
C830X

Physical
Oceanography

P
h

y
s
ic

a
l

O
c

e
a

n
o

g
r

a
p
h

y

A Mathematical Introduction
with MATLAB®

Reza Malek-Madani
M

a
l
e

k
-M

a
d

a
n

i

Mathematics

Physical Oceanography: A Mathematical Introduction with MATLAB®
demonstrates how to use the basic tenets of multivariate calculus to
derive the governing equations of fluid dynamics in a rotating frame.
It also explains how to use linear algebra and partial differential
equations to solve basic initial-boundary value problems that have
become the hallmark of physical oceanography. The book makes the
most of MATLAB’s matrix algebraic functions, differential equation
solvers, and visualization capabilities.

Focusing on the interplay between applied mathematics and
geophysical fluid dynamics, the text presents fundamental analytical
and computational tools necessary for modeling ocean currents. In
physical oceanography, the fluid flows of interest occur on a planet
that rotates; this rotation can balance the forces acting on the fluid
particles in such a delicate fashion to produce exquisite phenomena,
such as the Gulf Stream, the Jet Stream, and internal waves. It is
precisely because of the role that rotation plays in oceanography
that the field is fundamentally different from the rectilinear fluid flows
typically observed and measured in laboratories. Much of this text
discusses how the existence of the Gulf Stream can be explained
by the proper balance among the Coriolis force, wind stress, and
molecular frictional forces.

Through the use of MATLAB, the author takes a fresh look at advanced
topics and fundamental problems that define physical oceanography
today. He presents research from pioneers in the mathematical
modeling of physical oceanography and covers the current work
of applied mathematicians who are making significant impacts on
developing tools for modern physical oceanography.

C830X_Cover.indd 1 3/19/12 9:43 AM

Physical
Oceanography
A Mathematical Introduction

with MATLAB®

C830X_FM.indd 1 3/26/12 1:37 PM

This page intentionally left blankThis page intentionally left blank

Physical
Oceanography
A Mathematical Introduction

with MATLAB®

Reza Malek-Madani

C830X_FM.indd 3 3/26/12 1:37 PM

MATLAB® is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does
not warrant the accuracy of the text or exercises in this book. This book’s use or discussion of MAT-
LAB® software or related products does not constitute endorsement or sponsorship by The MathWorks
of a particular pedagogical approach or particular use of the MATLAB® software.

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2012 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20120229

International Standard Book Number-13: 978-1-4398-9829-1 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher cannot
assume responsibility for the validity of all materials or the consequences of their use. The authors and
publishers have attempted to trace the copyright holders of all material reproduced in this publication
and apologize to copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may rectify in any
future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information stor-
age or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copy-
right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222
Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro-
vides licenses and registration for a variety of users. For organizations that have been granted a pho-
tocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

to Jo, Behzad, and Darob

and

to all my students

This page intentionally left blankThis page intentionally left blank

Contents

Preface xiii

1 An Introduction to MATLAB R© 1

1.1 A Session in MATLAB 1

1.2 Operations .*, ./ , and .^ 4

1.3 Defining and Plotting Functions in MATLAB 9

1.4 3-Dimensional Plotting 16

1.5 M-Files . 18

1.6 Loops and Iterations in MATLAB 20

1.7 Conditional Statements in MATLAB 24

1.8 Fourier Series in MATLAB 28

1.9 Solving Differential Equations 36

1.10 Concluding Remarks 38

1.11 References . 39

2 Matrix Algebra 41

2.1 Vectors and Matrices 41

2.2 Vector Operations . 43

2.3 Matrix Operations . 45

2.4 Linear Spaces and Subspaces 53

2.5 Determinant and Inverse of Matrices 57

2.6 Computing A−1 Using Co-Factors 67

2.7 Linear Independence, Span, Basis, and Dimension . . . 70

2.8 Linear Transformations 75

2.9 Row Reduction and Gaussian Elimination 77

2.10 Eigenvalues and Eigenvectors 82

2.11 Project A: Taylor Polynomials and Series 88

2.12 Project B: A Differentiation Matrix 90

2.13 Project C: Spectral Method and Matrices 93

2.14 Concluding Remarks 94

2.15 References and Further Reading 95

vii

viii

3 Differential and Integral Calculus 97

3.1 Derivative . 97

3.2 Taylor Polynomial and Series 100

3.3 Functions of Several Variables and Vector Fields 104

3.4 Divergence . 109

3.5 Curl and Vector Fields 115

3.6 Integral Theorems . 117

3.7 References and Further Reading 122

4 Ordinary Differential Equations 123

4.1 Linear Independence and Space of Functions 123

4.2 Linear ODEs . 127

4.3 General Systems of ODEs 132

4.4 MATLAB’s ode45 . 135

4.5 Asymptotic Behavior and Linearization 139

4.6 Motion of Parcels of Fluid in MATLAB 145

4.7 Project A: Ekman Layer 149

4.8 Project B: Lorenz 96 Model 150

4.9 References . 152

5 Numerical Methods for ODEs 153

5.1 Finite Difference Methods 153

5.2 Backward Euler Method (BEM) 163

5.3 Stability of Numerical Methods 168

5.4 Stability Analysis of Numerical Schemes 170

5.5 MATLAB Programs for the Forward Finite Difference
Method . 172

5.6 Stability Analysis of Numerical Schemes (continued) . . 177

5.7 Truncation Error . 180

5.8 Boundary Value Problems and the Shooting Method . . 182

5.9 Project A: Modified Euler Method 186

5.10 Project B: Runge–Kutta Methods 189

5.11 Project C: Finite Difference Methods and BVPs 193

5.12 Project D: Method of Lines 197

5.13 Project E: Burgers Equation (Method of Characteristics) 200

5.14 Project F: Burgers Equation (Method of Characteristics
– Nonlinear Case) . 204

5.15 Project G: Burgers Equation (Formation of Singularities) 206

5.16 Project H: Burgers Equation and the Method of Lines . 208

5.17 References . 211

ix

6 Equations of Fluid Dynamics 213
6.1 Flow Representations — Eulerian and Lagrangian . . . 214
6.2 Deformation Gradient and Conservation of Mass 219
6.3 Derivation of Equation of Conservation of Mass—A

Heuristic Approach . 226
6.4 Stream Function and Vector Fields A, B, C, and ABC 230
6.5 Acceleration in Rectangular Coordinates 240
6.6 Strain-Rate Matrix and Vorticity 245
6.7 Internal Forces and Cauchy Stress 251
6.8 Euler and Navier–Stokes Equations 254
6.9 Bernoulli’s Equation and Irrotational Flows 257
6.10 Acceleration in Spherical Coordinates 260

6.10.1 Coordinate Curves 260
6.10.2 Spherical Basis 262
6.10.3 The Eulerian Formulation of Velocity and Accel-

eration Revisited 264
6.10.4 Velocity in Spherical Basis 265
6.10.5 Dynamics of Basis Vectors 267
6.10.6 Formula for Acceleration in Spherical Coordinates 267

6.11 Project A: Inviscid Linear Fluid Motions and Surface
Gravity Waves . 268

6.12 Project B: Internal Gravity Waves 272
6.13 Project C: Equation for Bubble Dynamics 274
6.14 Project D: Chaotic Transport 276
6.15 References . 279

7 Equations of Geophysical Fluid Dynamics 281
7.1 Introduction . 281
7.2 Coriolis . 282
7.3 Coriolis Acceleration: 2Ω× vr 284
7.4 Gradient Operator in Spherical Coordinates 285
7.5 Navier–Stokes Equation in a Rotating Frame 287
7.6 β-Plane Approximation 287
7.7 References . 289

8 Shallow Water Equations (SWE) 291
8.1 Introduction . 291
8.2 Derivation of Equations 291
8.3 Rotating Shallow Water Equations (RSWE) 298
8.4 Some Exact Solutions of the RSWE 302
8.5 Linearization of SWE 303
8.6 Linear Wave Equation 305
8.7 Separation of Variables and the Fourier Method 306

x

8.8 Fourier Method in MATLAB 312
8.9 Method of Characteristics 316
8.10 D’Alembert’s Solution in MATLAB 320
8.11 Method of Lines and Wave Equation 323
8.12 Project A: Method of Characteristics for General PDEs 326
8.13 Project B: Variations on the Method of Lines 329
8.14 Project C: An Inverse Problem 330
8.15 Project D: Exact Solutions of the Rotating Shallow Water

Equations . 333
8.16 Project E: Courant–Friedrichs–Lewy Condition 336
8.17 References . 339

9 Wind-Driven Ocean Circulation: Stommel and Munk
Models 341
9.1 Introduction . 341
9.2 Flow in a Rectangular Bay — Normal Modes 342
9.3 Eigenfunctions of the Laplace Operator 350
9.4 Poisson Equation . 355

9.4.1 Poisson Equation with Localized Vorticity 361
9.5 Stommel Model . 364

9.5.1 Governing PDE 365
9.5.2 Non-Dimensionalization 370
9.5.3 Solution to the BVP 372

9.5.3.1 Determining the Particular Solution ψp 373
9.5.3.2 Determining the Homogeneous Solution

ψh . 373
9.5.3.3 Applying the Boundary Conditions . . 374

9.6 MATLAB Programs . 376
9.7 Stommel Model—A Numerical Approach 381

9.7.1 Constructing the System AΨ = B 385
9.8 MATLAB Program for the Stommel Model 389
9.9 Munk Model of Wind-Driven Circulation 394
9.10 Project A: Stommel Model with a Nonuniform Mesh . . 402
9.11 Project B: Munk Model and the Finite Difference Method 403
9.12 Project C: Galerkin Method and the B. Saltzman and E.

Lorenz Equations . 405
9.13 References . 408

10 Some Special Topics 409
10.1 Finite-Time Dynamical Systems 410
10.2 Data Assimilation and Filtering 413
10.3 Normal Modes and Data 416
10.4 Concluding Remarks 417

xi

10.5 References . 418

Appendix: Answers to Selected Problems 421

Index 437

This page intentionally left blankThis page intentionally left blank

Preface

This book is about the interplay between applied mathematics and the
field of geophysical fluid dynamics. Its primary goals are to demonstrate
how one uses the basic tenets of multivariate calculus to derive the gov-
erning equations of fluid dynamics in a rotating frame, and how one
uses methods from linear algebra and partial differential equations to
solve some of the basic initial-boundary value problems that have be-
come the hallmark of physical oceanography. MATLABR© is the key tool
used throughout the book. Special care has been taken to take advan-
tage of this software’s matrix algebraic functions, its differential equation
solvers, and its visualization capabilities in almost every section of every
chapter. In fact, it is the use of MATLAB that allows us to consider this
highly interdisciplinary material at a level that I hope is accessible to an
undergraduate student.

The book is intended for advanced undergraduates, those who have
already completed courses in calculus, differential equations and linear
algebra. Despite requiring these prerequisites, several of the early chap-
ters are dedicated to reviewing materials from these three topics, with
varying degrees of depth and completion. While the material in these
chapters may be familiar to the reader, basic use of MATLAB as well
as simple examples that introduce features of fluid flows populate the
illustrations and exercises.

Physical oceanography, at least the part of it that we are concerned
with in this book, is characterized by the fact that the fluid flows of
interest are occurring on a planet that rotates, and that this rotation
can balance the forces acting on the fluid particles in such a delicate
fashion to produce exquisite phenomena such as the Gulf Stream, the
Jet Stream, internal waves, and the Madden–Julian Oscillation, to name
a few. Much of the development in this book is motivated by the desire
to explain how the existence of the Gulf Stream can be explained by the
proper balance between the Coriolis force, wind stress, and molecular
frictional forces. It is precisely because of the role that rotation plays in
oceanography that this field is fundamentally different from rectilinear
fluid flows, flows that we typically observe and measure in laboratories.

Although the Coriolis effect is part of our daily experience, it is dif-

xiii

xiv

ficult for most of us to develop an intuitive sense for its impact on the
behavior of motion of particles, fluid or solid. After all, the measure-
ments we make are most often carried out on the planet itself and are
therefore relative to a rotating frame. By contrast, laboratory observa-
tions are made in an inertial frame, at least at time scales that are much
faster than the time scale associated with the rotation of our planet. It
is because of this lack of familiarity that it is difficult to appreciate the
“apparent” forces that the planet is exerting on us, unless we float un-
tethered for several days (as icebergs do), an experience that most of us
have not had. It was therefore a particularly noteworthy moment when
the early practitioners of physical oceanography finally sorted out how
a current such as the Gulf Stream comes about and remains relatively
stable for centuries. The ten years between 1945 and 1955 form a period
when some of the most exciting applications of mathematics appeared in
physical oceanography; the seminal papers of H. Stommel in 1948 and
W. Munk in 1950, on the “western intensification” of ocean currents,
ushered in a new era of applications of mathematics, which is the focus
of this book.

The material in this book is not exhaustive, neither in mathematical
methods nor in oceanographic topics. Our goal has been instead to con-
centrate on introducing a set of applications that are motivated by some
of the questions we would like to investigate about our environment,
and the type of questions where mathematics could play a critical role
in their investigation. The choice of topics in many of the chapters was
motivated by the desire to direct students to topics that have appeared
in research manuscripts, most as journal articles published in the past
few decades, and, by providing the basic mathematical tools, to invite
students to begin to consult and read some of these arcticles. The new
twist for us is the availability of MATLAB, which enables us to take
a fresh look at many of the fundamental problems that define physical
oceanography today.

Most chapters in the book contain a few projects. All projects have
a significant component of MATLAB programming in them. Our hope
is that these projects may suggest templates for capstone projects or
honors theses for those students who are inclined to pursue a special
project in applied mathematics. Most of these projects, in one way or
another, are influenced by some aspect of research presented by the
founders of mathematical modeling in physical oceanography, starting
with the aforementioned Stommel amd Munk, but also works by G.
Veronis, E. Lorenz, J. G. Charney, J. Pedlosky, A. Robinson, and A. Gill,
to name a few. I believe their writing styles are accessible and inviting.
Students of mathematics can benefit enormously from spending valuable

xv

time with the papers cited in this book and developing their intuition
by consulting and understanding the work of pioneering experts.

In addition to introducing the basic mathematical and computational
concepts, an attempt has been made in this book to introduce and
to point to some of the work of current applied mathematicians who
are making significant impact in developing tools for modern physical
oceanography. Works by A. Majda, M. Ghil, H. Dijsktra, S. Wang, S.
Wiggins, and C. K. R. T. Jones, among others, have motivated several
of the projects throughout the book. The final chapter of the book is
dedicated to describing several areas of current mathematical research.

MATLABR© is a registered trademark of The MathWorks, Inc.
For product information, please contact:

The MathWorks, Inc.
3 Apple Hill Drive Natick, MA 01760-2098
USA Tel: 508 647 7000 Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com

This page intentionally left blankThis page intentionally left blank

Chapter 1

An Introduction to MATLAB R©

MATLAB is a powerful computer language that provides an environ-
ment for numerical computation as well as graphical display of outputs.
This chapter contains a brief introduction to this software, primarily
concentrating on plotting graphs of functions, data management and
communication of results. More detailed aspects of this software will be
brought up throughout the text as needed.

There is a large library of excellent introductory texts on MATLAB.
In addition, many authors, researchers and teachers have made their
favorite approach to introducing MATLAB available on the World Wide
Web. The reference section of this chapter contains a listing of books
and web sites that the reader may find useful.

1.1 A Session in MATLAB

After invoking a session of MATLAB, we receive the prompt line

>>

at which point we are ready to call on the variety of resources that
MATLAB makes available.

MATLAB has a very large number of built-in functions or programs
that are available to us once we have learned a few basic notions re-
garding its syntax. An important feature of MATLAB’s syntax is that
commands and built-in functions are case sensitive, so that plot and
Plot are treated as two distinctly different entities; the former is a cen-
tral built-in utility that we will use routinely to plot graphs of functions,
while the latter has no meaning at this point in our session and its in-
voking will result in error messages. More on this point later when we
actually introduce the plot command.

One of the central utilities in MATLAB is the help command. When
invoked by itself

help

1

2 Physical Oceanography: A Mathematical Introduction

it provides a long listing of available MATLAB commands and toolboxes
on your computer. A typical listing looks like this

HELP topics:

My Documents\MATLAB - (No table of contents file)

matlab\general - General purpose commands.

matlab\ops - Operators and special characters.

matlab\lang - Programming language

constructs.

matlab\elmat - Elementary matrices and

matrix manipulation.

matlab\randfun - Random matrices and

random streams.

matlab\elfun - Elementary math functions.

matlab\specfun - Specialized math functions.

....

....

Note that the listing you will see on the screen could be different, de-
pending on the version of MATLAB, and the extra packages you may
have purchased with the stand-alone version of MATLAB. The output
will, however, look somewhat similar. In particular, the output has sev-
eral live links attached to it, each of which is linked to another document
with more information. For example, by clicking on

matlab\elfun - Elementary math functions.

we arrive at another listing of linked pages

Basic operations.

max - Largest component.

min - Smallest component.

mean - Average or mean value.

median - Median value.

std - Standard deviation.

....

....

hinting that more detailed information is available. Clicking on max (no-
tice, by the way, that this command is all in lowercase), we receive the
following information:

MAX Largest component.

For vectors, MAX(X) is the largest element in X. For

matrices, MAX(X) is a row vector containing the maximum

An Introduction to MATLABR© 3

element from each column. For N-D arrays, MAX(X) operates

along the first non-singleton dimension.

[Y,I] = MAX(X) returns the indices of the maximum

values in vector I. If the values along the first non-

singleton dimension contain more than one maximal element,

the index of the first one is returned.

.....

.....

As its name suggests, max is capable of determining the maximum value
among a set of numbers. Finally, note the link

doc max

which takes us to a summary of usage of max, illustrated by several
examples.

Caution: Despite the fact that “max” is referred to as “MAX” in MAT-
LAB’s help documentation, its proper syntax is the all lowercase version.
For example, MATLAB gives the correct answer to

max([1 2 3 4])

but

MAX([1 2 3 4])

leads to the error message

??? Undefined function or method ’MAX’ for input arguments

of type ’double’.

If the reader is a beginner MATLAB user, this is the time to browse
MATLAB’s help documentation extensively to appreciate what a pow-
erful resource is available to you.

The next section introduces the structure of the basic algebraic oper-
ations of multiplication, division and exponentiation in MATLAB before
proceeding to defining and plotting simple functions.

4 Physical Oceanography: A Mathematical Introduction

Problems 1.1

Use MATLAB’s help command and review the structure of each
of the following commands. After browsing the basic narrative of each
document, proceed to the examples, if there are any, and execute them
in MATLAB. Finally, bring up the full documentation of each command
through the doc ... link at the end of each document.

1. plot. Referring to the example at the end of the document, copy
and paste the entire set of lines into a MATLAB Command Win-
dow to generate the output. Next

(a) copy and paste the following altered three lines of the example

x = -pi:pi/10:pi;

y = tan(sin(x)) - sin(tan(x));

plot(x,y)

(b) replace the first line of the program in the above problem by

x=-pi:pi/100:pi;

and rerun the entire program. Report on how the output
changes relative to the one obtained in 1a).

(c) Change the domain to (−10π, 10π) by replacing the first line
of the program with

x=-0*pi:pi/100:10*pi;

2. rand and random. What is the difference between two commands?

(a) What does

random(’Normal’,1,2)

return? What does this value mean?

(b) Enter the following line into MATLAB:

max(sin(rand(0,1)), sin(rand(0,1)), sin(rand(0,1)))

What is the output and what does this value mean? Next,
enter the line again. Is the value obtained different from the
first one this line has executed? Why?

1.2 Operations .*, ./ , and .^

MATLAB is a high-level computer language capable of manipulating
arrays of numbers. An expression such as

An Introduction to MATLABR© 5

A=[1 2 3 -1]

B=[0 3 -2 7]

A+B

defines a row of numbers for A, another row of numbers for B, and sums
the two arrays. MATLAB’s output is

A =

1 2 3 -1

B =

0 3 -2 7

ans =

1 5 1 6

displaying both A and B and concluding with their sum. If instead we
enter the following three lines

A=[1 2 3 -1];

B=[0 3 -2 7];

A+B

the output becomes

ans =

1 5 1 6

that is, without A and B being displayed. This is due to the addition of
the punctuation mark “;” at the end of the lines that define A and B.
This output-suppression function of “;” will be quite important in future
applications when we expect that the output of certain commands could
result in very lengthy arrays.

A different usage of “;” is shown below:

A=[1 2; 3 -1]

B=[0 3; -2 7]

A+B

leads to displaying A and B as arrays with 2 rows and 2 columns, i.e.,
2 × 2 matrices. Their sum is now displayed as an array having 2 rows
and 2 columns:

6 Physical Oceanography: A Mathematical Introduction

A =

1 2

3 -1

B =

0 3

-2 7

ans =

1 5

1 6

Pointwise or entry-wise multiplication, division and exponentiation
of arrays are carried out in MATLAB in much the same way that these
operations are handled on single numbers but with one important caveat;
MATLAB is capable of applying these operations to the entire arrays
simultaneously. For instance, to multiply the following two arrays point-
wise

A=[1 2 3 -1]; B=[0 3 -2 7];

we apply MATLAB’s .* command to them:

A.*B

resulting in the array

ans =

0 6 -6 -7

Note that each entry of the resulting array A.*B is the pointwise mul-
tiplication of the corresponding entries of A and B. Similarly, pointwise
division of the two arrays

A=[1 3 4 6]; B=[4 6 -7 12];

is accomplished by applying “./” as follows:

A./B

resulting in the array

An Introduction to MATLABR© 7

ans =

0.2500 0.5000 -0.5714 0.5000

The pointwise exponentiation of the two arrays

A=[1 2 3 -1]; B = [2 3 3 2];

is accomplished by applying “.^” as follows:

A.^B

whose result is

ans =

1 8 27 1

One of the remarkable features of MATLAB is how easy it is to extend
pointwise algebraic operations between two arrays to the evaluation of
functions of arrays. For example, given the array A = [1 2 3 7], one
computes the polynomial expression A2 − 3A as follows:

A=[1 2 3 7];

A.^2 - 3*A

to get

ans =

-2 -2 0 28

Similarly, one can compute sin(A), cos(A), exp(A), ln(A), just to mention
a few elementary functions we routinely encounter:

A=[1 2 3 7];

sin(A)

cos(A)

exp(A)

log(A)

with the results being

ans =

0.8415 0.9093 0.1411 0.6570

8 Physical Oceanography: A Mathematical Introduction

ans =

0.5403 -0.4161 -0.9900 0.7539

ans =

1.0e+003 *

0.0027 0.0074 0.0201 1.0966

ans =

0 0.6931 1.0986 1.9459

Problems 1.2

1. Consider the array a=[1; -1; 2]. Enter this array to MATLAB
and complete the following operations and report on MATLAB’s
response:

a*a

a.*a

a^2

a.^2

1/a

1./a

sin(a)

exp(a)

2. Consider the array

a =

[

1 −1
2 3

]

.

Carry out the following operations in MATLAB and report your
results.

a^2

a.^2

a*a

a.*a

An Introduction to MATLABR© 9

1/a

1./a

sin(cos(a))

sin(sin(sin(cos(a))))

exp(a)

log(a)

1.3 Defining and Plotting Functions in MATLAB

There are several ways of defining a function in MATLAB. If a rel-
atively simple definition of f is available, the inline command is the
easiest way to proceed. For instance, to define the function

f(x) = ax2 + bx+ c

to MATLAB enter

f = inline(’a*x^2 + b*x + c’, ’a’, ’b’, ’c’, ’x’)

MATLAB’s response is

f =

Inline function:

f(a,b,c,x) = a*x^2+b*x+c

This statement indicates that we have succeeded in defining f as a func-
tion of the four variables a, b, c and x; although we typically think of f
as a function of x with a, b and c as its parameters, as far as MATLAB
is concerned all four variables make equal contribution to f . To plot the
graph of f when a = 1, b = −2 and c = 3, say, we apply the ezplot

function of MATLAB:

ezplot(@(x) f(1,-2,3,x))

After receiving the warning

Warning: Function failed to evaluate on array inputs;

vectorizing the function may speed up its evaluation

and avoid the need to loop over array elements.

MATLAB plots the graph of f(1,−2, 3, x) by selecting its own default
domain of (−2π, 2π), as shown in Figure 1.1. The above warning is about
using “^” in place of ‘.^” in the definition of f . Had we used

10 Physical Oceanography: A Mathematical Introduction

−6 −4 −2 0 2 4 6
0

20

40

x

f(1,−2,3,x)

FIGURE 1.1: The output of ezplot.

f = inline(’a*x.^2 + b*x + c’, ’a’, ’b’, ’c’, ’x’)

we would not have received the warning; the use of “.^” allows MAT-
LAB to apply its array capabilities cell by cell in ezplot to evaluate x2

optimally.
A few comments about the usage of ezplot:

i) The expression @ in @(x), referred to as the function handle con-
structor in MATLAB’s documentation, signifies that x is the vari-
able of interest in the function expression. If instead we enter

ezplot(@(a) f(a, -2, 3, 4))

we receive the graph of f with a varying in the interval (−2π, 2π)
with other variables as specified.

ii) If we want to graph f in a domain different from the default do-
main, we may designate the new domain as an option in ezplot:

ezplot(@(x) f(1,-2, 3, x),[-6*pi 6*pi])

An alternative way to plot the graph of a function is to define the
domain directly and then invoke the plot command. For example, to
plot the graph of the function f(x) = x sin(2x) on the interval (0, 4π),
we first define the domain to MATLAB as follows:

h=0.1;

x=0: h: 4*pi;

Once these two lines are executed in MATLAB, the expressions h and x

will remain available for our use during the remainder of the MATLAB

An Introduction to MATLABR© 11

0 2 4 6 8 10 12

−10

−5

0

5

10

0 ≤ x ≤ 4 π

y
 a

x
is

Graph of x sin x

local min

local max

FIGURE 1.2: Graph of x sinx.

session. Note, by the way, that no output actually gets printed to the
screen after these lines are executed. That is because each line ended with
a “;”, the punctuation mark that in MATLAB signifies suppression of
the output. As discussed earlier, this feature is an important tool in cases
where viewing the output is not particularly interesting, as is the case
in this example where 1200 entries of x would otherwise be displayed on
the screen, had we not ended the line that defines x with “;”.

To plot f we apply the plot command:

plot(x, x.*sin(2*x))

Note the “.” before “*” in the above expression. MATLAB plots the
graph as in Figure 1.2. The additional features in the figure are obtained
by the self-explanatory lines in the following program:

h=0.01;

x=0:h:4*pi;

plot(x,x.*sin(x))

axis([0 4*pi -12 12])

xlabel(’0 \leq x \leq 4 \pi’); ylabel(’y axis’)

title(’Graph of x sin x’)

text(4.01318,-5.6,’local min’, ’FontSize’, 18)

text(7.07867,9,’local max’,’FontSize’, 18)

We often need to plot graphs of several functions on the same screen.
The function hold on does the job in MATLAB. To plot the graphs of
sinx, sinhx, and x3 on the same screen, we enter

12 Physical Oceanography: A Mathematical Introduction

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

sin(x)

sinh(x)

x
3

FIGURE 1.3: Graphs of sinx, sinhx and x3 using hold on.

clf

x=0:0.1:1;

plot(x,sin(x),’-’)

hold on

plot(x,sinh(x),’.’)

hold on

plot(x,x.^3,’*’)

legend(’sin(x)’,’sinh(x)’,’x^3’);

The output is shown in Figure 1.3. The hold on command is the right
tool for plotting several graphs on the same screen. It is often desirable,
however, to plot several graphs on the same screen but on different axes.
This is particularly important when the functions, such as velocity, salin-
ity, and temperature, have different dimensions. MATLAB’s subplot

command is ideal for such a setting. subplot’s syntax is subplot(mnp),
which results in subdividing the screen into an m × n partition, with
the p-th graph plotted in the mn subdivision. For example, to plot the
graphs f(x) = xesin(x) and its first and second derivatives, we proceed
as follows:

f=inline(’x.*exp(sin(x))’,’x’)

h=0.01;

x=0:h:4*pi;

subplot(311);

plot(x,f(x));

title(’graph of x.*exp(sin(x))’);

subplot(312)

An Introduction to MATLABR© 13

plot(1/h*diff(f(x)));

title(’graph of the first derivative’);

subplot(313)

plot(1/h^2*diff(diff(f(x))))

title(’graph of the second derivative’);

Figure 1.4 shows the output of this code. In addition to subplot, this
code uses two other MATLAB commands we have not encountered be-
fore: clf simply clears the graphics screen to make it ready for the next
graph to be displayed, and diff is the internal function in MATLAB
that computes the finite difference of the array it acts on. For example

diff([1 3.1 5.4 7])

results in the new array

2.1000 2.3000 1.6000

the differences between the consecutive entries of the original array. No-
tice that the original array has 4 entries, while the resulting array after
the action of diff has one fewer entry. This fact is the main reason why
we chose subplot to plot the three graphs in Figure 1.4: The two ar-
rays x and f(x) have the same size, so plot(x,f(x)) makes good sense
and results in the first graph in Figure 1.4. The second graph in Figure
1.4, however, involves 1/h*diff(f(x))), whose length is one fewer than
f(x) and x, hence the command

plot(x,1/h*diff(f(x)))

results in the error message

??? Error using ==> plot

Vectors must be the same lengths.

On the other hand, the command

plot(1/h*diff(f(x)))

results in the second graph in Figure 1.4 by plotting the array
1/h*diff(f(x)) against the array [1 2 3 ... n], where n is the length
of 1/h*diff*f(x)).

plot is also capable of plotting the graphs of parametrized curves.
For instance, to draw the graph of the curve whose parametrization is
given by

r(t) = 〈sin2 t, cos t〉. t ∈ (0, 2π),

we proceed as follows:

14 Physical Oceanography: A Mathematical Introduction

0 2 4 6 8 10 12 14
0

20

40
graph of x.*exp(sin(x))

0 200 400 600 800 1000 1200 1400
−20

0

20
graph of the first derivative

0 200 400 600 800 1000 1200 1400
−50

0

50
graph of the second derivative

FIGURE 1.4: Graphs of xesin x and its derivatives using subplot.

t=(0:0.01:2*pi);

plot(sin(t).^2, cos(t))

Problems 1.3

1. Plot the graph of the following functions. In each case label the
axes and provide a title.

(a) xe−x

(b) f(x) = sin(5x). What is the period of this function, i.e., what
is the smallest value of T > 0 for which f(x + T) = f(x)?

(c) g(x) = sin(2x)+3 sin(3x). What is the period of this function?

(d) h(x) = sinx + sin
√

2x. Draw the graph of this function on
the intervals (0, 5), (0, 10), (0, 50). Do these graphs give any
indication as to whether h is periodic or not? Why?

(e) sin(2 tanx) − 3 tan(sinx)

(f) J0(x), where J0 is the Bessel function of the first kind of order
zero. (Hint: Use help to learn about besselj.)

(g) x2−2x+3
x3+3x2−x+4

(h) x lnx

2. Let f(x) = xn.

An Introduction to MATLABR© 15

(a) Draw the graph of f for n = 0, 1, 2, ..., 5 for x ∈ (0, 2) on the
same screen.

(b) Explore the for command in MATLAB and use this function
to plot the graphs of f when n ranges from 0 to 10.

3. Consider the function f(x) = e−x
2

with x ∈ (−3, 3).

(a) Plot the graph of this function.

(b) Compare this graph to the graphs of the functions g(x) =
f(x+2) and h(x) = f(x

2
) over the same domain and describe

the scale change among these three graphs.

4. Draw on the same screen the graph of

1

2
(f(x − 2t) + f(x + 2t)),

for t ranging between 0 and 4 at increments of 0.5, where f(x) =
sinx.

5. Consider the function

f(x) = e−x
∫ x

0

sin(y2) dy

(a) Define this function to MATLAB. (Hint: Use help and read
about quad, which is one of several internal functions that
compute integrals functions. Combine quad, quadl or quadv

with inline to define f .)

(b) Evaluate f at x = 0, x = 1 and x = 2.

(c) Plot the graph of f over the interval (0, 10).

6. Plot the graph of the following curves.

(a) r(t) = 〈sin t, cos t〉; t ∈ (0, 2π)

(b) r(t) = 〈5 sin t, cos t〉; t ∈ (0, 2π)

(c) r(t) = 〈sin 5t, cos t〉; t ∈ (0, 2π)

(d) Plot the above three curves on the same screen.

(e) r(t) = 〈t+ sin t, t+ cos t〉; t ∈ (0, 2π)

(f) r(t) = 〈t+ sin5t, cos t〉; t ∈ (0, 2π)

(g) r(t) = 〈t+ sin5t, t− cos t〉; t ∈ (0, 2π)

(h) r(t) = 〈1 + 3 sin2 t, 1 − 4 cos2 t〉; t ∈ (0, 2π)

(i) r(t) = 〈sin5 t, cos5 3t〉; t ∈ (0, 2π)

(j) r(t) = 〈sin3 t, cos3 t〉; t ∈ (0, 2π)

(k) r(t) = 〈sin3 t, cos(10t+ 1)〉; t ∈ (0, 2π)

(l) r(t) = 〈sin5 t, cos(1 + 2t)〉; t ∈ (0, 2π)

16 Physical Oceanography: A Mathematical Introduction

1.4 3-Dimensional Plotting

Plotting graphs of curves and surfaces in three dimensions is quite
similar to two-dimensional plots. The command plot3 replaces plot for
curves in R3. For example, the graph of the curve x = 〈t, cos t, sin 2t〉 is
obtained as follows:

t=0:0.01:10;

and then invoke plot3:

plot3(t, cos(t), sin(2 t)

To plot graphs of surfaces z = f(x, y) on a domain B, we must first
create a mesh for the domain. The command meshgrid(x,y) creates
a two-dimensional grid for B using the arrays x and y. For example,
consider f(x, y) = J3(

√

x2 + y2), where J3 is the third Bessel function
of the first kind. To draw the graph of f in the rectangular domain
(x, y) ∈ (−5, 5) × (−3, 3), first we create two arrays X and Y , each
appropriately related to the above domain

[X, Y] = meshgrid(-5:0.5,-3:0.1:3);

The command mesh, when combined with the above arrays X and Y

through

Z=besselj(3,sqrt(X.*X+Y.*Y));

mesh(X,Y,Z)

renders Figure 1.5. The command

[contours, h]=contour(X,Y,Z)

computes the level curves of this surface and places the level values in
h. When we next apply the option (see MATLAB’s documentation on
contour to read about this particular option)

set(h,’ShowText’,’on’,’TextStep’,get(h,’LevelStep’)*2)

we get the graph in Figure 1.6.
There are many other internal functions in MATLAB that aid in

visualizing curves and surfaces, among them contour3,

pcolor, surf, surfl, shading, colormap

Use help on these commands for more information.

An Introduction to MATLABR© 17

−5

0

5

−4
−2

0
2

4
0

0.2

0.4

0.6

0.8

FIGURE 1.5: An output generated by mesh.

Problems 1.4

1. Draw the graphs of the following curves. In each case choose a
range for the parameter t.

(a) r(t) = 〈1 + t, 1 − 2t, t〉
(b) r(t) = 〈t, sin t, cos2 t〉
(c) r(t) = 〈t sin(t2), t2 cos(t), t〉
(d) r(t) = 〈sinh2 t, t, cosh t〉
(e) r(t) = 〈t− t2, 1

t+1
, 0〉

2. Draw the graphs of each of the following 3D curves.

(a) A circle of radius one centered at the origin and located in
the xy-plane.

(b) A circle of radius two centered at the origin and located in
the z = 5 plane.

(c) Graphs of three circles of radius one on the same screen, one
located in the xy-plane, another in the plane z = 1 , and the
third in the plane z = 4.

(d) Graphs of three circles of radius one on the same screen, one
located in the xy-plane and centered at (0, 3, 0), another in
the plane z = 1 and centered at (−2, 1, 1) , and the third in
the plane z = 4 and centered at (3, 5, 4).

(e) The ellipse located in the xy plane centered at the origin with
major and minor axes of 4 and 5, respectively.

18 Physical Oceanography: A Mathematical Introduction

0
.1

0
.1

0.1

0
.2

0.2

0.2

0.2

0
.3

0
.3

0
.3

0
.3

0
.3

0.3

0.
3

0.3

0.
3

0
.4

0.4

0
.4

0.4

0
.4

0.4

0
.4

0.
4

−5 −4 −3 −2 −1 0 1 2 3 4 5
−3

−2

−1

0

1

2

3

FIGURE 1.6: An output generated by contour and the option set.

(f) The curve of intersection of x2 + y2 = 1 and z = x

3. Draw the graphs of each of the following surfaces.

(a) z = 2x2 − 3y2, on the domain (−2, 2) × (−3, 3)

(b) z =
√

(x− 1)2 + y2 , on the domain (−2, 3) × (−3, 2)

(c) z = cos(x2 + y2), on the domain (−2π, 2π) × (−π, π)

(d) z =
√

1 + sin(x2 + y2), on the domain (−2π, 2π)×(−π, π) on
the same screen with the graph of the function defined in the
previous problem.

(e) z = sin(x2+y2)
2+cos(x) , on the domain (−2π, 2π) × (−2π, 2π)

(f) z = sin(x2+y2) cos(2y), on the domain (−2π, 2π)×(−2π, 2π)

(g) z =
sin

√
x2+y2√

x2+y2
, on the domain (−π, π) × (−π, π).

1.5 M-Files

There are two ways to define functions in MATLAB. One way is to
use the inline command, which works well for relatively simple func-
tions. A second way is to place the definition of a function in a separate

An Introduction to MATLABR© 19

file, which we call an M-file, and call up this file from within MAT-
LAB’s Command Window. The latter approach will be the preferred
one throughout this text.

To see an example of an M-file at work, consider the function

f(x) = ax2 + bx+ c

which you recall we defined in MATLAB using the inline command:

f = inline(’a*x^2 + b*x + c’, ’a’, ’b’, ’c’, ’x’)

Alternatively, we now define this function in an M-file as follows: From
within a MATLAB Command Window first we select File, followed by
New, followed by Blank M-File, to get a blank page in which we will
enter the following lines:

function y=poly(x, a, b, c)

y=a*x.^2 + b*x + c;

Save the M-file by accessing File, followed by Save As, in the M-file
window. MATLAB will select the name poly by default, the name we
pre-selected by its use in the first line of the M-file, and saves the file
as poly.m in the MATLAB directory selected by MATLAB’s Command
Window. Both the name of the M-file as well as its location can be altered
by the user. Returning to the Command Window, if we now enter

poly(2,1,2,1)

MATLAB returns the expected result.

Because we defined the function poly using the “.^” operation, plot-
ting the graph of poly is as simple as

x=1:0.01:5;

plot(x,poly(x,1,2,1))

Problems 1.5

1. Define the function f(x) = cosh(sinx2) in an M-file. Plot the graph
of this function in the interval (0, 3π).

2. Define f(x) = x2 in one M-file and g(x) = sin 2x in another M-file.
Use these two M-files to compute g(f(2)).

20 Physical Oceanography: A Mathematical Introduction

1.6 Loops and Iterations in MATLAB

We are often faced with repeating a computation until a desired
result is reached. The repetition could come from summing a series, or
simply displaying the frames of a graph to generate the sensation of an
animation, or a recursive process when we are seeking a fixed point of a
function, say. MATLAB’s

for ... then

command is suited well for these types of operations. The sequence of
statements in the following code

for i=1:n

statement

statement

....

....

statement

end

will get executed as many times as it takes for the index i to run through
its range, starting with i = 1, and ending with i = n. Here is an example
to illustrate this point. Consider the sum

S =

100
∑

n=1

1

n2

whose value will be close to π2

6
, the exact value of the infinite series

∑∞
n=1

1
n2 . The following code computes the sum:

format long % to display numbers with 15 digits

S=0; % initializes S

n=100;

%

for i=1:n

S=S+1/i^2;

end

%

S

resulting in 1.634983900184892. Replacing n by 1000 and rerunning the

code results in 1.643934566681562. Noting that π2

6 = 1.64493406684823,

An Introduction to MATLABR© 21

we try the code with n = 1, 000, 000 to get better accuracy. The result
is 1.644933066848770, providing us with 6 significant digits of accuracy.

Alternatively, we could use the for end structure to gener-
ate an array X that begins with 1 and ends with 1

n2 , and then apply
MATLAB’s internal function sum to sum the entries of the array:

n=100;

X=[]; % Initialize X as the empty array

%

for i=1:n

X=[X 1/i^2];

end

%

sum(X)

The result is 1.634983900184892, which is the same as the output of the
first code.

Remark: Note the use of X=[X 1/i^2]. This line appends the entry
1/i^2 to the array X every time the loop is executed, so the array X

starts as an empty array, has the entry 1 appended to it after the first
go around, then the entry 1

4 is appended, and so on and so forth. It is
one of the remarkable features of MATLAB that the size of an array can
be changed in the middle of a code, a feature that we will make use of
often throughout this text.

A second example of usage of for ... end arises in plotting and
displaying several graphs. To illustrate, consider the functions fn(x) =
Jn(x), where Jn is the n-th Bessel function of the first kind, which is
labeled besselj(n,x) in MATLAB. To plot the graphs of the first ten
Jn on the interval (0, 10), we proceed as follows:

clf

n=10;

x=0:0.01:10;

for i=1:n

plot(x,besselj(i,x))

hold on

end

The output is shown in Figure 1.7. The graphs displayed in 1.7 can also
be shown as an array of plots using the subplot command, as well as
may be animated using the for ...end command by combining it with
the getframe command. To see an example of this application, consider
the following code, which plots the graphs of sin kx and then animates
them (look up the use of pause and getframe before proceeding to run
this code):

22 Physical Oceanography: A Mathematical Introduction

x=0:0.01:2*pi;

for j=1:10

for k = 1:16

plot(x,sin(k*x))

axis([0 2*pi -1 1])

M(k) = getframe;

pause(0.1)

end

pause(5)

end

As a final example, let’s consider how for ... end could be used to
find a fixed point of function g, a point a that remains fixed under the
action of g, that is,

g(a) = a.

One approach to finding a fixed point of a function is to come up with
a sequence of points {x0, x1, x2, ...} such that xn converges to a. We can
generate one such sequence by the following iterative idea: assuming that
we have a general idea where a may be located, for example by plotting
the graph of g, we start the iteration scheme somewhere relatively close
to a. We call this initial guess x0. The second term of the sequence,
denoted by x1, is simply the image of x0 under g, that is,

x1 = g(x0).

The third element of the sequence, x2, is obtained as the image of x2

under g, i.e., x2 = g(x1). In general, the i-th element xi is the image of
the previous entry xi−1:

xi = f(xi−1).

As you can see, if the sequence {xn} converges to a point a, xn → a
and if g is a continuous function, then g(a) = a. This algorithm is quite
simple and when it works, it works quite well. Here is a code that finds
the smallest positive zero of the function f(x) = x2 − 3x + 2, which
is x = 1 (note that a is a zero of f if an only if a is a fixed point of
g(x) = f(x) + x):

g=inline(’x^2 - 3*x +2+x’,’x’)

xold=1.5; % initial guess

result=[];

for i=1:10

xnew=g(xold);

result=[result; xold xnew];

xold=xnew;

end

result

An Introduction to MATLABR© 23

0 1 2 3 4 5 6 7 8 9 10
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

FIGURE 1.7: The graphs of Bessel functions Jn, n = 1, ..., 10, gener-
ated by combining MATLAB’s for .. end command with hold on.

MATLAB returns

result =

1.500000000000000 1.250000000000000

1.250000000000000 1.062500000000000

1.062500000000000 1.003906250000000

1.003906250000000 1.000015258789063

1.000015258789063 1.000000000232831

1.000000000232831 1.000000000000000

1.000000000000000 1.000000000000000

1.000000000000000 1.000000000000000

1.000000000000000 1.000000000000000

1.000000000000000 1.000000000000000

clearly showing a fast convergence of the sequence to x = 1. We are not
going into the details to describe the conditions on f under which one
is guaranteed a fixed point. An interested reader can consult the text
by Gilbert Strang, listed in the reference section, for information on the
mathematical analysis of the fixed-point approach discussed here.

24 Physical Oceanography: A Mathematical Introduction

Problems 1.6

1. Generate Figure 1.7.

2. Plot the graphs of the functions fn(x) = xn on the interval (0, 1)
for n = 1, 2, ..., 10 on the same screen.

3. Referring to the code in the fixed-point algorithm and the func-
tion f used in the example, alter the initial guess x0 and report
on whether the sequence converges, if it converges fast, or if it
diverges:

(a) x0 = 1.6, x0 = 1.7, x0 = 1.8, x0 = 1.9, x0 = 1.99, x0 = 2,
x0 = 2.1.

(b) x0 = 0.9, x0 = 0.5, x0 = 0.1, x0 = 0 (what happens in this
case?), x0 = −0.1.

(c) Is there a range of initial guesses x0 for which the sequences
converges to the other fixed point of g, or equivalently the
second zero of f , namely x = 2?

4. Consider the sequence of Fibonacci numbers, 1, 1, 2, 3, 5, 8,,
where the nth term of the sequence xn is the sum of the two pre-
vious terms of the sequence, that is

xn = xn−1 + xn−2, n = 3, 4,

and x1 = x2 = 1. Write a MATLAB code to compute the 100th
Fibonacci number.

5. Consider the function f defined by

f(x) =

∫ x

0

e−t tan t dt.

Define this function in MATLAB and plot its graph on the interval
(0, 1). (Hint: Read about the quad command in MATLAB and then
use it to define f , and follow that with for ... end to plot its
graph.)

1.7 Conditional Statements in MATLAB

In Problem 4 of Section 1.6 we encountered the Fibonacci sequence
and explored how to use MATLAB to generate the first n entries of this

An Introduction to MATLABR© 25

sequence. In addition to and in combination with the for end

command there are two conditional commands in MATLAB that are
helpful in controlling how information is passed through various state-
ments we wish to execute. The first conditional command, while ...

end, whose syntax is

while Condition

Statement

Statement

....

....

Statement

end

gives the user the freedom to have MATLAB execute the Statements

in the body of the command until the Condition constraint is met. A
typical usage of this statement is as follows

S=0;

while S < 100

S=S^2 + 1

end

The output shows that S takes on values 1, 2, 5, 26, 677: note that
the final value of S is larger than 100. Why doesn’t that contradict the
S < 100 condition set in while?

The second conditional command in MATLAB has the structure if

... else ... end or if ... elseif ... elseif ... end structure.
Generally these commands look like

if Condition

Statement

Statement

....

....

Statement

elseif Condition

Statement

Statement

....

....

Statement

end

A typical use for the if ... else ... end structure is in defining func-
tions that need to satisfy certain conditions in different parts of their

26 Physical Oceanography: A Mathematical Introduction

domain. The absolute value function

f(x) =

{

−x if x < 0,
x otherwise.

(1.1)

is an example of such a function. Here is one way of defining this function:

function y=absvalue(x)

%

if x < 0

y = -x;

else

y = x;

end

If we save these lines in an M-file labeled absvalue.m, we can then call it
up in MATLAB’s Command Window for evaluation. For example, here
is how one proceeds to plot a graph of this function (look up the use of
length in MATLAB):

x=-2:0.1:2;

for i=1:length(x)

z(i) = absvalue(x(i));

end

plot(x,z)

which leads to the familiar graph of |x|.
Note that we did not use the array approach to plotting the graph

of f , that is, we did not use

plot(x,absvalue(x))

because if we had, we would get the wrong graph! In fact, MATLAB will
return the graph of f(x) = x rather than f(x) = |x|. To see where the
issue lies, try

absvalue([-2 2])

MATLAB returns the unexpected array

[-2 2]

rather than [2 2]. One reason for this is that MATLAB’s if command
is not “vectorized” in the way we have used it. To come up with a better
definition of the absolute value function in MATLAB we take a differ-
ent approach based on the concept of relational operators. A relational
operator provides an output of “0” if the statement is false, and a “1”
if the statement is true. For instance

An Introduction to MATLABR© 27

-3 > 0

results in 0, while

-3 < 0

results in 1. The significance of relational operators is that they apply
equally well to arrays. Hence,

[-2 2] > 0

returns [0 1]. We can then use these relations to define functions that
have different definitions on different parts of their domain. For example,
the unit step function defined by

UnitStep(x) =

{

0 if x < 0,
1 otherwise.

(1.2)

can now be defined in MATLAB’s Command Window simply by

UnitStep = @(x) (x>=0)

(recall the use of @, the function handle constructor, which is quite pow-
erful in defining functions.) Or, equivalently, we can define an M-file,
called UnitStep.m, as follows:

function y=UnitStep(x)

%

y=(x>=0);

In either case we have succeeded in defining a function that is “off” as
long as x < 0 and is turned “on” when x ≥ 0. To test that this function
is array-enabled, we try the expression

UnitStep([-3 -2 0 1 3])

which returns the expected array

ans =

0 0 1 1 1

With UnitStep.m in hand, we can define the absolute value function as
follows:

f(x) = −x(1 − UnitStep(x)) + xUnitStep(x),

which can defined in MATLAB’s Command Window by

VecAbsAal = @(x) -x.*(1-UnitStep(x))+x.*UnitStep(x)

28 Physical Oceanography: A Mathematical Introduction

or as an M-file, named VecAbsVal.m, as

function y = VecAbsVal(x)

%

y = -x.*(1-UnitStep(x))+x.*UnitStep(x);

To test that we have the right definition, try

x=-3:0.1:3;

plot(x,VecAbsVal(x))

to get the familiar graph of the absolute value function.

Problems 1.7

1. Plot the graphs of the following functions first using the if ...

then command and next using the UnitStep function:

a) f(x) =

{

2x− 1 if x > 0,
x otherwise

,

b) g(x) =







1 if x < −1,
−1 if − 1 ≤ x < 2
2 otherwise.

2. Let f(x) = x be defined on the interval (0, 1). Extend this function
as an even function to the interval (−1, 0). Use the conditional
capabilities of MATLAB to define the extended function and to
plot its graph.

3. Let f(x) = x2 be defined on the interval (0, 1). Extend this function
as an odd function to the interval (−1, 0), and then periodically
with period 2 to the rest of the real line. Use the conditional ca-
pabilities of MATLAB to define the extended function and to plot
its graph on the interval (−8, 8).

1.8 Fourier Series in MATLAB

We are often faced with computing a series of the form

SN (x) =

N
∑

n=1

an sin
nπx

L
(1.3)

An Introduction to MATLABR© 29

where N could be a relatively large integer, say N = 100, L is a given
real number defining a domain of interest, and an’s are coefficients that
may be computed beforehand; a typical example is when an’s are the
Fourier sine coefficients of a given function f defined on the interval
(0, L), that is,

an =
2

L

∫ L

0

f(x) sin
nπx

L
dx. (1.4)

The following process and code shows one way we may go about com-
puting and displaying results of the partial sum of the type shown in
(1.3); start with a general M-file that generates the Fourier coefficients
an’s in (1.4):

function a=FourierCoefficients(N,L,f)

%

for n=1:N

a(n)=2/L*quad(@(x) f(x).*sin(n*pi*x/L),0,L);

end

We note that in place of quad we could use a host of other integrating
functions within MATLAB, including quadv, quadl and quadgk. The
latter is in fact the integrator of choice when dealing with highly oscilla-
tory integrands, which is often the case when we compute high frequency
Fourier coefficients.

For concreteness, let’s consider the function f defined by f(x) =
x2 + 1 whose Fourier sine series we seek in the interval (0, 5). First let
N = 8 and compute S8 (see (1.3)) as follows:

L=5;

f=inline(’1 + x.^2’,’x’);

a=FourierCoefficients(8,L,f)

These lines gives us the first eight Fourier sine coefficients:

a =

10.7384 -7.9577 5.4907 -3.9789 3.3861 -2.6526

2.4367 -1.9894

To see how S8 compares with f itself, we plot their graphs:

x=0:0.01:L;

plot(x,f(x))

hold on

plot(x,sum(a*sin((1:8)’*pi*x/L),1))

30 Physical Oceanography: A Mathematical Introduction

Figure 1.8 shows the graph of S8 superimposed on the graph of f , show-
ing the expected behavior of the graph of S8, weaving around the graph
of f . Since f does not satisfy the boundary conditions of S8, that is
since f(0) and f(5) do not vanish, the well-known Gibbs phenomenon
appears at both ends of the interval (0, 5). This effect is observed better
in Figure 1.9 when we display the graphs of S16 and S32. The latter
figure is obtained by executing the following lines in MATLAB:

clf;

f=inline(’1+x.^2’,’x’);

L=5;

x=0:0.01:L;

plot(x,f(x));

hold on

for i=1:3

N=2^(2+i);

a=FourierCoefficients(N,L,f);

plot(x,sum(a*sin((1:N)’*pi*x/L),1))

end

The extension of the previous MATLAB programs to two or three space
dimensions is routine. For instance, the N -th Fourier sine partial sum of
a function f(x, y) in the domain (0, a) × (0, b) is given by

SN (x, y) =

N
∑

m=1

N
∑

n=1

amn sin
mπx

a
sin

nπy

b
, (1.5)

where the coefficients amn are obtained by computing the following dou-
ble integrals:

amn =
4

ab

∫ b

0

∫ a

0

[

f(x, y) sin
mπx

a
sin

nπy

b

]

dx dy (1.6)

Consider, for example, the function f given by

f(x, y) = e−(1−x)2(1−y)2 sinπx sin 2πy+

+e−(1.5−x)2(2.3−y)2 sin 2πx sinπy, (1.7)

in the domain (0, 2) × (0, 3). Figure 1.10 shows the contours of this
function. The Fourier sine approximation of this function with N = 10,
say, is obtained by numerically computing the integrals in the formula
(1.6) for amn:

amn =
1

3

∫ 3

0

∫ 2

0

(

e−(1−x)2(1−y)2 sinπx sin 2πy+

An Introduction to MATLABR© 31

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−5

0

5

10

15

20

25

30

FIGURE 1.8: The graphs of f(x) = 1 + x2 and its 8-th Fourier sine
partial sum S8 in the interval (0, 5).

e−(1.5−x)2(2.3−y)2 sin 2πx sinπy
)

sin
mπx

2
sin

nπy

3
dx dy.

(1.8)
the following MATLAB code computes the coefficients in (1.8) and plots
the contours of S10(x, y) defined in (1.5), see Figure (1.11), as well as
the contours of the error between f and S10, which is shown in Figure
1.12:

clear all

clf

f=inline(’exp(-(1-x).^2.*(1-y).^2).*sin(pi*x).*sin(2*pi*y)+

exp(-(1.5-x).^2.*(2.3-y).^2).*sin(2*pi*x).*

sin(pi*y)’,’x’,’y’);

% the above lines need to be entered as a single line

for n=1:10

for m=1:10

a(m,n) = 4/(2*3)*dblquad(@(x,y) f(x,y).*

sin(m*pi*x/2).*sin(n*pi*y/3),0,2,0,3);

% the above 2 lines need to be entered as a single line

end

32 Physical Oceanography: A Mathematical Introduction

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−5

0

5

10

15

20

25

30

FIGURE 1.9: The graphs of f(x) = 1 + x2 and its eighth, sixteenth
and thirty second Fourier sine partial sums in the interval (0, 5).

end

S=0;

[x,y]=meshgrid(0:0.01:2,0:0.01:3);

for n=1:10

for m=1:10

S=S+a(m,n)*sin(m*pi*x/2).*sin(n*pi*y/3);

end

end

contour(x,y,S)

exact=f(x,y);

contour(x,y,exact)

error=max(max(abs(exact-S)))

contour(x,y,abs(exact-S))

Problems 1.8

1. Generate the graphs in Figures 1.8 and 1.9.

An Introduction to MATLABR© 33

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

3

FIGURE 1.10: Sample contours of the function f defined in (1.7).

2. Define the absolute error E between two M ×N arrays A and B
by

E = max1≤i≤Mmax1≤j≤N |aij − bij| (1.9)

Referring to f , S8, S16 and S32 in Figures 1.8 and 1.9, compute
the error E between f and each of the three partial sums. In each
case use 100 points to sample f and the partial sums.

3. Use MATLAB and find the eighth, the sixteenth, and the thirty
second partial sums of Fourier sine series of each function f defined
below. In each case plot the graphs of all four functions on the same
screen. Compute the error E8, E16 and E32 (see the definition in
(1.9)), where the domain is sampled at a hundred points.

(a)

f(x) =

{

1 if 0 < x < 2,
3 if 2 < x < 5.

(b)

f(x) =

{

x if 0 < x < 1,
2 − x if 1 ≤ x < 2.

34 Physical Oceanography: A Mathematical Introduction

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

3

FIGURE 1.11: Sample contours of the function S10 as defined in (1.5).

(c) f(x) = cosx, x ∈ (0, 1).

4. The Fourier cosine series of a function f in the interval (0, L) is
defined in much the same way as its Fourier sine series; the main
difference being that cos nπxL replaces the equivalent sine functions;

CN =
N
∑

n=0

bn cos
nπx

L
(1.10)

where (note that sum in (1.10) begins with n = 0)

b0 =
1

L

∫ L

0

f(x) dx,

and

bn =
2

L

∫ L

0

f(x) cos
nπx

L
dx, n = 1, 2, ... (1.11)

Find the Fourier cosine partial sum of the following functions. In
each case compute the associated Fourier sine series and plot the
graphs of the f , SN and CN on the same screen.

An Introduction to MATLABR© 35

0.002

0
.0

0
2

0.002

0.002

0.002

0.
00

2 0.002

0
.0

0
2

0
.0

0
2

0.002

0.0020.002

0.002

0.002

0
.0

0
2

0.002

0.002

0.002

0.002

0.002

0.002
0.002

0.002

0.002

0.002
0.002

0.0020.002

0.0
02

0.002

0.002

0.002

0.002
0.002

0.002

0.002

0.002

0.002

0.002

0.002

0.002

0.002

0.002

0.002

0.002

0.002

0.002

0.002

0.
00

2

0.002

0.002

0
.0

0
2

0.
00

2
0
.0

0
2

0
.0

0
4

0.004

0.
00

4

0.004 0
.0

0
4

0.004

0.004

0.004

0.004

0.004

0.004

0.004

0.004
0.004

0
.0

0
4

0.004

0.004

0.004

0.004

0.004

0.004

0.004

0.004

0.004

0.
00

4

0.004

0
.0

0
4

0.004

0.004

0.004

0.004

0.004

0.004

0
.0

0
4

0.004

0.004

0.004

0
.0

0
4

0.006

0
.0

0
6

0.006

0
.0

0
6

0.006

0.006

0.006

0.006

0.006

0.006

0.0060.006

0
.0

0
6

0.0
06

0.006

0
.0

0
6

0.006

0.006

0.006
0.006

0.006

0.006

0.006

0.008

0
.0

0
8

0.008

0.008

0.008
0.0080.008

0
.0

0
8

0.0
08

0.008
0.008

0
.0

0
8

0.008

0.01

0
.0

1
0.01

0.01

0.01
0.01

0.01 0.
01

0.01
0.01

0
.0

1

0.01

0.012

0
.0

1
2

0.012

0.
01

20
.0

1
2

0.012

0.014

0
.0

1
4

0.
01

4

0.014

0.014
0
.0

1
6

0
.0

1
6

0.016
0.0160.018 0.018
0.02

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

3

FIGURE 1.12: Contours of the absolute error between f and S10.

(a) f(x) = 1, defined in the interval (0, 2), and N = 8.

(b)

f(x) =

{

1 if 0 < x < 1,
2 if 1 ≤ x < 3,

and N = 16.

(c) f(x) = x2 defined in the interval (0, 2), and N = 32.

5. Compute the Fourier sine series of the following functions. In each
case plot the contours of the function f and its specified partial
sum.

(a) f(x, y) = xy(1 − x)(2 − y), in the domain (0, 1) × (0, 2), and
N = 8.

(b) f(x, y) = sin(x2 + y2), in the domain (0, 1)× (0, 1), and N =
32.

(c) f(x, y) =

{

1 if (x− 2)2 + (y − 2)2 < 1,
0 otherwise,

in the domain

(0, 4) × (0, 4), and N = 32.

36 Physical Oceanography: A Mathematical Introduction

1.9 Solving Differential Equations

We will be solving ordinary differential equations throughout this
text and will often apply MATLAB’s ODE solvers extensively. ode45 is
the main internal function we will employ, which we now introduce in
the context of simple examples.

ode45 uses a numerical algorithm (based on the standard Runge-
Kutta scheme) and is capable of computing very accurate approximate
solutions to linear as well as nonlinear initial value problems for systems
of differential equations. Here is an example. Let y(t) be a solution to
the forced nonlinear pendulum equation

y′′ + αy′ + sin y = A cosωt, y(0) = 0, y′(0) = 1, (1.12)

where α, ω and A are physical constants. To prepare this initial value
problem for ode45 we must first convert the second order differen-
tial equation to a first order system: Define x by x(t) = y′(t). Then
x′(t) = y′′(t), which from the original differential equation yields x′ =
−αx − sin y + A cosωt. Thus the initial value problem is equivalent to
the following first order system:

y′ = x, x′ = −αx− sin y + A cosωt, y(0) = 0, x(0) = 1. (1.13)

The following M-file, labeled pendulum.m, contains the information in
(1.13):

function yprime=pendulum(t,z);

global alpha omega A

yprime=[z(2); -alpha*z(2)-sin(z(1))-A*cos(omega*t)];

In the above M-file we have used the array z, with its two components
[z(1) z(2)], to stand for the two unknowns (y, x) in (1.13). We have
also introduced global, which is quite a useful function in MATLAB,
allowing for sharing values for the announced parameters, in this case
alpha, omega, and A, to have the same values in the M-file as they have
in the Command Window. Next, in the Command Window we enter the
lines

global alpha omega A

%

alpha = 0.1;

omega=3.2;

A=14;

An Introduction to MATLABR© 37

−4 −3 −2 −1 0 1 2 3 4
−6

−4

−2

0

2

4

6

8

FIGURE 1.13: The phase plane diagram of the solution to y′′ +αy′ +
sin y = A cosωt, with α = 0.1, ω = 3.2 and A = 14.

just to have concrete values for these parameters. Finally we enter the
line

[t,z] = ode45(@pendulum,[0 30],[0;1]);

which solves the initial value problem in (1.13) for 30 units of time for
the stated initial parameter values. To get the phase portrait of this
particular solution, i.e., the graph of y versus x, we plot the first column
in z versus its second column:

plot(z(:,1), z(:,2))

Here “:” is the wild card character in MATLAB; thus z(:,1) accesses
all entries in the first column of z. Similarly, z(:,2) stands for the entire
second column of z. Figure 1.13 shows the output.

38 Physical Oceanography: A Mathematical Introduction

Problems 1.9

1. Find the solution of the following equation analytically and by
using ode45. Compare the solutions by graphing both solutions on
the same screen. In each case supply a final value of t.

(a) y′′ + y = 0, y(0) = 0, y′(0) = 1.

(b) x′′ + x′ + x = 0, x(0) = 1, x′(0) = 0.

(c) x′′ + x = sin 2t, x(0) = x′(0) = 0.

(d) y′′ + y = sin t, x(0) = x′(0) = 0.

2. Use ode45 and draw the trajectories, i.e., x(t), x′(t) of the following
differential systems. In each case supply a final value of t.

(a) y′′ + 0.1y′ + sin y = cos t, y(0) = 0, y′(0) = 0.

(b) y′′ + 0.1y′ + sin y = cos 20t, y(0) = 0, y′(0) = o.

1.10 Concluding Remarks

We have barely touched on what a powerful resource MATLAB is.
We will continue introducing the capabilities of this language throughout
the text, but cannot emphasize enough that so many teachers, authors
and researchers have written excellent online MATLAB tutorials, which
are often available on the World Wide Web free of cost. Here we mention
just a handful that deserve special attention for a beginner user, realizing
that the URL for these web sites may have changed and the reader is
strongly encouraged to consult his or her favorite search engine to start
a new search for MATLAB tutorials:

1. http://www.uib.no/People/ngftf/CV/Misc/mat eng.pdf

2. http://mechanical.poly.edu/faculty/vkapila/matlabtutor.htm

3. http://www.maths.dundee.ac.uk/˜ ftp/na-reports/MatlabNotes.pdf

4. http://www.math.ufl.edu/help/matlab-tutorial/

In addition to these resources, two excellent books, Numerical Com-
puting with MATLAB and Experiments with MATLAB, by Cleve Moler,
the founder of MATLAB, are available for download.

An Introduction to MATLABR© 39

1.11 References

1. Pratap, R., Getting Started with MATLAB 7: A Quick Introduction
for Scientists and Engineers, The Oxford Series in Electrical and
Computer Engineering, Oxford, 2005.

2. Higham, D., Higham, N., MATLAB Guide, SIAM, Philadelphia,
2005

3. Strang, G., Introduction to Applied Mathematics, Wellesley-
Cambridge Press, 1987.

4. Moler, C., Numerical Computing with MATLAB, may be down-
loaded from www.mathworks.com/moler.

5. Moler, C., Experiments with MATLAB, may be downloaded from
www.mathworks.com/moler.

Chapter 2

Matrix Algebra

In this chapter we develop the basic concepts and tools in matrix algebra,
including vector spaces and subspaces, systems of algebraic equations,
determinants and inverse of matrices, Gaussian elimination, and eigen-
values and eigenvectors. Each mathematical topic is supplemented with
the elementary MATLAB functions that relate to it.

2.1 Vectors and Matrices

A vector is a quantity that has magnitude and direction, while a
scalar is a quantity with magnitude only. As is standard in science,
scalars are often denoted by Latin or Greek letters, such as a, b, α and
β, and vectors are displayed in boldface – x, y, and e2. Physical con-
cepts such as force, velocity, and acceleration are represented by vectors,
while quantities such as mass, pressure, temperature, and salinity are
examples of scalars.

We adopt the natural geometric interpretation of a vector v in the
plane or the three-dimensional space, as an arrow that begins at the
origin of the coordinate axes, is parallel to the direction of the vector,
and has its length equal to the magnitude of the vector. In this setting,
we use the coordinates of the endpoint of the arrow to identify the vector.
For example

v = 〈1,−2, 2〉
is the vector that originates at (0, 0, 0) and ends up at (1,−2, 2). Note
the use of 〈 and 〉 to denote a vector, while (and) are used to denote
coordinates of positions. With this interpretation in mind, the length
or the magnitude of the vector v = 〈a1, a2, a3〉, denoted by ||v||, is the
distance from (0, 0, 0) to (a1, a2, a3):

||v|| =
√

a2
1 + a2

2 + a2
3. (2.1)

Although vectors in physical settings typically have two or three com-

41

42 Physical Oceanography: A Mathematical Introduction

ponents, we often encounter vectors that have n components, where n
can be any positive integer, so a vector v may appear as

v = 〈a1, a2, ..., an〉.

The magnitude of v is determined the same way as in (2.1)

||v|| =
√

a2
1 + a2

2 + ...+ a2
n =

√

√

√

√

n
∑

i=1

a2
i .

Matrices are simply rectangular arrays of numbers delimited by
square brackets. A few examples are

A =

[√
2 2

−3.1 4

]

, B =

[

a1 a2 a3

b1 b2 b3

]

, C =





sinx sin 2x
sin 2x sin 4x
sin 3x sin 6x



 ,

or

D =













4 −1 0 0 1 + i
−1 4 −1 0 0

0 −1 4 −1 0
0 0 −1 4 −1

1 − i 0 0 −1 4













, E =





1/2 1/3 1/4
1/3 1/4 1/5
1/4 1/5 1/6



 .

Each of these matrices has a certain number of rows and columns; Matrix
A is a 2 by 2 matrix, consisting of two rows and two columns. Similarly,
matrices B, C,D and E are 2 by 3, 3 by 2, 5 by 5 and 3 by 3, respectively.
From now on we use the notation m× n to denote an m by n matrix.

Each entry of a matrix is identified by the row and column positions
it occupies, so the (1, 1) (pronounced “one one”) entry of A is

√
2, its

(1, 2) entry is 2, its (2, 1) entry −3.1, and so on. It is common to denote
the (i, j)-th entry of a matrix A by aij, so, referring back to matrix A
defined above, we write

a11 =
√

2, a12 = 2, a21 = −3.1, a22 = 4.

Vectors could also be viewed as matrices having only one row or one
column. For instance the vector v = 〈1,−2, 2〉 can also be identified by
the matrices V1 or V2 defined as

V1 =
[

1 −2 2
]

, V2 =





1
−2

2



 .

The appropriate identification is often determined by the problem con-
text.

Matrix Algebra 43

2.2 Vector Operations

Based on experience with modeling physical problems, we have an
understanding and appreciation of where vectors come from and why
we should represent and manipulate them mathematically. The typical
operations of vector addition and scalar multiplication, as well as the
various vector multiplications, have their origin in well-known physical
settings. To a large extent, similar interpretations exist in matrix algebra,
which we now address.

Given a vector v and a scalar α, an element in the set of real numbers
R or complex numbers C, we define αv, the scalar product of α and v,
as the vector that has magnitude |α| ||v|| and is otherwise parallel to v.
If v = 〈a1, a2, a3〉, we find that

αv = 〈αa1, αa2, αa3〉.

The sum or vector addition v1 + v2 of the two vectors v1 and v2 is
the vector we obtain as the main diagonal of the parallelogram con-
structed based on the two vectors v1 and v2. This geometric construct
is equivalent to the following algebraic operation: Let v1 = 〈a1, a2, a3〉
and v2 = 〈b1, b2, b3〉. Then

v1 + v2 = 〈a1 + b1, a2 + b2, a3 + b3〉.

Similarly, the sum of two vectors v1 = 〈a1, a2, ..., an〉 and v2 =
〈b1, b2, ..., bn〉 is the vector

v1 + v2 = 〈a1 + b1, a2 + b2, ..., an + bn〉.

There are two vector multiplications that we need to consider. First,
the dot or the inner product of the two vectors v1 and v2, denoted by
v1 · v2, is defined by

v1 · v2 = ||v1|| ||v2|| cosθ,

where θ is the angle between the two vectors. This operation has two
significant geometric interpretations: a) when ||v1|| = 1, v1 · v2 equals
the length of the projection of v2 on v1, and b) v1 · v2 vanishes if and
only if the vectors are orthogonal. In component form the dot product
takes the form

v1 · v2 =
3
∑

i=1

aibi,

44 Physical Oceanography: A Mathematical Introduction

which has the straightforward extension to n-dimensional vectors:

v1 · v2 =

n
∑

i=1

aibi.

The second way to consider the product of two vectors v1 =
〈a1, a2, a3〉 and v2 = 〈b1, b2, b3〉 is by forming their vector or cross prod-
uct. Denoted by v1×v2, the cross product of v1 and v2 is a vector whose
magnitude is

||v1|| ||v2|| sin θ
and whose direction is perpendicular to both v1 and v2, and uniquely
determined by the right-hand rule. In component form this vector takes
the form

v1 × v2 = 〈a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1〉. (2.2)

Geometrically, this operation provides information about how close two
vectors are to being parallel. In particular, v1 × v2 = 0 if and only if v1

and v2 are parallel.

Problems 2.2

1. Let a = 〈1,−2〉, b = 〈3,−1〉.

(a) Find ||a||, ||b||, ||3a + 2b||,
(b) a · a, a · b, (2a) · (−3b),

(c) Extend a and b to be three-dimensional vectors by setting
their third components to zero. Compute a×b, b×a, a× a,
(a + b) × a.

2. Let a = 〈2.1,−2, 3〉, b = 〈3.2,−1.1, 4.3〉.

(a) Find ||a||, ||b||, ||αa + b||, where α is a real number,

(b) a · a, ||a||, a · b,

(c) Compute a × b, a× a, b× a,

(d) Compute a · (b × c) where c = 〈1, 1, 1〉.

3. Let a = 〈a1, a2, a3〉, b = 〈b1, b2, b3〉, and c = 〈c1, c2, c3〉.

(a) Show that a× b = −b × a.

(b) Is a × (b × c) = (a × b) × c? Either prove the result or give
a counterexample.

4. Let a = 〈a1, a2, a3〉, b = 〈b1, b2, b3〉, and c = 〈c1, c2, c3〉. Show that

Matrix Algebra 45

(a) a · a = ||a||2

(b) a · (b× c) = (a× b) · c.
(c) a ·(b×c) is the volume of the parallelepiped constructed from

a, b and c.

(d) a × (b × c) = (a · c)b − (a · b)c.

5. Let e1 = 〈1, 0, 0〉, e2 = 〈0, 1, 0〉, and e3 = 〈0, 0, 1〉.

(a) Show that ei·ej = δij , where δ is the Kronecker delta function,
and is defined by δij = 1 if i = j and zero otherwise.

(b) Show that e1 × e2 = e3, e2 × e3 = e1 and e3 × e1 = e2.

(c) Let a = 〈a1, a2, a3〉. Note that a = a1e1+a2e2+a3e3. Let b =
〈b1, b2, b3〉. Using the information in parts (a) and (b), show
that a×b = (a2b3−a3b2)e1+(a3b1−a1b3)e2+(a1b2−a2b1)e3.
Compare this result with the formula in (2.2).

6. Let u = 〈u1, u2, u3〉 and e3 as defined in Problem (5a). Compute
w = e3 × (e3 × u). How is w related to u geometrically?

2.3 Matrix Operations

The concepts of matrix addition and scalar multiplication are bor-
rowed directly from their counterparts in vectors: Given two m× n ma-
trices A and B, their sum, A+B, is another m× n matrix whose ij-th
entry is the sum of the ij-th entries of A and B:

A = [aij], B = [bij], then A+ B = [aij + bij].

Similarly, the scalar product of α and A, denoted by αA, is defined as
the matrix whose ij-th entry is αaij:

A = [aij], α ∈ R, then αA = [αaij].

The operation of dot product of vectors is the basis for the definition
of matrix multiplication. Consider the two matrices A and B, with A an
m× p matrix and B a p× n matrix. We define C, the product of A and
B, as the m × n matrix whose (i, j)-th entry is the dot product of the
i-th row of A and the j-th column of B, i. e.,

cij =

p
∑

k=1

aikbkj.

46 Physical Oceanography: A Mathematical Introduction

For example, consider the matrices

A =

[

1 −2 2
0 1 −1

]

, B =





0 1
−1 1

1 3



 .

Then

C = AB =

[

1 −2 2
0 1 −1

]





0 1
−1 1

1 3



 =

[

4 5
−2 −2

]

,

a fact we verify in MATLAB by entering the following lines:

A=[1 -2 2;0 1 -1]

B=[0 1;-1 1;1 3]

A*B

One of the important features of matrix multiplication is that this op-
eration is not commutative, that is, AB does not necessarily equal BA.
To see an example, simply compute BA in the previous example:

BA =





0 1
−1 1

1 3





[

1 −2 2
0 1 −1

]

=





0 1 −1
−1 3 −3

1 1 −1



 .

Note that BA looks quite different from AB, including having a different
size and shape.

The definition of matrix multiplication is intimately related to how
one represents systems of linear algebraic equations. Consider, for in-
stance, the system of equations







2x+ 3y − z = 1,
−3x+ 2y + 4z = −2,
x+ y + z = 0.

(2.3)

The left side of each equation in (2.3) is the dot product of two vectors,
one vector consisting of the variables x, y and z, and the other the vector
of the coefficients. In this way (2.3) is rewritten as







〈2, 3,−1〉 · 〈x, y, z〉 = 1,
〈−3, 2, 4〉 · 〈x, y, z〉 = −2,
〈1, 1, 1〉 · 〈x, y, z〉 = 0.

(2.4)

Recalling that the dot product of two vectors is at the essence of matrix

Matrix Algebra 47

multiplication, we now rewrite (2.4) in matrix notation. First we con-
struct a 3× 3 matrix A, each row of which consists of the coefficients of
x, y and z in a corresponding equation:

A =





2 3 −1
−3 2 4

1 1 1



 .

Next write the variables x, y and z as a 3× 1 column vector and denote
it by x:

x =





x
y
z



 ,

and finally we construct a second column vector to include the input
variables and denote it by b:

b =





1
−2
0



 .

The system of linear equations (2.3) is now equivalent to the matrix
equation

Ax = b, (2.5)

as it can easily be verified.

This strategy generalizes to any system of linear equations. Consider
the system of linear equations consisting of m equations in n unknowns:























a11x1 + a12x2 + ...+ a1nxn = b1,
a21x1 + a22x2 + ...+ a2nxn = b2,

... = ...

... = ...
am1x1 + am2x2 + ...+ amnxn = bm.

(2.6)

This system is written in the form Ax = b with

A =









a11 a12 ... am1

a21 a22 ... am2

...
am1 am2 ... amn









, x =









x1

x2

...
xm









b =









b1
b2
...
bm









(2.7)

In many examples of physical significance the matrix A in (2.7) will be

48 Physical Oceanography: A Mathematical Introduction

square (i.e., m = n). One such example is






























2x1 − x2 = h2f(t1),
−x1 + 2x2 − x3 = h2f(t2),
−x2 + 2x3 − x4 = h2f(t3),

... = ...

... = ...
−xn−1 + 2xn = h2f(tn),

(2.8)

where the typical i-th equation is

−xi−1 + 2xi − xi+1 = h2f(ti). (2.9)

System (2.8), as we see later, results from the numerical discretization
of the boundary value problem −x′′(t) = f(t), with x(a) = x(b) = 0.
This system is of the form (2.5) with

A =





















2 −1 0 0 0
−1 2 −1 0 0 ... 0
0 −1 2 −1 0 ... 0
...
...
... −1 2 −1
0 0 0 −1 2





















, and

x =













x1

x2

...

...
xm













, b = h2













f(x1)
f(x2)
...
...

f(xn)













. (2.10)

The matrix A in (2.10) has several interesting properties which we will
study in later sections and chapters. One of these features is its sparsity,
that so many of its entries are zero; special care is taken in the design of
MATLAB to handle such matrices very efficiently, allowing us to carry
out large calculations with relative ease, as we will see in several instances
later in the text.

Returning to (2.5), we note that the equation Ax = b has a similar
structure to the scalar equation ax = b, whose solution is x = b

a when
a 6= 0. This analogy will be the source of inspiration for seeking solutions
to the matrix equation Ax = b in the form

x = A−1b

once we have a proper definition of A−1, the inverse of A, a concept we
will take up later in this chapter.

Matrix Algebra 49

We end this section with a few definitions of special matrices:
The zero matrix, denoted by Z, is a matrix with all entries equal to

zero. The lines

n=10;

zmatrix=zeros(n);

generate a 10 × 10 zero matrix, which we have labeled zmatrix.
An m× n matrix is called a square matrix if m = n.
Given an n × n matrix A, the entries aii, i = 1, ..., n constitute the

diagonal of that matrix. Generally, when m is non-negative, the entries
ai,i+m, i = 1, ..., n−m, comprise the m-th superdiagonal of A. Similarly,
the entries ai+m,i, i = 1, ..., n−m, with m non-negative, form the m-th
subdiagonal of A.

The matrix A in (2.10) has only three non-zero diagonals; the main
diagonal, all of whose entries are 2, a superdiagonal and a subdiagonal
of only −1’s.

Mimicking MATLAB’s notation, we may denote by

diag(a, m)

to mean a matrix with zero entries everywhere, except on the m-th
diagonal where the entries of the vector a are placed. For example,

A = diag(〈2,−7, 3,−5〉,−2)

is the 6 × 6 matrix

A =

















0 0 0 0 0 0
0 0 0 0 0 0
2 0 0 0 0 0
0 −7 0 0 0 0
0 0 3 0 0 0
0 0 0 −5 0 0

















.

Note that a negativem in this notation denotes a subdiagonal, a positive
m a superdiagonal. Hence,

B = diag(〈2, 2〉, 1)

is the 3 × 3 matrix

B =





0 2 0
0 0 2
0 0 0



 .

The following MATLAB lines reach the same conclusions:

50 Physical Oceanography: A Mathematical Introduction

a=[2 -7 3 -5];

A=diag(a,-2);

B=diag([2 2],1];

The Identity matrix, denoted by I, is an n × n matrix with ones on
the diagonal and zeros elsewhere. The command eye(n) in MATLAB
generates an n × n identity matrix.

A square matrix is called a diagonal matrix if aij = 0 if i 6= j; so a
diagonal matrix is one whose nonzero entries may reside on the diagonal.

An n × n matrix is called upper triangular if aij = 0 with i > j.
Similarly, an n×n matrix is called lower triangular if aij = 0 with i < j.
The matrix A in (2.10), for example, may be written as the sum of three
matrices, D, a diagonal matrix, and L and U , which are lower and upper
triangular, respectively, as follows

A = D + L + U

where
D = 2I
L = diag(v,−1)
U = diag(v, 1),

where

v = 〈−1,−1, ...,−1〉

is a 1 × n− 1 vector with all entries equaling −1. The following lines in
MATLAB generate a 10 × 10 version of A in (2.10):

n = 10;

a=-ones(n-1,1);

A=2*eye(n)+diag(a,-1)+diag(a,1);

Given a matrix A we construct AT , called the transpose of A, by in-

terchanging the rows and columns of A. For example, if A =

[

1 2
3 4

]

,

then AT =

[

1 3
2 4

]

. The transpose operation in MATLAB is accom-

plished by placing an ’ after the matrix:

A=[1 2; 3 4];

B= A’; % B is the transpose of A

A square matrix A is said to be symmetric ifA = AT ; the matrixA in

(2.10), for example, is symmetric, while A =

[

a 2
3 b

]

is not. It is easy

to show that the sum of two symmetric matrices is another symmetric

Matrix Algebra 51

matrix, while the product of two symmetric matrices may not in general
be symmetric.

Given a complex-valued matrix A, the matrix Ā is the matrix one ob-
tains by taking the complex conjugate of each entry of A. For example, if

A =

[

1 + i 2
−3 − i 2 + 3i

]

, then Ā =

[

1 − i 2
−3 + i 2 − 3i

]

. The Conjugate

Transpose of a matrix A is defined by ĀT . A complex-valued matrix is
called Hermitian if A = ĀT .

Problems 2.3

1. Use the help command in MATLAB to learn about zeros, ones,

eye, diag.

2. Write down the following matrices:

(a) diag(〈a, a〉, 1)

(b) diag(〈a, a〉, 0)

(c) diag(〈a, a, b〉,−1)

(d) ones(2), ones(2,1) zeros(3), zeros(10,2); verify each an-
swer in MATLAB.

(e) A=-2*diag(ones(3,1)). How does the output differ from A

= -2*eye(3)?

3. What will be the output of the following program in MATLAB?
Write down the output of each line:

a=3;

b=-1;

A=a*diag(ones(2,1),1)+4*diag([b b],-1)+7*diag([b],2);

B=A’;

4. Write the following systems of linear equations in matrix form:

i)

{

2x− 3y = 1
3x+ y = −2

ii)

{

ax+ by = α1

cx+ dy = α2

iii)







x+ y + z = 0
x− y + z = 1
2x+ z = 1

iv)

{

y = 2x
x− y = 0

5. Let A and B two arbitrary 2×2 matrices. Show that the transpose
of the product of A and B is the product of the transposes of B
and A (note the change in order of multiplication), i.e.,

(AB)T = BTAT .

52 Physical Oceanography: A Mathematical Introduction

6. Let A and B be two n × n symmetric matrices. Show that

(a) A +B is also symmetric.

(b) αA + βB is symmetric for all α and β, where α and β are
arbitrary real numbers.

(c) Is the product ofA andB necessarily symmetric? Either prove
this statement or give a counterexample.

7. A square matrix A is called skew symmetric if AT = −A. De-
termine which of the following matrices is symmetric or skew-
symmetric.

i)

[

2 1
1 −1

]

ii)

[

0 2
−2 0

]

.

8. Let A be an n × n skew-symmetric matrix. Show that aii = 0 for
every i with 1 ≤ i ≤ n.

9. Show that the zero matrix Z is the only matrix that is symmetric
and anti-symmetric.

10. Let A be an n × n matrix. Show that A can be written as sum
of two n × n matrices B and C, where B is symmetric and C an
anti-symmetric matrix.

11. Consider A =





−1 1 −1
0 1 2
3 2 1



 . Find the B and C of the previous

problem.

12. The vector y = 〈y1, y2, ..., yn〉 is related to x = 〈x1, x2, ..., xn〉 by
the linear equations

yi =
xi+1 − xi−1

2h
, i = 1, 2, ..., n,

with x0 = xn and xn+1 = x1. Write these equations in matrix form
y = Ax; show that A is

A =
1

2h

















0 1 0 0 ... −1
−1 0 1 0 ... 0
...
...
0 0 ... −1 0 1
1 0 ... 0 −1 0

















.

This matrix is an example of a Toeplitz matrix, i.e., one that has
constants only on each diagonal.

Matrix Algebra 53

13. Do Project A in Section 2.12.

14. Consider the set of linear equations given by the formula

xi+1 − 2xi + xi−1

h2
+ a

xi+1 − xi−1

2h
+ xi = f(ti),

where h and a are given, the index i ranges from 1 to 6, and
x0 = x7 = 0.

(a) Write down this system as Ax = b.

(b) Is A symmetric? Is it Skew-symmetric?

(c) Find D, L and U to write A = D+ L+U with D a diagonal
matrix, L lower triangular, and U upper triangular.

2.4 Linear Spaces and Subspaces

Lines and planes of geometry are the fundamental objects in geome-
try for building and approximating other structures such as curves and
surfaces. Lines and planes are examples of linear spaces and subspaces
in three dimensions, which we develop here in the general setting of
arbitrary dimensions.

We denote by Rn the collection of all n-tuples, i.e.,

Rn = {(a1, a2, ..., an)| ai ∈ R}

where R is the set of real numbers. We note that we can add elements
in Rn and multiply elements by scalars in the natural way:

(a1, a2, ..., an) + (b1, b2, ..., bn) = (a1 + b1, a2 + b2, ..., an+ bn),
c (a1, a2, ..., an) = (c a1, c a2, ..., c an).

Note that under the addition and scalar multiplication, the resulting n-
tuples still belong to Rn. In this sense, we say that Rn is closed under
the operations of addition and scalar multiplication and refer to Rn as
the n-dimensional Euclidean space. Geometrically, R2 is equivalent to
the usual plane and R3 to the three-dimensional physical space. The
complex version of Rn, denoted by Cn, where

C = {z| z = a+ bi, a, b ∈ R},

with i =
√
−1, is defined in the same way as Rn and is equipped with the

54 Physical Oceanography: A Mathematical Introduction

natural operations of addition and scalar multiplication based on these
operations with complex numbers.

Similar to Rn, we define En, the n-dimensional space of vectors, as
the collection of vectors having n components

En = {〈a1, a2, ..., an〉| ai ∈ R}.

En is endowed with the vector addition and scalar multiplications de-
fined earlier. There is, of course, the natural connection between Rn and
En in that the n-tuple A = (a1, a2, ..., an) in Rn can be viewed as the
endpoint of the vector A = 〈a1, a2, ..., an〉 in En, which begins at the
origin of the coordinate system and ends up at the point A.

By a linear subspace (or subspace for short) of either Rn or En we
mean a subset of these spaces that remains closed under the two oper-
ations of addition and scalar multiplications. For example, consider the
space R3 and the subspace

R1 = {(0, 0, a)| a ∈ R}.

To see that R1 is closed under addition and scalar multiplication, con-
sider two arbitrary elements of R1, A1 = (0, 0, a1) and A2 = (0, 0, a2).
Their sum is (0, 0, a1)+(0, 0, a2), which equals (0, 0, a1+a2) and is there-
fore another element of R1. Similarly, with α an arbitrary scalar in R
and (0, 0, a) an arbitrary element of R1, we note that α(0, 0, a) equals
(0, 0, αa), again belonging to R1. Thus, R1 is closed under addition and
scalar multiplication so it forms a subspace of R3. Geometrically, this
subspace is the z-axis of a typical rectangular coordinate system set up
for the space R3.

By contrast the set R2 defined by

R2 = {(1, 0, a)| a ∈ R}

is not a subspace ofR3 because this set is not closed under either addition
or scalar multiplication: consider a typical element from this set, (1, 0, a).
With α 6= 1, an otherwise arbitrary scalar, we have

α(1, 0, a) = (α, 0, αa)

which does not belong to R2 since α 6= 1.

The subspace defined by R1 is an example of a one-dimensional sub-
space of R3, a straight line passing through the origin (we will give a pre-
cise definition of dimension shortly). In general any straight line passing
through the origin forms a subspace of R3. These subspaces constitute
the only one-dimensional subspaces of R3.

Matrix Algebra 55

In addition to one-dimensional subspaces, R3 also has two-
dimensional subspaces. A typical one is R3 defined by

R3 = {(a, b, 0)| a, b,∈R}.

Geometrically R3 is a plane passing through the origin. In fact any plane
passing through the origin forms a two-dimensional subspace of R3. As
we will see later, because the definition of R3 contains two free param-
eters, a and b, R3 is a two-dimensional subspace of R3. We will often
refer to such parameters as the degrees of freedom of the subspace.

All in all R3 has four types of subspaces, the one- and two-
dimensional subspaces we have discussed already, the empty sub-
space (one that contains no element from R3, and thus forms a zero-
dimensional subspace), and R3 itself.

