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Preface to Third Edition

The philosophy of this third edition of
Introduction to Optimum Design is to provide
readers with an organized approach to
engineering design optimization that is
both rigorous and simple, that illustrates
basic concepts and procedures with simple
examples, and that demonstrates the appli-
cability of these concepts and procedures to
engineering design problems. The key step
in the optimum design process is the for-
mulation of a design problem as an optimi-
zation problem, which is emphasized and
illustrated with examples. In addition, in-
sights into, and interpretations of, optimal-
ity conditions are discussed and illustrated.

Two main objectives were set for the
third edition: (1) to enhance the presenta-
tion of the book’s content and (2) to include
advanced topics so that the book will be
suitable for higher-level courses on design
optimization. The first objective is achieved
by making the material more concise, orga-
nizing it with more second-, third-, and
fourth-level headings, and using illustra-
tions in example problems that have more
details. The second objective is achieved by
including several new topics suitable for
both alternate basic and advanced courses.

New topics include duality in nonlinear
programming, optimality conditions for the
Simplex method, the rate of convergence of
iterative algorithms, solution methods for
quadratic programming problems, direct
search methods, nature-inspired search
methods, response surface methods, design
of experiments, robust design optimization,
and reliability-based design optimization.

This edition can be broadly divided into
three parts. Part I, Chapters 1 through 5, pre-
sents the basic concepts related to optimum
design and optimality conditions. Part II,
Chapters 6 through 14, treats numerical
methods for continuous variable optimiza-
tion problems and their applications. Finally,
Part III, Chapters 15 through 20, offers
advanced and modern topics on optimum
design, including methods that do not
require derivatives of the problem functions.

Introduction to Optimum Design, Third
Edition, can be used to construct several
types of courses depending on the instruc-
tor’s preference and learning objectives for
students. Three course types are suggested,
although several variations are possible.

Undergraduate/First-Year Graduate
Course

Topics for an undergraduate and/or first-
year graduate course include

• Formulation of optimization problems
(Chapters 1 and 2)

• Optimization concepts using the
graphical method (Chapter 3)

• Optimality conditions for unconstrained
and constrained problems (Chapter 4)

• Use of Excel and MATLABs illustrating
optimum design of practical problems
(Chapters 6 and 7)

• Linear programming (Chapter 8)
• Numerical methods for unconstrained

and constrained problems (Chapters 10
and 12)

xiii



The use of Excel and MATLAB is to be
introduced mid-semester so that students
have a chance to formulate and solve more
challenging project-type problems by seme-
ster’s end. Note that advanced project-type
exercises and sections with advanced mate-
rial are marked with an asterisk (*) next to
section headings, which means that they
may be omitted for this course.

First Graduate-Level Course

Topics for a first graduate-level course
include

• Theory and numerical methods for
unconstrained optimization (Chapters 1
through 4 and 10 and 11)

• Theory and numerical methods for
constrained optimization (Chapters 4, 5,
12, and 13)

• Linear and quadratic programming
(Chapters 8 and 9)

The pace of material coverage should be
faster for this course type. Students can
code some of the algorithms into computer
programs and solve practical problems.

Second Graduate-Level Course

This course presents advanced topics on
optimum design:

• Duality theory in nonlinear
programming, rate of convergence of
iterative algorithms, derivation of
numerical methods, and direct search
methods (Chapters 1 through 14)

• Methods for discrete variable problems
(Chapter 15)

• Nature-inspired search methods
(Chapters 16 and 19)

• Multi-objective optimization
(Chapter 17)

• Global optimization (Chapter 18)
• Response surface methods, robust

design, and reliability-based design
optimization (Chapter 20)

During this course, students write com-
puter programs to implement some of the
numerical methods and to solve practical
problems.

xiv PREFACE TO THIRD EDITION
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Key Symbols and Abbreviations

(a �b) Dot product of vectors a and b;
aTb

c(x) Gradient of cost function, rf(x)
f(x) Cost function to be minimized
gj(x) jth inequality constraint
hi(x) ith equality constraint
m Number of inequality

constraints
n Number of design variables
p Number of equality constraints
x Design variable vector of

dimension n
xi ith component of design vari-

able vector x
x(k) kth design variable vector

Note: A superscript (i) indicates optimum
value for a variable, (ii) indicates advanced
material section, and (iii) indicates a project-
type exercise.

