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Preface to Third Edition

The philosophy of this third edition of
Introduction to Optimum Design is to provide
readers with an organized approach to
engineering design optimization that is
both rigorous and simple, that illustrates
basic concepts and procedures with simple
examples, and that demonstrates the appli-
cability of these concepts and procedures to
engineering design problems. The key step
in the optimum design process is the for-
mulation of a design problem as an optimi-
zation problem, which is emphasized and
illustrated with examples. In addition, in-
sights into, and interpretations of, optimal-
ity conditions are discussed and illustrated.

Two main objectives were set for the
third edition: (1) to enhance the presenta-
tion of the book’s content and (2) to include
advanced topics so that the book will be
suitable for higher-level courses on design
optimization. The first objective is achieved
by making the material more concise, orga-
nizing it with more second-, third-, and
fourth-level headings, and using illustra-
tions in example problems that have more
details. The second objective is achieved by
including several new topics suitable for
both alternate basic and advanced courses.

New topics include duality in nonlinear
programming, optimality conditions for the
Simplex method, the rate of convergence of
iterative algorithms, solution methods for
quadratic programming problems, direct
search methods, nature-inspired search
methods, response surface methods, design
of experiments, robust design optimization,
and reliability-based design optimization.

This edition can be broadly divided into
three parts. Part I, Chapters 1 through 5, pre-
sents the basic concepts related to optimum
design and optimality conditions. Part II,
Chapters 6 through 14, treats numerical
methods for continuous variable optimiza-
tion problems and their applications. Finally,
Part III, Chapters 15 through 20, offers
advanced and modern topics on optimum
design, including methods that do not
require derivatives of the problem functions.

Introduction to Optimum Design, Third
Edition, can be used to construct several
types of courses depending on the instruc-
tor’s preference and learning objectives for
students. Three course types are suggested,
although several variations are possible.

Undergraduate/First-Year Graduate
Course

Topics for an undergraduate and/or first-
year graduate course include

¢ Formulation of optimization problems
(Chapters 1 and 2)

e Optimization concepts using the
graphical method (Chapter 3)

e Optimality conditions for unconstrained
and constrained problems (Chapter 4)

* Use of Excel and MATLAB® illustrating
optimum design of practical problems
(Chapters 6 and 7)

® Linear programming (Chapter 8)

® Numerical methods for unconstrained
and constrained problems (Chapters 10
and 12)

xiii



Xiv PREFACE TO THIRD EDITION

The use of Excel and MATLAB is to be
introduced mid-semester so that students
have a chance to formulate and solve more
challenging project-type problems by seme-
ster’s end. Note that advanced project-type
exercises and sections with advanced mate-
rial are marked with an asterisk (*) next to
section headings, which means that they
may be omitted for this course.

First Graduate-Level Course

Topics for a first graduate-level course
include

® Theory and numerical methods for
unconstrained optimization (Chapters 1
through 4 and 10 and 11)

* Theory and numerical methods for
constrained optimization (Chapters 4, 5,
12, and 13)

¢ Linear and quadratic programming
(Chapters 8 and 9)

The pace of material coverage should be
faster for this course type. Students can
code some of the algorithms into computer
programs and solve practical problems.

Second Graduate-Level Course

This course presents advanced topics on
optimum design:

¢ Duality theory in nonlinear
programming, rate of convergence of
iterative algorithms, derivation of
numerical methods, and direct search
methods (Chapters 1 through 14)

* Methods for discrete variable problems
(Chapter 15)

* Nature-inspired search methods
(Chapters 16 and 19)

* Multi-objective optimization
(Chapter 17)

* Global optimization (Chapter 18)

* Response surface methods, robust
design, and reliability-based design
optimization (Chapter 20)

During this course, students write com-
puter programs to implement some of the
numerical methods and to solve practical
problems.



Acknowledgments

I would like to give special thanks to my
colleague, Professor Karim Abdel-Malek,
Director of the Center for Computer-Aided
Design at The University of Iowa, for his
enthuastic support for this project and for
getting me involved with the very exciting
research taking place in the area of digital
human modeling under the Virtual Soldier
Research Program.

I'would also like to acknowledge the con-
tributions of the following colleagues:
Professor Tae Hee Lee provided me with a
first draft of the material for Chapter 7;
Dr. Tim Marler provided me with a first
draft of the material for Chapter 17; Profes-
sor G. J. Park provided me with a first draft
of the material for Chapter 20; and Drs.
Marcelo A. da Silva and Qian Wang pro-
vided me with a first draft of some of the
material for Chapter 6. Their contributions
were invaluable in the polishing of these
chapters. In addition, Dr. Tim Marler, Dr.
Yujiang Xiang, Dr. Rajan Bhatt, Dr. Hyun
Joon Chung, and John Nicholson provided
me with valuable input for improving the
presentation of material in some chapters. I
would also like to acknowledge the help of
Jun Choi, Hyun-Jung Kwon, and John
Nicholson with parts of the book’s solutions
manual.

I am grateful to numerous colleagues and
friends around the globe for their fruitful
associations with me and for discussions on

the subject of optimum design. I appreciate
my colleagues at The University of Iowa
who used the previous editions of the book
to teach an undergraduate course on opti-
mum design: Professors Karim Abdel-
Malek, Asghar Bhatti, Kyung Choi, Vijay
Goel, Ray Han, Harry Kane, George Lance,
and Emad Tanbour. Their input and sugges-
tions greatly helped me improve the presen-
tation of material in the first 12 chapters of
this edition. I would also like to acknowl-
edge all of my former graduate students
whose thesis work on various topics of opti-
mization contributed to the broadening of
my horizons on the subject.

I would like to thank Bob Canfield,
Hamid Torab, Jingang Yi, and others for
reviewing various parts the third edition.
Their suggestions helped me greatly in its
fine-tuning. I would also like to thank Steve
Merken and Marilyn Rash at Elsevier for
their superb handling of the manuscript
and production of the book. I also thank
Melanie Laverman for help with the editing
of some of the book’s chapters.

I am grateful to the Department of Civil
and Environmental Engineering, Center for
Computer-Aided Design, College of Engi-
neering, and The University of Iowa for
providing me with time, resources, and
support for this very satisfying endeavor.
Finally, I would like to thank my family
and friends for their love and support.

XV



(a-b)

c(x)
f(x)
g
hi(x)
m

n

P
X

Xi

x(k)

Key Symbols and Abbreviations

Dot product of vectors a and b;
a’b

Gradient of cost function, Vf(x)
Cost function to be minimized
jth inequality constraint

ith equality constraint

Number of inequality
constraints

Number of design variables
Number of equality constraints
Design variable vector of
dimension 7

ith component of design vari-
able vector x

kth design variable vector

Note: A superscript (i) indicates optimum
value for a variable, (ii) indicates advanced
material section, and (iii) indicates a project-
type exercise.

ACO
BBM
CDF

CSD
DE

GA

ILP

KKT

LP
MV-OPT

NLP
PSO
QP
RBDO

SA
SLP
SQP

TS

xvi

Ant colony optimization
Branch-and-bound method
Cumulative distribution
function

Constrained steepest descent
Differential evolution; Domain
elimination

Genetic algorithm

Integer linear programming
Karush-Kuhn-Tucker

Linear programming

Mixed variable optimization
problem

Nonlinear programming
Particle swarm optimization
Quadratic programming
Reliability-based design
optimization

Simulated annealing
Sequential linear programming
Sequential quadratic
programming

Traveling salesman
(salesperson)



CHAPTER

1

Introduction to Design Optimization

Upon completion of this chapter, you will be able to

® Describe the overall process of designing ¢ Distinguish between optimum design and
systems optimal control problems

e Distinguish between engineering design and ¢ Understand the notations used for
engineering analysis activities operations with vectors, matrices, and

e Distinguish between the conventional functions and their derivatives
design process and the optimum design
process

Engineering consists of a number of well-established activities, including analysis,
design, fabrication, sales, research, and development of systems. The subject of this text—
the design of systems—is a major field in the engineering profession. The process of design-
ing and fabricating systems has been developed over centuries. The existence of many
complex systems, such as buildings, bridges, highways, automobiles, airplanes, space vehi-
cles, and others, is an excellent testimonial to its long history. However, the evolution of
such systems has been slow and the entire process is both time-consuming and costly,
requiring substantial human and material resources. Therefore, the procedure has been to
design, fabricate, and use a system regardless of whether it is the best one. Improved sys-
tems have been designed only after a substantial investment has been recovered.

The preceding discussion indicates that several systems can usually accomplish the
same task, and that some systems are better than others. For example, the purpose of a
bridge is to provide continuity in traffic from one side of the river to the other side.
Several types of bridges can serve this purpose. However, to analyze and design all possi-
bilities can be time-consuming and costly. Usually one type is selected based on some pre-
liminary analyses and is designed in detail.

The design of a system can be formulated as problems of optimization in which a perfor-
mance measure is optimized while all other requirements are satisfied. Many numerical
methods of optimization have been developed and used to design better systems. This text

Introduction to Optimum Design 1 © 2012 Elsevier Inc. All rights reserved.



2 1. INTRODUCTION TO DESIGN OPTIMIZATION

describes the basic concepts of optimization and numerical methods for the design of engi-
neering systems. Design process, rather than optimization theory, is emphasized. Various
theorems are stated as results without rigorous proofs; however, their implications from
an engineering point of view are discussed.

Any problem in which certain parameters need to be determined to satisfy constraints
can be formulated as one optimization problem. Once this has been done, the concepts
and methods described in this text can be used to solve it. For this reason, the optimization
techniques are quite general, having a wide range of applicability in diverse fields. It is
impossible to discuss every application of optimization concepts and techniques in this
introductory text. However, using simple applications, we discuss concepts, fundamental
principles, and basic techniques that are used in numerous applications. The student
should understand them without becoming bogged down with the notation, terminology,
and details of the particular area of application.

1.1 THE DESIGN PROCESS
How Do I Begin to Design a System?

The design of many engineering systems can be a complex process. Assumptions
must be made to develop realistic models that can be subjected to mathematical analysis
by the available methods, and the models must be verified by experiments. Many possi-
bilities and factors must be considered during problem formulation. Economic considera-
tions play an important role in designing cost-effective systems. To complete the design
of an engineering system, designers from different fields of engineering usually must
cooperate. For example, the design of a high-rise building involves designers from archi-
tectural, structural, mechanical, electrical, and environmental engineering as well as con-
struction management experts. Design of a passenger car requires cooperation among
structural, mechanical, automotive, electrical, chemical, hydraulics design, and human
factors engineers. Thus, in an interdisciplinary environment considerable interaction is
needed among various design teams to complete the project. For most applications the
entire design project must be broken down into several subproblems, which are then
treated somewhat independently. Each of the subproblems can be posed as a problem of
optimum design.

The design of a system begins with the analysis of various options. Subsystems and
their components are identified, designed, and tested. This process results in a set of draw-
ings, calculations, and reports by which the system can be fabricated. We use a systems
engineering model to describe the design process. Although a complete discussion of this
subject is beyond the scope of this text, some basic concepts are discussed using a simple
block diagram.

Design is an iterative process. Iterative implies analyzing several trial designs one after
another until an acceptable design is obtained. It is important to understand the concept of
trial design. In the design process, the designer estimates a trial design of the system based
on experience, intuition, or some simple mathematical analyses. The trial design is then
analyzed to determine if it is acceptable. If it is, the design process is terminated. In the
optimization process, the trial design is analyzed to determine if it is the best. Depending

I. THE BASIC CONCEPTS



1.1 THE DESIGN PROCESS 3

N N N
N4 N4
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needs and fabrication

objectives

FIGURE 1.1 System evolution model.

on the specifications, “best” can have different connotations for different systems. In gen-
eral, it implies that a system is cost-effective, efficient, reliable, and durable. The basic con-
cepts are described in this text to aid the engineer in designing systems at the minimum
cost and in the shortest amount of time.

The design process should be well organized. To discuss it, we consider a systern evolu-
tion model, shown in Figure 1.1, where the process begins with the identification of a need
that may be conceived by engineers or non-engineers. The five steps of the model in the
figure are described in the following paragraphs.

The first step in the evolutionary process is to precisely define the specifications for the
system. Considerable interaction between the engineer and the sponsor of the project is
usually necessary to quantify the system specifications.

The second step in the process is to develop a preliminary design of the system. Various
system concepts are studied. Since this must be done in a relatively short time, simplified
models are used at this stage. Various subsystems are identified and their preliminary
designs estimated. Decisions made at this stage generally influence the system’s final
appearance and performance. At the end of the preliminary design phase, a few promising
concepts that need further analysis are identified.

The third step in the process is a detailed design for all subsystems using the iterative pro-
cess described earlier. To evaluate various possibilities, this must be done for all previ-
ously identified promising concepts. The design parameters for the subsystems must be
identified. The system performance requirements must be identified and satisfied. The
subsystems must be designed to maximize system worth or to minimize a measure of the
cost. Systematic optimization methods described in this text aid the designer in accelerat-
ing the detailed design process. At the end of the process, a description of the system is
available in the form of reports and drawings.

The fourth and fifth steps shown in Figure 1.1 may or may not be necessary for all sys-
tems. They involve fabrication of a prototype system and testing, and are necessary when
the system must be mass-produced or when human lives are involved. These steps may
appear to be the final ones in the design process, but they are not because the system may
not perform according to specifications during the testing phase. Therefore, the specifica-
tions may have to be modified or other concepts may have to be studied. In fact, this re-
examination may be necessary at any point during the design process. It is for this reason
that feedback loops are placed at every stage of the system evolution process, as shown in

I. THE BASIC CONCEPTS



4 1. INTRODUCTION TO DESIGN OPTIMIZATION

Figure 1.1. The iterative process must be continued until the best system evolves.
Depending on the complexity of the system, the process may take a few days or several
months.

