particles coming in a seemingly endless variety of shapes. Moreover, the
shapes, sizes and number densities of cloud particles, in addition to their 3D spatial
distributions, affect the transfer of radiation through them.

The intent of this chapter is to provide an observational overview of the proper-
ties of clouds. We hope to drive home the points that clouds are highly variable in
space, both in their total amounts of water and the form that water takes, and change
rapidly in time. Given the strong wavelength dependencies of the radiative properties
of the gases in which clouds are embedded, as well as the wavelength dependen-
cies of cloud-particle radiative properties, the atmospheric radiation field throughout
a cloudy atmospheric region can be quite complicated with dramatic changes as a
function of wavelength, which we attempt to illustrate. As a result of the spatial and
temporal complexity of clouds and their associated wavelength-dependent radiation
fields, there are difficulties involved in trying to map observationally the 3D distri-
bution of clouds, even over a small region of the atmosphere, and we discuss what
some of these difficulties are. All of these properties of clouds make atmospheric
radiance, irradiance and heating rate studies a challenge – the subject of this book.

At present the only observational approach for characterizing detailed cloud
properties is to use in situ aircraft probes to sample cloud particles. To illustrate
the variety of cloud-particle types, their associated water contents and their rapid
variations in space, we make use of aircraft observations that were collected during
a number of field campaigns that took place in high northern hemisphere latitudes
(Sect. 2.2). Moving from in situ aircraft observations of cloud particles to ground-
and satellite-based observations of cloud properties, we must first introduce a few
concepts from radiative transfer theory, as the remotely sensed cloud properties are
based on radiometric measurements. To this end we discuss radiance, particle cross-
sections, transmissivity, particle scattering phase functions and particle emission
(Sect. 2.3). In Sect. 2.4 we illustrate the wavelength-dependencies of atmospheric
gas and cloud particle absorption and scattering cross-sections, which, together with
gas and particle species concentrations, determine the wavelength-dependence of the
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atmospheric transmissivity (Sect. 2.5). Sections 2.3–2.5 serve as a preamble to our
discussion of collocated ground- and satellite-based radiance measurements, allow-
ing us to illustrate meaningfully aspects of the spatial and temporal changes in the
radiation field associated with clouds (Sect. 2.6). The examples that we use also
clearly illustrate that the clear- and cloudy-sky downwelling radiation fields at the
surface and upwelling radiation fields at the top of atmosphere are strong functions
of wavelength. Using information presented in Sects. 2.4–2.6, we touch upon issues
that make ground- and satellite-based remote sensing of cloud properties so difficult
(Sect. 2.7), thereby justifying this book and bringing this chapter to a close.

2.2 In Situ Measurements of Cloud Particles

Satellite images of clouds, like Fig. 2.1, show inhomogeneities in the radiation field
as a result of scattering by cloud tops. The satellite data suggest that the characteristic
scale of cloud-top inhomogeneity varies from tens of meters to hundreds of kilome-
ters (Loeb et al., 1998). We would be wise to expect that the characteristic scale
of inhomogeneity of cloud microphysical parameters inside clouds would be no less
than that obtained from the satellite observations of cloud tops. The best way to char-
acterize in-cloud variability of the microphysical parameters is to use airborne in situ
measurements. Modern aircraft-based instruments are capable of cloud particle mea-
surements with high accuracy and spatial resolution, capturing the shapes and sizes
of cloud particles as well as different moments of their size distribution, such as con-
centration, extinction coefficient, and liquid- and ice-water contents. While aircraft-
based microphysical instrumentation provides the most detailed measurements of
cloud properties, the in situ measurements have some significant limitations.

One of the fundamental limitations of in situ measurements is related to their
small sample volume along a thin line following the aircraft flight track. Typically,
the cloud volume that is sampled by airborne microphysical instruments along a line
100 m long varies from about 10 cm3 to 1 m3. As a result, the representativeness of
the cloud particles sampled to those comprising the entire cloud element from which
the sample is drawn is always an important source of uncertainty in the interpreta-
tion of the measurements. A second limitation is related to the relatively long time
span between measurements during characterization of the same cloud. For exam-
ple, a vertical sounding of a convective cloud from 1 km to 8 km of altitude may
take about one hour. This period of time is comparable to the characteristic lifetime
of the whole cloud. Consequently, towards the end of the measurements the cloud
will be sampled at a different age and with different characteristics compared to the
beginning measurements in the cloud.

Ground-based active remote sensing systems sample volumes of air with typ-
ical vertical dimensions of tens to hundreds of meters and horizontal dimensions
of less than a meter to several tens of meters. Satellite-based remote sensing sys-
tems for cloud applications have spatial resolutions ranging from a few tens of me-
ters to a kilometer or more. Relating aircraft in situ probe measurements to ground-
and satellite-based observations would be much easier if the aircraft measurements
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characterized all of the particles in the volumes of air sampled by the ground- and
satellite-based instruments. However, this is not the case, with the aircraft only able
to sample a small fraction of the cloudy air sensed by the ground- and satellite-based
systems. In turn, the ground-based systems sample only a fraction of the cloudy
air that influences the satellite measurements. Presently, there are no readily avail-
able solutions to the sampling differences between the various aircraft-, ground- and
satellite-based sensors and one should keep these differences in mind when compar-
ing measurements from them.

The aircraft measurements presented below were collected by a variety of devices
that have evolved over the years. Since the mid 1970s, Particle Measuring Systems
(PMS Inc., Colorado) has developed a set of airborne instruments for measurement of
the sizes and concentrations of cloud particles while simultaneously recording their
images (Knollenberg, 1976). These instruments, owing to their accuracy and high
reliability, have become part of most scientific projects and campaigns on measure-
ments of cloud microphysical parameters. Among the most popular PMS probes are
the Forward Scattering Spectrometer Probe (FSSP) for measurement of cloud droplet
size distributions in the size range from 0.5 µm to 95 µm and the Optical Array
Probes (OAP) for recording particle shadow binary images in different size ranges.
The OAP-2DC, OAP-2DG and OAP-2DP record particle sizes from 25–800 µm,
10–1600 µm, and 200–6400 µm, respectively. Other instruments are employed for
measurements of integral cloud microphysical parameters, such as extinction coeffi-
cient and ice- and liquid-water content. The King probe (PMS Inc.; King et al., 1978)
and Particulate Volume Monitor (PVM; Gerber Scientific Inc.,Virginia; Gerber et al.,
1994) have become conventional instruments for measurements of cloud-liquid wa-
ter. The Nevzorov probe is usually used for airborne measurements of liquid- and
ice-water contents (Korolev et al., 1998). The description of other relevant instru-
ments for cloud measurements can be found in Baumgardner et al. (2002).

Liquid-water clouds have particles with the simplest shapes, i.e., spheres, and in
situ measurements are focused on quantifying the cloud drop-size distribution (num-
ber of particles per unit volume of air per drop radius interval, usually in units of
cm−3 µm−1) together with its moments. For radiative transfer studies the important
moments of the size distribution are the Liquid Water Content (Lwc), or mass (in
units of g) of liquid water per unit volume (in units of m−3), total number of drops
per unit volume (in units of cm−3), mean radius of the drops (in units of µm) and
a measure of the width of the drop distribution. Examples of in situ measurements
in liquid-water stratus are presented in Fig. 2.2 for flights during the Atlantic Stra-
tocumulus Transition Experiment (ASTEX – June 1992; Davis et al., 1994), the First
ISCCP Regional Experiment (FIRE) Intensive Field Observations (FIRE87 – 16 July
1987; Davis et al., 1996) and regional experiments in the environs of Moscow, Russia
(6 February 1984). Our motivation for showing the first two sets of measurements
is that they were made during two important field campaigns whose data have been
widely used, while the third set of measurements was made by one of the authors,
thereby allowing us to link the drop-size distributions to their moments.

The cloud liquid water content data obtained from these flights (Fig. 2.2a,b,e)
are highly variable with significant changes over a range of spatial scales. Applying
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Fig. 2.2. Airborne cloud-liquid water content measurements in stratus clouds during (a) AS-
TEX (June 1992) using the PVM-100 probe and (b) FIRE87 (16 July 1987) using the King
probe at an altitude of 625 m. Spatial variations of (c) droplet number concentrations, (d) ex-
tinction coefficient, (e) liquid water content, and (f) droplet mean radius (thick line) with the
10 and 95 percentiles (thin lines) deduced from FSSP measurements in stratus-stratocumulus
over the Moscow region on 6 February 1984 at an altitude of 1600 m and temperature
of −3◦C. (g) cloud drop-size distributions averaged over the two periods highlighted in
panel (c)
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Fourier analysis to them, we would most likely find that their power density versus
spatial frequency follows a power-law (see Appendix). Moreover, as a result of dy-
namical processes (Davis et al., 1999; Jeffery, 2001), we would also most likely find
that the variations in the liquid water content fields generally have higher amplitudes
at the smaller scales, i.e., 8 m in Fig. 2.2a, 5 m in Fig. 2.2b and approximately 10 m
in Fig. 2.2e.

For the flight in the environs of Moscow on 6 February 1984 Fig. 2.2c–f shows
the spatial variations of droplet number concentration (Fig. 2.2c), extinction coeffi-
cient (Fig. 2.2d), liquid water content (Fig. 2.2e), and the mean radius of the cloud
drop-size distribution (Fig. 2.2f) along with its 10 and 95 percentile radii, indicating
the boundaries of the droplet size distribution inside which 85% of all droplets are
contained. The two averaged droplet size distributions in Fig. 2.2g were obtained
from the two periods indicated by horizontal lines in Fig. 2.2c. All of these cloud mi-
crophysical parameters show significant variations throughout the flight. While the
highest spatial resolution variations are, in part, the result of the small sampling vol-
ume of the FSSP and warrant care in their interpretation, the variations at the larger
spatial scales are indicative of changes in cloud properties. For example, compare
the observations during the two time periods illustrated in Fig. 2.2c. During these
two time periods, the liquid water content (Fig. 2.2e) does not significantly change.
However, from the first to the second period the cloud drops show a marked de-
crease in size (Fig. 2.2f). That is, consistent with a constant liquid water content and
a decrease in the cloud drop sizes, we find a dramatic increase in the cloud droplet
number density (Fig. 2.2c). For fixed liquid water content, as the number of drops
increases the combined cross-sectional area of all of the drops also increases. Hence,
the extinction coefficient of the drops increases from the first to the second time pe-
riod (Fig. 2.2d). Hence, these two regions of the cloud will have different radiative
properties, with different transmissivities and reflectivities.

The liquid-water stratus clouds discussed in the context of Fig. 2.2 have some of
the simplest properties of any cloud type, notwithstanding the variations in cloud-
drop properties on a range of spatial scales. To demonstrate this point consider
the Meteorological Service of Canada aircraft flight on 23 January 1998 over Lake
Ontario in a deep frontal system consisting of liquid, ice and mixed phase clouds
(Figs. 2.3 and 2.4). While the clouds below 2 km were mainly liquid, the clouds
above 2 km were either glaciated or mixed-phase (Fig. 2.3a–c). Ice and liquid water
content along the flight track exhibited high spatial variation, with the spatial corre-
lation between ice and liquid water content in mixed phase clouds usually close to
zero (Korolev et al., 2003). For most of the flight the airplane stayed in clouds with
irregular ice particles (Fig. 2.3e). Analysis of a large data set of OAP-2D imagery
has shown that irregular shape (Fig. 2.4b) is a dominating habit of cloud ice particles
(Korolev et al., 2000). Dendrites (Fig. 2.4c) and needles (Fig. 2.4d) occurred in cells
with a characteristic scale of a few kilometers (Fig. 2.3f–g). Several times during the
flight the aircraft encountered freezing drizzle (Fig. 2.3d and Fig. 2.4a).

In spite of the fact that the OAP-2DC provides binary (i.e., black-and-white) low
pixel resolution (i.e., 25 µm) imagery, Fig. 2.4 nonetheless provides a glimpse of the
variety and complexity of ice particle structures. The Cloud Particle Imaging (CPI)
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Fig. 2.3. (a) Flight-track altitudes (thick line) and temperatures (thin line) for the flight on 23
January 1998 in the environs of Toronto. Time series of the (b) liquid and (c) ice water contents
were measured by the Nevzorov probe along the flight track. The fraction of the particles along
the flight track that were (d) spheres, (e) irregularly shaped ice crystals, (f) dendrites and
(g) needles were obtained from analysis of OAP-2DC measurements of the type illustrated in
Fig. 2.4
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Fig. 2.4. Binary shadow images of cloud particles measured by the OAP-2DC during the
flight on 23 January 1998 over Lake Ontario. The particle shapes are classified as (a) spheres,
(b) irregular particles, (c) dendrites, i.e., planar crystals with complex branching structures
and their aggregates, and (d) needles. The flight-track legs along which they were collected is
illustrated in Fig. 2.3a
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Fig. 2.5. During the FIRE Arctic Cloud Experiment (Uttal et al., 2002), a Cloud Particle Imag-
ing (CPI) probe was carried onboard research aircraft sampling clouds of interest. Different
types of cloud ice particles imaged by the CPI, including (a) facetted ice particles, (b) par-
tially facetted ice particles, (c) evaporating ice crystals, and (d) pristine ice particles, provide
a glimpse at the complexity of ice particle shapes and sizes in arctic ice clouds

probe is capable of imaging cloud particles with a much greater number of gray
scales (i.e., 256 levels) and with a much higher pixel resolution of 2.3 µm. The pho-
tographic quality CPI imagery enables us to capture internal ice-particle features and
lends depth to the images, allowing one to glean information on the 3D structures of
ice particles. For example, during April 1998 of the FIRE Arctic Cloud Experiment
(ACE) the CPI was flown through a variety of cloud conditions, capturing with great
clarity the geometric properties of a myriad ice crystals (Fig. 2.5).

The data and images illustrated in Figs. 2.2–2.5 provide a glimpse at just how
variable cloud properties can be on a range of spatial scales. A detailed analysis
of relations and correlation between cloud particle sizes, concentration, extinction
coefficient and water content can be found in Korolev et al. (2001). In particular, the
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water contents associated with liquid- and ice-water particles, as well as the cloud-
particle types and their fractional mixing ratios, all change in dramatic and significant
ways throughout the cloud fields sampled by the probes. Since the geometric shapes
of cloud particles, together with their size-dependent number densities, in a volume
of cloudy air determine the radiative properties of that volume of air, knowledge of
the 3D spatial distribution of liquid- and ice-water particles and their sizes is essential
to understanding the impact the cloud particles have on the atmospheric radiation
field. In turn, the complexity of cloud-particle mixtures in mixed-phase clouds leads
to complex atmospheric radiation fields from which retrieval of detailed properties
of the cloud particles themselves is nearly impossible. To begin to understand these
connections between cloud particles and their associated radiation fields we must
introduce a few concepts from radiative transfer theory (see Chap. 3 for a detailed
introduction to radiative transfer with an emphasis on its 3D aspects), as well as some
of the wavelength-dependent radiative properties of atmospheric gases and cloud
particles.

2.3 From Cloud Particles to the Atmospheric Radiation Field

As the satellite- and aircraft-based observations in the previous two sections illus-
trate, clouds are spatially variable; as we know from our experience, they are tem-
porally variable as well. What is not so obvious, however, is that the mid-visible
radiation emanating from a cloud field to our eyes is not necessarily characteristic of
the radiation at other wavelengths. For example, consider a cloud with sufficiently
many particles that multiple scattering of photons at mid-visible wavelengths be-
comes important. Since absorption by liquid- and ice-water particles at mid-visible
wavelengths is negligible, these photons can diffuse significant distances through
the cloud before exiting it. Therefore, mid-visible radiances from clouds recorded
by ground- and satellite-based sensors actually contain photons that have migrated
into the fields of view of the sensors from regions not directly imaged by the sen-
sors. At wavelengths for which particles are strongly absorbing and solar radiation is
dominant, most of the radiance reflected to a satellite-based sensor from an optically
thick cloud has only been scattered once by the cloud particles and originates primar-
ily from those cloud particles towards the boundary of the cloud that is closest to the
sensor. At these wavelengths the radiance leaving the base of an optically thick cloud
towards a ground-based instrument would be quite small. At longer wavelengths, in
the microwave region, most clouds are not opaque and the radiance emanating from
a cloud is composed of photons generated by the cloud together with photons that
are incident on the cloud and have been transmitted through it. If our eyes were
sensitive to microwave radiation or radiation at wavelengths for which cloud absorp-
tion is important, the appearance of our world would be markedly different. This
is not necessarily “bad” in any sense, as these differences provide us information.
For example, Chap. 13 demonstrates how radiances at two or more closely spaced
wavelengths, with absorption significant at some of the wavelengths and negligible
at others, can be used to infer 3D cloud structure information.
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Mapping time-varying, 3D cloud structures to their spectrally-dependent radi-
ation fields requires quantification of the physical properties of the particles that
compose the cloud. Moreover, atmospheric heating rates and upwelling top-of-
atmosphere, as well as downwelling surface, irradiances and radiances depend upon
the location of clouds within the molecular atmosphere in which they are embedded,
as many of the molecules in the atmosphere have their own wavelength-dependent
radiative properties that interact with cloud-leaving radiation. We have the situation
of 3D cloud structures embedded in an essentially 1D vertically-varying molecular
atmosphere, with the radiative properties of the clouds correlated with the molecular
radiative properties over some wavelength intervals but not over others. The result is
an intricate atmospheric radiation field, whereby information on 3D cloud structures
can be extracted from it at some wavelengths but not at other wavelengths.

To illustrate the coupling of the atmospheric radiation field to 3D cloud struc-
tures embedded in a vertically-varying molecular atmosphere, we will make use of
ground- and satellite-based measurements from the DOE ARM program and NASA
EOS Terra satellite, respectively. But to understand measurements from these sys-
tems, as well as the reasons that the atmospheric radiation field depends so strongly
on wavelength, we must have an understanding of some of the most basic concepts of
radiative transfer. So, in the next few sections we present, in a relatively straightfor-
ward framework, some key concepts of atmospheric radiation and we subsequently
use these concepts to illustrate the spectrally- and spatially-dependent nature of the
atmospheric radiation field and its link to the underlying clouds. A much more com-
plete and rigorous discussion of atmospheric radiative transfer theory follows in
Chap. 3 while detailed descriptions of computational models for the transport of
radiation through 3D cloud fields can be found in Chaps. 4 and 5. Chapters 6 and 10
present models that target specifically domain-average radiative fluxes.

2.3.1 Basic Elements of Atmospheric Radiative Transfer

The amount of electromagnetic radiation penetrating all regions of the atmosphere,
impinging on the surface and leaving the Earth system to space is a function of the
3D spatial distribution of matter together with the radiative properties of that mat-
ter. As the radiative properties of the matter across the surface and throughout the
atmosphere change in time, so too does the distribution of electromagnetic radiation
throughout the Earth system, leading to changing surface and atmospheric heating
rates and to a rich set of downwelling radiances at the surface and upwelling radi-
ances to space. Given knowledge of the general radiative properties of matter, the
radiances leaving the atmosphere to the surface and space can, in turn, be used to re-
trieve information about the matter in the atmosphere and surface that leads to these
radiances in the first place.

The spatial distribution of liquid and ice water in cloudy atmospheres is com-
plicated, even for what one might consider to be the simplest of cloud types (e.g.,
Sect. 2.1). Considering the radiative properties of gas molecules in conjunction
with the properties of water particles, the situation is even more complicated as the
wavelength dependence of the radiative properties of these two types of matter are
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correlated at some wavelengths and not others, leading to distributions of electro-
magnetic radiation throughout the atmosphere that are a function of wavelength.
Consequently, estimating heating rates through any, even the simplest, cloudy at-
mosphere is not straightforward, as readers will learn as they delve into chapters
subsequent to this one.

To understand the observational data that we will present one must have a rudi-
mentary understanding of radiance and the interaction of radiation with matter. To
this end we start with a definition of radiance and then move on to a discussion of
particle cross-sections and atmospheric transmission. We then briefly consider parti-
cle scattering phase functions and particle emission of radiation. While the concepts
of radiance, cross-sections, transmission, scattering phase functions and emission
will be described in full detail in Chap. 3, we included discussions of them here to
facilitate understanding of the observational data that we present in Sect. 2.6.

After introducing the key elements of radiative transfer needed for our purposes,
we consider the radiative properties of molecules, isolated water spheres and distri-
butions of liquid-water spheres in order to provide insight into the basic radiative
properties of the atmosphere. Considering the two primary sources (i.e., sun and
Earth) of electromagnetic radiation in the Earth system, together with the wave-
length dependence of atmospheric transmission, we are led naturally to separation
of the electromagnetic spectrum into the shortwave, longwave and microwave re-
gions. With knowledge of the importance of these spectral regions, we present and
describe some of the state-of-the-art satellite- and ground-based measurements cur-
rently available of cloudy atmospheres over a variety of locations. The inherently 3D
nature of clouds and their associated radiation fields will emerge as the most salient
feature of these observations.

2.3.2 Radiance

A straightforward approach to illustrating radiance is contained in Fig. 2.6, where
we partition the flow of electromagnetic radiation, i.e., photons, through the Earth
atmosphere into those wavelengths for which the radiation originates primarily from
the sun (shortwave radiation; Fig. 2.6a) and those wavelengths for which the radia-
tion originates primarily from the Earth (longwave radiation; Fig. 2.6b). The concept
of radiance is illustrated by the dashed-line, slightly expanding tubes in the figures
that originate from matter and denote a directed beam of electromagentic radiation
leaving the matter. To a good enough approximation for our present purposes, the
magnitude of the radiance at area Ain for long, narrow tubes originating from Ain is

Iλ =
E∆λ

(∆t)(Ain)(Aout/r2)(∆λ)
, (2.1)

where r is the tube length, Ain and Aout are the areas through which the radiation
enters and exits the tube, respectively, and E∆λ is the amount of energy between
wavelengths ∆λ = λmax − λmin that flows into the tube in the time interval ∆t.
The quantity Aout/r2 in (2.1) is the solid angle ∆Ω subtended by the exit of the
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Fig. 2.6. Cartoon illustration of radiances passing through the atmosphere of the Earth for
(a) radiation originating from the sun (i.e., shortwave radiation) and (b) radiation originating
from the Earth (i.e., longwave radiation). The dashed-line tubes represent radiances origi-
nating from a variety of sources and propagating through atmospheric molecules and cloud
particles. The black arrows represent radiances from the source, while the gray arrows rep-
resent scattered radiation. The areas associated with tube 1 on the left side of (a) are used
to provide an approximate definition for radiance. The angle θs in (a) is the scattering angle,
while its associated azimuth angle φs, which represents the angle about the central axis of tube
1 at which the photon is scattered, is not drawn

tube from its entrance and is generally given in units of steradians (sr). Therefore,
the dimensions for radiance are energy per unit time per unit area per unit solid angle
per unit wavelength interval (J s−1 m−2 sr−1 m−1 in the SI system of units). For tube
1 in Fig. 2.6a the entrance and exit areas are illustrated by the solid circles, while the
magnitude and direction of the solar radiance associated with this tube are depicted
by the black solid arrow entering the tube from the top of the atmosphere.
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2.3.3 Particle Cross-Sections and Transmission

The radiance does not change along the beam represented by a tube unless the energy
associated with it interacts with matter. In this case the radiance is decremented by
the fraction of E∆λ that is either absorbed or scattered by the matter along the extent
of the tube. To quantify the interaction of radiation with matter the concept of cross-
section is attached to the constituents of the matter (i.e., atmospheric gas molecules,
aerosol particles, liquid-water drops and ice particles). Since matter may either ab-
sorb or scatter radiation differently as the wavelength of the radiation incident upon
it changes, the matter has both absorption sa,λ and scattering ss,λ cross-sections that
are a function of the wavelength λ of the radiation. The total, i.e., extinction, cross-
section se,λ associated with each particle type is simply the sum sa,λ + ss,λ.

In Fig. 2.7a–f we have taken a cross-sectional view of the solar radiance tube in
Fig. 2.6a, where we are located at the exit area Aout and we are looking up into the
tube to the entrance area Ain. In these figures the extinction cross-section for each
particle is represented by a single black dot and all of the black dots in any one figure
represent the total number of particles in the tube through which the radiation must
pass. Note that for less than about 5600 particles in the tube (Fig. 2.7a) the fraction
of the tube cross-sectional area Ain obstructed with particle extinction cross-sections
is linear in the number of particles (Fig. 2.7g). That is, each time a particle is added
to the tube the probability of its cross-section partially overlapping another particle
cross-section along the line of sight through the tube is negligible.

As the number of particles increases, they begin to have significant probabilities
of overlap along the line of sight and the total fraction of the tube obstructed by ex-
tinction cross-sections approaches one asymptotically (Fig. 2.7b–f,g). The amount
of radiation that penetrates the tube without interacting with matter, i.e., the trans-
mission, is simply the fraction of the tube not obscured by particle extinction cross-
sections. As it turns out, an exponential function of the form exp(−σe,λr) is a rea-
sonable model for the transmission, where the extinction coefficient σe,λ = nse,λ
and n is the average number of particles per unit volume along the path. Note that in
Fig. 2.7g the transmission computed numerically and the exponential function model
of it diverge slightly as the particle number increases as a result of approximations
in the numerical simulations. For particles with non-zero cross-sections the trans-
mission goes to zero before the number of particles goes to infinity, but for the ideal
exponential law the transmission goes to zero only as the number of particles goes to
infinity.

The model above for the transmission is sufficient for treating scattering by air
molecules, as well as scattering and absorption by homogeneous collections of cloud
particles. However, gas molecule absorption cross-sections sa,λ are a function of
pressure, temperature and gas amount, implying a path dependence in their trans-
mission:

Tdir,a,λ = exp

(
−

r�
0

σa,λ(r′)dr′
)

. (2.2)

Moreover, if gas molecules are in an excited state Ee with the possibility of transi-
tion to a lower state Eg with the release of a photon of energy Ee − Eg = h c/λ,
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Fig. 2.7. The big circles in (a)–(f) represent cross-sectional areas across a radiance tube, while
each black dot (not drawn to scale) within a big circle represents the extinction cross-section of
a particle independently and randomly located within the radiance tube between the entrance
area Ain and the exit area Aout. For the results in this figure the ratio of the diameter of a
circle based on the particle cross-section to the diameter of the tube was 0.01. The number
of particles for each of the circles in (a)–(f), along with the fraction of the radiance tube, i.e.,
the fraction of the tube cross-sectional area, obscured by particle radiometric cross-sections
is indicated in (g). The fraction of the cross-sectional area blocked without particle overlap
is indicated by the dotted line, while the fraction of the cross-sectional area blocked with
overlapping particles is indicated by the upper solid line. An exponential function (dashed
line) is an accurate model for the fraction of the cross-sectional area of the tube not blocked
by particle extinction cross-sections when particles are allowed to overlap. As a result, the
exponential function (dashed line) lies almost on top of the simulated cross-sectional area not
blocked by overlapping particles (lower solid line)
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Fig. 2.8. Cartoon illustration of the processes by which radiation and matter interact. Parti-
cles (black circles) can transfer energy to (Process 1) and from (Process 3) internal energy
states of other particles (dashed boxes) through collisions, while particles can absorb photons
(white circles), or radiation (Process 2), emit radiation on their own accord (Process 5) and be
stimulated by radiation to emit radiation (Process 4)

where c is the speed of light (in units of m s−1) and h is Planck’s constant (in units of
J s), the passage of photons of wavelength λ through the gas can actually stimulate
excited gas molecules to de-excite with the emission of radiation of wavelength λ
(cf. Process 4; Fig. 2.8). Stimulated emission prevents the radiance from decreasing
at the rate predicted by (2.2). To account for this nuance of attenuation by gas mole-
cules we define an “effective” absorption cross-section s′a,λ (< sa,λ) that accounts
for stimulated emission. In terms of s′a,λ the absorption coefficient in (2.2) becomes
σa,λ = ns′a,λ.

2.3.4 Particle Scattering Phase Functions

Given that a photon has a scattering interaction with matter, the scattering phase
function pλ(θs, φs) describes the probability of the photon scattering into a particular
direction (θs, φs), where (θs, φs) represent the angle of photon travel after the scat-
tering event relative to the direction of photon travel before the scattering event (cf.
Fig. 2.6, Tube 1). The scattering phase function provides the mechanism for quan-
tifying how the loss of radiance in one tube provides an increment in the radiance
associated with other tubes.

The scattering phase function is defined as the ratio

pλ(θs, φs) =
∆Ps,∆λ(θs, φs)/∆Ω

Ps,∆λ(Total)/4π
, (2.3)
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where Ps,∆λ(Total) is the total power across the wavelength interval ∆λ centered
on λ that is scattered into all possible directions (hence 4π sr), and ∆Ps,∆λ(θs, φs) is
that part of the total scattered power that is scattered into the small solid angle ∆Ω
centered on the direction (θs, φs). Note that a value of pλ(θs, φs) ≡ 1 implies that the
scattering is isotropic-like in the direction (θs, φs), while a value of pλ(θs, φs) = 0
implies no scattered power in the direction (θs, φs). There is no theoretical upper
bound on pλ(θs, φs) since the phase function can go to infinity if all of the scattered
power is directed into some infinitesimally small solid angle in some direction.

Consider tube 8 in the scattering atmosphere of Fig. 2.6a. The radiance leaving
its exit area to space is now dependent on the attenuated solar direct beam scattering
from the cloud particles within tube 8 (similar to the solar radiance in tube 6 scatter-
ing within the bigger cloud to the right with some of the total power scattered into
tube 7), the attenuated solar direct beam (tube 1) scattering from the surface into tube
8, scattering from air molecules contained in tube 8 that are both below and above the
cloud particles in tube 8 (similar to the contributions to tube 2 from tube 1) and scat-
tering into tube 8 from clear-air (tube 3) and cloud (tube 4) scattering in the vicinity
of tube 8. The situation is further complicated by such processes as scattering from
the cloud in tube 8 to the cloud to the right of it and back. Horizontal transport of ra-
diation in a cloudy scene depends on the arrangement of cloud particles in the scene,
their number densities, the ratio of the particle absorption to extinction coefficients
and the particle phase functions.

As we illustrated for shortwave radiation, with the source of photons outside of
the atmosphere (Fig. 2.6a), scattering processes lead to diverse exchanges of radi-
ation between objects in the atmosphere and on the surface, especially when the
objects are inhomogeneous across the scene. For longwave radiation (Fig. 2.6b) the
situation can be more complicated because each of the objects in the scene becomes
a source of radiation. We must now account for the emission from the inhomoge-
neous objects across the scene as well as the subsequent scattering of this radiation
from these same objects (see Chap. 10).

2.3.5 Particle Emission

Stimulated emission of electromagnetic radiation is but one means whereby matter
can exchange energy with its surroundings through radiation. The other processes for
such exchange are illustrated in Fig. 2.8. A particle, represented by the black circle
in the figure, can collide with matter either transfering some of its kinetic energy
to internal energy of the matter (Process 1) or removing internal energy from the
matter (Process 3) in the form of particle kinetic energy. Photons, represented by the
open circles, can be absorbed by the matter (Process 2), spontaneously emitted by
the matter (Process 5) or produced by stimulated emission (Process 4) as we have
just described.

Taking into account both the probabilities of excited states in matter being oc-
cupied and the number of states in matter with equivalent energies, we find that
emission of radiation from matter goes to zero asymptotically at both long and small
wavelengths with a peak in the emission that is characteristic of the temperature
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of the matter. Moreover, as Fig. 2.8 illustrates, absorption (Process 2) and emis-
sion (Processes 4 and 5) of photons with wavelength λg,e from matter are related
processes insofar as the matter must have an energy level transition ∆Eg,e corre-
sponding to the wavelength λg,e. Even though matter might contain energy level
transitions corresponding to photon energies of hc/λg,e, the matter will neither ab-
sorb nor emit photons of this wavelength if it has no way of interacting with the
photons in the radiation field. Interactions of matter with electromagnetic radiation
are mediated through electric and magnetic fields associated with the matter and a
set of rules that guarantee conservation of energy, momentum, etc., during the inter-
action process.

The results of these interactions and rules is that if the transmission Tdir,a,λ
through an absorbing medium with temperature T is given by (2.2) in some par-
ticular direction, the absorptivity Aλ of the medium along this direction is

Aλ = 1 − exp

(
−

r�
0

σa,λ(r′)dr′
)

(2.4)

and emission of radiation from the medium along this direction is given by
AλBλ(T ), assuming constant temperature T. The quantity

Bλ(T ) =
(

2hc2

λ5

)(
1

exp[hc/(λkbT )] − 1

)
(2.5)

is the Planck function and it has the same dimensions as radiance. Since the absorp-
tivity Aλ is dimensionless, the emitted radiation AλBλ(T ) is a radiance. Note that
for any object for which the absorptivity Aλ = 1 the radiance emitted by the object is
simply Bλ(T ). Examples of the Planck function for sun- and Earth-like temperatures
of 5917 K and 255 K, respectively, are illustrated in Fig. 2.9.

With only absorption and emission processes in an isothermal medium, solving
for the radiance emanating from any tube is straightforward as all one must know

Earth and Sun (Planck Function) Radiances

.01µm .1µm 1µm 10µm .1mm 1mm
Wavelength

10−310−2
10−1
100
101
102
103
104
105
106
107
108

R
ad

ia
nc

e 
(W

m
−

2 sr
−

1 µm
−

1 )

From Sun

From Earth

Fig. 2.9. Radiances that result from treating the sun and Earth as blackbody (i.e., Aλ = 1)
radiators respectively with temperatures of 5917 K and 255 K
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is the radiance at the entrance area Ain of the tube, the variation of the absorption
coefficient σa,λ in (2.2) and (2.4) along the tube and the value of Bλ(T ). If the tem-
perature along the tube varies, solving for the radiance is only slightly more difficult
as one must now allow Bλ(T ) to vary along the path (see Chaps. 3 and 10). Only
when scattering processes become important does computing the radiance leaving a
tube become truly difficult, as now the radiance can have contributions from radiance
beams in other directions that pass through the tube and interact with the particles
in it.

2.4 Radiative Properties of Atmospheric Particles

In terms of the radiometric concepts introduced in Sect. 2.3, we find that atmospheric
particles have wavelength-dependencies in their scattering and absorption cross-
sections, their scattering phase functions and their emission. The three types of par-
ticles important to atmospheric radiative transfer are gases, aerosols and cloud parti-
cles. Since the impacts of aerosols on atmospheric radiative transfer fall somewhere
between those from molecules and cloud particles, we focus our attention on the ra-
diative properties of gas molecules and cloud particles. In particular, we illustrate
some of the properties of their scattering and absorption cross-sections, as well as
their scattering phase functions, as a preamble to interpreting the observational data
that follows.

2.4.1 Atmospheric Molecules

In Fig. 2.10a we present the scattering cross-sections of air molecules, with the
properties of molecular nitrogen and oxygen contributing the most to the behav-
ior of the scattering cross-section versus wavelength. The effective absorption cross-
sections of the seven most important absorbing atmospheric air molecules, computed
at standard pressure and temperature of 1013 mb and 288 K, respectively, follow in
Fig. 2.10b–h. To generate these effective absorption cross-sections we used the Line-
By-Line Radiative Transfer Model (LBLRTM) developed by Tony Clough and his
colleagues (e.g., Clough et al., 1992; Clough and Iacono, 1995). We present the re-
sults in Fig. 2.10b–h as effective absorption cross-sections, i.e., absorption coeffi-
cient divided by molecule number density n, in order to emphasize the strength of
the interaction per molecule.

As Fig. 2.10a illustrates, scattering cross-sections of air molecules are negligible
for wavelengths greater than 1 µm and become increasingly important as the wave-
length of the radiation drops from 1.0 µm to 0.3 µm. Note that the variation of the
air molecule scattering cross-section with wavelength is smooth. Ozone has large
absorption cross-sections at wavelengths less than 0.3 µm (Fig. 2.10d), while the ab-
sorption cross-sections of the seven major absorbing molecules are relatively small
in the visible region of the spectrum from 0.3–0.7 µm, apart from weak absorption
by ozone and water vapor. All seven of the major absorbing gases, except for car-
bon dioxide, have significant absorption cross-sections across the wavelength range
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Fig. 2.10. (a) The average scattering cross-section for all atmospheric molecules and (b) –
(h) the effective absorption cross-sections for the seven major absorbing constituents in the
atmosphere of Earth at a standard temperature of 288 K and a standard pressure of 1013 mb.
The effective absorption cross-sections are obtained by dividing the absorption coefficient
by the number density of the relevant molecule. Note that these panels illustrate radiometric
cross-sections and have nothing to do with the physical cross-sections of the molecules. More-
over, the cross-sections alone do not indicate their importance to radiative processes; one must
multiply them by the relevant molecule concentration and photon path length through the at-
mosphere to obtain their optical thicknesses and transmissivities, which are the quantities of
interest. The O2 A-band, used extensively in Chap. 13, is highlighted
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from approximately 50 µm to 1 mm. The absorption cross-sections of all seven gases
generally decrease with increasing wavelength beyond wavelengths of about 1 mm.
In the near and thermal infrared regions of the spectrum, from 0.7 µm to 20 µm,
the absorption cross-sections of the gases are variable with strong wavelength-
dependencies that change from one molecule to the next. Note that the absorption
cross-sections of a molecule do not indicate their importance to radiative processes.
One must multiply them by the relevant molecule concentration and photon path-
length through the atmosphere to obtain their corresponding optical thicknesses and
transmissivities, which are the quantities of interest.

To this end we used LBLRTM to compute the total atmospheric transmission
through a mid-latitude summer atmosphere (Fig. 2.11a). These calculcations in-
cluded computation of the absorption σa,λ = ns′a,λ and scattering σs,λ = nss,λ
coefficients for each molecular species in each atmospheric layer, their associated
absorption and scattering optical thicknesses ∆τa,λ = σa,λ ∆z and ∆τs,λ = σs,λ ∆z,
where ∆z is layer thickness, the total optical thickness per layer, which is the sum
of all absorption and scattering optical thicknesses in each layer (i.e., ∆τe,λ =∑

species[∆τa,λ + ∆τs,λ]), and finally the total optical thickness of the entire at-
mosphere (i.e., τe,λ =

∑
layers ∆τe,λ). Inserting the atmospheric optical thickness

into
Tdir,a,λ = exp(−τe,λ) , (2.6)

we arrive at the atmospheric transmissions depicted in Fig. 2.11a. As the wavelength
of the radiation decreases from 0.1 m to 1 mm, absorption by water vapor and oxygen
increases. At wavelengths shorter than approximately 1 mm, water vapor absorption
is so strong that the atmospheric transmission is negligible until wavelengths of about
20 µm are reached. From 20 µm down to approximately 0.9 µm the atmospheric
transmission increases in distinct regions, starting from the “window region” from
8–12 µm to 3.5–4.0 µm to 2.0–2.5 µm to a peak transmission close to one between
strong water vapor absorption between 0.9 µm and 1.35 µm. Shortwave of 0.9 µm,
there is absorption by oxygen in well-defined spectral regions (cf. Chap. 13) and
weak, but continuous, absorption by ozone in the range 0.4–0.7 µm. Below 0.3 µm,
absorption by ozone, oxygen and nitrogen molecules is sufficiently strong to make
the atmospheric transmission negligible in this part of the electromagnetic spectrum.
The smooth decrease in the transmissivity from 0.5 µm to 0.3 µm is a result of scat-
tering by air molecules.

For remote sensing applications there are several important features about the
transmission results in Fig. 2.11a. First, the molecular atmosphere becomes transpar-
ent as the wavelength of the radiation increases beyond approximately 1 mm. Sec-
ond, for wavelengths from approximately 20 µm to 1 mm, the molecular atmosphere
is opaque. Finally, for wavelengths less than 20 µm atmospheric transmissivity ap-
proaches one in distinct bands. To obtain information about a molecular constituent
in the atmosphere using electromagnetic radiation, the radiation must interact with
the constituent in some manner. Moreover, the most information in the radiation
field about the constituent is contained at wavelengths where constituent absorp-
tion increases from weak to strong amounts. Alternatively, if one is trying to assess



118 E.E. Clothiaux et al.

(a) Atmospheric Direct−Beam Transmissivity

0.0

0.2

0.4

0.6

0.8

1.0

T
ra

ns
m

is
si

vi
ty

Molecular (Mid−Latitude Summer)

0.0

0.2

0.4

0.6

0.8

1.0

T
ra

ns
m

is
si

vi
ty

Water Cloud

(b) Solar and Earth Fluxes in Atmosphere of Earth

.1µm 1µm 10µm .1mm 1mm 10mm .1m
Wavelength

10−3

10−2

10−1

100

101

102

103

104

F
lu

x 
(W

 m
−

2
µm

−
1 )

From Sun From Earth

Fig. 2.11. (a) Transmissivity as a function of the wavelength of radiation through a cloud-
free, or molecular, atmosphere and a 500 m thick stratus cloud with 175 spherical liquid-water
drops per cubic centimeter that are lognormally distributed in size with the parameters given in
Fig. 2.12. Molecular transmissivities for wavelengths shorter than 0.1 mm have been smoothed
for presentation purposes. (b) The fluxes per unit wavelength interval incident on the Earth
atmosphere that result by treating the sun and Earth as blackbody radiators with temperatures
of 5917 K and 255 K, respectively. Note that clouds are opaque in the shortwave and longwave
spectral regions, where the fluxes have their largest magnitudes, while molecules are relatively
transparent in several wavelength intervals in the shortwave, longwave and microwave regions
of the electromagnetic spectrum
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Fig. 2.12. (a) Scattering phase function for a 10 µm radius liquid-water sphere for radiation
with wavelengths of 0.2 µm (thin line), 10 µm (medium line) and 1 mm (thick line). (b) Scatter-
ing phase function for a lognormal distribution of drops with an effective radius re = 7.5 µm
and a logarithmic width σlog = 0.35; the wavelength of the radiation is 0.2 µm

the presence or absence of some constituent, such as cloud particles, embedded in
a molecular atmosphere using electromagnetic radiation, one would use radiation at
“window” wavelengths for which the transmission through the molecular atmosphere
approaches one while interactions of the radiation with the constituent are yet strong.

Scattering by molecules is approximately the same in all directions (thick line,
Fig. 2.12a). That is, molecular scattering is quasi-isotropic with only double the
amount of scattering in the forward and backward directions as compared to scat-
tering at 90◦.

2.4.2 Water Particles

The situation for cloud scattering is much different. The scattering phase functions
of a sphere with radius 10 µm at three different wavelengths are represented by the
curves in Fig. 2.12. While all of the phase functions in Fig. 2.12a are strictly for
scattering of radiation of different wavelengths from a 10 µm radius sphere and were
generated by the spherical particle scattering code of Toon and Ackerman (1981), the



120 E.E. Clothiaux et al.

thick curve for scattering of 1 mm wavelength radiation from the 10 µm radius liquid-
water sphere, i.e., scattering of radiation with a wavelength that is large compared
to the particle size, well-represents the scattering phase function of air molecules
for all wavelengths of radiation of importance to atmospheric radiative transfer. In
terms of the directionality of scattering by spherical water drops, for particles much
larger than the wavelength of the incident radiation the scattering is strongly forward
peaked. As the particle size decreases relative to the wavelength of the radiation, the
magnitude of the forward peak decreases until the scattering is equally likely in the
forward and backward directions.

Using electromagnetic calculations of scattering and absorption by water
spheres (i.e., “Mie” calculations; Bohren and Huffman, 1983; Toon and Ackerman,
1981) with radii of 0.1 µm, 10 µm and 1.0 mm, we obtained the results illustrated in
Figs. 2.13 and 2.14. One salient feature in the figures is the differences in the ab-
sorption cross-sections of liquid- and ice-water spheres. For example, the absorption
cross-sections of 10 µm radius ice particles dip between wavelengths of 20–30 µm,
while the absorption cross-sections of 1 mm radius ice particles decrease signifi-
cantly from a wavelength of 0.1 mm to a wavelength of 10 mm. These decreases in
the absorption cross-sections of ice particles are not present in the absorption cross-
sections of liquid-water spheres. As a result, information is present in the radiances
at these wavelengths to distinguish liquid-water drops from ice-water particles.

The spheres of radii 0.1 µm, 10 µm and 1.0 mm are on the order of aerosol,
liquid-cloud and precipitation-particle sizes, respectively. While the scattering cross-
sections of 0.1 µm water particles exhibit the same tendencies across the visible re-
gion of the spectrum as for molecular scattering, the 10 µm and 1 mm radius spheres
have scattering cross-sections across both the visible and infrared regions of the spec-
trum that are approximately twice the geometric cross-sectional area of the spheres.
As a result, cloud drop densities, even for the smallest of cloud elements, are typically
large enough to produce large optical depths across the visible and infrared regions
of the electromagnetic spectrum. For example, a continental-type stratus cloud with a
density of 175 cm−3 and a vertical extent of 500 m has transmissivities approaching
0 for all wavelengths less than 0.1 mm (Fig. 2.11a). While precipitation particles have
large cross-sections, under most environmental conditions there are not that many of
them in a vertical column and their resulting optical thicknesses are generally low
across the electromagnetic spectrum. However, for long horizontal paths through the
atmosphere the total path optical thickness of precipitating drops can become quite
large for wavelengths less than approximately 10–30 mm.

For example, consider the raindrop size distribution for a 17 mm h−1 rain shower
near Hilo, Hawaii, that Pruppacher and Klett (1997) illustrate in their Fig. 2.28. In-
specting this figure, we find there are approximately 8 raindrops per cubic meter with
radii between 0.8 mm and 1.2 mm. The extinction coefficient for wavelengths less
than 1 mm that result from these drops is approximately (8m−3)(2) [π(0.001m)2],
or 5×10−5 m−1. So, 90% of the energy in a laser pulse with a wavelength of 0.5 µm
will propagate 2 km through these drops without any interaction, while to reduce the
laser beam to 10% of its original power the pathlength must exceed 46 km. Scanning
radars in support of precipitation studies typically have wavelengths around 50 mm
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Fig. 2.13. Extinction (thick line), scattering (thin line) and absorption (dashed line) efficien-
cies, i.e., the ratio of the relevant radiometric cross-section to the cross-sectional area of the
particle, for a liquid-water sphere of radius (a) 0.1 µm, (b) 10 µm and (c) 1 mm

(C-band) and 100 mm (S-band), where attenuation by the raindrops is significantly
less than for wavelengths less than 1 mm. At these large wavelengths attenuation
by drizzle and moderate rain is insignificant and yet the power that is backscattered
by raindrops 100–200 km from the radar is still sufficient to be detected by radars
operating at these wavelengths.
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Fig. 2.14. Same as Fig. 2.13, but for ice-water spheres

2.4.3 Distributions of Water Particles

The phase functions and cross-sections illustrated in Figs. 2.12a, 2.13 and 2.14 are
for single sized spheres. In reality, clouds consist of drops with varying sizes. To
illustrate the scattering and absorption cross-sections that result from a collection
of differently sized drops consider a lognormal distribution of drops with effective
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Lognormal Distribution of Water Spheres
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Fig. 2.15. Extinction (thick line), scattering (thin line) and absorption (dashed line) efficien-
cies, i.e., the ratio of the relevant radiometric cross-section to the cross-sectional area of the
particle, for liquid-water spheres with a lognormal distribution of radii with the same parame-
ters as for Fig. 2.12b

radius re of 7.5 µm and logarithmic width σlog of 0.35, where the effective radius is
defined as

re =

� ∞
0

n(r)r3dr� ∞
0

n(r)r2dr
. (2.7)

In the above equation r is the cloud-drop radius (in units of µm) and n(r) represents
the lognormally distributed drops (in units of m−3 µm−1) given by

n(r) =
Nt√

2πσlogr
exp

(−[ln(r/rn,log)]2

2σ2
log

)
, (2.8)

where Nt is the total number of drops per unit volume and rn,log is the median
diameter of the distribution of drops. As Figs. 2.12b and 2.15 illustrate, the oscil-
lations in the scattering phase function and absorption and scattering cross-sections
for the individual drops are significantly reduced for the drop distribution. For the
lognormally distributed drops the oscillations from the differently sized drops occur
at slightly different wavelengths and their average effect is to wash out the oscilla-
tions. Paradoxically, in this case having differently sized drops in a cloud potentially
makes treatment of the radiative properties simpler.

2.5 Wavelength Dependence of Radiation Sources
and Atmospheric Transmission

Inspection of Figs. 2.10–2.15, which illustrate wavelength-dependent changes in the
important radiation sources and all of the important radiometric quantities of gases
and cloud particles, leads us to formulate a number of important points regarding
atmospheric radiative transfer. During daylight hours, most of the radiation in the
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Earth/atmosphere system with wavelengths shorter than approximately 5 µm origi-
nates from the sun, while for wavelengths greater than 5 µm most radiation is created
by some component of the Earth system (Fig. 2.11b). We call the former type of ra-
diation shortwave radiation and the latter type longwave radiation. This designation,
however, is not exact in specifying the source of the radiation, as some photons in
the shortwave originate from the Earth and some in the longwave originate from the
sun (Fig. 2.11b).

For radiation calculations we generally treat the flow of solar and terrestrial
radiation separately. For solar calculations the major contributions to atmospheric
heating rates are for wavelengths between approximately 0.1–5.0 µm, while the ter-
restrial calculations comprise wavelengths from approximately 4–60 µm. While en-
ergy budget calculations consist of performing calculations for radiation with wave-
lengths shorter than 60 µm, a cloudy atmosphere is most transparent at wavelengths
that exceed 1 mm. Consequently, while longwave radiation with wavelengths that
exceed 1 mm, which we call microwave radiation, is not important to the energy
balance of Earth, this region is important for remote sensing. Ground- and satellite-
based radiance measurements in the microwave region will have contributions from
each part of the total atmospheric column within the field of view of the sensor.
Hence, microwave sensor measurements can provide information about the con-
stituents throughout the atmospheric column together with some integral radiative
properties of these constituents.

While molecular scattering is confined to wavelengths shorter than approxi-
mately 1 µm (Fig. 2.10a), molecular absorption must be considered for all shortwave
and longwave radiation processes (Fig. 2.10b–h). While liquid- and ice-water parti-
cle scattering processes dominate absorption processes for most shortwave radiation,
both processes are important in the longwave region of the spectrum (Figs. 2.13–
2.15). While “complete-column” remote sensing can be accomplished in the mi-
crowave region of the spectrum (Fig. 2.11a), the greatest sensitivity to the presence
of cloud particles is obtained at shorter wavelengths where particle extinction effi-
ciencies asymptote to a value of two (Figs. 2.13–2.15).

The consequences of these properties of atmospheric constituents, together with
their diverse and inhomogeneous distributions in space and time, make the discipline
of atmospheric radiative transfer challenging. The chapters that follow describe in
detail the methods and approaches that have been, and are being, developed both
to compute atmospheric heating rates and to retrieve the properties of atmospheric
constituents. But before moving on to these topics, we first provide an observation-
based illustration of the 3D nature of atmospheric radiative processes using state-of-
the-art observations from NASA EOS satellite instruments and DOE ARM ground-
based instruments.

2.6 A Remote Sensing View of Cloud Structure

With the onset of the United States Global Change Research Program (USGCRP)
in the late 1980s and early 1990s NASA developed the Mission to Planet Earth,



2 Observing Clouds and Their Optical Properties 125

now called the Earth Science Enterprise, whose goal was to monitor globally the
Earth from space with unprecendented spectral and angular radiance information at
a relatively high spatial resolution (Wielicki et al., 1995). The goal was to make
these measurements from multi-instrument satellite platforms so that the resulting
observations could be easily combined in synergistic studies of the Earth environ-
ment. The first satellite platform launched by the NASA Earth Science Enterprise
was called Terra. Terra was launched into a sun-synchronous orbit with a morn-
ing equatorial crossing. Terra now has an afternoon equatorial crossing counter-
part called Aqua with some, but not all, of the same instruments. While NASA
developed the Earth Observing System (EOS) within the Earth Science Enter-
prise, the DOE developed the Atmospheric Radiation Measurement program (Stokes
and Schwartz, 1994; Ackerman and Stokes, 2003), the ground-based equivalent of
the NASA satellite-based EOS program. The Atmospheric Radiation Measurement
(ARM) program now maintains multi-instrument sites in the Tropical Western Pa-
cific (TWP), the Southern Great Plains (SGP) of the United States and the North
Slope of Alaska (NSA). In the discussion that follows we use observations from two
of the Terra sensors in conjunction with ground-based measurements from two of the
DOE ARM sites.

The NASA EOS Terra satellite platform contains three imagers for cloud stud-
ies, the Multi-angle Imaging SpectroRadiometer (MISR; Diner et al., 2002), the
MODerate resolution Imaging Spectroradiometer (MODIS; King et al., 2003; Plat-
nick et al., 2003) and the Advanced Spacebourne Thermal Emission and Reflection
(ASTER; Logar et al., 1998) radiometer. Of these three imagers, MISR and MODIS
are the primary instruments for observing and quantifying the properties of the at-
mosphere on a global scale. The primary characteristics of MISR are that it consists
of nine bore-sighted cameras that view Earth objects at nine different angles, with
one nadir-directed camera and four cameras in both the forward and aft directions
with view zenith angles of 26.1◦, 45.6◦, 60.0◦, and 70.5◦. Each of the nine cameras
has four channels centered on wavelengths of 0.446 µm (blue), 0.558 µm (green),
0.672 µm (red), and 0.867 µm (near-infrared) with an average band-pass of approx-
imately 0.033 µm for each of the four channels. The cross-track spatial resolution
of all camera data is 275 m, while the along-track spatial resolution of the MISR
radiances varies from 214 m at nadir to 707 m for the most oblique viewing cam-
eras. The sampling of the MISR radiances is 275 m both cross- and along-track. The
MISR does have a local mode operational paradigm in which all camera radiances
are reported without averaging on its 275 m by 275 m collection grid. However, to re-
duce data rates in its standard operational mode all of the MISR off-nadir radiances,
except for the red-band radiance data, are averaged over groups of 4 by 4 pixels to
produce a standard product on a 1100 m by 1100 m sampling grid.

While the MODIS has only a nadir-directed field of view, its across-track swath
width is 2330 km, as compared to the 360 km swath of MISR (Fig. 2.16). The spatial
resolutions of the MODIS radiances at nadir are 250 m, 500 m or 1000 m depend-
ing upon the wavelength of the radiation. Towards the edge of the MODIS scans
the across-track spatial resolution of the MODIS radiances decreases by approxi-
mately a factor of two. The MODIS contains 36 spectral channels, four of which
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Fig. 2.16. Viewing geometries of the MISR forward, nadir and aft cameras with projection of
the image radiances to the World Geodetic System 1984 (WGS84) ellipsoid, a hypothetical
smooth ellipsoid surface that represents mean sea-level coordinates everywhere, including for
regions with terrain. Note that as the object (O) is lowered towards the surface the projected
forward-camera (Pf ) and aft-camera (Pa) images approach the location of the nadir-camera
projection (Pn). The location of the MODIS image radiances relative to the MISR ones are
only approximate, as the MODIS radiances are not referenced to the MISR reference ellipsoid
and the scanning, or “wisk-broom,” geometry of MODIS is different from the “push-broom”
configuration of the MISR cameras

are quite close in wavelength to the four MISR channels: 0.469± 0.010 µm (band
3), 0.555± 0.010 µm (band 4), 0.645± 0.025 µm (band 1) and 0.8585± 0.0175 µm
(band 2). (The “uncertainties” in the wavelengths actually represent the bandwidths
of the MODIS spectral channels.) The spatial resolution of bands 1 and 2 is 250 m,
while the spatial resolution of bands 3 and 4 is 500 m.

To illustrate the 3D nature of clouds we use the red and near-infrared bands from
MISR, together with the following spectral channels from MODIS: 1.375± 0.015 µm
(band 26), 1.640± 0.012 µm (band 6), 2.130± 0.025 µm (band 7), 3.750± 0.090 µm
(band 20), 6.715± 0.180 µm (band 27) and 12.020± 0.250 µm (band 32). There are
several motives for choosing these MODIS channels. First, molecular scattering is
insignificant at these wavelengths (Figs. 2.10a and 2.11a). As Fig. 2.11a also illus-
trates, all of them, except for the 1.375 µm and 6.715 µm channels, occur at wave-
lengths for which atmospheric gaseous transmissivity is close to unity. Therefore,
radiances to space at these wavelengths will originate predominately from clouds
and the surface. At 1.375 µm and 6.715 µm water-vapor absorption is important, so
that photons with wavelengths in the 1.375 µm channel, which mostly originate from
the sun on the daylight side of Earth, will be absorbed by atmospheric water vapor
and photons with wavelengths in the 6.715 µm channel, which are primarily from
the Earth, both originate from and are absorbed by water vapor. While solar photons
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in the 0.672 µm (red) and 0.867 µm (near-infrared) channels are scattered by liquid-
and ice-water clouds (Figs. 2.13–2.15), they are not absorbed by these clouds. How-
ever, vegetated surfaces are much more reflective at a wavelength of 0.867 µm as
compared to 0.672 µm (see Chap. 14).

The shortwave channels at 1.640 µm, 2.130 µm and 3.750 µm complement the
red and near-infrared channels in that liquid- and ice-water particles are absorbing at
these wavelengths. Of these three channels the 3.750 µm channel has the largest ratio
of absorption to extinction cross-section for cloud-sized particles (e.g., Figs. 2.13b
and 2.14b). For all three channels cloud-sized ice particles are more absorbing than
liquid-water particles of the same radius. Interpretation of the radiances at 3.750 µm
is complicated by the mixture of Earth- and solar-emitted photons that contribute
to these radiances during daylight hours. Finally, the 12.020 µm channel radiances
provide the best direct measure of surface and optically thick cloud temperatures,
as this channel occurs in a relativey transparent spectral region of the molecular
atmosphere (Fig. 2.11a) and is near the peak of the Planck function at terrestrial
temperatures (Fig. 2.11b).

2.6.1 Clouds Over the Arctic

A view of the Arctic in the environs of Greenland as captured by the MODIS
0.645 µm channel on 12 June 2001 is illustrated in the histogram-equalized radi-
ances of Fig. 2.17a, where histogram-equalized radiances are generated by mapping
the original radiance values to pixel intensities that are proportional to the rank of
the original radiance values in the histogram of radiances generated from the entire
scene. Properly identifying the rough topography, snow, sea ice and clouds in the
scene, which is a pre-requisite to computing accurately the atmospheric radiation
field, is not easily accomplished with this channel alone. For example, consider
the contents of the white box towards the top of Fig. 2.17a, just to the north and
east of Greenland. The MISR zenith-directed 0.672 µm channel radiances, which
are similar to the radiances illustrated in Fig. 2.17a, for this box are illustrated in
Fig. 2.18a. Complementing these radiances with the MISR 70.5◦ forward-scattering
radiances (Fig. 2.18b) and the MODIS channels with high atmospheric transmis-
sivity (Figs. 2.18c–f), a much more detailed and informationally rich picture of the
scene emerges.

Inspecting the bottom third of the images in Fig. 2.18, we find 1) low-level clouds
that are both opaque (region 1) and transparent (region 2) in the zenith-directed
0.672 µm channel with the transparent clouds tending toward opaqueness in all other
channels, 2) some surface temperatures that are warmer than all cloud temperatures
(region 3), 3) other surface temperatures that are as cold as the opaque low-level
clouds (region 4) and 4) a tenuous mid-level cloud (region 5), partially transparent in
the 0.672 µm channel but not in the other channels, that casts a shadow on the lower-
level clouds (e.g., Fig. 2.18b). Comparing Fig. 2.18a–b, we find that clouds through-
out this scene scatter much more radiation in the forward direction than the surface
ice features. The highest altitude cloud features at the top of the images (region 6)
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(a) Greenland (MODIS: 0.645 µm) (b) ARM SGP (MODIS: 0.645 µm)

Fig. 2.17. MODIS 0.645 µm radiance imagery for (a) Greenland and Baffin Bay on 12 June
2001 around 17:00 UTC (Orbit 7898) and (b) the ARM SGP site on 7 September 2001 at
approximately 17:15 UTC (Orbit 9165). The images in both (a) and (b) have been histogram-
equalized, i.e., radiance values are mapped to pixel intensities that are proportional to the rank
of the radiance value in the histogram of radiances generated from the entire scene, in order
to enhance all of the features across the image. Black regions represent low values of radiance
and white regions represent high values of radiance. For these two images the pixel resolution
is approximately 4 km by 4 km and the domain size is approximately 2330 km by 6060 km

can be identified as the whitest regions in Fig. 2.18c, where solar 1.375 µm radia-
tion is scattered back to space before entering the lower reaches of the atmosphere
where water-vapor concentrations are higher, and the darkest regions in Fig. 2.18f,
corresponding to the coldest objects in the image.

Of the many images from MISR and MODIS that we have viewed to date this
particular scene highlights many of the interwoven connections between atmospheric
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Fig. 2.18. MISR and MODIS radiance imagery for the region demarcated by the white box in
Fig. 2.17a. The MISR radiances include the 0.672 µm radiance imagery for the (a) nadir and
(b) 70.5◦ forward viewing cameras, while MODIS imagery is presented for the (c) 1.375 µm,
(d) 2.130 µm, (e) 3.750 µm and (f) 12.020 µm radiances. The MISR radiances in (a)–(b) have
not been scaled with radiance increasing from black to white, while the MODIS radiances in
(c)–(f) have been histogram-equalized for contrast enhancement, again with radiance increas-
ing from black to white. Note that the image in (a) is quite a bit darker than the image in (b)
because forward scattering from the clouds is much larger than zenith-directed scattering from
clouds and surface ice. The pixel resolution of the MISR images is 550 m by 550 m, while the
pixel resolution of the MODIS images is 1000 m by 1000 m. The domain size for all of these
images is approximately 80 km by 320 km
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molecules and clouds and the resulting radiation fields. As Figs. 2.18a–b illustrate,
the molecular atmosphere is transparent at a wavelength of 0.672 µm so that radi-
ances to space at this wavelength originate primarily from scattering of solar radi-
ation by clouds and surface features. Inspection of Fig. 2.18a illustrates that distin-
guishing between clouds and snow- and ice-covered surfaces can be difficult using
mid-visible nadir radiances, while Fig. 2.18b indicates that the angular dependence
of the mid-visible radiation field is quite different for clouds and the underlying
surface. In fact, atmospheric particles that are difficult to detect in nadir radiance
imagery can be much more apparent in radiance imagery from more oblique views.

At wavelengths, e.g., 1.375 µm, for which the molecular atmosphere is not trans-
parent, the solar radiation reflected to space from clouds now depends upon the alti-
tudes of the clouds within the atmosphere. For example, Fig. 2.18c clearly illustrates
that low altitude clouds reflect less 1.375 µm solar radiation to space than high al-
titude clouds. This phenomenon is a result of increased photon pathlengths through
water vapor and hence more absorption of 1.375 µm solar radiation for photons en-
tering regions of the atmosphere with low-level clouds.

As Fig. 2.18f illustrates, surface temperatures are not necessarily higher than
those of cloud particles and can vary significantly over relatively small spatial scales.
This state-of-affairs is apparent in a comparison of regions 1 (low-level cloud), 3 (rel-
atively warm surface) and 4 (relatively cold surface) in the figure. If we assume that
the surfaces in regions 3 and 4 reflect 3.750 µm solar radiation in the same way, then
the low values of radiance in region 4 relative to region 3 in Fig. 2.18e are an indi-
cator of lower surface temperatures in region 4 relative to region 3. Taken together,
Figs. 2.18a–f indicate that the atmospheric radiation field is a strong function of the
3D distribution of cloud particles and their placement in the molecular atmosphere,
the properties of the underlying two-dimensional surface, the wavelength of the ra-
diation and the angle at which the scene is viewed.

The information content in Fig. 2.18 is perhaps now sufficient to allow us to
properly classify clouds and their heights over most of the Arctic during most of the
daylight hours. However, quantitative characterization of cloud optical thicknesses
and particle sizes is complicated by the inhomogeneous distribution of cloud prop-
erties over heterogeneous snow- and ice-covered land and water. Given that we can
quantify the surface and atmospheric properties for this scene, computational esti-
mates of the resulting radiation field and its associated heating rates are going to
be extremely time consuming to produce as the scene is quite variable. Reducing
scene complexity, while preserving important scene statistics for computing unbi-
ased domain-averaged radiative properties, is possible and is the subject of much
ongoing research.

2.6.2 Clouds Over the ARM SGP Site

On 7 September 2001 EOS Terra passed over the ARM SGP site at about the time
a front was clearing the region (Fig. 2.17b). The clouds at this time were in their
“typical” comma-shaped pattern around the low pressure center, stretching from the
top right (northeast) to bottom left (southwest) corner of the image. The clouds at
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the bottom right corner of the image are located along the Texas/Gulf of Mexico
coastline and the white box is located just to the east of the ARM SGP site. Along the
entire extent of the main cloud structure in the image the cloud elements are multi-
level and nonhomogeneous, even at the smaller scales. The post-frontal cumulus
clouds trailing higher level clouds within the region indicated by the white box are a
case in point (Fig. 2.19).

Our choice of spectral channels in Fig. 2.19 is slightly different from Fig. 2.18.
As the MISR red and near-infrared linearly-scaled radiances in Fig. 2.19a–b indi-
cate, vegetated land surfaces (region 1) are much more reflective at near-infrared
wavelengths than red wavelengths and water surfaces (region 2) are absorbing at
both wavelengths. Comparing the MISR red image (Fig. 2.19a) with the MODIS
histogram-equalized blue radiances in Fig. 2.19c, we find much the same thing, al-
though surface water (region 2) is not as absorbing relative to surface land at blue
wavelengths as for the other wavelengths. Although there are important differences
in the radiances illustrated in Fig. 2.19a–c as a result of scattering by molecules
and aerosols, the appearances of the cloud elements at these different wavelengths
are quite similar, as we would expect from the radiative properties of cloud parti-
cles illustrated in Figs. 2.13–2.15 and despite histogram-equalization of the MODIS
radiances.

Comparing the MODIS histogram-equalized 0.469 µm, 2.130 µm, 6.715 µm and
12.020 µm radiances (Fig. 2.19c–f), we find that the appearance of the scene changes
significantly from one wavelength to the next and in markedly different ways. For the
12.020 µm channel image (Fig. 2.19f) the three salient features of the image are the
high-level cold clouds in the top half of the image (e.g., dark areas in region 3),
the low-level warm clouds in the bottom half of the image (e.g., gray areas in region
4) and the transparent regions of the atmosphere throughout the image where surface-
leaving radiances make it to space (e.g., whitish areas, region 1). Emission and at-
tenuation features evident in the 6.715 µm channel radiances resulting from water
vapor and cloud particles (Fig. 2.19e) are consistent with high clouds to the north
(region 3) and low clouds to the south (region 4). Note, however, that attenuation of
surface-leaving radiance with emission of radiation at colder temperatures evident in
the 6.715 µm radiance image is more uniform across the top half of Fig. 2.19e than
in Fig. 2.19f, indicating that upper-level water vapor is more uniform than the upper-
level cloud coverage. The distribution of bright, cold cloud (Fig. 2.19c,f) takes on
a more mottled appearance in the 2.130 µm radiance image (Fig. 2.19d, region 5),
as now differing absorption between cloud-liquid drops and cloud-ice particles
becomes important.

Our overall assessment of the imagery in Fig. 2.19 is that there is little that is ho-
mogeneous in this scene. The distributions of water vapor and liquid- and ice-cloud
particles are highly variable and they are occurring over a surface with different re-
flectances from one wavelength to the next. This variability in the cloud and surface
properties leads to a spatial radiation field that changes dramatically from one wave-
length to the next, as illustrated in Fig. 2.19. Spectrally-dependent radiances are also
observed in time series of ground-based measurements obtained from ARM SGP site
sensors for this same event (Figs. 2.20 and 2.21).
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(a) MISR: 0.672 µm,
     Nadir Camera

(b) MISR: 0.867 µm,
     Nadir Camera

(c) MODIS:
      0.469 µm

(d) MODIS:
     2.130 µm

(e) MODIS:
     6.715 µm

(f) MODIS:
     12.020 µm

Fig. 2.19. MISR and MODIS radiance imagery for the region demarcated by the white box in
Fig. 2.17b. The MISR radiances include the (a) 0.672 µm and (b) 0.867 µm radiance imagery
for the nadir camera, while MODIS imagery is presented for the (c) 0.469 µm, (d) 2.130 µm,
(e) 6.715 µm, where the stripping is a known artifact of the multi-sensor calibration, and
(f) 12.020 µm radiances. The MISR radiances in (a)–(b) have been scaled linearly so that
black represents zero radiance and white represents the maximum value of radiance in the
image. The MODIS radiances in (c)–(f) have been histogram-equalized for contrast enhance-
ment, again with radiance increasing from black to white. The pixel resolution of the MISR
images is 550 m by 550 m, while the pixel resolution of the MODIS images is 1000 m by
1000 m. The domain size for all of these images is approximately 80 km by 320 km
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(a)

(b)

(c)

(d)

Fig. 2.20. Ground-based observations of clouds with profiling instruments over both the ARM
SGP site on 7 September 2001 collected with (a) the millimeter-wavelength cloud radar
(Moran et al., 1998; Clothiaux et al., 2000) and (b) a Vaisala laser ceilometer and the ARM
TWP Nauru site on 22–23 November 2000 collected with (c) the micropulse lidar (Spinhirne,
1993). (d) is an enlarged version of (c) from 18:00 UTC 22 November to 06:00 UTC 23 No-
vember with clouds over 4000 m deleted. The dashed vertical lines indicate the passage of the
Terra satellite (cf. Figs. 2.17b, 2.19, 2.22a and 2.23)
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Locations of the clouds in the vertical column above the ARM SGP site are
illustrated by the millimeter-wave cloud radar (MMCR) and Vaisala ceilometer
(VCEIL) returns presented in Fig. 2.20a–b, respectively, and the Vaisala ceilome-
ter cloud-base height retrievals illustrated in Fig. 2.21a. Downwelling radiances at
the surface within narrow spectral intervals located in the shortwave near-infrared
(i.e., 1.00 µm), longwave-infrared (i.e., 10.65 µm) and longwave-microwave (i.e.,
9.55 mm) regions of the electromagnetic spectrum, all wavelengths at which the
molecular atmosphere is relatively transparent, are shown in Fig. 2.21b–d, whereas
the downwelling total, direct and diffuse shortwave irradiances (i.e., fluxes) and long-
wave irradiances measured at the surface are presented in Fig. 2.21e–f, respectively.
For the measurements in Fig. 2.21e “shortwave” corresponds to a spectral interval
from approximately 0.3–3.0 µm, while the “longwave” measurements in Fig. 2.21f
are over the interval from 4.0–50.0 µm. By “direct” shortwave irradiance we are re-
ferring to solar photons that impinge upon the sensor without interacting with any
constituents of the atmosphere, while “diffuse” shortwave irradiance refers to solar
photons that reach the sensor after one or more interactions with atmospheric con-
stituents. The “total” shortwave irradiance is the sum of the “direct” and “diffuse”
irradiances. Longwave surface irradiance is composed of terrestrially-emitted pho-
tons within the spectral interval from 4.0–50.0 µm that reach the sensor.

To facilitate understanding of the data presented in Fig. 2.20, which were gener-
ated by active remote sensing radar and lidar, we now briefly discuss how these in-
struments operate. Both radar and lidar generate a pulse of electromagnetic radiation
of the appropriate wavelength and then direct this pulse of radiation into a narrow,
vertically oriented cone directly above the instrument. While not generally consid-
ered as such, the directed pulses of radiation from radar and lidar can be interpreted
as a radiance. These pulses propagate upwards with a transmission given by (2.2),
but with σa,λ replaced by σe,λ. At the ARM sites the lidars operate at wavelengths of
0.524 µm (micropulse lidar, or MPL) and 0.905 µm (VCEIL), wavelengths for which
absorption is not important. Hence, attenuation of the lidar pulse is generally a result
of scattering by air molecules, aerosols and cloud particles. At the radar wavelength
of 8.66 mm attenuation of the pulse is primarily the result of absorption by water
vapor and liquid-water drops, as well as scattering by ice-water particles.

When a pulse leaves one of these instruments, an accurate electronic “stop watch”
is started that measures the elapsed time from initiation of the pulse to the time of
return of the power that is scattered back to the instrument. (Note that the over-
all two-way trip transmissivity is simply the one-way transmissivity squared.) The
elapsed time of a power return and the speed of light are subsequently used to infer
the distance to the atmospheric particles scattering energy back to the instrument;
hence, the data in Fig. 2.20 are height resolved. Each of the data points in Fig. 2.20
is a measure of the amount of power scattered back to the instrument. For calibrated
radars, like the ARM radar, the backscattered power is converted to an estimate of
the radar reflectivity η, or the total backscattering cross-section of the atmospheric
particles per unit volume (in units of mm2 m−3). In the radar literature the radar
equivalent reflectivity factor Ze is generally used in place of η, where Ze is de-
fined by Ze = (λ4η)/(π5K2) (in units of mm6 m−3). In this relationship λ is the
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Fig. 2.21. Ground-based radiometric observations at the ARM SGP site on 7 September
2001 during the same period as shown in Fig. 2.20. Observations include (a) cloud-base
height (Vaisala ceilometer), (b) downwelling 1.00 µm radiance (Pennsylvania State University
narrow field of view spectrometer), (c) downwelling 10.65 µm radiance (Heimann infrared
thermometer), (d) downwelling 9.55 mm radiance (microwave radiometer; Liljegren, 1994;
Liljegren et al., 2001; Westwater et al., 2001), (e) downwelling total, direct and diffuse short-
wave irradiance (unshaded pyranometer, pyrheliometer and shaded pyranometer, respectively;
Michalsky et al., 1999; Long and Ackerman, 2000) and (f) downwelling longwave irradiance
(pyrgeometer; Philipona et al., 2001). The dashed vertical lines indicate the passage of the
Terra satellite
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wavelength of the radiation in the radar pulse and K is a physical constant related to
the properties of water. Since Ze can span many orders of magnitude, it is generally
presented in imagery on the logarithmic scale 10 log10 Ze and labeled with the units
of dBZe, as in Fig. 2.20a.

Unlike the ARM radar, the ARM Vaisala ceilometer and micropulse lidar are not
calibrated. In the case of the Vaisala ceilometer proprietary software that processes
the lidar backscattering power returns transforms the signal so as to maximize the
performance of algorithms that Vaisala developed to identify cloud base. Since we do
not have access to this proprietary software, we simply label the Vaisala ceilometer
returns as a “Transformed Signal” with no associated units. For the micropulse lidar
the backscattering power is recorded as the number of photon counts per microsec-
ond. In Figs. 2.20c–d we present the data on the logarithmic scale of 10 log10(Power)
with no associated units.

For the power returns illustrated in Fig. 2.20a–b, which are from clouds ap-
proximately 500 m thick, assume the cloud drops have a radius of 6 µm and a
number density of 300 cm−3, which are numbers appropriate for some continen-
tal boundary-layer clouds. The extinction cross-sections for particles of this size
at wavelengths of 8.66 mm (MMCR) and 0.910 µm (VCEIL) are approximately
0.93 µm2 and 640 µm2, respectively (e.g., Fig. 2.13). Computing the transmission
through the clouds at these wavelengths, we find that the Vaisala ceilometer trans-
mitted pulse is completely attenuated, i.e., scattered, by the cloud while 97% of the
millimeter-wave cloud radar pulse is transmitted through the cloud with a loss of
3% resulting from absorption of radiation. The white-colored returns in Fig. 2.20b
are the entry point of the Vaisala ceilometer pulse into the cloud, where most of the
photons in the pulse are first scattered, some of them backscattered to the Vaisala
ceilometer receiver as part of the return signal.

The Vaisala ceilometer returns actually drop in magnitude from the ground to
cloud base because the source of these returns is scattering by air molecules and the
number of air molecules decreases exponentially with height. However, this feature
of the Vaisala ceilometer returns is not readily apparent in Fig. 2.20b. The speckle
throughout the image arises primarily from solar photons that are scattered into
the Vaisala ceilometer receiver by atmospheric molecules, though the magnitude of
this effect is small at a wavelength of 0.910 µm. The exponential drop with height in
laser-return power arising from molecular scattering is much better demonstrated in
the micropulse lidar 0.524 µm wavelength returns presented in Fig. 2.20c–d. More-
over, notice that during the nighttime hours (i.e., 0600–1800 UTC), and especially
at altitudes between 18–20 km, the background speckle in Fig. 2.20c is significantly
reduced, as we would expect.

For these nonprecipitating clouds the millimeter-wave cloud radar returns from
cloud particles start at cloud base and extend upwards towards cloud top with re-
flectivity values that range from −40 dBZe to −20 dBZe. The strong white-colored
radar returns from the ground to cloud base arise not from molecular scattering, as
this is completely inconsequential at the millimeter-wave cloud radar wavelength
(e.g., Fig. 2.10a), but rather from large particles and insects. To understand the con-
sequences of this fact, again assume that the cloud above the clutter is composed of
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6 µm radius drops and suppose that the 6 µm radius drops are coalesced into larger
1 mm radius drops. The drop density for these large 1 mm radius drops would be
approximately 65 m−3 and the transmissivity through this collection of drops would
be about 82% at wavelengths of both 8.66 mm and 0.910 µm. That is, the “cloud”
of large particles would now be fairly transparent at both wavelengths. However, the
overall backscattering cross-section per unit volume decreases by a factor of about
2.5 × 10−3 at 0.910 µm while it increases by a factor of 6.5 × 106 at 8.66 mm.

In Fig. 2.20a the increase in reflectivity from cloud to sub-cloud layer is about
20 dBZe and not 70 dBZe as would be the case if the “cloud” of 1 mm radius water
drops given above were located in the sub-cloud layer. However, if we assume that
the sub-cloud layer is composed of one 1 mm radius insect, or water particle, per
millimeter-wave cloud radar sample volume of approximately 1000 m3, the trans-
missivity of this layer approaches 100% at both wavelengths. The backscattering
cross-section of this layer at a wavelength of 0.910 µm has now decreased by a factor
of 3.95 × 10−8 relative to the cloud layer of 6 µm radius drops. However, for radia-
tion with wavelengths of 8.66 mm the backscattering cross-section of this sub-cloud
layer is now a factor of 103, or approximately 20 dBZe, greater than the reflectivity
of the cloud layer above. These transmissivities and backscattering cross-sections
are in keeping with the observations illustrated in Fig. 2.20a–b. In summary, a few
large drops have a significant effect on radar reflectivities but they are completely
inconsequential for lidars operating at visible to near-infrared wavelengths.

The observations in Fig. 2.20a–b exhibit one of the fundamental problems with
active remote sensing. The micropulse lidar and Vaisala ceilometer systems operate
at wavelengths in the mid-visible and near-infrared. As such, the radiation from them
interacts with cloud particles in much the same way as does solar radiation. What
we learn from these laser systems regarding the radiative properties of clouds will be
directly applicable to much of the shortwave spectrum as well. However, clouds often
exceed optical depths of 5 or so, leading to complete attenuation of the laser beams
and making retrieval of cloud properties throughout the depth of the atmosphere
problematic.

While most of the radiation from radars operating at microwave wavelengths
penetrate most clouds, these radars have the problem that their backscattering power
returns are dominated by the largest cloud particles. Since the largest cloud parti-
cles are relatively few in number, at least within most cloud elements, they are not
the cloud particles of greatest importance to the shortwave and longwave radiation
budgets. As a result, knowing the exact 3D distribution of the larger particles in a
cloud field is now critically important to interpreting correctly the radar returns from
the cloud field and making an accurate inference of the shortwave and longwave
radiative properties of the cloud field.

Downwelling radiances at the surface within narrow spectral intervals centered
on wavelengths of 1.00 µm, 10.65 µm and 9.55 mm for this cloudy period are illus-
trated in Fig. 2.21b–d. At microwave wavelengths of 9.55 mm the clouds for this
case are not opaque (e.g., Fig. 2.11a) and their emissivities are not close to one. As a
consequence, increases in cloud-liquid water in the column over the ARM SGP site
lead to increases in emissivity and hence larger downwelling radiances at the surface.
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As Fig. 2.21d illustrates, the three main cloud elements during this period exhibit a
general decrease in liquid water.

At a wavelength of 10.65 µm the situation is much different. The transmissivity
of the cloud is now close to zero (e.g., Fig. 2.11a) with a resulting emissivity that
is close to one for all three cloudy periods. Hence, the downwelling radiance at the
surface is approximately the value of the Planck function evaluated at the tempera-
ture of cloud base. As the cloud-base height increases during the first two periods
(Fig. 2.21a), the temperature decreases with a corresponding drop both in the value
of the Planck function at cloud base and the downwelling 10.65 µm radiance at the
surface (Fig. 2.21c). As cooler air is moving into the environs of the ARM SGP site
with the passage of the front, the temperature at cloud base during the third cloudy
period is slightly less than for the first period, with an associated drop in downwelling
radiance at the surface. Compared to the radiances at 9.55 mm, those at 10.65 µm are
quite smooth, showing significant variations only during periods when there are gaps
in the clouds.

The largest changes in radiance over short time scales occur for the downwelling
radiances at 1.00 µm (Fig. 2.21b). The large ripples in the 1.00 µm radiances result
from inhomogeneities in the cloud field that produce variations in the solar radiation
scattered by the clouds to the surface. In fact, both the detailed 3D cloud geometry
and the nature of its illumination by solar radiation impact the temporal variations
in the 1.00 µm radiances. Downwelling radiance at the surface at a wavelength of
9.55 mm depends on the column-integrated amount of cloud-liquid water. As illumi-
nation effects are no longer relevant at 9.55 mm, temporal variations in the 9.55 mm
radiances are a bit smoother than for the radiances at 1.00 µm. At a wavelength of
10.65 µm the temperature of the drops at cloud base is the important quantity. As
long as the cloud-base height is relatively stable, the 10.65 µm radiances emitted
by the cloud to the surface will not change that much and will also exhibit smaller
temporal fluctuations than the 1.00 µm radiances.

For small vertically integrated cloud-liquid water amounts, the radiances at
1.00 µm and 9.55 mm are correlated, while at large values they are anti-correlated.
This relationship between the two sets of radiances is best illustrated from 17:50–
18:20 UTC. Closely inspecting Fig. 2.21b,d from 17:50–18:00 UTC, we find that a
small 0.1× 10−11 W m−2 sr−1 µm−1 increase in the 9.55 mm radiance corresponds
approximately to a 140W m−2 sr−1 µm−1 increase in the 1.00 µm radiance. Dur-
ing this period, a cloud element with small vertically integrated cloud-liquid water
amounts is passing over the site. Because the cloud element is relatively transmissive,
it actually increases, relative to clear-sky molecular scattering, the amount of 1.00 µm
radiance scattered downwards into the vertically pointing sensor. From 18:00–18:20
UTC the vertically integrated cloud-liquid water increases, driving up the 9.55 mm
radiance. During this same period, however, the 1.00 µm radiance decreases. With
the increasing cloud-liquid water path cloud transmission at a wavelength of 1.00 µm
is decreasing. So, while more 1.00 µm radiance from the sun is scattered by these
clouds, less of the scattered radiance makes it through the cloud to the sensor.

The longwave irradiances illustrated in Fig. 2.21f show much the same trends as
the 10.65 µm radiances in Fig. 2.21c. Unlike the 1.00 µm radiances, the downwelling
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shortwave total irradiance is generally anticorrelated with the 9.55 mm radiance for
all vertically integrated cloud-liquid water amounts. As the cloud-liquid water path
increases, the shortwave transmission decreases and the amount of shortwave irra-
diance reaching the surface decreases. As irradiances are integrated quantities over
the hemisphere of downwelling radiances, they are smoother than the downwelling
zenith radiances. Inspecting all of the data in Fig. 2.21, we are led to conclude that
the radiation field is highly variable in time as well as space and the variations are
once again spectrally-dependent.

2.6.3 Clouds Over the ARM TWP Nauru Site

Tropical cloud fields are much different from those in the mid-latitudes and the Arc-
tic. The cloud field over the ARM TWP Nauru site imaged by the MISR nadir camera
on 22 November 2000 at 23:34 UTC (Fig. 2.22a) is typical of what we generally find
for this site. As the micropulse lidar images in Fig. 2.20c–d illustrate, trade cumulus
under high altitude cirrus occurs throughout the two-day period centered on the time
of the MISR overflight. Moreover, during this two-day period, clouds are also found
to occur at altitudes of 2000 m, 5000 m and 9000 m (Fig. 2.20c). The 3D character
of the cloud field is further illustrated by comparing the MISR 70.5◦ aft-viewing
camera image (Fig. 2.22b) with the MISR nadir image (Fig. 2.22a). As Fig. 2.16 il-
lustrates, surface features on the reference ellipsoid are mapped to the same location
by all nine cameras, while clouds close to the surface are mapped to nearly the same
location on the reference ellipsoid if the clouds do not move significantly or grow
vertically between camera views. As cloud height increases, the differences in pixel
locations of the cloud in the nine MISR camera image projections to the reference
ellipsoid become greater.

In Fig. 2.22a–b the black dot within one of the white boxes indicates a single
location on the island of Nauru. Manual measurements of the coordinates of the
black dots in the nadir and aft images indicated that they were located in identical
positions on the reference ellipsoid, demonstrating that camera alignments and image
projections to the surface ellipsoid were well-characterized. The dashed lines through
the figures represent the direction of the MISR satellite track, while the four white
dots that are also enclosed by white boxes, one just to the northeast of Nauru, one to
the northwest of Nauru, one to the southeast of Nauru in the vicinity of trade cumulus
and one to the far southwest of Nauru at the southwest corner of a high-altitude cirrus
cloud, represent well-defined cloud features. Based on the displacement of the white
dots between the two images in the along-the-satellite-track direction, we find that
the trade cumulus represented by the white dots to the northwest and southeast of
Nauru are the lowest in altitude while the cirrus cloud to the southwest of Nauru is
the highest in altitude. The cloud just to the northeast of Nauru is intermediate in
altitude.

Motion of the clouds associated with the white dots is most evident for the inter-
mediate level cloud, where the cloud has clearly shifted cross-track to the northwest
between the two camera views. The trade cumulus clouds have also moved to the
northwest during this period, but by smaller amounts. Low-altitude winds from the
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Fig. 2.22a. The MISR nadir camera 0.672 µm radiance image for the ARM TWP Nauru site
at 23:34 UTC on 22 November 2000. The image has been histogram-equalized for contrast
enhancement. The pixel resolution of the image is 550 m by 550 m, while the domain size of
the image is approximately 260 km by 360 km

southeast in the trade regions of the tropical southern Pacific Ocean are not uncom-
mon, consistent with what we find in the MISR images. An important distinction
between the trade cumulus to the northwest and southeast of Nauru is their vertical
development. The trade cumulus to the northwest of Nauru has approximately the
same extent along the direction of the projection, or satellite-flight track, in both the
MISR nadir and aft images, whereas the trade cumulus to the southeast of Nauru
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Fig. 2.22b. Same as Fig. 2.22a, but for the MISR 70.5◦ aft viewing camera 0.672 µm radiance
image

has a much larger projected area in the MISR aft image. This result indicates that
the trade cumulus to the southeast has much more vertical development than the
trade cumulus to the northwest. In fact, the projected area of the trade cumulus to
the southeast is much larger for the MISR aft image as compared to the MISR for-
ward image, indicating that this cumulus cloud has developed vertically during the
time (7 min) between MISR forward and aft camera views. Comparing the low- and
mid-level cloud structures throughout the MISR nadir and aft images demonstrates
a range of cloud heights, many of which exhibited vertical development during the
MISR overflight.
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While the MISR images provide a glimpse into the 3D structure of the clouds
over the TWP Nauru site, they also show that the oblique view of the MISR aft cam-
era is much more sensitive to thin cirrus compared to the MISR nadir view. This is
particularly evident in the regions to the northwest of Nauru. The distribution of thin
cirrus, as well as the estimates of cloud-top heights, inferred from MISR radiances
are in keeping with what is seen in the four MODIS images presented in Fig. 2.23.
High thin cirrus clouds are evident in the 1.375 µm radiance image (Fig. 2.23a, re-
gion 1) and they correlate well with the slight decreases in the 12.020 µm radiances
that are expected in regions of thin cirrus over open water (Fig. 2.23d). For opti-
cally thick cirrus clouds the correspondence between the 1.375 µm and 12.020 µm
radiances are striking (regions labelled 2 in Fig. 2.23a).

As expected, the 6.715 µm radiances (Fig. 2.23c) are lowest in regions of high-
altitude, optically thick clouds (regions labelled 2 in Fig. 2.23a), increasing in value
in those regions of low clouds and clear sky (regions labelled 3 in Fig. 2.23a). Note,
however, that water vapor does lead to signficant differences in the spatial distribu-
tion of the 6.715 µm radiances compared to the 12.020 µm radiances. The changes
in brightness of the 1.640 µm radiances (Fig. 2.23b) across the top of the cloud field
in region 4 (Fig. 2.23b) indicate the presence of either a combination of liquid and
ice particles or ice particles of different sizes in this region.

The ARM TWP Nauru ground-based measurements for 22–23 November 2000
are illustrated in Fig. 2.20c–d and Fig. 2.24. As Fig. 2.24a illustrates, the measure-
ments are dominated by the effects of low-level trade cumulus passing over the site
under an umbrella of high altitude cirrus. The fluctuations in the 8.86 µm (Fig. 2.24b)
and 9.55 mm (Fig. 2.24c) radiances, as well as both the shortwave (Fig. 2.24d–e) and
longwave (Fig. 2.24e) irradiances, are dominated by these trade cumulus. The sensor
most capable of detecting the high thin cirrus above 16 km is the micropulse lidar
(Fig. 2.20c–d) as the ARM millimeter-wave cloud radar does not have the sensitivity
to detect these small particle clouds. When trade cumulus attenuates the micropulse
lidar pulse, the thin cirrus goes undetected by the radar and lidar instrument suite.
During these brief periods, as well as for extended periods of thin cirrus above low-
level stratus, one potential way of inferring the presence of the cirrus from the ground
may be the oxygen A-band approach discussed in Chap. 13.

To obtain cloud-property information through the depth of a cloudy column re-
mote sensing at microwave wavelengths is an attractive approach because clouds are
not optically thick at these wavelengths. Active remote sensing at microwave wave-
lengths is a viable method for retrieving height-resolved cloud properties. However,
there are subtleties in such an approach and we have discussed some of them in
the context of the ARM SGP site data. Passive remote sensing at microwave wave-
lengths is useful for retrieving column-integrated quantities, such as cloud liquid-
water paths, but there are complications in these methods as well, which we now
discuss.

Consider the middle of the day at the ARM TWP Nauru site from 22:00 UTC 22
November through 02:00 UTC 23 November (Fig. 2.20d and Fig. 2.24). Throughout
this period, trade cumulus constantly cross the line of sight from the pyrheliometer to
the sun. At these times the solar direct beam is attenuated significantly (Fig. 2.24d),
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(c) MODIS: ARM TWP (6.715 µm) (d) MODIS: ARM TWP (12.020 µm)

(a) MODIS: ARM TWP (1.375 µm) (b) MODIS: ARM TWP (1.640 µm)

Fig. 2.23. MODIS (a) 1.375 µm, (b) 1.640 µm, (c) 6.715 µm, where the stripping is a known
artifact of the multi-sensor calibration, and (d) 12.020 µm radiance imagery for the ARM
TWP Nauru site at 23:34 UTC on 22 November 2000 corresponding to the MISR radiance
images in Fig. 2.22a. The images have been histogram-equalized for contrast enhancement
with radiance increasing from black to white. The pixel resolution of these images is 1 km by
1 km, while the domain size of theses images is approximately 220 km by 310 km. The island
of Nauru is indicated by a white box in (b) and a black box in (d)
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Fig. 2.24. Ground-based observations at the ARM TWP Nauru site on 22–23 November
2000 of (a) cloud-base height (micropulse lidar), (b) downwelling 8.86 µm radiance (At-
mospheric Emitted Radiance Interferometer; Feltz et al., 2003; Turner et al., 2003), (c) down-
welling 9.55 mm radiance (microwave radiometer), (d) downwelling direct shortwave irra-
diance (pyrheliometer), (e) downwelling diffuse shortwave irradiance (shaded pyranometer)
and (f) downwelling longwave irradiance (pyrgeometer). The dashed vertical lines indicate
the passage of the Terra satellite
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with some of the radiation removed from the direct beam enhancing the shortwave
diffuse irradiance (Fig. 2.24e). Cloudy periods also increase downwelling longwave
radiances (Fig. 2.24b) and irradiances (Fig. 2.24f) at the surface as a result of emis-
sion of radiation from the clouds.

The correlation between the downwelling shortwave diffuse (Fig. 2.24e) and
longwave (Fig. 2.24f) irradiances at the surface is an indication that the trade cu-
mulus optical depths and liquid water contents are relatively small. If they were not
small, we would have results similar to those at the ARM SGP site (Fig. 2.21e–f).
The boundary-layer clouds at the ARM SGP site are sufficiently thick that they are
opaque in the longwave spectral region (Fig. 2.21f) and most solar radiation incident
upon them does not penetrate through them (Fig. 2.21e). During the cloudy periods
at the ARM SGP site, the solar direct beam at the surface is negligible and the down-
welling shortwave diffuse irradiance is approximately 100–300 W m−2, i.e., only a
small fraction of the incident solar direct beam irradiance. Consequently, for these
thick clouds there is not much of a correlation between the downwelling shortwave
diffuse and longwave irradiances at the surface.

The clear sky 9.55 mm radiances are smaller at the ARM SGP site (e.g., 20:00–
21:00 UTC in Fig. 2.21d) as compared to the ARM TWP site (e.g., 00:20–00:30 UTC
in Fig. 2.24c). This is a result of there being less water vapor at cooler temperatures
over the ARM SGP site. The boundary-layer cloud contributions to the 9.55 mm ra-
diances at the ARM SGP site are clearly above the clear sky background and exhibit
a marked decrease over the three cloud events. Since the 9.55 mm radiance is pro-
portional to the cloud liquid-water path, we conclude that the liquid water contents
of these clouds decrease over the three cloud events. The decreases in the cloud-
liquid water are sufficient to increase the shortwave diffuse irradiance (Fig. 2.21e)
but insufficient to change the longwave opacity of the clouds (Fig. 2.21f).

For the period from 22:00 UTC 22 November through 02:00 UTC 23 November
at the ARM TWP Nauru site there are significant fluctuations in the downwelling
longwave radiances (Fig. 2.24b), longwave irradiances (Fig. 2.24f) and shortwave
direct (Fig. 2.24d) and diffuse (Fig. 2.24e) irradiances. However, the clouds produc-
ing these fluctuations often do not produce corresponding changes in the microwave
radiances (Fig. 2.24c). That is, during this period many of the trade cumulus clouds
contain too little liquid water to produce a significant increase in the microwave ra-
diance above its clear sky level. For these thin boundary-layer clouds, which occur
with high frequency at all of the ARM sites (e.g., Sengupta et al., 2003), there is not
sufficient information in the microwave radiances to retrieve the liquid-water paths
of these clouds. We again have the problem that the information content in the mi-
crowave spectral region during cloudy periods is not sufficient to infer the shortwave
and longwave radiative properties of the clouds at these times. Recognition of these
difficulties is driving the development of cloud property retrievals that use shortwave
and longwave spectral measurements, but the accuracies to be obtained by these re-
trievals, as well as the ones that use microwave radiances, are still being investigated
at this time (e.g., Min and Harrison, 1999; Marshak et al., 2000; Barker and Marshak,
2001; Daniel et al., 2002; Savigny et al., 2002; Crewell and Löhnert, 2003; Löhnert
and Crewell, 2003; Marchand et al., 2003; Turner et al., 2003).
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2.7 Concluding Remarks

Of the Arctic, ARM SGP and ARM TWP Nauru cloud fields illustrated in this chap-
ter, the ones over Nauru contain the greatest number of overlapping cloud layers. Yet,
the individual cloud layers over the ARM SGP site and in the environs of Greenland
exhibit a variety of different structures. Building global observational databases of
both radiatively important cloud-property statistics for individual cloud layers and
the statistics of overlapping cloud layers is the focus of much current research. While
cloud-property retrievals that use microwave radiances are the most straightforward,
they are not without limitations and difficulties. As a result, retrievals that use short-
wave and longwave-infrared radiances and irradiances are in development. However,
the 3D structures of clouds will affect these retrievals at predominately scattering
wavelengths because of horizontal transport of radiation, which complicates consid-
erably the retrievals. At absorbing wavelengths in these spectral regions clouds are
often opaque and there is limited information about all of the clouds in a vertical
column of the atmosphere. In summary, there is no “free lunch” in the retrieval of
cloud microphysical properties.

Developing a global observational database of the 3D properties of clouds is only
one step towards the proper treatment of clouds and radiation in numerical models
and understanding the impact of clouds on the radiation budget of Earth. The sec-
ond step is to incorporate properly the observed cloud properties into the radiation
calculations that are used in numerical models and in studies of the radiation bud-
get of Earth. Underlying the successful completion of both of these steps is a proper
treatment of spectrally-dependent radiative transfer through 3D cloud fields.
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3.1 Introduction

3.1.1 Three-Dimensional?

Technically speaking, only the two-stream model in homogeneous (or layered)
plane-parallel, cylindrical, or spherical geometries can be truly one-dimensional (1D)
because there is no angular dependence to worry about, only the axial flow of radi-
ant energy in a highly symmetric medium with equally symmetric source distribu-
tions. By strict mathematical standards, azimuthally-averaged or -symmetric radia-
tive transfer in a plane-parallel medium is already 2D (one spatial and one angular
coordinate). By the same token, it is patently 3D if there is also azimuthal variation
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(one extra angular coordinate) as, e.g., when solar illumination is off-zenith. How-
ever, it is generally understood that, independently of the how angles are treated, all
plane-parallel radiative transfer (RT) theory is called “1D”; at most stratification in
the vertical z direction is allowed. So only spatial variability counts here. Then what
about patently 2D cases, so often used in sensitivity studies, where optical properties
and/or sources vary at most in the horizontal x and vertical z directions? Well, this
is still called “3D” RT, for the legendary simplicity. In short, when we say we are
treating 3D radiative transfer it only means that we are making no assumptions about
the translational or rotational symmetry of the optical medium’s macro-structure nor
about the sources of radiation. To make things worse, we will see that the most gen-
eral 3D problem in RT is exactly solvable as long as there is no scattering: only
emission and absorption are present and no coupling exists between the radiation
beams. Mathematically speaking, this solution is a simple 1D integration beam-by-
beam, where opposite directions count separately (since they are not coupled). And
then there is the possibility of time-dependence.1

Having somewhat clarified and somewhat obfuscated what is meant by “dimen-
sion” in the RT literature, we can ask about the history of RT theory that acknowl-
edges that we live in a 3D world. This question of chronology breaks into two more
specific ones covered in the next few paragraphs. First, how did we get to modern ra-
diometry and formulate the radiative transfer equation (RTE)? Then, skipping much
on the solution of the RTE in slab geometry with angular details (for planetary or
stellar atmospheres) or spherical geometry in a 2-stream mode (for stellar interiors),
how did 3D radiative transfer per se develop from the dawn of scientific computing
to circa 1980 in application to the natural sciences (atmospheric and, to some extent,
astrophysical questions)? We cover the first topic simply by tracing a thread through
the contributions of many celebrated scientists, primarily to build historical context.
The second topic is covered with detailed references to the seminal papers by the
pioneers of 3D radiative transfer because we have far more than occasionally found
it refreshing to go back to the early publications in our field.

We have decided, somewhat arbitrarily, that post-1980 literature is best covered
in the specialized chapters of this volume. We have also decided that applications
to engineered systems is another story altogether, an interesting one in its own right
that we could not do justice to. We will simply acknowledge that the engineering
community has had to struggle with 3D radiation transport, primarily from thermal
sources, in increasingly intricate geometries. One is bound to find significant overlap
between our concerns and theirs. Indeed, both atmospheric scientists and engineers
will start with simple geometries either because they are tractable or because they
are viable designs. However, in the end, both will have to consider the complexity of
how turbulent reacting flows interact with radiation. It might prove very rewarding
for both communities to draw more on each other’s experience with 3D RT.

1 Time-dependent, equivalently pathlength-based, 3D RT has always been around but it is
now becoming important in the applications (cf. Chaps. 12–13). Since time is not just an-
other dimension (causality oblige), the physicist’s “3+1 D” shorthand is better than talking
about “4D” RT.
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3.1.2 From Radiometry to Radiative Transfer

As far as we know, the earliest physically correct analyses of radiometric data (i.e.,
based on the intuitive notion of radiant energy conservation) were by Galileo Galilei
(1564–1642) and Johannes Kepler (1571–1630), discussing their respective obser-
vations of the Moon and of Mars. This is of course only about the propagation of
radiant energy – whatever they understood that to be – across empty space; so the
problem at hand is fully 3D but in the simple case where there is no scattering, nor
absorption for that matter. Let us acknowledge the forefathers of general-purpose
(hence 3D) radiometry: Lambert, Bouguer, de Beer, Helmholtz, and others. We must
mention in passing the founders of particle transport theory on which modern RT is
based: Maxwell and Boltzmann, who worked in the earliest years of the (modern)
atomic theory of matter when it was still highly controversial. Then come the pio-
neers of RT per se, i.e., with the complication of scattering: Schuster, Schwarzschild,
Eddington, and Peierls. They were soon followed by the giants of 1D RT theory:
Milne, Sobolev, Ambartsumian, and Chandrasekhar. The onset of the nuclear age
brought us phenomenal advances in computational transport theory driven by the
3D geometry of weapons and reactors. We commemorate from this period the bril-
liant contributions by von Neumann, Ulam, Metropolis, Teller, Marshak, Davison,
Vladimirov, Germogenova, and others.

On a parallel track, we can trace scientific progress in “elementary” radiation-
matter interaction, defined operationally as what provides RT with its emission, ab-
sorption, and scattering coefficients and terms. This is in fact the bridge between RT
and mainstream optics, drawing on both sides of its celebrated duality between waves
and particles. Here the modern era opens arguably with Leonardo da Vinci’s (1452–
1519) notes on smoke plumes and unfolds with Newton, Descartes and Huygens.
The fundamental link between spectroscopy and thermal physics was established by
Fraunhofer, Kirchhoff, Planck, and Einstein. There are too many important contribu-
tions of early quantum theorists and experimentalists to attempt even a partial list that
is meaningful. Because scattering is what makes RT so interesting and challenging,
especially in a 3D setting, we will recall the classic work, still in use, by Rayleigh,
Lorenz, Mie, and Raman.

Computing absorption and/or scattering coefficients and emission terms is one
thing, and deriving the full RTE from first principles in optics is another. The diffi-
culty hinges on the connection between the radiance field that plays a central pho-
ton transport theory and the fundamental quantities of scalar or, better still, electro-
magnetic (EM) wave theory. The crux of the matter is the loss of wave theoretical
(i.e., amplitude and phase) information in the spatial coarse-graining to scales of
at least a few wavelengths where a statistical description of the wave field applies.
For remarkable – and still on-going – efforts to bridge this gap between radiometry
and optics, we refer to Ishimaru (1975) who works from scalar waves, Wolf (1976)
who works from vector waves in the frame of classic or quantum EM theory, and
Mishchenko (2003) who starts with Maxwell’s EM equations and carries polariza-
tion throughout. To this day, the theory of radiative transfer we are concerned with
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in this chapter and volume remains a phenomenology, a powerful one even though it
is not yet rigorously connected to optics per se.

3.1.3 Atmospheric 3D Radiative Transfer: The Early Years (�1980)

By the second half of the 20th century, the stage is set for 3D RT as we presently
understand it, that is, in application to astrophysical or geophysical rather than man-
made systems; we are also interested in theoretical studies of abstract media that
are based on at least some analytical work on the 3D RT equation or an approxima-
tion thereof. With these selection rules, we have traced the beginning of 3D RT to
Richards’ investigation (Richards, 1956) of a point-source in a homogeneous scat-
tering slab medium that is finitely thick, not in boundary-free 3D space, while Gio-
vanelli and Jefferies (1956) looked at variable sources in more generality. Around
the same time, Chandrasekhar (1958) considered a collimated “pencil-beam” source
impinging on a uniform semi-infinite medium. However, Giovanelli’s (1959) paper
stands out as the earliest study of 3D variability effects as we still think of them
most often: the slab medium is internally variable and results are compared to the
prediction of a standard 1D (internally uniform) model. During the 1960s, the first
3D RT papers appeared in the atmospheric literature per se: Romanova (1968a,b)
on the pencil-beam problem in a uniform medium, Weinman and Swartztrauber
(1968) on uniformly illuminated media with a horizontal sine-wave structure. In the
1970s, we continue to see the same two classes of problem addressed with increas-
ing sophistication. On the one hand, we have pencil-beams (now readily material-
ized with laser technology) illuminating a uniform scattering plane-parallel medium
(Romanova, 1971a,b), or the closely related (essentially adjoint) problem of surface
albedo blurring by the intervening atmosphere (Odell and Weinman, 1975; Otterman
and Fraser, 1979; Kaufman, 1979). On the other hand, we have uniformly illuminated
but internally variable slabs (van Blerkom, 1971; Avaste and Vainikko, 1974; McKee
and Cox, 1974; Appleby and van Blerkom, 1975; Romanova, 1975; McKee, 1976;
Aida, 1977a,b; Wendling, 1977), or simply non-plane-parallel media such as up-
right cylinders with circular sections (B&A, 1977) or perpendicular parallelepipeds
(Davies and Weinman, 1977; Davies, 1978). These are the two extreme situations for
predominantly scattering media, most often with solar illumination at the upper
boundary: optically thin and thick cases, respectively for aerosol and cloud prob-
lems. Another transport regime of considerable interest is large optical thickness in
predominantly absorbing media, most often with internal sources. This scenario ap-
plies to the thermal spectrum (Weinman and Swartztrauber, 1968) and to microwaves
where the strongly 3D structure of rain matters. The first line of attack here is to ne-
glect scattering altogether; after that, just a few successive orders-of-scattering makes
for almost exact models.

The methodologies used in the early studies of strongly scattering optically
thick media were almost invariably Monte Carlo simulation for numerical results (if
any) and either the diffusion or small-angle approximations for the analytical work
(if any). The noteworthy exceptions were (1) Chandrasekhar’s (1958) pencil-beam
study in purely scattering media which used neither approximations nor numerics
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but established the formal connection between horizontal transport away from the
beam and the problem of an absorbing/scattering medium under uniform illumina-
tion problem, and (2) Avaste and Vainikko’s (1973) “mean-field” theory for a sto-
chastic binary (cloudy/clear) medium with a random (Poissonian) distribution of
transitions. Two other notable publications were Cannon’s (1970) article, a pene-
trating analysis of numerical results on line transfer in a 2D medium using a finite-
difference technique to solve the RT equation (not an approximation), and the com-
pilation by Mullamaa et al. (1972), a poorly distributed report (even in translation),
where the linear mixture of 1D results that eventually became known as the Indepen-
dent Pixel/Column Approximation (IPA or ICA) was first introduced, at least in the
former Soviet Union.

This brings us up to the English edition of Marchuk et al.’s landmark volume
on the Monte Carlo technique (Marchuk et al., 1980). Developments beyond 1980
are better covered in the specialized chapters that follow. At this cusp, we will also
mention the paper by Ronnholm et al. (1980) who reinvented the important IPA/ICA
technique for the benefit of the Western literature. The IPA/ICA is used extensively
in Chaps. 6, 8, 9, and 12. The main purpose of this volume however is to go beyond
the IPA/ICA, either analytically or computationally.

3.1.4 Overview

This introductory chapter is organized as follows. In the next section, we review the
basic concepts of radiometry and radiative transfer (RT) that are prerequisite for the
following sections and chapters. Before formulating the radiative transfer equation
(RTE) in Sect. 3.7, we follow a logical but physically backwards flow from detec-
tors (Sect. 3.2) and sinks (Sect. 3.3) to sources (Sect. 3.6), via scattering (Sect. 3.4)
and propagation (Sect. 3.5). Once we have the RTE in hand (Sect. 3.7), we examine
boundary conditions and integral formulations (Sect. 3.8). At that point, numerical
solutions of a couple of 3D RT problems are presented, primarily to illustrate less
familiar boundary shapes (non-flat lower boundary and horizontally-finite clouds).
Green functions, adjoint RT theory and reciprocity are covered in Sect. 3.10. We
summarize in Sect. 3.11 and offer our perspective on the future of research into
the fundamental aspects of RT theory. A compendium of Suggested Reading, with
running commentary, supplements the usual list of References, and there is some
inevitable overlap between the two resources. At the end of the volume, we have
compiled in tabular form the most common Notations as well as some useful con-
stants and definitions.

3.2 Radiometric Quantities

We recall and apply the definitions of all the important quantities used in radiometry
and, from there, RT theory. Radiometry is essentially a theory of light detection in
the sense of photon gathering, just before conversion into electrical current or charge,
heat, or whatever else that can become an instrument reading.
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Fig. 3.1. Flux transfer by an oblique collimated beam

3.2.1 Flux/Irradiance in a Collimated Beam

The most basic quantity in radiometry is “flux,” a.k.a. “irradiance” (or photon “cur-
rent density”, coming from general particle transport theory). It is at once an ob-
servable that can be sampled at any point with the proper equipment and a field that
exists everywhere, like gravity. Figure 3.1 shows a simple experiment where a col-
limated beam impinges on a detection area δA for a certain time interval δt. Our
goal is to count the number of light quanta that are detected by crossing the surface,
each carrying energy in the amount of hν (where h is the Planck constant and ν the
frequency). If δA and δt are small enough, this number δN is certainly proportional
to the kinetic volume in the figure; specifically,

δN =
δE

hν
∝ δV = cos θ0δA × cδt (3.1)

where c is the speed of light in the optical medium2 and θ0 is the incidence angle of
the beam away from the normal to the small/flat detection surface. The dependencies
on δA and δt are fully expected while the “cos θ0” factor takes a little more thought
(δA has to be projected perpendicularly to the beam to get δN right). This is known
as Lambert’s cosine law of radiometry and it is in fact a requirement for radiometers
to follow this law which, in practice, is not so easy to achieve at large incidence
angles.

Some radiometric devices count photons, others respond to radiant energy, so we
allow for both possibilities in (3.1). The proportionality factor in (3.1),

fcol = lim
δA,δt→0

δN (or δE)
cos θ0δA × cδt

, in m−3 (or J/m3) , (3.2)

2 If there are significant variations of the index of refraction across the transport medium of
interest, not counting microscopic scattering centers, then several aspects of RT need to be
modified.
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is thus the density of photons (or radiant energy) in space at the point where δN
was obtained propagating in the given beam. It is a characteristic property of the
beam – its strength – as is its direction of propagation, Ω0 in Fig. 3.1. The other
quantities relate the specifics of its measurement, either the outcome δN (or δE) or
the controlled parameters δA (aperture) and δt (exposure).

A more conventional characterization of beam strength is by the flux it transports,
which is given by

F0 = cfcol, in m−2s−1 (or W/m2) . (3.3)

The result of the above measurement is thus

δE

δt
= F (±)

n (Ω0)δA = cos θ0F0δA = |n • Ω0|F0δA (3.4)

where the subscript n identifies the orientation of the detector and the superscript
(±) the direction from which the beam is coming, specifically ± = sign(n • Ω). In
the case of Fig. 3.1, the outcome is (−).

To illustrate, we imagine an isotropic point-source of power P (in W or pho-
tons/s) and a detector at some distance d subtending a solid angle δΩ = cos θδA/d2;
see Fig. 3.2. The reading of the device is

δE

δt
= P

δΩ
4π

=
P

4πd2
cos θδA . (3.5)

By comparison with (3.4), we have

F0 =
P

4πd2
. (3.6)

So flux diminishes with distance, as required by the overall conservation of energy
flowing through spheres of any radius d. Strictly speaking, this well-known “1/d2”
decay applies only in absence of absorbing/scattering material; otherwise, it is only
one of several terms (as we will see in Sects. 3.3 and 3.8).

3.2.2 Radiance/Intensity in a Diffuse Light Field

The experiment in Fig. 3.3 is a generalization of that in Fig. 3.1 where exposure time
is now represented by a stop-watch icon rather than by a kinetic volume. Light is

Fig. 3.2. Flux from a distant point-source transferred through an optical vacuum
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Fig. 3.3. Radiance in a diffuse light field

now admitted into δV = δA cos θ × cδt, but only from a small but finite solid angle
δΩ around Ω. The outcome is now

δN(Ω) =
δE

hν
∝ δV × δΩ = (δA cos θ × cδt) × δΩ , (3.7)

and the relevant diffuse beam property is

fdif = lim
δV,δΩ→0

δN (or δE)
δV × δΩ

, in m−3sr−1 (or J/m3/sr) (3.8)

in comparison with the collimated beam property in (3.2).
Here again, a more conventional characterization of beam strength uses radiance

or (specific) intensity3

I(Ω) = cfdif , in m−2s−1sr−1 (or W/m2/sr) (3.9)

and the associated measurement outcome is

δE = |n • Ω| I(Ω)δΩδAδt . (3.10)

From this point on, it is important to bear in mind that polarization selection and
wavenumber filters may be used in conjunction with radiometers. So the most general
description of the light field anywhere in space-time calls for an intensity I dependent
on all of the quantum mechanical parameters of the photon population:

3 In this volume, we have adopted standard notations for radiance/intensity Iλ(x,Ω) and
irradiance/flux Fλ(x) from the astrophysical and transport-theoretical literatures because
they are also well used in the geophysics community. However, readers more familiar with
some remote-sensing textbooks will recognize respectively Lλ and Eλ.
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• wavenumber ν (or energy E = hν);
• direction of travel Ω (or momentum p = (E/c)Ω);
• statistical state of polarization (or spin).

In this volume we will be concerned exclusively with the first two and, in this chapter,
mostly with the second. The most popular representation of polarization uses Stokes’
radiance “vector” where I(Ω) is complemented by three other quantities. For more
details, we refer the interested reader to Chandrasekhar (1950).

So far, we have always been at some position, presumably in 3D space, making
radiometric measurements. Now imagine a diffuse source at a certain distance d
from the detector, as illustrated in Fig. 3.4. The throughput in radiant energy can be
evaluated in two different ways:

δE = Idet(Ω)δAdet cos θdetδΩdetδt ,

δE = Isrc(Ω)δAsrc cos θsrcδΩsrcδt ,

respectively from the detector’s and source’s viewpoints, where

δΩdet = δAsrc cos θsrc/d2 ,

δΩsrc = δAdet cos θdet/d2 .

This shows that, by definition, radiance is conserved across optical vacuum,

Idet(Ω) = Isrc(Ω) . (3.11)

Apart from showing that the quantity “radiance” was basically designed to be
conserved along a beam in optical vacuum, we see that it is productive to think of
radiance as a 5-dimensional field I(x,Ω) for a given wavelength and (optionally)
state of polarization. Above, we considered the photon flow between xsrc and xdet.

Fig. 3.4. Conservation of radiance in a beam across an optical vacuum
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This brings us to the question of “pixels” in Earth/planet observation as well as as-
tronomy. They are in practice identified and populated (say) with photon counts by
varying Ω from the observer’s position xdet in space. That is in principle how an
image is collected remotely. Often however, Ω is in a small subregion of direction
space Ξ and an individual pixel’s solid angle is of course much smaller. In this case,
it is convenient to think of Ω as the constant direction towards the distant observer
while xpix (a.k.a. xsrc) scans the image’s pixels in some convenient reference plane
in position space (such as cloud top).4

We can now revisit the concept of flux from the previous subsection without the
assumption of a collimated beam. Indeed, by comparing (3.10) and (3.4) we can
define the element of flux

δF (−)
n (x,Ω) = |n • Ω| I(x,Ω)δΩ . (3.12)

At this point, we need an analytical representation of the beam direction Ω on the
unit sphere Ξ. We will use both Cartesian and spherical (pole at ẑ) coordinates:

Ω(θ, ϕ) =

⎛⎜⎝ Ωx

Ωy

Ωz

⎞⎟⎠ =

⎛⎜⎝ sin θ cos ϕ

sin θ sin ϕ

cos θ

⎞⎟⎠ =

⎛⎜⎝
√

1 − µ2 cos ϕ√
1 − µ2 sin ϕ

µ

⎞⎟⎠ , (3.13)

for µ = cos θ = Ωz ∈ [−1,+1], and ϕ = tan−1(Ωy/|Ωx|)+π sign[Ωy](sign[Ωx]−
1)/2 ∈ (−π,+π]. From there, the element of solid angle is given simply by

dΩ = dµdϕ = sin θdθdϕ . (3.14)

This enables us to define the two hemispherical fluxes with respect to an arbitrary
plane at any point in space:

F (±)
n (x) =

∫
±n•Ω>0

|n • Ω| I(x,Ω)dΩ . (3.15)

These can in turn be combined algebraically to define the net flux in any direction:

Fn(x) = F (+)
n (x) − F (−)

n (x) =
∫
4π

(n • Ω) I(x,Ω)dΩ . (3.16)

In classic plane-parallel – often called one-dimensional (1D) – RT, there is only an
interest in vertical fluxes (assuming the slab is horizontal), obtained for n = ẑ. In 3D
RT, there is also an interest in horizontal fluxes, n = x̂, or n = ŷ.

4 We have ignored here complications due to finite stand-off distance and detector motion
during the imaging that arise for moderate- to low-resolution systems with large swaths. In
this case, each pixel has its {x,Ω}-pair and both vectors must be somehow “georegistered.”
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Consider two extreme situations that we will encounter frequently in the fol-
lowing chapters and where we need to know how to relate radiance/intensity and
irradiance/flux:

• Collimated beam: fdif = fcolδ(Ω − Ω0) in (3.8) where fcol was defined in (3.2).
Using (3.3) and (3.9), we have

I(Ω) = F0δ(Ω − Ω0) . (3.17)

• Isotropic (Lambertian) emittance into a hemisphere by a surface element:
I(Ω) ≡ IL, ∀µ > 0, ∀ϕ ∈ [0, 2π). The associated hemispherical flux is therefore

FL = πIL . (3.18)

There is a popular non-dimensional representation of radiance in solar problems, es-
pecially for satellite imaging analysis, that makes use of both these examples. If the
mono-directional radiance field in (3.17) is incident on a scattering medium, then
a field of diffusely reflected radiance is generated that we will denote ITOA(µ, ϕ),
with µ > 0. In atmospheric applications, the uppermost level is colloquially called
the Top-Of-Atmosphere (or “TOA”). As we will see further on in our discussion
of “secondary” sources, the albedo of a surface (or of a plane-parallel medium) is
defined as the ratio of outgoing-to-incoming fluxes, measured perpendicular to the
surface (or upper boundary). We now assume that the surface (boundary) is horizon-
tal. Then the incoming flux is µ0F0, a quantity we will frequently encounter where
µ0 = cos θ0. We do not necessarily know the out-going flux, a hemispherical inte-
gral. In fact, often we have only one directional sample of the out-going radiance
distribution, say, the nadir radiance (propagating vertically upward) in every pixel of
a satellite image ITOA(Ω = ẑ). However, with a Lambertian hypothesis, we can use
(3.18) to predict the flux and, from there, we can define the apparent albedo of the
medium (generally a surface/atmosphere composite). This is known as the “Bidirec-
tional Reflectance Factor” or

BRF =
πITOA(ẑ)

µ0F0
. (3.19)

Note that the BRF, unlike the original out/in flux-ratio concept, is not bounded be-
tween 0 and 1; notwithstanding, this is often called “TOA reflectance” in satellite
remote sensing. Sections 3.6.2 and 3.9 cover reflection properties of surfaces and
atmosphere-surface systems in more detail, including angular integrals that are flux
ratios and are between 0 and 1.

3.2.3 Scalar/Actinic and Vector Fluxes

So far, we have illustrated the operational principles of radiometric measurement
using radiance I(x,Ω) which will generally depend on both position x and direction
Ω. Other quantities can be defined by integration over direction-space. There are
both theoretical and practical reasons for doing this.
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We start with the actinic (a.k.a. scalar) flux

J(x) =
∫
4π

I(x,Ω)dΩ (3.20)

which can be related to photon (or radiant energy) density. We already encountered
a photon density in (3.2) but here it is understood, as usual, to be irrespective of
direction of travel:

U(x) = J(x)/c, in m−3 (or J/m3) . (3.21)

Next in the hierarchy, we have the vector flux

F(x) =
∫
4π

ΩI(x,Ω)dΩ =

⎛⎝ Fx

Fy

Fz

⎞⎠ (3.22)

where Fx = Fx̂ in (3.16), etc. This vector field tells us about the mean flow of
radiation in space. It can be used to compute the outcome of the generic radiometric
measurement of net flux described in (3.16). Specifically, we have

Fn(x) = n • F(x) . (3.23)

In essence, J(x) and F(x) represent respectively the monopolar/isotropic (0th-
order) and dipolar (1st-order) components of the radiance field I(x,Ω) in a spheri-
cal-harmonic expansion. So there are obviously higher-order terms that add more and
more angular details; they will be used extensively in the following chapter. Only the
2nd-order term has a special name through its connection with the radiation pressure
tensor, cf. Mihalas (1979).

3.3 Sinks

We consider all the important mechanisms for removal of photons from a population
of interest. In an inward zoom, we go from boundaries to bulk, to a point. We then
consider detailed processes unfolding along a beam. At that point, we will have a
closer look at what is going on inside the elementary kinetic volume.

3.3.1 Boundary Losses

Consider some region M (cf. Fig. 3.5). We can compute the energy budget in steady
state from the radiance field at its boundary denoted (as in mathematical topology)
by ∂M. To that effect, we use integrals over the resulting elements of flux:

δE

δt

∣∣∣∣
out(+)/in(−)

=
∫

x∈∂M

dS(x)
∫

±n(x)•Ω>0

|n(x) • Ω| I(x,Ω)dΩ ≥ 0 (3.24)
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Fig. 3.5. Steady-state radiative energy budget of a 3D macroscopic region M with a convex
boundary ∂M

where dS(x) is an element of the boundary of the region. As far as M is concerned
incoming (−) flux is a gain and outgoing (+) flux is a loss.

From (3.24) and various definitions, the net radiative budget for region M is

δE

δt

∣∣∣∣
in

− δE

δt

∣∣∣∣
out

= −
∫

x∈∂M

dS(x)
∫
4π

n(x) • ΩI(x,Ω)dΩ

= −
∫

x∈∂M

F(x) • n(x)dS(x) =
∫
M

(−∇ • F)dx , (3.25)

where the last step used the divergence theorem for the vector field F(x). If there are
neither sources nor sinks inside M, the result of (3.25) will clearly be null. Since M is
an arbitrary volume, this establishes that radiation flows are irrotational (divergence-
free) in conservative optical media. In other words, flux lines start and end at the
boundaries where all the sources and sinks are to be found.

We now assume we are in the case with internal sources only, i.e., δEin/δt = 0
and δEout/δt > 0. For instance, think of the Sun or a planet in the thermal part of
the EM spectrum. Then, for all practical purposes, the boundary ∂M is absorbing the
energy produced in the bulk of M, none is entering from the boundaries, hence the
notion of “absorbing” boundary conditions introduced in Sect. 3.8 below.

3.3.2 Bulk Losses

We return again to Fig. 3.5, this time in the absence of sources in the bulk of M (so
they must all be accounted for with δEin/δt). We can estimate the total absorptance
in the region, namely,

A = 1 − δEout/δt

δEin/δt
=

∫
M

(−∇ • F)dx

δEin/δt
≥ 0 . (3.26)

The inequality is certainly true in the shortwave (solar) spectrum where the source is
at the upper boundary of the medium. So the net effect of the Sun is always a heating
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I

ΩΩΩΩ

I±δI
(δI≥0)

δs

+: source
−: sink{

Fig. 3.6. Accounting for sources and sinks of radiance in a beam interacting with matter over
a short distance

of the atmosphere/surface system, a loss for the incoming solar beam (and a gain for
other sorts of energy in M). How much and where this heating occurs is discussed in
more detail in Chap. 9 but it is fair to say that the effect of clouds is far from well-
understood, and this is at least partially due to 3D RT effects in the observations as
well as in the radiation physics.

By contrast, in the long-wave (thermal infrared) spectrum, the sources are inter-
nal so the sign of (3.26) can go either way depending on the wavelength, the region
of interest, and overall (vertical and horizontal) atmospheric structure. Chapter 10
will provide some insight into this important 3D RT problem. The net effect, which
has to balance solar heating in the climate system, is of course a cooling. This is a
net loss for M which is radiating at its boundary ∂M.

3.3.3 Local Loss

The simplest description of matter-radiation interaction is photon depletion when a
narrow beam crosses an optical medium, cf. Fig. 3.6 with the “−” sign representing
a net loss across a distance δs (we assume δI ≥ 0). Noting that the surface used
in Sect. 3.3.1 is in fact quite general, we have basically expressed here the flux-
divergence theorem in (3.25) for an “elementary” volume inside the medium. Along
the horizontal cylinder the net transport is 0; to the left, there is an in-flux; to the
right, an out-flux. So the divergence integral is simply the difference from left to
right.

Operationally, we have
δI ∝ I × δs (3.27)

and the proportionality constant, defined as

σ = lim
δs→0

δI/I

δs
, in m−1 , (3.28)

is the extinction coefficient or simply “extinction.” This inherent optical property of
matter is non-negative (except in laser cavities, and other situations where stimulated
emission dominates the underlying quantum physics).

Much of 3D RT is predicated on σ’s propensity to vary with position x in the
atmosphere. Vertical variability of σ is a given because of its strongly stratified struc-
ture and of course solar and thermal sources as well as sinks are unevenly distributed
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vertically. So atmospheric RT is generally considered to become 3D when σ varies
in one (or both) horizontal direction(s). In this case, σ is often left uniform in the
vertical, but sources and/or boundaries will still drive vertical gradients in radiance.
There are notable exceptions to this rule since horizontal variability in the radiance
field can be excited in a uniform atmosphere

• by non-uniform boundary illumination as used, e.g., in “off-beam” lidar tech-
niques (Davis et al., 1999), for active cloud remote sensing at optical wavelengths,
or

• by non-uniform surface albedo as used, e.g., in modeling “pixel adjacency” effects
mediated by aerosol particulates, in passive remote sensing in the solar spectrum
(Lyapustin and Knyazikhin, 2002).

Non-flat terrain, even without an overlaying atmosphere, is also 3D RT problem
attracting considerable attention, as demonstrated further on.

Time-dependence of σ is never a concern here because the time for photons to
propagate through the system (tens of µs at most) is short by comparison to the
turn-over time in any atmospheric dynamics. More importantly, σ can depend on
photon state variables: direction Ω, frequency ν, and polarization. In this volume,
we will account fully for the former, touch on the second (mostly in Chaps. 9–10),
and neglect the latter completely.

3.3.4 Loss Along a Beam

The calculus problem in (3.28), namely,

dI/I = d ln I = −σ(x)ds , (3.29)

is easily solved.
First define optical distance as the running integral of σ along the given beam

direction Ω0 from some given starting point x0:

τ(d; x0,Ω0) =

d∫
0

σ(x0 + Ω0s)ds . (3.30)

To address the problem of cumulative extinction, we will consider {x0,Ω0} to be
fixed parameters. When it is not convenient to put them in sub-indices, we will sep-
arate parameters from the independent variables, in this case d, by a semi-colon.
An alternative notation for optical distance emphasizes only the starting and ending
points is

τ(x0, x) = ‖x − x0‖
1∫

0

σ(ξx0 + (1 − ξ)x)dξ . (3.31)

One can easily switch from one representation to the other using x = x0 + Ω0d, or
else τ(x0, x) = τ(d; x0,Ω0) where d = ||x − x0|| and Ω0 = (x − x0)/d.
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The solution of the ordinary differential equation (ODE) in (3.29) is therefore

I(d; x0,Ω0) = I(0; x0,Ω0) exp[−τ(d; x0,Ω0)] . (3.32)

This is the exponential law of direct transmission with respect to optical distance.
Consider a uniform medium where optical distance is simply

τ(d; x0,Ω0) = σd, ∀x0,∀Ω0 ; (3.33)

thus
I(d) = I0 exp[−σd] . (3.34)

This is Beer’s law of exponential transmission with respect to physical distance,
sometimes called the Lambert-Bouguer-Beer law to be more historically correct. It
is obviously of more limited applicability than (3.32).

For future reference, we will define a general notation for direct transmission
between two arbitrary points x0 and x:

Tdir(x0 → x) = exp[−τ(x0, x)] . (3.35)

The arrow is used in the notation for the argument of Tdir to emphasize causality: the
photons were at x0 before going to x. This is not to be interpreted as a dependence on
the direction of propagation which would violate reciprocity in a fundamental way.
Even in vegetation canopies (cf. Chap. 14) where extinction can depend on direction,
we have σ(x,Ω) = σ(x,−Ω). So it is understood that Tdir(x0 → x) = Tdir(x → x0)
since τ(x0, x) = τ(x, x0).

Optical distance across a medium is called optical “thickness” and sometimes
(less correctly) optical “depth” (which should vary with z, normally away for a
source and/or boundary). Opaque objects such as clouds and fog layers have, by
definition, considerable optical thickness. Equivalently, the amount of directly trans-
mitted or “uncollided” light predicted in (3.35) with positions on either side of the
medium will be somewhere between small and negligible. For an empirical investi-
gation of how optically thick this means, from a human observer’s perspective, we
refer to Bohren et al. (1995).

3.3.5 A Look Inside the Elementary Kinetic Volume

Extinction Mechanism

We now study the detailed mechanism of extinction illustrated schematically in
Fig. 3.7. This is about a population of streaming photons colliding with a static
population of massive particles. Here, “static” is with respect to the speed of light
of course, while “massive” is in comparison with photon mass-equivalent energy
hν/c2 where hν is at the most an eV or so in energy units for solar problems. This
is important because, otherwise, efficient momentum transfer between radiation and
matter would make the collision cross-sections dependent on the light field and the
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Fig. 3.7. Mechanism of optical extinction by a dilute medium of scattering/absorbing particles:
(a) Geometrical parameters of the kinetic volume, and (b) What the volume looks like to the
incoming photon beam

whole RT problem becomes patently nonlinear.5 In all atmospheric applications, the
smallest particles are diatomic molecules with already many MeV of mass in energy-
equivalent units. So all we have to do is estimate the number of particles in the sample
volume δA × δr in Fig. 3.7: δN = nδAδr where n is the ambient particle density.
Multiplying this by the (mean) cross-section s and dividing by δA yields the ele-
ment of probability for an interaction which, by definition (3.28), is σδr and should
be � 1. We thus find

σ = s× n . (3.36)

In this sense, extinction is the interaction cross-section per unit of volume, equiva-
lently, the probability of collision per unit of length.

For cloud droplets, density n as well as the mean cross-section s are highly vari-
able in space – 3D RT oblige! – and in time. This variability notwithstanding, it is
good to have some typical numbers in mind. The density of (activated) cloud conden-
sation nuclei or “CCN” is often quoted as hundreds to thousands per cm3 in marine
and continental air-masses respectively, so we can use that as an estimate of droplet
concentration. At visible (VIS) to near-IR (NIR) wavelengths, we have

s ≈ 2π〈r2〉 (3.37)

where r is the droplet radius and 〈·〉 denotes an average carried over the distribution
of droplet radii. The factor of 2 is the asymptotic value of the “efficiency factor”
in Lorenz-Mie theory for scattering dielectric spheres that are much larger than the
wavelength (cf. Sect. 3.4.4 and Chap. 2).