Subspaces of En are generated in the same way as in Rn, by allowing
a few parameters to vary. For example,

E1 = {〈0, 0, a〉| a ∈ R}

and

E2 = {〈a, a, 0〉| a ∈ R}

each defines a one-dimensional subspace of E3, while

E3 = {〈a, b, a+ b〉| a, b ∈ R}

is a two-dimensional subspace of E3.
We denote by Mm×n the set of all m by n matrices. This set is a

linear space under the usual matrix addition and scalar multiplication of
matrices. Subspaces in Mm×n come about in the same way that they are
generated for Rn or En; all members of the subspace are m×n matrices
with a fixed set their entries set to zero and the rest are allowed to be
arbitrary. For example, consider M2×2, the set of all 2 by 2 matrices.
The set

M1 = {
[

a 0
0 0

]

| a ∈ R}

is a one-dimensional subspace ofM2×2, which the reader can verify easily
by showing that this set is closed under matrix addition and scalar mul-
tiplication. Other one-dimensional subspaces of M2×2 are constructed
by placing the a in M1 in the other three slots in the 2 by 2 matrix.
Similarly, two-dimensional and three dimensional subspaces of M2×2 are
generated by placing two or three parameters in the various entry posi-
tions in the general 2 by 2 template.

We have taken some effort in this section to give examples of spaces

56 Physical Oceanography: A Mathematical Introduction

and their subspaces of the kind that play fundamental roles in math-
ematical physics. We will see additional examples of linear spaces of
special significance when we study methods to approximate functions
and their applications to solving differential equations numerically. We
will also see applications of subspaces when we study eigenvalues and
eigenvectors of matrices, which constitute one of the most important
tools in applied mathematics.

So far we have introduced the concepts of space and subspace in the
context of vectors and matrices. These concepts, however, apply equally
naturally to other structures in mathematics. For example, consider the
set Pn

Pn = {a0 + a1x+ a2x
2 + ...+ anx

n| a0, a1, ..., an ∈ R}, (2.11)

which is the set of all polynomials of degree n, a positive integer, with real
coefficients. If we impose the natural addition of polynomials and scalar
multiplication of a polynomial by a scalar α ∈ R on Pn, then this set is
closed under both addition and scalar multiplication, and hence forms
a linear space. The similarity between Pn and Rn+1 or En+1 should be
clear. We can associate to each typical element a0 + a1x + a2x

2 + ...+
anx

n+1 of Pn the point (a0, a1,an) inRn+1 or the vector 〈a0, a1, ..., an〉
in En+1. In this precise sense, we can think of Pn to be equivalent to
Rn+1 and En+1, and when we discover properties of Rn+1 or En+1 we
can ask if those same properties have analogs for Pn and vice versa.

A second important set of functions that can be viewed as a linear
space is the set of trigonometric functions

Tn = {a0 +

n
∑

i=1

ai cos
iπx

L
+

n
∑

i=1

bi sin
iπx

L
| ai, bi ∈ R}, (2.12)

where L is a fixed real number and n a fixed positive integer. It is easy
to see that the sum of two elements of Tn, and the scalar product of an
element of Tn again belong to Tn, so Tn is a linear apace. Since there are
2n+ 1 arbitrary coefficients in Tn (namely, the ai’s and bi’s), then Tn is
equivalent to the 2n + 1-dimensional Euclidean space R2n+1 or E2n+1.
It is also relatively easy to see that sets such as

{a0 +

n
∑

i=1

ai cos
iπx

L
| ai ∈ R} and {

n
∑

i=1

bi sin
iπx

L
| bi ∈ R}

are subspaces of Tn.

Problems 2.4

1. Verify whether the following sets form subspaces of R3 or E3. In
case of a subspace, give the geometric interpretation:

Matrix Algebra 57

(a) {(0, a, 0)| a ∈ R}
(b) {(a, a, 0)| a ∈ R}
(c) {(a, 1, 1)| a ∈ R}
(d) {〈a, a, a〉| a ∈ R}
(e) {(a, b, 0)| a, b ∈ R}
(f) {〈a, b, a+ b〉| a, b ∈ R}
(g) {a, b, c)| a, b, c∈ R}.

2. Write down all subspaces of M2×2.

3. Show that {





0 0 a
0 0 0
0 a 0



 | a ∈ R} is a subspace of M3×3.

4. Find all subspaces of M2×3.

5. Find a formula for the number of subspaces of Mn×n.

6. Is the set O5 = {a1x + a3x
3 + a5x

5| ai ∈ R} a subset of Pn when
n ≥ 5?

7. Let A be an n × n matrix. the pair (λ,x) is called an eigenvalue-
eigenvector pair for A if

Ax = λx

with x having at least one non-zero entry (note that x = 0 satisfies
Ax = λx trivially).

(a) Show that if (λ,x) is an eigenvalue-eigenvector pair, so is
(λ, αx) for any nonzero α ∈ R.

(b) Show that if x1 and x2 are two eigenvectors associated with
the same eigenvalue λ, then x1 + x2 is also an eigenvector
associated with λ.

(c) Let (λ1,x1) and (λ2,x2), with λ1 6= λ2, be two eigenvalue-
eigenvector pairs of Ax = λx. Is it true that x1 + x2 is an
eigenvector? If so, what is the eigenvalue?

2.5 Determinant and Inverse of Matrices

One of the key ideas we have introduced so far is related to how ma-
trix algebra is used to write a system of algebraic equations compactly

58 Physical Oceanography: A Mathematical Introduction

and what the consequence of this approach is in obtaining the solution
to such a system. We now elaborate more on this point and discuss the
theory of determinants of matrices and its implication in providing com-
putational tools that lead to solutions of systems of algebraic equations.

In the previous sections several special matrices were introduced in-
cluding the identity matrix. Recall that an n× n identity matrix, which
we generally denote by In or by I, is a matrix with ones on the diago-
nal and zeros elsewhere; and let’s recall that in MATLAB this matrix is
accessed by entering

eye(n)

The identity matrix has the special property that it leaves a matrix A
unchanged under multiplication, that is, AI = IA = A. In that sense
this matrix acts as the multiplicative unity for matrices, similar to the
role number one plays for the set of real numbers. For this reason, I also
plays a significant role in the definition of A−1, the inverse of A. We say
a matrix B is an inverse of A if

AB = I. (2.13)

It turns out that a matrix B that satisfies (2.13) commutes with A, that
is AB = BA. Additionally, it turns out that B, when it exists, is the
unique matrix that satisfies (2.13). The last two properties prompt us to
denote by A−1 the (multiplicative) inverse to A so given a square matrix
A, A−1, when it exists, is the unique matrix that satisfies

AA−1 = A−1A = I. (2.14)

Not every square matrix A has an inverse, just as not every real
number has a multiplicative inverse. But unlike scalars, where 0 is the
only number that does not have an inverse, there are infinitely many
matrices that do not have inverses. We illustrate this point for the class
of 2 by 2 matrices. Let A be defined by

A =

[

a11 a12

a21 a22

]

where the entries are arbitrary real or complex numbers. Let B be a
candidate for the inverse of A and write

B =

[

b11 b12

b21 b22

]

.

Since AB = I, and keeping in mind that we want to compute the entries

Matrix Algebra 59

of B in terms of A’s entries, we group the four equations we obtain from
this relation as follows:

{

a11b11 + a12b21 = 1,
a21b11 + a22b21 = 0,

and

{

a11b12 + a12b22 = 0,
a21b12 + a22b22 = 1,

(2.15)

The above systems are simultaneous equations in the unknowns (b11, b21)
and (b12, b22), respectively. Simple manipulations lead to

b11 =
a22

D
, b12 = −a12

D
, b21 = −a21

D
, b22 =

a11

D
, (2.16)

where D, called the determinant of the matrix A, is

D = a11a22 − a12a21. (2.17)

Hence,

A−1 = B =
1

a11a22 − a12a21

[

a22 −a12

−a21 a11

]

. (2.18)

Clearly if the determinant of the matrix A is zero, the formulas in (2.18)
are not valid and A will not have an inverse. Such matrices are called
singular and will play a significant role when we discuss eigenvalues
and eigenvectors. By contrast nonsingular, or invertible matrices, are
those with nonzero determinants, will have unique inverses, which are
in turn used to determine the unique solution to the system of algebraic
equations

Ax = b. (2.19)

To see this, multiply both sides of the above equation by A−1 to get

A−1(Ax) = A−1b.

Since A−1A = I, the left side reduces to x and we end up with

x = A−1b (2.20)

as the unique solution to (2.19). What we have illustrated is important
enough that we state it as a theorem.

Theorem 2.5.1 (Existence and Uniqueness of Solutions)
Consider a system of linear algebraic equations in the form (2.19). Then
(2.19) has the unique solution (2.20) if and only if A is nonsingular.

We have only illustrated this theorem in the context of 2 by 2 ma-
trices. It turns out that its statement and conclusion are valid for n× n
matrices, a claim that we can easily verify once we generalize the concept

60 Physical Oceanography: A Mathematical Introduction

of determinant to these matrices. Before proceeding to that generaliza-
tion, we note in passing that the set of 2× 2 singular matrices, matrices

with zero determinants, is neither finite (any matrix

[

a a
a a

]

is sin-

gular), nor is this set a linear subspace of M2×2. For example, the two
matrices

[

1 1
1 1

]

,

[

1 2
2 4

]

are singular but their sum

[

2 3
3 5

]

is nonsingular. Similarly, the set

of nonsingular matrices also does not form a linear space since, start-
ing with a nonsingular matrix A, its additive inverse B = −A is also
nonsingular, yet their sum A +B is the zero matrix, which is singular.

The computation of the determinant of an n by n matrix A is based
on an iterative process, where each step of the process reduces the com-
putation to evaluating the determinant of i× i, 2 ≤ i < n, submatrices,
each of which is constructed from A. As it turns out the algorithm we
present here does not have a unique starting point — it is up to the
user to decide which row or column of A is selected to start the algo-
rithm to obtain the underlying submatrices. It is, however, the case that
the determinant of a matrix is a unique scalar whose determination is
independent of the starting strategy.

Given aij, the (i, j)-th entry of A, we define Aij as the (n−1)× (n−
1) submatrix constructed from A by eliminating its i-th row and j-th
column. We define det (A) by

det (A) =

n
∑

j=1

(−1)i+jaijdet (Aij). (2.21)

The formula in (2.21) is repeated until one reduces each det (Aij) to the
computation of the determinant of a 2 × 2 matrix, whose formula we
arrived at in (2.17). Although this algorithm is somewhat tedious, its
iterative nature allows us to reduce the study of determinants of any
matrix to smaller sized matrices induced by the original matrix.

Expression (2.21) is computed using the i-th row of A. A similar
formula gives the same value when the computation is carried out in
terms of a column of A instead:

det (A) =

n
∑

i=1

(−1)i+jaijdetAij . (2.22)

We summarize the determinant algorithm as follows:

Matrix Algebra 61

Algorithm 2.5.1 (Computing the Determinant of an n× n ma-
trix A by Row Evaluation):

1. (Step 1): Select any of the rows of A. Label it the i-th row.

2. (Step 2): Construct the submatrices Aij , j = 1, ..., n. Compute the
determinant of each Aij. Label it Dij .

This is the recursive (iterative) step of the algorithm because com-
puting the determinant of an (n− 1)× (n− 1) matrix may require
repeating this algorithm until each Aij becomes a 2 × 2 matrix.

3. (Step 3): Compute the sum
∑n

j=1(−1)i+jaijDij, which is the de-
terminant of A.

We illustrate this algorithm for the 3 by 3 matrix

A =





1 −2 3
0 1 −2
3 2 1



 . (2.23)

We compute the determinant of this matrix using its first row, hence,
i = 1 in Step 1 of Algorithm 2.5.1. To accomplish Step 2, we need to
compute D11, D12 and D13. They are

D11 = det (

[

1 −2
2 1

]

) = 5, D12 = det (

[

0 −2
3 1

]

) = 6,

and

D13 = det (

[

0 1
3 2

]

) = −3.

Step 3 leads to

det (A) =

3
∑

j=1

(−1)1+ja1jD1j = a11D11 − a12D12 + a13D13 =

1 × 5 − (−2) × 6 + 3 × (−3) = 8.

This result can be checked in MATLAB by executing the following lines:

a=[1 -2 3; 0 1 -2;3 2 1];

det(a)

As pointed out earlier, the above algorithm may be implemented using
columns of A, which is as follows:

Algorithm 2.5.2 (Computing the Determinant of an n×n matrix
A by Column Evaluation):

62 Physical Oceanography: A Mathematical Introduction

1. (Step 1): Select any column of A. Label it the j-th column.

2. (Step 2): Construct the submatrices Aij , i = 1, ..., n. Compute the
determinant of each Aij. Label it Dij .

3. (Step 3): Compute the sum
∑n

i=1(−1)i+jaijDij , which is the de-
terminant of A.

To illustrate this algorithm, instead of using the first row of A in (2.23),
we use its third column, hence, j = 3 in Step 1 of Algorithm 2.5.2. Next
we compute Di3, i = 1, 2 and 3:

D13 = det (

[

0 1
3 2

]

) = −3, D23 = det (

[

1 −2
3 2

]

) = 8,

and

D33 = det (

[

1 −2
0 1

]

) = 1.

Step 3 leads to

det (A) =
3
∑

i=1

(−1)i+3ai3det (Ai3) = a13D13 − a23D23 + a33D33 =

3 × (−3) − (−2) × 8 + 1 × 1 = 8.

In later sections we will describe other algorithms for computing the
determinant of a matrix. The recursive algorithm we have described so
far is a reasonable method to use when dealing with relatively small
matrices, but it is quite inefficient when dealing with large matrices,
principally because it requires on the order of n3 algebraic operations
(additions and multiplications) to determine the determinant of an n×n
matrix. This algorithm, however, lends itself to deducing a few theoret-
ical results about matrices, which we address next:

1. It follows directly from Step 3 of Algorithms 2.5.1 and 2.5.2 that
if a row or a column of a matrix A consists of zero entries, then
the det (A) = 0.

2. If two rows or two columns of a matrix are identical, then that
matrix has zero determinant, which is easily arrived at for 2 × 2
matrices, and hence for any n × n matrix, by appealing to the
recursive character of the two algorithms.

3. If a row of a matrix is a linear combination of two other rows of the
same matrix, then the determinant of that matrix vanishes. This
statement is readily proved for 2 × 2 matrices, and hence can be
extended to all n× n matrices by induction.

Matrix Algebra 63

Some of the exercises at the end of this section address these issues.

We end this section by briefly reviewing, at least in the context of
simple examples, what we should expect for a solution to Ax = b when
A is singular. Consider the following system of two equations

{

ax+ by = e
ax+ by = f.

(2.24)

Note that the determinant of A is zero in this case, so we don’t expect
to be able to determine a unique solution. Geometrically, each equation
in (2.24) is a straight line in the xy-plane. Since both equations have
the same slope −a

b
, the two lines are parallel. If the system in (2.24) is

to have a solution, it will reside at the intersection of these lines. Two
parallel lines intersect only if they coincide, i.e., only if e = f in (2.24).
Thus, evidently we may encounter two scenarios; if e 6= f , then (2.24)
has no solutions. Alternatively, if e = f , then (2.24) has infinitely many
solutions because now the two equations are identical, ax + by = e, in
which case we are dealing with one equation in the two unknowns x and
y. Hence, assuming b 6= 0, we solve y for x to get y = 1

b (e− ax), with x
taking on any arbitrary real value. So, by letting x = k, with k any real
number, any ordered pair of the form

〈x, y〉 = 〈k, 1
b
(e− ak)〉

is a solution of (2.24). We will elaborate on this point in a later section
when we discuss the algorithm known as Gaussian Elimination, where
we are able to generalize this discussion to systems of linear equations
of any size. We summarize these observations in the following theorem:

Theorem 2.5.2 (Case of Singular Matrix of Coefficients)
Consider a system of linear algebraic equations in the form (2.19). Sup-
pose the matrix A in (2.19) is singular. Then (2.19) either has no solu-
tions or infinitely many solutions.

Problems 2.5

1. Complete the calculations that led to the formulas in (2.15).

2. Compute the determinant and inverse (if it exists) of the following
matrices. Check the results in MATLAB: Here a and b are arbitrary
real numbers.

(i)

[

2 2
1 −1

]

, (ii)

[

2 −2
−2 2

]

, (iii)

[

a b
−b a

]

,

64 Physical Oceanography: A Mathematical Introduction

3. Compute the determinant of the following matrices. Check the
results in MATLAB: Here a is an arbitrary real number.

(i)





2 2 0
0 1 −1
0 0 1



 , (ii)





a a a
−a a 0

0 a a



 ,

(iii)





1 1/2 1/3
1/2 1/3 1/4
1/3 1/4 1/5



 .

4. Solve the following systems of equations and check the answers in
MATLAB when appropriate:

(a)

{

2x− y = 1,
x+ y = 3,

(b)

{

αx− βy = 1,
αx+ βy = 3,

. Is there a solution to this problem for

all values of α, β ∈ R?

(c)

{

x− y = 1,
2x− 2y = 3.

How many solutions does this problem

have?

(d)

{

x− y = 1,
2x− 2y = 2.

How many solutions does this problem

have?

5. Solve the following systems of equations and check the answers in
MATLAB when appropriate:

(a)







x+ y + z = 0,
2x− y = 1,

x− 2y + 3z = −7.

(b)







y + z = 2,
x− y = 0,
x+ 3z = 4.

(c)







αx+ y + z = 0,
x+ αy + z = 0,
x+ y + αz = 1.

what happens when α = −2? when

α = 1?

6. This problem concerns several properties of determinants.

(a) Consider the two matrices A =

[

a11 a12

a21 a22

]

and B =

Matrix Algebra 65
[

a11 + αa21 a12 + αa22

a21 a22

]

. Note that B is obtained from

A by multiplying the second row of A by α and adding to its
first row. Show that detA = detB. Show the same conclusion
holds if B is obtained from A by replacing A’s second row by
adding α times its first row to the second row.

(b) Let A be an arbitrary 3 × 3 matrix. Let B be obtained from
A by replacing its i-th row with the sum of the i-th and α
times the j-th row, i 6= j. Then detA = detB.

(c) Show the above property holds for any n× n matrix.

(d) Let A andB two arbitrary 2×2 matrices. Show that detAB =
detAdetB.

(e) Prove the conclusion of the above problem for arbitrary 3×3
matrices. This result is valid for arbitrary n× n matrices.

(f) Let A be an arbitrary n×n matrix. Let B be obtained from A
by exchanging the i-th and the j-th rows. Show that detA =
−detB. Prove the same results holds when columns of A are
exchanged.

7. Let A and B be two arbitrary 2×2 matrices. Write the det (A+B)
in terms of detA and detB, if possible.

8. (Hilbert Matrices) The ij-th entry of an n × n Hilbert matrix Hn

is

aij =
1

i+ j − 1
, i, j = 1, ..., n. (2.25)

Use the Help command in MATLAB and read about the Hilbert
matrix and its properties. The command hilb(n) produces the
n× n Hilbert matrix in MATLAB.

(a) Use MATLAB and compute the determinant and inverse of
the i× i Hilbert matrix for 2 ≤ i < 5.

(b) The following program generates several Hilbert matrices,
computes their determinant and then plots the graph of these
values in the “semilog” scale (consult MATLAB’s Help to
read about semilogx, semilogy, loglog commands and
their associated concepts):

b=[];

for i=1:10

b=[b det(hilb(i+1))];

end

semilogy(b)

66 Physical Oceanography: A Mathematical Introduction

1 2 3 4 5 6 7 8 9 10
−70

−60

−50

−40

−30

−20

−10

0

FIGURE 2.1: The graph of the determinant of the Hilbert matrix Hn

as a function of n in semilog scale, illustrating the exponential decay of
the value of the determinant with increasing n

See Figure 2.1 for the output. Note that although the deter-
minant of Hn is nonzero, it rapidly approaches zero as n gets
large. Hilbert matrices are examples of ill-conditioned matri-
ces; while these matrices are nonsingular, their determinants
are so close to zero that from a computational point of view,
they almost behave like singular matrices. In particular, com-
puting the inverse of an ill-conditioned nonsingular matrix
turns out to be quite delicate.

9. This problem concerns several properties of inverses of matrices.

(a) Show that inverse of a matrix A is unique, that is, if BA = I
and CA = I, then B = C.

(b) Let A and B be two non-singular n× n matrices. Show that
(AB)−1 = B−1A−1.

(c) Let A be a nonsingular, but otherwise arbitrary, 2×2 matrix.
Show that

det (A−1) =
1

detA
.

Matrix Algebra 67

(d) Let A be an arbitrary nonsingular 2×2 matrix. Let B = AT,
the transpose of A. Show that B is also nonsingular and that

B−1 = (A−1)T.

2.6 Computing A−1 Using Co-Factors

As in the case of 2 × 2 matrices, when the determinant of an n× n
matrix A is nonzero a unique inverse A−1 exists. To compute it, we first
construct a matrix, called the cofactor matrix, denoted by cof(A). The
(i, j)-th entry of this matrix is (−1)i+jdet (Aij), i.e.,

cof(A) =









det (A11) −det (A12) ... det (A1n)
−det (A21) det (A22) ... −det (A2n)

...
det (An1) −det (An2) ... det (Ann)









, (2.26)

when n is odd, and with appropriate changes with n is even – note that
the sign of the entries in (2.26) alternate between plus and minus. The
adjoint of A is defined as the transpose of cof(A):

Adj(A) = cof(A)T . (2.27)

The inverse of A−1 is now defined by the following formula:

A−1 =
1

det (A)
adj(A). (2.28)

As an example, consider the 3 by 3 matrix

A =





1 1 0
0 1 1
1 0 1



 .

The cofactor matrix of A is

cof(A) =





1 1 −1
−1 1 1

1 −1 1



 ,

whose transpose gives us the adjoint of A:

adj(A) =





1 −1 1
1 1 −1

−1 1 1



 .

68 Physical Oceanography: A Mathematical Introduction

Since det (A) = 2, the inverse of A is

A−1 =
1

2





1 −1 1
1 1 −1

−1 1 1



 .

The above calculation can easily be verified in MATLAB as follows:

A=[1 1 0; 0 1 1; 1 0 1];

inv(A)

MATLAB returns

ans =

0.5000 -0.5000 0.5000

0.5000 0.5000 -0.5000

-0.5000 0.5000 0.5000

We have given no motivation for why the determinant of an n × n
matrix is defined the way it was, why this scalar is uniquely deter-
mined, why the algorithm for computing the inverse of a matrix works,
and why it leads to the unique inverse matrix. Some of these ques-
tions are explored in the exercises, but to gain more in-depth under-
standing of these concepts, the reader is strongly encouraged to consult
the books on linear algebra that are listed at the end of this chapter,
most notably the texts by Gilbert Strang, as well as the video lectures
available at http://ocw.mit.edu/OcwWeb/Mathematics/18-06Spring-
2005/CourseHome/.

Problems 2.6

1. Find the inverse of each matrix, if it exists. Verify answers in MAT-
LAB when possible.

a)





0 0 1
1 0 0
0 1 0



 , b)





1 0 1
1 1 0
0 1 1



 , c)





0 1 0
0 0 1
−1 −2 −3



 ,

d)





a 0 a
b 0 0
0 c 0



 .

2. Let A(n) stand for the n× n matrix defined in (2.10).

(a) Find the inverse of A(n) for n = 2 and 3 by hand.

Matrix Algebra 69

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4
cputime

0 100 200 300 400 500 600 700 800 900 1000
0

500

1000

1500
Determinant of A(n)

FIGURE 2.2: The first graph shows MATLAB’s cputime when com-
puting the inverse of A(n), with n ranging between 10 and 1000 at
increments of 10. The second graph shows the determinant of A(n) over
the same range of n.

(b) Find the inverse of A(n) for n = 10 to 1000, at increments of
10, using MATLAB’s inv function. For each inverse determine
the cpu time, perhaps by running a script similar to the one
below:

n=5;

A=-2*eye(n)+diag(ones(n-1,1),-1)+diag(ones(n-1,1),1);

start = cputime; %This initializes ’start’

inverse=inv(A);

finish = cputime - start;

Figure 2.2 shows the cpu time for computing the inverse of
A(n) for n ranging from 10 to 1000 at increments of 10. The
second graph shows how the determinant of A(n) behaves as
a function of n.

70 Physical Oceanography: A Mathematical Introduction

2.7 Linear Independence, Span, Basis, and Dimen-
sion

Intimately related to the concept of the inverse of a square matrix is
the concept of linear independence of its rows and columns. We develop
this concept in conjunction with the concepts of span, basis and the
dimension of a linear space. We begin by presenting the concept of linear
independence for vectors in En and relate it to the structure of general
m by n matrices.

Consider a set of vectors {a1, a2, ..., am}, each of which belongs to
the linear space En. We define the span of these vectors as the set of all
linear combinations of these vectors:

S = {v|v = α1a1+α2a2+...+αmam, with αi ∈ R, 1 ≤ i ≤ m}. (2.29)

As an example, consider the set consisting of a single vector a1 = 〈1, 0, 0〉.
The span of this vector is

S1 = {αa1} = {α〈1, 0, 0〉} = {〈α, 0, 0〉}, where α ∈ R.

Geometrically S1 is equivalent to the traditional x-axis once we as-
sign a set of coordinate axes to R3. Similarly, consider the set {a1 =
〈1, 0, 0〉, a2 = 〈0, 0, 1〉}. The span of this set is

S2 = {α1a1 + α2a2|α1, α2 ∈ R}

which also has the familiar geometric interpretation of the xz-plane in
R3.

The reader is familiar with the three vectors i = 〈1, 0, 0〉, j = 〈0, 1, 0〉
and k = 〈0, 0, 1〉 and the role they play for the space E3: these vectors
span the entire space since given any vector v = 〈a, b, c〉 ∈ E3, we can
write v as a linear combination of {i, j,k}:

〈a, b, c〉 = ai + bj + ck.

Not only do these vectors span E3, they form the smallest set of such
vectors, that is, if we eliminate any of them from the set, we will lose
valuable information. In contrast, the set of four vectors {i, j, i + j,k}
still span E3 because having access to i + j has not presented us with
any additional capabilities.

The latter set is an example of a linearly dependent set of vectors.
In fact we have the following definition:

Definition 2.7.1 (Linear Independence)

Matrix Algebra 71

We say a set of vectors {a1, a2, ..., am} forms a linearly independent set
if

α1a1 + α2a2 + ...+ αmam = 0 if and only if

α1 = α2 = ... = αm = 0. (2.30)

To test this definition on the set {i, j,k}, we construct the linear combi-
nation in (2.30), namely, α1i+α2j+α3k, which equals 〈α1, α2, α3〉. The
only way this vector can equal the zero vector is for all three coefficients,
α1, α2 and α3 to vanish. Hence, the set of vectors {i, j, k} is linearly in-
dependent. To see that the set {i, j, i + j,k} is dependent, it suffices to
construct a linear combination in (2.30) for which some of the α’s are
nonzero. One such linear combination (with α1 = α2 = 1, α3 = −1 and
α4 = 0) is

i + j − (i + j)

which vanishes. Hence, this set of vectors is linearly dependent.
The next important concept in matrix theory is the concept of a basis,

which is directly related to the concept of the dimension of a linear space.

Definition 2.7.2 (Basis and Dimension of a Linear Space)
A set of vectors forms a basis for a linear space if the set is linearly
independent and it spans the space. The number of vectors in a basis
constitutes the dimension of that space.

The set {i, j,k}, for example, forms a basis for E3. Similarly the set
{i+ j, j+ k,k+ i} forms a basis for E3 (see Problem (4) below) because
this set is linearly independent and spans E3.

By components of a vector b ∈ En in a basis {a1, a2, ..., an} we mean
the set of scalars α1, α2, ..., αn such that b = α1a1 + α2a2 + ...+ αnan
and write

b = 〈α1, α2, ..., αn〉, (2.31)

and refer to (2.31) as the representation of b in terms of the
basis {a1, a2, ..., an}. We will refer to {e1 = 〈1, 0, 0, ...0〉, e2 =
〈0, 1, 0, ..., 0〉, ...,en = 〈0, 0, 0, ..., 1〉 as the standard or the Cartesian basis
in En.

So far we have concentrated almost exclusively on traditional vectors
and linear spaces when defining the concepts of linear independence,
span, basis, dimension and components. We saw in Section 2.4 that the
concept of linear space can be naturally generalized to encompass sets
whose elements may be polynomials or trigonometric functions, to give
just two examples of linear spaces consisting of functions. We repeat here
the two linear spaces Pn and Tn for reference:

Pn = {a0 + a1x+ a2x
2 + ...+ anx

n| a0, a1, ..., an ∈ R}, (2.32)

72 Physical Oceanography: A Mathematical Introduction

where x takes on values in an interval (a, b), and

Tn = {a0 +

n
∑

i=1

ai cos
iπx

L
+

n
∑

i=1

bi sin
iπx

L
| ai, bi ∈ R}, (2.33)

where x ∈ (0, L).
As far as the linear space Pn is concerned, the set of “vectors” con-

sisting of the functions

fi(x) = xi, i = 0, 1, ..., n

forms a basis for Pn. To see this, we need to show that this set is linearly
independent and that it spans Pn. That the set {xi, i = 0, ..., n} spans
Pn follows trivially simply because of the way the set Pn is defined in
(2.32). To see that this set is linearly independent, we refer to Definition
2.7.1 and construct the expression

c0 + c1x+ c2x
2 + ...+ cnx

n = 0, for any x ∈ (a, b) (2.34)

and now need to show that the only way this expression can hold is if
all coefficients ci vanish. We appeal to the fact that the expression in
(2.34) holds for all x ∈ (a, b), and hence we are allowed to differentiate
this expression with respect to x to get

c1 + 2c2x+ 3c3x
2 + ...+ ncnx

n−1 = 0, for any x ∈ (a, b). (2.35)

The expression in (2.35) also holds for all x in (a, b), again allowing us
to differentiate it to obtain

2c2+6c3x+12c4x
2+ ...+n(n−1)cnx

n−2 = 0, for any x ∈ (a, b). (2.36)

Continuing with this line of argument, we end up differentiating the
original expression in (2.34) (n−1) times, and reach the conclusion that

n! cn = 0, (2.37)

which results in cn = 0. Hence the expression in (2.34) reduces to

c0 + c1x+ c2x
2 + ...+ cn−1x

n−1 = 0, for any x ∈ (a, b). (2.38)

It is easy to see now that the same argument of differentiation when
applied to (2.38) results in cn−1 = 0; repeating this argument as many
times as necessary eventually leads to the conclusion that all coefficients
ci = 0. Hence the set {xi, i = 0, 1, ..., n} is linearly independent. We
summarize this discussion in the following theorem:

Matrix Algebra 73

Theorem 2.7.1 (Linear Space Pn)
The set of polynomials {xi, i = 0, 1, ..., n} forms a basis for the linear
space Pn. This space has dimension n+ 1.

It follows from this theorem that the set {1, x, x2} forms a basis for
P2, the set of all second-order polynomials, a + bx + cx2. In this sense
P2 is very similar to, and one could go as far as saying it is the same as,
E3 the vector space of all 3-tuples.

There is an alternative approach to proving that the set
{1, x, x2, ..., xn} is linearly independent. Let {x0, x1, ..., xn} be n+1 arbi-
trary but distinct values in the interval (a, b). Returning to the definition
of linear independence, that the expression in (2.34) must hold for all x
in the interval (a, b), this expression must be satisfied when x in (2.34)
is replaced by any of the xi’s. We therefore obtain the following linear
system of algebraic equations in the variables {c0, c1, ..., cn}:































c0 + c1x0 + c2x
2
0 + ...+ cn−1x

n−1
0 + cnx

n
0 = 0,

c0 + c1x1 + c2x
2
1 + ...+ cn−1x

n−1
1 + cnx

n
1 = 0,

c0 + c1x2 + c2x
2
2 + ...+ cn−1x

n−1
2 + cnx

n
2 = 0,

... = ...

... = ...
c0 + c1xn + c2x

2
n + ...+ cn−1x

n−1
n + cnx

n
n = 0.

(2.39)

This system is equivalent to

Ac = 0 (2.40)

where

A =

















1 x0 x2
0 ... xn−1

0 xn0
1 x1 x2

1 ... xn−1
1 xn1

...

...

1 xn−1 x2
n−1 ... xn−1

n−1 xnn−1

1 xn x2
n ... xn−1

n xnn

















, c =

















c1
c2
...
...
cn−1

cn

















. (2.41)

Hence if we could show that A is a nonsingular matrix, then the fact the
right side of (2.40) is the zero vector will imply that c is the zero vector,
thus establishing the desired result. The matrixA in (2.41) is nonsingular
if we can show that its determinant does not vanish. It turns out that

detA = (x0 − x1)(x1 − x2)...(xn−1 − xn) (2.42)

where (2.42) is the product of all possible combinations of the form
xi − xj, i 6= j, where xi and xj take on all possible choices in the set

74 Physical Oceanography: A Mathematical Introduction

{x0, x1, ..., xn}, exactly (n + 1)!/4. Since we selected distinct xi values,
the determinant is nonzero and hence A is nonsingular.

A similar argument shows that the trigonometric functions in the set
{1, cos nπx

L
, sin nπx

L
}, i ranging from 1 to n are linear independent and

span Tn. Therefore the linear space Tn has dimension 2n+ 1.

Problems 2.7

1. Show that the two vectors 〈1, 1〉 and 〈1,−1〉 are linearly indepen-
dent, while the two vectors 〈1, 1〉 and 〈2, 2〉 are not.

2. Identify geometrically the span of the following set of vectors:

(a) S1 = {〈1, 0, 0〉}.
(b) S2 = {〈1, 0, 0〉, 〈0, 1, 0〉}.
(c) S3 = {〈1, 0, 0〉, 〈0, 0, 1〉}.
(d) S4 = {〈1, 1, 0〉, 〈0, 1, 1〉}.

3. Show that set {a,b}, where a = i + j and b = i− j, forms a basis
for E2. Consider the vector c ∈ E2 defined as c = 〈2,−1〉 in the
standard basis (that is c = 2i − j). Find the components of c in
terms a and b.

4. Show that the set of vectors {i + j, j + k,k + i} forms a basis for
E3.

5. Consider the vector 〈1, 1, 1〉 in the standard basis in E3. Find the
components of this vector in the basis defined in Problem 4.

6. By applying the definition of linear independence directly, show
that the following sets of polynomials are linearly independent:

(a) {1, x, x2}
(b) {1 − x, 1 + x, x2}
(c) {1, 3x− 2, 2x2 + x− 1}

7. Show that the trigonometric functions in the set {1, cos nπxL , sin nπx
L },

i ranging from 1 to n are linearly independent in the interval (0, L)
and that they span Tn defined in (2.33). What is the dimension of
Tn?

Matrix Algebra 75

2.8 Linear Transformations

Up to this point we have presented matrices as a collection of arrays,
and have defined various algebraic operations for them. We now view
matrices from a slightly different point of view, namely as representations
of certain functions which we will refer to as linear transformations,
which operate between vector spaces.

Definition 2.8.1 (Linear Transformations)
A function T , with domain Em and range En, is called a linear trans-
formation if it satisfies the following the two properties:

1. T is linear under vector addition, that is

T (a + b) = T (a) + (b)

for any vectors a and b in Em.

2. T is linear under scalar multiplication:

T (αa) = αT (a)

for any scalar α and any vector a in Em.

Consider the example T , with domain E3 and range in E2, defined by

T (xi + yj + zk) = (2x− z)i + (y + z)j. (2.43)

In the usual component notation, we have

T (〈x, y, z〉)) = 〈2x− z, y + z〉. (2.44)

Under the action of T , a vector such as 〈1,−1, 1〉 in E3 is mapped to
the vector 〈1, 0〉 in E2.

The relation between linear transformations and matrices can be seen
relatively easily from the above example: Each entry in the vector 〈2x−
z, y + z〉 on the right side of (2.44) can be viewed as the dot product of
x = 〈x, y, z〉 with a specific vector:

2x− z = 〈2, 0,−1〉 · 〈x, y, z〉 and y + z = 〈0, 1, 1〉 · 〈x, y, z〉.

Hence, we can view T (x) as
Ax

where A is the 2 × 3 matrix

A =

[

2 0 −1
0 1 1

]

, (2.45)

76 Physical Oceanography: A Mathematical Introduction

and x the column vector
[

x y z
]T

. In this viewpoint, every linear
transformation T with domain and range in En and Em, respectively,
can be represented by anm×n matrixA. The entry aij, the ij-th entry of
A, is obtained by computing the vector to which the i-th basis vector in
En, the domain of T , is mapped. For example, the linear transformation
T in the above example maps i = 〈1, 0, 0〉 to the vector 〈2, 0〉 in E2,
which we note is the first column of A in (2.45). Similarly, the vector
j = 〈0, 1, 0〉 is mapped to 〈0, 1〉, which happens to be the second column
of A, and so on. We deduce therefore that

the i-th column of the matrix representation of a linear transformation is
the vector to which the i-th basis vector of the domain is mapped.

One of the consequences of representing a transformation T by a ma-
trix A is that this matrix cannot be unique since it depends crucially on
what bases we select for the domain and range. To appreciate this point,
let’s consider a different representation of the linear transformation T in
the above example, by representing vectors

Problems 2.8

1. Let T be the transformation from E3 to E3 that transforms each
vector x to λx, where λ is a fixed constant. Write down the matrix
representation of T .

2. Let T be the transformation from E2 to E2 that takes x to y,
where y is the reflected image of x through the y-axis. Write down
the matrix representation of T .

3. Let T be the transformation from E2 to E2 that takes x to y, where
y is the image of x after it has been rotated by 90 degrees in the
counterclockwise direction. Write down the matrix representation
of T .

4. Let T be the transformation from E2 to E2 that takes x to y, where
y is the image of x after it has been rotated by θ degrees in the
counterclockwise direction. Write down the matrix representation
of T .

Matrix Algebra 77

2.9 Row Reduction and Gaussian Elimination

In Section 2.5 we discussed the system of algebraic equations Ax = b
and its solution x = A−1b when A is invertible. It turns out that the
process we described in the section on inverse of matrices is expensive nu-
merically, especially when the size of this matrix is large. In this section
we introduce an alternative method that is considerably more efficient
and computationally economical.

From our experience with manipulating equations in a system of
algebraic equations























a11x1 + a12x2 + ...+ a1nxn = b1,
a21x1 + a22x2 + ...+ a2nxn = b2,

.................................. = ...,

.................................. = ...,
an1x1 + an2x2 + ...+ annxn = bn,

(2.46)

we know that the following operations do not alter the solution to (2.46):

1. Exchanging two equations,

2. Multiplying an equation by a nonzero number,

3. Multiplying an equation by a number and adding it to another
equation.

We now replace (2.46) with the augmented n× n+ 1 matrix













a11 a12 a1n | b1
a21 a22 a2n | b2
... | ...
... | ...
an1 an2 ann | bn













(2.47)

where the | is used to separate the matrix of coefficients [aij] from the
input vector b. Our goal is to extend the above equation operations to
the rows of (2.47) and row reduce this matrix to an upper triangular form













a′11 a′12 a′1n | b′1
0 a′22 a′2n | b′2
... | ...
... | ...
0 0 a′nn | b′n













. (2.48)

78 Physical Oceanography: A Mathematical Introduction

The latter system is equivalent to a system of algebraic equations































a′11x1+ ... a′1,n−1xn−1 a′1nxn = b′1,
a′22x2+ ... a′2nxn = b′2,

... ... = ...,

... ... = ...,
a′n−1,n−1xn−1+ a′n−1,nxn = b′n−1,

a′nnxn = b′n,

(2.49)

Assuming a′nn 6= 0 the last equation yields xn = b′n/a
′
nn. Having the

value of xn in hand, we consider the next to last equation in (2.49) and
solve for xn−1:

a′n−1,n−1xn−1 + a′n−1,nxn = b′n−1 =⇒

xn−1 =
1

a′n−1,n−1

(b′n−1 −
a′n−1,n

a′nn
b′n).

Continuing with this backward substitution idea, we arrive at formu-
las for xn−2, xn−3, all the way back to x1.

To see this method used in a concrete example, consider the system
of linear equations















x+ y + z + w = 6,
2x− 3y + z + w = −1,

z − 3x+ w = 0,
2x− y = w

(2.50)

which is equivalent to









1 1 1 1 | 6
2 −3 1 1 | −1

−3 0 1 1 | 0
2 −1 0 −1 | 0









. (2.51)

Beginning with first row, we use row operations and convert every entry
below a11 to zero: we multiply the first row by −2 and add it the second
row, multiply the first row by 3 and add to the third row, and multiply
the first row by −2 and add to the fourth row to get the equivalent
matrix









1 1 1 1 | 6
0 −5 −1 −1 | −13
0 3 4 4 | 18
0 −3 −2 −3 | −12









.

Next we move to the second row of the above matrix and make the

Matrix Algebra 79

entries below the (2, 2) entry zero: Multiply the second row by 3
5 and

add to the third row, and multiply the second row by −3
5 and add to

the fourth row to get the equivalent matrix









1 1 1 1 | 6
0 −5 −1 −1 | −13
0 0 17

5
17
5

| 51
5

0 0 −2
5

−12
5

| −21
5









.

The latter system is equivalent to









1 1 1 1 | 6
0 −5 −1 −1 | −13
0 0 1 1 | 3
0 0 −7 −12 | −21









.

To complete the row reduction phase of this method, we multiply the
third row of the latter matrix by 7 and add to the fourth row to get









1 1 1 1 | 6
0 −5 −1 −1 | −13
0 0 1 1 | 3
0 0 0 −5 | 0









. (2.52)

We are now ready to apply the backward substitution part of the
algorithm: The last row is equivalent to −5w = 0, or w = 0. The third
row is equivalent to z+w = 3 which results in z = 3. Similarly, we arrive
at y = 2 and x = 1.

The concepts we have introduced here, row reduction and backward
substitution, provide us with a method, called Gaussian Elimination, for
solving for solutions of Ax = b. Gaussian Elimination has two signifi-
cant properties. First, the steps involved in implementing this method
typically require a reasonable number of additions and multiplications,
especially when a large number of the entries of the matrix of coeffi-
cients A vanish, a scenario that happens often in the discretization of
partial differential equations we encounter in the later chapters. The sec-
ond property of this method is its iterative character, which results in
relatively simple computer codes. Most modern software packages have
internal commands that implement a version of this algorithm. MAT-
LAB’s rref command, for example, takes a matrix such as (2.51) and
returns the row reduced echelon form (hence “rref”) form of (2.51). This
form, which is equivalent to (2.51), goes one step beyond (2.52) by con-
verting the n× n block of (2.52) to the identity matrix. The extra steps
that lead to such a form require that in each step of our Gaussian Elimi-
nation, we not only make the entries below the diagonal zero, but apply

80 Physical Oceanography: A Mathematical Introduction

the same strategy to the entries above the diagonal. The following com-
mands in MATLAB lead to the row reduced echelon form of (2.51):

A=[1 1 1 1 6;2 -3 1 1 -1;-3 0 1 1 0;2 -1 0 -1 0];

B=rref(A)

MATLAB returns

B =

1 0 0 0 1

0 1 0 0 2

0 0 1 0 3

0 0 0 1 0

Note that the solution to (2.51), namely, x = 1, y = 2, z = 3, and w = 0
appears in the last column of the B above.

The success of Gaussian Elimination (and by extension rref) is inti-
mately related to invertibility of A. When A is invertible, where Ax = b
has a unique solution, the row reduction methodology works extremely
well. This technique, however, is also robust when it is applied to sys-
tems of algebraic equations where A is not invertible, or when A is not
a square matrix. To better understand the variety of cases that appear
in the general case, we introduce the concept of the rank of a matrix,
which will enable us to write down a few results in compact form.

Given anm×n matrixA, let R be the span of the m row vectors of A.
The rank of A, denoted by ρ(A), is the dimension of R. Put in a slightly
different way, ρ(A) is the maximal number of linearly independent rows
of A. In general, ρ(A) ≤ m. When ρ(A) = m, we say A has full rank.
When A is a square m ×m matrix, it turns out that A is invertible if
and only if ρ(A) = m.

When ρ(A) < m the system of equations Ax = b may have infinitely
many solutions or no solutions at all. For example, the 2 × 2 system

x+ y = 1, 2x+ 2y = 2. (2.53)

has infinitely many solutions (x = a, y = 1 − a, for any real-valued
a) since clearly the two equations in (2.53) are the same. The matrix

A =

[

1 1
2 2

]

is singular and has rank ρ(A) = 1.

The key idea that characterizes the multiplicity of solutions in (2.53),
in particular, as well as for general systems, turns to be the relation
between ρ(A) and the rank of the augmented matrix [A|b]. For (2.53)

the augmented matrix is

[

1 1 1
2 2 2

]

, and the ranks of both A and its

Matrix Algebra 81

augmented matrix are one, an important indicator of when a system with
a deficient rank ends up having infinitely many solutions. In general,
when ρ(A) = ρ([A|b]), the system Ax = b will have infinitely many
solutions. When, on the other hand, ρ(A) < ρ([A,b]), the system will
not have any solutions at all. An evidence of this feature can be seen in
the system

x+ y = 1, x+ y = 0. (2.54)

where now the augmented matrix is

[

1 1 1
2 2 0

]

, which has rank 2 while

ρ(A) is still one, and of course (2.54) does not have any solutions. The
above discussion is significant enough that we state is as a theorem:

Theorem 2.9.1
Consider the system Ax = b. If

1. A is m×m and nonsingular, then x = A−1b is its unique solution.

2. A is m × n and ρ(A) = ρ([A|b]), then the system has infinitely
many solutions.

3. A is m×n and ρ(A) < ρ([A|b]), then the system has no solutions.

One of the interesting, and somewhat unintuitive, properties of the rank

of a matrix is that ρ(A) = ρ(AT), i.e., the columns and rows of a matrix
span the same linear space. In follows then that the rank of an m × n
matrix A satisfies

ρ(A) = min(m, n).

A word of caution about using rref with systems that do not have
full rank. Note that when we apply rref to (2.53)

rref([1 1 1; 1 1 0])

MATLAB returns

ans =

1 1 0

0 0 1

In the absence of any other warning statements, the user must conclude
from this output that (2.48) has no solutions since the second row of the
output states 0 = 1. While when we apply rref to (2.52)

rref([1 1 1;2 2 2])

we receive

82 Physical Oceanography: A Mathematical Introduction

ans =

1 1 1

0 0 0

The second row is equivalent to 0 = 0, which indicates that the system is
equivalent to a single equation (x+y = 1), which of course has infinitely
many solutions.

Problems 2.9

1. Consider the following systems of equations. Use Gaussian elimi-
nation to determine if each system has a unique solution, infinitely
many solutions or no solution. Use rref to verify the results.

(a)

{

2x+ y = 1,
x− 3y = −2.

(b)







x+ y + z = 1,
x− 3y + z = 2,

z − 3x = 0

(c)







x+ y + z = 1,
x− y + 3z = 0,

2x+ 4z = 1.

2. Consider the system

{

ax+ y = b,
x+ ay = 0,

where a and b are real num-

bers.

(a) Determine all values of a for which this system has a unique
solution, i.e., when the system is non-singular.

(b) For each value of a for which this system is singular, determine
all values of b for which i) the system has infinitely many
solutions, and ii) no solution.

2.10 Eigenvalues and Eigenvectors

Eigenvalues and eigenvectors of matrices constitute some of the most
important tools that matrix algebra offers in analyzing physical prob-
lems. By definition, given an n × n matrix A an eigenvalue-eigenvector
pair (λ, e), with e 6= 0, of A satisfies

Ae = λe. (2.55)

Matrix Algebra 83

Geometrically, one can think of an eigenvector as a vector whose direc-
tion remains invariant under the action of A. To gain an appreciation of
this point, consider the matrix A given by

A =

[

1 2
2 1

]

. (2.56)

Let y = Ax. If x = 〈x1, x2〉, then y, image of x under the action of A, is

y = 〈x1 + 2x2, 2x1 + x2〉.

Typically what A does to each vector x is to stretch (or compress) it as
well as rotate it through an angle. In fact, if we consider the set of all
x’s having magnitude one, which trace a circle of radius 1 in the (x1, x2)
plane, the images Ax trace an ellipse (see Figure 2.3). To see this, note
that the circle can be parameterized by

x = 〈x1, x2〉 = 〈cos t, sin t〉, t ∈ [0, 2π).

The image of this curve is the ellipse

y = 〈y1, y2〉 = 〈x1 + 2x2, 2x1 + x2〉 =

〈cos t+ 2 sin t, 2 cos t+ sin t〉, t ∈ [0, 2π).

The following program in MATLAB graphs the above circle and ellipse:

clf

t=0:2*pi/100:2*pi;

ezplot(’cos(t)’,’sin(t)’);

hold on

ezplot(’cos(t)+2*sin(t)’,’2*cos(t)+sin(t)’);

Most of the vectors x and their images Ax have different directions. For
example, the vector 〈1, 0〉 has been mapped to 〈2, 1〉 by A. By contrast,
two vectors, corresponding to the bisectors of the quadrants don’t seem
to have changed directions — the vector e1 = 〈1, 1〉 is mapped to 〈3, 3〉,
and e2 = 〈−1, 1〉 is mapped to 〈−1, 1〉. To be more precise,

A

[

1
1

]

= 3

[

1
1

]

, and A

[

−1
1

]

= −
[

−1
1

]

.

Therefore (3, e1) and (−1, e2) are the two eigenvalue-eigenvector pairs
for A.

To compute eigenvalues and eigenvectors of any matrix we appeal to
the definition (2.55). Note that Ae = λe can be written as

(A− λI)e = 0, (2.57)

84 Physical Oceanography: A Mathematical Introduction

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

y

x = cos(t)+2 sin(t), y = 2 cos(t)+sin(t)

FIGURE 2.3: The circle and its image under the action of the matrix
defined in (2.56).

where I is the n× n identity matrix. The above system is a special one
in that if it has a unique solution e, then e must be 0 since 0 trivially
satisfies (2.57). On the other hand, if e is to be an eigenvector, it must
be a nonzero vector. We conclude then that the solution to (2.57) cannot
be unique. After appealing to Theorem 2.5.1, we see that A − λI must
be singular, or equivalently, λ must be a solution to

det (A − λI) = 0. (2.58)

The quantity det (A − λI) is an n-th order polynomial in λ and since
every such polynomial has n roots, counting multiplicity, any n × n
matrix has n eigenvalues. These roots may be complex even if A has all
real coefficients.

Returning to the earlier 2× 2 example, A =

[

1 2
2 1

]

, we determine

A’s eigenvalues by setting

det (A − λI) = det (

[

1 − λ 2
2 1 − λ

]

) = λ2 − 2λ− 3

Matrix Algebra 85

to zero. So λ1 = 3 and λ2 = 1 are the two eigenvalues of A, as was
observed earlier.

We determine eigenvectors of a matrix by solving (2.57) using Gaus-
sian elimination. For example, to obtain the eigenvector associated with
λ = 3 in the above example we construct (A−λI)e = 0 as the augmented
matrix

[

−2 2 | 0
2 −2 | 0

]

. (2.59)

Note that ρ(A) = ρ([A|0]) = 1, so by Theorem 2.9.1 the above system
will have infinitely many solutions. In fact, it should be clear that the two
rows in (2.59) correspond to identical algebraic equations. Concentrating
on the first row, we see that, with e1 = 〈x1, x2〉, x1 and x2 satisfy the
linear equation −2x1 + 2x2 = 0. If we let x1 = c, an arbitrary constant,
then x2 = c. Thus

e1 = c

[

1
1

]

.

In a similar fashion we see that e2 satisfies (A+ I)e2 = 0 or

[

2 2 | 0
2 2 | 0

]

(2.60)

which results in

e2 = c

[

1
−1

]

.

The factor c in the above formulas for the eigenvectors is arbitrary,
indicating geometrically that the entire lines defined by the equations
x1 = x2 and x1 = −x2 remain invariant under the action of A. Often c
is selected in such a way to render the eigenvector e a unit vector, i.e.,
c is chosen so that ||e|| = 1.

The MATLAB command eig computes eigenvalues and eigenvalues
of this matrix.

[V,D]=eig([1 2;2 1])

returning

V =

-0.7071 0.7071

0.7071 0.7071

D =

86 Physical Oceanography: A Mathematical Introduction

-1 0

0 3

Note that columns of V are the eigenvectors of A (with |c| = 1√
2
, yielding

a unit vector for each eigenvector), and that D contains the eigenvalues.
The command eig is a very powerful command since computing eigen-
values and eigenvectors of a matrix could be quite tedious as some of the
problems at the end of this section will demonstrate. To get a glimpse
of the power of eig we apply this operation to compute the eigenvalues
and eigenvectors of the 6 × 6 Hilbert matrix, namely, A = [aij] where
aij = 1/(i+ j − 1).

A=hilb(6)

[V,D]=eig(A)

which results in

A =

1.0000 0.5000 0.3333 0.2500 0.2000 0.1667

0.5000 0.3333 0.2500 0.2000 0.1667 0.1429

0.3333 0.2500 0.2000 0.1667 0.1429 0.1250

0.2500 0.2000 0.1667 0.1429 0.1250 0.1111

0.2000 0.1667 0.1429 0.1250 0.1111 0.1000

0.1667 0.1429 0.1250 0.1111 0.1000 0.0909

V =

-0.0012 -0.0111 0.0622 0.2403 -0.6145 0.7487

0.0356 0.1797 -0.4908 -0.6977 0.2111 0.4407

-0.2407 -0.6042 0.5355 -0.2314 0.3659 0.3207

0.6255 0.4436 0.4170 0.1329 0.3947 0.2543

-0.6898 0.4415 -0.0470 0.3627 0.3882 0.2115

0.2716 -0.4591 -0.5407 0.5028 0.3707 0.1814

D =

0.0000 0 0 0 0 0

0 0.0000 0 0 0 0

0 0 0.0006 0 0 0

0 0 0 0.0163 0 0

0 0 0 0 0.2424 0

0 0 0 0 0 1.6189

Matrix Algebra 87

Although it may appear from D that the first two eigenvalues of A are
zero, they are not. To see a more accurate representation of D, enter the
following lines:

format long

D

which shows that the first eigenvalues are in fact λ1 = 0.00000010827995
and λ2 = 0.00001257075712.

Returning to the definition of an eigenvalue, the determinant ofA−λI
for a general n × n matrix will be an n-th order polynomial on λ. By
the Fundamental Theorem of Algebra this polynomial will have n roots,
λ1, λ2, ..., λn, counting multiplicity, which may be complex. Several of
the problems below explore the connection between the eigenvalues of A
and its entries aij.

Problems 2.10

1. Find the eigenvalues and eigenvectors of the following matrices.
Verify the results in MATLAB when appropriate.

(a)

[

3 1
1 3

]

(b)

[

3 2
1 3

]

(c)

[

3 −1
1 3

]

(d) The 2 × 2 identity and zero matrices.

(e)

[

0 1
a b

]

(f)

[

a 1
1 a

]

(g)

[

a b
b a

]

(h)

[

a −b
−b a

]

2. Find the eigenvalues and eigenvectors of the following matrices.
Verify the results in MATLAB when appropriate.

(a)





3 1 0
1 3 0
0 0 1





88 Physical Oceanography: A Mathematical Introduction

(b)





1 1 0
1 0 1
0 1 1





(c)





0 1 0
0 0 1
1 2 3





(d)





a 0 0
0 b 0
0 0 c





3. Let A =

[

a b
c d

]

. Let λ1 and λ2 be its eigenvalues. Show that

λ1 + λ2 = a+ d and λ1λ2 = detA.

4. Let A =





a11 a12 a13

a21 a22 a23

a31 a32 a33



. Let λ1, λ2 and λ3 be its eigenvalues.

Let tr(A), called the trace of A, be the sum of the entries on A’s
diagonal. Show that λ1 + λ2 + λ3 = tr(A) and λ1λ2λ3 = detA.

It turns out the above result holds for general n×n matrices, that
is, if

A =













a11 a12 a1n

a21 a22 a2n

...

...
an1 an2 ann













,

and {λ1, λ2, ..., λn} are its n eigenvalues, counting multiplicity,
then tr(A) =

∑n
i=0 λi, detA =

∏n
i=1 λi.

2.11 Project A: Taylor Polynomials and Series

Recall that one way to define y′ = f ′(a), the derivative of a function
y = f(x) at x = a, is by the following limit process:

f ′(a) = lim
h→0

f(a + h) − f(a)

h
.

Equally valid are the expressions

f ′(a) = lim
h→0

f(a) − f(a − h)

h
,

Matrix Algebra 89

and

f ′(a) = lim
h→0

f(a + h) − f(a − h)

2h
.

A good way to convince yourself of the validity of these formulas is to
use Taylor Series formula, that

f(a+h) = f(a)+f ′(a)h+
f ′′(a)

2!
h2+

f ′′′(a)

3!
h3+.... =

∞
∑

n=0

f(n

n!
hn, (2.61)

where 0! = 1 and f(n) is the n-the derivative of f , with f0 = f .

1. Use the Taylor series expression (2.61) to show that

f(a + h) − f(a)

h
= f ′(a) + a1h+ a2h

2 + a3h
3 + ...

How do a1, a2 and a3 depend on f?

2. Find a1, a2 and a3 in each of the following expressions:

f(a) − f(a − h)

h
= f ′(a) + a1h + a2h

2 + a3h
3 + . . . ,

and

f(a + h) − f(a − h)

2h
= f ′(a) + a1h+ a2h

2 + a3h
3 + . . . ,

and

f(a + 2h) − f(a + h)

h
= f ′(a) + a1h+ a2h

2 + a3h
3 + . . . ,

3. The above formulas are all two-step approximations for f ′(a) since
they all require only two function evaluations. The following for-
mula is a multi-step approximations of f ′(a). Show that

1/(12h)(f(a− 2h) − 8f(a − 2h) + 8f(a + h) − f(a + 2h)) =

f ′(a) + a1h+ a2h
2 + +a3h

3 + a4h
4 + . . . (2.62)

for appropriate scalars ai’s.

4. Once we have developed formulas to approximate the first deriva-
tive of a function, these same formulas can readily be applied to
develop appropriate approximations for the higher derivatives of a
function.

90 Physical Oceanography: A Mathematical Introduction

(a) Since f ′′(a) = limh→0
f ′(a+h)−f ′(a)

h , show that f ′′(a) is ap-
proximated by

f(a + 2h) − 2f(a + h) + f(a)

h2
.

Apply the Taylor Series formula to this expression to deter-
mine the dependence of the first three terms of this expression
on h.

(b) Apply the Taylor Series formula to each of the formulas be-
low to show that they approximate f ′′(a). For each formula
determine the dependence on h.

f(a − 2h) − 2f(a − h) + f(a)

h2
.

And
f(a + h) − 2f(a) + f(a − h)

h2
.

2.12 Project B: A Differentiation Matrix

The book by L. N. Trefethen, referenced in [6], is a monograph on a
special numerical method for solving differential equations, the spectral
method, and on the effective and optimal use of MATLAB. This project,
as well as others in this text, are intended to encourage the reader to
consult this book and thus benefit from its important content. In what
follows, the reader is asked to read the first chapter of [6] and to derive
some of its conclusions.

Given a function y = f(x), its derivative y′ can be approximated in
many ways, among which is the centered difference method where y′(x)
is approximated by

y′(x) ≈ y(x + h) − y(x − h)

2h
(2.63)

1. Consider the 2π-periodic function y(x) = esin x, whose deriva-
tive is y′(x) = cosx esin x. Discretize the interval (0, 2π) by
{x1, x2, ..., xn−1, xn} into n equal subintervals of length h = 2π

n ,
where x1 = 0 and xn = 2π − h. Let wi stand for the approxima-
tion of y′ at x = xi. Apply the formula on the right side of (2.63) to
determine the following formulas for w1, w1, ..., wn, taking advan-
tage of the periodicity of the function y(x) (recall that the function

Matrix Algebra 91

y is 2π-periodic, so y0 = yn−1 and yn+1 = y0):

w1 = 1
2h(y2 − yn−1),

w2 = 1
2h(y3 − y1),

... = ...

... = ...
wn = 1

2h
(y1 − yn−1).

(2.64)

2. Let y = 〈y1, y2, ..., yn〉T and w = 〈w1, w2, ..., wn〉T and show that
(2.64) can be written as w = Dy where D is

D =
1

2h





















0 1 0 0 0 −1
−1 0 1 0 0 0
0 −1 0 1 0 0
...
...
0 0 0 0 ... −1 0 1
1 0 0 0 −1 0





















. (2.65)

Note that this matrix consists of relatively few nonzero entries and
is ana example of a sparse matrix. We will encounter sparse ma-
trices later in the text and will explore how to use MATLAB’s
efficient handling of sparse matrices to carry out calculations in-
volving quite large matrices.

3. Write a MATLAB program to plot the graph of the function w
and the exact derivative cos x esin x over the interval (0, 2π) with
n = 10, 100 and 1000. See Figure 2.4 for a similar figure. The
MATLAB internal function diag is the ideal tool for constructing
D.

4. Apply the above approach to the following functions:

(a) y(x) = sinx+ 0.1 cosx,

(b) y(x) = sinx+ sin 10x,

(c) y(x) = esin x cosx.

5. Apply the formula in (2.62) to compute the derivative y′(x) if
y(x) = sinx + 2 sin 3x cosx on the interval (0, 10π). Experiment
with the discretization of (0, 10π) to arrive at a reasonable ap-
proximation to y′.

6. The matrix D defined in (2.65) is the operator that allows us to
compute the first derivative of a function. It seems reasonable then
that D2 should provide an approximation to y′′. Let z = D2y and

92 Physical Oceanography: A Mathematical Introduction

0 2 4 6 8 10 12 14 16 18 20
−1.5

−1

−0.5

0

0.5

1

1.5

FIGURE 2.4: The exact derivative of the function y(x) = esin x and
its approximation, using the centered difference method with n = 100 in
the interval [0, 6π).

test this idea on the function y = esin x by comparing z to the
second derivative of y. Compare the structure of D2 to D and
comment on the number of nonzero diagonals of the former.

7. Explore further the connection between the operation of matrix
multiplication and differentiation by considering An, where A is
defined in (2.65), as a proxy for y(n), the n-th derivative of y.
Write a MATLAB program that computes the first four deriva-
tives of a function such as y(x) = sinx+ 0.3 sin2x− 0.4 sin3x. Of
particular importance is to understand the relation between h, the
step-size, and the accuracy of the approximation as the order of
differentiation increases. See Figure 2.5.

8. Denote the differentiation matrix (2.65) byDN , acknowledging the
fact that this matrix, its size and content, depends on N , the num-
ber of subintervals in the discretization. Explore the eigenvalues of
DN as a function of N = 2i as i ranges from 3 to 12. Do any
patterns emerge? For example, is DN nonsingular for any N? Are
there any eigenvalues of DN with nonzero real part?

Matrix Algebra 93

0 50 100
−4

−2

0

2
First derivative versus exact

0 50 100
−5

0

5
Second derivative versus exact

0 50 100
−20

−10

0

10

20
Third derivative versus exact

0 50 100
−40

−20

0

20

40
Fourth derivative versus exact

FIGURE 2.5: A comparison of the first four derivatives of the function
y(x) = sinx + 0.3 sin2x − 0.4 sin3x and its approximation, using the
centered difference method with n = 100 in the interval [0, 6π).

2.13 Project C: Spectral Method and Matrices

The approach of the previous project allows us to compute a rela-
tively good approximation of the derivative of a function y(x) by con-
sidering function evaluations at the two neighboring points immediately
to the left and right of x = a. We can easily generalize this method
to other finite difference approximations of the derivative that we have
already discussed, including for instance approximating y′(a) by consid-
ering four neighbors of x = a, namely, by considering evaluating y at
x = a+h, x = a+2h, x = a−h, and x = a−2h. It is not difficult to see,
and perhaps not surprising, that having access to more data about y in
the neighborhood of x = a will lead to more accurate approximation of
y′(a).

A natural question arises as to the accuracy of the approximation
we would achieve if we used all of the information available to us as
far as the domain of y is concerned to approximate the value y′(a) (and

94 Physical Oceanography: A Mathematical Introduction

equivalently y′′(a) or higher derivatives of y at a). This idea is the essence
of the Spectral Method for generating differentiation matrices. Recalling
from Project B that the more nearby points we used to approximate the
derivative of y at x = a, the more nonzero diagonals appeared in the
differentiation matrix A, we can expect that the diagonal entries of the
spectral differentiation matrix will almost all be nonzero.

Spectral methods have received considerable amount of attention in
the past few decades and several outstanding texts are available that
treat this material. We have already alluded to the text by L. Trefethen
in Project B. Another text worthy of special note is the one by J. Hes-
thaven, S. Gottlieb, and D. Gottlieb, (see Reference [7]), from which we
have taken the formula (2.66) below.

1. Consider a 2π-periodic function y(x). Discretize the domain [0, 2π)
as before, with a uniformly distributed set of points at step-size h
– Let xi = (i− 1)h, i = 1, ..., n. Define the matrix A as follows:

Aij =
(−1)i+j

2
cot(

xi − xj
2

), (2.66)

and Ai,j = 0 if i = j. Write a MATLAB program to generate A
for any n.

2. With y(x) = esin x, apply the spectral differentiation matrix A
defined above to compute an approximation to y′, y′′ and y′′′ on
the interval [0, 10π). Compare the graphs of the approximations to
the exact values. See Figure 2.6.

2.14 Concluding Remarks

The discussion in this chapter on matrix algebra is just a brief in-
troduction to this important topic, arguably the most important area
of applied mathematics, especially when considering its applications to
numerical computations. The interested reader should continue consult-
ing the texts listed below for more complete treatment of linear algebra.
In addition to the books referenced there, there are now numerous re-
sources for how one takes advantage of MATLAB’s unique capabilities in
implementing matrix algebra to solve fundamental problems in applied
mathematics. Some of these resources, such as Lloyd Trefethen’s text on
the Spectral Methods, have already reached the status of a classic text.
For others, the reader is strongly encouraged to consult the World Wide

Matrix Algebra 95

0 5 10 15 20
0

2

4
x 10

−12 First Derivative

0 5 10 15 20
0

0.5

1
x 10

−10 Second Derivative

0 5 10 15 20
0

2

4
x 10

−9 Third Derivative

FIGURE 2.6: A comparison between the exact and approximate values
of the first three derivatives of the function y(x) = esin x in the interval
[0, 6π) using the Spectral Method with n = 100.

Web regularly in search of new materials that become available almost
on a daily basis and are often written for beginner or intermediate users
of MATLAB.

2.15 References and Further Reading

1. Strang, G., Linear Algebra and Its Application, 3rd edition,
Brooks/Cole Publishing, 1988.

2. Strang, G., Introduction to Linear Algebra, 3rd edition, Wellesley
Cambridge Press, 2003.

3. Nakos, G., Joyner, D., Linear Algebra with Applications,
Brooks/Cole Publishing, 1998.

4. Malek-Madani, R., Advanced Engineering Mathematics with
MathematicaR© and MATLABR©, Addison-Wesley, 1998.

96 Physical Oceanography: A Mathematical Introduction

5. Golub, G., Van Loan, C., Matrix Computations, The Johns Hop-
kins University Press, 3rd edition, 1996.

6. Trefethen, L., Spectral Methods in MATLAB, Society for Industrial
and Applied Mathematics, 2000.

7. Hesthaven, J., Gottlieb, S., Gottlieb, D., Spectral Methods for
Time-Dependent Problems, Cambridge University Press, 2007.

Chapter 3

Differential and Integral Calculus

In this chapter we develop the essential concepts from differential and
integral calculus and discuss the role they play in this text in the context
of geophysical fluid dynamics. We will also use this opportunity to hint
at the issues we will face when we need to approximate the typical rates
of change that appear in the governing equations of motion.

3.1 Derivative

The standard definition of the derivative of f , a function of one vari-
able, at the point x = a is

f ′(a) = lim
h→0

f(a + h) − f(a)

h
, (3.1)

when that limit exists. Alternative ways of defining the same quantity
are

f ′(a) = lim
h→0

f(a) − f(a − h)

h
, (3.2)

f ′(a) = lim
h→0

f(a + h) − f(a − h)

2h
, (3.3)

or

f ′(a) = lim
h→0

f(a + 2h) + f(a + h) − 2f(a)

3h
, (3.4)

which constitute just a few formulas, out of infinitely many such for-
mulas, that lead to determining f ′(a). We use the concept of derivative
primarily to relate the rates of growth of various variables in a physi-
cal process. In this context it is not significant which of the definitions
in (3.1)–(3.4) we use to develop our arguments. This choice becomes
quite significant, however, in our second application of the definition of
derivative, namely when we need to approximate f ′(a) by one of the
many “rise-over-run” ratios on the right side of (3.1)–(3.4). In the con-
text of solving differential equations, a subject we will take up in the

97

98 Physical Oceanography: A Mathematical Introduction

next chapter, which one of the representations of f ′(a) in (3.1)–(3.4) is
selected could have a significant impact on the accuracy of the numerical
schemes one develops.

Higher order derivatives of f are defined analogously, by applying the
formulas in (3.1)–(3.4) to lower order derivatives. For example, f ′′(a) is
determined as

f ′′(a) = lim
h→0

f ′(a+ h) − f ′(a)

h
. (3.5)

We may apply any of the formulas in (3.1)–(3.4) to the right side of (3.5)
to arrive at formulas for f ′′(a) that involve evaluation of the function
f at a and its neighboring values and not any of its derivatives. For
instance

f ′′(a) = lim
h→0

f(a + h) − 2f(a) + f(a − h)

h2
(3.6)

and

f ′′(a) = lim
h→0

f(a + 2h) − 2f(a + h) + f(a)

h2
(3.7)

result from applying (3.1) and (3.2) (see the Problem 8 at the end of
this section).

Partial derivatives of a function f , when f depends on several in-
dependent variables, are defined precisely as laid out in (3.1) and its
equivalent forms because the partial derivative of f with respect to one
of its independent variables, say x, is the rate of change of f when x is
allowed to vary while all other independent variables are kept constant.
For simplicity, let us assume f is a function of three variables, denoted
by x, y and z, in a domain D, a subset of R3. Let P = (a, b, c) be a
point in the domain at which we are interested in determining f ’s rate
of change in the x direction. This quantity, which we denote by ∂f

∂x
or

by fx, is obtained as follows:

∂f

∂x
|P = lim

h→0

f(a + h, b, c)− f(a, b, c)

h
, (3.8)

if the limit exists. We obtain ∂f
∂y and ∂f

∂z in a similar fashion:

∂f

∂y
|P = lim

h→0

f(a, b+ h, c) − f(a, b, c)

h
,

∂f

∂z
|P = lim

h→0

f(a, b, c+ h) − f(a, b, c)

h
. (3.9)

Higher order derivatives of f are obtained by repeated application of the
definition of differentiation. So, fxx|P is obtained by first computing fx

Differential and Integral Calculus 99

at an arbitrary point (x, y, z) in the domain and then applying (3.8) to
fx:

fxx|P =
∂2f

∂x2
= lim

h→0

fx(a + h, b, c)− fx(a, b, c)

h
. (3.10)

Similarly,

fyx =
∂2f

∂y∂x
|P = lim

h→0

fx(a, b+ h, c) − fx(a, b, c)

h
. (3.11)

As the reader may suspect, the order of differentiation in expressions
such as fxy and fyx do not matter, at least for the large class of functions
f that we encounter in typical applications in this text. The standard
texts on Advanced Calculus, several of which are listed at the end of this
chapter, devote a substantial amount of effort in developing the right
mathematical theorems that ensure the well-posedness of the topics we
have discussed; for example, under what conditions on f does the limit in
(3.1) exist, so that we can be assured that the function f is differentiable
at P ? And when can we be sure that the order of differentiation in (3.11)
is immaterial? While this assertion seems natural and apparently should
hold, it is somewhat surprising that there are plenty of counterexamples
(see Problem 14 for one such example), although these examples are
relatively pathological and may not appear very often in nature.

Problems 3.1

1. Consider the function f(x) = x3 + 2x2 − 1. Use (3.1) and (3.5) to
show that f ′(a) = 3a2 + 4a and f ′′(a) = 6a.

2. Consider the function f(x) = x2 + bx + c, where a, b and c are
constants. Use (3.3) and (3.4) to show that f ′(d) = 2d+ b.

3. Use (3.1) to show that nxn−1 is the derivative of xn, where n is a
positive integer. Also, show that f ′′(a) = n(n− 1)an−2.

4. Use (3.1) to show that cosx is the derivative of sinx.

5. Consider the function f(x) = |x|. Compute f ′(1), f ′(−1) and f ′(0),
if they exist.

6. Consider the function f(x) = |x|x. Determine f ′(x).

7. Consider the function f(x) = x sin 1
x when x 6= 0. Define f(0) =

0. Is f continuous at x = 0? (Remark: Recall that a function f
is continuous at x = a if and only if limx→a f(x) = f(a).) Is f
differentiable at x = 0?

8. Derive the formulas in (3.6) and (3.7) from (3.1) and (3.2).

100 Physical Oceanography: A Mathematical Introduction

9. The composition of two functions f and g, denoted by f ◦ g is
defined by

(f ◦ g)(x) = f(g(x)) (3.12)

as long as the range of g and the domain of f are compatible
enough for (3.12) to make sense. The Chain Rule of differentiation
provides a formula for differentiating f ◦ g. It states

(f ◦ g)′(x) = f ′(g(x))g′(x). (3.13)

Use the Chain Rule to differentiate sin 2x, sin(x2),
√
x3 + 1 and

ln 1
cosx .

10. Consider the function f(x, y) = x2 + 3y2 − xy. Determine

i) fx(1, 2), ii) fy(1, 2), iii) fxx(x, y), iv) fyy(a, b), v)
∂2f

∂x∂y
.

11. Find all a and b, both constants, so that f(x, y) = ax2+by2 satisfies
the equation

fxx + fyy = 0.

12. Find all a and b, both constants, so that u(x, y) = sin ax cos by
satisfies the equation

uxx − uyy = 0.

13. Consider the complex-valued function h(t, x) = eiωt+kx where i =√
−1 and ω and k are constants. Determine ht, htt, htx and hxx.

14. Let f(x, y) = xy(x2−y2)
x2+y2 if (x, y) 6= (0, 0) and 0 otherwise. Show

that fxy(0, 0) = −1 but fyx(0, 0) = 1.

3.2 Taylor Polynomial and Series

The Taylor polynomial is one of the main tools in developing approx-
imate formulas to represent functions. This concept is typically applied
when one has local information about a function, the information con-
sisting of knowledge of the functional value and several of its derivatives
at a single point x = x0 in the domain. Since the first derivative of a
function f represents the slope of the tangent line to the graph of f , this
information can be used to build a linear approximation to the function,
thus obtaining a formula that serves as a reasonable approximation as

Differential and Integral Calculus 101

long as one applies it only near x0. Repeating this procedure for the
various derivatives of f at x0, one obtains a polynomial approximation
to f .

To see this procedure in a concrete setting, consider a function f in a
domain (a, b) and a point x0 ∈ (a, b). Assume that f(x0), f

′(x0), f
′′(x0),

..., f(n)(x0) are known. Then the n-th order polynomial

Pn(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2!
(x− x0)

2 + ...+

f(n)(x0)

n!
(x− x0)

n (3.14)

is the n-th order Taylor Polynomial approximation of f . As the reader
can easily verify, the function f and all of its derivatives of up to order
n agree with the corresponding values of Pn. That is

f(x0) = Pn(x0), f
′(x0) = P ′

n(x0), f
′′(x0) =

P ′′
n (x0), ..., f

(n)(x0) = P (n)
n (x0).

A standard theorem from Calculus gives an excellent estimate on the er-
ror one incurs when one considers Pn in place of f . This error is propor-
tional to the n+1 derivative of f but evaluated at a point ξ, somewhere
between x and x0:

f(x) = Pn(x) +
f(n+1)(ξ)

(n + 1)!
(x− x0)

n+1, ξ ∈ (x0, x). (3.15)

The term f(n+1)(ξ)
(n+1)! (x − x0)

n+1 is referred to as the remainder and its

absolute value in the domain (a, b) provides insight on the amount of
error one makes when approximating f by Pn.

As an example, consider the 7-th order Taylor polynomial approxi-
mation of the function f(x) = sinx about x0 = 0. The formula in (3.14)
gives

P7(x) = x− x3

3!
+
x5

5!
− x7

7!

with the remainder sin ξ
8! x

8, with ξ ∈ (0, x). Since | sin ξ| ≤ 1 the maxi-

mum error we sustain by replacing f with P7 in the interval (0, a) is a8

8! .
When a = 1, say, this error is less than 0.00002. The following MAT-
LAB program plots f and P7 on the interval (0, 2π), showing how well
P7 approximates f on the interval (0, 1) and beyond, but that the ap-
proximation begins to deteriorate when x > 5 or so (see Figure 3.1).
This figure is obtained by running the following code in MATLAB:

102 Physical Oceanography: A Mathematical Introduction

0 pi/2 pi 3pi/2 2pi
−35

−30

−25

−20

−15

−10

−5

0

5

s
in

(x
)

a
n
d
 P

7
(x

)

Plot of sin(x) and its Taylor Polynomial

P
7
(x)→

FIGURE 3.1: The function sinx and its 7-th order Taylor Polynomial
approximation.

clf

x=0:0.01:2*pi;

plot(x,sin(x));

hold on

z=zeros(size(x));

for i=1:4

z=z+(-1)^(i-1)*x.^(2*i-1)/factorial(2*i-1);

end

plot(x,z)

set(gca,’XTick’,0:pi/2:2*pi)

set(gca,’XTickLabel’,{’0’,’pi/2’,’pi’,’3pi/2’,’2pi’})

ylabel(’sin(x) and P_7(x)’)

title(’Plot of sin(x) and its Taylor Polynomial’)

text(2*pi-1,-25,’P_7(x)\rightarrow’, ...

’HorizontalAlignment’,’left’)

One of the important applications of the Taylor polynomial is in
computing the truncation error of finite difference schemes, which we will
study in detail later, when we approximate the derivative of a function
by any of the several right sides in formulas (3.1)–(3.4). For example,

Differential and Integral Calculus 103

formula (3.1) suggests that we replace f ′(a) by the ratio

∆f(a, h) =
f(a + h) − f(a)

h
. (3.16)

The expression in (3.16) converges to f ′(a) as h approaches zero but now
we can find out the rate of this convergence as a function of h. Define
the function g by g(h) = f(a + h) and expand g about h = 0 to get

g(h) = g(0) + g′(0)h+ ... = f(a) + f ′(a)h +
f ′′(a)

2!
h2 + h.o.t (3.17)

where h.o.t. stands for higher order terms in h. Returning to the defini-
tion of ∆f in (3.16), we see that

∆f(a, h) − f ′(a) =
f ′′(a)

2!
h+ h.o.t.

where now h.o.t. stands for terms in h with powers equal or higher
than two. Since the remainder ∆f(a, h)−f ′(a) is proportional to h (and
assuming that f ′′(a) does not vanish), we say the difference scheme given
by ∆f is first order. Some of the problems at the end of this section deal
with computing the truncation errors in the other definitions of f ′(a)
in (3.2)–(3.4), as well as for higher-order differential operators. See also
Project A in Chapter 2.

The process of obtaining an n-th order polynomial approximation
of a function f can of course be implemented for any n as long as f
is sufficiently differentiable. If it turns out that the function f is in
fact infinitely many times differentiable, we can push this process to its
limit by allowing n approach to infinity and obtain an infinite series
representation of f :

f(x) =

∞
∑

n=0

f(n)(a)

n!
(x− a)n. (3.18)

This series representation behaves very well for a large class of func-
tions, including the familiar ones such as exponential, trigonometric and
rational functions, but one must be considerably more careful when us-
ing (3.18), as compared with (3.14), since we now must deal with the
prospect of the convergence of the right side of (3.18), a rich subject
of analysis treated in several of the books cited in the references. Since
we do not make much use of the Taylor series in the applications we
encounter in this text, we will not pursue further the discussion of that
subject.

104 Physical Oceanography: A Mathematical Introduction

Problems 3.2

1. Compute the 3rd, 5th and 7th order Taylor polynomial approx-
imations of the function f(x) = e−x sinx about x = 0 and plot
the graphs of each approximation against the original f over the
interval (0, 4).

2. Apply the Taylor polynomial method to determine the order and
the truncation error of each of the following finite-difference ap-
proximations for f ′(a):

(a) ∆f(a, h) = f(a)−f(a−h)
h ,

(b) ∆f(a, h) =
f(a+h)−f(a−h)

2h ,

(c) ∆f(a, h) = f(a+2h)+f(a+h)−2f(a)
3h

.

3. Apply the Taylor polynomial method to determine the order and
the truncation error of the finite-difference approximation

f(a + h) − 2f(a) + f(a + h)

h2

for f ′′(a).

3.3 Functions of Several Variables and Vector Fields

The typical physical quantities we study are represented mathemati-
cally by functions or vector fields that depend on several variables. Pres-
sure, salinity, density and temperature are examples of physical entities
that are scalars that depend on several space dimensions and on time,
while velocity, acceleration and wind stress are examples of vector quan-
tities that typically vary with space and time. The results and theorems
we develop in this section relate rates of change of these quantities and
provide information about their local behavior.

We begin by considering f , a function of several variables, and ad-
dress questions about the various rates of change of f and how they
relate to surfaces along which f remains constant. For simplicity let f
depend on only two independent variables x and y; the results we discuss
readily generalize to higher dimensions. The gradient of f , denoted by
∇f , is defined by

∇f = 〈∂f
∂x
,
∂f

∂y
〉. (3.19)

Differential and Integral Calculus 105

The directional derivative of f at the point P = (a, b) in the direction e,
a unit vector, is denoted by df

de and defined by the relation

df

de
= ∇f |

P
· e. (3.20)

Recall that the dot product of two vectors a and b provides information
about the angle θ between the two vectors because a · b and cos θ are
related by

a · b = ||a|| ||b|| cos θ. (3.21)

Returning to (3.20) we note that | dfde | = | ∇f |P ·e | = ||∇f |P || ||e|| | cosθ|.
Keeping P fixed for the time being, and noting that ||e|| = 1, we deduce
that the directional derivative of f at P in the direction of e reaches its
maximum when | cos θ| = 1, or when∇f and e are parallel, i.e., when

e =
1

||∇f ||∇f.

with this expression for e, the directional derivative df
e

is ||∇f || by (3.20).
This result is significant enough that we summarize it in a theorem.

Theorem 3.3.1 (Direction of Steepest Ascent)
Let f be a differentiable function of its arguments. Let P be a point in its
domain. Then the quantity df

de achieves its largest value, which is ||∇f ||,
when e = 1

||∇f||∇f. Similarly, df
de achieves its minimum −||∇f || when

e = − 1
||∇f||∇f, which we refer to as the direction of steepest descent.

The contour level (or the level set) of a function f is the set of all
points in the domain of f at which f remains constant. Assuming, again
without loss of generality, that f depends on only two independent vari-
ables, the contour level of f is defined by

{(x, y)| f(x, y) = const.}. (3.22)

The following argument shows that ∇f and its contour level must be
orthogonal: Let C be a contour of f with k the constant such that
f(x, y) = k. Let (x(t), y(t)), t ∈ (a, b), be the parametrization of this
curve, that is,

f(x(t), y(t)) = k, for all t ∈ (a, b).

Differentiate both sides of the above expression to arrive at

∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
= 0, for all t ∈ (a, b),

106 Physical Oceanography: A Mathematical Introduction

which can be rewritten as

∇f · 〈dx
dt
,
dy

dt
〉 = 0,

signifying that ∇f and 〈dx
dt
, dy
dt
〉 are orthogonal. Since the vector 〈dx

dt
, dy
dt
〉

is tangential to the contour level C, we have shown that ∇f and C are
orthogonal. We summarize this discussion as a theorem.

Theorem 3.3.2 (Contour Levels and Gradients)
Level curves (surfaces) of a function f and its gradient are orthogonal.

The observation we have made about the gradient of f and its con-
tours is easily captured in MATLAB by the following example. Here
f(x, y) = e−x sin y.

clf;

[x,y]=meshgrid(0:0.2:3,0:0.15:pi);

z=exp(-x).*sin(y);

[qx,qy]=gradient(z,0.2,0.15);

contour(x,y,z);

hold on

quiver(x,y,qx,qy);

See Figure 3.2 for the output of the above program. The color bar on
the right side of the figure shows the range of contour values, in this
case ranging from 0 to 1; applying MATLAB’s surf command will shed
more light on why the contours appear as they are. Also note that the
gradient vectors are clearly orthogonal to the associated contour levels.

The distribution of the gradient vectors in Figure 3.2 is an example
of a vector field, namely, an assignment of vectors to positions P in a
domain. A substantial part of this text will be dedicated to comput-
ing velocity vector fields. A velocity vector field is a special collection of
vectors v(x, y, z, t) expressing the tendency a particle, which is located
at position (x, y, z) at time t, possesses in order to move in the direc-
tion designated by v. Since position and velocity are intimately related
through the expressions

dx

dt
= u(x, y, z, t),

dy

dt
= v(x, y, z, t),

dz

dt
= w(x, y, z, t), (3.23)

where u, v and w are the components of v, these equations provide us
with a system of ordinary differential equations whose solution will lead
to particle trajectories of the flow induced by the velocity field. Solving
equations like (3.23) is the subject of the next chapter.

MATLAB’s quiver command, which was used in the code listed
above, is the appropriate tool for displaying vectors in a vector field.

Differential and Integral Calculus 107

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

FIGURE 3.2: The contour and gradient vectors of the function
f(x, y) = e−x sin y.

Problems 3.3

1. For each function listed, plot the equivalent of Figure 3.2. In each
case use surf to plot the graph of the surface. Experiment with
the domain of each function to display regions where the function
undergoes substantial change.

(a) x2 + y2 ,

(b) sin(x2 + y2),

(c) x2 − y2 ,

(d) tan(x2 − y2),

(e) x2 + 2y2 ,

(f) x2 + 10y2,

(g) sinπx sinπy,

(h) sinπx cos πy,

(i) ln(x2 + y2),

(j) 1 + ln(x2 + y2),

108 Physical Oceanography: A Mathematical Introduction

(k) x+ ln(x2 + y2).

2. For each function listed, plot the equivalent of Figure 3.2.

(a) x2+y2

x2+y2+1 ,

(b) x
x2+y2 ,

(c) xy
x2+y2 + ε sin(||r||) where r = 〈x, y〉. Let ε = −1, 0 and 1.

(d) sin r
r where r = ||〈x, y〉||.

3. Determine the direction of steepest descent at the designated
points for each of the following functions.

(a) x2 + y2 at P = (1, 1) and at P = (1, 2).

(b) x2 + 3y2 at P = (a, b).

(c) ln(x2 + y2) at P = (−1, 1).

4. Consider the function f(x, y) = x2 +3y2 −2x and the set of points
(x, y) on the contour level 1 (i.e., f(x, y) = 1). Determine the
magnitude of steepest descent at each one of these points, and find
the point on this set where this rate of change is minimized.

5. Verify the following identities. Here f and g are arbitrary differen-
tiable functions of x, y and z.

(a) ∇(f + g) = ∇f + ∇g.
(b) ∇(cf) = c∇f , where c is a constant.

(c) ∇(fg) = g∇f + f∇g.
(d) ∇(fg) = 1

g2 (g∇f − f∇g).

6. (Basis in Polar Coordinates) Show that {er , eθ} defined by

er = 〈cos θ, sin θ〉, eθ = 〈− sin θ, cos θ〉 (3.24)

forms a basis for E2.

7. (Gradient in Polar Coordinates) Let F (r, θ) be the representation
of f(x, y) in polar coordinates, that is,

F (r, θ) = f(r cos θ, r sin θ).

Show that

∇f =
∂F

∂r
er +

1

r

∂F

∂θ
eθ, (3.25)

where er and eθ are defined in (3.24).

Differential and Integral Calculus 109

8. (Basis in Spherical Coordinates) Show that {eρ, eθ, eφ} defined by

eθ = 〈− sin θ, cos θ, 0〉,
eφ = 〈cos θ cos φ, sin θ cos φ,− sinφ〉,
eρ = 〈cos θ sinφ, sin θ sinφ, cosφ〉,

(3.26)

forms a basis for E3.

9. (Gradient in Spherical Coordinates) Let F (ρ, θ, φ) be the represen-
tation of f(x, y, z) in polar coordinates, that is,

F (ρ, θ, φ) = f(ρ cos θ sinφ, ρ sin θ sinφ, ρ cosφ).

Show that

∇f =
∂F

∂ρ
eρ +

1

ρ

∂F

∂θ
eθ +

1

ρ sin θ

∂F

∂φ
eφ, (3.27)

where eρ, eθ and eφ are defined in (3.26).

3.4 Divergence

Since vector fields vary with position over their domains we need
mathematical tools, similar to the concept of the derivative of a function
of a single variable, to analyze their local behavior. Divergence and Curl
are two such tools.