The model described in Figure 1.1 is a simplified block diagram for system evolution.
In actual practice, each block may have to be broken down into several sub-blocks to carry
out the studies properly and arrive at rational decisions. The important point is that optimiza-
tion concepts and methods are helpful at every stage of the process. Such methods, along with
the appropriate software, can be useful in studying various design possibilities rapidly.
Therefore, in this text we discuss optimization methods and their use in the design
process.

1.2 ENGINEERING DESIGN VERSUS
ENGINEERING ANALYSIS

Can I Design without Analysis?
No, You Must Analyze!

It is important to recognize the differences between engineering analysis and design activi-
ties. The analysis problem is concerned with determining the behavior of an existing sys-
tem or a trial system being designed for a given task. Determination of the behavior of the
system implies calculation of its response to specified inputs. For this reason, the sizes of
various parts and their configurations are given for the analysis problem; that is, the
design of the system is known. On the other hand, the design process calculates the sizes
and shapes of various parts of the system to meet performance requirements. The design
of a system is an iterative process; we estimate a design and analyze it to see if it performs
according to given specifications. If it does, we have an acceptable (feasible) design, although
we may still want to change it to improve its performance. If the trial design does not
work, we need to change it to come up with an acceptable system. In both cases, we must
be able to analyze designs to make further decisions. Thus, analysis capability must be
available in the design process.

This book is intended for use in all branches of engineering. It is assumed throughout
that students understand the analysis methods covered in undergraduate engineering stat-
ics and physics courses. However, we will not let the lack of analysis capability hinder under-
standing of the systematic process of optimum design. Equations for analysis of the system are
given wherever feasible.

1.3 CONVENTIONAL VERSUS OPTIMUM DESIGN PROCESS

Why Do I Want to Optimize?
Because You Want to Beat the Competition and Improve Your Bottom Line!

It is a challenge for engineers to design efficient and cost-effective systems without
compromising their integrity. Figure 1.2(a) presents a self-explanatory flowchart for a con-
ventional design method; Figure 1.2(b) presents a similar flowchart for the optimum
design method. It is important to note that both methods are iterative, as indicated by a
loop between blocks 6 and 3. Both methods have some blocks that require similar

I. THE BASIC CONCEPTS
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Formulate the problem | 0
as an optimization

problem
Collect data to 1 Collect data to 1
describe system describe system
| Estimate initial design | 2 | Estimate initial design | 2
{ f .
—>| Analyze system | 3 | Analyze system |<—
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Y 7 Y
Is design Yes Yes | Does design satisfy | 5
. Stop o
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] L
(a) (b)

FIGURE 1.2 Comparison of (a) conventional design method and (b) optimum design method.

calculations and others that require different calculations. The key features of the two pro-
cesses are these:

1.

g WN

The optimum design method has block 0, where the problem is formulated as one of
optimization (discussed in more detail in Chapter 2). An objective function is defined
that measures the merits of different designs.

. Both methods require data to describe the system in block 1.

. Both methods require an initial design estimate in block 2.

. Both methods require analysis of the system in block 3.

. In block 4, the conventional design method checks to ensure that the performance

criteria are met, whereas the optimum design method checks for satisfaction of all
of the constraints for the problem formulated in block 0.

. In block 5, stopping criteria for the two methods are checked, and the iteration is

stopped if the specified stopping criteria are met.

. In block 6, the conventional design method updates the design based on the designer’s

experience and intuition and other information gathered from one or more trial
designs; the optimum design method uses optimization concepts and procedures to
update the current design.

The foregoing distinction between the two design approaches indicates that the conven-

tional design process is less formal. An objective function that measures a design’s merit is
not identified. Trend information is usually not calculated; nor is it used in block 6 to
make design decisions for system improvement. In contrast, the optimization process is
more formal, using trend information to make design changes.

I. THE BASIC CONCEPTS



6 1. INTRODUCTION TO DESIGN OPTIMIZATION

1.4 OPTIMUM DESIGN VERSUS OPTIMAL CONTROL
What Is Optimal Control?

Optimum design and optimal control of systems are separate activities. There are numer-
ous applications in which methods of optimum design are useful in designing systems.
There are many other applications where optimal control concepts are needed. In addition,
there are some applications in which both optimum design and optimal control concepts
must be used. Sample applications of both techniques include robotics and aerospace structures.
In this text, optimal control problems and methods are not described in detail. However,
the fundamental differences between the two activities are briefly explained in the sequel.
It turns out that optimal control problems can be transformed into optimum design problems
and treated by the methods described in this text. Thus, methods of optimum design are
very powerful and should be clearly understood. A simple optimal control problem is
described in Chapter 14 and is solved by the methods of optimum design.

The optimal control problem consists of finding feedback controllers for a system to
produce the desired output. The system has active elements that sense output fluctuations.
System controls are automatically adjusted to correct the situation and optimize a measure
of performance. Thus, control problems are usually dynamic in nature. In optimum
design, on the other hand, we design the system and its elements to optimize an objective
function. The system then remains fixed for its entire life.

As an example, consider the cruise control mechanism in passenger cars. The idea
behind this feedback system is to control fuel injection to maintain a constant speed. Thus,
the system’s output (i.e., the vehicle’s cruising speed) is known. The job of the control
mechanism is to sense fluctuations in speed depending on road conditions and to adjust
fuel injection accordingly.

1.5 BASIC TERMINOLOGY AND NOTATION
Which Notation Do I Need to Know?

To understand and to be comfortable with the methods of optimum design, the student
must be familiar with linear algebra (vector and matrix operations) and basic calculus.
Operations of linear algebra are described in Appendix A. Students who are not
comfortable with this material need to review it thoroughly. Calculus of functions of single
and multiple variables must also be understood. Calculus concepts are reviewed wherever
they are needed. In this section, the standard terminology and notations used throughout the
text are defined. It is important to understand and to memorize these notations and
operations.

1.5.1 Points and Sets

Because realistic systems generally involve several variables, it is necessary to define
and use some convenient and compact notations. Set and vector notations serve this pur-
pose quite well.

I. THE BASIC CONCEPTS



1.5 BASIC TERMINOLOGY AND NOTATION 7

Vectors and Points

A point is an ordered list of numbers. Thus, (x1, x;) is a point consisting of two numbers
whereas (x1, xo, ..., x,) is a point consisting of n numbers. Such a point is often called an
n-tuple. The n components xy, x5, ..., X, are collected into a column vector as

X1
— | *2 | = T

x=|". =[x1 X2 ... Xy] (1.1

Xn
where the superscript T denotes the franspose of a vector or a matrix. This is called an
n-vector. Each number x; is called a component of the (point) vector. Thus, x; is the first

component, x; is the second, and so on.
We also use the following notation to represent a point or a vector in the n-dimensional

space:

X:(xl, X2, ~-'7x1’l) (12)

In 3-dimensional space, the vector x =[x x» x;3]7 represents a point P, as shown in
Figure 1.3. Similarly, when there are n components in a vector, as in Egs. (1.1) and (1.2),
x is interpreted as a point in the n-dimensional space, denoted as R". The space R" is
simply the collection of all n-dimensional vectors (points) of real numbers. For example,
the real line is R}, the plane is R?, and so on.

The terms vector and point are used interchangeably, and lowercase letters in roman
boldface are used to denote them. Uppercase letters in roman boldface represent matrices.

Sets

Often we deal with sets of points satisfying certain conditions. For example, we may
consider a set S of all points having three components, with the last having a fixed value
of 3, which is written as

S={x=(x1, x2, x3) | x3 =3} (1.3)
X3 FIGURE 1.3 Vector representation of a point P that is in
3-dimensional space.
4 P (x4, X2, X3)
|
X |
I X3
|
|
T > X
| 7
| 7
| ’
| X
|

X4
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8 1. INTRODUCTION TO DESIGN OPTIMIZATION

Xp FIGURE 1.4 Image of a geometrical representation for
\ the set S = (x| (x; —4)* + (x; — 4> =9).

Information about the set is contained in braces ({}). Equation (1.3) reads as “S equals
the set of all points (xq, x5, x3) with x3 =3.” The vertical bar divides information about the
set S into two parts: To the left of the bar is the dimension of points in the set; to the right
are the properties that distinguish those points from others not in the set (for example,
properties a point must possess to be in the set S).

Members of a set are sometimes called elements. If a point x is an element of the set S, then
we write x € S. The expression x € S is read as “x is an element of (belongs to) S.”
Conversely, the expression “y ¢ S” is read as “y is not an element of (does not belong to) S.”

If all the elements of a set S are also elements of another set T, then S is said to be a sub-
set of T. Symbolically, we write S = T, which is read as “S is a subset of T” or “S is con-
tained in T.” Alternatively, we say “T is a superset of S5,” which is writtenas T > S.

As an example of a set S, consider a domain of the x; — x, plane enclosed by a circle of
radius 3 with the center at the point (4, 4), as shown in Figure 1.4. Mathematically, all
points within and on the circle can be expressed as

S={x € R%|(x; —4)* + (x, —4)* = 9} (1.4)

Thus, the center of the circle (4, 4) is in the set S because it satisfies the inequality in
Eq. (1.4). We write this as (4, 4) € S. The origin of coordinates (0, 0) does not belong to the
set because it does not satisfy the inequality in Eq. (1.4). We write this as (0, 0) ¢ S. It can
be verified that the following points belong to the set: (3, 3), (2, 2), (3, 2), (6, 6). In fact, set
S has an infinite number of points. Many other points are not in the set. It can be verified
that the following points are not in the set: (1, 1), (8, 8), and (-1, 2).

1.5.2 Notation for Constraints

Constraints arise naturally in optimum design problems. For example, the material of
the system must not fail, the demand must be met, resources must not be exceeded, and

I. THE BASIC CONCEPTS



1.5 BASIC TERMINOLOGY AND NOTATION 9

so on. We shall discuss the constraints in more detail in Chapter 2. Here we discuss the
terminology and notations for the constraints.

We encountered a constraint in Figure 1.4 that shows a set S of points within and on
the circle of radius 3. The set S is defined by the following constraint:

(=42 +(n—42>=9 (1.5)

A constraint of this form is a “less than or equal to type” constraint and is abbreviated
as “= type.” Similarly, there are greater than or equal to type constraints, abbreviated as “ =
type.” Both are called inequality constraints.

1.5.3 Superscripts/Subscripts and Summation Notation

Later we will discuss a set of vectors, components of vectors, and multiplication of
matrices and vectors. To write such quantities in a convenient form, consistent and com-
pact notations must be used. We define these notations here. Superscripts are used to repre-
sent different vectors and matrices. For example, x” represents the ith vector of a set and A%
represents the kth matrix. Subscripts are used to represent components of vectors and matrices.
For example, x; is the jth component of x and a;; is the i—jth element of matrix A. Double
subscripts are used to denote elements of a matrix.

To indicate the range of a subscript or superscript we use the notation

xi; i=1ton (1.6)

This represents the numbers x4, x5, ..., x,. Note that “i =1 to n” represents the range for
the index i and is read, “i goes from 1 to n.” Similarly, a set of k vectors, each having n
components, is represented by the superscript notation as

xD; j=1tok (1.7)

This represents the k vectors x®, x?, ..., x®. It is important to note that subscript i in

Eq. (1.6) and superscript j in Eq. (1.7) are free indices; that is, they can be replaced by any
other variable. For example, Eq. (1.6) can also be written as x;, j=1 to n and Eq. (1.7) can
be written as x”, i =1 to k. Note that the superscript j in Eq. (1.7) does not represent the
power of x. It is an index that represents the jth vector of a set of vectors.

We also use the summation notation quite frequently. For example,

c=X11 + X2Y2 + ...+ XnYn (18)
is written as
n
c=Y xyi (1.9)
i=1

Also, multiplication of an n-dimensional vector x by an m Xn matrix A to obtain an
m-dimensional vector y is written as

y = Ax (1.10)

I. THE BASIC CONCEPTS
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Or, in summation notation, the ith component of y is
n
yi= Zaijxj =apx] +apxy + ... Fapx,; i=1tom (1.11)
=1

There is another way of writing the matrix multiplication of Eq. (1.10). Let m-dimen-

sional vectors a”; i = 1 to 1 represent columns of the matrix A. Then y = Ax is also given as

n
y= Z a¥x =ax +a%x + ... +a"x, (1.12)
j=1
The sum on the right side of Eq. (1.12) is said to be a linear combination of columns of
matrix A with xj, j =1 to n as its multipliers. Or y is given as a linear combination of col-
umns of A (refer to Appendix A for further discussion of the linear combination of
vectors).
Occasionally, we must use the double summation notation. For example, assuming
m =n and substituting y; from Eq. (1.11) into Eq. (1.9), we obtain the double sum as

n n non
c= Z Xi Z aijx]- = Z Z a,']»xixj (1.13)
i=1 j=1 i=1 j=1

Note that the indices i and j in Eq. (1.13) can be interchanged. This is possible because c is
a scalar quantity, so its value is not affected by whether we sum first on i or on j. Equation
(1.13) can also be written in the matrix form, as we will see later.