If we are to make an equivalent monodisperse assumption for the droplets, given
the amount of condensed water (4πρw〈r3〉n/3 where ρw is the density of water), it
is best to use the “effective” droplet radius

re =
〈r3〉
〈r2〉 . (3.38)

5 The RT equation can become nonlinear in other ways than by momentum transfer. The
quantized energy levels of absorbing atoms or molecules can depend on the photon popu-
lation in non-LTE situations. This happens frequently in tenuous astrophysical media and
in photochemically active regions of the atmosphere.
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In terrestrial liquid water clouds, re is ≈ 10 µm, give or take a factor of 2 or so.
Using (3.37), this puts the extinction coefficient σ in (3.36) for clouds in a range
from almost nil (aerosol levels) to 0.1 or even 1 m−1.

An independent way of estimating this range is to use the observed optical depths
of cloud layers to obtain a vertically-averaged σ. Optical depth is simply optical
distance τ measured vertically from cloud bottom to cloud top and it ranges from
somewhat less than 10 to several 100 in the bulk of the cloud. This is for physical
thickness d in (3.33). Again excluding cloud edges, we can take d in the range from
a few hundred meters to a couple of km. The lower end for d gives us back our upper
limit for σ and we anticipate less for an average, say τ/d = 25/0.5 = 50 km−1 =
0.05 m−1.

Absorption vs. Scattering

Upon collision with an atmospheric particle, a photon can be either absorbed or
scattered. In both cases, it is a loss for the beam; in the latter case, it becomes a
source for another beam (cf. Sect. 3.4). So the extinction cross-section (per particle)
has to be broken down into its scattering and absorption components, s = ss + sa,
and similarly for the extinction coefficient in (3.36):

σ = σs + σa . (3.39)

The conventional representation of this breakdown uses the single-scattering
albedo:

�0 = σs/σ ≤ 1 , (3.40)

and single-scattering co-albedo,

1 − �0 = σa/σ . (3.41)

It is noteworthy that in nuclear reactor theory, the counterpart of �0 describes the
mean number of neutrons produced after collision with a nucleus and is typically
larger than unity, and that is precisely what makes sustained chain reactions possible.
So in this context σa can be formally taken as negative (anti-absorption).

In atmospheric RT, scattering and absorption can be traced to both gaseous con-
stituents (i.e., molecules) and particulates (i.e., aerosol and cloud droplets). All co-
efficients depend on wavelength λ. The spectral features of gases tend to vary faster
with λ, especially for absorption. This is discussed, as needed, in various parts of this
volume.

3.4 Scattering

Scattering is the process that makes 3D RT such a challenge because photon trans-
port through a scattering medium is a fundamentally nonlocal process, as will be
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shown in Sect. 3.8. We describe here the basic concepts and popular models for pho-
ton scattering. When we get to our brief survey of physical theories of light-particle
interaction, it will become clear that we can not treat absorption and scattering sep-
arately. So, although the new quantity introduced here is the phase function, we will
revisit the partition of extinction σ into σs and σa.

3.4.1 The (Poorly-Named) Scattering Phase Function

Figure 3.8 illustrates the redistribution of radiant energy between different beams
through scattering. Our goal is to estimate the element of scattered flux δFs. It is
surely proportional to the small solid angle into which the scattering occurs δΩ and
to the small loss of flux δF0 incurred when the incoming photons cross the sample
volume (conditional to scattering rather than absorption); the latter term is equal to
the scattering coefficient times the small length δs. In summary, we have

δFs ∝ δF0 × δΩ = F0σsδs × δΩ . (3.42)

Fig. 3.8. Schematic of scattered flux and radiance

We define the scattering phase function as

p(x,Ω0 → Ω) = lim
δF0,δΩ→0

δFs

δF0 × δΩ
, in sr−1 . (3.43)

The explicit notation tells us that this property will generally depend on position x.
Using the above definitions, the integral of p(x,Ω0 → Ω) over all final directions Ω
will be unity (since the sum of all the δFs in Fig. 3.8 has to equal δF0).6 As a first
example, we take everywhere isotropic scattering:

6 It is important to note that there is another popular normalization convention for the phase
function, often denoted P (·) . Even in this volume both conventions and notations are used.
The phase function’s integral is then equated to 4π; in this case, it is a non-dimensional
quantity and dΩ is always divided by 4π wherever P (·) is used.
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p(x,Ω0 → Ω) ≡ 1/4π . (3.44)

More general formulations include changes in polarization and wavenumber medi-
ated by scattering. In the former case, one needs a phase matrix; in the latter case,
one talks about inelastic scattering since photon energy is changed (and consequently
the energy of the scattering entity too, by an equal amount in the opposite direction).

We note in passing that these so-called “phase functions” and “phase matrices”
have very little to do with “phases” in the wave (or coherent) optics sense of the
word since here energies are added and subtracted, not the complex amplitudes used
in EM as well as scalar-wave theory. In this respect, we recall that all of RT theory
is entirely about incoherent optics while (coherent) wave theory contributes at most
scattering and absorption cross-sections, one particle at a time. The origin of the
“phase function” terminology in fact goes back to early lunar and planetary astron-
omy were the “phase angle” is defined, following the deflection of the light rays, as
the angle between the axis going from the Sun to the celestial body of interest and the
line between the said celestial body and the Earth. It is therefore the equivalent of the
scattering angle θs = cos−1(Ω0 • Ω). In the course of the Moon’s monthly “phases,”
it varies from 0 at new Moon (in a solar eclipse configuration if exactly 0) to π at
full Moon (in a lunar eclipse configuration if exactly π). The astronomical phase
function’s purpose is simply to capture the dependence of total planetary brightness
(hence photometry) not explained by celestial mechanics, i.e., relative distances. For
a given body (hence radius), phase angle is the dominant term but albedo, and the
regional variability thereof, also matter.

As for extinction, we can have a closer look at the mechanics of scattering at the
individual collision level. To isolate the inherent property of the scattering medium,
we compute

lim
δs,δΩ→0

δFs/F0

δs × δΩ
= σs(x)p(x,Ω0 → Ω) = n(x) × dss

dΩ
(x,Ω0 → Ω) (3.45)

where the last expression is obtained by straightforward generalization of (3.36) to
differential cross-sections, again averaged over the population of particles in the sam-
ple volume sorted by size and/or type.

By energy (flux) conservation, we have∫
4π

p(x,Ω0 → Ω)dΩ ≡ 1, ∀Ω , (3.46)

and for any x where scattering occurs. By reciprocity (cf. Sect. 3.10.3), we have
p(x,−Ω → −Ω0) = p(x,Ω0 → Ω), hence∫

4π

p(x,Ω0 → Ω)dΩ0 ≡ 1, ∀Ω0 , (3.47)

and for any x. In the remainder of this section, we will assume the spatial variability
the phase function is implicit, and drop x from its arguments.
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3.4.2 Phase Functions with Axial Symmetry

In most atmospheric applications, ice clouds being a notable exception, it is reason-
able to assume that scattering is axi-symmetric around the incoming beam. Mathe-
matically,

p(Ω0 → Ω) ≡ p(Ω0 • Ω) = p(µs) , (3.48)

where the scattering angle θs is given by µs = cos θs = Ω0 • Ω.
This enables an expansion of the phase function in spherical harmonics without

the complication of azimuthal terms:

p(µs) =
(

1
4π

)∑
l≥0

ωlPl(µs) , (3.49)

where the coefficient is often factored as ωl = (2l + 1)ηl. These coefficients can be
computed from

ηl =
ωl

2l + 1
= 2π

+1∫
−1

Pl(µs)p(µs)dµs . (3.50)

The orthogonality relation of the Legendre polynomials is used here, that is,

+1∫
−1

Pn(x)Pn′(x)dx =
δnn′

n + 1/2
(3.51)

where δnn′ is the Kronecker symbol (= 1 if n = n′, = 0 otherwise). Specific
values of the polynomials can be obtained efficiently by recursion, but their analytical
expressions are best derived from the generating function

Φ(x, z) =
∑
n≥0

Pn(x)zn = (1 − 2xz + z2)−1/2 (3.52)

for any z inside the unit circle of the complex plane. Using

Pn(x) =
1
n!

(
∂

∂z

)n

Φ(x, z)
∣∣∣∣
z=0

, (3.53)

we find

P0(x) = 1,
P1(x) = x , (3.54)

P2(x) = (3x2 − 1)/2 ,

and so on.
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We have η0 = ω0 = 1 by conservation for any phase function,7 and the only
non-vanishing coefficient for isotropic scattering in (3.44) and (3.49). Also of con-
siderable interest is

g = η1 =
ω1

3
= 2π

+1∫
−1

µsp(µs)dµs , (3.55)

the asymmetry factor, or mean cosine of the scattering angle that is obviously be-
tween −1 and +1. This correctly presents the phase function as a probability density
function (PDF) in angle space. Any deviation of the phase function from isotropy
corresponds to a directional correlation between incident and scattered photons.

3.4.3 Henyey–Greenstein Models

The most popular 1-parameter model for single-scattering in atmospheric radiation
and elsewhere is by far the Henyey–Greenstein or “HG” phase function

pHG(g; µs) =
(

1
4π

)
1 − g2

(1 + g2 − 2gµs)3/2
(3.56)

which, like the expression “phase function” itself, comes to us from astronomy. It
was indeed proposed first by Henyey and Greenstein (1941) to model scattering by
interstellar dust, i.e., the stellar astronomer’s counterpart of aerosol as a nuisance
in surface remote sensing in the solar spectrum. Interstellar dust grains also have
in common with aerosol huge spatial variability in quantity and in quality. As for
the aerosol, they cause trouble for one kind of observation but have inherent interest
in other studies: aerosol matters in climate, cloud physics and pollution; interstellar
dust matters in life-cycles of stars and planets.

In spherical harmonics, (3.56) yields

ηl = gl . (3.57)

Indeed, 4πpHG(z;x) is identical to
∑

n≥0(2n + 1)Pn(x)zn = 2∂Φ(x, z)/∂z +
Φ(x, z) from (3.52); the above coefficients then follow by comparison with (3.49).

A related 3-parameter model is the double Henyey–Greenstein or “DHG” phase
function

pDHG(gf , gb, f ; µs) = f × pHG(gf ; µs) + (1 − f) × pHG(−gb; µs) . (3.58)

We have g = fgf −(1−f)gb, and so on (for higher-order spherical harmonics). Two
other constraints beyond this expression for g can be invoked to uniquely determine
all three parameters.

7 If we think of �0p(θs) as a non-normalized phase function, then its integral over 4π is
the single-scattering albedo �0 ≤ 1 and its first of possibly many Legendre coefficients is
ω0 ≤ 1 . . . hence the frequent use of ω0 to denote the single-scattering albedo.
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3.4.4 Physical Theories for Scattering and Absorption

The above HG phase functions are convenient models but they have no physical ba-
sis. More accurate computations of scattering properties from first (EM or other)
principles yield Rayleigh and, for spherical particles, Lorenz-Mie phase functions.
However, not all optically important particles in the atmosphere are tiny nor spher-
ical, far from it. Scattering and absorption of course come together in a physically
correct theory at the single particle level; basically they come as direct consequences
of the existence of interfaces with a discontinuity in the complex index of refraction
m, which generally has real (�= 1) and imaginary (≥ 0) parts.

Rayleigh Scattering by Molecules

Rayleigh scattering can be computed using the classic theory of equilibrium thermo-
dynamical fluctuations in molecular density around the mean n, or semi-classical or
pure quantum mechanics. This invariably leads to the cross-section (per molecule)

sRay(λ) =
24π3

n2λ4

(
m2 − 1
m2 + 2

)2(6 + 3δ
6 − 7δ

)
(3.59)

where λ is the wavelength, m is the index of refraction of dry air at STP, and δ is
its depolarization ratio, a weakly λ-dependent term accounting for the anisotropy of
certain (tri-atomic) air molecules. At solar wavelengths, δ can be set to ≈ 0.031. We
also have m − 1 ≈ 2.781 × 10−4 + 5.67 × 10−3/λ2, where λ is expressed in µm.

To a first approximation, scattering by clear air is isotropic. However, an accurate
calculation of Rayleigh differential cross-section leads to

pRay(µs) =
3

16π
(1 + µ2

s ) . (3.60)

Equivalently, we have η0 = 1 and η2 = 1/10 with all other Legendre coefficients in
(3.49) vanishing.8

Lorenz-Mie Scattering by Cloud Droplets

Being too small (by definition) for their shapes to be affected by gravity and/or
hydrodynamic flow around them, cloud water droplets are almost perfectly spheri-
cal. This means that Lorenz-Mie theory can accurately describe their absorption and
scattering properties as long as they do not contain insoluble (or undissolved) parti-
cles. The conventional representation of Lorenz-Mie extinction (total) and scattering
cross-sections in the monodisperse case are

se,s(λ, r) = Qe,s(mλ, 2πr/λ) × πr2 (3.61)

8 We refer to Lilienfeld (2004) for a thoughtful account of the historical origins of the
Rayleigh differential cross-section sRay(λ) × pRay(µs) and the explanation of the blue-
sky phenomenon and its polarization.
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where r is the droplet radius, and 2πr/λ is known as the “size parameter.” The non-
dimensional functions Qe,s are efficiency factors that also depend on wavelength
through changes in the index of the real and imaginary parts of the refraction index
mλ. Absorption cross-section is obtained from sa = se − ss. A representation sim-
ilar to (3.61) exists for the differential cross-section for scattering dss/dΩ used to
compute the phase function in (3.45).

For large 2πr/λ and no absorption, Qe ≈ Qs approaches 2 (see Chap. 2). Recall-
ing that droplet radii range from a few µm to a few tens of µm, this is not a bad ap-
proximation at non-absorbing wavelengths in the VIS/NIR spectrum. Cross-sections
of scattering/absorbing spheres are complemented by empirical representations of
polydisperse droplet populations dN(r)/dr, given typically in cm−3µm−1, to yield
usable extinction, scattering and absorption coefficients:

σs,a(λ) = πn

rmax∫
rmin

r2Qs,a(mλ, 2πr/λ)d Pr(r) , (3.62)

where (total) droplet density n is the integral of dN(r)/dr over all possible r values
and d Pr(r) = (dN(r)/dr) × dr/n. In the approximation where Qe = Qs ≈ 2, we
have

σ = σs ≈ 2π
〈
r2
〉
n , (3.63)

as was already used in (3.36)–(3.37). Similar averaging over dss/dΩ yields the
Lorenz-Mie scattering phase function pMie(µs) which the underlying EM theory nat-
urally produces in terms of spherical harmonics.

Figure 3.9 shows, on the one hand, the natural outcome of Lorenz-Mie theory
(values of the Legendre coefficients) in panel (a) and, on the other hand, the recon-
struction of the phase function in angle space in panel (b). The droplet population is
the “C1” standard (Deirmendjian, 1969) and the wavelength is 1.064 µm. We note
the relatively slow decay in Legendre coefficients. We also note the strong forward
peak caused by diffraction; its width (in radians) is inversely proportional to the size
parameter. In contrast with this inherently scalar or EM wave phenomenon, we also
see a peak at the “rainbow” deflection angle that, for the most part, is explained by
geometrical optics with one total internal reflection inside the droplet.

We have also plotted in Fig. 3.9 two approximations using the simple- and
double-HG models from (3.56) and (3.58) respectively. In the former case, we just
set g = 0.848. In the later case, we can match the 2nd- and 3rd-order Legendre
coefficients too; this leads to gf = 0.879, gb = 0.9835, and f = 0.983, with the
result in Fig. 3.9b that the backscatter peak at θs = π is captured on a relative scale.
Alternatively, we can fit the height and position of the maximum in ωl; this leads
to gf = 0.977, gb = −0.625, and f = 0.633, with the result in Fig. 3.9b that the
diffraction peak at θs = 0 is better reproduced by adding two forward HG phase
functions. There are of course other possibilities.
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Fig. 3.9. Rayleigh (molecular) phase function and Lorenz-Mie (cloud droplet) phase function
with Henyey-Greenstein approximations. (a) Legendre coefficients in the ωl = (2l + 1)ηl

representation that multiply the Pl(µs) ∈ [−1, +1]. (b) Angular values. Notice the variation
over 3+ orders-of-magnitude for the C1 phase function. As the scattering angle increases, we
see: (1) the strong forward-scattering peak caused by diffraction at θs � 1/10 rad ≈ 6 deg
and readily observed in the “silver lining” phenomenon; (2) the maximum causing the rainbow
phenomenon at θs ≈ 140◦; and (3) the backscattering peak responsible for the “glory” effect
at θs close to 180◦, the anti-solar direction

Scattering and Absorption by Non-Spherical Particles

Not all clouds are made of liquid droplets. Cirrus and mixed-phase clouds contain
ice-particles with a myriad shapes (cf. Chap. 2). Some crystals inherit very regular
geometry from the 6-fold symmetry induced by the hydrogen bond in ice; others
are extremely random, and everything in between has been observed. It suffices to
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state here that scattering properties, especially phase functions, of distributions of
large non-spherical particles are qualitatively different from Lorenz-Mie theoreti-
cal predictions using “equivalent sphere” assumptions. In the range of (very large)
size-parameters relevant to solar and even to large extent thermal atmospheric RT,
geometric optics has been used quite successfully to predict scattering properties of
non-spherical particles (Liou, 2002). The volume by Mishchenko et al. (2000) is a
recent and comprehensive source of information on single-scattering theory for non-
spherical particles, ice crystals or other.

In the lower troposphere, aerosol particles play an important role in its optics
and radiation budget, and so do particulates injected by large volcanic eruptions into
the swift circulations in the stratosphere. Because of its role in the microphysics
and life-cycle of clouds, the climate community has developed a strong interest in
the anthropogenic component of the aerosol. In some regions/seasons, it is by far
the dominant one with dramatic consequences on air quality as well as global and
local climate (Ramanathan et al., 2002). Among man-made aerosol, black carbon
is highly absorbing, hence very important for the solar radiation budget and how it
is partitioned between the atmosphere and the surface. Black-carbon particles have
notoriously convoluted shapes, best modeled as randomly aggregated fractal objects
over a wide range of scales that includes the wavelength (at least in the early phases
of the particle’s life). Because these particles would allegedly dominate the nuclear
winter scenarios investigated in the 1980s, their scattering and absorption properties
were computed quite a while ago by Berry and Percival (1986).

3.5 Propagation

We presented scattering as a random choice of new direction of propagation for the
photon. After emission and between collisions (resulting in either a scattering or a
final absorption) or escape, there is also an inherent randomness in photon prop-
agation. We define here a few statistical quantities needed to characterize photon
transport per se.

3.5.1 Photon Free Path Distributions

We will be using several kinds of averages in this chapter. We have already used 〈·〉 to
denote an average over the “disorder” of the cloud droplets which can have a variety
of sizes. Those averages that concern photon scattering and propagation events de-
serve a special notation, which we borrow from the probability literature: E(·) which
stands for (mathematical) expectation of the random variable in the argument. Thus,
we can recast the asymmetry factor in (3.55) as

g = E(Ω0 • Ω) =
∫
4π

(Ω0 • Ω)d Pr(Ω|Ω0) (3.64)

where d Pr(Ω|Ω0) = p(Ω0 • Ω)dΩ is an element of probability. We use the “|” in a
PDF to separate the random variable from the given (fixed) quantities.
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From (3.32), but dropping the “0” subscripts for simplicity, we can derive direct
transmission

Tdir(s; x,Ω) = exp[−τ(s; x,Ω)] = Pr{step ≥ s|x,Ω} (3.65)

by taking the ratio Iout/Iin = I(·; s)/I(·; 0). We have also expressed that this is
the probability that a photon does not suffer any kind of collision in an experiment
over the fixed distance s, starting at x in direction Ω. Now think of the photon’s free
path or “step” to its next collision as a random variable. Since Tdir(s; x,Ω) is the
probability that this random variable exceeds s, the PDF of s is defined by

p(s|x,Ω)ds = dP (s|x,Ω) = Pr{s ≤ step < s + ds|x,Ω} . (3.66)

Using (3.65) and (3.30), this leads to

p(s|x,Ω) = −
(

d
ds

)
P (s|x,Ω) = σ(x + Ωs) exp[−τ(s; x,Ω)] . (3.67)

The above notations p(·) and P (·) are not to be confused with the variously normal-
ized phase functions introduced in Sect. 3.4.1 above for volume scattering and in
Sect. 3.6.2 below for surface scattering (i.e., bidirectional reflection). We note how-
ever that both free path distributions and phase functions are PDFs that play closely
interlaced roles in the photon transport process: here we move (propagate) photons
to a new position while phase functions move them into a new direction (of propa-
gation). So the shared notations can serve as a reminder of this shared probabilistic
meaning. We are confident that context will resolve any ambiguity.

Consider the case of uniform extinction σ, the only quantity required in the prob-
lem at hand. The resulting free path distribution is given by

p(s|σ) = σe−σs , (3.68)

as follows directly from (3.67), or using Beer’s exponential transmission law in
(3.34).

3.5.2 Mean-Free-Path

A fundamental quantity in transport theory (for light quanta or any other type of
particle) is the mean-free-path or “MFP”

�(x,Ω) = E(s|x,Ω) =

∞∫
0

sdP (s|x,Ω) (3.69)

which, as indicated, will generally depend on the pair {x,Ω} in the 3D case. Recon-
sidering the uniform-σ case in (3.68), we find

� = E(s) = 1/σ . (3.70)
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So there is such a thing as the mean-free-path in homogeneous media, but not in 3D
media. One can talk about 1/σ(x) as a local MFP in 3D media. However, at a given
x it will only occasionally coincide with �(x,Ω) in (3.69) for certain choices of Ω.
We prefer to call this a 3D field of pseudo-MFP values. By averaging (3.69) over
{x,Ω}, on can define the mean mean-free-path, which is necessarily larger than the
inverse of the mean extinction (e.g., Davis and Marshak, 2004).

Equation (3.70) provides us with a more descriptive interpretation of optical dis-
tance, at least for homogeneous media, as given in (3.33):

τ = σd = d/� , (3.71)

is just physical distance d in units of MFPs. If d is the thickness of (i.e., distance
across) the medium, we are looking at the ratio of the two fundamental scales in
the RT problem. The solution of the problem will clearly reflect a different flavor of
transport physics depending on whether τ is smaller or τ is larger than unity:

• if τ � 1, photons will tend to “stream” (move ballistically along straight lines);
• if τ � 1, photons will tend to “diffuse” (move along convoluted paths akin to

random walks).

In typical 3D RT problems, there are regions where optical thickness is large and oth-
ers where it is small, at least on a relative scale. Davis and Marshak (2001) show that
this sets up horizontal fluxes in predictable patterns they recognize as “channeling”
events, using language introduced by Cannon (1970).

3.5.3 Other Moments of the Free Path Distribution

Higher-order moments of the free path distribution are also of interest:

E(sq|x,Ω) =

∞∫
0

sqdP (s|x,Ω) . (3.72)

Free path moments of arbitrary order q > −1 can be computed from the exponential
distribution in (3.68) for homogeneous media, and we find

E(sq) = Γ(q + 1)/σq = Γ(q + 1)�q (3.73)

where Γ(·) is Euler’s Gamma function:

Γ(x) =

∞∫
0

tx−1e−tdt . (3.74)

Recall that, for integer values, Γ(n + 1) = n!, n ≥ 0. So, in particular, the
root-mean-square (RMS) free path is√

E(s2) =
√

2/σ =
√

2 E(s) . (3.75)
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It is larger than the MFP in (3.70), as required by Schwartz’s inequality. Free path
variance D(s) = E(s2)−[E(s)]2 is equal to E(s)2, a characteristic of the exponential
distribution. Davis and Marshak (2004) show that, since E(sq) > [E(s)]q in general
3D media for any q > 1, free path distributions are always wider than the exponential
ones based on the MFP.

3.6 Sources

In this section, we introduce explicitly the dependence of all radiative quantities and
most optical properties on wavelength λ or wavenumber ν = 1/λ (adopting spectro-
scopic usage) that has been implicit so far. Even if nothing else does, source terms
will drive this dependence in atmospheric applications. A wide variety of sources
are found in the bulk of optical media as well as on their boundaries. We call these
primary sources. Furthermore, volume scattering and surface reflection are at once
sinks and sources, depending on which beam one is talking about. We will call these
secondary sources.

3.6.1 Volume Sources

General Definition

We return to Fig. 3.6 used already to define the extinction of I with no strict need
for an incoming beam this time (i.e., I = 0 is a possibility); we focus however on
the “+” sign in the exiting radiance. This describes a situation where photons are
generated inside the sample volume, thus adding

δIν ∝ δs (3.76)

to the existing population, if any. As usual, the proportionality constant has a name
and an important role in RT theory. Define

Qν(x,Ω) = lim
δs→0

δIν

δs
, in m−3s−1sr−1(cm−1)−1 (or W/m3/sr/cm−1) (3.77)

as the (volume) source term.9 Two contrasting and important examples follow.

Solar Photon Injection

Rather than “incoming” at the upper boundary, we can use what we have learned
about propagation and scattering in previous sections to model the “injection” of
sunlight into the bulk of the medium after a first scattering or surface reflection; see

9 The reader will know from context how to distinguish the source term introduced here and
the Lorenz-Mie efficiency factor Qe,s,a introduced in Sect. 3.4.1.
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Fig. 3.10. Volume injection of solar flux in a plane-parallel medium

Fig. 3.10. Note that in this case, the radiance field is split between the direct and
diffuse components, and this source term feeds only the latter. We have

Q�ν(Ω0; x,Ω) = F0ν exp[−τν(x0(x,Ω0), x)] σν(x)�0ν(x) pν(x,Ω0 → Ω)
(3.78)

where F0ν is the spectral value of the solar constant and x0(x,Ω0) is the point where
the solar beam of interest starts at the TOA or cloud top. For a plane-parallel cloud
{z ∈ R

3 : 0 < z < h} and solar rays coming in, as is often assumed, along the
x-axis (negative-to-positive direction) we have x0 = (x − (h − z)/µ0, y, h)T where
µ0 ∈ (0, 1] is the cosine of the sun angle. As similar expression as (3.78) can be
written for a direct transmission through the atmosphere and a reflection at the lower
boundary.

The relatively long expression in (3.78) is really just a sequence of probabilities.
Given a solar {Ω0, ν}-photon impinging on the top of the cloudy layer, we have the
following events in causal order:

• transmission from impact point x0 to x;
• interception at point of interest x;
• scattering (rather than absorption);
• scattering from solar beam direction Ω0 into the beam of interest Ω.

Thermal Emission

In local thermal equilibrium (LTE), the rate of emission equals the rate of absorption
(Kirchhoff’s law). From there, we can write the source term for thermal emission:

QTν(x,Ω) = σaν(x)Bν[T (x)], ∀Ω , (3.79)

where T (x) is the local absolute temperature and Bν(T ) is Planck’s function.
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We used these two examples of source term partially because of their contrasting
mathematical expressions but also because of their paramount importance in both
remote sensing and climate applications. The Earth’s climate system is essentially
an engine that converts radiative “fuel” Q�ν(Ω0; x,Ω) into atmospheric, oceanic
and all kinds of other motions, leaving the radiative “exhaust” QTν(x) to dissolve
in the cold universe. Solar photons intercepted by the Earth are high-energy and
collimated, hence low-entropy, while their thermal counterparts emitted by the Earth
are low-energy, hence more numerous, and isotropic. So they are carrying away the
excess of entropy required to maintain the climate.

Multiple Scattering

Scattering, like absorption, depletes a beam in terms of direct transmission. However,
unlike absorption, the same scattering replenishes other beams. So it is productive to
see scattering as a source of radiance. From (3.42)–(3.43), but in terms of scattered
radiance, we have

δIνs ≈ δFνs/δΩ ≈ F0νσsν(x)pν(x,Ω0 → Ω)δs . (3.80)

Replacing F0ν by Iν(x,Ω0)dΩ0 and integrating over all incidence directions (de-
noted more traditionally as Ω′ rather than Ω0), we obtain

Sν(x,Ω) = lim
δs→0

δIνs

δs
= σsν(x)

∫
4π

pν(x,Ω′ → Ω)Iν(x,Ω′)dΩ′ . (3.81)

This is known as the source function in multiple scattering theory. It is not to be
confused with the (spectral) source term in (3.77), Qν, especially since they have the
same physical units.

3.6.2 Boundary Sources

General Definition

What if photons are emitted in direction Ω from a boundary point xS with normal
n(xS)? We need a modified mathematical description of the photon creation at the
surface of a medium, or at its interface with another medium. By reconsidering (3.76)
and (3.77), we now have an addition to the existing photon population, if any, given
by

δEν = hν × δNν ∝ |n(xS) • Ω|δAδtδΩ (3.82)

where we have reverted to the elementary quantities used in Sect. 3.2 since there is
no δs here to define a volume.

The proportionality constant again has a name and, furthermore, it has the same
physical units as radiance. Define
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fν(xS,Ω) = lim
δA,δt,δΩ→0

δNν (or δEν)
|n(xS) • Ω|δAδtδΩ

, in m−2s−1sr−1 (or W/m2sr−1)

(3.83)
as the surface source term. This field plays a critical role further on in the formulation
of boundary conditions for the general 3D RT problem.

Example of Thermal Emission

By its definition, the spectral radiance coming from the surface of a black body
at temperature T is (1) isotropic and (2) given by the Planck function Bν(T ). So
f(xS,Ω) ≡ Bν[T (xS)] in (3.83). Most natural surfaces are however not purely black:
they are at least partially reflective in amounts that generally depend on wavenumber.
In other words, they have specific spectral emissivities εν(xS), generally position-
dependent, defined by

fν(xS,Ω) = εν(xS)Bν[T (xS)], ∀Ω . (3.84)

By comparison of (3.84) above with (3.79) for bulk thermal emission, we see that
(non-dimensional) emissivity is for surfaces what the absorption coefficient (in units
of inverse length) is for volumes. This captures the fact that surface sources have
the same units as radiance while volume sources are radiance “gained” per unit of
length.

Surface emission is of course a powerful resource in thermal sensing of sur-
face properties from aircraft or satellite. This exercise is however predicated on the
detector- and/or algorithm-based ability for “ε − T ” separation, and the correction
for atmospheric effects. Part of the “ε − T ” separation problem is that the “∀Ω” in
(3.84) is in fact an idealization and for even quite fine observation scales εν is actu-
ally function of Ω as well as of xS. This non-thermodynamical dependence captures
unresolved surface heterogeneity and roughness effects that can for a large part be
modeled with 3D radiative transfer, as shown further on.

Bidirectional Reflectance Distribution Function, and Related Quantities

We now need to formulate mathematically what happens at the surface of a medium
in the frequently encountered situation where it has a reflecting property. This is not
a source of photons per se but, like the scattering process, it behaves as a sink for out-
going beams (Ω • n(xS) ≥ 0) and a source for in-coming ones (Ω • n(xS) < 0). The
classic paper on textured surface radiometry is by Minnaert (1941) while the standard
reference for definitions and nomenclature for reflecting surfaces is by Nicodemus
et al. (1977).

The local bidirectional reflectance distribution function (or “BRDF”) is defined
as the ratio of reflected radiance per unit of incoming irradiance at a surface point
xS ∈ ∂M. Consider a small area δA around xS and an element of solid angle δΩ
around the direction Ω into which the photons are reflected. An amount δEref of
radiant energy is detected, and we define the BRDF as:
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ρν(xS,Ω0 → Ω) = lim
δA,δt,δΩ→0

δEref

µ0F0νδAδtδΩ
=

Iν(xS,Ω)
µ0F0ν

, in sr−1 (3.85)

where F0ν is the incoming collimated flux and µ0 = |n(xS) • Ω0| the associated
cosine of the zenith angle. Assuming there are no sub-surface radiative fluxes, the
BRDF obeys Helmholtz’s reciprocity relation: ρν(xS,Ω0 → Ω) = ρν(xS,−Ω →
−Ω0), cf. Sect. 3.10.3.

In plane-parallel geometry n(xS) = ẑ and the BRF (bidirectional reflectance
factor) in (3.19) is just a non-dimensionalized BRDF for a specific reflection event,
πρν(xS,Ω0 → ẑ). The BRF can of course be defined for any reflection angle, not
just towards the zenith:

BRF =
πIν(xS,Ω)

µ0F0ν
= πρν(xS,Ω0 → Ω) . (3.86)

This quantity is becoming a standard product for a new generation of global imaging
spectro-radiometers, such as the Polarization and Directionality of the Earth’s Re-
flectance Instrument (POLDER), the Along-Track Scanning Radiometer-2 (ATSR-
2), and the Multiangle Imaging Radiometer Spectro-Radiometer (MISR). These in-
struments have acquired and continue to acquire this angular signature of reflected
radiation from individual scenes, with spatial resolutions ranging from kilometers to
hundreds of meters (Diner et al., 1999).

Spectral planar albedo αν, as the ratio of outgoing- to incoming-fluxes, is a non-
dimensional quantity:

αν(xS,Ω0) =
∫

n(xS)•Ω>0

(n(xS) • Ω) ρν(xS,Ω0 → Ω) dΩ , (3.87)

where n(xS) • Ω = µ if the surface is horizontal (n(xS) ≡ ẑ). For locally Lambertian
surfaces, the BRF and BRDF are independent of both angles: ρν(xS,Ω0 → Ω) ≡
αν(xS)/π. This makes the quantity πρν(· · · ) easy to interpret in the applications
as the (non-dimensional) albedo a Lambertian reflector would have to possess in
order to yield the same radiance under the same illumination conditions. For actual
Lambertian surfaces, αν is of course independent of Ω as well.

Spectral spherical albedo aν is obtained by averaging the planar albedo over the
hemisphere of possible irradiance angles weighted by |µ0|, as required by incoming
photon flux conservation:

aν(xS) =
1
π

∫
n(xS)•Ω0<0

|n(xS) • Ω0|αν(xS,Ω0)dΩ0 , (3.88)

where n(xS) • Ω0 = µ0 if the surface is horizontal. This is the ratio of reflected
to incoming fluxes for an isotropic sky; equivalently, this is the overall albedo of a
planet uniformly covered with the given planar albedo. Lambertian surfaces yield
aν = αν which, in this case, is independent of the in-coming direction.
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Kirchhoff’s law of detailed balance (conservation) of radiation during surface-
environment exchanges under LTE tells us that εν(xS) defined in (3.84) is given by

εν(xS) = 1 − aν(xS) (3.89)

for all ν in the thermal spectrum, and we will show in the next section that strict
thermal equilibrium precludes directional effects. “Black” bodies indeed get their
name from the requirement that aν ≡ 0 (absolutely no reflection) to obtain εν = 1
for all ν. But, even for non-black materials, this applies only in the case of ideal
micro-uniform surfaces. Natural surfaces have texture (roughness and heterogeneity)
and its effect on emissivity is captured at scales of interest in remote sensing, even at
the finest resolution, by assuming a local/directional surface emissivity model with
εν(xS,Ω) for n(xS) • Ω > 0. We can equate this with 1 − αν(xS,−Ω) in (3.87)
by invoking reciprocity (exchanging the places of Ω0 and Ω while changing their
signs). The surface will reflect – and therefore not emit – a fraction αν(xS,−Ω) of the
incoming flux into direction −Ω when subjected to an isotropic diffuse illumination,
which is precisely what a thermally-balanced environment would look like to the
surface.

Reflection is sometimes called “surface scattering” and we can indeed draw a
fruitful analogy here with the scattering phase function presented in Sect. 3.4.1, and
then used in Sect. 3.6.1, for an elementary volume. We can similarly define a phase
function for surface reflection or scattering using

Iν(xS,Ω) = αν(xS,Ω)
∫

n(xS)•Ω′<0

pSν(xS,Ω′ → Ω)I(xS,Ω′)dΩ′ , (3.90)

for any Ω such that n(xS) • Ω > 0. Notice how αν(xS,Ω) plays the role of the
scattering probability σsν(x) in (3.81) or, better still, the non-dimensional single-
scattering albedo �0ν since σsν = �0νσeν. Like scattering phase functions and
BRDFs, pSν(xS,Ω′ → Ω) is expressed in sr−1. Comparing this definition with
(3.85)–(3.87), we see that

pSν(xS,Ω′ → Ω) = |n(xS) • Ω′|ρν(xS,Ω′ → Ω)/αν(xS,Ω) . (3.91)

To conserve fluxes, the integral of pSν(xS,Ω′ → Ω) over the lower hemisphere (′ed
angles) is required to be unity.

For illustration purposes, consider two extreme types of reflecting surface that
we will assume uniform and horizontal for simplicity:

• Lambertian (diffuse, isotropic) reflection illustrated on the right-hand side of
Fig. 3.11b; this leads to

pSν(Ω′ → Ω) = |µ′|/π . (3.92)

• Specular (metallic, mirror) reflection as on l.-h. side of Fig. 3.11b; this yields

pSν(Ω′ → Ω) = δ(µ′ + µ)δ(ϕ′ − ϕ) . (3.93)
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Fig. 3.11. Boundary sources for an infinite slab. (a) Irradiance by a (solar) collimated beam
from above. (b) Reflective surface below, either specular (l.-h. side) or Lambertian (r.-h. side).
Subscript “i” designates the incident beams, and “r” is for their reflected counterparts. Note
that to generate random vectors uniformly distributed (isotropic) in the upper hemisphere, one
exploits (3.92): the probability density of ϕ is uniform over [0, 2π) while for µ the uniform
measure over [0, 1] is 2µdµ = dµ2

Steady Irradiance in Plane-Parallel Geometry: Collimated or Diffuse,
Uniform or Localized

We introduce here the short-hand
→
x= (x, y)T for Cartesian coordinates, hence

x =
(→

x

z

)
. (3.94)
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The boundaries of the plane-parallel (or “slab”) medium are set at z = 0 and z = h
and they can act as radiation sources.

We need to describe how the Sun excites incoming radiance at a cloud top, a
collimated but spatially uniform irradiance, cf. Fig. 3.11a. Mathematically, we have{

Iν(
→
x, h,Ω) = F0νδ(Ω − Ω0), µ < 0

Iν(
→
x, 0,Ω) = 0, µ > 0

}
,∀ →

x . (3.95)

This assumes that Iν(x,Ω) is the total radiance field (i.e., not separated into diffuse
and direct components). Note that the boundaries are still radiation sinks for out-
going beams, as described in Sect. 3.3.

Another useful example is steady isotropic illumination from a localized source
below at

→
x0: {

Iν(
→
x, h,Ω) ≡ 0, µ < 0

Iν(
→
x, 0,Ω) = F0νδ(

→
x − →

x0)µ/π, µ > 0
(3.96)

where, again, the boundaries are sinks for out-going radiation. We will see such
sources in the theory of RT Green functions covered Sect. 3.10.1.

The interested reader can also write descriptions for other combinations of
boundary source properties: uniform and diffuse, localized and collimated, possibly
moved to the opposite side.

Reflection in Plane-Parallel Geometry: Lambertian, Specular, or Otherwise

What happens at the lower boundary of a plane-parallel medium? Using the surface
phase function in (3.90)–(3.91), we define{

Iν(
→
x, h,Ω) ≡ 0, µ < 0

Iν(
→
x, 0,Ω) = αν(

→
x,Ω)

∫
µ′<0

pSν(
→
x,Ω′ → Ω)I(

→
x, 0,Ω′)dΩ′, µ > 0

.

(3.97)
Real surfaces are of course not pure cases of Lambertian or specular behavior used
until now as examples. Combinations are possible and other types of BRDF can
be introduced. A popular 3-parameter representation of the BRDF for many natural
surfaces is given by Rahman et al. (1993).

Finally, the linearity of RT with respect to sources can be invoked to break down
complex problems with boundary and/or volume sources and one or more reflecting
surfaces into a non-trivial combination of problems with purely absorbing bound-
aries and others with properly chosen boundary sources. More details are provided
in Sect. 3.10.1 and in Chap. 14.

3.7 Local Balance

Looking back, we have studied how photons are created (Q), transported (σ and
p(Ω′ → Ω)), destroyed (σa) or lost (∂M), and finally detected (I ,J , and F • n). We
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collect here the positive and negative contributions to the photon population in an
elementary volume and thus obtain at last the RT equation or “RTE”, in its basic
integro-differential form. We then derive the continuity equation for radiant energy
and pause for a few thoughts on radiative transfer in the greater scheme of things.

3.7.1 Integro-Differential Radiative Transfer Equation

Returning once more to Fig. 3.6, we see that position along the beam {x,Ω} can be
represented in general as x + Ωs and positions infinitesimally close to x by x + Ωδs
where δs → 0. Therefore,

lim
δs→0

δI

δs
= Ω •∇I (3.98)

in notations independent of any particular coordinate-system. This operator is
known as a directional (or advective) derivative and quantifies change in I(x,Ω)
near x in direction Ω. In Cartesian coordinates, we have

∇ =
(

∂

∂x
,

∂

∂y
,

∂

∂z

)T

=

⎛⎝ ∂x

∂y

∂z

⎞⎠ , (3.99)

hence

Ω •∇ = Ωx
∂

∂x
+ Ωy

∂

∂y
+ Ωz

∂

∂z
. (3.100)

The steady-state radiative transfer equation (RTE) is

Ω •∇I = −σ(x)I(x,Ω) + S(x,Ω) + Q(x,Ω) (3.101)

where we have collected the r.-h. terms from Sections 3.3.3, 3.6.1 and 3.6.1 respec-
tively, and given them the appropriate sign (+ for a gain, − for a loss). Dependence
on frequency ν is again made implicit since it is omnipresent. Note that we retrieve
I = constant along the beam if σ ≡ 0 which, in turn, implies S ≡ 0 as well as
Q ≡ 0, at least for the common sources in the atmosphere described in the previous
section.

Grouping all terms dependent on radiance I , we can write the RTE formally as

LI = Q (3.102)

where

L = Ω •∇ + σ(x) − σs(x)
∫
4π

p(x,Ω′ → Ω)[·]dΩ′ (3.103)

is the integro-differential linear transport operator. The mathematical structure of the
RTE is that of an infinite system of coupled 1st-order partial differential equations
(PDEs) parameterized by Ω ∈ Ξ. The next chapter is entirely devoted to methods
of numerical solution of the RTE complemented with boundary conditions to be
described in the next section.
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When the phase function is azimuthally symmetric, it is often helpful to combine
the two last terms of L into a single integral operator

L = Ω •∇ + σ(x)
∫
4π

{δ(Ω′ − Ω) − �0(x)p(x,Ω′ • Ω)}[·]dΩ′ (3.104)

Both the “delta-M rescaling” used in spherical harmonics (Wiscombe, 1977) and
the “maximum cross-section” method used in Monte Carlo (Marchuk et al., 1980)
exploit this operator identity. These tricks are both invoked in the next chapter to
improve numerical accuracy and/or computational efficiency. The angular kernel in
the above equation has Legendre coefficients 1 − �0(x)ηl(x), l ≥ 0, since those of
a Dirac δ centered on θs = 0 are all unity in (3.50). A simple way to see this is to set
g = 1 for the HG phase function in (3.57).

Consider the case where volume sources vanish (Q ≡ 0), and volume sinks also
vanish (σ = σs, scattering is conservative). It is interesting to notice that it is the
non-isotropic part of the radiance field that drives the spatial gradients. Indeed, if the
radiance field I is independent of Ω, then the two last terms in (3.103) cancel, as does
the r.-h. side of (3.102). So the directional gradients vanish identically. Conversely,
if the directional gradients vanish, then I is a fixed point of the angular transform
I(Ω) �→

∫
4π p(Ω′ → Ω)I(Ω′)dΩ′ for any Ω; equivalently, it is in the null space of

the angular integral transformation in (3.104). If p(Ω′ → Ω) is not δ(Ω′ − Ω), this
implies that I is isotropic (independent of Ω).

As another example of this two-way connection between spatial gradients and
non-isotropic radiance fields (hence net fluxes), consider exact thermodynamical
equilibrium (TE), i.e., uniform temperature T . In this case, Iν ≡ Bν(T ) where we
have restored the dependence on ν explicitly. Moreover, Qν = σaνBν(T ) and the
isotropic radiance yields S = σsνJν/4π = σsνBν. So, as expected, gradients van-
ish, and the RTE reduces to the identity 0 = σν(Iν − Bν) for any single-scattering
albedo �0 = σsν/σν and phase function under the important condition that σν �= 0
(i.e., non-transparent matter is present). In local thermal equilibrium (LTE), we only
require that Qν(x) = σaνBν[T (x)]; so the gradients in T will generate an anisotropy
in I(x,Ω), and the fluctuations of I(x,Ω) will not follow those of Bν[T (x)] exactly.

In summary, radiation transport per se results from a intricate balance of spatial
and angular variability in I(x,Ω) as controlled by the RTE.

3.7.2 Radiant Energy Conservation and Local Heating/Cooling Rates

By integrating (3.101) over all possible directions, we obtain an expression for the
conservation of (as well as conversion to/from) radiant energy, irrespective of the
direction it is traveling in. Explicitly, using definitions from Sect. 3.2.3, we have

∇ • F = −σa(x)J(x) + q(x) (3.105)

where
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q(x) =
∫
4π

Q(x,Ω)dΩ

=

{
4πσa(x)Bν[T (x)], for thermal emission

σs(x) exp[−τ(x0(x,Ω0), x)]F0, for solar-beam injection
.

(3.106)

Also, if {J, F} are only modeling the diffuse field, i.e., solar flux injection is modeled
with Q(x,Ω), then another term is needed to capture the energy absorbed from the
directly transmitted beam. By direct evaluation, we have

Jdir(x) =
∫
4π

Idir(x,Ω)dΩ = F0e−τ(x0(x,Ω0),x) .

Thus
∇ • Fdir = −σa(x) exp[−τ(x0(x,Ω0), x)]F0 . (3.107)

There is a practical meaning for total radiative flux divergence in the computation
of absorptance A in (3.26) for the source-free case and in the local energy conser-
vation law in (3.105): conversion to and from thermal energy. In other words, we
get:

• cooling if ∇ • F > 0 as, e.g., in the LTE problem when J(x) < 4πBν(T (x)) in
(3.105)–(3.106); and

• heating if ∇ • F < 0 as, e.g., for Fdir in (3.107).

The algebraically-valued heating rate is given by

dT

dt
=

1
ρCp

(−∇ • F), in K/s (or ×3600 K/hr, or ×86400 K/day) (3.108)

where ρ is the ambient mass density and Cp is the specific heat at constant pressure.
The heating/cooling rate in (3.108) is usually computed after full spectral integra-

tion, and only makes real physical sense as a time change in kinetic temperature if all
non-radiative contributions to the local energy budget are included. Notwithstanding,
it is conventional in climate science at least to further divide dT/dt into “shortwave”
(solar) and “longwave” (thermal, terrestrial) components. In principle, one can pre-
serve all the spectral information by leaving the “specific” /cm−1 units in Fν and in
Bν (or the /µm units in Fλ and Bλ); these units will carry over to (−∇ • F) and to
dT/dt. In practice, the simpler r.-h. side(s) of (3.105) (and of (3.107), as required) is
(are) of course used to compute the flux divergence field(s) in (3.108).

The local rate of deposition of radiant energy, −∇ • F = σa(x)J(x) in the ab-
sence of bulk sources, is used in (3.108) for a concern in climate or cloud-system dy-
namics. There are other important applications, especially in photochemistry where
some judicious spectral sampling and integration is implied: ozone production,
chlorophyll activity, etc. In vegetation remote sensing, it is commonly known as
“FPAR,” fraction of photosynthetically active radiation.
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3.7.3 A Few Thoughts on Climate, Remote Sensing, and Beyond

At this point, we are about midway through the chapter and we have finally juxta-
posed the two most fundamental elements of climate physics: solar heating and IR
cooling in the Earth’s thin but vital atmosphere. This is essentially all climate mod-
elers want from RT, −∇ • Fν in (3.108) integrated across the solar-through-thermal
spectrum. This radiative quantity – along with a few other energy exchange terms
that the first law of thermodynamics tells us to look at – will tell the model(er)s what
happens next in the evolution of climate system or some portion thereof, maybe a
single cloud or a plant stand. This energy budget is assessed at the smallest spatial
and temporal scales the models can or modelers want to resolve. In turn, the climate
system dynamics will modify the scenario given to the embedded RT solver: the
changing temperature T appears in the thermal source term, the solar source µ0F0

is modulated by the diurnal cycle (shutting off completely at night), and the various
density fields that determine the absorption and scattering properties in the RTE will
also evolve. We are therefore in an endless feed-back loop. There are many tools used
in the difficult task of creating new knowledge about the climate system in which we
live. Modeling is one way, a way that computer technology has enhanced consider-
ably over the past decades. Remote observations (radiance fields sampled in space,
time, direction, and across the EM spectrum) are another way, a way that has been
considerably enhanced – at least in sheer volume – by satellite technology.

For all practical purposes, the “fuel” running the complex climate machine is
short-wave radiation, flowing towards the Earth in neatly collimated (high-energy/
low-entropy) photon beam. At the same time, the “exhaust” from the climate ma-
chine is the (low-energy/high-entropy) radial flow of long-wave photons. So radia-
tion is essential to the balance of the climate system. It is therefore incumbent on
RT experts to deliver their very best estimation of the Earth system’s 3D radiation
budget at all the spatial and temporal scales that matter for all operational modeling
frameworks – and, going from GCMs to Large Eddy Simulations (LESs), this range
of scales is huge. In remote sensing also the geophysical retrievals are only as good
as the RT used to process the measured radiances. Here again, the radiances are cap-
tured over a wide range of scales by present and future sensor systems. So, to deliver
accurate Earth system diagnostics from remote observations, RT experts are required
to work with both resolved and unresolved variability. From both the energetic and
the diagnostic perspectives, this is a tall order!

Maybe this is a good time to take a short pause from the science of RT and
engage in some more lofty thoughts? It is interesting to note that when we finally
touch the essence of a physical science like RT, we find principles that been ar-
ticulated very clearly in a very different era and in an altogether different culture.
Looking at (3.105) as would Capra (1991), we see the interactions of Brahma-the-
Creator (q), of Vishnu-the-Preserver (∇ • F), and of Shiva-the-Destroyer (−σaJ).10

This metaphor based on the core trinity from the Hindu pantheon applies even better

10 Alternatively, one can picture RT as a glorified version of book-keeping where, instead
of bean-counting, we photon-count: income (q), cash-flow and -transfers (∇ • F), and ex-
penses (−σaJ and boundaries).
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to our deeper formulation of RT using the linear transport equation, augmented for
the circumstances with potentially inelastic collisions: Lν Iν = Qν, where Iν is the
full spectrum of an ever-moving pool of radiant energy, Qν (Brahma, Creation) is its
source, and its fate is controlled by Lν = Ω •∇[·] (Vishnu, Preservation) + σν[·]
(Shiva, Destruction) −σsν

∫ ∫
p(ν′,Ω′ → ν,Ω)[·]dν′dΩ′ (again Shiva, who is also

worshiped as the God of Transformation).11 As noted earlier, Lord Shiva’s Dance
(that is, the intertwined processes of extinction/propagation, scattering/reflection and
absorption/escape) is what makes radiative transfer so interesting, and such a chal-
lenge in the real 3D world.

It is fascinating to see that we have a continuity equation in (3.105) that can
be evaluated using only Jν(x), the simplest radiation transport quantity. In the end,
that is all that counts for the dynamics of the material universe. Now Jν(x) derives
from the full 3D radiative transfer equation for Iν(x,Ω) in (3.102)–(3.103). Radi-
ance Iν(x,Ω) is a more subtle quantity than Jν(x) not only mathematically: it is
what feeds our insatiable need to explore the universe via remote observation. This
exploration by remote sensing calls for all sorts of instruments that basically extend
our senses. The data these instruments produce are ultimately distilled into new in-
formation (i.e., geophysical properties), often with the help of sophisticated inverse
RT theory. By any standard, this is a more elevated plane than the material one. As
a general rule, we are not content with gathering information and distilling it into
knowledge; we eventually take some action. That is just human nature and, in fact,
this end is invariably what justifies the often costly means of the scientific and tech-
nological enterprise in observation and computation. Now this action can play out
in domestic affairs or in foreign policy, with any combination of economical, leg-
islative, regulatory, diplomatic or military ramifications. This action can be good or
bad for our environment at large, including our fellow human beings. Is it wise or
unwise?

This, dear reader, is the threshold at which we must stop. We can only cross the
threshold of judging an action, taken or planned, as informed citizens of a nation
or of the world, and not as scientists. This seems obvious in the abstract, but is not
that easy since we all have issues we deeply care about. Science and politics should
not be mixed. Nothing less than the credibility of the scientific community in the
eyes of the public is at stake. We can only encourage our fellow citizen-scientists
to look at the state of the world and the actions of those in power with the same
mixture of open-mindedness and critique that spawns good science. Closer to home,
we must resist external (overt or covert) or internal (even unconscious) pressures
to arrive at predetermined conclusions that are politically correct.12 At least that is
our credo. As RT experts, it is our modest hope that judgment error can minimized
by better physics-based interpretations of Iν(x,Ω) samples captured by radiometers

11 Use −σνδ(ν′ − ν)δ(Ω′ − Ω) + σsν
∫ ∫

p(ν′,Ω′ → ν,Ω)[·]dν′dΩ′ to unify Shiva’s de-
structive (extinction) and transformational (scattering) actions into a single operation.

12 Climate and environmental science are unfortunately prone to this process. The Earth sys-
tem is so complex and the data so sparse – in spite of heroic observation efforts – that
opposing views can be substantiated under present levels of uncertainty in modeling and in
analysis.
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and imagers, and by better estimations of J(x) in complex multi-physics models of
the climate system or key parts of it. Both endeavors indeed support potentially far-
reaching decisions. Both endeavors will occupy us for the remainder of this volume.

3.8 Global Balance

We cover the general boundary conditions (BCs) that are needed, beyond the RTE,
to specify completely the radiance field I(x,Ω). Our commitment to 3D RT requires
us to consider non-plane-parallel media, that may or may not be internally homoge-
neous, in some detail. A natural and interesting counterpoint to BCs are “escaping”
boundary fields because, on the one hand, they are all that can be observed remotely
(a task for radiances) and, on the other hand, they control the radiation budget of the
medium (a task for fluxes). Finally, we derive the formal solution of the RTE and the
two widely-used integral formulations of the RTE (with BCs necessarily included).

3.8.1 Boundary Conditions

A complication arises in prescribing BCs if the medium M, defined as the domain
where extinction σ(x) is strictly positive, is not convex. That is because of re-entering
rays, and we want to be able to specify exactly radiation is going into the medium
a priori but generally do not know what is coming out of it. This issue is basically
geometrical and is best dealt with simply by allowing for vanishing extinction σ(x)
and extending the definition of M to its “convex hull.” That is what becomes of M if
it is covered by an imaginary sheet of rubber. For instance, take a doughnut-shaped
optical medium. When wrapped (but not shrink-wrapped) in imaginary cellophane,
the resulting convex medium will have region of zero extinction where the hole used
to be.

We can therefore always assume that M is an open convex subset of R
3 and we

denote the closed set of all its boundary points as in mathematical analysis by “∂M.”
We can now express the most general BC for the RTE as

I(x,Ω) = f(x,Ω), x ∈ ∂M, Ω • n(x) < 0 . (3.109)

Along with the RTE, including its own source term, this determines the radiance field
uniquely. In some applications, we must also consider (internal) reflection properties
at the boundaries. This gives rise to constraints that couple various out-going and
in-coming beams at the inside surface of ∂M, as described in Sect. 3.6.2. As already
pointed out, surface reflection processes act formally like a special kind of scattering.

In Fig. 3.12, to which we will return for further discussion momentarily, we
have illustrated the case of a smooth ∂M where n(x) exists everywhere. We ad-
dress boundary points where n(x) does not exist further on. We only require that the
“measure” of that set be zero, which basically means that they intercept vanishingly
few incoming or outgoing beams. What can we say about fractal cloud boundaries
where n(x) exists almost nowhere? This is a very relevant question for real clouds
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Fig. 3.12. Illumination of a horizontally finite medium with a collimated beam that may be
oblique with respect to a surface (terminator and horizon lines defined further on)

(Lovejoy, 1982). Such shapes are necessarily non-convex, so it is a perfect example
of where the convex hull is used; it will be made of triangular facets, so we are back
to a situation where n(x) exists almost everywhere.

Plane-Parallel Media: The Many Ways They can be Hosts
to 3D Radiative Transfer

Section 3.6.2 on steady boundary sources describes typical BCs for slab geome-
try. They can be combined to have sources at both top and bottom, or none at all
(so-called “absorbing” BCs). It suffices that the boundary or volume sources be spa-
tially variable to necessitate the 3D RTE; internal variability of optical properties is
therefore not always a requirement. Sometimes it is necessary to consider surface
reflection, as described in Sect. 3.6.2. Here again the properties of the bulk of the
medium and the sources can be uniform and just variability of the surface reflectiv-
ity is enough to excite the horizontal gradients in the 3D RTE. These scenarios are
germane to cloud lidar studies and aerosol adjacency effects respectively.

So, the RTE in (3.101) and one of these BC scenarios entirely determine I(x,Ω)
in the plane-parallel medium

M = {x ∈ R
3 : 0 < z < h} (3.110)
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described by given optical properties σ(x), �0(x), p(x,Ω′ • Ω), and volume sources
Q(x,Ω). These quantities appear in the various terms on the r.-h. side of the RTE.
Now, in practice, the variability of the optical properties is often specified only over a
finite domain [0, Lx)× [0, Ly)× (0, h). The vertical limits z = 0 and z = h receive
the usual treatment, while “periodic” BCs are applied horizontally. Therefore, to
determine radiance in the basic cell,

M = {x ∈ R
3 : 0 ≤ x < Lx, 0 ≤ y < Ly, 0 < z < h} , (3.111)

we require{
I(x, 0, z,Ω) = I(x,Ly, z,Ω), 0 ≤ x < Lx

I(0, y, z,Ω) = I(Lx, y, z,Ω), 0 ≤ y < Ly

}
, 0 < z < h, ∀Ω , (3.112)

inside the medium.
We often need to consider, at least formally, semi-infinite media, i.e., the limit

h → ∞ in (3.110). This is of course an idealization, albeit a useful one. In this case,
we only need to specify BCs on the boundary at z = 0, which may be viewed as a
top (e.g., of an ocean) or a bottom (e.g., of an extended atmosphere).

We can even think of the atmosphere-surface system as a stratified semi-infinite
medium with its upper boundary being the TOA. This TOA can be set for conve-
nience at a fixed altitude (z = 0 or h or whatever), with or without incoming ra-
diation, and all the rest is about internal sources and scattering/reflection processes.
From then on, surface emission is assimilated to an internal source confined to a man-
ifold z = zS(x, y) and directed toward the upward side of the said manifold while
surface reflection is assimilated to a special kind of oriented scattering that occurs on
the same manifold. Below the surface, extinction is formally viewed as infinite; so
there is no need to go there, radiatively speaking. See Fig. 3.13. All we have excluded
here is topologically complicated terrain that can not be modeled with an analytical
or digital elevation model of the form zS(x, y). We thus exclude over-hangs, caves
and tunnels since these would call for multi-valued functions zS(x, y).

Fig. 3.13. A 3D radiative transfer problem in variable-altitude terrain with or without an at-
mosphere over overlying it, with or without horizontal variability (such as clouds) in it. This
scenario is considered general enough for most present needs, including small-scale modeling
of a rough surface’s angular properties

The beauty of this formulation is that we are no longer limited to flat or even
convex terrain. We have already accommodated in Sect. 3.6.2 the possibility of non-
uniform reflectivity and emissivity properties for the special case zS(

→
x) ≡ 0 (under
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the assumption that TOA is at z = h > 0). For this more general situation, we
only assume that the inward normal vector n(

→
x) exists (almost everywhere) and that

it is “open to the sky” (i.e., n(
→
x) • ẑ > 0 which follows directly from the single-

valuedness of zS(
→
x)). In summary, we have to solve the 3D RTE at all points in

M = {x = (
→
x, zS(

→
x))T ∈ R

3 : zS(
→
x) < z < h} (3.113)

where h ≥ max→
x
{zS(

→
x)}, subject to the constraints⎧⎪⎨⎪⎩

f(x,Ω) = ε(x,Ω)B[T (x)] in (3.109))

I(x,Ω) = α(x,Ω)
∫

n(
→
x )•Ω′<0

pS(x,Ω′ → Ω)I(x,Ω′)dΩ′

⎫⎪⎬⎪⎭ , ∀x = (
→
x, zS(

→
x))T,

∀Ω such that Ω • n(
→
x) > 0 ,

(3.114)

where the dependence on ν is made implicit. There is also a standard BC at z = h.
Even though we require inward normal vectors to exist almost everywhere, there can
be very many facets in the terrain model that quickly change their orientation n(

→
x) as

well as their optical properties, ε, α, pS in (3.114). So we now we have the possibility
of modeling rough terrain that is fractal-like over a large range of scales.

This is a necessary complication in many important applications, some of them
in planetary science where there is in fact no atmosphere at all. One application of
3D radiative transfer driven only by rough terrain effects is to compute, starting with
a deterministic or stochastic description of a uniformly emissive but rough surface,
the macroscopic angular dependence of the “effective” emissivity in (3.114). The
resulting model for ε(Ω) could be used as a parameterization of unresolved small-
scale variability in a subsequent flat-surface plane-parallel computation. The same
remark applies to the macroscopic models for reflective properties of surfaces with
complex internal structure (cf. Chap. 14 on vegetation canopies).

An example is given in Fig. 3.14 where we show the angular dependence of the
apparent emissivity enhancement caused by surface roughness. Although radiosity
methods (e.g., Siegel and Howell, 1981) are also popular for 3D RT problems where
only surfaces interact, we used a straightforward Monte Carlo scheme (cf. Chap. 4)
to compute these results. To illustrate this well-known systematic effect of small-
scale terrain variability, we used a surface made of an unresolved array of closely-
packed circular “craters” with a (power-law) size distribution such that they fill 2D
space completely.13 This way, the response of the unresolved ensemble of craters is
the same as that of a single one as long as they all have the same radius-to-depth
(or “aspect”) ratio. The surface was maintained at a constant temperature T and its
uniform emissivity ε takes the three indicated values while we changed the aspect
ratio of the craters. As illustrated, we had hemispherical craters (aspect ratio is unity),

13 The rims of all these space-filling craters form an “Apollonian” fractal investigated by
Mandelbrot (1982) and others. Its fractal dimension is ≈1.3058.
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(b)(a)

Fig. 3.14. Angular dependence of effective emissivity for a uniform but variable-height sur-
face, an array of closely-packed ellipsoidal craters. (a) A schematic of the unresolved variabil-
ity. (b) Computations performed using a straightforward Monte Carlo ray-tracing technique
with the 3 indicated values of ε and the 3 indicated values of the aspect ratio (i.e., radius-over-
depth at the center). The effect is systematic and present at all viewing angles. Plotted here
are estimates of ptrap(θ) from (3.116). The good collapse of the curves for a relatively wide
range of α = 1 − ε shows that the semi-analytical model is quite accurate

shallow craters (aspect ratio is 4), and deep wells (aspect ratio is 1/4). Emissivity ε =
0.75, 0.875, and 0.9375; hence albedo α = 1 − ε = 0.25, 0.125, and 0.0675. We
computed εeff(θ) as a function of θ and the optical (ε) and structural (aspect ratio)
parameters of the problem.

As a first approximation, we can reduce this problem to the estimation of mean
probability ptrap(θ) for a photon propagating at zenith angle θ to remain trapped in
the cavity. Escape probability 1 − ptrap(θ) could thus be defined as 1/2π times the
solid-angle of open sky viewed from a point on the surface and averaged over that
part of the crater that is seen from viewing angle θ. We can also derive ptrap(θ) from
our Monte Carlo results for εeff(θ) using a nonlinear model. Indeed, if In(θ) is the
radiance contributed to the observation after one surface emission followed by n ≥ 0
internal reflections, then

In+1(θ) ≈ In(θ) × α × ptrap(θ)

and total radiance is

I(θ) =
∑
n≥0

In(θ) ≈ I0(θ)
1 − αptrap(θ)

(3.115)

where I0(θ) = εBν(T ). Hence

εeff(θ) =
I(θ)

Bν(T )
=

ε
1 − (1 − ε)ptrap(θ)

> ε . (3.116)
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To assess the accuracy of this simple estimation of emissivity enhancement we can
solve the above equation for ptrap(θ). In our model for rough terrain, it should not
depend much on ε for a given θ and crater aspect ratio. This is done in Fig. 3.14b and
we see that the data collapse is better than a few %.

This heuristic physical argument based on successive orders of reflection/scatter-
ing and leakage can be made mathematically rigorous using the eigen-analysis of the
global transport operator; see Chap. 14 for the details and an application to RT in
plant canopies.

Generalization to Horizontally Finite Media

Another interesting class of 3D RT problems involve horizontally finite media that
may or may not be internally variable. For instance, the popular case of rectangular
parallelepipeds or “cuboids” would have M defined by (3.111) but without the lat-
eral recycling of radiance described in (3.112). Geometrical – actually, topological –
considerations are in order to specify BCs as well as partition the boundary fields
further on. All of what is said here is general enough to contain the plane-parallel
media treated above in the limit of infinite aspect ratio min{Lx, Ly}/h, where M
becomes the slab in (3.110).

If only volume sources are considered, then f(x,Ω) = 0 (absorbing BCs) while
for a solar beam (not “injected” through the volume source term) with flux F0 and
incidence direction Ω0, we have

f(x,Ω) = F0δ(Ω − Ω0)1∂Msunny(Ω0)(x) (3.117)

where 1∂Msunny(Ω0)(x) is the indicator function14 for the subset of ∂M where the
solar rays enter M. We will call it the illuminated or “sunny” side of M.

Even if the solar beam source is modeled by “injection” in to the bulk of M, it is
useful to define ∂Msunny(Ω0). Specifically, we have

∂Msunny(Ω0) = {x ∈ ∂M : n(x) • Ω0 ≤ 0} . (3.118)

Notice the inclusion of n(x) • Ω0 = 0 here, which makes ∂Msunny a closed set,
at least if n(x) exits everywhere (as, for instance, in Fig. 3.12). If n(x) does not
exist everywhere (as on the conspicuous edges that appear in Fig. 3.15), then we
use the “closure” of the set, i.e., the set itself plus the limit points of all possible
infinite sequences belonging to the set. We have used an underscore to designate the
closure operation. Closure adds no new points in the everywhere smooth boundary
case in Fig. 3.12). However, in cases like in Fig. 3.15, all points on edges from
which there is a unobstructed view of the sun, even if at grazing angles, are added to
{x ∈ ∂M : n(x) • Ω0 ≤ 0}.

By extension, we have

∂Mshady(Ω0) = {x ∈ ∂M : n(x) • Ω0 > 0} = ∂M\∂Msunny(Ω0) (3.119)

14 The indicator function 1S(x) of a set S is = 1 if x ∈ S, and = 0 otherwise.
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Fig. 3.15. Reflection versus transmission in isolated cloud models (terminator curves defined
in (3.139): (a) cuboidal and (b) cylindrical shapes

which is an open set that is the non-illuminated or “shady” side of the boundary
of M in Fig. 3.12. The direction of the asymmetry with respect to the points where
n(x) • Ω0 = 0 is not arbitrary, and is justified physically further on. Convexity of M
guarantees that ∂Msunny and ∂Mshady are both singly connected.

3.8.2 Exact and Formal Solutions of the 3D RTE

Suppose S(x,Ω) ≡ 0 in (3.101), equivalently σs(x) ≡ 0 in (3.81), i.e., no scattering.
The RTE is then a doubly infinite system of independent ODEs, one class for each Ω
in Ξ and then one for each two-dimensional (2D) vector

→
x∈ S(Ω), the associated 2D
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projection of M along Ω (as used previously, e.g., in Fig. 3.12 to compute projected
areas of finite clouds). Each of these ODEs can be written as

dI

ds
= −σ(x)I + Q(x,Ω) (3.120)

where Q is the known volume source term and x is at a variable distance s away from
an arbitrary point in M along on the fixed direction −Ω. This ODE is immediately
integrable, yielding

I(x,Ω) = f(x∂M(x,Ω),Ω) exp[−τ(s∂M(x,Ω); x,−Ω)]

+

s∂M(x,Ω)∫
0

Q(x − Ωs,Ω) exp[−τ(s; x,−Ω)]ds (3.121)

where

• x∂M(x,Ω) is the (unique) piercing point of the beam {x,−Ω} with the (convex)
boundary ∂M, and

• s∂M(x,Ω) = ‖x − x∂M(x,Ω)‖ is the distance from x to ∂M along −Ω.

The first term is thus a given BC in (3.109) followed by direct transmission to x (cf.
Sect. 3.3.3) and, in the second term, τ(s; x,−Ω) is the optical distance through the
3D medium from x to a backwards running point x − Ωs again from (3.30).

The steady-state 3D RT problem in the absence of volume scattering and reflec-
tive surfaces is thus reduced to the numerical implementation of (3.121). Our expres-
sion of this limited but exact solution is a bit heavy notation-wise, but its physical
interpretation is simple. For instance, in remote sensing applications we are primar-
ily interested in radiance escaping the medium, i.e., when x is a near-side boundary
point visible from the detector and Ω is the direction of said detector. In that config-
uration, the interpretation of (3.121) is that the radiometrically available information
is dominated by the sources at one mean-free-path, plus or minus another MFP or
so, into the medium.15 We recall from (3.79) that, in LTE thermal RT, the source
goes as the local absorption (and, here, also extinction) coefficient. Consequently,
going backwards along the beam, as suggested in (3.121), the contribution to the
measured value of I(x,Ω) is relatively small as long as we are in the optically thin
region {s ∈ R

+ : τ(s; x,−Ω) � 1} where exp(−τ) ≈ 1. Sources embedded in
the optically thick region {s ∈ R

+ : τ(s; x,−Ω) � 1} also contribute little to
the medium due to the exponentially decaying weight in the integral. Exceptionally
bright and/or non-LTE sources can of course compensate the effects of tenuousness
(poor emissivity) and opacity (poor transmissivity) at any distance into the medium.

In the presence of volume scattering and reflective surfaces, we can formally
equate the source term Q in (3.120) to the source function S which in fact depends
on the unknown I(x,Ω). Then (3.121) is called the “formal” solution of the RTE.

15 To make this rule-of-thumb universal, consider that the surface at the far-side of the medium
with respect a space-based detector in Fig. 3.13 is the upper boundary of a region with
infinite extinction. Its contribution here is determined by (3.84) and the numerical value of
the total optical path through the overlying atmosphere.
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3.8.3 Integral Radiative Transfer Equations

By substituting the expression in (3.81) for S into the formal solution (3.121) where
we also make the substitution Q �→ S + Q, we find

I(x,Ω) = IfQ(x,Ω)

+

s∂M(x,Ω)∫
0

σs(x − Ωs) exp[−τ(s; x,−Ω)]

×
∫
4π

p(x − Ωs,Ω′ → Ω)I(x − Ωs,Ω′)dΩ′ds (3.122)

where IfQ(x,Ω) is the boundary- and/or volume- “forcing” term given by (3.121)
as it stands. This defines the integral form of the RTE where we recognize the cu-
mulative contributions of “up-stream” elements: the positional argument is −Ωs and
scattering is into the beam of interest.

We have thus obtained a self-contained integral equation for the general radiative
transfer problem which can however be written more simply at the cost of making
the 3-dimensional integral in (3.122) look as if it was 5-dimensional. Specifically,
one makes use of

dx′ = s2dsdΩ′ (3.123)

to convert the resulting double (line and angle) integral(s) over dsdΩ′ into a volume
integral over M. Then, noting that s = ‖x′ − x‖ and using the identity∫

M

[·]dx′ =
∫
4π

∫
M

[·] δ
(
Ω′ − x′ − x

‖x′ − x‖

)
dx′dΩ′ , (3.124)

we obtain

I(x,Ω) =
∫
4π

∫
M

KI(x′,Ω′ → x,Ω)I(x′,Ω′)dx′dΩ′ + IfQ(x,Ω) (3.125)

where the 5-dimensional transport kernel is

KI(x′,Ω′ → x,Ω) = σs(x′) p(x′,Ω′ → Ω) δ
(
Ω′ − x′ − x

‖x′ − x‖

)
exp[−τ(x′, x)]
‖x′ − x‖2 .

(3.126)
For numerical implementation, (3.122) is the only route.

Of course, if S is actually known, then (3.121), again with the substitution Q �→
S+Q, can be used to infer I . Hence the idea of formulating another integral equation,
this time for the source function S(x,Ω), by performing the reverse substitution of
(3.121) into (3.81). Through similar manipulations as above, this leads to the so-
called “ancillary” equation which reads as
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S(x,Ω) = SfQ(x,Ω) + σs(x)
∫
4π

p(x,Ω′ → Ω)

×
s∂M(x,Ω)∫

0

exp[−τ(s; x,−Ω)]S(x − Ωs,Ω′)dsdΩ′
(3.127)

where

SfQ(x,Ω) = σs(x)
∫
4π

p(x,Ω′ → Ω)IfQ(x,Ω′)dΩ′ . (3.128)

is the known forcing term. Again we see in (3.127) the up-stream integration but
with fewer terms in the spatial integral. This turns out to be significant advantage in
numerical implementations and the relatively minor price to pay is that, after S(x,Ω)
is obtained, there is one last application of the formal solution (3.121) to derive
I(x,Ω).

Here again, a more compact rewriting of (3.127) is possible:

S(x,Ω) =
∫
4π

∫
M

KS(x′,Ω′ → x,Ω)S(x′,Ω′)dx′dΩ′ + SfQ(x,Ω) (3.129)

where the transport kernel is now

KS(x′,Ω′ → x,Ω) = σs(x) p(x,Ω′ → Ω) δ
(
Ω′ − x′ − x

‖x′ − x‖

)
exp[−τ(x′, x)]
‖x′ − x‖2 .

(3.130)

The only difference between the kernels KS and KI is the dependence of the scat-
tering properties on the ending point rather than the starting point of the displace-
ment modeled by the kernels, cf. τ(x′, x). Both the Spherical-Harmonics Discrete-
Ordinate Method (SHDOM) and the backward Monte Carlo method described in
Chap. 4 capitalize on this remark.

Finally, we note that the full 5-dimensional formalism used in the above integral
equations is primarily useful in theoretical considerations (existence and analytical
properties of solutions, etc.). Only 3-dimensional formulations are used in numerical
implementations. Indeed, the identity in (3.124) can be used to get rid of the angular
integral it was used to create. Pre-scattering direction Ω′ then becomes a simple
function of x′ − x, namely, its direction in Ξ, and Ω ∈ Ξ becomes essentially a
control parameter for the fields and the kernels while the 3D integration over x′ is
done (and probably iterated).

3.9 Outgoing Radiation

The photon population that leaves an optical medium through its outer boundary is
of particular interest. This is in part because it offers a means of assessing the radiant
energy budget of the medium; recall the arguments given in Sect. 3.3.1 where we
were considering an arbitrary region, not necessarily the whole medium, in Fig. 3.12.
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Maybe even more importantly, this is because escaping radiation can be detected
remotely and it tells us volumes about the structure and properties of the medium
at some significant stand-off distance. All of observational astrophysics and remote
sensing is indeed predicated on this simple fact.

3.9.1 Plane-Parallel Media with Horizontally Variable Structure
and/or Sources

Varying radiances and fluxes at the boundaries are of special interest in 3D RT. For
the plane-parallel medium in (3.110), we are looking at the up- and down-welling
radiances {

πI(
→
x, h,Ω(µ, ϕ))/µ0F0, µ ≥ 0

πI(
→
x, 0,Ω(µ, ϕ))/µ0F0, µ ≤ 0

}
, ∀ →

x , (3.131)

given here in the natural non-dimensional representation introduced in (3.19). In
this standard normalization, radiance is represented as the non-dimensional BRF in
(3.19) and, more generally, (3.86) in Sect. 3.6.2. This interpretation works similarly
for transmittance if one thinks of a bi-Lambertian surface, i.e., that reflects and trans-
mits isotropically. For fluxes, we are interested in⎧⎨⎩R(

→
x) = F

(+)
z (

→
x, h)/µ0F0, reflectance field

T (
→
x) = F

(+)
z (

→
x, 0)/µ0F0, transmittance field

⎫⎬⎭ ,∀ →
x , (3.132)

recalling from (3.15) that the normal vectors are always oriented outward from M,
hence the “(+)” subscripts assigned to both hemispherical fluxes. They are relative to
the local normal and not the absolute upward z-axis.

Analogous definitions apply to the periodically replicated media in (3.111). In
that case at least, it is easy to define the domain-average quantities:⎧⎪⎪⎪⎨⎪⎪⎪⎩

R = R(
→
x) =

∫
[0,Lx)×[0,Ly)

R(
→
x)d

→
x /LxLy, (mean) reflectance

T = T (
→
x) =

∫
[0,Lx)×[0,Ly)

T (
→
x)d

→
x /LxLy, (mean) transmittance

, (3.133)

where we use the overscore to designate a spatial average of a field. The above de-
finitions naturally extend to the case of an infinite domain by taking the limit of
arbitrarily large Lx and Ly .

3.9.2 Generalization to Horizontally Finite Media

“R/T ” Partition by Illumination and Position at Escape

The simplest plane-parallel definition to emulate here is in (3.132). We thus define
the normalized flux fields
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R(x) = F

(+)
n(x)(x)/(|n(x) • Ω0|F0), x ∈ ∂Msunny(Ω0), reflectance

T (x) = F
(+)
n(x)(x)/(|n(x0(x,Ω0)) • Ω0|F0), x ∈ ∂Mshady(Ω0), transmittance

(3.134)

where x0(x,Ω0) is defined, in analogy with Sect. 3.6.1 for the plane-parallel medi-
um, as the unique point on the sunny side of the cloud where the beam {x,−Ω0}
pierces ∂Msunny(Ω0), cf. Fig. 3.12.

The overall responses to boundary (or otherwise modeled mono-directional) il-
lumination are⎧⎪⎪⎨⎪⎪⎩

R =
∫

∂Msunny(Ω0)

F
(+)
n(x)(x)dS(x) / [F0SM(Ω0)], for reflectance

T =
∫

∂Mshady(Ω0)

F
(+)
n(x)(x)dS(x) / [F0SM(Ω0)], for transmittance

(3.135)

where

SM(Ω0) = Ω0 •

∫
∂Mshady(Ω0)

n(x)dS(x) = −Ω0 •

∫
∂Msunny(Ω0)

n(x)dS(x) (3.136)

is the area of the normal geometrical shadow of the medium M under collimated
illumination from Ω0, as illustrated in Fig. 3.12. Notice that, in contrast with the
{R,T} pair in (3.133), the one in (3.135) is not made of straightforward averages of
the fields in (3.134). They are weighted averages using local solar irradiance (i.e.,
the denominators in (3.134)) so that the spatial integral is, as indicated, in non-
normalized fluxes; then the totals are properly normalized by the integral of the
weights in (3.136).

In Fig. 3.16a, we illustrate the quantities in (3.135) using spherical media

M = {x ∈ R
3 : x2 + y2 + z2 < r2} . (3.137)

No absorption was assumed so we have R +T = 1 by conservation and this suggests
that we only need to study the ratio R/T to determine both quantities. Both isotropic
and forward-peaked (Henyey–Greenstein, g = 0.85) scattering phase functions were
used in the computations. Solar illumination strength on the (say) upper hemisphere
of the boundary

∂Msunny = {x ∈ ∂M : Ω0 • n(x) < 0}
was modulated by the appropriate |n(x) • Ω0| term. Also the boundary sources were
either collimated along Ω0 or diffuse, i.e., isotropic on the local inward hemisphere
of directions {Ω ∈ Ξ : Ω • n(x) < 0, x ∈ ∂Msunny}. Optical thickness is measured
across the diameter of the sphere

τdiam = 2σr

and varied by factors of 2 from 0.125 to 64 (for g = 0) or to 512 (for g = 0.85). A
Monte Carlo scheme (cf. Chap. 4) with 105 histories was used for each case.
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(b)

(a)

Fig. 3.16. Reflection and transmission of spherical cloud models. (a) Partition of R and T
according to position at escape (hence the subscripts describing the sign of z). (b) Partition of
R and T according to direction at escape (hence the subscripts describing the sign of µ). In
both partitions, the thick/solid line indicates where R = T = 1/2 (since R + T = 1 here);
the dashed lines on either side indicate where R/T = 2±1, hence R = 1/3 or R = 2/3 and
conversely for T . Empty symbols are for isotropic scattering (iso) and full symbols are for
forward-peaked scattering (fwd)
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Davis (2002) derives an exact diffusion theoretical expression for R/T for such
purely scattering spherical media:

R

T
=

(1 − g)τdiam

2χ
(3.138)

where the numerical prefactor 1/2χ is between 0.70 to 0.86. To be precise, χ is the
“extrapolation length” expressed in transport MFPs, [(1 − g)σ]−1. Photon diffusion
theory (cf. Chap. 6) is an approximation to RT that is expected to work well in the
bulk of opaque and highly scattering media, i.e., at more than a transport MFP or so
from boundaries and/or sources. This prediction is clearly confirmed by the numer-
ical solutions of the RTE plotted in Fig. 3.16a for large optical thicknesses. Indeed,
the vertical axis is R/T divided by the “rescaled” optical diameter (1− g)τdiam and
it goes to the anticipated value as τdiam increases without bound. This is irrespec-
tive of the angular pattern of the illumination or the phase function. The collapse
of the curves for g = 0 and g = 0.85 is particularly good for the case of isotropic
sources, as is expected in this more preemptively diffusive situation, and thus more
fully consistent with the way Davis (2002) set up his BCs and sources. Since R → 1
in this limit, we have T ∝ 1/(1 − g)τdiam. As noted by Davis (2002), this law does
not seem to be sensitive to cloud geometry: a similar law is indeed obtained in slab
geometry. This insensitivity to outer cloud geometry is exploited further on.

We have also highlighted in Fig. 3.16a the locus of points where R = T = 1/2.
In the optically thin limit (τdiam � 1/(1 − g)), we see that the two angular mod-
els for the sources give very different results, both easily explained. Diffuse sources
appropriately distributed on the upper boundary yield R ≈ T ≈ 1/2 in spherical
geometry because in this limit scattering is no longer a concern, only ballistic tra-
jectories matter. In contrast, the collimated beam scenario crosses the R = T line
at (1 − g)τdiam ≈ 2.5 and R/T goes to another limit determined by the opposite
approximation of diffusion, single-scattering and quasi-linear transmission laws. In
this latter approximation, we indeed expect R = 1−T ∝ τdiam with a prefactor that
will be sensitive to the phase function as well as to cloud geometry.

In the above natural enough definitions, we have used only the solar direction
to partition the boundary fields according to the position on the boundary where
the light emerges. Thus, introducing a ground surface and the associated vertical di-
rection, “reflected” light can reach the ground and “transmitted” light can return to
space, even if the Sun is at zenith. This is an essential feature of isolated (horizon-
tally finite) clouds, and a topological impossibility in plane-parallel geometry. The
important demarcation line is not so much the “horizon” line in Fig. 3.12 as the “ter-
minator,” a terminology we borrow from planetary astronomy. It is defined as the
following intersection of the two closed sets

∂Mterm(Ω0) = ∂Mshady(Ω0) ∩ ∂Msunny(Ω0) . (3.139)

This definition is preferable to

∂M⊥(Ω0) = {x ∈ ∂M : n(x) • Ω0 = 0} (3.140)
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because of possible degeneracy, that is, situations where whole facets with finite ar-
eas are part of the proposed demarcation set.16 If this is the case, then some of the
out-going flux is then neither reflected nor transmitted – it is quite literally “side-
leaked.” This is a popular notion but unfortunately it can be quantified precisely only
in very special cloud/Sun geometries where ∂M⊥ has a finite area. These special il-
lumination conditions that “resonate” with outer cloud geometry may have received
more attention because they happen to be attractive simplifications for the RT mod-
eling.

An often-used but pathological geometry for cloud modeling is the popular
cuboidal medium. The cuboid’s pathology results from the possibility of solar rays
grazing finite areas on its surface. The resolution of its terminator according to
(3.139) under all possible illuminations is illustrated in Fig. 3.15a, while finite cylin-
ders are treated in Fig. 3.15b. Note that the sunny/shady asymmetry in (3.118)–
(3.119) is chosen so that, when present, side-leakage is grouped with reflectance.
This is physically justified in order to minimize the number of escaping photons
with a low order-of-scattering binned as transmission. Indeed, physical intuition tells
us that significant contributions from low orders-of-scattering is the hallmark of re-
flectance. Another physical reason for including ∂M⊥(Ω0) (when it is finite) with
∂Msunny(Ω0), hence side-leakage (when it exists) with reflection, is obtained by
slightly perturbing the illumination direction from the special (resonant) case that
endows ∂M⊥(Ω0) with a finite area. That will generally collapse ∂M⊥(Ω0) onto
∂Mterm(Ω0) as defined in (3.139), and put its area into that of ∂Msunny(Ω0).

In summary, our manipulation of set-topological concepts support the physics
of RT because topology is about point “proximity” and “connectedness.” Spatial
connection is also what transport theory is very much about.

The motivation behind discussions of side-leakage is to find a simple mecha-
nistic model for an obvious effect of 3D geometry. Partially because the notion of
side-leakage cannot be transmuted into a mathematically robust construct, Davis and
Marshak (2001) have advocated the more physical concept of photon “channeling” as
a better way to describe the elementary interaction between a steady, initially uniform
photon flow and a spatial disturbance. Channeling is based on flow (i.e., vector-flux
field) geometry rather than boundary geometry and therefore applies equally to inter-
nally variable media and to homogeneous media that are not plane-parallel because
their horizontal extension is finite.

“R/T ” Partition by Horizontal Orientation and Direction at Escape

As if the above complications were not enough, definitions of reflection and trans-
mission direction based on direction Ω rather than position x are also possible and
natural for horizontally finite (as well as infinite) media. Furthermore, these defini-
tions are more likely to use the vertical rather than solar direction because of surface
radiation budget considerations, as well as remote sensing. Unlike in plane-parallel

16 The important distinction between the sets defined in (3.139) and (3.140) is that the former
always has measure zero and the latter can have a non-vanishing measure.
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geometry, the results are not the same here. Referring again to Fig. 3.12 and looking
down along −ẑ at the scene from far above, we can define

∂Mup = ∂Msunny(Ω0 = −ẑ) (3.141)

and corresponding ∂Mshady is ∂Mdn, while ∂Mterm in (3.139) becomes ∂Mhorizon.
From this specific vantage point, we have⎧⎪⎪⎪⎨⎪⎪⎪⎩

πI(x,+ẑ)/µ0F0, x ∈ ∂Mup ∩ ∂Msunny, nadir radiance from

illuminated part

πI(x,+ẑ)/µ0F0, x ∈ ∂Mup ∩ ∂Mshady, nadir radiance from

shadowed part

, (3.142)

the second case being impossible in slab geometry. A similar two-way partition will
exist for zenith radiance

πI(x,−ẑ)/µ0F0, x ∈ ∂Mdn ; (3.143)

a sub-sample of this field along a line could be interpreted as the sequence of readings
of vertically-pointing ground-based radiometer as the mean wind advects the cloud
by. Analogous definitions can be spelled out for all other directions.

Encouraged by the apparent robustness of the thick-cloud limiting behavior of
R/T with respect to cloud geometry, Davis (2002) applies his result for spherical
non-absorbing clouds to the remote determination of the optical thickness of real-
world finite clouds observed in high (5 m) resolution satellite imagery. At a purely
scattering solar wavelength, all that is required is an estimate of the mean-flux ratio
R/T to infer at least a rough – or “effective” – value of (1 − g)τdiam.17 This es-
timation of R/T is easily achieved for opaque isolated or broken cumulus clouds,
especially viewed obliquely with respect to the Sun. As shown in Fig. 3.17, it is not
hard to find the terminator in high-resolution images, being the relatively sharp tran-
sition between bright (reflective) and dark (transmissive) sides of the cloud. Then,
since we are interested in highly scattered photons for both R and T , a Lambertian
assumption that links radiance in any particular direction and flux from the corre-
sponding surface (in this case, a cloud boundary) is not unreasonable. Therefore a
radiance ratio can be equated with R/T in (3.138). Taking g ≈ 0.85 as usual for
liquid clouds, the ensuing values of τdiam are in the range 20 to 50; accounting for
in-cloud and cloud-to-cloud variability, this range is not unrealistic for the type of
cloud present in the scene.

Boundary radiances given for all positions and directions can be used collectively
to define overall responses to collimated illumination with respect to the zenith di-
rection: How much radiation reaches the ground (even if it is coming from the illu-
minated side of the cloud)? How much goes back to space (even if coming from the
shaded side of the cloud)? The answers are

17 One should say this is for the equivalent homogeneous sphere but that caveat is almost
always omitted in descriptions of operational cloud remote sensing when applying standard
plane-parallel theory to clouds that are more-or-less stratiform.
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Fig. 3.17. Los Alamos (NM) scene with broken clouds captured with the Multispectral Ther-
mal Imager (MTI) from a viewing angle of about 60◦. This grey-scale image was produced
from a true-color rendering of the scene based on 3 narrow channels at 484, 558, 650 nm.
General characteristics of the MTI instrument and orbit are given by Weber et al. (1999). For a
determination of mean optical thicknesses for three selected clouds with different outer sizes,
see Davis (2002)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
R↑ =

+1∫
0

µdµ
2π∫
0

dϕ
∫

n(x)•Ω(µ,ϕ)≥0

I(x,Ω(µ, ϕ))dS(x) / [F0SM(Ω0)]

T↓ =
0∫

−1

|µ|dµ
2π∫
0

dϕ
∫

n(x)•Ω(µ,ϕ)>0

I(x,Ω(µ, ϕ))dS(x) / [F0SM(Ω0)]

,

(3.144)

respectively for reflection back to space and for transmission to the surface. The
denominators are simplified expressions for the incoming flux µ0F0 measured along
the vertical times the projection along the horizontal of the illuminated boundary
SM(Ω0)/µ0.
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Figure 3.16b illustrates the definitions in (3.144) for the same four sequences of
spherical clouds described above in connection with the companion figure in panel
(a) under the simple assumption that Ω0 = −ẑ. Note that in this partition of R versus
T , we have no a priori reason to divide the ratio R↑/T↓ by the optical thickness, but
we of course still have R↑ + T↓ = 1 (by photon conservation). We observe the
same excellent collapse of the curves for g = 0 and g = 0.85 when plotted against
(1−g)τdiam as in Fig. 3.16a. However, this only occurs when the spatially-modulated
boundary sources are generated diffusely. Logically, the isotropic scattering media
under collimated illumination merge with their isotropically illuminated counterparts
in the large τdiam limit. However, this is clearly not the case for forward scattering
media; we attribute this to systematic reduction (enhancement) of R↑ (T↓) by low-
orders of scattering that are always present in reflected light but dominate in the
periphery (near-terminator) of the cloud. The small τdiam behavior here is exactly
the same as for R/T according to position at escape in Fig. 3.16a, only without
dividing by the independent variable τdiam.

Discussion

It is physically obvious (and rigorously proven by reversing the angular and surface
integrals) that absorptions computed from 1 − R − T in (3.135) and 1 − R↑ − T↓
in (3.144) are equal. The main point here is that solar sources in finite clouds yield
only two kinds of light: reflected and transmitted, just as in plane-parallel geome-
try. Transmitted light comes from the boundary points far from the sources and, at
least for optically thick media, is characterized by high orders-of-scattering and cor-
respondingly low radiance levels. Reflected light comes from the boundary points
close to the sources and, for optically thick media, is characterized by a broad dis-
tribution of orders-of-scattering (from a single scattering to at least as many as it
typically takes to be transmitted); this circumstance will naturally correlate with rel-
atively high levels of radiance. If the definitions of transmission and reflection are
predicated on direction with respect to the vertical direction rather than boundary
topology and source direction, then they will be mixtures of the above more physical
definition based on position. This is true even if the axis of symmetry of the finite
cloud (if it exists) is aligned with the vertical. Only in plane-parallel geometry do the
definitions coincide.

A far-reaching consequence of the physics-based partition of escaping radiation
by connection to the source is that, apart from a set of photon beams of measure zero
(propagating exactly horizontally), there is no such thing as “side-leakage” from
a finite cloud. There is only reflected and transmitted light. However, transmitted
photons may be traveling downward or upward, thus possibly misleading satellite
remote-sensing algorithms that are hard-coded to think that clouds have to be bright.
Similarly, reflected photons may be traveling upward or downward, thus contributing
possibly very strongly to surface fluxes. To illustrate this last effect, Fig. 3.18 shows
time-series of the direct broad-band (BB) solar flux, measured normal to the beam,
and the total BB down-welling surface flux collected over two days in Boulder (CO).
The diffuse down-welling flux was also sampled. The first day (July 10, 2003) was
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Fig. 3.18. Broken clouds enhance total down-welling surface flux far beyond the clear-sky
direct contribution. (Upper) The total vertical down-welling flux can vastly exceed the direct
flux normal to the beam. (Lower) A rough partition of the scatter plot of diffuse/vertical vs.
direct/normal fluxes from upper panel. The data, courtesy of John Augustine and Gary Hodges
from NOAA, and was collected in Boulder (CO) on July 10-11, 2003, and previously used by
Chýlek et al., (2004) in a study of broken cloud impact on clear-air property retrievals

clear, the next day ended with an episode of broken cloudiness. We first note in the
upper panel that in the presence of broken clouds the total vertical flux can vastly
exceed its clear-sky counterpart and even the direct flux measured perpendicular to
the beam (i.e., without the usual µ0 factor). The lower panel shows, on the one hand,
how the diffuse down-welling flux is driven almost linearly by the direct solar flux
(single scattering dominates and optical distances are small enough to set exp(−τ) ≈
1 − τ ) and, on the other hand, how much the diffuse BB component is non-linearly
enhanced by broken clouds. At non-absorbed VIS-NIR wavelengths, scattering by
clouds can cause total transmittance to exceed unity. This is occurs in fact often
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enough, even for BB transmittance, to survive in day-long averages at least at sub-
tropical locations (Dutton et al., 2004).

Finite clouds in spherical refractive atmospheres open up even more interesting
paradoxes with direct illumination of cloud base. This is a frequent and often spec-
tacular display of radiance for ground-based observers located near the terminator of
planet Earth, locally identified as sunset and sunrise.

3.10 Green Functions to Reciprocity via Adjoint Transport

We cover formal Green function theory for the RTE and relate it to the adjoint RT
problem; both are essential to a number of numerical techniques (Chaps. 4, 5) and
remote-sensing applications (Chaps. 12, 14) in 3D RT. Green functions also provide
the natural framework for introducing the reciprocity principle which may or may not
apply in a given 3D atmosphere-surface system depending on its inherent properties
and the conditions surrounding the observations.

3.10.1 Green Functions in Radiative Transfer Theory

Definitions

Consider a 3D absorbing and scattering medium M bounded by a non-reflecting
and non-emitting boundary ∂M. The volume Green function GV(x,Ω; x′,Ω′) is the
radiative response of M at a point x, in direction Ω, to a monodirectional point-
source located at a given point x′ in M, continuously emitting photons in a given
direction Ω′. The volume Green function satisfies the RTE (3.102)–(3.103) with a
delta function source term Q, i.e.,

Ω •∇GV(x,Ω; x′,Ω′) + σ(x)GV(x,Ω; x′,Ω′)

= σs(x)
∫
4π

p(x,Ω′′ → Ω)GV(x,Ω′′; x′,Ω′)dΩ′′

+ δV(x − x′)δ(Ω − Ω′) (3.145)

with homogeneous (no entering radiance) BCs. Here δ(Ω − Ω′), in sr−1, and
δV(x − x′), in m−3, are Dirac delta-functions. Note that δV(x − x′)δ(Ω − Ω′) is
a volume source normalized by its power. The volume Green function, therefore, is
expressed in m−2sr−1. It should be also noted that the point x′ and the direction of
the monodirectional source Ω′ are parameters in the RTE; that is, the determination
of the complete Green function requires the solution of (3.146) for each and every
point x′ ∈ M and direction Ω′ ∈ Ξ.

In the “operator” language introduced in (3.102)–(3.103), (3.146) can be written
simply as LGV = δ where the delta-function source term takes care of all the photon
state-variables of immediate interest (position, direction). After performing a spher-
ical harmonic decomposition in angle space and a 3D Fourier transform in position
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space (i.e., a continuous decomposition on harmonic functions), this concise formu-
lation becomes L̃ G̃V =1 where the tilde designates a transformed entity. So, it is not
surprising that in some literatures the Green function is denoted GV = L−1, i.e., as
the inverse of a linear operator. This expresses the fact that knowing GV or knowing
L (including knowledge of the spatial distribution of the optical properties in M) are
formally equivalent. The Green function is therefore called the “fundamental” solu-
tion or “resolvant” of the problem at hand, in this case, the RT problem. In this oper-
ator formalism, the solution to the general linear transport problem, LI =Q (subject
to homogeneous BCs), is I =L−1Q=GVQ which is short-hand for a 5-dimensional
integral over (i.e., a superposition of) the source’s positions and directions.

In the case of purely absorbing media (σs(x) ≡ 0), the solution to (3.146) already
derived in Sect. 3.8.2 can be given in explicit form using the volume Greeen function
(Case and Zweifel, 1967). Bearing in mind that it is designed to be the kernel of
5-dimensional integral, the Green function is best written as

GV(x,Ω; x′,Ω′) =
exp[−τ(x′, x)]
‖x′ − x‖2

δ(Ω′ − Ω)δ
(

x′ − x
‖x′ − x‖ − Ω

)
. (3.146)

This follows from the exact “no-scattering” solution in (3.121) with no boundary
sources (f(·) ≡ 0 on ∂M) and using the identities in (3.123)–(3.124). The resem-
blance of the Green function in (3.146) with the kernels (3.126) and (3.130) of the
integral forms of the RTE covered in the previous section is not accidental: the scat-
tering quantities σsp(Ω′ → Ω) are replaced by δ(Ω′−Ω). Also, and contrary to the
ones used previously in this section, the last δ-function is non-dimensional. Indeed, it
is paired with dx′ (in m−3) and, in its argument, x′ is divided by the distance ‖x′−x‖.
Finally, the ‖x′ − x‖−2 term does not express an algebraic decay (in addition to
exp[−τ(x′, x)]). The source is indeed monodirectional, in which case we know from
previous sections that it is only affected by extinction term exp[−τ(x′, x)]. Rather,
this algebraic term comes from the Jacobian required to go from the one-dimensional
integral in s = ‖x′ − x‖, as mandated by the directional derivative in (3.146), to a
three-dimensional integral in dx′ by bringing in a solid angle integral in dΩ.

The surface Green function, GS(x,Ω; xS,Ω′), is the solution to the transport
equation in (3.146) but without the volume source term. However, radiation is flow-
ing into the medium through the surface ∂M, as described by the inhomogeneous
BC

GS(x,Ω; xS,Ω′) = δS(x − xS)δ(Ω − Ω′), x ∈ ∂M, Ω • n(x) < 0 , (3.147)

i.e., a point source at xS ∈ ∂M emitting with unitary power in the direction Ω′.
Here δS(·) is a two-dimensional δ function (in m−2). Thus, GS(x,Ω; xS,Ω′) is the
radiative response of the medium M at a point x, in direction Ω, to a collimated
boundary source. Because sources can be located on the boundary, the volume and
surface Green functions are related:

GS(x,Ω; xS,Ω′) = |n(xS) • Ω′ |GV(x,Ω; xS,Ω′) , (3.148)

as is shown further on.
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In terms of these two Green functions, we may write the general solution to the
RTE (3.101) with arbitrary volume source Q(x,Ω) and BCs (3.109) with sources
given by f(xS,Ω). We obtain

I(x,Ω) =
∫
M

∫
4π

GV(x,Ω; x′,Ω′)Q(x′,Ω′)dx′dΩ′

+
∫

xS∈∂M

dS(xS)
∫

n(xS)•Ω<0

GS(x,Ω; xS,Ω′)f(xS,Ω′)dΩ′ . (3.149)

The first term in (3.149) is the solution of the 3D transport equation with the vol-
ume sources Q(x,Ω) and no incoming radiance. The second term describes the 3D
radiation field in M generated by sources f(x,Ω) distributed over the boundary ∂M.

The Green function concept was originally developed in neutron transport theory
several decades ago (Bell and Glasstone, 1970). It has enabled the reformulation of
the radiative transfer problems in terms of some “basic” subproblems and to express
the solution to the transport equation with arbitrary sources and boundary conditions
as a superposition of the solutions of the basic subproblems. We now demonstrate
with a relevant example for RT in the atmosphere-surface system.

Illustration with Cloud-Surface Radiative Interaction

Consider a cloudy or aerosol layer bounded from below by a non-uniform Lam-
bertian surface. This is a problem of considerable interest in satellite remote sensing
of surface properties (Lyapustin and Knyazikhin, 2002) as well as ground-based re-
mote sensing of clouds (Marshak et al., 2000). Radiation-cloud-surface interaction
can be described by the RTE with zero volume sources and BCs given in Sect. 3.6.2.
The intensity I(x,Ω) can be represented as a sum of two components: the radiation
calculated for a “black” surface, Iblk(x,Ω), and the remaining radiation, Irem(x,Ω);
that is,

I(x,Ω) = Iblk(x,Ω) + Irem(x,Ω) . (3.150)

In (3.150), the second component accounts for the radiation field excited by mul-
tiple surface-cloud interactions. It satisfies LIrem = 0, with a homogeneous (zero-
incoming radiance) BC on the upper boundary, and

Irem(xS,Ω) = π−1α(xS)F (xS) (3.151)

at the lower boundary zS = 0 where α(xS) is the variable surface albedo, assumed
Lambertian, and F (xS) is a variable down-welling hemispherical flux assumed, for
the moment, to be a given quantity. Note that since the geometry of this medium is
plane-parallel, as in Sect. 3.6.2, we could use the “split” notation xS = (

→
xS, zS)T

here, but we will continue to use notation that applies to the most general medium
geometry.
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The remaining radiation can be expressed through the surface Green function as

Irem(x,Ω) =
1
π

∫
zS=0

α(xS)F (xS)

⎡⎢⎣ ∫
µ′<0

GS(x,Ω; xS,Ω′)dΩ′

⎤⎥⎦ dS(xS) . (3.152)

In (3.152), the integral over upward directions describes the radiation field in M gen-
erated by an isotropic point-source π−1δ(x − xS) located at the point xS ∈ ∂M.
Given the downward flux field F (xS) at the lower boundary, the remaining radi-
ance Irem can be evaluated from (3.152). The field F (xS) itself depends on Irem and
thus (3.152) alone provides a full description of surface-cloud interactions. Com-
bining (3.150) and (3.152), one obtains a two-dimensional integral equation for the
unknown total flux F

(−)
z (xS) for xS ∈ ∂M (meaning here the plane zS = 0):

F (−)
z (x) =

∫
zS=0

α(x′
S)R(xS, x′

S)F (−)
z (x′

S)dS(x′
S) + F

(−)
z,blk(x) . (3.153)

This unknown flux accounts for what the cloud transmits as well as all the multiple
surface-cloud interactions. Here F

(−)
z,blk is the downward flux at the bottom of the

medium calculated for the “black” surface problem and acts as a source term in the
integral equation. R(xS, x′

S) is the downward flux at xS ∈ ∂M generated by the point-
wise and isotropic source π−1δ(xS − x′S) located at xS ∈ ∂M; it acts as a kernel for
the integral equation in (3.153). Multiplying (3.152) by dΩ and integrating over the
µ > 0 hemisphere, and then by identification with the 1st term in (3.153), we see
that this kernel is given by a double angular integral of the surface Green function:

R(xS, x′
S) =

∫
µ>0

µdΩ
∫

µ′<0

π−1GS(xS,Ω; x′
S,Ω′)dΩ′ , (3.154)

for any pair of surface points (xS, x′
S). Notice that we are preserving angular sym-

metry between the isotropic source at x′
S and the resulting field at xS. If moreover

the atmosphere is horizontally uniform, then we are sure that the Green function in
(3.154) will depend only on ||xS −x′S||. This makes the integral in (3.153) a straight-
forward convolution product.

We now return to the aerosol “adjacency” and cloud remote sensing problems
that motivated this exercise. Because the above horizontal uniformity assumption is
not unreasonable for the aerosol atmosphere, we have reduced the full 3D RT prob-
lem of assessing the mixture of albedo values α(xS) in the observations I(x,Ω), e.g.,
from space, to an integral equation that is easily solved in Fourier space. For more
details about this adjacency mitigation strategy in surface property remote sensing,
including generalization to non-Lambertian ground, we refer to the paper by Lya-
pustin and Knyazikhin (2002). In the case of clouds, the same horizontal unifor-
mity assumption is of course highly questionable. Nonetheless, by working with two
wavelengths where the clouds have similar scattering properties – but the ground’s
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reflection properties not – one can minimize the impact of 3D RT effects in the ob-
servations and apply 1D RT theory locally to infer cloud properties. More details
about this 3D mitigation technique are in the papers by Marshak et al. (2000, 2004)
as well as in Chaps. 12 and 14.

Inverse Problems

Green functions play an important role in developing algorithms for retrieving
coefficients in the RTE from radiation leaving a medium, in other words, per-
forming an optical tomography. Choulli and Stefanov (1996) and Antyufeev and
Bondarenko (1996) reported that, under quite general conditions on the sources, the
3D fields of total cross-section (per unit of length), σ(x), and the differential scat-
tering cross-section, σs(x)p(x,Ω → Ω′), can be uniquely retrieved from boundary-
field measurements. This result indicates that there is a one-to-one correspondence
between the complex 3D structure of a given domain M of space bounded by a non-
reflecting surface ∂M and the outgoing boundary radiation field I(xS,Ω), xS ∈ ∂M,
n(xS) • Ω > 0. The following interpretation of the Green function underlies the
derivation of this property.

The volume and surface Green functions describe the radiative response of the
medium M to a source concentrated at an isolated spatial point and emitting pho-
tons in one direction. A Dirac δ-function is naturally used to describe such a source.
The theory of distributions developed by Schwartz (1950) justifies the use of such
functions in describing and solving physical problems. Since the BC is expressed
in terms of a Schwartz distribution, the solution to the transport equation is a dis-
tribution too. Schwartz’s theory distinguishes two types of functions, “regular” and
“singular” distributions.

There is a one-to-one correspondence between usual functions (with a well-
defined value for each value of its argument) and regular distributions; thus, an ordi-
nary function can be regarded as a special case of a distribution. The Dirac δ-function
is the simplest example of a singular distribution. No ordinary function can be iden-
tified with it and it is only defined under integral operations.

Generally speaking, the solution of the RTE can be expressed as a sum of reg-
ular and singular distributions. The singular component must be treated separately
because numerical techniques cannot deal with bone fide distributions. A technique
to separate the singular components from (3.146) is based on the following result
(Germogenova, 1986; Choulli and Stefanov, 1996; Antyufeev and Bondarenko,
1996). For a 3D medium, the radiances due to uncollided and single-scattered pho-
tons from a point-wise monodirectional source, denoted respectively G0 and G1, are
singular distributions while the remaining multiply-scattered field is described by a
regular distribution Gms. The Green function is therefore the sum of three compo-
nents, two singular and one regular:

G = G0 + G1 + Gms . (3.155)

The singular components make the above mentioned one-to-one correspondence be-
tween observable radiance fields and optical properties possible. This generalizes
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the classic idea of tomographic reconstruction based only on the uncollided (a.k.a.
directly-transmitted) radiance in G0 and opens the possibility of using reflected
radiance to perform 3D reconstruction. Application of this technique to describe
radiation regimes in clouds and vegetation canopies is discussed respectively by
Knyazikhin et al. (2002) and Zhang et al. (2002). More on this will be found in
Chap. 14.

Observational access to G0 and G1 assumes an optically thin medium and quite
sensitive detectors for the latter component. In contrast, we anticipate that in opti-
cally dense weakly-absorbing media Gms will be the dominant term and its removal
from the measurements of boundary radiances can leave estimates of the singular
component G0 + G1 at par with the instrumental noise level. In this situation, rad-
ically different techniques that capitalize on Gms and photon “diffusion-wave” the-
ory can be invoked (Yodh and Chance, 1995, and references therein). Here exact
3D reconstruction is of course not an option, but large-enough and strong-enough
inhomogeneities can be detected.

As an illustration in the time-domain, standard (or “on-beam”) lidar is based on
the illumination of a cloud boundary with a pulsed laser and the opposite side is de-
tected and positioned at the range where the single-scattering signal G1 all but van-
ishes. However, this assumes that there is enough signal to measure after the two-way
transmission and that it is not significantly contaminated by multiply scattered light,
i.e., this technique applies only to optically thin clouds. By contrast, “off-beam” lidar
techniques apply to optically thick clouds since they exploit the multiple-scattering
returns in Gms; their spatio-temporal distributions are used to detect the presence
and position of the opposite cloud boundary (Davis et al., 1999).

3.10.2 Adjoint Radiative Transfer

Definitions

Adjoint equations and their solutions play an important role in radiative transfer the-
ory. In particular, they are widely used in perturbation theory and variational calcu-
lations relating to the behavior of 3D optical media. The properties of the solutions
of the adjoint RTE are also used in the development of efficient Monte Carlo codes,
as explained in Chap. 4.

The adjoint RTE can be written formally as

L+I+ = Q+ , (3.156)

where L+ is the adjoint integro-differential linear transport operator,

L+ = −Ω •∇ + σ(x) − σs(x)
∫
4π

p(x,Ω → Ω′)[·]dΩ′ , (3.157)

and Q+ is the adjoint source term. The following differences should be noted be-
tween L+ in (3.157) and L in (3.103):
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1. the Lagrangian derivative has the opposite sign, and
2. the incident and scattering directions have been interchanged, i.e., Ω′ → Ω in

(3.103) becomes Ω → Ω′ in (3.157).

Physically, we are considering here the time-reversed photon flow. This gives us
the hint that adjoint sources Q+ describe the position of detectors while the adjoint
transport operator L+ takes the photons backwards in time to their actual sources.
This makes the space-angle distribution I+ of adjoint “photons” an estimate of how
much a given position-direction matters for a given radiometric observation – often
in a remote region – modeled by Q+. We are thus looking for the solution of (3.157)
satisfying the adjoint BCs, namely,

I+(x,Ω) = f+(x,Ω), x ∈ ∂M, Ω • n(x) > 0 . (3.158)

Note that this boundary condition is formulated for outgoing directions. This makes
physical sense if there are detectors at the boundaries. If there are not (f+ ≡ 0),
then escaping photons will no longer influence detectors inside the medium (where
Q+ �= 0).

To better capture the notions of “weight” and “influence” used here to give phys-
ical meaning to the adjoint radiance field, some authors following Marchuk (1964)
have came to call I+ “importance.” Adjoint equations are used many fields of dy-
namical modeling to analyze nonlinear tele-connections. In meteorology, this can be
done by looking at the clusters of backwards trajectories which, in turn, has influ-
enced data assimilation methodology. In 3D RT, one can think of the 3D “compo-
nent” of the radiance field as response to a perturbation of uniformity in extinction.
It is therefore not surprising that adjoint RT theory – and indeed adjoint Green func-
tions introduced below – play a key role in the perturbative approach to 3D RT, cf.
Box et al. (1988, 2003), Polonsky et al. (2003), and Chap. 5.

Some Useful Identities

To describe the relationship between solutions of the standard (or “forward”) and
adjoint radiative transfer equations, the inner product of two RT functions f(x,Ω)
and g(x,Ω) is introduced:

< f, g > =
∫
M

∫
4π

f(x,Ω)g(x,Ω)dΩdx . (3.159)

We note that the notation (f, g) is also used for this functional scalar product.
Now let I(x,Ω) be the solution of the forward problem, i.e., I satisfies the RTE

LI = Q and the generic BCs in (3.109). This equation is now multiplied by I+ and
(3.156) by I; the resulting expressions are subtracted and the difference is integrated
over M and Ξ. Taking into account the identity

< Ω •∇I, I+ > = − < I,Ω •∇I+ >

+
∫

∂M

dS(x)
∫
4π

n(x) • ΩI(x,Ω)I+(x,Ω)dΩ , (3.160)
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one obtains the basic relationship between solutions of the forward and adjoint RTE,
namely,

<Q, I+> − <I,Q+> =
∫

∂M

dS(x)
∫

n(x)•Ω>0

n(x) • ΩI(x,Ω)f+(x,Ω)dΩ

−
∫

∂M

dS(x)
∫

n(x)•Ω<0

|n(x) • Ω|f(x,Ω)I+(x,Ω)dΩ .

(3.161)

In the case of the homogeneous BCs, no incoming photons (f ≡ 0) and no outgoing
adjoint radiance (f+ ≡ 0), (3.161) can be simplified to < Q, I+ > = < I,Q+ >,
or explicitly∫

M

∫
4π

Q(x,Ω)I+(x,Ω)dxdΩ =
∫
M

∫
4π

Q+(x,Ω)I(x,Ω)dxdΩ . (3.162)

Connection with Green Functions

By substituting Q(x,Ω) = δV(x − x1)δ(Ω − Ω1) in (3.162), hence I(x,Ω) ≡
GV(x,Ω; x1,Ω1), one obtains

I+(x1,Ω1) =
∫
M

∫
4π

Q+(x,Ω)GV(x,Ω; x1,Ω1)dxdΩ . (3.163)

Thus, I+(x1,Ω1) is a Q+-weighted integral response of the medium to a monodi-
rectional point-source. So the adjoint solution I+(x1,Ω1) is indeed a measure of the
importance for the medium’s response of a photon leaving from {x,Ω}. By further
substituting Q+(x,Ω) = δV(x − x2)δ(Ω − Ω2) into (3.163), the relation between
the forward and adjoint volume Green functions is obtained:

GV(x2,Ω2; x1,Ω1) = G+
V(x1,Ω1; x2,Ω2) . (3.164)

This symmetry makes physical sense since one goes from the linear transport op-
erator in (3.103) to its adjoint counterpart in (3.154) by reversing the Lagrangian
flow.

Equation (3.161) yields a useful result when the solution of the forward problem
is a volume Green function, and that of the adjoint problem is a surface Green func-
tion. We set Q(x,Ω) = δV(x − x1)δ(Ω − Ω1) and f ≡ 0 for the forward problem,
and Q+ ≡ 0, f+(x,Ω) = δS(x − xS)δ(Ω−Ω2), xS ∈ ∂M, n(xS) • Ω2 > 0, for the
adjoint problem. Substituting these into (3.161) results in

G+
S (x1,Ω1; xS,Ω2) = (n(xS) • Ω2) GV(xS,Ω2; x1,Ω1) (3.165)

where xS is on the boundary. Using (3.163) leads to (3.148) since Ω′ in the for-
ward problem is equated with −Ω2 in the adjoint problem. A relationship between
the surface Green function and its adjoint can be derived from (3.161) in a similar
manner.
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3.10.3 Reciprocity Principle

Formulation with Green Functions

Intensity G(x2,Ω2; x1,Ω1) at x2 in direction Ω2 due to a point source at x1 emitting
in direction Ω1 can be related to the intensity at x1 in direction −Ω1 due to a source
at x2 emitting in direction −Ω2 by means of the RTE. Such reciprocity relations
often prove useful in relating the solution of a particular problem to that of a simpler
problem or to one for which the solution is known. The adjoint RTE can be used to
derive reciprocity relations. In the following, we will assume that

p(x,−Ω′ → −Ω) = p(x,Ω → Ω′) , (3.166)

which is certainly the case if the scattering phase function depends only on the scat-
tering angle cos−1(Ω • Ω′). Even without the axi-symmetric scattering, this is a rea-
sonable assumption in most atmospheric applications. It should be noted, however,
that this property does not generally hold true in the case of radiative transfer in
vegetation canopies; see Chap. 14.

Consider a 3D absorbing and scattering medium M bounded by a non-reflecting
surface ∂M. Let Q and f be the volume and boundary sources, respectively. Intensity
I(x,Ω) of the 3D radiation field satisfies the RTE (3.101) and general BCs (3.109).
If a function I+ is defined such that I+(x,Ω) = I(x,−Ω), then I+(x,Ω) satisfies
the adjoint RTE (3.156) with volume and boundary sources defined as (Bell and
Glasstone, 1970)

Q+(x,Ω) = Q(x,−Ω) and f+(x,Ω) = f(x,−Ω) . (3.167)

In the case of the “free-surface” boundary condition of no incoming photons (f ≡ 0)
and no outgoing adjoint flux (f+ ≡ 0), the right-hand side of (3.164) can be replaced
by GV(x1,−Ω1; x2,−Ω2), i.e.,

GV(x2,Ω2; x1,Ω1) = GV(x1,−Ω1; x2,−Ω2) . (3.168)

This states that the intensity I(x2,Ω2) at x2 in the direction Ω2 due to a point source
at x1 emitting in direction Ω1 is the same as the intensity I(x1,Ω1) at x1 in the di-
rection −Ω1 due to a point source at x2 emitting in direction −Ω2. Thus, according
to (3.168), the intensity is the same in two situations depicted in Fig. 3.19. The rela-
tion in the form of (3.168) is referred to as the optical reciprocity theorem (Bell and
Glasstone, 1970).

By virtue of (3.148), we also have a reciprocity in the surface Green functions:

GS(xS2,Ω2; xS1,Ω1) = GS(xS1,−Ω1; xS2,−Ω2) (3.169)

for any two points on ∂M. Note that the source directions in the second argument
pair are oriented inward (n(xS1) • Ω1 < 0) while the detection directions in the first
argument pair are oriented outward (n(xS2) • Ω2 > 0).
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Ω2
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x2 Source
Detector Detector x2

x1 x1

Source −Ω2

−Ω1

Fig. 3.19. The reciprocity principle: as expressed in (3.168), switching detector and source
and inverting the directions of propagation yield the same result for the Green function

Illustration with an Atmosphere-Surface System

Consider again the problem of a cloudy or aerosol layer bounded from below by
a non-uniform and non-Lambertian reflecting surface at z = 0. In this situation, a
fraction of the radiation can be reflected back into the layer by the ground according
to some spatially varying BRDF, ρ(xS,Ω′ → Ω), where Ω′ is in the downward
hemisphere of directions and Ω is in the upward one. Going back to (3.90)–(3.91),
the BRDF is normalized in such a way that

I(xS,Ω) =
∫

µ′<0

ρ(xS,Ω′ → Ω)|µ′|I(xS,Ω′)dΩ′ , (3.170)

for all xS in the plane z = 0 and all µ > 0. Under what conditions on ρ does the
optical reciprocity theorem apply to such a composite atmosphere-surface medium?
First, the right-hand side of (3.161) should vanish in order to obtain (3.162) and,
as a consequence, the relation (3.164), and hence (3.168). Second, the conditions
(3.167) should be imposed to obtain the relationship I(x,−Ω) = I+(x,Ω) between
solutions of the forward and adjoint RTE. The former condition is satisfied if the
solution of the adjoint RTE satisfies the following BC (Germogenova, 1986)

I+(xS,Ω) =
∫

µ′>0

ρ(xS,Ω → Ω′)I+(xS,Ω′)|µ′|dΩ′ , (3.171)

for all xS and µ > 0. In our example, the functions f and f+ are given by the right-
hand sides of (3.170) and (3.171), respectively. Therefore, the equality f+(x,−Ω)=
f(x,Ω) takes place if and only if
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µ′<0

ρ(xS,−Ω → −Ω′)I+(xS,−Ω′)|µ′|dΩ′ =
∫

µ′<0

ρ(xS,Ω′ → Ω)I(xS,Ω′)|µ′|dΩ′ .

(3.172)

Under this condition, I(xS,Ω) = I+(xS,−Ω) and, therefore, the identity (3.172)
holds true if

ρ(xS,−Ω → −Ω′) = ρ(xS,Ω′ → Ω) , (3.173)

which is analogous to our a priori assumption in (3.166) about the scattering phase
function.

Thus, the condition (3.173) should be imposed on the BRDF to extend the va-
lidity of the reciprocity principle to media with reflecting boundaries. Note that the
scattering phase function that appears in the RTE for vegetation canopies is not,
as a rule, rotationally invariant. Besides, this function is generally asymmetric, i.e.,
ρ(x,−Ω′ → −Ω) �= ρ(x,Ω → Ω′). The BRDF of vegetation canopies, therefore,
does not necessarily follow (3.173). This means that the reciprocity principle may
not be applicable in the case of an atmosphere/vegetation-canopy system.

Violation of Directional Reciprocity over Finite Domains

Ultimately, the general reciprocity relations we have uncovered in Green functions
are traceable to the microscopic reversibility of each and every reflection and scatter-
ing event. If, at a given locale, a certain change of propagation direction Ω1 → Ω2

can occur then so can Ω2 → Ω1, with equal probability. That is the meaning of the
conditions (3.166) and (3.173) for reciprocity. In this respect, the 3D RT reciprocity
relations we uncovered are special cases of Onsager’s general reciprocity relations
for kinetic systems, not necessarily in equilibrium.

This also opens up the question of purely directional reciprocity as more symme-
try is imposed on the system, or as the wealth of information in the Green function
is selectively degraded. For instance, if the (cloud-surface) medium is plane-parallel
and horizontally homogeneous, then the surface Green functions in (3.169) depend
only on x1 − x2. If, furthermore, the source direction is normal to the surface (i.e.,
Ω2 = (0, 0,−1)T) or, generally speaking, an axi-symmetric illumination pattern,
then only the modulus ||x1 − x2|| matters. This of course includes isotropic illumi-
nation, equivalently, an average Green function for all possible incoming directions.
One can also integrate the surface Green function in (3.169) over one spatial variable
and then average the result over the other; more precisely, one carries this average
over a finite domain which is gradually extended to infinity (unless periodic BCs are
encountered first). Assuming x1 and x2 were on the same surface or TOA boundary,
this yields for the domain-average albedo

R(Ω1;Ω2) = R(−Ω2;−Ω1) (3.174)

in natural notations, where Ω2 is inward-oriented at the source and Ω1 is outward-
oriented at the detector. We thus recover Chandrasekhar’s (1950) angular reciprocity
relations for homogeneous plane-parallel media as a special case.
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It was once believed that the reciprocity relation in (3.174) could be used in
the real 3D atmosphere-surface system. The motivation was to faster build “angu-
lar models” which are used to infer hemispheric TOA fluxes from observed radi-
ances in ERBE/CERES-like missions18 that monitor the Earth’s radiation budget.
Di Girolamo et al. (1998) showed beyond any doubt that this is not a good idea since
in a 3D system reciprocity applies either for infinitesimal areas around the two points,
or for the domain averages, but not for the intermediate pixel-scale which is just an
attribute of the observation system. There is further discussion of 1D RT reciprocity
relation abuse in Chap. 11.

3.11 Summary and Outlook

We have surveyed the definitions of the fundamental quantities used in general – that
is, 3D – radiative transfer from the standpoint of classical particle transport theory.
We have looked at how these quantities relate to one another, including reciprocity
relations and how these relations break down in 3D media over finite domains. We
have shown how the key quantities are constrained by radiant energy conservation
in the steady-state radiative transfer equation under various guises, along with its
associated boundary conditions. Green functions are introduced and illustrated by
showing how the general (and highly relevant) atmosphere/surface problem can be
reduced to the two simpler problems of an atmosphere over an absorbing surface and
a convolution using a Green function kernel.

We have thus introduced the basic tools used in the remainder of this volume.
In mathematical short-hand, they compactly contain all the necessary information
about the systematic biases that the 3D world inflicts upon forward radiative transfer
and inversions based on 1D modeling. Recalling the historical background painted
in broad strokes in Sect. 3.1, these biases have been documented extensively over the
past three or more decades. Many of these biases will be discussed in the following
chapters. Several exciting developments in the fundamental aspects of 3D radiative
transfer, some with tutorial value, have occurred over the same period. For lack of
space, they were not covered in this chapter, but some at least are covered elsewhere
in this volume. A non-exhaustive list based largely, but not entirely, on our own
research is:

• scale-separation conditions for the applicability of the radiative transfer equation
and its connection to scalar- and vector-wave optics;

• photon transport theory in spherical atmospheres with or without significant radial
gradients in the index of refaction;

• critical examination of the applicability of an “ensemble” distribution of droplet
sizes motivated by the real-world observation that the largest droplets are so rare
one may not be able to define a density for them;

18 ERBE: Earth Radiation Budget Experiment; CERES: Clouds and the Earth’s Radiant En-
ergy System.
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• introduction of a new term into the radiative transfer equation to account for the
rare encounters of photons with the very large cloud droplets that do not have a
well-defined density;

• eigen-analysis of the integral transport operator over a 3D optical medium and its
application to escape probability calculation;

• various derivations of Fick’s law for photon diffusion from the 3D radiative trans-
fer equation, leading to the powerful 3D diffusion approximation;

• multiple forward-peaked scattering recast as a random walk on the sphere (of prop-
agation directions) and derivation of the Eddington/van de Hulst rescaling of ex-
tinction without diffusion or asymptotic theory;

• proof that effective (or “mean-field”) transport kernels in random 3D media are
never exactly exponential and, in the relevant case of spatially correlated media,
that they have longer-than-exponential tails;

• criteria that predict the onset of strong 3D effects on the scale of the actual mean-
free-path which can be considerably larger than the inverse of the mean extinction.

• definition of the elementary interaction of a steady-state photon flow with a spatial
disturbance in scattering media as a Cannon (1970) “channeling” event, and its
application to domain-average biases;

• order-of-scattering decomposition (the Neumann series) and its connection with
Markov chain theory in Kolmogorov’s formulation of transition probabilities;

• time-dependent radiative transfer theory and the “Equivalence Theorem” approach
to absorption processes and diffusion-based formulation;

• derivation of a general expression used in Chap. 12 for mean photon path length
as volume-angle integral of the temporal Green function;

• asymptotic and exact diffusion theoretical formulas for the spatial and temporal
characteristics of diffusely reflected and transmitted light on cloud parameters;

• extension of classic/Gaussian diffusion theory to highly variable media using
Lévy-stable distributions and transport by “anomalous” diffusion.

Some of this missing material could be forged into a more advanced appraisal of
the fundamentals of 3D radiative transfer that could in turn become the backbone
of a phenomenology of 3D effects in photon transport. Some of this material could
also be used to build a theoretical framework to articulate better-informed strategies
in computational or observational projects. The reader is therefore encouraged to
use the suggested reading list below to further his/her awareness of the fundamental
issues in 3D radiative transfer. The present authors have always found added-value
for their institutional research assignments in remote sensing and/or radiation budget
estimation by revisiting the fundamentals.

As an example, in Sect. 3.10.1 we remarked that the decomposition of the Green
function into its singular components (0th- and 1st-order scattering fields) and its reg-
ular component (higher-order scattered photons) has proved useful in tomography.
That breakdown of the Green function has recently been applied to the characteriza-
tion of radiative transfer regimes in 3D clouds (Knyazikhin et al., 2002) as well as in
3D vegetation canopies (Zhang et al., 2002).
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To further illustrate this process of knowledge percolating from the fundamen-
tals to applied radiative transfer, we gave special attention here to the radical de-
partures from plane-parallel geometry embodied by horizontally finite clouds in iso-
lation. We were thus forced to revisit the conventional partition of escaping solar
radiation. In particular, we do away with the notion of “side-leakage” in favor of
reflection since cloud “sides” can only be identified unambiguously in very special
shape/illumination configurations. Even when they can be identified, the topology
(proximity metrics) of cloud sides and radiation sources will cause them to be crossed
by a significant population of escaping photons that have undergone relatively few
orders-of-scattering. This indeed mimics the behavior of cloud top, the undisputed
origin of reflected light. The conceptual cost here is to accept that reflected photons
can reach the surface (i.e., for all climatic purposes, be “transmitted”). This is in fact
an everyday observation: visualize the bright side of a cumulus under fair weather
conditions or a distant cumulonimbus generated by deep convection. Similarly, we
need to recognize that some of the highly scattered photons transmitted through the
dimmer side of a finite cloud will eventually reach space (i.e., be “reflected”). This
again is a frequent observation by Earth-monitoring satellites that can resolve small
broken or isolated clouds, often from sun-synchronous orbits that exclude exactly
overhead sun. Pixel-by-pixel processing of such imagery would probably misiden-
tify a pixel from the shady side of a cloud for lack of brightness. If (e.g., by using
thermal emittance) the pixel was properly classified as cloudy, then the optical depth
would be vastly underestimated. The simpler “reflection-or-transmission” partition
of solar photon fate proposed here was successfully put into application by one of us
(Davis, 2002) to infer optical depths of cumulus clouds from high-resolution satellite
images. In short, this somewhat rude reminder of common-sense observation of our
3D world populated with finite-sized clouds – and support from elementary consid-
erations in set topology – has clarified the role of these clouds in the Earth’s radiation
energetics and taught us how to better interpret satellite data.

This is just one example of why the fundamentals of radiative transfer are still a
vibrant area of research. An area that is indeed pressured to advance by the climate
community as well as the remote sensing community. Anticipating on the topics of
Chaps. 6–10 (Part III) and 11–14 (Part IV), we conclude by assessing the needs of
these two major stake-holders of radiative transfer theory:

• Climate Science. It is commonplace to state that clouds are a major source of un-
certainty in current climate system models. About all we know for sure is that
low/warm/opaque clouds cool the climate (solar effects dominate) and therefore
mitigate the global greenhouse effect, especially if the clouds are as extensive as
typical marine stratocumulus systems; in contrast, their high/cold/semi-transparent
counterparts trap heat (thermal effects dominate) and therefore contribute to the
global greenhouse effect. Cirrus layers fulfill all the conditions for the latter ef-
fect and are also very pervasive at all latitudes. So, interestingly, the net effect
of clouds on the global climate is small but strong regional effects can be ex-
pected. This underscores the importance of accurate representations of clouds and
of their radiative properties in Global Climate Models (GCMs). It is fair to say
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that, along with the most common tri-atomic molecules (and some more com-
plex ones), clouds regulate the climate system’s vast heat reservoirs (oceans, land
masses, and cryosphere). As part of this mechanism, clouds are active participants
in the complex dynamics of the hydrological cycle that may be stressed anthro-
pogenically in ways we understand very poorly. Paradoxically, clouds are never
plane-parallel and homogeneous in Nature but always plane-parallel and homoge-
neous in climate models. This is the case even for the most current ones, simply
because it makes them amenable to the simple two-stream approximation in ra-
diative transfer (or one of its numerous variants). One wonders why clouds are not
mentioned as often as aerosols, let alone greenhouse gases, as a source of concern
in “big” climate science, at the IPCC level where research priorities are formu-
lated. It is true that clouds are an inherent part of the climate system rather than
a “forcing” that one (at least in principle) can control. But another part of the ex-
planation surely comes from the necessity to “tune” GCMs to the climatologies
of outgoing long- and short-wave fluxes obtained from satellites. These datasets
are constantly being improved by NASA’s Earth Radiation Budget Experiment
(ERBE) and Clouds and the Earth’s Radiant Energy System (CERES) programs
and by initiatives from other agencies worldwide. Since cloud-radiation interac-
tions are essentially the first and last lines of defense in the Earth’s climate system
as it interacts radiatively with the rest of the Universe, the corresponding parame-
terizations are the obvious candidates for dialing the “right” CERES/ERBE-based
fluxes. Indeed cloud optical properties can be used to obtain essentially any an-
swer: unlike aerosols for instance, they give climate modelers a full dynamical
range. Now the tuning of cloud optical depth is justified primarily by uncertainty
in the parameterization of cloud physics rather than that of the radiative transfer.
This state of affairs is nonetheless rather discouraging for the cloud-radiation mod-
eling community because even one of its poorest representations of clouds can be
used to yield the desired answer. What would happen if an independently vali-
dated, hence fundamentally non-tunable, cloud-radiation scheme were delivered
to the GCM community?