Consider a vector field v in E3. If we represent v by

v = 〈u(x, y, z), v(x, y, z), w(x, y, z)〉 (3.28)

in the standard basis, we define the divergence of v, denoted by div v or
by ∇ · v, as

div v =
∂u

∂x
+
∂v

∂y
+
∂w

∂z
. (3.29)

Note that if we define the del operator, denoted by ∇, as

∇ = 〈 ∂
∂x
,
∂

∂y
,
∂

∂z
〉,

then (3.29) is equivalent to
∇ · v,

that is, the dot product of the “vector” ∇ and the vector v.

110 Physical Oceanography: A Mathematical Introduction

The divergence of a vector field provides information about stretching
and compression of space under the action of v. We will make this point
precise in the context of conservation of mass in a later chapter. Here
we will bring up one important application of divergence in the context
of two-dimensional vector fields whose divergence vanishes. Consider the
vector field

v = 〈u(x, y, t), v(x, y, t)〉 (3.30)

endowed with the property div v = 0, or ∂u
∂x + ∂v

∂y = 0. This property
is automatically satisfied if the components of v are related to a single
function ψ by

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (3.31)

Under reasonable conditions (see theorem below) on the smoothness of
u and v, it turns out that when div v = 0 then there exists a function
ψ where (3.31) holds. Such a function is called a Stream Function in
fluid dynamics and a Hamiltonian in mathematics. One of the important
features of having a stream function in hand is that ψ remains invariant
under the action of the system of differential equations (3.23) when the
right side of (3.30) is time-independent. To see this, consider (3.30) in
combination with (3.31):

dx

dt
= u(x, y) =

∂ψ

∂y
,

dy

dt
= v(x, y) = −∂ψ

∂x
. (3.32)

Then, with (x(t), y(t)) a solution of (3.23) and ψ = ψ(x(t), y(t)), we have

dψ

dt
=
∂ψ

∂x

dx

dt
+
∂ψ

∂y

dy

dt
=
∂ψ

∂x

∂ψ

∂y
− ∂ψ

∂y

∂ψ

∂x
= 0, (3.33)

which indicates that ψ remains constant along trajectories (t, x(t), y(t))
of the velocity field (3.30).

Another significant feature of having a stream function in hand is
that we can go far in determining the orbits (x(t), y(t)) of (3.30). This
property follows from the special relations in (3.32) and the fact that
the gradient of any function is perpendicular to its contour levels. To see
this, note that

∇ψ · v = 〈∂ψ
∂x

,
∂ψ

∂y
〉 · 〈v1, v2〉 = 〈−v2, v1〉 · 〈v1, v2〉 = 0. (3.34)

Hence v is perpendicular to ∇ψ, or, equivalently, parallel to ψ = k, k
a constant. Since v is instantaneously tangential to the orbits of (3.30),
we have valuable information about this system of differential equations
in the special case when the system is two-dimensional, its velocity field

Differential and Integral Calculus 111

is divergence-free, and its right side is independent of t. In this setting
the contours of ψ end up being the orbits of (3.30). We summarize the
above discussion as a theorem.

Theorem 3.4.1 (Stream Functions)
Let v be a continuously differentiable two-dimensional vector field with
div v = 0. Then

1. There is a continuously differentiable function ψ(x, y, t) such that
the relations in (3.30) hold.

2. When v (and by extension, ψ) is time-independent, then the orbits
of the system of differential equations in (3.32) and contour levels
of ψ coincide.

A point regarding this theorem is worth emphasizing. We have used
the term “orbits” of (3.32), rather than “trajectories,” to call attention
to the fact that the statement of the theorem involves the set of points
(x(t), y(t)) (and not (t, x(t), y(t))) — it turns out that the uniqueness
property of trajectories of systems such as (3.32) extend to the orbits
of that system when v does not explicitly depend on t. This property
plays a crucial role in the proof of the contention about the coincidence
of orbits and contour levels.

The task of determining ψ in a concrete setting reduces to integrating
(3.31). Consider the example v = 〈y,−x〉, which satisfies the requisite
condition div v = 0. To determine ψ we need to integrate (3.31), which
in this example reduces to

y =
∂ψ

∂y
, −x = −∂ψ

∂x
. (3.35)

Integrating the first equation with respect to y yields

ψ(x, y) =
1

2
y2 + f(x),

where f is the constant of integration (with respect to y). Differentiating
the latter with respect to x gives us ∂ψ

∂x = f ′(x), which when compared
with (3.35)b, yields f ′(x) = x. Hence f(x) = 1

2
x2 + c, with c a universal

constant. Hence the stream function for v = 〈y,−x〉 is

ψ(x, y) =
1

2
(x2 + y2) + c.

Since contours of this stream function are concentric circles about the
origin, we conclude, following Theorem 3.4.1, that the orbits of the sys-
tem of differential equations

dx

dt
= y,

dy

dt
= −x

112 Physical Oceanography: A Mathematical Introduction

are concentric circles.

Problems 3.4

1. Verify the following identities. All vector fields are assumed smooth
enough to allow differentiations of all orders needed.

(a) div (v + w) = div v + div w.

(b) div (cv) = c div v, where c is a constant.

(c) div (ρv) = ∇ρ · v + ρdiv v, where ρ is a smooth function.

(d) div (∇f) = ∆f , where ∆, the Laplace Operator, is ∂2

∂x2 + ∂2

∂y2 +
∂2

∂z2 .

(e) div (f∇g) = f∆g + ∇f · ∇g.
(f) div (f∇g) − div (g∇f) = f∆g − g∆f .

(g) div (∇f ×∇g) = 0.

2. Consider the stream function ψ(x, y) = 1√
2x2−y2

. Determine its

associated vector field v.

3. Show that if ψ is a stream function and v(x, y) its attendant vector
field, then

div (ψv) = 0. (3.36)

4. Consider the velocity field v(x, y) = 〈 y√
x2+y2

,− x√
x2+y2

〉. Show

that this velocity field has a stream function, determine it, and use
the result of Theorem 3.4.1 and MATLAB to plot v’s orbits.

5. (Divergence in Polar Coordinates)

(a) Let v be a vector field in E2 with components (u, v) in Carte-
sian coordinates and (ur , uθ) in polar coordinates, i.e.,

v = ui + vj = urer + uθeθ,

where er and eθ were defined in (3.24).

i. Show that

ur = u cos θ + v sin θ, uθ = −u sin θ + v cos θ.

ii. Verify that the following formula holds for the divergence
of a vector field in polar coordinates.

div v =
∂ur
∂r

+
1

r
ur +

1

r

∂uθ
∂θ

.

Differential and Integral Calculus 113

(b) (Cylindrical Coordinates) Let v = ui + vj + wk = urer +
uθeθ +wk. Show that

div v =
∂ur
∂r

+
1

r
ur +

1

r

∂uθ
∂θ

+
∂w

∂z
,

where w is the z-component of v.

6. Apply the results in Problem 5 and compute the divergence of each
v, first in Cartesian coordinates and then in polar coordinates.

(a) v = xi− 2yj.

(b) v = x
x2+y2 i + y

x2+y2 j.

(c) v = y√
x2+y2

i− x√
x2+y2

j.

(d) v = 1
r3

eθ.

7. In this problem we determine the relationship between ψ(x, y),
the stream function of a vector field, represented in the standard
Cartesian basis, and Ψ(r, θ), the representation of the same stream
function in polar coordinates. Note that

ψ(x, y) = Ψ(r, θ) (3.37)

where x = r cos θ and y = r sin θ. Show that the relations in (3.31)
take the form

ur =
1

r

∂Ψ

∂θ
, uθ = −∂Ψ

∂r
, (3.38)

where ur and uθ are defined in Problem 5.

8. (Laplace Operator in Polar Coordinates) The Laplace operator in
Cartesian coordinates has the form

∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2
.

Show that this operator has the form

∂2Ψ

∂r2
+

1

r

∂Ψ

∂r
+

1

r2
∂2Ψ

∂θ2
+
∂2Ψ

∂z2

in polar (cylindrical) coordinates.

9. (Divergence in Spherical Coordinates) Consider the vector field
v = uρeρ + uθeθ + uφeφ. Show that the divergence of v is given
by the following formula:

∂uρ
∂ρ

+
2

ρ
uρ +

1

ρ

∂uθ
∂θ

+
cot θ

ρ
uθ +

1

ρ sin θ

∂uφ
∂φ

. (3.39)

114 Physical Oceanography: A Mathematical Introduction

Hint: If you have access to the symbolic manipulator MathematicaR©,
you may try the following code and compare your result to its out-
put:

Clear[v1, v2, v3, e1, e2, e3, r, theta, phi, u, v, w]

r = Sqrt[x^2 + y^2 + z^2]; theta = ArcTan[y/x];

phi = ArcSin[z/Sqrt[x^2 + y^2 + z^2]];

v1 = u[r, theta, phi]; v2 = v[r, theta, phi];

v3 = w[r, theta, phi];

e1 = Simplify[{-Sin[theta], Cos[theta], 0},

{x > 0, y > 0, z > 0}];

e2 = Simplify[{(-Cos[theta])*Sin[phi],

(-Sin[theta])*Sin[phi], Cos[phi]},

{x > 0, y > 0, z > 0}];

e3 = Simplify[{Cos[theta]*Cos[phi],

Sin[theta]*Cos[phi], Sin[phi]},

{x > 0, y > 0, z > 0}];

conds1 = {Sqrt[x^2 + y^2 + z^2] -> r1,

ArcTan[y/x] -> th1,

ArcSin[z/Sqrt[x^2 + y^2 + z^2]] -> ph1};

conds2 = {x -> r1*Cos[th1]*Cos[ph1],

y -> r1*Sin[th1]*Cos[ph1],

z -> r1*Sin[ph1]};

vector = Simplify[v1*e1 + v2*e2 + v3*e3,

{x > 0, y > 0, z > 0}];

divergence = Simplify[D[vector[[1]], x]+

D[vector[[2]], y] + D[vector[[3]], z],

{x > 0, y > 0, z > 0}];

div1 = divergence /. conds1;

div2 = div1 /. conds2;

answer = Expand[FullSimplify[div1 /. conds2,

{r1 > 0, Cos[ph1] > 0}]];

answer

10. (Laplace Operator in Spherical Coordinates) See (3.26) for defini-
tions. Show that the Laplace operator (see Problem 8 for defini-
tions) has the form

∂2Ψ

∂ρ2
+

2

ρ

∂Ψ

∂ρ
+

1

ρ2

∂2Ψ

∂θ2
+

cot θ

ρ2

∂Ψ

∂θ
+

1

ρ2 sin2 θ

∂2Ψ

∂φ2

in spherical coordinates.

Differential and Integral Calculus 115

3.5 Curl and Vector Fields

Given a vector field v in E3 we define the curl of v, denoted

curl v

or more commonly by
∇× v,

as the following vector

∇× v = 〈∂w
∂y

− ∂v

∂z
,
∂u

∂z
− ∂w

∂x
,
∂v

∂x
− ∂u

∂y
〉. (3.40)

Symbolically, this definition can be written as the determinant of the
3 × 3 matrix

∇× v = det





i j k
∂
∂x

∂
∂y

∂
∂z

u v w



 . (3.41)

The curl of a vector field provides information about the tendency for
rotation and spin in particles whose motion is influenced by v. A typical
example to keep in mind is provided by v = 〈y,−x〉 where as we saw
in the last section, it induces a motion in the shape of concentric circles
about the origin. Its curl

∇× 〈y,−x, 0〉 = 〈0, 0,−2〉 = −2k (3.42)

reinforces this point because −2k points to a clockwise rotation in the
xy-plane (clockwise because of the coefficient of k is negative). When v
is a velocity vector field, ∇× v is called the vorticity of v and is often
denoted by ω.

The curl operation is one of three analytical tools, counting gradi-
ent and divergence as the other two, at our disposal to study the local
behavior of a function of several variables or a vector field. When these
operations combine they often provide detailed information about the
structure of vector fields. For example, when a two-dimensional vector
field v has a stream function ψ and is irrotational, that is, its curl van-
ishes, then ψ must satisfy Laplace’s equation

∆ψ = 0. (3.43)

To see this, let v = 〈∂ψ∂y ,−
∂ψ
∂x 〉 and note that ∇×v = 〈0, 0,−∆ψ〉. Thus,

the curl of v vanishes if and only if (3.43) holds. In general, however, the

116 Physical Oceanography: A Mathematical Introduction

vorticity of a typical flow is non-zero, and flows are rotational. When a
flow is two-dimensional, its vorticity takes the form

ω = f(x, y, t)k.

If, in addition, this flow is divergence-free, then its stream function
ψ(x, y, t) satisfies the Poisson Equation

−∆ψ = f. (3.44)

The curl of a vector field v also determines whether v is endowed
with a scalar potential or a vector potential. A function φ is called a
(scalar) potential for v if

v = ∇φ. (3.45)

Alternatively, a vector-valued function Ψ is called a (vector) potential
for v if

v = ∇×Ψ . (3.46)

Generally speaking, vector fields have neither scalar nor vector poten-
tials. But when a vector field possesses such a potential, its study is often
reduced to analyzing less complicated mathematical equations. The con-
ditions for the existence of such potentials are explored in the problems
at the end of this section.

Problems 3.5

1. Show that equations (3.31), which define the relationship between
v and its stream function ψ, when ψ exists, are equivalent to

v = ∇× (ψk).

2. For each vector field determine whether v is divergence-free, and
compute its curl:

(a) v = 〈y − z, x− z, x+ y〉.
(b) v = 〈2y,−3x+ xy〉.
(c) v = 〈ax, by〉, where a and b are constants.

(d) v = 〈 αy
x2+y2 ,− βx

x2+y2 〉, α and β are constants.

(e) v = 〈y,− sinx〉.
(f) v = 〈x2 − y2, xy〉.

3. Assume that all of the functions below are sufficiently differentiable
to allow the necessary differentiation operations to go through.
Verify the following identities:

Differential and Integral Calculus 117

(a) div(curl Ψ) = 0. Hence, returning to the definition of a vector
potential (see (3.46)), that v is divergence-free is a necessary
condition for the existence of a vector potential Ψ.

(b) ∇ × (∇φ) = 0. According to this identity the necessary con-
dition for v to have a scalar potential φ is ∇× v = 0.

(c) curl(φv) = grad φ× v + φ curl v.

(d) div (v ×w) = w · curl v − v · curl w.

(e) curl (φv) = φ curl v + ∇φ× v.

(f) ∇× (∇× v) = ∇(∇ · v) − ∆v where ∆v = 〈∆u,∆v,∆w〉.

4. (Curl in Cylindrical Coordinates) Following the approach of Prob-
lem 5 of Section 3.4, let v = urer + uθeθ +wk and show that

∇×v = (
1

r

∂w

∂θ
− ∂uθ
∂z

)er+(
∂uρ
∂z

− ∂w

∂r
)eθ +(

∂uθ
∂r

+
1

r
uθ−

1

r

∂ur
∂θ

)k

is the curl of v in polar-cylindrical coordinates.

5. (Curl in Spherical Coordinates) Following the approach of Problem
9 of Section 3.4, let v = uρeρ + uθeθ + uφeφ and show that

∇× v =
1

ρ
(
∂uφ
∂θ

+ cot θuφ − 1

sin θ

∂uθ
∂φ

)eρ+

+(
1

ρ sin θ

∂uρ
∂φ

− ∂uφ
∂ρ

− 1

ρ
uφ)eθ + (

∂uθ
∂ρ

+
1

ρ
uθ −

1

ρ

∂uρ
∂θ

)eφ

is the curl of v in spherical coordinates.

3.6 Integral Theorems

Integration and differentiation are inverse operations. Each operation
has its own utility and place in analysis. The derivative of a function pro-
vides local behavior information about that function — this information
is precise but is generally confined to a small neighborhood of the point
at which the derivative is computed. By contrast, an integral of a func-
tion over an interval provides information that is global but only in an
averaged sense. In the context of functions of several variables and vector
fields, when integration and differentiation are combined properly, the
result is often quite powerful.

118 Physical Oceanography: A Mathematical Introduction

The line integral of a vector field v over a curve C, denoted by
∫

C
v ·

dr, is defined by
∫

C

v · r =

∫ b

a

v|
C
· r′(t) dt, (3.47)

where r is a parametrization of C, that is, points P on C are end-points
of vectors r(t) as t ranges over the interval (a, b):

C = {(x(t), y(t), z(t))| r(t) = 〈x(t), y(t), z(t)〉, t ∈ (a, b)}.

Since the integrand in (3.47) is the dot product of two vectors, one of
which, r′, is tangential to C, the line integral in (3.47) measures to what
extent the vector field v deviates from being tangential to C — if v
and r′ are orthogonal, say, the contribution of v · r′ to the integrand is
zero, while if v is parallel with r′, this contribution is maximized. On the
whole, the integral in (3.47) gives some information about the disposition
of v relative to C. When v represents a force field, (3.47) measures work,
while when v represents a velocity field and C is a closed curve, which
will be defined shortly, (3.47) measures circulation.

As an example, consider the vector field v = 〈 y√
x2+2y2

,− x√
x2+2y2

, 0〉
and the curve C given by r(t) = 〈cos t, sin t, 0〉, t ∈ (0, π2), a quarter circle
traversed in the counterclockwise direction. The line integral (3.47) of v
over C is

∫

C

v · dr =

∫ π
2

0

〈 sin t
√

cos2 t+ 2 sin2 t
,− cos t
√

cos2 t+ 2 sin2 t
, 0〉·〈− sin t, cos t, 0〉 dt =

=

∫ π
2

0

1
√

cos2 t+ 2 sin2 t
dt = −1.3110.

The last integration was carried in MATLAB:

F=@(t) -1./(cos(t).^2+ 2*sin(t).^2).^(1/2);

quad(F,0,pi/2)

Continuing with this example, let C be the completed curve with
t ∈ (0, 2π). This curve is an example of a smooth simple closed curve,
for which the tangent vector at every point exists and where the curve
intersects itself only once, in this case when its beginning touches its
end. For such a curve we use the notation

∮

C to emphasize that C is a
closed curve. As stated earlier, the quantity

∮

C
v · dr, which in this case

equals −5.2441, is the circulation of v about C.
We note in passing that quad, which performs numerical integration

(quadrature) in MATLAB, is quite efficient with integrands that are not

Differential and Integral Calculus 119

highly oscillatory. By contrast, the functions quadl, quadv and quadgk

are the suitable integrators to use when the integrand rapidly oscillates.
The surface integral of a vector field v over a surface S, denote by

∫ ∫

S
v · dS, is defined by

∫ ∫

S

v · dS =

∫ ∫

D

v · (ru × rv) dudv (3.48)

where r(u, v) is the parametrization of the surface S, and hence ru×rv is
normal to the surface, and D is the domain of this parametrization. For
example, when S is the surface of the northern hemisphere of radius 1,
then D = {(u, v)| 0 ≤ u < 2π, 0 ≤ v < π

2 }, i.e., u and v are the standard
longitude and co-latitude and r is

r(u, v) = 〈cosu sin v, sinu sinv, cos v〉.

Note that ru × rv = 〈cos u sinv, sinu sin v, cos v〉, a radial vector, which
is of course normal to the surface of the sphere.

The computation of a surface integral always reduces to computing
a double integral, as described in (3.48). The physical interpretation of
this quantity is that of flux when v is a velocity vector field – since v
has dimensions of length over time, and du dv has dimensions of length
squared, the combination v ·ru×rv has dimensions of volume over time,
or flux (note that ru and rv are dimensionless). As an example consider
v = x2k, which, as a velocity field, describes a flow in the z-direction
whose strength varies with the horizontal component of the position of
each particle. To compute the flux of this flow through the unit northern
hemisphere, we compute

∫ 2π

0

∫ π
2

0

〈0, 0, cos2 u sin2 v〉 · 〈cosu sin v, sinu sinv, cos v〉 du dv =

=

∫ 2π

0

∫ π
2

0

cos2 u sin2 v cos v du dv = 1.0472,

a conclusion we reach by either computing this integral analytically or
by using MATLAB:

F=@(u,v) (cos(u).^2.*sin(v).^2.*cos(v));

dblquad(f,0,2*pi,0,pi/2)

One of the main applications of the line and surface integrals is in the
context of the generalization of the “Fundamental Theorem of Calculus”
in higher dimensions. This theorem in one-space dimension relates f and
its derivative f ′ in the familiar identity

∫ b

a

f ′(x) dx = f(b) − f(a), (3.49)

120 Physical Oceanography: A Mathematical Introduction

relating the average value of f ′ over the domain (a, b) to the net “flow”
of f through the boundary. There are two analogs of this theorem in
higher dimensions, the Stokes Theorem and the Divergence Theorem or
Gauss’s Theorem, which we now state.

Theorem 3.6.1 (Stokes’s Theorem)
Let v be a smooth vector field defined in a domain D ⊂ R3. Let S be
a surface contained in D with boundary C. Then the following identity
holds:

∮

C

v · dr =

∫ ∫

S

∇× v · dS, (3.50)

where the parametrization of C and S need to be compatible in the fol-
lowing sense: The curve C and S are parametrized according to the right-
handed rule so that when the curve C is traversed in the direction of the
parametrization, the normal to S always points to the left.

Note that this identity involves a double integral of a derivative of
v, in this case the curl of v, balanced by the integral of v itself, where
the latter integration is over the boundary of S. Its similarity to (3.49)
cannot be overemphasized.

As stated earlier when v is a velocity vector field of a fluid flow,
the quantity ∇ × v is called the vorticity of the fluid flow. The Stokes
Theorem relates the “flux of the vorticity,” the quantity on the right side
of (3.50), to its circulation of the flow, the quantify on the right side of
(3.50). This identity plays a crucial role in providing insight into “vortex
lines” and their dynamics, an important concept in rotating fluid flows.

The second theorem involves a surface integral as well.

Theorem 3.6.2 (Divergence or Gauss’s Theorem)

Let v be a smooth vector field defined in a domain D ⊂ R3. Then the
following identity holds:

∫ ∫ ∫

D

div v dV =

∫ ∫

∂D

v · dS, (3.51)

where ∂D is parameterized in such a way that its normal always points
to the outside of D.

As was the case with the Stokes Theorem, the Divergence Theorem
relates the integral of a derivative of v, in this case its divergence, to the
net change of v on the boundary. This theorem plays a key role in the
development of the governing equations of motion because it will show
us how to establish conservation laws of mass, linear momentum and
energy by relating the internal changes in physical quantities to their
net influx of flow through the boundary.

In addition to the applications already alluded to, the Stokes and

Differential and Integral Calculus 121

Divergence theorems give intuitive interpretations of the curl and diver-
gence operations when they are combined with the Mean Value Theorem.
We consider (3.50) first. Let P be a fixed point in the domain of v with
S a surface passing through P , which for simplicity we assume it to be
a plane. Consider a square in that plane centered at P , and remove the
rest of the plane for the remainder of this discussion. We are now in the
setting of Theorem 3.6.1 with S a square centered at P and C consisting
of four edges that constitute the square. Consider a sequence of squares
Sn, concentric at P , and shrinking to P as n approaches infinity. Divide
both sides of (3.50) by the area of Sn and take the limit of both sides as
the area of Sn approaches zero (with n approaching infinity):

lim
n→∞

1

∆Sn

∮

Cn

v · dr = lim
n→∞

1

∆Sn

∫ ∫

Sn

∇× v · dS. (3.52)

We note that the integral on the right side in (3.52) is equivalent to

∫ ∫

Dn

∇× v · Nn du dv

where Dn is the domain of parametrization of Sn and Nn the normal
(i.e., ru×rv) to the square Sn. Note that Nn’s direction is fixed, although
its length depends on n. By the Mean Value Theorem

1

∆Dn

∫ ∫

Dn

∇× v ·Nn du dv = (∇× v · Nn)|Pn (3.53)

where Pn is a point in Dn. But limn→∞ Pn = P and limn→∞Nn = N,
a unit normal to the original surface S. Returning to (3.52) we have

(∇× v · N)|P = lim
n→∞

1

∆Dn

∮

Cn

v · dr . (3.54)

The above result gives a precise relationship between
∮

C v · dr, the cir-
culation of v, and its vorticity ∇× v.

A similar application to (3.51) results in the following identity:

(div v)|P = lim
n→∞

1

∆Vn

∫ ∫

Sn

v · dS (3.55)

where Vn is a sequence of regions, all containing the point P and shrink-
ing to P as n approaches infinity. This result gives a geometric interpre-
tation of how the divergence of a vector field at a point P is related to
flux per unit volume of that flow in a small neighborhood of P .

Problems 3.6

122 Physical Oceanography: A Mathematical Introduction

1. Verify the Divergence Theorem in the following setting: Let v =
〈x, y, z〉 and D a hemisphere of radius 1 centered at the origin, i.e.,
D = {(x, y, z)| x2 + y2 + z2 ≤ 1, z ≥ 0}.

2. Verify the Stokes Theorem in the following setting: Let v = x2k
and S the surface of the northern hemisphere given by x2+y2+z2 =
1 and z > 0.

3. (Leibniz’s formula) An important extension of the Fundamental

Theorem of Calculus, (3.49) and its variation d
dt (
∫ t

c
f(η) dη) = f(t),

is to the case when the integrand and the limits of integration
vary with respect to the parameter of differentiation. Consider the
function g defined as

g(t) =

∫ b(t)

a(t)

f(t, η) dη. (3.56)

Using the Chain Rule of Differentiation, compute g′(t) and show
that

∂

∂t
(

∫ b(t)

a(t)

f(t, η) dη) =

∫ b(t)

a(t)

∂f

∂t
(t, η) dη+

b′(t)f(t, b(t)) − a′(t)f(t, a(t)). (3.57)

(Hint: Write g as g(t) =
∫ b(t)

c
f(t, η) dη −

∫ a(t)

c
f(t, η) dη, where c

is an arbitrary but fixed constant.)

3.7 References and Further Reading

1. Malek-Madani, Reza, Advanced Engineering Mathematics with
MathematicaR© and MATLABR©, Addison-Wesley, 1998.

2. Marsden, Jerrold, E., Trobma, A. Vector Calculus, 5th edition, W.
H. Freeman, 2003.

Chapter 4

Ordinary Differential Equations

Our approach to understanding the capabilities as well as the limitations
of a physical model often hinges on computing solutions to ordinary
differential equations (ODEs). In this chapter we will review some of
the fundamental concepts associated with ODEs and introduce a few
basic approximate techniques for obtaining these solutions when exact
solutions are not available in analytic form. An added goal in this section
is to provide enough background to motivate the use of MATLAB’s
powerful suite of ODE solvers, including ode45. Some of the techniques
discussed here are then extended to solving Partial Differential Equations
(PDEs).

4.1 Linear Independence and Space of Functions

Before we proceed to describe the general techniques for solving
ODEs, we pause to generalize the two concepts of linear independence
and linear space from matrix algebra to sets of functions. Consider a set
C of functions {φ1, φ2, ..., φn}. We say C (or equivalently, the functions
φi’s) is linearly independent on the interval (a, b) if

c1φ(x) + c2φ2(x) + ...+ cnφn(x) = 0 for all x ∈ (a, b)

if and only if c1 = c2 = ... = cn = 0. (4.1)

The key phrase to keep in mind in this definition is “for all x,” that is,
the linear combination of the functions φ’s must vanish, no matter what
value x takes in the specified domain. For example, the set of functions
{sinx, sin 2x, sin 3x} is linearly independent on the interval (0, 1), while
{sinx, sin 2x, 2 sinx− sin 2x} is not. To see that the latter violates (4.1)
we note that if we identify the functions φi’s as

φ1(x) = sinx, φ2(x) = sin 2x, and φ3(x) = 2 sinx− sin 2x,

123

124 Physical Oceanography: A Mathematical Introduction

then the linear combination

−2φ1 + φ2 + φ3

is identically zero, which violates (4.1) for c1 = −2, c2 = 1 and c3 = 1. By
contrast the first set of functions is linear independent. To see that, let
F stand for any linear combination of the functions φ’s in this example,
i.e.,

F (x) = c1 sinx+ c2 sin 2x+ c3 sin 3x.

According to (4.1) this combination must vanish for all x ∈ (a, b). Since
F is a smooth function, the fact that F vanishes identically implies that
its first and second derivatives also vanish identically. This observation
leads to the following three equations for the variables c1, c2 and c3:







c1 sinx+ c2 sin 2x+ c3 sin 3x = 0
c1 cosx+ 2c2 cos 2x+ 3c3 cos 3x = 0
−c1 sinx− 4c2 sin 2x− 9c3 sin 3x = 0,

or in matrix form
Ac = 0

where

A =





sinx sin 2x sin 3x
cos x 2 cos 2x 3 cos 3x

− sinx −4 sin 2x −9 sin 3x



 . (4.2)

We recall from Chapter 2 that a system of algebraic equations Ax =
b has a unique solution when A is nonsingular. The determinant of
the matrix A in (4.2) is −16 sin6 x, which can be readily verified in a
symbolic manipulator such as MathematicaR©. Since A is a nonsingular
matrix for a typical value of x in the interval (a, b), we conclude that
c = A−10 = 0, thus verifying (4.1). See Problem 1 for further discussion
on linear independence.

We say C, a set of functions, forms a linear space if

1. for every f ∈ C and g ∈ C we have f + g ∈ C; when this property
holds, we say C is closed under the operation of addition. And if

2. for every f ∈ C and c a scalar (real or complex) we have cf ∈ C.
Similarly, when this property holds, we say that C is closed under
the operation of scalar multiplication.

The concepts of span, basis and dimension generalize verbatim to
space of functions. We say the span S of a set C = {φ1, φ2, ..., φn} is

S = {f | f(x) = c1φ1(x) + c2φ2(x) + ...+ cnφn(x)}

Ordinary Differential Equations 125

where the constants c1, c2, ... take arbitrary real or complex values. If the
set C is linearly independent, the information content of the function φi
will be truly different from the information content of φj, with i 6= j, and
therefore to characterize the span S we will need every function φi in C.
In this sense, we say that C forms a basis for S and that the dimension
of S is the cardinality n of the set C. These concepts are identical with
the equivalent concepts that we discussed in Chapter One.

On the other hand, when there is redundancy in the set C, when
one of the φi’s is actually a linear combination of other φi’s, then the
dimension of S will be generally less n and one needs to work a bit more
to identify an appropriate basis. Some of the problems at the end of this
section address this issue.

As an example, consider the set of functions C = {sinπx, sin 2πx,
sin 3πx, ..., sinnπx}, which forms a linearly independent set. Its span

S = {
N
∑

i=1

ci sin iπx| ci ∈ R},

is an N -dimensional space for which the functions in C form a basis. In
a sense C is equivalent to the linear space of N -dimensional vectors in
EN , where we can think of each element of C, c1 sinπx+c2 sin 2πx+...+
cn sinnπx, as the vector 〈c1, c2, ..., cn〉. With this perspective the space
of functions spanned by the basis {sin iπx}, i = 1, ..., N , is in one-to-one
and onto correspondence with the space EN .

Problems 4.1

1. Consider a set of smooth functions C = {φ1(x), φ2(x), ..., φn(x)}.
Show that the functions φi are linearly independent if the matrix













φ1 φ2 φn
φ′

1 φ′
2 φ′

n

...

...

φ
(n−1)
1 φ

(n−1)
2 φ

(n−1)
n













is nonsingular. The notation f(i) stands for dif
dxi . The determinant

of the above matrix is often called the Wronskian of the functions
φ.

2. Show that the following set of functions are linearly independent.
In each case write down the linear space they span and identify
this space with En for an appropriate n.

(a) φ1(x) = 1, φ2(x) = x.

126 Physical Oceanography: A Mathematical Introduction

(b) φ1(x) = x, φ2(x) = x2.

(c) φ1(x) = 1, φ2(x) = x, φ3(x) = x2.

(d) φ1(x) = 1, φ2(x) = x, φ3(x) = x2, ..., φn(x) = xn.

3. Consider the set C consisting of the functions φ1(x) = 1, φ2(x) =
x, φ3(x) = x2. Let S be the span of C.

(a) What is the dimension of S?

(b) Consider the set of functions D = {ψ1, ψ2, ψ3} defined by

ψ1(x) = φ1(x) − φ2(x), ψ2(x) = φ2(x) − φ3(x),

ψ3(x) = φ3(x) − φ1(x).

i. Show that the set D is linearly independent.

ii. Write φ1 as a linear combination of ψi’s, i.e., determine
the coefficients c1, c2 and c3 so that φ1(x) = c1ψ1(x) +
c2ψ2(x) + c3ψ3(x).

iii. Let f be an arbitrary function in the span of C, i.e., there
are constants c1, c2 and c3 such that

f(x) = c1φ1(x) + c2φ2(x) + c3φ3(x).

The function f also belongs to the span of D, that is,
there are constants d1, d2 and d3 such that

f(x) = d1ψ1(x) + d2ψ2(x) + d3ψ3(x).

Find the relationship between ci’s and dj’s. Moreover,
write down the 3 × 3 matrix A that relates the vectors
c = 〈c1, c2, c3〉 and d = 〈d1, d2, d3〉.

4. Show that the following sets of functions are linearly independent.
Write down the linear space they span. What is the dimension of
each space?

(a) f1(x) = sinx, f2(x) = sin 2x

(b) f0(t) = 1, f1(t) = cosωt, f2(t) = sinωt, f3(t) = sin 2ωt,
f4(t) = cos 2ωt, where ω is a nonzero real number.

5. Consider the set of functions {e−t, e−2t, e−3t, ..., e−nt} on the in-
terval (0, 1). Is this set linearly independent?

6. Consider the set of functions C = {sin 2x, sin4x, 2 sin2x−3 sin 4x}.
(a) Is this set linearly independent?

(b) What is the span S of C? Is the function sin 3x in S? if not,
why not?

(c) Write down two sets of bases for S.

Ordinary Differential Equations 127

4.2 Linear ODEs

Consider the differential equation

y′′ + ay′ + by = f(x) (4.3)

where a and b are constants, and f is a known function. This equation
is second order, because the highest order derivative present in (4.3) is
second order, is linear because all terms involving the unknown function
y enter linearly in this equation, and nonhomogeneous if f is nonzero.
Typically equation (4.3) is supplemented by the two initial conditions

y(x0) = y0, y′(x0) = y1, (4.4)

or by two boundary conditions

y(c) = α, y(d) = β. (4.5)

In either case one first typically finds the general solution to (4.3) and
then applies the initial or boundary conditions to find the exact solution.

The general solution to (4.3) is obtained in two steps: first one de-
termines the general solution (sometimes called the complementary so-
lution) of the homogeneous part

y′′ + ay′ + by = 0, (4.6)

and second a particular solution yp of (4.3), by any method available.
The general solution of (4.3) is then the sum of yc and yp:

y(x) = yc(x) + yp(x). (4.7)

Because (4.6) is linear and has constant coefficients, its general so-
lution is a linear combination of exponential functions eλx. Substituting
this expression into (4.6) leads to

eλx(λ2 + aλ + b) = 0

from which we infer that λ must be the roots of the second order poly-
nomial

λ2 + aλ + b

which we refer to as the characteristics polynomial. When the two roots,
λ1 and λ2, of the characteristic polynomial are distinct, we obtain
two linearly independent solutions of the homogeneous equation (4.6),

128 Physical Oceanography: A Mathematical Introduction

y1(x) = eλ1x and y2(x) = eλ2x, from which we construct the general
solution yc by simply combining a linear combination of y1 and y2:

yc(x) = c1e
λ1x + c2e

λ2x, (4.8)

where c1 and c2 are arbitrary constants. In the special circumstance
when the two roots of the characteristic polynomial are identical, i.e.,
when λ1 = λ2 = λ, we are able to construct two linearly independent
solutions eλx and xeλx, and the general solution to (4.6) is

yc(x) = c1e
λx + c2xe

λx. (4.9)

We note that λ1 and λ2 in (4.8) may be complex numbers. When
a and b in (4.3) are real-valued constants, and λ1 and λ2 have ended
up being complex-valued, the latter must be complex conjugates of each
other, i.e., λ1 = γ + δi and λ2 = λ̄1. In that case the two functions
eγx cos δx and eγx sin δx form two linearly independent and real-valued
solutions of (4.6) so that

yc(x) = c1e
γx cos δx+ c2e

γx sin δx (4.10)

is the general solution to (4.6).
As mentioned earlier, we obtain a particular solution yp to (4.3) by

any means possible, including a judicious guess. Often this forcing term
f in (4.3) ends up being of sinusoidal type, as will be the case in the
forcing terms induced by the prevailing winds in most of the models we
will consider. In those cases we will apply a simple ansatz, as we will
show shortly by an example, based on the general form of the forcing
term itself, to arrive at yp. Once (4.7) is determined, we apply the initial
conditions (4.4) or the boundary conditions (4.5) to compute c1 and c2
in any of the formulas (4.8), (4.9) or (4.10).

We summarize these findings in the following theorem.

Theorem: (IVP and BVP for Linear ODEs)
Consider the second-order ordinary differential equation (4.3)

y′′ + ay′ + by = f(x),

where a and b are real numbers, supplemented by either initial condi-
tions (4.4), which we will refer to as an Initial Value Problem (IVP),
or boundary conditions (4.5), referred to as a Boundary Value Problem
(BVP). The general solution of (4.3) is of the form (4.7), that is

y(x) = yc(x) + yp(x)

where yc is the solution of the homogeneous equation (4.6)

y′′ + ay′ + by = 0

Ordinary Differential Equations 129

(see (4.8), (4.9) and (4.10)) and yp is any particular solution of the full
equation. When the roots of the characteristic polynomial

λ2 + aλ + b

are real and distinct, the general solution of (4.3) is

y(x) = c1e
λ1x + c2e

λ2x + yp(x),

and the constants c1 and c2 are chosen appropriately so that the side con-
ditions (4.4) or (4.5) are satisfied. When the roots of the characteristic
polynomial are repeated or are complex, the solution to the homogeneous
part takes the form (4.9) and (4.10), respectively.

While determining yc, the solution to the homogeneous part (4.3),
is straightforward, finding a particular solution yp of (4.3) requires our
attention. There are several techniques for coming up with a particular
solution yp, some of which we will encounter in the exercises at the end
of this section; here we outline only one of these techniques, a relatively
simple one, called the Method of Undetermined Coefficients,. This tech-
nique is suited particularly well for the case when the forcing term f in
(4.3) is a linear combination of simple trigonometric functions, sinωx
and cosωx, or exponential functions; we will come across this type of a
forcing term when we study the Stommel solution to the Gulf-Stream
problem later in the text.

As an example to illustrate the Method of Undetermined Coefficients,
consider the initial value problem

y′′ + 0.1y′ + 3y = 2 sin 3x, y(0) = y′(0) = 0. (4.11)

The homogeneous part of (4.11) is

y′′ + 0.1y′ + 3y = 0, (4.12)

which, after substituting eλx, leads to the characteristic polynomial
equation λ2 + 0.1λ + 3 = 0. Its roots are λ1 = −0.05 + 1.7313i and
−0.05 − 1.7313i (which is MATLAB’s output to roots([1 0.1 3])).
We therefore conclude that yc, the complementary solution, is

yc(x) = e−0.05x(c1 cos 1.7313x+ c2 sin 1.7313x). (4.13)

Next, to find a particular solution yp, we try the template

yp(x) = A sin 3x+B cos 3x, (4.14)

which consists of the forcing term sin 3x itself and all of its derivatives
(i.e., cos 3x and sin 3x). We substitute the template (4.14) into (4.11)

130 Physical Oceanography: A Mathematical Introduction

and equate the coefficients of sin 3x and cos 3x on either side of (4.11)
to get the following set of algebraic equations in A and B:

−6A − 0.3B = 2, −6B + 0.3A = 0, (4.15)

resulting in A = −0.332502 and B = −0.0166251. Hence, the general
solution to (4.11) is

y(x) = e−0.05x(c1 cos 1.7313x+ c2 sin 1.7313x)

−0.332502 sin3x− 0.0166251 cos3x. (4.16)

The constants c1 and c2 are now found by applying the initial data in
(4.11): Since y(0) = 0 and y′(0) = 0, we have

0 = y(0) = c1 − 0.0166251, 0 = y′(0) = −0.05c1+

1.7313c2 − 0.997506

or c1 = 0.016625 and c2 = 0.57664. Hence, the exact solution to (4.11)
is

y(x) = e−0.05x(0.016625 cos1.7313x+ 0.57664 sin1.7313x)+

−0.332502 sin3x− 0.0166251 cos3x. (4.17)

The following commands in MATLAB lead to Figure 4.1.

f=@(x)exp(-0.05*x).*(0.016625*cos(1.7313*x)+ ...

0.57664*sin(1.7313*x))-0.332502*sin(3*x)-...

+0.0166251*cos(3*x);

ezplot(f,[0,2*pi])

Most of what we have outlined above easily generalizes to higher-order
differential equations, especially when initial data are specified. We will
not pursue the development of that topic since its utility in the other
topics we intend to develop is limited.

Problems 4.2

1. Consider the following pair of functions y1 and y2. In each case
show that y1 and y2 are linearly independent on any arbitrary
interval (a, b).

(a) y1(x) = eλ1x and y2(x) = eλ2x, where λ1 6= λ2.

(b) y1(x) = eλx and y2(x) = xeλx.

Ordinary Differential Equations 131

0 1 2 3 4 5 6

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x

exp(−0.05 x) (0.016625 cos(1.7313 x)+0.57664 sin(1.7313 x))−...+0.0166251 cos(3 x)

FIGURE 4.1: The solution to (4.11).

(c) y1(x) = eλx cosωx and y2(x) = eλx sinωx, where ω 6= 0.

2. Find the general solution of the following ODEs:

(a) y′′ + 3y′ + 2y = 0.

(b) y′′ − 4y′ + 4y = 0.

(c) y′′ + 16y = 0.

(d) y′′ + 4y = 3 sinx.

(e) y′′ − 3y′ + 4y = 2ex + 3 cosx.

3. (WolframAlpha) If you have access to the internet, access the link
http://www.wolframalpha.com

to call up this powerful information engine on the web. Having
access to the capabilities of Mathematica is one of the features of
this web site. Try

solve y′′ + 4y = 3 sin(2x)

in the input window to see this site’s capability to provide infor-
mation about this ODE or any of the differential equations in the
above problem.

132 Physical Oceanography: A Mathematical Introduction

4. Find the solution of the following IVPs:

(a) y′′ + 2y′ + y = 5 cos 2x, y(0) = y′(0) = 0.

(b) x′′ + x = sin 2t, x(0) = 0, x′(0) = 1.

5. (The Phenomenon of Resonance) When the forcing term f in (4.3)
is of the trigonometric or exponential type and f itself is a solution
of the homogeneous equation y′′ + ay′ + by = 0, the approach of
trying a template based on f and all its derivatives fails to yield a
particular solution yp. Instead, we modify this method by seeking
particular solutions of the form xf(x) and its derivatives. As an
example, consider y′′ + y = sinx, noting that the sinx is already
a solution to y′′ + y = 0. Hence seeking a particular solution of
the form yp(x) = A sinx + B cos x fails. The suggested modifica-
tion of the Method of Undetermined Coefficients, that one should
seek particular solutions of the form yp(x) = x(A sinx+ B cosx),
results in the desired solution. We note, however, that a term such
as x sinx becomes unbounded in x so that the energy imparted to
the system by the forcing term sinx is amplified by x, leading to
solutions that grow unboundedly. This phenomenon of resonance
is observed in many systems, especially in mechanical and electri-
cal systems and often leads to undesirable outcomes, typically to
system failure. Resonance is possibly at the heart of the unusual
enhancement of wind-driven waves in harbors and estuaries.

In each problem below determine a particular solution to the ODE:

(a) y′′ + y = sinx. (Try yp(x) = x(A sinx + B cosx) and find A
and B.)

(b) y′′ + 4y′ + 4y = e−2x. (Try yp(x) = Axe−2x.)

(c) y′′ + 6y′ + 9y = sinx+ e−3x.

6. Find the solution of the following BVPs:

(a) y′′ + 4y′ + 3y = 1, y(0) = 1, y(2) = −1.

(b) y′′ − y = sin t, y′(0) = 0, y(3) = 0.

4.3 General Systems of ODEs

The equation we discussed in the previous, Equation (4.11), is an
example of a larger class of ordinary differential equations of the form

y′ = f (x,y), y(x0) = y0. (4.18)

Ordinary Differential Equations 133

Higher order equations such as (4.3) can be converted to a first-order
system like (4.18) by simply renaming the various derivatives in (4.3):
To illustrate, consider the n-th equation

dnz

dxn
= f(x, z, z′, z′′, ..., z(n−1)), (4.19)

subject to the initial conditions

z(x0) = z0, z′(x0) = z1, ..., z(n−1) = zn−1.

Define a new variable y = 〈y1, y2, ..., yn〉 by

y1 = z, y2 = z′, y3 = z′′, ..., yn =
dn−1z

dxn−1
. (4.20)

Differentiate the first expression, y1 = z, to arrive at

y′1 = z′.

The second expression in (4.20), however, relates z′ to y2. Hence, y′1 =
z′ = y2 and we obtain the first equation in the new variables:

y′1 = y2.

Similarly
y′2 = z′′ = y3,

and
y′3 = z′′′ = y4,

and so forth. Finally we arrive at y′n = dnz
dzn which reduces to

y′n = f(x, y1, y2, ..., yn)

once we invoke the original differential equation (4.19). We have thus
demonstrated that the original n-th order differential equation is equiv-
alent to the following n-th system of first-order equations:























y′1 = y2,
y′2 = y3,
... ...

y′n−1 = yn,
y′n = f(x, y1, y2, ..., yn),

(4.21)

with the initial data

y1(x0) = z0, y2(x0) = z1, ..., yn(x0) = zn−1. (4.22)

134 Physical Oceanography: A Mathematical Introduction

This scheme, when applied to (4.3), leads to the following first-order
system: Let y1 = y and y2 = y′. Then

y′1 = y2, y′2 = −ay1 − by2 + f(x), (4.23)

or in matrix form

y′ = f (x,y), where y =

[

y1
y2

]

, f =

[

y2
−ay1 − by2 + f(x)

]

, (4.24)

with y0 =

[

y0
y1

]

.

Initial-value problems for a general system of the form (4.18) are ex-
tremely difficult to solve analytically and we often have no choice but to
try to seek approximate solutions. It would be very helpful, however, if
we had some guarantee that there is a solution to the problem posed in
(4.18) and that this solution is unique — once the existence of a unique
solution is guaranteed, it does not matter then which approximate or
numerical method we attempt, since all of these approximate solutions
should be close to the one and only solution of (4.18). To answer the
question of existence and uniqueness for (4.18), and its natural exten-
sion to the partial differential equations that we will study later, has
constituted one of the cornerstones of modern mathematical analysis. In
particular, a comprehensive qualitative theory of differential equations
has been developed to identify conditions on f to guarantee existence
and uniqueness of solutions to (4.18) and the asymptotic behavior of
these solutions as x approaches infinity. Here we deal with the set of
sufficient conditions that guarantee existence and uniqueness.

Let the function f in (4.18) be continuous in x and y in domain
D ⊂ R× En, and Lipschitz continuous in y, that is, there is a constant
M , perhaps depending on x, such that

||f (x,y2) − f (x,y1)|| ≤M ||y2 − y1||, (4.25)

for y1 and y2 in the domain of f . Then a fundamental theorem of ordi-
nary differential equations (see Ref. [1]) states that a unique solution of
(4.18) exists for x in a neighborhood of x0. Moreover, either this solution
exists for all x or the solution y will blow-up in finite time, that is, there
is an L such that

lim
x→L

||y(x)|| = ∞. (4.26)

Interestingly, since solutions of linear equations such as (4.11) are com-
binations of exponential functions, finite-time blow-up is not an option
for them. For nonlinear equations, however, this behavior is common, as
seen in the example

y′ = −y2 , y(0) = −1, (4.27)

Ordinary Differential Equations 135

a Riccati-type equation, whose exact solution is y(x) = 1
x−1 , which blows

up as x approaches 1. Note that the function −y2 is smooth in all of R
and there is no hint of the blow-up behavior by examining the right side
of (8.127).

The Lipschitz property quoted above seems to be necessary for the
uniqueness property. As a counterexample, consider the equation y′ =√
y with y(0) = 0, which has the two distinct solutions

y(x) ≡ 0 and y(x) =
x2

4
. (4.28)

The problem with this equation is that its right side,
√
y, has infinite

slope at y = 0, the initial value, and cannot support a bound such as
(4.25) for any M .

4.4 MATLAB’s ode45

We digress momentarily from our development of the theory of ODEs
to present the syntax for MATLAB’s ode45 because, unlike the linear
ODEs we discussed earlier, in this text we will often be dealing with
nonlinear ODEs whose analytical solutions are intractable. We will be
discussing in some detail in the next several sections how to generate ap-
proximate numerical solutions to nonlinear ODEs, but before addressing
the mathematical development of numerical schemes, we describe here
how to use ode45, an accurate and efficient ODE-solver, because we will
resort to this tool in this chapter as a benchmark when we introduce
some elementary numerical schemes for solving ODEs. In a later section
we will also see how to use ode45 with the method of lines to solve partial
differential equations.

Consider the initial-value problem (IVP)

y′ = f(t, y), y(t0) = y0.

Here we may have a single equation, i.e., y may be a scalar, or a system
of ODEs where y is vector in En. The syntax for using ode45 on this
IVP is

[TOUT,YOUT] = ODE45(ODEFUN,TSPAN,Y0)

where ODEFUN defines the right side of the ODE (more on this later),
TSPAN defines the domain of t, typically (t0, T), and Y0 contains the

136 Physical Oceanography: A Mathematical Introduction

initial data. The quantities TOUT and YOUT contain the output of ode45.
As an example consider the IVP

y′ = −y2 + t, y(0.1) = −0.3.

The following lines in MATLAB will result in an approximate solution
of this problem in the interval (0.1, 4):

%

% Use the inline command to define f

%

f=inline(’-y.^2 + t’, ’t’, ’y’);

%

% Apply ode45

%

[t, y] = ode45(f, [0.1 4], -0.3);

%

The output in stored in t and in y. What ode45 has done is to use its
technique to break up the t values in the interval (0.1 4) into smaller
subintervals, with endpoints that we label (ti, ti+1) and then proceeded
to compute yi and each grid point ti, where yi is an excellent approxi-
mation of y at ti. The values of ti and yi are stored in t and y. These
vectors have equal length (try length(t) and length(y) to see the size
of these vectors) and can be plotted against each other using the plot

command:

plot(t,y)

A close look at t shows that these grid points are not uniform, that is,
the distance ti+1 − ti varies with i. This grid-size adaptivity is actually
one of the special features of ode45, to which we will return later in the
chapter.

Applying ode45 to a system of ODEs is similar. The one difference
arises in the difficulty with using the inline command when defining
the right side of the ODEs, which is rather cumbersome when it comes
to concatenating expressions. Instead we will use the M-file utility of
MATLAB as described in the following example. Consider the system

x′ = y, y′ = −0.1y − sinx+ cos t, x(0) = 1, y(0) = 2.

We intend to solve this IVP and obtain an approximation to the solution
(x(t), y(t)) for t ∈ (0, 3). To that end, we first define the right side of the
ODEs in an M-file (called rhs.m for later reference) in MATLAB:

Ordinary Differential Equations 137

function yprime=rhs(t,y);

%

yprime = [y(2); -0.1*y(2)-sin(y(1))+cos(t)];

We apply ode45 to rhs.m as follows:

[t,y]=ode45(’rhs’,[0 3],[1 2]);

or by entering

[t,y]=ode45(@rhs,[0 3],[1 2]);

The output is stored in t and in y. We can choose to plot each component
of y versus t by entering

plot(t,y(:,1)) % or

plot(t,y(:,2))

or plot the phase-plane diagram (x versus y components) by

plot(y(:,1),y(:,2))

A particularly useful option within ode45 is odeplot (which is used in
combination with ODEset). This tool generates the graphs of the time
plots of the output variables and places circles at the evaluated points.
The output of

[t,y]=ode45(@rhs,[0 3],[1 2],odeset(’OutputFcn’,@odeplot));

is shown in Figure 4.2. Equally useful option in ode45 is odephas2 which
generates the phase-plane portrait of a two-dimensional system of ODEs.
The output of

[t,y]=ode45(@rhs,[0 30],[1 2],odeset(’OutputFcn’,@odephas2));

is shown in Figure 4.3. Note the t-domain in the latter figure.

Problems 4.4

1. Use ODE45 to solve the following IVPs:

(a) y′′ + 2y′ + y = sin t, y(0) = 1, y′(0) = 0 in the interval
(0, 10).

(b) y′′ + 2ty′ + y2 = cos t, y(0) = 0, y′(0) = 0 in the interval
(0, 4).

2. Plot the graphs of the solutions of the following systems of ODEs:

(a) x′1 = x2 − x1, x
′
2 = −2x1 − 0.3x2, x1(0) = 1, x2(0) = −1.

138 Physical Oceanography: A Mathematical Introduction

0 0.5 1 1.5 2 2.5 3
1

2

3

4

5

6

7

8

FIGURE 4.2: The output of odeplot when used within ode45.

(b) x′1 =
x2−x2

1

x2
1+x

2
2
, x′2 = x1+x2

x2
1+x

2
2
, x1(0) = 0, x2(0) = 1.

3. The Lorenz system of equations, which displays complex and
chaotic behavior, is

x′ = σ(y − x), y′ = x(ρ− z) − y, z′ = xy − βz,

with initial data

x(0) = x0, y(0) = y0, z(0) = z0,

where σ, ρ and β are physical constants. Plot the graphs of the
solutions for the parameter values and initial positions listed:

(a) σ = ρ = 1, β = 0.1 and x0 = y0 = 0, z0 = 1 with t ∈ (0, 100).

(b) σ = ρ = 1, β = −0.1 and x0 = y0 = 0, z0 = 1 with t ∈
(−100, 100).

(c) Let σ = 10, ρ = 28, x0 = y0 = 0, z0 = 1 and t ∈ (0, 100). Plot
the graph of the solution when

i. ρ = 20.

Ordinary Differential Equations 139

1 2 3 4 5 6 7 8 9
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

FIGURE 4.3: The output of odephas2 when used within ode45.

ii. ρ = 28.

iii. ρ = 90.

iv. ρ = 100.

4. The ABC, or the Arnold–Beltrami–Childress, flow is defined by
the following system of ODEs:

x′ = A sin z+C cos y, y′ = B sinx+A cos z, z′ = C sin y+B cosx.

Let A = 1, B = 0.1, C = −0.2 and (x0, y0, z0) = (0.1, 0.2, 0.1).
Plot the graph of the solution for t ∈ (0, 50).

4.5 Asymptotic Behavior and Linearization

An important feature of analyzing fluid flows, especially in the con-
text of the main theme of this text, the geophysical fluid flows, is under-
standing how the long-time behavior of currents depends on the various

140 Physical Oceanography: A Mathematical Introduction

physical parameters in play. The qualitative theory of ODEs is particu-
larly well-suited for this effort, and in the setting of nonlinear ordinary
differential equations, linearization of the ODE system about solutions
provides a critical tool. We introduce this concept for the system of two
equations in two unknowns

dx

dt
= f(t, x, y),

dy

dt
= g(t, x, y), (4.29)

although the ideas generalize readily to higher dimensional settings. We
call the system in (4.4) autonomous if f and g do not explicitly depend
on t. Most of the development below is dedicated to autonomous ODEs.
Also, as is common in mathematics, we will often refer to (4.29) as a
dynamical system, and to the xy-plane as its phase plane.

We say a point (a, b) is an equilibrium point of (4.29) if

f(t, a, b) = 0, g(t, a, b) = 0, (4.30)

for all t. Note that when (a, b) that satisfies (4.30), the functions

x(t) ≡ a, y(t) ≡ b (4.31)

form a solution to (4.29), which we will refer to as an equilibrium solution.
We say a solution z (t) = 〈x(t), y(t)〉 of (4.29) is stable (often called

Liapunov stable) if solutions of (4.29) that start out close to z (t) remain
close to this solution for all time. To be precise, we say z is a stable
solution of (4.29) if for every ε > 0 there is a δ > 0 such that

if ||z̄(0) − z (0)|| < δ then ||z̄(t) − z (t)|| < ε for all t > 0, (4.32)

where z̄ is a solution of (4.29). We say an equilibrium point (a, b) is
asymptotically stable if in addition to being stable, it satisfies

lim
t→∞

||z̄(t) − z (t)|| = 0.

The concept of stability of solutions of ODEs has been studied ex-
tensively and several consequences of this working definition have been
derived to aid a user to determine whether a solution is stable (see the
references cited at the end of this section). We will elaborate on these
ideas in the context of equilibrium points (4.30) and equilibrium solu-
tions (4.31) for autonomous systems where it turns out that linearization
and Taylor expansion about an equilibrium point are the main tools of
analysis. Before developing these ideas we emphasize one important fea-
ture about the definition of stability in (4.32), that the bound on the
distance between z and z̄ is to hold for all t > 0 and not just for t in a

Ordinary Differential Equations 141

finite interval. The latter is not much of a restriction on a dynamical sys-
tem, since all that is required is continuity of the solution as a function
of its initial condition, which is referred to as continuous dependence on
initial data in the mathematical literature. Continuous dependence on
initial data is a property of the dynamical system in (4.4) and typically
holds for all solutions of such a system, stable or not, under rather mild
assumptions on f and g in (4.4). Satisfying (4.32), however, is a property
of individual solutions (equilibrium points) as we will see shortly.

Let (a, b) be an equilibrium point of the autonomous system

x′ = f(x, y), y′ = g(x, y). (4.33)

Let z = 〈x, y〉 be the equilibrium solution and let z̄ = 〈a+εx̄(t), b+εȳ(t)〉
be a perturbation of z , with the understanding that ε is a small number.
Since z̄ is a solution of (4.5) we have

εx̄′ = f(a + εx̄(t), b+ εȳ(t)), εȳ′ = g(a + εx̄(t), b+ εȳ(t)). (4.34)

We expand the right sides of (4.34) about ε = 0 to get (recalling that
f(a, b) = g(a, b) = 0)

x̄′ =
∂f

∂x
|
(a,b)

x̄+
∂f

∂y
|
(a,b)

ȳ + ε(
1

2

∂2f

∂x2
|
(a,b)

x̄2 +
∂2f

∂x∂y
|
(a,b)

x̄ ȳ+

1

2

∂2f

∂y2
|
(a,b)

ȳ2) + h.o.t. (4.35)

where h.o.t. stands for terms involving ε2 and above. A similar expression
holds for ȳ′:

ȳ′ =
∂g

∂x
|
(a,b)

x̄+
∂g

∂y
|
(a,b)

ȳ + ε(
1

2

∂2g

∂x2
|
(a,b)

x̄2 +
∂2g

∂x∂y
|
(a,b)

x̄ȳ+

1

2

∂2g

∂y2
|
(a,b)

ȳ2) + h.o.t. (4.36)

The linear part of the above equations

x̄′ =
∂f

∂x
|
(a,b)

x̄+
∂f

∂y
|
(a,b)

ȳ, ȳ′ =
∂g

∂x
|
(a,b)

x̄+
∂g

∂y
|
(a,b)

ȳ, (4.37)

contains the information of immediate interest, the argument being that
the remaining terms, which depend on ε, remain small as time evolves.
This observation ends up being the case for a large class of ODEs as long
as the initial data associated with (4.5) is close enough to the equilibrium
point. We now proceed to derive the precise conditions needed to arrive
at this result.

142 Physical Oceanography: A Mathematical Introduction

The linearized system in (4.37) has the matrix form

x′ = Ax where x =

[

x̄
ȳ

]

and A =

[

∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

]

|
(a,b)

. (4.38)

The solutions of (4.38) are combinations of exponential functions. We
seek them in the form

x(t) = eλtv (4.39)

where λ and v are constants and yet to be determined. Substituting
(4.38) into (4.38) yields the algebraic system Av = λv, which states
that the pair (λ,v) is an eigenvalue-eigenvector pair associated with
A. As discussed in Section 2.10, the eigenvalues of A are roots of the
polynomial

det (A− λI)

and the associated eigenvector is found by applying Gaussian Elimina-
tion to

Ax = λx.

The general solution of (4.38) will be a linear combination of the spe-
cial solutions in (4.39), analogous to our development of solutions of the
second order ODE in (4.3). We are not considering all of the mathemat-
ical complications that could arise here, but as the reader can imagine,
the same issues that arose for (4.3), such as real versus complex-valued
solutions, and multiplicity of eigenvalues, also manifest themselves for
(4.38). Suffice it to say that these mathematical complications can be
addressed (see Refs. [1],[2] for details). The key feature to keep in mind,
however, is that these issues do not alter the conclusion we will derive
below regarding the stability of the equilibrium point (a, b).

Returning to (4.39) we note that the long-time behavior of this ex-
pression depends critically on the sign of the real part of λ: If all eigen-
values of A have the property that Re λ < 0 then we expect that the
perturbation of the equilibrium point (a, b) will approach zero as time
evolves, leading us to conclude that (a, b) is stable, while if one of these
eigenvalues has its real part positive, then any perturbation of (a, b) will
eventually grow and the equilibrium point (a, b) will be unstable. The
case of Re λ = 0 remains ambiguous and arguments that draw upon the
nonlinearities in (4.4) must be brought to bear in the analysis of such an
equilibrium point. We summarize this discussion in the following theo-
rem.

Theorem 4.1 (Asymptotic Stability of Equilibrium Points)
Consider the autonomous system of differential equations (4.5) with the
point (a, b) as its equilibrium point. Let A, λ and v be defined as in

Ordinary Differential Equations 143

(4.38). Then the equilibrium solution x = 〈a, b〉 of (4.5) is asymptotically
stable in accordance with (4.32) if all eigenvalues of A have negative real
parts. This equilibrium solution is unstable if any of the eigenvalues of A
has a positive real part. If an eigenvalue of the linearization has zero real
part, the state of stability of the equilibrium point must be determined by
taking into account the nonlinear terms in the system.

As an example of the utility of Theorem 4.1, consider the system of
equations

x′ = y, y′ = −α sinx− βy, (4.40)

where α and β are non-negative. Note that all points of the form (nπ, 0),
n = 0,±1,±2, ... are equilibrium points of this system. Since f(x, y) = y
and g(x, y) = −α sinx− βy, the matrix A is

A =

[

0 1
−α cos nπ −β

]

(4.41)

where a = nπ. The eigenvalues of this matrix are

λ1(n) =
1

2
(−β−

√

β2 − 4α cos nπ), λ2(n) =
1

2
(−β+

√

β2 − 4α cos nπ).

(4.42)
We first consider the equilibrium solution 〈0, 0〉. The two eigenvalues at

n = 0 are λ1(0) = 1
2
(−β −

√

β2 − 4α) and λ2(0) = 1
2
(−β +

√

β2 − 4α).
If β is small enough so that β2 − 4α < 0, then both λ1 and λ2 are
both complex and Re λi < 0 so that (0, 0) is stable in this case. If β
is large enough so that β2 − 4α > 0 then both eigenvalues are real and
negative. In this case also the equilibrium point (0, 0) is stable, although
as Figures 4.4 and 4.5 show, the behavior of the system near the origin
differs in the two cases. This spiral in Figure 4.4 is due to the fact that
eigenvalues of the linearization about 〈0, 0〉 are complex-valued when
α = 0.3 and β = 0.1, while in Figure 4.5, with α = 0.3 and β = 1,
the orbits of (4.40) are attracted to the origin without undergoing any
oscillations, under scoring the strength of the dissipation in this case.
The equilibrium solution 〈π, 0〉 has eigenvalues 1

2
(−β −

√

β2 + 4α) and
1
2 (−β +

√

β2 + 4α), which are both real, one negative and the other
positive. This equilibrium point is therefore unstable, as is also clear
from Figures (4.4) and (4.5).

The two Figures 4.4 and 4.5 are the output of the following two
MATLAB M-files:

%%% odedef.m %%%

function yprime=odedef(t,y);

global alpha beta

144 Physical Oceanography: A Mathematical Introduction

−8 −6 −4 −2 0 2 4 6 8
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

α = 0.3,β = 0.1

x

y

FIGURE 4.4: The phase plane for (4.40) with α = 0.3, β = 0.1.

yprime=[y(2); -beta*y(2)-alpha*sin(y(1))];

%%% main.m %%%

global alpha beta

alpha=0.3; beta=1;

for i=-5:2:5

[t,y]=ode45(@odedef,[0 30], [i 0]);

plot(y(:,1),y(:,2))

hold on

end

title([’\alpha = ’,num2str(alpha),’,’, ’\beta = ’, ...

num2str(beta)])

xlabel(’x’)

ylabel(’y’)

Problems 4.5

1. Find all equilibria of the following ODEs and determine their state
of stability:

Ordinary Differential Equations 145

−8 −6 −4 −2 0 2 4 6 8
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

α = 0.3,β = 1

x

y

FIGURE 4.5: The phase plane for (4.40) with α = 0.3, β = 1.

(a) x′ = y, y′ = −y + 0.1x.

(b) x′ = y, y′ = −x+ x2.

(c) y′′ + 0.1y′ + y − y3 = 0.

2. Characterize the state of stability of the equilibria of the following
ODEs in terms of the various parameters listed:

(a) x′′ + ax′ + bx = 0.

(b) y′′ + ay′ + y + b2y3 = 0.

4.6 Motion of Parcels of Fluid in MATLAB

In this section we present a MATLAB program that provides visual
information of the behavior of solutions of a two- and three-dimensional
systems of ordinary differential equations. The main idea is to take snap-

146 Physical Oceanography: A Mathematical Introduction

shots of a flow under the action of a system of ODEs such as

x′ = f(t, x, y), y′ = g(t, x, y), x(0) = x0, y(0) = y0, (4.43)

when we follow the development of a parcel of fluids whose initial state
is typically a disk, when the problem is two dimensional as in (4.43), or
a ball for the three-dimensional extension of this system. The program
outlined below is written for a fundamental flow in fluid dynamics, flow
past a cylinder, where the flow is induced by the stream function ψ

ψ(x, y) = y − y
√

x2 + y2
. (4.44)

Applying the formulas (3.32), where u = ∂ψ
∂y

and v = −∂ψ
∂x

, we find that

f and g in (4.43) are

f(t, x, y) =
1 − x2 + y2

(x2 + y2)2
, g(t, x, y) =

−2xy

(x2 + y2)2
. (4.45)

The program below leads to Figure 4.6. The main program, labeled
parcel.m, calls on fpc.m for the definitions of the right sides of (4.45).
It follows the evolution of seven parcels, which are located in a column at
x = −2 and are initially in the shape of identical circles. The flow is from
left to right, so as the ODEs influence the motion of each particle, these
parcels react to the obstacle downstream, a circle of radius 1 centered at
the origin — this idealized flow is intended to simulate the flow around an
infinite cylinder and is assumed to be two-dimensional. This simulation
shows the degree of stretching and rotation of each parcel — note that
this behavior is by no means homogeneous and that parcels closer to
the origin undergo considerably more severe deformations than the ones
farther away.

The program below takes advantage of MATLAB’s ode45, a differ-
ential equation solver that we have used already and whose properties
we will discuss in detail throughout the text.

%%% fpc.m %%%

% This program defines the differential equations.

function yprime=fpc(t,y)

%

term=1/(y(1)^2+y(2)^2)^2;

%

yprime=[1-(y(1)^2-y(2)^2)*term; -2*y(1)*y(2)*term];

%

%%% parcel.m %%%

% This program plots snapshots of 7 parcels of fluids.

Ordinary Differential Equations 147

clf

noofparcels=7;

n=40; % number of points on the boundary of each parcel

tfinal=1; % time increment between snapshots

m=5; % number of snapshots

pts=0:0.01:pi;

circle=[cos(pts);sin(pts)]’; % The obstacle, in this

% case a disk of radius one

plot(circle(:,1),circle(:,2));

set(gca,’DataAspectRatio’,[1 1 1]); % setting the aspect ratio

hold on

h=0;

t=0:1/n:1;

for i=1:noofparcels

data1=-2+0.1*cos(2*pi*t);

data2=0.2+h+0.1*sin(2*pi*t);

plot(data1(:),data2(:));

for k=1:m

sol=[];

for j=1:n+1

[tt,y]=ode45(’fpc’,[0 tfinal],[data1(j) data2(j)]);

sol=[sol;y(length(tt),:)];

end

plot(sol(:,1),sol(:,2))

hold on

data1 = sol(:,1); data2=sol(:,2);

end

h=h+0.3;

end

title(’Flow Past Cylinder’)

xlabel(’x’)

ylabel(’y’)

Problems 4.6

1. Execute the MATLAB programs in this section to generate Figure
4.6.

2. Show that the flow past cylinder, defined by (4.45), is incompress-
ible and irrotational.

3. Adapt the parcel deformation program of this section to apply to
the following velocity fields. Select several initial circular parcels

148 Physical Oceanography: A Mathematical Introduction

−3 −2 −1 0 1 2 3 4
0

0.5

1

1.5

2

2.5
Flow Past Cylinder

x

y

FIGURE 4.6: The deformation of parcels of fluid as they negotiate
their way around a cylinder.

of your own choosing and track their deformation over time. De-
termine in each case if the flow is incompressible or irrotational.

(a) v = 〈y,−x〉.
(b) v = 〈 y√

x2+y2
,− x√

x2+y2
〉.

(c) v = 〈 y
x2+y2 ,− x

x2+y2 〉.

(d) v = 〈y,−0.1y− sinx〉.

4. For each stream function ψ defined below derive the associated ve-
locity field and apply the parcel deformation program to it. Select
several initial circular parcels of your own choosing and track their
deformation over time.

(a) ψ = sinx sin y.

(b) ψ = 2 sin 3x cos 4y − 0.5 sin4y cos 3x− 1.3 cos 3x cos4y.

5. Generalize the parcel deformation program of this section to three-
dimensional flows v = 〈f, g, h〉, which lead to the system of three
ODEs

dx

dt
= f(t, x, y, z),

dy

dt
= g(t, x, y, z),

dz

dt
= h(t, x, y, z).

Apply the resulting program to the ABC Flow defines in Problem
4 of Section 4.4.

Ordinary Differential Equations 149

4.7 Project A: Ekman Layer

The Ekman layer, first described in the classic paper [3], is an impor-
tant feature observed in rotating fluid flows. It turns out that the rota-
tion of our planet induces a steady-state velocity field v = 〈u(z), v(z), 0〉,
having a distinct spiral shape, which is especially noticeable near bound-
aries such as the air-sea interface. The impact of this phenomenon is also
observed in the motion of large pieces of ice floating in the oceans.

The development of equations of motion attributed to the Ekman
layer is described in detail in many textbooks on Geophysical Fluid Dy-
namics, in particular in [4] (see pages 185–194). As it turns out, the
motion in an Ekman layer can be described by a boundary-value prob-
lem for a fourth-order ODE, which is the subject of this project.

1. If you have access to [4], begin reading pages 185–194 and fa-
miliarize yourself with the concept of geostrophic balance and its
connection with the concept of an Ekman layer.

2. The geometry we consider is the upper half-space z > 0. This
region is occupied by a viscous fluid, which rotates about the z-
axis at a fixed angular velocity Ω. The equations of geophysical
fluid dynamics, after several simplifying assumptions (see [4] and
[2] for details) result in the following BVP for u(z):

d4u

dz4
+ λ2u = M, (4.46)

where λ is a positive constant, whose value is related to the Cori-
olis parameter and the vertical contribution of the so-called Eddy
viscosity. M , a constant, is a forcing term. This ODE is further
supplemented by the following boundary conditions:

u(0) = 0, u′(0) = 0, lim
z→∞

u(z) <∞. (4.47)

The last condition states that we seek a solution to (4.46) with a
finite asymptotic limit as z approaches infinity.

(a) Show that

u(z) =
M

λ2
+ c1e

µz cosµz + c2e
µz sinµz+

c3e
−µz cosµz + c4e

−µz sinµz. (4.48)

is the general solution of (4.46) where µ =
√

λ
2
.

150 Physical Oceanography: A Mathematical Introduction

(b) Show that the boundary condition that u remains finite as z
approaches infinity requires that c1 = c2 = 0.

(c) Apply the boundary conditions in (4.47) and determine c3
and c4.

(d) Plot the graph of u when M = 1 and λ = 3.

(e) Suppose that limz→∞ = U . Determine the value of the forcing
term M . How would you obtain this answer without using the
solution to the boundary value problem, but by appealing
directly to the ODE in (4.46)?

(f) Let v(z) = −u′′(z). Plot the vector field 〈u(z), v(z)〉, for z ∈
(0, 10), with λ = 1 and M = 1.

4.8 Project B: Lorenz 96 Model

Edward N. Lorenz, through a remarkable career, which spanned the
entire second half of the twentieth century, has been responsible for call-
ing our attention to several systems of ordinary differential equations,
each having reached the status of a classic example, each rich enough
to illustrate a variety of fundamental concepts and challenges in mathe-
matics and physics. Lorenz either derived these systems from the basic
principles of Geophysical Fluid Dynamics, or constructed them based
on his unique intuitive understanding of which scientific issue he wished
to highlight. We have already encountered, in Problem 3 in Section 4.4
of this chapter, the system that is universally referred to as the Lorenz
Equations. In this project, we will study a second system, see (4.49) be-
low, which is fast gaining grounds in occupying a special place in the
annals of applied mathematics because of its simplicity, and because
of its implication in modeling how instabilities may propagate in the
atmosphere.

The system of ODEs (4.49) first appeared in 1996 in [6], and for that
reason it is often referred to as the Lorenz 96 or the L96 system. In
a second paper, listed in [7], a more detailed study of this system ap-
peared in 1998. Subsequently, dozens of papers have been dedicated to
the various mathematical and statistical properties of this system. Most
notable among these studies is the extensive discussion in [8] (see pages
239–255). The reader is strongly encouraged to consult these develop-
ments to gain some insight into why L96 is considered such an important
platform for computational experimentation.

Ordinary Differential Equations 151

The L96 system of equations is

dXj
dt

= (Xj+1 −Xj−2)Xj−1 −Xj + F (4.49)

where j = 1, ..., J . The variables Xj are periodic, so that

X−1 = XJ−1, X0 = Xj, XJ+1 = X1.

Here F is a positive constant. The discrete system size is J = 40, so
that (4.49) constitutes a system of 40 nonlinear ordinary differential
equations.

1. Show thatXj = F , j = 1, ..., J , is an equilibrium solution of (4.49).

2. Linearize (4.49) about this equilibrium solution. To that end, let
Xj = F +Yj, substitute in (4.49), ignore higher order terms in Yj ,
to arrive at the linearized system

dYj
dt

= F (Yj+1 − Yj−2) − Yj, (4.50)

j = 1, 2, ..., J .

3. Write a MATLAB program to compute the eigenvalues of the lin-
earized problem (4.50) as a function F . Begin with F = 0.1 and
compute the associated 40 eigenvalues and report if the equilibrium
solution is stable.

4. Increase the values of F with 0.01 until you arrive at the first value
of F at which the equilibrium solution is unstable. Let F0 denote
this value.

5. Write a MATLAB program, using ode45, to solve (4.49) with ini-
tial values

Xj = F, j 6= 20, X20 = F + 0.01,

where F = F0 + 1 and F0 is the value discovered in the previous
problem. Plot the graph of {Xj(t)}. Experiment with various in-
crements of t to obtain a graph similar to FIG. 1, on page 401 of
[7].

6. Repeat the above simulation for F = F0 + i, i an integer between
2 and 10, and report on the qualitative change in the evolution of
{Xj(t)}. In particular, discuss if you observe the phenomenon that
the initial perturbation at J = 20 moves westward.

152 Physical Oceanography: A Mathematical Introduction

4.9 References

1. Hale, J., Ordinary Differential Equations, Wiley Interscience, 1972.

2. Hartman, P., Ordinary Differential Equations, Cambridge Univer-
sity Press, 2002.

3. Ekman, V. W., “On the influence of the Earth’s rotation on ocean
currents,” Arch. Math. Astro. Phys., Vol 2, 1905, pp. 1–52.

4. Pedlosky, J., Geophysical Fluid Dynamics, Springer-Verlag, 1987.

5. Malek-Madani, R., Advanced Engineering Mathematics with
MathematicaR© and MATLABR©, Addison-Wesley, 1998.

6. Lorenz, E. N., “Predictability: A problem partly solved,” Proceed-
ing of Seminar on Predictability, Vol 1., ECMWF, Reading, Berk-
shire, UK, pp. 1–8, 1996.

7. Lorenz, E., Emanuel, K., “Optimal sites for supplementary weather
observations: Simulation with a small model,” J. Atmos. Sci., Vol
55, pp. 399–414, 1998.

8. Majda, A. J., Wang, X., Nonlinear Dynamics and Statistical The-
ories for Basic Geophysical Flows, Cambridge University Press,
2006.

Chapter 5

Numerical Methods for ODEs

In the previous chapter we introduced several methods commonly used
to obtain solutions of initial and boundary value problems to systems
of ordinary differential equations. One of the tools we introduced was
MATLAB’s ode45, a powerful numerical solver that is based on apply-
ing a finite difference approach to first discretize an ordinary differential
equation and converting the underlying continuous problem to an alge-
braic problem, which we can then treat with matrix theory methods. In
this chapter we will look at the details of finite difference methods to
understand their scope of applicability. Although we will introduce finite
difference methodology in the context of ordinary differential equations,
one of our main goals is to prepare for applying these techniques to
partial differential equations.

5.1 Finite Difference Methods

The MATLAB function ode45 is one of several numerical schemes
designed for solving systems of differential equations. To appreciate how
accurate and powerful ode45 is, we now review some of the basic ideas
that have been developed for solving differential equations, and display
simple MATLAB code that implements these ideas. We carry out this
discussion for the simplest of initial-value problems (IVP) where the
differential equation is

y′ = λy, (5.1)

complemented with the initial data

y(t0) = y0. (5.2)

The exact solution to this IVP is

y(t) = y0e
λ(t−t0), (5.3)

153

154 Physical Oceanography: A Mathematical Introduction

which grows unboundedly when Re λ > 0 as t approaches infinity, while
it remains bounded when Re λ ≤ 0. The motivation behind a numeri-
cal approximation of (5.1)–(5.2) is to capture the basic features of this
system as accurately as possible.

We begin by recalling the various definitions of derivatives presented
in (3.1)–(3.4). These formulas offer several choices to replace y′(t) in
(5.1) by a finite difference formula. Three commonly used formulas and
their corresponding titles are

y(t + h) − y(t)

h
, forward difference, (5.4)

y(t) − y(t − h)

h
, backward difference, (5.5)

y(t + h) − y(t − h)

2h
, centered difference. (5.6)

Each of these formulas, when substituted into (5.1), results in a Finite
Difference Equation (FDE). For example, the forward difference approx-
imation of y′ = λy is

yp(t+ h) − yp(t)

h
= λyp(t)

where the subscript p is introduced to emphasize that yp is only an
approximation to the exact solution y(t). The above expression is equiv-
alent to

yp(t+ h) = (1 + λh)yp(t) (5.7)

which suggests that if we have a value for yp(t), we may then compute
yp(t + h) from (5.7), this way obtaining an approximation to the exact
value y(t + h). In a typical initial-value problem such as (5.1)–(5.2) we
know the value of the solution at t = t0, hence a formula such as (5.7)
will then enable us compute approximate values at t0+h, t0+2h, t0+3h,
..., recursively. To give a concrete example, consider the IVP with λ =
−0.1, h = 0.2, t0 = 0 and y0 = 2. With these parameter values we are
considering the IVP

y′ = −0.1y, y(0) = 3, (5.8)

whose solution is y(t) = 3e−0.1t. The Forward Difference formula for this
IVP is (see (5.7) and set h = 0.2)

yp(t+ 0.2) = 0.98 yp(t), with yp(0) = y(0) = 3. (5.9)

Setting t = 0 in (5.9) yields

yp(0.2) = 0.98 yp(0) = 2.94.

Numerical Methods for ODEs 155

This value is an approximation to y(0.2) = 3e−0.02 = 2.9406. The abso-
lute error incurred is |y(0.2)− yp(0.2)| = 0.0006 with the corresponding
relative error

∣

∣

y(0.2) − yp(0.2)

y(0.2)

∣

∣ = 0.0002.

Now that we have yp(0.2) in hand, we can continue with using the ex-
pression in (5.9) to arrive at approximate values at t = 0.2, t = 0.4, etc.
For example, after setting t = 0.2 in (5.9) we have

yp(0.4) = 0.98 yp(0.2).

Since yp(0.2) = 2.94, we end up with

yp(0.4) = 2.8812,

which is an approximation to the solution y(t) at t = 0.4 or 3e−0.04 =
2.8824. We note that the absolute and relative errors are 0.0012 and
0.0004, respectively, both of which are larger than the corresponding
errors when t = 0.2.

We will refer to the above approach, where the forward difference
formula (5.4) is used to approximate y′ in the IVP, as the Forward Euler
Method (FEM). The following table summarizes the results of the FEM
approach for the IVP in (5.8).

Forward Euler Method (FEM)
y′ = −0.1y, y(0) = 3, with t0 = 0, h = 0.2
t yp y Abs Err Rel Err
0 3 3 0 0

0.2 2.9400 2.9406 0.0006 0.0002
0.4 2.8812 2.8824 0.0012 0.0004

It is instructive to see how ode45 handles the IVP given by (5.8). If
needed, refer back to Section 4.4 to refresh your memory on how one
implements ode45 in MATLAB. Because of the simplicity of the right
side of (5.8), we enter this function into MATLAB using inline:

rhs = inline(’-0.1*y’,’t’,’y’);

Next we invoke ode45:

[t,y]=ode45(rhs, [0 0.2],3);

ode45 applies its adaptive method and finds an approximate solution.
The expression y(length(t)) results in

156 Physical Oceanography: A Mathematical Introduction

ans =

2.9406

providing an excellent approximation to the exact value.
Although we have demonstrated the Forward Euler Method for a

specific example, this method is equally effective with any first-order
IVP of the form

y′ = f(t, y), y(t0) = y0. (5.10)

Substitution of the expression (5.4) in (5.10) leads to the FDE

yp(t + h) = yp(t) + hf(t, yp(t)), yp(t0) = y0. (5.11)

Once f , h, t0 and y0 are known explicitly, the above expression leads to
values for yp(t0 + h), yp(t0 + 2h), etc., as shown in the case of the above
example where f(t, y) = −0.1y. As seen in the concrete example (5.8),
the implementation of FEM leads to a set of discrete evaluations of the
FDE at ti, where ti is given by

t0 = t0,
t1 = t0 + h,
t2 = t0 + 2h,
... ...
ti = t0 + ih,
... ...

(5.12)

at which we determine the approximate values yi given by

y0 = y0,
y1 = y0 + hf(t0, y0)
y2 = y1 + hf(t1, y1),
... ...

yi+1 = yi + hf(ti, yi),
... ...

(5.13)

With this notation the FDE in (5.11) takes the form

yi+1 = yi + hf(ti, yi), y0 = given, and i = 1, 2, 3, ... (5.14)

Because of the recursive nature of the dependence of yi+1 on yi, it is
relatively easy to compute all of the necessary yi’s using an application
of the for ... end loop in MATLAB, as shown below:

....

....

Numerical Methods for ODEs 157

yold=y0;

output=[yold];

for i=1:n

ynew=yold+h*f(t0+i*h,yold);

output=[output ynew];

yold=ynew;

end

...

...

For example, to apply FEM to the IVP given by

y′ = t/(1 + t) + esin y, y(0) = 1, (5.15)

which is a nonlinear IVP and hence does not lend itself to analytical
methods, we first construct the FDE from (5.14):

yi+1 = yi + h(ti/(1 + ti) + esin yi), y0 = 1. (5.16)

The following table shows the first two iterations of the FEM and its
comparison with the “exact” solution, which in this case is obtained by
an application of ode45:

Forward Euler Method (FEM)
y′ = t/(1 + t) + esin y, y(0) = 1, with t0 = 0, h = 0.1
t yp y (using ode45) Abs Err Rel Err
0 1 1 0 0

0.1 1.2411 1.2559 0.00004 0.00003
0.2 1.5153 1.5530 0.0377 0.0243

Notice how dramatically the absolute and relative errors have increased
at the second iteration.

We have introduced the Forward Euler Method for scalar (single)
differential equations. The generalization of this method to systems of
ordinary differential equations is straightforward. Consider the IVP

y′ = f (t,y), y(t0) = y0, (5.17)

where

y =













y1
y2
...
...
yn













158 Physical Oceanography: A Mathematical Introduction

is an n-dimensional column vector of unknowns, and

f =













f1(t,y)
f2(t,y)
...
...

fn(t,y)













defines the right side of (5.17). Let

yi =













yi,1
yi,2
...
...
yi,n













denote the values of y at the i-th discretization point ti. Then yi+1 is
determined from

yi+1 = yi + hf (ti,yi)

or in component form












yi+1,1

yi+1,2

...

...
yi+1,n













=













yi,1
yi,2
...
...
yi,n













+ h













f1(t,y)
f2(t,y)
...
...

fn(t,y)













. (5.18)

To see FEM in action on a system of ODEs, consider the example of the
Rotating Duffing System given by the system of the two equations

{

x′ = x sin 2βt+ y(β + cos 2βt) +N(x, y) sinβt,
y′ = x(−β + cos 2βt) − y sin 2βt +N(x, y) cos βt,

(5.19)

where the nonlinearity N is

N(x, y) = −(x cos βt− y sinβt)3 + ε sinωt, (5.20)

with β, ω, and ε are various physical parameters. This important system
of equations is the subject a detailed study in [4] by S. Wiggins and
co-authors. If the right side of (5.19)–(5.20) represents a fluid flow, then
(x(t), y(t)) represents the position of the fluid particle at time t that
occupies position (x0, y0) at time zero. We apply FEM to this system of
ODES to find the path of a particle that is located at (0.1, 0.2) at time
zero. We consider the following values for the parameters:

β = 0.1, ω = 1, ε = 0.3.

Numerical Methods for ODEs 159

We track the trajectory of this particle for 3 units of time and compare
FEM’s result with that of ode45. It would be a bit easier to carry out
all of the necessary MATLAB computations if we define the right side of
(5.19) in an M-File, which we name RotDuff.m; the variable y in the M-
file is a vector and its components contain both of the physical variables
x and y, so that y(1) stands for x and y(2) stands for y:

function yprime = RotDuff(t,y)

global beta epsilon omega

N = -y(1)*cos(beta*t)-y(2)*sin(beta*t)^3 + ...

epsilon*sin(omega*t);

yprime=[y(1)*sin(2*beta*t)+y(2)*(beta+cos(2*beta*t))+N;...

y(1)*(-beta+cos(2*beta*t))-y(2)*sin(2*beta*t)+ N];

With the parameter values defined earlier, and letting x0 = 0.1 and
y0 = 0.2, first we combine ode45 with this M-file to obtain an excellent
approximation to the solution of this IVP:

global beta epsilon omega

%

beta=0.1;

epsilon=0.3;

omega=1;

%

[t,y]=ode45(@RotDuff,[0 3],[0.1;0.2]);

%

plot(y(:,1),y(:,2),’o’)

hold on

Next we obtain the FEM approximation as follows (the M-file could be
labeled RotDuffFEM.m):

beta=0.1;

epsilon=0.3;

omega=1;

%

n=100;

h=3/n;

y0=[0.1;0.2];

yold=y0;

output=[yold];

for i=1:n

t=(i-1)*h;

160 Physical Oceanography: A Mathematical Introduction

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.25

0.3

0.35

0.4

0.45

0.5

ode45

FEM

FIGURE 5.1: The Forward Euler Method and ode45 applied to (5.19)–
(5.20).

ynew=yold+h*RotDuff(t,yold);

output=[output ynew];

yold=ynew;

end

plot(output(1,:),output(2,:), ’.’)

legend(’ode45’,’FEM’,’Location’,’NorthEast’)

Figure 5.1 shows the output of FEM and ODE45 on the Rotating Duffing
system. Referring to this figure, it is worth taking notice of how well the
Forward Euler Method has succeeded in approximating the solution of
a system of ODEs as nonlinear and complex as the ones expressed by
(5.19)–(5.20).

Problems 5.1

1. Consider the IVP

y′ = 0.2y, y(0) = 3.

(a) Determine the exact solution of this IVP.

(b) With h = 0.1, compute the values of y1 and y2 using FEM.

Numerical Methods for ODEs 161

Compare the value of y2 to the exact value y at the appro-
priate x and compute the absolute and relative errors at this
x.

(c) With h = 0.05, compute the values of y1 through y4. Write
down the values of the xi’s to which these yi’s correspond.
Which yi when h = 0.05 corresponds to y2 when h = 0.1?

(d) Compare the two approximate values of the exact solution
y(x) with x = 0.2 when h = 0.1 and h = 0.05 and determine
which approximation is more accurate.

(e) Apply MATLAB to this IVP and

i. Plot the graph of the exact solution on the interval (0, 3).

ii. With h = 0.1, compute the necessary yi’s from the For-
ward Euler Method and plot the graph of the approxi-
mation together with the exact solution.

iii. Let h now be 0.05 and repeat the previous problem.