ACO Ant colony optimization
BBM Branch-and-bound method
CDF Cumulative distribution

function
CSD Constrained steepest descent
DE Differential evolution; Domain

elimination
GA Genetic algorithm
ILP Integer linear programming
KKT Karush-Kuhn-Tucker
LP Linear programming
MV-OPT Mixed variable optimization

problem
NLP Nonlinear programming
PSO Particle swarm optimization
QP Quadratic programming
RBDO Reliability-based design

optimization
SA Simulated annealing
SLP Sequential linear programming
SQP Sequential quadratic

programming
TS Traveling salesman

(salesperson)
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C H A P T E R

1

Introduction to Design Optimization

Upon comp le t i on o f th i s chap te r, you wi l l be ab l e to

• Describe the overall process of designing

systems

• Distinguish between engineering design and

engineering analysis activities

• Distinguish between the conventional

design process and the optimum design

process

• Distinguish between optimum design and

optimal control problems

• Understand the notations used for

operations with vectors, matrices, and

functions and their derivatives

Engineering consists of a number of well-established activities, including analysis,
design, fabrication, sales, research, and development of systems. The subject of this text—
the design of systems—is a major field in the engineering profession. The process of design-
ing and fabricating systems has been developed over centuries. The existence of many
complex systems, such as buildings, bridges, highways, automobiles, airplanes, space vehi-
cles, and others, is an excellent testimonial to its long history. However, the evolution of
such systems has been slow and the entire process is both time-consuming and costly,
requiring substantial human and material resources. Therefore, the procedure has been to
design, fabricate, and use a system regardless of whether it is the best one. Improved sys-
tems have been designed only after a substantial investment has been recovered.

The preceding discussion indicates that several systems can usually accomplish the
same task, and that some systems are better than others. For example, the purpose of a
bridge is to provide continuity in traffic from one side of the river to the other side.
Several types of bridges can serve this purpose. However, to analyze and design all possi-
bilities can be time-consuming and costly. Usually one type is selected based on some pre-
liminary analyses and is designed in detail.

The design of a system can be formulated as problems of optimization in which a perfor-
mance measure is optimized while all other requirements are satisfied. Many numerical
methods of optimization have been developed and used to design better systems. This text

1Introduction to Optimum Design © 2012 Elsevier Inc. All rights reserved.



describes the basic concepts of optimization and numerical methods for the design of engi-
neering systems. Design process, rather than optimization theory, is emphasized. Various
theorems are stated as results without rigorous proofs; however, their implications from
an engineering point of view are discussed.

Any problem in which certain parameters need to be determined to satisfy constraints
can be formulated as one optimization problem. Once this has been done, the concepts
and methods described in this text can be used to solve it. For this reason, the optimization
techniques are quite general, having a wide range of applicability in diverse fields. It is
impossible to discuss every application of optimization concepts and techniques in this
introductory text. However, using simple applications, we discuss concepts, fundamental
principles, and basic techniques that are used in numerous applications. The student
should understand them without becoming bogged down with the notation, terminology,
and details of the particular area of application.

1.1 THE DESIGN PROCESS

How Do I Begin to Design a System?

The design of many engineering systems can be a complex process. Assumptions
must be made to develop realistic models that can be subjected to mathematical analysis
by the available methods, and the models must be verified by experiments. Many possi-
bilities and factors must be considered during problem formulation. Economic considera-
tions play an important role in designing cost-effective systems. To complete the design
of an engineering system, designers from different fields of engineering usually must
cooperate. For example, the design of a high-rise building involves designers from archi-
tectural, structural, mechanical, electrical, and environmental engineering as well as con-
struction management experts. Design of a passenger car requires cooperation among
structural, mechanical, automotive, electrical, chemical, hydraulics design, and human
factors engineers. Thus, in an interdisciplinary environment considerable interaction is
needed among various design teams to complete the project. For most applications the
entire design project must be broken down into several subproblems, which are then
treated somewhat independently. Each of the subproblems can be posed as a problem of
optimum design.