• Remote Sensing Science. The 2-stream particle transport model was first formu-
lated and solved analytically by Schuster (1905); as this volume goes to press, we
celebrate its first 100 years of loyal service to the atmospheric radiation commu-
nity. The first computationally viable multi-stream solution for homogeneous slab
geometry was obtained well over 50 years ago by Chandrasekhar and co-workers
using discrete ordinates. These solutions for plane-parallel optical media are still
the workhorses in GCM-based climate modeling and in operational remote sens-
ing of cloud properties respectively. New photon properties such as polarization
and total path (from off-beam lidar or O2 spectroscopy) are being explored at the
same time as usage of the more familiar ones, wavelength and direction/pixel-
space, is being pushed to new heights. Indeed, hyperspectral is superceding mul-
tispectral sampling of wavelength and sub-meter resolutions are now available, at
least commercially. The increasing cost of space assets – by sheer numbers if not
by the unit – demands ever more realistic end-to-end modeling of existing and
future observation systems. This modeling activity will undoubtedly usher in an
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entirely new class of physics-based algorithms for remote sensing that exploit
rather than neglect spatial variability of the atmosphere/surface system. If noth-
ing else, the harsh economics of programmatic investment in space-based Earth
science will force the horizontally homogeneous plane-parallel atmosphere/cloud/
surface model into retirement because new theory is very inexpensive compared
to new hardware.

We again encourage the reader to delve into the suggested reading listed below with
a running commentary. Some of the entries offer damage mitigation strategies for
the widespread use of 1D standard models in applied radiative transfer (including
“effective” properties and other corrections). Others offer outright alternatives in the
form of new transport equations. Yet others describe new instrumental designs using
both passive and active modalities that exploit rather than neglect the effects 3D
radiative transfer.
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become routine in the relatively near future. The following publications in this broad
category are grouped as theoretical, O2-oriented, lidar-oriented, lightning-oriented,
and then listed chronologically. The avid reader is also encouraged to search the
bio-medical imaging literature for pathlength-based methods of probing soft tissue
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Davis, A.B. and A. Marshak (2004). Photon propagation in heterogeneous opti-
cal media with spatial correlations: Enhanced mean-free-paths and wider-than-
exponential free-path distributions. J. Quant. Spectrosc. Radiat. Transfer., 84,
3–34.

(5) New instrument and/or algorithm designs that exploit 3D RT: Here we exclude
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Res., 59–60, 295–312.
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(6) Further considerations on surface reflectance properties and/or reciprocity: A
few recent studies worth consulting are listed below, to go beyond the references
given in Sect. 3.10.3.
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(7) More studies on cloud models with non-plane-parallel geometry: In the introduc-
tion to the main text, we covered the historical (pre-1980) period where horizontally
finite (fundamentally non-plane-parallel) clouds where a popular topic, especially
using the diffusion approximation. In the 1990s, the trend was to return to plane-
parallel geometry for the outer geometry but the models were rife with internal 2D
or 3D variability. We predict a renewed interest in horizontally finite clouds to cope
with cumulus-type clouds. In Sect. 3.9.2, we discussed a recent application by one of
the authors (Davis, 2002) to remote-sensing that capitalized on a closed-form diffu-
sion theoretical result for spherical clouds. Here are a few references from the 1980s
where horizontally finite clouds are investigated in isolation or in (random or regular)
arrays, always going beyond diffusion theory.
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(8) Selected readings on the Independent Pixel/Column Approximation (IPA/ICA):
This is the simple idea of applying 1D RT to the column under every (computational)
grid-point or (satellite) pixel in the horizontal projection of a 3D cloud field. We see
this as a prediction for the 2D horizontal field of reflected or transmitted fluxes or
of the heating rate at a given level. Some authors consider the IPA/ICA to include
the next step which consists in spatially or statistically averaging this predicted field.
At any rate, the now popular IPA/ICA terminology was introduced during the 1990s
to describe an already common practice. In a sense, this is the default approach to
radiative budget estimation in climate models as well as in remote sensing operations
when unresolved variability is ignored. If reasonable assumptions are made about the
unresolved variability the averaging can, at least under some circumstances, predict
the domain-average quite accurately. So the IPA/ICA has become a real workhorse in
contemporary 3D RT. It was mentioned in the main text only in connection with two
early publications of primarily historical interest: one that appeared in the former
Soviet Union (Mullamaa et al., 1972), and another in the West (Ronnholm et al.,
1980), later and of course independently. In this volume alone, the IPA/ICA is used
extensively in Chaps. 6, 8, 9 and 12 either as a benchmark (from which to measure
“true” 3D RT effects mediated by horizontal flux divergences and convergences)
or as a framework (for producing domain-average properties by accounting for the
variability but ignoring the horizontal fluxes). Below is a sampler of studies where
the IPA/ICA is applied (some even before the abbreviations were adopted), assessed
(by comparison with more accurate 3D RT methods), and improved upon (without
sacrificing efficiency).
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Applications of the IPA/ICA:
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Corrections to the IPA/ICA:

Gabriel, P.M. and K.F. Evans (1996). Simple radiative-transfer methods for calculat-
ing domain-averaged solar fluxes in inhomogeneous clouds. J. Atmos. Sci., 53,
858–877.

Marshak, A., A. Davis, R.F. Cahalan and W.J. Wiscombe (1998). Nonlocal indepen-
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Cornet, C., H. Isaka, B. Guillemet and F. Szczap (2004). Neural network retrieval of
cloud parameters of inhomogeneous clouds from multispectral and multiscale
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Finally, we note that the “adjacency” effect covered under item (3) is a 3D RT process
that nonlinearly mixes surface reflectances in satellite imagery. This radiometric mix-
ing mediated by the ambient aerosol is what defeats the clear-sky equivalent of the
IPA: satellite pixels can no longer be analyzed separately to infer surface properties.
Because the aerosol atmosphere is optically thin, methods used in that context are
interestingly different from those favored by the cloud radiation community.
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The general form of the radiative transfer equation (RTE) cannot be solved analyti-
cally, and thus numerical methods must be applied. The solution is more difficult than
for many other linear equations in physics because 1) the RTE is a boundary value
problem with only partial information on each boundary (i.e., the incident radiance is
known, but the outgoing radiance is not), 2) the RTE is a mixed integro-differential
equation, and 3) the monochromatic RTE lives in a five dimensional space (three
independent spatial variables and two angular variables). It is this high dimension-
ality of the underlying space that makes three-dimensional radiative transfer solu-
tions very computer intensive. There are many numerical solution methods of the 3D
RTE, but they fall into two general classes: deterministic (or explicit) and statisti-
cal (or Monte Carlo) methods. Explicit methods solve for the whole radiance field
(or the source function from which radiances can be derived). The radiation field
is explicitly represented in some discrete fashion, and the elements of the field are
iteratively adjusted until agreement with the RTE is achieved. After the iterations
the desired radiative quantities (e.g., particular radiances or fluxes) are calculated
from the radiation field elements. By contrast, Monte Carlo methods estimate the
desired radiative quantities statistically with some level of confidence that depends
on the number of photon trajectories simulated and the variance of the estimate. In
addition, Monte Carlo methods provide us naturally with the implicit “dynamics” of
the radiative transfer process captured in order-of-scattering and photon pathlength
decompositions.



244 K.F. Evans and A. Marshak

4.1 Explicit Numerical Methods

This section discusses the general features of explicit 3D radiative transfer solution
methods. The methods considered are those with arbitrary accuracy, depending on
the chosen resolution, not those that are inherently approximate (covered in Chap. 6).
The key choice of how to discretize the radiation field is discussed at length. The
basic characteristics of two leading numerical methods are described. First, we in-
troduce important concepts by describing the most common plane-parallel radiative
transfer method.

4.1.1 Discrete Ordinates in Plane-Parallel Radiative Transfer

The unpolarized monochromatic plane-parallel solar radiative transfer equation is

µ
dI(τ, µ, φ)

dτ
= I(τ, µ, φ) − �0

4π

2π∫
0

1∫
−1

P (µ, φ; µ′, φ′)I(τ, µ′, φ′)dµ′dφ′

− �0

4π
P (µ, φ;−µ0, φ0 + π) F0e

−τ/µ0 , (4.1)

where I(τ, µ, φ) is the radiance in direction (µ, φ) at optical depth τ. (Here µ = 1 is
up and τ increases downward.) The first term on the right hand side is the sink due to
attenuation, the second term is the source due to light scattered into the direction of
travel, and the third term is the source of diffuse radiation. The second and third terms
together are called the source function. The term on the left hand side is sometimes
called the streaming term because it describes streaming (or advection) of radiation
in the absence of sources or sinks.

The usual way to discretize the angular variables in plane-parallel radiative trans-
fer is to expand in a Fourier series in azimuth angle and use discrete angles in zenith
angle. Chandrasekhar (1950) introduced the idea of discrete ordinates in radiative
transfer using Gaussian quadrature. The Fourier series in azimuth converts the radi-
ance from I(τ, µ, φ) to Im(τ, µ):

I(τ, µ, φ) =
M∑

m=0

Im(τ, µ) cos m(φ0 − φ) . (4.2)

If the scattering phase function is only a function of the scattering angle θs, then the
phase function can be expressed in terms of a Legendre series

P (cos θs) =
N∑

l=0

χlPl(cos θs) , (4.3)

where χl are the N + 1 Legendre coefficients and Pl are the Legendre polynomials
(see Chap. 3). Using the Legendre series representation for the phase function allows
us to calculate the Fourier transform of the phase function with the addition theorem
of spherical harmonics:
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P (µ, φ; µ′, φ′) =P (cos θs)

=
N∑

m=0

N∑
l=m

χl alm Pm
l (µ)Pm

l (µ′) cos m(φ′ − φ) ,
(4.4)

where Pm
l (µ′) are associated Legendre functions and

alm = (2 − δ0m)
(l − m)!
(l + m)!

where δij is a Kronecker-delta symbol. Substituting the Fourier series for the radi-
ance I(τ, µ, φ) and the addition theorem for the phase function into the RTE gives

µ
dIm(τ, µ)

dτ
= Im(τ, µ) − �0

2

N∑
l=m

almχlPm
l (µ)

+1∫
−1

Pm
l (µ′)Im(τ, µ′)dµ′

− F0e
−τ/µ0

�0

4π

N∑
l=m

almχlPm
l (µ)Pm

l (−µ0) . (4.5)

The sum over azimuth mode m was eliminated in the scattering integral over φ by
the orthogonality of cos m(φ − φ′). Thus, due to the addition theorem of spherical
harmonics the Fourier azimuth modes of the RTE separate, leaving N + 1 separate
equations (m = 0, . . . , N). This decoupling of the azimuthal modes is the reason a
Fourier series is used to discretize the azimuthal angle in the plane-parallel RTE.

The next task is to discretize the cosine of the zenith angle (µ) so the remaining
scattering integral becomes a summation (unfortunately there is no way to make the
RTE decouple in the zenith angle). Gaussian quadrature approximates an integral by
a sum

1∫
−1

f(µ)dµ ≈
Nµ∑
j=1

wjf(µj) , (4.6)

where µj are the discrete ordinates and wj are quadrature weights. The RTE with
the discrete ordinates is

±µj

dI±mj(τ)
dτ

= I±mj(τ)−
�0

2

Nµ∑
j′=1

wj′
[
P±+

mjj′I
+
mj′ + P±−

mjj′I
−
mj′

]
+S(±µj) (4.7)

where the radiance is a vector I±mj(τ) = Im(τ,±µj), the phase function is a matrix

P±+
mjj′ =

Nµ∑
l=m

(2 − δ0m)
(l − m)!
(l + m)!

χlPm
l (±µj)Pm

l (µj′) , (4.8)

and S is the discrete source term. The pluses refer to upwelling, and the minuses to
downwelling.
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The plane-parallel RTE is now discretized in angle so that the radiance is a vector
at each optical depth, I±(τ), with the + referring to upwelling discrete ordinates and
the − referring to downwelling ordinates. The RTE is then an ordinary differential
matrix equation

M
d
dτ

(
I+

I−

)
=
(

I+

I−

)
−
(

P++ P+−

P−+ P−−

)(
I+

I−

)
−
(

S+

S−

)
, (4.9)

where M is a diagonal matrix with ±µj entries, P is the discrete ordinate phase func-
tion matrix (which includes the �0/2 and weights wj), and S is the source vector.
The matrices have Nµ × Nµ entries.

Now we have a discrete system in the angular variables, though not in the optical
depth variable. The optical depth variable could be discretized with a uniform grid
and the derivative in the matrix RTE expressed with a finite difference. Then we
would have an algebraic system to solve with radiance vectors Im(τk, µj) of length
Nτ × Nµ for each Fourier azimuthal mode m. This system could be solved, for
example, by Gauss-Seidel iteration.

The more commonly used methods are the doubling-adding method (Grant and
Hunt, 1969) and the eigenmatrix method (Stamnes et al., 1988; Thomas and Stamnes,
1999). Both start with the matrix differential equation and hence give identical so-
lutions even though they have very different solution methods. The doubling-adding
method uses the linearity of the RTE to express the radiance vectors outgoing from
a layer (I+0 and I−1 ) in terms of the incident radiance vectors (I−0 and I+1 ) with the
so-called interaction principle:

I+0 = T+I+1 + R+I−0 + S+ I−1 = T−I−0 + R−I+1 + S− (4.10)

where T is the transmission matrix, R is the reflection matrix, and S is the source
vector (e.g., solar source). The transmission and reflection matrices and source vec-
tors are related simply to the terms in the matrix RTE for an infinitesimally optically
thin sublayer. The “doubling” formula, derived from the interaction principle, are
then used to compute the T , R, and S properties for a thick homogeneous layer with
a procedure that doubles the optical depth in each step. Similiar “adding” formulas
are used to combine layers with different properties. The interaction principle can
then be used to find the desired outgoing radiance.

The eigenmatrix method (e.g., DISORT – a DIScrete Ordinates Radiative Trans-
fer code) solves the differential matrix RTE using standard linear algebra techniques.
The homogeneous matrix RTE (i.e., with S± = 0) is turned into an eigenvalue prob-
lem by seeking solutions of the form I± = G±e−kτ. There are Nµ pairs of eigen-
values ±k and corresponding eigenvectors G±. The general solution for a single
homogeneous layer is

I± =
Nµ∑
j=1

C−jG±
−je

kjτ +
Nµ∑
j=1

CjG±
j e−kjτ + Z±

0 e−τ/µ0 . (4.11)

The particular solution is found by substituting Z±
0 e−τ/µ0 in the matrix RTE and

solving the resulting matrix equation for Z±
0 . The 2Nµ constants C±j are found from
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the boundary conditions (the two radiance vectors incident on the layer) after they
have been rescaled to avoid numerical ill-conditioning. The number of floating point
operations for a single layer increases as N3

µ × M for both the doubling-adding and
eigenmatrix methods, though the eigenmatrix method has fewer operations.

This section has illustrated for the plane-parallel system that there are two fun-
damental aspects of an explicit method: first, the discretization of the radiation field,
and second, the numerical solution method that solves the RTE in that discrete rep-
resentation. Even essentially exact numerical solution methods such as the doubling-
adding and eigenmatrix methods only solve the original RTE approximately because
the numerical system they solve is a discrete representation of the radiance field.
Their accuracy relative to true solution depends on the angular resolution as deter-
mined by the the number of quadrature zenith angles and Fourier azimuthal modes.

4.1.2 Discretization of the Radiation Field

The last section showed the two main methods by which the radiance field can be
discretized: spectrally and with discrete values. For the plane-parallel system the
azimuthal angle was represented spectrally with a truncated Fourier series, while the
zenith angle was represented with discrete ordinates. In three-dimensional radiative
transfer the spatial dimensions cannot be solved analytically, as the optical depth is
in plane-parallel transfer, and so they must be discretized as well. Thus there are two
angular dimensions (µ and φ) and three spatial dimensions (x, y, and z) to represent
in the computer in one of two basic ways. We will now show the implications of the
choice of discretization method for the angular and spatial variables.

The monochromatic 3D RTE with no internal sources is

sin θ cos φ
∂I(x,Ω)

∂x
+ sin θ sin φ

∂I(x,Ω)
∂y

+ cos θ
∂I(x,Ω)

∂z

= σ(x)
[
−I(x,Ω) +

�0(x)
4π

∫
P (x,Ω • Ω′) I(x,Ω′) dΩ′

]
, (4.12)

where Ω is the direction cosine vector with components (Ωx,Ωy,Ωz) =
(sin θ cos φ, sin θ sin φ, cos θ). The difference from the plane-parallel equation is the
addition of the first two streaming terms on the left hand side. These terms depend
on the azimuthal angle (with cos φ or sin φ), and so a Fourier series in φ no longer
results in separate equations for each azimuthal mode m. Instead the equation for the
mth mode couples to the m − 1 and m + 1 modes.

Discrete Ordinates

The simplest way to discretize the angular variables is to use discrete ordinates for
both zenith and azimuth angles. To keep the notation general we will express the
discrete ordinates in terms of direction cosines, Ωn and leave for later how to choose
the particular directions. Associated with each discrete direction is an integration
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weight, wn, for the scattering integral. The discrete ordinate RTE for the radiance In

in the nth ordinate direction is then

Ωn•∇In(x) = σ(x)

[
−In(x) +

�0(x)
4π

NΩ∑
n′=1

wn′P (x,Ωn • Ωn′) In′(x)

]
. (4.13)

Note that the computation of the scattering integral takes a few times N2
Ω floating

point operations, since there are NΩ incident and outgoing discrete ordinates. The
streaming term is very simple in discrete ordinates, being simply multiplication of
the radiance gradient by the direction cosine vector. The boundary conditions for
discrete ordinates are quite straightforward; for example, at a nonreflecting bound-
ary the radiance is simply specified for the incident discrete ordinates, I(xbnd,Ωn),
where Ωn • n < 0, n being the outward normal.

Spherical Harmonics

The appropriate spectral representation for the angular variables is an expansion in
spherical harmonics. The spherical harmonic radiance coefficients I+

lm and I−lm are
defined by

I(x, µ, φ) =
M∑

m=0

L,L+m∑
l=m

[
I+
lm(x)Y +

lm(µ, φ) + I−lm(x)Y −
lm(µ, φ)

]
, (4.14)

where m is the azimuthal mode, l is the meridional mode, and Y ±
lm(µ, φ) are ortho-

normal spherical harmonic functions. The classical spherical harmonic functions are
defined by

Y +
lm(µ, φ) = γlmPm

l (µ) cos(mφ) Y −
lm(µ, φ) = γlmPm

l (µ) sin(mφ) (4.15)

where Pm
l (µ) are associated Legendre functions and

γlm =
(

2l + 1
2π(1 + δ0m)

(l − m)!
(l + m)!

)1/2

.

The series truncation is called “triangular” if the l sum goes to L and “parallelogram”
if it goes to L + m (“rhomboidal” for M = L). For two-dimensional media with
variations only in x and z, if the solar azimuthal angle is chosen to be φ = 0 or
φ = π, then only the cosine φ terms are needed (i.e., I−lm = 0), so the number of
terms is reduced by about half.

The angular functions in the streaming terms of the RTE (4.12) result in coupling
between spherical harmonic terms. For example, multiplying I+

lm by cos θ results in
I+
l−1,m and I+

l+1,m terms. This makes the streaming terms much more complicated
than in the discrete ordinate approach. The scattering integral, however, is greatly
simplified as long as the phase function depends only on the scattering angle. Us-
ing the addition theorem of spherical harmonics and the orthogonality of spherical
harmonics, the scattering integral transforms to
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2π∫
0

1∫
−1

⎡⎣ 1
4π

2π∫
0

1∫
−1

P (µ, φ, µ′, φ′) I(µ′, φ′) dµ′dφ′

⎤⎦Y ±
lm(µ, φ)dµdφ

=
χl

2l + 1
I±lm .

(4.16)

In spherical harmonics space the scattering integral is simply multiplication by the
Legendre phase function coefficient, rather than a summation! The 3D RTE in spher-
ical harmonics is then

a−−
lm

∂I±l−1,m−1

∂x
+ a+−

lm

∂I±l+1,m−1

∂x
+ a−+

lm

∂I±l−1,m+1

∂x
+ a++

lm

∂I±l+1,m+1

∂x

+ b−−
lm

∂I∓l−1,m−1

∂y
+ b+−

lm

∂I∓l+1,m−1

∂y
+ b−+

lm

∂I∓l−1,m+1

∂y
+ b++

lm

∂I∓l+1,m+1

∂y

+ c−lm
∂I±l−1,m

∂z
+ c+

lm

∂I±l+1,m

∂z
= −σ

[
1 − �0χl

2l + 1

]
I±lm , (4.17)

where the x dependence of the radiance and optical properties is understood. The
values of the a, b, and c coefficients can be obtained from recurrence relations for
spherical harmonics (the ones that refer to radiance terms I±lm beyond the l and m
truncation limits are set to zero). There are only two c coefficients because the ∂I/∂z
streaming terms are independent of the azimuth angle φ and hence there is no cou-
pling to adjacent m terms.

The boundary conditions for spherical harmonics are more complicated than for
discrete ordinates because each spherical harmonic term involves both upwelling
and downwelling radiation. Furthermore, the truncated spherical harmonic series can
take on specified values only at a relatively small number of directions, not the whole
incident hemisphere. There are two approaches to applying boundary conditions,
both involving linear constraint equations on the spherical harmonic terms (I±lm) at
the boundaries. The first is to apply the boundary conditions at a set of specified
angles, Ωj , using (4.14). The second approach, due to Marshak (1947), constrains
the odd hemispheric moments of the radiance field at the top and bottom boundaries.
In 3D radiative transfer this generalizes to∫

Ω•n<0

[I(xbnd,Ω) − Ibnd(xbnd,Ω)] Y +
lm(Ω) dΩ = 0 , (4.18)

for l − m odd, where Ibnd is the specified incident radiance at the boundaries. Sub-
stituting in (4.14) for I(xbnd,Ω) and using Gaussian quadrature for the integration
over µ results in a set of linear equations constraining the I±lm(xbnd).

Comparison of Discrete Ordinates and Spherical Harmonics

We can now compare, from a computational point of view, the discrete ordinate and
spherical harmonic approaches to discretizing the angular aspects of the RTE. In
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both cases the radiance field at a point is represented by a finite length vector, In for
discrete ordinates and I±lm for spherical harmonics. For the same angular resolution,
the lengths of these vectors are comparable. The RTE can be written as a matrix
partial differential equation

Mx
∂I(x)
∂x

+ My
∂I(x)
∂y

+ Mz
∂I(x)
∂z

= C(x)I(x) + S(x) , (4.19)

with the streaming term on the left hand side, the extinction and scattering integral
expressed with the C matrix, and an internal source expressed with the S vector. In
the spherical harmonic basis the scattering matrix C is diagonal (4.17), while in the
discrete ordinate basis it is a full matrix (4.13). This means that the amount of compu-
tation for the scattering integral is much higher in discrete ordinates than in spherical
harmonics, especially when using high angular resolution (a long radiance vector I).
In discrete ordinates the streaming matrices Mx,y,z are diagonal, while in spherical
harmonics they are not diagonal, but still sparse, with at most four off-diagonal lines.
One could say that when scattering is the dominant process the spherical harmonic
basis is most natural, and if streaming is the dominant process then discrete ordinates
is the natural basis.

Fourier Spatial Discretization

Now consider the discretization of the spatial variables, which we restrict to the
Cartesian coordinates, x, y, and z. There are three basic approaches to spatial dis-
cretization: spectral, discrete grid, and finite element. First let us investigate the
spectral approach. Periodic horizontal boundary conditions are often chosen, so one
might consider Fourier transforming x and y. The horizontal part of the radiance
vector field can be represented in a Fourier series by

I(x, y, z) =
Nx−1∑
kx=0

Ny−1∑
ky=0

Îkx,ky
(z)e2πi(xkx/Lx+yky/Ly) , (4.20)

where Lx × Ly is domain size. Expressing (4.19) in Fourier series results in the
horizontal spectral RTE

2πikx

Lx
MxÎkx,ky

+
2πiky

Ly
My Îkx,ky

+ Mz

dÎkx,ky

dz

=
Nx−1∑
k′

x=0

Ny−1∑
k′

y=0

Ĉkx−k′
x,ky−k′

y
Îk′

x,k′
y

+ Ŝkx,ky
, (4.21)

where Ĉkx,ky
(z) is the Fourier transform of the optical properties matrix C(x) and

Ŝkx,ky
(z) is the Fourier transform of the source vector. The streaming terms have

been simplified by transforming the horizontal derivatives into simple multiplication.
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The horizontal spectral discretization has converted the 3D RTE into an ordinary dif-
ferential equation that can be solved with methods similiar to the plane-parallel ones
(e.g., the eigenmatrix method). This apparent simplification comes at a tremendous
cost. The multiplication by optical properties (C(x)I(x)) transforms into a convo-
lution. If the convolution is performed explicitly then the computational burden is
enormous. For example, for a domain with Nx = Ny = 100 the convolution re-
quires 108 matrix multiplications (remember that C is a matrix and I a vector whose
length depends on the angular discretization). The convolution could be performed
with fast Fourier transforms (i.e., transforming back to x and y to perform the multi-
plications), but this is still much more computation than non-spectral methods.

Spatial Grid

The most common and straightforward way to discretize the RTE is with a spatial
grid. The spatial derivatives in the streaming terms are then computed with some
form of finite differencing. First order and second order finite differencing schemes
are common. A simple second order scheme for a uniform grid is

Mx
Ii+1,jk − Ii−1,jk

2∆x
+ My

Ii,j+1,k − Ii,j−1,k

2∆y
+ Mz

Iij,k+1 − Iij,k−1

2∆z

= CijkIijk + Sijk , (4.22)

where Iijk is the radiance vector at grid point (x = i∆x, y = j∆y, z = k∆z). This
particular finite difference scheme has difficulties at the top and bottom boundaries
where zk+1 and zk−1 don’t exist, so other schemes are used in practice (e.g., see
Sect. 4.1.3). Higher order finite difference schemes are probably not warranted given
the errors of the angular discretization. Discrete ordinate approaches can use the in-
tegral formulation of the RTE, and then there are no derivatives to finite difference.
However, the source function and grid cell boundary radiances still must be inter-
polated across the grid cells, and these approximations can be thought of as a type
of finite differencing scheme. The grid approach to spatial discretization is compu-
tationally efficient because the right hand side of (4.22) is simply multiplication and
the streaming terms couples only adjacent grid points.

Finite element methods use local basis functions, with nonzero values only inside
small non-overlapping volumes with simple shapes (e.g., tetrahedral). The “trial”
functions vary smoothly within the volumes (e.g., piecewise linearly). The spatial
discretization of the radiance field is represented by the coefficients of the local basis
functions. For example, these coefficients could be the values of the radiance at the
four vertices (nodes) of the tetrahedron while the basis functions vary linearly from
one to zero along the tetradedron edges. The derivatives in the RTE streaming term
are readily expressed in terms of the finite element coefficients. Since the basis func-
tions are local, the finite element representation of the RTE is sparse, similiar to the
finite difference grid approach. The finite element method allows considerable flexi-
bility for complex boundary geometries encountered in engineering computations.
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Examples

We now give some examples in the literature of the different discretization ap-
proaches that have been implemented in multi-dimensional atmospheric radiative
transfer by describing some methods. Several methods have been developed that use
Fourier transforms in x and y and discrete ordinates in µ to reduce the RTE to an
ordinary differential equation in z. The adding-doubling technique was the solution
method in Martonchik and Diner (1985) and Stephens (1988), while a Ricatti trans-
formation of the RTE to an initial value problem was performed in Gabriel et al.
(1993). These methods have only been computationally feasible for small 2D (x
and z) problems for the reasons discussed above. Horizontal Fourier transforms are
practical for the related radiative transfer problem of a horizontally homogeneous at-
mosphere above an inhomogeneous surface (e.g., Lyapustin and Muldashev, 2001).

Many methods use discrete ordinates in µ and φ and a spatial grid for x, y, and z.
The solution methods almost invariably involve iterating the radiance field by calcu-
lating the new discrete ordinate radiances from the source function calculated with
the previous iteration’s radiances. The various solution methods are called Λ iter-
ation (Stenholm et al., 1991), successive order-of-scattering (Liou and Rao, 1996),
or Picard iteration (Kuo et al., 1996). The widely used Discrete Ordinate Method
(DOM) or SN method is discussed in Sect. 4.1.3.

The spherical harmonic spatial grid (SHSG) method (Evans, 1993) solves solar
and thermal atmospheric radiative transfer problems for two-dimensional media. The
angular part of the radiance field is discretized in spherical harmonics and the spatial
part with a grid. Centered finite differencing is used in x and two-point trapezoidal
differencing is used in z; both are second order accurate. Marshak boundary condi-
tions are implemented. A conjugate gradient method is used to iteratively solve the
coupled linear equations from the discretized RTE. The number of computational
operations is proportional to the product of the number of grid points, the number
of spherical harmonic terms, and the number of iterations. The number of itera-
tions is typically a few hundred, but increases with the area of low extinction values
(clear sky) as this expands the eigenvalue range of the matrix operator. Sharp extinc-
tion transitions (cloud edges) also cause spurious oscillations in the radiation field.
These problems with a purely spherical harmonic approach led to the development
of the spherical harmonic discrete ordinate method (SHDOM). SHDOM, which is
described in Sect. 4.1.4, uses a spatial grid and both types of angular discretizations
during the solution process.

More complex spherical harmonic approaches have been developed in the neu-
tron transport community. For example, the EVENT model (de Oliveira, 1986),
transforms the RTE to a second-order transport equation similiar to the diffusion
equation (cf. Chap. 5) but for higher order angular structure expressed with an even
parity spherical harmonic series. The EVENT model uses finite elements based on
tetrahedral volumes. Standard sparse matrix solution methods are used to solve the
finite element equations.

How the partial-differential/integral RTE is discretized to represent the radia-
tion field in a computer is the key to understanding the computational efficiency of
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various methods. A typical 3D problem with modest angular resolution can easily
take 40 million elements to represent the radiance field, e.g., 100 × 100 × 50 grid
points (see numerical example at the end of this chapter) with 80 discrete ordinates
at each point. The linear systems resulting from discretizing the RTE must therefore
be very sparse (in matrix language) so that the number of operations per iteration of
the solver is manageable. Computationally viable discretization approaches all use a
grid, or its close cousin finite elements, to represent the spatial part of the radiance
field. Either discrete ordinates or a spherical harmonic representation may be used
efficiently for the angular part of the radiance field. Spherical harmonics is better at
high angular resolution, however, because the scattering integral takes of order N
operations instead of N2 for discrete ordinates (where N is the number of angular
elements).

4.1.3 Discrete Ordinate Method (DOM)

The three-dimensional discrete ordinate or SN method was first developed in the
neutron transport community (Lathrop, 1966; Carlson and Lathrop, 1968). The SN

method has also been adopted and developed by the heat transfer community (Five-
land, 1988; Truelove, 1988; Modest, 1993). Its use in atmospheric radiation has been
much more limited, mainly to practitioners that have crossed over from the neutron
transport (Gerstl and Zardecki, 1985) and heat transport (Sanchez et al., 1994) com-
munities. The standard DOM technique has been modified to handle optically thick
cloudy cells for visualization purposes (Tofsted and O’Brien, 1998) and has been
extended to solve the 3D polarized RTE and applied to microwave remote sensing of
precipitation (Haferman et al., 1997).

The quadrature schemes for the discrete ordinate RTE (4.13) are usually chosen
to satisfy certain properties. The directions Ωn are chosen 1) to be symmetric so
they are invariant under rotation by 90◦, 2) to exactly integrate the zeroth, first, and
second moments,

NΩ∑
n=1

wn = 4π
NΩ∑
n=1

wnΩn = 0
NΩ∑
n=1

wnΩn • Ωn =
4π
3

, (4.23)

and 3) to exactly integrate the first moment over the x, y, and z half ranges,∑
Ωx>0

wnΩnx = π
∑

Ωy>0

wnΩny = π
∑

Ωz>0

wnΩnz = π . (4.24)

A quadrature set for the SN approximation has N(N + 2) discrete ordinates over
all eight octants. Table 4.1 gives the discrete ordinates in one octant for one possible
quadrature set satifying the conditions above. The discrete ordinate directions for all
octants are obtained from those in the table by choosing all eight possible positive or
negative combinations, i.e., (±Ωx,±Ωy,±Ωz).

The finite differencing of the RTE (4.13) is usually done with the concept of a
rectangular volume element ∆x×∆y×∆z (Modest, 1993). The radiance along the



254 K.F. Evans and A. Marshak

Table 4.1. Quadrature Sets, after Modest (1993)

Ordinates
Weights

Order Ωx Ωy Ωz w

S4 0.2958759 0.2958759 0.9082483 0.5235987
0.2958759 0.9082483 0.2958759 0.5235987
0.9082483 0.2958759 0.2958759 0.5235987

S6 0.1838670 0.1838670 0.9656013 0.1609517
0.1838670 0.6950514 0.6950514 0.3626469
0.1838670 0.9656013 0.1838670 0.1609517
0.6950514 0.1838670 0.6950514 0.3626469
0.6950514 0.6950514 0.1838670 0.3626469
0.9656013 0.1838670 0.1838670 0.1609517

S8 0.1422555 0.1422555 0.9795543 0.1712359
0.1422555 0.5773503 0.8040087 0.0992284
0.1422555 0.8040087 0.5773503 0.0992284
0.1422555 0.9795543 0.1422555 0.1712359
0.5773503 0.1422555 0.8040087 0.0992284
0.5773503 0.5773503 0.5773503 0.4617179
0.5773503 0.8040087 0.1422555 0.0992284
0.8040087 0.1422555 0.5773503 0.0992284
0.8040087 0.5773503 0.1422555 0.0992284
0.9795543 0.1422555 0.1422555 0.1712359

nth discrete ordinate at the center P of the volume is denoted by IPn. The radiances
at the faces of the volume are ITn, IBn, IEn, IWn, INn, ISn, for the top (+z), bottom
(−z), east (+x), west (−x), north (+y), and south (−y) faces. With this notation the
finite difference discrete ordinate RTE is

Ωx
IEn − IWn

∆x
+Ωy

INn − ISn

∆y
+Ωz

ITn − IBn

∆z
= σ(xP )[−IPn+SPn] , (4.25)

with

SPn =
�0(xP )

4π

NΩ∑
n′=1

wn′P (xP ,Ωn • Ωn′) IPn′ + SPn , (4.26)

where SPn is the source function at the center point xP in direction n, and SPn is the
value of any internal sources (e.g., single scattered solar source or thermal emission).
Obviously, the radiances at the common faces of adjacent volumes are equal (e.g.,
ITn of the current cell is the same as IBn for the cell above). The volume element
center radiance and the face radiances are related by

IPn = γITn +(1− γ)IBn = γIEn +(1− γ)IWn = γINn +(1− γ)ISn , (4.27)

which is known as “weighted diamond differencing” (Carlson and Lathrop, 1968).
Often γ = 1/2 is chosen. The updating scheme may go unstable for γ = 1/2, while
the less accurate choice of γ = 1 is apparently always stable.
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It is standard practice in neutron transport (e.g., Gerstl and Zardecki, 1985) to
compute the scattering integral summation in (4.26) by transforming the discrete or-
dinate radiances to spherical harmonics to take advantage of (4.16), and then trans-
forming back to discrete ordinates. This is the method used in SHDOM, described in
section 4.1.4, and results in the scattering integral summation taking of order N

3/2
Ω

rather than N2
Ω operations.

The solution method for the finite difference equations is iteration, first calcu-
lating the volume center radiances IPn from the source function and face radiances
using (4.25) and (4.27), and then calculating the cell center source function from
the cell center radiances using (4.26). In order to update the volume center radiance,
the radiances at the upstream faces must be known. Thus a specific “sweeping” pat-
tern is employed for each octant of discrete ordinates. The cell updating starts at the
appropriate boundary corner, where the inward pointing discrete ordinate radiances
are known from the boundary conditions, and progresses to adjacent cells that are
downstream according to the discrete ordinate direction. Let I

(x)
i,n , I

(y)
i,n , and I

(z)
i,n be

the incident (subscript ‘i’) radiances for direction n on the upstream faces in the x,
y, and z directions, respectively. Then combining (4.25) and (4.27) and solving for
the volume center radiance IPn gives the expression for updating the volume center
radiance:

IPn =
γσP SPn +

I
(x)
i,n |Ωx|
∆x +

I
(y)
i,n |Ωy|
∆y +

I
(z)
i,n |Ωz|
∆z

γσP + |Ωx|
∆x + |Ωy|

∆y + |Ωz|
∆z

. (4.28)

The outgoing (subscript ‘o’) radiances on the downstream faces are then obtained
by extrapolating the upstream and center radiances using (4.27), e.g., for the down-
stream x face

I(x)
o,n =

IPn − (1 − γ)I(x)
i,n

γ
. (4.29)

A schematic diagram (Fig. 4.1) shows the sweeping order for updating the cells.
Discrete ordinates with both Ωx and Ωz positive start each iteration in the lower left
corner where the radiances on the west and bottom faces are presumed to be known
from the boundary conditions. After updating the volume center radiance IPn for cell
1 and extrapolating to get the east and top face radiances, the algorithm moves on to
cell 2. After all the cells touching the lower boundary are updated then the sweeping
continues with the row of cells above, and so on. The updating proceeds similarly
for discrete ordinates in other quadrants, starting with one of the other three corners.
The generalization of the sweeping order to three dimensions should be clear. If the
boundary conditions are periodic in the horizontal then the radiances on the x and y
faces from previous iterations may be used for the starting cell. After the radiance
updating is finished using (4.28) and (4.29) for all the discrete ordinates, the source
function in each cell is updated from the discrete ordinate radiances with (4.26).

The DOM iterations given in (4.28) and (4.29) can lead to negative face radiances
for large cells. Most codes will correct these unphysical negative radiances, but this
effect can be a source of instability. The number negative radiances is minimized,
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Fig. 4.1. Depiction of discrete ordinate volume elements showing the top (T), bottom (B),
east (E), and west (W) faces surrounding the volume center point P. The four starting cells for
sweeping with discrete ordinates in the four quadrants are shown

and the accuracy improved, if the grid cell size is kept within (Fiveland, 1988)

∆x <
|Ωx|min

σ(1 − γ)
, ∆y <

|Ωy|min

σ(1 − γ)
, ∆z <

|Ωz|min

σ(1 − γ)
, (4.30)

and therefore higher SN approximations require finer meshes.
The source iteration method, i.e., iterating between the discrete ordinate radi-

ances and the source function, is akin to a successive order of scattering method.
Thus, the convergence is slow for large optical depths and single-scattering albedos
near unity. Various iteration acceleration methods have been developed in the neutron
transport literature such as diffusion synthetic acceleration (Larsen, 1982) and more
recently transport synthetic acceleration (Ramone et al., 1997). There are also more
advanced solution methods which can improve convergence dramatically (Balsara,
2001). The iterations proceed until a convergence criterion is reached, such as the
largest fractional change in discrete ordinate radiances less than a specified value.

After the iterations are done, the desired radiative quantities may be computed
from the discrete ordinate radiances. Hemispheric or actinic fluxes are calculated
using quadrature integration of the discrete radiances. Radiances in a specified direc-
tion may be computed accurately by using the discrete ordinate radiances to calculate
the source function in that direction and then using the integral form of the RTE to
compute the outgoing radiance.

One serious problem with the discrete ordinate method is the “ray effect.” The
streaming of photons can occur only along the discrete ordinates. Thus radiation
streaming away from localized sources through clear sky does so along discrete
rays, and between the rays there is less light. The ray effect tends to produce spa-
tial oscillations with some locations receiving more light from strong sources along
the discrete ordinates, while other locations are between the ordinates and received
less light. Obviously, the ray effect is reduced by having more ordinates (higher SN
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approximation). Scattering reduces ray effects as the radiation is redirected to new
directions. The finite grid resolution acts to diffuse radiation because the radiation
is considered constant on each cell face, so a coarse grid (perhaps paradoxically) re-
duces ray effects. Due to its oscillating nature the ray effect is much less apparent in
integrals of the radiance field, so computing radiances by integrating source function
diminishes the ray effect substantially.

4.1.4 Spherical Harmonics Discrete Ordinate Method (SHDOM)

SHDOM (Evans, 1998) is the most widely used explicit multi-dimensional radiative
transfer model in the atmospheric sciences. This is probably because it is highly
efficient, very flexible for atmospheric radiation problems, and publicly available.

SHDOM uses both the spherical harmonic and discrete ordinate representations
of the angular aspects of the radiation field during different phases of the solution
procedure. The spatial part of the fields is represented with a grid. Discrete ordinates
are chosen because they more physically model the streaming of radiation through
space. Spherical harmonics are chosen because they are more efficient for comput-
ing the scattering integral in the RTE and can more compactly represent the radi-
ation field. Rather than storing radiances, SHDOM stores the source function with
a spherical harmonic series at each grid point. The radiance field can be obtained
easily from the source function with the integral form of the RTE. The length of the
spherical harmonic series is adaptive, meaning that the truncation level varies from
grid point to grid point. Only a few terms of the series are needed if the grid point
has no scattering, the scattering is smooth (e.g., isotropic or Rayleigh), or the radi-
ance field is smooth (e.g., inside optically thick scattering media). This reduction of
memory usage is critical for 3D problems that take tens to hundreds of millions of
numbers to represent the radiance field.

The SHDOM solution method is source iteration, which is the usual approach for
the discrete ordinate (SN ) method. Each SHDOM iteration consists of four steps in
which

1. the source function is transformed from spherical harmonics to discrete ordinates,
2. the source function is integrated in the RTE to obtain the radiances along discrete

ordinates,
3. the radiance field is transformed to spherical harmonics, and
4. the source function in spherical harmonics is computed from the radiance field.

A flowchart illustrating the major components of the algorithm is shown in Fig. 4.2.
To speed convergence for optically thick, conservative scattering media, a sequence
acceleration based on geometrical convergence of the source function pattern is per-
formed every other iteration.

Section 4.1.2 showed that the source function in spherical harmonic space could
be computed in order N operations (where N is the number of spherical harmonic
terms). One would think, however, that the transforms between spherical harmonic
and discrete ordinate representations would negate this advantage over DOM. The
explicit form of the transforms given below illustrates how the azimuthal and zenith
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Initialize source function

Adaptive cell splitting

Transform source function
to discrete ordinates

Integrate RTE along
discrete ordinates

Transform radiance to
spherical harmonics

Compute source function

Convergence acceleration

Converged yet?No

Yes

Compute radiometric output

Fig. 4.2. Flowchart of the SHDOM algorithm: the 4-step iteration at the core of the algorithm
is in large letters

angle parts partially separate, leading to a substantial reduction in the number of op-
erations. The source function in spherical harmonics, S±

lm, is transformed to discrete
ordinates, S(µj , φk), by

Sjk =
M∑

m=0

cos(mφk)
L∑

l=m

γlmPm
l (µj)S

+
lm+

M∑
m=1

sin(mφk)
L∑

l=m

γlmPm
l (µj)S

−
lm ,

(4.31)

using (4.14) and (4.15). The µj are obtained from Gaussian quadrature, while the
φk are equally spaced, but the number at each µj (Nφ,j) is reduced for |µj | near 1.
This discrete ordinate set assures orthogonality of the spherical harmonic functions
for the truncation L = Nµ − 1 and M = Nφ/2 − 1. The discrete ordinate radiance
at each grid point is transformed to spherical harmonic space according to

I±lm =
Nµ∑
j=1

wjγlmPm
l (µj)

Nφ,j∑
k=1

ŵjk

[
cos(mφk)
sin(mφk)

]
Ijk , (4.32)

where wj are the Gauss-Legendre quadrature weights and ŵjk are the azimuthal
integration weights normalized appropriately. The azimuthal functions (e.g.,
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cos(mφk)) do not depend on l, and therefore the Fourier transforms in φ can be
performed separately. The associated Legendre functions do couple l and m, so the
major computational cost is in the sum involving Pm

l (µj). For more than about 12
azimuthal angles SHDOM uses an FFT for the azimuthal Fourier transform. If there
are N discrete ordinates then the number of floating point operations for both trans-
forms together is approximately 9N3/2, and less when using the azimuthal FFT (as-
ymptotically ∼ 3N3/2). This compares with at least 2N2 operations for calculating
the source function in discrete ordinates.

The second step in each iteration is to integrate the source function, S, in the
formal solution of the RTE,

I(s) = exp

⎡⎣− s∫
0

σ(s′)ds′

⎤⎦ I(0) +

s∫
0

exp

⎡⎣− s∫
s′

σ(t)dt

⎤⎦S(s′)σ(s′)ds′ , (4.33)

to obtain the radiance I at each grid point. The extinction and the product Sσ are
assumed to vary linearly across a grid cell. The source function is integrated back-
wards from a grid point along the discrete ordinate to an opposite cell face. The
initial radiance, I(0), and the Sσ product are bilinearly interpolated from the four
face grid points to the ray piercing point. The integration in (4.33) is approximated
by a formula that is accurate for small optical depth across the cell. A similiar sweep-
ing pattern as described for the DOM is used to assure that the radiances are known
at the entering cell faces.

The atmospheric extinction can vary tremendously from clear to thick clouds,
and so an adaptive grid is implemented to give additional spatial resolution where
it is needed. Grid cells in the original “base grid” are split in half according to a
criterion based on the change in source function across a grid cell. Figure 4.3 shows
the adaptive grid for a box cloud illuminated by solar radiation. The grid is refined
along the edges of the cloud, especially on the sunlit side where the source function
changes most rapidly. The fine scale features away from the cloud and shadow edges
in the downwelling flux are due to ray effects (as discussed in Sect. 4.1.3).

After the source function iterations have converged, the desired radiometric quan-
tities are computed. The hemispheric fluxes at each grid point are calculated by
quadrature integration during the discrete ordinate phase of the iterations. The mean
radiance and the net fluxes in x, y, and z are simply proportional to the first four
terms of the spherical harmonic expansion of the radiance. The radiance in specified
directions is calculated by integrating the source function with (4.33) through the
medium. For solar problems with the delta-M method (Wiscombe, 1977), the TMS
method (Nakajima and Tanaka, 1988) is used to compute the source function. This
method replaces the scaled, truncated Legendre phase function expansion for the
singly scattered solar radiation by the full, unscaled phase function expansion.
The multiply scattered contribution still comes from the truncated phase function.
The TMS method provides accurate radiances for directions away from the solar
aureole region.

SHDOM can perform unpolarized multi-dimensional radiative transfer with ei-
ther or both solar and thermal sources of radiation. Optical properties (extinction,
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Fig. 4.3. An example of SHDOM output for a 3 km × 1 km uniform box cloud with optical
depth of 20 and Mie phase function for λ = 1.65 µm and re = 10 µm. The solar zenith
angle is 60◦, and the horizontal solar flux is unity. There is no surface reflection. The SHDOM
parameters are Nµ = 8, Nφ = 16, and splitacc = 0.03. The top panel shows the base grid
with the adaptive cells split around the edges of the box cloud. The bottom panel shows the
downwelling flux

single-scattering albedo, and phase function) can be specified arbitrarily on the input
grid. Radiative transfer across a spectral band with molecular absorption lines can be
calculated with a k-distribution. The lower boundary condition may be Lambertian
reflection or one of a few types of bidirectional reflectance distribution functions. The
horizontal boundaries may be either periodic or open. SHDOM can also compute the
solutions to the independent pixel (1D) and independent slice (2D) approximations.
SHDOM is efficient enough to be able to solve 3D problems with modest angular
resolution and a million grids points (with typical grid cell optical depths around
unity) on modern computer workstations. As for any explicit multidimensional ra-
diative transfer model, one has to carefully balance the spatial and angular resolution
in SHDOM in order to achieve the desired accuracy most efficiently. Advice on how
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to achieve that balance is available in Evans (1998) and in the documentation avail-
able at the SHDOM Web site (http://nit.colorado.edu/shdom.html).

4.2 Statistical Modeling or Monte Carlo Methods

4.2.1 Introduction

The outline of this section is as follows. First we describe the main components of
any Monte Carlo (MC) method for radiative transfer; they are simulations of photon
free path and scattering angle. A simple example of a one-dimensional MC method
where photons can go either forward or backward illustrates the above blocks; for
clarity, a few lines long FORTRAN code that estimates reflectance, transmittance,
and absorptance is provided. Then we discuss the general concept of the MC ap-
proach and its accuracy.

We will distinguish between “straightforward” MC that directly simulates photon
trajectories from entering a cloud to exiting (or absorbing) and “local estimation”
MC that calculates contributions from each order-of-scattering. While the first one
is more applicable for estimating fluxes, the second one is appropriate for radiances.
We will mostly focus on radiances. Based on direct and adjoint radiative transfer,
we will discuss how to construct photon trajectories to estimate radiance in a small
solid angle around a given direction. An example demonstrates this technique for
calculations of nadir and zenith radiances. Finally, we describe the “maximum cross-
section” technique that substantially simplifies the simulation of photon paths in any
complex 3D medium.

Except for a few examples, none of the material is original. Most of the tech-
niques, including forward and backward MC and the maximum cross-section meth-
od, can be found in Marchuk’s (1980) book. A good review of the advantages and
disadvantages of MC methods in comparison with other numerical methods is given
by Lenoble (1985). A list of recommended literature on 3D Monte Carlo in cloudy
atmospheres is provided at the end of the chapter.

The purpose of this section is to give a general picture of MC with an emphasis
on the MC method as a solution to the monochromatic radiative transfer equation
(RTE) for a given 3D extinction field. Some aspects of longwave and broadband MC
methods and calculations can be found in Chaps. 9 and 10, respectively.

4.2.2 What is a Monte Carlo Method? Application to Radiative Transfer

The Monte Carlo method – or rather methods – is a technique for constructing prob-
abilistic models of real processes to estimate certain average properties, e.g., mathe-
matical expectations, variances and covariances. The main points of the MC method
are: (i) generation of random numbers α uniformly distributed between 0 and 1; (ii)
simulation of random values with more complicated distribution functions with the
help of α; (iii) calculation of the quantities of interest for the simulated process via
realizations of random values obtained in step (ii). In the present section we will deal
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with only the last two steps, as there are now many reliable and well-documented
pseudo-random number generators available (L’Ecuyer, 1998).

4.2.3 Simulation of Random Numbers

Continuous Random Number

Let us assume that a continuous random variable ξ is defined by its probability den-
sity p(x), xmin ≤ x ≤ xmax. To simulate a realization of ξ, we have to solve the
equation

F (ξ) = α (4.34)

where F (x) is the cumulative distribution function defined as,

F (x) =

x∫
xmin

p(x′)dx′ . (4.35)

That is,
ξ = F−1(α) , (4.36)

since,

Pr{ξ < x} = Pr{F−1(α) < x} = Pr{α < F (x)} = F (x) . (4.37)

Example

Let us simulate the distance l a photon travels before interaction in a homogeneous
medium; l is distributed with respect to the probability density p(x) = σ exp (−σx),∫∞
0

p(x)dx = 1, where the extinction coefficient σ is related to the mean-free-path
or “mfp” � = 1/σ. Solving the equation

l∫
0

p(x′)dx′ = α , (4.38)

we find l = −ln(1 − α)/σ or, equivalently,

l = −ln(α)/σ (4.39)

since both α and 1−α are identically and uniformly distributed random numbers on
the interval [0,1].
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Discrete Random Number

Let us now assume that a discrete random variable, ξ, is defined by a table(
x1 x2 . . . xN

p1 p2 . . . pN

)
(4.40)

where Pr(ξ = xi) = pi;
∑N

i=1 pi = 1. To simulate ξ we have to find the interval(∑j−1
i=1 pi,

∑j
i=1 pi

)
that α belongs to. In other words,

Pr

(
j−1∑
i=1

pi ≤ α ≤
j∑

i=1

pi

)
= pj . (4.41)

Example

After each act of interaction (collision) between a photon and a particle in the optical
medium, a photon can be either absorbed or scattered. Similar to (4.40), this can be
written as (

scattering absorption
�0 1 − �0

)
(4.42)

where �0 is the single-scattering albedo. According to (4.41), if 0 < α < �0 , then
ξ = scattering; otherwise, ξ = absorption.

4.2.4 An Example of 1D Monte Carlo for Radiative Transfer

In this section we apply the above examples to build a simple MC code to simulate
radiative transfer along a line where a photon can fly only forward or backward (see
Prog. 4.1). The medium is interval [0, h] with a photon mean-free-path equal to �,
thus, optical depth τ = h/�. When a photon encounters a particle, the probability of
absorption is 1 − �0. Upon each scattering, photons either continue forward or turn
backward. The asymmetry parameter g gives the probability p = (1 + g)/2 that a
photon goes forward and the probability 1 − p = (1 − g)/2 that it jumps backward.
Notice that g is still the mean cosine of the scattering angle which in 1D is either 0
or π.

We use a total of Np photons that cannot scatter more than Ns times; for simplic-
ity, after Ns scatterings a photon is called “lost.” The code has two loops: an outer
loop (from line 8 to line 31) over number of photons and an inner loop (from line 11
to line 29) over number of scatterings. A photon from its original position at z = 0
moves forward (µ = 1); the distance it travels before an interaction (∆z) is simu-
lated using (4.39) where mfp � = 1/σ and “random(iseed)” is a realization of α. The
new coordinate z + µ∆z is checked for escaping the medium as a transmitted (lines
14-16) or a reflected (lines 17-19) photons. If a photon is not absorbed at the collision
(for simulations, see (4.42) and lines 21-23), its direction [forward with (µs = +1)
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1 subroutine mc1D(h,mfp,g,w0,N_p,N_s,iseed,R,T,A)
2 real h, mfp, g, w0, p, z, del_z, R, T, A, random
3 integer N_p,N_s,iseed,n_r,n_t,n_a,mu,mu_s,ip,is
c INPUT
c h - geometrical thickness
c mfp - geometrical mean free path
c g - asymmetry parameter
c w0 - single-scattering albedo
c N_p - total number of photons
c N_s - maximum allowable number of scatterings per photon
c iseed - first seed for random number generator
c OUTPUT
c R - reflectance; T - transmittance; A - absorptance
4 n_r = 0
5 n_t = 0
6 n_a = 0
7 p = (1.+g)/2.
8 do ip = 1, N_p
9 z = 0.
10 mu = 1
11 do is = 1, N_s
12 del_z = -mfp*log(random(iseed))
13 z = z+mu*del_z
14 if (z.gt.h) then
15 n_t = n_t+1
16 goto 1
17 else if(z.lt.0.) then
18 n_r = n_r+1
19 goto 1
20 endif
21 if(random(iseed).gt.w0) then
22 n_a = n_a+1
23 goto 1
24 else
25 mu_s = 1
26 if (random(iseed).gt.p) mu_s = -1
27 mu = mu*mu_s
28 endif
29 enddo
30 1 continue
31 enddo
32 R = n_r/float(N_p)
33 T = n_t/float(N_p)
34 A = n_a/float(N_p)
35 return
36 end

Programme 4.1: A FORTRAN Monte Carlo code on a line
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or backward (µs = −1)] is simulated using probability p defined by asymmetry fac-
tor g [see lines 25-27 based on (4.41)]. Finally, reflectance R, transmittance T , and
absorptance A are estimated by averaging the outcome (lines 32-34).

If h = 10, mfp � = 1, g = 0.85, �0 = 0.99 then the code gives R = 0.391,
T = 0.515, A = 0.094.1 In this case, it is safe to take number of scatterings
Ns = 100. However, at large τ, the average number of scatterings is asymptoti-
cally proportional to τ for reflected photons and to (1− g)τ2 for transmitted photons
(see Chap. 12); so higher Ns will be needed for thicker clouds. If photons are lost,
the MC method is biased. Rather than repeated increasingly long executions, one
can use an unbiased method such as “Russian Roulette” or a random cut off of the
trajectory (e.g., Sobol, 1974), at the cost of slightly increased variance, to deal with
unusually long trajectories.

To estimate the accuracy of this method with respect to the number of photons,
in the next section we discuss the general aspects of MC methods that follow directly
from the main results of probabilistic theory (see, e.g., Papoulis, 1965).

4.2.5 General Concept of Monte Carlo Error Estimates

Let us assume that we obtained N independent realizations xi(i = 1, . . . , N) of a
random value ξ with finite mathematical expectation Eξ and variance Dξ. If N is
large enough, then the average of xi has a normal distribution and the inequality∣∣∣∣∣Eξ − 1

N

N∑
i=1

xi

∣∣∣∣∣ ≤ cβ

√
Dξ
N

(4.43)

is valid at a given confidence level β which defines the constant cβ. For example,
cβ = 0.67 if β = 0.5, cβ = 1.0 if β = 0.68 (the “1-sigma” value), cβ = 1.96 if
β = 0.95, and cβ = 3 if β = 0.997 (the famous rule of “3 sigmas”). More precisely
(e.g., Papoulis, 1965),

Pr

{∣∣∣∣∣Eξ − 1
N

N∑
i=1

xi

∣∣∣∣∣ < c

√
Dξ
N

}
≈ Φ(c) =

2√
2π

c∫
0

exp(−t2/2) dt (4.44)

and cβ is the solution of the equation,

Φ(c) = β . (4.45)

The variance Dξ can be estimated as

1 The exact answers are R = 0.3919, T = 0.5141, A = 0.0941, obtained from the analyt-
ical 2-stream/diffusion solution for “literal” 1D RT, i.e., particles moving on a segment.
This solution is given in Chap. 5; see expressions (5.31) for T and (5.33) for R with
τt = (1 − �0g)h/�, S =

√
(1 − �0)/(1 − �0g) (notice that there is no factor of 3

in literal 1D RT), and χ = 1 (the exact value for mixed boundary conditions in 1D RT).
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Dξ ≈ N

N − 1

⎡⎣ 1
N

N∑
i=1

x2
i −

(
1
N

N∑
i=1

xi

)2
⎤⎦ . (4.46)

For example, based on (4.43),
√

Dξ/N is an estimate of MC uncertainties with a
confidence level β = 0.68. This means that after N trials, with 68% probability, the
MC estimate, 1

N

∑N
i=1 xi, will have an error smaller than

√
Dξ/N where variance

Dξ is estimated using (4.46). Similarly, if ϕ is a function of a random argument ξ
defined by the probability density p(x), the expected value Eϕ is

E[ϕ(ξ)] =
∫

p(x)ϕ(x)dx ≈ 1
N

N∑
i=1

ϕ(xi) (4.47)

where points xi are distributed with respect to p(x). The variance Dϕ can be esti-
mated as in (4.46) with ϕ(x) instead of x. The above approximate equality is the key
MC estimate. We will use it repeatedly through the rest of the chapter.

Example

In order to estimate some average characteristics of solar radiative transfer in clouds
(exiting a cloud in a specific region of the boundary and of direction space), one
can simulate the fate of a photon from its “birth” (entering the cloud) to its “death”
(absorption or exiting the cloud). The random function ϕ(x) ≡ x will characterize
two possible outcomes

ϕ(x) ≡ x =

{
1, success (exiting a cloud at the given region and direction)

0, failure (absorbing/exiting a cloud in other regions/directions).
(4.48)

In this case, (4.47) yields

E[ϕ] ≈ 1
N

N∑
i=1

ϕ(xi) =
1
N

N∑
i=1

xi = q (4.49)

where q is the probability of success and can be interpreted as reflectance or trans-
mittance. For such a Bernoulli trial, we know a priori that D[ϕ] = q(1 − q). If ∆q
is the absolute uncertainty of (4.49), the relative accuracy (in %) will be estimated
from (4.43) as

100 × ∆q

q
≈ 100 ×

√
1 − q

Nq
(%) . (4.50)

The above method, called “straightforward” MC, works well if the estimated prob-
ability 0 < q < 1 is large enough. For the straightforward MC code in Sect. 4.2.4
with the stated parameter values, N = 100, 000 photons yields better than 1% accu-
racy for reflectance, transmittance and even absorptance. However, if q � 1, and an
accuracy of 1% is required, it follows from (4.50) that we need N ≈ 104/q photon
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histories. Since at present, even modern computers cannot trace more than N ≈ 109

histories in a reasonable computer time, q in (4.49) should not be smaller than 10−5.
Suppose we are trying to estimate radiance emerging from a field of 103−104 pixels.
The probability to exit in a small solid angle, say 1◦ around zenith, for each of these
pixels is about 3 × 10−6 − 10−7; so this task is computationally impossible without
sacrificing spatial or angular resolution, or both. To summarize, straightforward MC
is good enough for fluxes (solid angle 2π) across an arbitrary plane element while in
most cases it fails to estimate radiances in small solid angles.

The only alternative to straightforward MC is a “weighted” method based on
the solution of the RTE. Below we consider both the direct and the adjoint radiative
transfer processes and explain how to obtain much better and faster MC estimates of
radiance, once expressed as an integral like in (4.47). One of them which uses the
direct RTE is called “forward” MC or “local estimation;” the other uses the adjoint
radiative transfer process and is called “backward” MC. In contrast to forward MC
where photons travel as they do in the real atmosphere, in backward MC they start at
the detector and follow in the time-reversed direction along the photon path.

4.2.6 Forward Monte Carlo for Radiative Transfer

Based on monochromatic 3D RTE (4.12) and the Neumann series, we describe below
the forward Monte Carlo technique that estimates radiance in a small solid angle
around a given direction. We start from the integral RTE in optical medium M (see
Chap. 3, (3.125))

U(x,Ω) =
∫
M

∫
4π

k[(x′,Ω′) → (x,Ω)]U(x′,Ω′)dΩ′dx′ + f(x,Ω) (4.51a)

for the “collision density” – the product of extinction σ(x) and radiance I(x,Ω),

U(x,Ω) = σ(x)I(x,Ω) . (4.51b)

Here x = (x, y, z) and Ω = (Ωx,Ωy,Ωz) = (sin θ cos φ, sin θ sin φ, cos θ) where θ
and φ are zenith and azimuthal angles, respectively. The kernel

k[(x′,Ω′) → (x,Ω)]

= �0(x′)σ(x)
P (x′,Ω • Ω′)

4π
exp[−τ(x′, x)]
‖x − x′‖2

δ
(
Ω − x − x′

‖x − x′‖

)
(4.52)

is the probability density of the transition from point x′ and direction Ω′ into point x
and direction Ω, and the source function

f(x,Ω) =
∫
M

k[(x′,Ω0) → (x,Ω)] σ(x′) exp[−τ(x′, x0)]dx′ . (4.53)

P (x,Ω • Ω′)/4π is the normalized scattering phase function at point x. For sim-
plicity, for the rest of this chapter we assume that a phase function and the single-
scattering albedo are the same for all of M, i.e., P (x,Ω • Ω′) ≡ P (Ω • Ω′) and
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�0(x) ≡ �0, respectively. The generalization for space-dependent scattering phase
functions and single-scattering albedos is straightforward. Note that (4.51a)–(4.52)
can be obtained from (3.125)–(3.126) multiplying both parts of (3.125) by σ(x) and
substituting σs(x′)/σ(x′) in (3.126) by �0(x′). In other words, KI in (3.126) and k
in (4.52) are related as k[(x′,Ω′) → (x,Ω)] = KIσ(x)/σ(x′).

We assume that the boundary point x0 is illuminated by the incident beam in
the direction Ω0; τ(x′, x) is the optical distance between points x′ and x along Ω =
(x′ − x)/‖x′ − x‖:

τ(x′, x) =

‖x′−x‖∫
0

σ(x − Ωs)ds . (4.54)

Note that the factor ‖x′−x‖−2 in the definition of the radiative transfer kernel (4.52)
characterizes an element of solid angle dΩ. The δ-function term in (4.52) couples
direction Ω with points x and x′ and thus Ω′ • Ω = Ω′ • (x−x′)/‖x−x′‖ in the phase
function P . Both kernel k and source function f in (4.53) are probability densities.

For simplicity, we rewrite the integral equation (4.51a) in operator form as

U = KU + f (4.55)

where the integral operator K is defined by

[KU ](x,Ω) =
∫
M

∫
4π

k[(x′,Ω′) → (x,Ω)]U(x′,Ω′) dΩ′dx′ . (4.56)

The solutions of (4.55) can be represented as a Neumann series (i.e., by orders of
scattering)

U = f + Kf + K2f + K3f + . . . , (4.57)

which converges (e.g., Marchuk et al., 1980) for all bounded media with
0 ≤ �0 ≤ 1.

To simplify notations, we define the inner product of two functions a and b as,

(a, b) =
∫
M

∫
4π

a(x,Ω) b(x,Ω) dΩdx . (4.58)

Also, in addition to K, we introduce the adjoint to K operator defined as

[K+g](x,Ω) =
∫
M

∫
4π

k[(x,Ω) → (x′,Ω′)] g(x′,Ω′) dΩ′dx′ , (4.59)

hence (Kf, g) = (f,K+g). Now, substituting U by its Neumann series (4.57), we
have

U(x∗,Ω∗) = (U, δx∗Ω∗)

= (f, δx∗Ω∗) + (Kf, δx∗Ω∗) + (K2f, δx∗Ω∗) + . . .

= f(x∗,Ω∗) + (f,K+δx∗Ω∗) + (Kf,K+δx∗Ω∗) + . . .

(4.60)
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where
δx∗Ω∗(x,Ω) = δ(x − x∗) δ(Ω − Ω∗) (4.61)

is the Dirac delta-function and

[K+δx∗Ω∗ ](x,Ω) = k[(x,Ω) → (x∗,Ω∗)]

= �0σ(x∗)
P (Ω • Ω∗)

4π
exp[−τ(x∗, x)]
‖x∗ − x‖2

δ
(
Ω∗ − x∗ − x

‖x∗ − x‖

)
(4.62)

is the probability density of transition from point x and direction Ω into point x∗ and
direction Ω∗.

Let us assume that we are interested in calculating radiance I at a given point x∗

in an arbitrarily small solid angle ∆Ω∗ around direction Ω∗,

I∆Ω∗(x∗) =
∫

∆Ω∗

I(x∗,Ω)dΩ =
1

σ(x∗)

∫
∆Ω∗

U(x∗,Ω) dΩ . (4.63)

Integrating (4.60) over ∆Ω∗, and dividing both parts by σ(x∗), we get

I∆Ω∗(x∗) =
∫

∆Ω∗

f(x∗,Ω)
σ(x∗)

dΩ + (�0f,Ψf)

+ (�0Kf,Ψf) + (�0K
2f,Ψf) + . . . (4.64)

with “contribution” function Ψf defined as (subindex “f” stands for “forward”),

Ψf(x,Ω) =
P (Ω • Ω∗)

4π
× exp[−τ(x∗, x)]

‖x∗ − x‖2
χ∆Ω∗(Ω) (4.65)

where

χ∆Ω∗(Ω) =

{
1, Ω ∈ ∆Ω∗

0, otherwise
(4.66)

is the indicator function of the solid angle ∆Ω∗. Note that, up to this point we have
used only identities, nothing to do with MC simulation yet. Now we use a MC tech-
nique to estimate the terms in (4.64) which are all integrals of the type (4.47).

Recalling the definition of f in (4.53) and applying MC estimate (4.47), we can
get the first term in (4.64) as∫

∆Ω∗

f(x∗,Ω)
σ(x∗)

dΩ =
∫
M

{�0σ(x) exp[−τ(x, x0)]}Ψf(x,Ω0)dx

≈ 1
N

N∑
i=1

Ψf(x1i,Ω0)

(4.67)

where points (x1i,Ω0) are simulated with respect to the probability density p(x) =
�0σ(x) exp[−τ(x, x0)]. We use x0 and Ω0 to denote the starting position and direc-
tion of the photon trajectory; these may be either deterministic or random (according
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to the pdf defined by the forcing term). The second and third terms in (4.64) can be
estimated as follows,

(�0f,Ψf) =
∫
M

∫
4π

[�0f(x,Ω)]Ψf(x,Ω) dΩdx ≈ 1
N

N∑
i=1

Ψf(x2i,Ω2i) (4.68)

and

(�0Kf,Ψ) =
∫
M

∫
4π

[�0Kf(x,Ω)]Ψf(x,Ω) dΩdx

≈ 1
N

N∑
i=1

Ψf(x3i,Ω3i)

(4.69)

where points (x2i,Ω2i) and (x3i,Ω3i) are simulated with respect to the density
p(x) = �0f(x,Ω) and �0Kf(x,Ω), respectively. The approximation of other inte-
grals in (4.64) is obvious (increasing powers of K appear).

Physically, (4.67)-(4.69) estimate the contribution of the first, second and third
scattering-order photons, respectively. Thus to estimate I∆Ω∗(x∗) we need to simu-
late the photon’s trajectory (x1,Ω1) → (x2,Ω2) → (x3,Ω3) → . . . → (xm,Ωm)
where m is the random order of the last scattering, always finite in a finite medium.
Each point (xk,Ωk) is simulated with respect to the density �0K

k−2f(k = 2, 3 . . .).
For instance, in the solar problem, the first point (x1,Ω1) has Ω1 = Ω0 and x1 is
simulated according to �0σ(x) exp[−τ(x, x0)] starting at a random x0 at cloud top.
After each scattering at the point xk the contribution Ψf(xk,Ωk) is included in the
statistical estimation of I:

I∆Ω∗(x∗) ≈ 1
N

N∑
i=1

m(i)∑
k=1

Ψf(xki,Ωki)

=
1
N

N∑
i=1

m(i)∑
k=1

P (Ωki • Ω∗)
4π

exp[−τ(x∗, xki)]
‖x∗ − xki‖2

χ∆Ω∗

(
x∗ − xki

‖x∗ − xki‖

)
.

(4.70)

Note that if Ψ in (4.70) were defined as in (4.48), namely, if Ψ were equal to
either 1 or 0, depending on the success or failure of a photon to exit a cloud at a
given point x∗ in a small solid angle ∆Ω∗ around direction Ω∗, we would get the
“straightforward” MC method which is much less efficient than the above forward
MC with the “contribution” function Ψ defined by (4.65).

The statistical estimate (4.70) can be modified by including weights Wki; e.g., if
we simulate without absorption (Kkf instead of �0K

kf ), then Wki = �0Wk−1i,
W1i = 1. Thus, the general form of the estimate of I∆Ω∗(x∗) can be written

I∆Ω∗(x∗) ≈ 1
N

N∑
i=1

m(i)∑
k=1

WkiΨf(xki,Ωki)

=
1
N

N∑
i=1

m(i)∑
k=1

�k
0

P (Ωki • Ω∗)
4π

exp[−τ(x∗, xki)]
‖x∗ − xki‖2

χ∆Ω∗

(
x∗ − xki

‖x∗ − xki‖

)
.

(4.71)
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These algorithms are called “local estimates” in the MC literature (e.g., Marchuk
et al., 1980). Note that if a detector is located inside the cloud, the contribution from
the scattering points x close to x∗ will lead to a large increase of the variance in
(4.46) which in fact diverges as N → ∞. In this case, local estimate (4.71) becomes
inappropriate and a backward MC method (see next section) is needed. If, however,
x∗ is far away from the photons’ trajectories (e.g., a satellite), and/or the distance
between x∗ and xk, for which χ∆Ω∗ = 1, does not change much from scattering to
scattering, the factor ‖x∗ − x‖−2 can be omitted (see example below).

Example of Calculations of Nadir and Zenith Radiances as a Local Estimate

The upward or downward radiances I for each cell S on a horizontal grid, can be
estimated by the flux of radiant energy across

• the upper boundary of S (at z = h) in the zenith direction (Ω+), or
• the lower boundary of S (at z = 0) in the nadir direction (Ω−),

I±(S) =

∫
S
I(x,Ω±)dx∫

S
dx

= E[Ψ(S,Ω±)] ≈ 1
N

N∑
i=1

Ψi(S,Ω±) . (4.72)

Here Ψi(i = 1, . . . , N) are N independent realizations (photon trajectories) of a
random function Ψ. For each realization (a trajectory), the random value Ψ(S,Ω±) is
the contribution to the grid-point S into the direction Ω± from all orders of scattering:

Ψ(S,Ω±) ≈
m∑

k=1

�k
0

P (Ωk • Ω±)
4π

χS(xk)

{
exp[−σS(h − zk)], zenith(+)
exp[−σSzk],nadir(−)

.

(4.73)

Here m is the (random) last scattering order of the photon trajectory, σS is the ex-
tinction (assumed vertically uniform) of the grid-point S, xk = (xk, yk, zk) are the
coordinates of the point of photon’s kth scattering, Ωk is its direction of propagation
before this scattering event, and finally, χS(xk) indicates whether the photon was in
cell S or not at its kth scattering:

χS(xk) =

{
1, xk, yk ∈ S
0, otherwise

. (4.74)

Finally, we add two more comments. First, to omit the factor ‖x∗−x‖−2 in (4.73), we
assumed that the (linear) dimensions of the cloud, both for S and h, are much smaller
than the distance between cloud and detectors. However, in general, neglecting the
factor ‖x∗ − x‖−2 in (4.71) may lead to inaccurate results. Second, we note that a
strongly forward peaked phase function can at some point Ωk close to Ω∗ (or Ω±
as in this example) yield a very large value that makes estimate (4.71) (or (4.72))
inaccurate. For this case, Antyufeev (1996) proposed a modification of the above
calculation scheme that can substantially increase the efficiency of MC calculations.
The proposed modification substitutes the original forward-peaked phase function by
an approximation called a “pseudo-transport” where the phase function is replaced
by a linear mixture of a peak-shaped function with a “regular” (smooth) one.
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4.2.7 Backward Monte Carlo

As forward MC for radiative transfer is based on the integral RTE, backward MC
is based on its adjoint counterpart. Let I+ be the solution of the adjoint integro-
differtial equation (see Chap. 3, (3.156)) with delta-function source and homoge-
neous boundary conditions; thus I+ is also the solution of the adjoint integral equa-
tion

I+ = K+I+ + g (4.75)

with the adjoint operator K+ defined in (4.59) and

g(x,Ω) = exp[−τ(x, x∗)]δ(Ω − Ω∗) . (4.76)

Using the reciprocity theorem (Chap. 3, Sect. 3.10) one can show that:

I(x∗,Ω∗) =
∫
M

∫
4π

I+(x,−Ω)F (x,−Ω) dΩ dx , (4.77)

where

F (x,Ω) = �0σ(x)
P (Ω0 • Ω)

4π
exp[−τ(x, x0)] (4.78)

describes external illumination of the medium at the boundary point x0 and the di-
rection Ω0.

Representing I+ by its Neumann series,

I+ = g + K+g + K+2g + K+3g + . . . (4.79)

and substituting (4.79) and (4.78) into (4.77), we get

I(x∗,Ω∗) =
∫
M

∫
4π

g(x,−Ω)F (x,−Ω) dΩ dx

+
∫
M

∫
4π

[K+g](x,−Ω)F (x,−Ω) dΩ dx

+
∫
M

∫
4π

[K+2
g](x,−Ω)F (x,−Ω) dΩ dx + . . . .

(4.80)

Unlike in the forward MC scheme, we are going to simulate here the adjoint trajec-
tory according to the adjoint operator K+, starting from the point (x∗,−Ω∗).

Similar to (4.67)-(4.69), (4.80) can be rewritten in form of a sum of terms that
are “convenient” for MC estimates, i.e., looking like (4.47), namely

I(x∗,Ω∗) =
∫
M

{�0σ(x) exp[−τ(x, x∗)]}Ψb(x,−Ω∗) dx

+
∫
M

∫
4π

{�0σ(x)[K+g](x,−Ω)}Ψb(x,−Ω) dΩdx

+
∫
M

∫
4π

{�0σ(x)[K+2
g](x,−Ω)}Ψb(x,−Ω) dΩ dx + . . .

(4.81)
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where

Ψb(x,Ω) =
P (−Ω0 • Ω)

4π
exp[−τ(x, x0)] (4.82)

is the contribution function for the backward MC. Now we are ready to use MC for
estimating the integrals in (4.81).

We have

I(x∗,Ω∗) ≈ 1
N

N∑
i=1

Ψb(x1i,−Ω∗) +
1
N

N∑
i=1

Ψb(x2i,−Ω2i)

+
1
N

N∑
i=1

Ψb(x3i,−Ω3i) + . . . =
1
N

N∑
i=1

m(i)∑
k=1

Ψb(xki,−Ωki) .

(4.83)

Here the first set of random points, (x1i,−Ω1i) = (x1i,−Ω∗), is simulated with
respect to the density �0σ(x) exp[−τ(x, x∗)], the second set, (x2i,−Ω2i), with re-
spect to �0σ(x)[K+g](x,−Ω), and so on. Finally, as for forward MC, if we simulate
“without absorption,” its effect can be incorporated by using weights:

I(x∗,Ω∗) ≈ 1
N

N∑
i=1

m(i)∑
k=1

WkiΨb(xki,−Ωki)

=
1
N

N∑
i=1

m(i)∑
k=1

�k
0

P (Ωki • Ω0)
4π

exp[−τ(xki, x0)] .

(4.84)

To summarize, for backward MC we simulate the adjoint trajectories starting
from the point (x∗,−Ω∗) and at each collision, we calculate Ψb defined in (4.82).
In contrast, for forward MC we start trajectories from the point (x0,Ω0) and at each
collision the function Ψf defined in (4.65) is calculated. The main difference between
Ψb and Ψf is a factor ‖x∗ − x‖−2; hence, when the detector is inside the scattering
medium, D[Ψb] � D[Ψf ] [see (4.46)] thus much faster convergence of the estima-
tion (4.43). Another advantage of the backward MC scheme is that photons leave the
detector in a given direction. Besides, in forward MC, not all scattering points xk con-
tribute to the estimate of I∆Ω∗(x∗) but only those with (x∗−xk)/‖x∗−xk‖ ∈ ∆Ω∗

as seen in (4.65)–(4.66). From the other side, since the backward Monte Carlo uses
an adjoint trajectory, it normally yields radiance at only a single point and a single
direction, whereas one trajectory in the forward MC can yield contributions to many
detectors x∗j in many directions Ω∗

j . Receiver position x∗ and orientation Ω∗ can
be chosen at random and/or assigned weights to simulate “less local” estimates but
experience proves that there is eventually a trade-off and forward (and even straight-
forward) methods can become equally efficient.

4.2.8 The Maximum Cross-Section Method

Straightforward and forward (backward) MC schemes all call for the simulation
of photon trajectories, from a source to a sink. This is achieved efficiently with
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the “Maximum Cross-Section Method” which involves transforming the integro-
differential RTE (4.12) to (Marchuk et al., 1980, p.9)

Ω •∇I(x,Ω) + σmaxI(x,Ω)

= σmax

∫
4π

[
σ(x)
σmax

�0
P (Ω • Ω′)

4π
+
(

1 − σ(x)
σmax

)
δ(Ω − Ω′)

]
I(x,Ω′) dΩ′

(4.85)

where σmax = maxx{σ(x)} is the maximal extinction.
Equation (4.85) can be interpreted as the transport equation with constant extinc-

tion and a modified phase function equal to{
�0P (Ω • Ω′)/4π, with probability σ(x)/σmax (a “physical” scattering)

δ(Ω − Ω′), otherwise (a “mathematical” scattering)
.

(4.86)
In this method, the photon jumps immediately to its next scattering point rather than
accumulating optical depth cell-by-cell and interpolating within the last one. This
makes the computer time almost insensitive to (i) whether we use 1D, 2D or 3D
geometry; (ii) the variability of σ(x); and (iii) the number of cells. All three of these
factors substantially slow the execution of standard MC for inhomogeneous media.
However, if σmax is very large, photon steps are very small and the method becomes
impractical.

4.3 Examples of Radiances for the 3D Cloud Fields and
Comparison with SHDOM

Our first example is a cloud field retrieved pixel-by-pixel from a LandSat scene with
128 × 128 pixels (Oreopoulos and Davies, 1998) used in the Intercomparison of
3D Radiation Codes project (I3RC; Cahalan et al., 2005). Figure 4.4 shows zenith
(downward) and nadir (upward) radiances calculated with 108 and 109 photons, re-
spectively, for solar zenith angle of 60◦. It is clearly seen that the lower images (with
109 photons) have much smaller noise than the middle ones (with 10 times less pho-
tons). The majority of pixels in the upper images have an error less than 1%. The
errors at the boundary are much larger and can exceed 5 and 10%. The absolute er-
rors are about 0.005. As explained in Sect. 4.2.5, this means that with about 70%
probability, the second decimal of the pixel-by-pixel radiances results is either cor-
rect or differs from the true value by unity.

The above MC results are in excellent agreement with SHDOM from Sect. 4.1.2;
a scatter plot in Fig. 4.5 shows the same row # 101 as in Fig. 4.4 for both nadir and
zenith radiances and both methods. The average difference between the two methods
is less than 1% while the pixel-by-pixel differences are at the level of 2-3% with
the absolute difference of about 0.01. This is very close to the level of MC noise.
Panels (b) and (c) illustrate a 1.5 km fragment (from the same row) of zenith and
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Fig. 4.4. Zenith and nadir radiances calculated with 108 and 109 photons, respectively. Solar
zenith angle is 60◦ from the left. Henyey-Greenstein phase function with g = 0.85 and single-
scattering albedo �0 = 1 is used. Surface is black. The horizontal grid size is 128× 128 with
30 m pixels. (a) Zenith radiances calculated with 109 photons. The grayscale goes from 0
(black) to 0.91 (white). (a′) Nadir radiances calculated with 109 photons. The grayscale is the
same as in panel (a). (b) Horizontal cut along the row # 101 shown in panel (a) from the field
of zenith radiances calculated with 108 photons. With the “one-sigma,” the error bars are also
added. (b′) Same as in panel (b) but for nadir radiances. (c) Same as in panel (b) but for 109

photons. (c′) Same as in panel (b′) but for 109 photons
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Fig. 4.5. Comparison between MC and SHDOM for row # 101 in Fig. 4.4: (a) scatter plot of
higher (Nµ = 12, Nφ = 24) and lower (Nµ = 6, Nφ = 12) accuracy SHDOM results versus
109-photon MC, and 50 pixel (1500 m) fragment with MC and two SHDOM results for zenith
(b) and nadir (c) radiance

nadir radiances, respectively. In addition to higher accuracy SHDOM (Nµ = 12,
Nφ = 24), lower accuracy SHDOM calculations (Nµ = 6, Nφ = 12) are also shown.
The convergence of SHDOM is well pronounced. We can see that SHDOM radiances
are slightly smoother than its MC counterparts. This is because SHDOM (tri)linearly
interpolates the extinction between grid points while the MC assumes uniform cells
and has inherent noise. Note that the computer time used to run the lower accuracy
SHDOM is 5 times shorter than that for higher accuracy; in case of the MC, computer
time is obviously proportional to the number of photons. Finally, the 109-photon MC
run was only 2–3 times slower than the high-accuracy SHDOM run. However, the
MC time-performance versus SHDOM worsens for a more general situation of more
asymmetric Mie phase functions and other (oblique) output directions.

The next example, also used in the I3RC, illustrates a cumulus cloud field from a
Large Eddy Simulation (LES) model by Stevens et al. (1999). This cloud represents
a continental shallow boundary layer and has cloud fraction 0.23 and grid structure
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Fig. 4.6. Optical depth field and four bidirectional reflectances (at nadir and 60◦ zenith angle
and 0◦, 90◦, 180◦ viewing azimuths) calculated with 5×108 photons. The average error is less
than 2%. The leftmost panel shows optical depth at the near infrared wavelength of 2.13 µm.
The cloud is illuminated from the north with solar zenith angle of 60◦. Droplet scattering is
described by the Mie phase function with effective radius re = 10 µm. Surface is assumed
to be Lambertian with uniform surface albedo 0.2. Rayleigh scattering, molecular absorption
and aerosols with vertically varying extinction are used to model the clear atmosphere. The
grayscale goes from 0 (black) to 1 (white)

100 × 100 × 36 with 66.7 × 66.7 × 40 m3 cells. The optical depth field for the near
infrared wavelength of 2.13 µm is plotted on the leftmost panel of Fig. 4.6. Right
panels in Fig. 4.6 illustrate four bidirectional reflectances at nadir and 60◦ zenith
angle and 0◦, 90◦, 180◦ viewing azimuths.

Note that plotted on the same grayscale, out of four bidirectional reflectances,
the back-scattering image (ϕv = 0◦) is the brightest on average (mean I = 0.32)
because it does not have any shadows. However, the brightest pixels (max I = 1.1)
are in the forward-scattering direction (ϕv = 180◦); this is not a 3D effect per se;
rather it is due to the scattering phase function’s forward peak. What is a 3D feature is
a larger contrast between illuminated and shadowed pixels seen most dramatically in
the forward-scattering direction. The nadir reflectance (θv = 0◦) and the “sideway”
viewing angle (ϕv = 90◦) are the darkest, having mean I = 0.17. The minimum
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values of all images are about the same (min I = 0.015) and are reached at shadowed
pixels on the ground.

References

Antyufeev, V.S. (1996). Solution of the generalized transport equation with a peak-
shaped indicatrix by the Monte Carlo method. Russ. J. Numer. Anal. and Model-
ing, 11, 113–137.

Balsara, D. (2001). Fast and accurate discrete ordinate methods for multidimensional
radiative transfer. Part I, basic methods. J. Quant. Spectrosc. Radiat. Transfer, 69,
671–707.

Cahalan, R.F., L. Oreopoulos, A. Marshak, K.F. Evans, A.B. Davis, R. Pincus,
K. Yetzer, B. Mayer, R. Davies, T.P. Ackerman, H.W. Barker, E.E. Clothiaux, R.G.
Ellingson, M.J. Garay, E. Kassianov, S. Kinne, A. Macke, W. O’Hirok, P.T. Par-
tain, S.M. Prigarin, A.N. Rublev, G.L. Stephens, F. Szczap, E.E. Takara, T. Várnai,
G. Wen, and T.B. Zhuravleva (2005). The international Intercomparison of 3D Ra-
diation Codes (I3RC): Bringing together the most advanced radiative transfer tools
for cloudy atmospheres. Bull. Amer. Meteor. Soc., to appear in Sept 2005 issue.

Carlson, B.G. and K.D. Lathrop (1968). Transport theory – the method of discrete
ordinates. In Computing Methods in Reactor Physics. Gordon & Breach, New
York (NY).

Chandrasekhar, S. (1950). Radiative Transfer. Oxford University Press, reprinted by
Dover Publications (1960), New York (NY).

de Oliveira, C.R.E. (1986). An arbitrary geometry finite element method for multi-
group neutron transport with anisotropic scattering. Prog. in Nuclear Engin., 18,
227–236.

Evans, K.F. (1993). Two-dimensional radiative transfer in cloudy atmospheres: The
spherical harmonic spatial grid method. J. Atmos. Sci., 50, 3111–3124.

Evans, K.F. (1998). The spherical harmonics discrete ordinate method for three-
dimensional atmospheric radiative transfer. J. Atmos. Sci., 55, 429–446.

Fiveland, W.A. (1988). Three-dimensional radiative heat-transfer solutions by the
discrete-ordinates method. J. Thermophysics and Heat Transfer, 2, 309–316.

Gabriel, P.M., S.-C. Tsay, and G.L. Stephens (1993). A Fourier-Riccati approach to
radiative transfer. Part I: Foundations. J. Atmos. Sci., 50, 3125–3147.

Gerstl, S.A. and A. Zardecki (1985). Discrete-ordinate finite-element method for
atmospheric radiative transfer and remote sensing. Appl. Optics, 24, 81–93.

Grant, I.P. and G.E. Hunt (1969). Discrete space theory of radiative transfer i: Fun-
damentals. Proc. Roy. Soc. London, A313, 183–197.

Haferman, J.L., T.F. Smith, and W.F. Krajewski (1997). A multi-dimensional
discrete-ordinates method for polarized radiative transfer. I. Validation for ran-
domly oriented axisymmetric particles. J. Quant. Spectrosc. Radiat. Transfer, 58,
379–398.



4 Numerical Methods 279

Kuo, K.-S., R.C. Weger, R.M. Welch, and S.K. Cox (1996). The Picard iterative
approximation to the solution of the integral equation of radiative transfer. Part II:
Three-dimensional geometry. J. Quant. Spectrosc. Radiat. Transfer, 55, 195–213.

Larsen, E.W. (1982). Unconditionally stable diffusion synthetic acceleration meth-
ods for the slab geometry discrete ordinates equations. Part I: Theory. Nuclear
Sci. Engin., 82, 47.

Lathrop, K.D. (1966). Use of discrete-ordinate methods for solution of photon trans-
port problems. Nuclear Sci. Engin., 24, 381–388.

L’Ecuyer, P. (1998). Random number generation. In The Handbook of Simulation. J.
Banks (ed.). Wiley and Sons, New York (NY), pp. 93–137.

Lenoble, J. (ed.) (1985). Radiative Transfer in Scattering and Absorbing At-
mospheres: Standard Computational Procedures. Deepak Publishing, Hampton
(VA).

Liou, K.-N. and N. Rao (1996). Radiative transfer in cirrus clouds. Part IV: On the
cloud geometry, inhomogeneity, and absorption. J. Atmos. Sci., 53, 3046–3065.

Lyapustin, A.I. and T.Z. Muldashev (2001). Solution for atmospheric optical transfer
function using spherical harmonic method. J. Quant. Spectrosc. Radiat. Transfer,
68, 43–56.

Marchuk, G., G. Mikhailov, M. Nazaraliev, R. Darbinjan, B. Kargin, and B. Elepov
(1980). The Monte Carlo Methods in Atmospheric Optics. Springer-Verlag, New
York (NY).

Marshak, R.E. (1947). Note on the spherical harmonic methods as applied to the
Milne problem for a sphere. Phys. Rev., 71, 443–446.

Martonchik, J.V. and D.J. Diner (1985). Three-dimensional radiative transfer using a
Fourier-transform matrix-operator method. J. Quant. Spectrosc. Radiat. Transfer,
34, 133–148.

Modest, M.F. (1993). Radiative Heat Transfer. McGraw-Hill, Inc., New York (NY).
Nakajima, T. and M. Tanaka (1988). Algorithms for radiative intensity calculations in

moderately thick atmospheres using a truncation approximation. J. Quant. Spec-
trosc. Radiat. Transfer, 40, 51–69.

Oreopoulos, L. and R. Davies (1998). Plane parallel albedo biases from satellite
observations. Part I: Dependence on resolution and other factors. J. Climate, 11,
919–932.

Papoulis, A. (1965). Probability, Random Variables, and Stochastic Processes.
McGraw-Hill, New York (NY).

Ramone, G.L., M.L. Adams, and P.F. Nowak (1997). A transport synthetic acceler-
ation method for transport iterations. Nuclear Sci. Engin., 125, 257.

Sanchez, A., T.F. Smith, and W.F. Krajewski (1994). A three-dimensional at-
mospheric radiative transfer model based on the discrete-ordinates method. Atmos.
Research, 33, 283–308.

Sobol, I.M. (1974). The Monte Carlo Method. The University of Chicago Press,
Chicago (IL).

Stamnes, K., S.-C. Tsay, W.J. Wiscombe, and K. Jayaweera (1988). Numerically sta-
ble algorithm for discrete-ordinate-method radiative transfer in multiple scattering
and emitting layered media. Appl. Opt., 27, 2502–2509.



280 K.F. Evans and A. Marshak

Stenholm, L.G., H. Storzer, and R. Wehrse (1991). An efficient method for the solu-
tion of 3D radiative transfer problems. J. Quant. Spectrosc. Radiat. Transfer, 45,
47–56.

Stephens, G.L. (1988). Radiative transfer through arbitrary shaped optical media, I:
A general method of solution. J. Atmos. Sci., 45, 1818–1836.

Stevens, B., C.-H. Moeng, and P.P. Sullivan (1999). Large-Eddy simulations of ra-
diatively driven convection: Sensitivities to the representation of small scales. J.
Atmos. Sci., 56, 3963–3984.

Thomas, G. and K. Stamnes (1999). Radiative Transfer in the Atmosphere and
Ocean. Cambridge University Press, New York (NY).

Tofsted, D.H. and S.G. O’Brien (1998). Physics-based visualization of dense natural
clouds. I. Three-dimensional discrete-ordinates radiative transfer. Appl. Optics,
37, 7718–7728.

Truelove, J.S. (1988). Three-Dimensional radiation in absorbing-emitting-scattering
media using the discrete-ordinates approximation. J. Quant. Spectrosc. Radiat.
Transfer, 39, 27–31.

Wiscombe, W.J. (1977). The delta-M method: Rapid yet accurate radiative flux cal-
culations for strongly asymmetric phase functions. J. Atmos. Sci., 34, 1408–1422.

Suggested Reading

• for Explicit Methods:

Evans, K.F. (1993). Two-dimensional radiative transfer in cloudy atmospheres: The
spherical harmonic spatial grid method. J. Atmos. Sci., 50, 3111–3124.

Evans, K.F. (1998). The spherical harmonics discrete ordinate method for three-
dimensional atmospheric radiative transfer. J. Atmos. Sci., 55, 429–446.

Gerstl, S.A. and A. Zardecki (1985). Discrete-ordinate finite-element method for at-
mospheric radiative transfer and remote sensing. Appl. Optics, 24, 81–93.

Lewis, E.E. and W.F. Miller, Jr. (1993). Computational Methods of Neutron Trans-
port. xvi+401 pp., American Nuclear Society, La Grange Park (IL).

Modest, M.F. (1993). Radiative Heat Transfer. McGraw-Hill, Inc., New York (NY).
Thomas G. and K. Stamnes (1999). Radiative Transfer in the Atmosphere and Ocean.

Cambridge University Press, New York (NY).

• for Monte Carlo Methods:

Barker, H.W., J.-J. Morcrette and G.D. Alexander (1998). Broadband solar fluxes
and heating rates for atmospheres with 3D broken clouds. Quart. J. Roy. Meteor.
Soc., 124, 1245–1271.

Cahalan, R.F., W. Ridgway, W.J. Wiscombe, S. Gollmer and Harshvardhan (1994).
Independent pixel and Monte Carlo estimates of stratocumulus albedo. J. Atmos.
Sci., 51, 3776–3790.



4 Numerical Methods 281

Davies, R. (1978). The effect of finite geometry on the three-dimensional transfer of
solar irradiance in clouds. J. Atmos. Sci., 35, 1712–1725.

Marchuk, G., G. Mikhailov, M. Nazaraliev, R. Darbinjan, B. Kargin and B. Elepov
(1980). The Monte Carlo Methods in Atmospheric Optics. 208 pp., Springer-
Verlag, New-York (NY).

McKee, T.B. and S.K. Cox (1974). Scattering of visible radiation by finite clouds. J.
Atmos. Sci., 31, 1885–1892.

O’Brien, D.M. (1992). Accelerated quasi-Monte Carlo integration of the radiative
transfer equation. J. Quant. Spectrosc. Radiat. Transfer, 48, 41–59.

O’Hirok, W. and C. Gautier (1998). A three-dimensional radiative transfer model to
investigate the solar radiation within a cloudy atmosphere. Part I: Spatial effects.
J. Atmos. Sci., 55, 2162–2179.

Takara, E.E. and R.G. Ellingson (1996). Scattering effects on longwave fluxes in
broken cloud fields. J. Atmos. Sci., 53, 1464–1476.

Titov, G.A., T.B. Zhuravleva, and V.E. Zuev (1997). Mean radiation fluxes in the
near-IR spectral range: Algorithms for calculation. J. Geophys. Res., 102 (D2),
1819–1832.



5

Approximation Methods in
Atmospheric 3D Radiative Transfer
Part 1:
Resolved Variability and Phenomenology

A.B. Davis and I.N. Polonsky

5.1 Introduction and Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

5.2 Efficient/Approximate Computation
of Detailed 3D Radiation Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

5.3 Efficient Computation of Detailed 3D Radiation Fields:
Discussion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

5.4 Three-Dimensional Radiation Transport Phenomenology:
A Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

5.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

5.1 Introduction and Overview

In this chapter and the following one, we survey most of the solutions that have
been proposed so far in approximation theory for three-dimensional (3D) radiative
transfer (RT) for cloudy atmospheres. No single solution is a panacea because each
application has its own needs and tolerance to error. Two broad categories of RT
problems are, however, addressed in these pages.

1. The first type of problem follows directly from the program covered in the pre-
vious chapter, targeting the estimation of detailed 3D radiance fields when all
the information about spatial variability is provided explicitly. The problem is
to develop computational 3D RT models that deliver 3D distributions of radia-
tive heating/cooling rates, trading the accuracy of Chap. 4’s methods for far
more efficiency.1 These solutions apply directly to cloud system-resolving mod-
els (CSRMs) and large eddy simulations (LESs) where grid spacing ranges from

1 In this Chapter, we equate “efficiency” with execution speed, basically CPU cycles.
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tens of meters to a few kilometers. Such approximate but efficient 3D RT models
will eventually be used in remote-sensing applications, but they will first have
to make the computational leap from flux to radiance estimation. Either way, the
variability is resolved at least down to some fine grid-scale.

2. The second, and in a sense complementary, type of challenge arises when the de-
sired outcomes are vertical profiles of fluxes and heating-rate (flux divergences)
averaged over large areas, hence both angular and spatial integrals of spectral
radiance (and then spectral integration as well). The essential difference with
the problems defined above, and addressed in Chaps. 3 and 4, is that now only
a limited amount of information is available to guide necessarily statistical de-
scriptions of optical variability at the unresolved scales. The main motivation and
application here is the need for accurate radiative budgets in global climate mod-
els (GCMs) that have horizontal grid-spacings typically on the order of hundreds
of kilometers and vertical (generally thermodynamically-weighted) grid-spacings
on the order of tenths to a few kilometers.

Figure 5.1 presents a geometrically correct schematic (i.e., without any vertical ex-
aggeration) of the situations for these two broad classes of 3D RT problems. Fig-
ure 5.1a shows a 2D cross-section through the tropospheric portion of a single GCM
column, and for which horizontally averaged radiative fluxes are sought. Notice that
the natural “zone of radiative influence” of density fluctuations in either the opti-
cal properties or radiation fields is on the order of the thickness of the troposphere.
The large (horizontal/vertical) aspect ratio of the optical medium (essentially the
clouded troposphere) justifies the averaging of many independent, subgrid-scale col-
umn computations to approximate profiles of domain-averaged fluxes. Moreover,
radiant power flowing through the sides of GCM-size columns is small compared to
what flows vertically (except maybe at very low sun). This justifies treating entire
GCM grid-cell as an ensemble of neighboring yet radiatively independent columns,
a powerful approach known as the Independent Column Approximation (ICA).

Figure 5.1b illustrates a few columns of a typical CSRM. Like GCM columns,
radiative flux divergences are sought for each resolved grid-cell, but now their di-
mensions are on the order of or smaller than the above-mentioned zone of radia-
tive influence. Since individual CSRM cells influence fluxes for neighboring cells,
independent column-by-column computation of RT is inaccurate because it is so
obviously unphysical.2 The same goes for LES models except that their cells are
even smaller and inaccuracies potentially more extreme. The issue of fluxes through
the walls of CSRM and LES domains is usually side-stepped with cyclic horizontal
boundary conditions for both optical properties and RT.

CSRMs and LESs are used to investigate cloud-scale processes. At their resolu-
tions, some processes, such as convection, are resolved explicitly so they need not be
parameterized. The RT, however, is still computed with legacy code, GCM schemes
now applied independently to each resolved column. Physically this means that pho-
ton trajectories are constrained to individual columns (imagine the walls dividing

2 The important quantity here is not (net) horizontal fluxes per se – they exist in uniform
media under slant illumination – but horizontal flux-divergence.
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Fig. 5.1. Geometrically correct representations of the 3D cloudy atmosphere problems of in-
terest in this chapter. (a) A transect through a GCM (Global Climate Model) grid-cell above
the Earth’s surface, showing a typical number of atmospheric layers. (b) A few columns ex-
tracted from a CRM (Cloud Resolving Model), now called a CSRM (Cloud System Resolving
Model). More discussion in the text

neighboring column as perfect mirrors), even though they are now much taller than
they are wide. Clearly, these dynamical models are in need of 3D RT schemes that,
ideally, will consume only a few more CPU cycles than their two-stream counter-
parts, yet capture at least the first-order effects of 3D RT.

Cloud and cloud-system modeling efforts are not the only outlets for efficient
approximations leading to improved radiation energetics (i.e., boundary fluxes and
local heating rates). For instance, atmospheric photochemistry modelers are also in-
terested in the spatial fluctuations of actinic flux driven by 3D cloud variability. The
next level of challenge is to predict 3D radiance fields efficiently, largely to serve the
remote sensing communities interested in clouds or in properties of surface (pixels)
in view but near or between dense clouds. The ultimate goal here is to perform the in-
verse problem of inferring physical information about cloud/surface structure in the
presence of 3D RT effects caused by the clouds. Ideas have been advanced recently
on how to address at least parts of this problem.

In this chapter, we cover the first kind of approximation challenge in atmospheric
3D RT, the deterministic problem where we are given all the structural and optical
detail there is to know about the medium. Section 5.2 is devoted to the forward 3D
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RT problem starting with fluxes and working towards radiances (diffusion, discrete
angles, perturbation, and hybrid/semi-empirical methods are covered). In Sect. 5.3,
we discuss informally the role we anticipate for approximation theory in the near-
and long-term future for forward (cloud-modeling) and inverse (remote-sensing) 3D
RT. Section 5.4 exploits a specific cloud variability model (flat boundaries but a
periodic sine-wave in extinction) for a tutorial in the phenomenology of 3D RT based
on classic approximations (homogeneity, ICA and 3D diffusion). Finally, Sect. 5.5
offers some parting remarks on the broad topic of this chapter.

The following Chap. 6 by Barker and Davis covers the second class of approxi-
mation question in atmospheric 3D RT, the probabilistic problem where we are only
asked to compute only domain-average means but only given a few statistical pa-
rameters of the medium (typically, cloud fraction, distribution of optical depths in
cloudy portion, and correlation coefficients, possibly even correlation scales).

5.2 Efficient/Approximate Computation
of Detailed 3D Radiation Fields

5.2.1 Scope

We are interested in determining the 3D spatial details of the radiation fields and
maybe even its angular distribution to some extent . . . but we are not willing to pay
the computational price associated with a numerical solution of the full-blown 3D
RT equation.

This program calls for a class of approximations in computational 3D RT where
we trade accuracy versus efficiency. This trade-off can be of course explored with the
“exact” methods described in Chap. 4: spatial and/or angular grids can be coarsened
and expansions can be severely truncated in the explicit methods, and relatively few
photon histories can be traced in the random quadrature methods (a.k.a. Monte Carlo
simulation techniques). We are not interested here in such approaches here, which
is not to say that those possibilities should not be considered in some applications.
It is just that there is nothing new to say about them. It is clear however that such
straightforward techniques will be sub-optimal in many other applications because
stripped-down explicit methods are not designed to work on coarse grids and, in this
context, we generally want more than a large-scale average (which is all a limited
Monte Carlo can deliver with any semblance of accuracy). Luckily, there are bet-
ter ways of allocating computational resources. Which way is the best is a highly
application-specific question and, moreover, the answer will likely change in time
since this is a very active area of research. Of course, we will keep in mind the meth-
ods presented in Chap. 4 as standards for accuracy (to match as best as possible) and
efficiency (to surpass as much as possible). Those methods solve the 3D RT equation
while here we solve different transport equations, or even bypass equation solving
altogether if physical intuition suggests that route.

Inasmuch as they can be written and implemented differently than limited run-
time versions of methods from Chap. 4, truncated order-of-scattering expansions are



5 Approximation Methods in Atmospheric 3D Radiative Transfer 287

not of direct interest to us either because they are adapted to optically thin media.
For the same basic reason, we will also forgo the small scattering angle or “SSA”
approximation3 although it should not be overlooked for the optically thin regions
of 3D cloudy media. These elements of the 3D RT approximation portfolio at large
may prove important in future research into adaptive hybrid methods that combine
approximation methods with restrictions to regions where they work well.

At the other end of the accuracy and efficiency scales that originate with Chap. 4’s
methods, we find the (local) ICA: 1D RT on a column-by-column basis. This is
certainly expedient and can be implemented for efficiency as well with analytical
two-stream approximations for the 1D RT and, as needed, ordering the computations
by variable parameter value rather than by position on the horizontal spatial grid to
be parsed. This local ICA is not to be confused with the global ICA, namely, the
domain-average of the local ICA which can be very accurate, especially for fluxes,
even though the local assumption can be catastrophically wrong. As stated in the
Introduction, the prime application for the (global) ICA is GCM parameterization
development and we differ further discussion of it to Sect. 5.4, the next chapter,
and a few others in the volume. By contrast, we are interested here in small-scale
variations of the radiation fields driven by specific variations in the optical properties.
So we will focus on resolutely “post-ICA” models for 3D RT in cloudy atmospheres.
These models will be more accurate than the local ICA by definition but they will
necessarily consume at least a few more CPU cycles.

The emphasis will be on the computational aspects of 3D RT but that part of the
discussion will be neither technical (in the sense of numerical analysis methods) nor
quantitative (speed-up achieved versus cost in accuracy). Rather, we have strived to
cover the diversity of the methods without losing track of how these methods relate
to – and sometimes support – each other. We thus underscore the “work-in-progress”
status of this active research area.

5.2.2 3D Diffusion Theory

This model goes back at least to Eddington’s (1916) investigations into the equilib-
rium of stars based on the prior formulation of the RT equation by Schwarzschild
(1906). One could argue that all two-stream theories, starting as far as we know
with Schuster’s(1905) seminal study of scattering atmospheres, are mathematically
equivalent to a 1D diffusion theory. We can derive the diffusion equation from the
RT equation in a variety of ways, and learn much about its limitations in the process.
The most recent derivation is given in Sect. 5.2.3. The most illuminating derivation
is through RT asymptotics, and we refer to Pomraning (1989) for the mechanics. The
most straightforward derivation starts with the postulate that

I(x,Ω) =
1
4π

[J(x) + 3Ω • F(x)] , (5.1)

3 This technique is known in the particle transport literature as the Fokker-Planck approx-
imation. Mathematically, it has the flavor of a diffusion theory, but one that operates in
direction- or Ω-space (tangential on the unit sphere to the collimated source direction Ω0).
The original reference seems to be Fermi (1941).



288 A.B. Davis and I.N. Polonsky

Fig. 5.2. Spectral radiance ratio Iλ(x, θ, φ)/Iλ(x, 0, φ) for the indicated values of λ where x is
the position of the U. of Washington’s Convair C-131A at 09:37 PDT along its flight inside a
marine stratocumulus layer on July 10, 1987 (during FIRE) while φ defines the Cloud Absorp-
tion Radiometer’s scan plane, perpendicular to the line-of-flight, reproduced with permission
from King et al. (1990) (their Fig. 6). For all but λ = 2 µm we have a clear diffusion-domain
dependence in cos θ as prescribed in (5.1). For λ = 2 µm a CO2 absorption feature leads to
less light (increased noise) and the requirement of higher-order spherical harmonics to model
the radiance. For more on the CAR instrument, see the URL http://car.gsfc.nasa.gov/

where the scalar and vector are defined as{
J(x)
F(x)

}
=
∫
4π

{
1
Ω

}
I(x,Ω)dΩ (5.2)

and discussed in detail in Chap. 3. The radiance field, viewed as a distribution in
direction-space, is thus limited to an isotropic term proportional to J and a dipole
term oriented along F and proportional to ||F||. Both quantities are expected to
be functions of the position vector x. Figure 5.2 shows relative radiance measure-
ments by King et al. (1990) inside a marine stratocumulus layer. We clearly see the
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characteristic cosine dependence with zenith angle for all but the noisy data at 2 µm
where there is significant CO2 absorption.

All higher-order spherical harmonics are neglected, making the postulate in (5.1)
equivalent to a truncation in spherical harmonics (hence to a “closure” in angular mo-
ments). Accordingly, the scattering phase function in diffusion theory is effectively
reduced to just two terms in its Legendre expansion,

P (x, θs) = 1 + 3g(x) cos θs, (5.3)

where θs is the scattering angle and g(x) is, possibly position dependent, asymmetry
factor from Chap. 3 (namely, the mean of cos θs over P (x, θs)/4π). There are no
higher-order terms in the radiance field to interact with after through higher-order
Legendre coefficients. Note that the proposed phase function become negative if
|g| > 1/3 and this immediately causes problems for diffusion theory at small op-
tical depths (i.e., when phase function details make a difference).

Substitution of (5.1) and (5.3) into the 3D RT equation (in the absence of
anisotropic volume sources) leads to an important hallmark of diffusion theory that
is Fick’s law:4

F = −D′(x)∇J , (5.4)

where
D′(x) = �t(x)/3 (5.5)

is photon “diffusivity” for steady-state 3D problems.5 A fundamental scale of diffu-
sion theory that appears in (5.5) is the transport mean-free-path (MFP)

�t =
1

σ − σsg
=

1
(1 − �0g)σ

(5.6)

which is simply the usual photon MFP 1/σ divided by the famous Eddington/van de
Hulst scaling factor (1 − �0g). We recall here that the notion of a MFP cannot be
interpreted literally in 3D RT because only in case where σ(x) ≡ constant can we
compute a priori what it is (cf. Chap. 3). So (5.6) is just a definition, and an indication
of the value of the transport MFP to be expected.

In the frequently used formulation where un-collided (directly-transmitted) ra-
diation is treated separately, and thus not included in J and F, and if the scattering
is not symmetric in cos θs (hence if g �= 0), then there is an additional term on the
right-hand side of Fick’s law in (5.4) that we will write as 3D′(x)qF (x). In partic-
ular, this term captures to some extent the directionality of the solar-beam injection
source induced by the forward-peaked phase function. For this important kind of
source, one should also apply the widely-used “δ-Eddington” rescaling. Joseph et al.
(1976) introduced this improvement (originally for plane-parallel 2-stream theory)
by noting that a better model than (5.3) for real phase functions uses two parameters:

4 If (1) anisotropic volume sources are present and (2) the requested flux fields are for the
diffuse component only in a solar RT problem, then there is an extra term in Fick’s law.

5 For time-dependent diffusion theory in d spatial dimensions, diffusivity is defined as D =
c�t/d = cD′ where c is the particle velocity, here, the speed of light.
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P (µs) = 2fδ(1 − µs) + (1 − f)(1 + 3g′µs) , (5.7)

where µs = cos θs. All the local optical quantities relevant to 3D diffusion theory are
then modified:

σ′ = (1 − �0f)σ,

�′
0 = �0(1 − f)/(1 − �0f), (5.8)

g′ = (g − f)/(1 − f).

The choice of f is not obvious but an approach made popular by Joseph et al. is to fit
the first two moments of the Henyey-Greenstein phase function, thus leading to f =
g2. For observed cloud phase functions (which do not resemble Henyey-Greenstein
models at all, cf. Fig. 3.9 in Chap. 3), we have g ≈ 0.75−0.85 hence f ≈ 0.56−0.72
and g′ = g/(1+g) ≈ 0.43−0.46. This does not resolve the small optical depth issue
noted earlier but helps. At any rate, the δ-rescaling makes no difference for thermal
emission, the other important atmospheric source of radiation, which is isotropic,
nor for isotropic boundary sources (as is the case for the computation of Lambertian
surface albedo or surface thermal emission effects).6

The reason we talk about “diffusion” theory, rather than P1 theory (a first-order
spherical harmonic truncation in the terminology of Chap. 4), is because of the asso-
ciated time-dependent theory. Although the time-dependent formulation of the prob-
lem is out of our present scope, it is helpful to bear in mind the idea of photons
leaving their source and executing a long sequence of small (≈MFP) steps, from one
scattering event to the next, before being absorbed or escaping the medium. In the
course of this random walk (which is precisely what is implemented in Monte Carlo
schemes) the first thing that happens is loss of directional memory. It can be shown
(Davis and Marshak, 1997) that this takes ≈ 1/(1 − g) steps if �0 ≈ 1. By that
time, it is as if the photon has made one larger step (≈1 transport MFP), and then
scattered isotropically. Diffusion theory becomes increasingly accurate as the photon
population becomes dominated by individuals that have performed one or more of
these effective steps and isotropic scatterings. It is now easy to see when diffusion
will work well. At least qualitatively, we can say that the more scattering (less ab-
sorption), the more isotropic the scattering, the further (a couple of �t at least) from
strongly directional sources and from absorbing boundaries (hence quite large optical
thicknesses), then the better for diffusion theory. What kind of variability diffusion
can sustain without losing accuracy remains an open question. A priori, all we need
to exclude are regions of very small extinction (making the local MFP too large).

To continue formulating mathematically the diffusion problem, one substitutes
its defining Fickian law (5.4), with an extra source term denoted 3D′qF on the right-
hand side if J and F model only the diffuse field, into the (exact) expression for

6 To see this, note that (1 − �0g)σ hence the transport MFP, and (1 − �0)(1 − �0g)σ2

hence the diffusion scale, are left invariant by the proposed rescaling. The ratio of these
quantities, the similarity factor S(�0, g) in (5.16), is therefore also invariant. In the ab-
sence of anisotropic sources, these are indeed the only combinations that appear in the 3D
diffusion equation and its boundary conditions.
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photon conservation
∇ • F = −σa(x)J(x) + qJ (x) (5.9)

from Chap. 3, where qJ (x) is the local rate of isotropic photon (equivalently, radi-
ant energy) creation in m−3s−1 (or W/m3). We obtain a standard 2nd-order partial
differential equation (PDE) with variable coefficients:

−∇ • [D′(x)∇J ] + σa(x)J = q(x) , (5.10)

where
q(x) = qJ (x) − 3∇ • (D′qF ) , (5.11)

where qF =
∫
4π ΩQ(x,Ω)dΩ and Q(x,Ω) is the source term in the 3D RT equation

from Chap. 3.
As an important example, isotropic thermal sources are given by

q(x) = qJ(x) = σa(x)B[T (x)] , (5.12)

where T (x) is the temperature field (and qF (x) ≡ 0). For solar illumination prob-
lems using the recommended direct+diffuse decomposition, the uncollided flux in
the presence of forward-scattering is determined by

qJ(x) = F0σs(x) exp[−τ0(x;Ω0)] ,

qF (x) = 3F0σs(x)gΩ0 exp[−τ0(x;Ω0)] , (5.13)

where F0 is the solar constant and τ0(x) is optical distance (integral of σ(x)) from
point x to the upper boundary in the direction −Ω0 of the sun:

τ0(x,Ω0) =

s0(x,Ω0)∫
0

σ(x − sΩ0)ds , (5.14)

where s0(x,Ω0) determines the unique interception point of the ray {x,−Ω0} with
the (convex) boundary ∂M. For a plane-parallel slab medium (0 < z < h), we have
s0(x,Ω0) ≡ s0(z, µ0) = (h − z)/µ0 and τ0(x,Ω0) will generally depend on the
internal variability.

With the same caveat as for the meaning of the MFP in 3D media, we can see
another important physical quantity appearing here, the so-called “diffusion” scale:

Ld =
√

D′

σa
=

1√
3(1 − �0)(1 − �0g)σ

. (5.15)

This is the scale that we would use to render dimensionless the differential operator
on the left-hand side of (5.10). The scale ratio

S(�0, g) =
�t
Ld

=

√
3(1 − �0)
1 − �0g

(5.16)



292 A.B. Davis and I.N. Polonsky

is known as the “similarity factor.” It measures the relative importance of absorption
versus scattering in the photon transport.

Mathematically equivalent elliptical PDE problems as in (5.10) are solved rou-
tinely by designers and diagnosticians in electrical, mechanical, thermal, and nuclear
engineering as well as in subsurface hydrology and geological sciences. In most of
these fields however, the 2nd-order PDE is considered as the exact formulation of
the physical problem in steady-state conductivity, electro- or magneto-statics, ther-
mal conductivity, neutron transport, flow through porous substrates, and so on. Any
problem with a “continuity” equation like (5.9) and a “constitutive” equation like
(5.4) will end in this kind of PDE problem. Yet another research area, presently very
active, that uses photon diffusion per se is non-invasive medical diagnostics in soft
tissue, specifically by diffusing photon spectroscopy/imaging. See, e.g., Yodh and
Chance (1995) for an overview of this rapidly growing literature where photon dif-
fusion is often called photon “migration.”

Apart from the approximate-versus-exact difference in modeling perspective
from their pervasive engineering and medical counterparts, radiation applications of
diffusion theory have distinctive boundary conditions (BCs). They are necessarily of
the mixed or Robin kind, rather than the more standard kinds: Dirichlet (given “den-
sity” J(x)), or von Neumann (given “current” across the boundary n(x) • F), where
x ∈ ∂M (a standard notation for the outer boundary of a 3D domain M) and n(x)
is the normal to ∂M at x. That is because incoming flux can not be expressed with
J(x) nor with n(x) • F(x). Nor can any combination of these two available boundary
quantities exactly translate a RT equation BC as simple as no incoming radiance, not
even no incoming flux. However, approximations are possible and combinations are
necessary to express them (Case and Zweifel, 1967). For non-reflective boundaries,
we therefore impose

1
2

[1 − χ�t(x) n(x) •∇] J = f(x) , (5.17)

where f(x) is the local rate of photon (equivalently, radiant energy) creation at the
boundary expressed in m−2s−1 (or W/m2) and assumed isotropic. For instance, we
take f(x) ≡ 0 to describe an absorbing surface – also called “vacuum” BCs – while
the boundary-source Green function results for f(x) = δ(x).

The non-dimensional quantity χ determines the optimal mixture (at α(x) ≡ 0)
of boundary values for photon density J(x) and photon current −D′(x) n(x) •∇J .
χ�t is known as the “extrapolation length” and it has been the object of many classic
studies, from which we retain:7

7 It is not obvious that χ should always be constant along the boundary, but that is the con-
ventional assumption.
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χ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1/3, Fick

1/
√

3, Marshak

2/3, Eddington

0.7104 · · · , Milne-Davison

1, 6-flux theory

4/3, optically thin limit

. (5.18)

The first and last values in the above list are primarily of academic interest. The
remaining values have all proven useful in the experience of the present authors.
“Utility” here is defined as better reproducing the solution of the RT equation in a
validation exercise for the diffusion approximation where the reference computation
is by a technique from Chap. 4. In particular, the Eddington value of χ = 2/3 is
the consistent choice for everywhere vacuum BCs, and therefore non-vanishing q(x)
from qJ (x) and (optionally) qF (x) in (5.11).

This completes the mathematical formulation of the 3D photon diffusion problem
at least for non-reflective BCs. For an illustration of the solution of the steady-state
1D plane-parallel diffusion problem, see Chap. 12 where the application is in fact to
analytically estimate the mean number of scatterings (normally, a time-dependent
problem). In numerical analysis, a 2nd-order elliptical PDE, even with position-
dependent coefficients, is a much simpler problem to solve than the full RT equa-
tion. Because of its widespread applicability, there are many numerical schemes for
solving the PDE in (5.10) with BCs in (5.17). Multi-grid and sparse-matrix meth-
ods are computationally optimal – algorithmic complexity is O(N) – and can be
made unconditionally stable. If only values at a few points are sought, then there
are backward Monte Carlo solutions that bear very little resemblance to those used
for the RT equation in Chap. 4. When “shopping” for numerical diffusion equation
solvers, a radiation transport modeler should be aware of the a priori accuracy of the
method. It can indeed be excessive – and therefore a waste of CPU time – since in
3D RT, unlike in its many engineering applications, the diffusion equation is itself an
approximation to the actual problem at hand.

Certain results from the diffusion theoretical computation are of particular in-
terest in atmospheric radiation: out-going 2D boundary flux fields, and the local 3D
radiant energy absorption rate. Outgoing boundary fluxes are obtained simply by
changing the sign of the second (photon current) term in (5.17).

Solar-type problems can be solved by setting f(x) = |n(x) • Ω0|F0 in the non-
reflective BC in (5.17). For a geometrically plane-parallel medium, this translates
simply to f(x) ≡ µ0F0 and qJ(x) ≡ 0. In this important case, the local albedo field
is given by

R(x, y) =
1

2µ0F0

[
1 + χ�t(x, y, h)

(
∂

∂z

)]
J

∣∣∣∣
z=h

=
J(x, y, h)

µ0F0
− 1 , (5.19)

while transmittance is given by

T (x, y) =
1

2µ0F0

[
1 − χ�t(x, y, 0)

(
∂

∂z

)]
J

∣∣∣∣
z=0

=
J(x, y, 0)

µ0F0
. (5.20)
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Local solar absorption rate is given by

−∇ • F = σa(x)J(x) (5.21)

a direct consequence of the energy conservation law in (5.9) when qJ(x) ≡ 0.
Solar problems are however best treated using vacuum BCs and the anisotropic

internal source terms in (5.13) rather than using an isotropic boundary source term
in (5.17). In this case, we take f(x) ≡ 0 and the albedo field is

R(x, y) =
1

2µ0F0

[
1 +

2�t(x, y, h)
3

(
∂

∂z

)]
J

∣∣∣∣
z=h

=
J(x, y, h)

µ0F0
, (5.22)

while the transmittance fields are given by

Tdif(x, y) =
1

2µ0F0

[
1 − 2�t(x)

3

(
∂

∂z

)]
J

∣∣∣∣
z=0

=
J(x, y, 0)

µ0F0
, (5.23)

Tdir(x, y) = exp[−τ0(x, y, 0;−Ω0)] , (5.24)

T (x, y) = Tdir(x, y) + Tdif(x, y) (5.25)

corresponding respectively to the diffuse, direct and total transmissions. Local solar
absorption is given in this context by the right-hand side of (5.21) with an extra term
for uncollided flux, namely, σa(x)F0 exp[−τ0(x;−Ω0)].

At a Lambertian reflective surface (cf. Chap. 3), we are simply sending back into
the medium a fraction αs(x) ≤ 1 (the local albedo of the surface) of the flux. This
leads to a simple modification of the BC in (5.17):

1
2
{[1 − αs(x)] − [1 + αs(x)]χ�t(x) n(x) •∇} J = f(x) (5.26)

where x ∈ ∂M with n(x) • Ω0 < 0. Note that for a purely reflective boundary, the
only constraint in (5.26) is on the photon current (i.e., normal flux) at the interface.
In the case where J is only for the diffuse radiation (and uncollided fluxes are treated
separately), we can identify the given boundary source f(x) on the right-hand side of
(5.26) with the effective source created by reflecting the uncollided stream of photons
hitting the reflective but otherwise non-illuminated part of the boundary:

f(x) = αs(x)n(x) • Ω0F0 exp[−τ0(x;−Ω0)]

where x ∈ ∂M with n(x) • Ω0 > 0.
We now describe three examples of diffusion theory application, one numerical

and two analytical. We finish with a discussion of real-world observations of diffu-
sion transport signatures.

Example 1: The I3RC Square-Wave Cloud Case

Figures 5.3–5.4 show comparisons of the outcomes of computational diffusion re-
sults and counterparts for an exact RT equation solver using Case 1 from the Inter-
comparison of 3D Radiation Codes project (I3RC; Cahalan et al., 2005). This is a
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cyclical alternation of tenuous and dense regions with Heaviside jumps in extinction
along the x-axis characterized by the following structural parameters:8 〈τ〉 = 10,
δτ = 8, h = 0.25 km, and aspect ratio L/h = 2. Solar illumination and optical para-
meters are: µ0 = 1 and 1/2 (collimated beam, with injection through a volume source
term) and �0 = 1 and 0.99, Henyey–Greenstein phase function with g = 0.85. The
ED3D code (Qu, 1999) was used to obtain the 3D diffusion results (provided gra-
ciously by Z. Qu) while TWODANT (Alcouffe et al., 1997) was used for the bench-
mark 3D RT equation solution (provided graciously by D. Kornreich). Benchmarks
from 1D RT are the ICA estimates for each region, by 1D RT (DISORT) and by its
well-known (analytical) diffusion approximation. We note the excellent performance
of diffusion in 1D RT.

For the non-absorbing case (�0 = 1) we are looking at in Fig. 5.3, the variations
of R(x), T (x) and the so-called horizontal flux field

H(x) = 1 − A(x) − R(x) − T (x) , (5.27)

where column absorption A(x) ≡ 0 in this instance. This is, more precisely, the
column-integrated and normalized horizontal divergence rate

H(x) =
1

µ0F0

h∫
0

∇h • Fdz =
1

µ0F0

h∫
0

(
−∂Fz

∂z

)
dz , (5.28)

where F0 = 1 in the present simulation. In the above, we have simply grouped and
vertically integrated terms from the total (diffuse+direct) radiant energy conservation
(5.9). The right-hand side indeed yields [1−R(x)]−[T (x)−0]. In the ICA, H(x) ≡ 0
and in post-ICA 3D photon transport H(x) (in general, non-vanishing horizontal gra-
dients) have been described justifiably as “pseudo-source/sink” terms from a vertical
1D RT perspective. For overhead sun, we note the transmittance in excess of unity in
the middle of the tenuous region: a characteristic 3D RT effect caused by the channel-
ing of radiation flow away from the neighboring dense regions. Another remarkable
finding (captured by both exact and approximate theories) at µ0 = 1 is the power-
ful smoothing (reduced variance and no more ICA-induced jump) in reflectance by
3D RT. Opposite effects are found at oblique illumination: although the ICA jump
is smoothed, the amplitude of the variability in reflectance is not reduced while the
transmittance field is highly smoothed (compared to both the ICA and the overhead
sun case). The panels showing H(x) show the strong local violations of energy con-
servation when horizontal transport is ignored. For overhead sun, they quantify the
channeling phenomenon (excess radiation in tenuous regions, deficit in dense ones).
For the more complex scenario with slant illumination, the direct correlation of H(x)
with τ(x) is reversed.9

8 Modulo a trivial quarter-wave phase shift, this is a square-wave equivalent of the sine-wave
cloud model used further on, with a variable L/h.

9 This does not mean that the same channeling phenomenon as observed for θ0 = 0 is not
happening when θ0 = 60◦, rather that we are looking at it from an awkward angle. See
Fig. 5.12 and its discussion further on.
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Fig. 5.3. Flux fields for the I3RC “Case 1” square-wave cloud (see text) in the conservative
(�0 = 1) case. Benchmarks for comparison with the 3D diffusion theoretical results (ED3D
code) are: a full 3D RT equation solution (TWODANT code), and the ICA (using both the
1D RT equation and the analytical diffusion solution). Two solar illumination angles and two
boundary fluxes {R(x), T (x)} are considered along with the “horizontal fluxes” (or apparent
absorption) H(x) = 1 − R(x) − T (x): (a) R(x), T (x), θ0 = 0◦, (b) R(x), T (x), θ0 = 60◦

(c) H(x), θ0 = 0◦, and (d) H(x), θ0 = 60◦. In spite of the mirror symmetry of cloud
structure around the vertical planes at x = 0.125 and 0.375 km, the uniform µ0 = 1 illumi-
nation and the angularly-integrated response, we note a minor asymmetry in the results from
TWODANT. That is because 3D RT equation solvers based on a grid proceed by “sweeps” in a
given direction and iterations (see Chap. 4). This gives an indication of the residual numerical
error

For the absorbing case (�0 = 0.99), we are looking in Fig. 5.4 precisely at
the local variations of column absorption field A(x) because it is closely related to
solar heating rate; it is precisely the absorption rate in (5.21), column-integrated and
normalized:

A(x) =
σa

µ0F0

h∫
0

J(x, z)dz . (5.29)

The conditions are far from ideal for diffusion here: (1 − �0g)τ = 2.9 on the
dense/right-hand side, but only 0.32 on the tenuous/left-hand side. Nonetheless, we
see that the predicted radiation fields, in this case column absorption A(x) values,
compare quite well with the full 3D RT solutions even though they were obtained
at a small fraction of the computer time. Again, the smoother transition around the
jump in extinction is captured, to the extent that the output grid (∆x = L/16) can
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Fig. 5.4. Same as Fig. 5.3 but for column absorption (when �0 = 0.99). Here, the 1D and 3D
diffusion results distinguish between with (thin solid line) and without (thin dashed line) the
δ-rescaling. Two solar illumination angles are again considered: (a) A(x), θ0 = 0◦, and (b)
A(x), θ0 = 60◦, both with and without δ-rescaling (same visual encodings but thick lines).
In the former case, δ-rescaling helps, not in the latter. To appreciate the potential dynamical
effect of the bias caused by the ICA assumption, we note that the local solar heating rate can be
off by as much as a factor of 2. This happens near the strong gradients when the illumination
is significantly off-zenith. By comparison, the error induced by the diffusion approximation is
less than ≈10%

show it; this is something the ICA is completely blind to. The ICA adequately esti-
mates the radiation field of interest but only far from the jumps, at high sun, and in
the dense portion of the cloud. Otherwise, the ICA bias in absorption is significantly
larger than the difference between the exact 3D RT result and the 3D diffusion theo-
retical result. For the slant illumination case in Fig. 5.4b, there is stronger absorption
at the edge of the dense portion that is facing the sun because the abundant directly
transmitted (or forward-scattered) sunlight is reaching deep into the medium.

Every approximation theory has its limitations. As mentioned above, it is fair to
say that photon diffusion abhors an optical void because, far from executing convo-
luted random walks, photons will stream forward in ballistic trajectories. So 3D dif-
fusion is well-suited for unbroken stratiform cloud layers but, even there, boundaries
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will be problematic. How to transition correctly from an interior diffusion solution to
an exterior streaming solution across a well-defined radiative boundary layer remains
an open question. An approach that has been exercised in 1D at least is to think of
diffusion as a theory for computing the multiple scattering source function inside the
cloudy portions of the atmospheric medium (see Chap. 3, Sect. 3.8.2),

S(x,Ω) = σs(x)
∫
4π

P (Ω • Ω′)I(x,Ω′)
dΩ′

4π
= σs(x)[J(x) + 3gΩ • F(x)] , (5.30)

then the formal solution of the 3D RT equation (a.k.a. “long characteristics”) can be
applied to compute the radiance field at and outside the cloud boundary.

Some approximation theories have advantages that far outweigh their limitations,
at least in specific applications. Diffusion is one such theory. A small but representa-
tive number of 3D RT problems are indeed tractable analytically in diffusion theory:
simple, but not uniform, source distributions; simple, but not plane-parallel, outer
structure; a general case of internal variability, but only for the domain average. The
following Examples 2–3 illustrate the two former items while the last is mentioned
in the Discussion and used in Sect. 5.4.

Example 2: The Steady-State Green Function

As another illustration of diffusion theory, consider the 3D RT problem of Green-
function estimation (cf. Chap. 3) for a homogeneous conservatively scattering plane-
parallel slab illuminated isotropically from an internal or boundary point. This leads
to (5.10) with constant D′ ≡ 1/3(1 − g)σ and f(x) = δ(x)δ(y)δ(z − z0), 0 <
z0 < h, a problem that can be reduced to the classic 2nd-order differential equa-
tion in 2-stream theory with a non-vanishing absorption coefficient by applying a
2D horizontal Fourier/Hankel transform,10 J(x, y, z) ≡ J(ρ, z) �→ J(k, z) where
ρ =

√
x2 + y2 and k is its Fourier conjugate. Davis and Marshak (2002) take a

special interest in the Green function at z = 0 when z0 = h, the transmission case.
Figure 5.5 shows the family of transmitted Green functions in Fourier space while
Fig. 5.6 shows a couple of these in physical space. To produce Fig. 5.5, we define
the transport (or rescaled) optical depth

τt = h/�t = (1 − g)τ

and use GT (kh; τt) = J(k, z = h) = T (k�t, τt)/T (0, τt) where

T (S, τt) =
4χS

2[1 + (χS)2] sinh(Sτt) + 4χS cosh(Sτt)
. (5.31)

Wavenumber k is identified here with 1/Ld in the definition (5.16) of S, hence

S = k�t = kh/τt .