1.5.4 Norm/Length of a Vector

If we let x and y be two n-dimensional vectors, then their dot product is defined as
-y =x"y=> xy (1.14)
=1

Thus, the dot product is a sum of the product of corresponding elements of the vectors x
and y. Two vectors are said to be orthogonal (normal) if their dot product is 0; that is, x and
y are orthogonal if x - y = 0. If the vectors are not orthogonal, the angle between them can
be calculated from the definition of the dot product:

x-y=|x| |y| cosé (1.15)

where 0 is the angle between vectors x and y and [|x|| represents the length of vector x. This
is also called the norm of the vector. The length of vector x is defined as the square root of
the sum of squares of the components:

x| =)D x=yxx (1.16)
i=1
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The double sum of Eq. (1.13) can be written in the matrix form as follows:
n n n n
c= Z Zﬂi]‘xix]‘ = in Za,-]-x]' = XTAX (].17)
i=1 j=1 i=1 =1

Since Ax represents a vector, the triple product of Eq. (1.17) is also written as a dot
product:

c=x"Ax = (x +Ax) (1.18)

1.5.5 Functions

Just as a function of a single variable is represented as f(x), a function of n independent
variables xq, x5, ..., X, is written as

fOO) =f(x1, x2, ..., xn) (1.19)

We deal with many functions of vector variables. To distinguish between functions,
subscripts are used. Thus, the ith function is written as

8i(x) =gi(x1, x2, ..., xn) (1.20)
If there are m functions g;(x), i =1 to m, these are represented in the vector form
g1(x)
g0 = | £ | =510 9209 ... guOl" (1.21)
gn(x)

Throughout the text it is assumed that all functions are continuous and at least twice con-
tinuously differentiable. A function f(x) of n variables is called continuous at a point x* if, for
any € > 0, there is a 6 > 0 such that

|f(x) —f(x*)| <e (1.22)

whenever [|x — x*|| < é. Thus, for all points x in a small neighborhood of point x*, a change
in the function value from x* to x is small when the function is continuous. A continuous
function need not be differentiable. Twice-continuous differentiability of a function implies
not only that it is differentiable two times, but also that its second derivative is continuous.

Figures 1.5(a) and 1.5(b) show continuous and discontinuous functions. The function in
Figure 1.5(a) is differentiable everywhere, whereas the function in Figure 1.5(b) is not dif-
ferentiable at points x;, xp, and x3. Figure 1.5(c) is an example in which f is not a function
because it has infinite values at x;. Figure 1.5(d) is an example of a discontinuous function.
As examples, functions f(x) =x> and f(x) =sinx are continuous everywhere and are also
continuously differentiable. However, function f(x) = |x| is continuous everywhere but not
differentiable at x = 0.
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f(x) f(x) FIGURE 1.5 Continuous and discon-
tinuous functions: (a) and (b) continuous
functions; (c) not a function; (d) discontin-
uous function.

C

(a) (b)

f(x) f(x)

X1

(c) (d)

1.5.6 Derivatives of Functions

Often in this text we must calculate derivatives of functions of several variables. Here
we introduce some of the basic notations used to represent the partial derivatives of func-
tions of several variables.

First Partial Derivatives
For a function f(x) of n variables, the first partial derivatives are written as

o).

ax,- ’

i=lton (1.23)

The n partial derivatives in Eq. (1.23) are usually arranged in a column vector known as
the gradient of the function f(x). The gradient is written as df/0x or Vf(x). Therefore,

of) |
ox 1
of(x)

Vi(x) = a];g) = 5?‘2 (1.24)

o)
Oxp

Note that each component of the gradient in Eq. (1.23) or (1.24) is a function of vector x.
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Second Partial Derivatives

Each component of the gradient vector in Eq. (1.24) can be differentiated again with
respect to a variable to obtain the second partial derivatives for the function f(x):

Pf(9)

6xi6x]- ’

i, j=1ton (1.25)

We see that there are n* partial derivatives in Eq. (1.25). These can be arranged in a matrix
known as the Hessian matrix, written as H(x), or simply the matrix of second partial deriva-
tives of f(x), written as Vf(x):

O*f(x)
H(x) = V?f(x) = 12

Note that if f(x) is continuously differentiable two times, then Hessian matrix H(x) in
Eq. (1.26) is symmetric.

Partial Derivatives of Vector Functions

On several occasions we must differentiate a vector function of n variables, such as the
vector g(x) in Eq. (1.21), with respect to the n variables in vector x. Differentiation of each
component of the vector g(x) results in a gradient vector, such as Vg;(x). Each of these gra-
dients is an n-dimensional vector. They can be arranged as columns of a matrix of dimen-
sion m X n, referred to as the gradient matrix of g(x). This is written as

0g(x)
Vg0 = 2 =[Vg10) Vg2%) - V(N (1.27)
This gradient matrix is usually written as matrix A:
oo
A =[xy @i = a#i; i=1ton; j=1tom (1.28)

1.5.7 U.S.—British versus SI Units

The formulation of the design problem and the methods of optimization do not depend
on the units of measure used. Thus, it does not matter which units are used in defining
the problem. However, the final form of some of the analytical expressions for the problem
does depend on the units used. In the text, we use both U.S.—British and SI units in exam-
ples and exercises. Readers unfamiliar with either system should not feel at a disadvan-
tage when reading and understanding the material since it is simple to switch from one
system to the other. To facilitate the conversion from U.S.—British to SI units or vice versa,
Table 1.1 gives conversion factors for the most commonly used quantities. For a complete
list of conversion factors, consult the IEEE ASTM (1997) publication.
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TABLE 1.1 Conversion factors for U.S.—British and SI units

To convert from U.S.—British To SI units Multiply by

Acceleration

foot/second? (ft/s?) meter/second” (m/s?) 0.3048*
inch/second? (in/s?) meter/second? (m/s?) 0.0254*

Area

foot” (ft) meter” (m?) 0.09290304*
inch? (in% meter? (m?) 6.4516E—04*

Bending Moment or Torque

pound force inch (Ibf - in) Newton meter (N - m) 0.1129848
pound force foot (Ibf - ft) Newton meter (N - m) 1.355818
Density

pound mass/inch® (Ibm/in®) kilogram/meter® (kg/m®) 27,679.90
pound mass/ foot® (Ibm/ft3) kilogram/ meter® (kg/ m>) 16.01846

Energy or Work
8!

British thermal unit (BTU) Joule (J) 1055.056
foot-pound force (ft - Ibf) Joule (J) 1.355818
kilowatt-hour (KWh) Joule (J) 3,600,000*
Force

kip (1000 Ibf) Newton (N) 4448.222
pound force (Ibf) Newton (N) 4.448222
Length

foot (ft) meter (m) 0.3048*
inch (in) meter () 0.0254*
mile (mi), U.S. statute meter (m) 1609.347
mile (mi), International, nautical meter (m) 1852*
Mass

pound mass (Ibm) kilogram (kg) 0.4535924
slug (Ibf - s°ft) kilogram (kg) 14.5939
ton (short, 2000 lbm) kilogram (kg) 907.1847
ton (long, 2240 Ibm) kilogram (kg) 1016.047
tonne (t, metric ton) kilogram (kg) 1000*
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TABLE 1.1 (Continued)

To convert from U.S.—British To SI units Multiply by
Power

foot-pound /minute (ft - Ibf/min) Watt (W) 0.02259697
horsepower (550 ft - 1bf/s) Watt (W) 745.6999
Pressure or Stress

atmosphere (std) (14.7 1bf/ in?) Newton/meter? (N/m? or Pa)  101,325*
one bar (b) Newton/meter> (N/m? or Pa)  100,000*
pound/ foot? (Ibf/ft?) Newton/meter” (N/m? or Pa)  47.88026
pound/ inch? (Ibf/in® or psb) Newton/meter? (N/m? or Pa)  6894.757
Velocity

foot/minute (ft/min) meter/second (m/s) 0.00508*
foot/second (ft/s) meter/second (m/s) 0.3048*
knot (nautical mi/h), international meter/second (m/s) 0.5144444
mile/hour (mi/h), international meter/second (m/s) 0.44704*
mile/hour (mi/h), international kilometer/hour (km/h) 1.609344*
mile/second (mi/s), international kilometer/second (km/s) 1.609344*
Volume

foot® (ft*) meter® (m?) 0.02831685

inch® (in®

gallon (Canadian liquid)
gallon (U.K. liquid)
gallon (U.S. dry)
gallon (U.S. liquid)
one liter (L)

ounce (U.K. fluid)
ounce (U.S. fluid)
pint (U.S. dry)

pint (U.S. liquid)
quart (U.S. dry)
quart (U.S. liquid)

meter® (m®)
meter® (m®)
meter® (m®)
meter® (m>)
meter® (m°)
meter® (m>)
meter® (m®)
meter® (m®)
meter® (m®)
meter® (m°)
meter® (m>)

meter® (m°)

1.638706E—05
0.004546090
0.004546092
0.004404884
0.003785412
0.001*
2.841307E—05
2.957353E—05
5.506105E—04
4.731765E—04
0.001101221
9.463529E—04

* Exact conversion factor.
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CHAPTER

2

Optimum Design Problem
Formulation

Upon completion of this chapter, you will be able to

e Translate a descriptive statement of the ¢ Identify and define the design problem’s
design problem into a mathematical constraints
statement for optimization e Transcribe the problem formulation

¢ Identify and define the problem’s design into a standard model for design
variables optimization

¢ Identify and define an optimization criterion
for the problem

It is generally accepted that the proper definition and formulation of a problem take roughly
50 percent of the total effort needed to solve it. Therefore, it is critical to follow well-defined
procedures for formulating design optimization problems. In this chapter, we describe the
process of transforming the design of a selected system and/or subsystem into an optimum
design problem.

Several simple and moderately complex applications are discussed in this chapter to
illustrate the problem formulation process. More advanced applications are discussed
in Chapters 6 and 7 and 14 through 19.

The importance of properly formulating a design optimization problem must be stressed
because the optimum solution will be only as good as the formulation. For example, if we
forget to include a critical constraint in the formulation, the optimum solution will most
likely violate it. Also, if we have too many constraints, or if they are inconsistent, there
may be no solution. However, once the problem is properly formulated, good software is

Introduction to Optimum Design 1 7 © 2012 Elsevier Inc. All rights reserved.



18 2. OPTIMUM DESIGN PROBLEM FORMULATION

usually available to deal with it. For most design optimization problems, we will use the
following five-step formulation procedure:

Step 1: Project/problem description
Step 2: Data and information collection
Step 3: Definition of design variables
Step 4: Optimization criterion

Step 5: Formulation of constraints

2.1 THE PROBLEM FORMULATION PROCESS

The formulation of an optimum design problem involves translating a descriptive state-
ment of it into a well-defined mathematical statement. We will describe the tasks to be
performed in each of the foregoing five steps to develop a mathematical formulation for
the design optimization problem. These steps are illustrated with some examples in this
section and in later sections.

At this stage, it is also important to understand the solution process for optimization of
a design problem. As illustrated earlier in Figure 1.2(b), optimization methods are iterative
where the solution process is started by selecting a trial design or a set of trial designs. The
trial designs are analyzed and evaluated, and a new trial design is generated. This iterative
process is continued until an optimum solution is reached.

2.1.1 Step 1: Project/Problem Description
Are the Project Goals Clear?

The formulation process begins by developing a descriptive statement for the project/
problem, usually by the project’'s owner/sponsor. The statement describes the overall
objectives of the project and the requirements to be met. This is also called the statement
of work.

EXAMPLE 2.1 DESIGN OF A CANTILEVER BEAM—PROBLEM
DESCRIPTION

Cantilever beams are used in many practical applications in civil, mechanical, and aerospace
engineering. To illustrate the step of problem description, we consider the design of a hollow
square-cross-section cantilever beam to support a load of 20 kN at its end. The beam, made of
steel, is 2 m long, as shown in Figure 2.1. The failure conditions for the beam are as follows:
(1) the material should not fail under the action of the load, and (2) the deflection of the free end
should be no more than 1 cm. The width-to-thickness ratio for the beam should be no more than 8.
A minimum-mass beam is desired. The width and thickness of the beam must be within the
following limits:

60 = width =300 mm (a)

10 = thickness = 40 mm (b)
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t
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FIGURE 2.1 Cantilever beam of a

hollow square cross-section.

2.1.2 Step 2: Data and Information Collection
Is All the Information Awvailable
to Solve the Problem?

To develop a mathematical formulation for the problem, we need to gather information
on material properties, performance requirements, resource limits, cost of raw materials,
and so forth. In addition, most problems require the capability to analyze trial designs.
Therefore, analysis procedures and analysis tools must be identified at this stage. For exam-
ple, the finite-element method is commonly used for analysis of structures, so the software
tool available for such an analysis needs to be identified. In many cases, the project state-
ment is vague, and assumptions about modeling of the problem need to be made in order
to formulate and solve it.

EXAMPLE 2.2 DATA AND INFORMATION COLLECTION
FOR A CANTILEVER BEAM

The information needed for the cantilever beam design problem of Example 2.1 includes expres-
sions for bending and shear stresses, and the expression for the deflection of the free end. The
notation and data for this purpose are defined in the table that follows.

Useful expressions for the beam are

A=w? — (w — 2t)> = 44w — £), mm?> (0)
I= gwt?’ I %wst — 2wt — %t‘l, mm* (d)
3 3
Q= —w*— —wt + 3, mm® (e)
4 2
M=PL, N - mm ®
V=P N (€9)
0:]\%,N-mm72 (h)
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T=‘2/—§, N-mm~> (i)
L :
q= 3EL° mm G

Notation Data

A

Oa

Ta

cross-sectional area, mm?

modulus of elasticity, 21 X 10* N - mm™>

shear modulus, 8 X 10* N - mm 2

moment of inertia, mm*

length of the member, 2000 mm

bending moment, N - mm

load at the free end, 20,000 N

moment about the neutral axis of the area above the neutral axis, mm>
vertical deflection of the free end, mm

allowable vertical deflection of the free end, 10 mm
shear force, N

width (depth) of the section, mm

wall thickness, mm

bending stress, N - mm 2

allowable bending stress, 165 N - mm >

shear stress, N - mm 2

allowable shear stress, 90 N - mm 2

2.1.3 Step 3: Definition of Design Variables

What Are These Variables?
How Do I Identify Them?