The design of a system begins with the analysis of various options. Subsystems and
their components are identified, designed, and tested. This process results in a set of draw-
ings, calculations, and reports by which the system can be fabricated. We use a systems
engineering model to describe the design process. Although a complete discussion of this
subject is beyond the scope of this text, some basic concepts are discussed using a simple
block diagram.

Design is an iterative process. Iterative implies analyzing several trial designs one after
another until an acceptable design is obtained. It is important to understand the concept of
trial design. In the design process, the designer estimates a trial design of the system based
on experience, intuition, or some simple mathematical analyses. The trial design is then
analyzed to determine if it is acceptable. If it is, the design process is terminated. In the
optimization process, the trial design is analyzed to determine if it is the best. Depending
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on the specifications, “best” can have different connotations for different systems. In gen-
eral, it implies that a system is cost-effective, efficient, reliable, and durable. The basic con-
cepts are described in this text to aid the engineer in designing systems at the minimum
cost and in the shortest amount of time.

The design process should be well organized. To discuss it, we consider a system evolu-
tion model, shown in Figure 1.1, where the process begins with the identification of a need
that may be conceived by engineers or non-engineers. The five steps of the model in the
figure are described in the following paragraphs.

The first step in the evolutionary process is to precisely define the specifications for the
system. Considerable interaction between the engineer and the sponsor of the project is
usually necessary to quantify the system specifications.

The second step in the process is to develop a preliminary design of the system. Various
system concepts are studied. Since this must be done in a relatively short time, simplified
models are used at this stage. Various subsystems are identified and their preliminary
designs estimated. Decisions made at this stage generally influence the system’s final
appearance and performance. At the end of the preliminary design phase, a few promising
concepts that need further analysis are identified.

The third step in the process is a detailed design for all subsystems using the iterative pro-
cess described earlier. To evaluate various possibilities, this must be done for all previ-
ously identified promising concepts. The design parameters for the subsystems must be
identified. The system performance requirements must be identified and satisfied. The
subsystems must be designed to maximize system worth or to minimize a measure of the
cost. Systematic optimization methods described in this text aid the designer in accelerat-
ing the detailed design process. At the end of the process, a description of the system is
available in the form of reports and drawings.

The fourth and fifth steps shown in Figure 1.1 may or may not be necessary for all sys-
tems. They involve fabrication of a prototype system and testing, and are necessary when
the system must be mass-produced or when human lives are involved. These steps may
appear to be the final ones in the design process, but they are not because the system may
not perform according to specifications during the testing phase. Therefore, the specifica-
tions may have to be modified or other concepts may have to be studied. In fact, this re-
examination may be necessary at any point during the design process. It is for this reason
that feedback loops are placed at every stage of the system evolution process, as shown in

Final
design

5
System
testingSystem

needs and
objectives

Prototype
system

fabrication

4
Detailed
design

3
Preliminary

design

2
System

specification

1

FIGURE 1.1 System evolution model.
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Figure 1.1. The iterative process must be continued until the best system evolves.
Depending on the complexity of the system, the process may take a few days or several
months.

The model described in Figure 1.1 is a simplified block diagram for system evolution.
In actual practice, each block may have to be broken down into several sub-blocks to carry
out the studies properly and arrive at rational decisions. The important point is that optimiza-
tion concepts and methods are helpful at every stage of the process. Such methods, along with
the appropriate software, can be useful in studying various design possibilities rapidly.
Therefore, in this text we discuss optimization methods and their use in the design
process.

1.2 ENGINEERING DESIGN VERSUS
ENGINEERING ANALYSIS

Can I Design without Analysis?
No, You Must Analyze!