10 Whether we are discussing a function or its Fourier transform will by made clear by the
argument; we will not need to change the symbol for the function itself.
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Fig. 5.5. Normalized Green function of a uniform plane-parallel cloud for transmittance in
Fourier space. This quantity can be interpreted as the cloud’s MTF (Modulation Transfer Func-
tion) and it has a closed-form analytical expression from (5.31)–(5.32) in diffusion theory. A
number of rescaled optical depths τt = h/�t are used (corresponding to the actual optical
depths for g = 0.85 indicated in parentheses). We used χ = 0.71 from (5.18); see Davis and
Marshak (2002) for more details. This Fourier space representation of the Green function is
used in those 3D RT approximation techniques were convolutions arise, namely, adjoint per-
turbation theory (Sect. 5.2.4) and the Nonlocal Independent Pixel Approximation or “NIPA”
(Sects. 5.2.5 and 12.6).

The limit S or k → 0 (required for the normalization) is singular but application of
L’Hôpital’s rule leads to

T (0, τt) =
1

1 + τt/2χ
. (5.32)

In Fig. 5.6, we present a direct comparison of a Monte Carlo solution (of the 3D
RT equation with pencil beam source) and the numerical inverse Fourier transform
of the analytic diffusion-based expression for the Green function in Fourier space.
Agreement is excellent for all but the shortest distances from the collimated pencil
beam in the forward scattering case.

The reflected Green function GR(kh; τt) = J(k, z = 0) − 1 = R(k�t, τt)/
R(0, τt), is also of interest in many applications; it follows in closed-form from

R(S, τt) =
2[1 − (χS)2] sinh(Sτt)

2[1 + (χS)2] sinh(Sτt) + 4χS cosh(Sτt)
(5.33)

with
R(0, τt) = 1 − T (0, τt) =

τt

2χ + τt

from (5.32) or from (5.33) using L’Hôpital’s rule.
More recently, Polonsky and Davis (2004) used 3D diffusion theory to study

Green functions using the more simply expressed “extended” BCs

J(ρ,−χ�t) = J(ρ, h + χ�t) = 0 (5.34)
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Fig. 5.6. Normalized Green function of a uniform plane-parallel cloud for transmittance in
physical space. This quantity can be interpreted as the cloud’s PSF (Point Spread Function).
We compare here analytical results using both the 3D diffusion equation and numerical coun-
terparts for the 3D RT equation. More precisely an analytical curve from the diffusion theoret-
ical family plotted in Fig. 5.5 was inverse Fourier transformed numerically. For the RT compu-
tation, a Monte Carlo scheme was used in a slab of thickness h = 0.3 km where illumination
was isotropic at a point and the conservative scattering was modeled by a Henyey-Greenstein
phase function with the indicated value of g. The actual (not rescaled) optical depth τ is 16.
We notice the inherent Monte Carlo noise for the isotropic scattering case which has a very
low overall transmittance T ≈ 0.077 from (5.32)

for a problem that in fact lives on {x ∈ R
3; 0 < z < h}. This approximate expres-

sion of the diffusion BCs simplifies analytical computations. In this case, the inverse
Fourier transforms can be taken analytically. This leads to a closed-form expression
for the characteristic radius in the exponential tail observed in Fig. 5.6:∣∣∣∣ ∂

∂ρ
lnGF (ρ; τt)

∣∣∣∣−1

=
GF

|∂GF /∂ρ| ≈
h

πR(0, τt)

for ρ � h and F = R,T . The same problem (with approximate BCs) for linear or
power-law profiles in extinction is amenable to modified Bessel functions of arbitrary
order.
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Example 3: Finite/Isolated Clouds Under Solar Illumination

As a final example, the solar problem for homogeneous scattering/absorbing perpen-
dicular parallelepipeds is tractable in diffusion theory (Davies, 1978), but their sharp
edges lead to BC matching conditions that in turn lead to transcendental equations
for the eigenvalues. By contrast, homogeneous non-absorbing spheres have no such
problems and, rather than a sum of eigenfunctions, one obtains the following closed-
form expression for the normalized boundary fluxes over the illuminated hemisphere
(R) and the opposite hemisphere (T ):

R

T
=

τt

2χ
=

(1 − g)τ
2χ

, (5.35)

where τ is the optical diameter of the sphere. It is assumed here that the collimated
solar beam used to modulate the intensity of an isotropic boundary source, rather
than determine a volume source term. This amounts to making the assumption that
the medium is opaque enough to randomize the directionality of the source in a
vanishingly small boundary layer.

Given that R + T = 1, we can solve for T or R and, interestingly, we find
the same expression as in (5.32). In Chap. 3 (Fig. 3.16), we show a validation11 of
(5.35) based on Monte Carlo simulations in spherical scattering media with Henyey-
Greenstein phase functions over several orders of magnitude in τ. At large τ, we find
χ ≈ 0.71 while, for small τ, we find χ ≈ 4/3; this is as expected from (5.18) and
the ensuing discussion. The present authors have since generalized these analytical
and numerical results to homogeneous ellipsoids with any semi-axis combination.
These media lead to expansions in elliptical harmonic functions (Morse and Fesh-
bach, 1953) as long as the solar beam is parallel to one axis.

Discussion

The closed-form solutions described in above Examples 2–3 are not just of academic
interest. They have indeed shed light on challenging practical problems in cloud
remote sensing. For instance,

• the Green-function problem is of interest in off-beam cloud lidar signal processing
(Davis et al., 1999) as well as in adjoint perturbation theory for 3D RT effects (see
Sect. 5.2.4);

• the ellipsoidal medium problem is useful in fully 3D remote sensing determi-
nations of the optical properties of broken/isolated clouds at solar wavelengths
(Davis, 2002) and associated cloud adjacency problems in surface remote sensing
(see Chap. 3).

11 “Validation” is concerned with matching model predictions and real-world observations
or, in the case of an approximation theory, far-better-but-much-more-expensive modeling
results.
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Finally, one can obtain completely general results in 3D RT within the diffusion
approximation; a formula for the domain-average impact of channeling derived by
Davis and Marshak (2001) is given in (5.70)–(5.71) further on. This exact 3D diffu-
sion result can be used in code verification.12

Validation

For an approximation model such as diffusion in radiation transport, good agreement
with “exact” model results (i.e., solutions of the 3D RT equation) is a criterion for
validity. Notwithstanding, we close our discussion of diffusion theory by noting that
several empirical studies have demonstrated directly or indirectly that this simple
transport modality dominates bulk photon flow in the VIS/NIR spectrum at least
in dense cloud masses. Using the solar source illuminating stratus layers, we can
mention:

• King et al. (1990), who observed the defining angular radiance pattern for dif-
fusion in (5.1) inside marine boundary-layer clouds with the Cloud Absorption
Radiometer (CAR), an airborne scanning multi-channel detector (cf. Fig. 5.2);

• Davis et al. (1997), who observe the signature diffusion phenomenon of radiative
smoothing from above cloud with LandSat’s imaging detector (cf. Fig. 12.2 in
Chap. 12);

• Savigny et al. (1999), who observe radiative smoothing from below cloud in the
time-series of a fixed zenith-pointing radiometer (cf. Fig. 12.24 in Chap. 12).

Still studying stratus layers, Davis et al. (1999) show a characteristic diffusion pattern
in reflected radiance using an (effectively) steady laser source.

Although time-dependence is out of our present scope, other authors have found
temporal diffusion signatures in detected photons emanating from pulsed lasers illu-
minating stratiform clouds:

• Love et al. (2001), looking up from ground using a wide-angle imaging lidar sys-
tem;

• Davis et al. (2001), looking down from space using the large foot-print of the
Lidar-In-space Technology Experiment (LITE);

• although not yet deployed in real clouds, Evans et al. (2003) use analytical and
numerical results to show that their “in-situ” cloud lidar will measure diffusion-
type temporal signals from within clouds.

In Chap. 13 we will see that time-dependence and pulsed sources are equivalent to
steady sources and variable absorption by a well-mixed gas. Accordingly, Min and
Harrison (1999) obtain using ground-based oxygen A-band spectrometry the linear
diffusion-theoretical relation (Chap. 12) between cloud optical depth and the mean

12 Verification is making sure that the computer code faithfully implements the conceptual
model, asking the question Are we solving the equations right? Validation mentioned just
above asks the next important question Are we solving the right equations? These defining
questions are borrowed from the overview of “V&V” by Roache (1998).



5 Approximation Methods in Atmospheric 3D Radiative Transfer 303

photon pathlength in transmission for overcast skies with a single dense cloud layer
(cf. Fig. 13.9).

Finally, turning to cumulus-type clouds, Davis (2002) finds reasonable agree-
ment between the diffusion-based predictions of relative reflected and transmitted
radiance levels in (5.35) and those observed in high-resolution multi-spectral satel-
lite imagery. See Chap. 3, Fig. 3.12, for a geometrical explanation of how one can
observe transmitted photons from space for finite (broken/isolated) clouds.

5.2.3 3D Discrete-Angle (or “6-Flux”) RT Theory

Diffusion theory is equivalent to P1 theory, the simplest possible spherical harmonic
truncation with net transport.13 In the same terminology from Chap. 4, Discrete-
Angle (DA) RT theory is an S1 theory in 3D.14 In lieu of (5.1), we assume:

I(x,Ω) =
∑

î∈{x̂,̂y,̂z}

∑
{±}

F±̂i(x)δ(Ω ∓ î) . (5.36)

This is basically a poor-man’s discrete ordinate approach: it replaces the severe an-
gular smoothing in diffusion theory by the minimal sampling in angle space that still
enables 3D transport. In sharp contrast with diffusion, the DA model for 3D RT in
(5.36) is clearly not at any risk of being validated by direct observations. But this
does not mean that it is not of any value to predict radiation fields of interest in the
applications, some of which may in turn be used to derive observables. This would
lead to interesting validation questions.

It is easy to see why this was originally called “6-flux” theory (Chu and Churchill,
1955; Siddal and Selçuk, 1979); we note that the new spatially varying fields that
multiply the directional δ’s indeed have the same physical dimensions as fluxes. In
fact, we will equate the F±̂i(x), î ∈ {x̂, ŷ, ẑ}, to hemispherical fluxes with respect
to all six directions along the axes of the natural (̂z = “up”) Cartesian coordinate
system. In this 6-flux transport theory, the self-consistent choice of scattering phase
function is given by

�0P (x, θs, φs)/4π = f(x) × δ(θs) + b(x) × δ(θs − π)

+ s(x) × δ(θs − π/2)
3∑

n=0

δ(φs − nπ/2) , (5.37)

where (θs, φs) = (π/2, 0) designates any Cartesian axis direction at a right angle
with θs = 0, π (forward and backward scattering). We require f + b + 4s = �0 to
ensure conservation then, using its usual definition, we see that the asymmetry factor
is given by g = (f − b)/�0.

Lovejoy et al. (1990) present DA RT – the traditional 6-flux model and beyond –
as a special case of standard (continuous-angle) RT with the above choice of phase

13 Photons would have no net motion in a hypothetical P0 theory.
14 In 1D RT, S1 theory is mathematically equivalent to the 2-stream/diffusion approximation,

only the coefficients of the 2 coupled ODEs change (Meador and Weaver, 1980).
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function. We already know that large-scale angularly-integrated radiative properties
are not very sensitive to the precise choice of the phase function. Indeed, diffusion
with its sole parameter g – and maybe f , from the δ-rescaling – does a reasonable
job of reproducing continuous-angle fluxes. So DA RT may turn out to be a viable
predictor of these coarse properties.

The goal in a DA RT problem is to determine everywhere the formal 6-vector
made of all the fluxes in (5.36) given the usual extinction and scattering coefficients
everywhere, as well as the required boundary conditions and source terms. In this
representation of the model, the scattering phase function is reduced to a 6-by-6
matrix that couples the 6-vector of fluxes. As seen in (5.37), this scattering phase
function has two free parameters, one more than in (5.3) after accounting for nor-
malization to �0. Using a natural “first-±-then-{x, y, z}” ordering of the 6-vector of
fluxes, we indeed have along the 2-by-2 block diagonal scattering matrix alternating
factors of 0 ≤ f ≤ 1 and 0 ≤ b ≤ 1 − f that denote respectively the probabili-
ties of forward and backward scattering while the rest of the matrix is filled with the
sideways-scattering probability value 0 ≤ s = (1−f − b)/4 ≤ 1/4 for transitioning
to any of the remaining 4 Cartesian directions. By substitution of (5.36)–(5.37) into
the (continuous-angle) RT equation, we obtain⎛⎜⎜⎜⎜⎜⎜⎝

+∂x F+x̂

−∂x F−x̂

+∂y F+ŷ

−∂y F−ŷ

+∂z F+ẑ

−∂z F−ẑ

⎞⎟⎟⎟⎟⎟⎟⎠ = σ

⎛⎜⎜⎜⎜⎜⎜⎝
f − 1 b s s s s

b f − 1 s s s s
s s f − 1 b s s
s s b f − 1 s s
s s s s f − 1 b
s s s s b f − 1

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
F+x̂

F−x̂

F+ŷ

F−ŷ

F+ẑ

F−ẑ

⎞⎟⎟⎟⎟⎟⎟⎠+

⎛⎜⎜⎜⎜⎜⎜⎝
q+x̂

q−x̂

q+ŷ

q−ŷ

q+ẑ

q−ẑ

⎞⎟⎟⎟⎟⎟⎟⎠ ,

(5.38)

where extinction σ (and possibly all the phase-function coefficients) depend on x, and
the last vector represents internal sources which will also generally depend on x. We
see immediately that, simply by setting s = 0, we decouple the beams propagating
back and forth along the x, y, z-axes. BCs are easy to express as long as the boundary
∂M is made of facets that follow the Cartesian planes. For instance, an internally
variable but geometrically plane-parallel medium is M = {x ∈ R

3; 0 < z < h}; in
this case, no incoming flux at cloud base (z = 0) would appear as F+ẑ(x, y, 0) ≡ 0
while a unit of incoming flux at cloud top (z = h) reads as F−ẑ(x, y, h) ≡ 1.

As for continuous-angle RT, simplification will come from an eigenanalysis of
the coupling term (which models scattering). The eigenvalues of the scattering-
extinction matrix in (5.38) are:

α = 1−f−b−4s (once), β = 1−f−b+2s (twice), γ = 1−f +b (thrice) . (5.39)

The first and last are recognizable from diffusion theory,

α = 1 − �0 and γ = 1 − �0g ; (5.40)

their respective eigenvectors are also well-known: scalar flux J , sum of all the F ’s;
and vector flux F, its components being
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Fi = F+̂i − F−̂i, i ∈ {x, y, z} . (5.41)

The second eigenvalue in (5.39) is less familiar. Its eigenvectors can be formed from
the even combinations

Ji = F+̂i + F−̂i, i ∈ {x, y, z} , (5.42)

where the corresponding odd combinations in (5.41) are the components of F; a
valid choice for the second set of eigenvectors is Jx − Jz and Jy − Jz . We note that
J =

∑
i Ji. We will return to this second eigenvalue and eigenspace to give them a

physical meaning momentarily.
After straightforward manipulations of (5.38) guided by the eigenanalysis, we

obtain three Fick-like relations,

−(1 − f + b)σ(x)Fi = ∂iJi − qi−, i ∈ {x, y, z} , (5.43)

reminiscent of (5.4) with the anticipated extra term for anisotropic sources, qi− =
q+̂i − q−̂i. Letting qi+ = q+̂i + q−̂i, we also obtain these three equations:

∂xFx = σ(x) [−(1 − f − b)Jx + 2s(Jy + Jz)] + qx+ ; (5.44)

and permutations on y and z. Adding up these last three equations yields the usual
conservation law in (5.9) since J and q are just the sums of all of their {x, y, z}-
wise components. By combining (5.43) and (5.44), we arrive at three coupled 2nd-
order PDEs that look like (5.10), plus coupling terms dependent on s = (β − α)/6.
Specifically, we get[

−∂i

(
1

γσ(x)

)
∂i + βσ(x)

]
Ji = (β − α) σ(x)J/3 + qi , (5.45)

for i ∈ {x, y, z}, where we have used the eigenvalues in (5.39) and defined

qi = qi+ + ∂i(qi+/γσ) , (5.46)

the DA counterpart of (5.11).
BCs in the dependent variables Ji of the coupled PDEs are mixed, as for the

diffusion problem but with χ = 1 in (5.17). Indeed, BCs in slab geometry are ex-
pressions for F±ẑ = (Jz ±Fz)/2; using (5.43) without the internal source terms, this
yields

1
2

[
1 ∓ 1

γσ(x)
∂x

]
Jz = f(x) (5.47)

for the new boundary source function.
In summary, practically any of the standard numerical solutions of the diffusion

PDE problem can be used to solve the discrete-angle problem in this (5.45)–(5.47)
formulation since most methods apply equally well to single 2nd-order elliptical
PDEs and to coupled systems of such PDEs. Formally, this is just like a PDE for a
vector field J = (Jx, Jy, Jz)T.
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It is not hard to show that 3D diffusion theory is recovered identically from 6-flux
theory in an intriguing (since non-physical) asymptotic limit of the phase-function
parameters. This is new and unusual because traditional derivations of the diffusion
equation act on the radiance field; along this road from RT per se to diffusion only the
phase-function is manipulated, first going from continuous angles to discrete angles,
then the asymptotic limit. Following Lovejoy et al. (1990) who reckoned in 2D, we
remark that taking β → ∞ in (5.45),15 we have to require Ji = J/3 for i ∈ {x, y, z}
to balance both sides. In other words, the DA photons are partitioned equally along
all three Cartesian axes (side-scattering will certainly promote this equipartition). In
this case, we can sum up all the remaining terms in the 3 PDEs in (5.45) and, using
(5.40), this amounts exactly to the 3D diffusion equation in (5.10) for J . This insight
gives us a meaningful interpretation of the eigenvalue β and its associated eigenplane
spanned by (Jx − Jz) and (Jy − Jz). A less than infinite value of β means a certain
deviation from diffusion theory, and any non-vanishing projection of DA fluxes on
the {Jx − Jz, Jy − Jz} plane is a measure of “non-diffusive” transport. If we are
seeking to improve upon diffusion theory, then 2nd-order DA PDEs with a small but
finite value of 1/β (for fixed α and γ) might be an avenue to explore.

Another remarkable limit is obtained by setting s = 0 which is physically re-
alizable, although probably not very realistic. We then have three decoupled two-
stream models, each represented by a single second-order ordinary differential equa-
tion (ODE); basically, we are back to the two-stream ICA where propagation along
z is allowed, but not along x or y (unless there are designated sources on those axes
too). So, allowing for unphysical phase-function parameters, DA theory is interme-
diate between 2-stream ICA theory (decoupled 1D RT/diffusion equations) and 3D
diffusion theory.

Because it is a minimalist discrete-ordinate approach, the above continuous space
formulation suffers from a particularly severe form of the “ray effect” (as described in
Chap. 4), at least for the physically accessible range of non-negative phase-function
parameters that has been explored so far. Figures in the paper by Davis et al. (1993)
illustrate this ray effect. More interesting for the applications is a discrete space for-
mulation illustrated in Fig. 5.7. This formulation is reminiscent of a radiosity prob-
lem where finite elements (normally surfaces) redistribute the radiation they receive.
However, while in radiosity it is usually quite full, the interaction matrix here is very
sparse.

Assume that a unit of flux is received on one facet of one cell centered at
(x, y, z)T + (∆x/2,∆y/2,∆z/2)T but registered with one of its corners, at a grid
point

m =

⎛⎝i
j
k

⎞⎠ =

⎛⎝x/∆x

y/∆y

z/∆z

⎞⎠ ∈ {0, . . . , Mx − 1}⊗{0, . . . , My − 1}⊗{0, . . . , Mz − 1}

(5.48)

15 Physically, the largest that β can achieve is 3/2; this happens when f = b = 0 and s = 1/4.
So the idea in this formal limit is to emphasize side-scattering.
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Fig. 5.7. The orthogonal Discrete-Angle/Discrete-Space radiation transport model in 2D on
a rectangular grid. The 2 cells on the left illustrate the unitary responses for the 2 possible
directions of incidence. On the right, cell (i, j) receives radiation on all facets and we ask
about the radiation escaping through the bottom facet, including photons created inside the
cell. The balance equation for that cell is written below the schematic. See Gabriel et al. (1990)
for an interesting analytical mean-field investigation of RT through a fractal structure using
this 2D model based on real-space renormalization. Although the idea is far from optimal in
computational DA RT, we can invoke a simple relaxation scheme where we take F

(0)
−z = Q to

initialize the process and the update equation for F
(n+1)
−z would look like the balance equation

using F
(n)
±z and F

(n)
±x on the right-hand side but without the source term. Generalization of this

4-flux model in 2D to the 6-flux scenario in 3D is straightforward (see text)

along the three axes where ∆i, i ∈ {x, y, z}, are the grid constants in the cuboidal
medium with sides Li = Mi∆i. This unit of flux is redistributed according to a
transmission Tm to the facet on the opposite side of the cell, a reflection Rm back to
same facet (but the opposite direction), and a fraction Am is absorbed inside the cell
while sideways deflection towards all the adjacent facets is given by Sm = (1−Am−
Rm − Tm)/4. Thus, part of the system of equations that describes radiative balance
of this cell will look like

F−ẑ(m) = Rm × F+ẑ(m) + Tm × F−ẑ(m − (0, 0, 1)T) + Sm

× [F+ŷ(m) + F−ŷ(m + (0, 1, 0)T) + F+x̂(m) + F−x̂(m + (1, 0, 0)T)]
(5.49)

in the absence of internal sources (for simplicity). It expresses that what comes out
of the bottom of the cell has to come from one of the 5 other faces. There are five
more equations like this one for each node. Together, they express that what goes
in to the cell has to come out, or stay inside if there is any absorption (Am > 0).
When a facet of the cell touches upper, lower, or lateral boundaries, then the appro-
priate BC must be applied. When internal sources are present, more terms appear that
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account for thermal emission or injection of solar photons. At the cell level, the ex-
pressions are in fact exact if the F±̂i(m), i ∈ {x, y, z}, are interpreted as total fluxes
across a facet (cf. Chap. 3). The approximation here consists in assuming that all the
6-fold collections of equations for all the cells are coupled, in other words, that the
interaction between the cells is only through the discrete angles. This is indeed a
gross simplification, especially if there are optically thin cells in the medium.

Generalization to situations where the grid constant is different in one or all three
directions is straightforward. This formulation makes no assumption about the op-
tical thickness τm of the cell. It can be quite large, and then the question of how to
obtain {T, R, A}m arises. This is not a hard question because, even if this is has to
be done by Monte Carlo, these “expensive” mesoscopic coefficients can be stored in
pre-computed look-up tables. Reasonably accurate diffusion solutions for rectangu-
lar parallelepiped media are also available (Davies, 1978).

As an example, we reconsider the I3RC “Case 1” cloud we already investigated
with diffusion theory when �0 = 0.99, g = 0.85, and µ0 = 1. We can describe this
as a very simple discrete-space DA transport problem with Mx = 2,My = Mz = 1
and ∆x = ∆z = 0.25 km, ∆y = ∞. First, we need to obtain {T, R, S} for both
the tenuous and the dense cells with square sections. Straightforward Monte Carlo
simulations (with the prescribed Henyey-Greenstein phase functions and collimated
illumination) yield {T, R, S} = {0.7148, 0.0336, 0.1154} (A = 0.0209) for τ = 2
and {T, R, S} = {0.112, 0.246, 0.227} (A = 0.184) for τ = 18. We can then write
8 coupled linear equations like (5.49) relating the 8 unknown fluxes coming out of
the 2 cells in all 4 directions in these equations (where BCs determine the in-going
fluxes in the z-direction). We find absorptions of 0.0363 and 0.3284 respectively for
the τ = 2 and 18 cells. This is quite close to the values found in Fig. 5.4a with 3D
RT and 3D diffusion. Other optical and illumination parameter choices however do
not work so well, which is not too surprising given how coarse the model is.

This discrete-angle/discrete-space way of modeling 3D radiation transport is par-
ticularly suitable for cloud-system models where cells are typically cloudy or not
because, when they are, they can be quite opaque. In the end, there is a very large but
very sparse matrix problem to solve. Again, there are optimally efficient/stable ways
of doing this (e.g., multi-grid). Note also that, as for the diffusion PDE problem, if
a time-sequence of 3D solutions is sought in a dynamically evolving cloud the pre-
vious time-step is probably a very good initial guess for the updated radiation field.
As for the first step, the standard ICA is obtained by setting Sm = 0 and using 1D
plane-parallel theory to compute {T, R, A}m, in the 2-stream approximation.

If there are large optical voids in the cloud system then the picture of radiation
propagating only along the {x, y, z}-axes is not much more realistic than the ICA
picture we are trying to improve. In that model, radiation travels only along the z axis
(cf. Fig. 5.1). If such optical voids exist, then a combination of radiosity (Siegel and
Howell, 1981) and discrete-angle/discrete-space RT theory may be in order.

5.2.4 3D Adjoint Perturbation Theory

It was shown in Chap. 3 that the full 3D RT equation can be written as simply as
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LI = Q , (5.50)

where I(x,Ω) is the unknown radiance field, L is the known integro-differential lin-
ear transport operator (with advection, extinction and scattering terms), and Q(x,Ω)
is the known distribution of internal sources. Assuming I is just the diffuse com-
ponent (uncollided solar photons are treated separately), the BCs in solar problems
express respectively no incoming radiance at the upper level and either the same or,
at the most, a ground reflection (which is actually just a surface scattering). In a typ-
ical RT problem, we are generally not interested in the 5-dimensional scalar field I
but in some weighted integral16

E = 〈I,R〉 = 〈R, I〉 =
∫
4π

∫
M

R(x,Ω)I(x,Ω)dxdΩ , (5.51)

where R(x,Ω) can be viewed as the angular response of an instrument and/or a
spatial averaging over a volume or a surface belonging to the optical medium M. We
can think of E as an “effect,” namely, the result of applying R to I . Examples of
response functions are:

RT = |µ|Θ(−µ)δ(z)/(LxLy) , (5.52)

for overall transmission (T = E/µ0F0), where Θ(·) is the Heaviside step function
and {Lx, Ly} are the horizontal dimensions of the domain (assumed rectangular);
for overall albedo (R = E/µ0F0), we use

RR = µΘ(µ)δ(h − z)/(LxLy) ; (5.53)

for nadir radiance at cloud top (z = h) from position (xo, yo), we take

RI↑ = δ(Ω − ẑ)δ(z − h)δ(x − xo)δ(y − yo) ; (5.54)

and for zenith radiance out of cloud base (z = 0) at the same position,

RI↓ = δ(Ω + ẑ)δ(z)δ(x − xo)δ(y − yo) . (5.55)

Going back to the definitions in Chap. 3, Sect. 3.10.2, we recall that the adjoint
radiance field I+(x,Ω) obeys the adjoint RT equation

L+I+ = R (5.56)

where the adjoint transport operator L+ describes how adjoint photons propagate
backwards from the receivers (adjoint sources) to the sources (adjoint sinks). The

16 The 〈·, ·〉 notation used here is the natural definition of the scalar product in a space of
functions, viewed as an infinite-dimensional vector space. In such a vector space, each
position-direction pair {x,Ω} is associated with a dimension, and the real number f(x,Ω)
is the associated component or projection of the “vector” f .
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characteristic BCs for the adjoint RT equation express that there are no escaping
adjoint photons. It can be shown that

E = 〈I,R〉 = 〈I+,Q〉 . (5.57)

The physical interpretation of I+(x,Ω) is as a measure of the relative “importance”
of position x and direction Ω for a given observation represented formally by the
response function R(x,Ω) in (5.56). So, not too surprisingly, the outcome E of a
radiometric observation described by R can be estimated either by a direct integra-
tion of the radiance function I (as determined by Q and) weighted by R, or through
an integral over the (real) photon sources Q weighted by this importance function
or adjoint radiance I+ (as determined by R). This is essentially the philosophy of
backward Monte Carlo computation (cf. Chap. 4).

Keeping sources Q and receivers R constant, we can represent 3D variability
(generically in the extinction σ and scattering σs coefficients, as well as in the phase
function), as a perturbation on a base state that can be taken as a plane-parallel 1D
medium for simplicity. So we write L = Lb + ∆L, and similarly for L+ where the
subscript “b” designates a 1D uniform or vertically stratified medium. Just like the
operators, we expand the radiance fields, I = Ib +∆I , and similarly for I+. Finally,
we expand the scalar quantity E = Eb + ∆E. Since LbIb = Q and L+

b I+
b = R,

and exploiting linearity in (5.57), we obtain

∆E = E − Eb = −〈I+
b ,∆LIb〉 + 〈∆I+,L∆I〉 + · · · , (5.58)

showing the first two terms of an infinite expansion that we denote respectively ∆E1

and ∆E2. The base-case transport operator Lb can be defined by horizontally aver-
aging the 3D operator L.

Suppose we are interested in a radiant energy budget problem in climate or in
an effect of unresolved (sub-pixel) variability in remote sensing. Then R (which
determines I+

b ) mandates a horizontal domain averaging. It is then easy to show that
the 1st-order term

∆E1 = −〈I+
b ,∆LIb〉 = −〈∆L+I+

b , Ib〉 (5.59)

in (5.58) vanishes identically. Indeed, being solutions of 1D RT equations, both Ib

and I+
b are invariant by horizontal translation and we know (by definition) that the

horizontal mean of ∆L is zero (i.e., the null operator). So domain-average 3D radia-
tive transfer effects start at 2nd order.17 To obtain an explicit algorithm from pertur-
bation theory for domain averages, we now need to somehow replace the unknown
∆I and ∆I+ with their known (subscript-“b”) counterparts and, accordingly, intro-
duce ∆L and ∆L+ in lieu of L in

∆E ≡ ∆E2 = 〈∆I+,L∆I〉 . (5.60)

17 This is also made clear from the exact diffusion theoretical result described further on, in
(5.71).
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Remarking that E = 〈R, G ∗ Q〉 = 〈G+ ∗ R,Q〉 where G and G+ are the Green
function (GF) and its adjoint counterpart (with “*” denoting a convolution product
over the 5-dimensional {x,Ω}-space), Box et al. (1988, 1989) show that (5.60) can
be estimated from quantities entirely obtained from the base case. The final expres-
sion for the 2nd-order perturbation term is

∆E2 = 〈∆L+I+
b , Gb ∗ ∆LIb〉 = 〈G+

b ∗ ∆L+I+
b ,∆LIb〉 . (5.61)

The GFs are inherently 3D quantities here, even for the uniform base case because
of their defining source distributions (cf. Chap. 3); they are indeed the solutions of
LbGb = δ(x − x′)δ(Ω − Ω′) and L+

b G+
b = δ(x′ − x)δ(Ω′ − Ω). So, by virtue of

source superposition, Ib = Gb ∗ Q and I+
b = G+

b ∗ R (even though Q and R are
not, in the present case, dependent on the horizontal coordinates). These GFs will
therefore interact with the (x, y)-dependence of ∆L (∆L+) even if Ib (I+

b ) does
not.18

There is the potential here for considerable computational complexity. GFs for
the uniform base case have 10-dimensional arguments (x,Ω; x′,Ω′) but depend only
on relative values in the horizontal (x − x′, y − y′, z, z′). As soon as a GF appears
in perturbation equations, the primed arguments are understood to be involved in a
5-dimensional integral. The scalar product in (5.61) is itself a 5-dimensional integral,
and there are 2-dimensional integrals over angle-space in each of the transport oper-
ator perturbations. So (5.61) is in fact shorthand for a 14-dimensional integral. But
this is somewhat naı̈ve book-keeping. In reality, a judicious representation of opera-
tors and radiation fields in spherical harmonics can be used to do all of the 8 angular
integrals analytically. Further simplifications are possible because of translational
invariance in (x, y); see Box et al. (2003). More good news is that base-case ingre-
dients in (5.61) only need to be computed once and can be then applied to arbitrary
variability.

Now what if R describes the observation of a radiance- or flux-value at a point?
Instead of averaging over space, we are then sampling points and, accordingly, R
contains a spatial δ-function. This could be a way of modeling high-resolution re-
mote sensing data and 3D effects across pixel boundaries. Since R is the source of
the adjoint RT equation, the base-case adjoint radiance field I+

b in (5.59) is then de
facto a spatial GF. So, in its broadest definition, adjoint perturbation theory is entirely
based on GFs.

Figure 5.8, adapted from Polonsky et al. (2003), shows results from (5.59) for a
sine-wave cloud model:

σ(x) = σb + δσ cos(2πx/L) , (5.62)

for any 0 < z < h. Structural parameters are h = 1 (nominally), L/h = 2π ≈
6.3, and ε = δσ/σb = 0.1. The sources are uniform (F0 = 1) and collimated
(µ0 = 1.0, 0.3) along the top boundary (z = h). Optical properties are given by

18 The expressions we provide for ∆E1 and ∆E2 are general, not limited to the case of
uniform Q and R, used here primarily for motivation of the higher-order theory.
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τb = σbh = 10; scattering is conservative (�0 = 1), and the phase function is
Henyey–Greenstein with g = 0.5. In summary, we have

Q = F0σb�0PHG(θs; g) exp[−σb(h − z)/µ0] (5.63)

for the “solar photon injection” term used in Chap. 3 when the radiance I models
only the once or more scattered light; alternatively, one could use an upper-boundary
source term

Q = F0δ(Ω − Ω0)δ(h − z) (5.64)

in which case I models the total (direct+diffuse) radiance field. The response we seek
is nadir radiance at a point along the cloud top. So the R of interest is made explicit
in (5.54). We plot ∆E1 as a function of σbxo over a couple of cycles obtained by
perturbation theory and with SHDOM (Chap. 4) for the two solar zenith angles. The
agreement is quite good. Furthermore, we know that the 3D RT effect estimated here
at 1st order is proportional to the extinction perturbation parameter ε and that it is
sinusoidal, but it is not in phase with the extinction wave as soon as µ0 < 1. This
distinguishes the perturbation method immediately from the local ICA.

The adjoint perturbation method is a closed-form approach to 3D RT. It also
has the advantage of enabling the user to define (through R) just how much or
how little spatial and angular detail is wanted in 3D position space and 2D direc-
tion space. These features distinguish it from the two previously described methods
which involve the numerical solution of a PDE or sparse-matrix problem. So the ad-
vantage of perturbation over alternate methods is not a simple issue. We can however
anticipate that its accuracy will break down as the amplitude of the fluctuating co-
efficients increases with respect to their mean values. Again the break-even point in
loss of accuracy, given all the advantages of the method, will be application depen-
dent. Furthermore, there is no obligation in perturbation theory to take the base case,
LbIb = Q (plus BCs), as homogeneous. It could be the ICA solution, and we seek
the first- or higher-order corrections to it. It could be the 3D diffusion solution, and
we seek to improve it with respect to the 3D RT equation. This is all about defining
the perturbation ∆L of the transport operator.

Finally, we note that in the above we have followed the formalism of Box et al.
(1989) because of its relative simplicity, but there are other approaches. In fact, Li
et al. (1994) combine a spatial perturbation technique with the 3D diffusion approxi-
mation and even apply it to a 2D sine-wave cloud model. Galinsky and Ramanathan
(1998) furthermore examine the case where extinction is constant but the physical
cloud thickness is modulated by a sine-wave.19 Since the diffusion transport oper-
ator in (5.10) is based on 2nd-order spatial derivatives, it is self -adjoint and there
is no need to bring in the concept of adjoint transport. On the other hand, the 2nd-
order perturbation expansion, still in the diffusion limit, by Li et al. (1995) rivals in
algebraic complexity the arbitrary-order adjoint RT equation approach by Box et al.
(2003) which, to be fair, has yet to be encoded and assessed.

19 Galinsky (2000) generalize their perturbation model from diffusion to a discrete-ordinate
approach.
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Fig. 5.8. Example of an adjoint perturbation prediction (solid lines) of 3D RT effects compared
to exact SHDOM results (symbols) for a sine-wave cloud under two solar illumination angles,
µ0 = 1 (#1) and 0.3 (#2), noting the shift of the 3D effect at slant illumination (details in the
main text)

In conclusion, application of perturbation theory to radiation transport is a
promising avenue to cope at least with weakly variable media, and especially when
several realizations of the spatial variability around a given mean state are to be ex-
amined.

5.2.5 Hybrid and Semi-Empirical Methods

So far we have described three strikingly different approximation methods. But they
all derive from the RT equation, precisely what is being approximated here. Given
this connection, one can generally anticipate the conditions under which an approx-
imation will work or not. Now we turn to methods which are predicated on other
considerations: ad hoc hybridization, phenomenology, and borrowing across disci-
plinary boundaries. Representative examples follow.

• As a representative of a hybrid method applicable to solar problems, consider
the straightforward idea of “feeding” a 1D-based ICA computation with a fully
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3D source term. For a two-stream implementation, one would use the expres-
sions in (5.13) computed (say) at the middle of the upper boundary of a cell of
size δx × δy × δz positioned at x = (x, y, z)T where x and y have now be-
come fixed parameters while z scans the column as a (discretized) independent
variable; in short, the solar constant F0 in the analytical single-layer 2-stream
model becomes F0(x) = F0 exp[−τ0(x + δx/2, y + δy/2, z + δz)] obtained
using (5.14). This collimated flux is then projected onto the z-axis, propagated
into the cell, and partitioned between up- an down-ward directions. For the pop-
ular δ-Eddington version of the 2-stream model (actually just 1D diffusion the-
ory), the source terms for the classic system of two coupled 1st-order ODEs are
F0(x)�0(x)(1/2 ∓ 3g(x)µ0/4) exp[−σ(x)ζ/µ0], respectively in the ±z direc-
tions, where ζ is the depth into the cell measured from the top (i.e., the indepen-
dent variable in the two-stream ODEs). In this coupled ODE model, the forward
and backward scattering coefficients (constant for a given cell) are similarly ob-
tained: e.g., [7−�0(x)(4+3g(x))]/4 and [1−�0(x)(4−3g(x))]/4 respectively,
using the diffusion-theory phase function in (5.3). Considering the cell as a homo-
geneous plane-parallel layer in a vertical column, the 2-stream theory (Meador
and Weaver, 1980) uses the cell’s optical coefficients τ(x) = σ(x)δz, �0(x),
and g(x), all δ-scaled (5.9), to deliver albedo, diffuse- and direct transmissions
{R(x), Tdif(x), Tdir(x)}. Then standard sparse matrix techniques are used to ac-
count for the radiative coupling of the layers throughout the column. As soon as
the sun is off-zenith (µ0 < 1), results will differ from the standard ICA two-stream
model where even the source term is computed with single-column quantities, and
possibly quite dramatically different if the gridded optical medium is contains
large regions of clear air. In particular, geometrical shadowing is accounted for
exactly. Gabriel and Evan (1996) found this approximation to be a good compro-
mise between efficiency and accuracy for domain-average flux profiles compared
to several other techniques. We see no reason to not use it for the full 3D grid, as
needed. This solution is certainly a reasonable first-guess for the 3D radiation field
in a successive order of approximation technique such as the adjoint perturbation
series.

• To illustrate an approximation grounded in phenomenology, we invoke the Non-
local Independent Pixel Approximation (NIPA). The IPA is strictly local in the
horizontal plane (cf. Chap. 12), so the chosen name here is somewhat self-
contradictory by design. This approximation method was proposed by Marshak
et al. (1998) as a way of improving the IPA/ICA, viewed as a prediction for ra-
diance fields (not just the domain-average) when it was realized that the high-
resolution IPA radiance fields inherited the characteristic roughness20 of fractal
stratocumulus cloud models (cf. Appendix) while observations and Monte Carlo
simulations showed a remarkable degree of smoothness at the smallest scales
(Marshak et al., 1995). This was soon understood as the natural averaging ef-

20 This refers to the non-differentiability of the function assigning optical depth to horizontal
position, not to the cloud boundaries which is in fact generally considered flat (i.e., the
stratus-type cloud models are geometrically plane-parallel).
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fect of net horizontal flux divergences that arise when pixels become optical thin
in the transverse direction, i.e., when σ(x)∆h ≈ 1 where ∆h is the horizontal
dimension of the pixel/cell (as defined by the imaging radiometer or by the com-
putational grid). For more on this “radiative smoothing” phenomenon, we refer
to Chap. 12 (and references therein). Physical intuition tells us that a step in the
right direction is to take the IPA field and to apply a low-pass spatial filter with a
profile inspired by 3D RT experiments using pencil beams. The width of the filter
thus captures parametrically the dependence of radiative smoothing on the relevant
cloud properties, namely, thickness and mean optical depth. A reasonable choice
for the smoothing kernel is in fact the boundary-source/boundary-sampled Green
function, i.e., the reflected or transmitted radiance field excited by a δ-source at
a boundary.21 An example of a smoothing kernel that would be appropriate for
a NIPA estimation of the transmitted flux field can be seen in Fig. 5.6, conve-
niently expressed in closed-form in the Fourier domain (where convolutions are
the most efficiently performed) in Fig. 5.5. For a representation in physical space,
see Polonsky and Davis (2004) who improve upon the empirical estimate of the
exponential tail of the Green function used by Marshak et al. (1998). Since we
end up using a closed-form convolution equation to predict the true 3D RT field
starting from the IPA estimate, we can also attempt the opposite. The intention
here is to use the IPA field inferred from actual 3D RT radiances (i.e., remote-
sensing data) to back out cloud properties, starting with local optical depth. This
is called the “inverse NIPA” (Marshak et al., 1998). As one might expect, this is a
numerically unstable operation but amenable to standard regularization techniques
in Fourier space (Tikhonov, 1977).

• To exemplify what can be gained by borrowing a technique from another disci-
pline, in this case, computer science, we take Mapping Neural Networks (MNNs).
MMNs are statistically trained algorithms developed primarily for complex prob-
lems in nonlinear function approximation using one or more layers of “links” and
“nodes/neurons” that connect an input field to an output field. The links are essen-
tially a series of weights used to collect the input into sums, then into intermediate
“hidden-layer” values, and finally to redistribute these towards the output. The
nodes nonlinearly transform the intermediate values. The values of the weights
are determined iteratively by examining a “training” set of given input and given
output, continuously adjusting the multi-layer weight collection to better approx-
imate the output. So a “cost-function,” say, the sum of (predicted minus actual)
differences squared, is being minimized here. A good reference on this popular
topic in computer science is Caudill and Butler (1992) and high-quality software
encoded by subject-matter experts is freely-distributed over the internet. The MNN
technique was first applied to 3D RT by Faure et al. (2001) and recently brought to
almost operational functionality in cloud remote sensing by Cornet et al. (2004).
The input is the IPA field, typically a reflected radiance, and we want to use it to

21 This choice can be justified a posteriori by the 1st-order perturbation formula in (5.59)
where Ib is the 1D RT equation solution (say) for reflected radiance, ∆L is (formally) the
application of the IPA, and I+

b is the relevant Green function.
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predict the true 3D RT field, or vice-versa in a remote-sensing application (Faure
et al., 2002; Cornet et al., 2004). These are truly the same problems that are ad-
dressed with the NIPA and inverse NIPA respectively. The only difference is that
MNNs are used in lieu of postulating the form of a smoothing kernel, applying
it, and comparing the forecast with pre-computed 3D RT (using Monte Carlo or
SHDOM). The cost-function is a natural measure of accuracy. Another measure
of performance in machine learning is to consider input/output data that were not
used for the training, so-called “generalization” data. A well-trained MNN will
perform well for this new “out-of-sample” data.

These are just three examples, outcomes from creatively thinking about 3D RT
with a practical problem-solving mindset. In particular, there is no attempt here to
compute internal or transmitted radiance fields if reflected fields are the program-
matic focus. There are other such methods, in particular, further variations on the
IPA theme (e.g., Várnai and Davies, 1999) and also importation into determinis-
tic remote-sensing problems of methods used for the statistical large-scale prob-
lems (e.g., Kokhanovsky, 2003).22 We anticipate many more of these pragmatic ap-
proaches to be developed as the demand for 3D RT increases in specific situations. In
particular, the tremendous advances in machine learning since the advent of MNNs
(genetic programming, support vector machines, etc.) will likely be exploited.

5.3 Efficient Computation of Detailed 3D Radiation Fields:
Discussion and Outlook

In the previous section we described approximation methods for computing detailed
3D radiation fields using elliptical PDE solvers, sparse-matrix equations, closed-
form multi-dimensional integrals, smoothing kernels, and machine-learning modal-
ities. Our goal was not to be exhaustive. More approaches are being developed as
we go to press and will appear in the literature on a regular basis. Rather, we wanted
to sample the diversity of current methods which reflects the magnitude and multi-
faceted nature of the computational challenge at hand.

We did not discuss efficiency (speed-up with respect to the numerical 3D RT
methods of Chap. 4) in quantitative terms, and we paid little attention to the associ-
ated tradeoff in accuracy. It seemed to us more important at this conjecture and in this
venue to survey the available portfolio of methods because this is truly about work
in progress. Even in the absence of a detailed study of efficiency/accuracy trade-
off, we already know that there is no “silver bullet” in 3D RT approximation. The
method of choice will ultimately depend on the application. That is the main reason
for maintaining the diversity of approaches.

We close with a brief discussion of the primary stakeholders that stand to ben-
efit from efficient-but-approximate 3D radiation transport codes when they become

22 See Chap. 6, Sect. 6.2, for a description of several such methods targeting domain-average
fluxes.
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available. In some case, we will allow ourselves to speculate on the approximation
technique of choice . . . and be quite happy to be proven wrong.

5.3.1 Cloud and Cloud-System Modeling

Climate prediction is a capability we need as a society, to make sound decisions
in energy policy that can have a huge impact the economy as well as on diplo-
macy. This project relies almost entirely on the forecasting skill of GCMs. This is a
tremendous burden on predictive climate science, and a potential vulnerability in the
greater scheme. Climate modelers are therefore constantly looking for ways of im-
proving their representations of climatically important processes. This is especially
true when these processes are not resolved by the GCM dynamics where grid-scales
are on the order of several hundred km.23 One of these processes is radiative transfer,
and how to parameterize it in the presence of clouds was covered in the first sections
of this Chapter as well as in several other parts in this volume. An arguably even
more challenging sub-grid problem in GCMs is cloud physics and dynamics.

Cloud Process Modeling with CSRMs

RT subject-matter experts have 3D RT codes to investigate in great detail how 3D
cloud structure may or may not impact the atmospheric and surface radiation bud-
gets at GCM grid-scales. Their goal is to distill all the 3D information into a simple
parameterization of boundary fluxes and heating-rate profiles, given a very coarse
description of the state of the atmosphere and surface. Similarly, cloud experts have
cloud-system resolving models or CSRMs which can cover a GCM grid-box yet re-
solve structures at a km or so in scale, although typically by reverting to 2D dynam-
ics (only one horizontal and one vertical coordinate). These CSRMs were originally
designed to be numerical laboratories where new parameterizations of cloud-scale
processes can be developed and tested, and serve this purpose very well. However,
a recent trend has been to short-circuit the parameterization step altogether and to
insert a CSRM into each GCM grid-cell – this is called “super-parameterization”
(Khairoutdinov and Randall, 2001). There are of course radiative processes at work
at the scales resolved by the CSRM and they are 3D. However, because of their
legacy, CSRMs use simple column-by-column RT computations in the 2-stream ap-
proximation. It is of course inconsistent to have 3D (or even 2D) dynamics and 1D
radiation. So the CSRM community would surely welcome more realistic radiation
codes with some 3D capability . . . as long as it does not cost too much in computer
time. At a km or more across, CSRM grid-cells can be optically thick (clouds in
their own right) as well as optically thin. This is not an easy 3D medium to model

23 Japan’s Earth Simulator (http://www.es.jamstec.go.jp/esc/eng/) is a dedicated super-
computer that resolves horizontally details which, at about 10 km, are commensurate with
the atmospheric scale-height. At this remarkable threshold-crossing in computational res-
olution, we will eventually need to reconsider the design of physical parameterizations,
certainly radiation (cf. Fig. 5.1a).
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in detailed 3D RT whether using the exact RT equation or an approximation thereof.
We suspect a hybrid model is required here: discrete-angle/discrete-space 3D RT
for interactions inside a multi-cell cloud mass (since it is a straightforward general-
ization of the current 2-stream model) and possibly a radiosity-based approach for
interactions between such cloud masses.

Cloud Process Modeling with LESs

On smaller grids (cells not exceeding a 100 m or so), we have LES models that
consider at most a few clouds at a time in a domain of a few tens of km, but
they generally have better microphysics than CSRMs. At present, LES models use
the same column-by-column 1D RT parameterizations as CSRMs and GCMs even
though the width of these columns is now on the order of the local value of the
photon mean-free-path, and often much less. In this situation, a 3D “remedy” to the
unrealistic 1D RT is likely to be 3D diffusion theory, especially in the denser and
more embedded portions of the cloud. This improved treatment of radiation has in
fact already been implemented and tested in the UCLA cirrus cloud model by Gu and
Liou (2001). For nocturnal (IR forcing only) boundary-layer stratocumulus, bench-
mark results have been obtained by running coupled dynamics and 3D RT using
the exact-but-slow SHDOM model called by the U. Oklahoma LES (D. Mechem,
private comm.). Having more boundary per unit of volume and being separated by
quasi-vacuum, broken cloud fields are even more challenging.

5.3.2 Remote Sensing of Cloud and Surface Properties

Operational remote sensing of the Earth’s environment is another major application
area for atmospheric RT where computer time (measured in CPU cycles consumed
per pixel) needs to be carefully managed. Indeed, space agencies worldwide – and
NASA in particular – have considerable amounts of sophisticated instrumentation
on orbiting satellite platforms that produce increasingly huge numbers of pixels to
process, whether they are passive imagers or active profilers. In both of these obser-
vational modalities, spatial complexity across the horizontal boundaries separating
the smaller pixels as well as inside the larger pixels is almost always ignored while
spectral or temporal information layers gets all the attention. In other words, hori-
zontal uniformity assumptions are the general rule in the RT modeling that supports
operational remote-sensing observations, no matter how big or small the pixels are
and whether or not it is justified. How much longer can this unrealistic modeling
assumption be enforced on the questionable basis that we have nothing else than 1D
RT to apply? Probably not very long. Is it really true that 1D RT is all we can afford
to do anyway? Probably not. In the not-so-distant future, we will see real-time/high-
resolution/whole-Earth observation from lunar and LaGrange stations. Thanks to ad-
vances in nuclear space reactors and broadband communications, there will be in-
creasingly powerful imaging and/or profiling radiometers onboard planetary probes,
fully calibrated and therefore capable of quantitative exploitation just like any Earth-
bound instrument.
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This vision puts tremendous pressure on the atmospheric RT community to de-
velop physically realistic methods for extracting the inherent physical information
from pixel-space as well as from the spectral dimension of remotely-sensed data . . .
without costing much more than a 1D RT computation. At this point, it is important
to recall that clouds are the main cause of horizontal divergences and convergences
in the photon flow, hence blatant violations of the operational uniformity assump-
tion. We must therefore distinguish between the problems of remote sensing of cloud
properties and of surface properties in the presence of clouds.

Cloud Remote Sensing Using Large Pixels

At resolutions worse than a few km per pixel, there is clearly more of a problem
of unresolved variability than of cross-pixel radiation transport inside clouds. The
obvious first-cut solution here is to use one of the effective-medium/mean-field theo-
ries discussed above even though they were developed with climate studies in mind;
they can possibly remove some remote sensing biases at virtually no computational
cost because they only change the optical parameters used in the retrievals based
on 1D RT. As needed, another class of solutions will call on mean-field theories,
again developed a priori for large-scale domain averages, that lead to new transport
equations to solve. These equations predict the radiation fields from cloud optical
properties, and in this application will need to be inverted. Either way, one can fore-
see multi-spectral – and multi-angular, multi-polarization, and eventually multi-pixel
– retrievals of all the usual cloud properties of interest (optical thickness, droplet ra-
dius, etc.) with more accurate means. For an after-the-fact study looking towards
future 3D retrievals, see Rossow et al. (2002). For a “recycling” of a climate-driven
variability model, the Gamma-weighted two-stream approximation (GWTSA) de-
scribed in the next Chapter, see Kokhanovsky (2003). As a matter of course, we will
also see new retrievals to investigate in their own right: effective small-scale variabil-
ity parameters.

Cloud Remote Sensing Using Small Pixels

Instruments in this class (resolutions of a couple of 100 m or better) are used, in par-
ticular, for detailed sub-pixel looks that support their counterparts we just discussed
and that have poorer spatial resolution (e.g., ASTER for MODIS, on the same Terra
platform). They thus provide validation data for improved remote-sensing algorithms
that acknowledge unresolved variability. They are also of interest in their own right
because they open up a new kind of 3D RT problem. Indeed, in high-resolution im-
ages of overcast scenes, pixel adjacency effects dominate since their size is compara-
ble or smaller than the photon mean-free-path, as small as it already is inside clouds
(typically less than 100 or so meters). Here, tricks like the above-described inverse
NIPA and MNNs have already proven useful by attempting to restore the radiance
that the strict (local) IPA would yield and, from there, cloud optical properties us-
ing standard inversions based on 1D RT. There are others, such as Marshak et al.’s
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(2000) Normalized Difference Cloud Index (NDCI), also covered in Chap. 14. Con-
ceivably, one could develop 3D tomographic techniques based on iterations of an
efficient forward RT model. Diffusion and adjoint perturbation theories could be put
to task here.

Broken/Isolated Cumulus Clouds

Small cumulus are problematic at any resolution because their RT is inherently 3D
and IPA techniques are thus biased, unless informed somehow by the knowledge of
3D RT effects. Alternate techniques using radically non-plane-parallel cloud geom-
etry are required. Davis (2002) has proposed a multi-pixel “sunny/shady ratio” tech-
nique for deriving broken cloud optical depth based on a diffusion solution for the RT
in spheroidal cloud shapes. This is an avenue worth exploring for imagery with high-
enough resolution to clearly distinguish the illuminated and non-illuminated portions
of that clouds surface and analysis of 5-m resolution data from DOE’s Multispec-
tral Thermal Imager (MTI) VIS/NIR channels supports this proposal. Still assuming
high-enough resolution, the contrast between radiance from ground pixels that are
sunlight and in cloud shadows can also be used to estimate broken cloud optical
depth (P. Chýlek, pers. comm.) In low-resolution images, up-welling radiances are
a mixture of sun-light cloud surfaces, non-illuminated cloud surfaces, and similarly
for the ground (surfaces that receive direct sunlight, and that are in cloud shadows).
Furthermore, this is not a linear mixture because all these elements are in view of
each other and therefore exchanging photons. Nonetheless, linear combinations can
be used as a first cut, and line-of-sight arguments (a.k.a. “view-factors” in radiosity)
can be used to go to the next level.

Cloud Contamination in Surface or Clear-Air Property Remote Sensing

In remote sensing of surface properties at high spatial resolutions, we already strug-
gle with nonlinear mixtures of spectral signatures mediated by the molecular/aerosol
atmosphere because the photon mean-free-path can be considerable, but not long
enough to neglect the scattering altogether. This is known as the “adjacency” ef-
fect (Lyapustin and Kaufman, 2001). We can also become interested in determining
ground or atmospheric properties, including surface fluxes, in the presence of broken
clouds. What are their adjacency effects? What is the cloud impact on the illumi-
nation of a nearby surface element, hence on surface property retrievals? What is
the impact of a dense cloud on the atmospheric “path radiance” contribution to the
total radiance from a clear pixel near by? How does that influence clear-air prop-
erty retrievals such as aerosol load or column water vapor? Intuition, supported by
forward Monte Carlo simulations (Kobayashi et al., 2000; Wyser et al., 2002, 2005)
or empirical assessments (Cahalan et al., 2001; Wen et al., 2001), suggests that at
close enough range to the cloud these effects can be considerable (i.e., detectable,
and thus damaging if neglected). To err on the safe side, industry providers of high-
resolution satellite imagery such as DigitalGlobe do not consider their products of
commercial value unless they are less than ≈20% cloudy. In contrast, Chýlek et al.
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(2004) show empirically using MTI data that the effect of broken clouds on path ra-
diance in water-vapor retrievals based on near-IR band ratios with 20-m resolution is
often, but not always, negligible.24 In the same paper, the effect of unresolved small
clouds in imagery at lower resolution is simulated and found to be considerable; the
same conclusion holds for the impact of unresolved clouds on aerosol optical depth
retrievals (Henderson and Chýlek, 2005).

To estimate the magnitude and sign of these cloud contamination effects in real
data, we need at least rough estimates of cloud properties. Geometrical parameters
(height, thickness, extent, aspect ratio, etc.) can often be estimated using in-scene tri-
angulation techniques, and improved estimates will be obtained if multiple viewing
angles are acquired. Then optical properties must be determined by one or another of
the above sketched techniques. This extension of atmospheric correction from purely
aerosol/molecular atmospheres up to the edge of broken clouds may sound somewhat
compulsive in many land-surface remote sensing applications in environmental sci-
ence where it is easier to just wait for a more cloud-free collect. However, in the
surveillance- or reconnaissance-driven remote sensing performed by the intelligence
community, one may not have that luxury.

From Mitigation to Exploitation of 3D Radiative Transfer

So far, we have hinted at ways of compensating for 3D RT effects in and around
clouds using rough approximations. This is not only for the sake of efficiency but
because there is an error budget to balance: models have errors and so do the data.
Beyond mitigation, we find deliberate exploitation of 3D RT effects in entirely new
remote sensing technologies. One example, described in detail in Chap. 13 (and ref-
erences therein), is to work with solar photon pathlength statistics obtained from
differential absorption spectroscopy in well mixed gases, often oxygen bands or (at
high-enough spectral resolution) oxygen lines. Another example, closely related to
O2 spectroscopy on the theoretical plane, is “large foot-print” lidar probing of clouds,
surfaces or vegetation canopies. In both the passive and active modalities, 3D spatial
information is packed into the time-domain via multiple scatterings and/or surface
reflections. Illumination of a dense cloud at relatively close range by a narrow laser
beam is a 3D RT problem that opens the path to off-beam/multiple-scattering cloud
lidar (Davis et al., 1999) where the new closed-form lidar equation is essentially the
(boundary-source) Green function sampled at a boundary point. The non-stationary
version of the 3D diffusion equation from Sect. 5.2.2 is an accurate approximation
for this signal at large enough times and distances (Polonsky and Davis, 2004). These
recent developments mark the beginning of a new era in remote sensing science and
technology where spatial and temporal relations between pixels bring as much if not
more than what can be extracted from the multi- or even hyper-spectral layers of the
image cube.

24 This is however traced for the most part to the compensating effect of cloud droplet ab-
sorption in one of the reference (out-of-band) channels used by MTI to infer column water
vapor. So the reassuring conclusion may not carry over to other instruments.
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Fig. 5.9. Schematic of (a) the extinction field inside a sine-wave cloud model and (b, b′, b′′)
three approximations for the radiative transfer (photon flow) represented by vector-flux lines

5.4 Three-Dimensional Radiation Transport Phenomenology:
A Case Study

Consider the schematic in Fig. 5.9. Panel (a) illustrates an extinction field with hori-
zontal variability in the x-direction only in the form of a sine-wave oscillating around
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a mean value 〈σ〉 with an amplitude 0 ≤ δσ ≤ 〈σ〉; see (5.62). The thickness is h
and the wavelength (period) is L. Therefore τ(x) = σ(x)h varies in sync with ex-
tinction and its parameters are 〈τ〉 = 〈σ〉h and δτ = hδσ. This is a highly idealized
cloud that has been considered over the decades in many theoretical studies using
almost as many different RT techniques, starting with Giovanelli (1959) and ending
(as far as we know) with Polonsky et al. (2003). Notable milestones in this ongoing
series of 3D RT investigations using the idealized “sine-wave” cloud are the papers
(known to us) by Weinman and Swartztrauber (1968); Cannon (1970); Romanova
(1975); Stephens (1986); Li et al. (1994); Gabriel and Evan (1996); Galinsky and
Ramanathan (1998); Galinsky (2000)25 and Davis and Marshak (2001). This sim-
ple two-dimensional medium is understandably a preferred test-bed for new 3D RT
equation solution methods as well as 3D RT approximation techniques, several of
which are mentioned in the following Section.

To keep the following discussion as simple as possible, the medium will be as-
sumed conservative (σa = 0, σ = σs, �0 = 1). Photon sources are furthermore
concentrated at the top (z = h) of the cloud (the illumination pattern is assumed axi-
symmetric) and uniform in x (like sun at zenith or hemi-spherically averaged); the
lower boundary (z = 0) is purely absorbing (no sources, nor reflection). This defines
the 3D RT problem, up to the precise choice of scattering phase function and of the
incident radiance pattern Iin(θ) with θ ∈ (π/2, π]. We will assume that the incident
flux, F0 = 2π

∫ π
π/2

Iin(θ)| cos θ|dθ, is unity. Under these circumstances, the photon
flow inside the medium, as represented by flux-lines, is two-dimensional and sym-
metric around the crests and troughs of the sine-wave extinction field. By definition,
flux-lines are everywhere tangent to F(x, z); they all start at cloud top (where the
sources are located) and invariably end at cloud base (where the dominant sinks are
located). In a very real sense, this photon flow is driven by an excess of “pressure”
at cloud top but must negotiate with the variable extinction, i.e., resistance to flow.
The resulting value of transmission T (x), a net flux along the vertical axis across the
lower boundary, is proportional to the local density of flux-lines. At cloud top, the
same can be said of the net flux 1 − R(x) associated with the albedo field R(x).

The next three panels illustrate schematically three levels of approximation to the
3D RT problem. Each approximation has a following in the atmospheric RT commu-
nity but, for the moment at least, the number of practitioners decreases drastically
as we progress down the sequence. This trend is in spite of the fact that accuracy
increases at a computational cost that is not as forbidding as many imagine. The
overarching goal of approximation theory in numerical 3D RT is to reverse this trend
without making it difficult for the majority now using the 1D RT approximation, ir-
respective of the circumstances. We now visit each approximation in turn assuming
we are after the normalized domain-average net flux

25 In these two last papers, the authors examined a homogeneous cloud with a sine-wave
varying thickness as well as the usual inhomogeneous cloud case.
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〈T 〉 =

+L/2∫
−L/2

T (x)
dx

L
, (5.65)

with T (x) computed with one RT model or another, but we also have an interest in
details of the RT inside the medium.

5.4.1 1D RT (Fig. 5.9b)

Here we make the simple assumption that δσ = 0, i.e., we ignore the unresolved
variability in order to use classic plane-parallel/homogeneous theory which we have
denote all along as “1D” or “PPH.” This approximation imposes the maximum de-
gree of translational symmetry on the underlying photon flow. Albedo and transmis-
sion fields are of course uniform. Although this volume is about 3D RT, 1D theory
is not always a bad approximation depending on cloud type, scale and tolerance to
error (cf. Chaps. 11–12). Furthermore, there are ways of informing the 1D theory, via
parameter change, on how to give a more accurate answer in some necessarily lim-
ited sense. But that limitation may be good enough for some applications (cf. some
of the methods discussed in previous Sections targeting domain-averages, as well as
Chap. 8).

5.4.2 ICA/IPA (Fig. 5.9b′)

Here we make the assumption that Fx(x, z) ≡ 0, i.e., we ignore the net horizontal
fluxes everywhere. This is commonly known as the Independent Column/Pixel Ap-
proximation (ICA/IPA) as long as that is understood as a model for local radiation
fields, not just the domain-average that often follows. We are now in presence of a
lesser degree of symmetry in the flow. In the present case of x-only variability, all
happens in 3D as if the extinction sampled at cloud top by the incoming photon con-
trols its whole trajectory, ending in reflection or in transmission. In other words, a
zoom into any region at cloud top or bottom will look exactly like the 1D solution
in panel (b). In a nutshell, this is NASA’s operational strategy for generating cloud
and surface remote sensing “products” starting from spectrally-sampled radiances
from each pixel. Many studies have researched the validity of this assumption (cf.
Chaps. 8–12 in this volume, and references therein). Most of the techniques target-
ing domain-averages assume that whatever errors the IPA/ICA incurs with respect
to full 3D RT cancel sufficiently well for the purposes of radiation parameterization
schemes in GCMs. But this does not exonerate the local IPA assumption used in re-
mote sensing. Notice that the total number of flux-lines has increased from panels
(b) to (b′). This is a direct consequence of Jensen’s inequality,

TICA = 〈T1D(τ)〉 > T1D(〈τ〉) , (5.66)

for domain-average transmittance, simply because of the newly acknowledged vari-
ability. To see how inequality (5.66) arises, we note that 1D RT predictions for trans-
mittance are concave functions of the horizontally varying optical thickness τ. As an
example, consider (5.32) with τt = (1 − g)τ, thus leading to
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T1D(τ) =
1

1 + (1 − g)τ/2χ
, (5.67)

as was first obtained by Schuster (1905), where χ is an O(1) numerical constant
already discussed in connection with BCs in diffusion theory.26 So total transmission
across the domain has increased and albedo has, in this photon-conserving case,
decreased by the same amount.

5.4.3 3D RT (Fig. 5.9b′′)

Here we relax all assumptions about the internal variability, such as the radical one
we made in connection with panel (b), or about the associated RT, such as the practi-
cal one we made in connection with panel (b′). So here we are doing the RT modeling
at least accurately enough to capture trends in Fx(x, z), the sign of which dictates
how the flux-lines are deflected away from the vertical; as we will show further on,
this need not be a full-blown solution of the 3D RT equation. The local translational
symmetry in (b′) is now broken in all but x = 0 and x = ±L/2 around which
the extinction field is itself mirror-symmetric. Flux-line density is proportional to
the magnitude of F(x, z) everywhere, not just at the boundaries. This basic conse-
quence of vector calculus shows us that this minimally symmetric vector flux field
has evolved from (b′) in a completely predictable way. Indeed, the flux-line pattern
tells us that photons will tend to flow around the dense region (x ≈ 0), where flux is
accordingly reduced, and into the more tenuous ones (|x| ≈ L/2), where we see that
flux is enhanced. In the schematic, we have predicted even more flux-lines than in
(b′) which translates to even more overall transmission than in the IPA/ICA. As we
now show numerically, this occurs if the angular illumination distribution is suffi-
ciently concentrated around the zenith direction (e.g., Ω0 ≈ −ẑ if monodirectional).
For illumination patterns with more slant incoming rays (not illustrated), we find less
overall transmission than the ICA predicts but still more than predicted by 1D theory.

5.4.4 Quantitative Analysis of Fig. 5.9

We have used the simple sine-wave cloud as a framework to guide us from the sce-
nario where variability is unresolved to one where we are informed about everything
there is to know about the cloud. In the former case, an “ignorance is bliss” strategy
can be implemented: use 1D RT and stop worrying. This is an often exercised option
that may or may not be justified. At any rate, it is simply an approximation. In the
later case, we know all the spatial detail and are at least compelled to go beyond 1D
RT theory applied globally (PPH/1D) or locally (IPA/ICA). We continue with a short
numerical investigation of the sine-wave cloud.

The next chapter relies heavily on the ICA and we will see a variety of assump-
tions about the 1-point variability of optical depth τ: Bernoulli (2-state), Gamma

26 This model belongs to the broader class known as “Model 1” from Coakley and Chýlek
(1975) with β(µ0) = µ0(1−g)/2χ, a special case where T1D does not depend on the solar
zenith angle.
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and quasi-lognormal hypotheses. Here we have a special case of the beta distribu-
tion referred to colloquially as the “smile” PDF. From (5.62) using τ variables and
parameters, we obtain

p(τ; 〈τ〉, δτ) =
1

π
√

δτ2 − (τ − 〈τ〉)2
, (5.68)

if 〈τ〉 − δτ < τ < 〈τ〉 + δτ) and 0 otherwise. Notably, this PDF is independent of
L and h, as it should in an ICA. The graph of p(τ; 〈τ〉, δτ) has vertical asymptotes at
τ = 〈τ〉±δτ and is symmetric around a minimum value of 1/πδτ reached at τ = 〈τ〉.
We now apply this PDF to Schuster’s simple “diffusion in a slab” formula in (5.67).
Figure 5.10a shows both T1D(τ) and p(τ; 〈τ〉, δτ) for 〈τ〉 = δτ = 50, a situation of
interest further on.

The domain-average ICA transmittance can be computed with (5.65) using
T (x) = T1D(τ(x)), or by

TICA(〈τ〉, δτ) = 〈T1D(τ)〉 =

∞∫
0

T1D(τ)p(τ; 〈τ〉, δτ)dτ (5.69)

This yields the results in Fig. 5.10b where we have plotted the PPH bias for trans-
mittance 〈T1D(τ)〉 − T1D(〈τ〉) ≥ 0 versus the basic 1D prediction T1D(〈τ〉). All
combinations of {〈τ〉, δτ} are explored. The important message here is that the PPH
bias relative to the observed value, [〈T1D(τ)〉 − T1D(〈τ〉)]/〈T1D(τ)〉, can reach al-
most 50% for δτ = 〈τ〉 ≈ 5.5 × 2χ/(1 − g) where we find T1D(〈τ〉)) ≈ 0.15 and
〈T1D(τ)〉 ≈ 0.28. For the canonical values of the optical parameters (g = 0.85,
χ = 2/3), This translates to 〈τ〉 ≈ 50, hence a range 0 ≤ τ � 100 (1 ≥ T1D(τ) �
1/12) for the PDF in (5.68). This is indeed the perfect situation to get the most out
of Jensen’s inequality in (5.66): the curvature of T1D(τ) is effective enough on this
support to go all the way from the linear regime at τ → 0 to the flat asymptotic
regime at τ → ∞. Such apparently extreme variability is in fact typical of a partially
cloudy scenario: practically all the optical depth is from the clouds but practically all
the transmitted light is from the clear sky.

Figure 5.11 uses the same variability model as in the ICA exercise but now we
set δτ = 〈τ〉 = 15, g = 0.85, and assume a simple Henyey–Greenstein phase
function (see Chap. 3) in a straightforward Monte Carlo scheme based on the maxi-
mum cross-section trick (see Chap. 4) with 105 histories. We then vary the sine-wave
cloud’s aspect ratio L/h from 0 (the PPH case) to ∞ (the ICA model) using two dif-
ferent illuminations, overhead sun (µ0 = 1) and isotropic illumination (µ0 uniformly
distributed on (0, 1], each carrying a weight µ0), and we plot the domain-average
transmission 〈T3D〉. We note that

• 〈T3D〉 ≈ TICA = 〈T1D〉 at L � h because the fluctuations are so slow that the
ICA becomes accurate locally, hence globally;
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Fig. 5.10. (a) Simple diffusion prediction for T1D(τ) in (5.67) and the “smile” PDF in (5.68)
for 〈τ〉 = δτ = 50. (b) Domain-average PPH bias, i.e., computed within the ICA, for transmit-
tance is plotted versus the 1D RT result for selected variability parameters. For the maximum
possible variability amplitude (δτ = 〈τ〉), the maximum bias is reached for the scaled mean
optical thickness (1−g)〈τ〉/2χ ≈ 5.5, hence 〈τ〉 = δτ ≈ 50 if we take usual values g = 0.85
and χ = 2/3. This situation is indicated by a bold circle in panel (b) and determines the choice
of parameters in panel (a). The PPH bias for the parameters used in Fig. 5.11 (lower curve) are
indicated by the double arrows. We notice the excellent agreement of the diffusion-based for-
mulation used here and the MC technique used there in spite of a non-negligible contribution
of small τ’s

• 〈T3D〉 ≈ T1D(〈τ〉) at L � h because the fluctuations are so fast that all the
radiation “feels” is the mean extinction;27

27 Strictly speaking, this is true only for the diffuse source. For the overhead sun case, there is
a finite jump between small but finite L/h and the PPH case since the quasi-holes between
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Fig. 5.11. Domain-average transmission for a non-absorbing Henyey–Greenstein (g = 0.85)
sine-wave cloud with δτ = 〈τ〉 = 15 under two illumination patterns, collimated/normal and
isotropic. The aspect ratio L/h is varied along the abscissa and the most interesting region
is where it is O(1). See main text for a detailed discussion. Notice that the PPH limit on the
left-hand side is singular for normal/collimated illumination because an angular alignment
between incoming light and the striated medium is destroyed

• the interesting action happens for L ≈ h because we have an internal variability
rhythm that matches (“resonates” with) the fixed outer scale of the medium, its
thickness h.

For the overhead-sun illumination scenario (upper curve in Fig. 5.11), we find that
a maximum in domain-average transmission occurs when 3D RT effects come into
play beyond the 1D and ICA approximations. As was anticipated in the course of
our discussion of Fig. 5.9b′′, more overall flux is observed for all but the shortest
values of L (� 0.04h). This is however not the case for diffuse illumination (lower
curve in Fig. 5.11) where we see that 〈T3D〉 is bracketed by T1D and TICA. To see
why, consider the schematic in Fig. 5.12 where we see a dense region under a typical
oblique illumination. Photons will clearly be deflected towards both reflection and
transmission while the geometrical shadow on the anti-solar side of the cloud reduces
transmission as well as reflection. In other words, much cancellation is going on in
the 3D scenarios (finite L/h) and the ICA bias in Fig. 5.10 dominates the overall
mean to the point where the further 3D effects only control the details of the smooth

the clouds (i.e., the dense phase of the sine wave) are shut. This is an unimportant angular
resonance phenomenon for this particular variability model.
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Fig. 5.12. Schematic showing a typical 3D atmospheric scenario under oblique sun

and monotonic transition from T1D to TICA as L/h increases through the critical
region where L ≈ h.

5.4.5 When and Where Does 3D RT Matter?

In this section, chapter, volume, and the literature, 3D predictions have been com-
pared to 1D predictions, usually based on the mean optical properties. Sometimes,
the 1D benchmark is corrected for obvious variability-induced biases, e.g., the ICA
is used as a baseline. All of this is using simulations of course. In spite of the plethora
of predictions, 3D RT has not become a “predictive” science per se because we tend
to first obtain our results (the radiative quantities) and then find interpretations for
their changes, one way or another, caused by 3D effects. With few exceptions, not
only discovery of any observed trend is obtained computationally rather than theo-
retically, but also its rationalization. A truly predictive science works only with the
given quantities (cloud optical properties) and it anticipates what kind of phenom-
enon will occur and, hopefully, with what intensity and, ideally, completely new
ones. Surely we need to establish that we have at least the beginning of such predic-
tive capability to build approximations that we can trust. In this subsection, we take
a few small steps in that direction.

First we remark that the conservatively scattering sine-wave cloud gives us

∆T = 〈T3D〉 − T1D(〈τ〉) > 0 (5.70)

under all the variability and illuminations circumstances that were investigated.
Davis and Marshak (2001) prove rigorously – but using diffusion theory and diffuse
boundary sources – that in arbitrary 3D optical media:

∆T

1 − T1D(〈τ〉) =
−∆R

R1D(〈τ〉) = 3χ
〈∆Fz∆σ〉

F0〈σ〉
, (5.71)

where ∆Fz and ∆σ are the full 3D fields of 3D-to-1D differences and F0 is the
incoming flux. For ∆Fz , we assume the z-axis and the illumination are oriented as
in Fig. 5.9, so Fz < 0 everywhere and ∆Fz < 0 means a local increase in |Fz|. The
extinction fluctuation field ∆σ integrates spatially to 0 by definition but ∆Fz does
not. Conservation requires that its integral over a horizontal plane (z = constant) be
independent of z and, after normalization by F0, equal to −∆T . The authors go on
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to show that ∆T > 0, thus proving (5.70) from first principles. They show that the
physical mechanism that leads to this inequality is the channeling28 of photons into
the more tenuous regions by the denser ones. The channeling determines the sign
of the spatial cross-correlation term in (5.71). This is a fundamental result in solar
3D RT based on the classic diffusion approximation, just as the classic ICA obeys
Jensen’s fundamental inequality in (5.66).

Is this predictive capability? Not really. Channeling is nothing new in general-
purpose transport theory and exploratory computations in 3D RT gave us a clue of
what is going on. Still, it is reassuring to be able to trace an essential 3D RT effect
all the way back to its primitive equations. To be facetious, we can say that we had
the predictive capability, but we used it in a forensic analysis instead.

A major benefit of this hindsight is a progressive partitioning of ∆T in (5.70).
First, we have the so-called “plane-parallel bias,”

∆T1D = TICA − T1D(〈τ〉) > 0 , (5.72)

which is the primary concern in the next chapter and has a definite sign (as indi-
cated). The next important question is about the sign and magnitude of the so-called
“ICA/IPA bias”

∆TICA = ∆T − ∆T1D = 〈T3D〉 − TICA (5.73)

for domain-averages.29 We retain from our sine-wave cloud study that the increment
in domain-average transmission going from the 1D approximation to the ICA in
(5.72) is larger in magnitude than what is gained or lost by going from the ICA
to full 3D RT in (5.73). However, this is only true for horizontal domain-average
fields. The horizontal domain is well-defined in computational 3D RT or in GCM
parameterization work. But what is a “domain” in nature? Based on what the generic
cyclical BCs applied laterally do for the numerical or analytical computations, we
are driven to define a reasonable domain with a scale such that net transport through
lateral boundaries can be neglected in the overall budget. Only then can we say that
the variability that matters is inside the domain of interest.

So much for domain-average fluxes. Local flux values can be dramatically altered
by 3D RT effects not captured by the ICA, including apparent violations of energy
conservation such as transmittances or albedos in excess of unity (cf. Chaps. 3 and
12). And that is only for point-wise hemispherical fluxes (still averaging over the
angular variability) at the boundaries. With radiance fields – all that can be observed
remotely – the situation gets even worse for the local ICA. The local ICA/IPA is
nonetheless used in routine pixel-scale cloud property retrievals from satellite data
performed by NASA and space agencies worldwide, irrespective of the size of the
pixel. If the pixels are large enough to qualify as a “domain” in the above sense,

28 As far as we know, the first use of this descriptive language for photon flow seems to be by
Cannon (1970) while explaining his astrophysical 3D RT computations.

29 Empirical evidence, from the numerical experimentation presented in Fig. 5.11 for non-
absorbing sine-wave media, tells us that this increment is relatively small compared to
(5.72) and typically negative, the exception being overhead-sun (θ0 = 0) and not too fast
variations (L/h � 0.04).
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then internal variability is neglected. If the pixels are too small to be considered
radiatively independent domains, then photon cross-talk between neighboring pixels
is neglected. Under these conditions, any cloud remote-sensing “product” such as
optical depth, liquid water column or effective droplet radius based on 1D RT should
be considered as a radiometric quantity expressed in convenient physical units. These
numbers are at best loosely connected to the actual physical quantities. We refer
to Chaps. 11–12 for an overview of how much these 1D RT retrievals can be off
target, and also how to filter them down to some very narrow conditions (on spatial
and angular sampling as well as apparent and actual variability) where they can be
considered reasonably accurate on some statistical basis.

Returning to our quest for predictive capability at least in hindsight, we return
to the abovementioned fact that the “interesting action” happens in Fig. 5.11 when
the aspect ratio L/h of the sine-wave cloud is O(1). This numerical finding deserves
more attention because it can inform us about the circumstances under which 3D
RT models (beyond the ICA) are required for domain average fluxes, and even more
so for small pixel-scale radiance values. We have tacitly fulfilled a few conditions
beyond L ≈ h in this case study, namely, (i) that the amplitude of the internal vari-
ability be as large as possible, (ii) that the mean cloud properties are such that the
mean transmittance is in its “sweet-spot” for variability around 1/2, and (iii) that
there is a certain balance of tenuous and dense regions in the cloudy medium.

In the case of the sine-wave cloud model, extra condition (i) mandates that δτ ≈
〈τ〉, and similarly for the extinction σ variation in (5.62). Anything less will clearly
reduce spatial variability effects in the RT. To meet extra condition (ii), we have
tuned 〈τ〉, given the asymmetry factor g = 0.85 of the Henyey-Greenstein scattering
phase function we used, so that the values of 〈T3D〉 in Fig. 5.11 straddle 0.5. Bearing
in mind Schuster’s 1D RT expression for transmission in (5.67), this calls for (1 −
g)〈τ〉 ≈ 2χ = 4/3 for the standard (Eddington) value of χ. With 〈τ〉 = 15 and g =
0.85, we find that (1 − g)〈τ〉 = 2.25 while (1 − g)τ(x) varies from 0 to 4.5. We
have seen the (1 − g) rescaling of τ before, in connection with diffusion theory
(Sect. 5.2.2). So the key non-dimensional quantity in RT in the absence of absorption
is the “transport” optical depth τt = (1 − g)τ, i.e., the ratio of cloud thickness
h to rescaled or transport MFP �t = 1/(1 − g)σ. The physical interpretation of
the extension by 1/(1 − g) of the MFP is that it wipes out the directional memory
effect of the forward scattering tendency for real cloud droplet size distributions
at visible-through-thermal wavelengths: after a transport MFP or so, the scattering
might as well have been isotropic. The simple RT consequence is that, if τt � 1
(τ � 1 � 1/(1 − g) for g = 0.85), then ballistic and quasi-ballistic trajectories
dominate, while if τt � 1 (τ � 7 ≈ 1/(1−g) for g = 0.85), then the photon transport
is dominated by short steps and long random walks. At maximum amplitude, the
sine-wave medium with 〈τ〉 = 15 and g = 0.85 spans these two extremes and, with
its quadratic leveling at τ(x) = 0 and 2〈τ〉, it leaves plenty of space for both transport
modes to be established. Finally, we turn to extra condition (iii). By using the sine-
wave model in a way that satisfies (i) and (ii), we have effectively mandated that
the inter-cloud distance is comparable to the cloud size. In other words, the effective
cloud fraction Ac is not too small nor too close to 1. Otherwise, the 3D RT effects (at
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least for the domain-average) will vanish respectively for lack of cloud altogether or
because ICA and maybe even 1D RT models become reasonably accurate for 100%
cloud cover. In the real atmosphere and in many models, the definition of Ac is
somewhat arbitrary. The sine-wave cloud model is no exception. That said, we could
arguably draw the line between cloudy and clear portions at τ(x) = τcut. Thus, from
(5.62), we find Ac = 0% if 〈τ〉 + δτ ≤ τcut, Ac = 100% if 〈τ〉 − δτ ≥ τcut, and
otherwise

Ac(〈τ〉, δτ; τcut) =
100
π

× cos−1

(
τcut − 〈τ〉

δτ

)
(5.74)

in %. For the parameter values used in the numerical study that yielded Fig. 5.11,
namely, 〈τ〉 = δτ = 15 and g = 0.85, we find Ac ≈ 88% for τcut = 1 (≈ 54% for
τcut = 2). Since L is the spatial repeat cycle of the system, cloud size per se is AcL
while inter-cloud distance is (1 − Ac)L.

In summary, to make interesting 3D RT processes happen, we have made

v =
δσ
〈σ〉 ≈ O(1), 〈τt〉 =

〈
h

�t

〉
≈ O(1),

Ac

1 − Ac
≈ O(1), a =

AcL

h
≈ O(1) ,

(5.75)

where we need not interpret all the ≈ O(1) relations equally. Nor should we take
the symbols’ meanings strictly from the sine-wave model: v is just a dimensionless
1-point variability amplitude; 〈τt〉 is a mean transport optical depth over a relevant
domain, from which we can estimate mean cloud optical depth, ≈ 〈τt〉/Ac (using the
third item and the fact that the clear-sky optical depth is small by any definition); L is
the size of this horizontal domain; and h is the thickness of the cloud layer or cloud
system. As we have noted that, for the sine-wave model at least, the third item is
basically a consequence of the first two. For illustration, take the square-wave cloud
used in Sect. 5.2.2 (Figs. 5.3–5.4); we have v = δτ/〈τ〉 = 8/10, 〈τt〉 = (1−g)〈τ〉 =
1.5, Ac/(1 − Ac) = 1 (if we interpret by extension the τ = 2 region as “clear”),
hence Ac = 1/2.

These conditions are not hard to come by in nature, even if we make “≈1” very
specific, e.g., ∈ [1/3, 3] where this makes physical sense. Indeed, we often see at
least moderately opaque clouds (〈τt〉/Ac � 1) along with comparatively very clear
air (v ≈ 1, Ac ≈ 1/2); at the same time, the clouds are not infrequently of com-
parable thickness and horizontal extent (AcL ≈ h) and these dimensions are com-
mensurate with their distance from each other (Ac/(1 − Ac) ≈ 1). Convective and
orographic cloud systems are good examples; stratiform systems are not for a couple
of reasons (Ac ≈ 1 and AcL � h), neither are essentially isolated clouds (Ac ≈ 0).

We now put these approximate but remarkable equalities together and ask a fun-
damental question about how the resulting variability will affect the flow of radiant
energy.

First we acknowledge that the domain-average ICA is our main benchmark in 3D
RT (beyond the 1D RT approximation based on mean cloud properties) and that the
ICA has already capitalized on the first two (hence three) conditions in (5.75). The
PPH bias in Fig. 5.10 is therefore already near its maximum for this particular model
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when we start using our Monte Carlo code to go from the left to right extremes in
Fig. 5.11.

Now we ask about the value of the local extinction σ(x) as a predictor of the
actual MFP which will in general 3D media depend on both position and direction
through the kind of variability to be found in that direction starting from that po-
sition. In the absence of other information, the a priori prediction for the MFP is
indeed 1/σ(x). However, there is little chance of this prediction materializing unless
Ω •∇σ = 0 for all x′ to be found in direction Ω. In turn this can not happen for
all Ω unless the medium is uniform. So, to further our predictive 3D RT agenda, we
propose to use the field ∇σ or, better still, ∇σ−1, which is an appropriately nondi-
mensional quantity. Furthermore, we should rescale extinction for forward scattering
effects (i.e., use σt = (1 − g)σ) and evaluate the gradient (denoted ∇⊥) at right an-
gles to the mean photon flow which we will generally assume to be along the vertical.
For the sine-wave cloud, we find

∇⊥
1
σt

=
d
dx

(
1

σt(x)

)
=

v sin 2πx/L

(1 + v cos 2πx/L)2
× 2π/L

〈σt〉
. (5.76)

So, apart from a purely numerical term, we have∣∣∣∣∇⊥
1
σt

∣∣∣∣ ≈ v

〈σt〉L
=

v

a〈τt〉
. (5.77)

From (5.75), we will therefore also have∣∣∣∣∇⊥
1
σt

∣∣∣∣ ≈ O(1) ; (5.78)

In other words (1/σt) ×∇⊥ ln(σ) ≈ O(1), therefore σ changes significantly over a
transport MFP or so.

So, beyond the standard (vertically-measured) transport optical thickness of the
cloud layer, the key non-dimensional quantity to watch in 3D RT is the (horizontally-
measured) transport optical wideness of the clouds. Going back to out assessment of
the sine-wave model in Fig. 5.11, we see that |∇⊥1/σt| ∝ h/L can be:

• so small that the ICA becomes accurate (for slow spatial variations), or
• so large that 1D RT becomes a reasonable model (i.e., only the mean optical prop-

erties matter because almost every lateral propagation sees both clear and cloudy
air in their nominal amounts), or

• just right (“resonant”) for 3D RT to have a significant impact in the case where
(5.78) prevails.

In the course of this investigation of the basic phenomenology of 3D RT we have
transitioned from small-scale/deterministic 3D RT (and approximations thereof) to
large-scale/statistical approximations, the prime focus of the following Chap. 6). Our
main message is that the elementary processes illustrated in Figs. 5.9b′′, 5.11 and
5.12 are direct analytical consequences of the first principles, not just notable simu-
lation results. Since they only use the given quantities, the two first criteria in (5.75)
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are predictive at the ICA level, as is (5.78) at the next level, i.e., “post-ICA” 3D RT.
For more discussion, see Davis and Marshak (2001, 2004) as well as Várnai (2000)
and Várnai and Marshak (2003).

5.5 Concluding Remarks

We have surveyed – all too briefly in the interest of space – some of the better-known
approximation methods for computational 3D photon transport. We also covered the
basic phenomenology of 3D radiative transfer which we see as completely entan-
gled with the approximation program. This is because simple transport models (like
diffusion) are needed to advance the theory (via analytical results) and, vice-versa,
improved understanding (such as the radiative smoothing phenomenon) lead to new
approximations (such as NIPA).

We consider this brevity-by-necessity a good sign. The extensive list of refer-
ences at the end of the chapter will provide more information on a need-to-know
basis. Beware however that approximations can be technically quite intricate, at par
with the 3D RT equation solutions covered in Chap. 4. They can also be extraordi-
narily simple. We encourage the reader to go to the web-page of the Intercomparison
of 3D Radiation Codes (I3RC) project (http://i3rc.gsfc.nasa.gov/). This is an ongo-
ing comparison study, on the one hand, between different kinds of 3D RT equation
solvers and, on the other hand, between these “exact” benchmarks (i.e., based on the
3D RT equation per se) and the outcome of different approximation techniques. At
the time this volume is going to press, it is clear that the latter “Approximations”
study group is far less advanced than the one-method-exact-to-another component
(which is itself flooded with Monte Carlo models, SHDOM being the only alterna-
tive represented in the I3RC). This is (1) because the atmospheric RT community
is relatively new to the art of approximation in computational 3D transport theory,
and (2) because the challenges are considerable while the allocated resources are still
meager. In time, this will change because many important applications demand 3D
approximation techniques, no more and no less. In the interim, 3D radiative transfer
modeling is precariously under-diversified.

The Manhattan project ushered us into the atomic era.30 It also marks the be-
ginning of the era of large-scale scientific computation with multi-purpose program-
mable electronic devices. Since then, science progresses within a qualitatively new
paradigm. We used to have the theory–observation duality. Now we have the theory–
computation–observation triad. A priori, computation is subordinated to theory (and
some might argue that it is the modern substitute for theory). However, computa-
tional models are used as virtual laboratories where empiricism now roams freely,
exploring often very complex systems. So, we see computation as a welcome third
component of the scientific enterprise that is changing the way we theorize about and

30 It is noteworthy that it is the diffusion approximation for neutron transport, with σa < 0
(i.e., �0 > 1) to model multiplication, that enabled the breakthrough computation of the
critical mass of fissile material for a functional nuclear weapon (Serber and Rhodes, 1992).
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observe nature’s ways. We also raise the critically important and non-trivial question
of computational model “validation” which ultimately involves detailed comparisons
of model-predicted and observed data.31

While advances in information and sensor technologies (i.e., hardware) support
directly the computational and observational pillars of the scientific edifice, theory
remains the main source of the hypotheses that are tested in computational and/or
observational procedures. Often breakthroughs use all three components and typi-
cally suggest new observational or computational strategies. So all three elements
are intimately connected. We devoted the last few sections of this chapter to the phe-
nomenology of 3D radiative transfer as an effort to invigorate the theoretical compo-
nent of our subject area where, not infrequently, “theory” is equated with numerical
simulation. In the present context, the contribution to phenomenology amounts to
paying special attention to non-dimensional numbers and their physical meaning.

References

Alcouffe, R.E., R.S. Baker, F.W. Brinkley, D.R. Marr, R.D. O’Dell, and W.F. Walters
(1997). DANTSYS: A Diffusion Accelerated Neutral Particle Transport, (UC-
705), issued 06/95, revised 03/97. Los Alamos National Laboratory, Los Alamos
(NM).

Box, M.A., M. Keevers, and B.H.J. McKellar (1988). On the perturbation series for
radiative effects. J. Quant. Spect. Radiat. Trans., 39, 219–223.

Box, M.A., S.A.W. Gerstl, and C. Simmer (1989). Computation of atmospheric
radiative effects via perturbation theory. Beitr. Phys. Atmosph., 62, 193–199.

Box, M.A., I.N. Polonsky, and A.B. Davis (2003). Higher-order perturbation the-
ory applied to radiative transfer in non-plane-parallel media. J. Quant. Spectrosc.
Radiat. Transfer, 78, 105–118.

Cahalan, R.F., L. Oreopoulos, G. Wen, A. Marshak, S.-C. Tsay, and T. DeFelice
(2001). Cloud characterization and clear-sky correction from Landsat-7. Remote
Sens. Environ., 78, 89–98.

Cahalan, R.F., L. Oreopoulos, A. Marshak, K.F. Evans, A.B. Davis, R. Pincus,
K. Yetzer, B. Mayer, R. Davies, T.P. Ackerman, H.W. Barker, E.E. Clothiaux, R.G.
Ellingson, M.J. Garay, E. Kassianov, S. Kinne, A. Macke, W. O’Hirok, P.T. Par-
tain, S.M. Prigarin, A.N. Rublev, G.L. Stephens, F. Szczap, E.E. Takara, T. Várnai,

31 This comparison is not to be confused with the “calibration” of models where input pa-
rameters are determined by comparing model output to observational/experimental data.
In approximation theory, the golden standard of real-world observations can arguably be
replaced with theoretical results known to be very accurate. For instance, 3D photon dif-
fusion theory can be both calibrated and validated with high-accuracy 3D Monte Carlo
simulations. As needed, we fine-tune the free parameter χ in the boundary conditions us-
ing one set of Monte Carlo simulations (model calibration), and then compare diffusion
predictions with no more free parameters to another set of Monte Carlo results (model
validation).



336 A.B. Davis and I.N. Polonsky

G. Wen, and T.B. Zhuravleva (2005). The international Intercomparison of 3D Ra-
diation Codes (I3RC): Bringing together the most advanced radiative transfer tools
for cloudy atmospheres. Bull. Amer. Meteor. Soc., to appear in Sept 2005 issue.

Cannon, C.J. (1970). Line transfer in two dimensions. Astrophys. J., 161, 255–264.
Case, K.M. and P.F. Zweifel (1967). Linear Transport Theory. Addison-Wesley,

Reading (MA).
Caudill, M. and C. Butler (1992). Understanding Neural Networks: Computer Ex-

plorations. MIT Press, Cambridge (MA), 2nd edition.
Chu, M.C. and W.S. Churchill (1955). Numerical solution of problems in multiple

scattering of electromagnetic radiation. J. Chem. Phys., 59, 855–863.
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6.1 Introduction

Radiative transfer (RT) plays a crucial role within the atmospheric sciences. To first-
order approximation, the most pressing climatic change scenarios, such as enhanced
greenhouse gas emissions, injections of volcanic and anthropogenic aerosols, and
land-use changes, are initiated by perturbations, or forcings, to Earth’s radiative bud-
get. Once forced, feedback mechanisms wihtin the Earth-atmosphere-ocean system
take over as the system strives to achieve a new dynamic equilibrium. These feed-
backs, or cause-and-effect relations, are governed much by the radiative sensitivity of
Earth to changes in internal variables. In depth study of these forcings and feedbacks
is made possible by numerical global climate models (GCMs). At this stage, GCMs
are the primary tool used to study and predict past and future climates. Critical pol-
icy decisions depend on the verisimilitude of these virtual laboratories where, unlike
the real world, climate change experiments can be executed safely and repeatedly.
As GCMs are our most sound solution method to the question of climatic change, it
is essential, given the central role of radiation to climate, that atmospheric radiation
scientists minimize radiative-based errors in GCMs.
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It is recognized generally that dubious representation of interactions between
clouds and radiation in GCMs are responsible for much of the uncertainty surround-
ing predictions of (near-future) climatic change stemming from anthropogenic mod-
ification of Earth. Moreover, clouds are an inexorable part of the climate system
that, unlike some greenhouse gases and aerosols, are not directly affected by hu-
man activity. Thus, our predictions of climate change will depend as much on our
understanding of how clouds connect to other parts of the Earth system as on the
natural variability of clouds in space and time. Admittedly, we appear to be far from
representing clouds from first principles inside models as their nature depends inti-
mately on other difficult subjects such as: nucleation; moist thermodynamics; fluid
instability; turbulence; convection; precipitation processes, and radiative transfer.

The previous two paragraphs summarize the somewhat intimidating scientific
and societal situation that atmospheric radiation scientists face as they attempt to
uphold their end of the climate prediction bargain with society via various national
governments: development of accurate and efficient methods of representing RT in
GCMs. One ray of hope is that the primary radiative requirement of GCMs is broad-
band (spectrally-integrated) flux profiles (angular integrals of the height varying ra-
diance field) averaged over large horizontal areas (a GCM grid-cell typically exceeds
one hundred km on a side). The bad news is that GCMs provide very little informa-
tion about the 3D structure of cloudiness at unresolved scales. In particular, methods
from previous chapters do no apply and would cost too much computer time anyway.
So there is much guessing to do, working with reasonable statistical hypotheses, and
many computational corners to cut through, sacrificing as little accuracy as possible.

To this day, GCMs typically apply one of the most radical approximations one
can make in 3D RT: subgrid-scale variability is treated as a simple linear mixture of
“clear” and “cloudy” non-interacting plane-parallel, homogeneous regions in each
layer along with layers linked vertically according to highly idealized rules. This
approach is an elementary incarnation of the independent column approximation
(ICA). There is, however, a plethora of approaches that attempt to address higher-
order subgrid-scale fluctuations (primarily in cloud structure). Yet, like their reign-
ing antecedents, they too almost always capitalize on plane-parallel RT and are even
manifested as variants of the classic two-stream approximation.

Interestingly, the wider atmospheric modeling community has perceived radia-
tion as a “messy,” but grudgingly important, heating term and climatic forcing agent.
For the spatial dimension of RT parameterization in GCMs, this disdain has led to an
almost axiomatic, long-standing complacence with plane-parallel modeling. Coinci-
dent with this was much in-depth study of the spectral dimension of atmospheric RT.
Efficient, yet accurate, methods of representing spectral information, such as corre-
lated k-distributions and exponential sum fits, have thus been developed and tested
against exact line-by-line spectral integrations. Even though this spectral work has
unfolded entirely in the frame of 1D RT, it is not lost for 3D RT because the source-
linearity of RT physically decouples the spatial and spectral aspects of the problem;
so what’s good for 1D is good for 3D.
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In this chapter, we address RT problems that are driven by the needs of GCMs
where only domain-average flux profiles are sought for columns with aspect ratios of
vertical to horizontal sizes that are typically very large. Moreover, details of spatial
variability are unresolved for these columns thereby rendering the need for proba-
bilistic descriptions of optical-radiative fluctuations over wide ranges of scales.

Tradition has it that the most logical and satisfying solutions be analytical and
based on insights into 3D RT processes. These solutions are discussed in Sect. 6.2.
Recently however, there has been a push for straightforward computational answers
and these are presented in Sect. 6.3. These two disparate philosophies are contrasted
in Sect. 6.4 along with a look into the future of this very active area of research.
Section 6.5 offers some concluding remarks.

6.2 Analytical Models for Domain-Average Radiation Budgets

This section is constructed on the assumption that domain-average radiative fluxes
are required, first and foremost, in GCMs. The ultimate purpose of a RT model in a
GCM is to compute surface fluxes and atmospheric layer heating rates. This involves
integration over a wide swath of the electromagnetic spectrum, and broadband fluxes
are discussed in detail in Chap. 9. Since broadband radiation calculations are inte-
grations of monochromatic solutions of the 3D RT equation (see Chap. 3), it suffices
to discuss computation of domain-average in monochromatic terms, for any model
that fails there is sure to fail in the broadband. Furthermore, we will consider single
cloud layers; consideration of layer-to-layer correlations come later.

6.2.1 Exact 3D and Independent Column Approximation (ICA) Solutions

If one is provided with a specific domain D, such as from a CSRM, domain-average
albedo 〈R〉 (or transmittance, or absorption, or fluxes in general) can be computed
with an exact solution of the 3D RT equation (see Chap. 4 for numerical techniques)
such that

〈R〉 =
�
D

R3D (x, y) dxdy /
�
D

dxdy , (6.1)

where R3D is albedo from a solution that accounts for the flow of radiation in three
dimensions. On several occasions the independent column approximation (ICA) has
performed well for a variety of cloud regimes (Cahalan et al., 1994b; Chambers et al.,
1997; Barker et al., 1999), so (6.1) can be approximated by

〈R〉 ≈
�
D

R1D (x, y) dxdy /
�
D

dxdy , (6.2)

where R1D(·) is computed using a 1D RT model. As a rather typical example, the
spatial dependence is inherited entirely from optical depth τ(x, y) but other optical
parameters can change, even vertically in the column located at (x, y). The 1D RT
computation can range from a simple two-stream approximation, the basis of all
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GCM radiation codes, to an accurate numerical solution of the 1D RT equation (Sn

Pn, adding/doubling, etc.).
Algorithmically, (6.2) is necessarily expressed as

〈R〉 ≈ 1
N

N∑
n=1

R1D (n) , (6.3)

where D now consists of N discrete columns. It might strike one as odd, but if
N is very large, an arbitrarily accurate estimate of 〈R〉 with (6.1) can be obtained
faster than with (6.2) or even (6.3), especially when broadband fluxes are sought.1

Where (6.1) and (6.2) tend to differ most is in the solar spectrum at large solar zenith
angles when energy input is relatively small. In fact, the ICA tends to become an
increasingly better approximation of (6.1) as D increases in size for transport theo-
retical reasons articulated in Chap. 5, and lengthening temporal integration helps too
(Benner and Evans, 2001). Thus, the ICA is a reasonable standard for less rigorous
models to aim for in the context of relatively large D’s, reasonably large dynamical
time-scales, and little to no information describing horizontal correlations in optical
fluctuations.

Contrary to being provided with a detailed description of the structure of D,
GCMs have only limited amounts of information available to describe the structure
of unresolved fluctuations in optical properties. The current paradigm is to apply
1D codes based on the two-stream approximation in which unresolved variability of
the surface-atmosphere system is either: (i) reduced to fractional coverage of homo-
geneous clouds that overlap according to extremely idealized configurations; or (ii)
incorporated directly into 1D transport solvers. Some of the better known attempts
to achieve the later are reviewed in the following subsection.

6.2.2 Solutions Using 1D Radiative Transfer Theory

To date, all 1D models that attempt to account for subgrid-scale fluctuations of cloud
have been designed assuming that domain-average albedo can be computed as

〈R〉 = (1 − Ac) 〈Rclr〉 + Ac 〈Rcld〉 , (6.4)

where Ac is layer cloud fraction, and 〈Rclr〉 and 〈Rcld〉 are mean albedos associated
with the clear and cloudy portions of the layer, respectively. Of immediate concern
is definition of Ac. Cloud fraction is a rather peculiar atmospheric quantity. It is dis-
cussed ad nauseam yet its definition, both from theoretical and practical perspectives,
is invariably fraught with confusion and misinterpretation. In this volume alone, dis-
cussions of cloud fraction can be found in Chaps. 1, 2, 6 (here), and 7–11.

1 To achieve this, one would exploit the ease with which straightforward 3D Monte Carlo
schemes can estimate domain averages like 〈R〉. Indeed, only nR ≈ 104 histories ending
in reflection (N ≈ 104/〈R〉 histories in all) will yield ≈

√
1 − 〈R〉 < 1 error on 〈R〉

expressed in % (cf. Chap. 4). However, this advantage is not of any help in GCM-type
problems since the detailed spatial information is simply not available.
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What the models discussed here have focused on is computation of 〈Rcld〉. Sev-
eral models based on 1D RT yet approximate 〈Rcld〉 are now reviewed. All are prime
examples of the current paradigm for they attempt to fold descriptions of cloud struc-
ture, or cloud-radiation interactions, directly into the solution of the RT equation.

ICA-Based Approaches

The starting point of these models is to recast the Riemann integral in (6.2) into its
Lebesgue equivalent which can be expressed as

〈Rcld〉 =

∞∫
0

p (τ) R1D (τ) dτ (6.5)

where p(τ) is a probability density function (PDF) that describes variations in τ over
some domain (Ronnholm et al., 1980; Cahalan, 1989; Stephens et al., 1991). Equa-
tion (6.5) is simply a rearrangement of the infinitesimal terms in (6.2) into infinitesi-
mal elements of probability of occurrence for a given value of τ. As a first example,
note that (6.5) correctly yields 〈Rcld〉 = R1D(τ) if p(τ) = δ(τ − τ), the “degenerate”
PDF. As another example, (6.4) can be interpreted as the outcome of (6.5) for a two-
valued Bernoulli distribution superimposed on distributions of clear- and cloudy-sky
optical properties.

There are several ways to use (6.5) depending on the functional forms of p (τ)
and R1D (τ). Clearly, if the forms are intractable and require numerical integration,
then (6.5) is not tenable for use in GCMs. Several studies using satellite-inferred
values of τ and cloud-resolving model data have shown, however, that for domains
the size of those used in typical GCMs, it is reasonable to represent p (τ) by a Gamma
distribution

pΓ (τ) =
1

Γ(ν)

(ν
τ

)ν
τν−1e−ντ/τ (6.6)

where by the method of moments

ν =
1

τ2/τ2 − 1
, (6.7)

and Γ(ν) is Euler’s Gamma function. Here we use the over-score notation inter-
changeably with 〈·〉 to designate ensemble/spatial averages.

Perhaps the simplest, yet credible, version of R1D is Coakley and Chýlek’s (1975)
“Model 1” two-stream approximation with �0 = 1 in which

R1D(τ) = 1 − T1D(τ) =
β(µ0)τ

µ0 + β(µ0)τ
, (6.8)

where µ0 is cosine of solar zenith angle and β(µ0) is the zenith-angle dependent
backscatter function which is defined as
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β(µ0) =
1
2

1∫
0

P (µ′,−µ0)dµ′ (6.9)

where P (µ′, µ) is the azimuthally-averaged phase function (normalized to 4π). The
original two-stream model by Schuster (1905) for the non-absorbing case of imme-
diate interest here is retrieved using

β(µ0) = µ0(1 − g)/2χ , (6.10)

where g is asymmetry factor of the phase function and χ is the extrapolation length
(in transport mean-free-paths), typically taken to be ≈ 2/3 (cf. Chap. 5). This, “cou-
pled with the fact that g is ≈ 0.85 for liquid water clouds”, immediately sets the
magnitude of β(µ0) in (6.9) at ≈ 0.2 (Wiscombe and Grams, 1976).

Substituting (6.6) and (6.8) into (6.5) and evaluating the integral yields

〈Tcld〉 = 1 − 〈Rcld〉 = eξ+ν ln ξΓ(1−ν, ξ) (6.11)

where Γ(1 − ν, ξ) is the incomplete Gamma function, and

ξ =
νµ0

β(µ0)τ
.

Equation (6.11) represents the simplest form of the Gamma-weighted two-stream
approximation (GWTSA).

This solution can be improved upon by using the generalized, non-conservative
scattering, two-stream approximation for collimated irradiance (Meador and Weaver,
1980) in which layer albedo is given by

R1D(τ) =
�0

a

(
+r+e+kτ − r−e−kτ − r0e−τ/µ0

e+kτ − be−kτ

)
, (6.12)

where �0 is droplet single-scattering albedo, and transmittance by

T1D(τ) = e−τ/µ0

[
1 +

�0

a

(−t+e+kτ + t−e−kτ + t0e+τ/µ0

e+kτ − be−kτ

)]
, (6.13)

where the two terms are for the direct and diffuse components. The new quantities
are defined as follows:

k =
√

ξ2
1 − ξ2

2 ; a = [1 − (kµ0)
2] (k + ξ1) ; b =

ξ1 − k

ξ1 + k
;

r± = (1 ∓ kµ0) (ξ1ξ3 − ξ2ξ4 ± kξ3) ; r0 = 2k [ξ3 − (ξ1ξ3 − ξ2ξ4) µ0] ;
t± = (1 ± kµ0) (ξ1ξ4 − ξ2ξ3 ± kξ4) ; t0 = 2k [ξ4 − (ξ1ξ4 − ξ2ξ3) µ0] .

The coefficients ξ1, . . . , ξ4 depend on the choice of two-stream approximation,
droplet single-scattering parameters, and µ0 (Meador and Weaver, 1980). For in-
stance, in Eddington’s model
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ξ1 = (7 − �0(4 + 3g))/4 ,

ξ2 = (1 − �0(4 − 3g))/4 ,

ξ3 = (2 − 3µ0g)/4 ,

ξ4 = 1 − ξ3 , (6.14)

and hence
k =

√
3(1 − �0)(1 − �0g) . (6.15)

Because scattering phase functions for atmospheric particles are strongly peaked in
the forward direction, it is recommended that the “δ-rescaling” of two-stream theory
quantities τ, �0, and g be applied (Joseph et al., 1976).2

Substituting (6.12) and (6.13). into (6.5) leads to the more familiar GWTSA
(Barker et al., 1996) in which

〈Rcld〉 = φν
1

�0

a
[r+F (b, ν, φ1) − r−F (b, ν, φ2) − r0F (b, ν, φ3)] (6.16)

and

〈Tcld〉 =
(

ν
ν + τ/µ0

)ν

+ φν
1

�0

a
[−t+F (b, ν, φ4) + t−F (b, ν, φ5) + t0F (b, ν, φ6)] (6.17)

where again the two terms are for the mean direct and diffuse components. We have
defined

φ1 =
ν

2kτ
; φ4 = φ1 +

1
2kµ0

;

φ2 = φ1 + 1 ; φ5 = φ4 + 1 ;

φ3 = φ4 +
1
2

; φ6 = φ1 +
1
2

;

and

F (b, ν, φi) =
∞∑

n=0

bn

(φi + n)ν , −1 ≤ b < 1, ν > 0, i = 1, . . . , 6 .

At �0 = 1 (hence a = ξ1 = ξ2, k = 0, and b = 1) there is a removable singu-
larity in (6.12) and (6.13). Applying L’Hôpital’s rule to (6.12) or (6.13) as �0 → 1,
albedo and transmittance for the generalized, conservative scattering two-stream ap-
proximation are defined as

R1D(τ) = 1 − T1D(τ)

=
ξ1τ + (ξ3 − ξ1µ0)

(
1 − e−τ/µ0

)
1 + ξ1τ

. (6.18)

2 Note that rescaled or “transport” optical depth τt = (1−�0g)τ and the so-called similarity
factor S =

√
3(1 − �0)/(1 − �0g) are invariant under the δ-rescaling of the phase func-

tion, as is kτ = Sτt in (6.12) and (6.13). So this transformation does nothing for two-stream
theories with isotropic internal or boundary sources, for instance, the energy-conservating
“Model 1” in (6.8) with β(µ0) ∝ (1 − g)µ0.
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Therefore, substituting (6.18) and (6.6) into (6.5) yields the conservative scattering
GWTSA as

〈Tcld〉 = 1 − 〈Rcld〉

=
(

ν
ξ1τ

)ν [
(1 − ξ3 + ξ1µ0)G

(
1 − ν,

ν
ξ1τ

)
+ (ξ3 − ξ1µ0)G

(
1 − ν,

νµ0 + τ
ξ1µ0τ

)]
(6.19)

where
G (1 − ν, x) = exΓ (1 − ν, x) .

Naturally, other solutions are possible for different representations of p(τ) but
they are even more complex. For instance, if p(τ) is approximated by a beta distri-
bution, one ends up with rather intractable solutions for 〈Rcld〉 and 〈Tcld〉 involving
hypergeometric functions. A solution using a lognormal distribution for τ cannot be
expressed in closed-form with simple functions.

Barker and Wielicki (1997) extended the GWTSA to transmittance of isotropic
longwave irradiance in the absence of scattering. Begin by writing mean cloud trans-
mittance as

〈Tcld〉 = 2

∞∫
0

1∫
0

p(τ | µ)e−τ/µµ dµ dτ (6.20)

where p(τ | µ) is a zenith-angle dependent distribution of τ that can be estimated by
equating τ/µ to the random value of the slant integral of extinction through the cloud
layer. If p(τ | µ) = δ (τ − τ), (6.20) reduces to the familiar homogeneous solution
given by

〈Tcld〉 = 2

1∫
0

e−τ/µµdµ = 2E3 (τ) (6.21)

where E3(τ) is the third-order exponential integral (Charlock and Herman, 1976).
Assuming that the dependence of p(τ | µ) on µ is negligible, substituting (6.6) into
(6.20) leads to

〈Tcld〉 = xν

{
1 − (1 − x)

[
ν − (ν + 1) τ

∞∑
n=0

xn+1

ν + 2 + n

]}
(6.22)

where
x =

ν
ν + τ

.

Li and Barker (2002) took a different approach using a single quadrature point to
represent hemispherical integration in (6.20) and then applying the average over the
Gamma distribution. As can be seen by examining the impact of the direct transmis-
sion term in (6.17) for the solar problem, this leads to
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〈Tcld〉 =
(

ν
ν + τ/µ1

)ν

(6.23)

where µ1 ≈ 0.601 (Li and Fu, 2000). For integer values of ν, at least (6.23) can be
computed faster than an exponential (i.e., the homogeneous solution). Moreover, this
approach facilitates scattering computation via Li’s (2002) perturbation approach.

To conclude, the appeal of this approach is that as long as one is willing to accept
a particular underlying distribution of τ and that the ICA is the most precise estimate
that 1D models can be expected to achieve in practice, then this approach represents
an exact ICA solution for single layers. Efforts are currently under way to use local
GCM variables to predict ν as well as τ.

Scaling of Mean Optical Depth

Several models have attempted to approximate 〈Rcld〉 by performing simple rescal-
ings of mean cloud optical depth τ. Perhaps the earliest offering was from the real-
space renormalization theory of Gabriel et al. (1990) and the numerical results of
Davis et al. (1990) for very heterogeneous 2D fractal cloud models based on a singu-
lar cascade model3 on large grids with, notably, one vertical and one horizontal di-
mension. These studies independently showed that 〈Rcld〉 computed within the frame
of conservative discrete-angle RT (cf. Chap. 5) could be approximated as

〈Rcld〉 ≈ R1D(τδ) (6.24)

where δ was referred to as a “co-packing” exponent. The authors determined δ re-
spectively using analytical arguments enabled (1) by the simplified “4-flux” RT the-
ory and (2) by the deterministic monofractal nature of the cascade model (Gabriel
et al., 1990), and using discrete- and continuous-angle 2D Monte Carlo simulations
(Davis et al., 1990). This form of parameterization is highly desirable because it uti-
lizes the standard 1D plane-parallel homogeneous (PPH) solution of the RT equation,
which executes rapidly, with a minor adjustment to input data; the above ICA-based
solutions generally require more CPU time than PPH models. This parameterization
actually found its way into at least one operational model (McFarlane et al., 1992).
In general, one expects

δ ≤ 1 (6.25)

for cloudy cells with τ > 1 (and δ ≥ 1 if τ < 1 which would correspond to a rela-
tively clear cell). This produces the desired effect by reducing the value of R1D(τ).
Although a rigorous foundation for this approach is lacking at present, it is consis-
tent with Davis and Marshak’s (1997) anomalous photon diffusion model, as shown
further on. Notwithstanding, results can be expected at best to be approximate and
limited in scope.

3 In the present volume’s Appendix, 1D examples of such singular cascades are illustrated;
these can be likened to transects through the 2D media used in this project.
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Alternatively, one could write

〈Rcld〉 ≈ R1D(ητ) (6.26)

where η ≤ 1 could again be parameterized based on unresolved cloud structure.
Cahalan et al. (1994b) advanced the potential applicability of this approach they call
the “effective thickness approximation” (ETA), presented in more detail in Chap. 8.
In comparison with (6.24), we are now operating on the prefactor and not the expo-
nent of τ, a less radical change in view of its potentially large range of variation in
all possible cloud scenes. This is consistent with the fact that Cahalan et al. (1994b)
based their work on bounded, as opposed to singular, cascades where the hetero-
geneity is weaker in the sense of clumping (cf. Appendix). Bounded cascades are
designed specifically to mimic the observed (Cahalan and Snider, 1989) horizon-
tal variability of single stratocumulus layers. In retrospect, the singular cascades are
more like cloud systems. Another key difference for the radiative transfer is that the
fractal cloud structure generated by the bounded cascade model was assumed to un-
fold only horizontally in 1D or in 2D. This makes no difference for the ICA analysis,
nor does any assumption about vertical uniformity or variability (such as a linear
increase in extinction). Just as the numerical simulations of Davis et al. (1990) fol-
lowed the analytical investigation of Gabriel et al. (1990) for singular cascade cloud
models, Cahalan et al. (1994a) numerically substantiated the analytical results of
Cahalan et al. (1994b) for bounded cascade cloud models using a conservative Monte
Carlo scheme. The former pair of studies obtain only qualitative agreement (for rea-
sons they explain), while the latter pair achieve excellent quantitative agreement (at
least for the domain-averages of immediate interest). We will now examine in fur-
ther depth the more-developed ETA rescaling model in (6.26) and contrast it with the
GWTSA.

Cahalan et al. (1994b) noted that expansion of R1D in a Taylor series about
log10 τ and ensemble averaging4 yields

〈Rcld〉 = R1D (ητ) +
∞∑

n=1

M2n
∂2nR1D (ητ)
∂ (log10 τ)2n (6.27)

where M2n are related to the assumed (quasi-lognormal) variability of τ, and

η =
10log10 τ

τ
. (6.28)

We can assume, for tractability only, that the underlying distribution of τ is again
the Gamma distribution pΓ (τ) as defined in (6.6). It can be shown that use of pΓ (τ)
in (6.27) leads to

4 To be precise, the average is over spatial fluctuations of the bounded cascade model de-
scribed in the Appendix of this volume. By construction, every realization of this stochastic
model has the same PDF so ensemble- or spatial-averaging yields the same result. At least
in this 1-point statistical respect, the model is said to be “ergodic.”
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〈Rcld〉 = R1D(ητ) +
[

1
2 ln 10

∂ψ(ν)
∂ν

]
∂2R1D (ητ)

∂(ln τ)2
+ · · · (6.29)

where

η =
eψ(ν)

ν
, (6.30)

and

ψ(ν) =
d
dν

ln Γ (ν)

is Euler’s ψ function.5 Since ψ(ν) and ψ′(ν) are easy to compute, (6.29) is useful,
but higher-order derivatives of R1D are tedious in general. Using again Coakley and
Chýlek’s (1975) “Model 1” two-stream approximation with �0 = 1 to represent
R1D (τ), retention of just two terms in (6.29) gives

〈Rcld〉 ≈ R1D(ητ)

{
1 +

µ0 [µ0 − β(µ0)ητ]
2 ln 10 [µ0 + β(µ0)ητ]2

∂ψ(ν)
∂ν

}
. (6.31)

The third term is already too complicated to be of any use. The appeal of the ETA
is that for visible radiation (at essentially non-absorbing wavelengths) (6.31) is well
approximated by (6.26) either when the M2n are all small (i.e., variability is weak),
or when τ ≈ µ0/β(µ0)η (hence τ ≈ 15µ0 for typical values of β(µ0) ≈ 0.1 and
η ≈ 0.7).

Figure 6.1 shows plots of albedo predicted by the standard homogeneous solu-
tion R1D (τ), the simple GWTSA given by (6.11), the relevant ETA using (6.30), and
(6.31). Since in these cases, the GWTSA represents the full ICA, differences between
it and the R1D represent the PPH albedo bias with or without optical depth rescaling.
In no way does this imply that the GWTSA is superior to the ETA approach; if an-
other less convenient distribution were to be assumed, a curve for the GWTSA would
appear explicitly. From these plots it is clear that the second term of the expansion
in (6.31) is quite beneficial. The true ETA, however, encounters notable difficulties
especially when η is small. In that case, for the important large values of µ0 and for
most anticipated values of τ, the ETA overestimates the PPH albedo bias. However,
this is only a reminder that the ETA was never intended to be used with small values
of η that correspond to strong variability, e.g., overwhelmingly frequent low values
of τ associated with ν ≤ 1 in (6.6).

At present, there is confusion regarding how to best estimate subgrid-scale de-
scriptors like ν and η (or δ) diagnostically within GCMs. Moreover, the range of
realistic values of η for boundary-layer clouds is still unclear. Using microwave ra-
diometer data, Cahalan et al. (1994b, 1995) estimated η to be roughly 0.6 to 0.7 for
marine boundary layer clouds off the coast of California and on Porto Santo Island in
the Açores. Later analyses of satellite data (Barker et al., 1996; Pincus et al., 1999;
Rossow et al., 2002), however, indicate that most overcast marine boundary layer
clouds yield η ≈ 0.9, in which case the ETA, and likely all other approximations,

5 Note that equating (6.28) and (6.30) leads to the maximum likelihood estimation of ν which
is commonly expressed as ψ (ν) + ln (τ/ν) − ln τ = 0.
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Fig. 6.1. The Gamma ICA for conservative scattering and 3 approximations. Top two plots
show albedo of a cloud layer with τ = 10 as a function of cosine of solar zenith angle µ0.
Lower two plots show albedo of a cloud layer at µ0 = 1/2 as a function of τ. Results are
shown for two inhomogeneous clouds for a given ν, and associated η from (6.30), as listed
at the top of each plot, and for their homogeneous counterpart (corresponding to ν = ∞ and
η = 1). Left-hand plots are for relatively large ν and η where the 1-term ETA is expected to
work well. Right-hand plots are for quasi-broken cloud scenarios with many tenuous pixels
(relatively small values of ν and η); the 1-term ETA does not do well but the second term
helps greatly

will perform very well (even better than in Fig. 6.1 for η ≈ 0.7). Nevertheless, like
(6.24), (6.26) has also found its way into an operational GCM; specifically, Tiedtke
(1996) applied the ETA globally to all clouds using η ≈ 0.7. In both case studies,
this demonstrates the readiness of the GCM community to do something about unre-
solved cloud variability effects. While the utility of, and interest in, such simplified
experiments is widely recognized, care should be exercised in drawing too many
conclusions too early.

In the same spirit as the ETA, Barker (1992) had suggested that the azimuthally-
averaged 1D RT equation (see (4.5) with m = 0) could be modified as
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µ
∂

∂τ
I(τ, µ) = −I(τ, µ) +

�0

2

1∫
−1

P (µ′, µ)I(τ, µ′) dµ′ + F0
�0

4π
P (−µ0, µ)e−aτ/µ0

(6.32)
where I(τ, µ) is (the 0th azimuthal Fourier mode of) radiance, F0 is incident solar
irradiance, �0 is single-scattering albedo, and P is the azimuthally-averaged scatter-
ing phase function (see Wiscombe and Grams (1976) or Sect. 4.1.1 for its expression
in spherical harmonics). The only difference between (6.32) and the regular transfer
equation in 1D is the presence of a < 1 which allows the directly-transmitted so-
lar beam to penetrate the cloud with greater ease relative to a homogeneous cloud.
Once scattered, the photon transport proceeds as though the cloud were homoge-
neous. For instance, the two-stream solution that would result from (6.32) will re-
semble (6.12)–(6.13) with µ0 �→ µ0/a in the solar forcing exponential term, but not
when µ0 appears in the scattering coefficients ξ3,4 which result from P (−µ0, µ).
Clearly, through parameterization of a, the solution for this model could be made to
match more detailed ICA or 3D RT results. One could start by equating a with η in
(6.28). Alternatively, the direct-beam transmittance term in (6.32) could be based on
some assumed distribution of τ (cf. Gabriel and Evans, 1996). For example, assum-
ing pΓ(τ), as defined in (6.6), the scaled version of the exponential source term in
(6.32) would be replaced by

〈Tdir〉 =

∞∫
0

pΓ(τ)e−τ/µ0 dτ =
1

(1 + τ/νµ0)
ν (6.33)

and the resulting 1D transport equation would be recast with τ as the independent
variable.

Further Examples and General Discussion

The 4 models described so far are interestingly different. The GWTSA starts with
1D RT and the ICA and ends with new formulas that can not be equated with 1D RT
counterparts (since they are nonlinear averages of said 1D RT results). The Barker
(1992) proposal to use the 1D RT equation with a modified but still exponentially
decaying source term will lead to the usual 1D RT formulas with a scaled value
for µ0. The co-packing exponent model hails from a mean-field theory (real-space
renormalization) – as such, it is a harbinger of models to come – but ends with a
simple recipe for using 1D RT at non-absorbing wavelengths. The ETA ends the same
way, but with a different and arguably even simpler recipe for rescaling the optical
depth. Generalization of the last two fractal-based models to absorbing wavelengths
was left by their originators as an open question.

That key question and others were addressed in a series of three computation-
intensive papers co-authored by Prof. Harumi Isaka of the Laboratoire de Météoro-
logie Physique (LaMP) in Clermont-Ferrand, France. Borde and Isaka (1996) revisit
the 2D (vertical–horizontal) singular cascade model for cloud structure – this time,
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using a random (lognormal) multifractal instantiation – with and without absorp-
tion, but still in the frame of discrete-angle RT (with only 4 fluxes to determine at
each grid-cell). On the one hand, they offer an alternative approach for finding the
effective mean optical thickness in an equivalent 1D RT model. On the other hand,
they find that in spite of the intense variability the domain-average absorption is
not strongly affected; in particular, there is no compelling need to seek an effective
single-scattering albedo (SSA) for most of their cloud modeling parameter space . . .
and the exception is better addressed in the second follow-on paper described next.
Szczap et al. (2000a,b) revisit respectively non-absorbing and absorbing clouds con-
figured by bounded cascade models in the frame of standard (continuous-angle) 3D
RT using a Monte Carlo scheme. The Equivalent Homogeneous Cloud Approxima-
tion (EHCA) proposed by Szczap et al. (2000b) generalizes the ETA in (6.26) for
averaging-scale and solar zenith-angle (SZA) effects. Szczap et al. (2000a) retains
the EHCA for absorbing wavelengths but introduces an effective SSA to drive 1D RT
models to the answer given by the 3D RT solution. The implicit parameterizations
in these last two studies are empirical in nature, basically look-up tables populated
with costly numerical simulation results.

One is left, in one way or the other, with a sense that methods for scaling mean
optical depth (and possibly other optical properties) presented so far are simply too
approximate and inadequate for operational GCM consumption. In particular, they
are highly case-specific. Their significant advantage remains the fact that, in the end,
they utilize simple PPH solutions of the 1D RT equation and therefore, assuming
their variability parameter is given, they cost practically nothing to implement be-
yond the current RT investment in GCMs.

6.2.3 Solutions Using a Mean Field Theory for 3D Radiative Transfer

Here we cover another class of analytical methods for computing domain-average
fluxes and heating rates in a cloudy atmospheric layer. Previously, we used closed-
form solutions of the 1D RT problem and averaging over a given distribution of
optical properties (typically, only the optical depth is varied). This has lead us to
either new ways of using well-known 1D RT formulas (e.g., the ETA) or to new
formulas to encode them (e.g., the GWTSA).

We now return to the 3D RT equation with spatially varying and, for all practical
purposes, random coefficients. This stochastic RT equation is manipulated under a
variety of assumptions until it yields an estimate of the domain-average quantities of
interest. Borrowing from tradition in statistical physics, we call this a mean field RT
theory. There are at least two distinct classes of mean field theory to consider:

• On the one hand, there are theories that consider no particular type of spatial vari-
ability but make a sequence of “reasonable” statistical assumptions about means
and fluctuations and correlations driving towards a reduction of the 3D RT problem
to its 1D counterpart, but with modified coefficients. This is also called “homog-
enization” and it is the mean-field counterpart of the ETA and other schemes that
end with an application of 1D RT theory.
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• On the other hand, there are theories where one first makes specific statistical
assumptions about the spatial variability and then proceeds to solve the associated
RT equation for the mean radiation field which can be quite different from the 1D
RT equation. Both derivation and solution of the new equation typically call for
problem-specific tricks. These are the mean-field counterparts of GWTSA-type
solutions that may be based on 1D RT but end with non-standard formulas to
apply.

In both categories, the assumptions are made in such a way as to obtain a certain
outcome that enables analytical solutions, hence some insight is gained into the vari-
ability effects and/or the way they are modeled. Viable GCM parameterizations may
even evolve from such theories.

We first discuss the general approaches. Whether explicitly or implicitly stated,
the “reasonable” statistical assumptions they require eventually include a clear sep-
aration of scales between where the mean radiation field is estimated and where the
variability actually occurs. In this case, the end result invariably reverts to a more-or-
less standard RT equation for uniform but “effective” coefficients that will depend
on both the means and on some parameter(s) introduced to describe the variability.
So 1D RT solutions are invoked without further ado. Like the ETA described in the
previous section, a single 1D RT computation is performed with modified optical
parameters. Three examples come to mind here:

• Stephens (1988b) uses a simple closure scheme based on how unresolved variabil-
ity affects the radiance in his previous (Stephens, 1988a) numerical experiments.
By parameterizing the various correlations that appear in the mean-field equations,
he arrives at a modified 2-stream approximation with new coefficients appearing.

• Cairns et al. (2000) use renormalization theory to address the 3D RT problem
and they find fixed-point mappings of mean and variance parameters to effective
quantities.

• Petty (2002) envisions “big scatterers” such as spherical clumps of scattering/
absorbing material that are much smaller than the domain of interest but already
one or more mean-free-paths in diameter. These clumps have a distribution of
cross-sections and phase functions that are tabulated and they are assumed to be
randomly distributed in space with some given density, and then used in a standard
2-stream approximation.

The former two studies make no specific assumption about the fluctuations of extinc-
tion and other optical properties, only on their spatial statistics (including the usual
separation of the variability and averaging scales). They are discussed further on in
some detail. The latter study assumes the 3D variability can be viewed as an assem-
blage of (say) spherical clumps, each of which is at once a multiple-scattering entity
and an element of the whole medium. But the span of the size distribution of these
big scatterers has to be small compared to their mean distance (according to their
density) if they are to be considered as separate entities. So here again there is a tacit
requirement of separation of scales.
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The desired outcome of a mean field RT theory can also be a brand new RT
equation (or system of equations) that needs to be solved from scratch. Again three
examples come to mind, all of which apply to specific types of spatial variability:

• Chapter 7 by N. Byrne is entirely dedicated to “stochastic” RT in binary Markov-
ian media where two coupled RT equations arise that can be solved by similar
methods as for 1D RT (discrete ordinates and sweeps, or Monte Carlo). Recent
and interesting developments are (i) to link the input cloud parameters to ground-
based observations and compare predicted and observed fluxes (Lane et al., 2002)
and (ii) to generalize to multiple layers with non-trivial overlap (vertical correla-
tion) assumptions (Kassianov, 2003; Kassianov et al., 2003).

• Evans (1993) developed a non-Markovian Monte Carlo model for the domain-
average fluxes that makes use of spatial/angular correlations between successive
steps in the photon history. The method is an approximation because, in practice,
it is limited to two-step correlations, not the full sequence of statistical memory
effects along the photon path. The method is general but the correlation patterns
need to be computed a priori from a standard Monte Carlo run in a specific kind
of medium. So cloud structural properties determine the new Monte Carlo rules.
Evans used a class of stochastic cloud models with realistic 2-point correlation
structures.6 Once this is done, the model is quite accurate and very efficient. How-
ever, it seems that the amount of overhead computation has limited the model’s
applicability. One can hope that in the future we will be able to parameterize the
joint 2-step PDF for 3D optical media of interest in cloud optics and radiative
energetics.

• Davis and Marshak (1997) assume that photon free paths (between all emission,
scattering, absorption, and escape events) are not exponentially distributed but
rather they have power-law tails, as can be expected in fractal-type optical media
with no obvious characteristic scale. This ansatz leads to an “anomalous” diffusion
process where the light particles trace Lévy walks which, in turn, call for new
power-law kernels in the integral transport equation instead of the conventional
exponential one (Buldyrev et al., 2001; Davis and Marshak, 2004). Here again,
connections have recently been made with observed quantities (Pfeilsticker, 1999).