2. Consider the IVP

y′ = 0.2y− 1, y(0) = 2.

Repeat the contents of Problem 1 for this IVP.

3. Consider the IVP

y′ = −y + sin t, y(0) = 2.

(a) Show that

y(t) =
1

2

(

5e−t + sin t − cos t
)

is the exact solution of the IVP. Plot its graph on the interval
(0, 15).

(b) Let h = 0.1. Use FEM and determine y1 and y2. What is the
relative error in each case?

(c) Let h = 0.05. Determine y1 through y4. What are the relative
errors in each case? By comparing these values to the associ-
ated values when h = 0.1, describe which approximations are
more accurate.

(d) Let h = 0.1 and apply FEM in MATLAB to this IVP. Plot the
graph of the approximate y together with the exact solution
on the interval (0, 15). Next let h = 0.1 and compute the
approximation of y and graph it together with the two graphs
already obtained.

162 Physical Oceanography: A Mathematical Introduction

4. Consider the IVP

y′ = sin(ty), y(0) = 1.

(a) Apply MATLAB’s ode45 to this problem and plot the graph
of the solution in the interval (0, 3).

(b) With h = 0.1, apply FEM and compute y1 and y2.

(c) With h = 0.1, apply FEM in MATLAB and plot the graph of
the approximation against the graph of the solution obtained
from ode45.

5. Apply FEM to the IVP

x′ = y, y′ = −0.1y + sinx, x(0) = 0.1, y(0) = 0.

and compute the first two iterations (x1, y1) and (x2, y2) when
h = 0.1. Next, Use MATLAB and apply both ode45 and FEM to
this IVP and plot the graph of the two approximate solutions on
the interval (0, 3); for FEM use a step-size h of your own choosing.

6. Generate the graph in Figure 5.1.

7. Consider the Rotating Duffing system of ODEs described in (5.19)–
(5.20). Use the parameter values

β = 1, ε0.1, ω = 3.

Apply MATLAB’s ode45 and plot the graphs of the trajectories
of the particles that at time zero are located on the perimeter of
a circle of radius 0.1 centered at (1, 0). Select at least 30 particles
on the perimeter of the initial circle and track their evolution for
3 units of time. A good visual representation of the data you will
obtain from ode45 is to use MATLAB’s capabilities to display in
different colors the location of the particles at a set increment of
time. See Figure 5.2 for how the original parcel of fluid deforms
under the action of the Rotating Duffing system. This figure is
obtained by appropriate modification of the MATLAB code fpc.m

in Section 4.6. The following is one way of modifying fpc.m to
obtain Figure 5.2.

t=0:1/n:1;

data1=1+0.1*cos(2*pi*t); data2=0.1*sin(2*pi*t);

plot(data1(:),data2(:));

for k=1:snapshots

sol=[];

Numerical Methods for ODEs 163

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.6

−0.4

−0.2

0

0.2

x

y

FIGURE 5.2: The deformation of a parcel of fluid under the action
of the system of ODEs in (5.19)–(5.20) with parameter values β = 1,
ε = 0.1 and ω = 3.

for j=1:n+1

[tt,y]=ode45(’RotDuff’,[0 tfinal],[data1(j) data2(j)]);

sol=[sol;y(length(tt),:)];

end

plot(sol(:,1),sol(:,2))

hold on

data1 = sol(:,1); data2=sol(:,2);

end

5.2 Backward Euler Method (BEM)

In the previous section we discussed how the formula (f(a + h) −
f(a))/h, with h > 0 (see (5.4)), gives rise to a natural approximation
of f ′(a) and leads to the Forward Euler Method for solving IVPs. This
expression, which is just one of an infinitely many ways of approximating
f ′(a), is suited well for initial-value problems when a single side condi-
tion, such as y(0) = y0, is just the right amount of information to begin
the process of obtaining yi for i > 0. We now discuss an alternative
approximation to f ′(a), based on the backward formula

f(a) − f(a − h)

h

164 Physical Oceanography: A Mathematical Introduction

(see (5.5)), again with h > 0, which is equally as effective as FEM, but
with some significant advantages and disadvantages.

As in the case of FEM, we begin the Backward Euler Method ap-
proximation of the IVP y′ = f(t, y), y(0) = y0, by evaluating the ODE
at a typical point ti and obtaining the usual expression

y′(xi) = f(ti, y(xi)), y(x0) = y0.

In BEM the term y′(xi) is replaced by (as before yi stands for y(xi))

yi − yi−1

h

leading to the FDE

yi = yi−1 + hf(ti, yi), y0 = y0. (5.21)

Our task, as in the case of FEM, is to obtain yi in terms of yi−1. In the
case of FEM, where the equivalent FDE is yi = yi−1 + hf(ti−1, yi−1),
this task is trivial, since every term on the right side is known at the
i-th iteration. But for BEM, when f is a nonlinear function of y, the
task of writing out an explicit formula for yi from (5.21) is somewhat
more complicated since it involves solving an equation. The fact that
yi is expressed implicitly in (5.21) is perhaps the main disadvantage of
this method, although we can certainly think of relatively simple tech-
niques to obtain a good approximation of yi from (5.21), or modify (5.21)
slightly to end up dealing with an explicit expression; see Project A, the
Modified Euler Method, at the end of this chapter for a more detailed
discussion of this point. The main advantage of BEM ends up being its
stability properties, which will be discussed in the next section, which
are substantial enough that we continue further with the development
of this method.

When the function f on the right side of (5.21) is a linear function
of y, the expression in (5.21) reduces to a simple algebraic equation in
yi that can easily be solved for yi, and the rest of the implementation of
BEM follows the pattern of FEM. When the function f depends nonlin-
early on yi, we may view yi in (5.21) as a fixed-point of the expression
in (5.21) and use simple iterative methods for obtaining accurate and
robust approximations of yi in terms of yi−1. We will elaborate on this
point later, after presenting a simple example to illustrate the case when
f depends linearly on yi. Consider the IVP

y′ = ay + sin bt, y(0) = c, (5.22)

whose exact solution is

y(t) = (c +
b

a2 + b2
)eat − 1

a2 + b2
(a sin bt+ b cos bt). (5.23)

Numerical Methods for ODEs 165

The backward Euler Method applied to this IVP leads to the FDE

yi = yi−1 + h(ayi + sin bti), y0 = c, i = 1, 2, 3, ...

While this FDE is implicit in yi, because the equation is linear, we can
solve for yi to obtain the explicit FDE

yi =
1

1 − ah
(yi−1 + h sin bti), y0 = c, i = 1, 2, 3, ... (5.24)

Similar to all of the Finite Difference Equations we have encountered
when applying the Forward Euler Method, in the above FDE yi is ex-
plicitly expressed in terms of yi−1 and hence is easily coded in MATLAB.
The following is an example of BEM applied to (5.22) when a = −0.1,
b = 6π and c = 3, and its comparison with ode45. See Figure 5.3.

%

% Backward Euler Method applied to

% y’= -0.1 y + sin (6 pi t)

%

a=-0.1; b = 6*pi; c = 3;

n=100; h= 0.01;

y0=c;

yold=y0;

output = [yold];

factor = 1/(1-a*h);

for i=1:n

t=i*h;

ynew=factor*(yold+h*sin(b*t));

output=[output ynew];

yold=ynew;

end

plot(0:h:n*h,output,’.’)

hold on

f=inline(’-0.1*y+sin(6*pi*t)’,’t’,’y’);

[t,y]=ode45(f,[0 n*h], y0);

plot(t,y,’o’)

title(’BEM, with n = 100 and h = 0.01, versus ode45’)

legend(’BEM’,’ode45’,’Location’,’Northeast’)

In the next example we attempt to solve a nonlinear IVP by the
Backward Euler Method and comment on the difficulties we normally
face when we wish to arrive at the equivalent of the explicit formula we
obtained in (5.24). Consider the IVP

y′ = −0.1y2 + sin t, y(0) = 3. (5.25)

166 Physical Oceanography: A Mathematical Introduction

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2.7

2.75

2.8

2.85

2.9

2.95

3

3.05

3.1
BEM, with n = 100 and h = 0.01, versus ode45

BEM

ode45

FIGURE 5.3: BEM and ode45 applied to (5.22) with a = −0.1, b = 6π,
and c = 3.

An application of BEM to this ODE leads to the Finite Difference Equa-
tion

yi = yi−1 − 0.1hy2
i + h sin ti, y0 = 3. (5.26)

In order to obtain an explicit formula for yi from (5.26) we need to appeal
to the quadratic formula. We will then obtain two solutions, from which
we select the correct branch by noting that y0 = 3. However, instead of
taking this path, we present a different approach that applies to a much
larger class of implicit/nonlinear Finite Difference Equations similar to
the one in (5.26).

We view the right side of (5.26) as a function of yi and denote it,
temporarily, by g(yi). Hence g is give by

g(z) = −0.1hz2 + yi−1 + h sin ti. (5.27)

With this definition of g in mind, we note that determining yi in (5.26)
is equivalent to obtaining the fixed-point of g, i.e., yi satisfies

g(yi) = yi. (5.28)

We recall that a general and natural approach to finding a fixed-point

Numerical Methods for ODEs 167

of a function g is by applying the iterative method

zi = g(zi−1) (5.29)

for i = 1, 2, 3, ..., with z0 a given starting point for this iteration. If
this sequence zi converges to a value z, and if g is a sufficiently smooth
function, then it is clear that g(z) = z.

What is often important in obtaining a convergent sequence when
applying the fixed-point algorithm is a judicious choice of the initial
guess z0; if the starting guess is sufficiently close to the fixed-point, the
probability of obtaining a convergent sequence is quite high. Fortunately,
when applying this technique in the context of BEM we always have
a good starting point in hand, namely yi−1, because when h is small
we expect that yi is relatively close to yi−1. This is the approach we
adopt in the following MATLAB code in obtaining a relatively accurate
solution to the IVP in (5.26). The following code does the job; note
that the structure of the code is that of FEM, not BEM, in that the
formula yi = yi−1 +hf(ti, yi) is the expression to which yoldInterm and
ynewInterim apply. The key new structure is the inner loop, indexed by
k, where the fixed-point idea is implemented:

clf;

clear all;

n=200; h= 0.01;

y0=3;

yold=y0;

output = [yold];

f=inline(’-0.1*y.^2+sin(t)’,’t’,’y’);

for i=1:n

t=i*h;

yoldInterim=yold;

for k=1:50

ynewInterim=yold+h*f(t,yoldInterim);

yoldInterim=ynewInterim;

end

ynew=ynewInterim;

output=[output ynew];

yold=ynew;

end

plot(0:h:n*h,output,’.’)

hold on

[t,y]=ode45(f,[0 n*h], y0);

plot(t,y,’o’)

string=[’BEM, Fixed-Point Method’,’, n = ’,num2str(n),

168 Physical Oceanography: A Mathematical Introduction

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

2.7

2.75

2.8

2.85

2.9

2.95

3

3.05
BEM, Fixed−Point Method, n = 200, h = 0.01, versus ode45

BEM

ode45

FIGURE 5.4: BEM, implemented with the fixed-point method, and
ode45 applied to (5.26) with a = −0.1, b = 6π and c = 3.

’,h = ’, num2str(h),’, versus ode45’]

title(string)

legend(’BEM’,’ode45’,’Location’,’Northeast’)

Figure 5.4 contains the output.

5.3 Stability of Numerical Methods

We are able to solve the FDEs that result from discretizing an ODE
in a similar fashion that we obtained the analytic solution (5.3) of the
ODE in (5.1). Comparison of the exact solution to each of the three
FDEs will shed considerable light on the properties of the three finite
difference formulas in (5.4)–(5.6). Before proceeding further, we call the
reader’s attention to [3], which is a an excellent resource for studying
numerical methods of ordinary differential equations.

We begin with the analysis of the Forward Difference Method we

Numerical Methods for ODEs 169

obtain by replacing the y′ term in (5.1) by (5.4). Without loss of gener-
ality, let t0 = 0 and consider a finite time interval [0, T) as the domain
for the independent variable t. Discretize this domain into n subintervals
by choosing the n+ 1 equidistant points

t0 = 0, t1 = h, t2 = 2h, ..., tn = nh = T, (5.30)

so that h = T
n . We denote by yi the approximate value for y(ti), replace

y′(ti) in (5.1) by (yi+1 − yi)/h, and solve for yi+1 and get the FDE

yi+1 = (1 + λh)yi, (5.31)

where i ranges from 0 to n − 1, and y0 is given. We seek the general
solution to (5.31) in the form

yi = γi, (5.32)

which we substitute into (5.31) and arrive at γ = (1 + λh). Hence the
general solution to (5.31) is yi = c(1 + λh)i for any constant c. The
initial condition (5.2) determines the constant c as y0. Hence, the unique
solution to the initial-value problem (5.31) is

yi = y0(1 + λh)i, i = 0, 1, ..., n. (5.33)

We observe that the sequence yi in (5.33) actually converges to y(t)
for some t if n approaches infinity. To see this, recall that the limit
definition of ea (that limm→∞(1 + a

m
)m = ea) suggests that the limit of

(5.33) as n approaches infinity is y0e
λt: let t∗ be a fixed point in [0, T)

and consider the index i so that limn→∞ ih = t∗. Note that both i and h
in the latter expression depend on n, and although the existence of this
limit may not be obvious, a little experimentation with the definitions
of h = T

n
and i should convince the reader that there is a sequence

t(n) = ih such that t(n) → t∗. With t(n) in hand, we consider the
following sequence of equalities:

lim
n→∞

(1 + λh)i = lim
n→∞

(1 +
λT

n
)

nt(n)
T = lim

m→∞
(1 +

λt(n)

m
)m = eλt

∗

,

where we have made the substitution m =
nt(n)
n . Hence

lim
n→∞

yi = y(t∗), (5.34)

which is reassuring in that we can be confident that the forward finite
difference scheme will, at least theoretically, converge to the exact solu-
tion if we are allowed to discretize the interval (0, T) with as fine a mesh

170 Physical Oceanography: A Mathematical Introduction

as we wish. In this sense we say that the forward finite difference scheme
is consistent with the initial value problem (5.1)–(5.2).

Unfortunately we don’t have the luxury of taking the time-step h
as small as we wish and at some point we must confront the reality of
implementing this scheme on a computing platform with hardware lim-
itations. We thus need to analyze the finite difference scheme further in
terms of its practicality. One of the practical attributes of any numerical
scheme is the requirement of the stability of that scheme.

Definition 5.3.1 A scheme is said to be stable if the approximate
sequence {yi} is bounded, that is, there is a constant M such that |yi| <
M for all 0 ≤ i ≤ n and n approaching infinity.

In the next section we will apply this definition to understand the re-
strictions on the forward difference scheme.

Problems 5.3

1. Review and complete the analysis that led to the proof of (5.34).

2. Consider the FDE

yi+1 + 3yi = 0, y0 = −2, i = 0, 1, ...

Find the solution yi. (Hint: Start with the template yi = γi and
find γ.)

3. Consider the FDE

yi+1 + 0.1yi + yi−1 = 0, y0 = 1, y1 = 2, i = 1, 2, ...

Find the solution yi. (Hint: Start with the template yi = γi and
find γ by solving a quadratic equation.)

5.4 Stability Analysis of Numerical Schemes

Returning to (5.33), the Forward Euler Method, we see that

|yi| = |y0| |(1 + λh)|i.

The above sequence is bounded if and only if |1+λh| ≤ 1 (recall that ai is
unbounded in i if |a| > 1). Mindful that λ may be complex, let λ = a+bi,
where now i =

√
−1. The inequality |1 + λh| ≤ 1 is equivalent to (a, b)

Numerical Methods for ODEs 171

satisfying (a+ 1
h)2 +b2 ≤ 1

h2 . Geometrically, this expression is equivalent
to the point (a, b), i.e., λ, being located inside a circle of radius 1

h and
centered at (− 1

h , 0) in the complex plane. Putting it a little differently,
for a fixed h, the Forward Finite Difference scheme is stable for (5.1)–
(5.2) if and only if the physical parameter λ is within the circle of 1

h
and

centered at (− 1
h , 0).

The above result is somewhat surprising in how restrictive it is. It
states that the range of physical parameters for which we should trust the
Forward Finite Difference scheme is limited to the interior of the above
disk in the left-half complex plane. In particular, this region excludes all
λ = iω where ω is any nonzero real number, which are quite important
parameter values in many physical problems.

As the experiments below show, the forward Euler scheme performs
well when the stability property holds but could behave poorly when it
is violated.

Figure 5.5a shows the graphs of the approximate and exact solu-
tions of y′ = −1.2y with y(0) = 1 in the interval [0, 2) with n = 20.
Here λ = −1.2 is within the disk of radius 1

h = 10, centered at
(− 1

h , 0) = (−10, 0). The approximate solution, with circles denoting the
computed values, provides a good estimate of the solution, although it
consistently underestimates the exact solution. Note that the absolute
error is tolerable (see Figure 5.5b), considering the size of h, and that
the relative error grows steadily at a linear rate (see Figure 5.5c). Every
aspect of this computation improves by adopting a smaller h (or equiv-
alently a larger value of n), although the relative error will continue to
grow as a function of t even when we choose smaller and smaller h.

Figure 5.6 shows the exact solution and its approximation for the
initial value problem y′ = −19y, y(0) = 1. As before, h = 0.1. Now
while λ = −19 is still inside the region of stability of the Euler method,
it is close to the boundary of this region and we note the worsening
behavior in the computed solution, in particular that the approximate
solution begins to oscillate (see Figure 5.6a). The absolute error remains
relatively small, while the relative error begins to grow, at a considerably
faster rate that the case λ = −1.2.

Figure 5.7 shows the output for the case where λ = −21, where now
the stability of the scheme is violated. Note the deterioration in the
approximate solution, that the oscillations are growing now and will not
be bounded, a fact that can also be observed in the absolute error graph.
The relative error continues to grow exponentially.

172 Physical Oceanography: A Mathematical Introduction

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

y

FEM with n = 20

0 1 2
0

0.005

0.01

0.015

0.02

0.025
Absolute Error

t

A
b
s
o
lu

te
 E

rr
o
r

0 1 2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
Relative error

t

R
e
la

ti
v
e
 E

rr
o
r

FIGURE 5.5: The Forward Euler Method applied to y′ = −1.2y. Here
h = 0.1 and λ = −1.2. Note that FEM underestimates the exact solution
in this example, and while the absolute error may be tolerable, that
the relative error grows steadily. Adopting a smaller h improves the
approximate solution and reduces both the absolute and relative error.
The relative error, however, will continue to grow as a function of t.

5.5 MATLAB Programs for the Forward Finite Dif-
ference Method

We digress momentarily to discuss how Figures 5.6–5.7 were obtained
in MATLAB. The following lines, when applied to formula (5.33), result
in Figure 5.5:

clf;

% Parameter Definitions

%

lambda=-1.2; y0=1; T=2;

%

Numerical Methods for ODEs 173

0 1 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

y

FEM with n = 20

0 1 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Absolute Error

t

A
b

s
o

lu
te

 E
rr

o
r

0 1 2
0

2

4

6

8

10

12

14

16
Relative error

t

R
e

la
ti
v
e

 E
rr

o
r

FIGURE 5.6: FEM applied to y′ = −19y. Here h is still 0.1. Note
the bounded oscillation of the approximate solution. The absolute error
continues to remain tolerable, but the relative error is now growing at a
faster rate than in the case λ = −1.2.

n=20; h=T/n;

%

i=0:n; % defines the index

t=i*h; % defines the t domain

%

% Analytic solution of the FDE

%

y=y0*(1+lambda*h).^i;

%

% Plotting output

%

subplot(1,3,1)

plot(t,y,’o’)

hold on

%

% Exact solution and its plot

174 Physical Oceanography: A Mathematical Introduction

0 0.5 1 1.5 2
−8

−6

−4

−2

0

2

4

6

8

t

y
Euler’s method with n = 20

0 0.5 1 1.5 2
10

0

10
5

10
10

10
15

10
20

Absolute and Relative errors

t

Abs Err

Rel Err

FIGURE 5.7: FEM applied to y′ = −21y, with h = 0.1. Note that the
values of the approximate solution, the absolute error, and the relative
error are all growing. Here MATLAB’s semilogy is used to display the
absolute and relative errors.

%

exact=y0*exp(lambda*t);

plot(t,exact);

xlabel(’t’)

ylabel(’y’)

title([’FEM with n = ’,num2str(n)])

%

% Computing the various measures of error

%

error=abs(exact-y);

subplot(1,3,2)

plot(t,error)

title(’Absolute Error’)

xlabel(’t’)

ylabel(’Absolute Error’)

relerr=abs((exact-y)./exact);

subplot(1,3,3)

plot(t,relerr)

Numerical Methods for ODEs 175

title(’Relative error’)

xlabel(’t’)

ylabel(’Relative Error’)

The above program uses the analytic solution of the FDE (5.31). Un-
fortunately, in most of the problems we encounter we won’t have the
luxury of determining the analytic solution of the underlying FDE. It
turns out that with a little care, we can actually obtain the same out-
come by implementing the FDE (5.31) directly into MATLAB. To that
end we replace the line

y=(1+lambda*h).^i;

with the following lines

y=[y0];

oldy=y0;

factor=1+lambda*h;

for j=1:n-1

newy=factor*oldy;

y=[y;newy];

oldy=newy;

end

The above code uses two important features of MATLAB. One, the for

... end loop capability, which allows us to repeat the lines in between
for and end as often as the index j runs through its counter (in this
case j begins with 1 and ends at n-1 with the default increment of 1).
The second feature is employed in the line y=[y;newy]—notice that the
vector y is first initialized outside of the for ... end loop, at that stage
having a single entry, namely, y0, and then its value is updated each time
the loop is executed. The line y=[y;newy] allows us to enlarge the size
of the vector y by appending the newly computed newy to it each time
the loop is executed.

Given a general initial value problem

y′ = f(t, y) y(0) = y0,

the associated forward difference approximation for y′(ti) leads to

yi+1 = yi + hf(ti, yi), i = 0, 1, ...

which can be implemented in MATLAB as follows:

% Define parameter values n, T, h, y0, i,

% as before. The function f

176 Physical Oceanography: A Mathematical Introduction

% needs to defined either using the inline

% command or in an M-file

%

y=[y0];

oldt=0;

for j=1:n-1

newy=oldy + h*f(oldt,oldy);

y=[y;newy];

oldt=oldt+h;

oldy=newy;

end;

Problems 5.5

1. Implement the MATLAB code presented in this section and gen-
erate Figure 5.5.

2. Generate Figures 5.6 and 5.7.

3. Modify the code that led to Figure 5.5 and replace the exact solu-
tion formula with a code that computes the solution of the FDE
recursively. How should the concepts of absolute and relative errors
be modified if one does not have the exact solution?

4. Apply the Forward Euler scheme to the following initial value prob-
lems. In each case compare the approximate solution to the exact
solution, whether the exact solution is obtained analytically or by
using ode45 to obtain a very good approximation to the exact
solution and using that as proxy for the exact solution.

(a) y′ = 0.1y, y(0) = 2, T = 2, n = 10, n = 50 and n = 100.

(b) y′ = −0.1y+1, y(0) = 2, T = 2, n = 10, n = 50 and n = 100.

5. Apply the Forward Euler method to (5.45) to obtain the formula

yi+1 = yi + hf(ti, yi), y0 = given. (5.35)

Write a MATLAB program to implement this scheme to the fol-
lowing initial value problems. Compare the approximate solution
to the analytic solution or the one obtained from ode45.

(a) y′ = cos t siny, y(0) = π
2 , T = 4π, n = 100.

(b) y′ = cos(ty), y(0) = 0, T = 4π, n = 100.

Numerical Methods for ODEs 177

5.6 Stability Analysis of Numerical Schemes (con-
tinued)

Returning now to the discussion of stability analysis, we will see
shortly that the analysis presented for the forward finite difference
method leads to a different result when applied to the backward dif-
ference method, which is derived when the formula (see (5.5))

y(t) − y(t − h)

h
,

is used to replace y′(t). Applying this formula to the differential equation
y′ = λy results in the FDE

yi =
1

1 − λh
yi−1, i = 1, 2, ..., n, with y0 = given, (5.36)

whose solution is
yi =

y0
(1 − λh)i

, i = 1, 2, ... (5.37)

This scheme is stable if |yi| is bounded, which is guaranteed if | 1
1−λh | ≤ 1

or
|1− λh| ≥ 1.

As before we let λ = a+ bi and observe that the above inequality holds
if

(1 − ah)2 + b2h2 ≥ 1 (5.38)

which always holds if a = Re λ ≤ 0. In general the inequality in (5.38) is
satisfied for any (a, b) located outside of a circle of radius 1

h
and centered

at (1
h
, 0). See Problem 1. Thus the region of stability of the backward

Euler scheme is considerably larger than the forward Euler scheme. In
particular this region includes any λ = iω, ω ∈ R.

Figure 5.8 shows the exact and approximate solutions to y′ = −1.2y,
y(0) = 1 using the Backward Euler Method, where we have used the
same parameter values for T and n as before. Figures 5.9 and 5.10 show
the same circumstances for the ODEs y′ = −19y and y′ = −21y, respec-
tively. Notice that in all three cases the approximate solution remains
bounded, the absolute error is relatively small, while the relative error
in the latter two cases are substantially larger. In particular, notice that
the oscillatory behavior of FEM in the case λ = −19 (see Figure 5.6),
which corresponds to a parameter value in the stable region of FEM, is
not present in the BEM simulation.

Problems 5.6

178 Physical Oceanography: A Mathematical Introduction

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

y

BEM with n = 20

0 1 2
0

0.005

0.01

0.015

0.02

0.025
Absolute Error

t

A
b
s
o
lu

te
 E

rr
o
r

0 1 2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
Relative error

t

R
e
la

ti
v
e
 E

rr
o
r

FIGURE 5.8: BEM applied to y′ = −1.2y. Compare with Figure 5.5
and note how BEM seems to overestimate the exact solution, as op-
posed to FEM that has a tendency to underestimate the solution in this
example.

1. Show that the inequality in (5.38) holds if λ is outside of a circle
of radius 1

h
and centered at (1

h
, 0).

2. Alter the MATLAB code presented in this section and obtain Fig-
ures 5.9 and 5.10.

3. Apply the Backward Euler scheme to the problems listed in Prob-
lem 4 from the previous section.

4. Apply the Centered difference formula in (5.6) to (5.1)–(5.2). Find
the region of stability of this scheme.

5. Repeat Problem 5 of the previous section for the Backward Euler
scheme.

Numerical Methods for ODEs 179

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

y

BEM with n = 20

0 0.5 1 1.5 2
−10

−5

0

5

10
Absolute and Relative Errors

t

Abs Err

Rel Err

FIGURE 5.9: BEM applied to y′ = −19y. Here we have plotted the
graphs of the absolute and relative errors in log coordinates. Compare
with Figure 5.6. Note that BEM does not have the bounded oscillation
we see in the case of FEM.

6. Consider the system of equations

y′ = f(t, x, y), y′ = g(t, x, y), x(t0) = x0, y(t0) = y0.
(5.39)

Show the Forward Euler method for this system is given by

xi+1 = xi + hf(ti, xi, yi), yi+1 = yi + hg(ti, xi, yi), (5.40)

with x0 and y0 given in (5.39). Apply this result to the follow-
ing systems of equations. Compare the graph of each approximate
solution with the one obtained by using ode45.

(a) x′ = y, y′ = − sinx, x0 = 0, y0 = 1, T = 2π, n = 100.

(b) x′ = y√
x2+y2

, y′ = − x√
x2+y2

, x(0) = −2, y(0) = 0, T = 3,

n = 100.

7. Repeat Problem 6 for the Backward Euler scheme.

180 Physical Oceanography: A Mathematical Introduction

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

y
BEM with n = 20

0 0.5 1 1.5 2
10

−10

10
−5

10
0

10
5

10
10

Absolute and Relative Errors

t

FIGURE 5.10: BEM applied to y′ = −21y. The graphs of the absolute
and relative errors are plotted in log coordinates. Compare with Figure
5.6. Note that BEM does not have the unbounded oscillation we see in
the case of FEM for this value of λ, which is due to the fact that λ = −21
is in the stable region of BEM.

5.7 Truncation Error

FEM and BEM are first order schemes in that the residual between
the exact solution y(ti) and yi is proportional to h, which we usually
denote by O(h). To see this point in the case of FEM, let L(y) denote
the finite difference operator in this scheme, that is,

L(y(ti)) =
y(ti+1) − y(ti)

h
− λy(ti). (5.41)

Of interest to us is the impact of this operator on the exact solution of
(5.1), that is, when y(t) = y0e

λt. The expression L(y0e
λt) will not vanish

in general, so we are interested in estimating how far this expression is
from zero. This residual is called the Truncation Error of the numerical
scheme. In general, for any finite difference scheme L(y), the truncation
error of that scheme is the value of L(y) when the analytic solution y of
the differential equation is used in the evaluation of L(y). For the Euler

Numerical Methods for ODEs 181

scheme and (5.41) we have (recall t0 = 0)

L(y(ih)) =
yi+1 − yi

h
− λyi =

y((i+ 1)h) − y(ih)

h
− λy(ih). (5.42)

Applying Taylor’s formula to y(ih + h) we have

y(ih + h) = y(ih) + hy′(ih) +
h2

2
y′′(ih) + ...,

so that

L(y(ih)) =
y(ih + h) − y(ih)

h
− λy(ih)

= y′(ih) +
h

2
y′′(ih) + h.o.t− λy(ih), (5.43)

where h.o.t. stands for higher order terms in h. Since y is the analytic
solution of (5.1), we have y′(ih) = λy(ih). The expression in (5.43) now
reduces to

L(y(ih)) =
h

2
y′′(ih) + h.o.t. (5.44)

Because the leading term of the truncation error depends on the first
power of h we call FEM a first order method. It can be shown similarly
that BEM is also first order, while the scheme we get from the centered
difference formula (5.6) is second order.

The methods we have described in this section are just two methods
for obtaining approximate solutions to (5.1)–(5.2). As we have already
seen, they are easily extended to general initial value problems

y′ = f(t, y), y(t0) = y0 (5.45)

and to systems of equations

y′ = f (t,y), y(t0) = y0. (5.46)

It is not difficult to show that FEM and BEM are first order schemes
for the general scalar IVP in (5.45) or the general system in (5.46). A
more important point, however, is the generalization of these methods
to numerical schemes that have larger regions of stability and are higher
order, as well as methods that are adaptive, i.e., methods that take
advantage of variations in f and the solution of the initial value prob-
lem in (5.46) to adapt the discretization of the domain [0, T) to variable
step-size h. We will take up several of these schemes in the projects at
the end of this chapter, but conclude this section by pointing out that
MATLAB’s ode45, in conjunction with several other ODE solvers avail-
able in MATLAB, already incorporates state-of-the-art advances made
in this field and provides us with one of the most accurate, powerful and
versatile numerical schemes for solving initial value problems involving
ODEs.

182 Physical Oceanography: A Mathematical Introduction

Problems 5.7

1. Verify the calculations in (5.43) and 5.44) to complete the proof
that FEM is a first order scheme.

2. Show that BEM is a first order scheme.

3. Show that the scheme we obtain from the Centered Euler Method
is second order.

5.8 Boundary Value Problems and the Shooting
Method

As evidence of the versatility of MATLAB and its ode45 function, in
this section we present a MATLAB code that combines two numerical
techniques designed to solve an important problem in applied mathemat-
ics, namely that of obtaining a solution to a boundary Value Problem
(BVP) of the form

x′ = f(t, x, y), y′ = g(t, x, y), x(0) = a, x(T) = b. (5.47)

Note that (5.47) is a boundary value problem because we have specified
the value of x at t = 0 and at t = T , as opposed to specifying the values
of x and y at t = 0. The function ode45 is designed to solve initial value
problems, as are FEM and BEM described in the previous sections,
and our main task in this section is to convert (5.47) to an appropriate
initial value problem to which we can apply ode45. The technique we
will employ is called the Shooting Method, whereby in place of solving
(5.47) we solve the initial value problem (IVP)

x′ = f(t, x, y), y′ = g(t, x, y), x(0) = a, y(0) = y0. (5.48)

The solution 〈x(t), y(t)〉 we obtain in this way will probably not satisfy
the boundary condition

x(T) = b, (5.49)

unless we are very lucky. Our objective will be to experiment with y0 in
(5.48) and compute x(T) for each new guess of y0 and try to minimize
the residual x(T) − b as a function of y0.

The heart of the shooting method is in what was just described: we
think of the quantity x(T)− b as a function of y0 and seek a zero of this
function. The program listed below accomplishes this task. It involves

Numerical Methods for ODEs 183

three MATLAB M-files, RightSide.m, ShootFirst.m and Bisection.m.
The M-file RightSide.m makes the ODEs in (5.47) accessible to MAT-
LAB. The second M-file ShootFirst.m uses RightSide.m with ode45

and solves the IVP (5.48) and returns the value x(T) − b. The third
M-file, Bisection.m implements the bisection Method and computes
a root of x(T) − b as y0 varies.

The bisection method is one of the simplest algorithms for finding
zeros of a function y = f(x). Its implementation is based on the notion
that if f is continuous on an interval (a, b) with f having different signs
at a and b, then f must have a zero in (a, b). To find such a point, we
begin by evaluating f at the midpoint m = a+b

2 and comparing the sign
of this value with those of f(a) and f(b). The next step of the algorithm
is to replace the interval (a, b) by either (a,m) or by (m, b) depending
on whether f(a)f(m) < 0 or f(b)f(m) < 0. We then repeat this process,
that is, consider the midpoint of the new interval and proceed to compare
the evaluation of f at this point relative to the endpoints. It is easy to
see that the algorithm always converges and that at each step of the
algorithm, the length of the interval containing the zero is cut in half.
The program below lists the three M-files whose execution in MATLAB
leads to Figure 5.11. This code is written for the system

x′ =
y

√

x2 + y2
, y′ = − x

√

x2 + y2
, x(0) = −3, x(10) = 2. (5.50)

%%% RightSide.m %%%

function yprime=RightSide(t,y);

term=1./(sqrt(y(1).^2+y(2).^2));

yprime=term.*[y(2); -y(1)];

%%% ShootFirst.m %%%

function target=ShootFirst(a,boundaryvalue);

[t y]=ode45(’RightSide’,[0 10],[-3 a]);

target=y(length(t),1)-boundaryvalue;

%%% Bisection.m %%%

function root=bisection(a0,b0,boundaryvalue,n)

a=a0:0.1:b0;

l=length(a);

b=[];

for i=1:l

b=[b ShootFirst(a(i),boundaryvalue)];

184 Physical Oceanography: A Mathematical Introduction

end

b1=b(1:l-1);

b2=b(2:l);

y=b1.*b2;

[z,j]=min(y)

z

left=a(j);right=a(j+1);

for i=1:n

mid=(left+right)/2;

term1=ShootFirst(left,boundaryvalue);

term2=ShootFirst(mid,boundaryvalue);

if term1*term2 < 0

right = mid;

else left=mid;

eval([’left = ’,num2str(left),’, mid = ’, ...

num2str(mid), ’, right = ’, num2str(right)])

end

end

root=mid;

The starting point of this algorithm requires a guess for a and b,
which we arrive at by running ShootFirst.m at various values of a
until we obtain a negative target value and a positive one. The trials
ShootFirst(-3, 2) and ShootFirst(1,2) give us the appropriate a
and b. With this information in hand, we next apply Bisection.m:

Bisection(-3,1,2,10)

which gives us ten iteration of the bisection algorithm, leading to the
target value of -2.0483. Having found the right shooting value for y0
we run the following lines in MATLAB to get Figure 5.11:

[t,y]=ode45(’RightSide’,[0 10], [-3 -2.0483]);

plot(y(:,1),y(:,2))

set(gca,’DataAspectRatio’,[1 1 1])

xlabel(’x’)

ylabel(’y’)

Problems 5.8

1. Apply the shooting method to find the solution to the following
boundary value problems:

(a) x′ = y, y′ = −x, x(0) = 0, x(π2) = 1. Compare the approxi-
mate solution to the exact solution of this problem—note that

Numerical Methods for ODEs 185

−4 −3 −2 −1 0 1 2
−3

−2

−1

0

1

2

3

4

x

y

FIGURE 5.11: The output of the shooting algorithm.

this system of ODEs is equivalent to the second order ODE
x′′ + x = 0.

(b) x′ = y, y′ = − sinx, x(0) = 0, x(π) = 1.

(c) x′ = y, y′ = −0.1y − sinx+ 0.2 cos 3t, x(1) = 0, x(2π) = 2.

(d) x′′ + 0.1x′ + (1 + t2)x = 0, x(−1) = 0, x(1) = a. Experi-
ment with a to discover if there are any a ≥ 0 for which this
problem has a solution. Recall that any second order ODE
x′′ = f(t, x, x′) can be converted to a system of first order
equations by defining a new variable y with x′ = y and not-
ing that y′ = f(t, x, y).

2. Modify the shooting method to apply to the following BVPs:

186 Physical Oceanography: A Mathematical Introduction

(a) y′′ = f(t, y, y′), y(a) = y1, y
′(b) = y2. Write the program with

a and b as input parameters.

(b) y′′ + 4y = 0, y(0) = 1, y′(1) = 0.

(c) y′′ + 0.1y′ + sin y = 0, y′(1) = 1, y(2) = 3.

(d) x′′ + x′ + (1 − x2) = 0, x′(0) = 0, x′(1) = 1.

(e) yy′′ + y2 = 0, y(0) = 1.1, y(3) = 4.

3. A well-known problem in the flow past a flat plate, called the
Blasius Boundary Layer problem, is modeled by the BVP

f ′′′ + ff ′′ = 0, f(0) = f ′(0) = 0, f ′(∞) = 1. (5.51)

Modify the shooting method to apply to (5.51). See Figure 5.12
for the expected output. (Hint: First convert (5.51) to a system of
three ODEs by defining y1 = f , y2 = f ′, y3 = f ′′, and noting that
y′1 = y2, y

′
2 = y3 and y′3 = −y1y3. Next modify the Bisection.m

file to apply the shooting method on y3 with the range (0.3, 0.5),
which is the range along which y2 − 1 changes sign. It is sufficient
to replace the domain t ∈ (0,∞) with (0, 10) because the system
converges to its equilibrium very quickly. Use MATLAB’s legend
command to get the legend shown in Figure 5.12.)

5.9 Project A: Modified Euler Method

The Backward Euler Method is based on the difference formula (5.5).
When this formula is applied to the nonlinear equation

y′ = f(t, y), y(0) = y0, (5.52)

it leads to the nonlinear difference equation

yi = yi−1 + hf(ti, yi), i = 1, 2, 3... (5.53)

Because this equation depends implicitly on yi, we need to take an extra
step of inverting (5.53) before proceeding to find its general solution. A
fixed-point approach that leads successfully to this inversion was pro-
posed and implemented in MATLAB in Section 5.2 of this chapter.

Instead of taking that route, an alternative approach is to replace
the yi on the right side of (5.53) by a formula involving lower-indexed
yi’s. One way to accomplish this is to replace the yi on the right side

Numerical Methods for ODEs 187

0 2 4 6 8 10
−1

0

1

2

3

4

5

6

7

8

9

t

f

First Derivative of f

Second Derivative of f

FIGURE 5.12: The output of the shooting algorithm for the Blasius
equation (5.51).

with its approximation using FEM, namely with yi−1 + hf(ti−1, yi−1),
so the modified formula for computing yi is

yi = yi−1 + hf(ti, yi−1 + hf(ti−1, yi−1)).

Note that now the difference equation is explicit in yi. Another ap-
proach is to first write the slope f(ti, yi) as the average of the slopes
at (ti−1, yi−1) and (ti, yi)

yi = yi−1 +
h

2
(f(ti−1, yi−1) + f(ti, yi))

188 Physical Oceanography: A Mathematical Introduction

and then introduce the FEM formula on the right side:

yi = yi−1 +
h

2
(f(ti−1, yi−1)+f(ti , yi−1 +hf(ti−1 , yi−1 +hf(ti−1, yi−1))).

(5.54)
The motivation behind the averaging approach actually comes from re-
setting (5.52) in its integral form:

y(t + h) − y(t) =

∫ t+h

t

f(s, y(s)) ds. (5.55)

The integral on the right side of (5.55) can be approximated in several
ways. The simplest one would be to replace the integrand f(s, y(s)) by
the constant value hf(t, x(t)), thus obtaining FEM, or by the constant
value hf(t+h, y(t+h)) to get BEM. Alternatively, we could approximate
the integral by the area of the trapezoid with vertices (t, 0), (t, f(t, y(t))),
(t + h, f(t + h, y(t + h))) and (t+ h, 0), which is

h

2
(f(t, y(t)) + f(t + h, y(t + h))),

which is the basis of (5.54).
The formula in (5.54) is known as the Modified Euler Method,

which we now state slightly differently. This method is an example of
a predictor-corrector algorithm, where one typically applies a known
method (in this case FEM) to get a first approximation to the output,
and then uses other means (in this case the averaging of the slopes) to
correct this value further.

(Modified Euler Method)
The difference equation for the Modified Euler Method is

y0 = given, yi = yi−1 +
h

2
(s1 + s2) (5.56)

where s1 and s2 are the approximate slopes at (ti−1, yi−1) and (ti, yi +
hs1), or

s1 = f(ti−1, yi−1), s2 = f(ti, yi + hs1). (5.57)

The following MATLAB code will implement this scheme:

%

% Initialize t, T, y0, n,

% f is defined by an M-file or by the inline command

%

h = T/n;

h2=h/2;

Numerical Methods for ODEs 189

out = [t y0];

y=y0;

for i=1:n

s1=f(t,y);

t=t+h;

pred=y+h*s1;

s2=f(t,pred);

y=y+h2*(s1+s2);

out=[out; t y];

end

1. Consider the differential equation

y′ = y2 + sin t, y(0) = 1. (5.58)

Write a MATLAB program to compute yi with n = 10 and T =
0.8.

The first five entries of the output of this program are

0 1.0000
0.0800 1.0899
0.1600 1.2037
0.2400 1.3485
0.3200 1.5349

Figure 5.13 shows the output of this program versus ode45’s.

2. Modify this program to allow for n = 100 and compare the result
with the ode45 output.

3. Analyze this problem as T approaches 1. What happens to the
ode45 output? And what happens to the output of the Modified
Euler Method?

4. Apply the Taylor expansion formula to show that the Modified
Euler Method is second order and determine its truncation error.

5.10 Project B: Runge–Kutta Methods

The modified Euler method is a second–order finite difference scheme
whose implementation requires function evaluations of f but does not

190 Physical Oceanography: A Mathematical Introduction

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
1

2

3

4

5

6

7

8
Modified Euler versus ode45

FIGURE 5.13: The Modified Euler Method applied to y′ = y2 + sin t,
y(0) = 1 and its comparison with the output from ode45.

rely on evaluating any of the derivatives of f . Methods having this prop-
erty are quite desirable and attempts have been made to construct higher
order methods which rely only the evaluation of the known right side of
the system of ODEs y′ = f (t,y). These methods are collectively referred
to as Runge–Kutta schemes. The fourth–order Runge–Kutta scheme is
very similar to the modified Euler method in that its implementation
requires computing predictors and corrector. For the scalar equation
y′ = f(t, y), this scheme’s finite difference formula is

yn+1 = yn +
h

6
(s1 + 2s2 + 2s3 + s4), (5.59)

where the term that multiplies h is essentially a weighted average of the
slopes of the tangent lines to the solution at t, at t+ h

2 and at t+h. Here
we give the formulas for si’s and refer the reader the references at the
end of this chapter for details. The term s1 is the slope y′ of the solution
at tn, where we use the ODE to determine y′:

s1 = f(tn , xn). (5.60)

Numerical Methods for ODEs 191

The term s2 estimates the slope at the midpoint tn+ h
2 ; Euler’s method

is used to compute yn+ 1
2
:

s2 = f

(

tn +
h

2
, xn +

h

2
s1

)

. (5.61)

The term s3 is a correction of this predicted value where s2 replaces s1:

s3 = f

(

yn +
h

2
, yn +

h

2
s2

)

. (5.62)

the term s4 is a correction of the slope at tn+1 using s3:

s4 = f(tn+1 , yn + hs3). (5.63)

We will not justify why this scheme works as well as it does, although the
reader is encouraged to apply Taylor’s formula to the difference equation
(5.59) that this method does lead to a fourth-order scheme.

Algorithm 5.10.1 (Runge–Kutta Method)
The difference equation for the 4th-order Runge–Kutta method is

given by (5.59), where the slopes si’s are defined by (5.60)–(5.63).

The modified Euler and the 4th-order Runge–Kutta methods gener-
alize in a straightforward manner to systems of ODEs. The finite differ-
ence formulas (5.56) and (5.59) are simply applied to each differential
equation in a given system.

In addition to 4th-order Runge–Kutta method just described, MAT-
LAB’s ode45 incorporates adaptivity in selecting its step size at each
step n. Stepsize adaptivity results in an algorithm that is considerably
more efficient in solving systems of ODEs especially when the solution
behaves quite differently in various parts of the domain. For example,
the solution y(t) of the initial value problem y′ = y2 with y(0) = 1
is y(t) = 1

1−t , which becomes undefined as t approaches 1. Hence, we
expect that we need to use more grid points near t = 1 to represent
the solution accurately relative to the neighborhood of t = 0, where the
function 1

1−t is well-behaved.The goal of adaptivity is to devise an al-
gorithm to anticipate the change in behavior of the solution to adjust
the step size h to achieve desired accuracy while keeping the function
evaluations to a minimum.

Adaptive schemes keep track of two error tolerances, the minimum
and maximum errors of the method, while computing the solution at the
n-th iteration step. Regardless of which of the several methods we dis-
cussed earlier are being implemented, FEM, BEM, or Modified Euler, we

192 Physical Oceanography: A Mathematical Introduction

can compute two approximate values at T , one with step size h, which
we denote by yh, and the other with step size h

2 and denoted by yh
2
.

We typically suspect that yh
2

is more accurate than yh. The difference

between yn and yh
2

is the quantity that one tests against the minimum

and maximum tolerance errors. If this difference falls between the tol-
erance errors, yh is assumed to be tolerable and a good approximation
to the true solution and one stays with the step size h. If the difference
is below the minimum tolerance error, then the step size is doubled for
next iteration. If the difference is above the maximum tolerance error,
one retreats to the step prior to T and computes again but this time
with step size h

2
. This type of adaptivity is an elegant way of treating

sharp transitions that may appear in a solution.

Problems

1. Apply the modified Euler method and obtain a table of values
for the following differential equations. Use a step size h and a
number of iterations n of your own choosing. In each case compare
the output with the solution from ode45.

(a) y′ = −y + 1, y(0) = 0.

(b) y′ = −y2 + t(1 − t), y(0) = 1.

(c) y′ = t sin y, y(π) = −1.

2. Write a MATLAB program to implement the fourth-order Runge–
Kutta scheme for the initial value problem y′ = f(t, y), y(t0) = y0.
The program should be structured to access f through an M-file.
As always, the first few lines of the program should introduce the
parameter values n, h, etc. It should output a table of values for
tn and yn. apply this program to the following IVPs while using a
step size h and a number of iterations n of your own choosing. In
each case, compare the output with the solution one obtains from
MATLAB.

(a) y′ = −2y + t, y(0) = 0.

(b) y′ = − sin y + sin t, y(1) = 0.

(c) z′ = z2, z(0) = 0.1. Recall that the analytic solution of this
problems blows up in finite time. How does this effect appear
in the approximate solution?

(d) y′ = tan y, y(0) = π
4 .

Numerical Methods for ODEs 193

3. Develop a MATLAB program for the 4th-order Runge–Kutta
scheme for the 2 × 2 system

x′ = f(t, x, y), y′ = g(t, x, y).

Apply this program to the following systems. Use h, n, and initial
conditions of your own choosing. In each case, graphically compare
the output with that of ode45.

(a) x′ = y, y′ = −x.
(b) x′ = x− 2y, y′ = x+ 2y.

(c) x′ = y, y′ = − sinx.

(d) x′ = y, y′ = −0.1y− sinx.

(e) x′ = 1 − x2−y2

(x2+y2)2 , y′ = − 2xy
(x2+y2)2 .

5.11 Project C: Finite Difference Methods and
BVPs

Consider the BVP

u′′ = f(x), u(0) = u(1) = 0. (5.64)

In this project, a finite difference scheme is applied to (5.64) to obtain
its approximate solution.

1. Show that

u(x) = −x
∫ 1

0

∫ s

0

f(τ) dτ ds+

∫ x

0

∫ s

0

f(τ) dτ ds) (5.65)

is the exact solution of (5.64).

2. Let (0, x1, x2, ..., xn−1, xn, 1) be a discretization of the interval
(0, 1), define the step-size h = xi−xi−1 and let ui stand for u(xi).
Use Taylor’s formula to show that

u′′(xi) =
1

h2
(ui+1 − 2ui + ui−1) +

h2

12
u′′′′(xi) + ... (5.66)

The expression
1

h2
(ui+1 − 2ui + ui−1) (5.67)

is a three-point approximation of u′′(xi). The formula in (5.66)
shows that this approximation has an h2 local truncation error
(denoted by O(h2)), assuming u′′′′ is a well-behaved function.

194 Physical Oceanography: A Mathematical Introduction

3. Approximate the original BVP in (5.64) with the finite-difference
approximation

ui+1 − 2ui + ui−1 = h2fi, i = 1, 2, ..., n, (5.68)

where fi = f(xi). Show that the system of n simultaneous equa-
tions in (5.68) is equivalent to Au = f where

A =





















−2 1 0 0 0
1 −2 1 0 0
0 1 −2 1 0 ... 0
...
0 ... 0 1 −2 1 0
0 0 1 −2 1
0 0 1 −2





















, u =





















u1

u2

u3

...
un−2

un−1

un





















,

f =
[

h2f1 h2f2 h2f3 ... h2fn−2 h2fn−1 h2fn
]T

.
(5.69)

Note that u0 = un+1 = 0 from the boundary conditions.

4. Write a MATLAB program to solve (5.69) when f(x) = 100 sinπx.
Plot the graphs of the approximate and the exact solution on the
same screen and compare with Figure 5.14. Hint: Look up the
syntax for diag to come up with the following convenient way of
entering A into MATLAB:

vec1=ones(n,1);

vec2=ones(n-1,1);

A = -2*diag(vec1)+diag(vec2,1)+diag(vec2,-1);

5. Consider the BVP u′′ = f(x) subject to the boundary conditions
u(0) = a and u(1) = b.

(a) Find the exact solution of this problem.

(b) Discretize this BVP to obtain the equivalent of (5.69).

(c) Apply the results to the BVP u′′ = x sinx with u(−1) = 1
and u(2) = −3.

6. Consider the BVP u′′ = f(x) subject to the boundary conditions
u(0) = a and ux(1) = b.

(a) Find the exact solution of this problem.

(b) Discretize this BVP to obtain the equivalent of (5.69).

Numerical Methods for ODEs 195

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−12

−10

−8

−6

−4

−2

0

Approx

Exact

FIGURE 5.14: The approximate solution to u′′ = 100 sinπx, u(0) =
u(1) = 0 and its exact solution when n = 10. The absolute and relative
errors are 0.0684 and 0.0068, respectively.

(c) Apply the results to the BVP u′′ = x
1+x2 with u(1) = −1 and

ux(3) = 2.

7. Apply the above method to the BVP

u′′ + λu = f(x), u(0) = 0, u(1) = 0. (5.70)

Show that the matrix A in (5.69) must be replaced by

A =





















γ 1 0 ... 0
1 γ 1 0 0
0 1 γ 1 0 ... 0
...
0 ... 0 1 γ 1 0
0 0 1 γ 1
0 0 1 γ





















,

where γ = −2 + λh2. Apply this method to the BVP u′′ + 4u =
(1−4x2) sinπx, u(0) = u(1) = 0 to obtain an approximate solution
similar to the one in Figure 5.15. This solution is remarkably close

196 Physical Oceanography: A Mathematical Introduction

to the exact solution of the problem, which can readily be obtained
using any symbolic manipulator such as Mathematica. If the reader
has access to this software, then

DSolve[{u’’[x] + 4 u[x] ==

(1 - 4 x^2)*Sin[Pi*x], u[0] == 0,

u[1] == 0}, u[x], x]

leads to the expression

1

(−4 + π2)3
(16π

(

−4 + π2
)

x cos(πx)+

16π
(

−4 + π2
)

csc(2) sin(2x)+

(

64x2 − 16π2
(

2x2 + 1
)

+ π4
(

4x2 − 1
)

− 48
)

sin(πx))

for the exact solution. The plot of this function and the approxi-
mate solution by our method is shown in Figure (5.15). This figure
is obtained by executing the following lines in MATLAB:

clear all

clf

n=10;

lambda=4;

h=1/(n+1);

x=h:h:1-h;

vec1=ones(n,1);

vec2=ones(n-1,1);

A=(-2+h^2*lambda)*diag(vec1)+diag(vec2,1)+...

diag(vec2,-1);

f=h^2*(1-4*x’.^2).*sin(pi*x’);

u=A\f;

plot(x,u)

exact=(1/(-4 + pi^2)^3)*(16*pi*(-4 + ...

pi^2)*x.*cos(pi*x) +

16*pi*(-4 + pi^2)*csc(2)*sin(2*x) + ...

(-48 + 64*x.^2 - 16*pi^2*(1 + 2*x.^2) + ...

pi^4*(-1 + 4*x.^2)).*sin(pi*x));

plot(x,exact,’*’, x, u, ’+r’)

legend(’exact’,’approximate’,’location’,’NorthWest’)

error=max(abs(exact-u’));

relerr=error/max(abs(exact));

Numerical Methods for ODEs 197

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

exact

approximate

FIGURE 5.15: The approximate solution to u′′ + 4u = (1 −
4x2) sinπx, u(0) = u(1) = 0 and its exact solution when n = 10. The
absolute and relative errors are 0.00083 and 0.0221, respectively.

5.12 Project D: Method of Lines

This project was first developed in [2], Vol 1, pp. 511–515, for the
linear heat equation, where the PDE

ut = λuxx (5.71)

with the boundary conditions

u(0, t) = u(L, t) = 0, (5.72)

and initial data
u(x, 0) = u0(x) (5.73)

is solved by converting the problem to a set of infinitely many coupled
ODEs and the resulting system is solved using an ODE solver such as
ode45. The method we describe below applied equally well to nonlinear
PDEs of the form

ut = λuxx + f(t, x, u)

198 Physical Oceanography: A Mathematical Introduction

or wave equations of the form

utt = c2uxx + f(t, x, u).

The Method of Lines seeks approximate solutions of a PDE by only
replacing the spatial derivatives in the PDE by finite differences. This re-
sults in a large system of simultaneous ODEs, which can then be solved
in MATLAB. For example, referring to (5.16), we first discretize the
domain (0, L) into equal subintervals, with a typical subinterval of the
form (xi−1, xi), and then approximate uxx(t, xi) by the centered differ-
ence scheme

1

h2
(u(xi+1, t)− 2u(xi, t) + 2u(xi−1, t)) . (5.74)

With this approximation the heat equation now takes the form

ut(xi, t) =
1

h2
(u(xi+1, t) − 2u(xi, t) + u(xi−1, t)) , (5.75)

with i ranging from 0 to n. Thus the PDE in (5.71) is replaced by a set of
ODEs. The following program in MATLAB, called mol1D.m, is written
with the following set of parameters l = 0.79, n = 64, u0(x) = sin πx

L , and
λ = 0.1. It solves a system of odes, consisting of 64 coupled differential
equations, and compares the result to the exact solution of this problem,
which is

u(x, t) = e−
λπ2

L2 t sin
πx

L
. (5.76)

global n h lambda;

clf;

nographs=5; lambda = 0.12; L=0.79; n=64; h=L/n;

x=h:h:L-h;

u0=sin(pi*x/L);

x=[0 x L];

exact=inline(’exp(-lambda*pi^2*t/L^2)*sin(pi*x/L)’,’x’,...

’t’,’lambda’,’L’);

[t,u]=ode45(@OneDheat,[0 0.5],u0,10^(-7));

deltat=floor(length(t)/nographs);

for i=1:nographs

approximate=[0 u(i*deltat,:) 0];

subplot(211)

plot(x,approximate)

title([’1D Heat Equation, Method of Line, n=’,...

num2str(n)]);

hold on

subplot(212)

Numerical Methods for ODEs 199

Exact=exact(x,t(i*deltat),lambda,L);

Error=abs(Exact-approximate)

plot(x,Error)

ylabel(’Error’)

hold on

end

The M-file mol1D.m calls the M-file oneDheat.m which is

function uprime=oneDheat(t,u);

%

global n h lambda;

y=length(u);

uleft=[u(2:y); 0];

uright=[0; u(1:y-1)];

uprime=(lambda/h^2)*(uleft-2*u+uright);

1. Create the two M-files mol1d.m and oneDheat.m. Note the small
differences in syntax between these two M-files and their counter-
parts in [2]. Compare the output of mol1D.m with Figure 5.16.

2. (a) Experiment with different values of n and report on the qual-
itative differences in the Error.

(b) Let n = 2j , j ranging from 2 to 10. Write a program that
computes

err(j) = max
0≤x≤L

|u(x, 1)− uapp(x, 1)|, j = 2, ..., 10,

where uapp is the output of mol1d.m. Plot the graph of err.

3. Modify the above program to apply it to the initial condition

u(x, 0) =

N
∑

n=1

1

n
sin

nπx

L
. (5.77)

Report on the absolute error (i.e., Error in mol1D.m) as N varies
from 2 to 16.

4. Consider the initial-boundary value problem

ut = uxx + sinu, u(0, t) = u(1, t) = 0

and
u(x, 0) = x(1− x).

Modify mol1d.m appropriately to solve this nonlinear initial-
boundary value problem.

200 Physical Oceanography: A Mathematical Introduction

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.2

0.4

0.6

0.8
1D Heat Equation, Method of Line, n=64

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

2

4

6
x 10

−4

x

E
rr

o
r

FIGURE 5.16: The graph of u(x, t) with u(x, 0) = sin πx
L .

5. Consider the nonlinear initial-boundary value problem

ut = uxx + u(1 − u), u(0, t) = u(1, t) = 0

and
u(x, 0) = sinπx.

report on the asymptotic state of u, i.e., on the behavior of u as t
approaches infinity.

5.13 Project E: Burgers Equation (Method of Char-
acteristics)

The partial differential equation

ut + (f(u))x = 0, (5.78)

is a fundamental PDE in mathematical physics serving as the proto-
type for many phenomena of interest in physics where turbulence and

Numerical Methods for ODEs 201

formation of discontinuities play significant roles. Typically this equa-
tion governs the behavior of a quantity represented by u whose value
changes in t but is balanced by a flux f(u), representing the advection
of the quantity u in x.

In this project we study the IVP

u(x, 0) = u0(x) (5.79)

together with the PDE (5.78). The method we address first leads to
determining a set of special curves called characteristics, along which
the solution u happens to take on a simple structure, which we are then
able to take advantage of and on occasion write down the exact solution.
When obtaining an exact and analytical solution is too difficult, the
characteristics method will still lead to accurate approximate solutions.

The characteristic curves of the Burgers equation are defined as
curves x̂(t) such that the initial-value problem

dx̂

dt
= f ′(u(x̂(t), t)), x̂(0) = x0 (5.80)

holds. Here f ′ is the derivative of f(u) in (5.78). As we will see shortly,
these curves characterize the behavior of solutions of the PDE (5.78) by
reducing this equation to a system of ODEs which we are able to solve,
often analytically, and always numerically.

1. Let f(u) = au in (5.78), where a is a constant. Show by direct
differentiation that the solution to the reduced IVP

ut + aux = 0, u(x, 0) = u0(x) (5.81)

is
u(x, t) = u0(x− at). (5.82)

The form of u in (5.82) suggests that u has exactly the same shape
as u0 and travels to the right with speed a, if a is positive. Write
a MATLAB program that generates a graph similar to the one
in Figure 5.17 to demonstrate the wave propagation character of
(5.81).

We next develop the solution u(x, t) = u0(x − at) by a different
method, the method of characteristics, and generalize this method
to functions f in (5.78) which are considerably more general than
the linear function f(u) = au.

2. Returning to the definition of characteristics (5.80), observe that
in the special case when f(u) = au this definition reduces to the
ODE

dx̂

dt
= a, x̂(0) = x0. (5.83)

202 Physical Oceanography: A Mathematical Introduction

−5 0 5 10
0

0.5

1

1.5

2

2.5

3

x

u
(x

,t
)

t = 0 t = 1

FIGURE 5.17: The graph of a typical solution to (5.81) showing the
wave character of this PDE. The initial disturbance u0(x) = sech2(x)
travels to the right with speed a = 2.

Show that the solution to the IVP in (5.83) is

x̂(t) = x0 + at. (5.84)

The expression in (5.84) states that the characteristics of the PDE
ut + aux = 0 are all straight lines, all having the same slope a,
independent of the initial condition u0.

3. Let U be the solution u confined to the characteristic line x̂ =
x0 + at, i.e.,

U(t) = u(x0 + at, t). (5.85)

Show by direct differentiation that U ′(t) = 0 for all t. Hence U(t) =
U(0). Since U(0) = u(x0, 0) and u(x, 0) = u0(x) by (5.79), show
that

U(t) = u0(x0). (5.86)

Expression (5.86) states that U(t) is in fact constant and its value
is determined by the initial condition u0 and the intercept x0 of
the characteristic that passes through (x, t). See Figure 5.18.

Numerical Methods for ODEs 203

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x

t

(x, t)

(x0, 0)

FIGURE 5.18: The characteristic curves for the IVP in (5.81) are
straight lines x̂ = x0 +at in the (x, t) plane. The solution u(x, t) remains
constant along each characteristic, the constant value being u0(x0). Thus
the value of u at any (x, t) shown in the graph is determined the value
of the initial function u0 at x0.

4. Next, observe that since x0 = x− at, the function U(t) is then

U(t) = u0(x− at)

which is precisely the expression we see in (5.82), that is, the
method of characteristics has brought us full circle back to the
exact solution of (5.81). The advantage of this method, however,
is that it removes the guess work, albeit a very good guess work,
that led to (5.82).

As stated earlier, many of the features of the characteristics method go
over to the case when f in (5.78) is nonlinear, which we will pursue in
the next project.

204 Physical Oceanography: A Mathematical Introduction

5.14 Project F: Burgers Equation (Method of Char-
acteristics – Nonlinear Case)

In the previous project we observed that the solution to Burgers
IVP (5.78)–(5.79) can be obtained by studying the solution to a set of
ODEs. We developed that analysis in the context of a linear flux, when
f(u) = au. Here we continue with developing the Characteristics Method
for the Burgers equation when the flux term f depends nonlinearly on
u.

1. Consider the characteristics method for (5.78) by defining the curve
x̂ as in (5.80). Let us denote by x̂(t, x0) the characteristic curve
that satisfies the initial condition x̂(0, x0) = x0. Let U be the
solution of the Burgers IVP when confined to this curve, that is,
define U by

U(t) = u(x̂(t, x0), t). (5.87)

Show that U ′(t) ≡ 0. Use this fact to show, as in the case of the
linear flux f , that

U(t) = U(0) = u0(x0). (5.88)

2. Returning to the definition of a characteristic curve, and recall-
ing that x̂′(t, x0) = f ′(u(x̂(t, x0), t) and using the definition of U ,
arrive at the relation

x̂′ = f ′(U(t))

which in turn, using (5.88), leads to the remarkable result

x̂′ = f ′(u0(x0)),

i.e., x̂′ is again constant, much like the case when f is linear! The
main difference now is that the slope of x̂ is dependent on f ′, and
through it, it depends on u0, unlike the linear case. To see the
impact of this dependence, write a MATLAB program to compute
the shape of the characteristic curves when

f(u) =
1

2
u2

for two sets of initial conditions: First u0(x) = x, an increasing

function of x, and next for u0(x) = e−(x−1)2 , which is a decreasing
function of x near x = 1. Your graphs should resemble the ones in
Figure (5.19).

Numerical Methods for ODEs 205

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

1.5

2

x

t

(a)u0(x) = x

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

x

t

(b)u0(x) = e−(x−1)2

FIGURE 5.19: Characteristic curves for the Burgers equation with
f(u) = 1

2u
2 and (a) u(x, 0) = x, an increasing function, and (b) u(x, 0) =

e−(x−1)2 , a decreasing function near x = 1. Note the curves in (a) do not
intersect in forward time, while those in (b) do, causing solutions of the

IVP with u0(x) = e−(x−1)2 to become multi-valued in finite time.

3. Returning to the case u0(x) = x and Figure 5.19a, note that the
characteristics fan out into the (x, t)-space and do not intersect.
Since the solution u is constant along each characteristic, show
that we have

U(t) = x0, x = x0 + x0t. (5.89)

Eliminate x0 between the two expressions in (5.89) to arrive at the
analytical description of the exact solution:

u(x, t) =
x

1 + t
. (5.90)

Plot the graph of the exact solution to obtain a graph similar to
the first graph in Figure 5.20.

4. Consider the Burgers equations with initial data

u(x, 0) = e−10(x−1)2 (5.91)

206 Physical Oceanography: A Mathematical Introduction

(a) Apply the Method of Characteristics to show that the exact
solution of this IVP can be written in a parametric form as:

〈x, t, u(x, t)〉 = 〈x0 + u0(x0)t, t, u0(x0)〉, x0 ∈ R. (5.92)

(b) Execute the following MATLAB program to get the second
graph in Figure 5.20:

u0=inline(’exp(-10*(x-1).^2)’,’x’);

x0=0:0.01:5;

dt=0.1;

Y = dt*repmat(1:20,size(x0,2),1);

X=zeros(length(x0),20);

for i=1:20

X(:,i)=x0+u0(x0)*i*dt;

end

Z = zeros(size(X));

for i=1:20

Z(:,i)=u0(x0);

end

subplot(2,1,2)

plot3(X, Y, Z, ’k’);

xlabel x;ylabel t; zlabel u;

view(10,30)

As for the program, note the use of repmat and plot3. As for
the graph, note how the graph of u(., t) becomes multi-valued
in finite time, signaling the formation of singularity that was
predicted by plotting the characteristic curves as in Figure
(5.20).

5.15 Project G: Burgers Equation (Formation of
Singularities)

In the previous project we saw that the solution to the Burgers IVP
(5.78)–(5.79) may develop singularities if the initial data u0 decreases at
any point xi ∈ R. In this project we will purse an alternative approach
that leads to the same observation. This new approach requires following
the evolution of ux of (5.78)–(5.79) along characteristics.

Confining our analysis to the special case of f(u) = 1
2u

2, let x̂(t, x0)

Numerical Methods for ODEs 207

−5 0 5
0

5

−5

0

5

t

x

u

0 1 2 3 4 5
0

1

2

0

0.5

1

t

x

u

FIGURE 5.20: Graphs of two solutions to the Burgers equation, one
with u(x, 0) = x, which leads to the exact solution u(x, t) = x

1+t . The
figure shows a smooth solution that decays to zero for large t as predicted
by the analytical solution: limt→∞

x
1+t

= 0 for all x. The second is the
graph of the exact solution corresponding to the initial data u(x, 0) =

e−10(x−1)2. Note that the graph of this solution becomes multi-valued in
finite time, as predicted by the characteristics method.

denote a typical characteristic curve with x̂(0, x0) = x0. Define W (t, x0)
by

W (t, x0) = ux(x̂(t, x0), t). (5.93)

The goal now is to understand the evolution of W as a function of time
t. To that end,

1. differentiate W with respect to t and observe

dW

dt
= uxx

dx̂

dt
+ uxt = uxt + uuxx. (5.94)

Returning to the Burgers equation (5.78) and differentiating it with
the respect to x, we arrive at the following expression:

utx + u2
x + uuxx = 0. (5.95)

After evaluating the latter along the characteristic curve x =

208 Physical Oceanography: A Mathematical Introduction

x̂(t, x0) and comparing the result to (5.94), obtain the following
ODE initial-value problem for W :

dW

dt
+W 2 = 0, W (0, x0) = u′0(x0). (5.96)

2. Show that the above IVP, which is an example of a Riccati equa-
tion, can be solved to yield:

W (t, x0) =
u′0(x0)

1 + tu′0(x0)
. (5.97)

3. Show that the expression W , which is ux, becomes unbounded
in finite time if u′0(x0) < 0. How does this result reflect on the
behavior of the characteristics in Figure 5.18?

4. Let T (x0) be the time at which W (T, x0) becomes unbounded.
Find the value x0 at which T is minimized. This special T value is
the time beyond which the analytic solution described in (5.92) is
no longer valid and new ideas are needed to construct an appro-
priate solution of (5.78)–(5.79). Reference [5] is an excellent book
on this subject.

5. Generalize the analysis that led to (5.96) to the general case of
f(u) in (5.78.

5.16 Project H: Burgers Equation and the Method
of Lines

The Method of Lines (MOL) was developed in Project D. Accord-
ing to this method, an IVP such as the one we have been studying in
the previous three projects can be reduced to a large system of ODEs,
which in turn can be solved efficiently in MATLAB. The key idea in im-
plementing MOL is to replace all of the spatial derivatives with approx-
imate expressions that only involve function evaluations. In the case of
(5.78) where u satisfies the PDE ut+(f(u))x = 0, the single x-derivative
may be replaced by any of the various finite-difference approximations
listed in (5.4) (forward-difference) or (5.5) (backward-difference) or (5.6)
(centered-difference), just to name a few such approximations. One of
the new features we encounter now is that the domain must be finite in
order to implement MOL, which suggests that we should be considering

Numerical Methods for ODEs 209

0 1 2 3 4 5 6
−2

0

2
n = 128, t = 0.3

0 1 2 3 4 5 6
−2

0

2
n = 128, t = 0.6

0 1 2 3 4 5 6
−2

0

2
n = 128, t = 0.9

0 1 2 3 4 5 6
−2

0

2
n = 128, t = 1.2

0 1 2 3 4 5 6
−2

0

2
n = 128, t = 1.5

FIGURE 5.21: The output of the Method of Line algorithm when
applied to IBVP (5.98) with N = 128. Note that the solution begins to
show numerical instability around t = 1, which is the critical value at
which the original PDE develops a singularity.

an initial-boundary value problem, rather than an initial-value problem
over the initial real line. Motivated by the special paper in [6], we con-
sider the following IBVP:

ut +
1

2
(u2)x = 0, u(x, 0) = sinx, u(0, t) = u(2π, t) (5.98)

that is, we seek a solution to a 2π-periodic solution of the Burgers equa-
tion with initial data sinx.

1. Show by the Method of Characteristics that we should expect that
the smooth solution to this problem develops a singularity in finite
time (in fact, at t = 1

2).

2. Let N = 16 and dicretize the domain [0, 2π) into N equal intervals.
With h = 2π

N let xi = ih, with i = 0, ..., N−1. Let Ui(t) = u(xi, t).
Evaluate (5.98) at xi to get

U ′
i +

1

2
(u2)x)|xi = 0. (5.99)

210 Physical Oceanography: A Mathematical Introduction

0 1 2 3 4 5 6
−2

0

2
n = 256, t = 0.3

0 1 2 3 4 5 6
−2

0

2
n = 256, t = 0.6

0 1 2 3 4 5 6
−2

0

2
n = 256, t = 0.9

0 1 2 3 4 5 6
−2

0

2
n = 256, t = 1.2

0 1 2 3 4 5 6
−2

0

2
n = 256, t = 1.5

FIGURE 5.22: The output of the Method of Line algorithm when
applied to IBVP (5.98) with N = 256.

Replace the second term in (5.99) using the centered difference
approximation of the first derivative i.e.,

1

2
(u2)x)|xi ≈

1

4h
(U2

i+1 − U2
i−1). (5.100)

Hence, the original PDE in (5.98) is replaced by the following sys-
tem of ODEs:

U ′
i +

1

4h
(U2

i+1 − U2
i−1) = 0, i = 0, 1, ...,N − 1, (5.101)

where by periodicity,

U−1(t) = UN−1 (t) and UN+1(t) = U1(t).

Show that (5.101) is equivalent to the following system of ODEs:

U′ = F(U), U(0) = U0, (5.102)

Numerical Methods for ODEs 211

where

U =

















U0

U1

U2

...

...
U

N−1

















, F = − 1

4h

















U2
1 − U2

N−1

U2
2 − U2

0

U2
3 − U2

1

...

...
U2

0 − U2
N−2

















,

U0 =

















sinx0

sinx1

sinx2

...

...
sinxN−1

















. (5.103)

3. Write a MATLAB program that uses ode45 to solve the above
system of ODEs. Plot the graph of the solution u(x, t) at t = 0, 0.1
through t = 1.2 and compare your graphs with the ones in Figure
5.21) and (5.22), which are the output withN = 128 andN = 256.

5.17 References

1. Vallis, G., Atmospheric and Ocean Dynamics, Cambridge Univer-
sity Press, 2006.

2. Malek-Madani, R., Advanced Engineering Mathematics with
MathematicaR© and MATLABR©, Addison-Wesley, 1998.

3. Moin, P., Engineering Numerical Analysis, Cambridge University
Press, 2001.

4. Ide, K., Small, D., Wiggins, S., “Distinguished hyperbolic trajec-
tories in time-dependent fluid flows: analytical and computational
approach for velocity fields defined as data sets,” Nonlinear Pro-
cesses in Geophysics, 2002, Vol. 9, pp. 237–263.

5. Leveque, R. J., Numerical Methods for Conservation Laws,
Birkhauser, 1992.

6. Majda, A. J., Timofeyev, I., “Remarkable statistical behavior for
truncated Burgers-Hopf dynamics,” Proceedings of the National
Academy of Sciences, Vol 97, 2000, pp. 12413 – 12417.

This page intentionally left blankThis page intentionally left blank

Chapter 6

Equations of Fluid Dynamics

In this chapter we develop the equations of motion for fluid flows in an
inertial coordinate system and present examples of exact solutions of
this fundamental set of equations. In the subsequent chapter we develop
the same equations in a rotating coordinate system, the equations of
Geophysical Fluid Dynamics, and concentrate on the properties that
distinguish motions of fluids in an inertial frame from the ones in a
rotating frame.

The equations we develop in this section are general and describe
flows with temporal and spatial scales that typically arise in laboratory
experiments. We consider fluid flows that are smooth, i.e., do not have
sharp discontinuities and shock waves, and are often referred to as lam-
inar flows. We do not develop the description of turbulent flows in this
text, since the proper description of these flows requires a different set
of mathematical tools, including statistical tools, which deserve their
own dedicated treatment. One way to view our approach here and in
the next chapter, where we consider large-scale oceanographic flows, is
to note that the mathematical models we study are intended to exhibit
the averaged behavior of the phenomena of interest. We refer the reader
to Chapter 8 of [1] for a thorough treatment and development of the
methodology that is commonly adopted when dealing with turbulent
flows.

We will now develop the traditional mathematical description of a
fluid flow, its Eulerian description, where the attributes of a fluid ele-
ment are described by the position occupied by the fluid element. That
is, the velocity of the fluid element, or its temperature and salinity, or
the pressure induced on it, are quantified by position and time, and not
by the distinguished fluid element. This viewpoint agrees with our daily
experience with fluid flows, whether we make measurements in a wind
tunnel or in the Chesapeake Bay—we often fix our attention at a partic-
ular position in the flow and measure the attributes of the fluid element
that passes through that position at any instance. We hardly care which
fluid element is passing the measuring instrument at that moment; we
care considerably more whether the characteristics of the flow vary from
position to position. This approach has seen enormous success for several

213

214 Physical Oceanography: A Mathematical Introduction

centuries. As we will see, however, there is a significant price to be paid
for this approach, in that the acceleration of the fluid element ends up
depending nonlinearly on the velocity of fluid element. As a consequence
of this fact, the governing equations of fluid dynamics, the Euler and
the Navier–Stokes equations, end up being very difficult and formidable
PDEs to deal with. On the other hand, because of the nonlinear nature
of these PDEs, we are able to capture rich structures that have distinct
counterparts in nature, features that linear PDEs simply are not capable
of capturing.

An interested reader may wish to consult Chapter 12 of Reference
[1] for a similar development, especially if the reader is familiar with
Mathematica and its capabilities.

6.1 Flow Representations — Eulerian and La-
grangian

As is common in the mathematical formulation of fluid dynamics,
we distinguish between two ways of viewing motion, one where the mea-
surements of the various physical quantities are made while keeping the
position fixed, and the other when the same physical quantities are mea-
sured as functions of a fixed particle or fluid element. We refer to the
first representation as Eulerian and the second as Lagrangian.

To make these ideas precise, let X denote a (fluid) particle or element
with x the position it occupies at time t. Let p be the vector-valued
function that maps X into x:

x = p(t,X). (6.1)

It is common practice to identify the original position of a particle with
the particle itself, that is, we assume that p satisfies the following con-
dition

p(0,X) = X. (6.2)

All subsequent positions of X are labeled p(t,X). Function p is called
the motion or the deformation of the flow. The velocity and acceleration
of this motion, denoted by V and A, are defined by

V(t,X) =
∂p

∂t
and A(t,X) =

∂2p

∂t2
. (6.3)

The functions V and A defined in (6.3) are part of the Lagrangian

Equations of Fluid Dynamics 215

representation of the motion; these quantities are computed in reference
to the particle itself, or putting it slightly differently, by the position
this particle occupied in its reference configuration (see (6.2) where the
particle is identified with its position at time zero). This representation
is particle-centric in the sense that the instruments that actually perform
the measurements are moving with the particle.

The Eulerian description of the flow, by contrast, is defined by two
new functions, v and a, which are related to V and A by

v(t,x) = V(t,X) and a(t,x) = A(t,X), (6.4)

where x and X are related through the motion (6.1). Thus the relations
in (6.4) can be rewritten as

V(t,X) = v(t,p(t,X)) and A(t,X) = a(t,p(t,X)). (6.5)

The Eulerian representation clearly emphasizes positions over particles.
In the description of the function v(t,x) in (6.4) we lose all information
about the earlier velocities the particle X, which is currently occupying
position x, may have attained—by contrast, the function V(t,X) retains
the history of the velocities X has experienced.

The following example illustrates the relationship between V and v.
Consider the two-dimensional motion p = 〈p1, p2〉 given by

x1 = p1(t,X) = X1 + t2X2, x2 = p2(t,X) = X2 − tX1, (6.6)

where each particle X is identified by its position at time 0, as in (6.2).
In Figure 6.1 we start with a collection of particles located on a circle of
radius one and plot their subsequent positions according to (6.6) in the
time interval t ∈ (0, 1.5), every 0.3 units of time. This figure is obtained
by executing the following program in MATLAB:

clf;

s=0:2*pi/100:2*pi;

X=[cos(s);sin(s)];

plot(X(1,:),X(2,:),’*’);

hold on

for i=1:5

x=chi(0.3*i,X);

plot(x(1,:),x(2,:));

hold on

end

set(gca,’DataAspectRatio’,[1 1 1]);

where chi.m is (see (6.6))

216 Physical Oceanography: A Mathematical Introduction

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

FIGURE 6.1: The motion defined by p1 = X1 + t2X2, p2 = X2 − tX1.
The figure shows the position of particles originally located on a circle
of radius one and their subsequent positions as time evolves. Under the
action of the fluid flow, this circle deforms to an ellipse at time t, and
this ellipse enlarges as t increases.

function x=chi(t,X)

A=[1 t^2; -t 1];

x=A*X;

The velocity field of this motion in its Lagrangian representation is de-
termined by simply differentiating (6.6) with respect to t, that is,

V1(t,X) =
∂p1

∂t
= 2tX2, V2(t,X) =

∂p2

∂t
= −X1. (6.7)

The same velocity field in Eulerian representation is determined as fol-
lows: Begin by computing p−1, the inverse of the function p, by solving
the two relations in (6.6) for X1 and X2:

X1 =
x1 − t2x2

1 + t3
, X2 =

tx1 + x2

1 + t3
. (6.8)

Equations of Fluid Dynamics 217

By definition v(t,x) = V(t,X), so we substitute (6.8) in (6.7) to get

v1(t,x) =
2t2x1 + 2tx2

1 + t3
, v2(t,x) = −x1 − t2x2

1 + t3
. (6.9)

It is instructive to see that if we use (6.7) or (6.9), we arrive at the same
velocity for a typical particle. For example, consider the particle P that
is located at x = X = 〈1, 1〉 at time t = 0. We now determine its velocity
at t = 2: First, from (6.7), we have

V1(2, 〈1, 1〉) = 4, V2(2, 〈1, 1〉) = −1. (6.10)

Similarly, we find from (6.6) that X occupies the position 〈5,−1〉 at time
2. Thus, using (6.9), we have

v1(2, 〈5,−1〉) = 4, v2(2, 〈5,−1〉) = −1, (6.11)

which agrees with (6.10).
Continuing with this example, the determination of the acceleration,

whether we compute A or a, will result in the same description. To see
this, note that, by (6.3) and (6.6)

A1 =
∂2p1

∂t2
= 2X2, A2 =

∂2p2

∂t2
= 0. (6.12)

Since X1 and X2 are related to x1 and x2 by the relations in (6.6), we
have

a1 = A1 = 2X2 =
2(tx1 + x2)

1 + t3
, a2 = A2 = 0. (6.13)

Let us now return to the relations in (6.9) to see that we are able to ob-
tain the above expressions for a1 and a2 by differentiating (6.9) directly.
Starting with v1 in (6.9)a, we have

a1 =
dv1
dt

= 2
d

dt
(
t2x1 + tx2

1 + t3
) =

2
−3t2(t2x1 + tx2)

(1 + t3)2
+ 2

t2x1 + t2 dx1

dt + x2 + tdx2

dt

1 + t3
. (6.14)

Since dx1

dt = v1 and dx2

dt = v2, we can apply (6.9) again to simply (6.14):

a1 = 2
−3t2(t2x1 + tx2)

(1 + t3)2
+ 2

t2x1 + 4t2 t
2x1+tx2

1+t3
+ x2 − 2tx1−t2x2

1+t3

1 + t3
,

which simplifies to the expression for a1 in (6.13). Similarly, starting
with v2 in (6.9) and differentiating it with respect to t and again noting

218 Physical Oceanography: A Mathematical Introduction

that v1 = dx1

dt and v2 = dx2

dt , we arrive at the Eulerian expression a2,
which agrees with the one in (6.13). See also Problem 1 below.

The calculations we just went through to arrive at the expression for
the Eulerian acceleration a, relying only on Eulerian relations, may be
formalized in the formula

a =
∂v

∂t
+ v · ∇v, (6.15)

where the notation v · ∇ stands for the scalar operation

v · ∇ = v1
∂

∂x
+ v2

∂

∂y
+ v3

∂

∂z
.

We will derive this formula later in this chapter, the derivation relying
on a simple application of the chain rule. It is interesting to note that
the somewhat inelegant algebra that we had to employ (for example, in
(6.14)), has a nice, simple and compact representation in (6.15). As a
byproduct of this formula, we will encounter the difference between d

dt ,

as in a = dv
dt , and ∂

∂t , as in ∂v
∂t , used in (6.15).

Problems 6.1

1. Complete the calculation that leads to the expressions that follow
(6.13), when we use the Eulerian representation of the flow defined
by (6.9).

2. Find V and v for each deformation.

(a) x1 = X1 + te−tX2, x2 = X2 + te−2tX1.

(b) x1 = X1 + tX2, x2 = X2 − tX1 + tX2.

(c) x1 = X1 + tX1 − tX2, x2 = X2 + tX1 − t2X2.

(d) x1 = X1 + t2X2, x2 = X2 − t2X1.

(e) x1 = X1 + (sin t)X2, x2 = X2 − (1 − cos t)X1.

(f) x1 = X1 + f(t)X2 , x2 = X2 + g(t)X1.

3. Let v = 〈v1(t, x1, x2), v2(t, x1, x2), 0〉 be the velocity field of a flow.
Show that a, its Eulerian acceleration, is the vector

〈∂v1
∂t

+ v1
∂v1
∂x

+ v2
∂v2
∂y

,
∂v2
∂t

+ v1
∂v2
∂x

+ v2
∂v2
∂y

, 0〉.

4. Consider the following velocity vector fields. In each case, compute
the associated acceleration field.

Equations of Fluid Dynamics 219

(a) v = 〈y,−x, 0〉.
(b) v = 〈y, z,−y〉.
(c) v = 〈sin y cos z, sinx cos z, cos x siny〉.

5. Consider the deformation

x1 = X1 + 2t2X2, x2 = X2 +
1

1 + t
X1.

(a) Let D consist of the set of particles that occupy the disk of
radius one centered at the origin at time 0. Draw the graphs
of the image at times t = 1 and t = 2.

(b) Determine the Lagrangian and Eulerian formulations of the
acceleration of this motion.

6.2 Deformation Gradient and Conservation of Mass

As Figure 6.1 shows, motions described by (6.1) deform parcels of
fluid as time evolves. It is of particular interest to us to develop analyt-
ical and computational tools that measure deformations and eventually
relate them to the forces that act on the parcels of fluid.

We denote by F the gradient of a deformation given by (6.1), that
is,

F =
∂p

∂X
. (6.16)

F is a matrix with components Fij = ∂pi/∂Xj . We will refer to F as
the deformation gradient of the motion. For example, the deformation
gradient of the motion p given by

p = 〈X1 + te−tX2, X2 + te−2tX1〉

is

F =

[

∂p1/∂X1 ∂p1/∂X2

∂p2/∂X1 ∂p2/∂X2

]

=

[

1 te−t

te−2t 1

]

. (6.17)

The notion of deformation gradient first appears in elementary cal-
culus when formulas are derived that describe how a change of variables
will affect the evaluation of double and triple integrals. Given a region

220 Physical Oceanography: A Mathematical Introduction

D, in R2 or R3, and an integrand f , computing the integral of f over
the region D,

∫

D

f dV,

is sometimes simplified if we are able to find a change of variables that
converts the regionD into a new regionD∗ where the integration overD∗

is reduced to an evaluation of iterated integrals. The price for this change
of variables appears as f |J | in the new integrand, where the additional
term J is the Jacobian of the change of variables. The original integral
and the transformed one are related as follows:

∫

D

f dV =

∫

D∗

f |J | dV ∗.

For example, we recall that when using polar coordinates a double inte-
gral

∫ ∫

D
f(x, y) dxdy is transformed into

∫ ∫

D∗

f(r cos θ, r sin θ) rdrdθ,

where the factor r is the determinant of the gradient of the map that
relates rectangular coordinates to polar coordinates, that is, with x =
r cos θ and y = r sin θ, with r ≥ 0, then

|J | =
∣

∣det

[

∂x/∂r ∂x/∂θ
∂y/∂r ∂y/∂θ

]

∣

∣ = r.

The next theorem shows that this notion plays a critical role in fluid
flows as well, since we are able to quantify how the time rate of change
of any deformation gradient is related to the deformation gradient itself.

Theorem 6.2.1
Let p be a deformation with F and v as its deformation gradient and
velocity, respectively. Then

d

dt
(det F) = (div v) det F. (6.18)

Proof: We present here the proof for the two-dimensional case and leave
the proof in the three-dimensional case, which is similar, as an exercise.

Let p ∈ E2. The determinant of F is

det F = F11F22 − F12F21 . (6.19)

Equations of Fluid Dynamics 221

Differentiate (6.19) with respect to t:

∂

∂t
(det F) =

∂F11

∂t
F22 + F11

∂F22

∂t
− ∂F12

∂t
F21 − F12

∂F21

∂t
. (6.20)

The four derivatives ∂Fij/∂t are related to the velocity field because
Fij = ∂pi/∂Xj . Since Vi = ∂pi/∂t, we can rewrite

∂Fij
∂t

as
∂Vi

∂Xj

,

the gradient of velocity, where the gradient is computed with respect
to a moving particle’s positions Xj , and not a fixed position x. We can
relate this gradient to the gradient of v with respect to x as follows: We
recall that V1 = v1(t,x) = v1(t,p(t,X)). Hence, by differentiating the
latter expression with respect to X1, say, we get

∂V1

∂X1
=
∂v1
∂x1

∂p1

∂X1
+
∂v1
∂x2

∂p2

∂X1
. (6.21)

We can therefore express ∂F11

∂t in (6.20) in terms of v:

∂F11

∂t
=
∂V1

∂X1
=
∂v1
∂x1

F11 +
∂v1
∂x2

F21. (6.22)

All other terms on the right side of (6.20) have a similar form in terms
of v (for example, ∂F22

∂t = ∂v2
∂x1

F12 + ∂v2
∂x2

F22). Thus, (6.20) reduces to

∂

∂t
(det F) =

∂v1
∂x1

(F11F22 − F12F21) +
∂v2
∂x2

(F11F22 − F12F21) (6.23)

which equals (div v)det F . This completes the proof.

An important consequence of Theorem 6.2.1 is that the determinant
of F is independent of t if and only if div v = 0, which we state as
corollary to Theorem 6.2.1.