It is important to recognize the differences between engineering analysis and design activi-
ties. The analysis problem is concerned with determining the behavior of an existing sys-
tem or a trial system being designed for a given task. Determination of the behavior of the
system implies calculation of its response to specified inputs. For this reason, the sizes of
various parts and their configurations are given for the analysis problem; that is, the
design of the system is known. On the other hand, the design process calculates the sizes
and shapes of various parts of the system to meet performance requirements. The design
of a system is an iterative process; we estimate a design and analyze it to see if it performs
according to given specifications. If it does, we have an acceptable (feasible) design, although
we may still want to change it to improve its performance. If the trial design does not
work, we need to change it to come up with an acceptable system. In both cases, we must
be able to analyze designs to make further decisions. Thus, analysis capability must be
available in the design process.

This book is intended for use in all branches of engineering. It is assumed throughout
that students understand the analysis methods covered in undergraduate engineering stat-
ics and physics courses. However, we will not let the lack of analysis capability hinder under-
standing of the systematic process of optimum design. Equations for analysis of the system are
given wherever feasible.

1.3 CONVENTIONALVERSUS OPTIMUM DESIGN PROCESS

Why Do I Want to Optimize?
Because You Want to Beat the Competition and Improve Your Bottom Line!

It is a challenge for engineers to design efficient and cost-effective systems without
compromising their integrity. Figure 1.2(a) presents a self-explanatory flowchart for a con-
ventional design method; Figure 1.2(b) presents a similar flowchart for the optimum
design method. It is important to note that both methods are iterative, as indicated by a
loop between blocks 6 and 3. Both methods have some blocks that require similar
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calculations and others that require different calculations. The key features of the two pro-
cesses are these:

1. The optimum design method has block 0, where the problem is formulated as one of
optimization (discussed in more detail in Chapter 2). An objective function is defined
that measures the merits of different designs.

2. Both methods require data to describe the system in block 1.
3. Both methods require an initial design estimate in block 2.
4. Both methods require analysis of the system in block 3.
5. In block 4, the conventional design method checks to ensure that the performance

criteria are met, whereas the optimum design method checks for satisfaction of all
of the constraints for the problem formulated in block 0.

6. In block 5, stopping criteria for the two methods are checked, and the iteration is
stopped if the specified stopping criteria are met.

7. In block 6, the conventional design method updates the design based on the designer’s
experience and intuition and other information gathered from one or more trial
designs; the optimum design method uses optimization concepts and procedures to
update the current design.

The foregoing distinction between the two design approaches indicates that the conven-
tional design process is less formal. An objective function that measures a design’s merit is
not identified. Trend information is usually not calculated; nor is it used in block 6 to
make design decisions for system improvement. In contrast, the optimization process is
more formal, using trend information to make design changes.

Yes Yes

(a) (b)

Collect data to
describe system

Estimate initial design

Analyze system

Check
constraints

Does design satisfy
convergence criteria?

Update design using
optimization concepts

Formulate the problem
as an optimization

problem

Collect data to
describe system

Estimate initial design

Analyze system

Check performance
criteria

Is design
satisfactory?

Update design based on
experience/heuristics

Stop

1

2

3

5

4

6

7

0

1

2

3

4

5

6

FIGURE 1.2 Comparison of (a) conventional design method and (b) optimum design method.
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1.4 OPTIMUM DESIGN VERSUS OPTIMAL CONTROL

What Is Optimal Control?

Optimum design and optimal control of systems are separate activities. There are numer-
ous applications in which methods of optimum design are useful in designing systems.
There are many other applications where optimal control concepts are needed. In addition,
there are some applications in which both optimum design and optimal control concepts
must be used. Sample applications of both techniques include robotics and aerospace structures.
In this text, optimal control problems and methods are not described in detail. However,
the fundamental differences between the two activities are briefly explained in the sequel.
It turns out that optimal control problems can be transformed into optimum design problems
and treated by the methods described in this text. Thus, methods of optimum design are
very powerful and should be clearly understood. A simple optimal control problem is
described in Chapter 14 and is solved by the methods of optimum design.