The next step in the formulation process is to identify a set of variables that describe
the system, called the design variables. In general, these are referred to as optimization vari-
ables and are regarded as free because we should be able to assign any value to them.
Different values for the variables produce different designs. The design variables should
be independent of each other as far as possible. If they are dependent, their values cannot
be specified independently because there are constraints between them. The number of
independent design variables gives the design degrees of freedom for the problem.
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For some problems, different sets of variables can be identified to describe the same sys-
tem. Problem formulation will depend on the selected set. We will present some examples
later in this chapter to elaborate on this point.

Once the design variables are given numerical values, we have a design of the system.
Whether this design satisfies all requirements is another question. We will introduce a num-
ber of concepts to investigate such questions in later chapters.

If proper design variables are not selected for a problem, the formulation will be either
incorrect or not possible. At the initial stage of problem formulation, all options for specifi-
cation of design variables should be investigated. Sometimes it may be desirable to desig-
nate more design variables than apparent design degrees of freedom. This gives added
flexibility to problem formulation. Later, it will be possible to assign a fixed numerical
value to any variable and thus eliminate it from the formulation.

At times it is difficult to clearly identify a problem’s design variables. In such a case, a com-
plete list of all variables may be prepared. Then, by considering each variable individually,
we can decide whether or not to treat it as an optimization variable. If it is a valid design vari-
able, the designer should be able to specify a numerical value for it to select a trial design.

We will use the term “design variables” to indicate all optimization variables for the
optimization problem and will represent them in the vector x. To summarize, the follow-
ing considerations should be given in identifying design variables for a problem:

e Design variables should be independent of each other as far as possible. If they are not,
there must be some equality constraints between them (explained later).

* A minimum number of design variables required to properly formulate a design
optimization problem must exist.

* As many independent parameters as possible should be designated as design variables
at the problem formulation phase. Later on, some of the variables can be assigned fixed
values.

* A numerical value should be given to each identified design variable to determine if a
trial design of the system is specified.

EXAMPLE 2.3 DESIGN VARIABLES FOR A CANTILEVER BEAM

Only dimensions of the cross-section are identified as design variables for the cantilever beam
design problem of Example 2.1; all other parameters are specified:

w = width (depth) of the section, mm
t = wall thickness, mm

2.1.4 Step 4: Optimization Criterion
How Do I Know that My Design Is the Best?

There can be many feasible designs for a system, and some are better than others. The ques-
tion is how we compare designs and designate one as better than another. For this, we must
have a criterion that associates a number with each design. Thus, the merit of a given design is
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specified. The criterion must be a scalar function whose numerical value can be obtained once
a design is specified; that is, it must be a function of the design variable vector x. Such a criterion is
usually called an objective function for the optimum design problem, and it needs to be maxi-
mized or minimized depending on problem requirements. A criterion that is to be minimized is
usually called a cost function in engineering literature, which is the term used throughout this
text. It is emphasized that a valid objective function must be influenced directly or indirectly by the
variables of the design problem; otherwise, it is not a meaningful objective function.

The selection of a proper objective function is an important decision in the design pro-
cess. Some objective functions are cost (to be minimized), profit (to be maximized), weight
(to be minimized), energy expenditure (to be minimized), and, for example, ride quality of
a vehicle (to be maximized). In many situations an obvious objective function can be iden-
tified. For example, we always want to minimize the cost of manufacturing goods or manxi-
mize return on investment. In some situations, two or more objective functions may be
identified. For example, we may want to minimize the weight of a structure and at the
same time minimize the deflection or stress at a certain point. These are called multiobjec-
tive design optimization problems and are discussed in a later chapter.

For some design problems, it is not obvious what the objective function should be or how it
should relate to the design variables. Some insight and experience may be needed to identify a
proper objective function. For example, consider the optimization of a passenger car. What are
the design variables? What is the objective function, and what is its functional form in terms of
the design variables? Although this is a very practical problem, it is quite complex. Usually,
such problems are divided into several smaller subproblems and each one is formulated as an
optimum design problem. For example, design of a passenger car can be divided into a num-
ber of optimization subproblems involving the trunk lid, doors, side panels, roof, seats, sus-
pension system, transmission system, chassis, hood, power plant, bumpers, and so on. Each
subproblem is now manageable and can be formulated as an optimum design problem.

EXAMPLE 2.4 OPTIMIZATION CRITERION FOR A
CANTILEVER BEAM

For the design problem in Example 2.1, the objective is to design a minimum-mass cantilever
beam. Since the mass is proportional to the cross-sectional area of the beam, the objective func-
tion for the problem is taken as the cross-sectional area:

f(w,t) = A= 4t(w — t), mm?> (k)

2.1.5 Step 5: Formulation of Constraints
What Restrictions Do I Have on My Design?

All restrictions placed on the design are collectively called constraints. The final step in
the formulation process is to identify all constraints and develop expressions for them.
Most realistic systems must be designed and fabricated with the given resources and must
meet performance requirements. For example, structural members should not fail under nor-
mal operating loads. The vibration frequencies of a structure must be different from the
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operating frequency of the machine it supports; otherwise, resonance can occur and cause
catastrophic failure. Members must fit into the available space.

These constraints, as well as others, must depend on the design variables, since only
then do their values change with different trial designs; that is, a meaningful constraint
must be a function of at least one design variable. Several concepts and terms related to
constraints are explained next.

Linear and Nonlinear Constraints

Many constraint functions have only first-order terms in design variables. These are
called linear constraints. Linear programming problems have only linear constraints and objec-
tive functions. More general problems have nonlinear cost and/or constraint functions.
These are called nonlinear programming problems. Methods to treat both linear and nonlinear
constraints and objective functions are presented in this text.

Feasible Design

The design of a system is a set of numerical values assigned to the design variables (i.e., a
particular design variable vector x). Even if this design is absurd (e.g., negative radius) or inad-
equate in terms of its function, it can still be called a design. Clearly, some designs are useful
and others are not. A design meeting all requirements is called a feasible design (acceptable or
workable). An infeasible design (unacceptable) does not meet one or more of the requirements.

Equality and Inequality Constraints

Design problems may have equality as well as inequality constraints. The problem
description should be studied carefully to determine which requirements need to be formu-
lated as equalities and which ones as inequalities. For example, a machine component may
be required to move precisely by A to perform the desired operation, so we must treat this
as an equality constraint. A feasible design must satisfy precisely all equality constraints.
Also, most design problems have inequality constraints, sometimes called unilateral or one-
sided constraints. Note that the feasible region with respect to an inequality constraint is much
larger than that with respect to the same constraint expressed as equality.

To illustrate the difference between equality and inequality constraints, we consider a con-
straint written in both equality and inequality forms. Figure 2.2(a) shows the equality con-
straint x; = x,. Feasible designs with respect to the constraint must lie on the straight line A—B.
However, if the constraint is written as an inequality x; = x,, the feasible region is much
larger, as shown in Figure 2.2(b). Any point on the line A—B or above it gives a feasible design.

Implicit Constraints

Some constraints are quite simple, such as the smallest and largest allowable values for the
design variables, whereas more complex ones may be indirectly influenced by the design vari-
ables. For example, deflection at a point in a large structure depends on its design. However,
it is impossible to express deflection as an explicit function of the design variables except for
very simple structures. These are called implicit constraints. When there are implicit functions
in the problem formulation, it is not possible to formulate the problem functions explicitly in
terms of design variables alone. Instead, we must use some intermediate variables in the prob-
lem formulation. We will discuss formulations having implicit functions in Chapter 14.
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X2
B
Feasible region
for x4 = xo
(line A-B)
X1
A
(a)
X2
. B
Feasible
region for x4 < x,
X1 = Xy
X1
A

(b)

FIGURE 2.2 Shown here is the distinction between equality and inequality constraints: (a) Feasible region for
constraint x; = x, (line A—B); (b) feasible region for constraint x; = x, (line A—B and the region above it).

EXAMPLE 2.5 CONSTRAINTS FOR A CANTILEVER
BEAM

Using various expressions given in Egs. (c) through (j), we formulate the constraints for the
cantilever beam design problem from Example 2.1 as follows:

Bending stress constraint: o = o,

=T —6,=0 0
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Shear stress constraint: T <1,

PQ
_ — <
o =0 (m)
Deflection constraint: g =q, L3
37 9a=0 (n)
Width—thickness restriction: ¥ =8 w—8t=0 ©)
Dimension restrictions
60 —w =0, mm; w—300=0, mm (p)
3—t=0, mm; t—15=0, mm ()]

Thus the optimization problem is to find w and ¢ to minimize the cost function of Eq. (k) subject
to the eight inequality constraints of Eqgs. (1) through (q). Note that the constraints of Egs. (1) through
(n) are nonlinear functions and others are linear functions of the design variables. There are eight
inequality constraints and no equality constraints for this problem. Substituting various expres-
sions, Egs. (1) through (n) can be expressed explicitly in terms of the design variables, if desired.

2.2 DESIGN OF A CAN

STEP 1: PROJECT/PROBLEM DESCRIPTION The purpose of this project is to design a
can, shown in Figure 2.3, to hold at least 400 ml of liquid (1 ml=1 cm?®), as well as to meet
other design requirements. The cans will be produced in the billions, so it is desirable to
minimize their manufacturing costs. Since cost can be directly related to the surface area
of the sheet metal used, it is reasonable to minimize the amount of sheet metal required.
Fabrication, handling, aesthetics, and shipping considerations impose the following restric-
tions on the size of the can: The diameter should be no more than 8 cm and no less than
3.5 cm, whereas the height should be no more than 18 cm and no less than 8 cm.

STEP 2: DATA AND INFORMATION COLLECTION Data for the problem are given in the
project statement.

Y FIGURE 2.3 Can.
N

A
Y
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STEP 3: DEFINITION OF DESIGN VARIABLES The two design variables are defined as

D = diameter of the can, cm
H = height of the can, cm

STEP 4: OPTIMIZATION CRITERION The design objective is to minimize the total sur-
face area S of the sheet metal for the three parts of the cylindrical can: the surface area of
the cylinder (circumference X height) and the surface area of the two ends. Therefore, the
optimization criterion, or cost function (the total area of sheet metal), is given as

S=7DH+2 G DZ), cm? @)

STEP 5: FORMULATION OF CONSTRAINTS The first constraint is that the can must hold
at least 400 cm® of fluid, which is written as

£D2H =400, cm® (b)

If it had been stated that “the can must hold 400 ml of fluid,” then the preceding volume
constraint would be an equality. The other constraints on the size of the can are

35=D=8, cm

8=H=18, cm ©

The explicit constraints on design variables in Egs. (c) have many different names in the
literature, such as side constraints, technological constraints, simple bounds, sizing constraints,
and upper and lower limits on the design variables. Note that for the present problem there
are really four constraints in Eqgs. (c). Thus, the problem has two design variables and a
total of five inequality constraints.

Note also that the cost function and the first constraint are nonlinear in variables; the
remaining constraints are linear.

2.3 INSULATED SPHERICAL TANK DESIGN

STEP 1: PROJECT/PROBLEM DESCRIPTION The goal of this project is to choose an insu-
lation thickness t to minimize the life-cycle cooling cost for a spherical tank. The cooling
costs include installing and running the refrigeration equipment, and installing the insula-
tion. Assume a 10-year life, a 10 percent annual interest rate, and no salvage value. The
tank has already been designed having r (m) as its radius.

STEP 2: DATA AND INFORMATION COLLECTION To formulate this design optimization
problem, we need some data and expressions. To calculate the volume of the insulation
material, we require the surface area of the spherical tank, which is given as

A =471, m? (@)
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To calculate the capacity of the refrigeration equipment and the cost of its operation, we
need to calculate the annual heat gain G, which is given as

 (365)(24)(AT)A
- Clt

G , Watt-hours (b)
where AT is the average difference between the internal and external temperatures in
Kelvin, c; is the thermal resistivity per unit thickness in Kelvin-meter per Watt, and ¢ is
the insulation thickness in meters. AT can be estimated from the historical data for tem-
peratures in the region in which the tank is to be used. Let c, = the insulation cost per
cubic meter ($/m?), c3 = the cost of the refrigeration equipment per Watt-hour of capacity
($/Wh), and c4 = the annual cost of running the refrigeration equipment per Watt-hour

($/Wh).

STEP 3: DEFINITION OF DESIGN VARIABLES Only one design variable is identified for
this problem:

t = insulation thickness, m

STEP 4: OPTIMIZATION CRITERION The goal is to minimize the life-cycle cooling cost
of refrigeration for the spherical tank over 10 years. The life-cycle cost has three compo-
nents: insulation, refrigeration equipment, and operations for 10 years. Once the annual
operations cost has been converted to the present cost, the total cost is given as

Cost = 0y At + 3G + 4G (0)

where uspwf (0.1, 10) = 6.14457 is the uniform series present worth factor, calculated using
the equation

uspwf(i,n) = } 1-@1-i"] (d)

where i is the rate of return per dollar per period and # is the number of periods. Note
that to calculate the volume of the insulation as At, it is assumed that the insulation thick-
ness is much smaller than the radius of the spherical tank; that is, t « 7.