Corollary 6.2.1 (Incompressible Flows)
The velocity field v is divergence free if and only if det F is time

independent. In particular, when the velocity field v is divergence free,
then the flow is incompressible, i.e., det F = 1 for all time.

222 Physical Oceanography: A Mathematical Introduction

Proof: It follows directly from the expression in (6.18) that det F
is time independent if and only if div v = 0. Note that det F (0,X) = 1
since F (0,X) is the identity matrix, as seen from the identity in (6.2).
Hence, if det F is time independent, det F ≡ 1 for all t.

We will see shortly that this definition of incompressibility, that
det F = 1 for all time, is equivalent to the more common definition
of incompressibility in physics that the density of a particle remains
unchanged under any deformation the material undergoes.

To recap, a fluid flow is incompressible if div v = 0 for all time.
This relation in turn implies that if a flow is incompressible, then det F ,
which for all flows, whether incompressible or not, starts out being one,
remains one for all time. A consequence of this observation is that the
volume of a parcel of fluid remains constant for an incompressible fluid
as it undergoes a deformation. To see this recall that

|J | = |det F |
is the factor that enters into the computation of an integral under a
change of variable. With that in mind, let D be a parcel of fluid with D0

denoting the volume of the region it occupies at time 0. Let Dt denote
the volume of the region occupied by the same parcel of fluid at time t,
after it has been deformed by the deformation p. Note that

D0 =

∫ ∫ ∫

D

dxdydz Dt =

∫ ∫ ∫

p(t,D)

dxdydz.

But
∫ ∫ ∫

p(t,D) dxdydz =
∫ ∫ ∫

D |J |dxdydz, which equals D0 since |J | =
1. We have therefore arrived at the important geometrical property of
incompressible flows that, as complicated as these flows may be, includ-
ing exhibiting chaotic behavior, the volume of parcels of fluids remain
invariant under the action of fluid deformations. We have proved this
result for three-dimensional incompressible flows, which has a straight-
forward restriction to two-dimensional flows when “volume” is replaced
by “area.”

A second consequence of Theorem 6.2.1 is the Transport Formula
stated below. This formula, which can be thought of as an analog of
Leibniz’s formula for functions of several variables, will allow us to dif-
ferentiate integrals involving integrands and integration domains that
vary with a variable, say t. To prepare for stating this result, consider
a deformation (motion) p and an arbitrary region Ω in Rn, which is
mapped to the region p(t,Ω) by the motion. Let f(t,x) be a quantity of
interest (such as density or pressure), and now consider the quantity

∫

p(t,Ω)

f(t,x) dv,

Equations of Fluid Dynamics 223

where by dv, as distinguished from dV , we mean that the volume inte-
gration is carried out in the deformed domain. The theorem below shows
how one computes the time rate of change of this quantity.

Theorem 6.2.2 (Transport Formula)
Let f be a sufficiently smooth function of its variables. Let x and X be
related by x = p(t,X). Then

d

dt
(

∫

p(t,Ω)

f(t,x) dv) =

∫

p(t,Ω)

[ft + div (fv)] dv, (6.24)

where v is the velocity field associated with p.

Proof: We consider x = p(t,X) as a change of variables that relates
the original domain Ω to p(t,Ω). With this interpretation in mind, we
have

∫

p(t,Ω)

f(t,x) dv =

∫

Ω

f(t,p(t,X)) detF dV,

where dV stands for the volume element in the undeformed domain,
and where we assume, without loss of generality that det F is positive.
Since Ω is time independent, the derivative of the above expression with
respect to t can be passed directly to the integrand:

∂

∂t

[
∫

Ω

f(t,p(t,x)) detF dV

]

=

∫

Ω

∂

∂t
[f(t,p(t,X)) detF] dV

=

∫

Ω

[

(ft + gradf · v) detF + f
∂

∂t
(detF)

]

dV

=

∫

Ω

[ft + grad · v + f(div v)] detF dV (after applying (6.18))

=

∫

Ω

[ft + div (fv)] detF dV

=

∫

p(t,Ω)

[ft + div (fv)] dv.

which completes the proof.

As an application of Theorem 6.2.2 we consider the mass of an ar-
bitrary subregion Ω of a body of fluid B. With ρ(t,x) representing the
density of the fluid at any time t and position x, we note that

m(t) =

∫

p(t,Ω)

ρ(t,x) dv

224 Physical Oceanography: A Mathematical Introduction

is the total mass of the fluid that occupies p(t,Ω) at time t. Since mass
is conserved, we have m′(t) = 0. Using (6.24), m′(t) is

m′(t) =
d

dt

[

∫

p(t,Ω)

ρ(t, dv) dv

]

=

∫

p(t,Ω)

[ρt + div (ρv)] dv, (6.25)

which must vanish. The above integral must vanish for every arbitrary
subset Ω of the fluid B, which implies that the integrand must vanish.
Hence, conservation of mass reduces to the following PDE for ρ and v:

ρt + div (ρv) = 0. (6.26)

If the divergence term, div (ρv), in (6.26) is expanded, we end up with

ρt + v · ∇ρ+ ρdiv v = 0. (6.27)

In analogy with the definitions for v and V, we let R(X) be the density
associated with the particle X. When a fluid particle X is incompressible
its density will not change under any deformation p. Hence, we have

R(X) = ρ(t,p(t,X)).

In that case, since d
dt (R(X)) = 0, we have d

dt(ρ(t,p(t,X)) = 0. The
latter expression reduces to ρt + ∇ρ · v = 0, which when combined with
(6.27), leads to

div v = 0 (6.28)

as the PDE that represents conservation of mass when the flow is in-
compressible. We summarize the above development as a theorem:

Theorem 6.2.3 (Conservation of Mass)
Let ρ and v be the density and velocity field associated with a deformation
p. Then ρ and v must satisfy (6.26)

ρt + div (ρv) = 0.

When the flow is incompressible, the latter PDE further reduces to (6.28)

div v = 0.

Before proceeding to a second application of the Transport Theo-
rem, we emphasize a delicate point about the relationship between the
density of a fluid particle and the incompressibility of flows: An incom-
pressible flow is characterized mathematically by the PDE div v = 0.
As for the fluid density, incompressibility only requires that the density

Equations of Fluid Dynamics 225

of any given fluid particle X remains unchanged no matter what de-
formation this particle undergoes. In particular, incompressibility does
not require that all fluid particles have the same density. In fact, as is
the case with many oceanic and atmospheric processes, which are often
modeled as incompressible flows, the fluid region is stratified, meaning
that the density of stable columns of fluid change monotonically with
depth or height, decreasing with height in the case of the atmosphere,
and increasing with depth in the case of the ocean. Hence the reader
will encounter PDE (6.28) as one of the key equations in modeling flows
where the assumption of incompressibility is invoked.

A second application of the Transport Theorem is in the context
of quantities that are of the form ρφ, where φ is an arbitrary quantity
of interest, such as a component of the velocity field, temperature, or
salinity. According to this theorem, we have

d

dt

(

∫

p(t,Ω)

ρ(t,x)φ(t,x) dv

)

=

∫

p(t,Ω)

(ρφ)t + div (ρφv) dv. (6.29)

After using the conservation of mass relation (6.26), the term (ρφ)t sim-
plifies as

(ρφ)t = ρtφ+ ρφt = −φdiv (ρv) + ρφt.

Moreover, since div (ρφv) = φ div (ρv) + ρv · ∇φ, the integral on the
right side of (6.29) reduces to

∫

p(t,Ω)

ρ(φt + v · ∇φ) dv. (6.30)

Definition 6.2.1 (Material or Total Time Derivative): Given
any differentiable function φ(t,x), we define the Material or Total
Time Derivative of φ, denoted by Dφ

Dt
, as

Dφ

Dt
= φt + v · ∇φ. (6.31)

With this notation, and in light of (6.30), (6.29) is equivalent to

d

dt

(

∫

p(t,Ω)

ρ(t,x)φ(t,x) dv

)

=

∫

p(t,Ω)

ρ
Dφ

Dt
dv. (6.32)

This remarkable identity states that we can simply slip the differentiation
d
dt

, when applied outside of an integral, to the integrand as shown in
(6.32), as long as we use the total derivative concept. We have proved
the following theorem.

226 Physical Oceanography: A Mathematical Introduction

Theorem 6.2.4
Any differentiable quantity φ(t,x) satisfies the relation (6.32).

When the result of Theorem 6.2.4 is applied to each component of the
linear momentum ρv, we obtain the important identity

d

dt

(

∫

p(t,Ω)

ρ(t,x)v(t,x) dv

)

=

∫

p(t,Ω)

ρ
Dv

Dt
dv, (6.33)

which will play a key role in the derivation of the Navier-Stokes equa-
tions.

Problems 6.2

1. Prove the result in Theorem 6.2.1 in three-dimensional setting.

2. Given any two differentiable functions f and g, show that

D(fg)

DT
= f

Dg

Dt
+ g

Df

Dt
,

where D
Dt

is the material time derivative defined in this section.

3. Let F be the deformation gradient of a two-dimensional flow. Let
λ1 and λ2 be the eigenvalues of F . Find relationships between the
time-rates of change of λi and the components of the associated
velocity field v.

6.3 Derivation of Equation of Conservation of
Mass—A Heuristic Approach

Theorem 6.2.3 summarizes the mathematical consequences of con-
servation of mass, whether the fluid is incompressible or not, in terms
of the changes in density and the divergence of velocity field. Here we
derive the same results (Equations (6.26) and (6.28)) using a heuristic
approach based on computing the flux of the fluid that enters and leaves
a control volume within the flow.

Let V be a small cube with sides δx, δy and δz, centered at the point
P = (a, b, c), a typical but fixed point in the path of the fluid flow. By
the flux of the fluid through V we mean the net loss of mass in V per
unit time. We measure this quantity in two ways:

Equations of Fluid Dynamics 227

A

B

FIGURE 6.2: A schematic to illustrate the conservation of mass equa-
tion.

a) first we measure how mass is transported across the boundary of
V during the small but fixed time interval (t, t+ δt),

b) next, we compute the change in the mass in V during the same
time interval by observing the dynamics of the density in V .

Since these two approaches must lead to the same value, we will end
up obtaining the relation in (6.26).

Without loss of generality, we assume that the faces of V are parallel
to the coordinate planes (see Figure 6.2). Let v = 〈u, v, w〉 denote the
velocity field. Each component of v is responsible for the transport of
the fluid through two of the faces of V—for example, v is responsible for
any fluid transport through the faces y = b− δ

2 and y = b+ δ
2 , denoted

by A and B in Figure 6.2. With the density and velocity represented in

228 Physical Oceanography: A Mathematical Introduction

their Eulerian form, the net transport through these two faces is

∫ t+δt

t

∫ ∫

S2

ρ(τ, x, b+
δy

2
, z)v(τ, x, b+

δy

2
, z) dS dτ−

∫ t+δt

t

∫ ∫

S1

ρ(τ, x, b− δy

2
, z)v(τ, x, b− δy

2
, z) dS dτ, (6.34)

where S1 and S2 are the two faces of the cube with y = b − δy
2 and

y = b+ δy
2 . Since S1 and S2 are faces of a cube parallel to the xz-planes,

they can be parametrized as

{(x, z)| a− δx

2
< x < a+

δx

2
, c− δz

2
< z < c+

δz

2
}.

If the dimensions of the cube are small, we may comfortably apply the
Taylor formula to each integrand:

ρ(τ, x, b− δy

2
, z)v(τ, x, b− δy

2
, z) = ρ(τ, x, b, z)v(τ, x, b, z)−

∂

∂y
(ρv)|

y=b

δy

2
+ . . . ,

where dots denote terms in δy2 and higher. Similarly,

ρ(τ, x, b+
δy

2
, z)v(τ, x, b+

δy

2
, z) = ρ(τ, x, b, z)v(τ, x, b, z)+

∂

∂y
(ρv)|y=b

δy

2
+

Hence the net transport across the two faces y = b − δ
2 and y = b + δ

2
reduces to

∫ t+δt

t

∫ a+δx/2

a−δx/2

∫ c+δz/2

c−δz/2

(

∂

∂y
(ρv)|

y=b
δy + . . .

)

dz dx dτ.

Neglecting the higher order terms from the computation, and assuming
that δx, δz, and δt are small enough that the integrand remains essen-
tially constant on each face and during the time interval (t, t+ δt), we
may approximate the integrand by its value at P and replace the above
integral by

∂

∂y
(ρv) |

P
δxδyδzδt. (6.35)

Similarly the net loss of mass through the boundaries x = a − δx
2 and

x = a+ δx
2 , and z = c − δz

2 and z = c + δz
2 are

∂

∂x
(ρu) |

P
δxδyδzδt and

∂

∂z
(ρw) |

P
δxδyδzδt. (6.36)

Equations of Fluid Dynamics 229

Hence, the net transport of mass through the boundaries of the cube is
the sum of the above three expressions, leading to

div (ρv)|P δxδyδzδt. (6.37)

This concludes the computation of the net transport using the first ap-
proach, namely, transport through the boundaries of the cube. Next we
compute the transport of mass during (t, t + δt) by observing how the
changes in the density inside the cube V contribute to the net transport.
We begin by noting that

∫ ∫ ∫

V

ρ(t, x, y, z) dx dy dz

is the mass of the fluid occupying V at time t, and

∫ ∫ ∫

V

ρ(t + δt, x, y, z) dx dydz

is the total mass at time t + δt. Naturally, the difference between these
expressions

∫ ∫ ∫

V

ρ(t, x, y, z) dx dy dz −
∫ ∫ ∫

V

ρ(t + δt, x, y, z) dx dy dz (6.38)

is the net transport of mass. Expression (6.38) can be simplified using
the same strategy we applied to (6.34), namely, by applying the Taylor
formula to expand

ρ(t+ δt, x, y, z)

as

ρ(t, x, y, z) +
∂ρ

∂t
δt+ . . . ,

and then approximating the resulting integral in (6.38) by

−∂ρ
∂t

|
P
δxδyδzδt (6.39)

by appealing to the smallness of all of the dimensions. Equating (6.39)
with (6.37) leads to equation of conservation of mass in (6.26).

230 Physical Oceanography: A Mathematical Introduction

Problems 6.3

The heuristic approach presented in this section was developed for
a small volume V in the shape of a cube centered at P = (a, b, c).
Reconstruct this approach with the point P located instead

1. at a vertex on the lower face of the cube.

2. at a vertex on the upper face of the cube.

6.4 Stream Function and Vector Fields A, B, C, and
ABC

As we study the consequences of conservation of mass, and later
conservation of linear momentum, it will be instructive to carry with
us a few concrete examples of fluid flows whose structures are often
representative of the basic features we see in more complicated flows.
To that end, we now introduce four vector fields; the first three we refer
to by A, B and C, and the fourth by ABC, or the Arnold–Beltrami–
Childress flow.

Definition 6.4.1

The following vector fields are Vector Fields A, B, and C, respec-
tively:

v
A

= 〈y,−x, 0〉, (6.40)

v
B

= 〈y/
√

x2 + y2,−x/
√

x2 + y2 , 0〉, (6.41)

and

v
C

= 〈y/(x2 + y2),−x/(x2 + y2), 0〉, (6.42)

It is simple to show that all three Vector Fields A, B and C are
incompressible. We carry out the computations for vector field B and
leave the verification for A and C to the reader. Vector field B is defined
by (6.41)

v
B

= 〈v1, v2, v3〉 = 〈 y
√

x2 + y2
,− x
√

x2 + y2
, 0〉.

Equations of Fluid Dynamics 231

Its divergence is

div v
B

= ∂v1/∂x+ ∂v2/∂y + ∂v3/∂z

= ∂
∂x (y(x2 + y2)−

1
2) − ∂

∂y (x(x
2 + y2)−

1
2)

= −xy(x2 + y2)−
3
2 + xy(x2 + y2)−

3
2 = 0.

As we noted in Theorem 6.2.3, when the flow is incompressible, the
equation that describes conservation of mass reduces to the velocity vec-
tor field being divergence free. Vector fields A, B and C have the addi-
tional property that they are two-dimensional, that is, v3 = 0 and that
v1 and v2 only depend on x and y. As we have seen in Chapter 3, it
turns out that we can represent the information in two-dimensional vec-
tor fields by a stream function, single function of x and y, denoted by
ψ(x, y, t). We recall that a typical incompressible and 2D velocity field
v = 〈u(x, y, t), v(x, y, t), 0〉 must satisfy the relation

∂v1
∂x

+
∂v2
∂y

= 0. (6.43)

The expression in (6.43) is satisfied if u and v are related to a scalar
function ψ(x, y, t) through the relations

u(x, y, t) =
∂ψ

∂y
, v(x, y, t) = −∂ψ

∂x
, (6.44)

where the relations in (6.44) are arranged so that the equation div v = 0
is automatically satisfied, as the reader can verify by direct differentia-
tion of the relations in (6.44). Conversely, if we know a priori that the
velocity field v is 2D and incompressible, we will be able to come up
with a smooth scalar function ψ(x, y, t) that satisfies (6.44). How one
goes about determining ψ requires integrating the relations (6.44), as we
will demonstrate shortly with examples. The fact that div v = 0 guaran-
tees that the constants of integration we obtain are compatible and that
we end up with a well-defined stream function ψ(x, y, t). We note in pass-
ing that this topic is often covered under the title of “exact differential
equations” in standard texts on ordinary differential equations.

It is worth remarking at this juncture that the relations in (6.44)
could have just as easily been defined as

u(x, y, t) = −∂ψ
∂y

, v(x, y, t) =
∂ψ

∂x
, (6.45)

an alternative definition that is adopted in many texts. The definition
in (6.44) was especially popular in the early years of the development

232 Physical Oceanography: A Mathematical Introduction

of physical oceanography, in the 1930s and 1940s, which slowly gave
way to the formulation defined in (6.45). The latter definition, on the
other hand, is a standard definition in mathematics, where ψ is called a
Hamiltonian function, and v is its symplectic gradient. We note that the
function ψ defined in (6.44) is simply the negative of the stream function
defined by (6.45), and hence we reserve the right to use either definition
in this text, which will be obvious from context. In this chapter, in
particular, we will stick with (6.44), which was H. Stommel’s favored
formulation.

To see an example of how one determines ψ from v, consider Vector
Field A, where v

A
= 〈y,−x, 0〉. Referring to (6.44), the desired stream

function ψ(x, y, t) must be a solution of the following system of PDEs:

∂ψ

∂y
= y, −∂ψ

∂y
= −x, (6.46)

Starting with (6.46)a, we integrate this equation with respect to y:

ψ(x, y, t) =
1

2
y2 + f(x), (6.47)

where f is the constant of integration as far as y is concerned, hence f is
a function of x, which is yet to be determined. Next, differentiate (6.47)
with respect to x to get

∂ψ

∂x
= f ′(x), (6.48)

which, when compared with the relation (6.46)a, leads to the equation
f ′(x) = x for f , resulting in f(x) = 1

2x
2 + C, where C is a universal

constant of integration. Returning to (6.47), we now have the complete
expression for ψ:

ψ(x, y, t) =
1

2
(x2 + y2) +C. (6.49)

The constant C is typically set by a single known data point from the
physical setting that ψ and v model.

The connection that we just established between the stream func-
tion ψ of a flow and its velocity field v has an important geometrical
interpretation. At any instant of time t the vector field v is tangential to
instantaneous contours or level curves of ψ . To see why this is the case
consider a point P = (x∗, y∗) in the domain of ψ and an arbitrary but
fixed instance t∗. We recall from elementary calculus that the gradient
of ψ evaluated at P and at t∗, ∇ψ|

(P,t∗)
is perpendicular to the level

curve of ψ that passes through P at the instant t∗, which is given by

ψ(x, y, t∗) = k.

Equations of Fluid Dynamics 233

t = 1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

0

2

t = 2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

0

2

FIGURE 6.3: Contours of the stream function ψ(x, y, t) = x2 sin t +
y2 cos t and its associated vector field at two values of t. Note that the
contours of ψ vary with time, as do the velocity vectors at a fixed position
(x, y).

The constant k is ψ(x∗, y∗, t∗). On the other hand, recalling the definition
of ψ as a stream function, we have

∇ψ · v = 〈∂ψ
∂x

,
∂ψ

∂y
〉 · 〈∂ψ

∂y
,−∂ψ

∂x
〉 = 0, (6.50)

showing that v is perpendicular to ∇ψ. Since ∇ψ is perpendicular to
both the level curve and v, the vector v|

(x∗,y∗,t∗)
must be tangential to

the level curve. See Figure 6.3 for an example of a stream function (in
this case ψ(x, y, t) = x2 cos t + y2 sin t) that illustrates the relationship
between ψ and v at two instances of t.

The relationship between the contour levels of a stream function ψ
and the velocity field associated with ψ is particularly significant in the
special case when ψ is independent of t. When ψ is time-independent,
the contours of ψ(x, y) remain stationary as time varies, leading us to

234 Physical Oceanography: A Mathematical Introduction

conclude that the particle paths of the ODE system

{

dx/dt = u(x, y) = ∂ψ(x, y)/∂y, x(0) = x0,
dy/dt = v(x, y) = −∂ψ(x, y)/∂x, y(0) = y0,

(6.51)

in fact coincide with contours of ψ. We summarize this discussion in the
following theorem.

Theorem 6.4.1 (Incompressibility and Time-Independent
Stream Functions)
Let v be a smooth, incompressible, two-dimensional and time-
independent vector field. Then there exists a function ψ = ψ(x, y), as-
sociated with the system of ODEs (6.51), such that the contours of ψ
coincide with the particle paths of (6.51).

The fact that the stream function in Theorem 6.4.1 is time-
independent is crucial since when ψ is time-dependent, as is the case
in the example in Figure 6.3, the contours of ψ are only instantaneously
tangential to the associated velocity field and hence do not give a good
picture of particle paths as time evolves. On the other hand, when the
stream function is time-independent, the contours of ψ can be computed
a priori and they coincide with the particle paths of the associated sys-
tem of ODEs. This point is illustrated in Figure 6.4 where we plot the
contours of the stream function ψ (which is Vector Field A) defined
in (6.49) and a single particle path, by solving the associated system of
ODEs using ode45, through the point (1.1, 2.3). This figure was obtained
by running the following lines in MATLAB:

clf;

psi=inline(’1/2*(x.^2+y.^2)’,’x’,’y’);

[X,Y]=meshgrid(-3:0.01:3,-3:0.01:3);

contour(X,Y,psi(X,Y));

hold on

[t,z]=ode45(@VectorFieldA, [0 3],[1.2 2.3]);

plot(z(:,1),z(:,2), ’*’)

The M-file VectorFieldA.m is

function zprime=VectorFieldA(t,z);

%

zprime=[z(2); -z(1)];

To recap, if a stream function ψ is explicitly dependent on t, the
streamlines do not provide a lot of information about the particle paths
of the flow, because the streamlines only show the instantaneous behavior

Equations of Fluid Dynamics 235

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

FIGURE 6.4: Streamlines and a trajectory of Vector Field A.

of the vector field and may change substantially from an instant of time
to another, as shown in Figure 6.3. By contrast, when ψ is independent
of t, the streamlines of ψ coincide with the particle paths of the vector
field and hence give us an excellent representation of the fluid flow, as
shown in Figure 6.4.

Despite this important qualitative connection between streamlines
and particle paths, we lose quantitative information about how fluid par-
ticles evolve if we only consider streamlines—a particle path obtained by
solving the system of ODEs in (6.51) not only contains spatial informa-
tion (about the positions occupied by a fluid particle), it also contains
temporal information (the amount of time it takes for a fluid particle to
travel from one position to another), as shown in Figure (6.4). One of the
main features of this approach, i.e., solving the system of ODEs, is that
we are able to discover the Lagrangian behavior of solutions, including
information as delicate as the chaotic behavior of solutions.

We end this section by recalling the definition of the fourth special
flow, namely the ABC flow, that we encountered in an earlier chapter.

236 Physical Oceanography: A Mathematical Introduction

−1
0

1
2

3
4

0

100

200

300

400
−1

−0.5

0

0.5

1

FIGURE 6.5: The particle path of a particle located at (0.1, 0.2, 0.1)
at time 0 and otherwise moving under the influence of the ABC flow
with A = 1, B = 0.2 and C = −0.2.

The velocity field v = 〈u, v, w〉 that gives rise to this flow is as follows:







u = A sin z +C cos y,
v = B sinx+ A cos z,
w = C sin y + B cos x.

(6.52)

The ensuing fluid motion is called the ABC flow, short for the Arnold–
Beltrami–Childress, because of the work of the three distinguished re-
searchers, V. I. Arnold, E. Beltrami, and S. Childress, who pointed out
several remarkable attributes of the trajectories of this dynamical sys-
tem. This flow is incompressible, and has the special property that its
vorticity, ∇× v, and its velocity v coincide, that is

∇× v = v. (6.53)

Figure 6.5 shows the trajectory of a single particle under the action of
the ABC flow. This figure was obtained by executing the following lines
in MATLAB:

clf;

global A B C

Equations of Fluid Dynamics 237

A=1; B=0.1; C=-0.2;

%

[t,q]=ode45(@ArnoldBeltramiChildress,[0 300],[0.1 0.2 0.1]);

plot3(q(:,1),q(:,2),q(:,3))

where the M-file ArnoldBeltramiChildress.m is

function qprime=ArnoldBeltramiChildress(t,q);

global A B C

%

qprime=[A*sin(q(3))+B*cos(q(2)); B*sin(q(1))+A*cos(q(3));...

C*sin(q(2))+B*cos(q(1))];

Problems 6.4

1. Show that Vector Fields A and C are incompressible. Determine
the stream function of each flow.

2. Compute the vorticity of Vector Fields A, B and C. Consider the
particle path of the particle P that is located at (1, 0) at time zero
in each of these three flows. In which flow is the rate of rotation of
experienced by P largest?

3. Show that the Arnold-Beltrami-Childress flow is incompressible.

4. Consider the vector field

v = 〈u, v, w〉 = 〈−∂ψ1

∂y
,
∂ψ1

∂x
+
∂ψ2

∂z
,−∂ψ2

∂y
〉. (6.54)

(a) Show that v is incompressible as long as ψ1 and ψ2 are suffi-
ciently differentiable.

(b) Compute the vorticity of v in terms of ψ1 and ψ2.

(c) Compute the acceleration a in terms of ψ1 and ψ2.

5. Prove the expression given in (6.53).

6. Apply MATLAB’s quiver to plot the following vector fields. Com-
pute the divergence and the vorticity of each flow and identify
which ones are incompressible and/or irrotational, if any.

(a) v = (x+ y)i + (x− y)j

(b) v = (x2y2 − xy)i − yj

(c) v = 〈 x√
x2+y2

, 1−y√
x2+y2

〉.

(d) v = 〈sin y, cosx〉

238 Physical Oceanography: A Mathematical Introduction

(e) v = log
√

x2 + y2i + (x− y)j

7. Let v = ∇p(x, y, z) for some scalar function p. Show that if the
fluid, whose velocity field is modeled by v, is incompressible, then
p satisfies Laplace’s equation:

∆p ≡ ∂2p

∂x2
+
∂2p

∂y2
+
∂2p

∂z2
= 0. (6.55)

8. Compute the Laplacian of p where p is described below.

(a) p(x, y, z) = x2 + y2 + z2

(b) p(x, y, z) = 1√
x2+y2+z2

(c) p(x, y) = −y
x

(d) p(x, y) = cos 1
x2+y2

(e) p(x, y, z) = ln(x2 + y2 + z2)

(f) p(x, y) = 1√
x2+y2

(g) p(x, y) = arctan yx .

9. Find the grad(div v) if v is given by the following expressions; here
the quantity r is the magnitude of the position vector 〈x, y, z〉:

(a) v = (z − y)i + (x+ z)j + xk

(b) v = 2x2i− y2j + z2k

(c) v = 1
r 〈x, y, z〉

(d) v = 1
r
〈y,−x, 0〉

(e) v = 1
r2 〈yz + ln r,−xz − ln r, z2〉.

10. Prove the following identities. In each case assume that v, w, p
and q are arbitrary smooth functions of x, y and z.

(a) div (ρv) = ρdiv v + v · ∇ρ
(b) div (p∇q) = p∇2q + ∇p · ∇q
(c) div (p∇q) − div (q∇p) = p∇2q − q∇2p.

(d) div (∇v ×∇w) = 0.

11. Let ψ(x, y) = xy e−(x2+y2) be the stream function of a flow. Find
the velocity of the particles located at (1, 2), (−1, 1), (2, 3), and
(−1,−2). Draw a diagram displaying with the position of the par-
ticles and their associated velocity vectors, together with the con-
tours of ψ.

Equations of Fluid Dynamics 239

12. Let ψ(x, y) = cos(log(x2 + y2)) be the stream function of a flow.
Plot its contours and the velocity vectors for the particles located
at (2, 2), (1, 2), (−2, 2), and (−1, 2).

13. Prove that if v is the velocity field of a 2D and incompressible flow
with ψ as its stream function, then

div (ψv) = 0. (6.56)

14. Find whether each vector field has a stream function. If it does,
find ψ and use it to draw the particle paths of the flow.

(a) v = 〈3y,−x+ sinx〉
(b) v = 〈x2 + y2,−2xy〉
(c) v = 〈sinx cos y,− cos x siny〉
(d) v = 〈sinhx siny,− cosh x cos y〉

15. Let v(x, y) = e−(x2+y2)〈y,−x〉. Verify whether this velocity field
has a stream function and if it does determine it.

16. Consider the stream function ψc(x, y) = cy + d
√

x2 + y2, where c
and d are nonnegative constants.

(a) Let d = 1 and use the contour command of MATLAB and

i. draw the level curves of ψc for c = 0, 0.1, 0.3, 0.5, 0.7, 0.9
and 1. Is there any qualitative difference in the level
curves as c varies? Explain.

ii. Use ode45 and plot several particle paths of each flow for
the values of c listed previously. What is the difference
between the particle paths when c = 1 and the other c’s?

(b) Let c = 1 and vary d starting with d = 0.5 and increments 0.1.
Plot the contours of the resulting stream functions until d = 2
and report on any change of geometry of the streamlines as d
varies.

17. (The Double-Gyre Stream Function) In Reference [2] the authors
C. Shadden, F. Lekien and J. Marsden introduce the following
stream function:

ψ(x, y, t) = A sin(πf(x, t)) sin(πy) (6.57)

where
f(x, t) = a(t)x2 + b(t)x, a(t) = ε sin(ωt),

b(t) = 1 − 2ε sin(ωt). (6.58)

Let A = 0.1, ω = 2π, and ε = 0.25. Let (x, y) ∈ (0, 2)× (0, 1).

240 Physical Oceanography: A Mathematical Introduction

(a) Plot the associated vector fields at t = 0.01, t = 0.3, t = 0.65,
and t = 0.95 and report on the qualitative behavior of the
vector field at these times and in particular the location of
two “gyres” (compare your figures to Figure 5 on page 292 of
Reference [2] as with Figure 6.6).

(b) Plot the vector field at t = 0.25 and report on the location of
the two “gyres” generated by (6.58).

(c) Plot the vector field at t = 0.75 and report on the location of
the two “gyres” now.

(d) Use the animation capabilities of MATLAB and create an an-
imation of the vector field as t varies from 0 to 1 at increments
of 0.01. Report on the qualitative behavior of the two gyres’
motion as a function of time.

(e) Let A = 0.1, ω = π
5 and ε vary from 0 to 0.3 at increments

of 0.1. Use ode45 and plot the trajectories of the associated
vector field for t ∈ (0, 25) and initial conditions (0.1 ∗ i, 0.2),
i = 1 to 19. Compare your graphs to Figure 6.7.

18. In [3] the authors M. Branicki and S. Wiggins introduce the fol-
lowing stream function:

ψ(x, y, t) = (xy(σ(t) − x2) − αxy3 + βxy5)e−(x4+y4)/δ(t)2 , (6.59)

where σ, α, β and δ are given functions of time.

(a) Determine the vector field associated with this flow.

(b) Let α = 1
3 , β = 0.008

5 , δ = 5, and

σ(t) = 2(arctan(10t) +
π

2
− 1).

(see Page 28 of Reference [3] for more information on the
choice of these parameters.

6.5 Acceleration in Rectangular Coordinates

By definition, acceleration is the time rate of change of velocity. In
Lagrangian setting, where velocity V(t,X) is defined in terms of fluid
particles, acceleration A(t,X) is simply

A(t,X) =
∂V

∂t
.

Equations of Fluid Dynamics 241

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1
t = 0.01

x

y

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1
t = 0.3

x

y

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1
t = 0.65

x

y

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1
t = 0.95

x

y

FIGURE 6.6: Four snapshots of ψ when A = 0.1, ω = 2π and ε = 0.25.

In an Eulerian setting, which is the preferred representation in Fluid
Dynamics, A, must be written in terms of position x rather than par-
ticle X. Following the notation we adopted earlier, we denote by a the
representation of acceleration in terms of position, noting the relation

a(t,x) = A(t,X),

where x and X are related through the deformation p by x = p(t,X).
Hence,

A(t,X) = a(t,p(t,x)).

The previous expression shows the relation between the Lagrangian
and Eulerian representations of acceleration. It does not, however, show
how one computes a from v. To obtain that formula we note that

v = v(t,x) = v(t,p(t,X)), (6.60)

which shows the explicit dependence of v on t. Differentiating the ex-
pression in (6.60) with respect to t leads to

a =
∂v

∂t
+ v · ∇v. (6.61)

In terms of the notation D
Dt

defined in the previous section, (6.61) states
that acceleration a is simply the material time derivative of v:

a =
Dv

Dt
.

242 Physical Oceanography: A Mathematical Introduction

0 0.5 1 1.5 2
0

0.5

1
eps = 0

0 0.5 1 1.5 2
0

0.5

1
eps = 0.1

0 0.5 1 1.5 2
0

0.5

1
eps = 0.2

0 0.5 1 1.5 2
0

0.5

1
eps = 0.3

FIGURE 6.7: Particle paths of the Double Gyre stream function for
a set of initial conditions located along y = 0.2, In each figure A = 0.1
and ω = π

5
are fixed but ε varies. Note that when ε = 0 the structure of

the double gyre remains intact, while for ε positive the line x = 0, which
is invariant when ε = 0 becomes entangled, a sign of the ensuing chaotic
behavior.

Moreover, continuing to interpret the notation in (6.61), a good way to
think of the vector v · ∇v is to group v and ∇ together and write the
nonlinear part of the acceleration as

(v · ∇)v

i.e., think of v and ∇ together as the “scalar” operator

(v · ∇)

so that, with this interpretation, the expression v · ∇v is simply the
scalar multiplication of the scalar (v · ∇) and the vector v. Hence (6.61)
is

a =
∂v

∂t
+ (v · ∇v)v. (6.62)

To see how the formula in (6.62) applies, consider the velocity field

Equations of Fluid Dynamics 243

from Vector Field B:

vB = 〈 y
√

x2 + y2
,− x
√

x2 + y2
, 0〉.

The first component of the acceleration, a1, according to formula (6.62),
is

a1 =
∂u

∂t
+ (v · ∇)u =

∂u

∂t
+ (u

∂

∂x
+ v

∂

∂y
+w

∂

∂z
)u.

Hence

a1 = u
∂u

∂x
+ v

∂u

∂y
= − x

x2 + y2
,

and similarly, a2 = − y
x2+y2 , and a3 = 0. Hence

a = − 1

x2 + y2
〈x, y, 0〉. (6.63)

One of the questions we will be concerned about is if the fluid flows
we consider are of the type whose accelerations have potentials. In par-
ticular, if ρ is the fluid density and a is the flow acceleration, is there a
function p, which we will refer to as the pressure function such that

ρa = −∇p. (6.64)

We will refer to (6.64) as the Euler Equations of the flow and note that
they represent the simplest analog of Newton’s law for the balance of
linear momentum, that mass times acceleration must be balanced by
the sum of all forces acting on the body. In this setting the simplifying
assumption we are imposing is that all of the forces that act on the body
of fluid can be captured as the gradient of a scalar potential. We will call
fluids whose motion can be represented by the Euler Equations Simple
Fluids.

Returning to (6.64) and recalling the vector identity that

∇×∇p = 0,

for any function p, we observe that an acceleration vector a has a po-
tential if

∇× 1

ρ
a = 0. (6.65)

So if the fluid is homogeneous, so that its density is constant, then the
acceleration a is curl free. When this condition holds, one can integrate
the relations in (6.64) to find p. As in the process we outlined in the
previous section for obtaining the stream function ψ of an incompress-
ible flow, the curl-free property of a guarantees that the constants of

244 Physical Oceanography: A Mathematical Introduction

integration we encounter from integration of (6.64) are compatible, as
the following example shows. To see this process at work, consider the
acceleration (6.63) of Vector Field B. After verifying that this vector is
curl free, we set up the equations in (6.64):

∂p/∂x = x/
√

x2 + y2 , ∂p/∂y = y/
√

x2 + y2, ∂p/∂z = 0. (6.66)

We begin by integrating the first equation in (6.66):

p(x, y, z) =
√

x2 + y2 + f(y, z), (6.67)

where f is the constant of integration. Next we differentiate (6.67) with
respect to y

∂p/∂y =
y

√

x2 + y2
+
∂f

∂y
, (6.68)

which, when compared with (6.66)b, shows that ∂f/∂y = 0, or, f = f(z).
We infer from this observation that p in (6.67) reduces to

p(x, y, z) =
√

x2 + y2 + f(z). (6.69)

Finally, differentiating the above equation with respect to z and com-
paring the resulting expression with (6.66)c shows that f is in fact inde-
pendent of z as well. Hence, the pressure experienced by fluid particles
in Vector Field B is

p(x, y, z) =
√

x2 + y2 + C, (6.70)

where C is a universal constant.
The Euler Equations in (6.65) form the precursor to the Navier-

Stokes equations where fluid particles, in addition to pressure, must en-
dure viscous forces. The latter equations are the subject of the rest of
this chapter.

Problems 6.5

1. Complete the calculations that led to (6.61). Start by writing (6.60)
in component form v = 〈u, v, w〉, then apply the chain rule to
differentiate each component to get the components a1, a2 and a3

of a. Note that v · ∇ = u ∂
∂x

+ v ∂
∂y

+w ∂
∂z

.

2. Complete the calculations that lead to (6.63), the acceleration of
the velocity field v = 〈 y√

x2+y2
,− x√

x2+y2
, 0〉.

3. Compute the acceleration of each velocity field below:

(a) v = 〈y,−x, 0〉.

Equations of Fluid Dynamics 245

(b) v = 〈ax+ by, cx+ dy, 0〉.
(c) v = 〈x− xz, y − yz, z − xy〉.
(d) The ABC flow, where v = 〈A sin z + C cos y, B sinx +

A cos z, C sin y +B cosx〉. Here A, B and C are constants.

(e) The Lorenz flow, where v = 〈σ(y−x), x(ρ−z)−y, xy−βz〉.
Here σ, ρ and β are constants.

4. Determine if any of the accelerations a obtained in the previous
problem has a potential p, that is, a = ∇p. Find p in each if
appropriate.

5. In each problem below, ψ is the stream function of a velocity field
v. Compute v and its associated acceleration a:

(a) ψ(x, y) = 1
2 sin(x2 + y2).

(b) ψ(x, y) = 1
2y

2 + sinx.

6. Compute the accelerations of Vector Fields A, B and C and de-
termine if any of these accelerations has a potential p. i.e., demon-
strate if any of these vector fields satisfy the Euler equations.

6.6 Strain-Rate Matrix and Vorticity

Fluid motions are not uniform. Fluid particles in different positions
have a tendency to move with different velocities. Since discrepancies
in velocity often result in changes in acceleration, and acceleration is
directly proportional to force, we can expect some form of an internal
frictional or viscous force in the fluid. In our model this force will end up
being proportional to the velocity gradient, as we will develop shortly.

Let v(t,x) ∈ E3 be the velocity field of a fluid at time t at position
x. We are interested in measuring the relationship between the velocity
vectors v(t,x) when x is near a fixed but arbitrary position x0. Let v0 be
the velocity at x0. We suspect that v will be relatively close to v0 if x is
relatively close to x0. We therefore compute the Taylor series expansion
of v in x about x0:

v(t,x) = v(t,x0) + (∇v)|
x0

(x − x0) + · · · (6.71)

where the ellipses stand for higher order terms in x−x0 , and the matrix

246 Physical Oceanography: A Mathematical Introduction

∇v in (6.71) is the velocity gradient we saw in the description of acceler-
ation. The standard notation is to let D and A stand for the symmetric
and antisymmetric parts of this matrix:

∇v = D +A (6.72)

where

D =
1

2
(∇v + (∇v)T) and A =

1

2
(∇v− (∇v)T). (6.73)

The symmetric matrix D is called the strain-rate matrix, which has six
independent entries related to v by the relations

dij =
1

2
(
∂vi
∂xj

+
∂vj
∂xi

). (6.74)

The matrix A, on the other hand, is anti-symmetric and has only three
independent entries since aii = 0 for each index i and

aij =
1

2
(
∂vi
∂xj

− ∂vj
∂xi

), (6.75)

when i < j, and aji = −aij otherwise. It is interesting to note that A is
closely related to the vorticity ω = ∇× v of the fluid flow. In fact

A(x − x0) =
1

2
ω × (x− x0). (6.76)

We can therefore summarize the behavior of the velocity field near a
fixed but arbitrary position x0 as follows:

v(t,x) = v(t,x0) + 2ω × (x− x0) +D(x − x0) + · · · . (6.77)

The first term 2ω×(x−x0) in (6.77) shows one of the impacts of v, which
is a rotation about the axis ω with strength 2||ω|| radians per second.
The second term, D(x − x0), gives us a quantifiable way to measure
the rate at which the fluid parcel near x0 is being sheared, stretched, or
compressed.

To gain insight into how the knowledge of D and A, which are local,
may provide some understanding about the global behavior of a flow,
we now consider an example and refer the reader to the exercises at the
end of the section for further examples. Let’s consider the Vector Field
A, where

v = 〈y,−x, 0〉.
In this case

∇v =





0 1 0
−1 0 0
0 0 0





Equations of Fluid Dynamics 247

so that

D =
1

2
(∇v) + (∇v)T =





0 0 0
0 0 0
0 0 0



 .

Hence, in this example ∇v is the same as its anti-symmetric part A.
These observations agree with the other calculations we have carried out
regarding Vector Field A, since under the influence of this flow, which
is a pure rotation, no particle experiences any stretching or shearing. In
fact all of the energy of this flow is stored in A.

As a second example, consider the velocity field

v = 〈x, 2.1y, 0〉. (6.78)

The vorticity of this flow is identically zero while its strain-rate matrix
is

D =





1 0 0
0 2.1 0
0 0 0



 . (6.79)

The system of differential equations that defines the motion is

dx

dt
= x,

dy

dt
= 2.1y,

dz

dt
= 0, (6.80)

whose solution is

x(t) = x0e
t, y(t) = y0e

2.1t, z(t) = z0. (6.81)

As the diagonal elements of (6.79) show, a parcel of fluid is stretched a
little more than twice as far in the y direction after one unit of time has
elapsed. Figure 6.8 shows the impact of the deformation on four fluid
particles whose initial positions are located near the origin. This figure
shows that there is significant stretching in the y-direction. Note that
the eigenvalues of D are 1, 2.1 and 0, with eigenvectors 〈1, 0, 0〉, 〈0, 1, 0〉
and 〈0, 0, 1〉, respectively, predicting the amounts of stretching in the
three axes directions. Figure 6.8 is the output of the following MATLAB
program (note the use of quiver to generate a plot of the vector field
itself):

clf

t=0:0.2:3;

x=-2:).25:2;y=-2::0.25:2;

[X,Y]=meshgrid(x,y);

quiver(X,Y,X,2*Y);

hold on

plot(-0.1*exp(t),-0.01*exp(2.1*t),’*’)

248 Physical Oceanography: A Mathematical Introduction

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

FIGURE 6.8: The motion of four particles, originally located near the
origin, under the velocity field 〈x, 2.1y, 0〉.

plot(-0.1*exp(t),0.01*exp(2.1*t),’o’)

plot(0.1*exp(t),-0.01*exp(2.1*t),’+’)

plot(0.1*exp(t),0.01*exp(2.1*t),’-’)

axis([-2 2 -2 2])

As a final example, consider the velocity field

v = 〈x− 1.2y, 2.7x+ y〉. (6.82)

The preceding MATLAB program, when appropriately changed for
(6.82), leads to Figure 6.9. It is clear from this figure that under this
fluid flow parcels of fluid are rotated as well as they are stretched, as can
be verified from the values of the vorticity and the strain-rate matrix for
(6.82). Figure 6.9 is the output of the following MATLAB program:

clear all

clf

t=0:0.1:3;

x=-4:4;y=-4:4;

[X,Y]=meshgrid(x,y);

Equations of Fluid Dynamics 249

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

FIGURE 6.9: The motion of three set particles under the velocity field
〈x− 1.2y, 2.7x+ y, 0〉. Note the use of ode45.

quiver(X,Y,X-1.2*Y,2.7*X+Y);

hold on

[t, y]=ode45(@deform2,[0 3],[0.1 0.1]);

plot(y(:,1),y(:,2),’o’)

[t, y]=ode45(@deform2,[0 3],[-0.1 0.1]);

plot(y(:,1),y(:,2),’*’)

[t, y]=ode45(@deform2,[0 3],[0.1 -0.1]);

plot(y(:,1),y(:,2),’+’)

The M-file deform2.m is

function yprime=deform2(t,y);

yprime=[y(1)-1.2*y(2); 2.7*y(1)+y(2)];

The following is the syntax for the MATLAB program that delivers a
similar output as the one shown in Figure 6.9. The syntax is written
in such a way that it can be extended easily to monitor the evolution
of a large set of particles under the action of the system of differential
equations that define the flow:

250 Physical Oceanography: A Mathematical Introduction

clf

clear all

data = [0.1 0.1; -0.1 0.1;0.1 -0.1];

image=[];

for i=1:length(data)

[t,y]=ode45(’deform2’,[0 3],data(i,:));

plot(y(:,1),y(:,2));

hold on

end

axis([-5 5 -5 5])

Problems 6.6

1. Complete the analysis that leads to equations (6.76), that is, let A
be the anti-symmetric part of ∇v and ω = ∇× v. Show that

Ax =
1

2
ω × x,

for any vector x.

2. Complete the analysis that leads to the approximation formula
(6.77), i.e.,

v(t,x) = v(t,x0) + 2ω × (x− x0) +D(x − x0) + · · · .

3. Find the matrices D and A for the following flows. Describe how
you can identify regions of rotation and stretching from the infor-
mation in these matrices.

(a) Vector Field B

(b) Vector Field C

(c) Vector Field ABC.

4. Draw the graphs of the image of the unit circle centered at the
origin as t ranges from 0 to 1 at increments of 0.1 for

(a) Vector Field A, B and C

(b) Vector Field ABC with its third component set to zero.

5. In the following problems determine the vorticity vector and strain-
rate matrix. Use MATLAB and draw the graphs of the deformation
of the unit circle centered at the origin as t ranges from 0 to 1 at
increments of 0.1.

Equations of Fluid Dynamics 251

(a) v = 〈x− 2y + 1, xy, 0〉
(b) v = 〈x2y, x− y, 0〉
(c) v = 〈x+ y, 2 − 2y, 0〉
(d) v = 〈2.3x− 3.1y,−3x+ 2y, 0〉

(e) v = 〈 x2

1+y2 ,− y2

1+x2 , 0〉

(f) v = 〈e−(x2+y2)y,−e−(x2+y2), 0〉
(g) v = 〈sin(x+ y), cos(x− y), 0〉.

6. In the following problems determine the vorticity vector and strain-
rate matrix. Write a MATLAB program to allow for the three-
dimensional graphics aspects of the following vector fields:

(a) Vector field ABC. Determine the evolution of the unit circle
centered at the origin in the xy-plane as t varies from 0 to 1
at increments of 0.1.

(b) vA(x, z) + vB(x, y), where vA and vB are Vector Fields A
and B respectively.

6.7 Internal Forces and Cauchy Stress

The strain-rate matrixD provides information about the local defor-
mation of a fluid parcel. The concepts of pressure and viscous forces are
the mathematical entities we introduce to represent how fluid elements
respond to these deformations. Our task here is to describe a relationship
between the strain-rate D and the internal forces that act on bodies of
fluid when these bodies undergo deformations. This discussion will lead
to the mathematical definitions of traction and stress in a fluid.

The concept of the traction t experienced by a fluid element located
at x is illuminated in terms of the forces exerted by the rest of the
body of fluid on x. To be precise, consider a volume V of fluid with x
in its interior, and consider a smooth surface S passing through x—the
smoothness of S guarantees that we can define a unique normal vector n
to S at x. Imagine splitting V into two pieces along the surface S. Our
task is to place a force F at x in such a way that each sliced piece still
experiences the same deformation. One of the main assumptions of the
discipline of Continuum Mechanics is that this force depends continu-
ously on x and on the normal n. Moreover, it is assumed that the limit

252 Physical Oceanography: A Mathematical Introduction

of this force, when it is scaled by the area ∆ of S, exists as ∆ approaches
zero and the surface surrounding x shrinks to x:

lim
∆→0

1

∆
F(x,n) = t(x,n).

This limit, which is precisely the force per unit area acting at x, is the
traction t at x.

It follows from the tenets of continuum mechanics that the traction at
a point x is solely determined by the unit normal vector at x. Moreover,
a theorem due to Cauchy demonstrates that the dependence of t on the
normal vector is linear. Thus, there is a matrix, denoted by σ, such that

t(x,n) = σ(x)n. (6.83)

The matrix σ, which is called the Cauchy Stress associated with the fluid,
depends on the intrinsic properties of the fluid, and not on a specific
deformation that the fluid may be undergoing. The reader is encouraged
to consult the text by Truesdell and Rajagopal (see Reference [6] at
the end of this chapter), which provides an excellent and comprehensive
introduction to this subject.

As is the case with any matrix representation, the representation
of the Cauchy stress depends on the basis we choose for E3. Once a
basis is selected , the entries in the Cauchy stress are determined and
are denoted by σij. The physical interpretation of the coefficients σij
is as follows (again, see Reference [6] for more detailed discussion): Let
{i, j,k} be the standard orthonormal basis for E3. Imagine a small cubic
block of fluid, centered at x, with sides parallel with the coordinate
planes. Each face of the block is perpendicular to one of the coordinate
axes, thus the directions of the basis vectors ±i, ±j, and ±k constitute
unit normals to these faces. The vector σk, which is 〈σ13, σ23, σ33〉, is
the traction vector (force per unit area) experienced on this face. The
quantity σ33 is the component of this vector in the direction normal to
the face, while σ13 and σ23 are the components of the traction vector
parallel to the face itself. These quantities measure the extent of shearing
the fluid located at x is undergoing. This discussion, when applied to the
other faces of the cube, provides the interpretation for the remaining six
σij. Because of their inherent physical attributes, the diagonal entries of
σ, σii, i = 1, 2, 3, are called the normal stresses, while the off-diagonal
entries, σij, i 6= j are called the shear stresses.

An important property of the Cauchy Stress, which follows directly
from the conservation of angular momentum (see Reference [6]), is that
the matrix σ is symmetric, that is,

σij = σji

Equations of Fluid Dynamics 253

for all i and j.
We define a fluid as an ideal isotropic incompressible fluid if its

Cauchy stress σ and D, where D is the strain-rate of any arbitrary
deformation the fluid may experience, by the relation

σ = −pI + µD. (6.84)

The function p is called the pressure of the fluid and µ its kinematic
viscosity. This relation is an example of a constitutive law in continuum
mechanics, a collection of mathematical rules that help describe how a
velocity field v induces and imparts the resulting internal forces on the
fluid particles that are being deformed by the motion.

The constitutive law (6.84) is the last piece of information we need
to complete the formulation of the Navier–Stokes equations.

Problems 6.7

1. Suppose that the state of stress in a material is given by the hy-
drostatic pressure p as

σ = −p(x, y, z)I, (6.85)

where I is the identity matrix. Let B = (x, y, z) be a fixed but
arbitrary point in the domain of the deformation. Compute the
traction at B along planar surfaces parallel to the coordinate planes
(i.e., with unit normals i, j and k). What are the components of
the normal and shear stresses in each case?

2. Consider the state of stress in a material given by the Cauchy
Stress

σ =





x(y + z) − x2 1
2
− y z2

1
2
− y2x 1 − yz 0

1 + z −2 −1 + x+ z



 . (6.86)

Compute the traction and the normal and shear stresses at the
following points and directions:

(a) n = 〈1, 0, 0〉 and P = (0, 0, 0).

(b) n = 〈1, 1, 1〉 and P = (1,−2, 1).

3. Consider the stress matrix of the previous problem and the posi-
tion x = 〈1,−1, 1〉. Let n = 〈cos θ, sin θ, 0〉, with θ ∈ (0, 2π], be
a unit normal vector to a one-parameter family of surfaces pass-
ing through x. Compute the normal stress as a function of θ and
determine at which θ this quantity achieves its maximum and min-
imum.

254 Physical Oceanography: A Mathematical Introduction

4. Consider the Cauchy stress of a fluid given by

σ =





ρgx 0 0
0 ρgy 0
0 0 ρgz



 , (6.87)

where ρ is the density of the fluid and g is the acceleration of
gravity. Consider a cube of sides 2 units, centered at the origin,
located in this medium. Assume the faces of the cube are parallel
to the coordinate planes. Determine the force exerted by the fluid
on the side S parametrized by

S = {(x, y, z)| − 1 ≤ x ≤ 1, −1 ≤ y ≤ 1, z = −1}, (6.88)

(Hint: Compute
∫ ∫

S
t · dA, where t is the traction on the surface,

whose unit outward normal is n = 〈0, 0,−1〉)

6.8 Euler and Navier–Stokes Equations

The equations governing the hydrodynamic flow of fluids are derived
from the conservations of mass (see (6.26) and (6.28)) and linear mo-
mentum. We have already introduced equation (6.26)

ρt + div (ρv) = 0,

and its counterpart
div v = 0,

when the fluid is incompressible. We now derive the equation that results
from the conservation of linear momentum. This conservation law states
that the rate of change of linear momentum is balanced by the resultant
of all forces acting on the fluid, both internal and external. Stating this
in mathematical terms (as before, considering a parcel of fluid Ω that
occupies the region p(t,Ω) at time t)

d

dt

(

∫

p(t,Ω)

ρv dv

)

= G, (6.89)

where G stands for the resultant forces, and dv denotes volume integra-
tion, short for dx dy dz. From Theorem 6.2.4 we have

d

dt

(

∫

p(t,Ω)

ρv dv

)

=

∫

p(t,Ω)

ρ
Dv

Dt
dv. (6.90)

Equations of Fluid Dynamics 255

As for the forces G acting on a parcel of fluid p(t,Ω), they are of
two types: the traction forces, which the parcel experiences through its
boundary ∂p(t,Ω), and body forces. The first force, due to traction, is
given by the surface integral

∫

∂p(t,Ω)

σ · dA, (6.91)

where σ is the Cauchy stress of the fluid. Body forces, on the other hand,
act on the entire parcel of fluid, and are determined from the triple or
volume integral

∫

p(t,Ω)

ρF dv. (6.92)

The expression in (6.91) can be converted to a volume integral over
p(t,Ω), by applying the Divergence Theorem (see Theorem 3.6.2), as
follows

∫

∂p(t,Ω)

σ · dA =

∫

p(t,Ω)

div σ dv, (6.93)

where by div σ, the divergence of a matrix, we mean a vector whose i-th
component is the divergence of the i-th row of σ, that is,

(div σ)i =
3
∑

j=1

∂σij
∂xj

, (6.94)

where xj is the j-th component of the position x of a fluid particle. We
now combine (6.90), (6.92) and (6.93) to arrive at

∫

p(t,Ω)

(ρ
Dvi
Dt

−
3
∑

j=1

∂σij
∂xj

− ρFi) dv = 0, (6.95)

for i = 1, 2 and 3, and any arbitrary parcel Ω. This discussion results in
the following system of PDEs since the parcel Ω is arbitrary and, there-
fore, the integral in (6.95) vanishes if and only if its integrand vanishes

ρ
Dvi
Dt

−
3
∑

j=1

∂σij
∂xj

− ρFi = 0, for i = 1, 2, 3, (6.96)

where vi’s are the components of v = 〈u, v, w〉.

The system of PDEs in (6.96) takes a special form when the material
is an ideal isotropic incompressible fluid, i.e., when the velocity field v
and the Cauchy stress σ are related by

σ = −pI + µD.

256 Physical Oceanography: A Mathematical Introduction

It is not difficult to show that div (pI) = ∇p and div(D) = ∆v, where
by ∆v we mean 〈∆u,∆v,∆w〉. With these observations, the PDEs in
(6.96) reduce to

ρ

(

∂v

∂t
+ v · ∇v

)

= −∇p+ µ∆v + ρF. (6.97)

Typically the body force F is the weight of the fluid.
The system of equations (6.97) is called the Navier–Stokes Equations

equations of the fluid flow. In applications where one studies fluid mo-
tions in a revolving body such as the earth, equations (6.97) must also
take into account the contribution of the Coriolis and the centripetal
forces, which we will develop shortly.

For the special class of fluids for which the kinematic viscosity µ
vanishes (or ∆v = 0), the Navier–Stokes equations reduce to the Euler
system of PDEs:

ρ

(

∂v

∂t
+ v · ∇v

)

= −∇p+ ρF. (6.98)

We summarize the above discussion in the following theorem, which is
stated in the context of incompressible flows:

Theorem 6.8.1 (The Euler and Navier–Stokes PDEs for Incom-
pressible Fluids)
The Euler system of PDEs governs motions of incompressible inviscid
fluids. These PDEs are

ρ
Dv

Dt
= −∇p+ ρF, divv = 0. (6.99)

The Navier–Stokes system of PDEs governs motion of incompressible
and viscous fluids. These PDEs are

ρ
Dv

Dt
= −∇p+ µ∆v + ρF. (6.100)

We end this section by pointing out an important connection between
the Euler and the Navier-Stokes equations. The proof of this result is
left to the reader.

Theorem 6.8.2
Let v be the velocity field of an incompressible and viscous material.

Equations of Fluid Dynamics 257

Suppose that v is irrotational. Then the equations of motion of v reduce
to the Euler Equations

ρ
Dv

Dt
= −∇p+ ρF, divv = 0. (6.101)

Problems 6.8

1. Show that div (pI) = ∇p and div(D) = ∆v, where ∆v =
〈∆u,∆v,∆w〉.

2. Prove Theorem 6.8.2.

3. Show that the stream function ψ of the flow past the cylinder (with
F = 0), which is given by

ψ(x, y) = y − y

x2 + y2
,

satisfies ∆v = 0, and is irrotational. Assuming that the fluid is of
constant density, find the pressure p so that the Euler system of
PDEs in (6.100) is satisfied.

4. (Linear Flows) Consider the flow of an incompressible viscous fluid
whose velocity v satisfies

ρ
∂v

∂t
= −∇p+ µ∆v, div v = 0, (6.102)

where ρ is constant. Show that

(a) p must satisfy ∆p = 0.

(b) ω = ∇× v satisfies the PDE

∂ω

∂t
= ν∆ω, (6.103)

where ν = µ
ρ .

6.9 Bernoulli’s Equation and Irrotational Flows

In a typical problem the system of PDEs in (6.97) must be augmented
by initial conditions, i.e., the state of fluid at time zero, and by boundary
conditions, which describe how fluid particles that are located on the

258 Physical Oceanography: A Mathematical Introduction

boundary interact with the boundary—if the boundary is a solid surface,
one often prescribes the no-slip boundary condition v = 0, so that fluid
particles that are located on the surface remain stationary for all time.
Another popular boundary condition, often employed when the model is
inviscid (that is, µ = 0 in (6.97)) is to assume that the normal component
of the velocity vanishes at the boundary (the so-called slip boundary
condition)

v · n = 0,

where n is a unit outward normal to the boundary. No matter which
boundary condition one selects, Navier–Stokes equations are very diffi-
cult to solve. Very few exact solutions of this system are available, al-
though the ones we do know of are quite important in that they provide
valuable information about the nature of solutions of this system.

The challenges we face when attempting to find solutions to (6.97)
stem from two sources: the nonlinear dependence of the acceleration on
the velocity, which is due to the presence of v · ∇v in the formula in
(6.61), and the complications that arise from the flow domain being ge-
ometrically complex. The complication that arises from the nonlinearity
of a prohibits us from building additional solutions of the Navier–Stokes
equations once we have two distinct solutions in hand, that is, the prin-
ciple of linear superposition, which is at the heart of obtaining solutions
in the case of linear ODEs and PDEs, is not available here. A complex
geometry, on the other hand, prohibits us from using well-known an-
alytic functions of mathematics, most notably trigonometric functions
and Fourier series, as building blocks for constructing solutions. As a
result, our strategy in obtaining exact solutions is to look at cases where
the flow and/or the domain are relatively simple. In this section we look
at one such special case, the case of irrotational flows.

Consider an irrotational flow, where by definition the velocity field v
satisfies the constraint

∇× v = 0. (6.104)

This relation, which is equivalent to stating ∂vi

∂xj
=

∂vj

∂xi
for all i and j,

helps us with rewriting the v · ∇v as

3
∑

j=1

∂vi
∂xj

vj =

3
∑

j=1

∂vj
∂xi

vj =
1

2

3
∑

i=1

∂(v2
j)

∂xj
=

1

2

∂

∂xi
||v||2. (6.105)

Putting it slightly differently, the nonlinear term (v ·∇)v is the gradient
of the square of the fluid speed:

(v · ∇)v =
1

2
∇||v||2. (6.106)

Equations of Fluid Dynamics 259

Yet another way of stating this fact is to note that 1
2 ||v||2 serves as a

potential for (v · ∇)v. See also Problem 1 at the end of this section.
A second consequence of the irrotationality of v is that this velocity

field must have a potential, that is, there must exist a function φ whose
gradient is the velocity field:

v = ∇φ. (6.107)

If we further assume that the fluid is homogeneous and the density ρ
remains constant, and that the body force F itself has a potential f ,
then the equation in (6.97) takes the form

∇
(

∂φ

∂t
+

1

2
||v||2 + f +

p

ρ

)

= 0. (6.108)

or equivalently
∂φ

∂t
+

1

2
||v||2 + f +

p

ρ
= const. (6.109)

The above expression is called the Bernoulli equation for incompressible
fluids. When the material is compressible, this expression takes the form

∂φ

∂t
+

1

2
||v||2 + f +

∫

dp

ρ
= const. (6.110)

Bernoulli’s equation has several consequences. For one thing it allows
us to compute the pressure function p, say, if we had prior knowledge of
the velocity field, and vice versa. Moreover, when the flow has reached
a steady-state, so that ∂φ

∂t = 0, the conserved quantity on the right side
of (6.109) reduces to

1

2
||v||2 + f +

∫

dp

ρ

which gives a precise interpretation of how the increase in the speed of
a fluid particle must be compensated by an equivalent decrease in the
pressure field p. This interpretation is closely related to the concept of
“lift” associated with the flow past an airfoil—fluid particles that travel
below the wing, as opposed to those that travel above it, experience dif-
ferent pressure fields. The net difference in the pressure values translates
into the familiar lift of the airfoil.

Problems 6.9

1. Let v be an irrotational vector field. Show that ∇×((v ·∇)v) = 0,
and hence deduce that the vector (v · ∇)v must have a potential.

2. Complete the computations that lead to the compressible version
of Bernoulli’s equation (6.110).

260 Physical Oceanography: A Mathematical Introduction

3. Consider an irrotational flow of an incompressible fluid which has
reached its steady-state. Suppose that the body forces are negligi-
ble. Show that the velocity and pressure must satisfy

ρ

2
||v||2 + p = const. (6.111)

Use this result and compute the pressure when v is the velocity
field of the flow past the cylinder

6.10 Acceleration in Spherical Coordinates

Because of the shape of our planet, the natural setting for studying
flows in Geophysical Fluid Dynamics, which will be introduced in the
next chapter, is spherical coordinates. Here we begin with the descrip-
tion of these coordinates and develop a basis in terms of unit vectors in
the directions of the coordinate curves. We then determine the compo-
nents of a typical vector, such as Ω, the vector that defines the axis and
magnitude of the Earth’s rotation, in this basis. Finally we write down
the representation of typical velocity and acceleration fields in spherical
coordinates.

6.10.1 Coordinate Curves

Let P be a point having coordinates (x, y, z) in rectangular coordi-
nates and (r, θ, φ) in spherical coordinates. Here r is the distance from
the origin to P , θ measures the longitude and ranges between 0 and
2π, and φ is the latitude, ranging between −π

2
and π

2
. Note that this

definition is different from the traditional definition of spherical coor-
dinates in most mathematical texts where θ stands for the co-latitude
angle. Our definition is consistent with how these coordinates are intro-
duced in most oceanography texts because of the natural significance of
latitude in this discipline.

The rectangular and spherical descriptions of P are related through
the following relations:

x = r cos θ cosφ, y = r sin θ cos φ, z = r sinφ. (6.112)

These relations are readily reversed to write r, θ and φ in terms of their

Equations of Fluid Dynamics 261

rectangular counterparts:

r =
√

x2 + y2 + z2, θ = Arctan
y

x
, φ = Arcsin

z
√

x2 + y2 + z2
.

(6.113)
In any coordinate system the expression coordinate curve is a curve

along which only one of the three coordinate parameters varies while
the other two are kept constant. For example, the x-axis is a coordinate
curve in rectangular coordinates along which the coordinate x varies
while y and z remain constant. Because of the special importance of the
three axes in rectangular coordinates, we are interested in identifying
the corresponding coordinates curves in a spherical coordinates.

To that end, let P have spherical coordinates (r0, θ0, φ0). By keeping
r and θ fixed at r0 and θ0 , respectively, while allowing φ to take on all
values between −π

2
and π

2
, we obtain a coordinate curve, a semi-circle in

this case, which is part of a great circle (a meridian circle) that passes
through P and the two poles. We will refer to this curve as the φ-curve
through P . Similarly, a θ-curve is obtained by fixing r = r0 and φ = φ0,
while allowing θ to take on all values between 0 and 2π, which defines
the familiar parallel circle through P . Finally, fixing θ = θ0 and φ = φ0,
while allowing r take on all nonnegative values, we construct an r-curve,
a straight line which passes through the origin and P and defines the
radial direction at P . These three coordinate curves play a role similar to
the role that the x-, y- and z-axes play in rectangular coordinates. Figure
6.10 shows the three coordinate curves associated with the point P with
rectangular coordinates (−2, 1, 3). This figure is obtained in MATLAB
as follows:

clf;

clear all;

lon=-0:(2*pi)/100:2*pi;

lat=-pi/2:pi/100:pi/2;

x=-2; y=1; z=3;

r0=sqrt(x^2+y^2+z^2);

theta0=atan(y/x);

phi0=asin(z/r0);

% Meridian

plot3(r0*cos(theta0)*cos(lat),r0*sin(theta0)*cos(lat),...

r0*sin(lat),’b’);

hold on

% Parallel

plot3(r0*cos(phi0)*cos(lon),r0*cos(phi0)*sin(lon),...

r0*sin(phi0)*ones(length(lon),1)’, ’r’);

hold on

262 Physical Oceanography: A Mathematical Introduction

−4

−2

0

2

4

−4

−2

0

2

4
−4

−2

0

2

4

6

FIGURE 6.10: The spherical coordinate curves passing through P =
(−2, 1, 3).

% Radial

r=0:0.01:2*r0;

plot3(cos(phi0)*cos(theta0)*r,cos(phi0)*sin(theta0)*r,...

sin(phi0)*r,’g’)

grid on

axis square

6.10.2 Spherical Basis

Given a specific point P on a sphere, we now determine three vectors,
denoted by eθ(P), eφ(P) and er(P), which play a similar role to i, j and
k of rectangular coordinates in that they will be mutually orthogonal and
have magnitude one. By definition, eθ is a unit tangent vector to the θ-

Equations of Fluid Dynamics 263

curve through P , while eφ is a unit tangent vector to the corresponding
φ-curve, and er is a unit tangent vector to the r-curve.

We begin by determining eθ by first parametrizing the θ-curve
through the point P . Let P have coordinates (r0, θ0, φ0) in spherical
coordinates. Then the θ-curve through P has the parametrization

r(θ) = 〈r0 cos θ cos φ0, r0 sin θ cos φ0, r0 sinφ0〉.

Since eθ is a unit tangent vector to the θ-curve, we find eθ by differen-
tiating the above expression with respect to θ, followed by dividing the
result by its magnitude, to get

eθ(P) = − sin θ0i + cos θ0j. (6.114)

As expected eθ does not have a component in the north-south direction.
A similar consideration leads to the following formulas for eφ and er:

eφ(P) = − cos θ0 sinφ0i − sin θ0 sinφ0j + cosφ0k. (6.115)

and
er(P) = cos θ0 cos φ0i + sin θ0 cos φ0j + sinφ0k. (6.116)

Note that eφ, unlike eθ, depends on the longitude and the latitude of P .
Also, as expected, er is in the radial direction and is therefore perpen-
dicular to the sphere of radius r0. Moreover, these vectors are mutually
orthogonal, that is

e
θ
· eφ = e

θ
· er = eφ · er = 0. (6.117)

The expressions in (6.114), (6.115) and (6.116) show the relationship
between {eθ, eφ, er} and {i, j,k}. These relations are easily inverted to
give us







i = − sin θ0 eθ − cos θ0 sinφ0 eφ + cos θ0 cos φ0 er,
j = cos θ0 eθ − sin θ0 sinφ0 eφ + sin θ0 cos φ0 er,
k = cosφ0 eφ + sinφ0 er .

(6.118)

What we have accomplished so far is to introduce the concept of
spherical basis vectors eθ, eφ and er. The significance of this set of mu-
tually orthogonal unit vectors is that any vector v can be represented in
terms of these three vectors as

v = ueθ + veφ + wer. (6.119)

The coefficients u, v and w are the coordinates of v in spherical coor-
dinates. The same vector v has a similar representation in terms of the

264 Physical Oceanography: A Mathematical Introduction

rectangular basis vectors {i, j,k}: There are scalars v1, v2 and v3 such
that

v = v1i + v2j + v3k. (6.120)

However, in oceanography and meteorology it is the spherical represen-
tation (6.119) that is most natural when one studies ocean currents or
pressure fronts, especially when the study involves large-scale structures.

Because the spherical and rectangular bases involve mutually orthog-
onal vectors, it is an easy task to write the coordinates of a vector v
expressed in one basis in terms of its coordinates in another. Since the
spherical basis vectors are orthonormal, we have

u = v · eθ, v = v · eφ, w = v · er. (6.121)

One can now deduce the relations among u, v, w in (6.119) and v1, v2
and v3 in (6.120) by using (6.114), (6.115) and (6.116).

We summarize the above discussion in the following theorem.

Theorem 6.10.1 (Basis in Spherical Coordinates)
Given an arbitrary point P with coordinates (x, y, z) in rectangular co-
ordinates and (r, θ, φ) in spherical coordinates, the vectors eθ, eφ and er
defined by

eθ(P) = − sin θi + cos θj,

eφ(P) = − cos θ sinφi− sin θ sinφj + cos φk, (6.122)

er(P) = cos θ cosφi + sin θ cos φj + sinφk,

form an orthonormal basis constructed at P . Given any vector v, it can
be represented as

v = ueθ + veφ + wer. (6.123)

The component u is the contribution of v in the east-west direction, v
its contribution in the north-south direction, and w is its radial compo-
nent. Conversely, the standard rectangular basis {i, j,k} is related to the
spherical basis by the relations in (6.118).

6.10.3 The Eulerian Formulation of Velocity and Accel-

eration Revisited

Consider a particle of fluid P and its trajectory C, consisting of a
curve in the three-dimensional space R3. Let us assume that the position
of P at any time t can be specified by a set of differentiable functions
x(t), y(t) and z(t) so that

r(t) = x(t)i + y(t)j + z(t)k (6.124)

Equations of Fluid Dynamics 265

defines the position vector r, or equivalently, the parametrization of the
curve C. The velocity v of P is then determined by direct differentiation
of r:

v(t) = x′(t)i + y′(t)j + z′(t)k,

where prime denotes differentiation with respect to time t. The above
expression defines the Lagrangian representation of the velocity, which
was introduced earlier. The above components of velocity (i.e., x′, y′ and
z′) are converted to functions of position and time, so typically

v = v1i + v2j + v3k, (6.125)

where each component vi is a function of position and time

vi = vi(x, y, z, t),

so that the expression is (6.125) is the familiar Eulerian formulation of
the velocity field.

As we saw in Section 6.5, the Eulerian representation of velocity
implies that the acceleration a is determined from (6.125) by the formula

a =
∂v

∂t
+ (v · ∇)v. (6.126)

In rectangular coordinates the components of a are

ai =
∂vi
∂t

+

3
∑

j=1

vj
∂vi
∂xj

, i = 1, . . . , 3. (6.127)

Here we are adopting the convention that x1 = x, x2 = y and x3 = z.
Recall that the operator

D

Dt
=

∂

∂t
+

3
∑

j=1

vj
∂

∂xj
(6.128)

is the total or the material derivative and that (6.128) can be recast as

ai =
Dvi
Dt

. (6.129)

6.10.4 Velocity in Spherical Basis

In order to write down an expression for acceleration in spherical
coordinates, we first need to write the expression (6.128) in spherical
coordinates. Since the positions p(t), occupied by P , have coordinates

266 Physical Oceanography: A Mathematical Introduction

(x(t), y(t), z(t)) in rectangular coordinates, and (θ(t), φ(t), r(t)) in spher-
ical coordinates, and since we know the relations among the rectangular
and spherical coordinates, we can rewrite the position vector r(t) in
(6.124) as

r = r(t) cos θ(t) cos φ(t) i + r(t) sin θ(t) cos φ(t) j+

r(t) sinφ(t)k (6.130)

in spherical coordinates. Differentiating (6.130) with respect to t yields

v = (r′ cos θ cos φ− rθ′ sin θ cosφ− rφ′ cos θ sinφ) i+

(r′ sin θ cos φ+ rθ′ cos θ cos φ− rφ′ sin θ sinφ) j+ (6.131)

(r′ sinφ+ rφ′ cos φ)k.

Using the formulas (6.114), (6.115) and (6.116), it is easy to see that
(6.131) is equivalent to

v = rθ′ cos φ eθ + rφ′eφ + r′er. (6.132)

The coefficients of eθ, eφ and er in the above expressions are the com-
ponents of velocity in spherical coordinates. We denote them by vθ, vφ
and vr respectively, i.e.,

v = vθeθ + vφeφ + vrer (6.133)

where

vθ = rθ′ cosφ, vφ = rφ′, vr = r′. (6.134)

We note that vθ is the component of the velocity in the east-west di-
rection, vφ is the component in the north-south direction, and vr is the
component in the radial direction. As is common in most oceanography
texts, vθ is denoted by u, vφ by v and vr by w.

We summarize the above discussion in the following theorem.

Theorem 6.10.2 (Velocity Fields in Spherical Coordinates)

When the velocity vector v is represented in spherical coordinates as in
(6.133), its components vθ, vφ and vr (or equivalently u, v, and w) are
related to θ(t), φ(t) and r(t) through the relations (6.134). In particu-
lar, particle trajectories can be obtained from the system of differential
equations

dθ

dt
=

u

r cos φ
,

dφ

dt
=
v

r
,

dr

dt
= w. (6.135)

Equations of Fluid Dynamics 267

6.10.5 Dynamics of Basis Vectors

To compute the acceleration a in spherical coordinates we need to
differentiate v = ueθ+veφ+wer with respect to t. Unlike the rectangular
basis {i, j,k}, where each vector is independent of t, the spherical basis
{eθ, eφ, er} varies with t because this basis depends on position, and the
particle P , whose acceleration we seek, occupies different positions at
different values of t. This time dependence will additionally contribute
to the computation of acceleration.

Recall from (6.114) that eθ is related to the standard rectangular
basis through the relation eθ = − sin θ i + cos θ j. Differentiating this
relation with respect to t yields

deθ
dt

= −θ′ cos θ i − θ′ sin θ j.

But from (6.135) we have θ′ = u
r cosφ

so the above expression takes the
form

deθ
dt

=
u

r cosφ
(− cos θ i − sin θ j). (6.136)

Recall that we derived the relationship between the standard and spheri-
cal bases in (6.118). In particular, the latter expressions relate the vectors
i and j to their spherical counterparts, which we use to replace i and j
in (6.136):

deθ
dt

=
u

r cos φ
(sinφ eφ − cosφ er). (6.137)

Similarly, we derive the following expressions for eφ and er:

deφ
dt

= −u tanφ

r
eθ −

v

r
er,

der
dt

=
u

r
eθ +

v

r
eφ. (6.138)

6.10.6 Formula for Acceleration in Spherical Coordi-

nates

Returning to (6.133), we differentiate this relation with respect to t
to get

a =
du

dt
eθ + v

deθ
dt

+
dv

dt
eφ + v

deφ
dt

+
dw

dt
er +w

der
dt
. (6.139)

Next we substitute (6.137), (6.138) into (6.139) to get

a = (
du

dt
− uv

r
tanφ+

uw

r
)eθ + (

dv

dt
+
u2

r
tanφ+

vw

r
)eφ+

(
dw

dt
− u2 + v2

r
)er . (6.140)

268 Physical Oceanography: A Mathematical Introduction

Equation (6.140) determines the acceleration when the velocity is given
in spherical coordinates. We summarize this finding in the following the-
orem.
Theorem 6.10.3 (Acceleration in Spherical Coordinates)
The expression in (6.140) defines the acceleration a when expressed in
spherical coordinates.

Problems 6.10

1. Consider the point P whose coordinates are (1, 2, 3) in Cartesian
coordinates.

(a) Find the spherical coordinates of P .

(b) Plot the three spherical coordinate curves that pass through
P .

2. Verify (6.117), that the spherical basis vectors are mutually or-
thogonal.

3. Verify the following relations:

eθ × eφ = er, eφ × er = eθ , er × eθ = eφ. (6.141)

4. Derive (6.118). Hint: Start with (6.115) and (6.116) and eliminate
k between them. Then consider the resulting equation with (6.114)
and solve for i and j.

5. Use the orthogonality properties of the spherical basis vectors to
show that v1, v2 and v3 in (6.119) are given by

v1 = v · eθ , v2 = v · eφ , v3 = v · er . (6.142)

6. Show that a and da
dt are orthogonal, where a is any of the three

vectors in the spherical basis (6.122).

7. Use the identities in (6.141) to arrive an alternative derivation of
the equations in (6.137), (6.138).

6.11 Project A: Inviscid Linear Fluid Motions and
Surface Gravity Waves

The main goal of this project is to develop a linear two-dimensional
model based on the Navier–Stokes equations which is capable of support-
ing surface gravity waves. For more discussion regarding surface gravity

Equations of Fluid Dynamics 269

waves and the questions posed below see pages 343–348 of [1]. In addi-
tion, surface gravity waves are treated extensively in many oceanography
texts, an excellent source being Adrian Gill’s book, Reference[7]. See, in
particular, pages 95 through 105 of this reference.

1. Consider an inviscid fluid (i.e., µ = 0 in (6.97)), occupying an
infinite region bounded by the planes z = 0 and z = −h, so that
the domain is

D = {(x, y, z)| − h ≤ z ≤ 0}. (6.143)

First, consider the stationary flow v = 0. Let F =
[

0 0 −g
]T

be the force acting on the fluid, i.e., the only external force acting
on the body of the fluid is its weight. By looking at the first two
equations in (6.97), show that the pressure p is independent of x
and y.

2. Show that the third equation in (6.97) reduces to ∂p
∂z

= −ρg, from
which deduce the expression

p(z) = −ρgz. (6.144)

To get the above result choose the constant of integration so that
the surface z = 0 is pressure free and corresponds to the free surface
of the domain. Equation (6.144) defines the hydrostatic pressure in
the equilibrium flow.

3. So far we have obtained the simplest solution of the Navier–Stokes
equations, namely, one where every fluid particle is standing still
and the only pressure a fluid particle feels is induced by the col-
umn of fluid resting above it (see (6.144)). Now consider a two-
dimensional perturbation of this flow by perturbing the free surface
z = 0 in the form

z = εη(x, y, t). (6.145)

Let v = (εU, εV, εW) denote the perturbed velocity—note that
when ε = 0 we end up with the basic stationary solution v =
0. The pressure field in the perturbed motion also deviates from
the hydrostatic pressure expressed in (6.144). Let εP denote this
deviation:

p = −ρgz + εP. (6.146)

Show that {U, V,W, P } satisfy

ρ
∂U

∂t
= −∂P

∂x
+ h.o.t., ρ

∂V

∂t
= −∂P

∂y
+ h.o.t.,

270 Physical Oceanography: A Mathematical Introduction

ρ
∂W

∂t
= −∂P

∂z
− ρg + h.o.t., (6.147)

where h.o.t., the “higher order terms,” denotes terms that depend
on ε or its higher powers.

4. Show that the conservation of mass equation, div v = 0, takes the
form

∂U

∂x
+
∂V

∂y
+
∂W

∂z
= 0. (6.148)

5. Show that on the free surface z = εη(x, y, t) the following relation
holds

W =
∂η

∂t
+ εU

∂η

∂x
+ εV

∂η

∂y
. (6.149)

(Hint: Differentiate the expression z(t) = εη(x(t), y(t), t) with re-
spect to t.)

6. The main assumption we impose now is that we can neglect terms
that depend on ε throughout equations (6.147)–(6.149). With this
assumption invoked, the nonlinear terms in (6.147)–(6.149) drop
out. Show that the resulting linearized equations are

ρ
∂U

∂t
= −∂P

∂x
, ρ

∂V

∂t
= −∂P

∂y
, ρ

∂W

∂t
= −∂P

∂z
− ρg, (6.150)

together with the boundary conditions

W =
∂η

∂t
, when z = 0. (6.151)

7. Assume that the bottom boundary, z = −h, is impenetrable. Hence
the vertical component of the velocity must vanish, that is,

W = 0, when z = −h. (6.152)

8. By manipulating the equations in (6.150) show that P satisfies the
Laplace equation

∂2P

∂x2
+
∂2P

∂y2
+
∂2P

∂z2
= 0. (6.153)

9. Apply the separation of variables

P (x, y, z, t) = X(x)Y (y)Z(z)T (t), (6.154)

to (6.153) and arrive at

X′′ + µ2
1X = 0, Y ′′ + µ2

2Y = 0, Z′′ − λ2Z = 0, (6.155)

where
µ2

1 + µ2
2 = λ2. (6.156)

Equations of Fluid Dynamics 271

10. Show that (6.155) have the following solutions

X(x) = c1 sin(µ1x) + c2 cos(µ1x),
Y (y) = c3 sin(µ2y) + c4 cos(µ2y),
Z(z) = c5 sinh(λz) + c6 cosh(λz).

(6.157)

11. Show that Z must satisfy the boundary condition

Z′(−h) = 0. (6.158)

Use this information to conclude that P must be

P (x, y, z, t) = (c1 sin(µ1x) + c2 cos(µ1x))(c3 sin(µ2y)+

c4 cos(µ2y)) cosh λ(z + h)T (t), (6.159)

12. Returning to the free surface equation, show that

η(x, y, t) =
cosh(λh)

ρg
(c1 sin(µ1x) + c2 cos(µ1x))(c3 sin(µ2y)+

cos(µ2y))T (t). (6.160)

13. Show that T must satisfy the relation

T ′′ + λg tanh(λh)T = 0. (6.161)

14. Conclude that the final solution to the perturbation problem is

P (x, y, z, t) = P0 cos(µ1x+ µ2y − ωt) cosh λ(z + h), (6.162)

η(x, y, z, t) =
P0

ρg
cos(µ1x+ µ2y − ωt), (6.163)

W (x, y, z, t) =
P0λ

ω
sin(µ1x+ µ2y − ωt) sinhλ(z + h), (6.164)

λ2 = µ2
1 + µ2

2, and ω2 = λg tanh(λh). (6.165)

The above function η is called a Surface Gravity Wave. The relation

ω2 = λg tanh(λh)

is called the dispersion relation of these waves, providing a constraint be-
tween the wave numbers (µ1, µ2), the direction of propagation of waves,
and ω, the frequency of the waves.

272 Physical Oceanography: A Mathematical Introduction

6.12 Project B: Internal Gravity Waves

We considered surface gravity waves in the previous project. These
are waves that typically arise at the interface between two fluids with
vastly different densities, such as at the air-sea interface. Here we would
like to develop the basic mathematical equations that govern waves that
are generated in regions where two fluids with relatively similar densities
are present. This scenario often happens in the case of the ocean and the
atmosphere, where the fluid is stratified and the density varies, albeit
slowly, with depth or height. The waves generated in a stratified domain
are usually referred to as internal gravity waves.

A simple mathematical setting where we can explore the effect of
change in density is when we have multi-layer fluids, where the fluid
density experiences (small) jumps across interfaces. In this project we
consider the case of two such incompressible fluids whose densities differ
slightly and study the behavior of the interface. See [1] and [7] for more
background on thi topic, as well as, many other texts, including [9],
which treat internal waves, not only in the linear setting described here,
but also for considerably more complicated and realistic domains.

Consider the domain D containing two fluids with densities ρ1 and
ρ2, with ρ2 > ρ1. Suppose D is the union of two regions D1 and D2

where
D1 = {x ∈ R3| − h1 ≤ z < 0}

and
D2 = {x ∈ R3| − h2 − h1 ≤ z < −h1}.

Here h1 and h2 are constant, so that the initial, equilibrium interfaces are
flat. The surface defined by H = −h1 − h2 is a solid, flat boundary. The
regions D1 and D2 contain fluids with densities ρ1 and ρ2, respectively.
We assume that the two interfaces z = 0 and z = −h1 are perturbed
and are now represented by

z = η1(x, y, t), and z = −h1 + η2(x, y, t).

Follow the strategy described in the previous project in what follows. In
particular, assume that pressure remains hydrostatic through the water
column, a reasonable assumption if η1 and η2 remain small.

1. Show that in the upper layer, where −h1 + η2 ≤ z < η1, that the
perturbed velocity V1 = 〈U1 , V1,W1〉 satisfies

∂U1

∂t
= −g∂η1

∂x
,

∂V1

∂t
= −g∂η1

∂y
,

∂W1

∂t
= −g∂η1

∂z
+ρ1g. (6.166)

Equations of Fluid Dynamics 273

2. Show that V1 satisfies div V1 = 0. Integrate this equation in the
interval z ∈ (−h1 + η2, η1) and arrive at

∂2η1

∂t2
= gh1∆η1 +

∂2η2

∂t2
. (6.167)

Note how the dynamics from the lower layer influences the dynam-

ics of the upper layer through the “forcing” term ∂2η2
∂t2

.

3. Show that the pressure P1 in the upper layer is

P1 = ρ1g(η1 + h1 − η2).

4. We now turn our focus to the lower layer. We assume that the pres-
sure is continuous across the interface. Use this boundary condition
to show that P2 is

P2 = ρ1g(η1 + h1 − η2) + ρ2g(z − h1 + η2).

5. Let V2 = 〈U2, V2,W2〉 be the velocity vector field in the lower layer.
As before, apply the conservation of mass equation to conclude that
η2 is related to U2 and V2 by

∂η2

∂t
+ h2(

∂U2

∂x
+
∂V2

∂y
) = 0.

6. Next, begin with the equations for U2 and V2, eliminate P2 from
these equations, followed by differentiating the above equation for
η2 with respect to t to arrive at the following second-order PDE
for η2:

∂2η2

∂t2
=
ρ1

ρ2
gh2∆η1 +

ρ2 − ρ1

ρ2
gh2∆η2. (6.168)

The behavior of the solutions (η1, η2) of the system of PDEs in
(6.167) and (6.168) determine what an internal wave is. Of partic-
ular interest is the term

ρ2 − ρ1

ρ2
g

which is usually referred to as reduced gravity and denoted by g′.
This value is usually small when ρ1 and ρ2 are close to each other,
which could result in generation of relatively large amplitude waves
relative to the surface gravity waves we observe at the air-sea in-
terface.

274 Physical Oceanography: A Mathematical Introduction

7. Write a MATLAB program to solve the system of PDEs in (6.167)
and (6.168). Begin with values for ρ1, ρ2, h1, and h2, as well as
for initial conditions for η1 and η2, of your own choosing. Assume
periodic boundary conditions in the x and y directions. Experiment
with values of ρ1 and ρ2 and report on the relative sizes of η1 and
η2. In particular, consider the special case when η1 = µη2 at time
zero and explore the conditions under which the two perturbations
remain proportional for all time.

6.13 Project C: Equation for Bubble Dynamics

The goal of this project is to apply Bernoulli’s equation to derive
a differential equation for the motion of a spherical bubble immersed
in an incompressible fluid. See Reference [1], pages 335–336, for more
discussion and some hints to the questions posed below.