The optimal control problem consists of finding feedback controllers for a system to
produce the desired output. The system has active elements that sense output fluctuations.
System controls are automatically adjusted to correct the situation and optimize a measure
of performance. Thus, control problems are usually dynamic in nature. In optimum
design, on the other hand, we design the system and its elements to optimize an objective
function. The system then remains fixed for its entire life.

As an example, consider the cruise control mechanism in passenger cars. The idea
behind this feedback system is to control fuel injection to maintain a constant speed. Thus,
the system’s output (i.e., the vehicle’s cruising speed) is known. The job of the control
mechanism is to sense fluctuations in speed depending on road conditions and to adjust
fuel injection accordingly.

1.5 BASIC TERMINOLOGY AND NOTATION

Which Notation Do I Need to Know?

To understand and to be comfortable with the methods of optimum design, the student
must be familiar with linear algebra (vector and matrix operations) and basic calculus.
Operations of linear algebra are described in Appendix A. Students who are not
comfortable with this material need to review it thoroughly. Calculus of functions of single
and multiple variables must also be understood. Calculus concepts are reviewed wherever
they are needed. In this section, the standard terminology and notations used throughout the
text are defined. It is important to understand and to memorize these notations and
operations.

1.5.1 Points and Sets

Because realistic systems generally involve several variables, it is necessary to define
and use some convenient and compact notations. Set and vector notations serve this pur-
pose quite well.

6 1. INTRODUCTION TO DESIGN OPTIMIZATION
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Vectors and Points

A point is an ordered list of numbers. Thus, (x1, x2) is a point consisting of two numbers
whereas (x1, x2, . . ., xn) is a point consisting of n numbers. Such a point is often called an
n-tuple. The n components x1, x2, . . ., xn are collected into a column vector as

x5

x1
x2
^
xn

2
664

3
7755 ½x1 x2 . . . xn�T ð1:1Þ

where the superscript T denotes the transpose of a vector or a matrix. This is called an
n-vector. Each number xi is called a component of the (point) vector. Thus, x1 is the first
component, x2 is the second, and so on.

We also use the following notation to represent a point or a vector in the n-dimensional
space:

x5 ðx1; x2; . . . ; xnÞ ð1:2Þ
In 3-dimensional space, the vector x5 [x1 x2 x3]

T represents a point P, as shown in
Figure 1.3. Similarly, when there are n components in a vector, as in Eqs. (1.1) and (1.2),
x is interpreted as a point in the n-dimensional space, denoted as Rn. The space Rn is
simply the collection of all n-dimensional vectors (points) of real numbers. For example,
the real line is R1, the plane is R2, and so on.

The terms vector and point are used interchangeably, and lowercase letters in roman
boldface are used to denote them. Uppercase letters in roman boldface represent matrices.

Sets

Often we deal with sets of points satisfying certain conditions. For example, we may
consider a set S of all points having three components, with the last having a fixed value
of 3, which is written as

S5 x5 ðx1; x2; x3Þ j x3 5 3
� � ð1:3Þ

x3

x3

x2

x2

x1

x1

P (x1, x2, x3)

x

FIGURE 1.3 Vector representation of a point P that is in
3-dimensional space.
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Information about the set is contained in braces ({}). Equation (1.3) reads as “S equals
the set of all points (x1, x2, x3) with x35 3.” The vertical bar divides information about the
set S into two parts: To the left of the bar is the dimension of points in the set; to the right
are the properties that distinguish those points from others not in the set (for example,
properties a point must possess to be in the set S).

Members of a set are sometimes called elements. If a point x is an element of the set S, then
we write x A S. The expression x A S is read as “x is an element of (belongs to) S.”
Conversely, the expression “y =2 S” is read as “y is not an element of (does not belong to) S.”

If all the elements of a set S are also elements of another set T, then S is said to be a sub-
set of T. Symbolically, we write S C T, which is read as “S is a subset of T” or “S is con-
tained in T.” Alternatively, we say “T is a superset of S,” which is written as T * S.