STEP 5: FORMULATION OF CONSTRAINTS Although no constraints are indicated in the
problem statement, it is important to require that the insulation thickness be non-negative
(i.e.,, t = 0). Although this may appear obvious, it is important to include the constraint
explicitly in the mathematical formulation of the problem. Without its explicit inclusion,
the mathematics of optimization may assign negative values to thickness, which is, of
course, meaningless. Note also that in reality ¢t cannot be zero because it appears in the
denominator of the expression for G. Therefore, the constraint should really be expressed
as t > 0. However, strict inequalities cannot be treated mathematically or numerically in the
solution process because they give an open feasible set. We must allow the possibility of
satisfying inequalities as equalities; that is, we must allow the possibility that t =0 in the
solution process. Therefore, a more realistic constraint is t = t.,;,, Where f;, is the smal-
lest insulation thickness available on the market.
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EXAMPLE 2.6 FORMULATION OF THE SPHERICAL
TANK PROBLEM WITH INTERMEDIATE VARIABLES

A summary of the problem formulation for the design optimization of insulation for a spheri-

cal tank with intermediate variables is as follows:

Specified data: r, AT, ¢y, ¢3, €3, C4) tmin
Design variable: t, m
Intermediate variables: A = 4712

_ (365)(24)(AT)A (e)

G
cit

Cost function: Minimize the life-cycle cooling cost of refrigeration of the spherical tank,

Cost = cp At + 3G + 6.14457¢c4,G f)
Constraint: t = tmin (8

Note that A and G may also be treated as design variables in this formulation. In such a case, A
must be assigned a fixed numerical value since r has already been determined, and the expres-
sion for G must be treated as an equality constraint.

EXAMPLE 2.7 FORMULATION OF THE SPHERICAL TANK
PROBLEM WITH THE DESIGN VARIABLE ONLY

Following is a summary of the problem formulation for the design optimization of insulation
for a spherical tank in terms of the design variable only:

Specified data: v, AT, ¢q, €3, €3, Cay tmin
Design variable: t, m
Cost function: Minimize the life-cycle cooling cost of refrigeration of the spherical tank,
b
Cost = at + 5 = 4eomr?,

(€3 +6.14457cy) (h)
C1

(365)(24)(AT)(4n7?)

Constraint: f = tmin ()

2.4 SAWMILL OPERATION

STEP 1: PROJECT/PROBLEM DESCRIPTION A company owns two sawmills and
two forests. Table 2.1 shows the capacity of each of the mills (logs/day) and the distances
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TABLE 2.1 Data for sawmills

Distance from  Distance from  Mill capacity

Mill Mill1 Mill 2 per day
A 24.0 km 20.5 km 240 logs
B 17.2 km 18.0 km 300 logs

between the forests and the mills (km). Each forest can yield up to 200 logs/day for the
duration of the project, and the cost to transport the logs is estimated at $10/km/log. At
least 300 logs are needed daily. The goal is to minimize the total daily cost of transporting
the logs.

STEP 2: DATA AND INFORMATION COLLECTION Data are given in Table 2.1 and in the
problem statement.

STEP 3: DEFINITION OF DESIGN VARIABLES The design problem is to determine how
many logs to ship from Forest i to Mill j, as shown in Figure 2.4. Therefore, the design
variables are identified and defined as follows:

x1 = number of logs shipped from Forest 1 to Mill A
x> = number of logs shipped from Forest 2 to Mill A
x3 = number of logs shipped from Forest 1 to Mill B
x4 = number of logs shipped from Forest 2 to Mill B

Note that if we assign numerical values to these variables, an operational plan for the proj-
ect is specified and the cost of daily log transportation can be calculated. The selected
design may or may not satisfy all constraints.

STEP 4: OPTIMIZATION CRITERION The design objective is to minimize the daily cost
of transporting the logs to the mills. The cost of transportation, which depends on the dis-

tance between the forests and the mills, is

Cost = 24(10)x1 +20.5(10)x7 + 17.2(10)x3 + 18(10)x4

a
=240.0x; + 205.0x2 + 172.0x3 + 180.0x4 @

@ FIGURE 2.4 Sawmill operation.
<]
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STEP 5: FORMULATION OF CONSTRAINTS The constraints for the problem are based
on mill capacity and forest yield:

x1 +x, =240 (Mill A capacity)
x3+ x4 =300 (Mill B capacity)

x1 +x3=200 (Forest1 yield) ®)
X2 + x4 =200 (Forest 2 yield)
The constraint on the number of logs needed for each day is expressed as
x1+x2+x3+x4=300 (demand for logs) (o)
For a realistic problem formulation, all design variables must be non-negative; that is,
x=0; i=1to4 (d)

The problem has four design variables, five inequality constraints, and four non-
negativity constraints on the design variables. Note that all problem functions are linear in
design variables, so this is a linear programming problem. Note also that for a meaningful
solution, all design variables must have integer values. Such problems are called integer
programming problems and require special solution methods. Some such methods are
discussed in Chapter 15.

It is also noted that the problem of sawmill operation falls into a class known as trans-
portation problems. For such problems, we would like to ship items from several distribu-
tion centers to several retail stores to meet their demand at a minimum cost of
transportation.

2.5 DESIGN OF A TWO-BAR BRACKET

STEP 1: PROJECT/PROBLEM DESCRIPTION The objective of this project is to design a
two-bar bracket (shown in Figure 2.5) to support a load W without structural failure. The
load is applied at an angle 6, which is between 0 and 90°, h is the height, and s is the
bracket’s base width. The bracket will be produced in large quantities. It has also been
determined that its total cost (material, fabrication, maintenance, and so on) is directly
related to the size of the two bars. Thus, the design objective is to minimize the total mass
of the bracket while satisfying performance, fabrication, and space limitations.

STEP 2: DATA AND INFORMATION COLLECTION First, the load W and its angle
of application ¢ need to be specified. Since the bracket may be used in several applications,
it may not be possible to specify just one angle for W. It is possible to formulate the
design optimization problem such that a range is specified for angle ¢ (i.e., load W
may be applied at any angle within that specified range). In this case, the formulation will
be slightly more complex because performance requirements will need to be satisfied for
each angle of application. In the present formulation, it is assumed that angle 6§ is specified.

Second, the material to be used for the bars must be specified because the material
properties are needed to formulate the optimization criterion and performance
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|<— s/2 —»‘4—8/2 —>|
(@)

FIGURE 2.5 Two-bar bracket: (a) structure and (b) free-body diagram for node 1.

(b)

requirements. Whether the two bars are to be fabricated using the same material also
needs to be determined. In the present formulation, it is assumed that they are, although it
may be prudent to assume otherwise for some advanced applications. In addition, we
need to determine the fabrication and space limitations for the bracket (e.g., on the size of
the bars, height, and base width).

In formulating the design problem, we also need to define structural performance more
precisely. Forces F; and F; carried by bars 1 and 2, respectively, can be used to define fail-
ure conditions for the bars. To compute these forces, we use the principle of static equilib-
rium. Using the free-body diagram for node 1 (shown in Figure 2.5(b)), equilibrium of forces
in the horizontal and vertical directions gives

—F;sina + Frsina = W cosf

(@)

—Ficosa — Focosae = W sinf
From the geometry of Figure 2.5, sina=0.5 s/l and cosa = h/l, where [ is the length of

members given as [ =1/h? + (0.55). Note that F; and F, are shown as tensile forces in the

free-body diagram. The solution to Egs. (a) will determine the magnitude and direction of
the forces. In addition, the tensile force will be taken as positive. Thus, the bar will be in com-
pression if the force carried by it has negative value. By solving the two equations simulta-
neously for the unknowns F; and F;, we obtain

F = —O.SWZ[LHQ 42 COS@}
h s ®)
F,= —O.SW{%M -2 C;)Sﬂ

To avoid bar failure due to overstressing, we need to calculate bar stress. If we know the
force carried by a bar, then the stress o can be calculated as the force divided by the bar’s
cross-sectional area (stress = force/area). The SI unit for stress is Newton/meter* (N/m?),
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also called Pascal (Pa), whereas the U.S.—British unit is pound/in® (written as psi). The
expression for the cross-sectional area depends on the cross-sectional shape used for the
bars and selected design variables. Therefore, a structural shape for the bars and associated
design variables must be selected. This is illustrated later in the formulation process.

In addition to analysis equations, we need to define the properties of the selected mate-
rial. Several formulations for optimum design of the bracket are possible depending on
the application’s requirements. To illustrate, a material with known properties is assumed
for the bracket. However, the structure can be optimized using other materials along with
their associated fabrication costs. Solutions can then be compared to select the best possi-
ble one for the structure.

For the selected material, let p be the mass density and o, > 0 be the allowable design
stress. As a performance requirement, it is assumed that if the stress exceeds this allowable
value, the bar is considered to have failed. The allowable stress is defined as the material
failure stress (a property of the material) divided by a factor of safety greater than one. In
addition, it is assumed that the allowable stress is calculated in such a way that the buck-
ling failure of a bar in compression is avoided.

STEP 3: DEFINITION OF DESIGN VARIABLES Several sets of design variables may be
identified for the two-bar structure. The height & and span s can be treated as design vari-
ables in the initial formulation. Later, they may be assigned numerical values, if desired,
to eliminate them from the formulation. Other design variables will depend on the cross-
sectional shape of bars 1 and 2. Several cross-sectional shapes are possible, as shown in
Figure 2.6, where design variables for each shape are also identified.

Note that for many cross-sectional shapes, different design variables can be selected.
For example, in the case of the circular tube in Figure 2.6(a), the outer diameter d, and the
ratio between the inner and outer diameters r =d;/d, may be selected as the design vari-
ables. Or d, and d; may be selected. However, it is not desirable to designate d,, d;, and r
as the design variables because they are not independent of each other. If they are selected,
then a relationship between them must be specified as an equality constraint. Similar
remarks can be made for the design variables associated with other cross-sections, also
shown in Figure 2.6.

As an example of problem formulation, consider the design of a bracket with hollow
circular tubes, as shown in Figure 2.6(a). The inner and outer diameters d; and d, and wall
thickness ¢t may be identified as the design variables, although they are not all indepen-
dent of each other. For example, we cannot specify d; = 10, d, = 12, and ¢ = 2 because it vio-
lates the physical condition t =0.5(d, — d;). Therefore, if we formulate the problem with
d;, d,, and t as design variables, we must also impose the constraint t = 0.5(d, — d;). To illus-
trate a formulation of the problem, let the design variables be defined as

x1 = height h of the bracket
X, =span s of the bracket

x3 = outer diameter of bar 1
x4 = inner diameter of bar 1
x5 = outer diameter of bar 2
Xe = inner diameter of bar 2
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~——d, FIGURE 2.6 Bar cross-sectional shapes: (a) circular
tube; (b) solid circular; (c) rectangular tube; (d) solid
~—di—> d rectangular; (e) I-section; (f) channel section.
(a) (b)
t —| |— d d
b ~<~—— b —>
(c) (d)
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(e) (f)

In terms of these variables, the cross-sectional areas A; and A, of bars 1 and 2 are
given as

™ m
M=TE - A=) ©

Once the problem is formulated in terms of the six selected design variables, it is always
possible to modify it to meet more specialized needs. For example, the height x; may be
assigned a fixed numerical value, thus eliminating it from the problem formulation. In
addition, complete symmetry of the structure may be required to make its fabrication eas-
ier; that is, it may be necessary for the two bars to have the same cross-section, size, and
material. In such a case, we set x3 = x5 and x4 = x, in all expressions of the problem formu-
lation. Such modifications are left as exercises.

STEP 4: OPTIMIZATION CRITERION The structure’s mass is identified as the objective

function in the problem statement. Since it is to be minimized, it is called the cost function
for the problem. An expression for the mass is determined by the cross-sectional shape of
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the bars and associated design variables. For the hollow circular tubes and selected design
variables, the total mass of the structure is calculated as (density X material volume):

Mass = p[l(A; + Ar)] = [,0\ /23 + (0.5x2)2] g(xg —xj +x2—xd) (d)

Note that if the outer diameter and the ratio between the inner and outer diameters are
selected as design variables, the form of the mass function changes. Thus, the final form
depends on the design variables selected for the problem.

STEP 5: FORMULATION OF CONSTRAINTS It is important to include all constraints in
the problem formulation because the final solution depends on them. For the two-bar
structure, the constraints are on the stress in the bars and on the design variables them-
selves. These constraints will be formulated for hollow circular tubes using the previously
defined design variables. They can be similarly formulated for other sets of design vari-
ables and cross-sectional shapes.

To avoid overstressing a bar, the calculated stress o (tensile or compressive) must not
exceed the material allowable stress o, > 0. The stresses o, and o, in the two bars are
calculated as force/area:

F
o1 = Ll (stress in bar 1)

Aq

F, (e)
0y = == (stress in bar 2)

A

Note that to treat positive and negative stresses (tension and compression), we must
use the absolute value of the calculated stress in writing the constraints (e.g., |o| = 0,,). The
absolute-value constraints can be treated by different approaches in optimization methods.
Here we split each absolute-value constraint into two constraints. For example, the stress
constraint for bar 1 is written as the following two constraints:

01 =0, (tensile stress in bar 1)

(®

—01 =0, (compressive stress in bar 1)

With this approach, the second constraint is satisfied automatically if bar 1 is in tension,
and the first constraint is automatically satisfied if bar 1 is in compression. Similarly, the
stress constraint for bar 2 is written as

02 =0, (tensile stress in bar 2)

—0y =0, (compressive stress in bar 2) ®
Finally, to impose fabrication and space limitations, constraints on the design variables
are imposed as

xp=x;=xy; i=1to6 (h)

where x;; and x;; are the minimum and maximum allowed values for the ith design vari-
able. Their numerical values must be specified before the problem can be solved.