1. Consider a compressible fluid, say air, occupying a region D =
{x||x| ≤ R(t)}, embedded in an incompressible fluid, say water,
outside of D having density ρ. Assume that the motions of the
bubble and the fluid are spherically symmetric so that the velocity
field of the fluid is in the form

v(x, t) = w(r, t)er, (6.169)

where w(r, t) is unknown and er is the unit radial vector er =
x/||x||.

2. Recall the formula for the divergence operator in spherical coordi-
nates (see the expression in (3.39), and also Problem 9 in Chapter
3). Start with the equation of conservation of mass, the formula
for divergence in spherical coordinates, and show that w(r, t) must
be of the form

w(r, t) =
T (t)

r2
, (6.170)

where f is an arbitrary function of t.

3. Apply the formula in (6.140) to (6.169) to arrive the formula for
the acceleration a as a function of w and T .

4. Assuming that R′, the velocity of the gas-fluid interface, is equal

Equations of Fluid Dynamics 275

to v|r=R, the velocity of the fluid adjacent to it, show that the
function f in (6.170) satisfies

T (t) = R2R′. (6.171)

5. Show that the velocity field (6.169) is irrotational and that

φ = −1

r
T = −1

r
R2R′ (6.172)

is a potential for this field.

6. Assume that the body forces are negligible so that the function
f in the Bernoulli equation (6.110) is zero. Show that under this
assumption equation (6.110) takes the form

1

r
(R2R′)′ − 1

2r4
R4R′2 − p = const. (6.173)

where the above constant could be a function time. The differential
equation (6.173) can be solved for R(t) once appropriate boundary
conditions are specified.

7. Consider the case of a bubble immersed in a fluid of density ρ with
constant pressure p0 far away from the bubble. Use this boundary
condition to determine the constant in (6.173):

const =
p0

r
. (6.174)

8. Substitute r = R in (6.173) to get the ODE

− 1

R
(R2R′)′ +

1

2
R′2 +

p

r
=
p0

r
, (6.175)

for R, the radius of the bubble at time t.

9. Use ode45 of MATLAB to study (6.175) after setting p, the internal
pressure inside the bubble, equal to zero, acknowledging that this
pressure is negligible in comparison to the fluid pressure. Solve the
initial value problem

RR′′ +R′2 = −2

3

p0

r
, R(0) = R0, R

′(0) = 0, (6.176)

with parameter values r = 1, R0 = 1, p0 = 106 to see if the
bubble ever collapses, that is, if there is a time T > 0 such that
limt→T R(t) = 0.

276 Physical Oceanography: A Mathematical Introduction

6.14 Project D: Chaotic Transport

This project is motivated by a paper of H. Yang and Z. Liu (see [8])
where the authors present an analysis of a three-dimensional oceanic
model and introduce the concept of the “Great Ocean Barrier.”

1. Read the abstract and the introduction to [8] and write up a sum-
mary of the issues that are addressed in this paper. Specifically,

(a) what do the mathematical symbols L, H , curl τ (y), δs and δB
represent?

(b) What are the physical (and simplifying) assumptions under
which this work is undertaken?

(c) What are the mathematical tools being employed (for exam-
ple, what is the “Lyapunov Analysis” described in Section 5
of the paper)?

2. Consider two stream functions ψ
W

(x, y) and ψ
B
(y, z), as yet not

explicitly specified, in terms of which we define the velocity field
v as

v = 〈u, v, w〉 = 〈−∂ψW

∂y
,
∂ψW

∂x
+
∂ψB

∂z
,−∂ψB

∂y
〉. (6.177)

Show that v is incompressible. Compute the vorticity of this flow
in terms of the stream functions ψW and ψB .

3. Begin with the following definitions for ψ
W

and ψ
B
:

ψW (x, y) = (x− 2) sin(πy)(1 − exp(− x

δs
)),

ψB = ε(y + 1) sin(
πz

b
)(1 − exp(

y − 1

δB
)). (6.178)

Find formulas for the velocity field v in (6.11).

4. Using the results of the velocity field from the previous part, con-
sider the following system of ODEs for the particle trajectories:

dx

dt
= −∂ψW

∂y
,

dy

dt
=
∂ψ

W

∂x
+
∂ψ

B

∂z
,

dz

dt
= −∂ψB

∂y
, (6.179)

subject to the initial conditions x(0) = x0, y(0) = y0 and z(0) =

Equations of Fluid Dynamics 277

0

0.5

1

1.5

2

−1

−0.5

0

0.5

1
−1

−0.8

−0.6

−0.4

−0.2

0

FIGURE 6.11: The trajectory of (6.179) with initial position
(0.3,−0.2,−0.5).

z0. Use ode45 to solve (6.179) for t ∈ (0, 4) and initial position
(0.3,−0.2,−0.5) for the following set of parameter values:

δs = 0.025, δB = 0.01, b = 1, ε = 1. (6.180)

Plot the graph of the trajectory you obtain and compare your
graph to Figure 6.11 and to Figure 2(a), page 1262 of [8]. To get a
graph that resembles these two figures, first apply ode45 with its
default values for relative and absolute errors—the values you will
obtain will unfortunately be only accurate for a short period of time
and you will obtain NaN value for the coordinates of (x(t), y(t), z(t))
as soon as the trajectory reaches its northern most destination and
must dip down in the z direction. To improve on accuracy we must
appeal to the odeset function in MATLAB to set the options in
ode45 to something like

options = odeset(’RelTol’,1e-10,’AbsTol’, ...

[1e-10 1e-10 1e-10]);

[t,y]=ode45(@YangLiu,[0 4],[0.3 -0.2 -0.5], options);

where YangLiu.m is the M-file in which the ODEs for this problem
are defined.

278 Physical Oceanography: A Mathematical Introduction

0 0.5 1 1.5 2 2.5 3 3.5 4
−1

−0.5

0

0.5

1

1.5

2

x

y

z

FIGURE 6.12: The graphs of x, y, and z versus t for the trajectory
with initial position (0.3,−0.2,−0.5).

5. Apply ode45 to (6.179) to obtain the other three figures in Figure
2 of [8]. The initial positions are (1,−0.5,−0.2), (0.01, 0.8,−0.05),
and (0.01,−0.5,−0.01).

6. To gain insight into the chaotic character of (6.179) apply the
above analysis to a small neighborhood of each of the four initial
positions. To be precise, consider a spherical neighborhood of 0.01
radius about each one of the four initial positions described above.
Select 100 random positions on each one of these spheres and solve
(6.179) for each of these points and plot their positions after 4
units of time have expired. Report on the level of dispersion you
observe on the final positions.

Equations of Fluid Dynamics 279

6.15 References

1. Malek-Madani, R., Advanced Engineering Mathematics with
MathematicaR© and MATLABR©, 1998, Addison-Wesley.

2. Shadden, C., Lekien, F., Marsden, J., “Definition and properties
of Lagrangian coherent structures from finite-time Lyapunov ex-
ponents in two-dimensional aperiodic flows”, Physica D, Vol 212,
2005, pp. 271–304.

3. Branicki, M., Wiggins, S., “Finite-time Lagrangian transport anal-
ysis: stable and unstable manifolds of hyperbolic trajectories and
finite-time Lyapunov exponents”, Nonlinear Processes in Geo-
physics, 2010, pp. 1–36.

4. Majda, A., Bertozzi, A., Vorticity and Incompressible Flow, Cam-
bridge, 2002.

5. Majda, A., Wang, X., Nonlinear Dynamics and Statistical Theories
for Basic Geophysical Flows, Cambridge, 2006.

6. Truesdell, C., Rajagopal, K. An Introduction to the Mechanics of
Fluids, Birkhauser, 1999.

7. Gill, A., Atmosphere-Ocean Dynamics, Academic Press, 1982.

8. Yang, H., Liu, Z, “The three-dimensional chaotic transport and
the great ocean barrier”, J. of Phys. Ocean., Vol 27, 1997, pp.
1258–1273.

9. Pedlsoky, J., Geophysical Fluid Dynamics, Springer-Verlag, New
York, 1986.

Chapter 7

Equations of Geophysical Fluid
Dynamics

7.1 Introduction

In the previous chapters we concentrated on the derivation of equa-
tions of motion of fluids in stationary, non-rotating frames and obtained
these equations in rectangular as well as spherical coordinate systems. In
this chapter our goal is to extend the derivation of equations of motion to
rotating frames. Moreover, we begin the discussion of the mathematical
relationship between measuring quantities when confined to the rotat-
ing frame itself, which is typical of the measurements we make when we
collect data about velocity, pressure or salinity on our planet, and the
same quantities when viewed from an inertial frame, say a coordinate
frame that is stationary relative to our planet. The key new idea now is
the mathematical description of the entity called the Coriolis force that
appears in the equations of balance linear momentum. The new equa-
tions of motion are referred to as the equations of Geophysical Fluid
Dynamics, or GFD for short.

As we will see shortly, the appearance of the Coriolis force will have
an enormous impact on the properties of solutions of the PDEs that gov-
ern geophysical flows, especially in modeling large-scale motions, as in
the Gulf Stream and the Kuroshio. It was the discovery of how Coriolis
counterbalances other geophysical forces, such as the prevailing winds
and friction or viscous forces, that resulted in the genesis of geophys-
ical fluid dynamics as a distinct discipline from the fluid flows whose
temporal and spatial scales confine them to laboratory settings.

281

282 Physical Oceanography: A Mathematical Introduction

7.2 Coriolis

For geophysical fluid flows on our planet the formula (6.140) of the
previous chapter for acceleration a needs to be augmented to include the
influence of the Earth’s rotation. Assuming the axis of rotation passes
through the poles, this rotation induces an angular velocity represented
by

Ω = Ωk,

where, assuming that it takes 24 hours for our planet to complete one
rotation about its axis, we have

Ω =
2π rad

24 hrs
= 0.000072722 rad/s.

Consider now a fluid particle P that remains stationary relative to the
rotating planet. To an observer outside of the planet this particle under-
goes a motion, tracing a path in the shape of a parallel circle, where the
latitude remains constant while the longitude changes according to Ωt:

r(t) = 〈a cosφ cosΩt, a cosφ sin Ωt, a sinφ〉. (7.1)

The velocity vector associated with this motion is computed by differ-
entiating (7.1) with respect to t:

v = r′ = Ω〈−a cos φ sinΩt, a cosφ cosΩt, 0〉, (7.2)

or equivalently
v = Ω × r. (7.3)

The rotational motion represented by (7.3) induces the acceleration

a =
dv

dt
=
dΩ

dt
× r + Ω × dr

dt
= Ω× v, (7.4)

assuming the rate of rotation Ω of our planet is time independent. For-
mula (7.4) describes the apparent acceleration of a stationary particle
P in a rotating frame when this particle is viewed and measured in a
non-rotating coordinate system.

Particles, however, typically move relative to the rotating planet it-
self. Denoting this relative velocity by vr , we note that a particle’s ab-
solute velocity, which we now denote by va, when measured in a non-
rotating frame, will be the sum of its relative velocity vr and the velocity
(7.3) induced by the planet:

va = vr + Ω × r. (7.5)

Equations of Geophysical Fluid Dynamics 283

It is worth emphasizing that vr is what our instruments measure when
we measure the velocity of a particle on our planet.

A good way to view the expression in (7.5) is to use its content to
define the time-rate of change of any quantity (denoted by an “◦” in the
following formula) in the non-rotating coordinate system:

D◦
Dt

=
d ◦
dt

+ Ω × ◦ . (7.6)

Hence, we are using D
Dt to denote the absolute time differentiation, in

a non-rotating cartesian coordinate system, while d
dt denotes the time

differentiation relative to the rotating frame. With this notation the

absolute acceleration of a particle is simply the second derivative D2

Dt2 ,
which, using the symbol operator in (7.6), reduces to

D2 ◦
Dt2

= (
d ◦
dt

+ Ω × ◦)(d ◦
dt

+ Ω× ◦) =

d2 ◦
dt2

+ 2Ω× d ◦
dt

+ Ω× (Ω × ◦). (7.7)

For example, when we apply the formula in (7.7) to the position vector r
of a particle, we obtain the important formula that describes the absolute
acceleration of a particle:

D2r

Dt2
=
d2r

dt2
+ 2Ω × dr

dt
+ Ω × (Ω × r). (7.8)

The three terms on the right side (7.8) all have significant physical in-

terpretations. The first term, d2r
dt2

, is the relative acceleration a, which
we should now denote by ar , that is,

ar =
d2r

dt2
=
∂vr
∂t

+ vr · ∇vr. (7.9)

We recall that in Section 6.10 we presented the spherical representation
of ar.

The second term in (7.8), 2Ω×vr , is the Coriolis force. We will have
more to say about this term shortly, but would like to comment now
that this “force” is in reality part of the acceleration of the particle and
not a force acting on it.

The third term, Ω×(Ω×r), is the centripetal acceleration of the par-
ticle. While this expression is quite significant when the rate of rotation,
Ω, is large, in most geophysical flows its magnitude is small relative to
the magnitude of −gk, the acceleration due to gravity. To see this, note
that the largest value

||Ω× (Ω × r)||

284 Physical Oceanography: A Mathematical Introduction

can assume occurs when the particle is located at the equator, and that
value is ||Ω||2a, where a is the Earth’s radius. With Ω = 7.2× 10−5 and
a = 6, 400 km, the magnitude of the centripetal acceleration is approx-
imately 0.03 m/s2, more than two orders of magnitude smaller than g’s
value, which is 9.8 m/s2. For this reason the contribution of the cen-
tripetal acceleration is often ignored.

It is also worth noting that Ω × (Ω × r) can be rewritten as

−Ω2

2
∇(||R||2), (7.10)

where R = 〈x, y, 0〉 is the projection of the position vector r onto the xy-
plane. So if the contribution of this term needs to be taken into account,
one can alter the potential of the conservative forces in the problem by

adding −Ω2

2 ||R||2 to this potential.
In summary, in what follows in this book we will use the expression

D2r

Dt2
=
d2r

dt2
+ 2Ω × vr (7.11)

for absolute acceleration. In the next section we will rewrite the Coriolis
force 2Ω× vr in spherical coordinates.

Problems 7.2

1. Verify the relationship between the expressions in (7.2) and (7.3).

2. Verify the statement in (7.10).

3. The Earth’s rotation vector Ω has the form Ωk in Cartesian co-
ordinates. Find the components of Ω in spherical coordinates, i.e.,
find a, b and c such that

Ω = a eθ + b eφ + c er.

Answer: a = 0, b = Ω cosφ, c = Ω sinφ. Is it intuitively clear why
Ω does not have a component in the e

θ
direction?

7.3 Coriolis Acceleration: 2Ω× vr

The term 2Ω× vr plays a crucial role in the equations of motion of
geophysical fluid flows, especially when the goal is to understand large
and medium scale behavior of large bodies of fluids. In order to compare

Equations of Geophysical Fluid Dynamics 285

its impact to the relative acceleration, ar, we first write this vector in
spherical coordinates. Recall that Ω = Ωk and vr = ueθ + veφ + vrer.
The relation

k = cosφ eφ + sinφ er

(see (6.118)) enables us to recast the Coriolis contribution as

2Ω× vr = 2(cosφ eφ + sinφ er) × (u eθ + v eφ +w er),

which, after taking advantage of the orthogonality properties of the
spherical basis (see (6.141)), reduces to

2Ω × vr = (−2Ω v sinφ+ 2Ωw cos φ) eθ+

2Ωu sinφ eφ − 2Ωu cosφ er. (7.12)

Combining this formula with (6.140) and (7.11) we obtain the following
working formula for absolute acceleration written in spherical coordi-
nates:

D2r

Dt2
= (−2Ω v sinφ+ 2Ωw cos φ+

du

dt
− uv

r
tanφ+

vθvr
r

) eθ+

(2Ω vθ sinφ+
dvφ
dt

+
v2
θ

r
tanφ+

vφvr
r

) eφ+

(−2Ω vθ cos φ+
dvr
dt

−
v2
θ + v2

φ

r
) er . (7.13)

The above formula is the fundamental result we will end up relying on
when we study the various reduced models of geophysical fluid flows,
notably the f-plane and the β-plane approximations, when the scales of
the flow allow us to ignore some of the nonlinearities in (7.13).

In the next section we develop the gradient operator in spherical
coordinates, which, together with (7.13), leads to the equivalent of the
Navier-Stokes equations in a rotating frame.

7.4 Gradient Operator in Spherical Coordinates

Consider a function p, represented as p(x, y, z) in rectangular coor-
dinates, and its equivalent representation P (r, θ, φ) in spherical coordi-
nates. These expressions satisfy the relation

p(x, y, z) = P (r, θ, φ). (7.14)

286 Physical Oceanography: A Mathematical Introduction

The gradient operator ∇, when applied to p , can be written as

∇p =
∂p

∂x
i +

∂p

∂y
j +

∂p

∂z
k (7.15)

and equivalently as

∇p = a eθ + b eφ + cer . (7.16)

Our task is to determine the terms a, b and c in terms of the various
derivatives of P . Note that the basis vectors {i, j,k} and {eθ, eφ, er} are
related by the expressions listed in (6.118). In order to complete (7.16)
we will need the following fact (recall that r2 = x2 +y2 +z2, θ = tan−1 y

x
and φ = z√

x2+y2+z2
)





rx ry rz
θx θy θz
φx φy φz



 =





cos θ cos φ sin θ cos φ sinφ
−1
r sin θ sec φ 1

r cos θ sec φ 0
−1
r cos θ sinφ −1

r sin θ sinφ 1
r sec φ



 ,

(7.17)
which shows the relationships between the rates of change of the spher-
ical coordinate variables with respect to the corresponding rectangular
ones. Since ∂p

∂x = ∂P
∂r rx + ∂P

∂θ θx + ∂P
∂φφx, it follows from (7.17) that

∂p

∂x
= cos θ cos φ

∂P

∂r
− 1

r
sin θ sec φ

∂P

∂θ
− 1

r
cos θ sinφ

∂P

∂φ
. (7.18)

Similar expressions follow for ∂p
∂y and ∂p

∂z . Once the latter expressions are

substituted into (7.15) and use is made of the relations in (6.118), we
have

∇p =
1

r cosφ

∂P

∂θ
eθ +

1

r

∂P

∂φ
eφ +

∂P

∂r
er. (7.19)

Problems 7.4

1. Verify the assertions in (7.17).

2. Complete the calculation that leads to (7.19).

3. Consider each function p defined below. First compute its gradient
in rectangular coordinates, and next in spherical coordinates, by
transforming p to P (r, θ, φ):

(a) p(x, y, z) = xyz.

(b) p(x, y, z) = 1√
x2+y2+z2

.

(c) p(x, y, z) = sin(x2 + y2).

Equations of Geophysical Fluid Dynamics 287

7.5 Navier–Stokes Equation in a Rotating Frame

We have now obtained formulas for the absolute acceleration (see
(7.13)) and pressure gradient in a rotating frame (in (7.19)). Hence the
equations that express the balance of linear momentum in the θ, φ and
r directions are

du

dt
− uv

r
tanφ+

uw

r
+ (−2Ωv sinφ+ 2Ωw cos φ) = − 1

rρ cos φ

∂P

∂θ
+ Fθ,

dv

dt
+
u2

r
tanφ+

vw

r
+ 2Ωu sinφ = − 1

rρ

∂P

∂φ
+ Fφ,

dw

dt
− u2 + v2

r
− 2Ωu cosφ = −1

ρ

∂P

∂r
− g − Fr, (7.20)

where the F terms are the components of external and viscous forces.
These equations are complemented by the conservation of mass equation
(i.e., div v = 0), which has the following form

1

r cosφ

∂u

∂θ
+

1

r cosφ

∂(cos φ v)

∂φ
+
∂w

∂r
+

2w

r
= 0 (7.21)

in spherical coordinates. Note that the expression in (7.21) differs from
the expression we gave for the divergence operator in spherical coordi-
nates in (3.39), the reason being that here the angle φ represents the
latitude, whereas in (3.39) it represented the co-latitude.

The above four equations constitute the fundamental set of PDEs of
dynamics in geophysical flows in a rotating frame. The models we will
study in the subsequent chapters are all based on various simplifications
of this system of equations. In the next section, we will take up the
derivation of the β–plane approximation, which is considered a good
model for studying large–scale features in the ocean and the atmosphere.

7.6 β-Plane Approximation

The equations in (7.20)–(7.21) are exact and suited well for model-
ing flows that may visit large segments of the planet. In cases where the
extent of domain is small enough where the planetary surface may rea-
sonably be approximated by a tangent plane, it seems prudent to look

288 Physical Oceanography: A Mathematical Introduction

into simplifying these equations to remove the terms that do not con-
tribute substantially to the behavior of the solutions we are seeking. This
is the motivation behind the so-called “β plane” approximation, where
the domain is replaced by a tangent plane while keeping the impact of
Coriolis, which varies with latitude, intact. An excellent treatment of
this approach is given by G. Veronis in [1], which we now outline.

The strategy behind the β plane approximation is to concentrate
attention at the fixed point P with longitude-latitude (θ0 , φ0) and replace
the domain with the tangent plane at P . We can think of x now as being
the east-west distance relative to P along the direction where longitude
varies, but projected or confined to the tangent plane, and define it as
(let a denote the radius of the planet)

x = (a cos φ0)(θ − θ0).

Similarly, we think of y as the north-south distance, measured from P ,
in the latitude direction, and define it as

y = a(φ− φ0).

And finally z, defined by r = a + z, is the deviation from the planet’s
radius. In doing so, we note that the various derivatives in the (7.20)–
(7.21) are now replaced by derivatives in x, y and z because

∂

∂x
=

1

a cos φ0

∂

∂θ
,

∂

∂y
=

1

a

∂

∂φ
,

∂

∂z
=

∂

∂r
.

In particular, we note that this approximation introduces the length
scale a, the radius of the planet, into the equations. Therefore, if the
length scale L of the domain is small compared with a, one may be
persuaded to ignore terms that have the term a in their denominators
in deference to ones that do not. We do not carry out the details of this
calculation and refer the reader to [1], pages 144–145 for the details, but
state the resulting reduced equations, often called the Quasi-Geostrophic
Equations in the β-plane:

ρ(
Du

Dt
− fv) = −∂p

∂x
+ Fx, (7.22)

ρ(
Dv

Dt
+ fu) = −∂p

∂y
+ Fy, (7.23)

ρ
Dw

Dt
= −∂p

∂z
− ρgz + Fz, (7.24)

and
∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0. (7.25)

Some variation of the equations (7.22)– (7.25) will be the subject of our
study in the next chapters.

Equations of Geophysical Fluid Dynamics 289

Problems 7.6

1. Derive the Quasi-Geostrophic equation (7.22)–(7.25) by complet-
ing the calculations on pages 144-145 of [1]. This material is avail-
able from MIT’s free online course materials.

7.7 References

1. Veronis, G., “Dynamics of large-scale circulation,” Chapter 5 of
Evolution of Physical Oceanography, edited by B. Warren and C.
Wunsch, 1981, pp. 140–183. Also available at MIT’s free online
course materials.

Chapter 8

Shallow Water Equations (SWE)

8.1 Introduction

In Chapters 6 and 7 we derived the Navier–Stokes equations in non-
rotating and rotating frames. In this chapter we concentrate on the
PDEs in the non-rotating frame and derive the Shallow Water Equa-
tions (SWE) as a perturbation of the Navier-Stokes equations. Shallow
Water Equations constitute one of the fundamental systems of equations
in fluid dynamics, typically applied to settings where horizontal scales
are considerably larger than the vertical one, a common occurrence in
oceans and the atmosphere. The presentation here is motivated by those
in the books An Introduction to Fluid Dynamics by G. K. Batchelor,
Water Waves, by J. J. Stoker, and in the paper “Derivation of viscous
Saint-Venant system for laminar shallow water; numerical validation,”
by J.- F. Gerbeau and Benoit Perthame.

We present the derivation here for the simpler case of a two-
dimensional flow. Later in the chapter we derive the scalar wave equation
as a special of SWE and apply the Fourier series method to derive the
solution to a typical initial-boundary value problem for this equation.
We derive the D’Alembert solution to this IBVP from its Fourier series
solution, and then proceed to introduce its finite-difference solution.

8.2 Derivation of Equations

The derivation we present here will be confined to two-dimensional
basins. The extension of the methodology to three dimensional basins is
straightforward.

Consider a flow of a homogeneous fluid, so that ρ is constant through-

291

292 Physical Oceanography: A Mathematical Introduction

out all deformations, in a domain Ω defined by

B = {(x, z)| b(x) < z < b(x) + h(x, t), x ∈ R} (8.1)

where z = b(x) defines the bathymetry (bottom surface) of the basin and
z = b(x)+h(x, t) is the free surface of the fluid—h(x, t) is the fluid height
(column) at any time t and point x. See Figure 8.1. We consider the two-
dimensional velocity field v = 〈u, w〉 (setting v ≡ 0) which satisfies the
Navier–Stokes equations (6.97)

∂u

∂x
+
∂w

∂z
= 0 (8.2)

and

ut + uux + wuz = −1

ρ
px + ν∆u, (8.3)

wt + uwx +wwz = −1

ρ
pz − g + ν∆w. (8.4)

The symbol ∆ stands for the Laplacian, ∂2

∂x2 + ∂2

∂z2 . The constant ν = µ
ρ

is viscosity of the fluid.
Equations (8.2)–(8.4) are supplemented by the boundary conditions

we need to impose on the two boundaries of the region B: We assume that
both surfaces z = b(x) and z = b(x) + h(x, t) are Lagrangian-invariant,
that is, if a fluid particle is located on either surface at one time, it
continues to remain on that surface for all time. For the bathymetry z =
b(x), this assumption may be interpreted by stating that this stationary
surface is impenetrable. We impose an additional boundary condition on
the free surface z = b(x)+h(x, t), since it the interface between the fluid
under study and the outside environment, that the pressure function
p(t, x, z) remains continuous on this surface, whether measured from the
atmospheric side or the fluid side.

The fact that the free surface z = b(x) + h(x, t) is Lagrangian-
invariant imposes certain conditions on the functions b and h. To see
this let r(t) = 〈x̂(t), ẑ(t)〉 be the trajectory of a fluid particle that re-
mains on this surface for all time. Then x̂(t) and ẑ(t) must satisfy the
equation

ẑ(t) = b(x̂(t)) + h(x̂(t), t).

Since this expression holds for all t, the identity must also hold for its
derivative. Differentiating this equation yields (recall u = x̂′(t) and w =
ẑ′(t))

w(x̂, b+ h, t) = ht + (b′ + hx)u(x̂, b+ h, t). (8.5)

This relation between u and w on the free-surface of the flow will play
a key role in the reduced model we are about to develop.

Shallow Water Equations (SWE) 293

b

h

z

x

FIGURE 8.1: Schematic of a 2D flow with bathymetry.

The constraints on the bathymetry are similar. Since the bottom
surface z = b(x) is Lagrangian-invariant, we arrive at

w(x, b, t) = b′u(x, b, t). (8.6)

The last two constraints are summarized in the following theorem.

Theorem 8.2.1 (Free and Bottom Surface Conditions)
Equations (8.5) and (8.6) express the boundary conditions that the free
surface/water column z = b(x)+h(x, t) and the bottom surface z = b(x)
must satisfy.

To derive the our first model of fluid flows in shallow waters, we
begin by integrating the conservation of mass equation, (8.2), in z over
the entire water column b < z < b+ h. We get

∫ b+h

b

ux(x, η, t) dη = −w(x, b+ h, t)) +w(x, b, t). (8.7)

The term on the left side of (8.7) can be rewritten as

∫ b+h

b

ux(x, η, t) dη =
∂

∂x
(

∫ b+h

b

u(x, η, t) dη)−

(b′ + hx)u(x, b+ h, t) + b′u(x, b, t). (8.8)

After applying (8.5) and (8.6), the non-integral terms in (8.8) become
equivalent to

ht −w(x, b+ h, t) +w(x, b, t). (8.9)

294 Physical Oceanography: A Mathematical Introduction

Thus (8.8) reduces to

∫ b+h

b

ux(x, η, t) dη =
∂

∂x
(

∫ b+h

b

u(x, η, t) dη)+

ht −w(x, b+ h, t) +w(x, b, t). (8.10)

Compare (8.10) with (8.7). It is clear now that

∂

∂x

(

∫ b+h

b

u(x, η, t) dη

)

+ ht = 0 (8.11)

Define the new quantity U(x, t), the horizontal velocity u(x, z, t) aver-
aged over the water column (b, b+ h), by

U(x, t) =
1

h

∫ b+h

b

u(x, η, t) dη, (8.12)

in terms of which the expression (8.11) takes the form

ht + (hU)x = 0. (8.13)

This equation is the first equation in the SWE system. We note in passing
that if u is independent of z, the quantity U reduces to u and Equation
(8.13) takes the form

ht + (hu)x = 0. (8.14)

So far all calculations have been exact and no approximations have
been imposed on the governing equation. Our first assumption, which
has a significant simplifying impact, is to replace the equation in (8.4)
by

0 = −1

ρ

∂p

∂z
− g. (8.15)

The rationale in weighing the terms in (8.15) more relative to the remain-
ing terms in (8.4) is the underlying shallowness assumption of the basin,
that horizontal processes in general have more impact on the dynamics in
a shallow basin. Hence, when viewing the balance of linear momentum in
the vertical direction, the acceleration term in the z-direction (the term
wt+uwx+wwz), and the viscous dissipation in that direction, ν∆w, end
up being negligible relative to the pressure gradient term, 1

ρ
∂p
∂z

, and the

fluid’s weight (represented by the acceleration due to gravity g). This as-
sumption, which as we have seen earlier is referred to as the hydrostatic
approximation, can be borne out by making a back-of-the-envelope cal-
culation of the relative size of each term in (8.4), as done in many texts
listed at the end of this chapter.

Shallow Water Equations (SWE) 295

Returning to (8.15), and recalling that ρ is constant, we integrate
this equation with respect to z in the interval (z, b+ h):

p(x, z, t) = p(x, b(x) + h(x, t), t) + ρg(b + h− z). (8.16)

The first term on the right side of (8.16) is the same as the atmospheric
pressure, which we assume to be constant, p0 , for convenience. In that
case (8.16) reduces to

p(x, z, t) = p0 + ρg(b(x) + h(x, t)− z). (8.17)

We eliminate pressure p from (8.3) using (8.17) to get

ut + uux +wuz = −g(b′ + hx) + ν∆u. (8.18)

Following the strategy we applied to the conservation of mass equation,
we integrate (8.18) with respect to z in the water column (b, b+ h):

∫ b+h

b

ut dη +

∫ b+h

b

uux dη +

∫ b+h

b

wuz dη =

−g(b′ + hx)h+ ν

∫ b+h

b

∆u dη. (8.19)

We begin simplifying the expressions in (8.19) by first addressing the
third integral. Integrating this expression by parts yields

∫ b+h

b

wuz dη = (wu)|
b+h

− (wu)|
b
−
∫ b+h

b

wzu dη.

But ux +wz = 0, hence the above integral reduces to

∫ b+h

b

wuz dη = (wu)|
b+h

− (wu)|
b
+

∫ b+h

b

uux dη. (8.20)

Substituting (8.20) back into (8.19) yields

∫ b+h

b

ut dη +

∫ b+h

b

2uux dη + (wu)|
b+h

− (wu)|
b

=

−g(b′ + hx)h+ ν

∫ b+h

b

∆u dη.

Note that
∫ b+h

b
2uux dη =

∫ b+h

b
(u2)x dη so the above expression now

takes the form
∫ b+h

b

ut dη +

∫ b+h

b

(u2)x dη + (wu)|b+h − (wu)|b =

296 Physical Oceanography: A Mathematical Introduction

−g(b′ + hx)h+ ν

∫ b+h

b

∆u dη. (8.21)

The first two integrals in (8.21) have the following alternative forms once
we apply the chain rule to them:

∫ b+h

b

ut dη =
∂

∂t
(

∫ b+h

b

u dη)− u|b+hht, (8.22)

and

∫ b+h

b

(u2)x dη =
∂

∂x
(

∫ b+h

b

u2 dη) − u2|
b+h

(b′ + hx) + u2|
b
b. (8.23)

Expressions (8.22) and (8.23), when substituted in (8.21), reduce the
latter expression to

∂

∂t
(

∫ b+h

b

u dη) +
∂

∂x
(

∫ b+h

b

u2 dη) − u|
b+h

ht − u2|
b+h

(b′ + hx)+

u2|
b
b+ (wu)|

b+h
− (wu)|

b
= −g(b′ + hx)h + ν

∫ b+h

b

∆u dη. (8.24)

Finally, using the values of w on the free surface and on the bottom from
(8.5) and (8.6), we note that the non-integral expressions on the left side
of (8.24) vanish. We are left with

∂

∂t
(

∫ b+h

b

u dη) +
∂

∂x
(

∫ b+h

b

u2 dη) =

−g(b′ + hx)h+ ν

∫ b+h

b

∆u dη. (8.25)

Equations (8.13) and (8.25) constitute the Shallow Water Equations,
which we now state as a theorem. Recall the relation between u and U
as defined in (8.12).

Theorem 8.2.2 (SWE)
The system of Shallow Water Equations, which governs the dynamics of
h, the water column, and u, the horizontal velocity, is

ht + (hU)x = 0,

(hU)t +
∂

∂x
(

∫ b+h

b

u2 dη) = −g(b′ + hx)h+ ν

∫ b+h

b

∆u dη, (8.26)

U(x, t) =
1

h

∫ b+h

b

u(x, η, t) dη.

Shallow Water Equations (SWE) 297

The system of equations in (8.26) simplifies considerably when u
is independent of z. As noted before, when the horizontal velocity is
depth-independent, the variables u and U are identical and all integrals
in (8.26) become trivial to evaluate. In fact, this system reduces to

ht + (hu)x = 0, (hu)t + (hu2 +
1

2
gh2)x = −gb′h+ νh∆u. (8.27)

which we refer to as the reduced system of Shallow Water Equations.
The reduced SWE have received quite a bit of analytical and compu-

tational treatment. We refer to the book by R. LeVeque, [4], for further
illuminating discussion concerning the mathematical challenges one faces
in obtaining solutions to the initial-boundary value problem for this sys-
tem. Additionally, the article in [3] is concerned with the derivation of
SWE (referred to as the Saint-Venant system in this paper) and the nu-
merical validation of the model. An interesting application of SWE is
presented in [5] where a single-layer system of Shallow Water Equations
is studied in the context of tsunami propagation and inundation. In this
work finite volume numerical methods are developed for SWE, together
with numerical schemes based on Riemann solvers when SWE is viewed
from the perspective PDEs as Conservation Laws. Of special interest
in [5] is the introduction of the software package CLAWPACK, which
consists of a comprehensive collection of numerical schemes and tools for
solving conservation laws, and, in particular, systems of the type (8.49).
This package can be downloaded from the web site

www.amath.washington.edu/~claw

Problems 8.2

1. The derivation of the SWE system, (8.26), was based on the two-
dimensional Navier–Stokes equations. Apply this derivation to the
three-dimensional system and arrive at the following system:

ht + ∇ · (hu) = 0, ut + u · ∇u + g∇h = 0, (8.28)

where u = 〈u, v〉 is the horizontal velocity. Here, the effect of vis-
cosity and bathymetry have been ignored.

2. Find the equivalent of (8.28) when the bottom topography is not
flat. Let z = HB(x, y) stand for the bathymetry. Compare your
result with (8.26).

3. Find the equivalent of (8.28) when Coriolis parameter f is not
ignored. Show that u must satisfy

ht + ∇ · (hu) = 0, ut + u · ∇u + g∇h− fu⊥ = 0, (8.29)

298 Physical Oceanography: A Mathematical Introduction

where u⊥ = 〈v,−u〉. With regard to this system see page 69 of the
paper in [6].

4. One of the main assumptions in our derivation of the SWE in (8.26)
was the homogeneity of the fluid, the fact that the density was
assumed constant. Both the oceans and the atmosphere are quite
stratified, with the density varying with depth in both settings,
inversely with depth in the case of the atmosphere, and directly
with depth in the case of oceans. Returning to the technique used
in arriving at (8.26), explore how this method needs to be modified
in order to accommodate ρ(x), and the special case of ρ(z).

8.3 Rotating Shallow Water Equations (RSWE)

The above derivation is just one approach that takes advantage of the
shallowness of the basin in order to reduce the complexity of the original
full set of equations to a more manageable lower order system. There are
several ways we can generalize the approach. One is to consider the full
three-dimensional system to begin with, that is, allow v = 〈u, v, w〉 and
continue with treating v as equal to u in all of the calculations. This
is relatively routine and was assigned to an exercise (see Problem 1 in
Section 8.2).

Another important feature we ignored in (8.2)–(8.4) is the Coriolis
effect. When the balance of linear momentum equations are augmented
by

−f〈v,−u〉
and the same technique of averaging in the z direction is applied, we end
up with the Rotating Shallow Water Equations, or RSWE, which are

Du

Dt
− fv = −ghx,

Dv

Dt
+ fu = −ghy , (8.30)

Dh

Dt
+ h(

∂u

∂x
+
∂v

∂y
) = 0,

where D
Dt is the usual total time derivative

D

Dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
.

Shallow Water Equations (SWE) 299

The above equations correspond to a single homogeneous fluid viewed
as a shallow-water flow. The atmosphere and the oceans, however, are
not generally homogeneous and are often quite stratified. Allowing the
density ρ to vary spatially, at a minimum, creates quite a few new mathe-
matical difficulties, but also introduces a necessary richness to the mod-
els, new structures that are capable of capturing features observed in
nature.

Concentrating here only on the effect of stratification, which is ar-
guably the most significant attribute missing from the above RSWE, we
adopt a mathematical strategy that has paid off well in the past few
decades, leading to the introduction of multi-layer models. In this ap-
proach reduced models are obtained by approximating the density, which
is assumed to vary primarily in the depth direction z, by step functions
(see also Project B in Chapter 6 where a linear multi-layer model was
introduced in order to study internal gravity waves). This strategy leads
to reduced models that retain enough of the physics from the original set
of equations and, at the same time, allow a researcher to explore some of
the physical parameters of interest to arrive at meaningful conclusions
as to which parameters are responsible for the presence of a particular
feature or phenomenon under study.

As an example of a multi-layer model consider the following two-
dimensional two-layer generalization of the domain (8.1): We let B con-
sist of two segments B1 and B2

B = B1 ∪B2

where B1 is the upper layer and defined by

B1 = {(x, z)|H2(x, t) < z < H1(x, t), x ∈ R}, (8.31)

where

H1(x, t) = H2(x, t) + h1(x, t)

with H2, defined below, is the sum of the bathymetry and the water
column height in the lower layer, h1 is the height of the water column in
the first layer, u1 = u1(x, t) and the density ρ1 is constant in this layer.
The second layer B2 is defined as follows

B2 = {(x, z)| b(x) < z < H2(x, t), x ∈ R} (8.32)

where

H2(x, t) = b(x) + h2(x, t)

with z = b(x) is the bathymetry, h2 is the height of the water column
in the lower layer, and where u2 = u2(x, t) and the density ρ2 6= ρ1 is

300 Physical Oceanography: A Mathematical Introduction

also constant. With this in mind, the governing equations for the pair
(u1, u2) is

(h1)t + (h1u1)x = 0, (8.33)

(h1u1)t + (h1u
2
1 +

1

2
gh2

1)x = −gh1(h2)x − gh1bx, (8.34)

(h2)t + (h2u2)x = 0, (8.35)

(h2u2)t + (h2u
2
2 +

1

2
gh2

2)x = −g ρ1

ρ2
h2(h1)x − gh2bx. (8.36)

Note that the coupling between the layers manifests itself only in the
balance of linear momentum equations. Also, typically ρ1 < ρ2 so that
the fluid in the upper layer is lighter, leading to a stable stratification of
the fluid column.

The equations in (8.33)–(8.36), and their natural generalization to
multi-layer fluid columns, are the governing equations studied by many
investigators who are seeking to understand phenomena such as storm
surges and tsunami in coastal regions. Among these investigations are
the ones in [7] and [8]. In [7] the authors present finite-volume numerical
schemes for the above equations with application to submarine land-
slides and the onset of tsunami propagation. In [8] the authors present
a Lagrangian-based numerical scheme for the single-layer Shallow Wa-
ter Equations in the presence of bathymetry. One of the features of the
latter work is their use of exact solutions of SWE, a topic we take up in
the next section, to validate their numerical approach.

Problems 8.3

1. Consider the original Navier–Stokes equations of motion in a ro-
tating frame:

ux + vy +wz = 0 (8.37)

Du

Dt
− fv = −1

ρ

∂p

∂x
+ ν∆u, (8.38)

Dv

Dt
+ fu = −1

ρ

∂p

∂y
+ ν∆v, (8.39)

Dw

Dt
= −1

ρ

∂p

∂z
− g + ν∆w. (8.40)

Let T , L, H , U and W be typical values for the scales in time,
length, depth, the horizontal velocity (in x and y directions) and
the vertical velocity directions. Non-dimensionalize (8.30) as fol-
lows: Let the new independent variables t̄, x̄, ȳ and z̄, and the new

Shallow Water Equations (SWE) 301

dependent variables ū, v̄, w̄ and p̄ be related to their dimensional
counterparts by

t̄ =
t

T
, x̄ =

x

L
, ȳ =

y

L
, z̄ =

z

H
,

ū =
u

U
, v̄ =

v

U
, w̄ =

w

W
, p̄ =

p

P
.

Show that the resulting non-dimensional equations are as follows:

(a) Equation (8.37) becomes

∂ū

∂x̄
+
∂v̄

∂ȳ
+ ε1

∂w̄

∂z̄
= 0, (8.41)

where ε1 is

ε1 =
LW

HU
.

According to (8.41), assuming that the spatial rates of change
of ū, v̄, w̄ are similar to each other, the term ε1 must then
remain in the neighborhood of unity, the coefficients of ∂ū

∂x̄

and ∂v̄
∂ȳ . Note that ε1 is the product of two ratios, one the

ratio of the vertical velocity scale to the horizontal one, W
U ,

and the other the ratio of the horizontal scale to the vertical,
L
H . For this expression to remain near one, the four terms L,
H , U and W must balance each other delicately. Since in the
case of “shallow” waters we expect that the ratio L

H is quite
large, the fact that ε1 must stay near one implies that the
vertical velocity scale, W , must be considerably smaller than
U , the horizontal velocity scale.

(b) Equation (8.38) becomes

U

T

∂ū

∂t̄
+
U2

L
(ū
∂ū

∂x̄
+ v̄

∂ū

∂ȳ
) +

UW

H
w̄
∂ū

∂z̄
− fUū =

− P

ρL

∂p̄

∂x̄
+
νU

L2
(
∂2ū

∂x̄2
+
∂2ū

∂ȳ2
) +

νU

H2

∂2ū

∂z̄2
. (8.42)

(c) Find the equivalent equations for (8.39) and (8.40).

2. Returning to the equation (8.42), consider the following special
scaling:

W =
UH

L
, P = ρfUL. (8.43)

302 Physical Oceanography: A Mathematical Introduction

Show that now (8.42) reduces to

ε2(
∂ū

∂t
+ ū

∂ū

∂x
+ v̄

∂ū

∂y
+ w̄

∂ū

∂z
) − v =

−∂p̄
∂x̄

+
ν

fL2
(
∂2ū

∂x̄2
+
∂2ū

∂ȳ2
) +

ν

fH2

∂2ū

∂z̄2
, (8.44)

where

ε2 =
U

fL
(8.45)

is called the Rossby number (see page 200 of [9] for more details on
the choice of scaling and the interpretation of the Rossby number).

It is common in oceanography to distinguish between the horizon-
tal viscosity and the vertical one, thus replacing ν by AH and AV
in (8.44). With this new notation, the two coefficients

AH
fL2

and
AV
fH2

are called the horizontal and vertical Ekman numbers.

8.4 Some Exact Solutions of the RSWE

A novel and interesting mathematical aspect of the Coriolis effect in
(8.30) is that this system of nonlinear PDEs supports nontrivial exact
analytical solutions. In a series of papers between 1960s and 1990s several
investigators were able to identify some of these exact solutions, solutions
that seems to have significant physical counterparts in nature. At the
same time, these exact solutions are invaluable when we attempt to
build approximate solutions for initial-boundary value problems for the
PDEs in (8.30).

We concentrate here on the special solution sought in [10], but the
reader is urged to study any of the papers cited at the end of this chap-
ter, not only for the historical value of how the ideas presented evolved,
but for the sake of observing the small details in presentation and em-
phasis that each author brings to his development. What was observed
ultimately was that these solutions, which all have an elliptic vortex
structure to them, have strong resemblances to some of the large-scale
structures we see near the Gulf Stream and elsewhere in the world’s
oceans.

Shallow Water Equations (SWE) 303

These analytical solutions all have very simple spatial structures; the
velocity fields are linear in x and y while the height h is quadratic in these
variables. The time dependence, in both velocity and height, are quite
complicated and are obtained only after solving a nonlinear system of
ordinary differential equations. Since today we can solve nonlinear ODEs
extremely accurately, we consider these solutions as “exact.”

The special solution sought in [10] is of the following form:

u(x, y, t) = U0(t) + U1(t)x+ U2(t)y,

v(x, y, t) = V0(t) + V1(t)x + V2(t)y. (8.46)

h(x, y, t) = A(t)x2 + 2B(t)xy + C(t)y2+

2D(t)x+ 2E(t)y + F (t),

The triple 〈u, v, h〉 in (8.46) is designed to be a solution of the PDEs
in (8.30). Substitution of the template in (8.46), which has twelve time-
dependent unknowns A, B, ..., through U2, into (8.30) will result in a
system of twelve coupled nonlinear ordinary differential equations in the
unknowns. If the reader has access to a symbolic manipulator such as
Mathematica, it would be ideal for the type of manipulation that leads
to this system of ODEs. We state the first equation in this system and
refer the reader to Project D as well as page 236 of [10] for the complete
system:

dA

dt
= −(3U1 + V2)A − 2V1B.

Note how the rate of change of A, the leading coefficient in the definition
of h, depends on A and B to begin with (i.e., depends on how h itself
varies in the x and y directions), it depends on U1, a coefficient in the
template for u, and on V1 and V2, the coefficients in v. The other eleven
equations have a similar complexity. Project D in this chapter provides
details of the derivation of the twelfth-order system in (8.46), as well
as the construction of a MATLAB program to solve the initial-value
problem for this system.

8.5 Linearization of SWE

In the next few sections we take a more careful look at the details of
the system of PDEs in (8.26)

ht + (hU)x = 0,

304 Physical Oceanography: A Mathematical Introduction

(hU)t +
∂

∂x
(

∫ b+h

b

u2 dη) = −g(b′ + hx)h+ ν

∫ b+h

b

∆u dη, (8.47)

U(x, t) =
1

h

∫ b+h

b

u(x, η, t) dη,

by looking at some of its special solutions. As we have noted earlier,
these PDEs are nonlinear and, other than some of the exact solutions
we alluded to in the previous section, the main approach to understand-
ing these PDEs is to compute their solutions by numerical methods. A
different approach, however, is to linearize these equations about time-
independent (stationary) equilibrium solutions, much like the approach
we introduced earlier in the context of ODEs, when we studied the sta-
bility of equilibrium solutions of systems of ODEs by applying the Taylor
series method.

We begin by considering the simplest basin geometry, namely a basin
with a flat bottom (b′ = 0), containing an inviscid (i.e., ν = 0) fluid that
is standing still at height H . We observe that the pair

(u, h) = (0, H), (8.48)

describing the state of the stationary fluid, is a solution of the equations
(8.47). Our goal in this section is to study solutions (uε, hε) of the full
system (8.47) which remain close to the stationary solution (8.48). To
that end we consider the small perturbations of the form

(uε, hε) = (0, H) + ε(û(x, t), η̂(x, t)), (8.49)

i.e., the sum of the stationary solution and a small addition that may
vary in time and space. Here ε is a small positive number. Also, note the
important assumption that û is independent of z.

Beginning with (8.47)c, and noting that û, defined in (8.49), is inde-
pendent of z, we have

U(x, t) =
1

h

∫ b+h

b

u(x, τ, t) dτ = εû(x, t).

The second variable in (8.47), h, is H+εη̂(x, t), with H constant. Hence,
(8.47)a reduces to

εη̂t + ε(Hû)x + ε2(η̂ û)x = 0.

Divide the above expression by ε to get η̂t+Hûx+ε(η̂û)x = 0. Assuming
that ε is a small number to the extent that the first two terms dominate
the term multiplying ε, we neglect the ε(η̂û)x term and arrive at the
reduced and linear equation

η̂t +Hûx = 0, (8.50)

Shallow Water Equations (SWE) 305

in place of (8.47)a.
We treat (8.47)b similarly. Substituting u = U = εû and h = H + εη̂

into (8.47)b yields (recall that by assumption b′ = ν = 0)

εHût + ε2(η̂ û)x + ε2(û2)x = −εgHη̂x − gε2η̂η̂x.

Divide this expression by ε and neglect terms with powers of ε to get

ût = −gη̂x. (8.51)

The system of equations in (8.50) and (8.51) constitute the linearization
of the SWE (8.47) about its trivial solution (u, h) = (0, H). These equa-
tions can be combined, by differentiating (8.51) with respect to t, (8.50)
with respect to x, to get the linear wave equation

ûtt − gHûxx = 0, (8.52)

with a similar equation for η̂. In the next few sections we study the
properties of this equation and discover some of its general characteristics
in relation to wave propagation in shallow basins and channels.

Problems 8.5

1. Complete the calculations that leads to the wave equation (8.52).

2. Relax the assumption that the fluid is inviscid, i.e., allow ν 6= 0,
and derive the generalization of the equation in (8.52).

3. Return to the inviscid case, but now consider the small perturba-
tion where the bathymetry is a small perturbation of a flat bottom,
i.e.,

b(x) = b0 + εB(x).

What complications, if any, does this additional observation con-
tribute the derivation of the linearized equations?

8.6 Linear Wave Equation

Equation (8.52), with u replacing û and c2 = gH , is rewritten in the
form

utt − c2uxx = 0. (8.53)

This equation involves two derivatives in time and two derivatives in
space, so naturally we expect that four additional conditions, two in

306 Physical Oceanography: A Mathematical Introduction

time and two in space, will be required to determine a unique solution
to (8.53). A typical initial-boundary value problem for (8.53) will have
additional side constraints in the form of boundary conditions

u(0, t) = u(L, t) = 0, (8.54)

and initial conditions

u(x, 0) = f(x), ut(x, 0) = g(x). (8.55)

Here L, a constant, represents the length of the basin, and f and g,
known functions of x, represent the initial states of u.

In what follows we develop several techniques for determining the
solution to (8.53)–(8.55). Some of the methods, such as the Fourier and
the Characteristics methods will lead to the exact solution of the prob-
lem, while others, such as the finite difference method and the Galerkin
Method give us approximate solutions.

Problems 8.6

1. Let u and v be two solutions of (8.53). Show that w = c1u + c2v
is also a solution of (8.53), where c1 and c2 are constants.

2. Let u be a solution of (8.53)–(8.55).

(a) (Conservation of Energy) Show that the quantity

E =
1

2

∫ L

0

u2
tdx+

c2

2

∫ L

0

u2
xdx, (8.56)

which is the total energy of the wave u, remains constant.
Hint: Differentiate the above expression with respect to t,
apply an integration by parts, and use (8.53).

(b) Show that

E =
1

2

∫ L

0

g2(x) dx+
c2

2

∫ L

0

f ′2(x) dx.

3. Let c in (8.53) be a function of x. Let E be defined as in (8.56). Is
it still true that E is constant?

8.7 Separation of Variables and the Fourier Method

The Fourier method is predicated on our ability to construct solutions
of (8.53) in terms of basis functions or normal modes, which are the

Shallow Water Equations (SWE) 307

natural building blocks for solutions of linear PDEs such as the wave
equation. We will not give a complete introduction to the Fourier series
and instead refer the reader to texts that provide such an introduction,
including several listed at the end of this chapter (see, for example,
Chapter 14 of [15] for information on Fourier series and how they apply
to general PDEs). We will, however, review here the concept of separation
of variables, which is the enabling factor behind the use of Fourier series,
and later provide the connection between this method and the Galerkin
method and the Method of Lines, which are two general purpose methods
for obtaining approximate solutions of evolution equations like the wave
equation, but powerful enough that they also apply to a large class of
nonlinear PDEs.

The method of separation of variables seeks solutions of (8.53) that
treat the dependence of u on x and t separately. We look for u in the
form

u(x, t) = F (x)G(t).

Substituting this template into (8.53) yields

G′′F − c2GF ′′ = 0,

or, after division by c2FG,

G′′

c2G
− F ′′

F
= 0. (8.57)

Since G′′

c2G is only a function of t (recall that c2 = gH is a constant) and
F ′′

F only a function of x, each must be a constant, a fact that can readily
be verified by differentiating (8.57) with respect to t, say. Assuming for
the time being that this constant is negative, we denote it by −λ2 and
rewrite (8.57) equivalently as

G′′

c2G
= −λ2,

F ′′

F
= −λ2.

These equations reduce to the two familiar ordinary differential equa-
tions

F ′′ + λ2F = 0, G′′ + c2G = 0, (8.58)

which have the general solutions

F (x) = c1 sinλx+ c2 cosλx, G(t) = c3 sin cλt+ c4 cos cλt. (8.59)

Recall that u(x, t) = G(t)F (x). We have therefore succeeded in finding
a general solution of the linear wave equation, utt − c2uxx = 0, in the
form

u(x, t) = (c3 sin cλt + c4 cos cλt)(c1 sinλx+ c2 cos λx). (8.60)

308 Physical Oceanography: A Mathematical Introduction

To complete the solution of the initial-boundary value problem (8.54)–
(8.55), we need to determine the constants c1 through c4 and λ in such
a way that the four constraints u(0, t) = u(L, t) = 0, the two bound-
ary conditions, and u(x, 0) = f(x) and ut(x, 0) = g(x), the two initial
conditions, hold.

We begin by applying the first boundary condition in (8.54), that
u(0, t) = 0, to the expression for u in (8.60). This results in

0 = u(0, t) = c2(c3 sin cλt + c4 cos cλt),

which must hold for all values of t, so naturally we select c2 = 0. This
choice of c2 reduces the expression for u in (8.60) to

u(x, t) = (A sin cλt+ B cos cλt) sinλx, (8.61)

where now A and B stand for c1c3 and c1c4, respectively. Next we apply
the second boundary condition in (8.54), namely u(L, t) = 0, which,
when applied to (8.61), results in

0 = u(L, t) = (A sin cλt+ B cos cλt) sinλL. (8.62)

This expression must hold for all t, hence we choose λ so that sinλL = 0.
Since the sine function is 2π-periodic, there are quite a few angles θ,
namely θ = nπ, at which sin θ vanishes. Hence we select λ such that
λL = nπ or

λn =
nπ

L
. (8.63)

The quantities λn are the eigenvalues of the linear wave equation. They
represent the natural frequencies at which the normal modes sinλnx end
up being part of a solution to the wave equation when this equation is
supplemented by the boundary conditions in (8.54).

The choice of the eigenvalues λn = nπ
L

, when substituted into (8.61),
leads to infinitely many natural modes or solutions to (8.53) and (8.54).
They are

un(x, t) = (An sin
nπct

L
+Bn cos

nπct

L
) sin

nπx

L
. (8.64)

Since the wave equation is linear, the superposition of any two solutions
in (8.64) results in another solution to the wave equation. In fact,

u(x, t) =

∞
∑

n=1

(An sin
nπct

L
+ Bn cos

nπct

L
) sin

nπx

L
(8.65)

constitutes a general solution to (8.53) where the boundary conditions
(8.54) are automatically satisfied.

Shallow Water Equations (SWE) 309

To complete obtaining the solution to the initial-boundary value
problem (8.53)–(8.55) we need to determine the coefficients An’s and
Bn’s in (8.65) so that the initial conditions (8.55) hold. The first of
these conditions, that u(x, 0) = f(x), requires that u in (8.65) satisfy
the relation

f(x) = u(x, 0) =

∞
∑

n=1

Bn sin
nπx

L
. (8.66)

In other words, the coefficients Bn in (8.65) must also be the Fourier
sine coefficients of f when f is expanded in terms of sin nπx

L
.

We recall the formula for computing the Fourier sine coefficients of
a function f :

Bn = (f, sin
nπx

L
)/(sin

nπx

L
, sin

nπx

L
), (8.67)

where the notation (f, g), called the inner product of the two functions
f and g in the interval (0, L), is defined as

(f, g) =

∫ L

0

f(x)g(x) dx. (8.68)

With this definition, the expression in (8.67) reduces to the familiar
formula

Bn =
2

L

∫ L

0

f(x) sin
nπx

L
. (8.69)

A similar argument applies to An’s. Since ut(x, 0) = g(x), we have

g(x) = ut(x, 0) =

∞
∑

n=1

nπc

L
An sin

nπx

L
,

which states that nπc
L An is the Fourier sine coefficient of g, that is

nπc

L
An = (g, sin

nπx

L
)/(sin

nπx

L
, sin

nπx

L
).

The above expression simplifies to

An =
2

nπc

∫ L

0

g(x) sin
nπx

L
. (8.70)

Several exercises at the end of this section involve applying the Fourier
method to various initial-boundary value problems. In the next section
we introduce a MATLAB program to carry out all of the underlying
computations.

Before leaving this topic we make one important observation about

310 Physical Oceanography: A Mathematical Introduction

the formula in (8.65): Because sin nπct
L and cos nπctL have the common

fundamental period of T = 2L
c for all n, the function u inherits this pe-

riod as well. Hence, any disturbance (wave) supported by the linear wave
equation and the initial-boundary conditions (8.54)–(8.55) will travel in
time periodically with period T = 2L

c . We summarize the above discus-
sion in the following theorem:

Theorem 8.6.1 (Fourier Series and the Wave Equation)
The solution to the initial-boundary value problem (8.53)–(8.55) is given
by

u(x, t) =

∞
∑

n=1

(An sin
nπct

L
+Bn cos

nπct

L
) sin

nπx

L

where An and Bn are given by

An =
2

nπc

∫ L

0

g(x) sin
nπx

L
, Bn =

2

L

∫ l

0

f(x) sin
nπx

L
.

This solution is unique and is periodic with period 2L
c

.

See the exercises for a proof of the uniqueness of the solutions.

Problems 8.6

1. Let φn(x) = sin nπx
L be the normal modes of the wave equation.

Show that φn and φm are orthogonal, that is

(φn, φm) = 0,

the inner product (,) is defined in (8.68).

2. Consider the expression f(x) =
∑N

n=1 anφn(x) where an’s are
scalars (constants in the set of real numbers R). Suppose that
f(x) ≡ 0 for all x ∈ (0, L). Use the orthogonality property of φn
to show that the coefficients an’s must all vanish.

3. Consider the expression f(x) =
∑N

n=1 anφn(x) where φn(x) =
sin nπx

L . Show that

2

L

∫ L

0

||f(x)||2 dx =

N
∑

n=1

a2
n.

4. In the analysis we presented we assumed that the constant of sep-
aration of variables was negative, i.e., F ′′

F = −λ2. Consider now
the two alternative cases:

Shallow Water Equations (SWE) 311

(a) Suppose that F ′′

F = λ2. Show that this equation’s general
solution is F (x) = c1e

λx + c2e
−λx. Apply the boundary con-

ditions u(0, t) = u(L, t) = 0 to this expression to show that
the only solution that satisfies both boundary conditions re-
quires that c1 = c2 = 0. Thus the only solution we obtain
by assuming that the constant of separation of variables is
positive is the trivial solution F (x) ≡ 0.

(b) Suppose that F ′′

F
= 0. Show that this equation’s general so-

lution is F (x) = c1x + c2. Apply the boundary conditions
u(0, t) = u(L, t) = 0 to this expression to show that, again,
the only solution that satisfies both boundary conditions re-
quires that c1 = c2 = 0, that is, the trivial solution F (x) ≡ 0.

5. Find the solution the following initial-boundary value problems
for the wave equation utt = c2uxx, subject to boundary conditions
u(0, t) = u(L, t) = 0 and initial data u(x, 0) = f(x) and ut(x, 0) =
g(x).

(a) c2 = 4, L = 5, f(x) = x(5 − x), g(x) ≡ 0.

(b) c2 = 16, L = 1, f(x) ≡ 0, g(x) ≡ 1.

(c) c2 = 25, L = 2, f(x) =

{

x, if 0 < x ≤ 1,
2 − x otherwise

, g(x) ≡ 0.

(d) c2 = 1, L = 5, f(x) = sin πx
5

, g(x) =

{

x, if 0 < x ≤ 5
2 ,

5 − x otherwise
.

6. (Uniqueness of Solutions) Consider the initial-boundary value
problem (8.53)–(8.55). Let u1(x, t) and u2(x, t) be two solutions
of this system. Let v(x, t) = u1(x, t)− u2(x, t). Show that

(a) v satisfies the wave equation, that is, vtt− c2vxx = 0, and the
boundary conditions v(0, t) = v(L, t) = 0.

(b) v satisfies the initial data v(x, 0) ≡ 0 and vt(x, 0) ≡ 0.

(c) v must then be identically zero, by determining its Fourier
series solution.

Thus we conclude that the solution to the initial-boundary value
problem (8.53)–(8.55) is unique.

7. Consider the wave equation (8.53) with boundary conditions
ux(0, t) = ux(L, t) = 0. Show that applying the method of separa-
tion of variables to this boundary value problem leads to solutions
of the form

un(x, t) = (An cos
nπct

L
+Bn sin

nπct

L
) cos

nπx

L
, (8.71)

312 Physical Oceanography: A Mathematical Introduction

where n = 0, 1, · · · .

8. Starting with the result of the previous problem, find the formula
for the approximate solution of the initial-boundary value problem

utt = 4uxx, ux(0, t) = ux(3, t) = 0,

u(x, 0) = f(x), ut(x, 0) = g(x).

9. Repeat Problems 1) to 3) but now with the normal modes φn(x) =
cos nπx

L
, with n = 0, 1, 2,

8.8 Fourier Method in MATLAB

We now develop a MATLAB program to solve the initial-boundary
value problem (8.53)–(8.55). The specific set of data we consider is

c2 = 4, L = 3,

f(x) =

{

x, if 0 < x ≤ 1,
−1

2
x+ 3

2
, if 1 < x ≤ 3,

(8.72)

g(x) ≡ 0.

Since g is identically zero, all of the coefficients An in (8.70) vanish. To
determine the Bn’s in (8.69) we need to split the domain of integration
according to the definition of f and carry out the integrations separately
as follows:

Bn =
2

3
(

∫ 1

0

x sin
nπx

3
dx+

∫ 3

1

(−1

2
x+

3

2
) sin

nπx

3
dx) =

12

n2π2
sin3 nπ

3
. (8.73)

Thus the exact solution of the initial-boundary value problem (see (8.65))
is

u(x, t) =

∞
∑

n=1

12

n2π2
sin3 nπ

3
cos

2nπt

3
sin

nπx

3
. (8.74)

The main program below consists of a segment where the Fourier co-
efficients are computed using MATLAB’s quad, quadl, quadgk or quadv,
and a segment that computes u from (8.74) and then plots the graph of
the various snapshots. Here is the syntax that computes the first ten co-
efficients Bn’s using quadv, which integrates an array of functions (such
as f(x) sin nπx

L with n ranging between 1 and 10, say):

Shallow Water Equations (SWE) 313

b=2/3*(quadv(’x.*sin((1:10)*pi*x/3)’,0,1)+ ...

quadv(’(-1/2*x+3/2).*sin((1:10)*pi*x/3)’,1,3));

b

MATLAB returns

b =

Columns 1 through 9

0.7897 0.1974 0.0000 -0.0494 -0.0316 0.0000

0.0161 0.0123 -0.0000

Column 10

-0.0079

To compare these results with the exact value of Bn’s (from 8.73) we
compute the exact Bn’s and use the max and abs commands within
MATLAB to measure the error incurred in using quadv:

exactb=12./((1:10).^2*pi^2).*sin((1:10)*pi/3).^3;

exactb

which results in

exactb =

Columns 1 through 9

0.7897 0.1974 0.0000 -0.0494 -0.0316 -0.0000

0.0161 0.0123 0.0000

Column 10

-0.0079

These values agree very well with the values from quadv, at least with the
accuracy embedded in the first four significant digits used to display the
results. The absolute error in this computation is measured as follows:

max(abs(b-exactb))

or

6.5904e-009

The relative error, computed by

314 Physical Oceanography: A Mathematical Introduction

max(abs(b-exactb))/max(abs(b))

is

8.3453e-009.

The following program combines inline and quadv with the plotting
capabilities of MATLAB to produce the graph of the snapshots seen in
Figure 8.2:

clf;

c=2;

L=3;

n=50; % Number of terms in the Fourier Sine series

f1=inline(’x.*sin((1:n)*pi*x/3)’,’n’,’x’);

f2=inline(’(-1/2*x+3/2).*sin((1:n)*pi*x/3)’,’n’,’x’);

b=2/3*(quadv(@(x)f1(n,x),0,1)+quadv(@(x)f2(n,x),1,3));

x=0:0.01:L;

sine=sin(pi*(1:n)’*x/3);

for i=1:8

t=0.3*(i-1);

coeff=b.*cos(2*pi*(1:n)*t);

u=coeff*sine;

subplot(4,2,i)

plot(x,u)

title([’u at t = ’, num2str(t)]);

axis([0 3 -1 1]);

hold on

end

This figure demonstrates one of the key features of the wave equation,
how discontinuities (shock waves) propagate. In this example the initial
condition f is a continuous function in its domain, the interval (0, 3),
but is not differentiable at x = 1 where the derivative f ′ experiences
a jump. This discontinuity in the derivative of f manifests itself in ux,
propagates in both directions, as seen in the snapshots in Figure 8.2: at
t = 0.3 the discontinuity that was originally located at x = 1 can now
be found around x = 0.3 and 1.6, approximately. It turns out, as we will
demonstrate in the next section, that the two shock waves propagate
with wave speed c, in this example c = 2, until they reach the endpoints
of the domain, at which time they reverse their course and propagate
toward each other and reunite at time t = L

c
, in this example 3

2
, which

is half of the period of oscillation of u.
So far we have seen a graphical evidence of how the wave opera-

tor propagates discontinuities. In the next section, where the method

Shallow Water Equations (SWE) 315

0 1 2 3
−1

0

1
t = 0

0 1 2 3
−1

0

1
t = 0.3

0 1 2 3
−1

0

1
t = 0.6

0 1 2 3
−1

0

1
t = 0.9

0 1 2 3
−1

0

1
t = 1.2

0 1 2 3
−1

0

1
t = 1.5

0 1 2 3
−1

0

1
t = 1.8

0 1 2 3
−1

0

1
t = 2.1

FIGURE 8.2: Snapshots of the function u where u is the solution to the
initial-value problem utt−4uxx = 0, u(0, t) = u(3, t) = 0, u(x, 0) = f(x),
with f given in (8.72), and g ≡ 0.

of characteristics is introduced, we will revisit this feature of the wave
equation once we are able to rewrite the analytic solution in a different
and more illuminating form.

We end this section by pointing out that the above MATLAB code
may be altered slightly, by introducing the drawnow command, to ani-
mate the snapshots:

clf;

c=2; % Speed of propagation

L=3; % Domain size

period=2*L/c;

count = 100; % Number of Snapshots

n=50; % Discretization along the x axis

f1=inline(’x.*sin((1:n)*pi*x/3)’,’n’,’x’);

f2=inline(’(-1/2*x+3/2).*sin((1:n)*pi*x/3)’,’n’,’x’);

b=2/3*(quadv(@(x)f1(n,x),0,1)+quadv(@(x)f2(n,x),1,3));

x=0:0.01:3;

sine=sin(pi*(1:n)’*x/3);

for i=1:count

t=period/count*(i-1);

316 Physical Oceanography: A Mathematical Introduction

coeff=b.*cos(2*pi*(1:n)*t/3);

u=coeff*sine;

drawnow

plot(x,u)

title([’t = ’, num2str(t)]);

axis([0 3 -1 1]);

end

Problems 8.8

1. Execute the various MATLAB programs in this section and obtain
the results and figures cited.

2. Write a MATLAB program to plot the snapshots of the solution to
each initial-boundary value problem stated in Problem 5, Section
8.7.

8.9 Method of Characteristics

One of the features of the wave equation we discussed in the previous
sections was how a discontinuity at a point x0 in the initial data propa-
gates by the wave operator with speed c. We observed this attribute of
the wave equation after we were able to determine the solution to the
initial-boundary value problem and visualize the snapshots of the solu-
tion at various time values. The method we describe here, the method of
characteristics, is another way where this property of the wave equation
becomes apparent. This method has a second important property in that
it can be applied to nonlinear problems, almost as easily as we apply it
to linear problems such as the wave operator in (8.53).

We now develop and apply the method of characteristics to (8.53)–
(8.55). For background information on this method see Chapter 13 of
[15]. Also, in a project at the end of this chapter we develop this method
in its traditional way. Here, instead, we appeal to the formula in (8.65) to
show that there is an entirely different way of representing the solution to
(8.53)–(8.55), which in light of the uniqueness of solutions to this system
(see Problem 6, Section 8.7) is in fact the same solution we obtained using
the Fourier method.

For convenience we repeat formula (8.65), written slightly differently

Shallow Water Equations (SWE) 317

and with ωn replacing nπ
L :

u(x, t) =

∞
∑

n=1

Bn cos(c ωnt) sin(ωnx)+

∞
∑

n=1

An sin(c ωnt) sin(ωnx). (8.75)

Recall the following elementary formulas:

{

2 cos t sinx = sin(x− t) + sin(x+ t)
2 sin t sinx = cos(x− t) − cos(x+ t)

(8.76)

The first identity in (8.76) allows us to cast the first summation in (8.75),
∑∞

n=1 Bn cos(c ωnt) sin(ωnx), in the following form:

1

2

∞
∑

n=1

Bn(sinωn(x− ct) + sinωn(x+ ct)). (8.77)

Recall that Bn’s are the Fourier sine coefficients of f , the initial data in
(8.55), that is,

f(x) =

∞
∑

n=1

Bn sin(ωnx), for all x ∈ (0, L). (8.78)

In view of the identity in (8.78), we can restate the expression in (8.77)
as

∞
∑

n=1

Bn cos(c ωnt) sin(ωnx) =
1

2
(f(x − ct) + f(x + ct)). (8.79)

The expression in (8.79) is valid as long as x − ct and x + ct remain
in the domain of f , which is the interval (0, L). What is remarkable is
that the expression on the left side of (8.79) provides us with the correct
representation of f outside of its original domain, i.e, this expression
defines a function for all x and t, if we are willing or need to extend the
definition of function f outside of the interval (0, L), to the entire set of
real numbers. In fact, this is the strategy we adopt, that is, we extend
f to the entire real line by assigning values from the left side of (8.79)
when x and t cause x− ct or x+ ct to land outside of the interval (0, L).
We will denote this extension of f by f̃ and write

f̃(x) =

∞
∑

n=1

Bn sin
nπx

L
, for all x ∈ R. (8.80)

The function f̃ has two important properties that will help us in
constructing its image geometrically. First, because each sine function is

318 Physical Oceanography: A Mathematical Introduction

an odd function, it follows that f̃ , as a sum of odd functions, is itself an
odd function:

f̃(−x) = −f̃(x). (8.81)

Thus to construct an image of f̃ on the interval (−L, 0), we simply reflect
the image of f on the interval (0, L) about the origin. We now have f̃
defined on an interval of length 2L. Next we note that each sine function
in (8.80) is 2L periodic. Therefore, the function f̃ must be 2L periodic.
Since we already have an image of f̃ on an interval of length 2L, we can
construct its image everywhere along the real line. This completes the
construction of f̃ . With this definition of f̃ we have

∞
∑

n=1

Bn cos(c ωnt) sin(ωnx) =
1

2
(f̃(x− ct) + f̃(x+ ct)). (8.82)

The second summation in (8.75) is treated in exactly the same way
using the second trigonometric identity in (8.77). This summation ends
up being related to g̃, the odd and 2L-periodic extension of the initial
function g from (8.55), as follows:

∞
∑

n=1

An sin(c ωnt) sin(ωnx) =
1

2c

∫ x+ct

x−ct
g̃(τ) dτ. (8.83)

We leave the details of this derivation to an exercise.

Combining now the formulas in (8.82) and (8.83), we have a closed
form solution, known as the D’Alembert solution, to the initial-boundary
value problem (8.53)–(8.55):

u(x, t) =
1

2
(f̃(x− ct) + f̃(x+ ct)) +

1

2c

∫ x+ct

x−ct
g̃(τ) dτ. (8.84)

We state this result as a theorem.

Theorem 8.9.1 (D’Alembert’s Solution)
The formula in (8.84) gives a solution to the initial-boundary value prob-
lem (8.53)–(8.55).

One of the consequences of (8.84) is that it demonstrates why c is the
speed of propagation of any disturbance (wave) in (8.53)–(8.55). To see
this, we note that the graphs of y = f̃(x) and y = f̃(x− ct) are identical
except for a shift, that the graph of f̃(x − ct) is the same as the graph
of f̃(x) except that it is shifted to the right by the amount ct. Similarly,
the graph of f̃(x + ct) is identical with the graph of f̃(x) except for a
shift to the left by the amount ct. We reach the same conclusion for the

Shallow Water Equations (SWE) 319

integral in (8.84) because we can break it up into a sum of two integrals,
for example by writing it as

∫ x+ct

x−ct
g̃(τ) dτ =

∫ 0

x−ct
g̃(τ) dτ +

∫ x+ct

0

g̃(τ) dτ,

and applying the same argument to each individual integral on the right
side. Therefore, formula (8.84) suggests that any initial disturbance in
f and g is carried by f̃ and g̃ by simply shifting these functions to the
right and to the left with speed c.

Another consequence of D’Alembert’s solution is that it shows that
any disturbance in the initial data propagates to the left and to the right
with speed c. In fact, and for the sake of argument let us consider the
case where g ≡ 0, D’Alembert’s solution reduces to

u(x, t) =
1

2
(f̃(x− ct) + f̃(x+ ct)),

demonstrating that the initial disturbance u(x, 0) splits into two equal
parts, half of which travels to the right and the other half to the left. Once
these waves reach the boundary they simply reflect and reverse their
trajectories toward each other and combine to reconstruct the initial
disturbance.

Before leaving this section we point out an interesting application of
(8.84) in the context of a tsunami formed in deep water and approaching
a coastline. According to our observations, this disturbance will travel
with speed c =

√
gH . In waters that are about 5 kilometers deep (so

that H = 5, 000 meters), with a standard value of g = 9.8 m/s2, we
arrive at c = 221.36 m/s, or a speed a little over 700 km/h. When this
wave enters shallower waters and approaches a coastline, the speed of
the fluid particles that are closer to the shoreline decreases, since H
decreases, while the fluid particles are farther away from the coastline
are still experiencing the higher speed. Consequently the wave has a
tendency to climb on itself, its amplitude rising steadily as it approaches
the coastline and bringing an enormous amount of potential energy into
the shoreline.

Problems 8.9

1. Show by direct differentiation that F (x − ct) and G(x + ct) are
solutions of the linear wave equation (8.53).

2. Show that the D’Alembert solution (8.84) satisfies the initial and
boundary conditions in (8.54)–(8.55).

3. Consider the wave equation utt − 9uxx = 0. Find its general solu-
tion.

320 Physical Oceanography: A Mathematical Introduction

4. Consider the wave equation utt − 9uxx = 0 with initial conditions

u(x, 0) =

{

cosx, when − π
2 < x < π

2 ,
0 otherwise,

and g(x) ≡ 0. Plot the graph of the solution at t = 0, 0.1, 0.2 and
0.3.

5. Consider the wave equation utt − 4uxx = 0 on the real line with
initial conditions u(x, 0) ≡ 0 and

g(x) =







x, when 0 < x < 1,
2 − x when 1 < x < 2,

0 otherwise.

Plot the graph of the solution at t = 0, 0.1, 0.2 and 0.3.

8.10 D’Alembert’s Solution in MATLAB

The formula in (8.84) can be readily constructed in MATLAB. The
main issue is to use appropriate commands within MATLAB to construct
f̃ and g̃ properly. We show the code for the same initial-boundary value
problem in (8.72). The key in the following program is in the definitions
of the subdomain statements and the use of MATLAB’s any command.
The purpose of these definitions is to allow MATLAB’s If statement to
work properly with vectors – one could write this program without using
any, but by using it we are taking advantage of MATLAB’s powerful
capabilities with vector operations.

As described earlier, f̂ ’s definition, which is defined in fhat.m below,
starts out in the domain (0, 3) – subdomain1 and subdomain2 are used to

define f̂ , which equals f in (0, 3), in this interval. subdomain3 is the ex-
tension of the domain to the symmetric interval (−3, 0), and subdomain4

and subdomain5 are needed to define f̂ outside of the interval (−3, 3)
by its natural periodic extension.

% Definition of fhat.m

%

function y = fhat(x),

%

subdomain1 = (x >= 0) & (x < 1);

subdomain2 = (x >= 1) & (x <= 3);

Shallow Water Equations (SWE) 321

subdomain3 = (x >= -3) & (x < 0);

subdomain4 = x > 3;

subdomain5 = x < -3;

%

if any(subdomain2)

x(subdomain2) = -1/2*(x(subdomain2) - 3);

end

%

if any(subdomain3)

x(subdomain3) = - fhat(-x(subdomain3));

end

%

if any(subdomain4)

x(subdomain4) = fhat(x(subdomain4)-6);

end

%

if any(subdomain5)

x(subdomain5) = fhat(x(subdomain5)+6);

end

%

%

y = x;

The function fhat.m is called upon by DAlembert.m listed below:

clf;

c=2;

L=3;

x=0:0.01:L;

rows=4;

for i=1:8

subplot(rows,2,i)

t=0.3*(i-1);

plot(x,0.5*(fhat(x-c*t)+fhat(x+c*t)));

title([’t = ’, num2str(t)]);

axis([0 3 -1, 1])

hold on

end

Figure 8.3 shows the output of this program.

322 Physical Oceanography: A Mathematical Introduction

0 1 2 3
−1

0

1
t = 0

0 1 2 3
−1

0

1
t = 0.3

0 1 2 3
−1

0

1
t = 0.6

0 1 2 3
−1

0

1
t = 0.9

0 1 2 3
−1

0

1
t = 1.2

0 1 2 3
−1

0

1
t = 1.5

0 1 2 3
−1

0

1
t = 1.8

0 1 2 3
−1

0

1
t = 2.1

FIGURE 8.3: Using the D’Alembert Method, this figure shows the
snapshots of u where u is the solution to the initial-value problem utt−
4uxx = 0, u(0, t) = u(3, t) = 0, u(x, 0) = f(x), with f given in (8.72),
and g ≡ 0.

Problems 8.10

1. Consider the IBVP problem

utt = 0.1 uxx,

u(0, x) = u(1, x) = 0,

and
u(x, 0) = sinπx, ut(x, 0) ≡ 1.

Find the solution to this problem in MATLAB and plot its repre-
sentative snapshots over a period.

2. Consider the IBVP
utt = 2.23 uxx,

subject to the boundary conditions

u(0, t) = 0, u(1.41, t) = 0,

Shallow Water Equations (SWE) 323

and initial conditions

u(x, 0) = 0.1f(10(x− 0.7)), g(x) ≡ 1,

where f is defined by

f(x) =

{

1
4 (1 + cos x)2, when − π ≤ x ≤ π,

0 otherwise.

Find the solution to this problem in MATLAB and plot its repre-
sentative snapshots over a period.

8.11 Method of Lines and Wave Equation

In the previous sections we applied the separation of variables method
and the characteristics method to the wave equation

utt = c2uxx, x ∈ (0, L), (8.85)

subject to boundary conditions

u(0, t) = u(L, t) = 0, (8.86)

and initial conditions

u(x, 0) = f(x), ut(x, 0) = g(x). (8.87)

and obtained solutions to this IBVP. We now introduce another effective
method to find a numerical solution to IBVP for (8.85), using a combi-
nation of the finite difference method and the method of lines, where we
take advantage of the build-in ODE solver ode45 of MATLAB. Referring
to the PDE in (8.85), we discretize the spatial derivative uxx using the
centered difference scheme

uxx(xi, t) ≈
1

h2
[ui+1(t) − 2ui(t) + ui−1(t)] (8.88)

and leave the time dependence intact. This semi-discretized approach
replaces the PDE utt = c2uxx in (8.85) by the system of ODEs

d2ui
dt2

=
c2

h2
(ui+1(t) − 2ui(t) + ui−1(t)), i = 1, 2, ..., n, (8.89)

where
ui(t) = u(xi, t)

324 Physical Oceanography: A Mathematical Introduction

corresponds to the solution values at the interior points xi ∈ (0, L). This
system is supplemented by the discretized initial data obtained from the
information in (8.87). The boundary conditions in (8.86) lead to

u0(t) = un+1(t) = 0. (8.90)

To implement (8.89) in MATLAB we appeal to ode45. To prepare this
system for ode45, which is written to apply to first order systems, we
reduce (8.89) to a first order system by defining a new variable vi as the
first derivative of ui and convert the system of n equations in (8.89) to
the following system of 2n equations:

dui
dt

= vi,
dvi
dt

=
c2

h2
(ui+1(t) − 2ui(t) + ui−1(t)), i = 1, 2, ..., n,

(8.91)
with initial conditions

ui(0) = f(xi), vi(0) = g(xi). (8.92)

The following program shows how to implement the method of line for
the example in (8.72). The first file, called waveeqSYS1.m, introduces
the equations in (8.91). The second file, called waveeqMOLRun.m, calls on
ode45 and on waveeqSYS1.m to solve (8.91)–(8.92). First waveeqSYS1.m:

function yprime=waveeqSYS1(t,y);

%

global nn h c;

% y represents u and v

u=y(1:nn); v=y(nn+1:2*nn);

term1=c^2/(h^2)*(u(3:nn)-2*u(2:nn-1)+u(1:nn-2));

uprime=v;

vprime=[0; term1; 0];

yprime=[uprime; vprime];

Next, we present the program waveeqMOLRun.m, which calls
waveeqSYS1.m:

clear all

clf

a1=cputime; % start cpu clock

global nn h c;

c=2;

h=0.01;

%

x=0:h:3;

Shallow Water Equations (SWE) 325

nn=length(x);

%

u0=fhat(x);

v0=zeros(nn,1);

%

plot(x,u0);

axis([0 3 -1 1])

drawnow

y0=[u0 v0’];

for i=1:500

[t,y]=ode45(’waveeqSYS1’,[0,0.04], y0);

approximate=y(length(t),1:nn);

plot(x,approximate)

axis([0 3 -1 1])

time=i*t(length(t));

title([’Wave Equation, Method of Line, time =’,

num2str(time)]);

drawnow

y0=y(length(t),:);

end

a2=cputime; % end cpu clock

a2-a1

The M-file fhat.m was defined in Section 8.10. Note the use of drawnow
to animate the graphs of u(t, x) for specific t’s (in this case 0.04), as well
as the use of cputime to monitor how much computing time it takes
to solve this run of waveeqMOLRun.m. Figure 8.4 shows the snapshot
u(x, 20). With the specific stepsize used in this example, ode45 solves
an initial value problem for a system consisting of 602 equations. One
of the features to note in this simulation is the small oscillations in the
solution when t = 20. This lack of accuracy is the result of the initial
condition f not being differentiable. By contrast when we apply this
program to f(x) = sin πx

3 we end up with a more accurate simulation,
as seen in Figure 8.5.

The approach we introduced for solving the wave equation can be
extended for considerably more complicated problems, including non-
linear PDEs, systems of PDEs, and higher-dimensional problems. We
will explore some of these possibilities in the projects at the end of this
chapter.

Problems 8.11

1. Use MATLAB and generate the graphs in Figures 8.4 and 8.5.

2. Alter the program waveeqMOLRun.m and waveeqSYS1.m appropri-

326 Physical Oceanography: A Mathematical Introduction

0 0.5 1 1.5 2 2.5 3
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Wave Equation, Method of Line, time =20

FIGURE 8.4: Using the Method of Line, this figure shows the snapshot
of u(x, 20) where u is the solution to the initial-value problem utt −
4uxx = 0, u(0, t) = u(3, t) = 0, u(x, 0) = f(x), with f given in (8.72),
and g ≡ 0.

ately to solve the following initial problems for the wave equa-
tion (8.53) in the interval (0, 3), with boundary condition u(0, t) =
u(3, t) = 0 and with initial data

(a) f(x) = 0, g(x) = sin πx
3 .

(b) f(x) =

{

x 0 < x < 3
2 ,

3 − x 3
2 ≤ x < 3

and g(x) = sin πx
3 .

8.12 Project A: Method of Characteristics for Gen-
eral PDEs

In Section 8.9 we motivated the characteristics method by manipu-
lating the formula (8.75), which was obtained based on the separation
of variables and the Fourier series method. We now introduce an inde-
pendent derivation of the D’Alembert formula. Our strategy is to show
that under a suitable transformation (ξ, η) of the independent variables
(x, t), we are able to convert the wave equation

utt − c2uxx = 0, (8.93)

Shallow Water Equations (SWE) 327

0 0.5 1 1.5 2 2.5 3
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Wave Equation, Method of Line, time =20

FIGURE 8.5: Using the Method of Line, this figure shows the snapshot
of u(x, 20) where u is the solution to the initial-value problem utt −
4uxx = 0, u(0, t) = u(3, t) = 0, u(x, 0) = sin πx

3 , and g ≡ 0.

to the second–order partial differential equation

Uξη = 0. (8.94)

which can then be easily solved by simple integration with respect to ξ
and η.

1. We start by introducing a general change of variables (ξ, η) by

ξ = h(x, t), η = k(x, t). (8.95)

We seek h and k in such a way that the transformed (8.93) takes
the form (8.94). Let U be related to u through the relation

U(ξ, η) ≡ u(x, t). (8.96)

Use the chain rule of differentiation to show that

(a)
∂u

∂t
=
∂U

∂ξ

∂h

∂t
+
∂U

∂η

∂k

∂t
. (8.97)

and
∂u

∂x
=
∂U

∂ξ

∂h

∂x
+
∂U

∂η

∂k

∂x
. (8.98)

328 Physical Oceanography: A Mathematical Introduction

2. By applying the chain rule of differentiation a second time show
that (assume that U is smooth enough that Uξη = Uηξ holds)

(a)
∂2u

∂t2
= (

∂h

∂t
)2
∂2U

∂ξ2
+ 2

∂h

∂t

∂k

∂t

∂2U

∂ξ∂η
+

(
∂k

∂t
)2
∂2U

∂η2
+
∂U

∂ξ

∂2h

∂t2
+
∂U

∂η

∂2k

∂t2
, (8.99)

and

(b)
∂2u

∂x2
= (

∂h

∂x
)2
∂2U

∂ξ2
+ 2

∂h

∂x

∂k

∂x

∂2U

∂ξ∂η
+

(
∂k

∂x
)2
∂2U

∂η2
+
∂U

∂ξ

∂2h

∂x2
+
∂U

∂η

∂2k

∂x2
. (8.100)

3. Transform equation (8.93) to (8.94) by substituting (8.99) and
(8.100) in (8.93) and rearranging terms to show that

utt − c2uxx = 0

is equivalent to

A
∂2U

∂ξ2
+ 2B

∂2U

∂ξ∂η
+ C

∂2U

∂η2
+D

∂U

∂ξ
+E

∂U

∂η
= 0, (8.101)

where

A = (
∂h

∂t
)2 − c2(

∂h

∂x
)2, (8.102)

B =
∂h

∂t

∂k

∂t
− ∂h

∂x

∂k

∂x
, (8.103)

C = (
∂k

∂t
)2 − c2(

∂k

∂x
)2, (8.104)

D =
∂2h

∂x2
, (8.105)

E = −∂
2k

∂t2
. (8.106)

To arrive at (8.94) choose h and k such that A = C = 0. Show
that these constraints lead to identical differential equations for h
and k:

∂h

∂t
= ±c∂h

∂x
,

∂k

∂t
= ±c∂k

∂x
. (8.107)

Shallow Water Equations (SWE) 329

4. Show that
h(x, t) = x± ct (8.108)

are the only solutions of (8.107).

5. Because the function k in (8.107)b satisfies the same equation as
h, one ends up with the same set of solutions for k. Hence, we use
one of the functions in (8.107), say x− ct, for h, and the other for
k.

6. Show that with these choices for h and k the coefficient B is not
zero while D and E are identically zero. Thus (8.101) reduces to
(8.94). The curves

ξ = x− ct η = x+ ct,

are called the characteristic lines of the wave equation.

7. Show that
U(ξ, η) = F (ξ) +G(η), (8.109)

is the solution to (8.94), where F and G are arbitrary smooth
functions of their arguments. Thus

u(x, t) = F (x− ct) +G(x+ ct), (8.110)

is the general solution to the original wave equation in (8.93).

8.13 Project B: Variations on the Method of Lines

The method of line was introduced for the linear wave equation in
Section 8.11. This method is also very effective for more complex prob-
lems, a few of which we will explore here.