The latter model is discussed in some detail further on. The former model has a long
and venerable history, going back at least to Avaste and Vainikko (1974). In partic-
ular, the two dedicatees of this volume, G. Titov and G. Pomraning, were fervent
champions of stochastic RT in Markovian media. Assuming for simplicity a binary
“cloudy/clear” medium, the enabling Markovian property is that there are two fixed
probabilities per unit of length, one for each component, of crossing a cloudy/clear
boundary. This is the equivalent of specifying a cloud fraction and a characteristic
cloud size. The mean-field RT equations (two coupled RT equations arise) are valid
over scales large enough to sample both the cloud size (distribution) and the cloud

6 Specifically, these were 2D fractionally-integrated (power-law Fourier filtered) multiplica-
tive cascades in the (x, z)-plane ending with a “k−5/3” energy spectrum characteristic of
turbulence, as is typically observed in stratocumulus; see Schertzer and Lovejoy (1987) or
volume Appendix for more details.
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fraction (distribution of inter-cloud distances), but not necessarily vast tracks of the
medium. The stochastic RT model has an “effective medium” limiting case when the
cloud size becomes tiny: alternations between cloudy and clear air are so fast that
only the mean optical properties matter (this is know as the “atomistic mix”). It also
has a relevant ICA or “linear-mixing” limit when cloud size becomes huge: inter-
face effects can then be neglected and the linear mixture prediction in (6.4) becomes
accurate.

We retain from this brief overview of mean-field RT theories that they come in
a wide variety of flavors and that the research topic is by no means closed as we
go to press with this chapter. Further on we discuss possible applications beyond
parameterization of RT in GCMs. In the remainder of this section, we describe in
more detail three selected mean-field RT theories: those of Stephens (1988b), Davis
and Marshak (1997) and Cairns et al. (2000). The first and last are interestingly
different in spite of the fact that they both lead back to familiar 1D RT with modified
(or “effective”) coefficients. In the earlier study, new optical properties appear that
can be determined at least empirically; in the later one, the authors arrive at explicit
formulas using means, variances, and correlation scales. In the third approach, a new
class of 1D transport equations is obtained and certain important properties of their
solutions are derived.

Radiance-Extinction Covariance and Statistical Closure

Following Stephens (1988b), we let Ĩ represent the set of all horizontally decom-
posed Fourier components of the radiance field I . If I0 is the ensemble and/or do-
main average, the average equation of transfer for a sourceless medium can be ex-
pressed as [

µ
∂

∂z
+ S0,0

]
I0 = −S0,>I> (6.34)

where

S0,0 = σ0,0 [·] −
∫
4π

S0,0 [·] dΩ (6.35)

is the operator for the ensemble average radiance field in which σ0,0 and S0,0 are re-
spectively the domain-average extinction and scattering kernel of the medium. More
specifically, S0,0 is the spatial mean of the product of the scattering coefficient σs

and the phase function7 p(Ωin,Ω). The pseudo-source/sink term in (6.34),

S0,>I> =
∑
k>0

S0,kIk , (6.36)

represents the impact of all smaller scales on the domain/ensemble average. Gen-
erally, there is a hierarchy of equations similar to (6.36) that describe mean fluc-
tuations at scales k = 1, 2, . . . , K where some form of closure is invoked for all

7 Here we normalize p(·) to 1 (rather than to 4π). This makes the physical interpretation of
S as the differential scattering cross-section per unit of volume (cf. Chap. 3).
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scales k > K, or else fluctuations are simply assumed to vanish (i.e., presumably
“smoothed away” by multiple scattering).

The simplest form of (6.36), and the most tractable in terms of conceptualization
and computation, beyond S0,>I> = 0 which reduces (6.34) to the regular equation
of transfer for a homogeneous medium, is to invoke closure for all scales beyond the
mean field (i.e., K = 1). Now let I = I +I ′ where the over-score designates the spa-
tial/ensemble average, also the k = 0 Fourier component I0 in (6.34), and the primed
quantity is the spatially varying fluctuation. We assume analogous decompositions
for σ and S. Equation (6.34) can then be re-expressed as

µ
∂I

∂z
= −σI +

∫
4π

S(Ωin,Ω)I dΩin

︸ ︷︷ ︸
−σ′I ′ +

∫
4π

S′(Ωin,Ω)I ′ dΩin

︸ ︷︷ ︸
regular transfer 1st-order closure

equation: S0,0I0 term: S0,>I>

(6.37)

where it is understood that all radiances have angular dependencies and that the
dummy variable Ωin in the angular integrals is the incoming direction for the scatter-
ing event.

Stephens (1988b) offered a simple description of the mean fluctuation terms in
(6.37) as

σ′I ′ = CσIσI
S′I ′ = CSIS I

(6.38)

where CσI and CSI are non-dimensional measures of correlation between the sub-
scripted quantities. Note that this formulation rests on the tacit assumption that the
medium has isotropic variability, i.e., it is statistically the same in all directions.

Substituting (6.38) into (6.37) gives

µ
∂I

∂z
= − (1 + CσI) σI +

∫
4π

(1 + CSI) S(Ωin,Ω)I dΩin . (6.39)

This resembles the 1D RT equation although a priori – and like for radiation transport
through vegetation canopies (Chap. 14) – the extinction and scattering coefficients
can depend on µ. If it is assumed that CSI does not depend on the incoming di-
rection Ωin, the following transformed optical properties can then be used in any
conventional 1D RT solution:

σ̃ = (1 + CσI) σ

�̃0 =
(

1 + CSI

1 + CσI

)
�0

(6.40)

where σ and �0 = σs/σ are domain-average extinction and the associated single-
scattering albedo.

Stephens (1988b) proceeds to reformulate the Eddington 2-stream approximation
for (6.39) for which he proposes the following parameterization
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CσI = C̃σµ
CSI = C̃Sµ

(6.41)

based on an analysis of detailed numerical simulations by Stephens (1988a). This
simple dependence on µ precludes the interpretation of (6.40) as a straightforward
rescaling of optical properties.

Because of the linear dependence on µ in the parameterization proposed in (6.41),
it adapts well to the 2-stream model based originally on

I(z, µ) = [J(z) + 3µFn(z)]/4π (6.42)

and
p(µin, µ) = (1 + 3gµµin)/4π , (6.43)

in the so-called Eddington version (Meador and Weaver, 1980), a.k.a. 1D diffusion.
Letting

F±(z) =
∫

±µ>0

|µ|I(z,Ω)dΩ , (6.44)

and applying these definitions to (6.40) yields(
+1 0
0 −1

)
d
dτ

(
F+

F−

)
=
(
−t+ +r+

+r− −t−

)(
F+

F−

)
(6.45)

where dτ = σdz. In the above coupled system of two ordinary differential equations
(ODEs), we have used

t±(z) = t ± t′

r±(z) = r ± r′
(6.46)

where (cf. (6.14), first 2 definitons)

t = [7 − �0(4 + 3g)]/4
r = [�0(4 − 3g) − 1]/4

(6.47)

and
t′ = C̃S�0(1 + g)/2 − C̃σ

r′ = C̃S�0(1 − g)/2
. (6.48)

We note an important difference with the classic 2-stream problem where the matrix
of coefficients on the right-hand side of (6.45) has identical terms along the 2 diag-
onals, and here not necessarily. As usual in 2-stream theory (without internal source
terms), the boundary conditions for the solar albedo problem are

F−(τ) = F0

F+(0) = 0 (6.49)

respectively on the upper and lower cloud boundaries. Introducing
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κ =

√
(t+ + t−)2 − 4r+r−

2
=
√

t
2 − r2 + r′2 (6.50)

where we recognize
t
2 − r2 = 3(1 − �0)(1 − �0g) ,

the calculus problem in (6.45) and (6.49) leads to

R =
F+(τ)

F0
=

r − r′

t + κ coth(κτ)
(6.51)

for albedo,

T =
F−(0)

F0
=

exp(−t′τ)
t sinh(κτ)/κ + cosh(κτ)

(6.52)

for transmittance, and A = 1 − R − T for absorptance (although we will soon see
that radiant energy conservation is not a straightforward matter in this model).

While in the absence of fluctuations (t′ = r′ = 0), the regular Eddington
2-stream solution is recovered, there are some peculiarities about the new solution.
For instance, albedo in (6.51) is independent of C̃σ while transmittance in (6.52)
depends on both C̃σ and C̃S . Figure 6.2 shows albedo R, transmittance T , and ab-
sorptance A for a cloud with τ = 10, �0 = 0.99, and g = 0.85 as a function of
C̃σ and C̃S . If one allows for C̃S < C̃σ, absorptance is less than the homogeneous
value (to the point of becoming negative for C̃σ ≈ 0.2 and C̃S ≈ 0); if C̃S > C̃σ,
absorptance exceeds the homogeneous value. For such �0 close to unity, however, it
is likely that this measure of inherent absorptivity is essentially independent of cloud
structure, implying that C̃σ should be ≈ C̃S in (6.40)–(6.41). In this also case (along
the diagonals in Fig 6.2), albedo and transmittance change in the expected direc-
tions as fluctuations and correlations (C̃σ ≈ C̃S) increase, but absorptance remains
roughly constant.

To further discuss energy conservation in the new model, it is convenient to go
back to the 1D diffusion quantities in (6.42). Direct application of the 2-stream defi-
nitions in (6.44) yields F± = J/4 ± Fn/2, hence

J = 2(F+ + F−), scalar flux

Fn = F+ − F−, net flux
. (6.53)

Using (6.46)–(6.48), the ODE system in (6.45) then becomes

d
dτ

(
J
Fn

)
=

(
C̃σ − �0C̃S −(1 − �0)

−3(1 − �0g) C̃σ − �0gC̃S

)(
J
Fn

)
. (6.54)

The cross-diagonal terms capture the standard model, specifically, Fick’s (con-
stituent) law and energy conservation (continuity equation) respectively. The on-
diagonal terms contain the effects of the fluctuations and we see that, to enforce
strict energy conservation (i.e., when �0 = 1), we need to mandate C̃σ = C̃S . Also
the key parameter κ in (6.50) does not vanish when �0 → 1 as it characteristically



6 Approximation Methods in Atmospheric 3D Radiative Transfer 363

Fig. 6.2. Reflectance, transmittance, and absorptance for a cloudy layer as functions of para-
meters that describe correlations in fluctuations for radiance and extinction, C̃σ, and scattering
extinction, C̃S . In this phenomenology, these are the new cloud properties, the traditional ones
being τ = 10, �0 = 0.99, and g = 0.85. See text for more details on this modified 2-stream
Eddington solution for an inhomogeneous plane-parallel slab. Values in lower left-hand corner
of plots correspond to homogeneous conditions. Note that absorptance becomes negative for
large C̃σ and small C̃S

does in the standard 2-stream model, thus making (6.51) and (6.52) singular. Here,
we find κ = r′ = C̃σ�0(1 − g)/2 and to obtain R + T = 1 in (6.51)–(6.52), we
require r′ + t′ = 0, hence once again C̃σ = C̃S .

Finally, to underscore the fact that this closure model goes beyond the ICA, we
note that it can be used to substantiate a general 3D diffusion-theoretical result pre-
sented in Chap. 5, (5.71) with χ = 2/3, for diffuse illumination (or overhead sun)
and conservative scattering:

R′

R
= 2

σ′|F ′
z|

σF0
≤ 0 (6.55)

in the present notations and sign conventions. We again denote domain-average
albedo R, thus R is associated with the mean extinction and R′ is its change due
to 3D RT effects (which is always negative for the stated illumination conditions).
This is a deterministic relation and associated inequality, i.e., valid for any realiza-
tion of the variability with of course spatial averages in mind. The inequality follows
directly from the physics of photon channeling in variable media (around the more
opaque regions and into the more tenuous ones). See Davis and Marshak (2001) for a
detailed derivation. Here, we can re-derive the inequality using Stephens’ statistical
parameterization of the extinction-radiance correlations in (6.38) and (6.41) where
we normally have ensemble averages in mind. Indeed, we have

σ′|F ′
z| = −

∫
4π

σ′I ′(µ)µdΩ = −2πσIC̃σ

+1∫
−1

µ2dµ ≤ 0 . (6.56)

Furthermore, we obtain from (6.55) the following estimate for the non-dimensional
correlation property
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C̃σ =
3
8

(
F0

πI

) |R′|
R

(6.57)

where we can use8 πI ≈ F0/4. So C̃σ ≈ C̃S are roughly 3/2 of the relative 3D
perturbation in albedo R. That is precisely what we see in the leftmost panel of
Fig. 6.2, along the diagonal since we are in the conservative case.

In summary, this is an interesting model based on the largely unexplored con-
cept of statistical closure in scale-space that is consistent with what we know from
Chap. 5 about the general phenomenology of 3D radiation transport. As far as we
know, it has not yet been used in a GCM yet, since it leads to a slightly modified
2-stream formalism that incorporates the impact of variability, it will cost almost
nothing to implement. However, so far only the case of diffuse boundary sources
has been examined, so collimated beams (for short wave RT) and isotropic internal
sources (for long wave RT) need to be addressed. There is an important caveat to
bear in mind before investing more effort in this model: if the parameters defining
cloud fluctuations are not set carefully – and their values are by no means obvious –
one can violate conservation of energy.

Renormalization Theory

Cairns et al. (2000) developed an approximate solution that is based on assumptions
similar to those of Stephens (1988b), namely, a clear separation (hence a strong de-
coupling) of the averaging scale and the variability scales. But this requirement is
brought on differently, so the outcome is also different. First, they remark that the
number concentration of scatters can be described by

n(x) = n + δn(x) (6.58)

where n is domain-average number concentration, δn(x) is the local fluctuation at
position x, and assume that these fluctuations are statistically isotropic in 3D space.
They also focus on solar 3D RT problems where the source term can be confined to
the boundary conditions and the 3D RT equation can be written more simply as

Ω •∇I(x,Ω) + sn(x)
∫
4π

B(Ω′ • Ω′)I(x,Ω′) dΩ′ = 0 (6.59)

where
B(Ω • Ω′) = δ(Ω • Ω′ − 1) − �0

4π
P (Ω • Ω′)

and s is the extinction cross-section (per cloud droplet); the fluctuating extinction
is simply σ(x) = sn(x). Averaging the above 3D RT equation over a large-enough
volume leads them to domain-average, intensity I(x,Ω) is given by

Ω •∇I(x,Ω) + sn
∫
4π

B(Ω′ • Ω′)I(x,Ω′) dΩ′

= −s
∫
4π

B(Ω • Ω′)δn(x)I(x,Ω′) dΩ′.
(6.60)

8 This relation is exact for the conservative 2-stream model where I = J/4π = J(τ/2)/4π.
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This looks formally like the usual integro-differential RT equation for the mean ra-
diance I(x,Ω) but, this time, with an non-vanishing source/sink term9 on the right-
hand side that is traced to the density fluctuations δn(x) and how they interact with
the 3D radiance field I(x,Ω).

In order to close (6.60), Cairns et al. (i) rewrite (6.60) as an integral equation
involving the Green function (see Chap. 3), (ii) perform a formal perturbation expan-
sion (akin to the von Neumann series described in Chap. 3), (iii) partially re-sum the
series, and (iv) apply a classic 4th-order closure, (v) apply a nonlinear approximation
(Rosenbaum, 1971) to the Green function. The last step improves the accuracy of the
resulting mean-field integral transport equation. This procedure effectively decou-
ples the cross-correlation term δn(x)I(x,Ω′) in (6.60) but at the cost of embedding
the required I(x,Ω) in a higher-dimensional integral over position and direction that
involves the auto-correlation function δn(x)δn(x′). Assuming the effects of fluctua-
tions are local (this is critical), the authors are able to recover a tractable expression
for the the right-hand side of (6.60) that can be grouped with the extinction-scattering
term on the left-hand side. The mean-field RT equation can then be solved as though
the medium was homogeneous with the following transformed domain-average op-
tical properties:

σ′ = (1 − ε) σ ;

1 − �′
0 = (1 − �0)

[
1 − �0

(
ε

1 − ε

)]
; (6.61)

1 − �′
0g

′ = (1 − �0g
′)
[
1 − �0

(
ε

1 − ε

)]
.

The key quantity that controls the above optical parameter renormalization induced
by the variability effects is

ε =
1
2

(
a −

√
a2 − 4V

)
,

where

a =
1

σlc
+ 1

and

V =
n2

n2 − 1

is the relative variance of n while lc the effective correlation length of the variations.
If particle density fluctuations follow lognormal-type distributions with 2-point cor-
relations over a broad range, then we anticipate that sooner or later σlc ≈ 1. In this
case, however, only moderate 1-point fluctuations are allowed, namely, V < 1.

From Cairns et al.’s (2000) initial formulation, it would appear that long-range
fluctuations in n(x) are neglected, thereby rendering the transformations in (6.61)

9 The right-hand term in (6.60) balances the mean transport term on the left-hand side. Being
dependent on the unknown 3D radiance field, this should more appropriately be called a
pseudo-source/sink term.
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applicable only to relatively small scales such as individual cells of a stratocu-
mulus or individual cumuli. Cairns et al. allude to the ICA as being more suit-
able to describe the effects of fluctuations larger than the diffusion length, i.e.,
1/σ

√
3(1 − �0)(1 − �0g).

Rossow et al. (2002) applied (6.61) to ISCCP (International Satellite Cloud Cli-
matology Project) data, which have a horizontal resolution of ≈5 km, and redefined
ε operationally as

ε = 1 − τ̂
τ

(6.62)

where

τ̂ = R−1
1D

[
1
N

N∑
n=1

R1D (τn)

]
in which R−1

1D (R) is the solution of R1D(τ) = R, N is the number of satellite pixels
in a domain, and τn is cloud optical depth inferred for the nth pixel.10

While Cairns et al.’s model does not suffer from the same ailment (potential for
unphysical solutions) as Stephens’, it appears from their initial presentation that it is
meant to be applied at small scales; perhaps to be then superimposed onto another
model designed to account for fluctuations at larger scales, such as the GWTSA.

Anomalous/Lévy Photon Diffusion

This model targets bulk radiation transport through the whole cloudy portion of the
atmosphere, not necessarily a single cloud layer, starting with the empirical fact that
this optical medium is variable on all observed scales. Furthermore, this 3D variabil-
ity is shaped by complex thermodynamical processes in a highly dynamical envi-
ronment of synoptic-scale geophysical turbulence as well as small-scale turbulence
driven by shear- and buoyancy-driven instabilities. So we naturally tend to find robust
turbulence-type variability laws such as the famous “k−5/3” wavenumber spectrum
(cf. Appendix). This characteristic scale-invariance implies long-range correlations
and goes against the separation-of-scales rule for most common approaches to sta-
tistical 3D RT, i.e., that variability scales should be much smaller than the observa-
tion or computation scale. Motivated by these remarks, Davis and Marshak (1997)
question the most basic premise of RT, namely, the exponential transport kernel that
derives from Beer’s classic law for direct transmission. Why should the mean-free-
path (MFP) – the single parameter of the exponential free-path distribution – control
every spatial aspect of the photon transport in such highly variable optical media? To
explore a relevant alternative, Davis and Marshak (1997) assumed power-law free-
path distributions. More precisely, they used symmetric Lévy-stable laws which are
Gaussian-like for small steps but follow power-law tails for long ones. Letting s de-
note the random free path sampled by the photon population, Lévy-stable PDFs all
have infinite variance: their power-law decay is indeed in 1/s1+α where 0 < α < 2.

10 In the appendix to Rossow et al. (2002), it was shown that an accurate approximation
relating ν in (6.7) and ε in (6.62) is ν = 1/ (ε − ln(1 − ε)); see also footnote on p. 353.
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In a later paper, Davis and Marshak (2004) showed that effective free-path distribu-
tions in spatially heterogeneous media are always sub-exponential and that the actual
MFP is always larger than the inverse of the mean extinction.

To see more specifically why power-law distributions of photon free paths are ef-
fectively controlling the bulk radiative transfer in the Earth’s cloudy atmosphere, we
recall from Chap. 3 that the free-path distribution (equivalently, the effective trans-
port kernel) derives from the law of direct transmission. Davis and Marshak (2004)
argue that it is the mean direct transmission law averaged over the disorder in the
medium that matters for the mean photon transport. In other words, to target large-
scale fluxes one should average the transport kernel in isolation and thus derive a
new equation to solve. In contrast, the GWTSA and ETA use the known solution of
the classic (exponential kernel) equation. But why use kernels with power-law tails?

A mean law of direct transmission is obtained for other purposes in (6.33) for
the reasonably accurate (Barker et al., 1996) Gamma distribution (6.6) for optical
depths, implicitly for a fixed physical distance (namely, the thickness of the cloud
layer). To be specific, we replace the slant optical path τ/µ0 by σs where σ is the
mean extinction (averaged over the Gamma PDF) and s is the (now random) step
between scattering events; we thus obtain

〈Tdir(s|σ)〉 = Pr{step ≥ s} =

∞∫
0

pΓ(σ)e−σs dσ =
1

(1 + σs/ν)ν . (6.63)

As expected, the limit for ν → ∞ is the standard exponential law. In general, the
photon MFP is (1/σ) × ν/(ν − 1) which reverts properly to 1/σ for ν → ∞ and
diverges for ν → 1. This basically limits our interests to the regimes where ν > 1.
For the probability law in (6.63) free path variance is (1/σ)2 × 2ν2/(ν − 2)(ν − 1)
which is indeed divergent for ν < 2. In the same way that all sums of random
variables with finite variance converge to Gaussian laws (by virtue of the central
limit theorem), sums of random variables with infinite variance, because of their
power-law tails with exponent 1 + α (0 < α < 2), converge towards Lévy-stable
(also called α-stable) laws; see, e.g., Samorodnitsky and Taqqu (1994). This class
of PDFs include Gaussians in the limit α → 2. Since the multiple scattering is just
a sum of random variables in all the coordinates, we expect the PDFs in (6.63) to
behave like Lévy-Gauss PDFs with

α = min{ν, 2} (6.64)

at least in transmission since it is dominated by photon paths with many scatterings.
This argument applies strictly for isotropic scattering only because the random vari-
ables in the sums are presumably independent. However, Davis and Marshak (1997)
extend their arguments to forward-scattering/non-absorbing scenarios by generaliz-
ing Eddington/van de Hulst rescaling, by (1 − g), to situations where all we know is
that the MFP exists (i.e., no need for the RT equation nor its diffusion counterpart).
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Davis and Marshak’s (1997) two key results for solar-type RT through cloudy
atmospheres with asymptotically large optical depths are:

〈Tcld〉 ∝
1

[(1 − g)τ]α/2
(6.65)

where τ = σh (h is the physical thickness of the medium) and, as an intermediate
result,

〈L〉T ∝ h × [(1 − g)τ]α−1 (6.66)

where 〈L〉T is the mean of the (total) path of the photons that escaped the medium
in transmission.11 The requirement for large τ is simply to ensure that many scatter-
ings photons in the terminology where “standard” diffusion is by small (Gaussian or
exponential) steps. Starting with a very different statistical physics problem in mind,
Buldyrev et al. (2001) derive a new integral transport equation for Lévy-distributed
steps and solve it exactly. They retrieve the above asymptotic laws with precise pref-
actors and accurate transitions from the optically thin regime.

We note that the modified transmission law in (6.65) is equivalent to the rescaled
reflectance law given in (6.24) for δ = α/2 ≤ 1 since T1D = 1−R1D ∝ 1/(1− g)τ
in the asymptotic regime. As anticipated in (6.25), this expression for the co-packing
exponent δ does not exceed unity and deviates from it more as the variability in-
creases (α decreases from 2 to 1). We also note that, by multiplying the expression
for pathlength in (6.66) by σ when α = 2, we retrieve the classic statement that (the
mean) order-of-scattering for transmitted light (≈σ〈L〉T = 〈L〉T /MFP) is propor-
tional to the square of the optical thickness, times (1 − g).

Using ground-based high-resolution O2-line spectrometry to estimate 〈L〉T /h,
Pfeilsticker (1999) exploited (6.66) to show that the anomalous diffusion model cap-
tures the pathlength dimension (cf. Chap. 13) of solar photon transport in the whole
atmospheric column far better than the exponential model under a wide variety of
cloudy conditions (cf. Fig. 6.3). We can refer to Min and Harrison (1999) for a sim-
ilar study optical depth was obtained directly from broad-band transmittance; their
data follow the same kind of power laws as here with the same trend towards α ≈ 2
for single/continuous cloud layers and towards 1 < α < 2 for more complex cloud
covers.

This direct observational validation is quite unique in 3D RT modeling at such
large-scales. Other popular RT models for large-scale fluxes such as the GWTSA
or the ETA are driven by parameters often determined from observations of cloud
structure but their predictions for radiative fluxes are rarely compared with measure-
ments because it is non-trivial to build up large-scale average fluxes from point-scale
samples; from space the converse sampling problem occurs where much space is
in view, but from a single direction; so a difficult conversion from radiance to flux
is required. The appeal of the anomalous diffusion model for Pfeilsticker (1999) is
that it addresses absorption by well-mixed gases directly (through the “equivalence
theorem” discussed in Chap. 13); a major advantage is that pathlength studies using

11 See Chap. 13 for an in-depth discussion and remote-sensing application of 〈L〉R, the mean
path for reflected photons.
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Fig. 6.3. Mean pathlength of transmitted solar light at 760 nm versus optical thickness: Oxygen
A-band observations and Lévy transport model predictions. The observed pathlengths were
corrected for pressure-weighting and expressed in units of “transport” MFPs, i.e., h/τ scaled
by 1/(1−g). This non-dimensional quantity is obtained as 〈L〉T /[h/(1−g)τ] ∝ [(1−g)τ]α

from (6.66). Optical depths were derived from the observed h (physical thickness of the whole
cloud system) using commercial aircraft observations (the instrument was deployed near a
major airport) and a climatological assumption about the MFP, then assigned generous error
bars. The model predictions cover the data points with the proper association of single-layer
un-broken clouds to α ≈ 2, sparse broken clouds to α ≈ 1, and complex multi-layered cloud
scenes in between. The data were graciously provided by K. Pfeilsticker from Fig. 6 in his
1999 paper and re-plotted with a slightly improved representation of the effect of g in the
theoretical curves

spectroscopy do not require absolute calibration, yet they show strong sensitivity to
3D structure.

In summary, the inability of the anomalous diffusion model to resolve layer-
by-layer absorption is a liability in GCM parameterization development. However,
its direct applicability to the emerging observational technology of oxygen A-band
spectroscopy is an asset that begs for further exploitation.

6.3 Computational Models for Domain-Average
Radiation Budgets

6.3.1 Horizontal Variability Aside From Water Content

All models discussed so far have been designed, and tested, with subgrid-scale fluc-
tuations of cloud water content in mind. None of them address variations in particle
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Table 6.1. Cloud microphysical data obtained on flights made by a Twin Otter (TW) and
Convair-580 (CON) on dates given in dd/mm/yy. D signifies length of transect (km), Ac is
cloud fraction, L is mean liquid water content (g/m3), re is droplet (optical) mean effective
radius (µm), vL and vre are coefficients of variation (standard deviation/mean) for L and for re,
ρ is the linear correlation coefficient between L and re, and b is the exponent in the nonlinear
least-squares fit to re = aLb

Flight Date D Ac L re vL vre ρ b

CON 02 16/08/95 82 0.94 1.44 12.3 0.62 0.22 0.74 0.30
TW 04B 21/08/95 38 1.00 0.31 11.9 0.35 0.13 0.55 0.22
CON 06 30/08/95 78 0.75 0.26 7.0 0.56 0.10 0.50 0.10
TW 11 30/08/95 68 0.74 0.10 5.9 0.49 0.15 0.25 0.06
TW 13C 01/09/95 45 1.00 0.23 6.7 0.30 0.14 0.53 0.25
TW 18A 08/09/95 82 0.76 0.05 9.4 0.60 0.17 0.59 0.18
CON 15 09/09/95 148 0.71 0.24 10.0 0.67 0.32 0.73 0.40
TW 19 09/09/95 40 1.00 0.13 7.9 0.42 0.08 0.78 0.16
TW 21 09/09/95 51 0.87 0.19 6.1 0.57 0.18 0.54 0.22
TW 24B 04/10/95 93 0.92 0.26 6.0 0.45 0.17 0.06 0.04

size for this entails horizontal variations in attenuation properties beyond extinction
σ. This quantity of optical importance is related (in the large size-parameter limit) to
two key parameters in cloud microphysics:

σ =
3
2

L
ρwre

(6.67)

where L is liquid water content, ρw is density of water, and re is effective droplet
radius. One can easily imagine simple scenarios where re is correlated with L: large
re and L in the cores of cells, and small re and L near edges where entrainment of
unsaturated air occurs. Table 6.1 lists results from several aircraft flights made in
1995 during the Radiation and Cloud Experiment (RACE) through stratiform clouds
over the Bay of Fundy (Räisänen et al., 2003). Here it is clear that re and L are
usually correlated positively with correlation coefficients frequently exceeding 0.5.
This reduces the impact of horizontal variability relative to when it is assumed that
variations arise from L only: areas with small L tend to have small re which boosts
extinction in (6.67); areas with large L tend to have large re which suppresses ex-
tinction relative to constant re. Räisänen et al. (2003) showed that this can mitigate
the PPH bias by as much as 30%. Somewhat surprisingly, approximately 20% of this
mitigation stems from fluctuations in phase function (hence the asymmetry parame-
ter g); almost all of the remainder comes from modulations to extinction σ. Note the
second-order correlation: regions with small re near cloud edges typically receive
more irradiance than denser interiors with large re.

Since this situation is likely to be systematic, could we apply the same kind of
nonlinear averaging in this multi-variate setting that was used previously for optical
depth variability? In principle, yes, but in practice, it would appear to be close to in-
tractable. Doing something about cloud microphysical variability could nonetheless
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Fig. 6.4. This visible image is from NOAA’s GOES-10 satellite on July 30, 2004 at 20:30
UTC (obtained from MSFC-NASA). The image is 1 km resolution and shows stratocumulus
clouds off the SW coast of California. Nine cells corresponding to the size of a typical GCM
grid-cell are shown. Cells 2, 3, and 6 are over land and are completely cloudless. Cell 7 is over
ocean and is almost overcast. Cells 1, 4, 5, 8, and 9 straddle the coast and they exhibit almost
cloudless conditions over land and mostly cloudy conditions over ocean

prove to be important for questions regarding indirect forcing by aerosols (Lohmann
and Feichter, 1997) given that global average forcings are on the order of only
0.5 Wm−2.

Another issue that appears to be completely beyond the reach of the current 1D
RT model paradigm involves variations in surface albedo that are correlated with
clouds. This is a frequent occurrence for GCM cells that straddle continental coastal
lines. Often, most notably in the large stratocumulus regions, cloud will be primarily
over water and not over land. This is illustrated in Fig. 6.4. Current models simply
construct an area average surface albedo and use that value as the lower boundary
condition for the radiation model.

To demonstrate this effect, approximate domain-average albedo for diffuse irra-
diance as
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〈R〉 = fw

⎡⎣(1 − Aw)
(

Rclr +
T 2

clrαw

1 − αwRclr

)
︸ ︷︷ ︸ + Aw

(
Rcld +

T 2
cldαw

1 − αwRcld

)
︸ ︷︷ ︸

⎤⎦
clear-sky over water cloudy-sky over water︸ ︷︷ ︸

contribution from water

+ (1 − fw)

⎡⎣(1 − Al)
(

Rclr +
T 2

clrαl

1 − αlRclr

)
︸ ︷︷ ︸ + Al

(
Rcld +

T 2
cldαl

1 − αlRcld

)
︸ ︷︷ ︸

⎤⎦
clear-sky over land cloudy-sky over land︸ ︷︷ ︸

contribution from land
(6.68)

where fw is fraction of domain that is water, Aw and Al are cloud fractions over water
and land, and αw and αl are albedos of water and land. To simplify matters, albedo
and transmittance for clear-sky and cloud, Rclr, Rcld, Tclr, and Tcld are common to
land and water. In contrast to (6.54), a conventional estimate of 〈R〉 would be

〈R〉′ =
[(

1 − A
)
Rclr + ARcld

]
+

[(
1 − A

)
Tclr + ATcld

]2
α

1 − α
[(

1 − A
)
Rclr + ARcld

] (6.69)

where
A = fwAw + (1 − fw) Al

is overall cloud fraction, and

α = fwαw + (1 − fw) αl

is domain-average surface albedo. Figure 6.5 shows fractional differences between
〈R〉′ and 〈R〉 where it was assumed that Al = 0 and 1 (other parameter values
are listed in the caption). Largest errors are committed for no cloud over land, very
cloudy over ocean, for domains with approximately equal areas of land and water.
The fact that differences can easily exceed 5% means that this effect often rivals that
of the PPH bias for cloudy marine boundary layer clouds (Barker et al., 1996; Pincus
et al., 1999).

6.3.2 Vertical Overlap of Clouds That Vary Horizontally

All the models discussed so far in this section were designed to yield domain-average
albedo and transmittance for a single layer. It may happen, however, that a single-
layer cloud occurs in an GCM, but the vertical layering of the GCM divides the cloud
into several layers. When clouds are considered to be homogeneous, overlapping in-
volves only cloud fraction. Implicit in overlapping of homogeneous clouds, however,
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Fig. 6.5. Fractional error (in %) in domain-average albedo due to the use of (6.69) instead
of the accurate (6.68) as functions of fraction of domain that is water fw and cloud fraction
over water Aw. Results are shown for two values of cloud fraction over land Al. Values of the
parameters in (6.68) and (6.69) are: αw = 0.05 and αl = 0.3, Rclr = 0.1 and Rcld = 0.5
(hence Tclr = 0.9 and Tcld = 0.5, assuming a conservative wavelength).

is a distribution of water path or optical depth, though they are generally unrealistic.
When clouds vary horizontally, cloud fraction and condensate overlap. Hence, even
for a cloud that is overcast in all its sub-layers, the problem of overlap remains.

Mean-field solutions that end up rescaling optical properties assume (at least im-
plicitly) that fluctuations are isotropic but characterized by some correlation length.
This assumption will likely be violated in multi-layer situations. With the GWTSA,
one has to take explicit account of vertical correlations in condensates and allow
for corresponding spatial variations in flux (Oreopoulos and Barker, 1999). This is a
drawback to their method for it is difficult to see how this accounting can be anything
other than very approximate (see Chap. 9).

The fact of the matter is that the overlap probabilities of cloud fraction and con-
densate appear to de-correlate at distinctly different rates and both influence the ra-
diative transfer. Accounting for these fluctuations in the 1D models may be possible
but will likely be complicated and certainly be rough approximations. Indeed, re-
sults from an inter-comparison study of 1D solar RT algorithms (Barker et al., 2003)
indicate that even straightforward overlap of homogeneous clouds eludes perfect por-
trayal in the sense that different modelers arrive at surprisingly different results, even
for similar overlap problems.

6.3.3 The Monte Carlo Independent Column Approximation (McICA)

For the foreseeable future, GCMs will continue to provide only domain-average
profiles of conventional cloud information to their 1D radiation codes along with
additional assumptions about cloud structure (e.g., overlap rates). With the ever
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increasing demand that radiation codes be more and more realistic and accurate,
it is difficult to see how the current methods based on 1D monochromatic models, as
discussed so far in this chapter, will meet this demand satisfactorily. Indeed, as their
level of sophistication increases, so does their computational cost in general, and
this is compounded with the already heavy burden of spectral integration. In stark
contrast to this paradigm, Barker et al. (2002); Barker et al., (2004), Pincus et al.
(2003), and Räisänen et al. (2005b) offer a simple compromise that solves many of
the problems that bear down on the current paradigm. Their model, referred to as the
Monte Carlo ICA (McICA), has the added advantages that it requires no more CPU
resources than the fastest and simplest 1D solvers, it can facilitate any 1D solution
of the RT equation, and it is unbiased with respect to the full ICA. This subsection
outlines McICA which might prove to be a sufficient stopgap solution until full 3D
simulations become routine in GCMs. This is achieved by using a random quadra-
ture rule to sum simultaneously over the spectral domain and spatial variabilities in
the GCM grid-cell.12

To begin, the most common means of accounting for absorption of broadband
radiation in GCMs is the correlated-k distribution (CKD) method (Lacis and Oinas,
1991; Fu and Liou, 1992). With the CKD method, broadband fluxes are computed as

F =
K∑

k=1

F (k) (6.70)

where K is the number of monochromatic calculations and the F (k) are fluxes.
Therefore, returning to (6.4), we assume that a domain consists of Mcld cloudy sub-
columns with parameters denoted generically as {s}m(m = 1, . . . , Mcld). Using
(6.3) gives the domain-average ICA flux as

〈F〉 = (1 − Ac)
K∑

k=1

Fclr (k) + Ac

{
K∑

k=1

[
1

Mcld

Mcld∑
m=1

Fcld({s}m, k)

]}
(6.71)

= (1 − Ac)Fclr + Ac 〈Fcld〉 .

Many GCM groups find it difficult to justify the computational requirements needed
for K ≈ 30 to 100 with Mcld = 1 (i.e., a regular CKD application). Therefore,
application of (6.71) with even a modest value of Mcld is untenable. The McICA
solution (Räisänen and Barker, 2005; Räisänen et al., 2005b) to this problem is to
randomly sample (generate) a subset of cloudy columns and approximate 〈Fcld〉 as

〈Fcld〉 ≈
K∑

k=1

1
N(k)

N(k)∑
n=1

Fcld({s}n, k) (6.72)

12 Here “Monte Carlo” is used correctly but not in the usual sense for the atmospheric radi-
ation community since here there is no 3D RT per se, only an ICA. Indeed, Monte Carlo
is just a convenient (and never optimal) technique for estimating integrals numerically, in
this case, those expressed in (6.2) or (6.5). However, we are now interested in cloud scenes
with multiple layers where more than τ is varying.
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where for each k, monochromatic fluxes are computed for N(k) subgrid columns
with randomly sampled properties {s}n and averaged. A total of

N =
K∑

k=1

N(k)

sub-columns are used where ideally N � McldK. In practice, it is likely that
N(k) = 1 would be considered the bare minimum, but in principle, there could
be N(k) = 0 for some randomly selected values of k.

It is quite simple to show (Barker et al., 2002) that, even for N < K, the expec-
tation value of (6.72) is precisely the ICA. Thus, McICA is unbiased with respect to
the exact ICA. So, in as much as the ICA accounts for all subgrid-scale fluctuations,
so too does McICA. McICA does, however, produce additional random noise. Ex-
periments using GCMs (Pincus et al., 2003; Räisänen et al., 2005b) indicate that the
noise produced by McICA, assuming sufficiently large N (nominally > 30), is es-
sentially consumed by the dynamics of the host model. This opens a new door regard-
ing assessment of RT models: in addition to standalone tests, the RT model should
be assessed actively in GCMs. Specifically, while McICA has a conditional random
component, if GCMs are insensitive to that error, it can not be held against McICA.
The McICA algorithm needs specific input from either explicit fields from which
samples can be drawn or an adequate subgrid stochastic cloud generator (Räisänen
et al., 2005a). If this pre-RT step is done correctly, McICA appears to be, for GCM
applications at least, a satisfactory bridge between the plethora of analytical models
based on 1D RT presented earlier in this chapter and full-3D computational models
discussed in Chap. 4.

6.4 Efficient Large-Scale Radiation Budget Estimation:
Discussion and Outlook

Up until the late 1980s, descriptions of clouds in GCMs left much to be desired and
thus did not warrant overly sophisticated treatments of cloud-radiation interactions.
The advent of detailed cloud parameterizations (e.g., Smith, 1990; Tompkins, 2002)
and concern over seemingly small, but systematic, changes in cloud optical proper-
ties (e.g., Lohmann and Feichter, 1997) fueled the need for RT codes that consider
interactions between unresolved clouds and radiation. Therefore, since GCMs re-
quire domain-average fluxes, the focus of the two previous sections was on methods
of accounting for unresolved clouds in more-or-less standard 1D RT models or in
somewhat more sophisticated approaches, namely, mean-field theories that do not
reduce to effective local properties but rather to new transport equations.

There are two basic conditions that maintain the life of 1D/domain-average RT
models in GCMs: (1) a paucity of information needed to initialize a full 3D solution;
and (2) a paucity of computational resources needed to execute full 3D solutions
even if sufficient information was available. As long as these conditions are met, de-
velopment and use of 1D models that account for interactions with unresolved clouds
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(and other fluctuating media) is justified. Several methods that do just this have been
proposed and developed over the past two decades and some were discussed here.
The few results and the overarching message presented here are in step with the con-
clusions of a recent 1D RT model inter-comparison (Barker et al., 2003) and with
recent advances in the representation of clouds in GCMs (e.g., Khairoutdinov and
Randall, 2001): (1) no single 1D model in existence works well in all conditions and
it is likely that none ever will; and (2) the conditions stated at the beginning of this
paragraph are beginning to erode. Together, these trends seem to signal the beginning
of the end for the current paradigm of 1D/domain-average RT models in GCMs.

The existing paradigm of weaving into 1D RT solutions increasingly sophisti-
cated descriptions of unresolved optical property fluctuations may sometimes lead
to elegant mathematical solutions but it also seems bound to endless approximation,
limitation, and most crucially, biased13 solutions. We should not lose sight of the fact
that GCMs, the driving force behind 1D RT modeling, require unbiased estimates of
radiative fluxes, not mathematically beautiful approximations the likes of which are
expected in particle physics for example.

It seems likely that within the next decade or so, 1D solvers that attempt to ac-
count for unresolved interactions between radiation and optical fluctuations will be
replaced by fully 3D solvers (see Chap. 4, Chap. 5, and Chap. 7). Some GCMs are
already running CSRMs inside each of thousands of regular-sized columns (Randall
et al., 2003) thereby providing radiation codes with distributions of hitherto unre-
solved clouds. While these “super-parameterized” GCMs currently run full, broad-
band ICA calculations, a limited number of simulations using true multi-dimensional
RT have already occurred (J. Cole, priv. comm.). The point is that this methodology,
which represents a significant step towards the endgame of modeling RT for cloudy
atmospheres in GCMs, is knocking at the door and it will eventually enter. To some,
this will seem like a homeland invasion, but to most it will be a welcome, and per-
manent, resident.

One must therefore ask: if conventional 1D RT methods are to be phased out of
operational before too long, will it be worth the hefty intellectual effort of improving
analytical 1D RT models, even modified for some 3D effects, to the point of meeting
the demands of GCMs? Assuming that it will not be worth it and their obsolescence
is coming, Barker et al. (2002) and Pincus et al. (2003) offered a simple compromise
that appears to solve many significant problems facing current 1D methods. Their
McICA model has been subjected to extensive testing and appears to be a reasonable
and affordable stopgap solution.

13 We recall that “bias” is not understood here as it is in the rest of the chapter and in much
of this volume, to be with respect to 1D RT (with mean optical properties) nor with respect
to full 3D RT (given detailed optical properties in 3D). Here, comparisons are between
the exact ICA estimate for arbitrary 3D variability on one hand, while on the other, all 1D
RT models using effective optical properties as well as all ICAs using specific PDFs for
the optical depth distribution (typically assumed to be the only variable quantity). The bias
discussed presently refers therefore to modeling errors resulting from ad hoc assumptions
about the source and impact of variability inside a cloudy GCM layer. It also includes errors
that follow from approximate ways of accounting for overlap effects.
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In the above discussion we have pitted the vigorously progressing McICA
project, whose widespread acceptance is still incomplete as this volume goes to press,
against traditional 1D-based methods, whether they hail from analytical ICAs (e.g.,
GWTSA or ETA) or from mean-field theories (Stephens, 1988b; Cairns et al., 2000;
Petty, 2002). Mean field theories that, by design, go beyond the ICA and effective
medium theory – be it only for a specific variability model – are in a different class;
members of this class discussed in this chapter are stochastic RT (see also Chap. 7)
and anomalous photon diffusion (Davis and Marshak, 1997). They do not use the
standard 1D RT equation nor any well-known 1D RT solutions. They can therefore
be compared meaningfully only to full 3D numerical results, or to observations. In
that sense, they are (like McICA) inherently more accurate than all 1D RT mod-
els, even using effective parameters (like the ETA) or parameterized ICAs (like the
GWTSA). However, these analytical models do not have the flexibility of a purely
numerical approach such as McICA. So we do not see them as serious contenders
for operational GCM parameterizations. Rather, their relative simplicity will likely
be used to gain understanding of large-scale 3D RT processes without limitation to
single-layer clouds (where the GWTSA and ETA-type 1D models all work reason-
ably well).

Having strongly endorsed the computational McICA model for GCM parame-
terization, and assigned mean-field theories that go beyond the ICA to observational
diagnostics, what is left for analytical ICA models and effective medium theories?
We see their future in capturing the radiative effects of unresolved variability . . .
at the smallest conceivable scales in current climate-driven modeling, namely, in-
side cloudy CSRM cells. Indeed, our empirical knowledge of turbulence in clouds
(cf. Chap. 2) tells us that it is unwise to assume homogeneity or even smoothness
downwards from km-or-so scales. This final vocation may seem ironic for RT mod-
els that were designed originally to capture GCM grid-scale effects, but the cloudy
atmosphere is variable at all scales from the Kolmogorov dissipation scale of a few
mm to the planetary scale. Just as atmospheric dynamicists are learning how to adapt
deterministic and stochastic phenomenologies across this spectrum, so too should
atmospheric radiation experts – whether they choose to work with 1D or 3D, deter-
ministic or stochastic methods.

6.5 Summary

We have surveyed from the literature both analytical and computational approaches
to the estimation of large-scale radiative fluxes when little information about 3D
cloud structure is provided.

The computational McICA (Monte Carlo Independent Column Approximation)
model is making rapid advances in operational GCM parameterization of the full-
spectrum RT when clouds are present. It offers more flexibility and robustness than
both analytical counterparts that incorporate 3D variability effects, let alone the older
1D approaches that ignore variability altogether. The cost of the McICA upgrade for
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GCMs is a tolerable increase to computer time and conditional noise that does not
seem to affect the predicted climate.

There is however another emerging market for advances in analytical mean-field
theory in 3D RT, and it is outside of traditional GCM parameterization work per se.
There is indeed a pressing need for simple models that can be compared directly with
real-world observations as well as “black-box” computations. For instance, intricate
atmospheric/surface absorption and scattering processes in the presence of 3D clouds
are captured by photon pathlength statistics obtained from O2 A-band spectroscopy.
Gaining physical insights from this new diagnostic calls for 3D RT models with sta-
tistically well-defined variability parameters (variances, correlation scales, overlap
probabilities, etc.) that are typically found in analytical solutions, preferably with
closed-form expressions. We foresee oxygen A-band products (photon path statis-
tics), supported by mean-field modeling, and correlative data (optical depths, cloudi-
ness structure, etc.) as an observational testing ground for GCM parameterization
predictions at a deeper level than surface or TOA fluxes.

In spite of the considerable technical difficulties, the programmatic pressures,
and the limited resources, approximation theory is a vibrant research area in 3D RT,
in atmospheric science and elsewhere. As demonstrated in this chapter, it applies di-
rectly to the estimation of average fluxes and energy deposition in large domains, as
used in GCMs, as well as to the observable effects of unresolved variability in remote
sensing at moderate-to-coarse resolutions. As demonstrated in the previous chapter,
it also applies to observational and computational problems that require detailed ra-
diance fields everywhere in situations where there is intense radiative cross-talk be-
tween pixels or grid-cells. So there are many down-to-earth reasons to engage in this
research, leading us to think that we are solving a practical engineering-type prob-
lem, intentionally cutting as many computational corners as we can get away with
inside a given error budget and a given number of floating-point operations. Some-
time we will indeed forge ahead with an algorithmically viable solution that does not
draw on any of the analytical methods or physical insights used in their derivations.
The current “McICA” solution for operational GCM radiation parameterization is a
good example.

Having said this, we emphasize that we are pragmatic enough not to dismiss the
analytical methods that seek to address aspects of RT that are beyond the scope and
intent of McICA. As it turns out, the latter are a better match with new observations
of photon pathlength distributions made available from advances in oxygen A-band
spectroscopy, at least when the underpinning mean-field theory goes beyond the ICA
and 1D “effective medium” solutions. As for mean-field theories that do lead to ef-
fective medium parameters, we must recall that in the end they only make a statement
about local optical properties. In this sense, they may provide answers to the question
of how unresolved variability impacts the smallest computationally resolved scales
considered in Chaps. 4 and 5 when assuming homogeneity is not justified. As such,
we begin to close the loop in the domain of spatial scales by, somewhat ironically,
applying at the innermost scales of a CSRM a methodology that was designed origi-
nally to operate at the innermost scales of a GCM.
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Paul Dirac is famous for pursuing exactness and formal elegance in the devel-
opment of relativistic quantum physics. However, his early training was in electrical
engineering, and he is on record for recognizing that:14

“The engineering course influenced me very strongly. [. . .] I’ve learned that,
in the description of nature, one has to tolerate approximations, and that
even work with approximations can be interesting and can sometimes be
beautiful.”
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7.1 Introduction

The purpose of this chapter is to provide a short introduction to the field of radia-
tive transfer through media whose properties are known only probabilistically, to
discuss its applications to problems of interest to atmospheric scientists, to present
an introduction to the minimal amount of line statistics needed to describe the the-
ory, to review the Levermore-Pomraning model, and to introduce two promising new
studies.

7.1.1 Problem Description

Radiative transfer is a well-defined field, even apart from being the subject of this
book. For this section we are going further, assuming that it is a solved problem, with
analytic techniques, numerical schemes, and even general rules available to give us
the predictions of the theory, with perhaps some tradeoff between desired accuracy
and the cost of obtaining it. Climatology and a glance at the sky might serve if all we
need is to see if it’s sunny enough to go to the beach, a few-term parameterization
may serve a crude global climate model in a developmental stage, while numerical
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codes such as as SHDOM (Evans, 1998) or Monte Carlo codes (e.g., O’Hirok and
Gautier, 1998) can provide more accuracy. In certain cases where optical depths
are everywhere large, analytic solutions of the diffusion equation can be the most
accurate of all. We realize this is offensively crude to those who specialize in the
problem of actually obtaining solutions but it will clarify this section if we assume it
true for the moment.

The common term “stochastic radiation transfer” is, strictly, a misnomer. The
situation we discuss is the problem of finding the average radiative properties of
an “ensemble” (a generally infinite set) of problems, by means other than actually
solving each problem and averaging the results. Each problem is assumed to be well
defined with its properties and boundary conditions exactly specified. We ask that this
set of problems be described by a reasonable statistical law, where reasonable can be
defined more rigorously than we shall do herein. Since we assume that each problem
has an obtainable solution, this average should exist. By a further restriction of the set
of problems we will require sufficient continuity that the average is representative.
This excludes for example sets for which the answers are all either one or zero so
that the average of one half is unlike any particular solution.

7.1.2 Relevance

It has been observed (Cess et al., 1989) that the interaction of clouds with radiation
is one of the dominant determinants of the global climate. This is true both for the
source of energy (sunlight, shortwave) and for the losses thereof (thermal emission to
space, longwave). An ordinary cloud can reflect up to 90% of the sunlight impinging
on it, and can reduce the thermal losses through it by half.

A large volume of data is required for a detailed description of all the optical
properties of the atmosphere, yet little is routinely available, although large efforts
are been made to gather more in the US Department of Energy’s Atmospheric Ra-
diation Measurement (ARM) program. Predicting such properties in detail is a chal-
lenging if not impossible task, and in the context of an operational Atmospheric
General Circulation Model (AGCM) it is unimaginable. We may hope for some cell-
dependant information about liquid water content, ice, and dust, and their vertical
distribution, but very little horizontal detail on a scale smaller than the grid size.
There is a large ratio between the horizontal and vertical resolution of an AGCM cell
and the typical distance between two nearby water droplet, which we take as a lower
bound below which more detail does not much affect the solution.

Do we need that much accuracy and detail? It is useful to have in order to vali-
date numerical models of 3D radiation transport, but our conjecture is that we do not
need it for the humbler but practical purpose of improving our larger scale under-
standing of the climate. We assume that the purposes of an AGCM would be served
if we could provide reasonable correlations between the available cell data and the
resulting radiation field and its effects. Levermore et al. (1988) speculated that the
predictions of stochastic radiation theory (for a certain class of statistics) may de-
pend mainly on only two parameters – in their case the mean and variance of the
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chord length statistics. If true, we can hope that such simple data could be predicted
by AGCMs on a cell-by-cell basis and would be useful.

Then we turn the large size of the AGCM cell to advantage by assuming that it
can be subdivided into an infinite number of uncorrelated subcells, each populated
by optical properties having the same statistics, those of the overall cell, or at least
drawing upon its similarity to such a stochastic radiation transport problem.

An alternative approach is to regard each AGCM time step as comprising a large
number of small time steps, in each of which the 3D configuration of cloud is differ-
ent, and to argue that the time average of these is a stochastic problem.

These schemes will work if just the average albedo or transmissivity is required
for a determination of the large scale dynamics of the Earth’s atmospheric transport
and energy balance, if there are enough subcells or subtimesteps, and if they are
sufficiently uncorrelated. It may or may not improve the overall calculation in prac-
tice. A recent study (Lane, 2000) failed to demonstrate such improvement, but was
inconclusive because in limitations in data gathering.

7.1.3 Historical Development

Exact Solutions

The idea of developing a radiation model that could find the average solution (at
suitably low computational cost) to a problem whose details were only known sta-
tistically has been a goal for some time. For the case of light impinging on a source-
free non-scattering Markovian stochastic set of problems, the exact result is that the
average intensity Î (s) declines with distance s into the medium as a sum of two
exponentials:

Î(s) = Î(0) [f exp(−s/l1) + (1 − f) exp(−s/l2)] , (7.1)

where f , l1, and l2 are simple combinations of the four independent parameters of
the problem:

• two optical parameters, the specific absorptivities of the two materials;
• two structural parameters, the mixing ratio and correlation scale of one of the two

materials.

This result allows us to evaluate several other plausible approaches to the problem
(that may apply in more generality) by comparing their predictions to the above.

Figure 7.1 shows a comparison of the exact solution with two other models. The
atomic mix and fractional cloud cover models are of general interest. The former
refers to the result of calculating the optical properties of a uniform medium made
of the materials in the stochastic mix, each in their average quantities. FCC refers
to the common stratagem in AGCMs of combining the results of two homogeneous
problems according to the expected area fraction of each material in the actual sto-
chastic mixture. In practice it is extended to acknowledge the effect of cloud overlap,
as proposed for example by Geleyn and Hollingsworth (1979), although all other
cloud-cloud interactions are ignored.
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Fig. 7.1. Comparisons of various approximate solutions (“Atomic” refers to an atomic mix
and “FCC” to fractional cloud cover) to an exact result

The graph presents the transmissivity as a function of (average) mean-free-path
for a problem with a mixture of fairly opaque but small chunks in a sea of fairly
transparent material. The point is that the availability of an exact solution, rare in
this class of problems, provides a useful benchmark against which more general
techniques can be measured. The actual numbers for the problem in hand are given
in Table 7.1.

The results presented are very typical of the situation. The atomic mix model
underpredicts transmission because there are no holes or thin spots; the FCC model
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Table 7.1. Parameters used for Fig. 7.1. Note that not all are independent, as explained in
Sect. 7.2.5

Material #1 #2

Absorption 4 0.4
Fraction 17% 83%
Size 1 5

overpredicts it because it maximizes the effect of holes by aligning them. The actual
result is between these rather wide limits.

Early Attempts

Many early treatments such as those of Vainikko (1973), Avaste et al. (1974) and
Avaste and Vainikko (1974) considered a homogeneous Markovian distribution of
clouds, which as we shall see is not a bad approximation, but then proceeded by
assuming that the entire process was Markovian, which is not so in the presence of
scattering.1 Their results make use of the exact solution described above for the case
without scattering.

Homogeneous mixtures are those for which statistics of the medium are every-
where the same, even though the actual realization (which material exists at which
point in space) varies from point to point. Markovian statistics are those for which
the probability of a transition out of one material as one moves along a line are in-
dependent of the position on the line. For the case here it implies an exponential
distribution of cloud chord lengths and of cloud separations, perhaps with a different
characteristic length from that of the chord distribution.

A General Formulation

The first mathematically rigorous treatment of the problem known to me is that of
Levermore at Lawrence Livermore National Laboratory (and now U. of Maryland),
Pomraning at UCLA, and their associates (Levermore et al., 1986). They were mo-
tivated to find an accurate transport description of a two-fluid turbulent mixture to
support the laser fusion design codes of the inertially confined fusion program, but
realized such a technique would have much wider application. These first results
were limited to a homogeneous Markovian mixture of purely absorbing materials,
but further progress would soon follow.

Pomraning’s (1986) early review of the field gives an excellent description of
the state of the art at that time, his later book on the subject (Pomraning, 1991b)
brought the reader up to that date, and a final review article (Pomraning, 1998) up-
dates the reader as to the state of the art in 1998. All three of these reviews are highly
recommended to the reader.
1 Titov (1990) later revisited and generalized their work.
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7.2 Line Statistics

7.2.1 General Concepts

Much stochastic transport work uses the transport equation, although the diffusion
model is often a better starting place for optically thick regions such as those often
found in cloud. That said, a review of the statistics appropriate to an ensemble of
lines is in order, since the radiation transport equation is a statement of balance along
a line. There are good treatments of this subject by Sanchez et al. (1994) and in
Pomraning’s book (Pomraning, 1991b) .

Consider a set of realizations, each consisting of a random distribution of two
materials over a line. The two materials are placed at random on the line in accor-
dance with some specified probability density function. Every member of the set has
one of these materials associated with every point on the line. For example, one such
may have the interval (x, y) be all gray, in another this same interval may be white,
in still another it may start out gray, become white, revert to gray, etc. Although
everything in this section is applicable to any pair of materials, we will naturally be
thinking of gray as cloud and white as clear sky. Figure 7.2 shows an example, a
subgroup of 50 members of a set of realizations of a distribution of gray and white
intervals. The statistics are such that white portions are four times as likely to occur
as gray ones. The whole real line can be taken to be populated for each realization,
but in order to save paper we show only the interval from zero to five.

5 10 15 20 25 30 35 40 45 500
1

2
3

4
5

Sample #

D
epth

0
1

2
3
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D
epth

Fig. 7.2. 50 realizations of a given statistics

7.2.2 Two-Point Functions

The basic statistical properties of the gray material are illustrated by the cartoons in
Fig. 7.3. The figure illustrates the section of the line between x and y, with additional



7 3D Radiative Transfer in Stochastic Media 391

Fig. 7.3. Basic statistical properties for binary systems on a line

matter (of unspecified but positive lengths) to the left of x and right of y. Panel (a)
shows a length of gray that definitely fills the entire interval between x and y. It starts
somewhere in the ambiguous area of width dx to the left of x, and terminates in a
similarly ambiguous area of width dy to the right of y. The probability of finding
such an event depends upon x and y in general, and the further apart they are the less
likely one is to find such an event. It is obviously proportional to the size of the areas
in which the transitions occur: the probability of something happening exactly at a
point is zero. With a little space to catch a transition we can expect to find some. For
example, in Fig. 7.2 there are two samples (39 and 48) that fill the interval between
depths 1 and 2. #39 drops out as we tighten dx to less than 0.11 because it drops over
the left then. #48 drops out first as we tighten dy to less than 0.4, and by the time we
shrink much more we don’t have any samples left out of our initial 50. But of course
50 is not that large a number. It looks as though we were getting 2 out of 50 for dx
and dy in the range of a few tenths. Had we looked at 5000 samples we might well
have had 200 samples in the same net that caught #39 and #48 and we could have
reduced dx and dy further and been able to find an estimate of the rate per unit dx
and unit dy.

The name given to the probability density of finding an uninterrupted run of gray
material that starts precisely at x and stops precisely at y is p[x, y]. The fraction
of samples, out of a very large number, that is expected to be found meeting this
criterion, given small transition regions dx and dy, is found by inspecting panel (a)
of Fig. 7.3. In more mathematical terms, let:

Pr[x, y; δx, δy] = the probability that
1) the material left of x − δx is not gray
2) AND the material at x, at y, and in between is gray
3) AND the material beyond y + δy is not gray.

Then:

p[x, y] = lim
δx,δy→0

Pr[x, y; δx, δy]
δx δy

. (7.2)
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For convenience we will restrict our discussion to sets where this probability is an
integrable function and which contain no members with a finite number of transi-
tions over an infinite range. Sanchez et al. (1994) is a bit freer with both of these
restrictions and also treats an arbitrary number of materials.

Other interesting probabilities are related to the basic one. The probability den-
sity p[x, y) of finding a strip of gray material that starts at x and continues past y is
illustrated in panel (b) of Fig. 7.3 and defined by first setting:

Pr[x, y; δx) = the probability that
1) the material to the left of x − δx is not gray
2) AND the material at x, at y, and in between is gray.

Then we find:

p[x, y) = lim
δx→0

Pr[x, y; δx)
δx

. (7.3)

It is clear from the figure that this is the sum over all values of y of the stopping
points; integration gives it in terms of our basic p:

p[x, y) =

∞∫
y

p [x, z] dz . (7.4)

Here and in what follows we use a bracket “ [ ” to indicate a point boundary (“starts
at”) and a parenthesis “ ( ” to indicate continuation (“begins before”), and similarly
for right designators.

There is a similar result involving a strip of gray starting before x and stopping
at y, as indicated in panel (c) of Fig. 7.3. In this case we include all possible starting
points:

p(x, y] =

x∫
−∞

p [w, y] dw . (7.5)

If we don’t care where it starts or stops, just that the interval (x, y) is all gray, then
we have the situation pictured in panel (d) of Fig. 7.3, which includes all possible
starting and stopping points:

p (x, y) =

x∫
−∞

∞∫
y

p [w, z] dw dz , (7.6a)

=

x∫
−∞

p[w, y) dw , (7.6b)

=

∞∫
y

p(x, z] dz . (7.6c)

The last two forms follow from the definitions of the respective integrands.
All the above four functions contain exactly the same information and can be

transformed one into the other by differentiation and/or integration.
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Changes

As can be seen by taking derivatives of the quantities of (7.6), the one-sided densities
give the rates of change of the interval probability. The probability of finding an
uninterrupted run of gray between x and y clearly increases as x increases (moves
closer to y), because we include all the runs from the old x and add newly started
ones. The formal statement of this is:

∂xp (x, y) = p[x, y) . (7.7)

Of course, if we instead let y increase (move further from x) then p decreases because
we start excluding runs as they drop out:

∂yp (x, y) = −p(x, y] . (7.8)

The two sided, basic, density is the rate of change of either of the one-sided ones,
to within a sign:

∂yp[x, y) = −p[x, y] , (7.9a)

∂xp(x, y] = p[x, y] . (7.9b)

7.2.3 One-Point Functions

The two-point probabilities can immediately be contracted to one-point versions by
letting y approach x. The role of y was that the gray matter had to extend to it, at a
minimum. Therefore setting y to x removes any constraint on the right.

Panel (a) of Fig. 7.4 illustrates the meaning of p[x]. The formal definition is:

p[x] = p[x, x] . (7.10)

This gives us the creation rate of zero-length gray stuff. Such lengths are an anti-glue
and prevent the coalescence of two abutting runs of white matter. In panel (b) we see
the definition of p[x):

Fig. 7.4. One-point functions on a line
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p[x) = p[x, x) . (7.11)

This is the transition rate into gray at x without regard to what happens on the right:
all lengths are accepted. We can relate this to the primitive function:

p[x) =

∞∫
x

p [x, z] dz . (7.12)

As shown in panel (c), we can also compute the transition rate out of gray at x:

p(x] = p(x, x] =

x∫
−∞

p [w, x] dw . (7.13)

Now we come to the simplest of all, as shown in panel (d). It is the probability
that the point at x itself is gray:

p (x) = p (x, x) . (7.14)

What About White?

We have so far only considered the statistics of the gray matter. There is a similar
set for the white matter, too, which we will indicate by using q instead of p in our
functions. Because there are only two materials we must have:

p (x) + q(x) = 1 . (7.15)

Symmetry

If the statistics are not stationary (that is, if they differ from place to place) then in
general for nonzero l the transitions into a run of l or better have no relation to the
transitions out after a run of l or better:

p[x, x + l) �= p(x − l, x] (7.16a)

p[l) �= p(l] , (7.16b)

because there is no reason to expect symmetry about a general point. However, the
transition rate out of white into gray, going to the right, is of course exactly the same
as the rate out of gray and into white, going left:

q(x] = p[x) . (7.17)

The same thing holds if the role of the two materials is reversed. p and q are
independent, apart from the above constraints.
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Changes

Even for l = 0 it is not necessary that the transition rates into a material balance
those out of it, though. In fact it is this imbalance that gives rise to changes in the
local probability p(x): we could well be in a region where the probability of gray
matter at x, p(x), changes with x. In that case the entering and leaving rates will not
be equal. The one-point analogue of (7.7) and (7.8) tells us exactly this:

∂xp(x) = p[x) − p(x] . (7.18)

We can combine the two-point and one-point functions in a number of interesting
ways. One such way is to recognize that the rate of transitions out of gray, going to
the right, must surely be proportional to the probability that a point is gray in the first
place (how else could it change?) so the ratio of these two is what is really significant.
This ratio is the probability per unit length of a right-going gray stretch ending; the
conditional probability that the gray stretch ends (per unit length) given that one is
in gray:

rate of leaving gray = p(x]
probability of being in gray = p(x)

rate of leaving gray conditioned on being in gray =
p(x]
p(x) .

It is convenient to define the scale length λ to be the inverse of this rate:

λp(x] ≡ p(x)
p(x]

. (7.19)

Since λ could depend upon just about anything we haven’t learned a lot, but with it
we can write fine-looking equations such as:

Probability of rightward leaving a gray stretch in dx = p(x)
dx

λp(x]
. (7.20)

By substituting q for p in the above we get the probability of crossing out of a
white stretch in length dx, headed right. This is of no small importance, since it is
also the rate of entering gray stretches as one moves right. Thus we have found:

Probability of crossing into a gray stretch in dx = q(x)
dx

λq(x]
. (7.21)

We could repeat all the above for the case of leftward motion, should we care.

Correlation Scale

In the general case the notion of the average length of a stretch of gray is not really
well defined. We could refer to the average length of those stretches that begin at x,
or are centered at x, or just about any other thing, and they could well all be different.
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Say that for some reason we want the average length of stretches that end at x.
We compute this by summing the length times the probability of said length, given
that any length ends at x:

�p(x] =

∫ x

−∞ (x − w) p[w, x] dw∫ x

−∞ p[w, x] dw
. (7.22)

Using the definitions in (7.4), (7.5), (7.6) and (7.19) and integrating by parts, we find
that this is related to the scale length for changing out of gray at x, going right, plus
another term which depends on the details of the distribution:

�p(x] = λp(x] +

∫ x

−∞ {p(w, x] − p[w, x)} dw

p(x]
. (7.23)

7.2.4 Homogeneity

Let us now consider homogeneous statistics,2 a restricted branch of the general sys-
tem above. All this means is that, on average, one position of the line is as good
as another. One consequence is that we no longer need concern ourselves with con-
straints such as “right-going” or “left-going”: homogeneity implies mirror symmetry.

Statistical properties can depend upon the separation of two or more points, how-
ever. Since we have already seen in the general case that just one function serves to
determine the others we shall start with it and explicitly display the independence
of position. We distinguish the homogeneous case by use of an “h” subscript, or in
the short notation by the use of a capital letter. We suppose we are given the basic
function P :

P [l] ≡ ph[x, x + l] . (7.24)

The other three two-point functions (which although functions of only one vari-
able still involve two points, whose separation is l) follow by integration. The left-
side starting density is the rate of finding a stretch of gray starting at x whose length
is at least l:

ph[x, x + l) =

∞∫
x+l

ph[x, z] dz , (7.25a)

=

∞∫
x+l

P [z − x] dz (7.25b)

=

∞∫
l

P [z] dz . (7.25c)

2 “Homogeneity” is of course not to be confused here with uniformity (lack of spatial vari-
ability). It is the mathematically correct terminology to generalize for spatial statistics the
concept of (statistical) “stationarity” used extensively in time-series analysis (a.k.a. sto-
chastic processes theory), i.e., invariance of statistical properties by translation.
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Naturally it does not depend on x at all.
With the reasonable notation:

P [l) ≡
∞∫
l

P [z] dz , (7.26)

we have:
ph[x, x + l) = P [l) . (7.27)

The right-side starting density works out to be the same, not the case in general
as noted above:

ph(y − l, y] =

y−l∫
−∞

ph[w, y] dw , (7.28a)

=

y−l∫
−∞

P [y − w] dw , (7.28b)

=

∞∫
l

P [z] dz . (7.28c)

Merely for the sake of symmetry, we introduce P (l]:

P (l] ≡
l∫

−∞
P [z] dz (7.29a)

=

∞∫
l

P [z] dz = P [l) . (7.29b)

This adds no new insight but lets us write:

ph[x − l, x) = P (l] . (7.30)

The probability of finding a stretch of gray from x to x + l is found by counting
all possible starting places before x and stopping places beyond x + l:

ph(x, x + l) =

x∫
−∞

∞∫
x+l

P [z − w] dw dz

=

x∫
−∞

P [x + l − w) dw (7.31)

=

∞∫
l

P [w) dz .
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Of course, we define:

P (l) ≡
∞∫
l

P [w) dz . (7.32)

And so finally:
ph(x, x + l) = P (l) . (7.33)

Again this does not depend upon x, as expected.
The corresponding one-point functions are found by evaluating the above func-

tions at zero argument. As before, they are found by accepting all lengths greater
than zero (which is of course all lengths). We have for the rate of generation of gray
at x:

ph[x) ≡ ph[x, x)
= P [0) . (7.34)

The rate of destruction of gray at x, similarly, is:

ph(x] ≡ ph(x, x]
= P (0] . (7.35)

We note that the left-going and right-going transition rates out of gray are equal (they
ought to be or else the gray level would change) and constant:

ph[x) = ph(x] = P [0) = P (0] . (7.36)

The probability of finding gray at a point, also a constant, is:

ph(x) = ph(x, x) . (7.37)

We have computed this above. It is:

ph(x) = P (0) . (7.38)

Correlation Scale

The situation is much simpler in the case of homogeneity since nothing depends
upon the location of the stretch. We have in that case, by simple substitution:

λp[x) =

∞∫
x

(y − x)
ph[x, y]∫∞

x
ph[x, z] dz

dy , (7.39a)

=

∞∫
0

u
P [u]∫∞

0
P [v] dv

du . (7.39b)

This shows that, as expected, the average length does not in fact depend on x at
all. A similar exercise shows that it does not depend on left-right direction, either, so:
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λp [x) = λp(x] = λp . (7.40)

Integration by parts gives:

λp =

∫∞
0

P (u] du∫∞
0

P [u] du
, (7.41a)

=
P (0)
P (0]

. (7.41b)

Changes

Now recall (7.19) and (7.20), which tell us that this very ratio is the scale length for
leaving gray in homogeneous systems. This holds true regardless of the underlying
statistical law governing the system. This is a very attractive feature of homogeneous
statistics. In the general case the scale length for leaving not only can vary from place
to place, but is not simply related to any particular moment of the distribution. In the
homogeneous case it is constant, independent of position.

7.2.5 Remarkable Fact

There is a further simplification with homogeneous statistics. Trivial manipulation
gives the rate of leaving gray as:

P (0] =
P (0)

λp
, (7.42)

Recall (7.23) and note that it also follows (by virtue of the mirror symmetry
of homogeneous statistics) that the argument of the integral on the right hand side
vanishes. Thus the mean chord length is not only a constant but is equal to the scale
length for changing:

�p = λp , (7.43)

and this is true for any homogeneous statistics, not just Markovian.
Consider white space now. Define Q functions to be the analogue of the P func-

tions, except pertaining to white rather than gray. We immediately have the perfectly
symmetric result that the rate of leaving white is:

Q(0] =
Q(0)

λq
. (7.44)

Taking advantage of the fact that the entering and leaving rates are the same for
homogeneous statistics, this implies the rate for leaving white is also known:

Q[0) =
Q(0)

λq
. (7.45)
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Recall (7.17), which stated that the rate of entering white is the same as the rate for
leaving gray. In this context this means:

P (0)
λp

=
Q(0)

λq
. (7.46)

P (0) and Q(0) sum to one, as mentioned in (7.15), so we see:

P (0) =
λp

λp + λq
Q(0) =

λq

λp + λq
. (7.47)

If one knows any two of the three quantities (P (0), λp, λq) then one also knows the
other one. This remarkable result follows from homogeneity and is without regard to
the underlying statistics, which could be quite complicated.

For illustration, we return to Table 7.1 and Fig. 7.1 where we can take Material #1
as grey (dense/cloudy) and Material #2 as white (tenuous/clear). Then P (0) ≈ 0.17
and Q(0) = 1 − P (0) ≈ 0.83 follow from λp/λq ≡ λ1/λ2 = 5/1.

7.2.6 Summary

There are some key results which we must retain from this discussion for use below.
They are, first:

Probability of leaving a gray stretch in dx = p(x)
dx

λp(x]
; (7.48)

second:

Probability of entering a gray stretch in dx = q(x)
dx

λq(x]
; (7.49)

third, for homogeneous statistics:

λp(x] = λp[x) = λp = constant , (7.50a)

λq(x] = λq[x) = λq = constant ; (7.50b)

and fourth, for homogeneous statistics:

P (0) =
λp

λp + λq
Q(0) =

λq

λp + λq
. (7.51)

7.3 Stochastic Transport Models

7.3.1 Perturbative Approaches

Many treatments of the problem are based on some variation of mean field theory,
in which the average solution is given by a transport-like equation with source terms
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involving ensemble average cross-correlations of the stochastic terms. Pomraning
(1986) and Cairns et al. (2000), for example, have used this approach.

The transport equation for the nth realization in the ensemble is:

Ω •∇In (x,Ω) + σn (x) In (x,Ω) −σsn (x)
∫
4π Φn (x,Ω • Ω′) In (x,Ω′) dΩ′

= Sn (x,Ω) , (7.52)

where, for this realization, Φn (x,Ω • Ω′) is the scattering phase function,3 σsn(x) is
the variable scattering coefficient, and Sn (x,Ω) is the source term. Introduce nota-
tion for the transport operator Ln and its ensemble average L:

Ln[G] ≡ Ω •∇G + σn G − σsn

∫
4π

Φn (x,Ω • Ω′)GdΩ′ (7.53)

L[G] ≡ Ω •∇G + σ G − σs

∫
4π

Φ (x,Ω • Ω′) GdΩ′ . (7.54)

Note that (7.54) is just the statement of the average operator, which is not the operator
whose inverse will yield the average solution of (7.53). We must work harder to find
that one.

Let δLn, δIn, and δSn stand for the deviations from the average:

δLn [G] ≡ L [G] − Ln [G]
δIn ≡ I − In

δSn ≡ S − Sn . (7.55)

Then the transport equation can be written as:

(L − δLn) L−1L[In] = (S − δSn) . (7.56)

Assuming an inverse:

L[In] =
{
1 − δLn × L−1

}−1
[S − δSn] . (7.57)

Expand the inverse operator:

L[In] = {1 +
(
δLn × L−1

)
+
(
δLn × L−1

)
×
(
δLn × L−1

)
+ . . .} [S − δSn] . (7.58)

Now form the ensemble average of the last equation. Those terms first order in
the deviations from the average all vanish by construction. If the deviations are in
some sense small, we can neglect all but the lowest order, the second. Let 〈·〉 denote
the ensemble average:

3 In the rest of this volume, the scattering phase function is denoted p(x,Ω • Ω′) or P (· · · )
but in this chapter p’s and P ’s are reserved for probabilities.
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L[I] ≈ S +
〈
δLn × L−1 [S − δSn]

〉
+
〈
δLn × L−1 × δLn

〉
× L−1 [S] . (7.59)

If we neglect the second order terms, we have simply L[I] = S, so

I = L−1 [S] . (7.60)

To the same order of accuracy as already exists in (7.59), we can use this approx-
imation to find:{

L −
〈
δLn × L−1 × δLn

〉}
[I] ≈ S +

〈
δLn × L−1 [S − δSn]

〉
. (7.61)

We have thrown away many complicated terms to get this far, and it looks rather
simple, but it is still a formidable job to solve it for I . For one thing, the operators
involve integrations over space as well as angle so we now have an explicitly nonlo-
cal equation. We can solve it for only a few special cases, among them Markovian
statistics for the mixture and no scattering. Even then the solution is not generally
satisfactory because it is not robust: it does not always give reasonable results. Com-
pare the solution labeled “Small” in Fig. 7.5 to that labeled “Exact” in Fig. 7.1; both
are for the same parameters. The “Small” solution is not even within the bounds of
“FCC” and “Atomic.”

Cairns (1992) has taken this approach farther than anyone else. He developed
a formalism using Feynman diagrams and the techniques of renormalization group
theory to handle the higher order terms in the general solution. He stresses the need
to seek and display the irreducible terms in the formal solution, and suggests closures
based on neglecting these. That is, a four-point correlation C [x1, x2, x3, x4] can be
written as a sum of products of two-point correlations plus a cumulant, and it is this
that is to be neglected.

7.3.2 Levermore-Pomraning Theory

Graphical Derivation

There are many ways of deriving the Levermore-Pomraning (L–P) equation. The ini-
tial treatment was based on the theory of alternating renewal processes, as discussed
by Vanderhaegen (1986), Levermore et al. (1988), and Pomraning (1989), among
others. The derivation below follows Adams et al. (1989) and is simple, general, and
exact.

Figure 7.6 shows, at left, part of a scene looking up over Oklahoma and at right
as a model might see it. Suppose that the atmosphere is composed of just two mate-
rials, cloud and clear air. Even so restricted, the right panel is oversimplified because
it is presented as if the vertical height of cloud was infinite. The actual view from the
bottom of a binary mixture would have a gradation of density (not shown here). With
the scene extended to a large horizontal distance, up to the top of the atmosphere, and
down to the Earth’s surface, and with knowledge of the surface albedo and emissivity
and the solar angle, we can in principal compute the radiation intensity anywhere. In
particular we are for some reason interested in the average intensity of radiation go-
ing east (to the right in the figure) at the spot of given altitude, latitude, and longitude
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Fig. 7.5. “Small” is bad

indicated by the dot, which is to be understood as being of zero size. To simplify the
discussion we will orient our coordinate system so that the origin is at the altitude,
latitude, and longitude of the dot and the x axis is to the right in the figure. Then we
can use this shorthand notation:

I (x) ≡ I(X + xΩ,Ω) . (7.62)

Imagine we have data regarding the atmospheric, solar, and ground conditions
going back many years, perhaps provided by a large government funded atmospheric
radiation measurement program. This database is constructed from observations
taken at a single spot and under conforming conditions (such as local liquid wa-
ter content, solar angle, time of day, etc.). We will sharpen our predictive skill on this
database so that we can use it to improve an AGCM model where the clouds occur
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Fig. 7.6. A point in a clear region

Fig. 7.7. Some of the many scenes in our database

in distributions known only statistically at best, yet we need an average answer as
discussed above.

Our first task is to generate the appropriate line statistics from the database. This
provides us with the statistics at every space point and for every direction.

Thus we have a (very) large number N of scenes, which we will number by n
(going from 1 to N ). Some of these are sketched in Fig. 7.7. We will have applied
the appropriate boundary conditions and calculated or measured the intensity of ra-
diation at x (the dot) in each sample. We can then estimate the average intensity of
east-going (downstream) radiation at this point, I (x), by adding up its value for each
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sample scene and dividing by the number of samples:

I (x) =
1
N

N∑
1

In (x) . (7.63)

It is convenient for the argument to consider separately the subset of scenes in
the sum in which the point x (the dot) is in cloud, which we denote by {p}, and the
subset in which it is not, denoted by {q}. Set {p} is indicated in Fig. 7.8. Since {p}

Fig. 7.8. Members of the set {p} are in cloud at point x

and {q} together make up the whole we have:

I(x) =
1
N

⎡⎣ ∑
n∈{p}

In (x) +
∑

n∈{q}
In (x)

⎤⎦ . (7.64)

Let n{p} be the number of scenes in which the point x is in cloud:

n{p} =
∑

n∈{p}
1 , (7.65)

and notice that the average intensity, given that the point x is in cloud, Ip (x), is just
the average I in this set:

Ip (x) =
1

n{p}

∑
n∈{p}

In (x) . (7.66)
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Do similarly for the set {q}, where the point x is not in cloud. Then the overall
average intensity can be written:

I(x) =
1
N

[
n{p} Ip (x) + n{q} Iq (x)

]
. (7.67)

Assuming that N is large enough, the fraction of scenes for which the point x is
in cloud can be replaced by the underlying statistical probability discussed above:

lim
N→∞

n{p}
N

= p(x) , (7.68)

and similarly for q(x).
Equation (7.67), in the limit of infinite N , thus splits the average intensity into

its cloudy and clear portions:

I (x) = p(x) Ip (x) + q(x) Iq (x) . (7.69)

The average intensity at a point (and direction Ω) is the probability of being in cloud
times the average intensity in cloud, plus the probability of being in clear sky times
the average clear sky intensity.

That’s simple and obviously correct, but not yet informative. Proceed by doing
the same thing at a new point x′ a small distance dx downstream from x (to the right
in the figures). We indicate this new position by the tip of an arrow extending from
the start position. The new in-cloud subset would look like Fig. 7.9. We call this set
{p′} and its complement {q′}. The count of members of {p′} will be called n{p′} and
the average value of intensity for its members is Ip (x′). As in (7.68), the expectation
value of its count will be:

lim
N→∞

n{p′}
N

= p (x′) . (7.70)

Most of the scenes in {p′} appeared in our earlier subset {p}, because for small dx
the point x′ = x+dx will likely still be in cloud if the point x was, but there are two
little differences between the sets. Some of the scenes which were in cloud at x (and
thus were in {p}) are in the clear at x′ (and are in {q′}). Let the set of such be called
{pq′}. Let n{pq′} be the count and I{pq′}(x) be the average intensity at point x in the
set. There will also be the set for which the opposite is true, {qp′}. Its members are
just those scenes which have cloud at x and clear sky at x′. Their count and average
intensity will be denoted n{qp′} and I{qp′}(x).

We know how many scenes are to be expected in each of these new sets. It is just
the number of transitions out of cloud in a distance dx, which we know from our
discussion of line statistics in the previous section, (7.20) for example. Recall that
our database has been mined to provide these statistics.

n{pq′} → p(x)
dx

λp(x]
as N → ∞ . (7.71)

The expected number in the other transition set is:
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Fig. 7.9. Members of the set {p′} are in cloud at point x′

n{qp′} → N q(x)
dx

λq(x]
as N → ∞ . (7.72)

We choose dx small enough so that both of the above numbers are very small with
respect to N , the total number of scenes in the database.

Define one last set {c}. It consists of all those scenes which are cloudy at both x
and at x′. It is therefore the intersection of the two larger sets:

{c} = {p}
⋂

{p′} . (7.73)

It will have its own count, n{c}:

n{c}(x) =
∑

n∈{c}
1 . (7.74)

For any x′ the estimate of the two-point correlation between cloud at x and cloud at
x′ is n{c}/N .

Now rewrite the formulas for the averages at the original point, x:

n{p} Ip (x) =
∑

n∈{c}
In (x) +

∑
n∈{pq′}

In (x)

=
∑

n∈{c}
In (x) + npq′ I{pq′}(x)

N p(x) Ip (x) =
∑

n∈{c}
In (x) + N p(x)

dx

λp(x]
I{pq′}(x) . (7.75)
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The last equation follows by virtue of (7.68) and (7.71).
Do the same for the averages at x′:

n{p′} Ip (x′) =
∑

n∈{c}
In (x) +

∑
n∈{qp′}

In (x′)

=
∑

n∈{c}
In (x′) + nqp′ I{qp′}(x)

N p (x′) Ip (x′) =
∑

n∈{c}
In (x′) + N q(x)

dx

λq(x]
I{qp′}(x) . (7.76)

Subtract (7.75) from (7.76) and divide by N :

p (x′) Ip (x′) − p (x) Ip (x) =
1
N

∑
n∈{c}

[In (x′) − In (x)]

+ q (x) I{pq′} (x) /λq(x] × δx

− p (x) I{qp′} (x) /λp(x] × δx . (7.77)

Recognize that δx = |x′ − x| is small; so for any F (x):

F (x′) − F (x) ≈ Ω •∇F (x) × δx . (7.78)

Thus, taking the infinitessimal limit (δx �→ dx):

Ω •∇ (p (x) Ip(x)) × dx =
1
N

∑
n∈{c}

Ω •∇In (x) × dx

+ q(x) I{pq′}(x)/λq(x] × dx

− p(x) I{qp′}(x)/λp(x] × dx . (7.79)

Look at the terms in the first sum on the right, which involve the small change in
the intensity in a scene as the position changes slightly. Because of the way we have
constructed the set {c}, all of its members are in cloud at both x and x′. Therefore
the ordinary transport equation describes their local behavior, apart from a subset of
members of {c} which have a non-cloudy stretch between those points. For small
enough dx the number of members in such a set approaches zero. That means that,
for n in {c}, the local rate of change is given by:

Ω •∇In (x) = −σn (x) In (x) + σsn (x)
∫
4π

Φn In (x) dΩ′ + Sn (x) . (7.80)

Assume that the optical properties of a scene depend upon position but have
the same value in all the cloudy scenes at that position, and that the clear skies all
share their own (different) common value at that point. The total cross-section, for
example, is to be the same function of position in all cloudy scenes. This lets us
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collect the optical properties outside the first sum, since every term in the sum is in a
cloudy scene:

∑
n∈{c}

Ω •∇In (x) = − σp (x)

⎡⎣ ∑
n∈{c}

In (x)

⎤⎦
+ σsp (x)

∫
4π

Φp

⎡⎣ ∑
n∈{c}

In (x)

⎤⎦ dΩ′

+ Sp (x)

⎡⎣ ∑
n∈{c}

1

⎤⎦ . (7.81)

We have written σp rather than σ{p} to emphasize the fact that σn (x) is the same for
all n in {p}; the same holds for all the optical properties.

All three sums on the right hand side of (7.81) over members of the set {c} can
be replaced by sums over the set {p}, since the two sets differ only by the fact that
the latter includes a vanishingly small number of extra scenes and the summands are
positive. After making this approximation and replacing the sums by the previously
defined averages we have, to order dx and 1/N :

1
N

∑
n∈{c}

Ω •∇In (x) = − σp(x) p(x) Ip(x)

+ σsp(x)
∫
4π

Φp p(x) Ip(x) dΩ′

+ Sp(x) p(x) . (7.82)

Substitute this into (7.79) to find the L–P equation for the average intensity of radia-
tion in cloud:

Ω •∇ [p(x) Ip(x)] = − σp(x) p(x) Ip(x) + p(x)Sp(x)

+ σsp(x)
∫
4π

Φp(x) p(x) Ip(x) dΩ′

+ q(x) I{pq′}(x)/λq(x]
− p(x) I{qp′}(x)/λp(x] . (7.83)

Naturally there is also a completely symmetric equation for the average in clear sky
with p and q interchanged.

These equations are exact, but they are incomplete; the last two average intensi-
ties on the right hand side are taken over different sets of scenes, and are unknown.
They involve scenes in which the point in question is on the boundary of a cloud. We
can proceed to write exact equations for these too, but they involve still more highly
conditioned values. The series needs some sort of closure.
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The simplest closure is to assume that the extra condition makes little difference.
In Markov statistics this is true, because the basic transition probabilities are inde-
pendent of current conditions. The resulting pair of equations is called the Levermore
model; it is in fact an exact description of the situation in the case of Markov statis-
tics without scattering and even with scattering if restricted to rod geometry (1D,
only forward/backward directions). It is inexact elsewhere, but many benchmark cal-
culations have demonstrated that it is a robust approximation to the more general 3D
case.

Heuristic Extensions

Levermore et al. (1988) applied renewal theory to find the general solution to the case
of decay of intensity as it penetrates a pure absorbing binary mixture of homogeneous
statistical properties, with no sources and constant cross-sections. They found that
the deep-in behavior could be captured by this simple prescription. Let a tilde denote
the Laplace transform, so that:

P̃ [s) ≡
∞∫
0

P [l) e−s ldl

Q̃[s) ≡
∞∫
0

Q[l) e−s ldl. (7.84)

Form the correction terms:

Ip ≡ λp

σp

[
P (0)
P̃ [σp)

− 1

]

Iq ≡ λq

σq

[
Q (0)
Q̃[σq)

− 1

]
. (7.85)

Then form the interface correction factor:

Iinter ≡ Ip + Iq − 1 . (7.86)

Now replace the interface-conditioned terms of the complete L–P equation as fol-
lows:

I{qp′} (x) → I{q} (x)
Iinter

I{pq′} (x) → I{p} (x)
Iinter

. (7.87)

Notice that for the case of Markov statistics the individual terms Ip and Iq are unity,
so that if both the cloud and clear sky statistics are Markovian the overall correction
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factor Iinter is also unity. This is good, because this is known to be the correct result
for this case.

Other closures have been proposed and evaluated by comparisons with the suite
of 1D benchmark numerical calculations. Many of these have postulated algebraic
relations, but Pomraning (1991a) proposed a new type of closure, adding a pair of
transport-like equations to describe the interface intensity. This extends the system
to four such equations, since it retains the L–P set and adds this one and (with a p, q
interchange) its mate:

Ω •∇
(
p I{pq′}

)
+ σp p I{pq′} = σsp

[∫
2π+

Φp (Ω • Ω′) p I{pq′} dΩ′

+
∫
2π− Φq (Ω • Ω′) q I{qp′} dΩ′

]
+ pSp + q I{qp′}/λq − p I{pq′}/λp (7.88)

where 2π± designates the hemisphere going out of (+) or in to (−) the cloudy
region.

The treatment of scattering in this interface model is very attractive in that it
recognizes that light backscattered into the beam must have come from a beam which
was itself conditioned on being at an interface, but on the other side and thus in
the other material. Forward scattered contributions, similarly, must have come from
interface-conditioned beams on the same side of the interface, that is, in the same
material. This is illustrated in Fig. 7.10, wherein a ray in material α is supplemented
by the scattering of another ray in material α, which forward scatters into the same
beam. The blowup shows the interface as a layer of nonzero thickness δ; to get the
probability density we count all such scenes and take the limit of that number as δ
goes to zero. Clearly, if the inscattering ray had joined the main ray by scattering into
the back hemisphere (not shown), it would have had to have originated in material β.

α
β

δ

β

α

Fig. 7.10. In-scattering at an interface
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Probably because of this, the interface model led to a great improvement in pre-
dicting transmission through scattering media. But in practice the interface model is
not a success, because it proves not to be robust. In certain situations it predicts neg-
ative cross-sections, leading to (unphysical) growing amplitudes. This was pointed
out by Zuchuat et al. (1994) and further analyzed by Su and Pomraning (1995), who
also reviewed several algebraic closure models and suggested that the benefits of the
interface model might be captured by a scheme for interpolating between it and the
Levermore model.

It seems clear that this approach has the potential to produce a much better de-
scription of radiation in a stochastic medium, as can be seen from its derivation, and
it does in some cases. I suspect that the trouble with the initial application lies with
the very simple closure used, but until more work is done with closure models we
cannot be sure that it can fulfill its promise.

7.3.3 Features of the Levermore-Pomraning Equations

Reduction of Dimension

Recall that if the underlying statistics is constant in space the transition rates are
simply the average chord lengths, and they determine the fraction of the medium that
is cloud (and clear). If the cloud statistics is independent of azimuth, varying only
with altitude, then another very great simplification results. The ensemble average
field of cloud then is also a one-dimensional system. Even though the presence of
the solar beam turns the ensemble average into a three dimensional system, Malvagi
et al. (1993) point out that one may expand the L–P equations in a Fourier series in
the azimuthal angle. This reduces the system to an infinite set of one dimensional
pairs of equations, no great advantage in and of itself. But the information required
of the system for general use (the column absorption and transmission as functions
of altitude, for example) are all given by the solution of the m = 0 mode, which
is therefore the only one whose solution is required. It is not coupled to any higher
mode, so we need solve only this one dimensional pair, for an enormous savings
in computational effort. All the horizontal effects of cloud-clear interaction are still
included exactly, as functions of altitude.

Interpolation

Byrne et al. (1996) pointed out that the Levermore-Pomraning equations reduce (cor-
rectly) to those of the atomic mix model in the limit of small chord lengths, and (also
correctly) to those of the fractional cloud cover model in the opposite limit. They can
be regarded as a way of interpolating between these two limits in the general case.

Pathlength

The 4π-integrated (m = 0 mode) intensity is also the total pathlength per unit of
volume, and the L–P system therefore gives us immediately the pathlength separately
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for radiation in cloud and in clear sky. Byrne et al. (1996) use this feature to address
questions about the origin of enhancement of absorption in fields of broken cloud
noted by Cess et al. (1995) and Ramanathan et al. (1995).

7.3.4 Indicator Method

Titov (1990) proposed a different formalism for the binary problem. His approach
was to restrict the stochastic behavior to an indicator field, a stochastic function of
space that could take on the values zero or one. The underlying material could be as-
sumed to be a uniform cloud; in any specific realization the clouds existed only when
the indicator was one, elsewhere there was vacuum. He proposed explicit construc-
tion methods for such fields. One was to choose a particular geometric shape centered
about an arbitrary point, then to populate space with a given density of points and
locate the shape at each point. The overlaps could be handled by assuming a logical
OR, which meant that any final realization could consist of quite complex indica-
tor functions. If one used smaller and smaller shapes, increasing their number so
that volume was preserved, the nature of the individual shape could be assumed to
become irrelevant.

This approach has the distinct advantage over the Levermore-Pomraning one dis-
cussed above in that we are guaranteed that space is consistently defined everywhere
for all of the realizations. The line statistics and correlation functions can in princi-
ple then be deduced from the shapes and the statistics of the distribution of centering
points, whereas on the other hand, it is not certain that every arbitrary line statistics
represents physical space. In the next section we discuss some recent work by Frank
Graziani at Lawrence Levermore National Laboratory, which actually produces sim-
ilar realizations computationally, as foreseen by Titov.

Once the line statistics of the indicator field is determined, the L–P machinery
applies and can be used to solve the problem. In practice Titov’s method is restricted
to assuming Markovian correlation statistics, because otherwise it suffers from simi-
lar closure difficulties as the L–P model. In this case it is mathematically identical to
L–P, as pointed out by Malvagi et al. (1993).

7.4 Validation

7.4.1 Direct Numerical Simulation (DNS)

Apart from purely absorbing Markovian systems it is rare to find analytic solutions
to the problem of radiative transfer through binary systems. Therefore we turn to
DNS for benchmarks against which to test our theories. The earliest set of these was
published by Adams et al. (1989). They considered a one dimensional system with
constant optical properties (different for the two materials), isotropic scattering, no
internal sources of radiation, and Markov statistics. One set of problems was in rod
geometry, where radiation travels in only two directions: straight ahead or straight
back. This was extended by redoing the set in planar geometry where all directions
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of travel are possible, a much more challenging system to solve but still well within
the means of modern computational power. Radiation was provided by imposing an
isotropic field at one end of the system; the other end had zero incoming flux.

Adams et al. (1989) considered three different stochastic parameters, called A,
B, and C in Table 7.2. The first two were the average optical thickness of a chunk of
materials #1 and #2 (λp ×σp and λq ×σq respectively); the third was the ratio of the
probability of finding the two materials, p/q. A was primarily optically thin material
with a small amount of moderately opaque chunks in it (unit optical depth on the
average), B was the same but at ten times the opacity for both materials, and C was
an equal mixture of the fairly transparent material from A and the opaque material
from B.

Table 7.2. Material sizes (in optical units) and probabilities

Set Chunk #1 Chunk #2 p/q

A 1/10 1 9
B 1 10 9
C 1/10 10 1

For each of these they considered three sets of scattering properties, called I,
II, and III in Table 7.3. These were then expressed in terms of the single-scattering
albedo �0 (the ratio of the scattering to the total cross-sections) for each material.

Table 7.3. Scattering Properties

Set �0p �0q

I 0 1
II 1 0
III 0.9 0.9

This gave 3 × 3 sets of optical properties that together made a reasonable probe
of interesting parameter space. Their decision to run each problem for 0.1, 1, and
10 (average) extinction lengths also strikes me as reasonable, for they explored the
optically thin, moderate, and thick classes of problems.

For each of set of optical parameters 100,000 individual problem realizations
were generated, each was solved numerically, and the average and the standard de-
viation of the intensity were computed from the results. In the course of this effort
more transport problems were solved numerically than had been done in the preced-
ing 1010 years.

This work was extended, in part, by Su and Pomraning (1993). They repeated
the previous work for rod geometry, but instead of only Markov statistics they also
included five other distributions. These were called step, ramp, tent, parabolic, and
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Fig. 7.11. View of a 3D population, from Graziani and Slone (2003) with permission

reverse ramp. Neither they nor Adams et al. (1989) compare their benchmark results
to L–P predictions.

Graziani and Slone (2003) have recently begun a new benchmark series. They
introduced a fundamental granularity into a finite 3D universe, which allows them to
completely populate every point in the region in a finite number of operations. They
have used Markov and Cauchy statistics on 1003 grids, with a batch size of 100 com-
plete realizations and two materials, each with their own constant optical properties.
An example of one of their Markov volume realizations is shown in Fig. 7.11. The
volume fraction of the dark material is 20%, and its length scale is 1% of the cube’s
width. As a test of the success of generating the desired statistics, Graziani’s code
projects a large number of rays through each realization and gathers statistics about
what it finds. A sample of one such result, the frequency of occurrence of length, is
presented in Fig. 7.12. Since for the case of Poisson statistics the result should be a
straight line on a semi-log plot, the data show that the statistics are as intended. Data
from a realization (not shown here) using Cauchy statistics are also displayed. The
Cauchy (or Lorentzian) distribution exhibits a broader tail in the graph, since it falls
off only like 1/x2. Along with gathering the run lengths, the raytracing code also
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Fig. 7.12. Line statistics of one of F. Graziani’s realizations

tabulates optical depths. The realizations discussed here use matter whose optical
properties are constant, so this becomes a matter of multiplying the length times the
opacity.

Although they have not yet addressed the question of scattering, they have al-
ready obtained useful results for one item of interest. This is the parameter �eff ,
which replaces the actual absorption length when the stochastic average is approxi-
mated by a single equation with renormalized extinction coefficients to account for
the unresolved structure. Figure 7.13 shows results from a large number of runs of

Fig. 7.13. Variation of renormalization parameter with mean optical thickness of chunks and
fraction of the chunky material (through occurrence probability P ). The effective photon
mean-free-path in the variable medium is denoted by �eff while �atom = [Pσ1+(1−P )σ2]

−1

is the mean-free-path based on the atomistic mixture of the two materials. The effective mean-
free-path is defined by fitting an exponential to the numerically obtained distribution of phys-
ical penetration depths
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batches of problems with varying parameters, in this case, the overall average optical
depth per subcell and the fraction of absorbing material. This sort of program has
been desired for years but has until now been too computationally expensive to carry
out.

7.4.2 Experiments in the Cloudy Atmosphere

There are two tests a stochastic model must pass before being deemed useful. The
DNS work mentioned above will eventually be available to guide the mathemati-
cal development toward some measurable and acceptable accuracy, but whether the
model is useful to the atmospheric community also depends upon whether it can be
applied to the problem of radiation transport through broken clouds, no matter how
successful it may be on computer simulations.

Benner and Evans (2001) addressed exactly this issue. They reconstructed fields
of small marine tropical cumulus (from visible and infrared imagery) and compared
their Monte Carlo solutions, which may be taken as correct, to various approximate
techniques (cf. Chaps. 6 and 8): Independent Pixel Approximation (IPA), “tilted”
IPA, and conventional plane-parallel. For large-domain averages, they found only
small errors introduced by the simpler methods, although some individual cases had
significant ones.

Lane et al. (2002) also broke new ground on this issue in a recent study. They
took data from many different sensors in the ARM testbed in Oklahoma and used
them to generate statistics of the observed cloud fields. Then they compared the re-
sults of plane-parallel to L–P treatments of the reconstituted cloud fields. We will
briefly sketch their technique, but the reader is referred to their article for details.
One of the primary requirements of any analysis, stochastic or not, is the state of
cloudiness. How much liquid water is there, and where? These data are desired on a
3D grid, and in this case we need enough samples to generate good statistics, yet it is
not a standard ARM product. Lane et al. inferred information from a whole slew of
sources of varying reliability, starting from hourly meteorological logs recorded by
human observers and including various ceilometers, the Radio Acoustic Sounding
System, radiosondes, the Time-Lapsed Video camera, the Whole Sky Imager, the
Microwave Radiometer, the Radar Wind Profiler, and others. The Multi-Filter Ro-
tating Shadowband Radiometer (MFRSR) played an especially important role. The
MFRSR measures the direct and the diffuse solar radiation on the ground at a rate of
up to four times per minute. Examples of MFRSR and MFRSR-like data on partially
cloudy days are shown in Chap. 2.

Lane et al. (2002) inferred statistics of the size of the cloud by combining knowl-
edge of cloud height, wind speed at cloud height, and the very reasonable assumption
that the sudden dips in intensity of the direct beam measured by the MFRSR were
due to the passage of a cloud between the instrument and the sun. The choice of
intervals for which data were selected for this purpose was determined by a preset
protocol designed to focus on periods where broken cloud fields dominated the inso-
lation. The results of this analysis are shown in Fig. 7.14, which has separate panels
for the cloudy and clear sky statistics. The fits y = a exp(−bD) (where D is the
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Fig. 7.14. (a) Cloud size histogram and (b) cloud spacing histogram for fair-weather cumulus
using 6 MFRSRs: fits from Plank (1969) and figures from Lane et al. (2002), with permission

size of the cloud, a is the typical number of clouds, and b is empirically determined)
that overlay the data are in terms of the horizontal axis in each panel; they represent
Markovian distributions. Astin and Latter (1998) also pointed out that a Markovian
distribution of cloud size is suggested by observations.

The averaging for the test of the stochastic model had two components, spatial
and temporal. The spatial averaging was obtained by using data from the Oklahoma
Mesonet, which provided downwelling shortwave radiation over four sites within
90 km of the central ARM facility, and six MFRSRs distributed over roughly the
same area. The experimental data were collected frequently, but not at synchronized
times from all the instruments. So each instrument’s output was averaged over one-
hour intervals, and these averages were used in making comparisons to the calcula-
tions. The findings are inconclusive as to which analysis technique is superior. The
results for two days less than a month apart are given in Fig. 7.15 and Fig. 7.16. A
superficial glance would indicate that the stochastic analysis was worse on the first
day yet better on the second, but in fact the data are not adequate to discriminate
between the two. (It was suggested that the main reason for these discrepancies is a
“limited” ability of stochastic models to capture the vertical variability of clouds.)
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Fig. 7.15. Models results of downwelling shortwave radiation for 15 Apr 1998 compared with
averaged observations from the Oklahoma Mesonet

Fig. 7.16. Model results of downwelling shortwave radiation for 12 May 1998 compared with
averaged observations from the Oklahoma Mesonet
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One reason for this is indicated by the error bars on the figures, which represent
estimates of the uncertainty in the radiation models due to the uncertainty in the
liquid water path alone; there are many other uncertainties in the data as well, as
discussed by Lane et al. (2002). The overall uncertainty is far too large to be tolerated
for the purposes of climate prediction, for either method. What they have shown is
that the principles of comparison with observation can be applied to this problem;
they have developed new techniques for extracting the requisite information from
the existing suite of ARM instruments; and they have found which types of data are
not now adequately measured. We may expect future work to build on this pioneering
study.

7.5 Conclusions

A pure absorber transmits light as exp(−τ). A pure scatterer does so as τ−1 asymp-
totically. Fractal scattering media also does as a power, but not necessarily with an
exponent of −1 (Gabriel et al., 1990; Davis et al., 1990). We have seen that a mixture
of pure absorbers transmits light as a mixture of exponentials. We expect a mixture
of pure scatterers will do so as a weighted average of 1/τ, and a mixture of a general
material will somehow interpolate between these trends. The essence of the problem
seems to be that the more transmissive materials regenerate light for the less trans-
missive ones. We have indicated some paths currently under investigation, especially
the Levermore-Pomraning (L–P) stochastic model.

The shortcomings of the L–P system are clear:

1. L–P has not yet demonstrated superiority to plane-parallel (not to mention IPA)
in practical use;

2. L–P offers the most advantage for statistically homogeneous systems, but these
are not guaranteed to represent reality;

3. L–P is inexact with its present closure;
4. L–P, as presently applied, is developed for binary systems only.

However, just as many encouraging statements can be made:

1. The lack of demonstrated superiority is surely only temporary. The techniques
mentioned herein can be developed to the point where decisions about model
validity can be made.

2. Homogeneity is a relative term in spatial statistics. It is often observed that
weather systems are very large, and there is even a World Meteorological Or-
ganization system of classification that breaks down all the world’s clouds into a
small number of types. Somewhat paradoxically the success of a thriving subcul-
ture finding common fractal character in cloud implies an underlying sameness in
diversity. See Cahalan (1989) for an example.

3. The present closure is probably not the last word on the subject.
4. The restriction to binary systems is not fundamental, though the extensions have

been to systems with countable, indeed small, number of submaterials. In any case
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Fig. 7.17. Optical depths observed via MFRSR, ARM site, May 1993

there are many cases where a two material classification seems to be indicated
observationally. For example, Fig. 7.17 shows a sample of optical depths retrieved
over five minute intervals for a few days in May 1993 over the ARM site in
Oklahoma. One is strongly tempted to divide things into two parts.

If it works, the promises are also clear:

1. L–P is simple and very efficient: it provides an answer to a complicated prob-
lem of vital interest, at a very low cost. It uses only a few statistical parameters
and produces information About system-average answers without having to form
answers for any individual realizations.

2. L–P provides useful diagnostics about details of the average radiation, separately
in clouds and clear sky.

3. L–P looks very good against benchmarks, and it is robust.
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8.1 Introduction

The large-scale terrestrial climate is well-known to be sensitive to small changes
in the average albedo of the earth-atmosphere system. Sensitivity estimates vary,
but typically a 10% decrease in global albedo, with all other quantities held fixed,
increases the global mean equilibrium surface temperature by 5◦C, similar to the
warming since the last ice age, or that expected from a doubling of CO2 (e.g., Caha-
lan and Wiscombe, 1993). Yet not only is the global albedo of 0.31 only known to
≈10% accuracy1 but current global climate models often do not predict the albedo
in each gridbox from realistic cloud liquid water distributions; they normally tune
the liquid until plane-parallel radiative computations produce what are believed to

1 Estimates of global albedo range from 0.30 to 0.33, or 3 out of 31 ≈ 10%, (e.g., Kiehl and
Trenberth, 1997).
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be typical observed albedos. The inability of global climate models to compute the
albedo is due to their inability to predict the microphysical and macrophysical prop-
erties of cloud liquid water within each gridbox, and their reliance on plane-parallel
radiative codes. As Stephens (1985) has emphasized, the mean albedo of each grid-
box depends not only on the mean properties of clouds within each box, but also
upon the variability of the clouds, which involves not only the fractional area cov-
ered by clouds, but also the cloud structure itself. During recent years many climate
models began to carry liquid water as a prognostic variable, e.g., Sundqvist et al.
(1989) and Tiedtke (1996). It is important to treat cloud radiation and cloud hydrol-
ogy consistently, which requires that cloud parameterizations become dependent on
the fractal structure of clouds. Radiative properties of singular multifractal clouds
have been previously studied (e.g., Cahalan, 1989; Cahalan and Snider, 1989; Love-
joy et al., 1990; Gabriel et al., 1990; Davis et al., 1990). Here we shall show how
radiative properties of marine stratocumulus boundary-layer clouds, and specifically
area-average albedo of these clouds, depend on their structure. The central role of
this cloud type in maintaining the current climate was clarified and quantified in
Ramanathan et al. (1989).

The dependence of average albedo on cloud structure has been found to be espe-
cially important in the case of marine stratocumulus, a major contributor to net cloud
radiative forcing. Computations based on observations of California stratocumulus
during the First International Satellite Cloud Climatology Project (ISCCP) Regional
Experiment (FIRE) have shown that stratocumulus have significant fractal structure,
and that this “within-cloud” structure can have a greater impact on average albedo
than cloud fraction (Cahalan and Snider, 1989; Cahalan et al., 1994a,b). These stud-
ies employed a “bounded cascade” model2 to distribute the cloud liquid, defined in
terms of two cascade or “fractal” parameters: f , the difference in cloud liquid frac-
tions between two segments of the full cloudy domain being considered, and c, the
difference of liquid fractions at the next smaller scale (within each segment) divided
by f . Parameters c and f are empirically adjusted to fit the scaling exponent of the
power spectrum of liquid water path (W ), β(c) ≈ 5/3, and the standard deviation of
log W , σ(f, c), respectively. In order to isolate the effects of horizontal liquid water
variations on cloud albedo, it is convenient to assume that the usual microphysical
parameters are homogeneous, as is the geometrical cloud thickness. In order to sim-
plify comparison with plane-parallel clouds, the area-averaged vertical optical depth
is kept fixed at each step of the cascade. The albedo bias is then found as an analytic
function of the fractal parameter, f , as well as the mean vertical optical thickness,
τv, and sun angle, θ0. For the diurnal mean of the values observed in FIRE (f ≈ 0.5,
τv ≈ 15, and θ0 ≈ 60◦) the absolute bias is approximately 0.09, nearly 15% of the
plane-parallel albedo of 0.69. Diurnal and seasonal variations of cloud albedo bias

2 Bounded cascades were first introduced in Cahalan et al. (1990), and their multi-scaling
properties studied in Marshak et al. (1994). For a description of bounded cascades in terms
of f and c, see the discussion following (8.2) below and the Appendix of the volume (using
somewhat different notations).
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have been determined from observations during the Atlantic Stratocumulus Transi-
tion Experiment (ASTEX) and compared to the FIRE results (Cahalan et al., 1995).

The goal of this chapter is to show how these results for the mean albedo of
bounded cascade clouds, derived in the references cited above, may be applied to
parameterizing the albedo of such clouds in terms of the plane-parallel albedo of a
cloud having an “effective” optical thickness which is reduced from the mean thick-
ness by a factor χ (or, equivalently, σ) which depends only on the fractal parame-
ters, and not on the mean cloud properties. This Effective Thickness Approximation
(ETA) is a special case of the more general Independent Pixel Approximation (IPA),
sometimes referred to as the Independent Column Approximation (ICA) especially
for gridded climate models. The key assumption of any IPA (or ICA) type approx-
imation is the neglect of horizontal photon transport (see Chap. 12). In addition, it
depends only on 1-point cloud probability distributions, not on the spatial arrange-
ment or correlations of individual cloud elements. On the other hand, knowledge of
the accuracy of any IPA depends on three-dimensional (3D) radiative transfer (i.e.,
with net horizontal fluxes) as well as on the spatial (typically fractal) cloud structure.
In this chapter, though we compare the IPA/ICA with 3D radiative transfer as is done
in other chapters, the primary purpose is to compare the IPA with the much simpler
ETA. In particular, we use a simple fractal “bounded cascade” model to (1) motivate
the ETA; and (2) determine the accuracy of the ETA by comparing it to the full IPA,
using cloud parameters typical of marine stratocumulus. Moreover, some analytic
results for bounded cascades are generalized and simplified in two appendices. In
the “Further Readings” section at the end, we point the reader to simple alternatives
to the ETA, each of which have particular advantages and points of view. We feel
that each approximation is helpful insofar as it lends some insight into real clouds,
which are far more complex than any of our mathematical idealizations, as anyone
can discover who takes the opportunity to study the amazing variety of real cloud
systems.

In the following, we first define some terms in Sect. 8.2. Then Sect. 8.3 shows
that the IPA provides estimates of the plane-parallel albedo bias accurate to about
1% for bounded cascade clouds, and Sect. 8.4 applies the IPA to show that the total
absolute bias reaches a maximum of about 0.10 during the morning hours, when the
cloud fraction is nearly 100%. These two sections are primarily summaries of results
from Cahalan et al. (1994a) and Cahalan et al. (1994b), although there a 1D cascade
was employed, while a here a 2D cascade is applied. Section 8.5 gives the main re-
sult, that under certain commonly-observed conditions (β ≈ 5/3, hence c ≈ 0.8)
the albedo is approximately the plane-parallel albedo at a reduced “effective optical
thickness” τeff ≡ χτv, where the reduction factor χ decreases with σ, hence with f ,
approximately as 10−1.15σ2

(see Fig. 8.6 and (8.B.11)), independently of the mean
vertical optical depth, τv. The accuracy of this approximation is given as a function
of both f and the mean thickness. The results are summarized and their limitations
briefly discussed in Sect. 8.6. Appendix 8.A shows that all moments of a bounded
cascade may be obtained by considering only the second moment as a function of
the fractal parameter. This generalizes expressions for the second and third moments
given in Cahalan et al. (1994b), and allows the lognormal behavior in the singular
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limit to be explicitly exhibited (see also Cahalan, 1994). Appendix 8.B gives expres-
sions for χ(f, c) and σ(f, c) as power series in f with coefficients depending on c,
and evaluates the coefficients for the case of a β(c) ≈ 5/3 (c ≈ 0.8) wavenumber
spectrum.

8.2 Definitions

Many general circulation models (GCMs) are now predicting mean cloud liquid wa-
ter in each gridbox, not merely diagnosing it from other quantities. The cloud albedo
could potentially also be accurately predicted, if cloud liquid could be accurately dis-
tributed within each gridbox. Efforts are underway to improve the treatment of cloud
distributions in global models, so that simulated clouds can respond more realisti-
cally to climate change. The hope is that average cloud liquid in each gridbox will be
accurately predicted, and that the resulting cloud albedo will be correctly computed
from this, and other average cloud parameters. It is important to recognize, however,
that mean cloud parameters are insufficient to compute the mean albedo. The mean
albedo also depends, at a minimum, on the deviations of the liquid water from the
mean, for instance, on the mean and standard deviation of the logarithm of the liquid
water. We demonstrate this here and in the next using the bounded cascade model.

The schematic in Fig. 8.1 shows three approaches to distributing a prescribed
amount of liquid water in a given vertical level of a GCM gridbox. In (a) it is uniform
over the whole area, and thus the albedo may be computed from plane-parallel theory,
and depends only on the average optical thickness, effective particle radius, and so
on. In (b) the cloud is assumed to cover only a fraction of the area, is somewhat
thicker in order to contain the same total liquid, but is still assumed to be uniform
on that so-called “cloud fraction.” In this case the mean albedo of the gridbox is
assumed to equal the area-weighted average of a “cloud albedo” and a “clear-sky”
albedo. Finally, in (c) the cloud covers the same cloud fraction as in (b), with the same
mean parameters, but is assumed to have a non-uniform structure which depends on
one or more “fractal parameters.” The cloud fraction and the fractal parameters are
assumed to depend on geographic region, season, and time of day.

As a measure of the impact of cloud fraction and fractal parameters on the aver-
age albedo, we define the “absolute plane-parallel albedo bias” ∆Rpp, as the mean
albedo computed in case (a) minus that in case (c). This may be expressed symboli-
cally as:

∆Rpp = Rpp − [AcRf + (1 − Ac)Rs] , (8.1)

where Rpp is the plane-parallel reflectivity, Rf is the mean reflectivity of the fractal
cloud, Rs is the mean clear-sky reflectivity, and the same total liquid water is used in
all cases. The relative plane-parallel albedo bias is the absolute bias divided by Rpp.
To avoid confusion, the absolute bias is always given as a fraction, while the relative
bias is given in percent. Since the simple uniform cloud fraction model shown in
Fig. 8.1b is currently widely employed, it is convenient to split the total plane-parallel
bias into the difference between (a) and (b), plus the difference between (b) and (c).
Symbolically:
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(a)

(b)

(c)

Plane-Parallel

Plane-Parallel
on fraction Ac

Fractal on 
fraction Ac

Fig. 8.1. Schematic showing three approaches to distributing the cloud liquid water in a GCM
gridbox. In the top figure (a) the cloud has plane-parallel geometry, with cloud parameters
such as vertical optical thickness, τv, uniform over the whole gridbox. In the middle figure (b)
the parameters are uniform over a fraction Ac of the gridbox, with the same values as above,
except that cloud vertical optical thickness increases to τv/Ac, thus preserving the total liquid,
while the cloud thickness is zero on the remaining fraction 1−Ac. In the bottom figure (c) one
has a fractal distribution of cloud parameters over the fraction Ac, with the same mean values
as in the middle, and an identical clear fraction 1 − Ac

∆Rpp = {Rpp − [AcRpp + (1 − Ac)Rs]}
+ {[AcRpp + (1 − Ac)Rs]
− [AcRf + (1 − Ac)Rs]} . (8.2)

The first difference represents the bias due only to the reduction in cloud fraction
from unity to Ac, and the corresponding increase in thickness, with no change in the
plane-parallel assumption; the second difference is the additional bias due only to
the within-cloud fractal structure, where again the same total liquid is employed in
all cases. This section and the following considers the case of overcast clouds, having
Ac = 1, so that the total bias depends only on the fractal parameters. Then Sect. 8.4
considers the case in which both the cloud fraction and the fractal parameters follow
the diurnal variations observed in California marine stratocumulus. As we shall see,
the Ac = 1 case produces the largest total bias, because of the sensitivity of the bias
to the fractal structure, and the observed fact that in California stratocumulus the
overcast cases have the greatest within-cloud variability.

In order to generate a bounded cascade cloud, we begin with a uniform cloud hav-
ing a liquid water path of, e.g., W = 100 g/m2, and corresponding vertical optical
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thickness of, e.g., τv = 15 (assuming an effective drop radius of re = 10 µm). We as-
sume large but finite horizontal optical thicknesses in both horizontal directions, say
τh = 1500. This uniform distribution is then made non-uniform by a bounded multi-
plicative cascade process, in which the cloud is successively subdivided into smaller
parts, and successively smaller fractions of liquid water are transferred among these
parts, without changing the total.3

It is simplest to describe a one-dimensional (1D) bounded cascade, and we shall
consider the simplest subdivision process: Divide the cloud in half along a north-
south line. Flip a coin to select one half, and transfer a fraction, say f0 = f = 0.5
from that half to the other one. The process is then iterated as follows: Each of
the two halves is divided in half the same way, two coins are flipped to select one
quarter from each of the two pairs, and a smaller fraction f1 = f × c, with say
c = 0.8, so that f1 = 0.4, is transferred from each chosen quarter to the other one.
The resulting four quarters are in turn divided in half, four coins are flipped, and a
fraction f2 = f1 × c = 0.32 is transferred within the four pairs of eighths, and so
on. The resulting distribution of liquid water path has a power spectrum behaving
as k−β, where β ≈ 5/3 when c = 2−1/3 ≈ 0.8, as observed (Cahalan and Snider,
1989), and an approximately lognormal probability distribution, with the standard
deviation of log W, σ(f) ≈ 0.39 when f = 0.5, as is also observed (Cahalan et al.
(1994b); see also Gage and Nastrom (1986) and Lilly (1989)).

A two-dimensional (2D) bounded cascade begins with the same initial cloud,
which is then divided into quarters along both north-south and east-west lines, and
liquid water fractions are then transferred among the quarters. One transfer method is
as follows: The four quarters are divided into three pairs, aligned either north-south,
east-west or diagonally, with equal probability for each of the three possible ways.
One of the pairs is selected randomly, and a fraction f0 = f = 0.5 is transferred
within that pair, with either direction equally likely, while a fraction f ′

0 is transferred
within the other pair. For simplicity we also take f ′

0 = f . The process is then repeated
by quartering each quarter, transferring a fraction f1 = 0.8 × f , and so on. The set
of optical depth values thus generated at steps 1, 2, 3, . . . , N in the 2D cascade are
identical to those generated at the same steps in the 1D cascade, except that each
value appears twice in the first step, and 2N times in the N th step. The one-point
probability distribution functions (the PDFs) of W and τv are identical in both 1D
and 2D.

Table 8.1 summarizes the symbols and typical values of parameters in the bound-
ed cascade cloud model. In addition to the bounded cascade, two additional assump-
tions are being made here. One is that the effective droplet radius is uniformly equal
to 10 µm, so that the vertical optical thickness of each part of the cloud is linear in
the liquid water:4

3 If the fractions were kept the same at each step, the resulting distribution would be singular,
and the power spectrum would have more small-scale variability than is observed in marine
stratocumulus clouds.

4 The proportionality constant τv/W = 3/2ρwre, where ρw is the density of liquid water, in
the limit of large size parameters in Mie scattering theory (Stephens, 1978); it equals 0.15
m2/g if re = 10 µm.
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Table 8.1. Structural and optical parameters for bounded cascade cloud models

Parameter Symbol Typical Value

single-scattering albedo �0 1
asymmetry g 0.85
liquid water path W 100 g/m2

effective droplet radius re 10 µm
vertical optical thickness τv 15
solar zenith angle θ0 60◦

scaling parameter c 0.794
spectral exponent β(c) 5/3
variance parameter f 0.5
reduction factor χ(f, c) 0.7
effective optical thickness τeff 10

τv = 0.15W (8.3)

where W is expressed in g/m2.
Second, we employ the Independent Pixel Approximation or IPA, which means

that the reflectivity of each cloud pixel is assumed to depend only on its optical
depth, R = R(τ), and not the optical depth of neighboring pixels. This is a strong
assumption, and will be justified for the bounded model in the following section.

8.3 Independent Pixel Approximation

The grayscale map in Fig. 8.2a shows the reflectivity of 64×64 cloud cells as com-
puted with a Monte Carlo method for a cloud generated by 6 cascade steps of a 2D
bounded cascade with mean vertical optical thickness τv = 16, θ0 = 60◦, and fractal
parameter f = 0.5. If there were no horizontal photon transport, the reflectivity of
each of the 212 = 4096 cloud pixels would simply be determined by independent
plane-parallel computations. The local differences between this “independent pixel
approximation” (IPA) and the Monte Carlo reflectivities are shown by the grayscale
map in Fig. 8.2b. The brighter areas of negative bias occur where the IPA underesti-
mates the reflectivity of an optically thick region which lies on the sunward side of
immediately adjacent thin regions and has an enhanced brightness due to photons es-
caping from those thin regions. Conversely, the darker positive regions occur where
the IPA overestimates the brightness of a thin region which lies downstream of an
adjacent thick region.5 These local errors in the IPA can be quite large, with mag-
nitudes exceeding the plane-parallel bias of about 0.1 and in one area even exceed-
ing 0.25. However, the horizontal average of the IPA bias is an order of magnitude
smaller than the plane-parallel bias, because the positive and negative regions tend
to approximately cancel in the area average.

5 Recall that the cloud has constant geometric thickness everywhere, so that the horizontal
photon leakage is not simple geometrical shadowing. It occurs within the cloud.
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Fig. 8.2. (a) Contours of equal reflectance in a bounded cascade cloud with Ac = 1 and
f = 0.5. Starting with a uniform cloud having mean vertical optical thickness τ = τv = 16,
6 cascades were generated in each horizontal direction, giving 212 = 4096 uniform elements
or “pixels”. Reflectivities were computed by Monte Carlo with 107 photons. Microphysical
properties are uniform, with single-scatter albedo �0 = 1 and asymmetry factor g = 0.85.
The Henyey-Greenstein phase function was used, but essentially identical results are obtained
from the fair weather cumulus phase function. The sun is 60◦ to the left of vertical. The
black contour at 0.6 shows approximately where the reflectance equals the mean reflectance,
with more reflective regions lighter, and less reflective regions darker. (b) Contours of equal
“independent pixel bias” defined as the independent pixel reflectances (computed from the
vertical optical thickness of each pixel) minus the Monte Carlo reflectances shown in (a).
The average of these local algebraic biases is nearly an order of magnitude smaller than the
“plane-parallel bias” namely the mean optical thickness minus the mean of the independent
pixel reflectances, which is about 0.08
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The IPA has a long history of use in remote sensing and was employed in a
theoretical study by Ronnholm et al. (1980). But without any explicit model of the
spatial structure, early studies could not examine the errors in the IPA. Here we find
significant local errors in the IPA fluxes for the 2D bounded cascade, even though
the model does not include geometrical cloud effects. The IPA is justified for the
bounded cascade only for mesoscale-averaged fluxes, and even this simplification
breaks down in the case of a singular cascade (Cahalan, 1989; Cahalan et al., 1994a).

When the sun is closer to the zenith than θ0 ≈ 60◦, the IPA errors tend to be
of the same sign, but much smaller in magnitude. On the other hand, when the sun
approaches the horizon, the reflectivity everywhere approaches unity, so all the biases
are again smaller than at θ0 ≈ 60◦. As a result, the total IPA bias is maximum when
the sun is near 60◦ (Cahalan et al., 1994b).

Since the horizontal average of the IPA errors is quite small, we may employ the
IPA to estimate the average albedo, and compare it with the albedo of a uniform cloud
having the same horizontal average optical depth. Thus we substitute this difference
for the “plane-parallel albedo bias” defined in (8.1). It can be shown that the resulting
plane-parallel bias is strictly positive as long as the reflection function is convex,
unlike the IPA errors. (See Jensen (1906), also Sect. 12.3.) The plane-parallel albedo
for the parameters used here is 0.69, while the average of Monte Carlo albedo (i.e.,
averaging over all pixels in a number of realizations such is the one in Fig. 8.2a) is
0.60. Thus the bias associated with using the area-average optical thickness is 0.09,
which is 13% of the plane-parallel albedo.

As a result of the IPA , the mean albedo may be computed by simply transforming
the optical depth of each pixel to reflectivity, and then averaging over all pixels. The
results in the case of conservative scattering are shown in Fig. 8.3. The upper curve
is the plane-parallel (f = 0) albedo as a function of mean liquid water path, and
the lower curve is the fractal (f = 0.5) albedo. For a typical mean liquid water
path of W ≈ 100 g/m2 (τv ≈ 15), Fig. 8.3 shows that the plane-parallel albedo of
about 0.69 is reduced to about 0.60 by the fractal structure, implying a relative bias
of approximately 15%. In order to obtain the correct albedo from a plane-parallel
cloud, it is necessary to reduce the liquid water path, or optical thickness, by 30%.
An explicit expression for this reduction is derived in Sect. 8.5.

Since in the IPA the reflectivity of a given pixel is a function of the local liquid
water path, it may be expanded in a Taylor series as follows:

R(W ) = R(W ) + (W − W )R′(W ) +
1
2
(W − W )2R′′(W )

+ O((W − W )3R′′′) , (8.4)

where W is the average liquid water path, and R′(W ), R′′(W ) and R′′′(W ) are the
successive derivatives of R with respect to W , evaluated at W . (We have suppressed
for simplicity the dependence of R on the solar zenith angle.) Averaging both sides
of (8.4) eliminates the linear term on the right side, and we obtain

R(W ) = R(W ) +
1
2

µ2(f)R′′(W ) + O(µ3R
′′′) , (8.5)
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Fig. 8.3. (a) Albedo versus mean liquid water path [0–100 on lower axes], and vertical optical
thickness [0–15 on upper axes], for the two approaches shown in Figs. 8.1a and 8.1c, where
the fractal case is computed from the bounded model for Ac = 1 and f = 0.25, 0.5, 0.75,
using the independent pixel approximation. (b) Same as (a) except plotted on log scales for
liquid water [1–10,000 on lower axes], and optical thickness [0.15–1500 on upper axes]. (c)
The “plane-parallel bias” obtained by subtracting the mean reflectance (the lower curves in
(a) from the reflectance of the mean (the upper curve). (d) Same as (c) except plotted on the
same log scales used in (b). Note from (a) that for the typical f = 0.5, when τv = 15 the
bias is 0.69 − 0.60 = 0.09, or 0.09/0.69 ≈ 15% of the plane-parallel albedo. Drawing a
horizontal line in (a) at the mean reflectance 0.60 at f = 0.5 shows that this reflectance is
that of a plane-parallel cloud having 30% less liquid water, or an optical thickness τeff = 10.
The 30% reduction in cloud liquid corresponds to a value of the “reduction factor” of χ = 0.7
(cf. (8.8) and (8.9)). Lack of significant curvature in (b) near τv = 15, compared to the curves
in (a), is the reason that an expansion in logs as in (8.6) is preferred over the ordinary Taylor
expansion in (8.5)

where µ2 and µ3 are the second and the third centered moments, respectively, of
the one-point distribution of W generated by the bounded cascade. Subtracting (8.5)
from R(W ) gives the plane-parallel albedo bias. The lowest-order term is positive,
since the curvature R′′ is negative (i.e., Fig. 8.3a shows convex graphs). This term
overestimates the bias, while inclusion of the µ3 term underestimates, and so on (see
Cahalan et al., 1994b). Appendix 8.A shows that all the moments of the bounded
model may be obtained from µ2 (as a function of f ), thus formally determining
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all the coefficients in the above expansion. In Sect. 8.5 we consider an alternative
expansion about log(W ) (see Fig. 8.3b), which leads to a simple expression for the
effective liquid water path and effective thickness. First, however, we briefly review
the dependence of the bias on cloud fraction, Ac, to show that the overcast case,
Ac = 1, assumed in the above discussion, is associated with the largest plane-parallel
albedo bias during the diurnal cycle of California marine stratocumulus.

8.4 Diurnal Cycle

The total plane-parallel albedo bias has two contributions, as described in (8.2): (1)
that due only to cloud fraction, which is given by the albedo for Fig. 8.1a minus
that of Fig. 8.1b, and (2) that due to the fractal structure, given by the difference
between Fig. 8.1b and Fig. 8.1c. The fractal structure contribution is largest when the
liquid water variance is largest, which in the case of California marine stratocumulus
occurs during the morning hours, when the cloud fraction is nearly 100%, as shown
in Cahalan et al. (1994b). Although the cloud fraction contribution to the bias is
larger in the afternoon, when the cloud fraction drops to 60%, this is more than
offset by the decrease in the liquid water variance, which reduces both the fractal
contribution and the total bias. The fact that the cloud variance is largest when the
cloud cover is largest leads to the surprising result that plane-parallel estimates are
most in error when the usual “cloud fraction” corrections vanish!

In Cahalan et al. (1994b) the diurnal cycle of the albedo bias was estimated in-
directly, by first computing the diurnal cycle of f , determined from hourly values
of the variance of log W . Here we compute the bias directly from the time series of
W , by performing a plane-parallel computation of reflectance for each observation,
and then compositing the results hourly. The direct results agree qualitatively with
the earlier indirect approach, and are shown in Fig. 8.4. Here the lower curve is the
usual correction due only to cloud fraction, and vanishes when the fraction reaches
100% around 10 am. The middle curve is the additional correction due to the fractal
distribution of the cloud liquid water. The upper curve is the total albedo bias. Note
that the cloud fraction correction is much smaller than the total, and is 180◦ out of
phase with the total during most of the day (except when the sun is setting) when the
total is dominated by the cloud fraction correction due to the neglect of the clear-sky
albedo. The 0.09 albedo reduction needed when the clouds are overcast represents a
major change in the average cloud albedo of 0.6.