As an example of a set S, consider a domain of the xl � x2 plane enclosed by a circle of
radius 3 with the center at the point (4, 4), as shown in Figure 1.4. Mathematically, all
points within and on the circle can be expressed as

S5 fx A R2jðx1 2 4Þ2 1 ðx2 2 4Þ2 # 9g ð1:4Þ
Thus, the center of the circle (4, 4) is in the set S because it satisfies the inequality in

Eq. (1.4). We write this as (4, 4) A S. The origin of coordinates (0, 0) does not belong to the
set because it does not satisfy the inequality in Eq. (1.4). We write this as (0, 0) =2 S. It can
be verified that the following points belong to the set: (3, 3), (2, 2), (3, 2), (6, 6). In fact, set
S has an infinite number of points. Many other points are not in the set. It can be verified
that the following points are not in the set: (1, 1), (8, 8), and (21, 2).

1.5.2 Notation for Constraints

Constraints arise naturally in optimum design problems. For example, the material of
the system must not fail, the demand must be met, resources must not be exceeded, and

8

7

6

5

4

3

2

1

1 2 3 4 5 6 7 8
0

S

3

(4,4)

x2

x1

FIGURE 1.4 Image of a geometrical representation for
the set S5 fx j ðx1 2 4Þ2 1 ðx2 2 4Þ2 # 9g.
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so on. We shall discuss the constraints in more detail in Chapter 2. Here we discuss the
terminology and notations for the constraints.

We encountered a constraint in Figure 1.4 that shows a set S of points within and on
the circle of radius 3. The set S is defined by the following constraint:

ðx1 2 4Þ2 1 ðx2 2 4Þ2 # 9 ð1:5Þ
A constraint of this form is a “less than or equal to type” constraint and is abbreviated

as “# type.” Similarly, there are greater than or equal to type constraints, abbreviated as “$
type.” Both are called inequality constraints.

1.5.3 Superscripts/Subscripts and Summation Notation

Later we will discuss a set of vectors, components of vectors, and multiplication of
matrices and vectors. To write such quantities in a convenient form, consistent and com-
pact notations must be used. We define these notations here. Superscripts are used to repre-
sent different vectors and matrices. For example, x(i) represents the ith vector of a set and A(k)

represents the kth matrix. Subscripts are used to represent components of vectors and matrices.
For example, xj is the jth component of x and aij is the i�jth element of matrix A. Double
subscripts are used to denote elements of a matrix.

To indicate the range of a subscript or superscript we use the notation

xi; i5 1 to n ð1:6Þ
This represents the numbers x1, x2, . . ., xn. Note that “i5 1 to n” represents the range for
the index i and is read, “i goes from 1 to n.” Similarly, a set of k vectors, each having n
components, is represented by the superscript notation as

xðjÞ; j5 1 to k ð1:7Þ
This represents the k vectors x(l), x(2), . . ., x(k). It is important to note that subscript i in
Eq. (1.6) and superscript j in Eq. (1.7) are free indices; that is, they can be replaced by any
other variable. For example, Eq. (1.6) can also be written as xj, j5 1 to n and Eq. (1.7) can
be written as x(i), i5 1 to k. Note that the superscript j in Eq. (1.7) does not represent the
power of x. It is an index that represents the jth vector of a set of vectors.

We also use the summation notation quite frequently. For example,

c5 x1y1 1 x2y2 1 . . . 1 xnyn ð1:8Þ
is written as

c5
Xn
i51

xiyi ð1:9Þ

Also, multiplication of an n-dimensional vector x by an m3 n matrix A to obtain an
m-dimensional vector y is written as

y5Ax ð1:10Þ
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Or, in summation notation, the ith component of y is

yi 5
Xn
j51

aijxj 5 ai1x1 1 ai2x2 1 . . . 1 ainxn; i5 1 to m ð1:11Þ

There is another way of writing the matrix multiplication of Eq. (1.10). Let m-dimen-
sional vectors a(i); i5 1 to n represent columns of the matrix A. Then y5Ax is also given as

y5
Xn
j51

aðjÞxj 5 að1Þx1 1 að2Þx2 1 . . . 1 aðnÞxn ð1:12Þ

The sum on the right side of Eq. (1.12) is said to be a linear combination of columns of
matrix A with xj, j5 1 to n as its multipliers. Or y is given as a linear combination of col-
umns of A (refer to Appendix A for further discussion of the linear combination of
vectors).