1. Consider the initial value problem

utt = c2uxx = F (x, t), (8.111)

subject to the initial and boundary conditions

u(0, t) = u(L, t) = 0, u(x, 0) = ut(x, 0) ≡ 0.

Alter the programs waveeqSYS1.m and waveeqMOLRun.m appropri-
ately to apply the method of line to solve (8.111). Apply the altered
programs to (8.111) if

330 Physical Oceanography: A Mathematical Introduction

(a) F (x, t) ≡ 1.

(b) F (x, t) = sin t.

(c) F (x, t) = x2 sin t
1+x2 .

2. Alter the programs waveeqSYS1.m and waveeqMOLRun.m appropri-
ately to apply the method of line to solve the linear wave equation
(8.53) with the initial data in (8.55) but with boundary conditions

u(0, t) = b1(t), u(L, t) = b2(t). (8.112)

Apply the altered programs to find approximate solutions of the
following problems (in each case let f = g = 0):

(a) b1(t) = 1 − cos t, b2(t) ≡ 0.

(b) b1(t) = 1 − cos t, b2(t) = − sin t.

3. Extend the method of line to solve the following initial-boundary
value problem:

utt + αut + βu − c2uxx = F (x, t), (8.113)

subject to the initial and boundary conditions

u(0, t) = u(L, t) = 0, u(x, 0) = f(x), ut(x, 0) = g(x).

With α, β, c, L, F , f and g of your own choosing, run the updated
versions of waveeqSYS1.m and waveeqMOLRun.m.

4. Extend the method of line to solve the following nonlinear initial-
boundary value problem:

utt − c2uxx = sinu, (8.114)

u(0, t) = u(L, t) = 0, u(x, 0) = f(x), ut(x, 0) = g(x).

8.14 Project C: An Inverse Problem

We have already encountered the Initial-Boundary Value Problem

utt = c2uxx, (8.115)

u(0, t) = u(L, t) = 0, u(x, 0) = f(x), ut(x, 0) = g(x).

Shallow Water Equations (SWE) 331

Using separation of variables and the Fourier series method, we arrived
at the following series solution of this IBVP:

u(x, t) =

∞
∑

n=1

(an cos
nπct

L
+ bn sin

nπct

L
) sin

nπx

L
, (8.116)

where, with φn(x) = sin nπx
L , the coefficients an and bn are determined

from the following Fourier formulas:

an =
(f, φn)

(φn, φn)
, bn =

(f, φn)

nπc(φn, φn)
. (8.117)

The question we would like to consider in this project is the inverse of
how the IBVP in (8.115) is posed. Instead of having knowledge of f
and g, we would like to investigate how much information we can obtain
about u(x, t) if we have some data about u at a fixed point x0 where
0 < x < L. For example, suppose that we have been able to collect the
following data

u(x0, t) = h(t), for T0 < t < T1. (8.118)

Is it possible to recover u at other values of x different from x0? The
goal here is to take advantage of (8.118), knowing that u must satisfy
(8.115) for some f and g, and to explore if it is possible to recover the
coefficients an’s and bn’s from our knowledge of h.

We begin the analysis of this problem by observing that (8.118) im-
plies that h and an’s and bn’s are related by

h(t) =

∞
∑

n=1

(an cos
nπct

L
+ bn sin

nπct

L
) sin

nπx0

L
. (8.119)

Our approach here will be to use the Galerkin method. Let

ψ1,n(t) = cos
nπct

L
, χn(t) = sin

nπct

L
, (8.120)

and
ān = sin

nπx0

L
an, b̄n = sin

nπx0

L
bn, (8.121)

in terms of which (8.119) becomes

h(t) =

∞
∑

n=1

ānψn(t) + b̄nχn(t). (8.122)

The Galerkin method suggests taking the inner product of (8.122) with

332 Physical Oceanography: A Mathematical Introduction

each ψi,j(t) as i ranges over one and two and j ranges over all posi-
tive integers. We end up with the following infinite system of algebraic
equations:

∑∞
n=1 ān(ψn, ψ1) + b̄n(χn, ψ1) = (h, ψ1),

∑∞
n=1 ān(ψn, ψ2) + b̄n(χn, ψ2) = (h, ψ2),

∑∞
n=1 ān(ψn, ψ3) + b̄n(χn, ψ3) = (h, ψ3),

... ...

... ...
∑∞

n=1 ān(ψn, χ1) + b̄n(χn, χ1) = (h, χ1),

∑∞
n=1 ān(ψn, χ2) + b̄n(χn, χ2) = (h, χ2),

∑∞
n=1 ān(ψn, χ3) + b̄n(χn, χ3) = (h, χ3),

... ...

... ...

(8.123)

1. Let T0 = 0 and T1 = T . Show that if T = 2L
c

then

an = Cn

∫ T

0

h(t)ψ1,n(t) dt, bn = Cn

∫ T

0

h(t)χn(t) dt, (8.124)

where

Cn =
c

L sin nπx0

L

,

for n = 1, 2, Observe that sin nπx0

L
vanishes whenever x0 is a

rational multiple of L. How does this affect the practical computa-
tion of an’s and bn’s? Do we desire T to be large or small in order
to avoid the curse of hitting one of the undesirable x0’s?

2. If T is not an integer multiple of 2L
c , then the formulas in (8.124)

are no longer valid. One way to obtain approximate values for an’s
and bn’s is to truncate the infinite series in (8.123) and convert the
information there to understanding the behavior of a system of
simultaneous linear equations. With that in mind, replace (8.123)

Shallow Water Equations (SWE) 333

by

∑M
n=1 ān(ψn, ψ1) + b̄n(χn, ψ1) = (h, ψ1),

∑M
n=1 ān(ψn, ψ2) + b̄n(χn, ψ2) = (h, ψ2),

∑M
n=1 ān(ψn, ψ3) + b̄n(χn, ψ3) = (h, ψ3),

... ...

... ...
∑M
n=1 ān(ψn, χ1) + b̄n(χn, χ1) = (h, χ1),

∑M
n=1 ān(ψn, χ2) + b̄n(χn, χ2) = (h, χ2),

∑M
n=1 ān(ψn, χ3) + b̄n(χn, χ3) = (h, χ3),

... ...

... ...

(8.125)

Show that this system is equivalent to Ax = b where

x =
[

ā1 ā2 ... ān b̄1 b̄2 ... b̄n
]T

(8.126)

and

b =
[

(h, φ1) (h, φ2) ... (h, χ1) (h, χ2) ...
]T

.

Determine the matrix A. Let D(n, T) denote the determinant of
A. With c = 3, L = 2, plot the graph of this function as a function
of n and T .

8.15 Project D: Exact Solutions of the Rotating
Shallow Water Equations

This project is motivated by the work presented in the 1987 paper of
Benoit Cushman-Roisin [10] where an algorithm is proposed for obtain-
ing exact solutions of RSWE in (8.30). As pointed out in [10], the search
for finding such solutions goes back to at least the 1930s, in the work of
G. R. Goldsborough [11], and later pursued by F. K. Ball [12], [13], and
by W. C. Thacker [14]. The paper [10] has an excellent introduction and
summary of early research on this topic.

The goal in this project is to develop a MATLAB program, primarily

334 Physical Oceanography: A Mathematical Introduction

based on ode45, to seek special solutions of the system of the PDEs
in (8.30), which will be nearly exact solutions of this system, the flaw
being only in the limitations associated with numerical approximations
that result from solving a system of ODEs. These solutions will have
simple spatial structures, where the x and y dependence will be at most
quadratic, but despite their simplicity, these solutions are quite useful
when investigating some of the general features of large-scale circulation
in the open oceans, as well as in monitoring the accuracy of numerical
schemes for the PDEs in (8.30).

We begin our development with the template described in (8.46).

1. Substitute the expressions (8.46) into the PDEs in (8.30) to ob-
tain twelve nonlinear differential equations for the twelve unknown
functions of t

A(t), B(t), C(t), D(t), E(t), F (t),

U0(t), U1(t), U2(t),

V0(t), V1(t), V2(t).

Compare the system you obtain to the one on page 236 of [10]. If
you have access to Mathematica or MATLAB’s symbolic manipu-
lator capability, employ them to obtain the twelfth order system.
You will notice small discrepancies between the equations you ob-
tain and the ones listed in [8.46].

2. As is the case with solving any IVP using ode45, we need to first
define an M-file that contains the equations. One way to construct
this M-file, which we call EllipticVortexEqns.m, is by simply
enumerating the right side of the twelve ODEs on page 236 of [10]
as follows:

function zprime=EllipticVortexEqns(t,z)

global f g

%

A=z(1);B=z(2);C=z(3);D=z(4);E=z(5);F=z(6);

U0=z(7);U1=z(8);U2=z(9);

V0=z(10);V1=z(11);V2=z(12);

eqn1=-(3*U1+V2)*A-2*V1*B;

eqn2=-U2*A-2*(U1+V2)*B-V1*C;

eqn3=-2*U2*B-(U1+3*V2)*C;

eqn4=-U0*A-V0*B-(2*U1+V2)*D-V1*E;

eqn5=-U0*B-V0*C-U2*D-(U1+2*V2)*E;

eqn6=-2*U0*D-V0*E-(U1+V2)*F;

Shallow Water Equations (SWE) 335

eqn7=-U0*V1-U2*V0+f*V0-2*g*D;

eqn8=U1^2-U2*V1+f*V1-2*g*A;

eqn9=-U1*U2-U2*V2+f*V2-2*g*B;

eqn10=-U0*V1-V0*V2-f*U0-2*g*E;

eqn11=-U1*V1-V1*V2-f*U1-2*g*B;

eqn12=-U2*V1-V2^2-f*U2-2*g*C;

zprime=[eqn1;eqn2;eqn3;eqn4;eqn5;eqn6;...

eqn7;eqn8;eqn9;eqn10;eqn11;eqn12];

A typical run of ode45 requires values of f and g, and initial values
for the vector z. The following is an example of such a run; we
call the M-file RunEllipticVortex.m, which plots the graph of
h(1, 1, t) for t ∈ (0, 2π

f) :

clf

clear all

global f g

f=1e-6;

g=10;

A=4;C=1;B=1;

D=0;E=0;F=1;

initial=[A B C D E F 0 0 0 0 0 0];

options=odeset(’RelTol’,1e-6,’AbsTol’,...

1e-10*ones(12,1));

[t,z]=ode45(@EllipticVortexEqns,[0 2*pi/f],...

initial,options);

X=1;Y=1;

for i=1:length(t)

hh(i)=z(i,1)*X.^2+2*z(i,2)*X.*Y+z(i,3)*Y.^2+...

2*z(i,4)*X+2*z(i,5)*Y+z(i,6)*ones(size(X));

end

plot(t,hh)

Execute RunEllipticVortex.m and report on MATLAB’s re-
sponse.

3. MATLAB has several ODE solvers, ode45 being one of them. Ex-
periment with the list of possible ODE solvers (for example ode23,
ode23s, etc.) and replace ode45 in RunEllipticVortex.m and re-
port on whether the output is influenced by the choice of the ODE
solver.

4. The ODEs in this system have the special feature that the right
sides are generally quadratic or cubic in the variable z. These equa-
tions typically have the blowup-in-finite-time feature, in that, for

336 Physical Oceanography: A Mathematical Introduction

certain initial conditions, the solution becomes infinite in finite
time. To see a simple example, consider the Riccati equation

dx

dt
= x2, x(0) = x0. (8.127)

Show, by direct differentiation, that x(t) = x0

1−x0t
is the exact solu-

tion of the above IVP. Note that if x0 is negative, then x(t) exists
for all t > 0, but if x0 is positive, then x becomes unbounded by
the time t = 1

x0
. This blow-up phenomenon is also inherent in the

twelfth-order system.

(a) Let f = 1 and g = 1. Select and keep fixed the RelTol

and AbsTol in the ode45’s options. Select the initial
data for z at random from the interval (−1, 1). Execute
RunEllipticVortex.m for t ∈ (0, 2π) a number of times, but
no less than 20 times. Report on the behavior of ode45. How
often does it seem that the twelfth-order system “blows up in
finite time”?

(b) Let f = 0.0001 and g = 10, where now these values are
closer to the physical values we expect. Select an initial con-
dition initial at random from the interval (−1, 1). Execute
RunEllipticVortex.m for t ∈ (0, 2π

f) first for initial, and
next for

10^{-i}*initial

with i ranging from 1 to 10. Report on the behavior of ode45
as the initial condition gets smaller.

8.16 Project E: Courant–Friedrichs–Lewy Condition

The topic of the numerical analysis of ODEs and PDEs has a rich
history in applied mathematics and has been treated in many excellent
and highly recommended texts, including the texts by Morton and May-
ers [17], and Gottlieb and Orszag [19]. In Chapter 5 we touched on the
mathematical issue of the numerical stability of ODEs, specifically in the
context of the forward and backward finite difference methods. In this
project we explore the concept of numerical stability for the wave equa-
tion and ask the reader to experiment with the Courant-Friedrich-Lewy
(CFL) condition, defined below, to appreciate its impact on the stability
of finite difference methods. The approach here is computational and

Shallow Water Equations (SWE) 337

experimental, and the reader is invited and strongly encouraged to in-
vestigate further the analysis that leads to the CFL condition, in [17]
and [19], or by visiting the many web sites that are dedicated to this
topic.

1. Consider the advection equation

ut + cux = 0, u(x, 0) = f(x), u(0, t) = u(2π, t). (8.128)

(a) Let ui,j stand for u(xi, tj), where xi = i∆x, i = 1, ..., N , and
tj = j∆t, j = 0, 1,

(b) Begin with the Forward Euler Method and replace ut and ux
in (8.128) by 1

∆t (ui,j+1 − ui,j) and 1
∆x (ui+1,j − ui,j), respec-

tively, to arrive at

ui,j+1 = ui,j − cλ(ui+1,j − ui,j), (8.129)

where λ = ∆t
∆x .

(c) Let f(x) = sinx. Note that the exact solution of the IBVP
(8.128) is

u(x, t) = sin(x− ct).

Write a MATLAB program to compute ui,j, with c and λ
as parameters. The main goal here is to arrive at the CFL
condition

cλ ≤ 1 (8.130)

as a condition that suggests that the numerical computations
are stable and bounded. To that end, fix c and N (and hence
∆x, the number of partitions of the domain (0, 2π)). Compute
the approximation to u(π, 1) for various values of ∆t. Report
on the accuracy of the computation in relation to ∆t and
(8.130).

2. Consider the following IBVP for the wave equation:

utt = c2uxx, x ∈ (0, L), (8.131)

u(0, t) = u(L, t) = 0, u(x, 0) = f(x), ut(x, 0) = g(x). (8.132)

(a) Convert the wave equation to a first order system of PDEs by
introducing the two dependent variables v and w defined by

v = ut, w = ux. (8.133)

Show that (8.131)–(8.132) is equivalent to

wt = vx, vt = c2wx, (8.134)

338 Physical Oceanography: A Mathematical Introduction

subject to
v(0, t) = v(L, t) = 0, (8.135)

and
v(x, 0) = g(x), w(x, 0) = f ′(x). (8.136)

(b) Following the strategy of the previous problem, discretize
(8.133)–(8.136) by using the centered difference method in
x and the Forward Euler Method in t. Write down the finite
difference equations that vi,j and wi,j satisfy.

(c) Let L = 2π, f(x) = sinx, g(x) = x(2π − x). Fix N and
c. Write a MATLAB program to compute (v(π, 1), w(π, 1)).
Compare the approximate solution to the one you obtain by
either using the Fourier series method or by the D’Alembert
method. Report on the accuracy of the computation in rela-
tion to the wave equation’s CFL condition

c2λ2 ≤ 1, (8.137)

where λ is, as before, the ratio of ∆t and ∆x.

Shallow Water Equations (SWE) 339

8.17 References

1. Batchelor, G., An Introduction to Fluid Dynamics, Cambridge Uni-
versity Press, 2000.

2. Stoker, J., Water Waves: The Mathematical Theory with Applica-
tions, Wiley Classics Library Edition, 1992.

3. Gerbeau, J.–F., Perthame, B., “Derivation of viscous Saint-Venant
system for laminar shallow water; numerical validation,” Discrete
and Dynamical Systems, Series B, Vol 1, no. 1, 2001, pp. 89–102.

4. LeVeque, R., Finite Difference Methods for Ordinary and Partial
Differential Equations, SIAM 2007.

5. George, D. L., “Finite volume methods and adaptive refinement
for tsunami propagation and inundation,” Dissertation, University
of Washington, 2006.

6. Cheng, B., Tadmor, E., “Approximate periodic solutions for the
rapidly rotating shallow-water and related equations,” in Water
waves, Theory and Experiment, Proceedings of the Conference held
in Howard University, May 2008 (M. F. Mahmood, D. Henderson,
H. Segur, eds), World Scientific (2010), pp. 69–78.

7. Kim, J., LeVeque, R. J., “Two-layer shallow water system and its
applications,” Proceedings of the Twelfth International Conference
on Hyperbolic Problems, 2008. Proc. Symp. Appl. Math., 67, 2009,
pp. 737–743.

8. Greenberg, J. M., Hartig, D., “A new Lagrangian shallow water
circulation model”, Far East Journal of Ocean Research, 2009, pp.
93–156.

9. Pedlosky, J., Geophysical Fluid Dynamics, 2nd Edition, Springer
Verlag, New York, 1986.

10. Cushman-Roisin, B., “Exact analytical solutions for elliptical vor-
tices of the shallow-water equations”, Tellus, 39A, 1987, pp. 235–
244.

11. Goldsborough, G., “The tidal oscillations in an elliptic basin of
variable depth”, Proceedings of the Royal Society A, Vol 130, 1930,
pp. 157–167.

340 Physical Oceanography: A Mathematical Introduction

12. Ball, F., “Some general theorems concerning the fluid motion of a
shallow liquid lying on a paraboloid,” Journal of Fluid Mechanics,
Vol 17, 1963, pp. 240–256.

13. Ball, F., “The effect of rotation on the simpler modes of motion
of a liquid in an elliptic paraboloid,” Journal of Fluid Mechanics,
Vol 22, 1965, pp. 529–545.

14. Thacker, W., “Some exact solutions to the nonlinear shallow-water
wave equation,” Journal of Fluid Mechanics, Vol 107, 1981, pp.
499–508.

15. Malek-Madani, R., Advanced Engineering Mathematics with
MathematicaR© and MATLABR©, Addison-Wesley, 1998.

16. Miller, R., Numerical Modeling of Ocean Circulation, Cambridge
University Press, 2007.

17. Morton, K., Mayers, D., Numerical Solution of Partial Differential
Equations, Cambridge University Press, Second edition, 2005.

18. Stanoyevitch, A., Introduction to Numerical Ordinary and Partial
Differential Equations Using MATLAB, John Wiley & Sons, 2005.

19. Gottlieb, D., Orszag, S., Numerical Analysis of Spectral Methods:
Theory and Applications, SIAM, 1977.

Chapter 9

Wind-Driven Ocean Circulation:
Stommel and Munk Models

9.1 Introduction

In 1948 Henry Stommel, in the seminal paper entitled “The West-
ern Intensification of Wind-driven Ocean Currents,” see [1], proposed a
simple model for the Gulf Stream based on the fundamental equations
of geophysical fluid dynamics. In that paper Stommel concentrated on
isolating the parameters that lead to the generation of boundary layers
on the western boundaries of large basins in the northern hemisphere,
reminiscent of the Gulf and Kuroshio Streams. Stommel showed that
the variations of the Coriolis parameter f with latitude are primarily
responsible for the formation of boundary layers in wind-driven circu-
lations. Specifically, in the Stommel model the only forces present are
the ones due to Coriolis, the wind stress, and an additional frictional
force whose presence, albeit somewhat artificial, is intended to help with
writing down a well-posed boundary value problem for a second order
PDE for the stream function of the flow. A relatively careful derivation
of this model will be one of the main features of this chapter.

Almost concurrently with the appearance of Stommel’s paper, Walter
Munk, in the paper entitled “On the Wind-driven Ocean Circulation,”
see [2], introduced a slightly different model of circulation in the North
Atlantic. The key departure of Munk’s model from Stommel’s is in the
way dissipation enters into the model. Munk, taking into account the
turbulent nature of the flow, introduces an internal dissipation mech-
anism through the viscous stresses. This model then leads to a fourth
order PDE for the underlying stream function.

In this chapter we will develop the basic tenets of the Stommel and
Munk models. We will derive the underlying PDEs and the boundary-
value problem that govern the behavior of the stream function in each
model, use separation of variables and find the exact solution when possi-
ble, and then use MATLAB to generate graphs of the typical streamlines.

341

342 Physical Oceanography: A Mathematical Introduction

We then apply the finite difference methodology we have developed so
far, and find approximate solutions for each boundary value problem.

Before describing the Stommel and Munk models in detail, we present
two simple boundary value problems, one that mimics flows in an un-
bounded rectangular bay, where the flow is incompressible and irrota-
tional, and the other a rotational flow in a bounded rectangular region.
These two flows lead to the familiar eigenvalues and eigenfunctions or
the normal modes of the Laplace operator, similar to the ones we have
already encountered in the previous chapters, and point to fundamental
structures that also appear in the Stommel and Munk models.

9.2 Flow in a Rectangular Bay — Normal Modes

We now take up the study of deriving the set of all possible irrota-
tional flows of an incompressible fluid in the region Ω given by

{(x, y)| x < 0, 0 < y < h}. (9.1)

We will think of the region Ω as the horizontal cross section of a semi-
infinite bay, where the fluid flows we consider do not change with depth;
we therefore assume that these flows are two-dimensional. We further
consider steady-state flows, that is

v = 〈u(x, y), v(x, y), 0〉. (9.2)

Since the fluid is incompressible, v is associated with a stream function
ψ(x, y) through the relations

u =
∂ψ

∂y
, v = −∂ψ

∂x
, (9.3)

and since the flow is irrotational, v is curl-free, that is ∂v
∂x − ∂u

∂y must
vanish, which in turn requires that ψ satisfy Laplace’s Equation

∆ψ =
∂2ψ

∂x2
+
∂2ψ

∂y2
= 0. (9.4)

Equation (9.4) is supplemented with the boundary conditions at the
three boundaries y = 0, y = h and x = 0, which we assume are impene-
trable seawalls, so that

v(x, 0) = v(x, h) = 0 where x < 0, (9.5)

Wind-Driven Ocean Circulation: Stommel and Munk Models 343

and
u(0, y) = 0, where 0 < y < h. (9.6)

Note that (9.5) and (9.6) do not allow fluid particles to cross the seawalls
but do allow particles that are located on these boundaries to move along
them.

In terms of the stream function ψ the relations (9.5) and (9.6) take
the form

∂ψ(x, 0)

∂x
=
∂ψ(x, h)

∂x
=
∂ψ(0, y)

∂y
= 0. (9.7)

After an integration each relation in (9.7) reduces to

ψ(x, 0) = const, ψ(x, h) = const, ψ(0, y) = const. (9.8)

We anticipate that the seawall boundaries constitute a single contour of
the stream function ψ and therefore set the three constants in (9.8) equal
to the same constant. Since any stream function is known only up to a
constant, without loss of generality we set this constant to zero. Hence
the three boundary conditions in (9.6) and (9.7) reduce to ψ(x, y) = 0,
which we write as the Dirichlet boundary condition

ψ|∂Ω = 0. (9.9)

In summary, the set of fluid flows we are seeking in the bay Ω must
satisfy Laplace’s equation subject to the zero boundary condition (9.9).

As in the case of the wave equation, we seek solutions of (9.4) in
separated form:

ψ(x, y) = F (x)G(y). (9.10)

Substituting (9.10) in Laplace’s equation and dividing by FG leads to

F ′′

F
+
G′′

G
= 0, for all x and y, (9.11)

from which we conclude that each fraction in (9.11) must be a constant.

We assume the constant F ′′

F is positive (see the problems at the end of
the section for all other cases) and denote it by λ2. Hence

F ′′

F
= λ2,

G′′

G
= −λ2, (9.12)

or
F ′′ − λ2F = 0 and G′′ + λ2G = 0. (9.13)

The general solutions of these equations are F (x) = c1e
λx + c2e

−λx and
G(y) = c3 cosλy + c4 sinλy. The stream function ψ, as expressed in
(9.10) in terms of F and G, now takes the form

ψ(x, y) = (c1e
λx + c2e

−λx)(c3 cosλy + c4 sinλy). (9.14)

344 Physical Oceanography: A Mathematical Introduction

The constants c1, c2, c3, c4 and λ must now be determined so that the
stream function ψ complies with the boundary conditions (9.9). The
first boundary condition, that ψ(x, 0) vanishes for all negative values of
x, when applied to (9.14), leads to

0 = (c1e
λx + c2e

−λx)c3 (9.15)

for all x < 0, which leads to the conclusion that c3 must vanish. With
this information in hand, the function ψ in (9.14) reduces to

ψ(x, y) = (Aeλx + Be−λx) sinλy, (9.16)

where A and B stand for the two products c4c1 and c4c2. The second
part of the boundary conditions, that ψ(0, y) must vanish, when applied
to (9.16), requires that

(A+ B) sinλy = 0 (9.17)

for all y with 0 < y < h. Hence A + B equals zero or B = −A. This
expression now reduces (9.16) to

ψ(x, y) = C sinhλx sinλy, (9.18)

where we have used the identity sinh z = 1
2 (ez − e−z) and have defined

C to stand for the remaining constants. The final boundary condition,
that ψ(x, h) = 0, requires that C and λ satisfy the expression

C sinhλx sinλh = 0 (9.19)

for all negative x. The above expression leads to sin λh = 0 since allow-
ing C to vanish would lead to ψ(x, y) vanishing identically. The latter
equation in λ is met if λ is selected so that λh is an integer multiple of
π. Hence, we have discovered that there are infinitely many candidates
for λ, the constant of separation of variables in (9.12), of the form

λn =
nπ

h
, n = 1, 2, 3, ... (9.20)

The associated stream functions ψn are

ψn(x, y) = Cn sinh
nπx

h
sin

nπy

h
. (9.21)

We summarize these findings in the following theorem.

Theorem 9.2.1 (Flow in the Bay)
The boundary value problem (9.4) and (9.9) has infinitely many solutions

Wind-Driven Ocean Circulation: Stommel and Munk Models 345

given by (9.21). These solutions are linearly independent in the domain
(−∞, 0) × (0, h).

Putting it slightly differently, and recalling the definition of an
eigenvalue µ and its attendant eigenfunction u of an operator L (that
L[u] = µu, subject to boundary conditions), we have shown that the
functions ψn in (9.21) are all eigenfunctions of the Laplace operator
∆ corresponding to eigenvalue µ = 0. We will study the eigenvalue-
eigenfunction problem for the Laplacian in more detail in the next section
in the context of bounded domains Ω, and will arrive at the conclusion
that there are generally only a finite number of eigenfunctions corre-
sponding to an eigenvalue µ when Ω is bounded . The fact that we have
obtained infinitely many eigenfunctions corresponding to µ = 0 for the
domain Ω defined by (9.1) is due to the unboundedness of this domain.

The eigenfunctions or normal modes (9.21) are special solutions of the
BVP (9.4), (9.9), each having a single parameter, Cn, at our disposal to
manipulate to construct further solutions of the BVP. Each normal mode
is characterized by its structure in the y-direction, each displaying a flow
that has several invariant regions, regions that do not communicate or
mix. Figure 9.1 shows the first four normal modes or eigenfunctions
(9.21). The n-th normal mode consists of n invariant regions where fluid
particles are confined to stay. The flow direction in any invariant region is
in the opposite direction to the flow direction in its neighboring invariant
regions. Two adjacent invariant regions are separated by an invariant
curve y = const, where, much like the seawall boundaries x = 0, y = 0
and y = h, these curves act as artificial seawalls or barriers, impenetrable
by fluid particles. These internal “boundaries” are not picked up by the
contour command of MATLAB because they are only continuous and
not differentiable. In fact, the set of points corresponding to the seawall
boundaries and these internal invariant curves correspond to the single
contour ψn(x, y) = 0. Figure 9.2 shows the graph of z = ψ3(x, y), where
it is relatively clear that the curves y = k, where sin 3k = 0 (here h = π),
are zeros of ψ3. A more illuminating way of computing the zero-contour
level of any normal mode is to use the special option within contour to
plot a single contour. Here is how one proceeds:

[X,Y]=meshgrid(-3:0.01:0.1,-0.1:0.01:pi+0.1);

contour(X,Y,FlowBay(0.1,pi,3,X,Y),[0 0])

where FlowBay.m is the M-file

function z=FlowBay(A,h,n,x,y);

%

z=A*sinh(n*pi*x/h).*sin(n*pi*y/h);

346 Physical Oceanography: A Mathematical Introduction

The output is shown in Figure 9.3, which clearly shows the seawalls and
the internal barriers. This figure is obtained by

contour(x,y,psi(x,y),[0 0])

after psi, x, and y have been properly defined.

As we saw in the discussion of the wave equation in Chapter 8, the
set of functions {sin nπy

h } form a basis for the set of functions f for which
formulas such as (8.66) and (8.67) make sense. 1 In the case of the wave
equation, we applied the Fourier series approach to construct a solution
that satisfies the appropriate initial data (again, see (8.66)). It turns out
that this approach can also be useful in the context of the boundary
value problem for the flow in a bay, which we elaborate on now.

We seek solutions of the boundary value problem (9.4) and

ψ(x, 0) = ψ(x, h) = ψ(0, y) = 0, (9.22)

with the additional boundary condition

ψ(a, y) = f(y), (9.23)

where f is a given function of y ∈ (0, h). We can obtain the solution
to Laplace’s equation (9.4), subject to the boundary conditions (9.22)–
(9.23), by considering the linear combination of the normal modes (9.21),
namely,

ψ(x, y) =

∞
∑

n=1

Cn sinh
nπx

h
sin

nπy

h
, (9.24)

since each normal mode in (9.21) satisfies Laplace’s equation as well as
the three boundary conditions in (9.22). We note that the fourth bound-
ary condition (9.23) would be satisfied if we could select the coefficients
Cn’s in (9.24) so that

f(y) =

∞
∑

n=1

Cn sinh
nπa

h
sin

nπy

h
, (9.25)

that is, select these coefficients so that the expression Cn sinh nπa
h

is the

1Here we use the term “basis” informally and rather loosely, to mean that a large
collection of functions f , those that satisfy the boundary conditions f(0) = f(h) = 0
and are square-integrable in the interval (0, h), can be approximated by the set of
functions {sin nπy

h
}. We do not take up in this text the proper definitions related to

the completeness of this basis and the appropriate topology in which the partial sums
converge to f , and instead refer the interested reader to classic texts in Advanced
Calculus and Real Analysis for this subject.

Wind-Driven Ocean Circulation: Stommel and Munk Models 347

Fourier sine coefficient of the function f when this function is expanded
in terms of sin nπy

h , i.e.,

Cn sinh
nπa

h
=

2

a

∫ h

0

f(y) sin
nπy

h
dy,

which results in

Cn =
2

a sinh nπa
h

∫ h

0

f(y) sin
nπy

h
dy. (9.26)

We summarize the above discussion in the following theorem:

Theorem 9.2.2 (A BVP for Laplace’s Equation)
The Boundary Value Problem (9.4) subject to the four boundary condi-
tions stated in (9.22)–(9.23) can be solved by means of the Fourier series
solution (9.24) whose coefficients Cn are given in (9.26).

Some of the exercises at the end of this section address this ap-
proach with concrete examples of f . We end this section by appealing to
MATLAB to demonstrate that the invariance structure of the individual
normal modes can be broken if we consider arbitrary linear combination
of normal modes. For example, consider the stream function

ψ(x, y) = ψ1(x, y) + ψ2(x, y) + ψ3(x, y) (9.27)

where h = π and C1 = 1, C2 = −0.01 and C3 = −0.0015. The stream-
lines of this flow are shown in Figure 9.4. The figure shows the nontrivial
way that the three normal modes of (9.21) interact and how the invari-
ance regions of an individual normal mode affects modes.

Problems 9.2

1. Show that the stream function ψ of a two-dimensional irrotational
and incompressible flow must satisfy the Laplace equation.

2. Show by direct differentiation that the expression (9.21) is a solu-
tion of the BVP (9.9).

3. While applying the separation of variables method to the Laplace
Equation we concluded that the fraction F ′′

F must be constant,
but then made the assumption in (9.12) that this constant is pos-
itive and proceeded to arrive at the normal modes (9.21). Assume
now that this constant is negative and proceed to determine the
resulting normal modes.

348 Physical Oceanography: A Mathematical Introduction

Normal Mode, n = 1

−3 −2 −1 0
0

1

2

3

Normal Mode, n = 2

−3 −2 −1 0
0

1

2

3

Normal Mode, n = 3

−3 −2 −1 0
0

1

2

3

Normal Mode, n = 4

−3 −2 −1 0
0

1

2

3

FIGURE 9.1: Contours of the first four eigenfunctions or normal modes
(9.21) of the BVP (9.4), (9.9). Here Cn = 10−n, n ranging from 1 through
4. Note that the n-th mode has n invariant regions, where fluid particles
don’t mix. The direction of the flow in each invariant region is opposite
of the direction of the flow in its neighboring invariant region.

4. Referring to the discussion in the previous problem, assume that
the ratio F ′′

F
is zero and proceed to obtain the resulting normal

modes.

5. Consider the first normal mode ψ1 in (9.21), with h = π and
C1 = 1. Find the associated velocity and acceleration fields. Plot
the graphs of the streamlines and the velocity and acceleration
fields on the same screen.

6. Consider the second normal mode ψ2 with h = π and C2 = 1. Use
MATLAB’s ode45 and plot the graphs of the particle paths whose
initial positions are located at (−1, i) with i ranging from 0 to π
at an increment of 0.1. Plot on one screen the graphs for one unit
of time in the future and one unit of time in the past. Color the
future trajectories blue and the past trajectories red.

Wind-Driven Ocean Circulation: Stommel and Munk Models 349

−3

−2

−1

0

0

1

2

3

4
−500

0

500

xy

ψ

FIGURE 9.2: The surface plot of ψ3(x, y) = 0.1 sinh3x sin 3y.

7. Returning to the BVP in Theorem 9.2.2, consider the case where
f is given by

f(y) = y(h − y).

(a) Compute the Fourier coefficients Cn in (9.26) as a function of
n and h.

(b) Let h = 1.3. Write a MATLAB program to compute SN (x),
the N -th partial sum of the series solution of the BVP, where
SN is

SN (x) =

N
∑

n=1

Cn sinh
nπx

h
sin

nπy

h
.

Your program should define the function SN , which may use
the global command to pass parameter h to the computation
of SN . Experiment with quad, quadl and quadv to decide
which one leads to the best solution for computing the Fourier
coefficients. Apply this program to the cases where N = 8,
N = 16 and N = 32 and plot the graph of the resulting
stream function in each case.

350 Physical Oceanography: A Mathematical Introduction

−3 −2.5 −2 −1.5 −1 −0.5 0
0

0.5

1

1.5

2

2.5

3

FIGURE 9.3: The plot of the zero contour of ψ3(x, y) =
0.1 sinh3x sin 3y, showing the seawall boundaries and the two internal
barriers y = π

3 and y = 2π
3 .

9.3 Eigenfunctions of the Laplace Operator

In the previous section we studied a collection of irrotational fluid
flows that are related to the Laplace operator. We saw that these flows
are normal modes or eigenfunctions of the Laplace operator correspond-
ing to this operator’s zero eigenvalue, i.e., the stream function of these
flows satisfy the Laplace equation given in (9.4). We now take up the
study of the structure of rotational fluid flows by first concentrating on
constructing eigenfunctions of nonzero eigenvalues of the Laplace oper-
ator, that is, determining the pair (λ, ψ) such that

∆ψ = −λ2ψ, ψ∂Ω = 0, (9.28)

and in the subsequent section solve the Poisson equation

∆ψ = f(x, y), ψ∂Ω = 0.

Wind-Driven Ocean Circulation: Stommel and Munk Models 351

−3 −2.5 −2 −1.5 −1 −0.5 0
0

0.5

1

1.5

2

2.5

3

FIGURE 9.4: The streamlines of a linear combination of the normal
modes (9.27) where the invariance structure of individual normal modes
are altered and deformed.

We now consider the domain Ω as the rectangle

Ω = {(x, y)| 0 < x < a, 0 < y < b}, (9.29)

which is bounded, in contrast to the domain in the “flow in the bay” we
considered in the previous section.

Returning to (9.28), we begin the process of constructing a solution as
we did with the Laplace equation, by applying the method of separation
of variables. We seek solutions ψ of the form

ψ(x, y) = F (x)G(y). (9.30)

After substituting this template into (9.28), we arrive at the expression

F ′′

F
+
G′′

G
= −λ2

which gives the two sets of ODEs

F ′′

F
= −µ2,

G′′

G
+ (λ2 − µ2) = 0,

352 Physical Oceanography: A Mathematical Introduction

or equivalently

F ′′ + µ2F = 0, G′′ + (λ2 − µ2)G = 0. (9.31)

Here µ is the constant of separation of variables. At this point both λ
and µ are unknown, but we assume, anticipating oscillating solutions in
(9.31), that λ > µ. With this assumption, the solutions to (9.31) are

F (x) = c1 sinµx+ c2 cosµx, G(y) = c3 sinγy + c4 cos γy, (9.32)

where

γ =
√

λ2 − µ2. (9.33)

With this expression for γ, the eigenfunction ψ takes the form

ψ(x, y) = (c1 sinµx+ c2 cosµx)(c3 sin γy + c4 cos γy). (9.34)

We now begin to apply the Dirichlet boundary condition ψ|∂Ω = 0 at
the four segments of the boundary x = y = 0 and x = a and y = b.
When x = 0, the expression (9.34) reduces to

ψ(0, y) = 0 = c2(c3 sin γy + c4 cos γy), for all 0 < y < b,

which results in c2 = 0. The stream function ψ in (9.34) then reduces to

ψ(x, y) = (A sin γy +B cos γy) sin µx, (9.35)

where A and B are the appropriate combinations of c1, c3 and c4. Next,
if we apply the boundary condition at y = 0, we see that ψ in (9.35)
reduces to

ψ(x, y) = A sinµx sinγy. (9.36)

The remaining two boundary conditions at x = a and y = b will now
determine µ and γ. First, the expression 0 = ψ(a, y) = A sinµa sin γy is
satisfied if we choose µ so that sinµa = 0, or if

µn =
nπ

a
, n = 1, 2, ... (9.37)

Similarly, the boundary condition ψ(x, b) = 0 dictates that γ satisfy the
relation sinγb = 0 or

γm =
mπ

b
. (9.38)

Recalling the connection between λ, µ and γ from (9.33), we have

λ2
nm = (

n2

a2
+
m2

b2
)π2. (9.39)

Wind-Driven Ocean Circulation: Stommel and Munk Models 353

with the corresponding eigenfunctions

ψnm(x, y) = Anm sin
nπx

a
sin

mπy

b
. (9.40)

We summarize these conclusions in the following theorem.

Theorem 9.3.1 (Normal Modes of the Laplace Operator)
The eigenvalue-eigenfunctions pair (λ, ψ) of the Laplace operator are
given by the expressions (9.39) and (9.40).

Several of the exercises explore the structure of these solutions.

Problems 9.3

1. Show that the functions {sin nπx
a

sin mπy
b

} are linearly independent
in the domain Ω.

2. Show by direct differentiation that the expression (9.34) is a solu-
tion of (9.28).

3. Show by direct differentiation that the expression (9.40) is a solu-
tion of (9.28) with eigenvalues defined by (9.39).

4. Determine whether the BVP

∆ψ = λ2ψ, ψ|∂Ω = 0

has a nontrivial solution pair (λ, ψ) with λ a real number.

5. Consider the (m, n)-th normal mode in (9.40). Determine the ve-
locity, acceleration and the vorticity of the fluid flow associated
with this mode.

6. Let ψnm be the (n,m)-th eigenfunction defined in (9.40). Plot the
contours of this normal mode and the induced velocity field when

(a) n = m = 1, Anm = 1, a = 3 and b = 2.

(b) n = 2, m = 3, Anm = 1, a = 5 and b = 3.

7. Consider the special case a = b = L, i.e., when the domain Ω is a
square of length L. In this setting the eigenvalues λ2

nm become

λ2
nm =

π2(n2 +m2)

L2
.

Since n2 +m2 = m2 + n2 all eigenfunctions corresponding to λ2
nm

have at least multiplicity two because ψnm is linearly independent

354 Physical Oceanography: A Mathematical Introduction

of ψmn (prove this). Show that a consequence of this fact is that
any linear combination

c1ψnm + c2ψmn

is an eigenfunction corresponding to the same eigenvalue λ2
nm.

Show that there are cases of distinct n and m for which multi-
ple eigenfunctions ψnm correspond to the same eigenvalue λ2

nm.
For example, with n = 3 and m = 4, or n = 4 and m = 3 both ψ34

and ψ43 are eigenfunctions corresponding to the eigenvalue 25π2

L2 .
Let L = π.

(a) Show that cψ34 + dψ43 is an eigenfunction of the Laplacian
with eigenvalue 25. Plot the contours of this normal mode
with c = 1 and d = 3.

(b) Show that ψ5,12 and ψ12,5 are both eigenfunctions of the
Laplacian. What is the corresponding eigenvalue?

8. Let a = b = π. Consider the case of λ2 = 50. Show that there are
three eigenfunctions corresponding to this eigenvalue, ψ1,7, ψ7,1

and ψ5,5. Let

ψ = ψ1,7 + ψ7,1 + ψ5,5

where the coefficients Anm in (9.40) are chosen at random from
the interval (0, 1). Plot the contours of this stream function.

9. Let a = b = π. Consider the case of λ2 = 65. How many linearly
independent eigenfunctions does this eigenvalue have? Let

ψ =

p
∑

i=1

ψi

where {ψi}’s are the eigenfuctions. Choose the coefficients Anm in
(9.40) at random from the interval (0, 1). Plot the contours of this
stream function.

10. Consider the collection of integers m2 + n2 where m and n range
from 1 to 25. Use MATLAB and investigate these numbers in the
context of the eigenvalues of the Laplace operator when a = b = π.
List all the eigenvalues that have one, two, three, four, five and six
eigenfunctions, if there are any.

Wind-Driven Ocean Circulation: Stommel and Munk Models 355

9.4 Poisson Equation

The eigenfunctions of the Laplacian may be used quite effectively to
study solutions of boundary value problems for the Poisson equation

−∆ψ = f(x, y), ψ|∂Ω = 0, (9.41)

where Ω is the rectangular domain

Ω = {(x, y)| 0 < x < a, 0 < y < b}

defined in (9.29). In the context of rotational incompressible flows, the
stream function ψ defines a flow whose vorticity is characterized by f .

One approach to computing a solution to the BVP in (9.41), (9.29)
is to take advantage of the special properties of the eigenfunctions of
the Laplacian and seek a solution to the BVP as an expansion in terms
of these normal modes. We have encountered this approach already, in
the context of the flow in the bay, but the method is so powerful in
applied mathematics that it is worth revisiting its development. The
eigenfunction method applies to a wide class of initial and boundary
value problems, including all problems that involve linear operators. In
certain cases it can even be extended to gain insight into the behavior
of solutions of nonlinear problems. It is also a proper tool to use with
the method of lines and the Galerkin method, which were introduced
earlier.

The main idea is as follows: The action of any operator L on any
function φ is simply the function ψ given by

ψ = L(φ).

Typically the functions φ and ψ hardly look alike. For example, when
L = d

dx and φ(x) = lnx, then ψ(x) = L(φ) = 1
x , which does not resemble

φ, and in particular, ψ is not a constant multiple of φ. However, when φ
is an eigenfunction of L, the situation is quite different, because now ψ
simply ends up being a constant multiple of φ, i.e., we have the critical
relation

L(φ) = µφ. (9.42)

To rephrase, eigenfunctions of any operator L, including the Laplace
operator, are special, in that the operator L’s action on any of its eigen-
functions essentially leaves that function intact, except for the scaling
factor µ. We remark in passing that we have already encountered this
concept in the context of matrices and have explored its consequences.

356 Physical Oceanography: A Mathematical Introduction

The main reason the concept of eigenvalue-eigenfunction plays a crit-
ical role in seeking solutions of PDEs is because of the ease by which the
operator L acts on its eigenfunctions. To see this in an abstract setting,
consider a PDE that is expressed as

L(ψ) = f. (9.43)

In the special case of our Poisson BVP, L = −∆. Let ψn bet the eigen-
function of L with the associated eigenvalues µn, that is,

L(ψn) = µnψn. (9.44)

An important property of eigenfunctions {ψn}is that they often form a
basis for the collection of functions of interest to us, meaning that a large
class of functions f can be expanded in terms of ψn:

f(x) =

∞
∑

n=1

anψn(x), (9.45)

where an’s are constant. We will refer to the coefficients an’s as the (gen-
eralized) Fourier coefficients of f in terms of the basis functions or the
eigenfunctions {ψn}. We have already encountered examples of expan-
sions of the form (9.45), specifically when discussing the wave equation
where ψn(x) = sin nπx

L , and in the case of the Flow in the Bay, where
ψn(y) = sin nπy

h . As was pointed out earlier, we are not developing here
the rigorous mathematics that describes the sense in which the partial
sums of the infinite series in (9.45) converge to f , and refer the interested
reader to [3], among many other texts on PDEs, for details. Instead, here
we concentrate on how to implement this approach, and combine it with
MATLAB’s capabilities, to obtain approximate solution to the Poisson
equation.

Returning to (9.43), we note that we are dealing with two functions,
f and ψ, in this PDE, where f is the known forcing term, and ψ is
the desired solution to this equation. The first step of our strategy is
to expand f in terms of the eigenfunctions of L and obtain (9.45). The
coefficients an’s are determined from the application of a typical Fourier
coefficient formula. The second step is to seek the solution ψ also as an
expansion in terms of the eigenfunctions of L:

ψ(x) =

∞
∑

n=1

bnψn(x). (9.46)

Unlike the case of f , where f is a known function so we have access to
formulas to compute its Fourier coefficients, the function ψ is unknown

Wind-Driven Ocean Circulation: Stommel and Munk Models 357

so we need to finds bn’s, its Fourier coefficients, indirectly. The piece
of information that comes to the rescue of this approach is the original
PDE in (9.43). Substituting the two Fourier series (9.45) and (9.46) into
(9.43) yields

L(

∞
∑

n=1

bnψn(x)) =

∞
∑

n=1

anψn(x). (9.47)

The operator L is linear, so we can rewrite (9.47), at least formally, as
follows:

∞
∑

n=1

bnL(ψn(x)) =

∞
∑

n=1

anψn(x). (9.48)

Next we appeal to (9.44) to replace L(ψn) with µnψn and rewrite (9.48)
as

∞
∑

n=1

bnµnψn(x) =

∞
∑

n=1

anψn(x). (9.49)

Since the functions {ψn} form a basis, they are linearly independent.
Hence the coefficients bnµn and an in the two series must be the same,
that is,

bn =
an
µn
. (9.50)

We summarize this discussion in the following theorem

Theorem 9.4.1

The solution ψ to the PDE defined by (9.43), subject to boundary condi-
tions, can be obtained as an infinite series (9.45), where the coefficients
bn are given by (9.50).

We now return to the Poisson BVP (9.41) and apply the findings in
Theorem 9.4.1 to obtain its solution. Here L = −∆ whose eigenfunctions
are

ψnm = sin
nπx

a
sin

mπy

b
,

when Ω is the rectangular domain in (9.29). As we have seen earlier

L(ψnm) = −∆ψnm = λ2
nmψnm,

where λnm are defined in (9.39). Following the strategy that led to The-
orem 9.4.1, we expand f and ψ in terms of the eigenfunctions ψnm:

f(x, y) =

∞
∑

n,m

anm sin
nπx

a
sin

mπy

b
, (9.51)

358 Physical Oceanography: A Mathematical Introduction

where anm are determined as before, that is,

anm =
4

ab

∫ a

0

∫ b

0

f(x, y) sin
nπx

a
sin

mπy

b
dxdy. (9.52)

We now seek the solution ψ to the BVP in the form

ψ(x, y) =

∞
∑

n,m

bnm sin
nπx

a
sin

mπy

b
, (9.53)

where the scalars ψnm are to be determined. Since the function ψ is a
solution of the Poisson equation in (9.41), we have

−∆ψ = f,

or

−∆(

∞
∑

n,m

bnm sin
nπx

a
sin

mπy

b
) =

∞
∑

n,m

anm sin
nπx

a
sin

mπy

b
. (9.54)

The Laplacian is a linear operator, that is L(f + g) = L(f) + L(g), as
you can verify easily by noticing that

−∆(f + g) = −∆f − ∆g. (9.55)

When we apply this feature of the Laplacian to the left side of (9.54),
we end up with

−∆(
∞
∑

n,m

bnm sin
nπx

a
sin

mπy

b
) = −

∞
∑

n,m

bnm∆(sin
nπx

a
sin

mπy

b
) =

∞
∑

n,m

λ2
nmbnm sin

nπx

a
sin

mπy

b
. (9.56)

Hence (9.54) reduces to

∞
∑

n,m

λ2
nmbnm sin

nπx

a
sin

mπy

b
=

∞
∑

n,m

anm sin
nπx

a
sin

mπy

b
. (9.57)

Since the eigenfunctions ψnm are linearly independent, the coefficients
of the two series in (9.57) must be equal, from which we deduce that
bnm are

bnm =
anm
λ2
nm

(9.58)

Wind-Driven Ocean Circulation: Stommel and Munk Models 359

as predicted by Theorem 9.4.1. We summarize the above discussion in
the following theorem.

Theorem 9.4.1 (Solution to the Poisson BVP)
The solution to the BVP in (9.41) is given by the series (9.53), where
the coefficients bnm are given by

bnm =
4

abλ2
nm

∫ a

0

∫ b

0

f(x, y) sin
nπx

a
sin

mπy

b
dxdy. (9.59)

To illustrate the utility of this theorem, consider the Poisson BVP
with the forcing term f given by the function

f(x, y) = −10 x2(3 − x) sin
πy

2
− 50 y(2 − y)2 sin

πx

3
, (9.60)

defined in the domain Ω = {(x, y)|, 0 < x < 3, 0 < y < 2}. The following
MATLAB code computes the coefficients anm and bnm and plots the
contours of f and ψ as shown in Figure 9.5, taking into account only
the 10-th partial sum in each of the series expansions (9.51) and (9.53).
Here the notation f10 and ψ10 stand for the 10-th partial sums of each
respective function:

f10 =

10
∑

m=1

10
∑

n=1

anm sin
nπx

3
sin

mπy

2
,

and

ψ10 =

10
∑

m=1

10
∑

n=1

bnm sin
nπx

3
sin

mπy

2
.

Figure 9.5 shows one of the important features of the Laplacian operator,
that this operation has the tendency to symmetrize a perturbation that
is asymmetric, a feature that we will come back to in the next section.

Here is how Figure 9.5 was obtained in MATLAB:

a=3; b=2;

% Define f; Combine the two lines below on

% a single line when executing in MATLAB

%

f=inline(’-10*x.^2.*(3-x).*sin(pi*y/2)+...

-50*y.*(2-y).^2.*sin(pi*x/3)’,’x’,’y’);

%

% Define the domain and plot the contours of f

%

[X,Y]=meshgrid(0:0.01:a,0:0.01:b);

360 Physical Oceanography: A Mathematical Introduction

subplot(2,1,1)

contour(X,Y,f(X,Y),’black’)

hold on

%

% Compute the Fourier Coefficients of f

%

for m=1:10

for n=1:10

% Combine the two lines below in a single line

% before executing in MATLAB

A(n,m)=4/(a*b)*quadv(@(y) quadv(@(x) f(x,y).*....

sin(n*pi*x/a).*sin(m*pi*y/b),0,a),0,b);

end

end

%

% Compute the solution psi

%

S=0;

for m=1:10

for n=1:10

eigenvalues=-pi^2*(n^2/a^2 + m^2/b^2);

B(n,m)=A(n,m)/eigenvalues;

S=S+B(n,m)*sin(n*pi*X/a).*sin(m*pi*Y/b);

end

end

contour(X,Y,S,’black’)

subplot(2,1,2)

Note the multiple use of quadv in the above code:

quadv(@(y) quadv(@(x) f(x,y).*...

sin(n*pi*x/a).*sin(m*pi*y/b),0,a),0,b);

which computes the iterated integral in (9.59). Alternatively, we could
compute the double integration in (9.59) by applying the MATLAB com-
mand

dblquad

which, when applied to (9.59) as

dblquad(@(x,y) f(x,y).*sin(n*pi*x/a).*sin(m*pi*y/b),0,a,0,b);

leads to a considerably more efficient computation of the Fourier coef-
ficients bnm. In the exercises we will apply the tic ... toc command
of MATLAB to quantify how much faster dblquad computes a Fourier
coefficient relative to a double application of quadv.

Wind-Driven Ocean Circulation: Stommel and Munk Models 361

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

FIGURE 9.5: Contours of 10-th partial sums ψ10 and f10 of the stream
function and the forcing term defined in (9.60), respectively. Contours
of ψ10 are more or less symmetric in the domain while the contours of
f10 are asymmetric and bunched up relatively closely to the southern
boundary of the domain.

9.4.1 Poisson Equation with Localized Vorticity

One of the curious aspects of the previous example is the relative
symmetry of the stream contours even though the forcing term f is
asymmetric. To explore this phenomenon more closely, we now consider
the Poisson BVP with forcing terms f whose support is in a small disk in
the domain. Specifically, we consider functions f of the following form:

f(x, y) =

{

A
2δ

(1 + cos π
δ
||r− P||), when ||r− P|| < δ,

0 otherwise.
(9.61)

Here P = 〈x0, y0〉 is a point in the domain Ω and is the center of the
disk in which the support of f is located, δ is the radius of the support,
chosen small enough so that the disk of radius δ about P = (x0, y0) is
located entirely in Ω. The amplitude A

2δ is selected so that the integral
of f over the entire domain Ω in (9.28) is A.

The following MATLAB code shows how to plot the graph of f in

362 Physical Oceanography: A Mathematical Introduction

the special case where the domain Ω is the rectangle (0, a) × (0, b) with
a = 3, b = 2, x0 = 2.5, y0 = 0.5 and A = 10. For δ we select

δ =
1

2
min(x0, y0, a− x0, b− y0)

to ensure that the disk of radius δ about P lies entirely in Ω.

global a b x0 y0 delta

%

a=3; b=2;

x0=2; y0=0.5;

delta=1/2*min([x0,y0,a-x0,b-y0]);

amp=10;

[X,Y]=meshgrid(0:0.01:a,0:0.01:b);

Z=LocalVorticity(amp,X,Y);

contour(X,Y,Z)

which calls on the M-file LocalVorticity.m:

function z=LocalVorticity(amp,x,y);

%

global a b x0 y0 delta

%

distance=sqrt((x-x0).^2+(y-y0).^2);

z=amp/(2*delta)*(1+cos(pi/delta*distance)).*(distance<delta);

Note the use of the boolean command (distance<delta), which is used
to reduce f , which is called LocalVorticity in the code, to zero outside
of the support. When we combine this code with the one developed
earlier that led to computing the approximate solution to the Poisson
BVP in (9.41), we end up with the figures in Figure 9.6. The figures show
the 30-partial sum approximation of each function, the forcing term f
and its associated stream function ψ. Note that the stream function ψ30

displays a weakened localization relative to the one shown by the forcing
term f30.

Problems 9.4

1. Solve the following the Poisson boundary value problem with the
following data. In each case plot the graph of the streamlines of
the 10-th partial sum ψ10 as well as the contours of f on the same
screen.

(a) a = 4, b = 5 and f(x, y) = xy(4 − x)(5 − y).

(b) a = 1, b = 1 and f(x, y) = 1. Plot the graph of ψ10(x,
1
2
) and

report on the behavior of the function as x approaches the
boundary values x = 0 and x = a.

Wind-Driven Ocean Circulation: Stommel and Munk Models 363

0.511.52
2.53

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

0.01

0.01 0.01

0.02

0.02

0.03

0.030.04
0.05
0.06

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

FIGURE 9.6: Contours of the partial sums ψ30 and f30 of the stream
function and its associate forcing term defined in (9.61), respectively.

(c) a = 1, b = 1 and f(x, y) = x(1 − x) sin 2πx sinπy −
y sinπx sin 2πy.

2. Use help with tic and familiarize yourself with the usage of
this MATLAB utility. Apply tic ... toc to quadv as well as to
dblquad in the computation of the Fourier coefficients of f , where
f is define in (9.60), and report the quantitative difference in using
these two quadrature utilities.

3. Consider the Poisson boundary value problem with

f(x, y) =

{

1 when (x− 1
2)2 + (y − 1

2)2 < 1
16 ,

0 otherwise.

and a = b = 1. Display the contours of the stream function ψ when
the domain is defined by

(a) a = b = 1

(b) a = b = 10.

4. The purpose of this problem is to write a MATLAB code based on

364 Physical Oceanography: A Mathematical Introduction

the local vorticity function f defined in (9.61). To emphasize that
the value of f(x, y) depends on the amplitude A and f ’s support
center P, let

fA,P

denote the function f defined in (9.61). Let

f =

N
∑

i=1

fAi,Pi

denote the forcing function associated with N local vortices of am-
plitude Ai centered at positions Pi’s. Write a MATLAB program
that accepts N vortices of different amplitudes and produces the
approximation of the stream function with a desired accuracy spec-
ified by the user. Apply your program to plot the contours of ψ30

if a = b = 1 and

(a)

A1 = 3, P1 = 〈a
3
,
b

3
〉, A2 = −2, P1 = 〈2a

3
,
b

3
〉.

(b)

f =

2
∑

i=1

fAi,Pi

where Ai is a random number in the interval (−10, 10), and
Pi are chosen at random in the domain (0, a) × (0, b).

9.5 Stommel Model

The Stommel model is characterized by the desire to conceive of a
simple model of circulation in a basin such as the North Atlantic by
taking into account only the most prominent forces that affect the flow
of the fluid particles, those forces that result in generating the kind of
a current that resembles the Gulf Stream, not only geometrically but
physically, in that most of the salient parameters that we know should
characterize the Gulf Stream are present in the model.

As stated earlier in this chapter, one of the first models for a Gulf
Stream like current proposed appeared in [1]. The remainder of the
chapter will be dedicated to deriving the governing PDE, the necessary
boundary conditions, and finally obtaining the solution to this BVP,
analytically and numerically.

Wind-Driven Ocean Circulation: Stommel and Munk Models 365

The geometry is motivated by considering a basin that has dimen-
sions similar to North Atlantic (about 10,000 kilometers in each hori-
zontal directions, and a depth of a few kilometers). In order to simplify
the mathematical complexity of this problem we confine the domain to a
cube. Following Stommel’s approach, we choose to take into account only
the impact of the acceleration due to Coriolis, the effect of the pressure
gradient in the flow, which is primarily created due to the wind forcing
at the surface, and, in order to have a reasonable steady-state solution, a
simple model of frictional forces, taken proportional to velocity. The goal
is solve the underlying time-independent boundary value problem for the
stream function and to demonstrate the boundary-layer character of the
solution on the western boundary of the region as a manifestation of
the Gulf Stream. The model derivation we present is somewhat ad hoc
but it hopefully has enough content to build the reader’s intuition to
appreciate which forces have been balanced, while identifying the forces
that have been neglected to arrive at the reduced Stommel model.

We will then present the results of the paper [4], by Joe Pedlosky,
where we start with the full nonlinear time-dependent equations of geo-
physical fluid dynamics and show how Stommel’s model can be derived
from the full model after we are identify certain small non-dimensional
parameters.

9.5.1 Governing PDE

We begin by considering a rectangular basin occupied by a homoge-
neous and incompressible fluid of density ρ0. When the fluid is stationary
its domain B is defined by

B = {(x, y, z)| 0 < x < λ, 0 < y < b, 0 < z < d}

When this basin is perturbed its new shape is defined by

Ω = {(x, y, z)| 0 < x < λ, 0 < y < b, 0 < z < d+ η(x, y, t)}

where z = η(x, y, t) represents the air-sea interface.
We assume that the motion is steady and two dimensional so that

v = 〈u(x, y), v(x, y), 0〉.

We further assume that the nonlinear convective term of the accelera-
tion, v ·∇v, is small compared with the linear Coriolis term, the pressure
gradient term, the wind forcing and the frictional forcing, and neglect
it in deference to the linear terms in the balance of linear momentum.
These assumptions lead to a substantial reduction of the continuity equa-
tion and the balance of linear momentum. In particular the continuity

366 Physical Oceanography: A Mathematical Introduction

equation becomes
∂u

∂x
+
∂v

∂y
= 0, (9.62)

and the balance of linear momentum takes the form

−ρ0fv = −∂p
∂x

+ ρ0F1, ρ0fu = −∂p
∂y

+ ρ0F2, (9.63)

0 = −∂p
∂z

− ρ0g. (9.64)

Here f = 2Ω sinφ is the Coriolis parameter, and in the third equation
the hydrostatic approximation is assumed. The terms F1 and F2 are
components of the forcing terms, representing wind forcing and bottom
friction. They will be constructed specifically to ensure that (9.63) and
(9.64) match the equivalent equations of Stommel.

Since ρ0 and g are independent of x, y and z, we conclude from (9.64)

that ∂p
∂z is independent of x and y, implying that ∂2p

∂x∂z = ∂2p
∂y∂z = 0.

Keeping this in mind, we return to (9.63) and differentiate them with
respect to z to get

∂(−ρ0fv)

∂z
= ρ0

∂F1

∂z
,

∂(ρ0fu)

∂z
= ρ0

∂F2

∂z
.

We further assume that F1 and F2 are independent of z. The above
equations then imply that both fu and fv are independent of z, and
since f is independent of z, we conclude that u and v are functions of
x and y only. Although the statement about the independence of u and
v on z was assumed from the beginning, it is instructive to note that
this conclusion could have been reached by simply assuming that the
external forces acting on B are independent of z.

Next we integrate (9.64) with respect to z, from a typical z to z =
d+ η(x, y, t), where, as stated earlier, d+ η defines the air-sea interface.
We get

p(x, y, z, t) = p0 + ρ0g(d+ η(x, y, t) − z), (9.65)

where p0 is the air pressure, assumed constant for simplicity. Replacing
p from (9.65) in (9.63) results in eliminating p from the equations of
balance of linear momentum:

−fv = −g ∂η
∂x

+ F1, fu = −g∂η
∂y

+ F2.

Next, we integrate both equations with respect to z, from z = 0 to
z = d+ η:

−fv(d + η) = −g ∂η
∂x

(d+ η) + F1(d+ η),

Wind-Driven Ocean Circulation: Stommel and Munk Models 367

fu(d + η) = −g∂η
∂y

(d+ η) + F2(d+ η).

We assume that η is small and negligible relative to d. We, therefore,
arrive at the linearized equations

−fvd = −gd ∂η
∂x

+ dF1, fud = −gd∂η
∂y

+ dF2. (9.66)

With the goal of obtaining the equations in Stommel’s paper, we now
define F1 and F2 in the following special way:

dF1 = −Ru− γ cos
πy

b
, dF2 = −Rv, (9.67)

where γ and R are positive constants. Thus d〈F1, F2〉 is the sum of two
vectors R + T where

R ≡ −Rv = 〈−Ru,−Rv〉

is intended to model the overall impact of the bottom and lateral fric-
tional damping (molecular or eddy viscosity terms are not included in
this model). And the traction vector T defined by

T(y) = 〈−γ cos
πy

b
, 0〉,

which represents the wind stress/wind forcing on the air-sea interface.
Note that T(0) = 〈−γ, 0〉 so that the wind stress in the lower part of the
basin is applying a force in the negative x-direction, while T(b) = 〈γ, 0〉,
signifying the wind in the positive x-direction in the upper part of the
basin; T thus represents a shearing force exerted on the surface of B,
very similar to the trade and prevailing winds that have been observed
in mid-latitudes in the North Atlantic.

Substituting (9.67) into (9.66) results in the following set of equations
for u, v and η:

−fv = −g ∂η
∂x

− R

d
u− γ

d
cos

π

b
, fu = −g∂η

∂y
− R

d
v. (9.68)

Next we eliminate η from (9.68) by cross-differentiating the above equa-
tions: Differentiate (9.68a) with respect to y and (9.68b) with respect to
x, and subtract to get

−f ′(y)v − f
∂v

∂y
− f

∂u

∂x
= −R

d

∂u

∂y
+
γπ

db
sin

πy

b
+
R

d

∂v

∂x
, (9.69)

where we have made use of (9.62) to simplify. Speaking of equation

368 Physical Oceanography: A Mathematical Introduction

(9.62), we note that this equation implies that u and v are related to a
stream function ψ through the relations

u =
∂ψ

∂y
, v = −∂ψ

∂x
, (9.70)

which, when applied to (9.69), results in the following partial differential
equation

∆ψ + αψx = A sin
πy

b
, (9.71)

where

α =
f ′(y)d

R
, A =

γπ

Rb
. (9.72)

We complement the PDE in (9.71) with zero boundary conditions, i.e.,

ψ|∂B = 0. (9.73)

Our task in the next section is to solve the boundary-value problem
(9.71)–(9.73) using separation of variables. But before completing this
section we comment that the typical values of the various constants in
(9.72) are (see [1])

d = 200 m, λ = 10, 000 km, b = 2π × 1000 km,

γ = 1 dyne/cm2, R = 0.02. (9.74)

Among these values, the magnitude of f ′(y) is worth noting; Since y = aφ
where a is the radius of the planet and φ is the latitude, we note that
f(y) = 2Ω sinφ = 2Ω sin y

a
. Hence, f ′(y) = 2Ω

a
cos y

a
. In this problem’s

setting, with a = 6240 km, Ω = π
43200 and 0 < y < b, we have

1.24575 x10−13 < f ′(y) < 2.33084 x10−13.

Following Stommel’s footsteps, in what follows we assume the value
f ′(y) ≈ 2 × 10−13.

Wind-Driven Ocean Circulation: Stommel and Munk Models 369

Problems 9.5

1. Review the derivation of the Stommel model in this section and
write down all of the assumptions made that enabled us to reduce
the fully nonlinear equations of geophysical fluid dynamics to the
simple linear PDE (9.71).

2. Show that the PDE in (9.71) is equivalent to the following PDE:

e−αx(∇ · eαx∇ψ) = A sin
πy

b
. (9.75)

3. Define the operator L by

L(φ) = e−αx(∇ · eαx∇φ). (9.76)

Show that the functions φm,n(x, y) defined by

φm,n(x, y) = e−
αx
2 sinnπx sin

mπy

τ
(9.77)

are the eigenfunctions of the L in the domain (0, 1) × (0, τ) with
Dirichlet boundary conditions, i.e., φm,n satisfy the relations

L(φm,n) = −µ2
m,nφm,n,

where µ2
m,n is the eigenvalue. Write down the eigenvalues.

4. Show that the eigenfunctions (9.77) are mutually orthogonal with
respect to the weight w(x) = eαx, that is
∫ 1

0

∫ τ

0

φm′,n′φm,nw(x) dy dx = 0, if m 6= m′, n 6= n′. (9.78)

5. Let τ = 0.8.

(a) Let α = 20. Plot the contours of the first three eigenfunctions
(φ1,1, φ2,1, φ1,2) and the eigenfunction φ3,5. See Figure 9.7.
Next, to appreciate the difference between φ1,1 and φ2,1, plot
the difference between these two eigenfunctions at x = 0.1
and x = 0.7 for y ∈ (0, τ). See Figure 9.8.

(b) Let α = 200. Plot the graphs of the eigenfunctions in the
previous problem for this value of α. Describe the impact of
the size of α on the size of the boundary layer in the first
eigenfunction.

(c) Compute the velocity at the point P = (x, y) = (0.1, τ2) for
the two velocity fields derived from the eigenfunction φ1,1,
first when α = 20 and next when α = 200, and report on the
difference between the speed of the fluid located at P for each
vector field.

370 Physical Oceanography: A Mathematical Introduction

Eigenfunction φ
1,1

0 0.5 1
0

0.2

0.4

0.6

0.8

Eigenfunction φ
2,1

0 0.5 1
0

0.2

0.4

0.6

0.8

Eigenfunction φ
1,2

0 0.5 1
0

0.2

0.4

0.6

0.8

Eigenfunction φ
1,1

0 0.5 1
0

0.2

0.4

0.6

0.8

FIGURE 9.7: Contours of four eigenfunctions of L when α = 20

9.5.2 Non-Dimensionalization

The variables in (9.71), whether dependent or independent, are di-
mensional. If we stay in this dimensional setting, we will end up having
to deal with parameter values with magnitudes 108 (for λ) and 10−13

(for f ′(y)), a range of twenty-one orders of magnitude. Although this
range does not particularly create a major difficulty for MATLAB, it
turns out we gain more insight into the impact of the three forces that
balance each other in (9.71) on the behavior of solutions of the BVP, in-
cluding why a boundary layer is generated, if we first non-dimensionalize
the variables.

We non-dimensionalize x, y and ψ by defining new variable x̄, ȳ and
ψ̄ through the following relations:

λx̄ = x, λȳ = y, ψ0ψ̄(x̄, t̄) = ψ(x, y),

where ψ0 is a typical value of the stream function. Differentiating the
last relation twice with respect to x, and noting that ∂x

∂x̄ = λ, leads to

ψxx =
ψ0

λ2
ψ̄x̄x̄.

Wind-Driven Ocean Circulation: Stommel and Munk Models 371

0 2 4 6 8 10 12 14 16 18
−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

x=0.1

x=0.7

FIGURE 9.8: Graphs of φ1,1(x, y) − φ2,1(x, y)with α = 20 and for
y ∈ (0, τ) when x = 0.1 (graphed with “.” dots), near the boundary
layer, and at x = 0.7 (graphed with “+” dots).

Similarly

ψyy =
ψ0

λ2
ψ̄ȳȳ.

Hence the Laplace operator ∆ in (9.71) transforms to

ψ0

λ2
∆̄,

where

∆̄ =
∂2

∂x̄2
+

∂2

∂ȳ2
.

In this way the dimensional boundary value problem (9.71) transforms
to the non-dimensional one

∆̄ψ̄ + ᾱψ̄x̄ = Ā sin
πȳ

L
, (9.79)

where L is the aspect ratio of the horizontal parts of the domain, i.e.,

L =
b

λ
, (9.80)

372 Physical Oceanography: A Mathematical Introduction

and

ᾱ = λα, Ā =
λ2

ψ0
A. (9.81)

Equation (9.79) is now supplemented by the boundary conditions

ψ̄(x̄, 0) = ψ̄(x̄, L) = ψ̄(0, ȳ) = ψ̄(1, ȳ) = 0, (9.82)

In the next section we find the solution to (9.79)–(9.82).

9.5.3 Solution to the BVP

Before proceeding to obtain the solution to (9.79)–(9.82), we rename
all of the variables by removing the bars from these variables. Hence we
seek a solution to

∆ψ + αψx = A sin
πy

L
, (9.83)

subject to the boundary conditions

ψ(x, 0) = ψ(x, L) = ψ(0, y) = ψ(1, y) = 0, (9.84)

where (see (9.72))

α =
f ′(y)dλ

R
, A =

γπλ2

Rbψ0
. (9.85)

We begin by noting that the PDE (9.83) is a Poisson equation. We could
seek the solution to the boundary value problem (9.83)–(9.84), as we did
in Section 9.4, in terms of the eigenfunctions of the operator

L(φ) = ∆φ+ αφx,

subject to the boundary conditions in (9.84)(see Problem 3, Section
9.5.1), but instead we follow the technique H. Stommel applied in his
paper, namely, by seeking first the general solution of (9.83). To that
end we look for solutions in the form

ψ(x, y) = ψh(x, y) + ψp(x, y), (9.86)

where ψh is the solution of the homogeneous part of the (9.83), namely,
the solution to

∆ψ + αψx = 0, (9.87)

while ψp is any particular solution of (9.83). Neither ψh nor ψp may
satisfy the boundary condition (9.84). Our strategy is to select the ar-
bitrary parameters in (9.86) appropriately so the boundary conditions
(9.84) hold.

Wind-Driven Ocean Circulation: Stommel and Munk Models 373

9.5.3.1 Determining the Particular Solution ψp

Since ψp does not have to satisfy the boundary condition (9.84) we
can essentially guess its form. Noting that A sin πy

L is the forcing term
in (9.83), we consider a particular solution ψp in the form ψp(x, y) =
B sin πy

L
, and determine the constant B so that ψp is a solution of (9.83).

Substituting this template into (9.83) results in B = −AL2

π2 . Hence

ψp(x, y) = −AL
2

π2
sin

πy

L
. (9.88)

9.5.3.2 Determining the Homogeneous Solution ψh

To determine the solution to (9.87) we apply the method of separa-
tion of variables to this equation, namely, assume a solution ψh(x, y) of
the form F (x)G(y). Substituting the expression

ψh(x, y) = F (x)G(y)

into ∆ψ + αψx = 0, we see that F and G must solve the equation

F ′′G+G′′F + αF ′G = 0,

for all x and y in the domain (0, 1)× (0, L). Dividing this expression by
FG results in

(
F ′′

F
+ α

F ′

F
) +

G′′

G
= 0.

Because F only depends on x, G only depends on y and α is constant,
it follows that the terms involving F must equal a constant, which we
denote by µ2, so that

F ′′

F
+ α

F ′

F
= µ2,

G′′

G
= −µ2. (9.89)

The above equations lead to the following set of second order differential
equations

F ′′ + αF ′ − µ2F = 0, G′′ + µ2G = 0. (9.90)

It is a simple computation to show that the following functions are the
general solutions of the above equations:

G(y) = c1 cosµy + c2 sinµy, F (x) = c3e
m1x + c4e

m2x, (9.91)

where m1 and m2 are

m1 =
−α+

√

α2 + 4µ2

2
, m2 =

−α−
√

α2 + 4µ2

2
.

374 Physical Oceanography: A Mathematical Introduction

Referring back to (9.86), we now see that the general solution of the
homogeneous part of the Poisson equation is (recall that ψh = FG)

ψh(x, y) = (c3e
m1x + c4e

m2x)(c1 cosµy + c2 sinµy). (9.92)

Since we have explicit formulas for ψh, (9.92), and for ψp, (9.88), we
combine them to obtain the general solution of the full PDE (9.83):

ψ(x, y) = −AL
2

π2
sin

πy

L
+(c3e

m1x+c4e
m2x)(c1 cos µy+c2 sinµy). (9.93)

9.5.3.3 Applying the Boundary Conditions

It remains to select c1, c2, c3, c4, and µ to enforce the boundary
condition (9.84).

We begin by applying the first boundary condition, that ψ(x, 0) = 0
for all 0 < x < 1: Evaluate (9.93) at y = 0 to get

0 = ψ(x, 0) = c1(c3e
m1x + c4e

m2x), for all x ∈ (0, 1),

which results in c1 = 0. Thus ψ in (9.93) reduces to

ψ(x, y) = −AL
2

π2
sin

πy

L
+ (d1e

m1x + d2e
m2x) sinµy, (9.94)

where d1 = c2c3 and d2 = c2c4. Next, we apply the boundary condition
ψ(x, L) = 0 to (9.94) to get

0 = ψ(x, L) = (d1e
m1x + d2e

m2x) sinµL = 0, for all x ∈ (0, 1),

which implies that µ should be chosen in such a way that µL = nπ, with
n = 1, 2, Hence, referring back to (9.94), we obtain infinitely many
candidates for the solution to (9.83), which we index by n:

ψn(x, y) = −AL
2

π2
sin

πy

L
+ (d1e

m1x + d2e
m2x) sin

nπy

L
, n = 1, 2, 3,

(9.95)
Next, we apply the boundary condition ψ(0, y) = 0 to (9.95):

−AL
2

π2
sin

πy

L
+ (d1 + d2) sin

nπy

L
= 0 for all y ∈ (0, L). (9.96)

The above expression is of the form

β1 sin
πy

L
+ β2 sin

nπy

L
= 0 for all y ∈ (0, L), (9.97)

for appropriate β1 and β2, both constants. The two functions sin πy
L and

Wind-Driven Ocean Circulation: Stommel and Munk Models 375

sin nπy
L are linearly independent on the interval (0, L) unless n = 1.

Hence, unless we select n to be 1, the coefficients β1 and β2 must both

vanish. We know, however, that β1 = −AL2

π2 is nonzero. We have no
choice other than to select only the first mode n = 1 from the infinitely
many modes available in (9.95). Hence, ψ = ψ1, or

ψ(x, y) = −AL
2

π2
sin

πy

L
+ (d1e

m1x + d2e
m2x) sin

πy

L
, (9.98)

is the solution to (9.83)–(9.84), satisfying three of the four boundary
conditions in (9.84). Returning to (9.96), with n set equal to 1, we find
that

(

−AL
2

π2
+ (d1 + d2)

)

sin
πy

L
= 0, for all y,

which implies that

d1 + d2 =
AL2

π2
. (9.99)

Using this information in (9.98), we conclude that ψ takes the form

ψ(x, y) =

(

−AL
2

π2
+ d1e

m1x + (
AL2

π2
− d1)e

m2x

)

sin
πy

L
. (9.100)

Finally, we apply the boundary condition ψ(1, y) = 0 to (9.100) to get

−AL
2

π2
+ d1e

m1 + (
AL2

π2
− d1)e

m2 = 0

which results in d1 = AL2(em2−1)
π2(em2−em1) and, from (9.99), that d2 =

AL2(1−em1)
π2(em2−em1) . Hence the final form of ψ is

ψ(x, y) =
AL2

π2
[−1 + κem1x + (1 − κ)em2x] sin

πy

L
, (9.101)

where κ is

κ =
em2 − 1

em2 − em1
.

We have proved the following theorem.

Theorem 9.5.1 (Stommel’s Stream Function)
Consider the boundary-value problem (9.83)–(9.84). The function ψ de-
fined in (9.101) is a solution of this problem.

The function ψ in (9.101) defines the stream function for Stommel’s
model of the Gulf Stream. To see that it embodies some of the salient
features of this current, we now use MATLAB and plot its streamlines.

376 Physical Oceanography: A Mathematical Introduction

9.6 MATLAB Programs

The following program defines the stream function ψ from (9.101)
to MATLAB. First we store the various physical constants and defined
parameters in the file StommelConstants.m as follows (the parameter
values used in this program have been taken verbatim from [1]):

psi0=10^9; % Setting the stream value scale,

% an arbitrary value.

lambda=10^9; % Basin’s length (in centimeters)

b=2*pi*10^8; % Basin’s width

d=20000; % Basin’s depth

gamma=1; % Wind stress

fprime=2*10^(-13); % Coriolis parameter

R=0.02; % Bottom friction parameter

%%%

%%% Formulas obtained in the text

%%%

A=(gamma*pi*lambda^2)/(R*b*psi0);

alpha=lambda*fprime*d/R;

mu=pi*lambda/b;

m1=(-alpha-sqrt(alpha^2+4*mu^2))/2;

m2=(-alpha+sqrt(alpha^2+4*mu^2))/2;

c1=(exp(m2)-1)/(exp(m2)-exp(m1));

c2=(1-exp(m1))/(exp(m2)-exp(m1));

%%%

The program StommelContours.mdefined below, begins with StommelConstant.m

and proceeds to generate a 100 by 100 grid of the domain to plot the
contours of ψ:

n = 100; m = 50 % Grid points in horizontal and vertical directions

%%% Defining domain in MATLAB;

L=b/lambda;

[x,y]=meshgrid(0:1/(n+1):1,0:L/(m+1):L);

%%% Evaluation of the Stream function

z=A*L^2/(pi^2)*(-1+c1*exp(m1*x)+c2*exp(m2*x)).*sin(pi*y/L);

zz=z’;

contour(x,y,zz)

MATLAB returns Figure 9.9. Executing the lines

Wind-Driven Ocean Circulation: Stommel and Munk Models 377

[c, hh]= contour(x,y,zz);

clabel(c, hh)

adds the value of the contour levels to the contours in Figure 9.9.
Note that the streamline values are all negative, indicating a clock-

wise rotation. The most striking feature of the streamlines is of course
their behavior near the western boundary, where, analogous to the Gulf
Stream, they bunch up to form a boundary layer. Since the flux remains
constant between any two streamlines, the fact that the area between
any two neighboring streamlines narrows near the western boundary
indicates that the velocity of the fluid flow must increase substantially
relative to, say, the eastern boundary. It is worth emphasizing the signifi-
cance of Stommel’s analysis in [1], which demonstrated that the presence
of this boundary layer is solely due to the intricate interplay among the
Coriolis force, the wind stress, and bottom friction. In particular, be-
cause of the various scales and dimensions involved, the parameter α
takes the value of 200 in its non-dimensional form (see 9.85). The size of
this parameter ends up being the key factor that is responsible for the
appearance of the boundary layer in Figure 9.9, as some of the exercises
at the end of this section will demonstrate.

The solution we obtained in (9.101) is exact and in closed form. One
can simply differentiate and substitute it into the original boundary value
problem in (9.83) to verify that (9.101) is indeed a solution. Another
advantage of having a formula for the solution is that it is then relatively
simple to compute various properties of the flow associated with (9.101).
For example, recalling that the velocity field v = 〈u, v〉 is related to ψ
by u = ∂ψ

∂y and v = −∂ψ
∂x , we find that

u =
AL

π

(

−1 +
em2 − 1

em2 − em1
em1x +

1 − em1

em2 − em1
em2x

)

cos
πy

L
,

v = −AL
2

π2

(

−1 +
em2 − 1

em2 − em1
m1e

m1x +
1 − em1

em2 − em1
m2e

m2x

)

sin
πy

L
.

The quiver command of MATLAB when combined with the latter for-
mulas leads to Figure 9.10. This figure is the output of the following
program:

global psi0 lambda b d gamma fprime R A

global alpha mu m1 m2 c1 c2

StommelConstants

L=b/lambda;

%

378 Physical Oceanography: A Mathematical Introduction

[x,y]=meshgrid(0.01:0.1:0.99,0.01:L/10:L-0.01);

[u,v]=StommelVelocity(x,y);

%

quiver(x,y,u/norm(u),v/norm(v))

This program calls on StommelVelocity.m listed below:

function [u,v]=StommelVelocity(x,y);

global psi0 lambda b d gamma fprime R A

global alpha mu m1 m2 c1 c2

L=b/lambda;

term=(-1+c1*m1*exp(m1*x)+c2*m2*exp(m2*x));

u = A*L/pi*term.*cos(pi*y/L);

v=-A*L^2/(pi^2)*term.*sin(pi*y/L);

Now that we have the velocity field v in hand, we can compute the
relative vorticity, ω = ∇×v, which is equivalent to (−∆ψ)k. We suspect
that the amplitude of the relative vorticity, −∆ψ, will also favor the
western boundary. To verify this, we compute this quantity:

−∆ψ = −AL
2

π2

(

(
π2

L2
+ (m2

1 −
π2

L2
)
em2 − 1

em2 − em1
em1x +

(m2
2 −

π2

L2
)

1 − em1

em2 − em1
em2x)

)

sin
πy

L
.

The graph of this function is shown in Figure 9.11.
As pointed out earlier, the advantage of having the exact solution for

the stream function ψ is that we can infer a considerable amount of in-
formation about the physical problem by direct computations involving
ψ. Several of the problems at the end this section are intended to drive
this point home. It is obvious, however, that we cannot be as success-
ful if we are able to compute the solution of an initial-boundary value
problem only approximately. In the next section we consider computing
the solution to (9.83) using a standard finite difference method. We then
discuss the obstacles we may encounter when we attempt to determine
the vorticity, say, when we only have an approximate knowledge of the
stream function.

Problems 9.6

1. Verify the statements in (9.90) and (9.91).

Wind-Driven Ocean Circulation: Stommel and Munk Models 379

Exact Solution ψ

x

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

FIGURE 9.9: Streamlines of ψ.

2. Verify by direct substitution that (9.93) satisfies (9.83).

3. Verify by direct substitution that (9.101) satisfies (9.83).

4. Show that sin y and sinny are linearly independent in the interval
(a, b) unless n = 1.

5. In applying the separation of variables method to (9.83) we made
the tacit assumption that µ2, the constant of separation of vari-
ables, is positive. Consider instead the following two cases, con-
struct the solution ψ of the BVP in each case and report on any
barriers you encounter when attempting to solve for the boundary
conditions:

(a) µ = 0.

(b) µ2 = −δ2, with δ a real number, i.e., assuming that the con-
stant of separation of variables is negative.

6. Experiment with the various parameter values in StommelConstants.m

380 Physical Oceanography: A Mathematical Introduction

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

FIGURE 9.10: Velocity field associated with the stream function ψ.

to see the impact of α on the size of the boundary layer. In par-
ticular, plot the contours of ψα with α = 0, 10, 20, 50, 100, 200, 500
and 1000.

7. With the constants as defined in StommelConstants.m, and the
stream function is defined in (9.83), apply MATLAB’s ode45 to
plot the trajectory of the particle that is located at the position
P = (0.9, L2), where L is the aspect ratio of the basin. This trajec-
tory should follow the path of a streamline through P in clockwise
direction. Experiment with the value of tfinal in ode45 to get
the trajectory to cover about

(a) a quarter of the streamline,

(b) half of the streamline,

(c) a full streamline.

8. Repeat the computations of the above problem with the point P =
(0.8, L

2
). Report on the difference between the various times it takes

these trajectories to cover the corresponding distances.

9. Write a MATLAB program that plots the position of set of N

Wind-Driven Ocean Circulation: Stommel and Munk Models 381

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8
−5

−4

−3

−2

−1

0

1

FIGURE 9.11: The relative vorticity −∆ψ associated with the stream
function ψ.

points whose initial positions are equally distributed on a circle
of radius 0.01 and centered at P = (0.9, L2). Experiment with the
tfinal in ode45 and display the snapshots of the initial circular
parcel of fluid as time evolves. Report on the deformation of this
parcel fluid in relation to the general characteristics of the flow,
especially its vorticity, and especially in connection with the flow
in the boundary layer. Experiment with the options in ode45 to
gain confidence in the numerical values you are displaying.

9.7 Stommel Model—A Numerical Approach

In the previous section we obtained the exact solution to the bound-
ary value problem (9.83)–(9.84):

∆ψ + αψx = A sin
πy

L
,

382 Physical Oceanography: A Mathematical Introduction

subject to the boundary conditions

ψ(x, 0) = ψ(x, L) = ψ(0, y) = ψ(1, y) = 0.

where α and A are defined in (9.85).
Our success in getting hold of the solution analytically is owed to sev-

eral factors: first, the original PDE is linear and second order, which lent
itself to the method of separation of variables, which in turn allowed us
to obtain the general solution of the PDE in terms of the normal modes
or basis functions of the PDE. Second, the geometry of the domain,
a cube (a rectangle, in actuality), is simple enough that it allowed us
to ensure that the boundary conditions are satisfied exactly. Third, the
forcing function in the Stommel model is very special, in fact it is pro-
portional to a single normal mode, so we are able to obtain the analytic
solution (9.101) in closed form. What we propose to do in this section
is to explore the challenges we encounter when we violate some of the
conditions under which we are able to construct the solution.

To start, we consider a natural generalization of the Poisson equation
to

a1∆ψ + a2ψx + a3ψy + a4ψ = f(x, y), u|
∂Ω

= g(x, y), (9.102)

where Ω is the rectangle (0, a)× (0, b). Since the boundary of Ω consists
of four lines, the function g in (9.102) may be expressed as

g(x, 0) = g
S
(x), g(x, b) = g

N
(x), g(0, y) = g

W
(y),

g(a, y) = gE (y), (9.103)

where the subscripts are intended to remind the reader of the north,
south, east and west location of the four boundaries. The finite differ-
ence methodology we developed and implemented in earlier chapters is
natural for this problem.

Let
x0 = 0, x1, x2, ..., xi, ..., xn−1, xn, xn+1 = a,

be a discretization of the horizontal axis (0, a); we consider only a uni-
form mesh and let

h = xi+1 − xi

denote the step-size. Similarly let

y0 = 0, y1, y2, ..., yj , ..., ym−1 , ym, ym+1 = b,

be a discretization of the vertical axis (0, b) with

k = yj+1 − yj

Wind-Driven Ocean Circulation: Stommel and Munk Models 383

the step-size in the vertical direction. Note that the discretized domain is
a lattice of points (xi, yj), having nm interior points, those corresponding
to the indices i = 1, ..., n and j = 1, ..., m. The value of ψ at these
points are the ones we aim to compute. The four sets of boundary points
constitute points of the form (x0, yj), j = 1, ..., m, or (xi, ym+1), i =
1, ..., n, where the value of ψ is known from the boundary conditions
specified in (9.103).

With (xi, yj) representing a typical point in the interior of the dis-
cretized domain, we replace the various derivatives in (9.102) by their
finite difference approximations, keeping the truncation error of each
term in mind to design a numerical scheme that has the desired trunca-
tion error for the entire PDE in (9.102). For instance, recalling that

ψx(ξ, η) = lim
h→0

ψ(ξ + h, η) − ψ(ξ − h, η)

2h
,

we replace ψx(xi, yj), the value of ψx at a typical point (x,yj) in the
discretized domain, by

ψx(xi, yj) ≈
ψ(xi+1, yj) − ψ(xi−1, yj)

2h
.