8.5 Effective Optical Thickness

Since the largest albedo bias occurs for overcast cloudiness conditions, when Ac =
1, let us further consider that case, represented by the 15% increase in Fig. 8.3 of
the albedo of a plane-parallel cloud over that of a fractal with the same total cloud
water. As shown in Cahalan et al. (1994b), this bias may be estimated from a simple
“effective thickness approximation” which is a lowest-order approximation to the
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Fig. 8.4. Absolute plane-parallel albedo bias as a function of time-of-day for California marine
stratocumulus, determined directly from microwave measurements of liquid water path during
18 days in June 1987, by computing an independent reflectivity from each measurement. The
same computation using the bounded cascade model with diurnally varying f and Ac is given
in Cahalan et al. (1994b), and is qualitatively similar. The upper solid curve is the total bias
defined as in (8.1), while the dotted and dashed curves are the contributions due to cloud
fraction and fractal structure, respectively, as defined in (8.2). Cloud fraction is defined as the
fraction of values exceeding 10 g/m2, and clear-sky albedo is taken to be zero

bias determined from the IPA. To derive it, consider an expansion similar to (8.5),
except now the local reflectance is considered as a function of the logarithm of the
local liquid water path, log W , and is expanded in a Taylor series about the mean,
log W . Taking the mean of the result gives the mean cloud reflectivity as:

R(log W ) = R(log W ) +
1
2
M2(f)R′′(log W ) + O(M4R

′′′′) , (8.6)

where M2 is the variance of log W , given in Appendix 8.B, and R′′ is the second
derivative of R with respect to log W evaluated at the mean of log W . As a function
of log W , the conservative reflection function has an inflection point, where the slope
stops increasing with log W and begins to decrease, and the curvature goes through
zero, as seen in Fig. 8.3b. This typically occurs near log W . Thus the second term in
the preceding equation is small, so that the mean reflectivity is approximately given
by the reflectivity evaluated at log W . In the bounded cascade model, the mean of
log W is given by

log W = log Weff , (8.7)

where



8 Effective Cloud Properties for Large-Scale Models 437

Weff = W × χ(f, c) , (8.8)

and χ(f, c) < 1 is the “reduction factor” given in Appendix 8.B of this chapter, and
is approximately 0.7 when f = 0.5 and c = 0.8, the appropriate values for typical
cloud liquid water distributions (see below).

Combining (8.8) with (8.3), allows us to define the “effective optical thickness”:

τeff = τv × χ(f, c) , (8.9)

where τv is the mean vertical optical thickness. Taking only the first term in the
expansion in (8.6), and using (8.3), it is clear that for a range of intermediate mean
cloud thicknesses near the inflection point of the reflectivity, the mean albedo may
be approximated by the plane-parallel albedo evaluated at the effective thickness, as
follows:

R(τ) ≈ R(τeff) , (8.10)

An estimate of the plane-parallel albedo bias may be obtained by subtracting (8.10)
from the plane-parallel albedo, R(τv). The relative error in the bias estimate derived

Fig. 8.5. Relative error in percent in the plane-parallel bias when the actual albedo is approx-
imated by the plane-parallel albedo at a reduced “effective thickness” as a function of mean
optical thickness τv and fractal parameter f . If the effective thickness gives an absolute bias of
0.10 near the –20 contour, for example, then the actual bias should be increased 20%, to 0.12,
and similarly an estimate of 0.10 near then +20 contour should be decreased to 0.09. These
same corrections can also be applied to the relative bias
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from (8.10) is shown in Fig. 8.5 as a function of f and τv, for c = 0.8 and a so-
lar zenith angle of θ0 = 60◦, which is typical for stratocumulus. For the contours
labeled ±30, for example, the bias obtained from the simple effective thickness ap-
proximation should be multiplied by 1 ∓ 0.3. Since the bias itself is on the order of
0.1, this corresponds to corrections of ≈ ∓0.03. The correction is dominated by the
M2 term in (8.6), and thus changes sign near the inflection point of R(log W ).

According to (8.9), the effective optical thickness depends on the fractal structure
through χ, which is a known analytic function of fractal parameters f and c. The
fractal parameter f is in turn adjusted to give the observed value of σ, also a known
analytic function of f and c, while c is fixed by the exponent of the wavenumber
spectrum. Thus τeff is parametrically determined as a function of σ by varying f .
Details are given in Appendix 8.B, and results are shown in Fig. 8.6 for both c =
2−1/3 ≈ 0.8 needed to give a β = 5/3 wavenumber spectrum, and for the singular
limit c → 1, for which χ is a simple exponential given in (8.B.11). The point labeled
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Fig. 8.6. Plot of χ, the reduction factor, versus σ, the standard deviation of log W . Both the
horizontal and vertical scales are independent of the number of cascade steps, and apply to
either W or τ because of the simple linear relation expressed in (8.3). The solid curve is
for the bounded model with c ≈ 0.8, while the dashed curve is the singular limit given by
the simple expression in (8.B.11). Labeled points apply only to the upper curve. The value
of σ derived from observations of California marine stratocumulus is 0.39, corresponding to
χ ≈ 0.7, which occurs at f = 0.5. (This is the diurnal mean in the summer, when f varies
from about 0.6 in the morning to 0.3 in the afternoon.) The global reduction factor χ ≈ 1/3
discussed by Harshvardhan and Randall (1985) occurs at f = 0.8, and requires a global value
of σ ≈ 0.7
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f = 0.5 in Fig. 8.6 corresponds to the diurnal average value of σ = 0.39, determined
from the stratocumulus observations discussed in Sect. 8.4. In this case χ ≈ 0.7, so
for example when τ = 15 we have τeff ≈ 10, and R ≈ 0.6.

Harshvardhan and Randall (1985) found that the global average cloud liquid must
be reduced by a factor of approximately 0.3 in order to obtain the correct global
albedo. To obtain this value of the reduction factor, χ = 0.3, for the bounded cas-
cade model requires an increase in the fractal parameter to f = 0.8, and an increase
in the standard deviation to σ = 0.7, as seen in Fig. 8.6. This in turn increases the
plane-parallel albedo bias by a factor of 5. The fact that a much larger bias is found
on a global basis is presumably due to the much wider variation in cloudiness over
the globe, as compared to the relatively benign variation in marine stratocumulus.
Davis et al. (1990) considered a related quantity, the “packing factor” the inverse of
the reduction factor, and studied the thick cloud limit in a singular model, for which
χ → 0, and the packing factor diverges. A similar singular model was studied in
Cahalan (1989). The bounded model considered here is a relatively conservative ex-
tension of the plane-parallel idealization. More radical, and perhaps singular, mod-
els may be needed to better represent radiative processes in deep convective cloud
systems.

8.6 Conclusions

A number of results on the mesoscale-average albedo of marine stratocumulus
clouds, known to be a major contributor to cloud radiative forcing, have been re-
viewed in this chapter. A fractal cloud model which reproduces the observed power
spectrum and low-order moments of the liquid water distribution in these clouds was
studied by both 3D Monte Carlo and analytic methods. Local horizontal fluxes were
determined from a 2D bounded cascade in Sect. 8.3, showing that errors in estimates
of such fluxes by the Independent Pixel Approximation or IPA can be large in some
regions, though still producing an area-averaged reflectivity accurate to about 1%.
Section 8.4 discusses the diurnal cycle of the variability of marine stratocumulus,
showing the plane-parallel biases are largest when cloud fraction is near 100%.

The results suggest a way of parameterizing the impact of such cloud variability
on the large-scale albedo in terms of an “effective” liquid water path, Weff (or, equiv-
alently, an “effective” optical thickness, τeff ), smaller than the mean by a factor which
depends on the fractal cloud structure. Section 8.5 determined the accuracy of this
Effective Thickness Approximation or ETA, as a function of the fractal parameter f
and the mean liquid water path W (or equivalently the mean optical thickness τv).
The ratio of χ = Weff/W (or τ = τeff/τv) was determined as an analytic function
of the fractal parameters, and as a parametric function of σ, the standard deviation of
log W (or log τ), which may be estimated from observations.

For marine stratocumulus, we find σ ≈ 0.4 and χ ≈ 0.7 giving a mean albedo
approximately equal to that of a plane-parallel cloud having 30% less liquid water, or
15% less than the plane-parallel albedo of a cloud with the same liquid water amount.
A surprising result is that the plane-parallel albedo requires the largest adjustment
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when the cloud fraction is nearly 100%, since that is when the largest variability is
observed. Thus the largest correction occurs when the usual cloud fraction correction
is small.

The bounded cascade model studied here represents a relatively conservative ex-
tension to plane-parallel clouds, since the cloud height and base are fixed. We also
keep the microphysics uniform. Yet even this conservative model shows that the
variability of liquid water in marine stratocumulus can have a larger impact on the
mesoscale average albedo than the usual cloud fraction corrections. For cloud types
not confined to a single vertical layer, such as those found in deep convective re-
gions, geometrical fractal properties neglected here may also impact large-scale ra-
diative properties, and may well require more radical departures from conventional
plane-parallel ideas. Fractal models for various surface types, including topography,
vegetation and sea ice, need to be combined with cloud models in order to fully
understand effects of inhomogeneity on atmospheric radiative transfer (see, e.g.,
Rozwadowska and Cahalan, 2002). Further study of the structure and radiation of
real clouds and surfaces in their full complexity will be needed in order to under-
stand how Earth’s climate is being regulated, and in order to consistently quantify
the role played by Earth’s cloud systems on the energy and hydrological cycles.

Appendices

8.A Rescaling f Generates W Moments

Here we derive expressions for the moments of a bounded cascade, as a function of
the cascade parameters f and c. We show that the moments may all be obtained from
the second moment considered as a function of f , by rescaling the values of f . We
then consider the singular limit c → 1, and show that all moments approach those of
a lognormal.

It is convenient to first define two sets of nth-order polynomials:

Pn(x) ≡ (1 +
√

x)2n + (1 −√
x)2n

2
=

n∑
m=0

(
2n
2m

)
xm , (8.A.1)

and

Qn(x) ≡ (1 +
√

x)2n+1 + (1 −√
x)2n+1

2
=

n∑
m=0

(
2n + 1

2m

)
xm . (8.A.2)

For example, the first four are given by:

n Pn(x) Qn(x)
1 1 + x 1 + 3x
2 1 + 6x + x2 1 + 10x + 5x2

3 1 + 15x + 15x2 + x3 1 + 21x + 35x2 + 7x3

4 1 + 28x + 70x2 + 28x3 + x4 1 + 36x + 126x2 + 84x3 + 9x4 .

(8.A.3)
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Realizations of bounded cascade have the form

W =
∞∏

k=0

(
1 ± f ck

)
, (8.A.4)

where f, c ∈ (0, 1]. After averaging over ±, the moments of W depend only on
a = f2 and s = c2, and can be written in terms of the above polynomials in the
form:

µ2n(a, s) =
∞∏

k=0

Pn

(
ask

)
, (8.A.5)

and

µ2n+1(a, s) =
∞∏

k=0

Qn

(
ask

)
. (8.A.6)

For example, when n = 1,

µ2(a, s) =
∞∏

k=0

(
1 + ask

)
= 1 +

∞∑
m=1

(
sm(m+1)/2∏m
k=1 (1 − sk)

)
am , (8.A.7)

and

µ3(a, s) =
∞∏

k=0

(
1 + 3ask

)
= µ2(3a, s) . (8.A.8)

The last expression for µ2 in (8.A.7) was originally derived by Euler, as discussed by
Hardy and Wright (1979), page 280. Taking the limit s → 1, we can use the fact that

lim
s→1

1 − sk

1 − s
= k

to show that

lim
s→1

(
µ2

exp( a
1−s )

)
= 1 , (8.A.9)

which implies an essential singularity in µ2. The third moment is also singular, since

lim
s→1

(
µ3

(µ2)
3

)
= 1 . (8.A.10)

We now generalize (8.A.8) and (8.A.10) to the remaining moments. By application
of Sturm’s theorem on polynomial roots localization, it can be shown that the roots
of Pn, Qn all lie on the negative real axis, so that we may write:

Pn(x) =
n∏

i=1

(
1 + Ri

(n)x
)

, (8.A.11)

and
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Qn(x) =
n∏

i=1

(
1 + R̃

(n)
i x

)
(8.A.12)

where the R(n), R̃(n) are sets of positive real numbers with n elements. The first four
sets are:

n R(n) R̃(n)

1 1 3
2 3 −

√
8, 3 +

√
8 5 −

√
20, 5 +

√
20

3 7 −
√

48, 1, 7 +
√

48 0.232, 1.572, 19.196
4 0.040, 0.446, 2.240, 25.274 0.132, 0.704, 3, 32.163 .

(8.A.13)

Moments of order 2n and 2n + 1 thus factor into n products:

µ2n(a, s) =
n∏

i=1

µ2

(
Ri

(n)a, s
)

, (8.A.14)

and

µ2n+1(a, s) =
n∏

i=1

µ2

(
R̃

(n)
i a, s

)
, (8.A.15)

so that all moments are determined by products of the second moment evaluated at
various rescaled values of the fractal parameter a = f2.

Combining (8.A.9) and (8.A.14), we find that in the singular limit,

lim
s→1

(
µ2n

(µ2)
∑n

i=1 Ri
(n)

)
= 1 , (8.A.16)

with a similar expression for the odd moments with Ri → R̃i. The sum of the roots
can be shown to equal the coefficient of the linear term in (8.A.1), so that:

n∑
i=1

Ri
(n) = 2n(2n − 1)/2 , (8.A.17)

and similarly for R̃i. The limits for the even and odd moments can then be combined
to yield:

lim
s→1

(
µn

(µ2)n(n−1)/2

)
= 1 , (8.A.18)

consistent with the behavior of moments of a lognormal.

Summary

By considering the roots of Pn, Qn in (8.A.11)–(8.A.12), we have seen in this Ap-
pendix that
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1. all the moments are explicitly determined by the second moment evaluated at
rescaled values of f , cf. (8.A.14) and (8.A.15); and

2. that the moments progress in the same ratios as for a lognormal distribution.

Note that this second fact does not imply that the pdf is lognormal, since a lognormal
is not uniquely determined by its moments, though it is determined by the moments
of the logarithm, which are discussed in Appendix 8.B. However, having the same
ratios as a lognormal does show that the higher moments diverge in the same way
as a lognormal when s = c2 → 1, each with an essential singularity, just like the
variance in (8.A.9), diverging like exp[a/(1 − s)].

8.B Reduction Factor and Variance of log W

Here we derive simple polynomial approximations for the reduction factor and the
standard deviation of log W , or equivalently log τ, as a function of the fractal para-
meter f with coefficients depending on c. For c = 2−1/3 (i.e., for –5/3 wavenumber
spectral exponent) these are well approximated by rational functions of f accurate
for f < 0.9. Also, we show that the reduction factor is approximately given by
χ ≈ exp−σ2/2, and insensitive to c as seen in Fig. 8.6.

The “effective” optical thickness defined in Sect. 8.5 is based on the following
result for the liquid water path W :

log W = log (W χ(f, c)) , (8.B.1)

where the overbar signifies an area and ensemble average, and where the “reduction
factor” is given by

χ(f, c) =

( ∞∏
n=0

(
1 − f2c2n

))1/2

. (8.B.2)

Here f varies diurnally, as discussed in Sec. 8.4, but c is assumed constant, given by
c = 2−1/3, or

c2 = 0.630 , (8.B.3)

as required for a k−5/3 wavenumber spectrum. Equations (8.B.1) and (8.B.2) were
derived in Cahalan et al. (1994b) assuming the statistical distribution generated by
the bounded cascade model. The reduction factor may also be expressed as

χ(f, c) = 10−∆(f,c) , (8.B.4)

where

∆(f, c) ≡ log W − log W . (8.B.5)

A polynomial expression for ∆ is obtained by taking log of (8.B.2), changing to base
e by multiplying by log e, and expanding in a power series in f , leading to
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∆(f, c) =
log e

2
f2

1 − c2

(
1 +

f2

1 + c2
+ O

(
f4
))

. (8.B.6)

For the value of c2 given in (8.B.3), a better fit than (8.B.6) is given by the rational
approximant:

∆(f) = 0.594 f2

(
1 − 0.485f2

1 − 0.739 f2

)
, (8.B.7)

which is accurate to 1% as long as f < 0.9.
The second moment of log W was derived in Cahalan et al. (1994b), and is given

by

M2(f) =
∞∑

k=1

(
1
2

log
(

1 + fck

1 − fck

))2

. (8.B.8)

If we take the square root of (8.B.8), and expand the result in powers of f , we obtain
the standard deviation of log W in the form:

σ(f, c) =
f log e√
1 − c2

(
1 +

1
3

f2

1 + c2
+ O

(
f4
))

. (8.B.9)

The first term here agrees with the standard deviation obtained by taking the square
root of the exponent of µ2 in the singular limit in (8.A.9). For the value of c2 in
(8.B.3) a better fit is given by the approximant:

σ(f) = 0.718 f

(
1 − 0.556 f2

1 − 0.729 f2

)
, (8.B.10)

which is accurate to 1% as long as f < 0.9.
Solving for f in (8.B.9), and substituting the result in (8.B.6) allows us to write

(8.B.4) to lowest order as:

χ(σ) = 10−σ2/2 log e ≈ 10−1.15 σ2
. (8.B.11)

The leading term in the exponent in (8.B.11) is independent of c, and the correction
terms are of order σ4 and quite small as long as σ < 0.8. The insensitivity to c is
verified in Fig. 8.6.
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1. For an early clear description of the cascading effect of dynamical processes on
cloud structure, see:

Welander, P. (1955). General development of motion in a 2D ideal fluid. Tellus, 7,
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A modern and popularized discussion of the evolution of cascades is in
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For a useful general approach to treating clouds in large-scale models, see:

Tiedtke, M. (1993). Representation of clouds in large-scale models. Mon. Wea. Rev.
121, 3040–3061.

2. There are many interesting alternatives to the “effective thickness approximation”
(ETA). Listed here are a few that are particularly instructive. A “generalized ETA” is
described in:

Szczap, F., H. Isaka, M. Saute, B. Guillemet and A. Iolthukhovski (2000). Effective
radiative properties of bounded cascade non-absorbing clouds: Definition of the
equivalent homogeneous cloud approximation. J. Geophys. Res., 105, 20,617–
20,633.

A generalization of the IPA to account for sun angle effects is the “tilted IPA” or
“TIPA” of:

Várnai, T. and Davies, R. (1999). Effects of cloud heterogeneities on shortwave radi-
ation: comparison of cloud-top variability and internal heterogeneity. J. Atmos.
Sci., 56, 4206–4224.
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Especially useful in the context of the “two-stream approximation” often used in
large-scale models is the “Gamma-weighted two-stream approximation” described
for example in:

Barker, H.W. (1996). A parameterization for computing grid-averaged solar fluxes
for inhomogeneous marine boundary layer clouds - Part 1, Methodology and
homogeneous biases. J. Atmos. Sci., 53, 2289–2303.

Oreopoulos, L. and H.W. Barker (1999). Accounting for subgrid-scale cloud variabil-
ity in a multi-layer 1D solar radiative transfer algorithm. Quart. J. Roy. Meteor.
Soc., 126, 301–330.

An interesting approach to taking advantage of cloud scaling properties in parame-
terizing effective cloud properties is the “renormalization” method described in (see
also Chap. 6):

Cairns, B., A.A. Lacis and B.E. Carlson (2000). Absorption within inhomogeneous
clouds and its parameterization in general circulation models. J. Atmos. Sci. 57,
700–714.

A model that treats a cloud distribution analogously to the drop distribution within a
cloud is the “independent scattering cloudlets” model described in:

Petty, G.W. (2002). Area-average solar radiative transfer in three-dimensionally in-
homogeneous clouds: the independently scattering cloudlets model. J. Atmos.
Sci., 59, 2910–2929.

3. There are many generalizations of the simple bounded cascade. For example, see:

Gollmer, S., Harshvardhan, R.F. Cahalan and J.B. Snider (1995). Windowed and
wavelet analysis of marine stratocumulus cloud inhomogeneity. J. Atmos. Sci.,
52, 3013–3030.

There are also a multiplicity of cloud structure models that can be compared to the
bounded cascade. We list here a few that are appropriate for various cloud types and
applications. A model helpful in understanding large-scale cloud statistics, especially
in the storm tracks, is the “cloud dot” model given in the appendix of:

Cahalan, R.F., D.A. Short and G.R. North (1982). Cloud fluctuation statistics. Mon.
Wea. Rev., 110, 26–43.

Interesting cascades have been developed for other geophysical fields, such as rain-
fall and vegetation. See for example:

Waymire, E. and V.J. Gupta (1981). The mathematical structure of rainfall repre-
sentations 1. A review of the stochastic rainfall models. Water Resour. Res., 17,
1261–1294.
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As c approaches unity in the bounded cascade, we reach an “essential ” singularity
that prevents the analytic continuation of the cloud properties to the singular c = 1
case. The singular case can be treated directly, as in the so-called “p-model” of

Meneveau, C. and K.R. Sreenivasan (1987). Simple multifractal cascade model for
fully developed turbulence. Phys. Rev. Lett., 59, 1424–1427.

Singularities in unbounded cascades can be tamed by integration, for example (see
also the volume’s Appendix at the end of the book) in the “fractionally integrated”
model of:

Schertzer, D. and S. Lovejoy (1987). Physical modeling and analysis of rain and
clouds by anisotropic scaling multiplicative processes. J. Geophys. Res., 92,
9693–9714.

The above is not meant to be an exhaustive bibliography, which would take many
pages, but only to point the reader in some interesting directions that may be help-
ful in their own areas of interest. Simple models of complex structure share many
common features, so that often qualitative behavior discovered in the context of one
simple model such as the bounded cascade, or any other listed above, may have sur-
prisingly broad applicability. A model has served its purpose well if it prompts the
researcher to ask productive questions that lead to a better understanding.
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9.1 Introduction and Outline

Arguably, much of what makes Earth’s climate so complex, difficult to predict, and
worthy of study arises from the four-dimensional interaction between broadband
(BB) radiation and the three phases of water. The most elusive of these interactions
almost certainly involves clouds. Indeed, it is widely recognized that interactions be-
tween clouds and radiation are central to Earth’s climate and thus climatic change
(e.g., Intergovernmental Panel on Climate Change, 1996). Though radiative trans-
fer in narrow spectral ranges is often key to climatic sub-systems (e.g., stratospheric
dynamics, living organisms), anthropogenic climate forcings (e.g., increasing con-
centrations of CO2 and CFCs), and remote sensing, Earth’s hydrologic cycle is de-
termined much by the BB radiative budget of the surface-lower atmosphere system
which is, in turn, governed much by clouds. Thus, given the lofty climatic role of
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BB radiation and the heavy restrictions on modelling clouds and radiative transfer
in large-scale atmospheric models (LSAMs), it is essential that this book contain an
extended discussion of BB radiative transfer for cloudy atmospheres.

As in most studies, BB irradiances are defined here for incoming solar radiation
and terrestrial radiation emitted by the Earth-atmosphere system. Naturally these
sources overlap but for the most part they can be considered as exclusive and to span
wavelengths between 0.2 – 5 µm and 5 – 50 µm, respectively.

The second section of this chapter gives a brief overview of how radiation figures
into the climate system and the important role that BB radiation plays in diagnosing
both real and modelled climate. The third section briefly presents popular methods
for computing BB irradiances as well as issues facing all BB radiation codes. The
fourth and fifth sections discuss modelling BB radiative transfer using 3D Monte
Carlo methods and 1D algorithms, respectively, with emphasis on realistic cloudy
atmospheres. Here the focus is on solar radiation because: i) much more research has
been done on solar transfer through realistic cloud fields than on longwave transfer;
and ii) BB longwave transfer is addressed thoroughly in Chap. 10 of this book. In the
sixth section results from 3D Monte Carlo algorithms and 1D models are compared
and contrasted. The final section provides a summary and conclusion.

9.2 Clouds, Radiation, and Climate

The purpose of this section is to provide an overview of the climatic importance
of clouds from a BB radiative standpoint. It discusses the impact of clouds on
Earth’s radiation budget and the prominent role of radiation in cloud-climate feed-
back processes.

9.2.1 The Impact on Clouds on Earth’s Radiation Budget

Perhaps the most straightforward and simple diagnostic measure of the impact of
clouds on Earth’s radiation budget is cloud radiative forcing. Since cloud radiative
forcing is not a forcing in the conventional sense of a perturbation to a system in
(quasi-)equilibrium but rather the integrated radiative impact of clouds as they (and
the rest of the system) evolved over a period of time, this has prompted some to use
the more apt term cloud radiative effect (CRE). Since CRE is a more precise term,
it is used in this chapter and defined as

CRE = Fall − Fclr , (9.1)

where Fall and Fclr are generally net BB irradiances for all-sky and cloudless condi-
tions. Irradiances can be measured at any level, including the surface, or they can be
replaced with net fluxes for some layer, including the entire atmosphere. More often
than not, Fclr and Fall in (9.1) are discussed in terms of monthly means. Net fluxes at
the top of the atmosphere (TOA) are used most commonly to define CRE. Not only
is this because the TOA represents the ultimate energy budget level, but satellites are
the only means of providing near-global coverage of CRE.
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Fig. 9.1. Zonally averaged, monthly mean TOA CRE for shortwave (SW), longwave (LW),
and net (NET) radiation as functions of latitude. These values were inferred from CERES
satellite radiances using Earth Radiation Budget Experiment (ERBE) conversion algorithms.
Global averages are listed on the plots (data courtesy of T. Wong and N. Loeb)

The attractiveness of CRE is that the integrated impact of clouds on Earth’s ra-
diation budget can be both measured and computed in a climate model fairly easily.
Concerns have been raised over computation of Fclr. The point being that within an
LSAM it is extremely convenient and simple to remove clouds and compute diagnos-
tic clear-sky irradiances. With observations, however, measurements of Fclr require
truly clear-skies whose atmospheric characteristics can be expected to differ sys-
tematically from mean all-sky conditions. Nevertheless, Fig. 9.1 shows zonally av-
eraged, monthly mean CRE for shortwave, longwave, and net radiation as inferred
from CERES satellite radiances using Earth Radiation Budget Experiment (ERBE)
conversion algorithms. Shortwave CREs are maximized (>120 Wm−2) in the sum-
mer hemisphere at about latitude 60◦ where solar input is largest and low clouds are
abundant, with a secondary maximum in the tropics. The reverse is true for longwave
CREs where near-ubiquitous high cool clouds in the tropics contrast sharply with
warm oceans. Spatial breakdowns of these plots can be seen in Chap. 10. Globally
averaged, net CRE is −22 Wm−2 indicating that for present-day climate, clouds act
to cool Earth.

9.2.2 Radiation and Cloud-Climate Feedbacks

The fundamental working hypothesis in analysis of climate feedbacks is that over a
sufficiently long period of time T (>1 year), the Earth-atmosphere system (techni-
cally at the tropopause) is in radiative equilibrium such that∫

T

{
F�(t)

4
[1 − αp(t)] − I(t)

}
dt = 0 , (9.2)



452 H.W. Barker

where F� is incoming normal solar irradiance (annual mean of ≈1368 Wm−2 as de-
duced from several satellites over the past 20 years), αp is planetary albedo, and I is
net longwave radiation at the tropopause. All of the quantities in (9.2) are spectrally-
integrated. By virtue of external forcings such as fluctuations in F�, evolution of
Earth (including human impacts and volcanism), and the internal chaotic nature of
Earth’s climate, (9.2) is never satisfied perfectly. Conventionally, however, climate
sensitivity has been assessed by assuming that (9.2) holds and that perturbations,
either internal or external, to (9.2) by amounts ∆R are sudden and followed by
restoration of equilibrium so that (9.2) holds again. In actuality, ∆R are always time-
dependent thereby making forcing, restoration of equilibrium, and internal chaotic
behaviour inexorably intertwined. Nevertheless, the force-restore paradigm of ana-
lyzing (9.2) is tractable, succinct, and can be expanded easily to address many de-
tailed questions.

The common view of climatic change has been, and in many respects still is, how
much Earth’s mean annual surface temperature Ts changes given ∆R. Using linear
feedback theory and (9.2), it can be shown (e.g., Schlesinger and Mitchell, 1987) that
for a perturbation of ∆R, change in Ts can be approximated as

∆Ts ≈
−∆R

∂I
∂Ts

+
F�
4

∂αp

∂Ts︸ ︷︷ ︸+
∑

i

[
∂I
∂xi

+
F�
4

∂αp

∂xi

]
dxi

dTs︸ ︷︷ ︸
initial feedbacks

, (9.3)

where xi are climate variables including cloud-related properties such as cloud frac-
tion, cloudtop altitude, and water path. The term labelled initial is simply the system
response in the absence of internal adjustment. For example, a doubling of CO2 con-
centration ([CO2]) will increase the opacity of Earth’s atmosphere and reduce net
longwave radiation at the tropopause resulting in ∆R ≈ −4 Wm−2 (Cess et al.,
1993) and

∂I
∂Ts

≈ 4εσBT 3
s ≈ 3.3 W m−2/K (9.4a)

and

ε ≈
F�
4

(1 − αp)

σBT 4
s

≈ 0.62 , (9.4b)

where σB is Stefan-Boltzmann’s constant, Ts ≈ 287 K, ε is mean atmospheric long-
wave transmittance for radiation emitted by the surface given a mean value for αp

of 0.3. Since changing [CO2] impacts αp minimally, doubling [CO2] would result in
roughly

∆Ts ≈ 1.2 K (9.4c)

in the absence of feedbacks.
The term in (9.3) labelled feedbacks is, however, where much of the uncertainty

about, and research into, climate prediction rests. Each feedback process consists of
two parts:
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∂I
∂xi

+
F�
4

∂αp

∂xi

]
︸ ︷︷ ︸×

dxi

dTs︸︷︷︸
radiative dynamic

(9.5a)

and feedback processes are inexorably linked to each other as demonstrated by

dxi

dTs
=

∂xi

∂Ts
+
∑

j

∂xi

∂xj

dxj

dTs
. (9.5b)

As such, each feedback process has a clear impact on Earth’s radiation budget which
means direct reliance on a model’s treatment of radiative transfer and optical proper-
ties.

Several studies have shown that the climate system appears to be sensitive to
seemingly small but systematic changes in cloud properties and assumptions about
clouds (Senior, 1999). Moreover, model intercomparison studies reveal that much
of the uncertainty associated with climate sensitivity (i.e., the denominator in (9.3))
stems from clouds. Thus, when feedbacks are included, estimates of ∆Ts lie between
1◦C and 5◦C with representation of clouds being responsible for much of this range
(Intergovernmental Panel on Climate Change, 1996). Radiative transfer model in-
tercomparison studies reported by Fouquart et al. (1991) and Barker et al. (2003)
indicate that when several different radiative transfer models act on identical clear
and cloudy atmospheres, the range of responses can be surprisingly large. Thus, it
is still not clear how much of the disparity among GCM-predicted cloud-radiative
feedbacks is due to different treatments of clouds and their optical properties and
how much is due to different treatments of radiative transfer (particularly for cloudy
atmospheres).

A drawback to conventional feedback analysis is that climatic change is por-
trayed as changes to mean values only. For example, if changes to cloud fraction
Ac occurred only at night, the solar portion of the feedback would be zero. Straight
application of (9.3) would, however, yield a phantom solar feedback of

∂αp

∂Ac

dAc

dTs
≈ (αcld − αclr)

∆Ac

∆Ts
(9.6)

where αcld and αclr are cloudy-sky and clear-sky albedos, at the expense of what
should have been ascribed entirely to the longwave. A more thorough feedback
analysis would involve conditional distribution functions. This way, mean values
of xi may remain fixed but their distributions may flex (perfectly legitimate climatic
change). Still, however, this would fall short of a truly satisfying method of analyz-
ing climatic change. Take, for example, a situation where everything about clouds
remains unchanged except the frequency of occurrence of multi-layered systems and
their overlapping pattern. This would certainly impact Earth’s radiation budget but it
would be very difficult to tie the change to something other than the hazy notion of
total cloud fraction for layer cloud fractions remaining fixed.

To summarize, representation of cloud-radiative feedbacks in LSAMs is crucial
for confident prediction of climate, and this points directly to how well LSAMs
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account for BB cloud optical properties and radiative transfer for cloudy atmospheres.
The following section discusses current procedures for modelling BB radiation.

9.3 Characteristics of Clear-Sky Transmittance, Surface Albedo,
and Cloud Optical Properties

When performing BB simulations, clear-sky transmittances are required by all at-
mospheric radiative transfer models. Therefore it is essential to at least review popu-
lar techniques for simulating clear-sky, BB irradiances. Likewise, since all BB codes
require estimates of spectral surface albedo and cloud optical properties, these are
reviewed briefly as well.

9.3.1 Clear-Sky Transmittance

Obviously, the ideal way to compute BB irradiances is to perform extremely high
spectral resolution line-by-line (LBL) simulations of the monochromatic radiative
transfer equation and integrate results for individual lines (e.g., Mlawer et al., 2000).
These models are based on detailed descriptions of spectral lines in conjunction with
assumptions about line structure and interactions. Generally, broadening of lines
are assumed to extend for about 30 cm−1. By most people’s standards, LBLs are
still computationally debilitating (even for perfectly clear-sky conditions) and are
viewed by most as purveyors of valuable high spectral resolution benchmarks for
well-defined atmospheres that can be used to assess other, more approximate, mod-
els. As yet, LBL simulations are performed for plane-parallel, homogeneous (PPH)
atmospheres only. The two radiative transfer model intercomparison studies men-
tioned above have employed LBL calculations as industry benchmarks.

Figure 9.2 shows differences between measured and LBL modelled direct and
diffuse spectral irradiances for a moderate solar slant path through a midlatitude
summer-like water vapour burden. Only a small amount of aerosol was needed to
account for direct irradiance, and reasonable aerosol optical properties (�0 = 0.9
and g = 0.7) were required to bring modelled diffuse irradiances into line with mea-
sured values. Examples such as this are important because they show no significant
anomalous absorption and provide confidence that LBLs are benchmark-worthy. In
this spirit, Fig. 9.3 shows results from Barker et al. (2003) for the tropical clear-sky
atmosphere where the CHARTS model was used to assess numerous 1D models.
Here it is clear that most 1D models (many of which see active service in opera-
tional LSAMs) underestimate absorption by water vapour by between 10 Wm−2 and
40 Wm−2 for overhead Sun in the tropics.

For most applications, LBL calculations are not tenable so simplifications must
be made. For example, in an LSAM one can expect to execute only a relatively small
number of multi-layer radiative transfer simulations for each atmospheric column.
As such, sweeping integrations over spectral bands must be done. The biggest chal-
lenge is accounting for the rapid fluctuations of gaseous absorption in spectral space
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Fig. 9.2. Differences between measured and modelled spectral fluxes from 0.36 µm to 1 µm.
Measurements were made on 03/20/2000 at 1226 LST with the Rotating Shadowband Spec-
trometer (RSS) at the Atmospheric Radiation Measurement (ARM) site in OK, USA. Model
results were obtained from the CHARTS model maintained by Atmospheric Environment
Research (AER). Solar zenith angle was 40◦ precipitable water amount was 1.16 cm, and as-
sumed aerosol optical depth was 0.0344 (at 0.7 µm; Ångström exponent of 2.24). Integrated
direct and diffuse measured irradiances were 707 Wm−2 and 56.2 Wm−2. Integrated differ-
ences are listed on the plots (data courtesy of E. Mlawer)

and their spectrally-unresolved convolution with irradiances and cloud optical prop-
erties.

Though several methods exist for computing gaseous transmittances, it is prob-
ably safe to assume that operational BB atmospheric radiative transfer modelling
is firmly ensconced in the correlated k-distribution (CKD) paradigm (Lacis et al.,
1979; Lacis and Oinas, 1991), the essence of which rests in its parent k-distribution
method.

Spectrally-averaged transmittance (for uniform spectral irradiance) along a
straight line between two levels z1 and z2 would be computed via LBL as

T∆ν =
∫
∆ν

exp

⎡⎣− z2∫
z1

k (ν; p(z), T (z)) ρ(z)dz

⎤⎦ dν
∆ν

, (9.7)

where p, T , and ρ are pressure, temperature, and density. However, with the corre-
lated k-distribution method, we have

T∆ν =

1∫
0

exp

⎡⎣− z2∫
z1

k (g; p(z), T (z)) ρ(z)dz

⎤⎦dg , (9.8)
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0.2 - 0.7 µm

0.7 - 5 µm

0.2 - 5 µm

0.2 - 0.7 µm

0.7 - 5 µm

Fig. 9.3. TOA albedo and atmospheric absorptance for three spectral ranges (wavelengths
listed on the plots) as functions of µ0 for the clear-sky tropical standard atmosphere with
broadband surface albedo 0.2. Results are shown for an LBL model (CHARTS) and a Monte
Carlo algorithm that accounted for gaseous absorption with a CKD model. Also shown are
means and quartiles for 18 1D solar transfer codes. Many of these 1D models were employed
at the time in operational weather prediction or global climate models

Fig. 9.4. Plot on the left shows absorption coefficients kν across the O2 A-band at two altitudes
as functions of wavenumber. Plot on the right shows normalized cumulative distributions for
the same kν as plotted on the left

where k has been transformed from wavenumber space into cumulative probability-
space where g is the cumulative distribution of k over the interval ∆ν. Figure 9.4
shows k (ν) and k (g) over the oxygen A-band at two altitudes. Clearly, integration
of k (g) can be achieved with relatively few judiciously chosen quadrature points
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while numerical integration of k (ν) is formidable. The CKD method builds on the
k-distribution method by harvesting obvious strong correlations between spectral
signatures at different conditions (see Fig. 9.4). For practical issues involving spectral-
weighting and overlap of different gases, see Fu and Liou (1992).

9.3.2 Surface Albedo

Spectral surface albedos αs (λ) are used as lower boundary conditions for atmospheric
radiative transfer models. What is subsumed under the convenient blanket of surface
albedo is actually the result of an immensely complex radiative transfer process. This
is elaborated on in Chap. 14 for vegetated surfaces. For now it suffices to say that
like gases, some surfaces exhibit complex spectral albedos that are complicated by
changing internal conditions, such as soil moisture and snow cover, and dependen-
cies on illumination conditions.

Figure 9.5 shows visible and near-IR αs (λ) for various surface types at solar
zenith angles θ0 near 60◦. Clearly, atmospheric radiative transfer models face the
same problem with surface albedo as they do with gases. That is, BB models require
spectrally-weighted surface albedos, but the necessary spectral irradiances needed to
compute mean albedo are not available. Generally, simple uniform weightings are
applied and surfaces are assumed to be perfectly Lambertian. There is, however, the
possibility of assigning spectral subgrid values of αs (λ) to each k-value in a CKD
algorithm. This is at best a long way off as most applications draw only a gross dis-
tinction between albedo in a few bands across the solar spectrum (e.g., <0.7 µm and

Fig. 9.5. Examples of spectral surface albedos for various surface types (data, courtesy of Z.
Li, collected during spring in OK, USA)
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>0.7 µm). Likewise, dependencies on θ0 are generally crude and often do not distin-
guish between direct and diffuse albedos (but again, this partition actually requires
solution of the radiative transfer algorithm).

9.3.3 Cloud Optical Properties

For liquid clouds it is sufficient to assume that droplets are spherical and pure water.
Cloud optical properties can be computed using Mie theory as functions of refractive
indices, wavelength of radiation, and droplet radius r.

For both LSAMs and Monte Carlo simulations, it is neither efficient nor neces-
sary to perform on-line Mie calculations. Instead, σ, �0 , and g are parametrized as
functions of droplet effective radius which is defined as (Hansen and Travis, 1974)

re =

∫∞
0

r3n(r)dr∫∞
0

r2n(r)dr
, (9.9)

where n(r) is droplet size distribution. The most popular cloud optical property para-
metrizations for solar wavelengths are those of Hu and Stamnes (1993) and Slingo
(1989); both allow up to 24 bands across the solar spectrum. Hu and
Stamnes’s covers a wider range of re than does Slingo’s and it also covers the ter-
restrial spectrum (allowing up to 50 bands). While both parametrizations agree well
for σ and �0, Fig. 9.6 shows that at re = 10 µm they disagree for g with Hu and
Stamnes in better agreement with Mie values but their parametrization exhibits dis-
continuities at certain values of re. The size distributions used here were Gamma
distributions with effective variances of 0.1. Effective variance is defined as

ve =

∫∞
0

(r − re)2r2n(r)dr

r2
e

∫∞
0

r2n(r)dr
. (9.10)

Though the discrepancy may appear to be small, to bring Hu and Stamnes’s es-
timates down to Slingo’s requires re = 6 µm. This change in re exceeds even the
largest changes to mean re expected to have taken place over the industrial era due
to increased condensation of cloud condensation nuclei.

For clouds consisting of ice, be they mixed phase or entirely ice, specification
of optical properties is difficult and results are always questionable. This is because
of the myriad of forms that ice crystals can assume (e.g., Liou, 1992). The relative
rarity of optical phenomena like halos coupled with evidence from particle images
suggests, however, that from a climatological standpoint, the habit of most ice crys-
tals is highly irregular. If so, this makes specification of their optical properties for
climate studies somewhat more tractable and certain.

9.4 Computing Broadband Irradiances
using Monte Carlo Algorithms

While the Monte Carlo method can be the most accurate solution of the radiative
transfer equation, it can, under certain conditions, also be the fastest way to compute
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Fig. 9.6. Asymmetry parameter g predicted by Mie theory for a cloud droplet size distribution
described by a Gamma distribution with re = 10 µm and effective variance ve = 0.1. Also
shown are broadband values of g as given by the parametrizations of Hu and Stamnes (1993)
and Slingo (1989)

BB solar irradiances for 3D cloudy atmospheres. Hence, issues of particular concern
to computation of BB solar irradiances using Monte Carlo algorithms are considered
here, thereby augmenting part of Chap. 4 (see also Chap. 10 for a discussion of
Monte Carlo LW codes).

The primary advantage that Monte Carlo codes have over analytic codes when
performing BB calculations is that spectral integration can be performed via the
Monte Carlo method. In general, the intention is to compute integrated irradiance
( Wm−2) defined as

F =

λ2∫
λ1

S(λ)T (λ)dλ , (9.11)

where S(λ) is a spectral source ( Wm−2 µm−1), and T (λ) is a fractional irradiance
(essentially transmittance). Since S(λ) is generally non-analytic, assume that it is
tabulated for J bands across the interval [λ1, λ2] and that the fractional amount of
energy in the jth band is

sj =

∫ λj+1

λj
S(λ)dλ∫ λ2

λ1
S(λ)dλ

=
Sj∫ λ2

λ1
S(λ)dλ

. (9.12)
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Though sophisticated strategies exist for optimizing integration of (9.11), the sim-
plest way to proceed is to approximate F by

F ≈
J∑

j=1

SjTj , (9.13a)

where Tj are obtained with the Monte Carlo transport algorithm using

nj = sjNp , (9.13b)

photons where Np is the total number of photons for the simulation. With this ap-
proach, time required to compute F is independent of J and so as more spectral
information is included, time required to perform radiative transfer calculations does
not change. Only the time required to compute atmospheric optical properties in-
creases. For a given Np, however, the statistical significance of irradiances in each
band decreases as J increases. An analytic model, on the other hand, requires the
same optical properties as the Monte Carlo, but it must run through full computa-
tions for each band. So as J increases, time to compute F increases too.

As with spectral weighting, temporally-averaged quantities can be obtained rap-
idly via Monte Carlo integration over time. When mean values are sought over a time
period, one has to: i) specify latitude θL and day number Nd; ii); set the start t1 and
stop t2 times (LST); and iii) inject photons at cosine of zenith angles

µ0 = sin δ(Nd) sin θL + cos δ(Nd) cos θL cos(αθh) , (9.14a)

where δ(Nd) is solar declination, α a uniform random number between 0 and 1,
and θh is hour angle between sunrise and noon. When diurnal means are required,
photons are injected at

µ0 = sin δ(Nd) sin θL

+ cos δ(Nd) cos θL cos
{

α cos−1 [− tan δ(Nd) tan θL]
}

. (9.14b)

This procedure affects a uniform, random sampling of time. In these cases, initial
weights of photons are not 1 but µ0, and accumulated radiative quantities are not
normalized by Np, but rather by

Np∑
i=1

µ0(i) , (9.15)

where µ0(i) is the incident cosine of zenith angle for the ith photon.
Since irradiances are of concern, details of scattering phase functions are usu-

ally irrelevant thereby rendering analytic approximations sufficient. The Henyey-
Greenstein phase function is the most common analytic phase function and it is ex-
pressed as

PHG(µs) =
1 − g2

(1 + g2 − 2gµs)
3/2

, (9.16a)
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where µs is cosine of scattering angle, and g is asymmetry parameter defined as

g =
1
2

1∫
−1

PHG(µs)µsdµs . (9.16b)

Random cosine of scattering angles can be determined analytically as

µs =

⎧⎪⎪⎨⎪⎪⎩
1
2g

[
1 + g2 −

(
1 − g2

1 + g − 2gα

)2
]

; |g| ≤ 1, g �= 0

1 − 2α ; g = 0

, (9.16c)

where α is again a uniform random number between 0 and 1.
Imagine that each cell in a 3D Monte Carlo simulation has M constituents with

optical properties
(

σ(m), �
(m)
0 , g(m)

)
for a particular spectral band. These could

be any number of gases, aerosols, and cloud droplet size ranges. The most common
way to perform the simulation is to create a single set of optical properties for each
grid-cell by summing according to

σ =
M∑

m=1
σ(m)

�0 =

M∑
m=1

σ(m)�
(m)
0

σ

g =

M∑
m=1

σ(m)�
(m)
0 g(m)

σ�0
.

(9.17)

Alternatively, one could carry M fields of optical properties and have the algorithm
decide at each photon-matter interaction what constituent M ′ has been encountered
by solving

M ′−1∑
m=0

σ(m) < ασ ≤
M ′∑

m=1

σ(m)
[
σ(0) = 0,M ′ = 1, . . . , M

]
, (9.18)

where σ is defined in (9.17) and α a uniform random number between 0 and 1.
This method becomes almost essential if Mie phase functions are desired for it cir-
cumvents the need to assign a detailed Mie phase function (and cumulative phase
function) to each cell; only the cumulative distribution of σ need be carried.

Once M ′ is determined, the probability of surviving the encounter is �
(M ′)
0 .

If it survives, the appropriate phase function (be it PHG or a full Mie function) is
used to determine the scattering direction. This way, 3D distributions of atmospheric
absorption by each constituent can be computed easily.
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9.5 Computing Broadband Irradiances using 1D Algorithms

For several decades now, LSAMs have employed multi-layer 1D codes for compu-
tation of heating and cooling rate profiles. Up until the 1990s, descriptions of clouds
by LSAMs left much to be desired and thus did not warrant sophisticated treatments
of cloud-radiation interactions. The advent of detailed cloud parametrizations (e.g.,
Smith, 1990) has, however, fuelled the need for radiative transfer codes that consider
interactions between unresolved clouds and radiation fields. The focus of this sec-
tion is therefore on methods of accounting for unresolved clouds in multi-layer 1D
radiative transfer models.

9.5.1 Cloud Fraction

The most basic issue involving clouds for a 1D code is cloud fraction Ac. Matrix
methods for solving the 1D radiative transfer equation had been used widely up until
attempts to account explicitly for layers filled partially by cloud. Partial cloudiness
(which can be taken as the rule at typical large-scale model horizontal grid-spacings;
Rossow (1989)) is handled better by adding solutions that ensure continuity of fluxes
at levels using layer reflectance and transmittances for collimated and diffuse irradi-
ance (e.g., Liou, 1992).

Typically, a 1D radiative transfer algorithm computes mean irradiances emerging
from a layer as

Fall = (1 − Ac) Fclr + AcFcld , (9.19)

where Fcld is irradiance associated with the cloudy portion of the layer. There are,
however, some implicit assumptions behind (9.19) as expressed by Stephens (1988).
First is the definition of Ac itself. Clearly it rests on imposition of a threshold at some
spatial scale. The more fundamental definition would involve the actual cloud itself,
and this is known as intrinsic cloud fraction. Here one could imagine cloud water
content L varying across a cell and defined with a probability density function p(L)
such that

Ac ≡
∞∫

L∗

p(L)dL , (9.20a)

where L∗ ≥ 0 is some inner-scale-dependent threshold. Likewise, an extrinsic cloud
fraction would be defined by a less direct measure such as shortwave reflectance R:

Ac ≡
∞∫

R∗

p(R)dR , (9.20b)

where again R∗ ≥ 0 is a scale-dependent threshold above which cloud is deemed to
be present and p(R) is a density function describing the distribution of reflectance
over a domain. This definition of Ac is actually more in line with an intrinsic defin-
ition that uses cloud water path integrated through a layer and so would correspond
to the more common interpretation of Ac as a vertically-projected fractional area
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(rather than a volume). What Stephens (1988) showed was that (9.19) assumes there
are no correlations between fluctuations in the radiation and cloud fields. In a similar
vain, Barker and Wielicki (1997) considered domain-averaged diffuse transmittance
through a partially cloudy layer to be defined as

Tall = 1 − Âc + 2

1∫
0

∞∫
0

Ac (µ) e−τ/µp (τ | µ) µdτdµ , (9.21)

where Âc is cloud fraction presented to a diffuse beam, Ac (µ) is cloud fraction as
a function of zenith angle, e−τ/µ is direct-beam transmittance, and p (τ | µ) is the
distribution of cloud optical depth τ conditional on µ. The conditionality on µ arises
due to horizontal smoothing along lines of sight as zenith angle increases. This, in
conjunction with Stephens’s elucidations, demonstrates that decoupling cloud frac-
tion and radiation must always be approximate when considering domain-averaged
computations. To add to this difficulty, values of Ac as supplied by the cloud routine
in an LSAM may not be the ones that the radiation, or some other physics routine, is
expecting (cf. volume to area definitions). This is further confounded by the fact that
what cloud atlases (e.g., Warren et al., 1986) supply may differ from what an LSAM
produces and/or uses in its radiation code (though it is not possible to label one as
more realistic than the other given the highly subjective nature of Ac).

9.5.2 Multi-Layer Radiation Codes and Cloud Overlap

Ideally, we would like to represent clouds in a radiative transfer model the same way
we tend to think of them: as entities. For large domains, however, this simple notion
clearly breaks down. Moreover, if a cloud could be represented successfully as an
entity (e.g., marine boundary layer clouds), there is nothing stopping the cloud from
being sliced into arbitrary layers as dictated by the LSAM. This leads immediately
to the question of how to convey information to the radiative transfer model about
the vertical overlapping of partially cloudy layers.

The simplest overlap configuration is to assume that clouds overlap randomly.
This could be achieved two ways. Consider the simple case of transparent clear-sky,
non-absorbing clouds, and diffuse irradiance. The first way is to specify the excepted
overlapping pattern such that diffuse albedo for a two-layer system is described as

R12 = Ac1 (1 − Ac2) R(τ1)︸ ︷︷ ︸ + Ac2 (1 − Ac1) R(τ2)︸ ︷︷ ︸ + Ac1Ac2R(τ1 + τ2)︸ ︷︷ ︸
non-overlapping non-overlapping overlapping

upper cloud lower cloud clouds

(9.22a)

where Ac1 and Ac2 are cloud fractions in the top and bottom layers, R is albedo, τ1

and τ2 are cloud optical depths for the two layers, and

R(τ1 + τ2) = R(τ1) +
[1 − R(τ1)]

2
R(τ2)

1 − R(τ1)R(τ2)
(9.22b)
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Fig. 9.7. Total albedo r12 of a simple two-layer cloud system as a function of cloud fraction
in the upper layer Ac1 computed by two methods of accounting for random overlap of cloud:
method 1 is for (9.22); and method 2 is for (9.23). Also shown are fractional differences
between r12 as predicted by these methods. Values in the titles are: albedo for upper layer
clouds r1; albedo for lower layer clouds r2; and cloud fraction in lower layer Ac2

is albedo of the combined layers for the cloudy portion. This combinatorial approach
is employed at times but can become overwhelming when many layers are involved.
Alternatively, albedo for the two layers could be defined as

R12 = Ac1R(τ1) +
[1 − Ac1 + Ac1T (τ1)]

2
Ac2R(τ2)

1 − Ac1R(τ1)Ac2R(τ2)
, (9.23)

where T is transmittance, and it has been assumed that there is no correlation be-
tween radiation emerging from the top layer and optical properties of the lower layer.
Figure 9.7 shows R12 computed by both (9.22) and (9.23). For the realistic case on
the left, differences (even at Ac1 = 1) between the methods are minor, but the ex-
treme case produces differences in excess of 10%. Under most conditions having two
distinct cloudy layers, (9.23) is the better approximation (Barker et al., 1999).

The other extreme overlap approximation that is used with increasingly regu-
larity follows from the assumption that clouds in contiguous layers are maximally
overlapped and randomly overlapped when separated by a clear layer (Geleyn and
Hollingsworth, 1979). While maximum overlap of contiguous layers becomes an in-
creasingly better assumption as layer thicknesses approach 0, for large grid cells, one
can expect a mixture of random and near-maximum overlap; due simply to entrain-
ment, shearing, and a continuum of cloud development (Barker et al., 1999; Hogan
and Illingworth, 2000). In response to this, several models are beginning to take a
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more general approach to overlap where the fractional overlap between clouds in
any layer can take on any possible value (e.g., Li, 2002).

9.5.3 Horizontal Variability of Overlapping Cloud

While there are several ways to account for horizontal variations in cloud water path,
only the Gamma-weighted two-stream approximation (GWTSA) method (Barker
et al., 1996) is considered here. This is because other methods are documented in
Chap. 6, the multi-layer GWTSA for both shortwave and longwave radiation has
been assessed extensively in the literature (e.g., Oreopoulos and Barker, 1999; Barker
and Fu, 2000; Li and Barker, 2002), and some pertinent issues facing 1D models that
attempt to account for unresolved cloud effects have been investigated only through
the GWTSA. Thus, in this subsection, the GWTSA will be reviewed, first for short-
wave and then for longwave, and general issues facing all 1D codes that attempt to
address unresolved clouds will be discussed.

Shortwave

To recapitulate part of Chap. 6, the GWTSA is a brute-force example of a stochastic
Independent Column Approximation (ICA) where mean transmittance and albedo
for direct solar irradiance are expressed as{

TΓ

RΓ

}
=

∞∫
0

pΓ (τ)

{
Tpp(τ)

Rpp(τ)

}
dτ , (9.24)

where Tpp and Rpp are transmittance and albedo as predicted by a standard two-
stream model,

pΓ (τ) =
1

Γ(ν)

(ν
τ

)ν
τν−1e−ντ/τ , (9.25)

for τ > 0, is the Gamma distribution that approximates the distribution of τ over
an LSAM’s grid-cell, Γ(ν) is the Gamma function, τ > 0 is mean optical depth,
and ν > 0 depends on the variance τ2 − τ2 of τ and can be solved for by either
the method of moments (1/ν = τ2/τ2 − 1) or by maximum likelihood estimation.
Note that the neither the GWTSA nor any other 1D radiative transfer models account
for the truly geometric aspect of 3D radiative transfer. As such, the natural standard
against which 1D parametrizations should be judged is the explicit ICA (affected in
a Monte Carlo algorithm by setting horizontal grid-spacing arbitrarily large). Substi-
tuting generalized two-stream expressions for Tpp and Rpp for �0 < 1 (Meador and
Weaver, 1980) along with (9.25) into (9.24) leads to

TΓ =
(

ν
ν + τ/µ0

)ν

− φν
1

�0

a
[t+F (β, ν, φ4) − t−F (β, ν, φ5) − tF (β, ν, φ6)]

(9.26a)

RΓ = φν
1

�0

a
[r+F (β, ν, φ1) − r−F (β, ν, φ2) − rF (β, ν, φ3)] , (9.26b)
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where

F (β, ν, φ) =
∞∑

n=0

βn

(φ + n)ν , with |β| ≤ 1 (β �= 1) and ν > 0 , (9.26c)

and the parameters φ1,...,6, β, a, r, t, t±, and r± depend on either the choice of two-
stream approximation, cloud optical properties, or µ0. The removable singularity in
the two-stream at �0 = 1 (β = 1) leads to different expressions for TΓ and RΓ.
Corresponding expressions for diffuse irradiance can be found in Oreopoulos and
Barker (1999).

While derivation and application of (9.26) is straightforward, matters become
much more complex when one attempts to use (9.26) in a multi-layer code. This goes
for any model that addresses subgrid-scale variable cloud-radiation interactions. The
essence of the issue is the fact that, unlike a 1D homogeneous overcast, irradiances
associated with cloudy regions are no longer unique but rather they too vary hori-
zontally. This is easiest to appreciate with normal direct-beam irradiance. Consider a
cloud that is vertically homogeneous but has horizontal variability defined by pΓ (τ).
Following from (9.24) and (9.25), mean direct-beam transmittance is

Tdir =

∞∫
0

pΓ (τ) e−τdτ

=
(

ν
ν + τ

)ν

.

(9.27)

Assume now that this cloud is partitioned into n equal layers, each having pΓ (τ)
defined with (τ/n, ν). The conventional method for computing overall transmittance
would be to simply multiply layer transmittances thereby giving

T
′
dir =

n∏
i=1

(
ν

ν + τ/n

)ν

=
(

νn

νn + τ

)νn

≤
(

ν
ν + τ

)ν

= Tdir .

(9.28)

The important point is that the number of layers n and the variance parameter ν
are commutable, so in the limit as either n or ν goes to ∞, the latter representing
homogeneity,

T
′
dir = lim

(n or ν)→∞

(
νn

νn + τ

)νn

= e−τ ≤ Tdir . (9.29)

Thus, each time the original layer is partitioned and the correct Gamma-weighted
layer mean transmittances are multiplied together, a discrete step is affected back
towards homogeneity; recovering Beer’s law (9.29) in the limit of n → ∞.

Oreopoulos and Barker (1999) showed that the standard homogeneous multipli-
cation approach can be maintained and the correct overall transmittance preserved
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Fig. 9.8. Distribution of cloud optical depth p(τ) and 1D cloud (layer) albedo as functions
of optical depth τ at a wavelength where gaseous (water vapour) optical depth is zero. Also
shown is p(τ) and 1D (layer) albedo at another wavelength where water vapour optical depth
is 20

by renormalizing pΓ (τ) for each layer in a block of contiguous layers containing
cloud (basically reducing τ for layers beneath the uppermost layer). The problem
is significantly more complicated for the scattered radiation field. Nevertheless, this
simple illustration points to the concept of generalized cloud overlap where vertical
correlation in extinction must be addressed; even for completely overcast skies.

It is worth pointing out that for bands where gaseous absorption is strong, the
effects of variable cloud are diminished. For example, Fig. 9.8 shows a distribution
of τ for cloud and for cloud plus a homogeneous gas of optical depth τg = 20. It
also shows Rpp(τ) for non-absorbing cloud and for a mixture of cloud and gas. For
cloud-only, the highly non-linear portion of Rpp(τ) cuts across densely populated
values of τ and so RΓ � Rpp(τ). For cloud plus gas, however, most of p (τ + τg)
occurs where Rpp(τ) has saturated and so RΓ ≈ Rpp(τ). This squelching effect is
even more prevalent in the longwave (see Chap. 11).

Longwave

In the formulation of the GWTSA for longwave radiative transfer (Li and Barker,
2002), cloud overlap and vertical correlation of extinction are treated differently than
in the solar. To begin, for isothermal homogeneous layers (Li, 2002), downwelling
radiance in direction µ at level j + 1 is defined as

I−j+1(µ) = I−j (µ)e−〈κ〉j/µ + Bj+ 1
2

(
1 − e−〈κ〉j/µ

)
, (9.30a)
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where
〈κ〉j = (1 − �0) τj , (9.30b)

is absorption optical depth for the jth layer, and Bj+ 1
2

is the Planck function evalu-
ated at the temperature of layer j. Therefore, downwelling irradiance is

F−
j+1 = 2π

1∫
0

I−j+1(µ)µdµ

= F−
j e−〈κ〉j/µ1 + B̃j+ 1

2

(
1 − e−〈κ〉j/µ1

)
,

(9.31a)

where
B̃j+ 1

2
= πBj+ 1

2
, (9.31b)

and µ1 ≈ 0.601.
Now, define the amounts of radiation emerging out the base of the clear and

cloudy portions of partially cloudy layer i as⎧⎨⎩M−
i+1 = (F−

i − B̃i+ 1
2
)e−τi/µ1 + B̃i+ 1

2
; cloudless

N−
i+1 = (F−

i − B̃i+ 1
2
)e−〈κ〉i/µ1 + B̃i+ 1

2
; cloudy

, (9.32a)

where τi and 〈κ〉i are clear-sky and clear+cloud optical depths. Therefore, mean
downward irradiance is

F−
i+1 = (1 − Aci)M−

i+1 + AciN−
i+1 , (9.32b)

where Aci is cloud fraction in the ith layer. If clouds are separated by a clear layer,
the next layer is irradiated uniformly with F−

i+1 and the next partially cloudy layer to
be encountered is also irradiated uniformly.

For contiguous cloudy layers, components of irradiance at level i + 2 are

M−
i+2 =

⎡⎢⎢⎢⎢⎢⎣
1︷ ︸︸ ︷

(Aci − oi,i+1)N−
i+1 +

2︷ ︸︸ ︷
(1 − Aci − Aci+1 + oi,i+1)M−

i+1

1 − Aci+1
−B̃i+1+ 1

2

⎤⎥⎥⎥⎥⎥⎦
× e−τi+1/µ1 + B̃i+1+ 1

2

(9.33a)

N−
i+2 =

⎡⎢⎢⎢⎢⎢⎣
3︷ ︸︸ ︷

oi,i+1N−
i+1 +

4︷ ︸︸ ︷
(Aci+1 − oi,i+1)M−

i+1

Aci+1
−B̃i+1+ 1

2

⎤⎥⎥⎥⎥⎥⎦
× e−〈κ〉i+1/µ1 + B̃i+1+ 1

2
,

(9.33b)
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where the overlapping fraction oi,i+1 is

max{0, Aci + Aci+1 − 1} ≤ oi,i+1 ≤ max{Aci, Aci+1} . (9.33c)

The denumerated terms in (9.33a,b) are shown graphically in Fig. 9.9.

1 23 4

A

A

Fig. 9.9. Graphical illustration of the radiative components of a generalized cloud overlap
scheme for longwave radiation (Li, 2002). Quantities N− and M− are downwelling irradi-
ances associated with either cloudy or clear portions of the upper layer, respectively. Clouds
in these layers overlap by an amount oi,i+1

In an attempt to deal with vertical correlation of extinction, explicit account of
contributions to F−

j from all contiguous cloudy layers must be considered so (9.31a)
is expanded as

F−
j =

(
F−

j−1 − B̃j−1+ 1
2

)
e−〈κ〉j−1/µ1 + B̃j−1+ 1

2

=
(
F−

j−2 − B̃j−2+ 1
2

)
e−(〈κ〉j−2+〈κ〉j−1)/µ1

+
(
B̃j−2+ 1

2
− B̃j−1+ 1

2

)
e−〈κ〉j−1/µ1

+ B̃j−1+ 1
2

...

=
(
F−

i−n − B̃i−n+ 1
2

)
e−〈κ〉i−n,j/µ1

+
(
B̃i−n+ 1

2
− B̃i−n+1+ 1

2

)
e−〈κ〉i−n+1,j/µ1

+ . . . +
(
B̃j−3+ 1

2
− B̃j−2+ 1

2

)
e−〈κ〉j−2,j/µ1

+
(
B̃j−2+ 1

2
− B̃j−1+ 1

2

)
e−〈κ〉j−1,j/µ1

+ B̃j−1+ 1
2

,

(9.34a)
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where

〈κ〉k,j =
k∑

m=j−1

〈κ〉m (9.34b)

is mean optical depth between levels k and j. Then, each component in (9.34a) is
operated on as in (9.27) yielding

F−
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2
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(
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(9.35a)

where

T (〈κ〉k,j , νk,j) =

∞∫
0

pΓ(κ | 〈κ〉k,j , νk,j)e−κ/µ1dκ

=

(
νk,j

νk,j + 〈κ〉k,j /µ1

)νk,j

,

(9.35b)

and pΓ(κ | 〈κ〉k,j , νk,j) is as in (9.25) except it applies to the collection of layers
between levels k and j whose variance parameter is described by νk,j .

While this formulation is a more precise treatment than that presented for the
solar, it requires not only estimates of ν for each layer, but also for each grouping
of layers. The complexity of this is illustrated in Fig. 9.10 for a (50 km)2 domain of
convective clouds simulated by a cloud-resolving model (CRM). While ν for each
layer is ≈1, it is 0.67 for the field integrated through the entire depth of cloud, and
reaches as low as 0.38 for the collection of layers between ≈4.5 km and the lowest
cloudy layer at ≈0.6 km. Such a low value of νk,j is due to a combination of well
correlated shafts of convection in conjunction with substantial near-random overlap
of less dense clouds (and regions of entrained cloud near edges of convective cores).
Modelling this is a substantial challenge but is likely to have a secondary effect
relative to errors in Ac, 〈κ〉, ν, and overlap on a per layer basis.

9.6 1D versus 3D Radiative Transfer

The purpose of this section is to demonstrate some differences between BB irradi-
ances computed with 1D (and enhancements such as GWTSA) and fully 3D radiative
transfer models. Focus is on both domain-average profiles of heating and spatial dis-
tributions of heating. Results pertain to solar radiation.
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Fig. 9.10. Plots on the right show profiles of layer ν (see 9.25) and cloud fraction for a cloud
field derived from a cloud-resolving model. Panel on the left shows ν for collections of lay-
ers bounded between lower altitude listed along the abscissa and upper altitude listed on the
ordinate (cloud data courtesy of W. Grabowski and V. Grubišić)

9.6.1 High Resolution Differences

Relatively little has been reported on high resolution distributions of radiative heat-
ing. This goes for both spatial and spectral distributions. One of the more thorough
studies is that of O’Hirok and Gautier (1998a,b) where they simulated spatial distrib-
utions of solar heating with a Monte Carlo algorithm acting on a couple of large con-
vective clouds inferred partly from satellite imagery with rather ad hoc alterations.
They also assessed some aspects of spectral structure of solar absorption.

To augment their findings, results are presented here for part of a shallow, non-
precipitating, cumulus cloud field simulated by a 2D CRM. Horizontal and vertical
grid-spacings were 50 m and droplet size distribution was carried for each cell (all
drops had radii <20 µm). Figure 9.11 shows cross-sections of water vapour mixing
ratio qv, liquid water content LWC, and droplet effective radius re for a 6.25 km
long stretch of the field along with three sample profiles. The panel for qv shows
complete convective plumes and the other panels show near-constant lifting conden-
sation levels with LWC and re generally increasing with height. Figure 9.12 shows
that while these clouds are shallow, τ is large corresponding to a mean cloud extinc-
tion coefficient of ≈85 km−1.
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Fig. 9.11. Top panel shows a profile of water vapour mixing ratio as a function of distance
for a 6.25 km stretch (of a 100 km domain) of atmosphere as simulated by a cloud-resolving
model. Middle and lower panels show corresponding cloud water content and droplet effective
radius. Line plots on the right show profiles of respective quantities for profiles labelled on the
cross-section panels (data courtesy of J.-P. Blanchet)

Figure 9.13 shows distributions of heating rate for the field shown in Fig. 9.11 as
computed by a BB Monte Carlo algorithm that resolves the solar spectrum at a reso-
lution of 0.01 µm (Barker et al., 1998). A constant BB Lambertian surface albedo
of 0.06 was used and Slingo’s (1989) 24-band parametrization for cloud optical
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Ac = 0.65
τ = 60.2
_

Fig. 9.12. Vertical cloud optical depth for the domain illustrated in Fig. 9.11

Fig. 9.13. Panels on the bottom show distribution of heating rates for two solar zenith angles
θ0 as predicted by two executions of a Monte Carlo algorithm: the first used horizontal grid-
spacings ∆x = 0.05 km (3D) while the second used ∆x arbitrarily large (ICA). Line plots
show corresponding domain-averaged heating profiles per unit area for water vapour inside
and outside of cloud and droplets. Plots labelled “overall” show domain-averaged heating due
to all constituents
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properties was employed. Results are shown for both the full 3D and the ICA (which
would be used in a CRM). Here the vertically-aligned pattern of the ICA (regard-
less of θ0) is obvious but so too are radical differences in surface and cloud heating
patterns (more so at large θ0). It remains to be seen whether these differences are
important for cloud simulations as full 3D radiation codes have as yet not been run
within a CRM simulation.

The domain average profiles in Fig. 9.13 show interesting differences between
3D and ICA and echo those reported by others. At θ0 = 30◦, differences are minor
but at θ0 = 75◦, the ICA significantly underestimates in-cloud absorption due to ne-
glect of cloud side illumination, and overestimates out of cloud absorption by vapour
from about mid-cloud level down to the surface. This is because the ICA allows pas-
sage of direct-beam between clouds while in the 3D case cloud fraction presented
to the direct-beam is 100%. The plot showing overall heating, however, indicates
that overestimation of heating by water vapour outside cloud is minor compared to
underestimation of heating by droplets.

The left panel in Fig. 9.14 shows average dispositions of solar radiation as a
function of µ0 for the domain shown in Fig. 9.11. While these are domain averages,
the domains are still small relative to a typical LSAM cell. Domain-average albedo
α is reminiscent of results shown in many studies (e.g., Welch and Wielicki, 1985;
Barker et al., 1998) where 3D clouds reflect less at high Sun (due to photon leakage
out sides along predominantly downward trajectories) and more at low Sun (due to
side illumination and increased effective cloud cover). The reverse is true for sur-
face absorptance asfc while atmospheric absorptances aatm for both methods are very
similar. In fact, at µ0 = 1, aatm for 3D and ICA are equal but as the middle panel
in Fig. 9.14 shows, ratios R of CRE at the surface to that at the top of the model
domain are systematically largest for the 3D simulation. Though R has been used to

Fig. 9.14. Left plot shows domain averaged TOA albedo α, surface absorptance aatm, and
surface absorptance asfc as functions of µ0 as predicted by the Monte Carlo in full 3D and
ICA modes for the domain shown in Fig. 9.11. Also shown is clear-sky aatm. Centre plot
shows ratios R for CRE at the surface to that at the TOA for both modes. Right plot shows
ratios of NIR to VIS values for albedo Nα and surface absorptance Nasfc for both modes of
the Monte Carlo algorithm
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diagnose the impact of cloud on aatm (e.g., Cess et al., 1995), in this case at overhead
Sun its ambiguous nature shows. This is because, in addition to cloud absorption,
R also responds to the partition of radiation by cloud into albedo and transmittance.
Here, 3D clouds yield more transmittance thereby enhancing R relative to the ICA.

The right panel in Fig. 9.14 shows the ratios of near-IR (>0.7 µm) to visible
(<0.7 µm) albedo Nα and surface absorptance Nasfc for 3D and ICA estimates. Like
R, Nα has been used to diagnose impacts of cloud on aatm. Nα is almost independent
of both µ0 and method of solution; 3D values are slightly larger than ICA values. On
the other hand, Nasfc for 3D and ICA are almost equal at overhead Sun but as µ0

decreases, 3D values do too though ICA estimates increase (both monotonically).
One can speculate about trends in N only so far; to comprehend them fully, de-

tailed spectral information is needed. Figure 9.15 shows ratios of 3D/ICA for α, asfc,
and aatm. For overhead Sun, it is apparent that the near equality of both Nα and Nasfc

for 3D and ICA is actually indicative of the near equality of spectral ratios across
the entire spectrum (see O’Hirok and Gautier, 1998b). For θ0 = 75◦, however, the
enhancement in Nα for 3D conditions relative to ICA is due primarily to suppres-
sion of the 3D effect near the UV rather than enhanced reflectance expected due to
cloudside illumination (as is clearly visible for λ > 0.5 µm). The converse is true for
Nasfc . The middle panel of Fig. 9.15 shows 3D/ICA for aatm. For θ0 = 0◦ and 75◦,
3D absorbs respectively less than and more than ICA in the gaseous widows. This
is due to cloudside leakage and fewer scattering events by droplets at θ0 = 0◦ and
more scattering events due to side illumination at θ0 = 75◦ (see Fig. 9.13).

This case study demonstrates clearly that the essence of understanding the im-
pact of clouds on BB atmospheric absorption should be explored using high spectral
resolution measurements and modelling whenever possible.

9.6.2 Domain Average Differences

The study by Barker et al. (2003) intercompared domain-average BB irradiances for
cloudy atmospheres as computed by 1D and 3D solar radiative transfer codes. The
objective was to assess how well 1D codes interpret and handle unresolved clouds.
Four BB Monte Carlo algorithms set benchmark irradiances and they in turn were
assessed for clear-sky and homogeneous overcast skies against LBL results. Cloud
fields produced by several different CRMs where used. The Monte Carlo runs acted
on the full 3D fields while 1D codes operated on degenerate versions represented by
vertical profiles of Ac, τ, ln τ, cloud overlap rate, and qv.

In addition to full 3D benchmarks, this study also used intermediate benchmarks
applicable to PPH clouds that follow: exact overlapping structure of cloud; maxi-
mum/random overlap; and random overlap. ICA estimates were given too. As such,
modellers were able to see if their 1D code was doing what it was expected to do as
well as gauge how far it was from the full 3D solutions.

Of the several cases analyzed, a particularly demanding one was selected for
showing here: a (400 km)2 domain containing towering convective clouds reaching
from ≈1 km to ≈15 km high (Grabowski et al., 1998). Total cloud fraction was about
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VIS NIR

Fig. 9.15. Domain average TOA albedo, atmospheric absorptance, and surface absorptance as
functions of wavelength for the cloud field shown in Fig. 9.11 at two values of θ0 as indicated.
Each grouping contains two plots: the small lower one shows estimates from the full 3D sim-
ulation while the large upper one shows ratios between 3D and ICA results. Blanked-out areas
are where statistical noise, from the Monte Carlo simulation, was overwhelming

45% and mean visible τ ≈ 90 for cloudy columns only. The 1D codes were parti-
tioned into four categories:

• ICA: attempted to account for horizontal fluctuations in τ;
• exact overlap: used PPH clouds but attempted to utilize overlap information;



9 Broadband Irradiances and Heating Rates for Cloudy Atmospheres 477

Fig. 9.16. Upper plots show broadband TOA albedos as functions of µ0 and lower plots show
heating rate profiles for µ0 = 0.5. Each plot shows the 3D Monte Carlo benchmark solution
(mean of 4 models with standard deviation bars) along with a particular intermediate bench-
mark (set by one of the Monte Carlo codes) and results for 1D codes that address unresolved
clouds differently. 1D codes in the ICA genre attempt to account for unresolved horizontal
fluctuations while the other two use PPH clouds with different overlap assumptions. Shaded
regions on heating rate plots indicate layer cloud fraction profile (maximized at ≈20%)

• max/ran overlap: used PPH clouds with maximum/random overlap assumption;
• random overlap: used PPH clouds with random overlap assumption.

The most populous category was max/ran overlap.
Figure 9.16 shows albedo as a function of µ0 and heating rate profiles at µ0 =

0.5. Each plot shows mean values with standard deviation bars for full 3D solutions
(based on four Monte Carlo codes). Clearly, these codes are in extremely good agree-
ment. Also shown on each plot is the intermediate benchmark, simulated by one of
the Monte Carlos (gray line), as well as the 1D results (dashed lines). Interestingly,
those codes that acknowledge horizontal variability of cloud come very close to the
ICA benchmark which in turn is very close to the full 3D solution. Both the exact
and max/ran overlap genre of 1D codes appear to be attracted to their respective
intermediate benchmark though exhibit a fair degree of variance among themselves.
Moreover, their intermediate benchmarks deviate, significantly at times, from the full
3D solutions. The max/ran values are less than the full 3D solution despite use of
PPH clouds. This is because the max/ran assumption is an extreme case that usually
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Fig. 9.17. As in Fig. 9.16 but showing intermediate benchmark and 1D results assuming that
clouds in all layers overlapped randomly

underestimates cloud fraction; a first-order error. If the max/ran codes were to ac-
count for horizontal variability, their estimates of α would be slightly smaller still.

Surprisingly, Fig. 9.17 shows that the random overlap codes show little affinity
for their benchmark. While this approximation is extreme and rarely used throughout
a code, it is invoked when blocks of cloudy layers are separated by clear layers. Thus,
this result is a bit disconcerting.

Errors in heating rates are less easy to document than those for α. Nevertheless,
it is clear from Figs. 9.16 and 9.17 that those codes that overestimate α, underes-
timate heating in near-surface layers. Note also the tendency for PPH clouds of all
overlap persuasions to slightly overestimate heating near 600 mb; where cloud mass
presented to the direct-beam begins to be abundant. This is due to excessive numbers
of scattering events by droplets as photons are not allowed to escape horizontally.

9.7 Summary and Conclusions

This chapter opened by reiterating the inexorable links between BB radiation, clouds,
and climate. The importance of these links rests on:

(i) BB radiation being at the core of climate feedback mechanisms;
(ii) seemingly small perturbations to cloud properties can modulate Earth’s radia-

tion budget significantly; and
(iii) our ability to represent cloud-radiation interactions in large-scale atmospheric

models (LSAMs) is recognized generally as lacking. Thus, the issue here that
is at the heart of this book is not just BB radiative transfer for 3D cloudy at-
mospheres, but the ability of 1D radiative transfer models, as used in LSAMs,
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to capture spatially unresolved interactions between 3D clouds and BB radia-
tion. As such, the main body of this chapter addressed, and compared results
from, common techniques for modelling BB irradiances (and heating rates) us-
ing both Monte Carlo algorithms (see Chap. 4) and approximate 1D solutions
(see Chaps. 6, 7, and 8).

At this point in time, several 3D Monte Carlo BB algorithms exist and some have
been intercompared in detail. These are primarily solar codes though longwave ones
are beginning to emerge and there are plans to intercompare them too. The consensus
so far is that these codes are in excellent agreement and the majority of the minor
discrepancies arise from specification of optical properties. With the proliferation of
cloud model data from either cloud-resolving models (CRMs) or phenomenological
models, we have now documented quite well the nature of BB radiative transfer
and heating for realistic cloudy atmospheres. We are still, however, a fair distance
from understanding the full ramifications of 3D BB transfer on the scale-dependent
nature of atmospheric circulation. It is only a matter of time though before full 3D
BB radiation codes will be used actively in CRMs. In fact, 1D parametrizations for
BB radiative transfer that attempt to address key aspects of realistic 3D transfer are
already being used in LSAMs, but again, confident assessment of their impact on
climate has yet to be made.

What we have in hand now with 3D BB codes and cloud fields is the ability to
rigorously assess the capabilities of multi-layer 1D BB models. Although differences
between BB irradiances predicted by 3D and 1D codes can be large, particularly for
convective clouds at large solar zenith angles, when the 1D codes are initialized with
accurate information about cloud structure, these differences are often at a level that
is likely to be acceptable for many purposes (i.e., plane-parallel, homogeneous biases
are reduced markedly).

It would appear then that the major challenge facing LSAMs regarding BB ra-
diation is not radiative transfer per se but rather parametrization of vertical profiles
of unresolved cloud structure; namely (and roughly in order of importance) cloud
fraction, mean optical thickness, overlap structure, and horizontal fluctuations. To a
great extent the elements of this list merge and overlap with one another, but this is
to be expected given that we are discussing ad hoc discretizations of the continuous
atmosphere. Some may argue that some of the variables listed above are represented
fairly well and that the order of importance might even be reversed to that as listed.
Regardless, reaching the stage of confident representation of radiation-cloud feed-
backs in LSAMs will require not only continued development of unresolved cloud
and BB radiative transfer algorithms, but also extensive cloud and radiation data from
long-term monitoring programs such as DOE’s Atmospheric Radiation Measurement
(ARM) program (Stokes and Schwartz, 1994).
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10.1 Introduction

The solar energy absorbed by the Earth-atmosphere system is balanced in the long
term by radiant loss of energy by the system to space in the thermal infrared. The
manner by which this loss to space occurs involves absorption, scattering and ther-
mal emission by the surface and the gaseous and suspended matter (i.e., clouds
and aerosols) within the atmosphere. These complex processes in the thermal in-
frared comprise the “atmospheric greenhouse effect,” which makes the Earth’s sur-
face warmer than it would be if the atmosphere were not present and leads to a
complex vertical temperature profile.

The Earth-atmosphere thermal radiative processes are non-linear in atmospheric
properties, and there are complex radiation-climate feed back mechanisms. Further-
more, unlike solar radiation, thermal radiative processes occur continuously in time.
Thus, realistic modeling of the climate system, as well as remote sensing techniques
to accurately infer properties of the atmosphere, require accurate models of the vari-
ous radiative processes that occur in the thermal infrared.
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When absorption, thermal emission and scattering occur, the equation of radiative
transfer under local thermodynamic equilibrium may be written as (see Chap. 3)

Ω •∇I = − σe(x)I(x,Ω)

+ σs(x)
∫
4π

p(x,Ω′ → Ω)I(x,Ω′)dΩ′ + σa(x)Bν(T (x)) (10.1)

where σe, σs, and σa are the transport coefficients for extinction, scattering, and
absorption respectively. Here, σe = σs + σa and p is scattering phase function (nor-
malized in such a way that its integral over 4π steradians is unity); �0, the albedo of
single scattering, is defined as the ratio of σs to σe. Finally, Bν is the Planck func-
tion depending on local temperature T , an isotropic source term. Neglecting incident
solar radiation in the longwave portion of the spectrum (wavelength λ � 3 µm), so-
lutions of this equation for the entire atmosphere are usually sought by assuming as
boundary conditions zero incident radiation at the top of the atmosphere (TOA), and
thermal emission and reflected incident radiation at the base. The effects of the solar
longwave radiation, if important, are typically calculated separately, by means dis-
cussed in previous chapters. For downward flux considerations, this term is typically
the order of 10 Wm−2, on the order of a few percent of the thermal longwave flux
incident on the surface.

When only gases are considered, �0 is essentially 0 in the thermal infrared due to
the λ−4 decrease of the molecular scattering coefficient. For this case, the radiation
field depends only on the absorption properties, amounts and distributions of the ac-
tive gases, the temperature distribution, and the emission properties of the underlying
surface. Due to the relative opacity of the atmosphere and the generally slow hori-
zontal variation of temperature and absorbing gases, clear-sky radiation calculations
are generally performed assuming a horizontally homogeneous atmosphere.

The main difference in the treatment of shortwave and longwave radiation is due
to the spectral absorption of atmospheric gases. Figure 10.1 is a low-resolution de-
piction of the major absorption features of the dominant active gases and the approxi-
mate spectral distributions of incoming solar energy and terrestrial radiation emitted
by the atmosphere. In the solar portion of the spectrum (λ � 4 µm), there is little
gaseous absorption across large regions of the spectrum, particularly the region from
0.3 to 1 µm, a region containing more than 50% of the incident solar radiation. This
region is particularly sensitive to the presence of clouds since �0 for cloud particles
is close to 1, and thermal emission by the gases is practically 0.

In the longwave, the atmosphere as a whole is nearly opaque to energy incident
on its boundaries due to the strong vibration-rotation bands of H2O, CO2, O3, CH4

and N2O. The major exception is the interval from 8 to 12 µm or 1250 to 833 cm−1

(wavenumber in cm−1 is 104 times the reciprocal of wavelength λ in µm and vice-
versa). Spectral intervals of significant transmission (lower absorption) are called
windows. The primary window is the 8–12 µm interval; this is where clouds and 3D
radiative transfer have their largest effects. There is also a “dirty” window centered
near 500 cm−1 (20 µm) which becomes significant in dry atmospheres.
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Fig. 10.1. (a) Planck function curves for approximate solar and terrestrial temperatures. (b)
Absorption spectra for the entire vertical extent of the atmosphere. (c) Absorption spectra for
the atmosphere above 11 km. (d) Atmospheric absorption spectra for the major active gases.
From Thomas and Stamnes (1999), reprinted with the permission of Cambridge University
Press

The temperature variation in the atmosphere is relatively small, so there is lit-
tle contrast between the incident and emitted radiation. Scattering effects are most
pronounced when the emission source is at a much higher temperature than the scat-
tering medium as in the shortwave. Therefore, scattering is much less significant in
the longwave than the shortwave. Because the gas concentrations, temperature and
pressure vary with altitude, not every part of the atmosphere is opaque, and radiative
transfer calculations are complicated by the structure of molecular line absorption.

The longwave optical properties of water clouds, shown in Fig. 10.2, are not
nearly as spectrally detailed as those of the gases. �0 and extinction cross-sections
vary strongly with particle size, but for typical cloud particle sizes, �0 ≈ 0.5. How-
ever, the �0 to be used in calculations is that for the cloud-air mixture. Although
cloud particles have non-zero scattering albedo across the longwave spectrum, the
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Fig. 10.2. Dependence of the cloud particle longwave optical properties on wavelength and
effective radius, from Thomas and Stamnes (1999), reprinted with the permission of Cam-
bridge University Press. The three left panels pertain to water clouds and the right panels to
ice clouds. The curves in the left panels pertain to different effective cloud droplet radii; solid
3 µm; dotted 10 µm; dashed line 50 µm, The right panel curves correspond to different ice
particle effective diameters; solid 6 µm; dotted 25 µm; dashed 100 µm

strong absorption by water vapor and other atmospheric gases reduces the effective-
ness of scattering by cloud particles in the longwave compared to the shortwave. This
is true even in the 8–12 µm window region, where the H2O continuum absorbs a sig-
nificant amount in humid atmospheres. Longwave 3D cloud scattering effects are
reduced in those portions of the atmosphere where there is strong gaseous absorp-
tion. As a result, 3D scattering effects are typically unimportant in climate models.
The exception to this is for conditions typical of some cirrus clouds – thin cold clouds



10 Longwave Radiative Transfer in Inhomogeneous Cloud Layers 491

with large particles at low pressures where the concentrations of water vapor and the
pressure broadening effects on line absorption are relatively small compared to the
lower troposphere. Also, 3D scattering effects may be important for more detailed
models such as cloud resolving models (CRMs) and large eddy simulations (LESs).
Even in those cases, the spectroscopy of atmospheric gases plays a very large role in
longwave 3D radiative transfer.

Although 3D cloud effects are potentially important for a variety of problems in
remote sensing and climate studies, the discussion in this chapter is focused toward
climate applications. In the material that follows we summarize information on the
calculation of radiation quantities for a two-dimensional, horizontally homogeneous
atmosphere. Next, longwave Monte Carlo calculations are introduced with some re-
sults expanding on the two-dimensional calculations and results for a 3D calculation.

10.2 Models for Thermal Radiative Transfer Calculations

It is virtually impossible to describe the calculation details necessary to account for
the spectroscopy of the longwave active gases and cloud particles in a review chapter
such as this. Instead, only a verbal summary of the techniques is provided. Readers
are urged to consult any of the referenced texts and journal articles for the important
details.

Climate modelers are only interested in the spectrally integrated fluxes and heat-
ing rates. Unfortunately, the mathematical formalism developed with the monochro-
matic solutions is not transferable to frequency-averaged radiation. Furthermore,
modelers are generally interested in effects of quantities over large spatial domains.
The challenge of developing models for climate applications is to find solutions to
(10.1) that adequately account for frequency variations as well as the spatial varia-
tions of the radiative fields.

The major obstacle for frequency integration of (10.1) is the spectral detail of
gaseous absorption. Absorption features are composed of many discrete quantized
events that are broadened due to collisions and/or thermal motions of the molecules.
The discontinuous nature of these absorption features prohibits analytical solutions
without approximations. As noted in Fig. 10.2, cloud particles and other aerosols
have relatively slowly varying spectral absorption features. Outside of homogeneous
spherical particles, however, our knowledge of cloud and aerosol radiative properties
is still in its infancy. This is especially true for suspended ice particles. Furthermore,
the horizontal and vertical distributions of clouds fall into a seemingly infinite range
of possibilities, thereby precluding easy solutions.

Most climate models tend to determine fluxes and cooling rates by transforming
the general three-dimensional radiative transfer problem into one-dimension. This is
usually done by taking the average of clear and overcast quantities weighted by cloud
amount(s). For example, the upward or downward flux of radiation F at a given level
above or below a cloud layer is often calculated in climate models as

F = (1 − Ac)Fclear + AcFovercast (10.2)
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where Fclear and Fovercast are the fluxes calculated assuming homogeneous clear and
overcast conditions respectively, and Ac is the cloud fraction. A more detailed dis-
cussion of (10.2) is provided in Sect. 10.4. Note that Fclear includes the effects of
absorption and thermal emission by the atmospheric gases and non-cloud aerosols.
Fovercast includes the simultaneous effects of clouds and gases.

Techniques for calculating radiative transfer are most easily classified according
to the methods employed to perform the spectral integration of the gaseous absorp-
tion features, namely line-by-line (LBL) models and band models. Calculations in
LBL models are performed monochromatically, and they often include all of the de-
tailed physics, including multiple scattering. Generally, these techniques offer the
possibility of performing all of the numerics with high accuracy. They are particu-
larly useful for checking the approximations made in less detailed models.

However, LBL models require substantial computing resources. For example,
the thermal infrared portion of the spectrum may require the order of 107 intervals
for monochromatic computations. Such computations were prohibitively expensive
until the advent of supercomputers, but they are now relatively easy to do on desktop
workstations. Furthermore, it is now possible to perform such calculations for a wide
variety of atmospheric gases because of the wide distribution of tabulated values of
the line strengths and half-widths important for line absorption. These models are
very useful for remote sensing applications, but they consume too much computer
time to be used in climate models.

Models for spectrally integrated gaseous absorption (i.e., band models) offer the
possibility of rapid, but accurate, evaluation of the integral over detailed gas absorp-
tion spectra. The common approach used in band models is to make assumptions
concerning the spectral distribution of absorption features for a homogeneous path
that allow a solution in terms of analytical functions with a few adjustable para-
meters. The values of the adjustable parameters are specified either through fitting
to more detailed model calculations or to asymptotic limits expressed in terms of
line strengths and half-widths. Such models are applied to the inhomogeneous at-
mospheric path through a variety of scaling approximations developed from asymp-
totic solutions or linear expansions (e.g., the Curtis-Godson approximation). Excel-
lent discussion of such techniques may be found in Goody and Yung (1989) and Liou
(1980).

The analytical models take on a variety of forms and spectral resolution. Typi-
cally, those with spectral resolution less than about 50 cm−1 are called narrow band
models, and those for larger intervals being labeled as wide band models. There has
been a general assumption that the smaller the spectral interval, the more accurate
the result. However, the results of the Intercomparison of Radiation Codes used in
Climate Models (ICRCCM; Ellingson and Fouquart, 1991) do not substantiate that
position.

In an attempt to surmount the problem of arbitrary assumptions concerning the
properties of analytic models, there have been several attempts to develop tabular
values from LBL calculations. Such approaches increase numerical accuracy and
speed at the expense of storage allocation, which is not a crucial consideration for
current computers. The tabulations can be used to improve band models; but band
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models have a serious limitation: it is difficult to use them for problems involving
multiple scattering. In monochromatic radiation the transmittance between two levels
can be computed by multiplying the transmittances of sub-intervals. But this does
not hold for band transmittances of the same gas, which are averaged over spectral
intervals.

To avoid this problem, modelers have developed what is commonly called the
k-distribution technique (see also Chap. 9). This technique transforms the integral
over frequency to one over absorption coefficient. This is based on the observation
that the intensity is the same when the absorption coefficient is the same for a narrow
spectral interval. Thus, the frequency integration is reduced to a sum of monochro-
matic problems. This approach requires the probability or cumulative probability
distribution of absorption coefficients that may be determined numerically from LBL
calculations or analytically from some band models. The k-distribution technique is
not without limitations, because approximations must be made for application to the
inhomogeneous atmosphere, and one may be required to keep large numbers of k’s
for applications at low pressures (i.e., above about 20 km).

In summary, it must be remembered that band models are approximations and
unwanted errors may occur unexpectedly. Some general statements concerning such
models are: their absolute accuracy is only as good as that of the more detailed mod-
els or data on which they are based; fits based on asymptotic limits may be inaccurate
for atmospheric calculations; accounting for overlapping absorption by two or more
gases may be difficult for large band areas; application of scaling approximations are
inaccurate in some situations; and except for the k-distribution, they are difficult to
use in problems involving multiple scattering.

Parameterizations of the absorption by cloud particles typically express the
wavenumber averaged transmittance through a cloud for a given direction in terms of
the average cloud optical depth τ for the interval under consideration and the cosine
of the local zenith angle µ as

T (τ; µ) = e−τ/µ .

For a given spectral interval, τ is the product of an effective radius dependent mass
absorption coefficient (in m2 g−1) and liquid water path. For the 10 µm window
region, the upper panel of Fig. 10.2 shows mass absorption coefficients are about
0.15 and 0.1 m2 g−1 for typical water and ice clouds, respectively. For liquid water
contents of 0.1 g m−3, typical of cumulus clouds, a 300 m deep cloud has an optical
depth of about 4.5 – opaque although not black. As discussed below, cloud opacity
extends over a wide range, with cirrus clouds tending to be the most transparent, and
cumulus clouds the most opaque.

10.3 Overcast/Clear Linear Mixing

To illustrate the bulk spectral effects of gaseous and cloud absorption and thermal
emission, Fig. 10.3 shows the spectral distribution of the nadir (a) and zenith (b) ra-
diances at the top and bottom of the atmosphere, respectively, with spectrally black
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Fig. 10.3. Nadir (a) and zenith (b) radiances at the top and bottom of the atmosphere, re-
spectively, for the Air Force Geophysical Laboratory (AFGL) mid-latitude summer (MLS)
atmosphere calculated with the model of Warner and Ellingson (2000). The solid and hashed
regions correspond to the change of the respective radiances resulting from increasing the
altitude of a black plane-parallel cloud from the surface to 4 km, and from 4 to 11 km, respec-
tively. Note that the uppermost curve in (a) and the lowermost curve in (b) correspond to the
clear-sky radiances
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clouds at different levels for mid-latitude summer (MLS) conditions calculated with
a detailed band model. When the cloud level is at the surface (294 K), the down-
welling radiance at the surface is the same as the Planck function for the temperature
of the surface, whereas the upwelling radiance at the top is the same as for clear
skies with a black surface. The TOA clear-sky upwelling radiance shows that out-
side of the 833–1250 cm−1 window, the radiance originates at different levels of the
atmosphere depending upon the opacity of the given spectral region. As the cloud
level increases from the surface to 4 km, the TOA window region radiance follows
the Planck function of the cloud temperature (250 K), whereas the remainder of
the spectrum changes little, except for the 500 cm−1 “dirty” window This occurs be-
cause the absorption features of the atmospheric gases outside of the window regions
are large enough, even with the decreased absorption path, to block emission from
the 4 km level. When the cloud reaches 11 km, the atmosphere above the clouds is
sufficiently transparent for the radiance to closely follow the Planck function of the
assumed black cloud, except for the strongest regions of the 667 cm−1 (15 µm) CO2

and 1042 cm−1 (9.6 µm) O3 bands.
Except for the very driest atmospheres, the atmosphere is very opaque across the

longwave spectrum, so the clear-sky downwelling radiance at the surface resembles
the Planck function at the surface temperature. As stated in Sect. 10.1, the primary
window is at 833–1250 cm−1; within this window surface emission can transmit di-
rectly to space. For drier atmospheres the 500 cm−1 “dirty window” can also trans-
mit to space. Clouds effectively block these windows. As the cloud’s base altitude
increases, two factors decrease its effect on downwelling at the surface. First, the
cloud becomes colder. Second, the distance between the cloud and surface increases,
increasing the amount of the atmosphere that can absorb emission from the cloud.
When the cloud reaches 11 km, the overcast radiance distribution resembles the clear-
sky radiance distribution.

In general, cloud effects on the downwelling radiance primarily occur in the 833–
1250 cm−1 window, whereas for the TOA radiance, clouds dominate the window
only when they are above about 4 km. When the clouds are above 4 km, the TOA
radiance is affected by cloud absorption and scattering properties across the entire
spectrum because of the decreased water vapor concentration. This shows quite dra-
matically that ice clouds can influence a large portion of the spectrum. Recall that
scattering effects are most important when there is a significant temperature differ-
ence between the emission source and the scattering medium, as in the shortwave.
Since ice clouds have the greatest temperature difference with the surface, their scat-
tering can be important when they are located in colder regions of the atmosphere.

As previously discussed, cloud forcing is an important concept in climate stud-
ies. It is informative to examine it in the longwave. Cloud forcing (denoted CF ) is
defined as CF = F − Fclear, at the TOA and the surface. From (10.2), we obtain
CF = Ac(Fovercast − Fclear). Figure 10.4 shows CF/Ac at the TOA and the surface
for overcast black clouds at different levels. Note that the effects of non-blackness
may be calculated for plane parallel clouds by multiplying Ac by the plane parallel
cloud flux emissivity, εcpp given as
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Fig. 10.4. Longwave black cloud forcing CF for overcast conditions at the top of the at-
mosphere (dashed) and surface (solid) as a function of cloud altitude for MLS conditions
as calculated with the model of Warner and Ellingson (2000)

εcpp = 2

1∫
0

(
1 − e−τ/µ

)
µdµ = 1 − 2E3(τ) (10.3)

where E3 is the third-order exponential integral. Letting

A∗
c = Acεcpp ,

we note that the effect of the variations δA∗
c is simply (Fovercast − Fclear)δA∗

c .
For A∗

c = 1, the magnitude of TOA CF increases as the cloud altitude increases,
whereas that for the surface decreases, both in accord with the expectations from
Fig. 10.3. As clouds become more transparent, the magnitude of CF decreases for
all cloud altitudes. Note however, that relatively small uncertainties in A∗

c yield large
errors in CF . At the surface, a 15% error in A∗

c for a cloud at 0.5 km yields about a
10 Wm−2 uncertainty in the surface CF , whereas there is little change at the TOA.
Such systematic, potentially global, 3D cloud effects are missing in current climate
model simulations, leaving the possibility of significant climatic importance.

Cloud effects on the radiation field away from the boundaries of the atmosphere
are more difficult to quantify in a simple fashion. Instead of looking at the flux field, it
is more informative to examine the altitude and spectral distributions of the radiative
cooling rate – the divergence of the net flux (Fig. 10.5). The clear-sky tropospheric
distributions occur because cooling to space primarily controls the cooling rate. At a
given wavenumber the maximum longwave cooling to space in an atmosphere with
temperature decreasing with altitude occurs at optical depth 1. If the optical depth
is less than 1, the maximum occurs in the layer closest to the surface. This occurs
because of the near exponential decreases with height of the absorbing/emitting gas



10 Longwave Radiative Transfer in Inhomogeneous Cloud Layers 497

Fig. 10.5. Spectral distributions of longwave clear-sky (upper) and black overcast (lower)
cooling rates for MLS conditions as calculated with the model of Warner and Ellingson (2000).
The spectrally integrated cooling rates for these conditions are noted on the inserted middle
figure. Clouds are assumed for the layer at 3–4 km
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concentrations. At low altitudes the emission is high, but there is large attenuation.
At high altitudes, the density is low, and there is less emission and attenuation. Thus,
for clear-sky conditions, cooling in the lower troposphere is dominated by the at-
mospheric window where the optical depth is less than 1. As altitude increases, the
very strong H2O pure rotation band controls cooling. Since the optical depth varies
with wavenumber, the altitude of maximum cooling shifts to the altitude where the
optical depth equals 1.

The temperature gradient changes sign at the tropopause (near 13 km for the MLS
sounding) and the cooling to space scenario is altered. In this sounding the heating
in the 667 cm−1 region near 13 km is a result of the thermal emission by the very
strong CO2 band at the cold tropopause being less than the absorption from warmer
layers nearby. The heating in the 10-20 km range in the 1000 to 1100 cm−1 region is
due to the emission by O3 being less than the absorption of relatively un-attenuated
radiation from the lower troposphere.

When a cloud layer is added to the atmosphere (here for simplicity a black cloud
in the 3-4 km layer), the cooling rate distribution changes dramatically in the vicinity
of the cloud layer. Heating occurs immediately below the cloud layer due to absorp-
tion by the cloud of radiation from the more transparent regions. As expected, there
is very little change at altitudes where the gaseous opacity is large. No cooling oc-
curs in the assumed black cloud layer. There is strong cooling in the immediate layer
above the clouds in the window regions, again related to the strong gradient in the
cloud opacity. Within a couple of km of the cloud top, the cooling rate profile be-
comes almost identical to the clear-sky one as the local distribution of atmospheric
opacity governs the cooling. Note that there is less heating by ozone due to the de-
creased radiation incident on the stratosphere when clouds are present. Also note
that the higher a cloud is placed in the atmosphere, the larger the spectral range over
which it is effective.

The earlier discussion for the cloud forcing may also be applied to the cooling
rate. That is, uncertainties in the cloud fraction A∗

c lead to uncertainties in the cool-
ing rate proportional to δA∗

c and the difference between the overcast and clear-sky
cooling rates. For the clouds shown in Fig. 10.5, a 0.15 uncertainty in A∗

c results in
about a 2.4◦K day−1 error in the cooling rate in the 1 km layer above the cloud, a
number larger than the clear-sky cooling rate. The magnitude of the effects depends
primarily upon the cloud location. As shown below, some longwave 3D effects yield
uncertainties in A∗

c that will result in very large cooling rate errors. Since the gen-
eral effect of longwave cooling is to destabilize the atmosphere by heating below
the clouds and cooling above, uncertainties caused by neglecting 3D cloud effects
in dynamical models will change the dynamics by virtue of a modified heating rate
profile.
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10.4 Analytical Results for 3D Clouds

Atmospheric modelers have typically reduced the 3D longwave cloud problem to a
solution based on one-dimensional models by a series of assumptions concerning
cloud properties. Consider the following assumptions:

• the molecular atmosphere is plane-parallel and horizontally homogeneous;
• the cloud field for a given area is statistically homogeneous and isotropic.

Now determine the average flux for an area large compared to the individual cloud
elements by summing separately the contributions of those solid angles that are com-
pletely clear and those that have cloud contributions. With these assumptions and
with no scattering or ground reflection, the equation for the area-averaged downward
flux at an altitude z below the clouds may be written as

F (z) = 2π

π/2∫
0

Iclear(z, θ)P (θ) cos θ sin θdθ

+ 2π

π/2∫
0

Icloudy(z, θ)[1 − P (θ)] cos θ sin θdθ (10.4)

where P (θ) is the azimuthally-averaged probability of a clear line of sight (PCL)
through the clouds at zenith angle θ, and Iclear and Icloudy are the average radiant
intensities from the clear and cloudy areas of the sky, respectively. Here it is assumed
that the PCL P (z, θ) ≡ P (θ) which is true at least for cloudy layers with vertical
cloud boundaries.

Note that the above assumptions are only simplifying if it is possible to specify
P (θ) and the area-averaged clear and cloudy sky radiances. For the clear-sky compo-
nent, this is not a major concern barring frontal boundaries and orography, since the
clear-sky radiative properties are quasi-horizontally homogeneous over large length
scales. Clouds present more of a challenge because cloud field and radiance prop-
erties require major simplifications before P (θ) and Icloudy can be determined. Fur-
thermore, there are sparse observations or calculations with which to test the approx-
imations.

Figure 10.6 illustrates the overall geometrical effects of broken cloudiness. For
illustration purposes, the clouds shown have the same horizontal lengths, but they
have different vertical dimensions and irregular spacing. In this 2D transect, each
cloud projects the same length at the level of cloud base from all view angles if
only the cloud horizontal dimension is considered. Note that for very thin, randomly
dispersed thin plates, P (θ) is (1 − Ac), where Ac is the absolute cloud fraction.
Assuming the thin plate clouds have identical radiative properties, (10.4) reverts to
the standard approximation (10.2) used in most climate models. Thus for all z,

Fthin(z) = (1 − Ac)Fclear(z) + AcFovercast(z) . (10.5)
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Fig. 10.6. Two dimensional view of an array of vertically extended clouds each with the same
width. When viewed at angle θ, the clouds project as the dotted lines. When projected verti-
cally downward, the cloud project as the solid horizontal lines (displaced here to coincide with
the start of the dashed lines). The plane-parallel cloud assumption, the solid lines, underesti-
mates cloud cover at all view angles >0

That is, the flux is simply the cloud amount weighted average between the clear and
overcast fluxes, each of which can be calculated with plane-parallel techniques.

Now consider the effects of the vertical dimensions of the clouds by examin-
ing the projections of the vertical faces of the clouds on the horizontal plane when
viewed at an angle θ. As shown, when clouds are broken and have vertical extent,
they project a larger area than their bases, thereby obscuring a larger fraction of the
sky at a given angle than do flat plates with the same horizontal dimensions. One
might anticipate that the effects of the vertical dimension to become larger as the
clouds become tall relative to their bases. As will be seen below, when the cloud
fraction is small, the clouds tend not to obscure one another. However, as fractional
coverage of the bases increases, cloud sides become less important as mutual ob-
scuration increases, a feature also connected with the distribution of cloud spacing.
Additionally, since clouds are not isothermal, temperature variations along their sides
must be accounted for in calculations.

Note that if the clouds have any depth, one cannot define an appropriate cloud
fraction without also requiring the average fluxes to be dependent on the cloud prop-
erties. For example, if we define a hemispherically averaged cloud fraction AcH as

AcH = 2

π/2∫
0

[1 − P (θ)] sin θ cos θdθ , (10.6)

we write the average flux as

F̄ (z) = (1 − AcH)F̄clear(z) + AcHF̄cloudy(z) . (10.7)

This will require the average fluxes to be defined as
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F̄clear(z) =
2π

(1 − AcH)

π/2∫
0

P (θ)Iclear(z, θ) sin θ cos θdθ (10.8)

and

F̄cloudy(z) =
2π
AcH

π/2∫
0

[1 − P (θ)]Icloudy(z, θ) sin θ cos θdθ . (10.9)

That is, the effective cloud fraction and the radiation field cannot be determined
independently of each other.

10.4.1 Effective Cloud Fraction and Probability of Clear Line of Sight

The suggested reading contains references to many attempts that have been made to
determine the form of P (θ) by making assumptions concerning the cloud field and
the geometry of the individual cloud elements. In general, the approaches allow the
equations for the upward and downward area-averaged fluxes to be written as

F = (1 − Ace)Fclear + AceFovercast (10.10)

where Ace is an effective cloud fraction that depends upon the assumptions made
concerning the cloud field, Fclear is the clear-sky flux calculated with the domain av-
eraged clear-air radiative properties, Fovercast is the flux calculated for overcast condi-
tions with assumed cloud radiative properties. The advantage of this approach is that
it allows climate codes to use their radiation models with new parameterizations of
Ace. However, it must be remembered that none of these attempts have included the
effects of scattering between broken cloud elements or have been shown conclusively
to account adequately for all three-dimensional cloud effects.

Many of the bulk geometrical effects of clouds on P (θ) may be appreciated by
considering an array of identical right-circular cylinders of thickness h, radius R,
and cloud positions distributed according to a Poisson distribution with areal density
parameter γ. For such an array, P (θ) may be written as (Avaste et al., 1974)

P (θ) = exp[−γ(πR2 + 2hR tan θ)] . (10.11)

Note that the terms in parentheses are simply the areas of a cloud base and the side,
respectively, projected onto the base level. P (θ) is a maximum when looking directly
overhead (θ = 0) and goes to 0 when looking at the horizon (θ = π/2).

Defining the absolute cloud amount as 1 − P (0), allows P (θ) to be written as

P (θ) = (1 − Ac) exp(b tan θ) (10.12)

where
b = 2βln(1 − Ac)/π ,

and β, the aspect ratio, is h/R.
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Fig. 10.7. Probability of a clear line of sight P (θ) for a random cylindrical cloud field as a
function of zenith angle for 50% absolute cloud cover Ac and different aspect ratios β

Figure 10.7 illustrates P (θ) as a function of θ for a few different aspect ratios
for 50% absolute cloud cover. P (θ) decreases with increasing θ and β, since more
cloud side areas are seen at a given θ. Note that the horizon is not visible for these
type clouds.

Note that even with the simple form of (10.12), it is easily seen that Ace cannot
be separated from the radiance fields without further assumptions. However, due to
the quasi-isotropic nature of the radiance fields, the angular integration poses no ma-
jor computational problem. For an isotropic radiance assumption and for isothermal
black clouds, Ace is easily shown to be a function of Ac and β given by

Ace = Ac + (1 − Ac)

⎡⎢⎣1 − 2

π/2∫
0

exp(b tan θ) sin θ cos θdθ

⎤⎥⎦ . (10.13)

Thus, Ace is always > Ac, and varies with Ac in a complex fashion dependent upon β.

10.4.2 Geometrical Effects of Broken “Black” Clouds

Despite some of the shortcomings of such simplifications for the properties of the
cloud and radiance fields, it is illustrative to examine the results from at least one
model to glean the overall bulk 3D geometrical effects, sans scattering. The results
shown herein draw heavily from the work of Han and Ellingson (1999) that assumes
truncated square pyramids, a critical nearest neighbor spacing of clouds, and power
law distributions for both cloud size and spatial distributions. Clouds are assumed
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Fig. 10.8. Ace – Ac as a function of Ac and β on Ace for isothermal cylindrical clouds

to be spectrally black, a good assumption for cumulus clouds with optical thickness
greater than 3 – a few hundred meters thick. Since we wish to highlight the effects
relative to the thin plate approximation, results are shown as Ace − Ac. This com-
bined with the results shown in Fig. 10.4 provides a useful method for estimating the
possible flux errors inherent in neglecting cloud geometry.

Figure 10.8 shows Ace −Ac as a function of Ac for isothermal cylindrical clouds
for different aspect ratios, assuming realistic values for cloud spacing and sizes. Note
that the larger β, the larger the cloud side area relative to base area. When Ac is small,
mutual shading is not significant and cloud sides make a large contribution to Ace.

The error in neglecting cloud geometry can be estimated by combining the results
shown in Figs. 10.4 and 10.8. Since the cumulus clouds depths are approximately the
same as their widths; β ≈ 2. From Fig. 10.8 the error for β = 2 peaks at Ac ≈ 0.35;
Ace − Ac ≈ 0.275. From Fig. 10.4 the overcast cloud forcing at the surface for
cloud altitude 0.5 km is approximately 70 Wm−2. To get the forcing for fractional
cloudiness, multiply by Ace to account for cloud geometry. Multiplying by Ac ne-
glects cloud geometry. In this case, (Ace − Ac)CF ≈ 20 Wm−2; neglecting cloud
geometry will underestimate the downward flux at the surface by 20 Wm−2.

Non-isothermal clouds in an atmosphere with temperature decreasing with in-
creasing altitude have smaller bulk geometry effects, because the cloud sides are
closer to the clear-sky radiance field. If the clouds are tall enough so that the flux
from top to bottom increased by a factor of two, the maximum effect would decrease
by about 30%.

The effects of varying the exponent v of an assumed power law distribution of
cloud sizes are shown in Fig. 10.9. A larger v implies a larger number of clouds of
the same cloud size. For low Ac, the spatial distances remain large. More clouds tend
to offer a greater area of cloud sides and a greater Ace. Nonetheless, it is quite clear
that the geometrical effects can be reduced by about 50% and moved to larger cloud
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Fig. 10.9. The effects of size distribution exponent v on Ace for different β. P (R)dR is the
probability of a cloud of size R and R + dR. A larger v implies a larger number of clouds of
the same cloud size. For low Ac, the spatial distances remain large. More clouds tend to offer
a greater area of cloud sides and a greater Ace

Fig. 10.10. The effects of spatial distribution exponent u on Ace. P (s)ds is the probability of
spacing between s and s + ds; u > 1. When u is large, clouds are more sparsely distributed
and cloud sides tend to be obscured less and generate a larger Ace

fractions by having a wider spread in the sizes of the clouds. Note that v is not a
routinely observed quantity or one that is predicted by climate models.

The effects of varying the exponent u of an assumed power law distribution of
cloud spacing are shown in Fig. 10.10. When u is large, clouds are more sparsely
distributed and cloud sides tend to be obscured less and generate a larger Ace. Note
that the major effects of spacing become more apparent for Ac between 0.4 and 0.7,
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Fig. 10.11. The effect of side inclination η on the effective cloud fraction for different β

and tend to be about 25% of the effects caused by realistic variations in the cloud
size distributions.

The inclination of cloud sides is also important, as this reduces the area of the
projected sizes (see Fig. 10.11). A modest change in the side inclination (η = 15◦)
reduces the maximum geometric effect by about 33% over a broad range of Ac. Al-
though not shown, the effects of different cloud shapes are realized primarily through
the inclination factor.

It is not at all clear which, if any, of the geometrical models represent real clouds,
because few observational studies have been performed, and there are conflicting
results from those that have been performed. Figure 10.12 show the results of an
attempt to compare observed with model calculated values of Ace − Ac for rela-
tively thick, single layer cumulus clouds. In general, the observations show the same
general trend of different models, but there are few observations in the range of pa-
rameter space where the models are most sensitive.

10.4.3 Heterogeneous Non Black Clouds

As noted in Sect. 10.3, for non-black plates of uniform optical thickness, Ac in (10.2)
is replaced by the product of Ac and the plane-parallel cloud flux emissivity,

εcpp(τ) = 1 − 2E3(τ) ,

where τ is the cloud optical depth, E3 is the third-order exponential integral, and
Fovercast is replaced by Fovercast(black), the flux resulting from a black cloud; that is,

F = (1 − Acεcpp(τ))Fclear + Acεcpp(τ)Fovercast(black) . (10.14)

There is large body of literature on analysis of observations that find a wide range
of optical depths for liquid water clouds, even for marine stratocumulus cloud fields
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Fig. 10.12. The distribution of Ace−Ac as functions of Ac and β from 436 cases of single-layer
cumulus clouds observed in 1994 at the ARM site in Oklahoma, USA. Half of each vertical
bar indicates the standard deviation of uncertainty in the retrieved Ace. The curves are from a
model assuming random cylinders. Data are from Han (1999)

that appear to be horizontally homogeneous. Due to the highly non-linear depen-
dence of the cloud emissivity on τ for moderate τ, it is important to consider the
appropriate average ε rather than ε at the average τ.

To illustrate the potential effects of the horizontal distribution of optical depth,
assume that in our domain, the cloud radiance at a given level and zenith angle,
Icloudy(z, θ), at any position in the domain under consideration varies from other
positions due only to the cloud absorption optical depth τ viewed at θ. We’ll neglect
the possibility that a given view actually intersects more than one cloud. Consider
probability distributions of τ for lines of sight along θ, and denote these probability
densities of τ, conditional on θ, as Pc(τ| θ).

Assuming P (θ) (line-of-sight variability) and Pc(τ| θ) (optical depth variabil-
ity) are independent allows us to write the domain averaged cloudy sky radiance
Īcloudy(z, θ) as

Īcloudy(z, θ) =

∞∫
0

P (τ| θ)Icloudy(z, θ, τ)dτ . (10.15)

Assume now that the clouds are isothermal and that the monochromatic cloud emis-
sion Icloudy(z, θ, τ) be approximated as [1 − e−τ sec θ]Bνc where Bνc is the Planck
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function for the temperature of the cloud. For illustration purposes, the appropriate
domain averaged monochromatic emissivity εca for vertically extended clouds is then
given as

εca = 2

∞∫
0

dτ

π/2∫
0

P (τ| θ)[1 − e−τ sec θ] cos θ sin θdθ . (10.16)

Recent observational studies of marine stratocumulus with high resolution Land-
sat data by Barker and Wielicki (1997) have shown that the 1000 cm−1 (10 µm)
window region optical depth is represented well by the Gamma distribution written
as

Pc(τ| θ) =
1

Γ(ν)

(ν
τ̄

)ν
τν−1e−ντ/τ̄; τ > 0, ν > 0 (10.17)

where Γ(ν) is the Gamma function, irrespective of θ. Parameter ν = (τ̄/σ)2, where
σ is the standard deviation of the distribution of τ with mean τ̄.

With this definition of p(τ), Barker and Wielicki derive a cloud emissivity εcΓ

using (10.16) and (10.17) to obtain

εcΓ(τ̄) = 1 − 1
Γ(ν)

(ν
τ̄

)ν
{(

τ̄
ν + τ̄

)ν [
Γ(ν) − τ̄

ν + τ̄
Γ(ν + 1)

]

+

∞∫
0

E1(τ)τν+1e−ντ/τ̄dτ

}
(10.18)

where E1 is the first-order exponential integral.
It should be noted that (10.18) holds strictly for monochromatic radiation. How-

ever, since the liquid water optical properties vary slowly with wavenumber in the
thermal infrared, this form might be used for the spectrally averaged flux transmit-
tance.

Figure 10.13 shows εcΓ and the εcpp for a range of ν and τ. For ν � 2, εcΓ

depends markedly on ν, and εcΓ < εcpp for all τ. Note that for τ > 3, εcpp > εcΓ

by more than a factor of 2 for ν = 2, an observed set of parameters. For τ ≈ 1, a
value representative of relatively thin stratocumulus, εcpp ≈ 0.8, whereas εcΓ varies
between about 0.40 for ν = 0.2 to 0.75 for ν = 2. Clearly, horizontal variations of τ
are important.

Note that the effects of variations in τ on the downward flux at the surface are
dramatic for low-level clouds. For overcast conditions typical of stratocumulus, the
plane-parallel black cloud approximation would be about 35 Wm−2 greater than val-
ues computed of εcΓ(τ = 3, ν = 0.2). For 50% cloud cover with cumuli of aspect
ratios ≈ 1, the flat plate approximation would be 20 Wm−2 greater than the combined
effects of geometry and optical depth variability. Incorporating the cloud geometry
alone exceeds the combined effects by 35 Wm−2. Clearly, neglecting optical depth
variability can lead to significant flux errors.

The relative sensitivity of the flux to the combined effects of geometry and optical
depth variability, with respect to the flat plate approximation, may be written as
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Fig. 10.13. Comparison of εcpp (dotted) and εcΓ as a function of average cloud optical depth
for different Gamma distributions of optical depth as embodied in parameter ν

δF

Fovercast − Fclear
≈ Ace − Ac

Ace
+

εcΓ − εcpp

εcΓ
. (10.19)

Assuming the P (θ) and p(τ| θ) given herein are approximately correct when
ν � 2, cloud geometrical effects dominate for all τ. Note that non blackness is an
important consideration for those cases with τ � 3. For ν � 0.5 and all τ, varia-
tions in τ will dominate. For other values of τ and ν, the effects of cloud geometry
and optical depth variability may well be of similar magnitude but of opposite sign,
depending upon the values of various parameters. Additional observations and/or nu-
merical modeling are necessary to ascertain the atmospheric conditions controlling
the importance of geometry and optical depth variability.

10.5 Monte Carlo Calculations for 3D Clouds

In the longwave, the Monte Carlo method is nearly identical with that in the short-
wave. Tracking beams, or photon “bundles,” through probabilistic transmission, ab-
sorption, and scattering events simulates the radiative transfer. The only difference is
the source of the photon bundles – in the longwave, the surface, cloud elements, and
the atmospheric gases are emitters. Any simulation must account for these emission
sources.

For a diffuse surface, the emission zenith angle is

θ = cos−1
√

α (10.20a)

while for a volumetric emitter, such as a gaseous or cloud element,

θ = cos−1(1 − 2α) ; (10.20b)

in both cases, the emission azimuth angle is
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φ = 2πα . (10.20c)

Here, α denotes independently generated random numbers uniformly distributed be-
tween 0 and 1. The above simulation rules follow directly from the simulation of
continuous random variables with a given probability density function described
in Sect. 4.2.2. For example, for diffuse surface, probability density function is
P (θ) = sin 2θ, 0 ≤ θ < π/2; thus (10.20a) follows directly from (4.35)–(4.36).

10.5.1 Forward vs. Backward Monte Carlo

As described in Sect. 4.2, forward and backward Monte Carlo algorithms have ad-
vantages and disadvantages. These are more pronounced in the longwave since every
element of the atmosphere and the surface emits in the longwave.

Because the emitting temperatures are almost the same, it is common to emit the
same number of photons from each element and normalize the fractions according
to the temperature and optical properties. A more sophisticated method is to use the
temperature and optical properties to partition the photon bundles among the emitting
elements. The fractional probability of being emitted by the ith surface element, fsi

at temperature Ti and a wavenumber interval centered on ν is

fsi =
π
∫

Ai
ενiBν(Ti)dAi

U
; (10.21a)

ενi is the emissivity of surface element i; Ai is the area of element i; Bν is the Planck
function at wavenumber ν. Similarly, the fractional probability of being emitted by
the ith volumetric (gaseous and cloud) element, fvi at temperature Ti and a wave-
number interval centered on ν is

fvi =
π
∫

Vi
aνiBν(Ti)dVi

U
; (10.21b)

aνi is the absorptivity of volumetric element i; Vi is the volume of element i. U is
the sum of all emitted energy at wavenumber ν over the M surface elements and N
volumetric elements:

U = π
M∑
i=1

∫
Ai

ενiBν(Ti)dAi + π
N∑

i=1

∫
Vi

aνiBν(Ti)dVi . (10.21c)

The primary disadvantage of forward Monte Carlo arises when only a limited
number of quantities need to be computed and there are a large number of emitting
elements, such as for remote sensing. In that case a large number of the tracked
photon bundles will not contribute to the solutions; energy partitioning as in (10.21a-
c) will reduce this problem.

Backwards Monte Carlo is advantageous when the number of computed quan-
tities is small compared to the number of emitting elements. When the computed
quantities are roughly equal in number and location as the emitting elements, the
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methods are equivalent. If there are more computed quantities than emitting ele-
ments, forward Monte Carlo is more efficient.

Parallel computing is an obvious path to improve the speed of Monte Carlo calcu-
lations. Since each photon bundle is independent, Monte Carlo is readily adapted to
parallel computing. Backwards Monte Carlo can be directly implemented; the back-
ward tracking origin points can be spread among the processors and the results gath-
ered at the end. This requires minimal communication between processors, a single
number (the answer) can be passed. Forward Monte Carlo requires more communi-
cation. Like the backward calculation, the bundle tracking from emission point can
be spread among the processors. To compute the quantities the statistics from each
emission point must be gathered together. Gathering the statistics requires passing
arrays instead of single numbers. Unlike the serial case, it is not clear which method
has the advantage in a given situation.

10.5.2 Quasi-3D Example

In Sect. 10.4.2 we used analytical solutions for broken black clouds. Non-black and
scattering clouds were not examined because they greatly increased the complexity.
However, the Monte Carlo method can easily use the probability of clear line sight
expressions and account for cloud transmission and scattering. For example, a single
layer cloud field composed of homogenous cylinders with random horizontal overlap
as in Takara and Ellingson (2000). To emphasize the cloud geometry and scattering,
consider only the 833–1250 cm−1 atmospheric window.

The upward and downward fluxes are found through a spectral and angular inte-
gration of radiances,

F ↑↓ =

π/2∫
0

I↑↓(θ) cos(θ)dθ =
3∑

j=1

wjI
↑↓(θj) . (10.22)

The wj are the Gaussian weights for the Gaussian angles in the interval 0 < θ < π/2.
Here a 3-point quadrature is used. The upward and downward radiances, I↑↓, are
computed by summing over the wavenumber intervals:

I↑↓ =

1250 cm−1∫
833 cm−1

I↑↓ν dν =
6∑

i=1

I↑↓i ∆νi . (10.23)

Here, I↑↓i is the spectral radiance or specific intensity of the ith wavenumber interval.
The intervals (in cm−1) are: 833 < ν1 < 909 < ν2 < 1000 < ν3 < 1081 < ν4 <
1143 < ν5 < 1212 < ν6 < 1250.

Outside the cloud layer, the radiances are computed using the transmission and
emission calculated using a line-by-line radiative transfer model (or “LBLRTM”)
assuming a black surface. Backward Monte Carlo simulations are used to find the
radiances emerging from the cloud layer; to find the emerging radiance at Gaussian
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angle θj , bundles are emitted into the layer at (π−θj). Using the PCL it is determined
whether or not bundles intersected a cloud element. For random number α,{

α ≤ PCL: bundle does not intersect clouds

α > PCL: bundle intersects clouds
. (10.24)

The transmissivity is computed throughout the cloud layer at 25-meter intervals.
Since transmissivities range between 0 and 1 they can be used directly to model
transmission or absorption probabilities. For a bundle emitted at zj traveling upward
to zi and random number α,{

α ≤ T (zi, zj , θ) : bundle is transmitted

α > T (zi, zj , θ) : bundle is extinguished
. (10.25)

The bundle extinction location, zext, is found by equating the ratios of T and z:

α − 1
T (zi, zj , θ) − 1

=
zext − zj

zi − zj
(10.26a)

where T = 1 corresponds to the emission point at zj and T (zi, zj , θ) to the end of
the path at zi. This linear approximation assumes that each layer is optically thin.
Solving for zext gives:

zext = zj +
zi − zj

T (zi, zj , θ) − 1
(α − 1) . (10.26b)

The transmission from zj traveling upward to zi through the cloud is the product of
gaseous and cloud transmission.

T (zi, zj , θ) = Tgas(zi, zj , θ)Tcloud(zi, zj , θ) (10.27a)

Tcloud(zi, zj , θ) = exp
(
− τ

cos θ

)
= exp

[
−σe

(
zi − zj

cos θ

)]
(10.27b)

T (zi, zj , θ) = Tgas(zi, zj , θ) exp
[
−σe

(
zi − zj

cos θ

)]
(10.27c)

where σe is the extinction coefficient.
If the photon bundle is extinguished then it is either scattered or absorbed. The

albedo of single scattering, �0, determines which occurs. For random number α,{
α ≤ �0 : bundle is scattered

α > �0 : bundle is absorbed
. (10.28)

There is no scattering for a bundle with a clear line of sight, �0 = 0, so the bundle
is always absorbed. If the bundle is scattered, a new direction is assigned using the
phase function through the same process described in Sect. 4.2.

Results are computed for the McClatchey tropical (TRP) and sub-arctic winter
(SAW) soundings. A single layer of water clouds is inserted at three different cloud
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base altitudes (zb), 0.5, 2, and 4 km. Within the clouds, an effective radius (re) of
5 µm is assumed for the droplets. The clouds are given two different geometries, large
and small. For the large clouds, the aspect ratio (β) is 2 and the cloud diameter (D) is
1 km; the cloud thickness is 1 km. For the small clouds, β = 1 and D = 0.25 km; the
cloud thickness is 0.125 km. The liquid water content (LWC) is 0.1 gm−3 for SAW
and 1 gm−3 for TRP. For these LWC, the SAW small water cloud optical thickness
is approximately 3 in the vertical direction, and 30 for the TRP.

To determine the relative importance of scattering and geometry for water clouds
the results are compared to Monte Carlo computations with black clouds – the black
cloud approximation. The bias error for the black cloud approximation is

δX = X(approximation) − X; X = F ↑, F ↓ . (10.29)

In Fig. 10.14a (TRP) the absolute values of the errors are less than 0.9 Wm−2,
quite small. For water clouds the black cloud approximation works because the
downward emission by the water clouds is augmented by the downward reflection of
upward flux at the cloud bottom. This can be seen by noting that the error is negative
at Ac = 1. Since the apparent cloud emission is greater than the blackbody emission,
the apparent emissivity of the water cloud is larger than one. The high temperature
and water vapor concentration in the first kilometer masks the scattering effect at the
surface. This agrees with observational studies of cumulus cloud fields.

In Fig. 10.14b (SAW), the errors are less than 2 Wm−2 for the large clouds,
and approach 11 Wm−2 for small clouds. The small cloud errors decrease as cloud
height increases, peaking at Ac = 0.7. Because the small clouds are not opaque,
there is direct transmission from the surface to the upper atmosphere. The surface
“sees” the cold upper atmosphere. Though the cloud bottom continues to reflect, a
good deal of the surface radiation is transmitted through the clouds. The reflection
from the cloud bottom is not large enough to compensate for the reduced emission,
unlike Fig. 10.14a. As a result, the black cloud approximation fails since the small
water cloud vertical optical thickness is approximately 3; this agrees with the results
in Sect. 10.4.2 and results by Harshvardhan (1982).

The errors for the upward flux at 15 km are shown in Figs. 10.15a,b. In Fig. 10.15a
(TRP), the absolute value of the error is less than 4 Wm−2. The error increases al-
most linearly with Ac; the larger clouds having more error than the smaller clouds. In
this case, the black cloud approximation overestimates the flux above the clouds. The
clouds are too opaque to allow transmission from the lower atmosphere. Scattering
clouds trap their emissions within themselves; so the outward emission by the clouds
is reduced. Unlike for surface fluxes, there is no reflection from the cloud top to com-
pensate for the lower emission by the cloud. This effect is more noticeable above the
thicker water clouds where atmospheric emission is reduced. Fig. 10.15b (SAW) also
shows a similar pattern, except for the small water cloud at 4 km. From Fig. 10.14b,
the small clouds are partially transparent and the large clouds are opaque. It might
be expected that the small cloud errors would cluster together as in Fig. 10.14b. But
only the small water cloud at 4 km stands apart. For the other clouds, the black cloud
approximation overestimates the flux and the error increases almost linearly with
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Fig. 10.14. (a) TRP downward flux error at surface for large and small water clouds at various
zb: LWC = 1 g m−3, re = 5 µm. (b) SAW downward flux error at surface for large and small
water clouds at various zb: LWC = 0.1 g m−3, re = 5 µm. Notice the vastly different ordinate
scales

Ac. Since the optical thickness of the small clouds is low enough to allow transmis-
sion while the large clouds are opaque, it is curious to see similar errors for large
and small clouds at 0.5 and 2 km. The explanation is in the temperature profile. In
this sounding, the temperature increases slightly with altitude for the first kilometer,
drops back down at 2 km and remains almost the same up to 3 km. As a result, 0.5
and 2 km clouds (both large and small) are at almost the same temperature as the
atmosphere below. Only the 4 km clouds are significantly colder than the lower at-
mosphere. Since the small cloud is partially transparent, the energy from the lower
levels radiates through the cloud layer. This leads to an underestimation of the flux
by the black cloud approximation.
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Fig. 10.15. (a) TRP upward flux error at 15 km for large and small water clouds at various zb:
LWC = 1 g m−3, re = 5 µm. (b) SAW upward flux error at 15 km for large and small water
clouds at various zb: LWC = 0.1 g m−3, re = 5 µm

In general the black cloud approximation worked well for opaque water clouds
with flux errors less than 5 Wm−2. When the cloud optical thickness is reduced so
that the cloud is no longer opaque, the black cloud approximation fails. The results
indicate that individual cloud geometry is of primary importance for opaque water
clouds. The errors due to neglecting cloud scattering are largest close to the cloud
layer and decrease as the distance from the cloud layer increases. This reduction oc-
curs most rapidly below 3 km. Since the effects of water cloud longwave scattering
are effectively muted in the 833–1250 cm−1 window, scattering effects from opti-
cally thick water clouds should not be significant over the longwave spectrum.
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10.5.3 Fully-3D Example

The Intercomparison of Three-Dimensional Radiation Codes (I3RC1) has provided
excellent examples of three-dimensional cloud problems. The most computationally
intensive is from an LES-based prediction of a cumulus field featuring a 100×100
grid in the horizontal with a vertical grid of 30 layers and periodic boundary condi-
tions (see Fig. 10.16a and also Fig. 4.6).

Note that the fourth quadrant (x > 3 km, y < 3 km) is almost cloud free. The
I3RC specified several problems for this simulated field, one of which is to find the
surface downward flux at 1000 cm−1 for each grid point (10,000 points in all). The
backward Monte Carlo computation used here assumed cells centered on each grid
point with constant properties. Quantities are calculated at the midpoint or center
point of each zone. The bundles are tracked from the middle or center of each cell.