Note that the expression for bar stress changes if different design variables are chosen
for circular tubes, or if a different cross-sectional shape is chosen for the bars. For example,
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inner and outer radii, mean radius and wall thickness, or outside diameter and the ratio of
inside to outside diameter as design variables will all produce different expressions for the
cross-sectional areas and stresses. These results show that the choice of design variables greatly
influences the problem formulation.

Note also that we had to first analyze the structure (calculate its response to given
inputs) to write the constraints properly. It was only after we had calculated the forces in
the bars that we were able to write the constraints. This is an important step in any
engineering design problem formulation: We must be able to analyze the system before we can
formulate the design optimization problem.

In the following examples, we summarize two formulations of the problem. The first
uses several intermediate variables, which is useful when the problem is transcribed into a
computer program. Because this formulation involves simpler expressions of various
quantities, it is easier to write and debug a computer program. In the second formulation,
all intermediate variables are eliminated to obtain the formulation exclusively in terms of
design variables. This formulation has slightly more complex expressions. It is important
to note that the second formulation may not be possible for all applications because some
problem functions may only be implicit functions of the design variables. One such formu-
lation is presented in Chapter 14.

EXAMPLE 2.8 FORMULATION OF THE TWO-BAR BRACKET
PROBLEM WITH INTERMEDIATE VARIABLES

A summary of the problem formulation for optimum design of the two-bar bracket using
intermediate variables is as follows:

Specified data: W, 0, 0, > 0, x;y and x;, i=1 to 6
Design variables: x1, X3, X3, X4, X5, X¢
Intermediate variables:
Bar cross-sectional areas: ~ A; = g(xg —-x3); A= g(xé ) (a)

Length of bars:
I=/x2 + (0.5x7)% (b)

Forces in bars: . 1
sinf 4 2 cosf

F1 = _05I/VZ
X1 X2
] ) (©
Fy= —0.5wp | 300 _ 2cost
X1 X2
Bar stresses:
_ K K
1= g 2T 4 (d
Cost function: Minimize the total mass of the bars,
Mass = pl(A + Ap) (e)
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Constraints:
Bar stress:
—01=0, 01=0, —02=0; 02=0; ®
Design variable limits: )
Xip=xi=xjy; i=1to6 (g

Note that the intermediate variables, such as A;, A,, F1, F», 01, and o,, may also be treated as
optimization variables. However, in that case, we have six equality constraints between the vari-
ables, in addition to the other constraints.

EXAMPLE 2.9 FORMULATION OF THE TWO-BAR BRACKET
WITH DESIGN VARIABLES ONLY

A summary of the problem formulation for optimum design of the two-bar bracket in terms
of design variables only is obtained by eliminating the intermediate variables from all the expres-
sions as follows:

Specified data: W, 0, 0, > 0, x;y and x;, i=1 to 6
Design variables: x1, X3, X3, X4, X5, X¢
Cost function: Minimize total mass of the bars,

Mass = %ﬂ VA2 + (0.5%)% (2 — 22 + 52 — 22) (@)

Constraints:

Bar stress:

2W4 /%2 + (0.5%2)% Tgi
1 2 [ﬁ N 2 COS@:| e ®)

71'(.’)(% - xi) X1 X2

—2W4/2} +(05%2)° [sing 2 cosf
* =0, (©

(x5 — x3) X1 X

X1 X2

2Wy/ 2 +(05%) [¢ind 2 cosf
il AR =0, ()

m(x2 —x2)

—2W4/23 + (0.5x2) {ﬂ 2 cos@} _

=0, (e)
m(x2 — x2) X Xp

Design variable limits:
Xp=x;=xjy; i=1to6 ()
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2.6 DESIGN OF A CABINET

STEP 1: PROJECT/PROBLEM DESCRIPTION A cabinet is assembled from components C;,
C,, and Cs. Each cabinet requires 8 C;, 5 Cp, and 15 C; components. The assembly of C,
requires either 5 bolts or 5 rivets, whereas C, requires 6 bolts or 6 rivets, and C3 requires 3
bolts or 3 rivets. The cost of installing a bolt, including the cost of the bolt itself, is $0.70 for
C;, $1.00 for C,, and $0.60 for Cs. Similarly, riveting costs are $0.60 for C;, $0.80 for C,, and
$1.00 for C;. Bolting and riveting capacities per day are 6000 and 8000, respectively. To min-
imize the cost for the 100 cabinets that must be assembled each day, we wish to determine
the number of components to be bolted and riveted (after Siddall, 1972).

STEP 2: DATA AND INFORMATION COLLECTION All data for the problem are given in
the project statement. This problem can be formulated in several different ways depending
on the assumptions made and the definition of the design variables. Three formulations
are presented, and for each one, the design variables are identified and expressions for the
cost and constraint functions are derived; that is, steps 3 through 5 are presented.

2.6.1 Formulation 1 for Cabinet Design

STEP 3: DEFINITION OF DESIGN VARIABLES In the first formulation, the following
design variables are identified for 100 cabinets:

x; = number of C; to be bolted for 100 cabinets
X, = number of C; to be riveted for 100 cabinets
x3 = number of C, to be bolted for 100 cabinets
x4 = number of C, to be riveted for 100 cabinets
x5 = number of Cj to be bolted for 100 cabinets
X¢ = number of Cj to be riveted for 100 cabinets

STEP 4: OPTIMIZATION CRITERION The design objective is to minimize the total cost
of cabinet fabrication, which is obtained from the specified costs for bolting and riveting
each component:

Cost = 0.70(5)x1 + 0.60(5)x, + 1.00(6)x3 + 0.80(6)x4 + 0.60(3)xs5 + 1.00(3)x¢
=3.5x1 +3.0x, + 6.0x3 + 4.8x4 + 1.8x5 + 3.0x4

(a)

STEP 5: FORMULATION OF CONSTRAINTS The constraints for the problem consist of
riveting and bolting capacities and the number of cabinets fabricated each day. Since 100
cabinets must be fabricated, the required numbers of C;, Cy, and C; are given in the
following constraints:

X1 +x,=8X100 (number of C; needed)
X3 +x4 =5X100 (number of C, needed) (b)
X5 + xg = 15 X 100 (number of C3 needed)
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Bolting and riveting capacities must not be exceeded. Thus,

5x1 + 6x3 + 3x5 = 6000 (bolting capacity)

5x; + 6x4 + 3x, = 8000 (riveting capacity) ©
Finally, all design variables must be non-negative to find a meaningful solution:
xi=0; i=1to6 (d)

2.6.2 Formulation 2 for Cabinet Design

STEP 3: DEFINITION OF DESIGN VARIABLES If we relax the constraint that each compo-
nent must be bolted or riveted, then the following design variables can be defined:

x1 = total number of bolts required for all C;
X, = total number of bolts required for all C,
x5 = total number of bolts required for all C;
x4 = total number of rivets required for all C;
x5 = total number of rivets required for all C,
X = total number of rivets required for all C;

STEP 4: OPTIMIZATION CRITERION The objective is still to minimize the total cost of
fabricating 100 cabinets, given as

Cost = 0.70x1 + 1.00x, + 0.60x3 + 0.60x4 + 0.80x5 + 1.00x¢ (e)

STEP 5: FORMULATION OF CONSTRAINTS Since 100 cabinets must be built every day,
it will be necessary to have 800 C;, 500 C,, and 1500 C5 components. The total number of
bolts and rivets needed for all C;, Cy, and C; components is indicated by the following
equality constraints:

x1 + x4 =5 X 800 (bolts and rivets needed for Cy)
Xp +x5 =6 X500  (bolts and rivets needed for C;) (f)
X3 +x¢ =3 X 1500 (bolts and rivets needed for Cj)

Constraints on capacity for bolting and riveting are

x1 +x2 + x3=6000 (bolting capacity)

X4+ x5 + x4 =8000 (riveting capacity) ®
Finally, all design variables must be non-negative:
x;=0; i=1to6 (h)

Thus, this formulation also has six design variables, three equality constraints, and two
inequality constraints. After an optimum solution has been obtained, we can decide how
many components to bolt and how many to rivet.
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2.6.3 Formulation 3 for Cabinet Design

STEP 3: DEFINITION OF DESIGN VARIABLES Another formulation of the problem is
possible if we require that all cabinets be identical. The following design variables can be
identified:

x1 = number of C; to be bolted on one cabinet
X» = number of C; to be riveted on one cabinet
x3 = number of C, to be bolted on one cabinet
x4 = number of C, to be riveted on one cabinet
x5 = number of C; to be bolted on one cabinet
X¢ = number of C; to be riveted on one cabinet

STEP 4: OPTIMIZATION CRITERION With these design variables, the cost of fabricating
100 cabinets each day is given as

Cost =100[0.70(5)x1 + 06065 )2 +1.00(6)%5 + 08066} + 060 s + 100Gl
1
= 350x7 + 300x, + 600x5 + 480x4 + 180x5 + 300x4

STEP 5: FORMULATION OF CONSTRAINTS Since each cabinet needs 8 C;, 5 C,, and
15 C3 components, the following equality constraints can be identified:

x1+x=8 (number of C; needed)
x3+x4=5 (number of C; needed) ()

x5 +x¢ =15 (number of C3 needed)
Constraints on the capacity to rivet and bolt are expressed as the following inequalities:

(5x1 + 6x3 + 3x5)100 = 6000 (bolting capacity)

k
(5x2 + 6x4 + 3x4)100 = 8000 (riveting capacity) ®

Finally, all design variables must be non-negative:
x=0;, i=1to6 )]

The following points are noted for the three formulations:

1. Because cost and constraint functions are linear in all three formulations, they are linear
programming problems. It is conceivable that each formulation will yield a different
optimum solution. After solving the problems, the designer can select the best strategy
for fabricating cabinets.

2. All formulations have three equality constraints, each involving two design variables.
Using these constraints, we can eliminate three variables from the problem and thus
reduce its dimension. This is desirable from a computational standpoint because the
number of variables and constraints is reduced. However, because the elimination of
variables is not possible for many complex problems, we must develop and use
methods to treat both equality and inequality constraints.
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3. For a meaningful solution for these formulations, all design variables must have integer
values. These are called integer programming problems. Some numerical methods to treat
this class of problem are discussed in Chapter 15.

2.7 MINIMUM-WEIGHT TUBULAR COLUMN DESIGN

STEP 1: PROJECT/PROBLEM DESCRIPTION Straight columns are used as structural ele-
ments in civil, mechanical, aerospace, agricultural, and automotive structures. Many such
applications can be observed in daily life—for example, a street light pole, a traffic light
post, a flag pole, a water tower support, a highway sign post, a power transmission pole.
It is important to optimize the design of a straight column since it may be mass-produced.
The objective of this project is to design a minimum-mass tubular column of length I sup-
porting a load P without buckling or overstressing. The column is fixed at the base and
free at the top, as shown in Figure 2.7. This type of structure is called a cantilever column.

STEP 2: DATA AND INFORMATION COLLECTION The buckling load (also called the critical
load) for a cantilever column is given as
m2El
412

The buckling load formula for a column with other support conditions is different from
this formula (Crandall, Dahl, and Lardner, 1999). Here, I is the moment of inertia for the
cross-section of the column and E is the material property, called the modulus of elasticity
(Young’s modulus). Note that the buckling load depends on the design of the column
(i.e., the moment of inertia I). It imposes a limit on the applied load; that is, the column fails
if the applied load exceeds the buckling load. The material stress ¢ for the column is
defined as P/A, where A is the cross-sectional area of the column. The material allowable
stress under the axial load is ¢,, and the material mass density is p (mass per unit volume).

P, = (@)

f

-

(a)
FIGURE 2.7 (a) Tubular column; (b) formulation 1; (c) formulation 2.
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A cross-section of the tubular column is shown in Figure 2.7. Many formulations for the
design problem are possible depending on how the design variables are defined. Two
such formulations are described here.

2.7.1 Formulation 1 for Column Design

STEP 3: DEFINITION OF DESIGN VARIABLES For the first formulation, the following
design variables are defined:

R = mean radius of the column
t = wall thickness

Assuming that the column wall is thin (R > t), the material cross-sectional area and
moment of inertia are

A=2xRt; I=naR3 (b)

STEP 4: OPTIMIZATION CRITERION The total mass of the column to be minimized is
given as

Mass = p(lA) = 2plmRt (©

STEP 5: FORMULATION OF CONSTRAINTS The first constraint is that the stress (P/A)
should not exceed the material allowable stress o, to avoid material failure. This is
expressed as the inequality ¢ = o,. Replacing ¢ with P/A and then substituting for A, we
obtain

=
7Rt @

The column should not buckle under the applied load P, which implies that the applied
load should not exceed the buckling load (i.e., P = P,,). Using the given expression for the
buckling load in Eq. (a) and substituting for I, we obtain

p= mER3t
To4r

Finally, the design variables R and t must be within the specified minimum and maximum
values:

(e)

Rmin =R= Rmax; tmin =t= tmax (f)

2.7.2 Formulation 2 for Column Design

STEP 3: DEFINITION OF DESIGN VARIABLES Another formulation of the design prob-
lem is possible if the following design variables are defined:

R, = outer radius of the column
R; = inner radius of the column
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In terms of these design variables, the cross-sectional area A and the moment of inertia
I are

™
A=m(R~ R =R}~ R). ®

STEP 4: OPTIMIZATION CRITERION Minimize the total mass of the column:
Mass = p(lA) = Tpl(R? — R?) (h)

STEP 5: FORMULATION OF THE CONSTRAINTS The material crushing constraint is
(PIA=o0,):

__P =0, (1)
m(R2 — R?)
Using the foregoing expression for I, the buckling load constraint is (P = P,):
P= %(Ré ~ R G
Finally, the design variables R, and R; must be within specified limits:
Ro min =Ro =Ro max;  Rimin =Ri = Ro max X

When this problem is solved using a numerical method, a constraint R, > R; must also
be imposed. Otherwise, some methods may take the design to the point where R, <R;.
This situation is not physically possible and must be explicitly excluded to numerically
solve the design problem.