Occasionally, we must use the double summation notation. For example, assuming
m5 n and substituting yi from Eq. (1.11) into Eq. (1.9), we obtain the double sum as

c5
Xn
i51

xi
Xn
j51

aijxj

0
@

1
A5

Xn
i51

Xn
j51

aijxixj ð1:13Þ

Note that the indices i and j in Eq. (1.13) can be interchanged. This is possible because c is
a scalar quantity, so its value is not affected by whether we sum first on i or on j. Equation
(1.13) can also be written in the matrix form, as we will see later.

1.5.4 Norm/Length of a Vector

If we let x and y be two n-dimensional vectors, then their dot product is defined as

ðx � yÞ5 xTy5
Xn
i51

xiyi ð1:14Þ

Thus, the dot product is a sum of the product of corresponding elements of the vectors x
and y. Two vectors are said to be orthogonal (normal) if their dot product is 0; that is, x and
y are orthogonal if x �y5 0. If the vectors are not orthogonal, the angle between them can
be calculated from the definition of the dot product:

x �y5 :x: :y: cosθ ð1:15Þ
where θ is the angle between vectors x and y and jjxjj represents the length of vector x. This
is also called the norm of the vector. The length of vector x is defined as the square root of
the sum of squares of the components:

:x: 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i51

x2i

s
5

ffiffiffiffiffiffiffiffiffi
x � xp ð1:16Þ
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The double sum of Eq. (1.13) can be written in the matrix form as follows:

c5
Xn
i51

Xn
j51

aijxixj 5
Xn
i51

xi
Xn
j51

aijxj

0
@

1
A5 xTAx ð1:17Þ

Since Ax represents a vector, the triple product of Eq. (1.17) is also written as a dot
product:

c5 xTAx5 ðx �AxÞ ð1:18Þ

1.5.5 Functions

Just as a function of a single variable is represented as f(x), a function of n independent
variables x1, x2, . . ., xn is written as

fðxÞ5 fðx1; x2; . . . ; xnÞ ð1:19Þ

We deal with many functions of vector variables. To distinguish between functions,
subscripts are used. Thus, the ith function is written as

giðxÞ5 giðx1; x2; . . . ; xnÞ ð1:20Þ

If there are m functions gi(x), i5 1 to m, these are represented in the vector form

gðxÞ5
g1ðxÞ
g2ðxÞ
:

gmðxÞ

2
64

3
755 ½g1ðxÞ g2ðxÞ . . . gmðxÞ�T ð1:21Þ

Throughout the text it is assumed that all functions are continuous and at least twice con-
tinuously differentiable. A function f(x) of n variables is called continuous at a point x* if, for
any ε . 0, there is a δ . 0 such that

fðxÞ2 fðx�Þ
�� ��, ε ð1:22Þ

whenever jjx2 x*jj , δ. Thus, for all points x in a small neighborhood of point x*, a change
in the function value from x* to x is small when the function is continuous. A continuous
function need not be differentiable. Twice-continuous differentiability of a function implies
not only that it is differentiable two times, but also that its second derivative is continuous.

Figures 1.5(a) and 1.5(b) show continuous and discontinuous functions. The function in
Figure 1.5(a) is differentiable everywhere, whereas the function in Figure 1.5(b) is not dif-
ferentiable at points x1, x2, and x3. Figure 1.5(c) is an example in which f is not a function
because it has infinite values at x1. Figure 1.5(d) is an example of a discontinuous function.
As examples, functions f(x)5 x3 and f(x)5 sinx are continuous everywhere and are also
continuously differentiable. However, function f(x)5 jxj is continuous everywhere but not
differentiable at x5 0.
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1.5.6 Derivatives of Functions

Often in this text we must calculate derivatives of functions of several variables. Here
we introduce some of the basic notations used to represent the partial derivatives of func-
tions of several variables.