We introduce the short-hand notation

Ψi,j = ψ(xi, yj),

and note that the above expression takes the form

ψx(xi, yj) ≈
Ψi+1,j − Ψi−1,j

2h
. (9.104)

A simple calculation shows that the above approximation of ψx is second
order, that is

ψx(xi, yj) −
Ψi+1,j − Ψi−1,j

2h
= −h

2

6
ψxxx(x, y) + ... (9.105)

Similarly, we replace ψy(xi, yj) by the second order finite difference ap-
proximation

ψy(xi, yj) ≈
Ψi,j+1 − Ψi,j−1

2k
, (9.106)

from which we deduce the truncation error

ψy(xi, yj) −
Ψi,j+1 − Ψi,j−1

2k
= −k

2

6
ψyyy(x, y) + ... (9.107)

The finite difference approximations to ψxx(xi, yj) and ψyy(xi, yj)
are obtained similarly. Since

ψxx(ξ, η) = lim
h→0

ψ(ξ + h, η) − 2ψ(ξ, η) + ψ(ξ − h, η)

h2
,

384 Physical Oceanography: A Mathematical Introduction

we approximate ψ(xi, yj) by the centered finite difference formula

ψxx(xi, yj) ≈
Ψi+1,j − 2Ψi,j + Ψi−1,j

h2
. (9.108)

Applying the Taylor series formula to (9.108) leads to the truncation
error in the finite difference approximation of ψxx(xi, yj):

ψxx(xi, yj)−
Ψi+1,j − 2Ψi,j + Ψi−1,j

h2
= −h

2

12
ψxxxx(xi, yj)+ (9.109)

which demonstrates that the right side of (9.108) is a second order ap-
proximation of ψxx, compatible with the order of approximation of ψx
by the right side of (9.104). Similarly, ψyy is approximated as follows:

ψyy(xi, yj) ≈
Ψi,j+1 − 2Ψi,j + Ψi,j−1

k2
, (9.110)

with the truncation error

−k
2

12
ψyyyy(xi, yj) + (9.111)

Returning now to the original PDE in (9.102), we evaluate this expres-
sion at (xi, yj) and replace all derivatives by their finite difference ap-
proximation (9.104)–(9.110) to obtain the following finite difference ap-
proximation of (9.102):

a1

(

Ψi+1,j − 2Ψi,j + Ψi−1,j

h2
+

Ψi,j+1 − 2Ψi,j + Ψi,j−1

k2

)

+

+a2

(

Ψi+1,j − Ψi−1,j

2h

)

+ a3

(

Ψi,j+1 − Ψi,j−1

2k

)

+ a4Ψi,j = Fi,j,

(9.112)
for i = 1, ..., n and j = 1, ..., m, where

Fi,j = f(xi, yj). (9.113)

To simplify notation we introduce

α1 = −2(
a1

h2
+
a1

k2
− a4

2
), α2 =

a1

h2
+
a2

2h
,

α3 =
a1

h2
− a2

2h
, α4 =

a1

k2
+
a3

2k
, α5 =

a1

k2
− a3

2k
, (9.114)

in terms of which (9.112) becomes

α1 Ψi,j + α2 Ψi+1,j + α3 Ψi−1,j + α4 Ψi,j+1 + α5 Ψi,j−1 = Fi,j. (9.115)

Wind-Driven Ocean Circulation: Stommel and Munk Models 385

Expression (9.115) is the fundamental relation that contains all of the
information in the Stommel model at each node (i, j). In the next section
we construct a matrix representation of this relation and prepare it for
application of the various suites of tools in MATLAB. The approximate
solution Ψi,j that we obtain using the finite difference approach turns
out to be quite comparable to the exact solution (9.101) we obtained in
the previous section.

9.7.1 Constructing the System AΨ = B

The equations (9.115) form a system of linear algebraic equations
and can easily be converted to the form

AΨ = B, (9.116)

which is suitable for MATLAB, as we show next. The matrix A will
be an nm by nm matrix of coefficients whose structure we will display
below, the vector Ψ will be an nm by 1 matrix (a column vector) of the
unknowns, consisting of the values of ψ corresponding to the interior
points in the lattice:

Ψ1,1,Ψ2,1, ...,Ψn,1,Ψ1,2,Ψ2,2, ...,Ψn,2, ..., ...,Ψ1,m,Ψ2,m, ...,Ψn,m,
(9.117)

and B will be an nm by 1 matrix of the known quantities Fi,j as well as
the boundary data g’s from (9.103).

To illustrate, and to get a feel for the structure of the matrix A, let
us begin by letting i = 1 and j = 1 in (9.115). We get

α1 Ψ1,1 + α2 Ψ2,1 + α3 Ψ0,1 + α4 Ψ1,2 + α5 Ψ1,0 = F1,1. (9.118)

Each term in (9.118) with a zero index represents an evaluation on a
boundary of Ω and is therefore known (see (9.103)). For example, Ψ1,0 =
g

S
(x1) and Ψ0,1 = g

W
(y1). With this in mind, (9.118) reduces to

α1 Ψ1,1 + α2 Ψ2,1 + α4 Ψ1,2 = F1,1 − α3 gW (y1) − α5 gS (x1). (9.119)

The above expression defines the first row of the matrix A in (9.116) as

α1, α2, 0, 0, ..., 0, α4, 0, 0, ..., 0, ..., ..., 0, 0, ..., 0, (9.120)

and the first entry of B as

F1,1 − α3gW (y1) − α5gS (x1). (9.121)

The second row of A, corresponding to i = 2 and j = 1, looks slightly
different. With this choice of (i, j) the expression (9.115) results in

α1 Ψ2,1 + α2 Ψ3,1 + α3 Ψ1,1 + α4 Ψ2,2 = F2,1 − α5 gS (x2). (9.122)

386 Physical Oceanography: A Mathematical Introduction

Hence the second row of A from (9.122) is

α3, α1, α2, 0, 0, ..., 0, α4, 0, 0, ..., 0, ..., ..., 0, 0, ..., 0 (9.123)

with

F2,1 − α5gS (x2) (9.124)

as B’s second entry. The next n − 3 rows of A and B have a similar
character: with 3 ≤ i ≤ n − 1 the i-th row of A will have four nonzero
entries

α3, α1, α2, α4, (9.125)

located at the (i, i − 1), (i, i), (i, i + 1), and the (i, i+ n) positions, re-
spectively. The corresponding Bi values are

Fi,1 − α5 gS(xi). (9.126)

The n-th row of A, corresponding to the point (xn, y1), resembles the
first row of A in that it will contain only three nonzero entries located
at (n, n− 1), (n, n) and (n, 2n). The corresponding Bn is

Fn,1 − α2 gE (y1) − α5 gS(xn). (9.127)

So far we have demonstrated the first n rows of A and B. Following
this line of reasoning the reader can arrive at the complete description
of the remaining (m − 1)n rows of A and B: Here we write down their
descriptions for n = 4 and m = 3. The matrix A is









































α1 α2 0 0 α4 0 0 0 0 0 0 0
α3 α1 α2 0 0 α4 0 0 0 0 0 0
0 α3 α1 α2 0 0 α4 0 0 0 0 0
0 0 α3 α1 0 0 0 α4 0 0 0 0
α5 0 0 0 α1 α2 0 0 α4 0 0 0
0 α5 0 0 α3 α1 α2 0 0 α4 0 0
0 0 α5 0 0 α3 α1 α2 0 0 α4 0
0 0 0 α5 0 0 α3 α1 0 0 0 α4

0 0 0 0 α5 0 0 0 α1 α2 0 0
0 0 0 0 0 α5 0 0 α3 α1 α2 0
0 0 0 0 0 0 α5 0 0 α3 α1 α2

0 0 0 0 0 0 0 α5 0 0 α3 α1









































(9.128)

and the column vector B is

B = F− α2E− α3W − α4N − α5S

Wind-Driven Ocean Circulation: Stommel and Munk Models 387

where the column vectors F,E,W,N,S, are, respectively








































F1,1

F2,1

F3,1

F4,1

F1,2

F2,2

F3,2

F4,2

F1,3

F2,3

F3,3

F4,3









































,









































0
0
0

g
E
(y1)
0
0
0

g
E
(y2)
0
0
0

gE (y3)









































,









































gW (y1)
0
0
0

gW (y2)
0
0
0

g
W

(y3)
0
0
0









































,









































0
0
0
0
0
0
0
0

g
N

(x1)
gN (x2)
gN (x3)
gN (x4)









































,









































gS (x1)
g

S
(x2)

g
S
(x3)

g
S
(x4)
0
0
0
0
0
0
0
0









































There are several features in this example that are worth emphasizing
because these features are independent of the specific example, where
we chose n = 4 and m = 3, and also because these features become
computationally more significant when m and n become large. First
notice that the nm × nm matrix A is banded and sparse. It is banded
because nonzero entries appear on diagonals and subdiagonals only, and
sparse because so many of A’s entries are zero. These features will play
significant roles when we solve AΨ = B in the MATLAB. Second, note
that A is not symmetric unless α2 = α3 and α4 = α5, which happens,
as (9.114) shows, if and only if, a2 = a3 = 0.

An alternative way of viewing the matrix A in the above example is
to think of it as consisting of a 3 by 3 (recall that m = 3) collection of
block matrices Aij , each Aijbeing a 4 × 4 matrix (recall that n = 4):

A =





A11 A12 A13

A21 A22 A23

A31 A32 A33



 .

In our example A11 is the following 4 × 4 matrix

A11 =









α1 α2 0 0
α3 α1 α2 0
0 α3 α1 α2

0 0 α3 α1









(9.129)

The two block matrices A22 and A33 are the same as A11. Hence the
three diagonal block matrices in A consist of identical 4 × 4 matrices,
given by (9.129), which we now denote by A:

A =





A
... A ...
... ... A



 .

388 Physical Oceanography: A Mathematical Introduction

The 4 × 4 matrix A12 has even a simpler characterization; it is simply

α4I4

where I4 is the 4 × 4 identity matrix. Similarly, A23 = A12. In what
follows we denote this matrix by B. Furthermore, the matrices A21 =
A32 = α5I4, which we denote by C. The remaining two matrices A13

and A31 are zero matrices, which we denote by 04. Putting all of this
information together, the 12 × 12 matrix A can now be rewritten as

A =





A B 04

C A B
04 C A



 (9.130)

This structure is solely dependent on n and m. In the general case when
A is nm× nm it takes the form

A =





























A B 0n
C A B 0n
0n
...
... ... 0n C A B 0n
...
... 0n
... 0n C A B
... 0n C A





























, (9.131)

where each A is the tridiagonal n× n matrix

A =





















α1 α2 0 0 0
α3 α1 α2 0 0
0 α3 α1 α2 0 ... 0
...
...
0 0 α3 α1 α2

0 0 α3 α1





















(9.132)

and

B = α4In, C = α5In. (9.133)

Wind-Driven Ocean Circulation: Stommel and Munk Models 389

9.8 MATLAB Program for the Stommel Model

MATLAB is suited well for solving systems of linear simultaneous
equations of the form (9.116),

AΨ = B

especially when A is a large matrix having the special structure in
(9.128), in the special example we considered earlier, or in (9.131), in the
general case, when A is banded and sparse. We first present a MATLAB
program that generates the contours similar to the ones we obtained
when using the exact solution (see Figure 9.9), without taking advan-
tages of MATLAB’s capability of handling sparseness of A, and then a
second MATLAB program that relies on the function

sparse

which gives us a considerably more efficient result, by reducing the com-
putational time substantially as well as by allowing us to consider rela-
tively large matrices A.

We first state the MATLAB program that is a straightforward im-
plementation of the AΨ = B, one that does not take advantage of the
sparseness of A:

clear all

clf

psi0=10^9;

lambda=10^9;

b=2*pi*10^8;

L=b/lambda;

d=20000;

gamma=1;

fprime=2*10^(-13);

R=0.02;

AA=(gamma*pi*lambda^2)/(R*b*psi0);

alpha=lambda*fprime*d/R;

%

n=50;m=30;

nm=n*m;

%

h=1/(n+1); k=L/(m+1);

a1=1;a2=alpha;a3=0;a4=0;

%

390 Physical Oceanography: A Mathematical Introduction

alpha1=-2*(a1/h^2+a1/k^2 -a4/2);

alpha2=a1/h^2+a2/(2*h);

alpha3=a1/h^2-a2/(2*h);

alpha4=a1/k^2+a3/(2*k);

alpha5=a1/k^2-a3/(2*k);

%

% define A

matrix1=alpha1*diag(ones(nm,1));

matrix2=alpha2*diag(ones(nm-1,1),1);

matrix3=alpha3*diag(ones(nm-1,1),-1);

matrix4=alpha4*diag(ones(nm-n,1),n);

matrix5=alpha5*diag(ones(nm-n,1),-n);

A=matrix1+matrix2+matrix3+matrix4+matrix5;

%

% fix for the boundary conditions

%

for j=1:m-1

A(j*n,j*n+1)=0;

A(j*n+1,j*n)=0;

end

% define right side

bb=[];

for j=1:m

for i=1:n

bb=[bb,AA*sin(pi*j*k/L)];

end

end

%

% Solve A psi = bb

%

psi=(A\bb’)’;

%

% Convert vector psi to matrix PSI

for j=1:m

for i=1:n

PSI(i,j)=psi((j-1)*n+i);

end

end

newpsi=zeros(n+2,m+2);

%

% Introduce Boundary Conditions

Wind-Driven Ocean Circulation: Stommel and Munk Models 391

%

for i=2:n+1

for j=2:m+1

newpsi(i,j)=PSI(i-1,j-1);

end

end

[x,y]=meshgrid(0:h:1,0:k:L);

contour(x,y,newpsi’)

title(’Numerical Solution \psi with n = 50, m = 30’)

xlabel(’x’); ylabel(’y’)

colorbar

The output of this program is shown in Figure 9.12. Before addressing
the quality of this output, we pause to comment on the structure of the
above code. First note the use of the function

diag(v)

where v is a vector of size n, which allows us to create an n× n matrix
of zeros with v occupying its diagonal. Since

ones(nm,1)

results in an nm-vector of ones, the expression

diag(ones(nm,1))

leads to an nm× nm matrix of zeros with ones on its diagonal, which
is of course the same as Inm. We could have alternatively obtained this
matrix by invoking eye(nm). However, the significance of diag is in its
ability to generate matrices with special sub- and super-diagonal entries.
So

diag(v,1)

again assuming v is vector of size n, results in an (n+1)×(n+1) matrix
with v on the super-diagonal just above the main diagonal. The lines
that define matrix1 through matrix5 each constructs a segment of the
banded matrix A in (9.131). The matrix A is almost the matrix A we are
seeking except for the extraneous α2’s and α3’s that must be replaced by
0’s, those that separate the blocks denoted by A in (9.131). The purpose
of the lines

for j=1:m-1

A(j*n,j*n+1)=0;

A(j*n+1,j*n)=0;

end

392 Physical Oceanography: A Mathematical Introduction

Numerical Solution ψ with n = 50, m = 30

x

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

FIGURE 9.12: The finite-difference numerical solution of the Stommel
BVP with n = 50 and m = 30. Note that the grid resolution is not high
enough to capture the geometry of the streamlines properly (compare
with Figure 9.9).

is to accomplish just that. The remainder of the code is simply intended
for making psi available to contour.

The quality of the output in Figure 9.12 suffers from our choice of the
size of n and m, in this case n = 50 and m = 30. While this choice leads
to a matrix A, having the formidable size of 1500 by 1500, the choice
of n is not large enough to adequately resolve the boundary layer near
x = 0. Taking a larger value of n will help, but it has the adverse effect
of leading to a larger and larger matrix A, and unless one has access to
a computer with very large memory, the size of A will eventually result
in MATLAB running out of memory on most desktops and laptops. On
the other hand, we note that the great majority of the entries of A are
zero, hence it stands to reason to seek a utility within MATLAB that
would take advantage of the sparsity of A. The functions

sparse

or

Wind-Driven Ocean Circulation: Stommel and Munk Models 393

spdiags

are exactly the right tools we need. Fortunately we only need to replace
the five lines in the above code that define matrix1 through matrix5

with the following lines

matrix1=sparse(1:nm,1:nm,alpha1*ones(nm,1),nm,nm);

matrix2=sparse(1:nm-1,2:nm,alpha2*ones(nm-1,1),nm,nm);

matrix3=sparse(2:nm,1:nm-1,alpha3*ones(nm-1,1),nm,nm);

matrix4=sparse(1:nm-n,n+1:nm,alpha4*ones(nm-n,1),nm,nm);

matrix5=sparse(n+1:nm,1:nm-n,alpha5*ones(nm-n,1),nm,nm);

Figure 9.13 shows the output of the revised code with n = 200 and
m = 200, which has resulted in a considerably better approximate so-
lution. Figure 9.14 shows the error between the exact solution and the
approximate solution when n = 200 and m = 200, demonstrating the
impact of higher resolution in capturing the correct behavior near the
boundary layer without compromising the accuracy in the rest of the
domain.

Problems 9.8

1. Verify the truncation error formulas in (9.105) and (9.107).

2. Verify the truncation error formulas in (9.109) and (9.111).

3. Write down the matrix A and B when a = 1, b = π
5 , α = 200,

β = γ = 0, f(x, y) = τ sin 5y, m = 4 and n = 4.

4. Write a MATLAB program to regenerate a figure similar to Figure
9.12. Experiment with the values of m and n and write a report
on the influence of these two parameters on the quality of the
approximate solution when compared with the exact solution.

5. Use sparse and write a MATLAB program to regenerate a figure
similar to Figure 9.13. Experiment with the values of m and n and
report on how large a value of m and n your computing resource
allows you to implement. Also report on whether the quality of the
approximate solution keeps getting better with increasing values
of n and m or if you begin to observe the influence of round-off
error after some threshold on n or m.

394 Physical Oceanography: A Mathematical Introduction

Numerical Solution ψ with n = 200, m = 200

x

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

FIGURE 9.13: The finite difference numerical solution of the Stom-
mel BVP with n = 200 and m = 200, implemented using MATLAB’s
sparse. The higher grid resolution has resulted in capturing the bound-
ary layer more accurately. Compare with Figure 9.9.

9.9 Munk Model of Wind-Driven Circulation

In [2], which appeared nearly two years after Stommel’s paper [1],
Walter Munk offered an alternative approach to modeling the frictional
force, whether these forces are due to the interaction between the fluid
and its surrounding solid boundaries and the bathymetry, or the inter-
molecular forces that are present in any viscous flow. This approach
ended up leading to the fourth order PDE

A∆2ψ − β
∂ψ

∂x
= −curlzτ, (9.134)

where ∆2ψ = ∆(∆ψ) is the biharmonic operator. Because the PDE in
(9.134) is a fourth order differential operator two sets of boundary con-
ditions are needed. In [2], Dirichlet and Neumann boundary conditions

Wind-Driven Ocean Circulation: Stommel and Munk Models 395

0 0.05 0.1 0.15 0.2 0.25
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

x

E
rr

o
r

FIGURE 9.14: The error between the exact solution and the finite-
difference numerical solution of the Stommel BVP when n = 200 and
m = 200 at y = b

2 .

were imposed on ψ:

ψ|∂Ω = 0, ∇ψ · n|∂Ω = 0, (9.135)

where n is a unit normal to the boundary of the domain.

Instead of reconstructing the derivation of (9.134) from [2], which
was our approach when introducing Stommel’s model, here we choose
to present the derivation of Pedlosky in [4] for two reasons: The latter
paper’s derivation introduces an approach that provides a unified deriva-
tion of the Stommel and Munk Models, and because the mathematical
technique presented is broad enough that it is of interest in its own
right. In particular, it gives us the point of view of creating a hierarchy
of models for the same phenomenon, in this case wind driven circulation,
which is an approach with quite a bit of appeal in applied mathematics
in general; there is the hope that each model has more information in it
than its predecessor.

396 Physical Oceanography: A Mathematical Introduction

We begin by recalling the equations of motion of GFD:



















∂u
∂t

+ u∂u
∂x

+ v ∂u
∂y

− fv = − 1
ρ0

∂p
∂x

−Ru+A∆u+ F1

∂v
∂t + u ∂v∂x + v ∂v∂y + fu = − 1

ρ0

∂p
∂y −Rv +A∆v + F2

0 = 1
ρ0

∂p
∂z − ρ0g

∂u
∂x + ∂v

∂y = 0,

(9.136)

where ρ0 is the density of the fluid, R is the coefficient of frictional
drag, the same concept we saw in Stommel’s model, and A represents
molecular viscosity, or internal friction, due to fluid motion, F is external
forcing, and f is the Coriolis parameter. As in our discussion on the
Shallow Water Equation, our emphasis here is on horizontal motion,
based on which we have essentially ignored the influence of w in the
system. As we have seen on many occasions, the last equation allows us
to seek a stream function (we note that the definition of ψ here is the
negative of the corresponding definition given in [4])

ψ(x, y, t)

such that

u =
∂ψ

∂y
, v = −∂ψ

∂x
.

Substituting these expressions in the first two equations in (9.136) leads
to the following system:

∂ψy
∂t

+ψy
∂ψy
∂x

−ψx
∂ψy
∂y

+ fψx = − 1

ρ0

∂p

∂x
−Rψy +A∆ψy +F1, (9.137)

and

−∂ψx
∂t

−ψy
∂ψx
∂x

+ψx
∂ψx
∂y

+fψy = − 1

ρ0

∂p

∂y
+Rψx−A∆ψx+F2. (9.138)

Next, to eliminate the pressure p from (9.137)–(9.138), we differentiate
the first equation with respect to y, the second with respect to x and
subtract the two resulting equations, and after some algebra and re-
arranging of terms, we arrive at

∂q

∂t
+ Rq + βψx + (ψyqx − ψxqy) = A∆q + F1,y − F2,x (9.139)

where
q = ∆ψ, (9.140)

is often called the potential vorticity of the flow.
The expression F1,y−F2,x is the same external force we came across

Wind-Driven Ocean Circulation: Stommel and Munk Models 397

when simplifying the Stommel model (see (9.67) for comparison). Follow-
ing the approach of [4], we acknowledge the surface influence of wind,
and denote its shearing component by τ (x, y, t), and relate it to F as
follows:

F1,y − F2,x = − τ

ρ0H
, (9.141)

where H is the basin’s depth. Finally, using the traditional definition of
Jacobian, that J(a, b) is

J(a, b) = axby − aybx

we can rewrite (9.139) as

∂q

∂t
+ Rq + βψx − J(ψ, q) = A∆q − τ

ρ0H
, q = ∆ψ. (9.142)

Note that we obtain Munk’s equation (9.134) from (9.142) by taking
only time independent processes, ignoring the nonlinearities in J , and
by setting R = 0.

As we proceeded in the case of Stommel model, the first step in
starting the process of studying (9.142) is to non-dimensionalize these
equations. As suggested in [4], we select the following relations between
the dimensional variables ψ, τ , x, y, and t and their non-dimensional
counterparts Ψ, T , x′, y′ and t′:

x = Lx′, y = Ly′, t =
1

βL
t′, (9.143)

and
τ =

τ0
L
T (x′, y′, t′), ψ =

τ0
ρ0βH

Ψ, (9.144)

where L is a typical length scale, say one of the horizontal dimensions
of the basin, and τ0 is a typical traction force imparted by the wind on
the surface of the basin. Note how t, time, is scaled by β and L, thus
we have brought in the important scales from the rotation of the planet
and the size of the basin, and how τ0, β and H are present in the non-
dimensionalization of ψ, the stream function. Hence a change of one unit
of t′ carries with it a passage of time t proportional to βL, and a change
of one unit of Ψ is related to how the typical wind stress τ0 relates to
the basin’s depth H and the location of the fluid parcel on the surface
of the planet through β.

The procedure for determining the non-dimensional equation from
(9.142) is the same as the one employed with the Stommel model. We
apply the chain rule of differentiation to each term in (9.142) and trans-
form all derivatives to those with respect to x′, y′ and t′. Note that by

398 Physical Oceanography: A Mathematical Introduction

(9.143) and (9.144)

∂

∂x
=

1

L

∂

∂x′
,

∂

∂y
=

1

L

∂

∂y′

and
∂

∂t
= βL

∂

∂t′
.

Hence, since q = ∆ψ, we have

q =
τ0

ρβHL2
(
∂2Ψ

∂x′2
+
∂2Ψ

∂y′2
). (9.145)

We define q′ by
q′ = ∆′Ψ.

With this definition and (9.145), the relationship between the dimen-
sional potential vorticity q and its non-dimensional counterpart q′ is

q′ =
1

τ0
ρβHL2q. (9.146)

Similarly, ∂q∂t is related to its non-dimensional counterpart by

τ0
ρ0HL

∂q′

∂t′
.

Following in this manner, every term in (9.142) is transformed to its
equivalent non-dimensional term. We end up with the following equation:

∂q′

∂t′
+ δq′ + Ψ′

x − RoJ ′(Ψ, q′) = A′∆′q − T, q′ = ∆′Ψ, (9.147)

where Ro, called the Rossby number, is

Ro =
τ0

ρ0β2HL3

and

δ =
R

βL
, A′ =

A

βL3
.

The system of equations in (9.147) is nonlinear in (Ψ, q′) because of
the presence of the Jacobian term

RoJ ′(Ψ, q′).

If the Rossby number Ro were zero, the system of equations in (9.147)

Wind-Driven Ocean Circulation: Stommel and Munk Models 399

would lend itself to the methods we have developed in this book, es-
pecially the method of separation of variables and Fourier series. The
Rossby number of course does not vanish, but in certain circumstances
it is small enough that one could take advantage of how weakly the non-
linear term J ′(Ψ, q′) enters into the problem. The paper [4] and several
subsequent papers did exactly that, by considering situations where Ro
is small, and obtaining solutions of (9.147) in terms of a Taylor series
expansions in Ro. We complete the section by examining this method in
detail.

In what follows we omit the primes on all of the variables, replace Ψ
with ψ, and simply work with

∂q

∂t
+ δq + ψx − ε J(ψ, q) = A∆q − T, q = ∆ψ, (9.148)

where we have replaced Ro with ε to emphasize that this term is going
to be small. As in our approach with the Stommel model, we consider
the domain

B = {(x, y)| 0 < x < λ, 0 < y < b} (9.149)

and introduce Dirichlet boundary conditions

ψ(x, 0) = ψ(0, y) = ψ(λ, y) = ψ(x, b) = 0,

and Neumann boundary conditions

∂ψ

∂y
|x=0 =

∂ψ

∂x
|y=0 =

∂ψ

∂y
|
x=λ

=
∂ψ

∂x
|
y=b

= 0.

The second boundary conditions are needed if A in (9.148) does not
vanish.

We seek solutions ψ of (9.148) of the form

ψ(x, y, t) =

∞
∑

n=0

εnψn(x, y, t), (9.150)

The goal here is to look for functions ψn that will presumably play a
role similar to the normal modes we encountered in an earlier chapter,
satisfying relatively simple PDEs that hopefully we can solve or compute
easily. What we will find out shortly is that the equation for ψn depends
only on ψi for i < n, thus giving us an iterative algorithm for obtaining
ψn.

We begin by substituting the template given by (9.150) into the non-
linear PDEs in (9.148). Note that

q =

∞
∑

n=0

εn∆ψn,

400 Physical Oceanography: A Mathematical Introduction

qt =

∞
∑

n=0

εn
∂∆ψn
∂t

, ψx =

∞
∑

n=0

εn
∂ψn
∂x

, ∆q =

∞
∑

n=0

εn∆2ψn.

The expression J(ψ, q) needs a bit more careful calculation. Recall that
J(ψ, q) is

J(ψ, q) = ψxqy − qxψy. (9.151)

Substitute the series solution of each of the four terms in (9.151) into
this expression:

J =

∞
∑

n=0

εn
∂ψn
∂x

∞
∑

n=0

εn
∂∆ψn
∂y

−
∞
∑

n=0

εn
∂∆ψn
∂x

∞
∑

n=0

εn
∂ψn
∂y

.

After expanding the above expression and rearranging and collecting
terms that multiply εi, we end up with

J(ψ, q) = J(ψ0,∆ψ0) + ε [J(ψ1,∆ψ0) + J(ψ0,∆ψ1)] +

ε2 [J(ψ0,∆ψ2) + J(ψ1,∆ψ1) + J(ψ2,∆ψ0)] + ... (9.152)

Since the jacobian in (9.148) is multiplied by a factor of ε, we note that
the influence of the nonlinear term in (9.152) is a second order effect,
i.e., the impact of J is not felt until we need to compute the equation
for ψ1. To see this better, substitute the series solution of each term in
(9.148) to get

∞
∑

n=0

εn
[

∆ψn
∂t

+ δ∆ψn +
∂ψn
∂x

−A∆2ψn

]

= −T + εJ(ψ0,∆ψ0)+

ε2 [J(ψ1,∆ψ0) + J(ψ0,∆ψ1)] +

ε2 [J(ψ0,∆ψ2) + J(ψ1,∆ψ1) + J(ψ2,∆ψ0)] + ... (9.153)

Equating powers of ε from each side of (9.153) results in the following
set of iterative PDEs:

∆ψ0

∂t
+ δ∆ψ0 +

∂ψ0

∂x
− A∆2ψ0 = −T. (9.154)

∆ψ1

∂t
+ δ∆ψ1 +

∂ψ1

∂x
−A∆2ψ1 = J(ψ0,∆ψ0). (9.155)

∆ψ2

∂t
+ δ∆ψ2 +

∂ψ2

∂x
− A∆2ψ2 = J(ψ0,∆ψ2)+

J(ψ1,∆ψ1) + J(ψ2,∆ψ0). (9.156)

The equation in (9.154) solely depends on ψ0, hence its solution, ψ0, can
be determined by solving this PDE subject to the specified initial and

Wind-Driven Ocean Circulation: Stommel and Munk Models 401

boundary conditions. Once ψ0 is obtained, the equation in (9.155) can
then be investigated, because its right side, J(ψ0,∆ψ0), is now known.
This recursive process will lead to solutions of all other equations for
n > 1.

The method we have described is enormously powerful. It is one of
several techniques used in applied mathematics to obtain reduced models
of complex problems once a physical parameter, in this case the Rossby
number, is identified and is observed to be smaller than some of the
other physical parameters in the problem. What is remarkable in the
development we have presented here is that the very first equation, the
lowest order equation, (9.154), that results from this method, includes
both models there were studied by Stommel and by Munk; that is

ψ0(x, y, t)

contains all of the features that the earlier models captured. Presumably,
the higher order corrections, namely,

ψ0 + εψ1

and

ψ0 + εψ1 + ε2ψ2,

obtained by taking into account the solutions to the PDEs in (9.155),
(9.156), etc., bring out, in a hierarchical manner, more features of the
solution of the fully nonlinear problem in (9.148).

Problems 9.9

1. Complete the calculations that lead to (9.139).

2. Verify that t′, T and Ψ defined in (9.143) and (9.144) are dimen-
sionless.

3. Suppose L is 1000 kilometers and that a parcel of fluid is being
observed at the 45 degrees parallel. Refer to (9.143) and determine
the passage of time t in hours if t′ has changed by one unit.

4. Complete the calculation that leads to the non-dimensional equa-
tion (9.147).

5. Complete the calculations that lead to the PDEs in (9.154) through
(9.156).

402 Physical Oceanography: A Mathematical Introduction

9.10 Project A: Stommel Model with a Nonuniform
Mesh

The finite difference method that was introduced in this chapter to
address the Stommel problem (9.83)–(9.84) was designed for a uniform
mesh in the domain. The goal of this project is to develop a nonuniform
mesh, especially designed for the horizontal axis where we expect the
formation of the boundary layer near the western boundary. Ideally,
we would like to have more sample points of the solution near x = 0
where we expect sharp transitions in the stream function ψ, and not so
many sample points away from the western boundary where ψ is nearly
constant.

We consider the domain

B = {(x, y)| 0 < x < 1, 0 < y < L},

where L was defined in Section 9.7. Consider the uniform mesh Z =
{0, z1, z2, ..., zi, ..., zn, 1} where zi+1 − zi = h and h = 1

n+1 . The function

x = z2, (9.157)

maps the uniform mesh in Z to a nonuniform mesh X =
{0, x1, x2, ..., xi, ..., xn, 1} of the interval (0, 1).

1. Is X denser near the origin than it is near x = 1?

2. Consider a function Ψ(x) defined on the interval (0, 1).

(a) Write down the Forward Euler Method formula for Ψ′(xi).

(b) Write down the Centered Euler Method formula for Ψ′(xi).

3. Recall that when dealing with a uniform mesh, we estimated
Ψ′′(xi) by

Ψi+1 − 2Ψi + Ψi−1

h2
.

Write down the equivalent formula when xi is the nonuniform mesh
introduced by the function in (9.157).

4. Discretize the domain in B by (xi, yj), where {yi} is a uniform
mesh. Apply this mesh to the Stommel model PDE

∆ψ + αψx = A sin
πy

L
, (9.158)

Wind-Driven Ocean Circulation: Stommel and Munk Models 403

with the same parameter values defined in (9.85). Write the result-
ing algebraic system in the form

AX = B

as we in did Section 9.7. Explain the details of the structure of the
matrix A. Is it banded? Is it sparse?

5. Write a MATLAB program to find the approximate solution to
the Stommel BVP using this nonuniform mesh. Report on the
efficiency of this method relative to the uniform mesh solution. Is
the solution from the nonuniform mesh with n = 100 more accurate
than the corresponding solution when the same size uniform mesh
is used?

6. Replace the mesh function x = z2 with x = z4. How does this
improve, if any, the performance of the MATLAB code that plots
the contours of ψ.

9.11 Project B: Munk Model and the Finite Differ-
ence Method

The goal of this project is to develop a MATLAB program that is
capable of finding the approximate solution to the BVP

∆2ψ + αψx = A sin
πy

L
, (9.159)

subject to the boundary conditions

ψ|∂B = 0, (9.160)

and
∂ψ

∂n
|∂B = 0. (9.161)

The domain is the usual rectangle

B = {(x, y)| 0 < x < 1, 0 < y < L}

and the aspect ratio L is defined in Section 9.7.
When applying the finite difference method to (9.159) we need to pay

attention to two significant issues relative to our approach for the Stom-
mel model, one how to discretize ∆2ψ and the second how to discretize
the boundary conditions.

404 Physical Oceanography: A Mathematical Introduction

1. Consider the uniform n by n mesh xi, yj in B. Write down a dis-
cretization of

∆2ψ|(xi,yj).

Hint: Recall that ∆2ψ = ∆(∆ψ). Apply twice the centered differ-
ence formula we obtained previously for ∆ψ.

2. Explain how many points in the neighborhood of an interior point
(xi, yj) are needed to in order to estimate the biharmonic operation
of ψ at that point.

3. Discretize the Neumann boundary condition (9.161) for points
(xi, yj) that are one step removed from the boundary . Recall that
the boundary condition (9.160) already dictates the value ψ as-
sumes on the boundary. For example, consider the boundary con-
dition

∂ψ

∂x
|(a,b) = 0.

Applying the centered difference formula to this relation yields

ψ(a + h, b) − ψ(a − h, b)

2h
≈ 0.

We therefore conclude that this particular Neumann boundary con-
dition is approximated by the relation

ψ(a+ h, b) = ψ(a− h, b).

Apply this result to the case when a = 0 and note that we are
able to define the value of ψ at the “ghost” point (−h, b), a point
outside of the domain B. These ghost points are needed in the
evaluation of the discretized biharmonic operator.

4. Combine the information from the ghost points and the stencil for
the biharmonic to convert the BVP in (9.159), (9.160)–(9.161) to
the matrix form

AX = B.

Describe the structure of A. If it is banded, how many sub-
diagonals are occupied?

5. Consult the original paper of Walter Munk, [2] to determine the
appropriate values for α and the amplitude A in (9.159) after the
stream function has been non-dimensionalized.

6. Write a MATLAB program to solve the matrix relation AX = B
and plot the contours of the stream function. Compare the contours
you obtain with those in Fig 2. on page 83 of [2]. In particular, does
the MATLAB contours have the “dip” (i.e, the nonconvex part) in
the midlatitude contours seen in [2]?

Wind-Driven Ocean Circulation: Stommel and Munk Models 405

9.12 Project C: Galerkin Method and the B. Saltz-
man and E. Lorenz Equations

In the paper [5] B. Saltzman presented and studied the following
system of PDEs as a model for the behavior of convection in the atmo-
sphere:











∂

∂t
(∆ψ) + J(ψ,∆ψ) − ν∆2ψ − gα

∂θ

∂x
= 0,

∂θ

∂t
+ J(ψ, θ) − δT

H

∂ψ

∂x
− κ∆θ = 0,

(9.162)

where θ is the temperature and ψ is the stream function, related to the
velocity v = 〈u, w〉 by

u = −∂ψ
∂z
, w =

∂ψ

∂x
. (9.163)

The fluid flow is assumed to be two-dimensional and incompressible. The
domain is the rectangular region

D = {(x, z)| 0 ≤ x ≤ H

a
, 0 ≤ z ≤ H}.

The operator ∆ is the usual two-dimensional laplacian, ∂2

∂x2 + ∂2

∂z2 , and
J(a, b) stands for the Jacobian of a and b, i.e., J(a, b) = axbz−azbx. The
parameters ν and κ are the viscosity and thermal diffusivity of the fluid.
The parameter δT denotes the temperature difference between the two
boundaries z = 0 and z = H , which is assumed large enough to induce
the so-called Rayleigh-Bénard instability in the flow and initiate convec-
tion in the region. Finally, g stands for the acceleration of gravity and
α is the coefficient of volume expansion, which is part of the definition
of the equation of state, relating density to temperature (see Equation
(6), page 330 of [5]).

System (9.162) is augmented by the boundary conditions

ψ(x, z, t) = 0, (x, z) ∈ ∂D, (9.164)

and

θ(x, 0, t) = θ(x,H, t) = 0,
∂θ

∂x
(x, 0, t) =

∂θ

∂x
(x,H, t) = 0. (9.165)

The study in [5] involves deriving approximate solutions to (9.162)–
(9.165) using Fourier modes in the spatial domain and applying the

406 Physical Oceanography: A Mathematical Introduction

method of lines in time, obtaining solutions for ψ and θ of the form



















ψ(x, z, t) =

∞
∑

m=1

∞
∑

n=1

amn(t) sin(
mπa

H
x)(sin

nπ

H
z),

θ(x, z, t) =

∞
∑

m=0

∞
∑

n=1

bmn(t) cos(
mπa

H
x) sin(

nπ

H
z).

(9.166)

The goal of this project is to follow that approach in [5] and seek
solutions in the Fourier modes listed in (9.166) but to apply the Galerkin
method instead to obtain the set system of ODES for the coefficients
Am,n and Bm,n.

1. We seek solutions of the form

ψ (x, z, t) =
N
∑

m

N
∑

n

Am,n (t)φ1m,n (x, z) (9.167)

and

θ (x, z, t) =

N
∑

m

N
∑

n

Bm,n (t)φ2m,n (x, z) (9.168)

where Am,n (t) and Bm,n (t) are the time dependent coefficients,
yet to be determined, and φ1m,n (x, z) and φ2m,n (x, z) are the basis
functions we use to represent the spatial dimensions. Following [5]
we choose the same Fourier basis system in (9.166), which complies
with the boundary conditions:

φ1m,n (x, z) = sin
(mπa

H
x
)

sin
(nπ

H
z
)

(9.169)

and
φ2m,n (x, z) = cos

(mπa

H
x
)

sin
(nπ

H
z
)

(9.170)

Let N = 2. Note that this results in using only the first 10 basis
functions. Substitute (9.167)–(9.168) into (9.162). Take the inner
product of each of the resulting 10 equations by the appropriate
basis function (i.e., by φ1 for the balance of linear momentum equa-
tion, and by φ2 for the balance of energy equation), and integrate
over the domain. All dependencies on x and z are now integrated
out and we are left with 10 ODEs in the variables Am,n and Bm,n.
Verify that two of these equations, the ones for A1,1 and B2,2, are

aπ2

4
A′

1,1 (t) = − νπ4

4aH2
A1,1 (t) − aνπ4

2H2
A1,1 (t)−

Wind-Driven Ocean Circulation: Stommel and Munk Models 407

a3νπ4

4H2
A1,1 (t) − 9π4

16H2
A1,2 (t)A2,1 (t) +

9a2π4

16H2
A1,2 (t)+

αgHπB1,1 (t) − π2

4a
A1,1 (t)

and

H2

4a
B′

2,2 (t) =
∆Tπ

2
A2,2 (t) − π2

4
A2,1 (t)B0,1 (t)−

κπ2

a
B2,2 (t) − aκπ2B2,2 (t) .

2. Instead of considering all ten variables Ai,j, Bi,j , consider only the
following three

A1,1, B1,1, B0,2

and set the remaining 7 variables to zero. Show that we obtain the
following system of equations:











A′
1,1 = σ(B1,1 − A1,1)

B′
1,1 = rA1,1 −B1,1 −A1,1B0,2

B′
0,2 = A1,1B1,1 −

4

1 + a2
B0,2

(9.171)

which is precisely the celebrated system of equations we have en-
countered earlier, derived by E. Lorenz, and today is known as the
system of Lorenz Equations. These equations display the “butter-
fly” effect and the ensuing chaos. Write down what σ and r are
in terms of the physical parameters in this problem. Are these
parameters dimensionless?

3. Let a = 2. Write a MATLAB program to solve the system of ODEs
in (9.171) for a variety of values for σ and r. In particular start
with initial data

A1,1 = 0.1, B1,1 = 0.1, B0,2 = 0.1,

set σ = 10 and vary r from 1 to 30 and report on the change of
behavior of the solution to (9.171).

4. Write a MATLAB program to display the particle trajectories of
the system of ODEs in (9.163), where the coefficients functions
A1,1(t), B1,1(t) and B0,2(t) are obtained from executing the MAT-
LAB program in the previous problem. Plot several representative
particle trajectories. Report on whether your see chaotic behavior
in the particle paths.

408 Physical Oceanography: A Mathematical Introduction

5. Write a MATLAB program that displays an animation of the evo-
lution of (A1,1(t), B1,1(t), B0,2(t)) and (x(t), z(t)), for initial data
of your own choosing. The purpose of this exercise is to observe if
there is a correlation between the chaotic behavior in the coeffi-
cients and the behavior of a typical particle in the (x, z) domain.

6. Write a MATLAB program to solve the initial value problem for
the above system of ten equations. Let the three parameters of
the Lorenz system have the same values. Solve the initial value
problem, selecting random but small initial values of for the seven
variables that were ignored in the process of arriving at the Lorenz
system. Plot the graph of the three variables selected for the Lorenz
system. Report on the cases where the butterfly effect seems to
persist for the larger system, and especially comment on the cases
where this effect disappears for the larger system.

7. There are two directions this project can move in at this stage.
One can a) explore what happens to the particle paths when N ,
the number of modes, is allowed to assume values larger than 2,
and b) one can explore choices of basis functions other than Fourier
modes. In either direction, the interesting question to explore is to
what extent the chaotic behavior observed in the Lorenz attractor
is a function of the number of modes in the truncation of the ap-
proximate solution in (9.166) or the basis used in (9.169)–(9.170).

9.13 References

1. Stommel, H., “The western intensification of wind-driven ocean
currents,” Transactions of the American Geophysical Union, 29,
pp. 202– 206, 1948.

2. Munk, W., “On the wind-driven ocean circulation,” Journal of
Meteorology, Vol 7, No. 2, pp. 79 – 93, 1950.

3. Weinberger, H., A First Course in Partial Differential Equations:
with Complex Variables and Transform Methods, Dover, 1965.

4. Pedlosky, J., “A study of the time dependent ocean circulation,”
Journal of the Atmospheric sciences, Vol 22, pp. 267–272, 1965.

5. Saltzman, B, “Finite amplitude free convection as an initial value
problem – I,” J. Atmos. Sci., Vol 19, 1962, pp. 329–341.

Chapter 10

Some Special Topics

Most of what we have covered in the previous chapters has dealt with
how applied mathematics has contributed to our understanding of some
of the basic and fundamental problems in physical oceanography. We
have applied methods from linear algebra and matrix theory, from or-
dinary and partial differential equations, and obtained approximate so-
lutions to circulation problems ranging from the reduced models of the
Gulf Stream to flows in shallow water regions. We have also used several
MATLAB tools based on sophisticated algorithms, algorithms whose
design rely heavily on rigorous mathematical theories from matrix the-
ory and differential equations, to obtain solutions of partial differential
equations. In addition we employed many visualization utilities within
MATLAB whose development are also based entirely on advanced math-
ematics.

The problems we have addressed are examples of “reduced” mod-
els, often called “toy” models colloquially. They are intended to draw
out some of the salient properties of the systems of equations consid-
ered, to allow a researcher to compare these properties with some of
our intuitive expectations of the oceanographic phenomena in which we
are interested. Examples of such properties are the commonly accepted
speed of the fluid flow in the Gulf Stream, or its relative size when
viewed as a boundary layer, or its vorticity, all of which are predicted
rather well from a model as simple as the one proposed by Stommel. If,
however, we are interested in more detailed information about the Gulf
Stream, such as the rate at which fluid is transported along or across
this stream, a reduced model such as the Stommel model just does not
have enough physical fidelity to allow us to investigate such questions. It
would be unreasonable to expect, for example, that transport and mix-
ing can be independent of the variation in the bathymetry, or assume
that the flow is essentially time-independent, or that it is not affected
by the delicate nonlinearities that we ignored in setting up the models
we investigated. The next step in this development requires including
features and terms which we ignored in our first attempt, and instead
investigate the full set of PDEs in complex geometries and solve them
with high enough temporal and spatial resolutions to allow comparisons

409

410 Physical Oceanography: A Mathematical Introduction

of numerical data with observational ones. This program has been the
focus of many investigators for the past three decades and is the subject
of several advanced books listed in the references. See [1], [2] and [3],
for examples. The area of high-fidelity and high-performance computing
of oceanographic and atmospheric modeling continues to be an area of
intense current research, and while enormous strides have been made
in obtaining physically accurate solutions, significant mathematical and
computational obstacles remain.

We now describe, albeit briefly, a different direction of develop-
ment, namely how questions initiated in physical oceanography have
contributed to the growth of new analytical and computational direc-
tions in mathematics. We review here some of these advances, especially
those in the past two decades, and point to several seminal papers that
provide substantive introductions to these topics.

10.1 Finite-Time Dynamical Systems

Much of our attention in this book has been focused on computing
solutions of initial and boundary values involving PDEs where the solu-
tion often represents the velocity field v of a flow. This vector field gives
rise to a dynamical system

dx

dt
= v(x, t), x(t0) = x0, (10.1)

so that x(t) denotes the particle trajectory of the particle whose posi-
tion at time t0 is x0. Hence, once the equations of motions that govern
geophysical fluid flows are solved, one ends up with a system of ordi-
nary differential equations for particle trajectories. This latter system
is often nonlinear, even when the original PDE system is linear. Today
we are fairly good at computing approximate solutions of initial-value
problems of the type shown in (10.1); in fact we have done just that for
many examples in this book, by appealing to MATLAB’s ode45.

The interest expressed by investigators in the past few decades goes
considerably beyond the information one gets by simply integrating a
system like (10.1). That is because knowing the location of a single tra-
jectory, or even an ensemble of trajectories, is not always enough to shed
light on the general behavior of solutions of (10.1), of the kind that would
help us characterize or distinguish one vector field v from another. We
are often interested in detailed information about the behavior of so-
lutions of (10.1) near equilibrium points, and about identifying regions

Some Special Topics 411

that remain invariant, much like the regions in the normal modes of the
Flow-in-the-Bay problem we studied earlier. Much effort in the theory
of dynamical systems has gone into developing tools such as comput-
ing Liapunov exponents, invariant stable and unstable manifolds, distin-
guished hyperbolic trajectories, and Lagrangian coherent structures, to
allow us to classify one dynamical system from another. The develop-
ment of many of these quantities was directly motivated by the desire to
find mathematical tools that would correspond to physical phenomena
we observe in nature, such as eddies, gyres, fronts and jets. See [4] for
an introduction to what a Lyapunov exponent is and several different
methods for computing it, and [5], [6], [7] for an excellent collections
of accessible books on dynamical systems, chaos and invariance proper-
ties. The latter texts are currently available as GoogleR© books on the
internet.

To illustrate some of these points, consider the velocity field we ob-
tained by solving the PDE that arises in the Stommel model (see equa-
tion (9.101) in Chapter 9) whose stream function ψ solves the PDE

∆ψ + αψx = A sin
πy

L
,

and we ended up with

ψ(x, y) =
AL2

π2
[−1 + κem1x + (1 − κ)em2x] sin

πy

L
. (10.2)

The stream function ψ is related to v by

u =
∂ψ

∂y
, v = −∂ψ

∂x
.

It should be clear that the stream function in (10.2) will give rise to a
highly nonlinear system of ODEs, whose solution will require applying
a tool such as ode45, a scenario we have encountered repeatedly earlier.

There are several aspects of the above example worth noting: First,
the velocity field v of (10.1) is available to us through analytical for-
mulas, so introducing these equations as input to ode45 is simple. Sec-
ond, the velocity field given by (10.2) is stationary, independent of t.
It turns out that analyzing solutions of a two-dimensional autonomous
(time-independent) system of ODEs is considerably simpler than time-
dependent systems of equations, where chaotic behavior is commonly
encountered, as we have seen in a few examples in the text. Because of
these attributes of the Stommel model, it is not too difficult to find the
equilibrium points, say, of the flow, and study their stability properties.

Unfortunately the situation we have seen in the context of the Stom-
mel model, that the velocity field is known in closed form and written

412 Physical Oceanography: A Mathematical Introduction

in terms of a few relatively simple analytical functions, almost never
happens for real geophysical flows. Moreover, geophysical fluid flows are
almost always time-dependent. And finally, and this is perhaps the most
significant difference between realistic applications and the ones we have
developed, most geophysical velocity fields are known only for discrete
values of time and for discrete values in the domain, the main reason be-
ing that either we obtain these velocity fields as the result of solving the
governing GFD equations numerically, or identifying them by collect-
ing measurements. A striking attribute of either a numerically obtained
velocity field, or one obtained by field measurement, is that the vector
field is known for only a finite amount of time and defined over a discrete
domain.

Much mathematical research in the past two decades has gone into
understanding finite-time and discerte dynamical systems. The main
area of mathematical development is concerned with notions such as
equilibrium points, invariant curves or manifolds, finite-time Liapunov
Exponents (FTLE), Lagrangian Coherent Structures (LCS) and Distin-
guished Hyperbolic Trajectories (DHT) for such systems. These notions
have resulted in a suite of computational tools that have paid off enor-
mously for a class of transport problems in physical oceanography, a
small sample of which we address now.

We present a survey of the efforts in this area by referring to a series
of papers by G. Haller and co-authors, in particular to [8] and [12], where
the theory, and its practical implication, are introduced for finite-time
transport, as well as what an LCS is for approximate velocity fields. In
a separate development, led by J. E. Marsden, see [14], the authors view
Lagrangian Coherent Structures for time-dependent, or aperiodic, vector
fields or flows, as the analog of the stable and unstable manifolds of equi-
librium points of time-independent flows. In particular, they propose the
important point of view of an LCS being a curve, a ridge, across which
the behavior of finite-time Liapunov exponents change sharply. One of
the rewarding aspects of studying [14] is learning about the following
illustrative model, where the velocity field is associated with the time-
dependent stream function

ψ(x, y, t) = A sin(πf(x, t)) sin(πy)

where

f(x, t) = a(t)x2 + b(t)x, a(t) = ε sinωt, b(t) = 1 − 2ε sinωt,

which we explored in a set of exercises in a previous chapter. In [14] the
authors point out all of the attributes of their new tools in the context
of this example.

Some Special Topics 413

Finally, we mention the development by S. Wiggins and co-authors,
especially in the area of Distinguished Hyperbolic Trajectories for time-
dependent flows. The monograph [15] is a readily accessible source where
the authors, by introducing a series of simple examples, show what a
distinguished hyperbolic trajectory is, why it is important in its own
right, but particularly that it is an important notion in oceanic flows.
The tutorial in [15] also is a resource for studying lobe dynamics, a
tool that in the past decade or so has proved quite useful in identifying
coherent structures in time-dependent vector fields. In particular, in [16],
the authors show how to use lobe dynamics to detect DHTs in a realistic
flow in the Mediterranean Sea, and discover the behavior of front-eddy
interaction that is simply not observable by looking at the time series,
or snapshots, of the underlying velocity fields.

We have only touched on a few, albeit important and seminal, con-
tributions in the interplay between mathematics of finite-time vector
fields and problems that arise in physical oceanography. It is worth re-
emphasizing that these developments are leading to practical computa-
tional tools that will enhance our understanding of complex fluid flows,
not just in the field of oceanography, but in any field where there is
the potential of obtaining partial information about a flow from field
measurements.

10.2 Data Assimilation and Filtering

Another area where computational mathematics and physical
oceanography are having a strong interplay is in data assimilation, where
investigators are interested in introducing attributes of field measure-
ments into mathematical models in order to improve them and to arrive
at more reliable and predictive models. And conversely, use attributes of
models to design measurement devices that are better suited for the phe-
nomenon under study, as well as identifying optimal location to deploy
these devices.

Data assimilation is a relatively mature field in oceanography with a
rich history, dating back fifty years or so when temperature, salinity, and
velocity data collected at specific locations were introduced to models.
The techniques have been primarily based on statistical and optimization
methods, not so much to calibrate the models, but more toward selecting
available free parameters in the models in order to guide them toward
the truth represented by nature.

One way to think about data assimilation is to imagine having a class

414 Physical Oceanography: A Mathematical Introduction

of models, where a typical member of the class captures a substantial
amount of the physics of the problem, but not all of the physics. The
lack of knowledge or the uncertainty could truly be because some of the
physics is just too hard to model (the air-sea interface is a good example),
or the model has been made artificially simple for computational reasons.
The latter happens, for example, when we model a physical setting by
a two-dimensional vector field, when a three-dimensional model would
be more realistic. This was the case with the Stommel or Munk model,
where we convinced ourselves that the variation in the radial direction
is considerably smaller than the variations in the horizontal directions.
We may then look for introducing a parameter into the reduced system
and select that parameter, by taking into account field measurements,
in such a way that our model output remains close to the observed data.

Until recently, most data assimilation efforts have been of the Eu-
lerian type, that is measurements are made at certain positions, and
velocity fields are then updated using the data. As mentioned, the math-
ematical techniques in the updating stage are of a statistical nature, and
the Kalman filter, dating to the 1960s, was one of the original and very
successful techniques in incorporating Eulerian data into models. In the
past few decades, however, new technologies have emerged that allow us
to collect data when the instrument actually moves with the flow. Glid-
ers and drifters are examples of such data collecting devices. The book
[17] has an excellent introduction to these devices. The type of data one
collects from gliders and drifters is of a Lagrangian nature, and it would
stand to reason that a different set of mathematical ideas are needed in
order to accommodate them into models. The mathematical work of C.
K. R. T. Jones and co-authors, among others, has been motivated by
exactly this question. In [18], for example, new mathematical techniques
are introduced to assimilate Lagrangian data, collected at discrete times
and positions, into a model that is primarily an Eulerian model.

Now that we have access to Lagrangian data, an interesting mathe-
matical question arises: is one set of data better than another in terms
of helping with guiding a model toward the true physical representation
we are seeking? In other words, are there mathematical strategies we can
employ that, considering that data collection is not inexpensive, would
allow us to collect a minimal amount of data that would lead to an op-
timal representation? This is an important area of current research. An
example of success in this direction is reported in [19] where a strategy is
introduced, taking advantage of knowledge of how trajectories separate
from each other, reminiscent of the dynamical systems ideas listed in the
previous section, to identify the optimal positions where data should be
collected in order to achieve a stable assimilation methodology.

In yet another direction, A. Majda and his collaborators have begun

Some Special Topics 415

a new area of investigation where turbulence is the dominant feature
of the flow. Because turbulent flows are very complex, their study does
not lend itself well to the type of deterministic representations we have
concentrated on in this book. Instead, statistical methods take center
stage and the main objective can be paraphrased by asking how one
should filter a partially observed data to obtain the best possible estimate
of the natural system of interest. In the book [23], the authors propose
a set of strategies that have the potential of providing real-time filtering
of turbulent signals.

The viability of these strategies are demonstrated in the context of
two examples, the Lorenz 96 model, which we introduced in (4.49) as part
of Project B in Chapter 4, and the following two-layer quasi-geostrophic
model,

∂q1
∂t

+ J(ψ1, q1) + U
∂q1
∂x

+ (β + αU)
∂ψ1

∂x
= F1, (10.3)

∂q2
∂t

+ J(ψ2, q2) − U
∂q2
∂x

+ (β − αU)
∂ψ2

∂x
= F2, (10.4)

where ψi is the stream function in each layer (and is related to the
velocity vi by ui = −∂ψi

∂y , vi = ∂ψi

∂x), β is the rate of change of the
Coriolis parameter with latitude, U is a mean longitudinal shear, and qi
is the potential vorticity in the i-the layer, i.e.,

qi = βy + ∆ψi +
α

2
(ψi−3 − ψi), i = 1, 2.

The operator J is the Jacobian, and the constant α and the forcing terms
F1 and F2 are chosen suitably for different regimes of interest; typically
Fi is chosen proportional to ∆4qi, called hyperviscosity, in order to damp
out the high wavenumber oscillations. As for boundaries, the bottom
of the domain is assumed flat, the top has a rigid lid, and the layers
have equal depth H . As for boundary conditions, qi is assumed doubly
periodic in x and y. Although this model is physically unrealistic, it has
emerged as an appropriate model for studying observed turbulent data
in the ocean and the atmosphere.

The techniques we have developed in this book, the Galerkin ap-
proach and the method of lines, work exceptionally well with the two-
layer model, but even in the simple case of a discretization that involves
100 points in the x and y directions, one may end up with well over 10,000
unknowns. One strategy would be to improve the numerical schemes with
the goal of obtaining high resolution solutions to the PDEs in (10.3)–
(10.4), or its more physically relevant generalizations. This approach is
being pursued by several research groups, especially those in national
laboratories where there is a requirement for having operational codes
for specific regions and basins around the world.

416 Physical Oceanography: A Mathematical Introduction

The approach promoted in [23], however, is quite different and is mo-
tivated by the desire to get as much information out of available data as
possible, by devising statistical tools that are suitable for very large and
strongly chaotic dynamical systems, meaning systems with large positive
Liapunov exponents. The bulk of the development in [23] is concerned
with presenting reduced models, either in the form of the Lorenz 96, or
as systems of stochastic differential equations, where parameter values
are selected with enough care to mimic the complexities observed in the
ocean and atmosphere. The radical filtering strategies are then tested on
these reduced models, and their success, as well as their shortcomings,
are presented.

10.3 Normal Modes and Data

In the Flow-in-the-Bay boundary value problem, as well as in the
context of applying the Galerkin method, we have already come across
the notion of normal modes as a set of functions, generally orthonormal
in the domain of interest, which satisfy a requisite set of boundary con-
ditions. These functions are often the eigenfunctions of the Laplacian,
and satisfy Dirichlet, Neumann, or a mixed boundary condition. Normal
modes are the building block in terms of which we construct solutions
of initial-boundary value problems with arbitrary initial data.

We have demonstrated that normal modes can be determined, for
instance, by applying separation of variables, if the domain is geometri-
cally simple, such as a rectangle or a cube, or if it has special symmetries.
Determining normal modes in complex geometries, such as regions with
coastlines of lakes and estuaries, is considerably more difficult and re-
quires numerical approximation.

In a series of papers by A. D. Kirwan, see [20] and [21], the mathemat-
ical groundwork was established that showed the relationship between
normal modes and velocity fields. Specifically, it is observed that any
incompressible vector field v can be written as

v = ∇× [(nψ) + ∇× (nφ)] ,

where φ is a potential function and ψ is a stream function. Next it is
noted that we can construct a set of normal modes {φn} and {ψn}, as-
sociated with φ and ψ, as eigenfunctions of the Laplacian with Dirichlet
and Neumann boundary conditions. And finally, any velocity field v can

Some Special Topics 417

be reconstructed as a linear combination of the (φn, ψn), i.e.,

v =

∞
∑

n=1

An(t)∇φn +Bn(t)∇⊥ψn,

reminiscent of the Galerkin method. The coefficients (An, Bn) need to
be determined somehow.

In [20] and [21], the authors showed how the knowledge of normal
modes associated with the Black Sea could be combined with information
about the location of a handful of Lagrangian trajectories to establish
the underlying velocity vector field globally, temporally and spatially.
In a separate development, in [22], the authors extended this approach
to show how the normal mode analysis can be blended with HF Radar
data to reconstruct a surface velocity field from incomplete data collected
over a significantly large portion of the Monterey Bay. In [24] the same
strategy was applied to the Chesapeake Bay, where eigenfunctions of the
Laplace operator were computed with Dirichlet and Neumann boundary
conditions.

The primary goal in the above efforts is to develop a representation
for the velocity field in a region from data . The eigenfunction approach
is particularly effective when the available data is sparse. Recently, a
different approach is being pursued when satellite imagery is available.
The efforts in [25] and in [26] are designed to combine mathematical
models with information stored in images to extract velocity fields. The
key mathematical idea is that information stored in images does not vary
substantially from frame to frame, so one could use techniques from the
field of Computer Vision, and especially from the theory of optical flow,
to efficiently construct the rates at which physical quantities change in
images; for example, in [26] the optical flow approach is being applied to
constructing two-dimensional velocity vector fields from hyperspectral
imagery. In cases where images are readily available, such as images
of river flows or sea-surface temperature profiles of coastline regions,
the optical flow approach to constructing velocity fields could have an
enormous pay-off, a development well worth watching in the coming
years.

10.4 Concluding Remarks

The material presented in the references in this chapter, as well as
those in the early chapters, are sources of topics and problems for future

418 Physical Oceanography: A Mathematical Introduction

studies. It is hoped that the mathematical techniques presented in this
book, especially when combined with the capabilities of a software like
MATLAB, provide the first steps in encouraging the reader to consult
some of these books and papers, to select a direction to continue learning
about the fascinating subject of physical oceanography.

10.5 References

1. Vallis, G., Atmospheric and Ocean Dynamics, Cambridge Univer-
sity Press, 2006.

2. Bennett, A., Lagrangian Fluid Dynamics, Cambridge University
Press, 2006.

3. Miller, R., Numerical Modeling of Ocean Circulation, Cambridge
University Press, 2007.

4. Ramasubramanian, K., Sriram, M. S. “A comparative study of
computation of Lyapunov spectra with different algorithms,” Phys-
ica D, Vol 139, 2000, pp. 72–86.

5. Wiggins, S., Introduction to Applied Nonlinear Dynamical Systems
and Chaos, 2nd edition, Springer, 2003.

6. Wiggins, S., Chaotic Transport in Dynamical Systems, Springer-
Verlag, 1992.

7. Wiggins, S., Normally Hyperbolic Invariant Manifolds in Dynam-
ical Systems, Springer-Verlag, 1994.

8. Haller, G., Poje, A., “Finite-time transport in aperiodic flows,”
Physica D, Vol 119, 1998, pp. 352–380.

9. Haller, G., “Finding finite-time invariant manifolds in two-
dimensional velocity fields,” Chaos, Vol 10, 2000, pp. 99–108.

10. Haller, G., Yuan, G.,“Lagrangian coherent structures and Mixing
in two-dimensional turbulence,” Physica D, Vol 147, 2000, pp. 352–
370.

11. Haller, G., “Distinguished material surfaces and coherent struc-
tures in 3d fluid flows,” Physica D, Vol 149, 2001, pp. 248–277.

Some Special Topics 419

12. Haller, G., “Lagrangian coherent structures from approximate ve-
locity data,” Phys. Fluids A., Vol 14, 2002, pp. 1851–1861.

13. Haller, G., “Exact theory of unsteady separation for two-
dimensional flows,” J. Fluid Mechanics, Vol 512, 2004, pp. 257–
311.

14. Shadden, S., Lekien, F., Marsden, J., “Definition and properties
of Lagrangian coherent structures from finite-time Lyapunov ex-
ponents in two-dimensional aperiodic flows,” Physica D, Vol 212,
2005, pp. 271–304.

15. Mancho, A., Small, D., Wiggins, S., “A tutorial on dynamical sys-
tems concepts applied to Lagrangian transport in oceanic flows
defined as finite time data sets: Theoretical and computational Is-
sues,” Physics Reports, Vol 437, Nos 3-4, 2006, pp. 55–124.

16. Branicki, M., Mancho, A., Wiggins, S., “A Lagrangian description
of transport associated with a fronteddy interaction: Application
to data from the north-western Mediterranean Sea,” Physica D,
Vol 240, 2011, pp. 282–304.

17. Griffa, A., Kirwan, A., Mariano, A., Ozgokmen, T., Rossby, T.,
eds, Lagrangian Analysis and Predictability of Coastal and Ocean
Dynamics, Cambridge University Press, 2007.

18. Kuznetsov, L., Ide, K., Jones, C., “A method for assimilation of
Lagrangian data,” Monthly Weather Review, Vol 131, 2003, pp.
2247–2260.

19. Poje, A., Toner, M., Kirwan, A., Jones, C., “Drifter launch strate-
gies based on Lagrangian templates,” J. Phys. Oceanography, Vol
32, 2002, 1855–1869.

20. Eremeev, V., Ivanov, L., Kirwan, A., Reconstruction of oceanic
flow characteristics from quasi-Lagrangian data - approach and
mathematical methods, J. Geophysical Research, Vol 97, 1992, pp.
9733–9742.

21. Eremeev, V., Ivanov, L., Kirwan, A., Melnichenko, O., Kochergin,
S., Stanichnaya, R., Reconstruction of oceanic flow characteristics
from quasi-Lagrangian data - characteristics of the large-scale cir-
culation of the Black Sea, J. Geophysical Research, Vol 97, 1992,
pp. 9743–9753.

22. Lipphardt, B., Kirwan, A., Grosch, C., Lewis, J., Paduan, J.,
Blending HF radar and model velocities in Monterey Bay through

420 Physical Oceanography: A Mathematical Introduction

normal mode analysis, J. Geophysical Research, Vol 105, 2000, pp.
3425–3450.

23. Majda, A., Harlim, J., Filtering Complex Turbulent Systems, Cam-
bridge University Press, 2012.

24. Mcilhany, K.,Gillary, G., Malek-Madani, R., “Normal mode anal-
ysis of the Chesapeake Bay using FEMLAB”, Proceedings of the
COMSOL Multiphysics User’s Conference 2005 Boston.

25. Auraux, D., Fehrenbach, J., “Identification of velocity fields for
geophysical fluids from a sequence of images,”, Experiments in Flu-
ids, Vol 50, 2010, pp. 313–328 (2010).

26. Luttman, A., Bollt, E., Basnayake, R., Kremer, S., Tufillaro, N.,
“A stream function framework for estimating fluid flow from digital
imagery,”, Experiments in Fluids, submitted.

Appendix

Answers to Selected Problems

Chapter 1: An Introduction to MATLAB R©

Section 1.3

1c) The period of sin 2x is π, the period of sin 3x is 2π
3 , hence the period

of g is 2π, the smallest common period.

5) Define f by

f=inline(’exp(-x).*quadv(@(y) sin(y^2),0,x)’,’x’)

Then f(0) = 0, f(1) = 0.1141, and f(2) = 0.1089. The graph of this
function can be obtained from

x=0:0.01:10;

for i=1:length(x)

y(i)=f(x(i));

end

plot(x,y)

title(’Graph of exp(-x^2)\int_0^x sin(y^2) dy’)

See Figure A.1.

Section 1.4

1c) Combine plot3 with title:

t=0:0.01:2*pi;

plot3(sin(t.^2),cos(t.^2),t)

title([’Graph of the curve <sin(t^2), cos(t^2), t>’)

See Figure A.2.
2d) Combine plot3, ones, zeros with parametrization r(t) = 〈a +
cos t, b sin t, c〉:

t=0:0.01:2*pi;

plot3(cos(t),3+sin(t),zeros(length(t)))

hold on

421

422 Physical Oceanography: A Mathematical Introduction

plot3(-2+cos(t),1+sin(t),ones(length(t)))

plot3(3+cos(t),4+sin(t),4*ones(length(t)))

Section 1.6

4) The vector fib below contains the first 100 Fibonacci numbers:

fib1=1;

fib2=1;

fib(1)=fib1;

fib(2)=fib2;

for i=1:98

fib3=fib1+fib2;

fib(i+2)=fib3;

fib1=fib2;

fib2=fib3;

end

Answers to Selected Problems 423

0 1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Graph of exp(−x
2
)∫

0

x
 sin(y

2
) dy

FIGURE A.1: Graph of the curve e−x
2 ∫ x

0
sin y2 dy.

Section 1.8

4c) The graphs of S32 and C32 of f(x) = x2 are shown in Figure A.3.

f=inline(’x.^2’,’x’);

b(1)=1/2*quadv(@(x) f(x), 0,2);

for i=1:32

b(i+1)=2/2*quadv(@(x) f(x).*cos(i*pi*x/2),0,2);

a(i)=2/2*quadv(@(x) f(x).*sin(i*pi*x/2),0,2);

end

x=0:0.01:2;

PartialSumSine=0;

PartialSumCosine=b(1);

for i=1:32

PartialSumSine=PartialSumSine+a(i)*sin(i*pi*x/2);

PartialSumCosine=PartialSumCosine+b(i+1)*cos(i*pi*x/2);

end

plot(x,f(x),’r’,x,PartialSumSine,’b’,x,PartialSumCosine,’g’)

424 Physical Oceanography: A Mathematical Introduction

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
0

2

4

6

8

Graph of the curve <sin(t
2
), cos(t

2
), t>

FIGURE A.2: Graph of the curve r(t) = 〈sin(t2), cos(t2), t〉.

Chapter 2: Matrix Algebra

Section 2.2

5c) Start with the definitions of a and b:

a× b = (a1e1 + a2e2 + a3e3) × (b1e1 + b2e2 + b3e3).

Note that ei × ei = 0 for each i. So, simply using the distributive rule
of vector multiplication, the above expression reduces to

(a1b2) e1 × e2 + (a1b3) e1 × e3 + (a2b1) e2 × e1 + (a2b3) e2 × e3+

(a3b1) e3 × e1 + (a3b2) e3 × e2.

the rest of the proof follows because each cross product of the form ei×ej
can be written in terms of ek.

Section 2.3

6c) In general AB is not symmetric if A and B are. For example, A =

Answers to Selected Problems 425

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

FIGURE A.3: Graph of f(x) = x2 and its 32-partial sums, S32 and
C32. Note that C32 is a considerably better approximation to f , which
is because the even-extension of f to the outside of the interval (0, 2) is
continuous while its odd extension is not.

[

1 2
2 1

]

and B =

[

1 −2
−2 0

]

. Then AB =

[

−3 −2
0 −4

]

, which is

not symmetric.

10) Let B = 1
2(A +AT) and C = 1

2 (A− AT).

Section 2.4

1b) This set is equivalent to the xy-plane in R3.

1f) This set is equivalent to the plane z = x+ y in R3.

6) Yes.

Section 2.5

2(iii) A−1 = 1
a2+b2

[

a b
b −a

]

.

426 Physical Oceanography: A Mathematical Introduction

3(iii) A−1 =





9 −36 30
−36 192 −180
30 −180 180





4c None.

Section 2.6

1d)





0 1
b

0
0 0 1

c
1
a

−1
b

0





Section 2.7

2b) The span is the xy plane.

6a) Suppose c1, c2 and c3 satisfy c1 + c2x+ c3x
2 = 0 for all x. Let x = 0

in this expression, which results in c1 = 0. The expression now reduces
to c2x+ c3x

2 = 0 for all x. Divide by x and then set x = 0.

7) 2n+ 1.

Section 2.9

2) a! = 1 and a! = −1. When a = 1, or a = −1, then if b = 0 then the
system has infinitely many solutions.

Section 2.10

1e) The eigenvalues are λ1 = 1
2

(

b−
√

4a+ b2
)

, and λ2 =
1
2

(√
4a+ b2 + b

)

.

2b) The eigenvalues are λ1 = 2, λ2 = −1 and λ3 = 1.

0.1in 3) The eigenvalues of A are

λ1 =
a + d

2
+

1

2

√

a2 − 2ad+ 4bc+ d2, λ2 =
a+ d

2
−1

2

√

a2 − 2ad+ 4bc+ d2.

Therefore λ1 + λ2 = a+ d and λ1λ2 = 1
4 (a+ d)2 − 1

4 (a2 − 2ad+ d2)− bc
which reduces to ad− bc or det A.

Chapter 3: Differential and Integral Calculus

Section 3.1

2) By definition

f ′(d) = lim
h→0

f(d + h) − f(d)

h
= lim

h→0

[(d+ h)2 + b(d+ h) + c] − [d2 + bd+ c]

h
=

Answers to Selected Problems 427

lim
h→0

(2d+ ah+ b) = 2d+ b.

6) Let a > 0. Then, assuming h is small enough so that a + h > 0, we
have

f ′(a) = lim
h→0

(a+ h)2 − a2

h
= 2a = 2|a|.

Next, assume a < 0, and h small enough so that a+ h < 0. Then

f ′(a) = lim
h→0

−(a+ h)2 + a2

h
= −2a = 2|a|.

Finally, f ′(0) = limh→0
|h|h
h = limh→0 |h| = 0. Hence f ′(a) = 2|a| for all

a.

Section 3.2

1) S7(x) = x− x2 + x3

3
− x5

30
+ x6

90
− x7

630

2c) f(a+2h)+f(a+h)−2f(a)
3h − f ′(a) = 5

6hf
′′(a) + 1

2h
2f ′′(a) + . . . , so this

∆f is order one.

Section 3.3

4) First show that the contour x2 + 3y2 − 2x = 1 can be parametrized
by r(t) where

r(t) = 〈1 +
√

2 cos t,

√

2

3
sin t〉, t ∈ [0, 2π].

Minimum length of gradient occurs at t = 0 and t = π.

5c) ∇(f(x, y, z)g(x, y, z)) = 〈∂(fg)
∂x , ∂(fg)

∂y , ∂(fg)
∂z 〉 = 〈∂f∂xg + ∂g

∂xf,
∂f
∂y g +

∂g
∂y f,

∂f
∂z g + ∂g

∂z f〉 = g〈∂f∂x ,
∂f
∂y ,

∂f
∂z 〉 + f〈 ∂g∂x ,

∂g
∂y ,

∂g
∂z 〉 = g∇f + f∇g.

6) 0 = c1er + c2eθ =⇒ c1 cos θ − c2 sin θ = 0, c1 sin θ + c2 cos θ = 0.

This system is equivalent to Ac = 0 where A =

[

cos θ sin θ
− sin θ cos θ

]

and

c =

[

c1
c1

]

. Since A is nonsingular we have c1 = c2 = 0, or that er and

eθ are linear independent.

7) fx = ∂F
∂r

∂r
∂x

+ ∂F
∂θ

∂θ
∂x

= ∂F
∂r

cos θ − ∂F
∂θ

sin θ
r

.

Section 3.4

1d) div (∇f) = div (〈fx, fy, fz〉) = (fx)x + (fy)y + (fz)z = ∆f.

428 Physical Oceanography: A Mathematical Introduction

2) u = y

(2x2−y2)3/2 , v = 2x
(2x2−y2)3/2 .

5a(i) Take the dot product of v = ui + vj = urer + uθeθ with er to get
ur = ui · er + vj · eθ. Note that i · er = cos θ and j · er = sin θ.

Section 3.5

1) ∇× (ψk) = ∇〈0, 0, ψ〉 = 〈∂ψ∂y ,−
∂ψ
∂x , 0〉.

3b) ∇× (∇φ(x, y, z)) = ∇× 〈φx, φy, φz〉 = 〈φzy − φyz, φxz − φzx, φyx−
φxy〉 = 0 because order of differentiation does not matter if φ is twice
continuously differentiable.

Chapter 4: Ordinary Differential Equations

Section 4.1

1) Consider the expression

c1φ1(x) + c2φ2(x) + ...+ cnφn(x) ≡ 0, (∗)

which holds for all x. For the set {φ1, φ2, ..., φn} to be linearly indepen-
dent we need to show that c1 = c2 = ... = cn = 0. To that end we
differentiate the expression in (*) n− 1 times to get the system of linear
equations























c1φ1(x) + c2φ2(x) + ...+ cnφn(x) = 0,
c1φ

′
1(x) + c2φ

′
2(x) + ...+ cnφ

′
n(x) = 0,

c1φ
′′
1(x) + c2φ

′′
2(x) + ...+ cnφ

′′
n(x) = 0,

...

c1φ
(n−1)
1 (x) + c2φ

(n−1)
2 (x) + ...+ cnφ

(n−1)
n (x) = 0.

The above system is equivalent to Ac = 0 where A is the n× n matrix
in the problem statement and c is the vector of the coefficients ci. Since
A is nonsingular the unique solution to Ac = 0 is c = A−10, which is
the zero vector. Hence the set of functions {φi} is linearly independent.

3b(ii) Consider the expression

c1ψ1(x) + c2ψ2(x) + c3ψ3(x) ≡ 0 (∗∗)

We need to show that ci = 0 for all i. Applying the definition of each
ψi, we see that (**) reduces to

(c1 − c3)φ1(x) + (−c1 + c2)φ2(x) + (−c2 + c3)φ3(x) ≡ 0.

Since the functions φi are linearly independent, the coefficients in the

Answers to Selected Problems 429

above expression must vanish, i.e,






c1 − c3 = 0,
−c1 + c2 = 0,
−c2 + c3 = 0.

This system is equivalent to Ac = 0 where A =





1 0 −1
−1 1 0

0 −1 1



. This

matrix is nonsingular, hence c must vanish.

Section 4.2

1b) The Wronskian of y1 and y2 is

det(

[

eλx xeλx

λeλx eλx + λxeλx

]

) = e2ax,

which is nonzero.

2d) y(x) = c1 sin 2x+ c2 cos 2x+ sinx

4a) y(x) = −xe−x + 3
5e

−x + 4
5 sin(2x) − 3

5 cos(2x)

6a) y(x) =
e−3x(−2e2x−e3x−4e2x+6+e3x+4+2e4+4e6)

3(e4−1)

Section 4.4

1b) See Figure A.4. This figure was obtained by executing the following
lines in MATLAB:

[t,x]=ode45(@Problem2,[0,3],[1 -1]);

plot(x(:,1),x(:,2))

where Problem2.m is

function xprime=Problem2Section4Ch4(t,x)

%

xprime=[x(2)-x(1); -2*x(1)-0.3*x(2)];

4) Let A = 1, B = 0.1, and C = −0.2. To get Figure A.5 execute the
lines

global A B C

%

A=1; B=0.1; C=-0.2;

[t,x]=ode45(@abc,[0,50],[0.1 0.2 0.1]);

plot3(x(:,1),x(:,2),x(:,3))

430 Physical Oceanography: A Mathematical Introduction

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

FIGURE A.4: Solution to x′1 = x2 − x1,−2x1 − 0.3x2, x1(0) = 1,
x2(0) = −1

where abc.m is

function abcprime=abc(t,x);

%

global A B C

abcprime=[A*sin(x(3))+C*cos(x(2));B*sin(x(1))+A*cos(x(3));...

C*sin(x(2))+B*cos(x(1))];

Section 4.5

1b) Equilibria are P1 = (0, 0) and P2 = (1, 0). Both eigenvalues of the
linearized matrices about each of these equilibrium points have zero real
parts so their state of stability cannot be determined from the theorem
in this section. 2a) First write the equation x′′ + ax′ + bx = 0 in the
system form by defining z1 = x, z2 = x′ so that

z′1 = z2, z′2 = −az2 − bz1.

The equilibrium point (0, 0) is asymptotically stable if a < 0, unstable
if a > 0 and stable if a = 0.

Answers to Selected Problems 431

0

1

2

3

4

0

20

40

60
−1

−0.5

0

0.5

1

FIGURE A.5: Solution to the ABC flow problem.

Chapter 5: Numerical Methods for ODEs

Section 5.1

1) a) The exact solution is y(t) = 3e0.2t. b) yn = (1 + 0.2h)yn−1. y1 =
3.06, y2 = 3.1212. x2 = 0.2, y(0.2) = 3.122432322577165, absolute error

= |y2 − y(0.2)| = 0.001232322577165, relative error = absolute error
|y(0.2)| =

3.946675059229967e− 004.

4) yn = yn−1 + h sin(tn−1yn−1).

5) xn = xn−1 + h ∗ yn−1, yn = yn−1 − 0.1 ∗ yn−1 + sinxn−1.

Section 5

2) yi = −2(−3)(i− 1), i = 1, 2, ...

3) γ1 = −0.05 − 0.998749i, γ2 = −0.05 + 0.998749i, yi = c1γ
i
1 + c2γ

i
2

where c1 = 0.5 + 1.02628i and c2 = 0.5 − 1.02628i. From this we get
y3 = −1.88, y4 = 1.388, and y5 = 1.7412, etc.

Section 5.6

1) In the complex plane, with coordinates denoted by (a, b), the equation
for a circle of radius r centered at the point (c, d) is (a−c)2+(b−d)2 = r2.

432 Physical Oceanography: A Mathematical Introduction

Divide (1 − ah)2 + b2h2 = 1 by h2 to get (a − 1
h)2 + b2 = 1

h2 , which is
the equation of a circle of 1

h centered at (1
h , 0). Hence the inequality

(1 − ah)2 + b2h2 ≥ 1 corresponds to the region outside of this circle.

Section 5.7

3) Recall that

f(a + h) = f(a) + hf ′(a) +
h2

2
f ′′(a) +

h3

6
f ′′′(a) +

h4

24
f(iv)(a) + · · ·

and

f(a − h) = f(a) − hf ′(a) +
h2

2
f ′′(a) − h3

6
f ′′′(a) − h4

24
f(iv)(a) + · · ·

Hence
f(a+h)−f(a−h)

2h − f ′(a) = h2

3 f
′′(a) + · · · .

Section 5.8

2a) The exact solution is y(x) = cos 2x+ tan(2) sin 2x.

Chapter 6: Equations of Fluid Dynamics

Section 6.1

2a) V = 〈(1 − t)e−tX2, (1− 2t)e−2tX1〉. Now

X =
e2t (etx− ty)

e3t − t2
, Y =

et
(

e2ty − tx
)

e3t − t2
.

Substituting the latter into the expression for V yields v:

v = 〈 (t − 1)
(

tx− e2ty
)

e3t − t2
,
(2t − 1) (ty − etx)

e3t − t2
〉

1f) v = 〈− (y−xg(t))f ′(t)
f(t)g(t)−1

,− (x−yf(t))g′(t)
f(t)g(t)−1

〉

4a) v = 〈−x,−y, 0〉.

4c) a1 = sin(x) cos(y) cos2(z)−cos(x) sin2(y) sin(z), a2 = cos(x) sin(y) cos2(z)−
sin(x) cos(x) sin(y) sin(z), a3 = sin(x) cos(x) cos(y) cos(z)−sin(x) sin2(y) cos(z).

Section 6.2

3) Let λ1 and λ2 be the eigenvalues of F . Recall that λ1+λ2 = F11+F22

and λ1λ2 = det F . Differentiate the latter two expression with respect
to t to get

dλ1

dt
+
dλ2

dt
=
∂F11

∂t
+
∂F22

∂t
,

Answers to Selected Problems 433

and

λ2
dλ1

dt
+ λ1

dλ2

dt
= (div v)det F.

Solve for λ1 and λ2 and replace expressions in F with the appropriate
ones for v.

Section 6.4

2) ∇×vA = −2k, ∇×vB = − 1√
x2+y2

k. The vorticity of vC is undefined

at the origin and otherwise is zero. A better description of the latter is
that the vorticity of vC behaves like the delta function.

7) Recall (or prove) the identity div ∇p = ∆p.

8b) 0

8e) 2
x2+y2+z2 .

13) Recall (or prove) the identity div (ψv) = ∇ψ · v + ψdiv v.

Section 6.5

3d) a1 = B(A cos x cos z −C sinx siny)

4a) v = 〈y,−x〉, a = 〈−x,−y〉. p(x, y) = −1
2 (x2 + y2).

Section 6.6

3a) v = 1√
x2+y2

〈y,−x〉, ∇v =





− xy

(x2+y2)3/2
x2

(x2+y2)3/2

− y2

(x2+y2)3/2

xy

(x2+y2)3/2



 . Therefore,

A =





− xy

(x2+y2)3/2

x2−y2

2(x2+y2)3/2

x2−y2

2(x2+y2)3/2

xy

(x2+y2)3/2



 , D =





0 1

2
√
x2+y2

− 1

2
√
x2+y2

0



 .

Section 6.7

4) On the plane x = 1, say, the normal is∇1, 0, 0〉, and t = ρg. Therefore,
∫ ∫

S
t · dA =

∫ 1

−1

∫ 1

−1
ρgdydz = 4ρg.

Section 6.8

3) p(x, y) = −−2x2+2y2+1
2(x2+y2)2

4) Take the divergence of both sides of ρ∂v∂t = −∇p+ µ∆v and use the
fact that div v = 0 and that div ∇p = ∆p.

434 Physical Oceanography: A Mathematical Introduction

Chapter 7: Equations of Geophysical Fluid Dynamics

Section 7.2

4) Each a is a unit vector, so a ·a = 1. Differentiate this expression with
the respect to t to 2a · da

dt
= 0.

Section 7.3

3) In rectangular coordinates ∇p = yzi + xzj + xyk. In spherical coor-
dinates p(ρ, θ, φ) = ρ3 sinφ cos2 φ sin θ cos θ. Using the formula in (3.27)
in Chapter 3, where

∇f =
∂F

∂ρ
eρ +

1

ρ

∂F

∂θ
eθ +

1

ρ sin θ

∂F

∂φ
eφ,

we have

∇p = (3ρ2 sinφ cos2 φ sin θ cos θ)eρ + (ρ2 sinφ cos2 φ cos 2θ)eθ+

(
1

2
ρ2 cosφ(3 cos 2φ− 1) cos θ)eφ.

Chapter 8: Shallow Water Equations

Section 8.6

1) (φm, φn) =
∫ L

0 sin nπx
L sinmπxLdx = Ln sinmπ cosnπ−Lm cosmπ sin nπ

πm2−πn2

which vanishes if m! = n.

3) Note that (f(x))2 =
∑N

n=1

∑N
m=1 anam(φn, φm). But (φn, φm) =

L
2 δmn, the Kronecker delta function.

Section 8.9

1) Let u(x, t) = F (x − ct). By applying the chain rule, we have ut =
−cF ′(x− ct) and utt = c2F ′′(x− ct). Similarly, uxx = F ′′(x− ct). Hence
utt = c2uxx.

Chapter 9: Wind-Driven Ocean Circulation

Section 9.2

3) Suppose F ′′

F = −λ2. Then F ′′ + λ2F = 0 and F (x) = c1 cosλx +
c2 sinλx. Hence ψ(x, y) = (c1 cos λx + c2 sinλx)(c3e

λy + c4e
−λy). The

First boundary condition, that ψ(x, 0) = 0 for all x < 0, implies that c3+
c4 = 0, so ψ(x, y) = (A cos λx+B sinλx) sinhλy. The second boundary,
that ψ(x, h) = 0, implies that either sinhλh = 0 or F (x) ≡ 0. Either
case results in ψ ≡ 0, which is not an eigenfunction.

Answers to Selected Problems 435

5) ψ1 = sinhx siny. Then v = 〈∂ψ∂y ,−
∂ψ
∂x 〉 = 〈sinhx cos y,− cosh x sin y〉.

7a) Cn = −2h3(2 cosnπ−2)csch(πan
h)

π3an3

4) The ∆ operator does not have any positive eigenvalues because the
general solution to ∆ψ = λ2ψ is the product exponential functions, as
opposed to trigonometric functions, and the boundary condition ψ|∂Ω =
0 causes all coefficients ci to vanish.

2) Note that (∇ · eαx∇ψ) = eαx∆ψ + αeαxψx.

4) Suppose n > 1 and c1 sin y+c2 sinny ≡ 0. Let ȳ = π
n
. Then sin ȳ! = 0

but sinnȳ = 0. Hence c1 = 0, which in turn implies c2 = 0. Hence sin y
and sinny are linearly independent if n > 1.

This page intentionally left blankThis page intentionally left blank

	Front Cover
	Dedication
	Contents
	Preface
	1. An Introduction to MATLAB®
	2. Matrix Algebra
	3. Differential and Integral Calculus
	4. Ordinary Differential Equations
	5. Numerical Methods for ODEs
	6. Equations of Fluid Dynamics
	7. Equations of Geophysical Fluid Dynamics
	8. Shallow Water Equations (SWE)
	9. Wind-Driven Ocean Circulation: Stommel and Munk Models
	10. Some Special Topics
	Appendix: Answers to Selected Problems