In addition to the foregoing constraints, local buckling of the column wall needs to be
considered for both formulations. Local buckling can occur if the wall thickness becomes
too small. This can be avoided if the ratio of mean radius to wall thickness is required to
be smaller than a limiting value, that is,

R
=k 1)

where k is a specified value that depends on Young’s modulus and the yield stress of the
material. For steel with E =29,000 ksi and a yield stress of 50 ksi, k is given as 32 (AISC,
2005).

2.8 MINIMUM-COST CYLINDRICAL TANK DESIGN

STEP 1: PROJECT/PROBLEM DESCRIPTION Design a minimum-cost cylindrical tank
closed at both ends to contain a fixed volume of fluid V. The cost is found to depend
directly on the area of sheet metal used.

STEP 2: DATA AND INFORMATION COLLECTION Let ¢ be the dollar cost per unit area
of the sheet metal. Other data are given in the project statement.
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STEP 3: DEFINITION OF DESIGN VARIABLES The design variables for the problem are
identified as

R =radius of the tank
H = height of the tank

STEP 4: OPTIMIZATION CRITERION The cost function for the problem is the dollar cost
of the sheet metal for the tank. Total surface area of the sheet metal consisting of the end
plates and cylinder is given as

A=27R?>+27RH (a)

Therefore, the cost function for the problem is given as
f=c(27R? + 27RH) (b)

STEP 5: FORMULATION OF CONSTRAINTS The volume of the tank (7R*H) is required

to be V. Therefore,
TRPH=V ()

Also, both of the design variables R and H must be within some minimum and maximum

values:
Ryin =R=Rpax; Hpin=H=Hyx (d)

This problem is quite similar to the can problem discussed in Section 2.2. The only differ-
ence is in the volume constraint. There the constraint is an inequality and here it is an equality.

2.9 DESIGN OF COIL SPRINGS

STEP 1: PROJECT/PROBLEM DESCRIPTION Coil springs are used in numerous practical
applications. Detailed methods for analyzing and designing such mechanical components
have been developed over the years (e.g., Spotts, 1953; Wahl, 1963; Shigley, Mischke, and
Budynas, 2004; Haug and Arora, 1979). The purpose of this project is to design a mini-
mum-mass spring (shown in Figure 2.8) to carry a given axial load (called a tension-
compression spring) without material failure and while satisfying two performance
requirements: The spring must deflect by at least A (in) and the frequency of surge waves
must not be less than wy (Hertz, Hz).

STEP 2: DATA AND INFORMATION COLLECTION To formulate the problem of design-
ing a coil spring, see the notation and data defined in Table 2.2.

‘Ti - FIGURE 2.8 Coil spring.
D [N

l P \\IIP
I
— d
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TABLE 2.2 Information to design a coil spring

Notation Data
Deflection along the axis of spring 6, in

Mean coil diameter D, in

Wire diameter d, in
Number of active coils N
Gravitational constant g =386 in/s’
Frequency of surge waves w, Hz

Weight density of spring material
Shear modulus

Mass density of material (o =+/g)
Allowable shear stress

Number of inactive coils

Applied load

Minimum spring deflection

Lower limit on surge wave frequency

Limit on outer diameter of coil

v =0.2851b/in®
G=(1.15%x10") Ib/in®

p = (7.38342 X 107 Ib-s2/in*
7, = 80,000 Ib/in?

Q=2

P=101b

A=05in

wo =100 Hz

D,=15in

The wire twists when the spring is subjected to a tensile or a compressive load.

Therefore, shear stress needs to be calculated so that a constraint on it can be included in
the formulation. In addition, surge wave frequency needs to be calculated. These and other
design equations for the spring are given as

Spring constant:

Shear stress:

Wahl stress concentration factor: k

Frequency of surge waves:

Load deflection equation: P=

~ 8DSN

_ 8kPD

_@4D-d)

0.615d

w

4D —d)

~ 27ND?

D

&
2p
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The expression for the Wahl stress concentration factor k in Eq. (d) has been determined
experimentally to account for unusually high stresses at certain points on the spring.
These analysis equations are used to define the constraints.

STEP 3: DEFINITION OF DESIGN VARIABLES The three design variables for the problem
are defined as

d = wire diameter, in
D = mean coil diameter, in
N = number of active coils, integer

STEP 4: OPTIMIZATION CRITERION The problem is to minimize the mass of the spring,
given as volume X mass density:

Mass = (g dz) [(N + Q)rD]p = }I(N +Q)Dd2p f)

STEP 5: FORMULATION OF CONSTRAINTS
Deflection constraint. It is often a requirement that deflection under a load P be at least A.
Therefore, the constraint is that the calculated deflection 6 must be greater than or equal
to A. Such a constraint is common to spring design. The function of the spring in
many applications is to provide a modest restoring force as parts undergo large
displacement in carrying out kinematic functions. Mathematically, this performance
requirement (6 = A) is stated in an inequality form, using Eq. (a), as

p

<=4 ®)

Shear stress constraint. To prevent material overstressing, shear stress in the wire must be
no greater than 7,, which is expressed in mathematical form as

T=T, (h)

Constraint on the frequency of surge waves. We also wish to avoid resonance in dynamic
applications by making the frequency of surge waves (along the spring) as great as
possible. For the present problem, we require the frequency of surge waves for the
spring to be at least wp (Hz). The constraint is expressed in mathematical form as

w = wp @)
Diameter constraint. The outer diameter of the spring should not be greater than D,, so

D+d=D, §);

Explicit bounds on design variables. To avoid fabrication and other practical difficulties,
we put minimum and maximum size limits on the wire diameter, coil diameter, and
number of turns:

= Dnax )
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Thus, the purpose of the minimum-mass spring design problem is to select the design
variables d, D, and N to minimize the mass of Eq. (f), while satisfying the ten inequality
constraints of Egs. (g) through (k). If the intermediate variables are eliminated, the prob-
lem formulation can be summarized in terms of the design variables only.

EXAMPLE 2.10 FORMULATION OF THE SPRING DESIGN
PROBLEM WITH DESIGN VARIABLES ONLY

A summary of the problem formulation for the optimum design of coil springs is as follows:

Specified data: Q, P, p, ¥, Ta, G, A, wo, Do, mins Amaxs Dinins Diaxs Noming Nimax
Design variables: d, D, N

Cost function: Minimize the mass of the spring given in Eq. (f).
Constraints:

. .. 8PD’N
Deflection limit: =
f i o = )
8PD [(4D—d) 0.615d
Shear stress: il 4+ <
s {4(D 4 D } Ta (m)
Frequency of surge waves: d G = (n)
27ND? \/ 2p

Diameter constraint: Given in Eq. (j).
Design variable bounds: Given in Egs. (k).

2.10 MINIMUM-WEIGHT DESIGN OF A SYMMETRIC
THREE-BAR TRUSS

STEP 1: PROJECT/PROBLEM DESCRIPTION As an example of a slightly more complex
design problem, consider the three-bar structure shown in Figure 2.9 (Schmit, 1960; Haug
and Arora, 1979). This is a statically indeterminate structure for which the member forces
cannot be calculated solely from equilibrium equations. The structure is to be designed for
minimum volume (or, equivalently, minimum mass) to support a force P. It must satisfy
various performance and technological constraints, such as member crushing, member
buckling, failure by excessive deflection of node 4, and failure by resonance when the
natural frequency of the structure is below a given threshold.

STEP 2: DATA AND INFORMATION COLLECTION Needed to solve the problem are geom-
etry data, properties of the material used, and loading data. In addition, since the structure
is statically indeterminate, the static equilibrium equations alone are not enough to analyze
it. We need to use advanced analysis procedures to obtain expressions for member forces,
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|<7 / H"i / 4>| FIGURE 2.9 Three-bar truss.

+— Y@ Y

nodal displacements, and the natural frequency to formulate constraints for the problem.
Here we will give such expressions.

Since the structure must be symmetric, members 1 and 3 will have the same cross-
sectional area, say A;. Let A, be the cross-sectional area of member 2. Using analysis pro-
cedures for statically indeterminate structures, horizontal and vertical displacements u and
v of node 4 are calculated as

V2IP, V2IP,
U= ——, 0= ———— (@
AE (A +24))E

where E is the modulus of elasticity for the material, P, and P, are the horizontal and ver-
tical components of the applied load P given as P, =P cosf and P, =P sinf, and [ is the
height of the truss as shown in Figure 2.9. Using the displacements, forces carried by the
members of the truss can be calculated. Then the stresses o4, 05, and o3 in members 1, 2,

and 3 under the applied load P can be computed from member forces as (stress = force/
area; o; = F;/ A)):

o= L Py Py b)
! \/E Al (A1 + \/EAz)
oy = 7\/21)0 (0
2 (A +V24,)
1 P, Py
PTA| A o vam) @

Note that the member forces, and hence stresses, are dependent on the design of the struc-
ture, that is, the member areas.

Many structures support moving machinery and other dynamic loads. These structures
vibrate with a certain frequency known as natural frequency. This is an intrinsic dynamic
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property of a structural system. There can be several modes of vibration, each having its
own frequency. Resonance causes catastrophic failure of the structure, which occurs when
any one of its vibration frequencies coincides with the frequency of the operating machin-
ery it supports.

Therefore, it is reasonable to demand that no structural frequency be close to the fre-
quency of the operating machinery. The mode of vibration corresponding to the lowest
natural frequency is important because that mode is excited first. It is important to make
the lowest (fundamental) natural frequency of the structure as high as possible to avoid
any possibility of resonance. This also makes the structure stiffer. Frequencies of a struc-
ture are obtained by solving an eigenvalue problem involving the structure’s stiffness and
mass properties. The lowest eigenvalue ( related to the lowest natural frequency of the
symmetric three-bar truss is computed using a consistent-mass model:

_ 3EA;
pZZ (4A1 + \/EAz)

where p is the material mass per unit volume (mass density). This completes the analysis
of the structure.

¢

(e)

STEP 3: DEFINITION OF DESIGN VARIABLES The following design variables are defined
for the symmetric structure:

A; = cross-sectional area of material for members 1 and 3
A, = cross-sectional area of material for member 2

Other design variables for the problem are possible depending on the cross-sectional
shape of members, as shown in Figure 2.6.

STEP 4: OPTIMIZATION CRITERION The relative merit of any design for the problem is
measured in its material weight. Therefore, the total weight of the structure serves as a
cost function (weight of member = cross-sectional area X length X weight density):

Volume = Iy (2«/§A1 + A2> (f)
where 7 is the weight density.

STEP 5: FORMULATION OF CONSTRAINTS The structure is designed for use in two
applications. In each application, it supports different loads. These are called loading con-
ditions for the structure. In the present application, a symmetric structure is obtained if
the following two loading conditions are considered. The first load is applied at an angle 6
and the second one, of same magnitude, at an angle (x — ¢), where the angle 6 (0° = 0 =
90°) is shown earlier in Figure 2.9. If we let member 1 be the same as member 3, then the
second loading condition can be ignored. Therefore, we consider only one load applied at
an angle 6 (0° = 6 = 90°).

Note from Egs. (b) and (c) that the stresses o7 and o, are always positive (tensile). If o, >
0 is an allowable stress for the material, then the stress constraints for members 1 and 2 are

O1=04 02=0, (2
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However, from Eq. (c), stress in member 3 can be positive (tensile) or negative (compres-
sive) depending on the load angle. Therefore, both possibilities need to be considered in
formulating the stress constraint for member 3. One way to formulate such a constraint
was explained in Section 2.5. Another way is as follows:

IF (03 <0) THEN —o3=0, ELSE o3=0, (h)

Since the sign of the stress does not change with design, if the member is in compres-
sion, it remains in compression throughout the optimization process. Therefore, the con-
straint function remains continuous and differentiable.

A similar procedure can be used for stresses in bars 1 and 2 if the stresses can reverse
their sign (e.g., when the load direction is reversed). Horizontal and vertical deflections of
node 4 must be within the specified limits A, and A,, respectively. Using Eq. (a), the
deflection constraints are

us»A,; v=A, (i)

As discussed previously, the fundamental natural frequency of the structure should be
higher than a specified frequency wy (Hz). This constraint can be written in terms of
the lowest eigenvalue for the structure. The eigenvalue corresponding to a frequency of wy
(Hz) is given as (2mwy)*. The lowest eigenvalue ¢ for the structure given in Eq. (e) should
be higher than (27wo)?, that is,

(= (2mwo) 1)

To impose buckling constraints for members under compression, an expression for the
moment of inertia of the cross-section is needed. This expression cannot be obtained because
the cross-sectional shape and dimensions are not specified. However, the moment of inertia I
can be related to the cross-sectional area of the members as I = 3A2, where A is the cross-sec-
tional area and ( is a nondimensional constant. This relation follows if the shape of the
cross-section is fixed and all of its dimensions are varied in the same proportion.

The axial force for the ith member is given as F; = A;o;, where i =1, 2, 3 with tensile
force taken as positive. Members of the truss are considered columns with pin ends.
Therefore, the buckling load for the ith member is given as w°EI/I?, where I; is the length
of the ith member (Crandall, Dahl, and Lardner, 1999). Buckling constraints are expressed
as —F; = w%El/1? where i=1, 2, 3. The negative sign for F; is used to make the left side
of the constraints positive when the member is in compression. Also, there is no need to
impose buckling constraints for members in tension. With the foregoing formulation, the
buckling constraint for tensile members is automatically satisfied. Substituting various
quantities, member buckling constraints are

m2EBA m2EBA m2EBA
—or= T Tt —os=Tp

Note that the buckling load has been divided by the member area to obtain the buckling
stress in Egs. (k). The buckling stress is required not to exceed the material allowable
stress o,. It is additionally noted that with the foregoing formulation, the load P in
Figure 2.9 can be applied in the positive or negative direction. When the load is applied in
the opposite direction, the member forces are also reversed. The foregoing formulation for
the buckling constraints can treat both positive and negative load in the solution process.