Bundle tracking proceeded as in Sect. 10.5.2, i.e., (10.25) for transmission and
(10.28) for scattering are directly applied. Since it is assumed that there is no horizon-
tal variation in temperature, it is not necessary to tabulate the horizontal components
of the absorption locations, only the vertical locations are necessary. Once the bun-
dle tracking is completed, the fractions accumulated in each vertical location can be
used to compute the downward flux at the surface (z = 0) F ↓:

F ↓ = πfsBν(Ts) + π
30∑

k=1

fvkBν(Tk) (10.30a)

where subindex “s” stands for surface while “v” stands for volume. Here fs is the
ratio of the number of bundles that reach and are absorbed by the surface, Ns, to the
total number of bundles emitted at the computation point, N :

fs =
Ns

N
(10.30b)

and fvk is the same ratio for the number of bundles that reach and are absorbed in
layer k, Nvk:

fvk =
Nvk

N
. (10.30c)

Note that the number of bundles that reach the TOA (set at z = 30 km) is not tab-
ulated since there is no downward emission from space (other than the longwave
portion of the solar spectrum).

To compute the upward flux at TOA F ↑, photons are tracked backwards from the
starting points at the top of the atmosphere

F ↑ = πfsBν(Ts) + π
30∑

k=1

fvkBν(Tk) . (10.31)

To compute q, the heating rate per unit volume at a particular point (x, y, z)T, photons
are tracked backwards from that point:

1 http://i3rc.gsfc.nasa.gov/
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Fig. 10.16. (a) Column integrated optical thickness for I3RC cumulus field at 1000 cm−1. (b)
1000 cm−1 downward flux at surface for I3RC cumulus field. (c) Percent Monte Carlo error
estimate (absolute value) for 1000 cm−1 downward flux at surface for I3RC cumulus field
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q = 4πσa

[
fsBν(Ts) +

30∑
k=1

fvkBν(Tk)

]
− 4πσaBν(T ) (10.32)

where σa is the absorption coefficient and T is the temperature at position (x, y, z)T,
typically only a function of z. The first term is the absorbed energy per unit volume;
4πσaBν(T ) is the energy emitted per unit volume.

Fig. 10.16b is the downward surface spectral 10 µm flux for the 100 × 100 hor-
izontal grid. The fluxes at each point are computed by backward tracking 10,000
bundles. Approximately 12 hours are needed to compute the 10,000 fluxes on an
800 Mhz Linux workstation. The three-dimensional effects of the clouds will be most
apparent for this spectral flux since it is near the center of the 833–1250 cm−1 win-
dow region. In Fig. 10.16b, the clear fourth quadrant from Fig. 10.16a is a region
of low downward flux. The areas below the clouds have high downward flux. The
estimated percentage numerical error (absolute value) estimate is shown Fig. 10.16c.
The estimated error is under one percent throughout, indicating that 10,000 bundles
from each surface mid-point will give a good estimate for the surface flux over the
entire region. Note that the areas of lower error are below the clouds (high flux) and
the higher errors are in the clear areas (low flux). The time required to compute these
fluxes is a drawback of the Monte Carlo method and emphasizes the importance of
carefully implementing a Monte Carlo calculation.

10.6 Summary

Within this chapter basic information on gas and cloud spectroscopy and an intro-
duction to longwave calculations with results are presented. This is followed by an-
alytical results for 3D clouds and then a discussion of longwave Monte Carlo with
some results.

The discussion of spectroscopy in Section 10.1 shows that atmospheric gases are
quite opaque. For clear skies, there are two spectral intervals with significant sur-
face to TOA transmission: the primary 833–1250 cm−1 (8–12 µm) window and the
“dirty” window 500 cm−1 (20 µm), which becomes significant in dry atmospheres.
In comparison to the gaseous absorption which varies greatly within a small spectral
interval the cloud radiative properties vary quite slowly. The introduction to long-
wave calculations in Sect. 10.2 and the results shown in Sect. 10.3 show the blocking
effect of clouds in the primary 833–1250 cm−1 window, which yields higher down-
welling at the surface and lower upwelling at the TOA. Clouds affect the atmospheric
cooling rate through the optical depth gradients at their boundaries. This results in
heating below the cloud layer and cooling above. In partially cloudy cases, a 15%
error in plane parallel cloud fraction leads to very large cooling rate errors.

The analytical results for 3D clouds in Sect. 10.4 use the concept of the probabil-
ity of a clear line of sight to generate analytical solutions for broken cloud fields of
various size and space distributions. From this the effect of cloud geometry is deter-
mined. For the simple isothermal cylindrical cloud model, neglecting cloud geom-
etry can lead to underestimating the downwelling flux at the surface by as much as
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20 Wm−2. A more complex model featuring truncated square pyramids with power
law distributions for cloud size and spacing generally agrees with measurements. The
comparison of the effect of cloud non blackness to geometry shows that for clouds
with large optical depth and low variability, cloud geometry is most important. For
clouds with high variability in optical depth, the variability and non-blackness is most
important. Sect. 10.5 describes aspects of the Monte Carlo method in the longwave;
expressions for longwave emission and the relative merits of forward and backward
Monte Carlo are described. Results from an extension of the work on analytical re-
sults for 3D clouds that includes scattering and transmission are presented. They
show that in very humid atmospheres with opaque clouds, cloud scattering has very
little effect on surface flux compared to the black cloud approximation. The high hu-
midity masks out the scattering effect. Scattering does have an effect for the upward
flux at 15 km; it lowers the emission from the cloud top. Lastly, surface fluxes for
a full-blown monochromatic 3D Monte Carlo model are shown. The computation is
quite lengthy for 10,000 bundles from each of the 10,000 computation points. Even
with the vast increases in computer speed, long computational times are a problem
for Monte Carlo calculations.
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11.1 Introduction

The effects of three-dimensional radiative transfer (3DRT) are evident in a variety of
satellite remote sensing applications. They are most frequently associated with the
remote sensing of cloud optical properties such as optical depth, but may also be
relevant to other applications, such as the remote sensing of aerosol properties over
heterogeneous land (Diner and Martonchik, 1984), and even the retrieval of rainfall
rates. One of the earliest applications of a 3DRT model to remote sensing was in
fact a study of the effect of cloud heterogeneity on the retrieval of rainfall rates from
passive microwave radiances by Weinman and Davies (1978), who used both ana-
lytical and Monte Carlo 3DRT models to obtain ambiguities of the order of a factor
of 2 in the inferred rainfall rate when the rain did not uniformly fill the radiometer’s
field of view. On the other hand, many other types of remote sensing, notably those
that involve line-of-sight absorption and emission with little atmospheric scattering,
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such as temperature and humidity sounding or the retrieval of surface features, re-
main essentially one-dimensional radiative transfer (1DRT) problems for which the
complexity of 3DRT is not needed.

Because the earliest practical uses of radiative transfer in satellite remote sens-
ing were entirely one-dimensional, the initial work with 3DRT tended to involve
theoretical studies that examined the potential limitations of the one-dimensional
retrievals. In the case of finite clouds it was relatively trivial to show large differ-
ences in retrieved properties compared with the one-dimensional counterpart. Even
for the example of cloud top temperatures inferred from 10 µm radiances, the in-
clusion of three-dimensional scattering effects gave differences of several degrees
from the one-dimensional approach for finite clouds, leading to possible ‘superblack’
cloud tops, as shown by Harshvardhan et al. (1981). Further, and progressively more
sophisticated, theoretical studies have continued to explore the limitations of one-
dimensional retrievals with the goal of establishing a basis for the application (largely
unrealized, as yet) of three-dimensional retrieval techniques.

Specific case studies of finite clouds clearly show glaring differences between
the one- and three-dimensional approaches, but may not necessarily be typical of
global cloudiness. For this and other reasons, the global remote sensing community
initially appeared to be unresponsive to such findings and continued to accept the re-
sults of one-dimensional retrievals with remarkably little concern. It took what might
be called a second wave of studies to place the consequences of 3DRT squarely in
a global context that cannot be ignored. These studies have been statistical in na-
ture, summarizing satellite measurements in ways that illustrate dependencies that
are inconsistent with the assumptions of 1DRT (e.g., the breakdown of directional
reciprocity), and that lead to clearly undesirable consequences (e.g., cloud optical
depths that increase with solar zenith angle). As new satellites are deployed to mea-
sure the Earth-leaving radiation with increasingly higher spectral and spatial resolu-
tions, and at more viewing angles, statistical studies continue to provide new quan-
titative insights into the global nature and consequences of cloud heterogeneity, and
consequently of 3DRT. The key fact that clouds are predominantly heterogeneous on
a global scale, however, already appears inescapable.

This brings us to what might be called the third wave of 3DRT studies, still very
much in its infancy. This refers to the use of remote sensing techniques that exploit
cloud heterogeneity to retrieve new properties (as in the multi-angle remote sensing
of cloud-top heights using stereo), and to modify or optimize the use of 1DRT (as in
identifying cases where one-dimensional retrievals can be safely made).

In this chapter we include examples of each of these three types of study. The
second type receives the most attention, given its relative maturity and significance.
Our emphasis is on the remote sensing of cloud properties using satellite measure-
ments of shortwave spectral radiances. While this limitation reflects the prejudice
of the author’s research interests, it is also the type of remote sensing that is most
dependent on the need for a 3DRT perspective. Shortwave cloud properties and, no-
tably, the relationship between cloud albedo and microphysical content are also of
great interest in studies of equilibrium climate and climate change, given the huge
uncertainties still evident in assessing cloud-radiative feedback processes. Much of
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the remote sensing challenge is therefore directed at obtaining accurate cloud albe-
dos, and in relating these albedos to cloud optical depth, which is frequently taken as
a proxy measure of cloud water amount. In the interests of space and time, however,
we simply scratch the surface of possible examples, and the content is illustrative
rather than comprehensive (but see the suggested reading for additional topics).

The chapter opens with a discussion of cloud heterogeneity in a global context,
and presents some evidence for the global nature of cloud heterogeneity. Cloud het-
erogeneity is a nuisance in that it sabotages the retrieval of cloud properties using
one-dimensional techniques, and the impact of this on cloud optical depth retrieval
is discussed at some length, followed by the impact on cloud albedo estimation.
Cloud heterogeneity also has its positive uses, and can be exploited by multi-angle
remote sensing techniques to obtain cloud-top heights and height-resolved winds, as
discussed in subsequent sections.

11.2 The Relation Between Cloud Heterogeneity
and 3D Radiative Transfer in Global Remote Sensing

Clearly, if clouds were truly homogeneous horizontally, there would be no horizontal
gradients in their water concentration, and the one-dimensional plane-parallel para-
digm would apply. Given uniform solar illumination and sufficiently thick cloud (or
thin cloud and a sufficiently homogeneous underlying surface), then the reflected
radiances must also be horizontally uniform. On occasion, when satellite-measured
radiances at high spatial resolution differ by less than a percent or two over several
hundred kilometers, this appears in fact to be the case. Such occasions, however,
are few and far between, and the vast bulk of the measured radiances exhibit much
greater differences, and on scales often less than one kilometer.

This should come as no surprise given the dynamic nature of cloud formation and
dissipation. Clouds are formed by rising air motion. Rising air of convective origin is
localized in cells surrounded at least partially by sinking air. Stratiform uplift on the
other hand tends to be more uniform and horizontally widespread, but is also slow,
allowing ample time for longwave cooling to erode the cloud-top surface (upside-
down convection, if you like). At one extreme, we have heterogeneous clouds that
are small, localized cloud elements surrounded by clear air, as in the case of fair
weather cumulus. At the other extreme, we have continuously overcast stratiform
cloud with an irregular (i.e., bumpy) cloud-top structure. In between these extremes
there are many heterogeneous examples, often with degrees of self-organization that
provides a quasi-periodic horizontal variability of both cloud water and reflected
radiance that may have a cellular or striated appearance. The case of deep convection,
in the form of cumulonimbus or cumulus congestus, deserves special mention as
here the shapes are most obviously three-dimensional and the water contents the
highest. Cirrus cloud may also be significantly heterogeneous, and often extends
vertically over several kilometers, encountering a wind shear that may stretch the
falling ice crystals into intricate three-dimensional patterns. However, the anvil tops
of some supercell thunderstorms (removed from any overshoot region or edges) give
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the opposite appearance, and represent the most frequent examples that approximate
the ideal of a locally homogeneous cloud.

Radiative transfer models show that the presence of cloud heterogeneity requires
3DRT in order to accurately represent the external radiation field of the cloud. Con-
versely, departures of remotely measured radiance from the expectations of 1DRT
usually indicate the existence of some measure of cloud heterogeneity. We therefore
start with some global evidence of cloud heterogeneity based on remotely measured
radiances.

11.3 Evidence of Cloud Heterogeneity

11.3.1 A Spatial Test of Heterogeneity

The simplest and clearest measure of cloud heterogeneity is the spatial change in
scattered radiance with distance across a cloud top. Assuming uniform solar irra-
diance incident on the cloud, and either a uniform underlying surface (such as the
ocean), or sufficiently thick cloud so that any changes in the underlying surface
do not matter, then a spatial change in reflected radiance is directly caused by the
presence of cloud heterogeneity. Individual clouds may occasionally be remarkably
uniform over large horizontal distances, but more commonly show significant varia-
tion in their reflected radiances over distances short enough (e.g., 1–8 km) to affect
typical satellite remote sensing.

A quantitative measure of this type of spatial heterogeneity was defined by
Genkova and Davies (2003), who set a threshold, T , as the maximum percent vari-
ability in reflected radiance allowed across a cloudy region of specified size, mea-
sured at some specified higher resolution, to be regarded as being spatially homoge-
neous. They then applied this threshold to a global distribution of clouds, measured
from space using the Multiangle Imaging SpectroRadiometer (MISR) on NASA’s
Terra satellite. Sufficient data (58 different orbits) were analyzed to reach statisti-
cally representative results. Excluding thin clouds with nadir visible reflectivity less
than 20%, and high latitudes that are dominated by underlying snow and ice surfaces,
they found only a very small percentage of the remaining clouds were typically clas-
sified as being spatially homogeneous over scales of 1-8 km. Figure 11.1 summarizes
the homogeneity pass rates for T = 10%, for cloudy regions of different size and for
two measurement resolutions (275 m and 1100 m). The error bars are mainly an indi-
cation of the uncertainty in the mean due to natural variability. Note that because the
Terra orbit is sun-synchronous with a 10:45 a.m. equator crossing time these results
are not necessarily representative of the full diurnal behavior of global cloudiness.

In terms of this spatial homogeneity test, it appears that only about 11% of glob-
ally distributed clouds appear to be spatially homogeneous (at the 10% level) over
a scale of 1.1 km. This number drops quickly with region size, to a pass rate of less
than 2% for regions larger than 8.8 km. These low numbers call into question the
applicability of 1DRT approaches to cloud remote sensing, but as we will see in the
next section, this may be too conservative of a test to answer such questions.
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Fig. 11.1. Dependence of the spatial homogeneity pass rate on region size and resolution for
14 orbits on 9 April 2001, from Genkova and Davies (2003) with permission

11.3.2 An Angular Test of Heterogeneity

In a similar vein to the preceding section, Horváth and Davies (2004) defined an
angular test of cloud homogeneity. Here the reflected radiances from globally dis-
tributed cloud tops measured by the nine viewing directions of MISR are examined
individually to retrieve nine collocated measures of cloud optical depth, as retrieved
using 1DRT theory. If an optical depth exists for which the 1DRT radiances agree to
within 10% of the nine measured values, then the cloud is deemed to pass the angular
test for homogeneity, otherwise it is classified as heterogeneous.

The MISR instrument has a nadir view, complemented by four pairs of oblique
cameras positioned at nominal viewing zenith angles of 26.1◦, 45.6◦, 60◦, and 70.5◦.
Each oblique pair consists of one camera looking forward and one looking backward
with respect to the flight direction. Since the time interval between the two most
oblique observations is only 7 min, the instrument allows the almost instantaneous
sampling of the bi-directional reflectance field. The cross-track resolution is 275 m,
while the along-track resolution increases with view angle, from 214 m at nadir to
707 m at the most oblique angle. The along-track sample spacing, however, remains
at 275 m.

To minimize ambiguities due to other factors, Horváth and Davies (2004) in-
cluded only maritime clouds between 60◦N and 60◦S, for regions devoid of sea
ice. Ice and mixed phase clouds, as identified by the Moderate-Resolution Imaging
Spectroradiometer (MODIS) cloud phase product, were also excluded. In applying
the 1DRT algorithm to retrieve cloud optical depth consideration was given to the
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effects of Rayleigh scatter and ozone absorption that become increasingly impor-
tant for the oblique views. Uncertainties in the anisotropy of ocean surface reflection
were also reduced by excluding thin clouds with optical depths less than 3. The
one-dimensional retrieval also assumed standard liquid water microphysics, with an
effective radius of 8 µm. Other values of effective radius were examined but gave
lower passing rates.

A major difficulty with applying this technique is the need to accurately co-
register the multiangle views to the same point on the cloud top, allowing for parallax
effects due to height, and displacement effects due to wind. The operational products
apply a stereo retrieval technique to accomplish this over 2.2 km regions, the re-
sults of which were used by Horváth and Davies (2004) to assess the uncertainty in
their angular test, as the co-registration for their study was based on the mean cloud
height and wind over 70.4 km regions. The effect of cloud height variations within a
70.4 km region on co-registration produced an uncertainty in the pass rates of about
3%, which is added to the uncertainty due to natural variability, giving an overall
uncertainty of about 5% in the pass rates.

As shown in Fig. 11.2, the pass rates for the angular test are higher than for the
previous spatial test. At an effective resolution of 1.1 km, the passing rate is now
about 23%. The pass rate increases as the resolution is degraded, to a maximum
value of about 37%. At the highest resolution of 275 m the homogeneity pass rate

Fig. 11.2. Angular test passing rate vs. pixel resolution for re = 8 µm, from Horváth and
Davies (2004) with permission
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drops to about 17%. While the effects of co-registration make this value somewhat
less certain, the angular pass rate at 275 m is roughly comparable to the spatial pass
rate for a 550 m region.

The fact that the spatial homogeneity pass rate decreases as the region considered
expands, whereas the angular pass rate increases as the resolution is degraded has
several implications. Angular modeling, needed in the context of estimating cloud
albedo from satellite-measured radiances, is evidently easier at coarser resolution. A
consistent retrieval of cloud properties at coarse resolution with view angle, however,
does not appear to be a guarantee of accuracy. It may simply be a nonlinear averaging
effect. This theme is continued in the following section. Conversely, when the spatial
and angular tests are both passed for a given region, irrespective of its size, we may
have much more confidence in the applicability of 1DRT and the cloud properties
retrieved.

11.4 Consequences of Cloud Heterogeneity

11.4.1 Optical Depth Biases

The practical effects of cloud heterogeneity on the global distribution of cloud opti-
cal depths retrieved using 1DRT were first demonstrated by Loeb and Davies (1996).
Using a year’s worth of Earth Radiation Budget Satellite (ERBS) shortwave observa-
tions at nadir over ocean between 30◦N and 30◦S, they found that the observed nadir
reflectances increased with solar zenith angle. Matching the observations to 1DRT
on a pixel-by-pixel basis to retrieve cloud optical depth produced optical depths that
also increased with solar zenith angle. However, stratification of the data into morn-
ing and afternoon measurements gave virtually identical results at the same solar
zenith angles, indicating a true diurnal dependence for this data set did not appear to
be significant.

Figure 11.3 compares the observed nadir reflectances with those calculated as-
suming a distribution of optical depths that is invariant with solar zenith angle. The
optical depth distribution was based on 1DRT retrieval at high sun, and separated
into classes either side of its median value. Relatively good agreement is obtained
for the thinner cloud class for solar zenith angles less than about 70◦, but the thicker
cloud class shows almost immediate divergence as the solar zenith angle increases.

The optical depths retrieved using 1DRT thus have a spurious dependence on
solar zenith angle that causes them to be biased high at large solar zenith angles.
This bias is greater for thicker clouds. Loeb and Davies (1997) showed that this bias
is also greater for nadir views, compared with oblique views. ERBS has a relatively
coarse resolution (31× 47 km2 at nadir) so that some 40% of the clouds would likely
pass the angular homogeneity test, with the bias being due to the remaining 60%.
Loeb and Coakley (1998) showed consistent results even when the analysis was re-
stricted to marine stratocumulus using the higher spatial resolution (≈ 4× 4 km2) of
Advanced Very High Resolution Radiometer (AVHRR) measurements.
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Fig. 11.3. Average reflectance versus µ0 for the observations and for calculations derived
using cloud optical depths and cloud fractions inferred from observations for µ0 between 0.9
and 1.0, separately for reflectances lying below the 50th percentile (0–50%) and for pixels
lying between the 50th and 100th percentiles (50–100%), from Loeb and Davies (1996) with
permission

An explanation for how cloud heterogeneity produces this bias has been provided
by Loeb et al. (1997). Using a 3DRT Monte Carlo model, they noted that the increase
in nadir radiance with solar zenith was, in the case of overcast clouds, produced by
cloud top texture, with the local slopes of the cloud tops scattering more radiation
vertically than their flat-topped one-dimensional counterparts. In the case of broken
clouds, illumination of cloud sides also added to this effect.

11.4.2 Violation of Directional Reciprocity

One of the classic tests of a radiative transfer model, comparable to checking for
energy conservation, is to check whether it satisfies the principle of reciprocity. For
one-dimensional atmospheres this reduces to checking the directional relationship,
µAIA = µBIB , where A and B refer to two reciprocal directions, I the radiance,
and µ the cosine of the zenith angle. In other words, IA is the radiance in direction
A due to incident irradiance from direction B, and IB is the radiance in direction B
due to incident irradiance from direction A. A necessary condition for a cloudy scene
to be modeled with 1DRT is therefore that the directional principle be satisfied for
that scene. Conversely, violation of directional reciprocity for a given scene implies
that it is not horizontally homogeneous, and satisfies only the general principle of
reciprocity (which also includes consideration of horizontal displacement).

In a study using spatial autocorrelation functions derived from ERBS data,
Davies (1994) showed that the directional principle is clearly violated for scenes
measured at the ERBS spatial resolution. Figure 11.4 shows an example of this vio-
lation for the reciprocal pair – nadir view with 60◦ solar zenith angle and 60◦ view-
ing zenith with overhead sun. Di Girolamo et al. (1998) explored this breakdown
further, by investigating the spatial scales over which directional reciprocity might



11 3D Radiative Transfer in Satellite Remote Sensing of Cloud Properties 531

Fig. 11.4. Autocorrelation functions for reciprocal pairs of reflected shortwave radiance mea-
sured by the ERBS scanner, April-July 1985 within 30◦ of the equator. Solid lines (open
circles) correspond to a view angle of 60◦ and a solar zenith angle of 0◦. Dotted lines (solid
circles) correspond to a view angle of 0◦ and a solar zenith angle of 60◦, at the resolution of
the nadir footprint. The dashed line corresponds to a view angle of 0◦ and a solar zenith angle
of 60◦, integrated over a pixel area corresponding to a 60◦ view angle

best be applied for different scenes. They noted scales in excess of 100 km were
typically required for cloudy scenes, but scales of only a few meters to a kilometer
were required for clear scenes.

Other than demonstrating the breakdown of 1DRT, there is a very practical ap-
plication of this result. Albedo estimation from satellite radiances requires the ap-
plication of angular models of scene reflectivity in order to account for the effects
of anisotropy. In building such models, there is often a shortage of data in certain
directions, and a temptation to fill in the values for missing directions by applying
directional reciprocity. Recognizing that this would be erroneous, the angular models
used by the Clouds and Earth’s Radiant Energy System (CERES) instrument, which
measures radiances on variable spatial scales with a minimum of 10 km, make use of
directional reciprocity relations for clear scenes only (Loeb et al., 2003).

11.4.3 Plane-Parallel Albedo Biases

As noted elsewhere in this book, the relationship between cloud optical properties
and reflected radiation is decidedly nonlinear. Heterogeneous cloud fields with vary-
ing optical depths thus create a biased relationship between the area-averaged radia-
tion and the area-averaged optical depth that depends on the size of the region being
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averaged, the variation of the properties within the region and average brightness of
the scene. From a remote sensing perspective, applying 1DRT to area-averaged ra-
diation tends to produce an optical depth that is biased low compared with the true
average. Similarly, from a modeling perspective, use of the correct average optical
depth tends to produce an area-averaged albedo that is biased high.

The plane-parallel albedo bias for a given region containing N cloudy pixels is
defined as

B = R(τ̄, θ0) −
1
N

N∑
n=1

R(τn, θ0) ,

where τ̄ is the mean optical depth of the region averaged over the cloudy pixels, R is
the plane-parallel albedo, and θ0 is the solar zenith angle. Note that the second term
is just the average cloud albedo calculated using the independent pixel approxima-
tion. Oreopoulos and Davies (1998) analyzed a large set of AVHRR data over the
North Atlantic to assess the magnitude of B, and its dependence on region size. Fig-
ure 11.5 is adapted from their results, showing average biases in the visible albedo
of about 0.08 for (55 km)2 regions. This value rises as the region size, typical of that
used in General Circulation Models, is increased further. Because the plane-parallel
albedo bias is defined in a 1DRT context, its value also suffers from the optical depth
bias mentioned above, and Oreopoulos and Davies (1998) noted that this causes B to
rise with solar zenith angle also. This has perhaps the greatest practical application
to the construction and interpretation of global climate models. Such models require
an accurate parameterization of albedo in order to correctly assess the absorbed solar
energy available to power the climate system. The bias shown here has therefore to
be removed by appropriately adapting the apparent thickness or amount of clouds.
Approximate corrections are certainly possible, but we note here the difficulty im-
plied by the dependence on region size and the dependence on solar zenith angle.

Fig. 11.5. Plane-parallel visible albedo bias of North Atlantic clouds as function of region
size, based on AVHRR local area coverage (LAC) data from August–October, 1993, adapted
from Oreopoulos and Davies (1998)
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11.5 Some Current Uses of Heterogeneity

11.5.1 Stereo Heights and Winds

Now that we have examined some of the more obvious negative consequences of
cloud heterogeneity to remote sensing, let us turn our attention to some positive
applications, wherein the presence of cloud heterogeneity is put to productive use
to retrieve properties that would be unattainable from homogeneous clouds. These
applications have only recently been implemented and depend more on geometrical
and statistical analyses than on a detailed knowledge of 3DRT.

We use the MISR data products as examples. MISR measures the reflected radi-
ance from a cloud at 275 m resolution from nine different directions as it passes over
the cloud. If the cloud is heterogeneous, possessing detectable features that change
horizontally, these create reflectivity patterns that can be matched from the differ-
ent viewing directions to determine the parallax attributable to cloud height or wind
displacement. As described by Moroney et al. (2002), this leads to the operational
retrieval of cloud-top heights on a 1.1 km horizontal grid, with a nominal accuracy
of 550 m.

Parallaxes obtained by two pairs of views, with one viewing direction in common
between two pairs, can also be analyzed to separate the effect of height from that of
wind displacement, leading to the novel retrieval of height-resolved cloud tracked
winds. As shown by Horváth and Davies (2001), such winds can be retrieved to
nominal accuracy of 3 m/s with a height resolution of 400 m over 70 km× 70 km
domains, raising the prospect of making this an operational remote sensing technique
in the future for numerical weather prediction application. Figure 11.6 shows an
example of the MISR height-resolved winds.

11.5.2 Cloud Detection and Classification

The conventional classification of cloud types from space, approximately consistent
with that of a surface observer, is exemplified by the approach of the International
Satellite Cloud Climatology Program (Rossow and Schiffer, 1999). This approach
classifies clouds by their cloud-top altitude (low, middle, and high) and apparent
optical thickness (based on visible reflectivity), providing a time-honored division of
clouds into about 9 major classes. This type of cloud classification yields no direct
insight on cloud heterogeneity, other than the qualitative expectation that cumuliform
clouds are likely to be more heterogeneous than stratiform clouds. The effects of
heterogeneity on spatial and angular variability can be exploited, however, to provide
additional quantitative information about certain types.

For example, the conventional detection of polar clouds over bright, cold surfaces
is adversely affected by a lack of contrast in either reflectivity or brightness tempera-
ture. A measure of the anisotropy of visible reflectivity from three different viewing
angles, expressed simply as a false color composite, using red for the oblique for-
ward angle, green for nadir, and blue for the oblique backward angle, finds clouds
that may be completely undetectable in single-angle true color imagery. Isotropic
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Fig. 11.6. Height-resolved cloud tracked winds (m/s) from MISR, adapted from Horváth and
Davies (2001), from Terra orbit # 1900 on 26 April 2000, approx. 24◦–52◦N, 128◦–142◦W
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Fig. 11.7. Cloud detection using multi-angle views from MISR. The left panel is the natural
color nadir view. Clouds show up in the false-color three-angle composite in the middle panel,
and as indicated by the height color bar based on stereo retrievals in the right hand panel.
The image is over the Amery Ice Shelf in East Antarctica, on October 25, 2002. Image credit:
NASA’s GSFC/LaRC/JPL MISR Team, http://www-misr.jpl.nasa.gov/gallery/

reflection appears white in such a scheme, characteristic of snow. Clouds have rel-
atively less reflectivity in the nadir redirection, relatively more in oblique forward
and back directions, resulting in a purple color, as shown in the example of Fig. 11.7
taken from the MISR image gallery.

A second example, Fig. 11.8, is the automatic determination of presence and
fractional coverage of some types of marine stratocumulus using spatial coherence
(Coakley and Bretherton, 1982). Here the spatial variability in brightness tempera-
ture is exploited by plotting a scatter diagram of the local variance of an 8 × 8 pixel
array against its mean.

Clear regions have low variance and warm brightness temperature. Completely
overcast regions similarly have low variance but distinctly different mean brightness
temperature. The end points of the scatter diagram span the range from 0 to 100%
cloud fraction. An absence of low variance data for intermediate mean values is
required for the cloud field to be identified as a single layer system.
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Fig. 11.8. The 11-micron local mean brightness temperature and local standard deviations
for 8×8 arrays of global area coverage data, reproduced from Coakley and Bretherton (1982)
with permission. The cluster of points near 293 K represents cloud-free scan spots; the cluster
near 283.5 K represents cloud-cover scan plots. The points between these clusters represents
partially covered fields of view

We note, however, that especially for marine stratocumulus, which cover large
areas of the world’s oceans, the spatial variability of clouds occurs on a variety of
scales, and considerably more research is likely to be needed in order to implement
an automatic classification scheme from space that usefully captures this variety. Pro-
posed techniques for this include the use of Grey Level Difference Statistics (Chen
et al., 1989) that measure the texture of the clouds, or direct cluster analysis to sub-
divide such clouds into their major subclasses.

11.6 Summary and Outlook

In summary, we note that cloud heterogeneity is a major factor that strongly affects
the remote sensing of certain cloud properties. While 1DRT may be an appropriate
tool for the small subset of global clouds that are sufficiently homogeneous to satisfy
the plane-parallel paradigm, 3DRT is generally needed. This is especially relevant
when retrieving properties that are most sensitive to the effects of heterogeneity, such
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as the cloud optical depth at non-absorbing wavelengths. Certain properties, such as
cloud albedo, while still being sensitive to heterogeneity, can be estimated fairly well
from empirically derived angular models without direct recourse to 3DRT. Similarly,
geometrically based stereo retrievals of cloud heights or statistically based cloud
classification techniques, while relying on cloud heterogeneity for their functionality,
do not make direct use of 3DRT.

At the time of writing, direct application of 3DRT to the remote sensing of cloud
properties remains substantially underdeveloped. A recent study by Zuidema et al.
(2003) indicates one direction that future applications might take. They applied a
3DRT Monte Carlo model to the analysis of multi-angle radiances for a limited case
study of heterogeneous clouds, and gleaned some insight regarding the vertical dis-
tribution of the volume extinction coefficient. It seems apparent that similar appli-
cations in the future must rely heavily on 3DRT as well as adequate geometrical
descriptions of the cloud or cloud field.
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12.1 Introduction

We will start this chapter with an intricate image of marine stratocumulus (Sc)
clouds captured by LandSat 5 during First International Satellite Cloud Climatol-
ogy Project (ISCCP) Regional Experiment (FIRE) field program (Fig. 12.1). This is
a 60 × 60 km2 completely cloudy subscene over the eastern Pacific Ocean illumi-
nated by the Sun with a zenith angle of about 30◦. The first thing our eyes pick up
in the image is the large scale structure or so-called cloud “streets” oriented paral-
lel to the wind. The width of the streets is typically 8 km. “The 8 km streets reveal
considerable structure on smaller scales, the whole scene being covered by an in-
tricate dark filigree,” Cahalan and Snider wrote in their 1989 paper where they first
analyzed statistically the structure of this scene. Plotting a wavenumber spectrum
averaged over 10 scan lines of the scene vs. wavenumber, they uncovered a scale-
invariant behavior for large scales (a straight line on a log-log plot) and a smoother
structure (steeper slope) for small (less than 200 m) scales (Fig. 12.2). Comparing
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Fig. 12.1. Portion of a Thematic Mapper (TM) LandSat image in channel 2 (0.52–0.69 µm).
This 61 × 61 km2 scene was captured at 28.5 m resolution on July 7, 1987, off the coast of
California. This is a small portion of an extensive marine Sc deck. Note that the cloud “streets”
are oriented parallel to the mean wind. Solar zenith angle is about 30◦

the large-scale structure of LandSat radiances with the structure of cloud liquid wa-
ter measured by ground-based microwave radiometer, they found them to be very
similar; this validates the retrieval of cloud structure from high-resolution satellite
measurements at these scales. However for small scales, fluctuations of cloud liquid
water are much stronger than those for LandSat radiance; this prohibits small-scale
retrievals using 1D (pixel-by-pixel) methods. Indeed, as long as fluctuations of cloud
liquid water and LandSat radiance are statistically different at a given scale, it is
impossible to reliably retrieve liquid water at this scale.

The transition to smoother behavior at small scales for horizontally inhomoge-
neous clouds and its implementation in remote sensing is the subject of this chapter.
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Fig. 12.2. Estimated wavenumber spectrum of the cloud reflectivity field in Fig. 12.1. The
upper horizontal axis shows wavelength (or scale) r which is related to wavenumber k (the
lower horizontal axis) as k = 2π/r. The peaks at r = 4 and 8 km correspond to cloud streets
visible in Fig. 12.1. Two straight lines correspond to slopes (spectral exponents) of –5/3 (large
scales) and –3.6 (small scales), respectively. Reprinted from Cahalan and Snider (1989) with
permission from Elsevier

We will study the physical mechanism that is responsible for the transition and how
it relates to cloud structure. We start with photon horizontal transport, determine hor-
izontal fluxes and show how nonvanishing net horizontal fluxes effect the accuracy
of the so called Independent Pixel Approximation or simply “IPA” (Cahalan et al.,
1994) separately for reflected, transmitted or absorbed photons (Sect. 12.2). Then,
based on the diffusion approximation, we derive the average distance that photons
travel horizontally (Sect. 12.3). Though the derivation is done in a plane-parallel
geometry, we discuss its generalization to inhomogeneous clouds. Next we define
radiative smoothing as a radiative transfer process that smoothes the small-scale fluc-
tuations of cloud structure and illustrate its signature as a scale-break on a log-log
plot of wavenumber spectra or structure functions (Sects. 12.4–12.5). The scale break
location is related to the distance reflected or transmitted photons travel horizontally.
Finally, we use our new understanding of radiative smoothing to improve the IPA
accounting for photon horizontal transport (Sect. 12.6).
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12.2 Horizontal Fluxes

12.2.1 Energy Balance Equation

To determine photon horizontal transport, we start with the radiative transfer equa-
tion (see Sect. 3.7)

Ω •∇I = −σ(x)I(x,Ω) + σ(x)�0

∫
4π

p(Ω′ → Ω)I(x,Ω′)dΩ′ (12.1)

where I(x,Ω) is radiance at position x = (x, y, z)T in the cloudy medium confined
between z = 0 and z = h. Propagation direction is denoted by Ω = (Ωx,Ωy,Ωz)T;
p(Ω′ → Ω) is the scattering phase function; σ(x) is the extinction coefficient; and
�0 is the single-scattering albedo. For simplicity we assume no reflection from sur-
face. Let us first integrate (12.1) term-by-term with respect to Ω (over 4π). Invoking
normalization of phase function introduced in Sect. 3.4, we obtain

∇ • F(x) = −σa(x)J(x) (12.2)

where the (net) photon flux vector is

F(x) = (Fx, Fy, Fz)T =
∫
4π

ΩI(x,Ω)dΩ , (12.3)

the scalar flux is

J(x) =
∫
4π

I(x,Ω)dΩ , (12.4)

and σa(x) = (1 − �0)σ(x) is the absorption coefficient. We assume that a uniform
solar flux

µ0F0 =

2π∫
0

∫
µ<0

|µ| I(x, y, h, µ, φ)dµdφ (12.5)

is incident normally to the cloud top at z = h. Integrating (12.2) over the paral-
lelepiped C(r;x, y) =

{
(x′, y′, z′)T∈ R

3 : x≤x′≤x+r, y≤y′≤y+r, 0≤z′≤h
}

,
we get

h∫
0

y+r∫
y

x+r∫
x

(
∂Fx

∂x
+

∂Fy

∂y
+

∂Fz

∂z

)
dx′dy′dz′

=

h∫
0

y+r∫
y

x+r∫
x

σa(x′, y′, z′)J(x′, y′, z′)dx′dy′dz′ . (12.6)

Using the divergence theorem (e.g., Korn and Korn, 1968) to replace the volume
integral by a surface integral on the left side of (12.6) and dividing both sides by the
total incoming radiation equal to r2µ0F0, we obtain
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[R(r;x, y) − 1] + [T (r;x, y) − 0] + H(r;x, y) = −A(r;x, y) . (12.7)

Here

R(r;x, y) =
1

r2µ0F0

y+r∫
y

x+r∫
x

2π∫
0

∫
µ≥0

µI(x′, y′, h, µ, φ) dµdφdx′dy′ (12.8)

is the local reflectance (or albedo) and

T (r;x, y) =
1

r2µ0F0

y+r∫
y

x+r∫
x

2π∫
0

∫
µ≤0

|µ| I(x′, y′, h, µ, φ)dµdφdx′dy′ (12.9)

is the local transmittance; further,

A(r;x, y) =
1

r2µ0F0

h∫
0

y+r∫
y

x+r∫
x

σa(x′, y′, z′)J(x′, y′, z′)dx′dy′dz′ (12.10)

and

H(r;x, y) =
1

r2µ0F0

h∫
0

{ x+r∫
x

[Fy(x′, y′ + r, z′) − Fy(x′, y′, z′)]dx′

+

y+r∫
y

[Fx(x′ + r, y′, z′) − Fx(x′, y′, z′)]dy′
}

dz′ (12.11)

where Fx and Fy are the net fluxes in the x and y directions respectively from (12.3);
e.g.,

Fx(x∗, y, z) = F+(x∗, y, z) − F−(x∗, y, z) (12.12)

with x∗ = x or x + r and F+ (or F− ) is the flux through the pixel lateral side to
positive (or negative) direction as can be seen by partitioning the angular integral
in (12.3) into two hemispheres. We will call H(r;x, y) the “horizontal flux term”
although technically it is vertically-integrated horizontal flux divergence.

Rearranging the terms in (12.7) for easier interpretation, we obtain

H(r;x, y) = 1 − [R(r;x, y) + T (r;x, y) + A(r;x, y)] . (12.13)

Equation (12.13) is a local energy balance for the parallelepiped C(r;x, y). Indeed,
it accounts for photons that are reflected from the top (R), transmitted through the
bottom (T ), absorbed (A) within the confines of C, as well as for those photons
that left or entered C through the sides of the column (H). It is obvious that, if we
integrate (12.2) over the whole domain, H vanishes; i.e.,

lim
r→∞H(r;x, y) ≡ 〈H〉 = 0 (12.14a)
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and
〈R〉 + 〈T 〉 + 〈A〉 = 1 (12.14b)

where 〈·〉 means domain-averaged. For computational purposes, using cyclical
boundary conditions with the size of computational domain equal to LD × LD, we
also obtain H(LD;x, y) ≡ 0, hence

R(LD;x, y) + T (LD;x, y) + A(LD;x, y) = 1 . (12.14c)

It also follows from the energy balance (12.13) that the horizontal flux term can
be determined as a difference between “true” column absorption A(r;x, y) and its
“apparent” counterpart, 1− [R(r;x, y) + T (r;x, y)]. For measuring column absorp-
tion of a cloud, or the whole atmosphere, only R(r;x, y) and T (r;x, y) can be esti-
mated from data using radiometers above and below the system. It is clearly impor-
tant to find the scale r at which the contribution of H(r;x, y) to the radiation budget
can justifiably be neglected; thus measurable apparent absorption estimates unknown
true absorption (Marshak et al., 1997; Titov, 1998).

To illustrate the magnitude of the net horizontal fluxes excited by horizontal in-
homogeneity, we set up the following numerical experiment. A homogeneous slab
of 300 m depth is divided into two parts: one is set to the optical thickness 30 and
the other to 5. A backward Monte Carlo (Chap. 4) was used to simulate separately
vertical and horizontal fluxes at different levels. Sun was in zenith to eliminate any
effect of geometrical shadowing. Figure 12.3 illustrates the results “measured” at
15 m from the discontinuity, in the more tenuous region. For the homogeneous case
(τthin = τthick = 5), the net vertical flux (the straight dash line at 0.775) is computed
using 1D radiative transfer. The net horizontal flux is of course directed towards the
thinner region; its maximum is reached about 50 m from cloud top which is close to
one transport mean-free-path in the dense region h/(1− g)τthick ≈ 67 m. Near cloud
bottom, the effect of horizontal fluxes is small. The most interesting fact is that the
maximum value of net horizontal fluxes is about 30% of their vertical counterpart
for the gradient between thick and thin regions of 25 which is not a rare event in
horizontal variations in optical depth of real marine Sc (see Chap. 2).

Finally, to illustrate horizontal fluxes in a more realistic cloud simulated by a
bounded cascade model (see volume Appendix) in Fig. 12.4 we plotted R, T and
H defined by (12.8), (12.9) and (12.11) respectively at the pixel scale of 12.5 m,
assuming that the extinction field varies only in the x-direction, i.e., σ(x) ≡ σ(x). In
this case,

H(r;x) = 1 − [R(r;x) + T (r;x) + A(r;x)] . (12.15)

For simplicity, clouds are assumed to be purely scattering (�0 = 1), thus A(r;x) ≡
0.0 and H = 1 − (R + T ). We see that, even for this mildly inhomogeneous cloud,
the sum of albedo and transmittance on a pixel-by-pixel basis can be different from
unity by up to 15%.

12.2.2 Accuracy of IPA on a Per-Pixel Basis

We will relate the horizontal fluxes H(r;x, y) to pixel-by-pixel accuracy of the IPA
which treats each pixel as an independent plane-parallel medium, neglecting any net
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Fig. 12.3. Net horizontal (Fx) and vertical (Fz) fluxes. A homogeneous cloud layer 300 m
thick was divided into two regions with optical thicknesses 30 and 5. Point-wise fluxes were
calculated using backward Monte Carlo at 15 m from the discontinuity in extinction. Sun was
in zenith and a Henyey–Greenstein phase function with g = 0.85 was used. Net fluxes are
defined as the differences between down and up fluxes (net vertical, Fz), and right and left
fluxes (net horizontal, Fx). The straight line at 0.775 is computed using the 1D DISORT code
(Stamnes et al., 1988) and corresponds to the constant net vertical flux in a homogeneous
medium with τ = 5. Note that, near cloud top, net horizontal flux Fx exceeds 30% of net
vertical flux Fz . Obviously, for homogeneous clouds and overhead Sun, Fx = 0. Reproduced
from Marshak et al. (1998) with permission from IEEE

horizontal photon transport, i.e., HIPA(r;x, y) ≡ 0. If we replace unity in (12.13) by
the sum RIPA(r;x, y) + TIPA(r;x, y) + AIPA(r;x, y), we get (Marshak et al., 1999),

H(r;x, y) = RIPA(r;x, y) − R(r;x, y) + TIPA(r;x, y) − T (r;x, y)
+ AIPA(r;x, y) − A(r;x, y)

= HR(r;x, y) + HT (r;x, y) + HA(r;x, y) . (12.16)

Each component in (12.16) is a pixel-by-pixel IPA accuracy,

HF (r;x, y) = FIPA(r;x, y) − F (r;x, y), F = R, T and A . (12.17)

We will call HR, HT and HA horizontal fluxes for photons reflected from cloud top,
transmitted to cloud base, or absorbed by cloud column, respectively.
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Fig. 12.4. Albedo, transmittance and horizontal flux. Monte Carlo reflectance R(r; x) and
transmittance T (r; x) fields are plotted vs. position x for r = 12.5 m (pixel-scale); also plotted
are the horizontal flux term H(r; x) = 1 − R(r; x) − T (r; x) and optical depth τ(x). The
1D cloud model with mean optical depth 〈τ〉 = 13 was variable only in the x-direction. We
used solar zenith angle 22.5◦; other parameters are: physical thickness h = 300 m, Henyey–
Greenstein phase function with g = 0.85 and �0 = 1

To measure the magnitude of horizontal fluxes, we will use the norm,

‖HF (r)‖ =
1

L2
D

⎡⎣ LD∫
0

LD∫
0

[HF (r;x, y)]2dxdy

⎤⎦
1
2

. (12.18)

Equation (12.16) and the norm definition (12.18) yield

‖HF ‖ ≤ ‖HR‖ + ‖HT ‖ + ‖HA‖ . (12.19)

Note that IPA accuracy HF are the average pixel-by-pixel absolute differences be-
tween the full 3D calculations of reflectance (or transmittance, or absorptance),
through the solutions of (12.1), and 1D computations of the same quantities inde-
pendently performed at each pixel. We will study here the dependence of each com-
ponent in (12.16) on single-scattering albedo, �0, examining whether or not the
magnitude of horizontal fluxes is related to IPA accuracy.

It is natural to expect that, as r increases, the IPA becomes more accurate and
horizontal fluxes ‖HF (r)‖ get smaller. Figures 12.5a, b, and c show that this is true
for HR, HT and HA, i.e.,

‖HF ‖ → 0, r → LD, F = R,T, and A . (12.20)
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Fig. 12.5. Dependence of pixel-by-pixel IPA accuracy, ‖HF ‖(F = R, TorA), on averaging
scale r and single-scattering albedo �0, from Marshak et al. (1999). (a) Reflectance, ‖HR‖;
(b) Transmittance, ‖HT ‖; (c) Absorptance, ‖HA‖. Horizontal distribution of cloud optical
depth is simulated with 10-step bounded cascades models (cf. Appendix) where p = 0.3, H =
1/3, 〈τ〉 = 13, pixel size r = 25 m. Flat cloud top and cloud base, geometrical thickness
h = 300 m. Henyey–Greenstein phase functions with asymmetry parameter g = 0.85 is used.
Surface is absorbing. The results are averaged over 10 independent realizations. Solar zenith
angle θ0 = 0◦, single-scattering albedo �0 = 1.0, 0.999, 0.99, 0.98, 0.95, 0.9

It follows from inequality (12.19) that (12.20) is valid for H as well. The effect of
single-scattering albedo �0 on horizontal fluxes is, however, different for reflected,
transmitted and absorbed photons.

Figure 12.5a illustrates the dependence of HR on both r and �0. We see that
the more absorption the shorter photon horizontal transport for reflected photons.
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As a result, the IPA pixel-by-pixel accuracy for reflectance improves with more ab-
sorption. Note that, for �0 = 0.9, IPA is almost accurate even on a per-pixel basis.
This is expected since the contribution of multiple scattering to the reflectance field
decreases and fewer photons travel between pixels.

The situation with transmitted photons (at least for high Sun) is surprisingly dif-
ferent (Fig. 12.5b): the accuracy of the IPA on a per-pixel basis first decreases (from
�0 = 1.0 down to 0.98) and only for strongly absorbing wavelengths (�0 > 0.98)
does it increase again reaching the accuracy level of the conservative scattering in
case of �0 = 0.9. To explain this, we go back to a distribution of homogeneous
clouds and calculate the standard deviation

sF =

⎧⎪⎨⎪⎩
τmax∫

τmin

[F (τ)]2p(τ)dτ −

⎡⎣ τmax∫
τmin

F (τ)p(τ)dτ

⎤⎦2
⎫⎪⎬⎪⎭

1
2

(12.21)

for reflectance (F = R) and transmittance (F = T ). In (12.21), p(τ) is the probabil-
ity density of the optical depth distribution. As shown in Fig. 12.6a, for a log-normal
type of p(τ), the range of reflectance, R(τmax) − R(τmin), sharply decreases with
more absorption. At the same time, the range of transmittance, T (τmax) − T (τmin),
increases, at least for weakly absorbing wavelengths due to finite sampling or trun-
cation. As a result (see Fig. 12.6b), standard deviation sT first increases (down to
�0 = 0.98) and then decreases for strongly absorbing wavelengths, while sR de-
creases monotonically. These results are almost independent of p(τ), unless it has an
unrealistically long tail. Moreover, similar trends are found for all solar zenith angles
within the 2-stream approximation (e.g. Meador and Weaver, 1980), even for a uni-
form (but truncated) distribution of τ. Note that the behavior of sR and sT is similar
to what we see in Fig. 12.5a and b for the IPA accuracies ‖HR‖ and ‖HT ‖, respec-
tively, at the smallest scales. Indeed, Fig. 12.6c illustrates a surprisingly good linear
correlation between sF and ‖HF ‖ for both F = R and F = T . This completes the
explanation of both Figs. 12.5a and b.

Finally, the increase of pixel-by-pixel IPA absorption errors, ‖HA‖, with more
absorption (Fig. 12.5c) is easily understandable; it follows directly from both the
natural increase of AIPA(τ) itself and its standard deviation with more absorption.
Besides that, the magnitude of ‖HA‖ monotonically increases with stronger cloud
variability and more oblique illumination for any �0 < 1.

Figures 12.7a and b illustrate the joint effect of all horizontal fluxes for both high
(θ0 = 0◦) and low (θ0 = 60◦) Sun. The general tendencies of horizontal fluxes are
similar for both solar angles (with more absorption ‖HA‖ sharply increases, ‖HR‖
monotonically decreases, and ‖HT ‖ slowly decreases for θ0 = 60◦ and first in-
creases and then decreases for θ0 = 0◦). However, the vertically integrated horizon-
tal fluxes ‖H‖ are much closer to the sum ‖HA‖ + ‖HT ‖ + ‖HR‖ in case of slant
illumination (Fig. 12.7b) than in case of high Sun (Fig. 12.7a).

To interpret this, note that for high Sun horizontal fluxes for reflected and trans-
mitted photons are mostly anticorrelated (see Fig. 12.4), while for low Sun they
are mostly correlated. This is a direct consequence of radiative “channeling” around
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Fig. 12.6. Standard deviation sF and pixel-by-pixel IPA accuracy for reflectance and trans-
mittance, from Marshak et al. (1999). Illumination and scattering conditions are the same as
in Fig. 12.5. (a) 1D reflectances (increasing curves) and transmittance (decreasing curves)
calculated using DISORT for �0 = 1.0, 0.98, and 0.9. Distribution of optical depth, p(τ),
is defined by a bounded cascade model and is close to log-normal. The range of τ is
from 3 to 47. (b) Standard deviations sR and sT defined in (12.21) versus

√
1 − �0 for

�0 = 1.0, 0.999, 0.99, 0.98, 0.95, and 0.9. (c) Standard deviations sR and sT versus IPA
accuracies ‖HR‖ and ‖HT ‖ at the pixel scale r = 25 m
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Fig. 12.7. Pixel-by-pixel IPA accuracy for reflectance, transmittance, absorptance, their sum,
and the total horizontal fluxes H , from Marshak et al. (1999). Cloud model and scattering
conditions are as in Fig. 12.5. (a) θ0 = 0◦; (b) θ0 = 60◦. Note the two-fold difference in
vertical scale going from panels (a) to (b)

the dense regions into the tenuous ones (Davis and Marshak, 2001). Indeed, while
reflected photons travel from optically thick (dense) to optically thin (tenuous) re-
gions, HR is positive for thicker pixels and negative for their thinner counterparts. In
contrast, horizontal fluxes for transmitted photons, HT , have the opposite tendency.
As a result, for the majority of pixels, HR and HT have opposite signs if θ0 = 0◦

and the same sign if θ0 = 60◦. Thus

‖H‖ ≡ ‖HR + HT + HA‖ � ‖HR‖ + ‖HT ‖ + ‖HA‖, θ0 = 0◦ ; (12.22a)

‖H‖ ≡ ‖HR + HT + HA‖ � |HR‖ + ‖HT ‖ + ‖HA‖, θ0 = 60◦ , (12.22b)

as we see in Figs. 12.7a and b. (Note that “�” is used only to emphasize the contrast
between high and low Sun.)

Finally and most importantly, the increase in vertically integrated horizontal
fluxes ‖H‖ with the increase of absorption is entirely attributable to the increase
of ‖HA‖. In the case of slant illumination, this is true for all single-scattering albe-
dos and, in case of high Sun, only for strongly absorbing wavelengths. To conclude,
horizontal flux H defined in (12.13) is not directly related to IPA accuracy for ei-
ther reflectance or transmittance; for strongly absorbing wavelengths, the IPA errors
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HR and HT can be sufficiently small but nevertheless horizontal fluxes H are large
because of the IPA absorptance error HA.

12.3 Horizontal Photon Transport: Diffusion-Based Predictions

12.3.1 Average Number of Scatterings

Using time-dependent radiative transfer equation in homogeneous medium and 3D
diffusion enables us to obtain an analytical estimate of the mean photon pathlength
from injection to escape (Davis and Marshak, 2001). It follows from there that the av-
erage number of scatterings suffered by a photon in an optically thick homogeneous
medium, from injection to escape, can be estimated as follows,

〈n〉 ≈ σ
∫ h

0
J(z)dz∫ h

0
S(z)dz

(12.23)

where J(z) is a scalar flux defined in (12.4) and S(z) is the diffusion source term. In
the diffusion limit, J(z) satisfies the following boundary-value problem (Case and
Zweifel, 1967): ⎧⎨⎩− �t

3
d2J
dz2 + (1 − �0)σJ = S(z), 0 < z < h[

J − χ�t
dJ
dz

]
z=0

=
[
J + χ�t

dJ
dz

]
z=h

= 0
, (12.24)

where

�t =
1

(1 − �0g)σ
(12.25)

is the photon transport mean-free-path, χ�t is the “extrapolation” length, and h is
geometrical thickness of the homogeneous plane-parallel medium. If we set S(z) =
δ(z− z∗), 0 ≤ z∗ ≤ h, then J(z) = G(z, z∗) is the Green function of the boundary-
value problem in (12.24), and it follows from (12.23) that

〈n〉 ≈ σ
h∫

0

G(z, z∗)dz (12.26)

since the integral of S(z) is unity.
We will start from the conservative scattering (�0 = 1) case. It is easy to verify

(Kamke, 1959, p. 396) that the Green function for the boundary-value problem in
(12.24) can be expressed as

G(z, z∗) =
3

�t(h + 2χ�t)

{
(χ�t + z)(h + χ�t − z∗), z ≤ z∗

(χ�t + z∗)(h + χ�t − z), z ≥ z∗
. (12.27)

Substituting (12.27) into (12.26), we obtain
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〈n〉 ≈ 3χ
2

σh

[
1 +

z∗

h

(
1 − z∗

h

)
h

χ�t

]
. (12.28)

Recalling that σh = τ (optical thickness of the slab) and �t = 1/[(1 − g)σ] for
conservative scattering, we have

〈n〉 ≈ 3χ
2

τ
[
1 +

z∗

h

(
1 − z∗

h

)
(1 − g)τ

χ

]
. (12.29)

We see that, if the source is located on a boundary (z∗ = 0 or z∗ = h), the second
term vanishes. Multiplying the result by 2 to account for the loss of source strength
in case of z∗ → 0 or z∗ → h, we have

〈nR〉 ≈ 3χτ (12.30)

which corresponds to reflected photons (thus subindex R). For a source deep inside
the medium, by setting z∗ = h/2, we obtain

〈nT 〉 ≈
3
8
(1 − g)τ2 +

3χ
2

τ (12.31a)

which corresponds to transmitted photons (thus subindex T). Recently Davis and
Marshak (2002), using a Fourier-Laplace transform approach, improved the repre-
sentation (12.31a); they found

〈nT 〉 ≈
1
2
(1 − g)τ2

[
1 +

ε(4 + 3ε)
2(1 + ε)

]
(12.31b)

where

ε =
2χ

(1 − g)τ
. (12.31c)

Motivated by cloud lidar instrument development, Davis et al. (1999) obtained simi-
lar pre-asymptotic correction terms in ε and a more accurate prefactor for the simple
expression in (12.30) pertaining to reflected photons.

Comparing (12.30) with (12.31) we note that 〈nT 〉 is proportional to τ2 in-
dependent of boundary conditions (i.e., the extrapolation length factor χ) when
(1 − g)τ � 4χ, while 〈nR〉 is proportional to τ independent of scattering details
(i.e., asymmetry factor g). The latter means that, while transmitted photons experi-
ence fewer scatterings for anisotropic (g > 0) than for isotropic (g = 0), the number
of scatterings for reflected photons are independent of g even though, intuitively,
reflected photons with isotropic scattering are more readily reversed. Figure 12.8 il-
lustrates formulae (12.30) and (12.31a) with numerical calculations for optical depth
τ from 2 to 128: the value χ ≈ 0.5 in (12.30) fits well the results of numerics for
reflected photons, as shown for the �0 = 1 case in Figs. 12.9a,b.

For absorbing clouds the solution of (12.24) with S(z) = δ(z − z∗) has the
explicit expression (Morse and Feshbach, 1953)
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Fig. 12.8. Average number of scatterings for reflected from and transmitted through homo-
geneous slab photons (conservative scattering). The results of Monte Carlo simulations for
diffusely illuminated homogeneous plane-parallel media with seven optical depths from 2 to
128, by powers of 2, and a Henyey-Greenstein phase function with g = 0 and g = 0.85

G(z, z∗) =
3
2ξ

1
κ2

+eh/Ld − κ2−e−h/Ld

×
{

(κ+ez/Ld − κ−e−z/Ld)(κ+e(h−z∗)/Ld − κ−e−(h−z∗)/Ld), z ≤ z∗

(κ+e(h−z)/Ld − κ−e−(h−z)/Ld)(κ+ez∗/Ld − κ−e−z∗/Ld), z ≥ z∗

(12.32)

where

Ld =
1

σ
√

3(1 − �0)(1 − �0g)
(12.33a)

is the characteristic diffusion length scale,

ξ =
�t
Ld

=

√
3(1 − �0)
(1 − �0g)

, (12.33b)

is the similarity factor and
κ± = 1 ± χξ . (12.33c)

In the case of vanishing absorption (�0 → 1, thus Ld → ∞ and ξ → 0), (12.32)
converges to (12.27).

Setting z∗ = 0 or h in (12.32) and then integrating the Green function from 0 to
h (and multiplying by 2 as explained above), we obtain for reflected photons
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Fig. 12.9. Average number of scatterings in light reflected from and transmitted through ho-
mogeneous scattering/absorbing slabs. (a) Reflected photons; (b) Transmitted photons. We
compare the predictions of diffusion theory (curves) with results of a numerical solution of
the Radiative Transfer Equation (RTE) (symbols). The latter were obtained from Monte Carlo
simulations for diffusely illuminated homogeneous plane-parallel media with seven optical
depths from 2 to 128, by powers of 2, and a Henyey–Greenstein phase function with g = 0.85.
The absorption parameter 1 − �0 ranges from 0 (conservative case) to the point where diffu-
sion theory is expected to fail when g = 0.85. We used χ ≈ 0.5 in (12.33c) to fit the numerical
data in the diffusion regime (τ � 10). Note that for the conservative scattering and transmitted
photons, the prefactor 1/2 (as in (12.31b)) was used instead of 3/8 (as in (12.31a))
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〈nR〉 = σLd
6χ

κ2
+eh/Ld − κ2−e−h/Ld

(
κ+eh/Ld + κ−e−h/Ld − 2

)
, �0 < 1 .

(12.34)

By analogy, for transmitted photons, we set z∗ = h/2 in (12.32), and after inte-
grating (12.26), we obtain

〈nT 〉 =
σLd

ξ
3χ

κ2
+eh/Ld − κ2−e−h/Ld

×
[
κ2

+eh/Ld − κ2
−e−h/Ld − 2

(
κ+eh/2Ld − κ−e−h/2Ld

)]
, �0 < 1 .

(12.35)

Equations (12.34)–(12.35) generalize (12.30)–(12.31) for �0 < 1 noting how-
ever that, to retrieve (12.30) from (12.34) and (12.31) from (12.35) in the limit
�0 → 1 (Ld → ∞) at fixed τ, calls for a 2nd-order expansion of the exponentials in
h/Ld then application of L’Hopital’s rule.

Let us study the asymptotic behavior of 〈nR〉 and 〈nT 〉, starting with reflected
photons. We see from (12.34) that instead of increasing linearly with τ indefinitely,
as in (12.30), 〈nR〉 now crosses over to a flat asymptote at

〈nR〉 ≈
6χ

κ+

√
3(1 − �0)(1 − �0g)

, �0 < 1, τ → ∞ . (12.36)

The accuracy of this approximation, that also derives from asymptotic transport the-
ory, has been investigated by Kokhanovsky (2002). In the limit �0 → 1 (ξ → 0) and
for very large τ, ignoring prefactors, we have (see also Uesugi and Irvine (1970))

〈nR〉 ∝ 1√
1 − �0

, �0 → 1, τ → ∞ . (12.37)

For transmitted photons, from (12.35) we have a flat asymptote at

〈nT 〉 ∝ 1
1 − �0

, �0 < 1, τ → ∞ (12.38)

independent of phase function. Note that the last asymptote corresponds to the sum
1 + �0 + �2

0 + �3
0 + . . . . In both cases, the asymptote is reached when τ exceeds

σLd = [3(1 − �0)(1 − �0g)]−1/2.
Figure 12.9 shows both 〈nR〉 and 〈nT 〉 as functions of τ for g = 0.85 and selected

values of �0 : 1.0, 0.999, 0.99, 0.95, and 0.9. The formulas in (12.34)–(12.35) with
χ ≈ 0.5 follow quite closely the numerical results obtained by Monte Carlo solution
of the RTE, at least at optical thickness large enough (τ � 10) for the diffusion
model to apply. This is true at all the levels of absorption considered.

12.3.2 Extension to Horizontal Photon Transport

The characteristic order-of-scattering can be mapped to characteristic spatial scale
that describes the area of the slab-cloud that is “explored” by photons during their dif-
fusive random walks from injection (xin, yin, zin)T to escape (xout, yout, zout)T. Here
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photons start their trajectory on the upper boundary, i.e., zin = 0, and escape at
zout = 0 (reflected photons) or at zout = h (transmitted photons). To this effect, we
use Einstein’s relation for Brownian motion:

〈x2(t)〉 = Dt (12.39)

where x(t) = (x(t), y(t), z(t))T is the random vector-position of the particle at time
t after leaving the origin (xin, yin, 0) at t = 0, and the constant

D =
c�t

3
=

c

3(1 − �0g)σ

is photon diffusivity (where c is the velocity of light). Time is now mapped to the
number of scatterings at escape by

t ≈ 〈L〉
c

≈ �〈n〉
c

=
〈n〉
cσ

(12.40)

where 〈L〉 is the total in-cloud photon path and � = 1/σ is the photon mean-free-
path. The first approximation in (12.40) is the replacement of the parameter t in the
boundary-free diffusion described by (12.39) by the average 〈L〉/c in the bounded
diffusion problem of interest here. The second approximation – already used in
(12.23) – is the replacement of the continuous variable σL (optical path) by the
discrete quantity n.

We are interested here in the lateral transport distance,

ρ =
√

(xout − xin)2 + (yout − yin)2 (12.41)

which is the (x, y)-projection of the displacement x in 3D space, and its variance
〈ρ2〉. Since x is statistically isotropic, 〈ρ2〉 ∝ 〈x2〉 and it follows from (12.39) and
(12.40) that

〈ρ2〉 ∝ 〈n〉
(1 − �0g)σ2

. (12.42)

Using (12.30)–(12.31) that estimate the average scattering order 〈nF 〉(F =
R,T ), we obtain the root-mean-square (rms) of the horizontal displacement for con-
servative scattering, √

〈ρ2
R〉 ∝ h√

(1 − g)τ
=
√

�th, �0 = 1 (12.43)

and √
〈ρ2

T 〉 ∝ h, �0 = 1 . (12.44)

We deliberately used here the “proportional to” instead of “approximately equal to.”
The important issue of prefactors, that are of order 1, is beyond the scope of this
chapter. Interested readers can find detailed discussions of prefactors in Davis and
Marshak (2001, 2002). Here we only state that numerical results (below) together
with theoretical explanations by Davis and Marshak support prefactors of order unity.
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Note that for transmitted photons, (12.44), the horizontal displacement is pro-
portional to the geometrical thickness of the cloud. This has a simple geometrical
explanation: a “wave” of diffusing photons is emanating from a point on the upper
boundary and propagating “slowly” but isotropically, therefore ρ at cloud bottom is
independent of g and τ. For reflected photons, (12.43), the horizontal displacement is
roughly equal to the harmonic mean of transport mean-free-path �t and geometrical
cloud thickness h; these two are the main characteristic scales in radiative transfer in
a plane-parallel slab in the absence of absorption.

For absorbing wavelengths, we derive the rms of the horizontal displacement for
reflected photons: √

〈ρ2
R〉 ∝ h

τ

√
〈nR〉

(1 − �0g)
(12.45)

where 〈nR〉 is defined in (12.34). Note that the numerator in (12.45) ceases to in-
crease with τ for τ > σLd = [3(1 − �0)(1 − �0g)]−1/2 with �0 < 1. Thus the
behavior of 〈ρ2

R〉1/2 changes from decreasing with h/τ1/2 as in (12.43) for �0 = 1
to a steeper decrease that follows h/τ, for given g and �0. Even more importantly,
〈ρ2

R〉1/2 is a strong function of 1 − �0 which varies far more than g in clouds (with
wavelength across the solar spectrum). Indeed, we see that in the limit �0 → 1,
(12.36) and (12.45) yield √

〈ρ2
R〉 ∝ h

τ
4

√
1 − �0g

1 − �0
(12.46)

as long as τ > σLd = [3(1 − �0)(1 − �0g)]−1/2 which is itself increasing as
�0 → 1.

Figure 12.10 shows our diffusion-based prediction for the dependence on τ of
the rms horizontal displacement in (12.45) using (12.30) or (12.34), respectively for
�0 = 1 and �0 = 0.99, 0.95, or 0.90. Note that the analytical results of (12.45)
again compare well with the corresponding numerical results obtained by Monte
Carlo solutions of the RTE.

12.3.3 Application to Inhomogeneous Clouds

Analytical expressions derived in the previous section are for plane-parallel homo-
geneous clouds. The natural question is, of course, how well do they represent “real”
clouds? The answer to this question depends on the degree of inhomogeneity of the
real clouds. To describe inhomogeneity, we will use parameter ν as a squared ratio of
mean and standard deviation of optical depth τ . For 18 LandSat images, Barker et al.
(1996) observed ν between 1.5 and 22.5 with a typical value of 4 to 5 for marine stra-
tocumulus clouds. Below we will compare the total photon path and the horizontal
displacement of light reflected from scattering and absorbing slabs for horizontally
homogeneous and inhomogeneous media prescribing ν = 4.5 for inhomogeneous
clouds.
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Fig. 12.10. The rms horizontal displacement of light reflected from scattering/absorbing slabs.
Homogeneous plane-parallel media with h = 0.3 km. The point-source at the upper boundary
is isotropic. Four single-scattering albedos �0 are used: 1.00, 0.99, 0.95, and 0.90. The op-
tical depth sequence and phase function are as in Fig. 12.9; the reference lines are ∝ τ−1/2

corresponding to �0 = 1 in (12.43) and ∝ τ−1 for �0 < 1 and τ 
 1 in (12.45)

For conservative scattering, the total photon path 〈L〉 ≈ 〈n〉/σ for homogeneous
and inhomogeneous media is almost the same (〈L〉 ∼ h), while for absorbing wave-
lengths the total path for inhomogeneous medium is longer than for homogeneous.
The difference increases with absorption. This is consistent with Jensen’s inequality
[f(x1+x2

2 ) ≤ f(x1)+f(x2)
2 for any concave (f ′′(x) ≥ 0) function] since the total

photon path 〈L〉 is concave as a function of τ. Figure 12.11 illustrates this behavior
for �0 = 1.0, 0.99, 0.95, and 0.90 using a bounded cascade model with parameters
compatible with ν = 4.5.

Next we compare the rms value of ρ, the horizontal distance between the pho-
ton’s entry and exit points in (12.41). Figure 12.12 shows this statistic for reflected
and transmitted photons for both homogeneous and inhomogeneous models with
conservative scattering. We see that 〈ρ2

T 〉1/2 shows a trend towards constancy as τ
(or 〈τ〉) becomes large, as predicted by the diffusion-based results in (12.44). Plot-
ted on double-log axes, 〈ρ2

R〉1/2 closely follows the −1/2 slope for both models, as
predicted by (12.43).

To illustrate the horizontal distance a photon travels in media that is homoge-
neous and/or inhomogeneous, composite Fig. 12.13 shows logarithmically spaced
isophotes for the 2D albedo and transmittance fields obtained from two normally il-
luminated cloud models: homogeneous and fractal with the same optical depth on
average (Davis et al., 1997). In the homogeneous case, responses are described by a
series of concentric almost equidistant circles that implies an exponential decay ex-
plained recenly by Polonsky and Davis (2004) for both reflection and transmission.
Response for the fractal case shows a degree of azimuthal anisotropy traceable to the
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Fig. 12.11. Total photon path for horizontally homogeneous (pp) and inhomogeneous (frac-
tal) media. Horizontal distribution of cloud optical depth is simulated with 10-step bounded
cascades models (cf. Appendix) where p = 0.35, H = 1/3 (this gives ν ≈ 4.5), pixel
size r = 50 m, geometrical thickness h = 300 m. Henyey–Greenstein phase functions with
asymmetry parameter g = 0.85 is used. Surface is absorbing. The point-source at the upper
boundary is isotropic. Four single-scattering albedos �0 are used: 1.0, 0.99, 0.95, and 0.9. A
dash line 〈L〉 = h is added for reference, as well as a line corresponding to 〈L〉 ∼ 1/〈τ〉

variability in optical depth. Also 〈ρ2〉1/2 is larger here than in homogeneous case in
reflection, as expected from Jensen’s inequality for concave functions.

Finally, as a counterpart to Fig. 12.10, in Fig. 12.14 we plotted 〈ρ2
R〉1/2 for in-

homogeneous clouds. We see that for this relatively mild level of inhomogeneity
(ν = 4.5) the agreement with theoretical predictions would be acceptable; however
the theory deteriorates as absorption increases. Note that 〈ρ2

R〉1/2 exceeds its homo-
geneous counterpart which is again consistent with Jensen’s inequality.

To conclude, though the theoretical predictions obtained for plane-parallel ho-
mogeneous slabs for average number of scatterings, total photon path and horizontal
displacement deviate from their inhomogeneous numerical results, the general be-
havior remains the same. Thus the above formulae are also valid (with slightly dif-
ferent prefactors) for inhomogeneous clouds as long as the degree of inhomogeneity
is relatively mild as is the case for boundary layer stratiform clouds (Barker et al.,
1996). The sign of deviation from the homogeneous medium is always compatible
with Jensen’s inequalities for concave/convex functions.
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Fig. 12.12. The rms of the horizontal displacement for conservative scattering and horizontally
homogeneous (pp) and inhomogeneous (fractal) media. Clouds and illumination conditions
are the same as in Fig. 12.11. Slopes 0 and −0.5 illustrate asymptotic behavior and follow
from the diffusion theoretical prediction in (12.43)–(12.44)

12.4 Radiative Smoothing and Roughening in Simulations

12.4.1 Conservative Scattering

Stephens (1988) noticed that “multiple scattering tends to filter out the fine structure
in the radiation field” thus smoothing its small-scale structure. Marshak et al. (1995)
defined radiative smoothing as a radiative transfer process whereby radiation does
not follow the small-scale fluctuations of cloud structure producing much smoother
radiation fields. Panel (a) in Fig. 12.15 illustrates this phenomenon. It shows both the
optical depth and the IPA and Monte Carlo (MC) nadir radiance fields plotted against
horizontal distance x. While both fields have almost the same domain average of 0.5,
there are large differences in individual pixels. First of all, there is a direct one-to-one
relation between the IPA radiance and local optical depth; the horizontal fluctuations
of IIPA(x) follow those of optical depth, showing no smoothing whatsoever. By con-
trast, IMC(x) shows considerable smoothing. To better illustrate the smoothness of
IMC(x), panel (b) of Fig. 12.15 shows a 2 km fragment of panel (a), consisting of 160
pixels, each 12.5 m wide; the smoothness of IMC(x) is now apparent. The smooth-
ness of albedo is even more pronounced. To illustrate this, we plotted the albedo field
in panel (c) for the same 2 km fragment as in panel (b). Because of a hemispherical
field of view the albedo field is much smoother than its radiance counterpart.
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Fig. 12.13. “Spots” for 2D homogeneous and fractal clouds , from Davis et al. (1997) with
permission. (a) Central 2 km by 2 km portion of a cloud model based on a 2D bounded cascade
model (cf. Appendix) with 〈τ〉 = 13, on a 128 × 128 grid. The phase function was Henyey–
Greenstein with g = 0.85 and the illumination from zenith. (b) Reflected spot, using flux
(local albedo), for a homogeneous cloud with τ = 13. (b′) Same as (b) for the fractal model
in panel (a), overall transmittance T ≈ 0.5. (c, c′) Same as (b, b′) for spots in transmittance.
Isophotes are traced for integer values on a log10 scale; the flux units are arbitrary but uniform,
so the higher values and slower spread in panel (c′) compared to (c) lead to a substantially
larger overall transmittance T ′ ≈ 0.7. The rms horizontal displacement 〈ρ2〉1/2 is shown by
a double-ended arrow for each plot

What is the signature of radiative smoothing in a wavenumber spectrum? In
Fig. 12.16 we plotted wavenumber spectra E(k) for the three fields: optical depth,
and two nadir radiance fields calculated by IPA and MC. For our present purposes,
it suffices to assume that the two-point autocorrelation properties of cloud optical
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Fig. 12.14. RMS horizontal displacement of light reflected from inhomogeneous clouds. Same
outer geometry and optical properties as in Fig. 12.10, but extinction is horizontally variable,
as in Fig. 12.11; in this case, the point-sources are uniformly distributed over the upper bound-
ary. The analytical diffusion theory is the same as in Fig. 12.10

depth are described by a power-law wavenumber spectrum:

Eτ(k) ∝ k−β (12.47)

with β ≈ 5/3 (see volume’s Appendix) for scales r = 1/k ranging from at least tens
of kilometers down to only tens of meters. Plotted in log-log axes, the Fourier power
is a straight line with a negative slope β. The IPA radiance field associated with this
optical depth has a spectrum that follows a similar power-law as the optical depth
(only the prefactor changes). In contrast, the spectrum of the numerically calculated
3D radiance fields follow a similar power-law, but only down to a few hundred me-
ters. At the smallest scales (below this scale break), there is a significant deficit of
variance, hence the term radiative smoothing. The special scale at which this scale
break occurs (envision the intersection of two lines on a log-log plot of E(k) versus
k) is denoted by η. Can the value of η be predicted?

Extensive numerical experimentation showed that in the case of conservative
scattering for reflected photons the scale η = ηR has the same dependence on aver-
age cloud geometrical thickness 〈h〉, average cloud optical depth 〈τ〉 and asymmetry
factor g as 〈ρ2

R〉1/2 in (12.43), i.e.,

ηR ∝ 〈h〉√
(1 − g)〈τ〉

, (12.48)

with a prefactor 2 ± 1 depending primarily on exactly how ηR is defined. So the
diffusion-based theory of horizontal photon transport in homogeneous slab clouds
captures the basic phenomenology of radiative smoothing in (stratiform internally
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Fig. 12.15. Comparison of 3D (Monte Carlo) and IPA reflectivity fields. The optical depth τ
field as in Fig. 12.4, Sun at 22.5◦ and scattering determined by a Deirmendjian’s C1 phase
function. (a) Nadir radiance for the entire 12.8 km computational domain, dashed lines indi-
cating domain averages; (b) 2 km zoom from panel (a); (c) Same 2 km zoom but for albedo
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Fig. 12.16. Wavenumber spectra of optical depth, 3D (MC) and IPA nadir radiance fields.
Conservative scattering. The optical depth field as in Fig. 12.4 but with pixel size 25 m and
spectra are averaged over 10 realizations. Sun is in zenith and scattering was determined by a
Henyey–Greenstein phase function with asymmetry parameter g = 0.85. Slopes of −5/3 and
−8/3 are added for reference

variable) fractal clouds. Figure 12.16 with 〈h〉 = 300 m, g = 0.85 and 〈τ〉 = 13
shows ηR ≈ 400 m .

For radiation transmitted through dense clouds, diffusion theory predicts that hor-
izontal transport is proportional to cloud geometrical thickness and is independent
of its optical depth and scattering “details” (see (12.44)). In this case, the radiative
smoothing scale η = ηT can be expressed as

ηT ∝ 〈h〉 . (12.49)

Thus, for the cloud fields as in Fig. 12.15 we expect a scale-break to occur at ≈
300 m. This is confirmed for �0 ≈ 1 by Fig. 12.18, which will be discussed in the
next subsection.

Note that radiative smoothing scale η is the critical value where IPA effectively
breaks down: for scales smaller than η, real radiation fields are much smoother than
their IPA counterparts (see Fig. 12.15b) for the same cloud structure. Since the ra-
diative smoothing scale characterizes horizontal photon transport, it is also important
to know how η is related to the magnitude of horizontal fluxes H and to the pixel-
by-pixel IPA accuracy HR, HT and HA discussed in Sect. 12.2. To answer these
questions we start with the effect of absorption on radiative smoothing scale η.

12.4.2 Nonconservative Scattering

In addition to wavenumber spectra of optical depth and radiances for conservative
scattering plotted in Fig. 12.16, Fig. 12.17 shows IPA and 3D wavenumber spectra
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Fig. 12.17. Wavenumber spectra of optical depth, 3D and IPA nadir radiance fields: same data
as in Fig. 12.16 (now octave-averaged) with two absorbing wavelengths with �0 = 0.98 and
0.95 added

for two absorbing wavelengths with single scattering albedos �0 = 0.98 and 0.95,
respectively. First, we see that all three IPA nadir radiance fields have scale-invariant
spectra with a slope similar to the one of cloud optical depth field described by
(12.47). In contrast, all three 3D fields exhibit scale breaks determined by the ra-
diative smoothing scale ηR that is a direct indication of photon horizontal transport.
We see that the scale break moves towards smaller scales with the increase of ab-
sorption, i.e.,

ηR(�0) > ηR(�′
0), if �0 > �′

0 . (12.50)

This trend is expected and ηR decreases rapidly with �0, as does 〈ρ2
R〉1/2 in (12.45)–

(12.46). Furthermore, the variance is less reduced relative to the IPA prediction as �0

decreases because more absorption means less scattering, hence less smoothing. The
last statement is in good agreement with Fig. 12.5a: the pixel-by-pixel IPA error in
the reflected radiation HR monotonically decreases with �0.

Now we focus on transmitted radiation. Figure 12.18 illustrates its wavenum-
ber spectra. As we see, the inequality (12.50) is not valid for transmitted photons.
Indeed, comparing Fig. 12.18 with Fig. 12.5b, we find the scale break (thus the ra-
diative smoothing scale ηT ) is determined by the horizontal fluxes for transmitted
photons which do not show much variability with respect to �0 (see Figs. 12.5b and
12.7a). Another indication of weak dependence of ηT on �0 is (12.49): it depends
only on mean cloud geometrical thickness 〈h〉 and does not depend on cloud optical
properties. Figure 12.18 confirms the scale break around 〈h〉 = 300 m.

To conclude, both reflected and transmitted radiation fields exhibit scale breaks
which are characterized by their respective radiative smoothing scales ηF (F =
R,T ); it is directly related to the pixel-by-pixel IPA accuracy HR and HT for re-
flected and transmitted fields, respectively. In contrast, the vertically-integrated hor-
izontal fluxes H in (12.16) increase with more absorption while the HR decreases
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Fig. 12.18. Wavenumber spectra of optical depth, 3D and IPA for radiation transmitted through
clouds. The same as in Fig. 12.17 but for four absorbing wavelengths with �0 = 0.999, 0.99,
0.98 and 0.95. Wavenumber spectrum of optical depth is the same as in Figs. 12.16 and 12.17.
Note that due to finite sampling, the overall variance, the integral of E(k), does not vary much
(compare with Fig. 12.6b for standard deviation)

and HT remains almost unchanged (Fig. 12.7b). Therefore, the vertically-integrated
horizontal fluxes H for absorbing wavelengths are determined by the IPA absorption
error HA and are not directly related to the radiative smoothing scale ηF , at least for
near-zenith Sun.

12.4.3 Oblique Illumination and Radiative Roughening

The situation with oblique illumination (Fig. 12.19) is more complex. As a direct
consequence of shadowing, the 3D reflection fields have much more fluctuations at
intermediate scales than their IPA counterparts (Zuidema and Evans, 1998; Várnai,
2000; Oreopoulos et al., 2000). The small-scale behavior is still governed by radia-
tive smoothing, but it is not as clearly seen in the wavenumber spectra. In general,
there are two competing processes that determine the wavenumber spectra: roughen-
ing by shadowing and brightening (via side illumination of clumps) and smoothing
by diffusion processes. While roughening flattens the spectra, smoothing steepens
it; however roughening is more pronounced for intermediate scales while smoothing
always dominates at small scales.

For high Sun (Fig. 12.19a) radiative smoothing dominates, especially for conser-
vative scattering where photons bounce systematically from the dense regions to the
tenuous ones. In these cases, the wavenumber spectrum consists of only two regimes:
IPA regime for large scales and smoothing for small scales. With more absorption,
even for high Sun, low-order scattered photons dominate and we begin to see a signa-
ture of shadowing and side illumination – a bump at intermediate scales. This bump
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Fig. 12.19. Wavenumber spectra of 3D and IPA nadir radiance fields: same as in Fig. 12.17
(�0 = 1.00, 0.98 and 0.95) but for (a) θ0 = 30◦, (b) θ0 = 45◦, and (c) θ0 = 60◦

becomes more pronounced as absorption and solar zenith angle increase (Fig. 12.19b
and c). In these cases, roughening dominates over smoothing.

In summary, nadir reflectivity wavenumber spectra for oblique illumination are
characterized by three distinct regimes:
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1. large scales where reflectivity follows the fluctuations of optical depth;
2. intermediate scales, where radiative roughening makes reflectivity fluctuations

stronger than those of optical depth; and
3. small scales where radiative smoothing makes reflectivity fluctuations weaker.

This is schematically illustrated in Fig. 12.20 for scale-by-scale variance instead of
the wavenumber spectrum. By variance we can understand here a counterpart of
wavenumber spectrum in physical space such as the 2nd-order structure function (as
used in the volume’s Appendix). Scale r is best measured in units of cloud geo-
metrical thickness h. So we see that large scales are for r/h greater than 15 to 20;
intermediate scales are for r/h between 3 and 15; and, finally, small scales are for
r/h less than 1 to 3. Note that roughening is actually controlled by h tan θ0 – the
horizontal length of the direct beam through a cloud.

For transmitted radiation (Fig. 12.21), the situation is different. First, as for over-
head illumination (Fig. 12.18), wavenumber spectra for low Sun do not exhibit much
�0 dependence. Because of the longer photon paths, the small-scale behavior of
transmitted light for oblique illumination is even smoother than in case of zenith
Sun. A steeper small-scale slope is a clear indication of smoother behavior. Also, the
smoothing for oblique illumination is observed for larger scales, i.e.,

ηT (θ0) < ηT (θ′
0), 0

◦ ≤ θ0 < θ′
0 < 90◦ . (12.51)

Finally, in contrast to the up-welling radiation (Fig. 12.19), there is no indication of
roughening: the shadowing effect is well seen only for broken clouds with a strong
side illumination.

In summary, smoothing, as a radiative transfer process, always happens indepen-
dent of the illumination conditions; however, it is superseded by radiative roughening
in up-welling radiation at low Sun. Thus, using only the wavenumber spectrum it is
not always possible to estimate a smoothing effect of horizontal fluxes and IPA ac-
curacy. This is true for both up- and down-welling radiation.

12.5 Radiative Smoothing and Roughening in Data

12.5.1 LandSat Images and Wavenumber Spectra

Thematic Mapper (TM) radiance observations from LandSat with pixels only 30 m
wide provide an excellent opportunity to study real-world cloud morphology. One of
the most remarkable properties of LandSat cloud scenes is their statistical scale-
invariance: wavenumber spectra dependent on a scale parameter r follow power
laws over a large range of values r. These are the properties heavily exploited in
the present chapter to understand and characterize 3D radiative effects in LandSat
images.

Based on the theory of radiative smoothing detailed above, we are now able
to explain the scale break in the LandSat wavenumber spectrum in Fig. 12.2. In-
deed, a strictly scale-invariant behavior from 8 km to 200 m in LandSat radiances
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Fig. 12.21. Wavenumber spectra of 3D and IPA radiation transmitted through clouds: same as
in Fig. 12.18 but for θ0 = 60◦
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Fig. 12.22. Portion of TM LandSat scene in channel 4 centered around 0.83 µm taken on
September 24, 1996, over Oklahoma. The dimensions are 30×30 km2, solar zenith angle is
≈45◦, and the mean reflectivity at 0.83 µm is 0.68

(inside cloud “streets” in Fig. 12.1), suggests that cloud liquid water has a power-
law wavenumber spectrum as in (12.47). We know (see Appendix) that power law
behavior goes far below 200 m, down to tens of meters. Thus, as it is described in
Sects. 12.4.1–12.4.3, a photon transport mechanism mediated by horizontal fluxes
would be able to smooth a scale-invariant cloud liquid water field and bend its
wavenumber spectrum. With high Sun (θ0 � 30◦), the location of a scale break
around 200 m is in agreement with (12.48) and Fig. 12.19a where 〈h〉 and 〈τ〉 have
typical marine Sc values of 250–300 m and 10–20, respectively.

Generally, LandSat cloudy images are much more complex than the one shown
in Fig. 12.1. In Fig. 12.22 we plotted a visible cloudy LandSat image captured over
Oklahoma on September 24, 1996. With solar zenith angle at 45◦ and partially bro-
ken clouds, this image represents a challenge for the analysis of cloud morphology.
Wavenumber spectra for both conservative scattering (band 4 centered at 0.83 µm)
and absorbing media (band 7 centered at 2.2 µm) for this 1024 × 1024 pixel region
are shown in Fig. 12.23. We see that both wavenumber spectra have all 3 distinct
regimes illustrated schematically in Fig. 12.20. Radiative smoothing is observed for
scales smaller than 300–400 m while radiative roughening (a bump in the spectrum)
is seen for intermediate scales around 0.5–2.0 km. This is in good agreement with
Fig. 12.19b for the same solar angle of 45◦. We also see that spectra of absorbing
wavelengths (band 7) show less smoothing than nonabsorbing ones (band 4); this is
natural since absorbing channels have less scattering thus less smoothing. Finally,
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bumps are stronger for absorbing channels which is again in good agreement with
Fig. 12.19b and Sect. 12.4.3.

Although the wavenumber spectra of LandSat cloud images exhibit a great va-
riety of different shapes and forms depending on cloud top variability, surface re-
flectance, cloud fraction, illumination conditions, etc. (Oreopoulos et al., 2000),
there are several major features common to all images and have a definite signa-
ture in wavenumber spectra. These are governed by two radiative transfer processes:
smoothing and roughening; both of them are defined as violations of the scale-
invariance of the liquid water field. The first process decreases variance at small
scales while the second one increases it at intermediate scales. As a result, both 3D
radiative transfer processes make retrieval of cloud liquid water from high resolution
satellite images an indeterminate or multi-valued problem that causes inaccurate re-
sults.

12.5.2 Zenith Radiance Time-Series and Structure Functions

High resolution satellite imagery such as LandSat illustrates radiative smoothing in
reflection. As shown in (12.44) and Fig. 12.12, there is also horizontal transport,
hence smoothing, by photon diffusion in the transmitted light field. Savigny et al.
(1999) set out to observe this smoothing in long time-series of narrow-band zenith
radiance at 0.77 µm, where there is no significant absorption, coming from dense un-
broken clouds. Their data were collected during the 1998 Cloud Lidar And Radar
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Experiment (CLARE) campaign at Chilbolton Observatory (UK). Figure 12.24a
shows a merger of 1-minute averages from 3 datasets covering most of the daytime
on Oct. 16, 1998. This signal is clearly quite rough, but Fig. 12.24b shows a random
zoom into the raw 2 Hz data that illustrates the smooth variations of zenith radiance.

To quantify the smoothing, Savigny et al. (1999) performed (2nd-order) structure
function analyses, namely, the variance of increments in radiance over different time-
lags, and they looked for scaling regimes:

〈[I(t + ∆t) − I(t)]2〉 ∝ ∆tζ(2) (12.52)

where 0 ≤ ζ(2) ≤ 2. It can be shown that, in theory (i.e., with perfect continuous
sampling), β = ζ(2)+1 in (12.47) as long as 1 ≤ β ≤ 3, and that ζ(2) = 0 for β < 1;
more details in the Appendix at the end of the volume. Figure 12.24c shows the au-
thors’ results for the Oct. 16 data. They invariably found scale breaks separating a
smoothed regime, with ζ(2) approaching 2, and a rough one with an exponent ζ(2)
around 2/3 which is the canonical value for a turbulent field (β ≈ 5/3). Moreover
these breaks are always on the scale of 0.1 km using the mean wind to convert time to
space in a “frozen turbulence” hypothesis. As expected from diffusion theory, these
scales are commensurate with cloud thickness which was measured independently
during CLARE. So this finding is in every respect the empirical structure-function
analog of the scale-break in E(k) for simulated data in Fig. 12.18. Finally, we note
that agreement with the theoretical estimate of the scale-break based on

√
〈ρ2

T 〉 im-
proves when accounting for the use of transmitted radiance rather than flux on the
one hand, and the accurate prefactor for (12.44) obtained by Davis and Marshak
(2002) on the other hand.

Looking at the handful of day-long datasets from the CLARE campaign in Octo-
ber 1998, Savigny et al. (2002) found another scale-break at much larger scales (over
10 km) where the IPA is an accurate description of the transport, see Fig. 12.24c.
This time ζ(2) goes from ≈2/3 to almost 0 which, for all practical purposes, is a
roughening. This transition to stationarity is attributed to physical impossibility of
radiance increments to grow much beyond the natural unit of zenith or nadir radi-
ances (namely, µ0F0/π), and this value is reached at about 10 km. Optical depth
values and increments can in principle grow without bounds (at least until conver-
sion of droplets to precipitation, starting with drizzles, dominates cloud evolution)
but albedo, transmittance, and radiances are inherently bounded.

12.6 Nonlocal Independent Pixel Approximation (NIPA)

Let us come back to Fig. 12.15b that shows a 2 km fragment of cloud optical depth
field and two fields of cloud reflectivities corresponding to it. The first one was cal-
culated using 1D radiative transfer theory, namely the IPA-plane-parallel theory on
a pixel-by-pixel basis that neglects the net horizontal fluxes excited by the spatial
variability. In contrast, the second field was calculated using 3D radiative transfer
theory represented here by MC, a robust but rather costly numerical technique that
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Fig. 12.24. Radiative smoothing in transmission. (a) A day-long time-series of 1-minute aver-
ages of zenith radiance in a narrow band around 770 nm. (b) A “zoom” into the area indicated
in panel (a) to show the smoothness of the raw (2 Hz) data. (c) Structure function analysis of
the radiance data across almost 5 orders of magnitude; see main text for details. The data and
statistical results presented here are courtesy of C. von Savigny
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uses photon trajectories with given probability densities defined by the integral ra-
diative transfer equation (Chap. 4). We see that because of radiative smoothing, the
3D field is remarkably smoother than the IPA one that follows the fluctuations in
cloud structure. While relatively accurate for large enough scales (Chap. 9), there
are dramatic errors in individual pixel radiances calculated by IPA. This section will
show how to adjust the IPA to substantially decrease these errors.

As illustrated in Fig. 12.16, radiation reflected from clouds and calculated by the
IPA is scale-invariant and the scaling of its wavenumber spectrum is therefore defined
by just one exponent β over the full range of scales. In contrast, to describe the scaling
properties of 3D radiative transfer, one needs at least two more parameters: α which
determines small-scale behavior in Fig. 12.16 (and/or Figs. 12.17, 12.20), and the
characteristic scale η which defines the scale-break location. Thus, to “simulate” the
realistic scaling properties starting with the IPA field (in absence of roughening), we
can convolve it with a two-parameter smoothing kernel. This kernel is associated
with the radiative transfer Green’s function – the radiative response to a point-wise
source.

Studying numerically the profile of the “spot” (Fig. 12.13) of reflected light from
a point-wise source it was found (Marshak et al., 1995) that a two-parameter Gamma
distribution

G(α, η; |x|) =
1

2Γ(α)ηα |x|
α−1exp

(
−|x|

η

)
, (12.53)

where Γ(α) is Euler’s Gamma function, is a good candidate to approximate cloud’s
Green function if 0 < α < 1. There are other possibilities, especially with convenient
closed-form expressions in Fourier space, resulting from the diffusion-based theory
of off-beam cloud lidar signals (Davis et al., 1999). Expressions in physical space
are harder to obtain but the asymptotic analysis by Polonsky and Davis (2004) yields
the same form as (12.53) with α = 1/2 and

η =
h

πR(τ)

where 1/R(τ) = 1 + ε(τ) is from (12.31c), i.e., the simplest diffusion-theoretical
estimate of cloud albedo R(τ).

With an emphasis on the scaling properties, we represent symbolically by
IPA(β;x) a one-parameter family of radiation fields reflected from clouds (flux or
radiance) and calculated using pixel-by-pixel 1D radiative transfer. The 3D radiative
effects will accounted by a three-parameter family

NIPA(α, η, β;x) = G(α, η; |x|) ∗ IPA(β;x) (12.54)

where ∗ is a convolution product. We call this whole operation the “Nonlocal Inde-
pendent Pixel Approximation” (NIPA).

Let IIPA and INIPA be nadir radiances calculated using IPA and NIPA, respectively.
The convolution product (12.54) is best done in Fourier space

ĨNIPA(α, η, β; k) = G̃(α, η; k)ĨIPA(β; k) (12.55)
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with (Gradshteyn and Ryzhik, 1980)

G̃(α, η; k) = 2

∞∫
0

G(α, η;x) cos(kx)dx =
cos

[
α tan−1

(
ηk
α

)]
[
1 +

(
ηk
α

)2
]α/2

. (12.56)

The convolution does not effect the domain average (k = 0) in any way, since
integral of G(α, η;x) is equal to 1. The wavenumber spectrum of the NIPA field is
thus given by

ENIPA(α, η, β; k) = EIPA(β; k)
cos2

[
α tan−1

(
ηk
α

)]
[
1 +

(
ηk
α

)2
]α (12.57)

where we can assume that EIPA(k) ∼ k−5/3. Special cases of interest are α = 1
where (12.53) becomes an exponential smoothing kernel:

ENIPA(α, η, β; k) = EIPA(β; k)G̃(1, η; k)2 ∼ k−5/3

[1 + (ηk)2]2
∼ k− 17

3 as k → ∞;

(12.58)

and α = 0.5:

ENIPA(α, η, β; k) = EIPA(β; k)G̃(0.5, η; k)2

∼ k− 5
3

[
1√

1 + (2ηk)2
+

1
1 + (2ηk)2

]
∼ k− 8

3 as k → ∞ .
(12.59)

In general, a little algebra shows that the small scale (large k) behavior is ENIPA(k) ∼
k−5/3−2α for all α < 1 (asymptotic approach from above) and ENIPA(k) ∼ k−17/3

for α = 1 (asymptotic approach from below). Figure 12.25 illustrates ENIPA(k) for
α = 0, 0.25, 0.5, 0.75, and 1.

We see from (12.56) and Fig. 12.25 that for large scales r (thus small wavenum-
bers k ∝ 1/r), both INIPA and IIPA have the same spectrum which follows a k−5/3

power law, while for small scales r (large k) the behavior is quite different. Being
scale-invariant, IIPA has a k−5/3 spectrum for all scales, while INIPA exhibits much
smoother behavior for small scales.

Now we return to Figs. 12.15a and b and for the same cloud structure we compute
INIPA as a convolution between IIPA and G as prescribed by (12.54). For simplicity,
we chose η = 0.25 km as follows from (12.48) and α = 0.5 that corresponds to
a small-scale slope of –8/3 (see Fig. 12.16). Figure 12.26a is an NIPA-counterpart
of Fig. 12.15b; here for a 2 km zoom, in addition to IPA and MC fields, we plotted
the NIPA field. Errors at the bottom of Fig. 12.26a demonstrate the improvement.
Finally, both NIPA and IPA radiances are plotted versus MC radiance on a scatter
plot (Fig. 12.26b) for each pixel. We see that NIPA points concentrated along the
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diagonal show very good agreement with MC results. (Note that the computer time
for calculation of NIPA radiances is several thousand times shorter than for MC
ones.)

To summarize, ignoring net horizontal fluxes for horizontally variable clouds
yields incorrect radiation fields for scales on the order of (or smaller than) the
smoothing scale η. NIPA incorporates the effect of photon horizontal transport in
a simple IPA-type radiative transfer method by using a convolution product of IPA
with an approximate Green function for radiative transfer. The Green function can
be approximated by a two-parameter Gamma distribution. The first parameter (η) in-
dicates the scale from which the smoothing occurs, while the second parameter (α)
defines the amount of smoothing. Both parameters can be estimated from a log-log
plot of wavenumber spectrum of cloud reflectivity.

Finally, we note that the performance of NIPA deteriorates substantially with
the increase of solar zenith angle. Indeed, the correction factor G as in (12.53) is
independent of solar angle. All solar angle dependence of the NIPA is concentrated
in the IPA, which is insensitive to the pixel-by-pixel correlation. As a result, NIPA
is not designed to correct for shadowing/brightening that results in roughening (not
smoothing!) of the radiation reflected from clouds (cf. Fig. 12.19b). Some techniques
that deal with roughening by using both nonabsorbing and absorbing wavelengths are
described by Oreopoulos et al. (2000) and Faure et al. (2001a).

Generalization of NIPA to two-dimensional fields is straightforward; it is de-
scribed in Marshak et al. (1998). An inverse NIPA that corrects the retrieval of cloud
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Fig. 12.26. IPA, MC and NIPA for cloud nadir radiances. (a) The same as in Fig. 12.15b but
with NIPA for α = 0.5, η = 0.25 km in 12.53. Errors MC-IPA and MC-NIPA are also plotted.
(b) Scatter plot of IPA and NIPA radiances versus their MC counterpart

optical depth for radiative smoothing at small scales is a typical “ill-posed” prob-
lem and calls for a “regularization.” Theoretical background for the inverse NIPA is
given in Marshak et al. (1998) while Oreopoulos et al. (2000) apply this technique
to LandSat radiance fields to retrieve cloud optical depths and Faure et al. (2001b)
demonstrate a 3D retrieval methods based on neural networks.

12.7 Summary

According to in-situ and ground-based microwave probing of real clouds (Cahalan
and Snider, 1989), the horizontal distribution of cloud liquid water shows a power
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law behavior in wavenumber spectra ∼ k−β with spectral exponent β > 1; typically
β ≈ 5/3 for marine stratocumulus clouds. The range of scales goes from a few
meters to tens of kilometers.

For horizontally inhomogeneous clouds, the Independent Pixel Approximation
(IPA) calculates the radiation properties of each pixel by treating it as a homogeneous
plane-parallel layer, ignoring net horizontal transport. It is routinely used in current
remote sensing applications to infer cloud properties from measured radiance fields.
Although the IPA is a nonlinear transformation, to a first approximation, it preserves
the scaling properties of cloud liquid water. However, high resolution satellite cloud
images show that while the fluctuations of the radiance field follow those of cloud
liquid water at large scales, at small scales they exhibit much smoother behavior. The
same is true for time-series of zenith radiances measured from ground. Hence, the
radiance wavenumber spectrum has a scale break; meaning that there is a character-
istic scale that separates two distinct scaling behaviors. As a result, IPA describes
well large-scale fluctuations of radiances, but overestimates them at small scales.

The shortcoming of IPA for small scales comes from the fact that while using
plane-parallel radiative transfer theory locally, it ignores net horizontal photon trans-
port, i.e., horizontal fluxes, which are a direct consequence of the inhomogeneity
in cloud structure. Horizontal fluxes smooth small-scale fluctuations of cloud liquid
water; hence, they are responsible for the scale break in the radiance wavenumber
spectrum.

In this chapter we studied the properties and magnitude of horizontal fluxes at
both absorbing and nonabsorbing wavelengths. We showed the connection between
pixel-by-pixel accuracy of the IPA and horizontal fluxes, from one side, and radiative
smoothing, from another side. Based on the diffusion theory of horizontal photon
transport in homogeneous slab clouds, we were able to capture the basic phenom-
enology of radiative smoothing in inhomogeneous clouds and predict the location
of the wavenumber spectra scale break. In case of conservative scattering, the radia-
tive smoothing scale η is proportional to the geometrical mean of cloud geometrical
thickness h and photon transport mean-free-path �t for reflection, and to the geomet-
rical thickness in transmission. For absorbing wavelengths and reflected photons, η
decreases with �0, while for transmitted photons, η-dependence on �0 is insignifi-
cant.

Finally, we described a method that improves the small-scale performance of IPA
without jeopardizing its computational efficiency. This method uses a convolution of
IPA with the radiative transfer Green function that can be approximated by a Gamma
distribution. We called this the “nonlocal IPA” or NIPA. Unlike IPA, NIPA takes into
account net horizontal transport; the large-scale fluctuations of NIPA are similar to
those of IPA while the small-scale behavior is smoother and reproduces statistical
properties observed in LandSat cloud data and zenith radiance time-series.

In general, LandSat cloud images exhibit a variety of different shapes depend-
ing on cloud geometry, surface reflectance, and solar zenith angle. Smoothing is the
main radiative transfer process that is responsible for small-scale behavior. For larger
scales, there is also radiative roughening that is driven by shadowing and brightening
by side illumination; obviously, shadowing is more pronounced for more oblique
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illumination. Both radiative transfer processes (smoothing and roughening) are a di-
rect consequence of inhomogeneity in cloud structure. Ignoring them in processing
satellite data causes inaccurate retrievals of cloud properties.

Ground-based measurements of down-welling radiance at a fixed location as a
function of time (clouds are advected by) are also dominated by horizontal transport
at small increments in time. At time intervals associated with scales larger than the
cloud thickness, the IPA becomes a better approximation and the turbulent structure
of clouds is apparent in the signal. At very large scales, more than 10 km (over 1/2
hour in time), the range of possible radiance values has been saturated and a transi-
tion to a statistically stationary regime is observed. Although not a 3D effect, this is
another mechanism by which radiation hides the inherent variability of clouds.
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13.1 Introduction

Two obstacles that limit both our understanding of climate change and our ability to
predict this change are our lack of definition of climate forcing (Intergovernmental
Panel on Climate Change, 2001) and our inability to quantify the response of the
climate system to this forcing. At the core of these topics is the need to specify the
radiative properties of the atmosphere and, in one way or another, knowledge of
the optical properties of the particulate matter of the global atmosphere, either in the
form of aerosol or clouds.

Developing knowledge about the radiative properties of clouds and aerosol re-
quires progress on a number of fronts, notably in improving methods to observe
these properties globally and in the translation of these global observations to radia-
tive properties relevant to radiative transfer. Challenges confronting these observa-
tional efforts include better detection of thin layers of cloud and aerosol especially
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over bright land and snow covered surfaces, clarifying the ambiguity introduced by
non-spherical particle scattering, complications introduced by 3D structures of the
scattering layers (a problem that is not solved simply by increasing the spatial res-
olution of observations) and a critical lack of vertical resolution characteristic of
current global observing systems.

The radiative properties of clouds that are so critical to many climate problems,
in particular, are significantly influenced by the three dimensional organization of
clouds. For example, the amount of IR radiation absorbed and emitted by clouds is
primarily influenced by the vertical structure of clouds. This structure determines
how much radiation is exchanged between the surface, between clouds at different
levels in the atmosphere and between clouds and space (Stephens, 1999). Further-
more, the amount of solar radiation reflected by clouds is directly influenced by the
extent of horizontal variability that dictates how much solar radiation flows horizon-
tally between cloud elements and between these cloud elements, the surface and back
to space.

Global satellite observational studies of clouds are commonly based on the inter-
pretation of measurements of reflected sunlight in terms of column-averaged cloud
properties. Unfortunately, there is a general lack of quantitative error analyses and
other information that can be used to determine the reliability of the retrieved in-
formation. The inversion methods developed are, by necessity, based on crude as-
sumptions about the vertical structure of clouds and furthermore that the radiative
transfer within each pixel occurs independently of neighboring pixels (the so-called
Independent Pixel Approximation, hereafter IPA).

At this time, our ability to observe the general 3D cloud structure from the ground
is limited to scanning pulsed active sensors. For all practical purposes, we have no
capability to observe 3D cloud structure from space although certain aspects of the
horizontal variability are well captured by imaging instruments. Although several
theoretical studies point to the general importance of 3D effects on the radiative
properties of clouds, it is a challenge to bring direct observational evidence to support
these studies, cf. Chaps. 11 and 12. Stephens and Greenwald (1990) provide the first
global-scale indication of the effects of 3D structure on the radiation budget but this
too is inconclusive owing to the lack of both resolution and coincidence of the data
used in that study. Meaningful observational approaches to this problem are not yet
firmly in hand and we are left with a challenge to develop observational techniques
for determining and testing the significance of 3D effects on radiative transfer. This
chapter describes preliminary thoughts on one such approach.

13.1.1 An Old Idea Revisited

The concepts described in this chapter are based on the idea of using measurements
in a portion of the solar spectrum that contains an absorption band associated with
a gas of known concentration and known distribution. As such we turn an old idea
around, namely to use known absorption properties of a well mixed gas such as
molecular oxygen as a vehicle to understand radiative transfer in a multiple scatter-
ing medium, rather than the more traditional application that exploits the scattering
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Fig. 13.1. Two spectra measured by GOME over the regions indicated from the overlay of the
orbit path of GOME on a near-coincident AVHRR visible (channel 1) image of the atmosphere
and surface below. The spectral width of the AVHRR channel 1 is shown for reference

of the atmosphere and surface to deduce the properties of the absorbing species. We
will focus on measurements of oxygen absorption, either in the O2 A-band region
between 760–770 nm or in the weaker B-band between approximately 680–690 nm.
Figure 13.1 is an example of spectra obtained over a cloudy and clear region mea-
sured by the Global Ozone Monitoring Experiment (GOME) instrument (Burrows
et al., 1999). The two absorption bands of oxygen that are relevant to the topics of
this chapter are noted. Inverting these types of measurements in the form of infor-
mation about an absorbing gas is an old idea dating back at least to Yamamoto and
Wark (1961) who proposed that oxygen absorption observed in measured reflection
spectra from satellites could be used to infer column oxygen amounts thereby pro-
viding a way of estimating the measurements of surface (and cloud top) pressure.
Upon closer scrutiny, however, the relatively small effects of atmospheric scattering
that cannot be easily accounted for (scattering that arises for example from unde-
tected thin cirrus and aerosol within the field of view of the instrument) introduces
significant error in the retrieval of surface pressure.

Small amounts of atmospheric scattering can be characterized and thus corrected
for provided the measurements of absorption are of sufficient spectral resolution.
Measurements obtained with a spectral resolution of 1 cm−1 across the O2 A-band
provide a means for differentiating between the paths of photons that are reflected
from the surface thus experiencing the entire column of oxygen from paths of pho-
tons that penetrate only to some level in the atmosphere before being scattered back
to space. It is worth remarking that this resolution is significantly higher than the
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Fig. 13.2. A simulated example of an ultra-fine reflection spectrum for an aerosol layer over
a reflecting surface of albedo 20% (right). The sensitivity to aerosol optical depth is mostly
contained in the centers of absorbing lines (yellow, left panel) whereas the non-absorbing
wavelengths are mostly sensitive to surface albedo changes (red, left panel)

resolution of GOME or of other instruments flown previously in space. Hereafter
the terminology “ultra-fine resolution” is used as a convenient way of distinguishing
measurements with resolutions of 1 cm−1 or better from measurements with char-
acteristically coarser resolution more typical of present satellite and many surface
instruments.

That ultra-fine spectral resolution measurements are capable of discriminating at-
mospheric scattering from surface scattering is demonstrated in the theoretical results
shown in Fig. 13.2. The right-hand panel is a model-derived spectrum of reflected
sunlight as it would be measured by a spectrometer on a satellite measuring reflected
sunlight across the O2 A-band at a resolution of 1 cm−1. The spectrum shown is for a
case that corresponds to an optically thin aerosol layer over a moderately bright land
surface (20% albedo). The left-hand panel is the sensitivity of the spectral radiance
to surface albedo changes (ordinate) and changes to aerosol optical depth (abscissa).
The portions of the spectrum corresponding to a given sensitivity are matched by the
color code. An ideal aerosol observing system corresponds to a maximum sensitivity
with respect to optical depth and minimum sensitivity with respect to surface albedo.
The former is maximum in the centers of the absorbing lines whereas the latter ex-
hibits most sensitivity in those non-absorbing regions of the spectrum which also
have minimum sensitivity to optical depth. These non-absorbing wavelengths con-
tain least information about aerosol and are unfortunately more typical of the chan-
nels adopted by current imaging instruments such as the AVHRR and MODIS imag-
ing instruments. This example offers a perspective on the potential value of highly
resolved spectral measurements for separating surface from atmospheric scattering
and, as such, implies that these spectra also contain information about the vertical
distribution of scattering particles in the atmosphere (e.g., Heidinger and Stephens,
2000).

Another advantage offered by spectrally resolved measurements of the absorp-
tion of uniformly mixed gases is the information these measurements provide on
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photon path distributions. The path a photon travels in an absorbing and scattering
medium is a useful concept in the study of molecular absorption in a multiple scat-
tering atmosphere. The equivalent width of a molecular absorption line grows with
pathlength in well known ways (Chamberlain and Hunten, 1987). Multiple scatter-
ing prolongs the path of a photon through the absorbing gas thereby enhancing the
absorption. As early as 1995, Stephens proposed to the Atmospheric Radiation Mea-
surement (ARM) community that the photon path information in multiple scattering
media might also be considered a fundamental property in understanding radiative
transfer in such a medium and furthermore proposed that this information is particu-
larly germane to 3D transport problems for at least two reasons:

i. The characteristics of this 3D transport, at least as they effects measurable radia-
tion fields, are uniquely defined by these path distributions; and

ii. the path distribution information can also be extracted from observations with
gross assumptions about the nature of the geometry of the medium.

13.1.2 Outline of this Chapter

The results of Fig. 13.2 point to the value of spectral absorption measurements for
obtaining information about the scattering particles suspended in the atmosphere.
By inverting the more classical problem as posed originally by Yamamoto and Wark
(1961) to one that focuses on the scattering processes, we may be able to provide
new insights into the radiative transfer processes in a multiple scattering atmosphere.
This concept for studying clouds and aerosol optical properties led to a proposal in
1994 by the lead author of this chapter to fly ultra-fine A-band spectrometers on
cloud and aerosol satellite experiments that were being formulated at that time, cul-
minating in the CloudSat and CALIPSO mission concepts (Stephens et al., 2002).
These missions were subsequently selected by NASA with anticipated launches in
2004 but unfortunately the spectrometers from both missions were descoped due to
cost overruns. Since that time, supporting surface measurements have become more
prevalent and analyses of these data further demonstrate the advantages of spectro-
scopic measurements applied to the study of clouds.

The remainder of this chapter constructs the arguments for the value of spectro-
scopic measurements of the reflection and transmission for studying radiation trans-
fer through 3D clouds. The following section introduces the general notion of how
these measurements might be analyzed based on actual aircraft measurements of re-
flection in the O2 A-Band. Here the particular advantage of ultra-fine resolution data
is demonstrated in a practical way. The concept of photon path is introduced in this
section leading to a discussion of more formal concepts of photon path distribution
described in Sect. 13.3. Examples of data analyzed from surface based spectrome-
ter systems supporting the general theory introduced in Sect. 13.3 are described in
Sect. 13.4. The effects of 3D geometry on measured spectra and photon pathlengths
inferred from such measurements is presented in Sect. 13.5 followed by a discus-
sion of the possible application of ultra-fine resolution data in the remote sensing of
clouds.
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13.2 Elementary Concepts

13.2.1 Ideal Case of Reflection from a Solid Slab

Consider the simple problem defined in Fig. 13.3a. Sunlight is transmitted through an
upper layer of absorbing gas (in this case molecular oxygen) and then reflected from
a solid, uniform surface of reflectance αs. Suppose the reflected sunlight is measured
at two wavelengths by an instrument above the gaseous layer (although we could
equally pose the problem in terms of transmission measurements by an instrument
below this layer as described later). These wavelengths are selected to lie in spec-
tral regions of weak and strong absorption by the gas in question. Radiation at the
wavelength of weak absorption, denoted I1, passes through this gaseous layer largely
unattenuated whereas the radiation corresponding to the region of strong absorption,
I2, is attenuated to a greater degree. We further suppose the wavelengths to be close
enough that the reflection of the underlying surface and the incident solar radiation
Io are the same for each wavelength. For this simple case, the sunlight detected by
an instrument observing the surface at an angle θ from nadir is

I2 = Ioαs exp(−τ2m)
(13.1)

I1 = Ioαs exp(−τ1m)

for each wavelength where τ1 and τ2 are the optical depths of the layer at the respec-
tive wavelengths. The airmass factor is

m = 1/µ0 + 1/µ

where µ0 is the cosine of the solar zenith angle θ0 and µ is the cosine of the (nadir)
observing angle θ. With the introduction of radiance ratio

X = ln(I2/I1) (13.2)

then after some re-arrangement, (13.1) becomes

Fig. 13.3. (a) Geometry for the problem of absorption by a gaseous atmosphere overlying
a reflecting surface; (b) as in (a) but for the case of a gaseous atmosphere overlaying and
imbedded in a scattering layer
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Fig. 13.4. (a) The measured relationship between the radiance ratio factor X (see text) and the
(adjusted) airmass m̃. The radiances were obtained by averaging spectral radiances measured
by an airborne spectrograph. The data for this case refer to a very clean atmosphere. (b) As in
(a) but for two other flight legs affected by diffuse radiation created by a thin aerosol and cirrus
layer respectively below and above the aircraft. From O’Brien et al. (1999), with permission.

X = −(τ2 − τ1)m (13.3)

assuming that both αs and Io cancel. The resultant linear relation between X and
m forms a Langley-like relationship wherein the measurements expressed in terms
of X and their variation with m (as typically occurs with changing solar elevation)
provides a way of retrieving the optical depth factor (τ2 − τ1) of the gaseous layer.
Through physical relationships, this optical depth difference relates to the gas path
and thus amount of absorbing gas. This is the essential idea introduced by Yamamoto
and Wark (1961).

Figure 13.4a confirms the predicted relationship between X and m obtained from
the experimental airborne spectrograph data of O’Brien et al. (1999). These results
correspond to the reflection measurements in the oxygen A-band portion of the solar
spectrum using an airborne instrument flown above a very clean atmosphere over-
lying a dark ocean surface. The radiance data obtained from the spectrograph were
averaged over two relatively broad spectral regions 3 nm wide to produce a single
radiance ratio. Even at this relatively coarse resolution, which is similar to the reso-
lution of GOME (see also Fig. 13.1), the predicted linear relation of (13.3) expressed
in the form,

m̃ = cX + d (13.4)

accurately fits the data. This coarse-band ’model’ is referred to as model A in the
O’Brien et al. (1999) study and in subsequent discussion of the results. In this ex-
pression, m̃ is an airmass factor adjusted for the pressure height of the aircraft

m̃ = [1 − (p/ps)2]m (13.5)

where ps is the surface pressure, p is the pressure altitude of the aircraft. The quad-
ratic form of this correction reflects the pressure dependence in the wings of oxygen
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lines. From the estimation of m̃ via model A (or via model B introduced later),
inversion of (13.5) provides an estimate of p given ps. This estimate can then be
compared to the actual recorded pressure altitude of the aircraft and the closeness of
these values is a form of validation of the given model.

13.2.2 Reflection from a Tenuous Medium

The simple analyses above not only provide a general background for the discussion
to follow but also introduces the (reference) air mass m which can be thought of as
a reference pathlength factor. With this background, we now consider the case of a
layer for which reflection varies according to the distribution of scatterers within the
layer and the strength of gaseous absorption superimposed on this scattering. Photons
now travel over a variety of paths depending on the probabilities of the direction of
scattering within the scattering layer. Unlike the simple example above, the path
distributions differ according to the strength of the absorption by the interstitial gas.
In spectral regions of strong absorption, photons detected at the top of the atmosphere
travel relatively short paths within the scattering volume (they would not be observed
otherwise) whereas photons from weak absorption regions penetrate further into the
layer before re-emerging. We represent this situation in a simple way according to

I2 = Ioαs exp(−τ2m)

I1 = Ioαs exp(−Λτ1m)
(13.6)

where as above I2 corresponds to reflection from line centers where absorption is
strong and photons are considered in this case to arise only from the top of the layer.
The radiance I1 corresponds to reflection in regions of line wings and the Λ factor is
meant to represent the enhancements of the paths relative to the vertical paths due to
the zigzag motions of the photons diffusely scattered within the layer (Fig. 13.3b) at
these wavelengths. As above, the ratio of reflected radiances now becomes

X = −(τ2 − Λτ1)m (13.7)

where the slope of the relationship between X and m now differs from the slope
factor contained in (13.3).

The experiments of O’Brien et al. (1999) also provide the opportunity to examine
the effects of diffuse scattering on the relationships between radiances and airmass.
Scattering by thin cirrus and aerosol was encountered during some of the flights re-
ported by O’Brien et al. (1999). On these occasions, the relationship between X and
m̃ responded in a manner anticipated by the simple analysis described above. The
data are presented in Fig. 13.4b in the same way as in Fig. 13.4a with different flight
legs indicated by the letter pairs. The flight leg labeled CC′ and BB′ occurred under
a patchy layer of thin cirrus and above a very thin aerosol layer respectively. These
layers create a source of diffuse radiation between the sun and the nadir viewing
instrument.
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Fig. 13.5. The comparison between retrieved aircraft pressure altitude and directly measured
pressure altitude according to model A (upper) and model B (lower) for the flight legs of
Fig. 13.4b; from (O’Brien et al., 1999), with permission

Figure 13.5 (upper panel) indicates the relationship between the observed aircraft
pressure altitude and the air-mass inferred pressure altitude from model A whereas
the lower panel portrays results of the same comparison where the adjusted airmass
is derived from the following model (hereafter model B):

m̃ =
N∑

j=1

fjXj + cX + d (13.8)

where the coefficients fj , c and d are derived from empirical fits of m̃ as functions
of X and Xj . In this case the X is as before and the Xj’s are the ratios derived
from the individual radiances measured at the native resolution of the instrument
(approximately 0.03 nm in contrast to the 3 nm radiances used to form X for model
A). The ability to fit the data with the higher resolution information confirms the
increased information content contained in higher spectral resolution measurements.
These measurements contain specific information about the diffuse radiances and the
scattering properties of the clouds and aerosol that create this diffuse field.
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With the comparison of the results of Figs. 13.4a and 13.4b placed in the context
of the simple analysis above, we note the following:

i. The effect of scattering, when superimposed on absorption, introduces a form of
ambiguity between reflected radiances and airmass. This ambiguity is directly
related to the changing pathlengths of photons as they travel in an absorbing gas
due to scattering by particles.

ii. The degree of multiple scattering experienced by photons changes as the strength
of the absorption changes. This implies that the pathlengths photons travel,
among other factors, varies according to the strength of absorption.

iii. Ultra-fine spectral radiance data contains enough information to account for the
variations of the pathlengths that result from the processes that create diffuse
sunlight. These data presumably also contain relevant information about the scat-
tering properties that characterize the multiple scattering process.

13.3 Photon Paths and Radiative Transfer

We now offer a way of connecting the spectrally resolved measurements of gaseous
absorption like those of the O’Brien et al. (1999) study to optical properties of the
scattering medium in which absorbing gases are imbedded. We return to the geom-
etry shown in Fig. 13.3b. Photons emerging from the layer do so by traveling along
different paths in the layer. Radiances Iν(x,Ω) emerging from the layer at point x in
a direction Ω after traversing a geometrical path of length s from point x0 may be
expressed in the absence of scattering as

Iν(x,Ω) = Iν(x0,Ω)e−λν (13.9)

where x = x0 + Ωs and the exponential factor defines the attenuation within the
medium governed by λν = σeνs which is the optical path and σeν is the extinction
coefficient, assumed constant along the beam. In general, when multiple scattering
is occurring, more than one pathlength λν = σeνL, where the total geometrical path
is denoted L, contributes to the measured radiance Iν. So the exponential attenuation
term in (13.9) needs to be modulated by a probability density function p(λ), leaving
the ν-dependence implicit, where

∞∫
0

p(λ)dλ = 1 . (13.10)

From there, the mean (optical) path follows as

〈λ〉 =

∞∫
0

λp(λ)dλ . (13.11)

The ratio of 〈λ〉 to cloud optical depth τc is a measure of how much the photon paths
are enhanced through multiple scattering; 〈λ〉 is thus analogous to Λ in (13.7). It thus
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follows that the average distance 〈L〉 a photon travels in a uniform layer (i.e., for σe

constant), is

〈L〉 =

∞∫
0

λ
σe

p(λ)dλ =
〈λ〉
σe

(13.12)

where 〈L〉 is the mean photon geometric path, independent of ν.
It is worth distinguishing clearly between the optical path λ and geometric path

L (beyond the important dependence of λ on ν). For a homogeneous medium de-
fined by a constant extinction coefficient, these differ from one another only by this
constant extinction coefficient. Any heterogeneity in extinction introduces a degree
of de-correlation between 〈λ〉 and 〈L〉, as will be seen further on. (See Notes for the
connection between λ statistics and those of the photon’s order of scattering.)

13.3.1 The Equivalence Theorem

The equivalence theorem establishes a relation between radiances measured in a
spectral region free of the molecular absorption to radiances measured within an
absorption line.

Imagine a scattering layer in which the scattering particles are pervaded by a
homogenous absorbing gas and that the scattering properties are constant across
the spectral region in which the gas absorbs. (The scattering particles may also
be partially absorbing as long this is also in a spectrally neutral way.) The di-
mensionless quantities that enter this problem are: (i) the particle single scatter
albedo �0 = σs/(σs + σa); (ii) the optical thickness outside the absorption band
τc = (σs + σa)h (where h is the cloud’s geometrical thickness); (iii) the optical path
outside the band λ = (σs + σa)L where L is the geometric path of the photon; and
(iv) the optical path at a frequency ν inside the absorption line

λν = (σs + σa + σaν)L = (1 + γν)λ (13.13)

where σaν is the absorption coefficient of the gas and

γν = σaν/(σs + σa) (13.14)

is the ratio of the line absorption σaν to particle extinction σe = σs + σa. Outside
the absorption band γν = 0 and the probability that a photon contributes to I(γν =
0,Ω) traveling along an optical path between λ and λ + dλ is denoted p(λ)dλ. The
equivalence theorem is simply stated as

I(γν �= 0,Ω) = I(γν = 0,Ω)

∞∫
0

Tν(λ)p(λ,Ω)dλ (13.15)

where the transmission function

Tν(λ) = e−λν = exp[−(1 + γν)λ]
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Fig. 13.6. (a) The cloud distributions derived from a 3D cloud resolving model simulation
of a tropical squall line. (b) Downwelling spectral solar flux at the surface under this cloud
system calculated using the equivalence theorem and photon path histories derived from a
Monte Carlo simulation. The fluxes are an average over the entire domain containing the cloud
system. The second panel of fluxes shows a portion of the spectrum of the upper panel centered
on a water vapor band at a higher resolution. From Partain et al. (2000), with permission

depends on the optical pathlength λν in (13.13) that includes the effects of gaseous
absorption. We note that, in homogeneous media, the constituents that do the scat-
tering do not have to be also those that absorb; in either case the problem is the same
as if all the absorption was concentrated at the scattering centers.

The equivalence theorem is valid for any cloud geometry and applies equally to
other radiometric quantities although the photon distributions vary according to the
quantity of interest. Stated differently, the pathlength statistics of transmission are
not the same as they are for reflection. Partain et al. (2000) employ this principle
to calculate spectral solar fluxes associated with sunlight scattered by a complex
3D cloud field. The cloud field in question, shown in Fig. 13.6a, is the output from
a cloud resolving model. The continuum (i.e., particle) absorption and scattering
properties were resolved explicitly in the model of Partain et al. (2000) by dividing
the spectrum into a small number of spectral bands. The pathlength distributions
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were then calculated for each band free of gaseous absorption. Given this distribution
of path lengths p(λ), the equivalence theorem is then applied at a spectral resolution
that resolves the molecular line absorption resulting in the line-by-line spectra shown
in Fig. 13.6b.

In summary, the equivalence theorem states that

• if the properties of the radiation field along a given observing direction Ω are
known outside the absorbing lines, i.e., if the radiance I(γν = 0,Ω) is known or
inferred in some way, and

• if the corresponding pathlength distribution p(λ,Ω) is also known (we bring the
directional dependence of this distribution to view as a reminder that the path
distributions depend on the specified viewing geometry),

then the intensity along the same direction Ω follows immediately from (13.15).

13.3.2 Photon Path Properties Derived from Reflected Sunlight

If we introduce the ratio of intensities as

1 − s(γν) =
I(γν,Ω)

I(γν = 0,Ω)

then it follows from (13.12) that the “line-profile” quantity

1 − s(γν) =

∞∫
0

Tν(λ)p(λ)dλ . (13.16)

This quantity can be evaluated from measurements at different wavelengths repre-
senting different gaseous absorption strengths and thus a range of values of γν. An
inverse Laplace Transform can then be applied to these measurements to retrieve
the pathlength distribution. Stephens and Heidinger (2000) showed that the mean
pathlength follows from (13.16) as

〈λν〉 = −τc(1 + γν)
∂ ln s(γν)
∂τO2(γν)

. (13.17)

Since the continuum optical depth τc is constant by design, γν is directly proportional
to the optical depth of the absorbing gas τO2 since the ratio γν in (13.14) is simply
τO2(ν)/τc.

The relationship in (13.17) is illustrated in Fig. 13.7. Panel (a) shows how the
mean pathlength 〈λ〉 for γν = 0 varies almost linearly with τc (see Notes). In this
example, the mean photon path was derived using (13.17) with the radiance quanti-
ties obtained from a doubling-adding model. Panel (b) shows the spectral character
of 〈λν〉 as it varies with τO2(ν) (or equivalently with γν). This mean path is also
compared to the mean photon path obtained independently using Monte Carlo sim-
ulations for γν = 0. Two properties of the mean photon path length highlighted in
these figures are:



600 G.L. Stephens et al.

Fig. 13.7. (a) Model prediction of the variations of the mean photon path as a function of
the continuum optical depth for plane parallel clouds. (b) The spectral variation via τO2(ν)
of the mean photon path with absorption optical depth for two types of cloud fields. The
horizontal dashed lines correspond to the values derived from Monte Carlo simulations for a
non-absorbing cloud layer. From Stephens and Heidinger (2000), with permission

• For plane parallel clouds, the linear relation between 〈λ〉 and τc, as proposed by
Stephens and Heidinger (2000), offers an alternative way of estimating optical
depth from measurements of absorption lines formed upon reflection (see Notes).
This method has one distinct advantage over the more established methods in that
the input information required in any inversion are radiance ratios which are less
susceptible to errors in absolute calibration. Further examination of this approach
for estimating cloud optical depth remains a topic of future research.

• Figure 13.7b also shows the variation of 〈λ〉ν with τO2(ν) for two cases, one of
a plane parallel cloud and a second is a 3D varying cloud. The 3D nature of the
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Fig. 13.8. Fractional error of the mean path length and its variance versus maximum observ-
able absorption which is largely established by the spectral resolution properties of a given
instrument. From Harrison and Min (1997) with permission. See main text and Notes

medium (described further on) leaves a clear imprint on 〈λν〉 compared to the
plane parallel counterpart and indicates how the pathlength is enhanced by this
3D structure relative to the plane parallel cloud for the present case of reflection.

13.3.3 Instrumental Constraints on the Estimation of Photon Path Statistics

It is possible in principle to invert (13.15) and determine the distribution p(λ). In
practice, however, the information about p(λ) that might be inferred through such
an inversion process using measurements will be greatly influenced by the capabil-
ity of the instrument providing the measurements. Harrison and Min (1997) discuss
the potential for using ground-based spectroscopy for yielding information about
photon-pathlengths taking into account specific performance properties typical of
existing spectrometer systems, including allowance for measurement noise, finite
slit-function width and errors typical of wavelength mis-registration. The essential
point of their study is summarized in Fig. 13.8. Shown is the fractional error of the
mean photon path and the error in the retrieved variance of the photon path distrib-
ution. The abscissa is related to the maximum of the oxygen optical depth resolved
by the instrument and serves as a surrogate for instrument spectral resolution. These
results were obtained using synthetic spectral data derived from a Monte Carlo simu-
lation of the spectral radiances. The actual photon path distribution derived from the
Monte Carlo simulations are also used to check the retrieved moments of the path
distributions. Min and Harrison (1999) conclude that mean-pathlength can be derived
using low-resolution data and is generally insensitive to many typical instrument er-
rors. Higher-order moments of the distribution, however, require increasingly higher
instrument performance and efforts to retrieve more than one or two low-order mo-
ments of the distribution are underway at the time of writing; see Min et al. (2004).

13.4 Analyses of Surface Transmission Measurements

The photon path concepts introduced above have, so far, been couched primarily in
terms of reflection. It was noted, however, how the same notions also apply to trans-
mission measurements obtained from (say) surface-based zenith-pointing or sun-
tracking instruments. The in-band to out-of-band radiance ratio 1−sν again emerges
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as the important quantity in analyses of spectral absorption. For surface measure-
ments, however, it is possible to frame the analyses in terms of reference clear-sky
spectra and contrast these spectra, obtained at different times, with spectra collected
under cloudy skies. For example, Min and Harrison (1999) and Min et al. (2001)
derive A-band mean photon pathlengths from data obtained by the Rotating Shad-
owband Spectrometer (RSS). Although the spectral resolution of the RSS is coarse
(approximately 9 nm full-width-half-maximum, FWHM), these data provide reliable
estimates of the mean pathlength although but not higher order path distribution sta-
tistics.

The in- to out-of-band radiance ratio of the RSS clear sky direct-beam measure-
ments takes the approximate form

I2

I1
≈ exp[−(τ̄2 − τ̄1)m] (13.18)

where m = 1/ cos θ0 is the (solar) airmass factor and τ̄ is the optical depth of the ab-
sorbing gas averaged over a given spectral channel band-pass of the instrument. Note
that this airmass factor for direct beam transmission differs from the airmass factor
introduced for reflection and used in (13.1) above. The optical depths of (13.18) can
in principle be inferred from the clear-sky direct-beam measurements using simple
Langley analyses and then subsequently applied to diffuse sky radiance measure-
ments made by the RSS under cloudy skies.