=0y (k)

=0y, —0y =
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Finally, A; and A, must both be non-negative, that is, A;, A, = 0. Most practical design
problems require each member to have a certain minimum area, A,,;;. The minimum area
constraints can be written as

Al; AZ = Amin (1)

The optimum design problem, then, is to find cross-sectional areas A;, Ay = Apin to
minimize the volume of Eq. (f) subject to the constraints of Eqgs. (g) through (). This small-
scale problem has 11 inequality constraints and 2 design variables.

2.11 A GENERAL MATHEMATICAL MODEL
FOR OPTIMUM DESIGN

To describe optimization concepts and methods, we need a general mathematical state-
ment for the optimum design problem. Such a mathematical model is defined as the mini-
mization of a cost function while satisfying all equality and inequality constraints. The
inequality constraints in the model are always transformed as “ = types.” This will
be called the standard design optimization model that is treated throughout this text. It
will be shown that all design problems can easily be transcribed into the standard form.

2.11.1 Standard Design Optimization Model

In previous sections, several design problems were formulated. All problems have an
optimization criterion that can be used to compare various designs and to determine an
optimum or the best one. Most design problems must also satisfy certain constraints.
Some design problems have only inequality constraints, others have only equality con-
straints, and some have both. We can define a general mathematical model for optimum
design to encompass all of the possibilities. A standard form of the model is first stated,
and then transformation of various problems into the standard form is explained.

Standard Design Optimization Model
Find an n-vector x = (x4, X, ..., X,,) of design variables to

Minimize a cost function:

f(x):f(x15 xZ, L] xi’l) (21)
subject to the p equality constraints:
hi(x) = hj(x1, x2, ..., x,)=0; j=Ttop (2.2)

and the m inequality constraints:

gi(x)=gi(x1, x2, ..., x,)=0; i=1tom (2.3)

Note that the simple bounds on design variables, such as x; = 0, or x;;, = x; = x;, where
x;. and x;; are the smallest and largest allowed values for x;, are assumed to be included
in the inequalities of Eq. (2.3).
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In numerical methods, these constraints are treated explicitly to take advantage of their
simple form to achieve efficiency. However, in discussing the basic optimization concepts,
we assume that the inequalities in Eq. (2.3) include these constraints as well.

2.11.2 Maximization Problem Treatment

The general design model treats only minimization problems. This is no restriction, as
maximization of a function F(x) is the same as minimization of a transformed function
f(x) = —F(x). To see this graphically, consider a plot of the function of one variable F(x),
shown in Figure 2.10(a). The function F(x) takes its maximum value at the point x*. Next
consider a graph of the function f(x) = —F(x), shown in Figure 2.10(b). It is clear that f(x) is
a reflection of F(x) about the x-axis. It is also clear from the graph that f(x) takes on a mini-
mum value at the same point x* where the maximum of F(x) occurs. Therefore, minimiza-
tion of f(x) is equivalent to maximization of F(x).

2.11.3 Treatment of “Greater Than Type” Constraints
The standard design optimization model treats only “= type” inequality constraints.

Many design problems may also have “= type” inequalities. Such constraints can be

F(x) FIGURE 2.10 Point maximizing F(x) equals point mini-
mizing —F(x): (a) plot of F(x); (b) plot of f(x) = — F(x).

Y
x

(a)

Y
x

(b)
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converted to the standard form without much difficulty. The “= type” constraint G{(x) =
0 is equivalent to the “= type” inequality gi(x) = —Gj(x) = 0. Therefore, we can multiply
any “= type” constraint by —1 to convert ittoa “= type.”

2.11.4 Application to Different Engineering Fields

Design optimization problems from different fields of engineering can be transcribed
into the standard model. It must be realized that the overall process of designing different engi-
neering systems is the same. Analytical and numerical methods for analyzing systems can
differ. Formulation of the design problem can contain terminology that is specific to the
particular domain of application. For example, in the fields of structural, mechanical, and
aerospace engineering, we are concerned with the integrity of the structure and its compo-
nents. The performance requirements involve constraints on member stresses, strains,
deflections at key points, frequencies of vibration, buckling failure, and so on. These con-
cepts are specific to each field, and designers working in the particular field understand
their meaning and the constraints.

Other fields of engineering also have their own terminology to describe design optimiza-
tion problems. However, once the problems from different fields have been transcribed into
mathematical statements using a standard notation, they have the same mathematical form.
They are contained in the standard design optimization model defined in Egs. (2.1) through
(2.3). For example, all of the problems formulated earlier in this chapter can be transformed
into the form of Egs. (2.1) through (2.3). Therefore, the optimization concepts and methods
described in the text are quite general and can be used to solve problems from diverse fields.
The methods can be developed without reference to any design application. This is a key point and
must be kept in mind while studying the optimization concepts and methods.

2.11.5 Important Observations about the Standard Model
Several points must be clearly understood about the standard model:

1. Dependence of functions on design variables: First of all, the functions f(x), h(x), and gi(x)
must depend, explicitly or implicitly, on some of the design variables. Only then are they
valid for the design problem. Functions that do not depend on any variable have no
relation to the problem and can be safely ignored.

2. Number of equality constraints: The number of independent equality constraints must be
less than, or at the most equal to, the number of design variables (i.e., p = n). When
p > n, we have an overdetermined system of equations. In that case, either some equality
constraints are redundant (linearly dependent on other constraints) or they are
inconsistent. In the former case, redundant constraints can be deleted and, if p <,
the optimum solution for the problem is possible. In the latter case, no solution
for the design problem is possible and the problem formulation needs to be closely
reexamined. When p = n, no optimization of the system is necessary because the
roots of the equality constraints are the only candidate points for optimum design.

3. Number of inequality constraints: While there is a restriction on the number of
independent equality constraints, there is no restriction on the number of inequality
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constraints. However, the total number of active constraints (satisfied at equality) must,
at the optimum, be less than or at the most equal to the number of design variables.

4. Unconstrained problems: Some design problems may not have any constraints. These
are called unconstrained; those with constraints are called constrained.

5. Linear programming problems: If all of the functions f(x), hj(x), and gi(x) are linear in
design variables x, then the problem is called a linear programming problem. If any of
these functions is nonlinear, the problem is called a nonlinear programming problem.

6. Scaling of problem functions: It is important to note that if the cost function is scaled by
multiplying it with a positive constant, the optimum design does not change. However,
the optimum cost function value does change. Also, any constant can be added to the
cost function without affecting the optimum design. Similarly, the inequality constraints
can be scaled by any positive constant and the equalities by any constant. This will
not affect the feasible region and hence the optimum solution. All the foregoing
transformations, however, affect the values of the Lagrange multipliers (defined in
Chapter 4). Also, performance of the numerical algorithms for a solution to the
optimization problem may be affected by these transformations.

2.11.6 Feasible Set

The term feasible set will be used throughout the text. A feasible set for the design problem
is a collection of all feasible designs. The terms constraint set and feasible design space are also
used to represent the feasible set of designs. The letter S is used to represent the feasible
set. Mathematically, the set S is a collection of design points satisfying all constraints:

S={x|hix)=0, j=1top; g(x)=0, i=1tom} (2.4)

The set of feasible designs is sometimes referred to as the feasible region, especially for opti-
mization problems with two design variables. It is important to note that the feasible region
usually shrinks when more constraints are added to the design model and expands when some con-
straints are deleted. When the feasible region shrinks, the number of possible designs that
can optimize the cost function is reduced; that is, there are fewer feasible designs. In this
event, the minimum value of the cost function is likely to increase. The effect is completely
the opposite when some constraints are dropped. This observation is significant for practi-
cal design problems and should be clearly understood.

2.11.7 Active/Inactive/Violated Constraints

We will quite frequently refer to a constraint as active, tight, inactive, or violated. We
define these terms precisely. An inequality constraint g(x) = 0 is said to be active at a
design point x* if it is satisfied at equality (i.e., gj(x*) = 0). This is also called a tight or bind-
ing constraint. For a feasible design, an inequality constraint may or may not be active.
However, all equality constraints are active for all feasible designs.

An inequality constraint gi(x) = 0 is said to be inactive at a design point x* if it is strictly
satisfied (i.e., g{(x*) < 0). It is said to be violated at a design point x* if its value is positive
(i.e., gi(x*) > 0). An equality constraint hj(x) = 0 is violated at a design point x* if /;(x*) is not
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identically zero. Note that by these definitions, an equality constraint is either active or
violated at a given design point.

2.11.8 Discrete and Integer Design Variables

So far, we have assumed in the standard model that variables x; can have any numerical
value within the feasible region. Many times, however, some variables are required to
have discrete or integer values. Such variables appear quite often in engineering design
problems. We encountered problems in Sections 2.4, 2.6, and 2.9 that have integer design
variables. Before describing how to treat them, let us define what we mean by discrete
and integer variables.

A design variable is called discrete if its value must be selected from a given finite set of
values. For example, a plate thickness must be one that is available commercially: 1/8,
1/4,3/8,1/2,5/8,3/4, 1 in, and so on. Similarly, structural members must be selected
from a catalog to reduce fabrication cost. Such variables must be treated as discrete in the
standard formulation.

An integer variable, as the name implies, must have an integer value, for example, the
number of logs to be shipped, the number of bolts used, the number of coils in a spring,
the number of items to be shipped, and so on. Problems with such variables are called
discrete and integer programming problems. Depending on the type of problem functions, the
problems can be classified into five different categories. These classifications and the meth-
ods to solve them are discussed in Chapter 15.

In some sense, discrete and integer variables impose additional constraints on the
design problem. Therefore, as noted before, the optimum value of the cost function is
likely to increase with these variables compared with the same problem that is solved
with continuous variables. If we treat all design variables as continuous, the minimum
value of the cost function represents a lower bound on the true minimum value when dis-
crete or integer variables are used. This gives some idea of the “best” optimum solution if
all design variables are continuous. The optimum cost function value is likely to increase
when discrete values are assigned to variables. Thus, the first suggested procedure is
to solve the problem assuming continuous design variables if possible. Then the nearest
discrete/integer values are assigned to the variables and the design is checked for feasibil-
ity. With a few trials, the best feasible design close to the continuous optimum can be
obtained.

As a second approach for solving such problems, an adaptive numerical optimization pro-
cedure may be used. An optimum solution with continuous variables is first obtained if
possible. Then only the variables that are close to their discrete or integer value are
assigned that value. They are held fixed and the problem is optimized again. The proce-
dure is continued until all variables have been assigned discrete or integer values. A few
further trials may be carried out to improve the optimum cost function value. This proce-
dure has been demonstrated by Arora and Tseng (1988).

The foregoing procedures require additional computational effort and do not guaran-
tee a true minimum solution. However, they are quite straightforward and do not
require any additional methods or software for solution of discrete/integer variable
problems.
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2.11.9 Types of Optimization Problems

The standard design optimization model can represent many different problem types.
We saw that it can be used to represent unconstrained, constrained, linear programming,
and nonlinear programming optimization problems. It is important to understand other
optimization problems that are encountered in practical applications. Many times these
problems can be transformed into the standard model and solved by the optimization
methods presented and discussed in this text. Here we present an overview of the types of
optimization problems.

Continuous/Discrete-Variable Optimization Problems

When the design variables can have any numerical value within their allowable range,
the problem is called a continuous-variable optimization problem. When the problem
has only discrete/integer variables, it is called a discrete/integer-variable optimization prob-
lem. When the problem has both continuous and discrete variables, it is called a mixed-
variable optimization problem. Numerical methods for these types of problems have been
developed, as discussed in later chapters.

Smooth/Nonsmooth Optimization Problems

When its functions are continuous and differentiable, the problem is referred to as
smooth (differentiable). There are numerous practical optimization problems in which the
functions can be formulated as continuous and differentiable. There are also many practi-
cal applications where the problem functions are not differentiable or even discontinuous.
Such problems are called nonsmooth (nondifferentiable).

Numerical methods to solve these two classes of problems can be different. Theory
and numerical methods for smooth problems are well developed. Therefore, it is most
desirable to formulate the problem with continuous and differentiable functions as far as
possible. Sometimes, a problem with discontinuous or nondifferentiable functions can be
transformed into one that has continuous and differentiable functions so that optimiza-
tion methods for smooth problems can be used. Such applications are discussed in
Chapter 6.

Network Optimization Problems

A network or a graph consists of points and lines connecting pairs of points. Network
models are used to represent many practical problems and processes from different
branches of engineering, computer science, operations research, transportation, telecom-
munication, decision support, manufacturing, airline scheduling, and many other disci-
plines. Depending on the application type, network optimization problems have been
classified as transportation problems, assignment problems, shortest-path problems, maxi-
mum-flow problems, minimum-cost-flow problems, and critical path problems.

To understand the concept of network problems, let us describe the transportation
problem in more detail. Transportation models play an important role in logistics and sup-
ply chain management for reducing cost and improving service. Therefore the goal is to
find the most effective way to transport goods. A shipper having m warehouses with sup-
ply s; of goods at the ith warehouse must ship goods to n geographically dispersed retail
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centers, each with a customer demand d; that must be met. The objective is to determine
the minimum cost distribution system, given that the unit cost of transportation between
the i