The ratio of cloudy sky measurements can be expressed as

I2

I1
≈ exp[−(τ̄2 − τ̄1)〈λ〉] (13.19)

where τ̄2 and τ̄1 are the previously determined clear-sky direct beam values and 〈λ〉
is the pathlength factor required to account for increased absorption of the diffuse
radiation. Therefore the factor 〈λ〉 − m is a measure of the increase in pathlength,
relative to that of the direct beam path, due to multiple scattering (see Notes).

Figure 13.9a is an example of RSS data analyzed in this way for the case of
the thin cloud layer identified in Fig. 13.9b observed on Dec. 8, 1997. The time
series of mean photon pathlength deduced from (13.19) is presented in this figure
along with the reference solar airmass and cloud optical depth determined using other
channels of the RSS. Figure 13.9b shows the sequence of mm-wavelength cloud
radar reflectivity profiles indicating the existence of a low-lying single cloud layer
that is relatively homogeneous. Figure 13.9c presents the difference quantity 〈λ〉−m
as a function of cloud optical depth. The results displayed in this way indicate a
distinctly linear relationship between τc and 〈λ〉 (see Notes). Figures 13.9d-e show
results in the same format but for a cloud system with multiple layers. In this case,
the relationship between the optical depth of the multi-layered cloud system and the
pathlength is no longer linear and is now non-unique. The pathlengths derived from
data at times when the multiple layered cloud system was overhead are larger than
those at times of a single layer cloud due to enhancements with multiple reflections
between the layers (see Notes).



13 Photon Paths and Cloud Heterogeneity 603

Fig. 13.9. (a) An example of the analyses presented by Min and Harrison (1999) of the path-
length inferred from diffuse-horizontal irradiances obtained by the RSS for the case of Dec. 8,
1997 at the ARM SGP site. The pathlength (expressed as air mass) is contrasted to the solar
airmass and to the optical depth determined from RSS and other measurement types available
at the ARM site. (b) The radar reflectivity from the ARM cloud radar for the same case as
that (a). (c) The relationship between the incremental pathlength (described in text) and cloud
optical depth for the Oct. 24 case. (d) Same as (b) but for the case of Dec. 1, 1997. (e) As in
(c) but for the case of Dec. 1, 1997. Panels (b)–(e) are from Min et al. (2001) with permission

Another example of this type of research is presented in the work of Portmann
et al. (2001). This study provides analyses of measurements in the spectral region
of the B-band obtained using a crossed Czerny–Turner fixed grating spectrograph.
They use these measurements to infer mean photon paths adopting an analysis pro-
cedure similar to that of Min and Harrison (1999). Unlike the RSS, the spectrograph
employed in this study had a narrow field of view and a slit function of width 0.8 nm
(FWHM). As in the Min and Harrison study, Portmann et al. use the clear-sky di-
rect beam measurements as a reference and derive the pathlength under cloudy skies
from nadir radiances obtained with the instrument directed to the zenith.

Figures 13.10a and b show examples of the Portmann et al. analyses. Fig-
ure 13.10a refers to observations collected under nearly continuous cloud cover
during the observing period on April 6, 1998. The upper panel is the pathlength
determined from the measurements compared to a pathlength derived from modeled
zenith radiances (second panel) that were obtained with the optical depth (fourth
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Fig. 13.10. (a) O2 zenith pathlength, solar irradiance, red zenith intensity and optical depth
versus local time on April 6, 1998. Periods of continuous cloud cover are inferred from the
equivalence of the total and diffuse irradiances. (b) O2 zenith pathlength and solar irradiance
versus local time on July 22, 1998. Periods of broken cloud cover are inferred from the lack
of equivalence of the total and diffuse irradiances and the high variability of the fluxes. The
model results for both (a) and (b) are derived from a plane-parallel radiative transfer model
constrained with the optical depths inferred from the irradiance measurements. From Port-
mann et al. (2001) with permission
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panel) inferred from the measured broad band fluxes (third panel) as input. Fig-
ure 13.10b presents analyses of data collected on July 22, 1998 and in contrast to
the case of Fig. 13.10a, corresponds to a day of broken cloudiness which is evident
in comparison of the total to diffuse broadband fluxes (lower panel). Broken clouds
were present during the periods between 0800–1130 and 1330–1530 LST during
which time the measured path lengths varied from the 1 to 2 air masses which are
typical of clear sky conditions.

It has been shown how spatial variations in the optical properties of clouds af-
fect pathlength distributions in ways that are discernible in the absorption spectra of
oxygen. It has also been shown that the mean photon path of a homogenous cloud is
related in a simple way to the cloud optical depth, a result supported in the analyses
of the ground-based data presented by Min et al. (2001). These observations also
show how the simple relationship between 〈λ〉 and τc breaks down for multi-layered
clouds (see Fig. 13.9e). It would also be useful to understand how horizontal vari-
ability influences this relationship and whether this influence could be quantified in
some way in a remote sensing application (see Notes).

13.5 Spatial Heterogeneity Effects on Radiances
and Photon Paths

Heidinger and Stephens (2002) examine the effect of three-dimensional cloud geom-
etry on nadir radiances and the photon path length distributions derived from these ra-
diances. That study was based entirely on model simulations and considered only two
cloud cases for illustration. As such, the findings are preliminary and not meant to
be comprehensive. A three-dimensional backward Monte Carlo model (see Chap. 4)
was used for the purpose of simulating reflected radiances in the nadir. Input into this
model were the 3 dimensional geometries of two specific cloud fields. Optical depth
distributions representing these cloud fields were derived from two Landsat cloud
images representing differing amounts of cloud variability. The details of the cloud
fields associated with these images are described elsewhere (Harshvardhan et al.,
1994; Barker et al., 1996; Heidinger and Stephens, 2002). The clouds observed were
assumed to be confined entirely within a layer 500 m thick. The spatial resolution
of the data is 28.5 m over a 58 by 58 km2 region (2048 by 2048 pixels). One of
the images is of a relatively homogeneous cloud field (Fig.13.11, upper two panels;
cloud field #1) and the other (lower two panels; cloud field #2) is a more complex
field containing regions of broken cloudiness.

The simulated A-band reflected radiances were obtained for an underlying dark
surface, a model atmosphere and the a solar zenith angle, µ0 = 0.8. The clouds are
assumed to be conservatively scattering across the A-band with a scattering phase
function specified as a Henyey-Greenstein phase function with an asymmetry pa-
rameter of 0.85. The Monte Carlo simulations provided spectral radiances Ic and
line profiles sν (left panels of Fig. 13.12) for cloud field #2 and the path distribu-
tion (Fig. 13.13) for cloud fields #1 and #2. The quantity sν shown in Fig. 13.12
was derived as the ratio of radiances defined at a wavelength for which τO2 = 2.0
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Fig. 13.11. Upper left panel shows a 58 × 58 km2 Landsat-derived field of optical depth and
a 4 × 4 km2 sub-section of the same cloud field (upper right, cloud field #1). The lower left
panel shows a same-sized optical depth field derived from a different Landsat scene and a
sub-section of the scene is similarly extracted (lower right, cloud field #2)

to the continuum radiance Ic. Results obtained using the radiance distributions ap-
plied in the Independent Pixel Approximation (IPA) are also shown for comparison.
These comparisons are presented in the form of differences between the fully re-
solved 3D simulations of Ic and sν and the IPA equivalent of these quantities. These
differences, presented in the right panels of Fig. 13.12, show how the IPA tends to
over-estimate the continuum radiances in optically thick regions and underestimate
the radiances in optically thinner regions. This is a consequence of the inability of
the IPA to represent horizontal transport. Under the plane-parallel assumption used
to produce the IPA results there is no net horizontal transport of photons whereas in
three-dimensional clouds-photons tend to migrate from denser regions of clouds to
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Fig. 13.12. The variation of the continuum nadir radiance field (upper left) and radiance ratio
(lower left) for τO2 = 2.0 for cloud field #2 of Fig. 13.11. Right panels are the respective
differences in the quantities between the radiances simulated with a fully-resolved 3D model
and radiances derived assuming the IPA. Images are from Heidinger and Stephens (2002),
with permission

more tenuous regions thereby smoothing the radiance fields relative to the IPA coun-
terparts (we refer to Chap. 12 for a more detailed description of radiative smoothing).
Conversely, the reverse is true for sν (lower right panel). At wavelengths character-
istic of strong absorption, the effect of geometry on the path distribution is relatively
weak as those photons that appear in the nadir field do not penetrate far into the
medium and therefore do not experience the effect of spatial variations in the pho-
ton paths. The negative biases in of the IPA-derived sν are largely in the opposite
direction from the positive biases associated with Ic.

The pathlength distributions for nadir reflectance obtained from the Monte Carlo
model for the two cloud fields of Fig. 13.11 are presented in Fig. 13.13. These di-
agrams present the distributions of optical, λ, and geometrical, L, pathlengths. The
geometric pathlengths are normalized by the layer geometric thickness, H , and the
optical pathlengths are normalized by the domain mean optical depth, 〈τc〉, which is
the same for both cloud fields. Displaying the pathlength distributions in this manner
allows them to be plotted on the same scale. Also shown for comparison are the path-
length distributions for plane-parallel clouds of equal optical depth. The geometric
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Fig. 13.13. Comparison of pathlength distributions for nadir reflectance for cloud field #1
(upper panel) and cloud field #2 (lower panel). See text and Notes for discussion of important
difference between optical and geometrical paths

and optical pathlength distributions, normalized in the manner described, are identi-
cal for the plane-parallel clouds.

As mentioned earlier, spatial variability causes differences in the optical and geo-
metric pathlengths compared to equivalent plane-parallel clouds. Due to the larger
degree of spatial heterogeneity in cloud field #2 the difference between the optical
and geometric pathlength distributions is much larger than in cloud field #1 where
both are close to the equivalent plane-parallel distribution. For cloud field #2, the
photons that comprise the nadir reflectance on average travel 1.4 times the layer
thickness compared to 2.2 times the layer thickness in the plane-parallel cloud (see
Notes).

13.6 Implications for the Remote Sensing of Clouds

The theoretical results presented in the previous section demonstrate how spatial
variability affects radiances and radiance ratios in seemingly opposite ways. Further-
more, the pathlength information, encoded in the spectrum of sν, is also discernibly
influenced by this variability. The question then remains as to what extent the ef-
fects of spatial variability on Ic differ from the effects of spatial variability on sν and
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Fig. 13.14. Variation of the optical depth retrieval biases using continuum radiances, Ic, and
the radiance ratios, sν for cloud fields #1 and #2. These retrieved optical depths are denoted
respectively τipa

s and τipa
I while the actual optical depth, averaged over the pixel is 〈τ〉pixel

to what extent these different influences might be used to benefit interpretation of
cloudy sky radiances in terms of cloud optical properties. In this context, Stephens
and Heidinger (2000) showed how the heterogeneity causes the averaged optical
depth, inferred directly from radiances, to be underestimated and conversely how the
averaged optical depth inferred directly from radiance ratio data is overestimated.

Figure 13.14 shows the effects of the biases on these two different estimates of
optical depth retrieved on the pixel level data of cloud fields #1 and #2. The abscissa
of Fig. 13.14 is the ratio of the optical depth retrieved using the radiance ratio, sν,
to the optical depth retrieved using the radiance, Ic. The ordinate is the ratio of the
retrieved radiance-derived optical depth to the true value of optical depth obtained
by averaging the Landsat data over the given pixel. The departure of the value of
this ratio from unity thus represents the errors incurred by the conventional radiance-
based retrievals such as performed using the AVHRR, GOES and MODIS visible
channels.

For plane-parallel cloud fields with no spatial variability, the radiance and radi-
ance ratio derived optical depths will be the same as the true optical depth with all
points centering on the point (1.0,1.0) in Fig. 13.14. The values for cloud field # 1,
being the more uniform of the two cloud fields cluster tightly around this expected
plane-parallel value. The more spatially heterogeneous cloud field #2 is indicated
by the points that deviate significantly from the plane-parallel case. Thus the spread
of the values from this hypothetical plane-parallel value is a clear indication of the
amount of variability in the cloud field. We propose that the value of the τipa

s /τipa
I

thus provides a method of diagnosis of when the effect of cloud heterogeneity is too
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great to permit a meaningful and accurate retrieval of optical depth using a plane-
parallel model.

The two branches of points derived for cloud field # 2 in Fig. 13.14 indicates
how the optical depths retrieved from radiance data alone can be less than or greater
than the actual true value. The physical reason for this behavior relates back to the
radiance smoothing that occurs under 3D variability. Under the influence of this
smoothing, optically thick regions appear less reflective compared to a plane-parallel
cloud of equivalent optical depth and, conversely, the optically thinner portions ap-
pear more reflective than the equivalent plane-parallel cloud.

13.7 Summary and Concluding Comments

This chapter describes a systematic attempt to demonstrate the value of spectro-
scopic measurements of the reflection and transmission by clouds and the insights
these measurements provide in understanding radiative transfer through the cloudy
atmosphere. We arbitrarily introduce the terminology ultra-fine resolution in refer-
ence to reflection and transmission measurements of resolution 1 cm−1 or less and
proceed to demonstrate how ultra-fine measurements of absorption, formed by re-
flection and transmission in clouds, can be interpreted in terms of photon pathlength
information. Such information is a fundamental property of the radiative transfer
and, in particular, is germane to 3D transport problems for at least two reasons:

i. the characteristics of 3D radiative transport, at least as they effects measurable
radiation fields, are uniquely defined by these path distributions; and

ii. the path distribution information can also be extracted from observations made
under conditions of 3D geometry, thereby providing a quantitative measurable of
this 3D transport.

The concepts for using absorption spectroscopy to infer photon path length are in-
troduced in a simple way at first using the airborne spectrograph data of O’Brien et al.
(1999). The analyses presented by these authors underscores the real value of highly
resolved spectral measurements in separating effects of scattering from effects of
absorption processes in clouds. These authors also demonstrate how ultra-fine spec-
tral measurements offer an observable way of differentiating the effects of different
processes that create diffuse sunlight. The effects of these processes are evident in
the variations of the pathlengths inferred from measured reflection or transmission
spectra. Thus it is proposed that measurements of these spectra contain relevant in-
formation about the scattering properties that defines the multiple scattering process.

The concept of photon path is further developed via the equivalence theorem and
it is demonstrated how this theorem can be practically used in the context of Monte
Carlo models to derive spectrally resolved solar fluxes through a complex 3D cloud
system. We highlighted the simple relationship between the mean photon path 〈λ〉
and cloud optical depth τc for horizontally uniform clouds. We also demonstrated
the influence of the 3D nature of the medium on 〈λ〉. These simulation results are
supported by the observational studies of Min and Harrison (1999) and Portmann
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et al. (2001) based on analyses of surface spectrometer data. These studies indeed
confirm the known relationship between 〈λ〉 and cloud optical depth τc for uniform
clouds. The observations also confirm how this simple relationship between 〈λ〉 and
τc relationship breaks down for layered cloud systems or under conditions of patchy
cloudiness, thereby confirming the influence of 3D geometry on photon paths.

The effects of 3D geometry on photon path properties was explored theoreti-
cally. The theoretical results presented demonstrate how spatial variability affects
reflected radiances and radiance ratios in seemingly reciprocal ways. Furthermore,
the pathlength information, encoded in the spectra of radiance ratios, was shown to
be discernibly influenced by this variability. It was then demonstrated how the effects
of spatial variability on reflected continuum radiance Ic and optical depth inferred
from it differ in opposite ways from the optical depth deduced from radiance ratios
and pathlength relationships. The possible significance of these results to the topic
of cloud optical property remote sensing was briefly addressed.

Notes and Further Reading

Section 13.1

• Use of reflected sunlight to estimate optical depth of clouds and other column
properties is an approach adopted in many studies. Two examples can be found in
the work of Nakajima and King (1990) and Minnis et al. (1993).

• The Global Ozone Monitoring Experiment (GOME) is an instrument that flies on
the European Space Agency’s (ESA) second European Remote Sensing Satellite
(ERS-2) launched in 1995. GOME measures in the spectral region between 290-
790 nm at a resolution varying between 0.2 and 0.4 nm. GOME views Earth in the
nadir with a 960 km swath and a spatial resolution of 40×320 km2.

• The studies of Mitchell and O’Brien (1987) and later O’Brien and Mitchell (1992)
detail many of the issues involved in extracting information about gaseous con-
centration from absorption spectra. The interests of those authors was in retriev-
ing surface pressure based on estimating the column path of oxygen by inverting
measurements in the O2 A-band (see also Stephens (1994) for a discussion on the
basis of this measurement approach). The challenge is to retrieve oxygen very ac-
curately requiring some correction for those photons that do not pass through the
entire atmospheric column as a consequence of scattering. These authors showed
how even small effects of multiple scattering by optically thin aerosol could be
removed with sufficient spectral resolution. The same ideas, although applied at
a much coarser spectral resolution, have been explored over a number of years
to estimate cloud top pressure (e.g., Fischer and Grassl, 1991). See Rozanov et al.
(2004) for operational retrievals of cloud properties from O2 A-band using GOME
and an overview of the relevant literature.
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Section 13.3

• The Equivalence Theorem introduced by Irvine (1964) is also described by van
de Hulst (1980). The power of this principle is not often realized despite its wide-
spread use in a variety of atmospheric radiative transfer problems.

• In the presence of scattering, the optical path λ increments by unity with each
scattering event whereas the geometric counterpart L increments by one mean-
free-path. In optically thick homogeneous media, there is obviously not much dif-
ference between λ and L since there is, on average and by definition, one mean-
free-path (i.e., 1/σe) between each scattering. However, in variable media the
mean-free-path is no longer the only moment of interest in the distribution of free
paths (Davis and Marshak, 2004), so the one-to-one connection between λ and L
is broken. Note that, while observational access to L is via well-mixed gases such
as oxygen or water vapor, for λ we should use absorption features of the (liquid or
ice) cloud particles.

• It is well-known that the mean order-of-scattering of reflected photons is propor-
tional to the optical depth. See Chap. 12 (Sect. 12.3, and references therein) for dif-
fusion theoretical arguments leading to this linear connection between 〈λ〉, which
is essentially the mean number of scatterings, and τc (cf. Fig. 13.7a).

• To reinforce the argument that τc can be derived from 〈λ〉, we note that cloud
geometrical thickness h has already been successfully derived from the distribu-
tion of multiple-scattering geometrical paths L observed directly using “off-beam”
cloud lidar technology from ground (Love et al., 2001) and from space (Davis
et al., 2001). It is shown in those same studies that τc has a rather weak impact
on 〈L〉 for reflected photons; this is in sharp contrast with transmitted photons
(cf. Sect. 13.4).

• In Fig. 13.8, the spectral resolution of the instrument is expressed in terms of an
equivalent absorption coefficient which differs only from the optical depth by a
constant factor. Stephens and Heidinger (2000) introduced the notion of express-
ing the instrument spectral resolution in terms of an effective maximum optical
depth resolved by the instrument. In reality, the optical depth of oxygen (defined
monochromatically) varies across the A-Band by 7 orders of magnitude for total
column paths through the atmosphere and our ability to extract information from
measurements actually depends sensitively on the range of optical depths that can
be sampled. The finite resolution capability of instruments degrade the effective
maximum and minimum optical depths observed. An instrument with a nominal
1 cm−1 resolution resolves maximum oxygen optical depths that are between 2
and 3 orders of magnitude below the monochromatic upper limit (cf. Fig. 1 of
Stephens and Heidinger (2000)).

Section 13.4

• The availability of spectrally resolved data collected from surface instruments has
increased over the past few years (e.g., Pfeilsticker et al. (1998), Min and Harrison
(1999), Min et al. (2001), Portmann et al. (2001), and Min et al. (2004), among
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others). These data provide an opportunity to study the path properties inferred
from oxygen absorption measurements as described in this chapter. Plans continue
to develop an airborne spectrometer. Two such instruments have flown on aircraft
in the past.

• The Rotating Shadowband Spectroradiometer (RSS) provides spectral direct, dif-
fuse, and total horizontal irradiances over the wavelength range from 350 to
1075 nm. The RSS implements an automated shadowbanding technique used by
other instruments and operates quasi-routinely at the U.S. Department of Energy
Atmospheric measurement site located at Oklahoma as part of the Atmospheric
Radiation Measurement (ARM) program (see http://www.arm.gov). A description
of the Rotating Shadowband Spectroradiometer and its operation is described in
Harrison et al. (1999) and further details about the instrument can be obtained at
http://www.arm.gov/docs/instruments/static/rss.html/.

• Harrison and Min (1997) proposed a quite different technique for inferring path-
length information from A-band spectroscopy than sketched in (13.18)–(13.19)
where we can assume τ̄1 ≈ 0 in the continuum. Rather than the exponential law in
(13.19) for mean optical pathlength 〈λ〉, they assume an expression with a power-
law tail in mean geometrical path 〈L〉 that is controlled by the the variance of L.
Specifically, they assume a Gamma-law in L appropriately weighted by the pres-
sure difference through the cloudy region and then normalized to one air mass
and, invoking the Equivalence Theorem, take its Laplace transform. This is the
technique implemented by Pfeilsticker et al. (1998), Min and Harrison (1999),
Min et al. (2001, 2004).

• As noted above, we have 〈λ〉 (≈ mean number of scatterings) proportional to τc

for reflection from a homogeneous slab. For transmission however, we have for the
mean number of scatterings (again ≈ 〈λ〉) a law in (1− g)τ2

c where g is the asym-
metry factor; see Chap. 12 (Sect. 12.3) for a simple derivation in the diffusion
limit. This translates to 〈L〉/h ∝ (1 − g)τc where h is the geometrical thick-
ness of the (single) cloud layer, and essentially what Min et al. (2001) measure in
Figs. 13.9a and c.

• As demonstrated empirically by Pfeilsticker (1999), the anomalous/Lévy diffusion
transport model of Davis and Marshak (1997) explains both the linear relation
between 〈λ〉 and τc for single cloud layers (a standard diffusion result) as well as
its observed breakdown in more complex situations, specifically, when the photon
diffusion becomes anomalous (see Fig. 13.9c and e).

Section 13.5

• To understand the relationship between optical depth and photon path statistics
in more detail and how this relationship is affected by cloud structure, refer to
Stephens and Heidinger (2000) and further by Heidinger and Stephens (2002),
and references therein.

• In Chap. 12, Fig. 12.11 illustrates the systematic effect of cloud horizontal vari-
ability on mean geometrical path 〈L〉. Similar conclusions are drawn as here. Lévy
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transport theory generalizes diffusion (photon random walk) theory to highly vari-
able media and thus captures 3D effects on path.

Section 13.6

• Using ultra-fine O2 spectroscopy, Pfeilsticker (1999) performs a ground-based re-
trieval of the variability parameter introduced in Lévy transport theory.
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14.1 Introduction

Interaction of photons with a host medium is described by a linear transport equa-
tion. This equation has a very simple physical interpretation; it is a mathematical
statement of the energy conservation law. In spite of the different physics behind ra-
diation transfer in clouds and vegetation, these media have certain macro-and micro-
scale features in common. First, both are characterized by strong horizontal and ver-
tical variations, and thus their three-dimensionality is important to correctly describe
the photon transport. Second, the radiation regime is substantially influenced by the
sizes of scattering centers that constitute the medium. Drop and leaf size distribution
functions are the most important variables characterizing the micro-scale structure of
clouds and vegetation canopies, respectively. Third, the independent (or incoherent)
scattering concept underlies the derivation of the extinction coefficient and scatter-
ing phase function in both theories (van de Hulst, 1980, pp. 4–5; Ross, 1981, p. 144).
This allows the transport equation to relate micro-scale properties of the medium to
the photon distribution in the entire medium. From a mathematical point of view,
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these three features determine common properties of radiative transfer in clouds and
vegetation.

However, the governing radiative transfer equation for leaf canopies, in both
three-dimensional (3D) and one-dimensional (1D) geometries, has certain unique
features. The extinction coefficient is a function of the direction of photon travel.
Also, the differential scattering cross section is not, as a rule, rotationally invariant,
i.e., it generally depends on the absolute directions of photon travel Ω and Ω′, before
and after scattering, respectively, and not just the scattering angle cos−1(Ω • Ω′). Fi-
nally, the single-scattering albedo is also a function of spatial and directional vari-
ables. These properties make solving of the radiative transfer equation more com-
plicated; for example, the expansion of the differential scattering cross section in
spherical harmonics (see Chap. 4) cannot be used.

In contrast to radiative transfer in clouds, the extinction coefficient in vegetation
canopies introduced by Ross (1981) is wavelength independent, considering the size
of scattering elements (leaves, branches, twigs, etc.) relative to the wavelength of
solar radiation. Although the scattering and absorption processes are different at dif-
ferent wavelengths, the optical distance between two arbitrary points within the veg-
etation canopy does not depend on the wavelength. This spectral invariance results
in various unique relationships which, to some degree, compensate for difficulties
in solving the radiative transfer equation due to the above-mentioned features of the
extinction and the differential scattering cross sections.

We idealize a vegetation canopy as a medium filled with small planar elements
of negligible thickness. We ignore all organs other than green leaves in this chapter.
In addition, we neglect the finite size of vegetation canopy elements. Thus, the veg-
etation canopy is treated as a gas with nondimensional planar scattering centers, i.e.,
a turbid medium. In other words, one cuts leaves residing in an elementary volume
into “dimensionless pieces” and uniformly distributes them within the elementary
volume. Two variables, the leaf area density distribution function and the leaf nor-
mal distribution, are used in the theory of radiative transfer in vegetation canopies to
convey “information” about the total leaf area and leaf orientations in the elementary
volume before “converting the leaves into the gas.”

It should be noted that the turbid medium assumption is a mathematical ideal-
ization of canopy structure, which ignores finite size of leaves. In reality, finite size
scatterers can cast shadows. This causes a very sharp peak in reflected radiation
about the retro-solar direction. This phenomenon is referred to as the “hot spot” ef-
fect (Fig. 14.1). It is clear that point scatters cannot cast shadows and thus the turbid
medium concept in its original formulation (Ross, 1981) fails to predict or duplicate
experimental observation of exiting radiation about the retro-illumination direction
(Kuusk, 1985; Gerstl and Simmer, 1986; Marshak, 1989; Verstrate et al., 1990). Re-
cently, Zhang et al. (2002) showed that if the solution to the radiative transfer equa-
tion is treated as a Schwartz distribution, then an additional term must be added to
the solution of the radiative transfer equation. This term describes the hot spot effect.
This result justifies the use of the transport equation as the basis to model canopy-
radiation regime. Here we will follow classical radiative transfer theory in vegetation
canopies proposed by Ross (1981) with an emphasis on canopy spectral response to
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Fig. 14.1. Mean reflectance of evergreen broadleaf forest at near-infrared (865-nm) wave-
length as a function of phase angle (after Bréon et al., 2001). Data were acquired by the Po-
larization and Directionality of the Earth’s Reflectances (POLDER) multi-angle spaceborne
instrument (Deschamps et al., 1994). Phase angles are shown with a negative sign if the
POLDER view azimuth was greater than 180◦. Canopy reflectance exhibits a sharp peak about
the retro-illumination direction (the “hot spot” effect), which classical transport equation can
not predict

the incident radiation. For the mathematical theory of Schwartz distributions applica-
ble to the transport equation, the reader is referred to Germogenova (1986), Choulli
and Stefanov (1996) and Antyufeev (1996).

Finally, what are our motivations to include a chapter on radiative transfer in veg-
etation canopies in a volume on atmospheric radiative transfer? Why is the vegetation
canopy a special type of surface? First of all, vegetated surfaces play an important
role in the Earth’s energy balance and have a significant impact on the global car-
bon cycle. The problem of accurately evaluating the exchange of carbon between
the atmosphere and terrestrial vegetation has received scientific (Intergovernmental
Panel on Climate Change, 1995) and political (Steffen et al., 1998) attention. The
next motivation is both the similarity and the unique features of the radiative trans-
fer equations that govern radiative transfer processes in these neighboring media.
Because of their radiative interactions, the vegetation canopy and the atmosphere
are coupled together; each serves as a boundary condition to the radiative transfer
equations in the adjacent medium. To better understand radiative processes in these
media we need an accurate description of their interactions. This chapter therefore
complements the rest of the book and mainly deals with radiative transfer in vegeta-
tion canopies. The last section outlines a technique needed to describe canopy–cloud
interaction.
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14.2 Vegetation Canopy Structure and Optics

Solar radiation scattered from a vegetation canopy results from the interaction of
photons traversing through the foliage medium, bounded at the bottom by a radia-
tively participating surface. Therefore, to estimate the canopy radiation regime, three
important features must be carefully formulated. They are (1) the architecture of in-
dividual plants and of the entire canopy; (2) optical properties of vegetation elements
(leaves, stems) and soil; the former depends on physiological conditions (water sta-
tus, pigment concentration); and (3) atmospheric conditions, which determine the in-
cident radiation field (Ross, 1981). For radiative transfer in clouds, they correspond
respectively to cloud micro- (e.g., distribution of cloud drop sizes) and macro- (e.g.,
cloud type and geometry) structures, cloud drop optical properties, and boundary (il-
lumination) conditions. Note that radiation incident on the top of the atmosphere is
a monodirectional solar beam while the vegetation canopies are illuminated both by
a monodirectional beam attenuated by the atmosphere and radiation scattered by the
atmosphere (diffuse radiation). Photon transport theory aims at deriving the solar ra-
diation regime, both within the vegetation canopy and cloudy atmosphere, using the
above-mentioned attributes as input data. For vegetation canopy, the leaf area density
distribution, uL, leaf normal orientation distribution, gL, leaf scattering phase func-
tion, γL, and boundary conditions specify these input (Ross, 1981; Myneni et al.,
1990; Knyazikhin, 1991; Pinty and Verstraete, 1997). We will start with definitions
of these variables.

14.2.1 Vegetation Canopy Structure

At the very least, two important wavelength-independent structural attributes – leaf
area density and leaf normal orientation distribution functions – need to be defined
in order to quantify vegetation-photon interactions.

The one-sided green leaf area per unit volume in the vegetation canopy at location
x = (x, y, z)T is defined as the leaf area density distribution uL(x) (in m2/m3 or
simply m−1). Realistic modeling of uL(x) is a challenge for it requires simulated
vegetation canopies with computer graphics and tedious field measurements. The
dimensionless quantity

L(x, y) =

H∫
0

uL(x, y, z)dz , (14.1)

is called the leaf area index, one-sided green leaf area per unit ground area at (x, y).
Here H is the depth of the vegetation canopy.

Figures 14.2 and 14.3 demonstrate a computer-generated Norway spruce stand
and corresponding leaf area index L(x, y) at a spatial resolution of 50 cm (i.e., dis-
tribution of the mean leaf area index L(x, y) taken over each of 50 by 50 cm ground
cells). Leaf area index is the key variable in most ecosystem productivity models,
and in global models of climate, hydrology, biogeochemistry and ecology that at-
tempt to describe the exchange of fluxes of energy, mass (e.g., water and CO2), and
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Fig. 14.2. Photo shows a Norway spruce stand about 50 km east of Göttingen in the Harz
mountains. The forest is about 45 years old and situated on the south slope. For the sake
of detailed examination of the canopy structure, a site covering an area of approximately
40 × 40 m2 was chosen (shown as a square) and taken as representative for the whole stand.
The canopy space is limited by the slope and a plane parallel to the slope at the height of the
tallest tree of 12.5 m. There are in total 297 trees in the sample stand. The tree trunk diameters
varied from 6 to 28 cm. The stand is rather dense but with some localized gaps. For the needs
of modeling, the trees were divided into five groups with respect to the tree trunk diameter. A
model of a Norway spruce based on fractal theory was then used to build a representative of
each group (Kranigk and Gravenhorst, 1993; Kranigk et al., 1994; Knyazikhin et al., 1996).
Given the distribution of tree trunks in the stand and the diameter of each tree, the entire sample
site was generated. Bottom panels demonstrate the computer-generated Norway spruce stand
shown from different directions: crown map (left panel), front view (middle panel), and cross
section (right panel). Figures in the lower panels reprinted from Knyazikhin et al. (1996) with
permission from Elsevier

momentum between the surface and the atmosphere. In order to quantitatively and
accurately model global dynamics of these processes, differentiate short-term from
long-term trends as well as to distinguish regional from global phenomena, this pa-
rameter must often be collected for a long period of time and should represent every
region of the Earth land surface. The leaf area index has been operationally produced
from data provided by two instruments, the moderate resolution imaging spectrora-
diometer (MODIS) and multiangle imaging spectroradiometer (MISR), during the
Earth Observing System (EOS) Terra mission (Myneni et al., 2002; Knyazikhin et al.,
1998a,b). A global map of MODIS leaf area index at 1- km resolution is shown in
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Fig. 14.3. A fine spatial mesh of the resolution of 50× 50× 50 cm was imposed on the
computer-generated sample site shown in Fig. 14.2 and the leaf area density uL(x) in each
of the fine cells was evaluated. The canopy space contains 160,000 fine cells. The left panel
shows three-dimensional distribution of foliated cells. This distribution is described by an in-
dicator function χ(x) whose value is 1 if uL(x) �= 0, and 0 otherwise. The leaf area index
L(x, y) (14.1) derived from the computer-generated leaf area density uL(x) is shown in the
right panel. Reprinted from Knyazikhin et al. (1996) with permission from Elsevier

Fig. 14.4. Grey-coded map of the leaf area index at 1- km resolution for July 20–27, 2001,
derived from data acquired by MODIS on board the EOS Terra platform

Fig. 14.4. Note that the theory of radiative transfer in vegetation canopies presented
in this chapter underlies the retrieval technique for producing global leaf area index
from satellite data (Knyazikhin et al., 1998a,b).

Let ΩL be the upward normal to the leaf element. The following function charac-
terizes the leaf normal distribution: gL(ΩL)/2π is the probability density of the leaf
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normal distribution with respect to the upward hemisphere (Ξ+)

1
2π

∫
Ξ+

gL (ΩL) dΩL = 1 . (14.2)

If the polar angle θL and azimuth φL of the normal ΩL are assumed independent,
then

1
2π

gL (ΩL) = ḡL (θL)
1
2π

hL (φL) , (14.3)

where ḡL(θL) and hL(φL)/2π are the probability density functions of leaf normal
inclination and azimuth, respectively, and

π/2∫
0

ḡL (θL) sin θLdθL = 1,
1
2π

2π∫
0

hL (φL) dφL = 1 . (14.4)

The functions gL(ΩL), ḡL(θL) and hL(φL) depend on the location x in the vegetation
canopy but this is implicit in the remainder of the text.

The following example model distribution functions for leaf normal inclination
were proposed by DeWit (1965): planophile – mostly horizontal leaves; erectophile –
mostly erect leaves; plagiophile – mostly leaves at 45 degrees; extremophile – mostly
horizontal and vertical leaves; and uniform – all possible inclinations. These distrib-
utions can be expressed as (cf. Bunnik, 1978),

Planophile: ḡL (θL) =
2
π

(
1 + cos 2θL

sin θL

)
, (14.5a)

Erectophile: ḡL (θL) =
2
π

(
1 − cos 2θL

sin θL

)
, (14.5b)

Plagiophile: ḡL (θL) =
2
π

(
1 − cos 4θL

sin θL

)
, (14.5c)

Extremophile: ḡL (θL) =
2
π

(
1 + cos 4θL

sin θL

)
, (14.5d)

Uniform: ḡL (θL) = 1 . (14.5e)

Example distributions of the leaf normal inclination are shown in Fig. 14.5.
Certain plants, such as soybeans and sunflowers, exhibit heliotropism, where the

leaf azimuths have a preferred orientation with respect to the solar azimuth. A simple
model for hL in such canopies is hL(φL, φ0) = 2 cos2(φ0 − φL − η), where the pa-
rameter η is the difference between the azimuth of the maximum of the distribution
function hL and the fixed azimuth of the incident photon φ0 (cf. Verstraete, 1987).
In the case of diaheliotropic distributions, which tend to maximize the projected leaf
area to the incident stream, η = 0. On the other hand, paraheliotropic distributions
tend to minimize the leaf area projected to the incident stream and give η = π/2. A
more general model for the leaf normal orientations is the β-distribution, the para-
meters of which can be obtained from fits to field measurements of the leaf normal
orientation (Goel and Strebel, 1984).
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Fig. 14.5. The probability density functions for planophile (14.5a), erectrophile (14.5b), pla-
giophile (14.5c), extremophile (14.5d) and uniform (14.5e) distributions. Note that the vertical
axis shows values of gL(θL) sin θL

14.2.2 Vegetation Canopy Optics

A photon incident on a leaf surface can either be absorbed or scattered. If the scat-
tered photon emerges from the same side of the leaf as the incident photon, the event
is termed reflection. Likewise, if the scattered photon exits the leaf from the opposite
side, the event is termed transmission. Scattering of solar radiation by green leaves
does not involve frequency-shifting interactions, but is dependent on the wavelength.

The angular distribution of radiant energy scattered by a leaf element is a key
variable, and is specified by the leaf element scattering phase function γL,λ(Ω

′ →
Ω,ΩL). For a leaf with upward normal ΩL, this phase function is the fraction of
intercepted energy from the photon initially traveling in Ω′ that is scattered into an
element of solid angle dΩ about Ω.

The radiant energy may be incident on the upper or the lower sides of the leaf
element and the scattering event may be either reflection or transmission. Integra-
tion of the leaf scattering phase function over the appropriate solid angles gives the
hemispherical leaf reflectance ρL,λ(Ω

′,ΩL) and transmittance τL,λ(Ω′,ΩL) coeffi-
cients. The leaf scattering phase function, when integrated over all scattered photon
directions (Ξ), yields the leaf albedo

ωL,λ (Ω′,ΩL) =
∫
Ξ

γL,λ (Ω′ → Ω,ΩL) dΩ , (14.6)

where Ξ is the unit sphere. The leaf albedo ωL,λ (Ω′,ΩL) is simply the sum of
ρL,λ(Ω

′,ΩL) and τL,λ(Ω′,ΩL). The reflectance and transmittance of an individual
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Fig. 14.6. Typical reflectance (left axis) and transmittance (right axis) spectra of an individual
plant leaf from 400 to 2000 nm for normal incidence

leaf depends on wavelength, tree species, growth conditions, leaf age and its location
in the canopy.

A photon incident on a leaf element can either be specularly reflected from the
surface depending on its roughness or emerge diffused from interactions in the leaf
interior. Some leaves can be quite smooth from a coat of wax-like material, while
other leaves can have hairs making the surface rough. Light reflected from the leaf
surface can be polarized as well. Photons that do not suffer leaf surface reflection
enter the interior of the leaf, where they are either absorbed or refracted because of
the many refractive index discontinuities between the cell walls and intervening air
cavities. Photons that are not absorbed in the interior of the leaf emerge on both sides,
generally diffused in all directions. Figure 14.6 shows typical diffuse hemispherical
reflectance, ρL,λ(−ΩL,ΩL), and transmittance, τL,λ(−ΩL,ΩL), spectra of an indi-
vidual leaf under normal illumination. For more details on diffuse leaf scattering and
specular reflection from the leaf surface, the reader is referred to Walter-Shea and
Norman (1991), and Vanderbilt et al. (1991).

14.2.3 Extinction, Scattering and Absorption Events

To derive an expression for the extinction coefficient, consider photons at x traveling
along Ω. The total extinction coefficient is the probability, per unit pathlength of
photon travel, that the photon encounters a leaf element,

σ (x,Ω) = uL (x) G (x,Ω) , (14.7)



626 Y. Knyazikhin et al.

where G(x,Ω) is the geometry factor first proposed by Ross (1981), defined as the
projection of unit leaf area at x onto a plane perpendicular to the direction of photon
travel Ω, i.e.,

G (x,Ω) =
1
2π

∫
Ξ+

gL (x,ΩL) | Ω • ΩL | dΩL . (14.8)

The geometry factor G satisfies (2π)−1
∫
Ξ+

G(x,Ω)dΩ = 1/2. Upon collision
with a leaf element, a photon can be either absorbed or scattered. So the extinction
coefficient can be broken down into its scattering and absorption components, σ =
σs,λ + σa,λ. It is important to note that the geometry factor is an explicit function
of the direction of photon travel Ω in the general case of non-uniformly distributed
leaf normals. This imbues directional dependence to the extinction coefficient in the
case of vegetation canopies. Only in the case of uniformly distributed leaf normals
(gL ≡ 1) its dependence on Ω disappears and G ≡ 1/2. A noteworthy point is
the wavelength independence of σ (and thus the photon’s mean-free-path), that is,
the extinction probabilities for photons in vegetation media are determined by the
structure of the canopy rather than photon frequency or the optics of the canopy.

Consider photons impinging on leaf elements of area density uL at location x
along Ω′. The probability density, per unit pathlength, that these photons would be
intercepted and then scattered into the direction Ω is given by the differential scat-
tering coefficient

σ′
s,λ(x,Ω′→Ω) = uL (x)

1
π

Γλ (x,Ω′ → Ω)

= uL (x)
1
2π

∫
Ξ+

gL (x,ΩL) |Ω′• ΩL |

× γL,λ (Ω′→ Ω,ΩL) dΩL , (14.9)

where Γλ/π is the area scattering phase function first proposed by Ross (1981).
The scattering phase function combines diffuse scattering from the interior of a leaf
and specular reflection from the leaf surface. For more details on the diffuse and
specular components of the area scattering phase function, the reader is referred to
Ross (1981), Marshak (1989), Myneni (1991), and Knyazikhin and Marshak (1991).

It is important to note that the differential scattering coefficient is an explicit
function of the polar coordinates of Ω′ and Ω, that is, non-rotationally invariant.
Only in some limited cases can it be reduced to the rotationally invariant form,
σ′

s,λ(x,Ω → Ω′) ≡ σ′
s,λ(x,Ω • Ω′). This property precludes the use of Legendre

polynomial expansions and of the addition theorem often used in transport theory
for handling the scattering integral (see Chap. 4).

Integration of the differential scattering coefficient (14.9) over all scattered pho-
ton directions results in the scattering coefficient

σs,λ (x,Ω) = uL (x)
1
2π

∫
Ξ+

gL (x,ΩL) | Ω • ΩL | ωL,λ (Ω,ΩL) dΩL . (14.10)
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The absorption coefficient can be specified as

σa,λ (x,Ω) = σ (x,Ω) − σs,λ (x,Ω)

= uL (x)
1
2π

∫
Ξ+

gL (x,ΩL) | Ω • ΩL |

× [1 − ωL,λ (Ω,ΩL)] dΩL . (14.11)

The magnitude of scattering by leaves in an elementary volume is described using
the single-scattering albedo defined as the ratio of energy scattered by an elementary
volume to energy intercepted by this volume

�0,λ (x,Ω) =
σs,λ (x,Ω)

σs,λ (x,Ω) + σa,λ (x,Ω)

=

∫
Ξ+

g (x,ΩL) | Ω • ΩL | ωL,λ (Ω,ΩL) dΩL∫
Ξ+

g (x,ΩL) | Ω • ΩL | dΩL
.

Given the single-scattering albedo, the scattering and absorption coefficients can be
expressed via the extinction coefficient as

σs,λ (x,Ω) = �0,λ (x,Ω) σ (x,Ω) , (14.12a)

σa,λ (x,Ω) = [1 − �0,λ (x,Ω)] σ (x,Ω) . (14.12b)

Note that only if the leaf albedo ωL,λ defined by (14.6) does not depend on the
leaf normal ΩL, will the single-scattering albedo coincide with the leaf albedo, i.e.,
�0,λ(x,Ω) ≡ ωL,λ(x,Ω).

14.3 Radiative Transfer in Vegetation Canopies

Let the domain V in which a vegetation canopy is located, be a parallelepiped of
horizontal dimensions XS , YS , and height ZS . The top ∂Vt, bottom ∂Vb, and lateral
∂Vl surfaces of the parallelepiped form the canopy boundary ∂V = ∂Vt∪∂Vb∪∂Vl.
Note the boundary ∂V is excluded from the definition of V . The function character-
izing the radiative field in V is the monochromatic intensity Iλ(x,Ω) depending on
wavelength, λ, location x and direction Ω. Assuming no polarization and emission
within the canopy, the monochromatic intensity distribution function is given by the
steady-state radiative transfer equation (Ross, 1981; Myneni et al., 1990; Myneni,
1991):

Ω •∇Iλ (x,Ω) + G (x,Ω) uL (x) Iλ (x,Ω)

=
uL (x)

π

∫
Ξ

Γλ (x,Ω′ → Ω) Iλ (x,Ω′) dΩ′ . (14.13)
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14.3.1 Boundary Value Problem for the Radiative Transfer Equation
in the Vegetation Canopy

Equation (14.13) alone does not provide a full description of the radiative transfer
process. It is necessary to specify the incident radiation at the canopy boundary, ∂V ,
i.e., specification of the boundary conditions. Because the canopy is adjacent to the
atmosphere, a neighboring canopy, and the soil, all of which have different reflec-
tion properties, the following boundary conditions are used to describe the incoming
radiation (Kranigk et al., 1994; Knyazikhin et al., 1997):

Iλ (xt,Ω) = I0,d,λ(xt,Ω)
+ I0,λ(xt) δ (Ω−Ω0) , xt ∈ ∂Vt,Ω • nt < 0 , (14.14a)

Iλ (xl,Ω) =
1
π

∫
Ω′ • nl>0

ρλ,l (Ω′,Ω) Iλ (xl,Ω′) | Ω′ • nl | dΩ′ + Ld,λ (xl,Ω)

+ Lm,λ (xl) δ (Ω − Ω0) , xl ∈ ∂Vl,Ω • nl < 0 , (14.14b)

Iλ (xb,Ω) =
1
π

∫
Ω′ • nb>0

ρλ,b (Ω′,Ω)

× Iλ (xb,Ω′) | Ω′ • nb | dΩ′, xb ∈ ∂Vb,Ω • nb < 0 , (14.14c)

where I0,d,λ and I0,λ are intensities of the diffuse and monodirectional components of
solar radiation incident on the top of the canopy boundary, ∂Vt; Ω0 denotes direction
of the monodirectional solar component; δ is the Dirac delta-function; Lm,λ(xt) is
the intensity of the monodirectional solar radiation arriving at a point xl ∈ ∂Vl along
Ω0 without experiencing an interaction with the neighboring canopies; Ld,λ is the
diffuse radiation penetrating through the lateral surface in the stand; ρλ,l and ρλ,b are
the bi-directional reflectance factors of the lateral and the bottom surfaces; nt, nl and
nb are the outward normals at points xt ∈ ∂Vt, xl ∈ ∂Vl, and xb ∈ ∂Vb, respectively.

A neighboring environment, as well as the fraction of the monodirectional solar
radiation, in the total incident radiation, influences the radiative regime in the veg-
etation canopy. In order to demonstrate the range of this influence we simulate two
extreme situations for a 40 by 40 m sample stand shown in Fig. 14.2. In the first one,
we “cut” the forest surrounding the sample plot. The incoming solar radiation can
reach the sides of the sample stand without experiencing a collision in this case. The
boundary condition (14.14c) with ρλ,l = 0, Ld,λ = I0,d,λ, and Lm,λ = I0,λ was used
to describe photons penetrating into the canopy through the lateral surface. In the
second situation, we “plant” a forest of an extremely high density around the sam-
ple stand so that no solar radiation can penetrate into the stand through the lateral
boundary ∂Vl. The lateral boundary condition (14.14c) takes the form I(xl,Ω) = 0.
The radiative regimes in a real stand usually vary between these extreme situations.
For each situation, the boundary value problem { (14.13), (14.14) } was solved and a
vertical profile of mean downward radiation flux density was evaluated. Figure 14.7
demonstrates downward fluxes normalized by the incident flux at noon on both a
cloudy and clear sunny day. A downward radiation flux density evaluated by aver-
aging the extinction coefficient (14.7) and area scattering phase function (14.9) over
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the 40 by 40 m area first and then solving a one-dimensional radiative transfer equa-
tion is also plotted in this figure. One can see that the radiative regime in the sample
stand is more sensitive to the lateral boundary conditions during cloudy days. In
both cases, a 3D medium transmits more radiation than those predicted by the 1D
transport equation. This is consistent with radiation transmitted through inhomoge-
neous clouds (see Chap. 12) and with Jensen’s inequality as applied to transmission
[T ((L1 + L2)/2) ≤ (T (L1) + T (L2))/2 where T is concave (T ′′ ≥ 0) and L is
the leaf area index].

Fig. 14.7. Vertical profile of the downward radiation flux normalized by the incident flux de-
rived from the one-dimensional (1D model) and three-dimensional (3D: black and 3D: white)
models on a cloudy day and on a clear sunny day. Curves 3D: black correspond to a forest
stand surrounded by the optically black lateral boundary, and curves 3D: white to an isolated
forest stand of the same size and structure. Reprinted from Knyazikhin et al. (1997) with
permission from Elsevier

The radiation penetrating through the lateral sides of the canopy depends on the
neighboring environment. Its influence on the radiation field within the canopy is
especially pronounced near the lateral canopy boundary. Therefore inaccuracies in
the lateral boundary conditions may cause distortions in the simulated radiation field
within the domain V . These features should be taken into account when 3D radia-
tion distribution in a vegetation canopy of a small area is investigated. The problem
of photon transport in such canopies arises, for example, in the context of optimal
planting and cutting of industrial wood (Knyazikhin et al., 1994), land surface clima-
tology, and plant physiology. The lateral side effects, however, decrease with distance
from this boundary toward the center of the domain. The size of the “distorted area”
depends on the adjoining vegetation and atmospheric conditions (Kranigk, 1996). In
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particular, it has been shown that these lateral effects can be neglected when the ra-
diation regime is analyzed in a rather extended canopy (see Chap. 12 for comparison
with clouds). A “zero” boundary condition for the lateral surface can then be used to
simulate canopy radiation regime.

14.3.2 Reflection of Vegetated Surfaces

Solution of the boundary value problem {(14.13), (14.14)} describes the radiative
regime in a vegetation canopy and, as a consequence, reflectance properties of the
vegetation canopy. As demonstrated in Fig. 14.7, the canopy-radiation regime is sen-
sitive to the partition between the mono-directional and diffuse components of the
incoming radiation. The ratio fdir,λ of the mono-directional to the total radiation flux
incident on the canopy is used to parameterize canopy reflectance properties; that is,

fdir,λ =

∫
∂Vt

I0,λ (xt) | µ0 | dxt∫
∂Vt

dxt

∫
nt •Ω′<0

Iλ (xt,Ω′) | Ω′ • nt | dΩ′ . (14.15)

The hemispherical-directional reflectance factor (HDRF,dimensionless) for non-
isotropic incident radiation is defined as the ratio of the mean radiance leaving the top
of the plant canopy to the mean radiance reflected from an ideal Lambertian target
into the same beam geometry and illuminated under identical atmospheric conditions
(Martonchik et al., 2000); this can be expressed by the solution of (14.13) and (14.14)
as

rλ (Ω) =

∫
∂Vt

Iλ (xt,Ω) dxt

1
π

∫
∂Vt

dxt

∫
nt •Ω′<0

Iλ (xt,Ω′) | Ω′ • nt | dΩ′ ,Ω • nt > 0 . (14.16)

The bi-hemispherical reflectance for nonisotropic incident radiation (BHR, di-
mensionless) is defined as the ratio of the exiting flux to the incident flux (Martonchik
et al., 2000); that is,

R (λ) =

∫
∂Vt

dxt

∫
nt •Ω>0

Iλ (xt,Ω) | Ω • nt | dΩ∫
∂Vt

dxt

∫
nt •Ω<0

Iλ (xt,Ω) | Ω • nt | dΩ
. (14.17)

The HDRF and BHR depend on the ratio fdir,λ of mono-directional irradiance on
the top of the vegetation canopy to the total incident irradiance. If fdir,λ = 1, the
HDRF and BHR become the bi-directional reflectance factor (BRF, dimensionless)
and the directional hemispherical reflectance (DHR, dimensionless), respectively.
These variables can be derived from data acquired by satellite-borne sensors (Diner
et al., 1999) which, in turn, are input to various techniques for retrieval of biophys-
ical parameters from space. It should be noted that the HDRF and BHR, in general,
depend on the direction Ω0 of solar beam. However, HDRF = BRF = DHR = BHR
for Lambertian surfaces.

In remote sensing, the dimension of the upper boundary ∂Vt often coincides
with a footprint of the imagery. Taking the size of ∂Vt to zero results in a BRF value
defined at a given spatial point xt. Such a BRF is used to describe the lower boundary
condition for the radiative transfer in the atmosphere (Sect. 14.5).
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14.4 Canopy Spectral Invariants

The extinction coefficient in vegetation canopies is treated as wavelength indepen-
dent considering the size of the scattering elements (leaves, branches, twigs, etc.)
relative to the wavelength of solar radiation. This results in canopy spectral invari-
ants stating that some simple algebraic combinations of the single-scattering albedo
and canopy spectral transmittances and reflectances eliminate their dependencies
on wavelength through the specification of canopy-specific wavelength independent
variables. These variables specify an accurate relationship between the spectral re-
sponse of a vegetation canopy to incident solar radiation at the leaf and the canopy
scale. In terms of these variables, the partitioning of the incident solar radiation into
canopy transmission and interception can be described by expressions that relate
canopy transmittance and interception at an arbitrary wavelength to transmittances
and interceptions at all other wavelengths in the solar spectrum (Knyazikhin et al.,
1998b; Panferov et al., 2001; Shabanov et al., 2003). Furthermore, the canopy spec-
tral invariants allow us to separate a small set of independent variables that fully
describes the law of conservation in vegetation canopies at any wavelength in the
visible and near-infrared parts of the solar spectrum (Wang et al., 2003). These char-
acteristic features of radiative transfer in vegetation canopies are discussed in this
section.

14.4.1 Canopy Spectral Behavior in the Case of an Absorbing Ground

Consider a vegetation canopy confined to 0 < z < H . The plane surfaces z = 0
and z = H constitute its upper and lower boundaries, respectively. In other words, a
“horizontally extended” area is considered; thus no lateral illumination is assumed or
needed. The spectral composition of the incident radiation is altered by interactions
with phytoelements. The magnitude of scattering by the foliage elements is char-
acterized by the hemispherical leaf reflectance and transmittance introduced earlier.
The reflectance and transmittance of an individual leaf depends on wavelength, tree
species, growth conditions, leaf age and its location in the canopy. We start with the
simplest case where reflectance of the ground below the vegetation is zero. Results
presented in this subsection are required to extend our analysis to the general case of
a reflecting ground below the vegetation.

Let a parallel beam of unit intensity be incident on the upper boundary in the
direction Ω0. Equation (14.13) describes the radiative transfer process within the
vegetation canopy. In this case, the boundary conditions are simpler than in (14.14):

Iλ (xt,Ω) = δ (Ω − Ω0) , xt ∈ ∂Vt,Ω • nt < 0 , (14.18a)

Iλ (xb,Ω) = 0, xb ∈ ∂Vb,Ω • nb < 0 . (14.18b)

Indeed because we examine the radiative regime in a horizontally extended area
the boundary condition (14.14c) for the lateral surface ∂Vl is irrelevant. We investi-
gate canopy spectral properties using operator theory (Vladimirov, 1963; Richtmyer,
1978) by introducing the differential, L, and integral, Sλ, operators,
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LIλ = Ω •∇Iλ + G (x,Ω) uL (x) Iλ (x,Ω) ;

SλIλ =
uL (x)

π

∫
Ξ

Γλ (x,Ω′ → Ω) Iλ (x,Ω′) dΩ′ . (14.19)

The solution Iλ of the boundary value problem {(14.13), (14.18)} can be rep-
resented as the sum of two components, viz. Iλ = Q + ϕλ. Here, a wavelength-
independent function Q is the probability density that a photon in the incident ra-
diation will arrive at x along Ω0 without suffering a collision. In other words, the
function Q describes the radiation field generated by uncollided photons. It satisfies
the equation LQ = 0 and the boundary condition (14.18). Because the uncollided
radiation field excludes the scattering event, its solution takes zero values in upward
directions. It should be emphasized that the differential operator L does not depend
on wavelength and thus Q is wavelength independent.

The second term, ϕλ, describes a collided, or diffuse, radiation field; that is, ra-
diation field generated by photons scattered one or more times by phytoelements. It
satisfies Lϕλ = Sλϕλ+SλQ and zero boundary conditions. By letting Kλ = L−1Sλ,
the latter can be transformed to

ϕλ = Kλϕλ + KλQ . (14.20)

Substituting ϕλ = Iλ − Q into this equation results in an integral equation for Iλ
(Vladimirov, 1963; Bell and Glasstone, 1970; see also Chap. 3, Sect. 3.8),

Iλ = KλIλ + Q . (14.21)

It follows from (14.21) that Iλ−KλIλ does not depend on λ, and involves the validity
of the following relationship

Iλ − KλIλ = Iλ′ − Kλ′Iλ′ = Q , (14.22)

where Iλ and Iλ′ are solutions of the boundary value problem {(14.13), (14.18)} at
wavelengths λ and λ′, respectively. Equation (14.22) originally derived by Zhang
et al. (2002) expresses the canopy spectral invariant in a general form. It also follows
from (14.20) and (14.21) that ϕλ = KλIλ. This simple relationship will be used in
further derivations (e.g., (14.28)).

To quantify the spectral invariant, we introduce two coefficients defined as

γ0 (λ) =

∫
V

dx
∫
Ξ σ (x,Ω) ϕλ (x,Ω) dΩ∫

V
dx
∫
Ξ σ (x,Ω) Iλ (x,Ω) dΩ

, (14.23)

ω0 (λ) =

∫
V

dx
∫
Ξ σs,λ (x,Ω) Iλ (x,Ω) dΩ∫

V
dx
∫
Ξ σ (x,Ω) Iλ (x,Ω) dΩ

. (14.24)

Here σ and σs,λ are the extinction and scattering coefficients; the spatial integration
is performed over a sufficiently extended domain V for which the lateral side effects
can be neglected. The first coefficient, γ0(λ), is the portion of collided radiation in the
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total radiation field intercepted by a vegetation canopy while the second coefficient,
ω0(λ), is the probability that a photon will be scattered as a result of an interaction
within the domain V . We can think of ω0(λ) as a mean single-scattering albedo. In
general, it can depend on canopy structure, domain V and radiation incident on the
vegetation canopy. However, if the leaf albedo (14.6) does not vary with spatial and
directional variables, ω0(λ) coincides with the single-scattering albedo �0,λ.

The ratio
p0 = γ0(λ)/ω0(λ) (14.25)

is the probability that a scattered photon will hit a leaf in the domain V since∫
V

dx
∫
Ξ σ(x,Ω)ϕλ(x,Ω)dΩ is the number of scattered photons intercepted by

leaves and
∫

V
dx
∫
Ξ σs,λ(x,Ω)Iλ(x,Ω)dΩ is the total number of scattered photons.

This event is determined solely by the structural properties of vegetation which,
in turn, are described by the leaf area density and leaf normal orientation distrib-
ution functions, each being a wavelength-independent variable. This suggests that
the probability p0 should be a wavelength-independent variable, too. As it follows
from the analysis below, this property is indeed the case!

Let i(λ) and A(λ) be canopy interception and absorptance defined as

i (λ) =

∫
V

dx
∫
Ξ σ (x,Ω) Iλ (x,Ω) dΩ∫

∂Vt
dxt

∫
nt •Ω<0

Iλ (xt,Ω) | Ω • nt | dΩ
,

A (λ) =

∫
V

dx
∫
Ξ σa,λ(x,Ω)Iλ(x,Ω)dΩ∫

∂Vt
dxt

∫
nt •Ω<0

Iλ (xt,Ω) | Ω • nt | dΩ
.

(14.26)

Here σ and σa,λ are the extinction and absorption coefficients, respectively. For a
vegetation canopy bounded at the bottom by a black surface, i(λ) is the average
number of photon interactions with the leaves in V before either being absorbed or
exiting the domain V . It follows from (14.24), (14.26) and (14.12) that

A (λ)
i (λ)

= 1 − ω0 (λ) . (14.27)

This equation has a simple physical interpretation: the capacity of a vegetation
canopy for absorption results from the absorption 1− ω0(λ) of an average leaf mul-
tiplied by the average number i(λ) of photon interactions with leaves.

Multiplying (14.22) by the extinction coefficient σ and integrating over V and all
directions Ω and normalizing by the incident radiation flux one obtains

i (λ) − γ0 (λ) i (λ) = i
(
λ′)− γ0

(
λ′) i

(
λ′) = q . (14.28)

Here q is the probability that a photon entering V will hit a leaf while 1 − q is the
probability that a photon in the incident radiation will arrive at the canopy bottom
without experiencing an interaction with leaves. This probability can be derived from
both model calculations and/or field measurements. A question then arises of how
γ0(λ) can be evaluated.
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An eigenvalue of the radiative transfer equation is a number γ̃(λ) such that there
exists a function ψλ(x,Ω) that satisfies Kλψλ = γ̃(λ)ψλ. Under some general condi-
tions (Vladimirov, 1963), the set of eigenvalues γ̃k, k = 0, 1, 2, . . . and eigenvectors
ψλ,k(x,Ω), k = 0, 1, 2, . . . is a discrete set; the eigenvectors satisfy a condition of
orthogonality. The radiative transfer equation has a unique positive eigenvalue that
corresponds to a unique positive eigenvector (Vladimirov, 1963). This eigenvalue,
say γ̃0(λ), is greater than the absolute magnitudes of all the remaining eigenvalues.
This means that only one eigenvector, ψλ,0(x,Ω), takes on positive values for any x
and Ω. If this positive eigenvector is treated as a source within a vegetation canopy
(i.e., uncollided radiation), then Kλψλ,0 describes the collided radiation field. This
suggests that the portion, γ0(λ), of collided radiation in the total radiation field inter-
cepted by a vegetation canopy can be approximated by the maximum eigenvalue of
the radiative transfer equation, i.e., γ0(λ) ≈ γ̃0(λ). The unique positive eigenvalue
γ̃0(λ) can be represented as a product of the mean single-scattering albedo ω0(λ)
and a wavelength-independent factor [1− exp(−k)], i.e., (Knyazikhin and Marshak,
1991)

γ0(λ) ≈ γ̃0(λ) = ω0 (λ) [1 − exp (−k)] . (14.29)

Here k is a coefficient that depends on canopy structure but not on wavelength. Thus,
if our hypothesis about the use of the maximum eigenvalue is correct, then the ratio
p0 = γ0(λ)/ω0(λ) does not depend on λ. Substituting γ0(λ) = p0ω0(λ) into (14.28)
and solving for p0 yields

p0 =
i (λ) − i

(
λ′)

ω0 (λ) i (λ) − ω0

(
λ′) i

(
λ′) . (14.30)

This equation expresses the canopy spectral invariant for canopy interception; that
is, the difference between numbers of photons intercepted by the vegetation canopy
at two arbitrary wavelengths is proportional to the difference between numbers of
scattered photons at the same wavelengths. A similar property is valid for canopy
transmittance (Panferov et al., 2001); that is, the quantity

pt =
T (λ) − T

(
λ′)

ω0 (λ) T (λ) − ω0

(
λ′)T

(
λ′) (14.31)

does not depend on leaf optical properties. Here, the hemispherical canopy trans-
mittance, T (λ), for non-isotropic incident radiation is the ratio of the downward
radiation flux density at the canopy bottom to the incident radiant,

T (λ) =

∫
∂Vb

dxb

∫
nb •Ω>0

Iλ (xb,Ω) | Ω • nb | dΩ∫
∂Vt

dxt

∫
nt •Ω<0

Iλ (xt,Ω) | Ω • nt | dΩ
. (14.32)

Solving (14.31) for T (λ) we get

T (λ) =
1 − ptω0

(
λ′)

1 − ptω0 (λ)
T
(
λ′) . (14.33)
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Similarly, solving (14.30) for i(λ) and taking into account (14.27), we have

A (λ) =
1 − ω0 (λ)
1 − ω0

(
λ′) 1 − p0ω0

(
λ′)

1 − p0ω0 (λ)
A
(
λ′) . (14.34)

For a vegetation canopy with a non-reflecting surface the determination of canopy
transmittance T (λ) and absorptance A(λ) as a function of wavelength λ follows from
these equations in terms of their values at the chosen wavelength λ′. The canopy
reflectance R(λ) (14.17) is determined via the energy conservation law as (compare
with (12.14) from Chap. 12)

T (λ) + R (λ) + A (λ) = 1 . (14.35)

Panferov et al. (2001) measured spectral hemispherical reflectances and trans-
mittances of individual leaves and the entire canopy to see if the spectral invariances
of (14.30) and (14.31) hold true. Spectra of T (λ) and R(λ) in the region from 400
to 1100 nm, at 1-nm resolution, were sampled at two sites representative of equa-
torial rainforests and temperate coniferous forests with a dark ground. A number
of leaves from different parts of tree crowns were cut and their spectral transmit-
tances and reflectances (from 400 to 1100 nm, at 1-nm resolution) were measured in
a laboratory. Mean spectral leaf albedo over collected data were taken as the mean
single-scattering albedo ω0(λ). Given measured T (λ), R(λ), and ω0(λ) at 700 dif-
ferent wavelengths, the canopy interception i(λ) was evaluated using (14.27) and
(14.35); that is,

i (λ) =
1 − T (λ) − R (λ)

1 − ω0 (λ)
. (14.36)

Figure 14.8a shows the cumulative distribution function of p0 derived from measured
values of the right-hand side of (14.30) corresponding to all available combinations
of λ and λ′ for which λ > λ′. One can see that this function is very close to the
Heaviside function, with a sharp jump from 0 to 1 at p0 ≈ 0.94. Its density distri-
bution function behaves as the Dirac delta-function. It means that with a very high
probability, p0 is wavelength independent. Solving (14.30) for i(λ) one obtains

i (λ) =
1 − p0ω0

(
λ′)

1 − p0ω0 (λ)
i
(
λ′) . (14.37)

Thus, given canopy interception at an arbitrarily chosen wavelength λ′, one can eval-
uate this variable at any other wavelength. Figure 14.8b shows the correlation be-
tween canopy interceptions derived from field data using (14.36) and evaluated with
(14.37) using p0 = 0.94 for many wavelength pairs. One can see that field data
follow regularities predicted by (14.30) and, therefore, supports our hypothesis re-
garding the maximum eigenvalue of the radiative transfer equation. For details of the
mathematical derivation of the canopy spectral invariant for canopy interception and
transmittance, the reader is referred to Knyazikhin et al. (1998a) and Panferov et al.
(2001).
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(b)(a)

Fig. 14.8. (a) Cumulative distribution function (left axis, dots) and density distribution func-
tion (right axis, dashed line) of p0 derived from field data. (b) Correlation between canopy
interceptions derived from measurements using (14.36) and from calculations using (14.37).
Reprinted from Panferov et al. (2001) with permission from IEEE

14.4.2 Canopy Spectral Behavior in the Case of a Reflective Ground

The canopy spectral invariants discussed in the previous section and the Green func-
tion approach (Sect. 3.10) allow us to fully describe the canopy spectral response to
incident solar radiation in terms of a small set of independent variables (Wang et al.,
2003). As an example, consider a vegetation canopy layer 0 < z < H bounded
from below by a Lambertian surface with albedo ρλ,b. The plane surfaces z = 0 and
z = H constitute its upper, ∂Vt, and lower, ∂Vb, boundaries, respectively. Let a par-
allel beam of intensity I0,λ be incident on the upper boundary. The intensity Iλ(x,Ω)
of radiation at the wavelength λ, at a spatial point x and in direction Ω normalized
by I0,λ satisfies (14.13) and boundary conditions

Iλ (xt,Ω) = δ (Ω − Ω0) , xt ∈ ∂Vt, µ < 0 , (14.38a)

Iλ (xb,Ω) =
1
π

ρλ,b

∫
Ξ−

Iλ (xb,Ω′) | µ′ | dΩ′, xb ∈ ∂Vb, µ > 0 , (14.38b)

where µ and µ′ are cosines of zenith angles of Ω and Ω′, respectively and Ξ− is the
downward hemisphere.

The three-dimensional radiation field can be represented as a sum of two com-
ponents: the radiation calculated for a non-reflecting (“black” ) surface, Iblk,λ(x,Ω),
and the remaining radiation, Irem,λ(x,Ω); that is,

Iλ (x,Ω) = Iblk,λ (x,Ω) + Irem,λ (x,Ω) . (14.39)
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The second component, Irem,λ(x,Ω), accounts for the radiation field due to surface–
vegetation multiple interactions and can be expressed as (see Chap. 3, Sect. 3.10)

Irem,λ (x,Ω) = ρλ,b

∫
xb∈∂Vb

Fλ (xb) Jλ (x,Ω; xb) dS (xb) , (14.40)

where

Jλ (x,Ω; xb) =
1
π

∫
Ξ+

GS,λ (x,Ω; xb,Ω′) dΩ′ (14.41)

describes the radiation field (in sr−1m−2) in the canopy layer generated by an
isotropic source π−1δ(x− xb) (in sr−1m−2) located at a point xb ∈ ∂Vb, and GS,λ is
the surface Green function (see Sect. 3.10). The downward radiation flux density at
the canopy bottom satisfies the following integral equation (see Chap. 3, Sect. 3.8)

Fλ (xb) = Tblk,λ (xb)

+ ρλ,b

∫
x′b∈∂Vb

R∗
λ (xb, x′

b) Fλ (x′
b) dS (x′b) , xb ∈ ∂Vb . (14.42)

Here Tblk,λ (xb) is the downward flux density at the canopy bottom calculated for the
black surface, and R∗(xb, x′

b) is downward flux density at xb ∈ ∂Vb generated by the
point isotropic source π−1δ(x − x′

b) located at x′
b ∈ ∂Vb.

The use of the Green function allows us to split the radiative transfer problem
into two subproblems with purely absorbing boundaries. They are 3D radiation fields
generated (a) by the radiation penetrating into the canopy through the upper boundary
and (b) by a point isotropic source located at the canopy bottom. The canopy spectral
invariant can be applied to each of them. Given solutions of these subproblems, the
downward radiation flux density Fλ(x) and radiation field Irem,λ(x,Ω) due to the
surface–vegetation multiple interactions can be specified via (14.40) and (14.42).

In the case of horizontally homogeneous vegetation canopy, fluxes Fλ and Fblk,λ
and the probability R∗

λ =
∫

x′b∈∂Vb
dS(x′

b)R
∗
λ(xb, x′

b) that a photon entering through
the lower canopy boundary will be reflected by the vegetation, do not depend on
horizontal coordinates and thus a solution to (14.42) can by given in an explicit form;
that is,

Fλ =
Tblk,λ

1 − ρλ,bR
∗
λ

. (14.43)

Here, Tblk,λ coincides with the canopy transmittance defined by (14.32). It follows
from (14.39), (14.40) and (14.43) that the solution, Iλ(z,Ω), to the 1D radiative
transfer equation can be written as

Iλ (z,Ω) = Iblk,λ (z,Ω) +
ρλ,b

1 − ρλ,bR
∗
λ
Tblk,λJ

∗
λ (z,Ω) . (14.44)

Here
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J∗
λ (z,Ω) =

∫
xb∈∂Vb

Jλ (z,Ω; xb) dS (xb) (14.45)

is the radiation field generated by isotropic sources uniformly distributed over sur-
face underneath the vegetation canopy. This decomposition of the radiation field al-
lows the separation of three independent variables responsible for the distribution
of solar radiation in vegetation canopies: ρλ,b, Iblk,λ and J∗

λ . The reflectance ρλ,b of
the underlying surface does not depend on the vegetation canopy; Iblk,λ and J∗

λ are
surface-independent quantities since there is no interaction between the medium and
the underlying surface. These variables have intrinsic canopy information.

Let Ablk,λ and Rblk,λ, defined by (14.26) and (14.17), be the canopy absorptance
and reflectance calculated for the case of the black surface underneath the vegeta-
tion canopy. We denote the probabilities that photons from isotropic sources on the
canopy bottom will escape the canopy through the upper boundary and be absorbed
by the vegetation layer by T ∗

λ and A∗
λ , respectively. These variables can be expressed

as

T ∗
λ =

∫
Ξ+

J∗
λ (H,Ω) µdΩ, A∗

λ =

H∫
0

dz

∫
Ξ

σa,λJ
∗
λ (z,Ω) dΩ . (14.46)

It follows from here that the canopy reflectance, Rλ, transmittance, Tλ, and absorp-
tance, Aλ, can be expressed as

Rλ = Rblk,λ +
ρλ,b

1 − ρλ,bR
∗
λ
Tblk,λT

∗
λ , (14.47a)

Tλ = Tblk,λ +
ρλ,b

1 − ρλ,bR
∗
λ
Tblk,λR

∗
λ =

Tblk,λ

1 − ρλ,bR
∗
λ

, (14.47b)

Aλ = Ablk,λ +
ρλ,b

1 − ρλ,bR
∗
λ
Tblk,λA

∗
λ . (14.47c)

The canopy spectral invariants can be applied to Ablk,λ, Tblk,λ, T ∗
λ and A∗

λ . The cor-
responding reflectances Rblk,λ and R∗

λ can be obtained via the conservation law; that
is,

Rblk,λ + Tblk,λ + Ablk,λ = 1, R∗
λ + T ∗

λ + A∗
λ = 1 . (14.48)

Thus, a small set of independent variables generally seems to suffice when attempt-
ing to describe the spectral response of a vegetation canopy to incident solar radi-
ation. This set includes the soil reflectance ρλ,b, the mean single-scattering albedo,
ω0(λ), canopy transmittance and absorptance at an arbitrary wavelength, and two
wavelength-independent parameters p0 and pt (see (14.30) and (14.31)) calculated
for the black soil problem and for the same canopy illuminated from below by
isotropic sources. All of these are measurable parameters. In terms of these vari-
ables, solar radiation reflected, transmitted and absorbed by the vegetation canopy at
any given wavelength at the solar spectrum can be expressed via (14.47) and spectral
invariant relations described in Sect. 14.5. Note that a similar statement holds true
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for non-Lambertian surfaces. For more details on canopy spectral behavior in general
case, the reader is referred to Knyazikhin et al. (1998a,b).

14.5 Vegetation Canopy as a Boundary Condition
to Atmospheric Radiative Transfer

A decomposition similar to (14.39)–(14.42) is also valid for the atmosphere (Chap. 3,
Sect. 3.10) where intensities Iblk,λ(x,Ω) and Irem,λ(x,Ω) are determined by the at-
mospheric radiative transfer equation in which the canopy bi-directional reflectance
factor (BRF, Sect. 14.3.2) appears in the lower boundary condition. The BRF can
be parameterized in terms of variables introduced earlier in this chapter. As a result,
we have a set of surface and atmosphere variables required to quantitatively describe
canopy–cloud interaction. As an example, consider a 3D cloudy layer bounded from
below by a horizontally inhomogeneous vegetation canopy, V (Fig. 14.9). We ide-
alize the vegetation canopy as a horizontally inhomogeneous Lambertian surface,
i.e., the canopy BRF at a given spatial point xt on the canopy top is independent of
directions of incident and reflected radiation. For ease of the analysis, we assume
that photons can interact only with cloud drops. Keeping this in mind and combining
(14.39)–(14.41) results in

Iλ (x,Ω) = Iblk,λ (x,Ω) +
∫

xt∈∂Vt

F up
λ (xt) Jλ (x,Ω; xt) dS (xt) (14.49)

Fig. 14.9. A three-dimensional cloudy layer bounded from below by a horizontally inhomoge-
neous vegetation canopy, V . Each point on the canopy upper boundary is assumed to reradiate
the incident radiation isotropically, i.e., radiant intensity of reflected radiation is independent
of direction. The function J(x,Ω; xt) is the probability that a photon from an isotropic source
1/π located at xt arrives at the point x along direction Ω as a result of photon–cloud interac-
tions
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for any point x in the cloudy layer or on its lower boundary, which is ∂Vt (Fig. 14.9).
Here F up

λ (xt) is the upward flux density at xt, Iblk,λ is the radiation field in the cloudy
layer calculated for a black canopy. In (14.49), I and F up

λ refer to intensities and
flux density normalized by the intensity of the solar beam hitting the top of the at-
mosphere in the corresponding spectral interval. The term Jλ is the probability that a
photon from an isotropic source 1/π located at xt arrives at the point x along direc-
tion Ω as a result of photon–cloud interaction. Under the above assumptions, Jλ is a
surface-independent variable. Following (14.41) (see also Chap. 3, Sect. 3.10),

Jλ (x,Ω; xt) =
1
π

∫
Ξ−

GS,λ (x,Ω; xt,Ω′) dΩ′ (14.50)

where the surface Green function GS,λ describes the cloud radiative response to
the point mono-directional source δ(x − xt)δ(Ω − Ω′) located at the top of the
canopy. If the canopy is idealized as a horizontally homogeneous surface, then
F up

λ (xt) = RλF
dn
λ (xt), where the canopy reflectance (canopy albedo), Rλ, is defined

by (14.47a).
In contrast to a vegetation canopy, variations in cloud optical properties (single-

scattering albedo, extinction coefficient and asymmetry factor) in the spectral region
between 500 and 900 nm are small and, as a first approximation, can be assumed to be
wavelength independent. It follows from this assumption that Jλ is also wavelength
independent and Iblk,λ1 = Iblk,λ2 for any wavelength in this spectral region. Thus,

Iλ1 (x,Ω) − Iλ2 (x,Ω)

=
∫

xt∈∂Vt

[
Rλ1F

dn
λ1

(xt) − Rλ2F
dn
λ2

(xt)
]
J (x,Ω; xt) dS (xt) . (14.51)

Below we will limit ourselves by considering only points x located at the top of
the canopy, i.e., both x and xt belong to ∂Vt. We first define a bottom-of-atmosphere
reflectance (BOAR), sλ(x,Ω), for isotropic incident radiation as

sλ (x,Ω) =

∫
xt∈∂Vt

F up
λ (xt) J (x,Ω; xt) dS (xt)

F up
λ (x)

. (14.52)

This variable describes cloud–surface interaction as if the cloudy atmosphere were
illuminated from below by horizontally heterogeneous isotropic sources of inten-
sity F up

λ (x). For a horizontally homogeneous cloud layer, the upward radiation flux
density F up

λ does not depend on position and thus the BOAR coincides with the prob-
ability that isotropically illuminated clouds reflect the radiation into direction Ω.

For horizontally inhomogeneous clouds, the downward radiation flux and thus
the upward flux density F up

λ can vary significantly. However, it does not necessarily
involve large variation in sλ(x,Ω). A theoretical explanation of this result can be
found in the linear operator analysis (Krein, 1967) and, specifically, in its applica-
tions to radiative transfer theory (Knyazikhin, 1991; Kaufmann et al., 2000; Zhang
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et al., 2002; Lyapustin and Knyazikhin, 2002). One of the theorems of the oper-
ator theory states that for a continuous positive linear operator B, minimum, mn,
and maximum, Mn, values of the function ηn = n

√
Bnu converge to the maximum

eigenvalue, ρ(B), of the operator B from below and above for any arbitrarily cho-
sen positive function u, i.e., mn ≤ ρ(B) ≤ Mn and Mn − mn tends to zero as
n tends to infinity. For the problem of atmospheric radiative transfer over common
land–surface types, including vegetation, soil sand, and snow, the proximity of mn

and Mn to a high accuracy holds at n ≥ 2 (Lyapustin and Knyazikhin, 2002). Here
for a given direction Ω, the numerator in (14.52) can be treated as a positive integral
operator B with a wavelength-independent kernel J(x,Ω; xt). Its maximum eigen-
value, ρ(J,Ω), therefore, is also wavelength independent and can be approximated
by sλ(x,Ω), i.e., sλ(x,Ω) ≈ ρ(J,Ω). As a result, (14.51) can be rewritten as

Iλ1 (x,Ω) − Iλ2 (x,Ω)
Rλ1F

dn
λ1

(x) − Rλ2F
dn
λ2

(x)
≈ ρ (J,Ω) . (14.53)

Thus, a simple algebraic combination of radiance, downward flux density, and
canopy albedo eliminate their dependencies on wavelength through the specifica-
tion of a cloud-structure wavelength-independent variable. The right-hand side of
(14.53) is related to a wavelength-independent cloud optical depth above x. Indeed,
it follows from the above-mentioned theorem that ρ(J,Ω) can be estimated from be-
low and above by the minimum and maximum values of the function η1 = Bu |u≡1

calculated for u ≡ 1. We take this variable as the first approximation to ρ(J,Ω), i.e.,

ρ (J,Ω) ≈ η1 =
∫

xt∈∂Vt

J (x,Ω; xt) dxt . (14.54)

For plane-parallel geometry, x-independent ρ(J,Ω) is simply cloud reflection in the
direction Ω from isotropic illumination, a monotonic function of cloud optical depth.

Assuming that surface measurements of downward radiance and flux densities
are available at two wavelengths with the strongest surface contrast (say, RED,
λ1 = 0.66 µm and NIR, λ2 = 0.86 µm), Barker and Marshak (2001) and Barker
et al. (2002) following Marshak et al. (2000) used the ratio (14.53) to retrieve ρ and
thus cloud optical depth above x for horizontally inhomogeneous and even broken
clouds. The relationship between ρ and cloud optical depth was approximated us-
ing 1D radiative transfer. A modified function J that depends only on the horizontal
distance between points where a photon enters and exits the cloud is related to the
cloud radiative transfer Green function. Based on the diffusion approximation for
slab geometry, Chap. 12 shows an analytic relationship between given cloud optical
and geometrical thicknesses and the horizontal distance of photon travel.

Another approach to retrieve cloud optical properties above vegetated surfaces
is the use of the normalized difference cloud index (NDCI). This index is defined
as the ratio between the difference and the sum of two normalized zenith radiances
measured at λ1 = RED and λ2 = NIR narrow spectral bands (Marshak et al., 2000),

NDCI(x) =
INIR(x) − IRED(x)
INIR(x) + IRED(x)

. (14.55)
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Fig. 14.10. A schematic illustration of cloud–vegetation interaction on the spectral plane. Each
measured pair (IRED, INIR) of downwelling radiances can be depicted as a point on the RED
versus NIR plane. Its location is specified by a radius vector η =

√
I2

RED + I2
NIR and a polar

angle α = arctan(IRED/INIR). Points below the diagonal correspond to a clear sky while
points above the diagonal correspond to a cloudy sky. For discussion on the location of points
A, B and C, see the text

Compared to a two-valued optical depth versus zenith radiance relationship, the
NDCI is a monotonic function with respect to optical depth and is less sensitive to 3D
cloud structure (Marshak et al., 2000). However, it reduces the spectral information
to one number. In other words, instead of two spectral values of zenith radiances in
RED and NIR, only one, NDCI, is used. Indeed, each measurement can be depicted
as a point on the RED versus NIR plane, which has two coordinates (Fig. 14.10):

η =
√

I2
RED + I2

NIR (14.56)

α = tan−1(IRED/INIR) . (14.57)

Both coordinates depend on the cloud optical depth. The NDCI is a function of α
only and, as was shown by Marshak et al. (2004), cloud optical depth can vary con-
siderably with α unchanged. The first coordinate, η, is required to specify the cloud
optical depth.

Consider the RED vs. NIR plane in Fig. 14.10. In the RED spectral region,
the chlorophyll in a green leaf absorbs 90–95% of solar radiation (see Fig. 14.6);
thus, the vegetation albedo RRED is very low and, as it follows from (14.49),
IRED ≈ Iblk,RED. In contrast, in the NIR region, a green leaf reflects about 90%
of incident radiation resulting in a high value of RNIR (Fig. 14.6). In this spectral
region, the green vegetation acts as a powerful reflector that “illuminates” clouds
from below. Because of cloud-to-surface photon reflection (integral term in (14.49)),
points below the diagonal correspond to clear sky while points above the diagonal
correspond to cloudy sky. This also follows from (14.51). Indeed, ignoring aerosols
and Rayleigh scattering for a cloud-free atmosphere, the probability J that a pho-
ton will be scattered by clouds is equal to zero; thus, INIR = IRED. However, due to
Rayleigh scattering (that is higher in RED than in NIR), Iblk,NIR < Iblk,RED and, con-
sequently, INIR < IRED. By contrast, for cloudy conditions, the probability J takes a
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non-zero value, and the difference between Iblk,NIR and Iblk,RED is much smaller than
the integral term in (14.51). This results in INIR > IRED.

Consider the cloudy part. Points A and B with equal RED radiances are assumed
to have the same cloud optical depth and do not “feel” the surface. Their abscissas
are mainly determined by radiation, Iblk,RED, transmitted through clouds. However,
points A and B have different ordinates, NIR radiances, because they are determined
not only by radiation, Iblk,NIR, transmitted through clouds, but also radiation reflected
both by the vegetation canopy and clouds (see integral term in (14.49)). In other
words, there are more cloud–surface interactions at point B than at point A; hence
more photons reach the surface at B, i.e., B corresponds to a smaller cloud fraction.
As a result, location on the RED vs. NIR plane gives us information not only about
overhead cloud optical depth but also about the radiatively effective cloud fraction
in the whole sky. Thus, we consider both radiances INIR and IRED to be functions of
optical depth, τ, and cloud fraction, Ac:

IRED = IRED (τ, Ac) (14.58a)

INIR = INIR (τ, Ac) . (14.58b)

Note that points A and C have the same NDCI ratio but obviously different τ and
Ac.

The above technique has been applied to data from the Atmospheric Radiation
Measurement (ARM) Southern Great Plains (SGP) site Cimel radiometer. Cimel is
a multichannel sunphotometer with a narrow field of view of 1.2◦ and four filters
at 0.44, 0.67, 0.87 and 1.02 µm that are designed to retrieve aerosol properties in
clear-sky conditions. Cimel sunphotometers are the main part of the Aerosol Ro-
botic Network (AERONET, http://aeronet.gsfc.nasa.gov/) – a ground-based network
for monitoring aerosol optical properties (Holben et al., 1998). The vegetation re-
flectances RRED and RNIR needed to estimate (IRED, INIR) are available globally from
satellite standard surface products (e.g., EOS Terra MODIS and MISR data) at mod-
erate spatial resolutions with temporal frequencies of 8–16 days (Schaaf et al., 2002;
Martonchik et al., 1998). Figure 14.11 shows a DISORT-calculated (Stamnes et al.,
1988) set of curves for various τ and Ac (on a plane modified from Fig. 14.10 to
spread the curves out better), and three Cimel-measured groups of 10 data-points
each. The data-point groups, while being located at different positions on the plane,
have almost the same NDCI (the straight line); hence, if retrieved using NDCI alone,
all three groups would have the same optical depth τ (80 for Ac = 1.0). However, as
follows from the plot, these groups correspond to different pairs (Ac = 0.9; τ = 28),
(Ac = 0.8; τ = 22) and (Ac = 0.4; τ = 12) with different optical depths. Note that
cloud fraction here is not a visual cloud fraction but a “radiatively effective” one
that also compensates for cloud horizontal inhomogeneity not accounted for by 1D
radiative transfer (Marshak et al., 2004).
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Fig. 14.11. DISORT calculated values of INIR + IRED and INIR − IRED for a wide range of
optical depth τ and cloud fraction Ac for SZA=62◦ ± 3◦, surface albedos RRED = 0.092 and
RNIR = 0.289. When Ac is constant and τ is varying, the set of calculated values define a
cloud fraction isoline. When τ is constant and Ac is varying, the set of calculated values define
an optical depth isoline. Values INIR + IRED and INIR − IRED are from Cimel measurements
at the ARM site on July 28, 2002. Measurements were taken around 13:45, 13:58 and 14:11
UT, respectively (towards decreasing INIR + IRED). A straight line through (0, 0) corresponds
to the NDCI ≈ 0.08

14.6 Summary

Solar radiation scattered from a vegetation canopy results from the interaction of
photons traversing the foliage medium, bounded at the bottom by a radiatively par-
ticipating surface. To estimate the canopy radiation regime, four important features
must be carefully formulated. They are (1) the architecture of individual plants and
the entire canopy; (2) optical properties of vegetation elements (leaves, stems), (3)
reflective properties of the ground underneath the canopy, and (4) atmospheric con-
ditions. Photon transport theory aims at deriving the solar radiation regime within
the vegetation canopy using the above-mentioned attributes as input. The first two
attributes are accounted for in the extinction and differential scattering coefficients,
which appear in the radiative transfer equation. Their specification requires mod-
els for the leaf area density function, the probability density of leaf normal orien-
tation, and the leaf scattering phase function (Sect. 14.2). Reflective properties of
the ground and atmospheric conditions determine the boundary conditions for the
radiative transfer equation required to describe incoming radiation and radiation re-
flected by the ground. A solution of the boundary value problem describes the ra-
diative regime in a vegetation canopy and, as a consequence, its reflective properties
(Sect. 14.3). The latter, for example, are required to specify boundary conditions
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for the transfer of radiation in a cloudy atmosphere adjoining a vegetation canopy
(Sect. 14.5).

In contrast to radiative transfer in clouds, the extinction coefficient in vegetation
canopies does not depend on wavelength. This feature results in canopy spectral in-
variants; that is, some simple algebraic combinations of the single-scattering albedo
and canopy spectral transmittances and reflectances eliminate their dependencies on
wavelength through the specification of canopy-structure-dependent variables. These
variables are related to the maximum positive eigenvalues of linear operators describ-
ing the canopy transmittance and radiation field in the vegetation canopy. The eigen-
values have a simple physical interpretation. They represent the collided radiation
portions of the total transmitted and intercepted radiation. In terms of the maximum
eigenvalue, the partitioning of the incident solar radiation into canopy transmission
and absorption can be described by expressions that relate canopy transmittance and
interception at an arbitrarily chosen wavelength to transmittances and interceptions at
any other wavelength in the solar spectrum. Furthermore, the canopy spectral invari-
ant allows us to separate a small set of independent variables that fully describe the
law of conservation in vegetation canopies at any given wavelength in the solar spec-
trum (Sect 14.4). This feature of the solution of the canopy radiative transfer equation
provides an accurate parameterization of the boundary value problem for the radia-
tive transfer in a cloudy atmosphere adjoining the vegetation canopy (Sect.14.5).
Finally we showed that interactions between vegetation and horizontally inhomoge-
neous clouds can be exploited to retrieve cloud optical depth and “effective” cloud
fraction from ground-based radiance measurements.

References

Antyufeev, V.S. (1996). Solution of the generalized transport equation with a peak-
shaped indicatrix by the Monte Carlo method. Russ. J. Numer. Anal. and Model-
ing, 11, 113–137.

Barker, H.W. and A. Marshak (2001). Inferring optical depth of broken clouds above
green vegetation using surface solar radiometric measurements. J. Atmos. Sci., 58,
2989–3006.

Barker, H.W., A. Marshak, W. Szyrmer, A. Trishchenko, J.-P. Blanchet, and Z. Li
(2002). Inference of cloud optical properties from aircraft-based solar radiometric
measurements. J. Atmos. Sci., 59, 2093–2111.

Bell, G.I. and S. Glasstone (1970). Nuclear Reactor Theory. Van Nostrand Reinholt,
New York (NY).
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A.1 Scale-by-Scale Analysis

Geophysical systems in general, and clouds in particular, exhibit structure over a
wide range of scales and have high levels of variability. Thus, to better understand
cloud structure, we compile statistical information on a scale-by-scale basis and seek
simple connections that relate properties at one scale to another. Based on the turbu-
lent nature of clouds and following a well-established tradition in turbulence study,
we seek power laws in the scale parameter, r. The physical meaning of a statistical
power law in r is that the same physical processes dominate over a wide range of
scales. Smaller parts of the system therefore look like scaled-down versions of larger
parts, and vice versa. The most important quantity is then the exponent of the power
law. A power-law statistic rα is invariant under a change of scale r → λr in the sense
that only the scale ratio λ and the exponent α are required to predict the new value.
Observation of a power law therefore reflects a statistical invariance under change
of scale, called “scale-invariance” or just “scaling.” In practice, this means linear
relations in log(statistic) – log(scale) plots.

A.1.1 Wavenumber Spectrum and Autocorrelation Function

Let us assume that we have a stochastic process φ(x), 0 ≤ x ≤ L and let
φ̃(k),−∞ < k < ∞ be its Fourier transform. The wavenumber (or energy, or power)
spectrum (or spectral density) E(k) of φ is defined as
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E(k) =
1
L
〈|φ̃(k)|2 + |φ̃(−k)|2〉, k > 0 , (A.1)

where 〈·〉 designates ensemble averaging, i.e., over all possible realizations of φ. For
scale-invariant processes, the wavenumber spectrum follows a power law

E(k) ∝ k−β (A.2)

over the large range of wavenumbers k = 1/r. The spectral exponent β contains
valuable information on the variability in φ.

For a real stationary process, a power spectrum can be obtained from a cosine
transform of its autocorrelation (e.g., Papoulis, 1965, p. 338),

E(k) = 2

∞∫
0

cos(2πkr)G(r) dr (A.3)

where
G(r) = 〈φ(x + r) φ(x)〉 (A.4)

is the autocorrelation function (assuming 〈φ(x)〉 = 0). The stationarity assumption
translates here in finding no dependence of 〈φ(x + r) φ(x)〉 on x upon ensemble
averaging. Conversely, we have

G(r) = 2

∞∫
0

cos(2πkr)E(k) dk . (A.5)

Note that

〈|φ2(x)|〉 = G(0) = 2

∞∫
0

E(k) dk . (A.6)

Finally, it follows from (A.4) that

〈[φ(x + r) − φ(x)]2〉 = 2[G(0) − G(r)] ≥ 0 . (A.7)

So if the autocorrelation function G(r) is continuous at r = 0, process φ(x) is sto-
chastically continuous, meaning that (A.7) goes to 0 with r.

For real measurements, we generally have only a small number of “realizations”
with a finite spatial sampling,

φi = φ(xi), xi = il (i = 1, 2, . . . , N) , (A.8)

where N = L/l is the total number of points, L the spatial length of record, and l the
step size. Let us for simplicity assume that N is a power of 2, and denote the discrete
Fourier transform of the data in (A.8) as

φ̃±j = φ̃(±kj), kj =
j

L

(
j = 0, 1, . . . ,

N

2

)
. (A.9)
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The associated energy density, as a discrete counterpart of (A.1) is

E(kj) =
2
L
|φ̃j |2,

(
j = 1, 2, . . . ,

N

2
− 1

)
(A.10)

since φ̃−j = φ̃
∗
+j for real data in (A.8).

Now plotting N/2 − 1 values of E(kj) versus kj in a log-log plot gives us an
estimate of a slope β. However, without a judicious weighting scheme, a least square
fit to the power-law in form (A.2) on a log E versus log k plot will be dominated
by the smallest scales r (largest wavenumbers k). The contribution of large scales
to the exponent β becomes virtually nil. To make all scales contribute equally and
simultaneously yield log-log plots that are easy to interpret visually, we average E(k)
by octaves, that is, a factor of 2 in k,

Em =
1

2m−1

2m−1∑
j=2m−1

E(kj), m = 1, . . . , log2N − 1 . (A.11)

This corresponds to average wavenumber

km =
1

2m−1

2m−1∑
j=2m−1

kj =
3
2
2m−1 − 1

2
, m = 1, . . . , log2N − 1 (A.12)

which are equally spaced on a log scale only in the limit m � 1. We thus obtain
exactly log2N − 1 estimates for E(k).

A.1.2 Structure Functions

For a stochastic process φ(x), let us define the absolute increments across scale r,

∆φ(r;x) = |φ(x + r) − φ(x)|, 0 ≤ r ≤ L, 0 ≤ x ≤ L − r (A.13)

and consider their statistical moments. We assume that the statistical properties of
∆φ(r;x) are independent of position x. This is weaker than the assumption of sta-
tionary increments. Then, because of the scale-invariance, we expect

Sq(r) = 〈∆φ(r;x)q〉 ≡ 〈∆φ(r)q〉 ∝ rζ(q) , (A.14)

where Sq(r) is called the structure function of order q ≥ 0. The family of exponents
ζ(q), as a function of q, has the following properties:

(a) it is normalized,
ζ(0) = 0 ; (A.15a)

(b) it is a convex function (Frisch and Parisi, 1985), i.e.,

ζ′′(q) ≤ 0 ; (A.15b)
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(c) finally, if the increments in (A.13) are bounded, ζ(q) is nondecreasing (Frisch,
1991; Marshak et al., 1994), i.e.

ζ′(q) ≥ 0 . (A.15c)

These last two inequality properties are contingent on the fact that the q-dependence
of the prefactors (proportionality constants) in (A.14) is weak enough to neglect.

Two low-order exponents are well known. For q = 1, there is

0 ≤ ζ(1) = H1 ≤ 1 , (A.16)

which is called the roughness or Hurst exponent. It characterizes the smoothness of
the signal: the larger H1 the smoother the signal. Referring back to (A.14), the limit
H1 → 1 corresponds to almost everywhere differentiable signals. The opposite limit
H1 → 0 leads to a signal with scale-independent increments. White noise is the most
famous example of a signal with H1 = 0, but any scale-invariant stationary process
yields the same answer.

The second order (q = 2) structure function

S2(r) = 〈|φ(x + r) − φ(x)|2〉 ∝ rζ(2) (A.17)

is related to a wavenumber spectrum through the Wiener-Khinchine theorem. This
theorem generalized to nonstationary processes with stationary increments (Monin
and Yaglom, 1975) reads as

1 ≤ β = ζ(2) + 1 ≤ 3 . (A.18)

We will use these moments in the examples below.

A.1.3 Examples with Cloud Liquid Water Data

We illustrate the above concepts on cloud liquid water content (LWC) data measured
during the Atlantic Stratocumulus Transition Experiment (ASTEX) from an aircraft
in June 1992 (Albrecht et al., 1995). Figure A.1a shows a 16384-point data stream
sampled approximately every 8 m for an overall length of about 130 km (Davis et al.,
1994). So, in the notations of (A.8), we have N = 214 = 16384, l = 8 m, and L =
130 km. The wavenumber spectrum of this data set (panel A.1b) follows a power-law
behavior (A.2) with spectral exponent β ≈ 1.5 over a quite large range of scales from
tens of meters to tens of kilometers. In addition to N/2−1 wavenumber points, as in
(A.10), we also plotted log2 N − 1 = 13 octave averaged dots as in (A.11)–(A.12).
Note that because of fewer contributions from small scales, the octave averaged log-
log plot yields slightly smaller spectral exponent (β ≈ 1.45). A detailed discussion
of different estimates of spectral exponents for wavenumber spectra can be found in
Davis et al. (1996).

The first five integer moments of the absolute increments over scale r, (A.13),
for the LWC data in panel A.1a are shown in panel A.1c. Again we see a remarkably
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Fig. A.1. Wavenumber spectrum and structure functions of a real-world data set. (a) A hor-
izontal transect of cloud liquid water content (LWC) sampled at 10 Hz, 8 m at aircraft speed
80 m/s. The data were collected with the PVM-100 (Gerber, 1991) during the ASTEX exper-
iment in June 1992. (b) Wavenumber spectrum for the data on panel (a). Circles correspond
to the octave-averaged data described in (A.11)–(A.12). (c) Structure functions of order 1 to
5 plotted versus scale r. Scaling is indicated from several tens of meters to several tens of
kilometers. (d) The resulting structure function exponents versus q. The linear relation corre-
sponds to fractional Brownian motion with the same Hurst exponent

good scaling (with correlation coefficient of 0.99) over three orders of magnitude
for all five moments. The exponents ζ(q) of structure function Sq(r) are plotted in
panel A.1d. We can easily see that ζ(q) is a convex nondecreasing function with
ζ(0) = 0 as stated in (A.15a)–(A.15c). The Hurst exponent H1 = 0.32 which is
typical for marine Sc (Davis et al., 1994, 1999; Marshak et al., 1997). Note that
ζ(2)+1 = 1.57 that is close to spectral exponent β in panel A.1b and thus consistent
with the Wiener-Khinchine relation in (A.18).

The straight dashed line in panel Fig. A.1d would correspond to fractional
Brownian motion (fBm) (Mandelbrot, 1977) with the same Hurst exponent H = H1;
i.e.,

ζ(q) = qH (A.19)

is a linear function. This linearity is the hallmark of “monoscaling” and, statistically,
it corresponds to relatively narrow distributions of the increments across all scales,
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e.g., Gaussian distributions which are determined entirely by their variance (and fBm
is Gaussian by definition).

The observed nonlinearity or “multiscaling” of ζ(q) for LWC data indicates a
level of intermittency in the data that follows from the non-Gaussian nature of the
turbulent signal. Notice that ζ(2) is visibly lower than the monoscaling prediction
2H1. More analysis results and references to data analysis of LWC or other kinds of
cloud data can be found, for instance, in Lovejoy and Schertzer (1990), Tessier et al.
(1993), Ivanova and Ackerman (1999), and Davis et al. (1999).

A.2 Fractal Models

In this section we describe stochastic models that simulate fluctuations of cloud liq-
uid water. As we saw in the previous section, LWC fluctuations inside marine Sc
obey power-law statistics over at least three orders of magnitude in scale. Hence, the
main feature we seek in a stochastic model is scale-invariance. In turbulence studies
the most popular scale-invariant models are multiplicative cascade models. The con-
struction of a mass-conserving cascade model is as follows (Fig. A.2). Start with a
homogeneous slab of length L. Divide into 2 parts and then transfer a fraction f1 of
the mass from one half to the other in a randomly chosen direction. This is equiv-
alent to multiplying the originally uniform density field on either side by factors
W

(±)
1 = 1 ± f1. The same procedure is repeated recursively at ever smaller scales

using fractions fi(i = 2, 3, . . . ) on segments of length ri+1 where ri+1 = L/2i.

 Start with uniform slab,

transfer fraction f1 of the mass,

then transfer fraction f2 within each half,

and so on ...

⇐

⇒

random direction

⇐

⇐⇒ ⇒ ⇒
Fig. A.2. Schematic construction of a mass-conservative multiplicative cascade model
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Fig. A.3. A multiplicative 12 cascades “p-model” with unit mean and p = 0.375, thus from
(A.21) βε(p) = 0.91

A.2.1 Singular Cascades

We now parameterize the multiplicative weights as

W
(±)
i = 1 ± fi = 1 ± (1 − 2p) =

{
2p, or

2(1 − p)
, 0 ≤ p <

1
2

, (A.20)

independently of i = 1, 2, . . . , with 50/50 probability for the signs. This leads to a
singular (multi)fractal model ε(x) called the “p-model” (Meneveau and Sreenivasan,
1987); in this model, parameter p controls the degree of mass (energy) redistribu-
tion at each cascade step. The p-model (illustrated in Fig. A.3) is scale-invariant; its
wavenumber spectrum exhibits a power law, Eε(k) ∝ k−βε , k > 0, with spectral
exponent

0 ≤ βε(p) = 1 − log2[1 + (1 − 2p)2] < 1 . (A.21)

Singular cascade models ε(x) have interesting intermittency properties but their
spectra with βε < 1 do not scale as observed cloud liquid water fields (that have
β > 1) and therefore they do not show stochastic continuity.

A.2.2 Bounded Cascades

A simple way to obtain β > 1 is to reduce the variance of the multiplicative weights
in (A.20) at each cascade step. Taking

W
(±)
i = 1 ± (1 − 2p)2−H(i−1), 0 ≤ p < 1/2,H > 0, i = 1, 2, . . . (A.22)

leads to “bounded” cascade models (Cahalan, 1994). The limit H → ∞ yields a
single jump (Heaviside step) from 2p to 2(1 − p) at x = L/2.
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By reducing the size of the jumps as the scale decreases, we are effectively in-
troducing a degree of continuity into the model. One can show that in this case, its
autocorrelation function is a continuous function at r = 0 and a generated field φ(x)
is stochastically continuous (A.7). As a result, the spectral exponent has moved into
the range

1 < βφ(H) = min{2H, 1} + 1 ≤ 2 , (A.23)

independently of p. Figure A.4 (top panel) shows a realization of a 14-step bounded
cascade model with H = 1/3 and p = 0.375.

In the limit of an infinite number of cascade-steps, the structure function expo-
nents ζ(q) have a nonlinear form (Marshak et al., 1994),

ζ(q) = min{qH, 1} =

{
qH, 0 ≤ q ≤ 1/H

1, 1/H ≤ q < ∞
; (A.24)

so (A.23) follows from (A.18) and (A.24). Since the spectral exponents of a mono-
scaling fBm is a linear function, ζ(q) = qH , the bounded cascade model cannot be
distinguished from fBm for moments smaller than q = 1/H . This is clearly seen
in Fig. A.5 which shows theoretical structure function exponents for both bounded
models (A.24) and fBm (A.19).

To summarize, the bounded cascade model is a good tutorial model for cloud
horizontal inhomogeneity. To a first approximation, it reproduces lower-order statis-
tical moments of cloud liquid water distribution. However, as follows from (A.24), its
ζ(q) = 1 for q ≥ 1/H whereas the higher-order moments of LWC fluctuations have
exponents that substantially exceed unity and show strong curvature even for low
values of q. In the next subsection we describe another model, fractionally integrated
cascades (Schertzer and Lovejoy, 1987) that overcomes these limitations.

A.2.3 Fractional Integration

Another way of transforming singular cascades with βε < 1 into a more realistic one
with βφ > 1 is power-law filtering in Fourier space (Schertzer and Lovejoy, 1987);
this will bring the spectral exponent to any prescribed value. In particular, we have

βφ(p,H∗) = βε(p) + 2H∗ (A.25)

where 0 < H∗ < 1 describes the low-pass filter in k−H∗
. Mathematically, this

operation – also known as “fractional integration” (FI) – is a convolution with a
weakly singular kernel:

φ(x) =
∫

ε(y)|x − y|H∗−1dy . (A.26)

This is called FI since for H∗ = 1 it corresponds to ordinary integration. Here again,
thanks to the FI term in (A.25), field φ(x) is stochastically continuous. As an ex-
ample, Fig. A.4 shows a realization of the FI cascade model with p = 0.375 (thus
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Fig. A.4. Three fractal models with the same spectral exponent −5/3 and overall mean and
variance. From top to bottom: bounded (Bo) cascade model with H = 1/3 and p = 0.375;
fractionally integrated (FI) cascade model with p = 0.375 and H∗ = 0.38; fractional Brown-
ian motion (fBm) with H = 1/3. Bo and FI are generated with 14 cascade steps; fBm is
generated using mid-point displacement method (e.g., Peitgen and Saupe, 1988) also with 14
steps. As a result, all models have 214 = 16384 pixels. In all three models average 〈φ〉 = 1
and standard deviation = 1/3. Note that, by construction, both Bo and FI multiplicative cas-
cade models have only positive values while φ(x) for fBm can be either positive or negative
since its probability density function is Gaussian

βε(p) = 0.91) and H∗ = 0.38 (thus βφ(p,H∗) = 5/3). In contrast to the bounded
model, we have only approximate formulas for the structure function exponents for
FI model. They are exact for q = 0 and q = 2 and quite accurate for all low-order
moments and, moreover, numerical results are always available.
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Fig. A.5. Comparison of exponent functions ζ(q) for three fractal models. Fractional Brown-
ian motion (fBm) with H = 1/3, bounded cascades (Bo) with H = 1/3 and fractionally
integrated (FI) cascades with p = 0.375 and H∗ = 0.38. Note that while for fBm and Bo
models we give theoretical curves, FI shows the results of numerical calculations with 15
cascade steps averaged over 100 realizations

To compare the three models (monoscaling fBm and two multiscaling models,
bounded and FI cascades), we plotted their structure function exponents ζ(q) in Fig.
A.5 for q going from 0 to 5. As we see, the bounded model is the most intermittent
among them since its ζ(q) is the most nonlinear. However, with at least one more
tunable parameter than bounded cascades, FI cascades are better candidates for sim-
ulating observed liquid water fluctuations.
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Epilogue: What Happens Next?

Radiative Transfer Problems

Let’s make the circumstantially reasonable assumption that we have a tough radiative
transfer (RT) problem to solve. Maybe clouds are in the picture. For simplicity, let’s
assume it is a “forward” RT problem where we know the optical properties of the
atmosphere and surface. If we are faced with an “inverse” problem, as is often the
case in remote sensing, then we first need to establish that we can solve the forward
problem anyway. We are thus asked to compute some radiance values I(x,Ω) for
a given wavelength where x is position in three-dimensional (3D) space and Ω is a
direction of propagation on the unit sphere.

In remote sensing, x is likely to be the position of a sensor and −Ω will be the
direction it is looking into, defined (say) by one of many pixels at the focal plane.1

In radiation energy budget modeling, we are only interested in angular integrals of
I(x,Ω), weighted or not with |Ωz| (the vertical direction cosine). At any rate, we
now have to somehow find a solution of the integro-differential RT equation that
looks like

Ω •∇I = −σ(x)[I(x,Ω) − �0

∫
4π

p(Ω′ • Ω)I(x,Ω′)dΩ′] + Q(x,Ω)

in the relatively simple case where scattering properties, single-scattering albedo
�0 and phase function p, are assumed uniform but the extinction coefficient σ(x)
varies spatially. Q(x,Ω) is a given volume source term, e.g., thermal emission. There
will also be boundary conditions to satisfy and, for simplicity, we will assume these
boundaries are flat, at a constant z-coordinate: the upper (top-of-atmosphere, TOA)
condition is typically an incoming uniform collimated solar beam; the lower (sur-
face) condition can be quite complex, with spatially and angularly varying reflection
and/or emission. If there is an interest in polarization, then I is a 4-vector and p is a

1 From large stand-off distances, x can also be viewed as a variable point on the upper bound-
ary of the atmosphere-surface medium and Ω is then the constant (or x-dependent, depend-
ing on distance) direction of the sensor.
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4 × 4 matrix – a relatively minor complication in view of all the spatial and angular
variables in the balance.

The above stated 3D RT problem includes the majority of current remote sensing
and climate needs. But we still have to find a way to solve the scalar or vector RT
equation.

Classic Solutions, and Their Limitations

There are only two situations where exact solutions exist, clearly a desirable scenario
and especially in remote sensing:

1. �0 = 0 (no scattering) and a non-reflecting surface, hence no coupling at all be-
tween beams in direction or in polarization. In this case, σ(x) and Q(x,Ω) can be
arbitrarily complicated, and the same is true for the surface source distribution.
Here, we can even write an analytical expression for I(x,Ω): a one-dimensional
integral along the beam {x,Ω} using the boundary source, Q, and transmission
functions (negative exponentials of line-integrals of σ under the present mono-
chromatic assumption).

2. σ(x) ≡ σ(z) and Q(x,Ω) ≡ Q(z,Ω), hence I(x,Ω) ≡ I(z,Ω). This is the
famous horizontally uniform atmosphere/surface plane-parallel system of one-
dimensional (1D) RT. Under the present assumptions of vertically uniform scat-
tering properties, 0 < �0 ≤ 1 and p(·), this multiple-scattering problem is
amenable, via invariant embedding and superposition, to Chandrasekhar’s H-,
or X- and Y -functions using the dimensionless coordinate dτ = σ(z)dz.

If, in problem #1, the surface becomes partially reflective then there will be at the
most one reflection off the (flat) ground. Thus, if a surface point xS is in view, an
angular integral over the down-welling hemisphere (weighted by surface reflectiv-
ity and |Ωz|) of the closed-form solutions at xS is required to adjust the boundary
source term. Then the exact 1D solution along the beam going from the sensor to
xS can be applied. Early releases of the remote-sensing workhorse code known as
MODTRAN were designed specifically to solve this problem for a 1D (i.e., strat-
ified) atmosphere.2 If, in problem #2, the scattering properties �0 and p become
dependent on the sole spatial coordinate τ(z) of the 1D RT problem, then we know
how to obtain accurate numerical solutions using popular codes such as DISORT or,
for spectral details, a recent release of MODTRAN (which will in fact call DISORT
for the multiple scattering).

2 The main problem that MODTRAN designers, and contributing molecular spectroscopy
experts, address is the weighted (sensor-response) integration over potentially complicated
and fast spectral variability of absorbing atmospheric gases computed on the fly for a given
atmospheric composition. The MODTRAN solution to the spectral variability problem gen-
erally requires averaging over many values of the extinction/absorption coefficient σ, even
at the smallest allowable wavelength interval. This spectral averaging in turn leads to trans-
mission functions that are not exponential in the amounts of absorbers. MODTRAN devel-
opers have also enabled spherical 1D (stratified) geometry, including refractivity.
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That’s it. Every other solution of the 3D RT equation will call for some sophisti-
cated mathematical analysis, an intricate time-consuming numerical implementation,
and then probably too many computer cycles . . . so only research-mode utilization is
contemplated. At least that is the conventional wisdom. It is therefore not surprising
that virtually all operational remote sensing and radiation energy budget estimations
are done with one of the above pair of text-book solutions, too often regardless of
their applicability.

Take, for instance, atmospheric sounding – extracting (say) temperature and wa-
ter vapor profiles, via σ(z) and Q(z), from measured I(ground, zenith) or I(TOA,
nadir) at a number of wavelengths. This application uses the “no-scattering” solu-
tion #1, often in the microwave region where its strong assumptions are considered
reasonably valid. But are they really? Apparently not in the presence of heavy pre-
cipitation.

In radiation energy budget problems, two “streams” of radiation (one up and one
down) are usually considered sufficient. Schuster, arguably the founding father of
atmospheric RT, showed – one hundred years ago at the time of writing – that the
“scattering/absorption” problem #2 then becomes analytically tractable in closed-
form. This outcome is always a plus in applications such as GCM-based climate
simulations where very many RT computations need to be performed (one per layer
and per cell and at as many time-steps as possible). But can we be confident in
century-old transport physics for such a critical aspect of the the climate problem?

A New Perspective on Atmospheric Radiative Transfer

The above formulation of 3D RT in the atmosphere/surface system is not just a chal-
lenging problem in computational physics. It should be viewed as an accurate de-
scription of the photon flow that is actually unfolding in Nature. It is a codified rep-
resentation of the reality we are dealing with, hardly a “problem.” So the preferred
mathematically exact solutions #1 and #2 are in fact just physical approximations.
Indeed, a purely emitting/absorbing medium is an abstraction . . . as we know from
practical thermodynamics that it is impossible to make a perfect black-body (every
material will reflect or scatter at least a little).3 And of course, an exactly uniform
plane-parallel cloud layer has never materialized since cloud structure and evolution
are part of normal tropospheric dynamics. These fluid dynamics (a.k.a. “weather”)
are clearly stratified (lapse rates, boundary layers, inversion layers, etc.) but they are
also very 3D in nature at all scales (general circulation, fronts, waves, jets, convec-
tion, precipitation, instability, turbulence, and so on).

We can make an immediate damage assessment here. Any volume scattering per-
turbs solution #1 and horizontal gradients in anything perturb solution #2 for scat-
tering media. In cloud remote sensing at optical wavelengths, blind faith in solution
#2 is to believe that satellite pixels are radiatively independent. That would be rea-
sonable only if they were huge. But then again, if we approximated that situation by

3 For the more theoretically minded, this is traceable to the Kramers-Kronig causality rela-
tions, a precursor to the linear response formalism for transport coefficient estimation.
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aggregating enough pixels deemed too-small, would it be reasonable to assume the
pixels are internally uniform?

Much of the 3D RT literature so far has used the uniform plane-parallel cloud
model as a benchmark, estimating the bias associated with that 1D model simply
because it is so widely accepted. We propose that for the next century of atmospheric
RT, the plane-parallel model be considered what it really is: an approximation that,
like any other, needs validation or at least a convincing justification. It should not be
a convenient assumption we can make . . . just because most everyone else does, just
because that is what MODTRAN delivers.

For instance, letting Ω = (sin θ cos φ, sin θ sin φ, cos θ)T in the usual polar rep-
resentation and looking back at the left-hand side of the above 3D RT equation, a
modeler intent on using 1D RT should explain to the end-user why

sin θ
∣∣∣∣cos φ

∂I

∂x
+ sin φ

∂I

∂y

∣∣∣∣� ∣∣∣∣cos θ
∂I

∂z

∣∣∣∣ .

This case for weak “3D-ness” can be made by stating the (preferably low) value
of �0 and/or by noting that σ(x) is a stronger function of z than of

→
x= (x, y)T,

by making a solid theoretical argument based on a conceptual model, by using a
computational 3D model as a benchmark, by analyzing real-world data which is 3D-
compliant by definition, or any combination of these approaches. At least this way
we collectively reinforce the awareness that 1D RT is an approximate solution of the
real 3D RT problem at hand.

Assuming the case for using a 1D model has been made, what will be done
with the residual horizontal variability (

→
x -dependence) of σ(x) and Q(x,Ω) on the

right-hand side of the transport equation? Will it be averaged out? Will it be treated
parameterically? That is, extinction in the 1D transport solver will be processed as
σ(z;

→
x) where the semi-colon emphasizes the difference between variables and para-

meters. This is known as the local Independent Column Approximation (ICA). Will
we horizontally average the outcome of the local ICA result, say, for I(TOA,nadir),
over all

→
x values? Will an “effective” extinction be used that attempts to capture 3D

effects in some statistical sense? And what will we do about Q(x,Ω)? At any rate,
we can no longer say: What else than 1D RT can be done? This monograph demon-
strates that much more can be done, and not necessarily at a large computational
cost.

The above questions collide head-on with a new and interesting quantity that
arises in 3D RT modeling. What is the “scale” r of interest? & What are the RT
“dynamics” of Ir(x,Ω), the radiance field coarse-grained to scale r? The instinctive
answer will likely be that r is the resolution of the instrument (the pixel-size) or the
mesh spacing in the climate- or cloud-dynamics model (the grid-constant). These
are important but artificial scales. First, sensors as well as computational meshes
are becoming ever-more “adaptive,” so pixel- or grid-scales are moving targets. Sec-
ond, there are equally if not more important physical scales and dimensionless ratios
thereof to consider: the photon mean-free-path, the cloud-layer thickness, the photon
diffusion scale, cloud aspect ratio, dominant variability scales, and so on.
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Where observational or computational resolution plays an essential role, at least
from the 3D RT modeling perspective, is in telling us whether or not the variability
of concern is resolved. What comes next?

• In the case of resolved variability, we have to worry about (the divergence of net)
radiative fluxes that cross boundaries of pixels or grid-cells. These fluxes will in-
validate a preemptive 1D treatment of the RT. Is there a simple way to estimate
them and remove the bias from the 1D model?

• In the case of unresolved variability, we have to make statistical assumptions about
it and try to estimate its likely impact on the resolved scales. Can we formulate an
“effective medium” theory where modified optical properties will incorporate the
bulk effects of small-scale fluctuations?

In 3D reality of course, both processes are at work to some extent. At any rate, we
must learn how to manage all the identified radiative processes at various scales
and make informed decisions about their importance based on experience and on
programmatic priorities. This is by no means easy. All too frequently, the “ignorance
is bliss” modus-operandi prevails.

Time: The New Frontier in Atmospheric Remote Sensing

Time-dependence is a dimension of RT that we have only started to explore in any
depth for real – that is, 3D – atmospheric RT. So now we consider I(t, x,Ω), typically
with t ≥ 0, that obeys a RT equation in “3 + 1” dimensions: the volume- and/or
boundary-sources become t-dependent and, most notably, the monokinetic advection
operator Ω •∇ becomes4

1
c

∂

∂t
+ Ω •∇ .

Even for steady-state photon transport in 1D geometry, the dominant number of
scattering events or mean photon time-of-flight for a given outcome (e.g., reflection
versus transmission) are profoundly informative quantities. There is already a core
international community invested in differential absorption spectroscopy in the oxy-
gen A-band as a means of accessing solar photon path length statistics. These new
observables have proven to be highly sensitive to the degree of spatial complexity in
cloudiness, e.g., single/unbroken layers versus multiple and/or broken layers. Pulsed
(laser) sources or rapidly time-varying sources (e.g., lightning flashes) can be traced
along convoluted multiple-scattering paths through dense clouds. Thanks to recent
technological advances, we can now observe the resulting waveforms, and these can
be analyzed in terms of cloud or source properties using time-dependent RT, in 3D
as needed.
4 Somewhat miraculously, this is not so new as it appears at first glance, at least for pulsed

sources. A temporal Laplace transform indeed converts the t-derivative into what looks like
a spatially uniform (hence gaseous) absorption term with a coefficient varying from 0 to
∞ while the δ-in-time source term becomes a constant. The converse statement – if we
know the detailed t-dependence, then we can compute the effect of any level of gaseous
absorption – is known as the “Equivalence Theorem.”
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Last but not least, temporal (i.e., pulse-stretching) scales and some of the above-
mentioned spatial scales are so tightly connected through the fractal nature of photon
random walks in the Earth’s cloudy atmosphere that they are really just two sides of
the same coin. This insight has far-reaching ramifications that, in particular, have yet
to be exploited for the teaching of radiative transfer through geometry and probability
rather than through calculus.

In summary, we feel that future generations of atmospheric and remote-sensing sci-
entists, whether or not they become “RT” experts, need to be exposed to the rich
phenomenology of 3D radiative transfer and encouraged to explore it to their young
heart’s content.

Los Alamos, New Mexico Anthony Davis
January, 2005 Alexander Marshak



Notations

In this volume, we have adopted standard notations for radiance/intensity Iλ(x,Ω),
irradiance/flux Fλ(x), transmittance T , optical depth τ, extinction σ, and so on, from
the astrophysical and transport-theoretical literatures because they are also very well
known in the geophysics community. However, some readers more familiar with
remote-sensing textbooks will recognize respectively Lλ, Eλ, τ, δ, β, etc.

Square brackets designate an [alternate] name or unit for some quantity. Paren-
theses identify an (optional qualifier) of some quantity’s name, or units that can be
omitted by proper normalization and/or spectral integration. A dagger† designates a
quantity that can be “spectral,” and therefore carry a subscript λ or ν as in Planck
function; in this case, (/µm) or (/cm−1) appears in their units. In solar problems,
where one can set µ0F0 to unity, these quantities can be non-dimensionalized alto-
gether (hence the optional units of W/m2). Many other optical quantities, e.g., σ or
τ, can depend parameterically on λ or ν but this does not affect their units.

1 Scalar and Vector Quantities, about Units

In the following table, four different SI-derived units of length are used – sometimes
in combinations – and each has its dedicated purpose in accounting for cloud optics,
microphysics, radiation sources/sinks and transport:

• the “µm” is assigned to wavelengths and particle sizes (hence to spectral and/or
single-scattering considerations in cloud/aerosol optics);

• the “cm” is assigned to droplet densities (hence to cloud microphysical consider-
ations);

• the “m” is assigned to flux/irradiance units (hence to radiation budget considera-
tions);

• the “km” is assigned to photon transport coefficients and scales of variability in
clouds, including outer scales such as physical thickness (hence to all radiative
transfer considerations).
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In the volume, yet another derived SI unit is used occasionally, following established
tradition: the “mm,” for vertically-integrated liquid- and/or ice-water in cloud layers,
while the “cm” is often used for total precipitable water in the atmosphere (always
dominated by the vapor phase).
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Index

3D radiative transfer 465, 488, 523, 576

absorptance 165, 191, 474, 633
absorption 115, 116, 170, 551, 597

coefficient 112, 176, 456, 493, 546, 627
addition theorem 244, 248, 626
Aerosol Robotic Network (AERONET)

643
aerosol(s) 20, 131, 174, 195, 216, 371, 461
air mass 594
albedo 185, 346, 453, 524, 529, 531

bias 428, 434, 532
leaf 624, 635
planetary 452
single-scattering 170
spherical 185
surface 215, 454, 590

anomalous diffusion 366
asymmetry factor 174, 265, 303
Atmospheric Radiation Measurement

(ARM) VII, 9, 18, 26, 41, 44, 95,
134, 142, 386, 417, 455, 479, 506

AVHRR 4, 529, 589
azimuthal angle 245, 247

backscattering 177
backward Monte Carlo 272, 273, 509, 549
band model 492
Beer Law 168, 366
bidirectional reflectance distribution function

(BRDF) 184, 185, 188, 222
bidirectional reflectance factor (BRF) 163,

185, 630, 639, 650
bihemispherical reflectance (BHR) 630

blackbody 114, 118, 512
boundary conditions 194, 247–250, 252,

255, 457, 488, 556, 628, 636
boundary value problem 243, 555, 630

CALIPSO 16, 591
cirrus 6, 38, 142, 490, 525
climate 317, 386, 425, 449, 479

model 8, 9, 25, 95, 284, 456, 491
cloud droplet 8, 100, 102, 459
cloud fraction 76, 95, 97, 346, 372, 428,

453, 462, 498
cloud overlap 463, 467, 475
cloud particles 99, 100, 104, 106, 137
cloud radiative forcing 439, 450
CloudSat 15, 21, 591
continuous random number 262
cooling rate 190, 462, 497
cross-section 110–112, 115, 117, 121, 123,

168, 172
absorption 176
differential 172, 176
extinction 169, 170
maximum 261, 274

cumulonimbus 226, 525
cumulus 142, 276, 320, 417, 471, 493, 525

diffuse field 159, 595
diffuse hemispherical reflectance 625
diffuse irradiance 134, 144, 145
diffuse radiation 182, 244, 628, 630
diffuse source 161
diffusion equation 287, 306, 386
diffusivity 289, 560



684 Index

Dirac δ-function 213, 217, 269, 628, 635
directional reciprocity 223, 530
Discrete Ordinate Method (DOM) 252,

253
discrete ordinates 37, 244–247, 252–259
discrete random number 263
DISORT 21, 246, 549
doubling-adding method 246, 599

effective cloud fraction 331, 501, 643
effective radius 41, 46, 123, 169, 370
eigenmatrix method 246
eigenvalue 246, 304, 634, 641, 645
eigenvector 304, 634
elementary volume 28, 189, 618, 627
emission 113, 182, 184, 508
emissivity 184, 186, 196, 495, 505
energy balance 546
energy budget 164
equivalence theorem 597
escape 178, 198, 204, 559
extinction 48, 49, 121, 123, 166–171, 625

coefficient 110, 166, 170, 262, 596, 625,
627

extrapolation length 207, 555

flux 158, 159
actinic 164, 285
hemispherical 162, 163, 303
horizontal 162, 543, 547, 548
net 164
scalar 164, 304, 546
vector 164, 304, 322
vertical 162

forward Monte Carlo 267, 509
Fourier series 244, 250
Fourier transform 250, 259, 298, 653, 654
free path 179–181, 366, 612
frequency 167

Global Ozone Monitoring Experiment
(GOME) 589, 611

Green function 213, 298, 555, 578
surface 214, 315, 637, 640
volume 213

grid cells 95, 259

heating rate 14, 190, 296, 473, 477, 515
Hemispherical-Directional Reflectance

Factor (HDRF) 630

Henyey–Greenstein phase function 174,
460

homogeneous clouds 34, 533
horizontal flux divergence 315, 547
horizontal transport 546, 568, 606
hot spot 618

ice particle 102, 105
ice water content 103
Independent Column/Pixel Approximation

(ICA/IPA) 324, 427, 433, 607
accuracy 548–552, 568, 569
bias 330, 433

integral radiative transfer equation (integral
RTE) 202, 267

integro-differential
adjoint 218
equation 189
operator 189, 309

intensity 159, 510
interception 182, 631, 633–635
irradiance 188

broadband (BB) 450, 459
longwave 135, 138, 350
shortwave 134, 135, 144
spectral 454

k-distribution 24, 455, 493
kernel

smoothing 578
transport 202, 214, 267
weakly singular 660

Lambertian
emittance 163
reflection 186
surface 185, 187

LandSat 96, 274, 543, 572, 606
Legendre

coefficients 176, 190, 244
functions 245, 248
polynomials 173, 244
series 244

lidar 44, 46–48, 134, 136, 142, 195, 218,
302, 321

line profile 605
line-by-line (LBL) radiative transfer model

(RTM) 115, 454, 492, 510
linear transport equation 617



Index 685

liquid water content (LWC) 100–102, 145,
370, 471, 656–658

liquid water path (LWP) 433
longwave radiation 109, 124, 452, 488
Lorenz-Mie theory 175

mean photon geometric path 597
mean photon pathlength 555, 602
mean-free-path 179, 262, 289, 319, 626
microwave 27, 29, 34, 40, 124, 135, 142
MISR 125–129, 132, 526, 533, 535
MODIS 16, 45, 46, 125–129, 131, 132,

143, 527, 622
monochromatic 244, 454, 492
monodirectional 213, 628
Monte Carlo 28, 35, 37, 48, 243, 261, 272,

374, 458, 508
MTI 210
multi-angle remote sensing 524
multiple scattering 52, 183, 591

net flux 162, 323, 450, 547
Neumann series 268, 272
Nonlocal Independent Pixel Approximation

(NIPA) 314, 576–582
Normalized Difference Cloud Index (NDCI)

641
number of scatterings 263, 555

optical depth 45, 46, 49, 170, 263, 427,
529

absorption 468, 506
aerosol 590
continuum 599
mean 351
oxygen 601, 612
transport 332
water vapor 467

optical distance 167, 201, 268, 618
optical medium 154
optical thickness 205

absorption 117
effective 427
horizontal 430
scattering 117
total 120
vertical 429

order-of-scattering 252, 261, 368, 559, 612
oxygen

A-band 369, 456, 593
absorption 117, 589, 613
lines 321, 594

particle density 169
particle size 105, 120, 489
particle size distribution 94
pathlength 321, 412, 596, 602, 625
photon mean-free-path see mean-free-path
photon pathlength see pathlength
Planck function 114, 184, 488
plane-parallel albedo bias 428, 436, 531
plane-parallel medium 195, 204, 310
polarization 160
POLDER 185, 619
probability of a clear line of sight (PCL)

499

quadrature 245, 253

radar 34, 39, 47, 121, 133, 134
radiance 159–163, 285, 302, 309
radiant energy 158, 161
radiative

forcing 10, 450
roughening 570, 572
smoothing 302, 315, 543, 570, 572, 582

radiative transfer equation
adjoint 218
integral 202, 267
integro-differential 189
plane-parallel 244
stochastic 412

radiosity 306, 308
random walk 290, 559
Rayleigh scattering 175

cross-section 175
phase function 177

reciprocity 221, 530
reflectance 204

bidirectional 163, 184
bottom of atmosphere 640
canopy 638
leaf 624, 625
local 547
top of atmosphere 163

reflection 186, 188, 535, 630
remote sensing 523, 608

clouds 319



686 Index

Rotating Shadowband Spectrometer (RSS)
602

scattering 170–178, 290
angle 109, 174, 244
center 617, 618
coefficient 171, 626
cross-section 116
phase function 171, 244, 289, 304, 626

shortwave radiation 419
single-scattering albedo 170, 263, 627
solar constant 182
solar zenith angle 529
solid angle 108, 159, 162
source function 183, 201, 257
source term 181, 184, 555
spectrum

electromagnetic (EM) 345
longwave (thermal) 156, 165, 186, 488
shortwave (solar) 165, 458
wavenumber (power) 430, 568, 653

spherical harmonics 173, 244, 248, 311
Spherical Harmonics Discrete Ordinate

Method (SHDOM) 257–261
stochastic 358, 386–465
stratocumulus 8, 318, 352, 371, 505, 543
structure function 655

surface reflection 181, 186

top-of-atmosphere (TOA) 163
total path 368, 561
transmission 110, 168, 179, 298
transmittance 204, 455

canopy 634
diffuse 463
leaf 624
local 547

transport mean-free-path 555
two-stream approximation 347

water vapor 117, 126, 598
wavelength

centimeter (cm) 34
infrared 6, 39
microwave 39, 137, 142
millimeter (mm) 15, 133, 602
near-infrared 131
solar 6, 39, 458
sub-millimeter 31

wavenumber 488
spectrum 565, 653, 655

window 488

zenith angle 185
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