First Partial Derivatives

For a function f(x) of n variables, the first partial derivatives are written as

@fðxÞ
@xi

; i5 1 to n ð1:23Þ

The n partial derivatives in Eq. (1.23) are usually arranged in a column vector known as
the gradient of the function f(x). The gradient is written as @f/@x or rf(x). Therefore,

rfðxÞ5 @fðxÞ
@x

5

@fðxÞ
@x1

@fðxÞ
@x2

^
@fðxÞ
@xn

2
666666666664

3
777777777775

ð1:24Þ

Note that each component of the gradient in Eq. (1.23) or (1.24) is a function of vector x.

f (x)

f (x) f (x)

x x

x1

x1x1

x2 x3

x

f (x)

x

(a) (b)

(c) (d)

FIGURE 1.5 Continuous and discon-
tinuous functions: (a) and (b) continuous
functions; (c) not a function; (d) discontin-
uous function.
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Second Partial Derivatives

Each component of the gradient vector in Eq. (1.24) can be differentiated again with
respect to a variable to obtain the second partial derivatives for the function f(x):

@2fðxÞ
@xi@xj

; i; j5 1 to n ð1:25Þ

We see that there are n2 partial derivatives in Eq. (1.25). These can be arranged in a matrix
known as the Hessian matrix, written as H(x), or simply the matrix of second partial deriva-
tives of f(x), written as r2f(x):

HðxÞ5r2fðxÞ5 @2fðxÞ
@xi@xj

� �
n3n

ð1:26Þ

Note that if f(x) is continuously differentiable two times, then Hessian matrix H(x) in
Eq. (1.26) is symmetric.

Partial Derivatives of Vector Functions

On several occasions we must differentiate a vector function of n variables, such as the
vector g(x) in Eq. (1.21), with respect to the n variables in vector x. Differentiation of each
component of the vector g(x) results in a gradient vector, such as rgi(x). Each of these gra-
dients is an n-dimensional vector. They can be arranged as columns of a matrix of dimen-
sion m3 n, referred to as the gradient matrix of g(x). This is written as

rgðxÞ5 @gðxÞ
@x

5 ½rg1ðxÞ rg2ðxÞ . . . rgmðxÞ�n3m ð1:27Þ

This gradient matrix is usually written as matrix A:

A5 ½aij�n3m; aij 5
@gj
@xi

; i5 1 to n; j5 1 tom ð1:28Þ

1.5.7 U.S.�British versus SI Units

The formulation of the design problem and the methods of optimization do not depend
on the units of measure used. Thus, it does not matter which units are used in defining
the problem. However, the final form of some of the analytical expressions for the problem
does depend on the units used. In the text, we use both U.S.�British and SI units in exam-
ples and exercises. Readers unfamiliar with either system should not feel at a disadvan-
tage when reading and understanding the material since it is simple to switch from one
system to the other. To facilitate the conversion from U.S.�British to SI units or vice versa,
Table 1.1 gives conversion factors for the most commonly used quantities. For a complete
list of conversion factors, consult the IEEE ASTM (1997) publication.
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TABLE 1.1 Conversion factors for U.S.�British and SI units

To convert from U.S.�British To SI units Multiply by

Acceleration

foot/second2 (ft/s2) meter/second2 (m/s2) 0.3048*

inch/second2 (in/s2) meter/second2 (m/s2) 0.0254*

Area

foot2 (ft2) meter2 (m2) 0.09290304*

inch2 (in2) meter2 (m2) 6.4516E�04*

Bending Moment or Torque

pound force inch (lbf � in) Newton meter (N �m) 0.1129848

pound force foot (lbf � ft) Newton meter (N �m) 1.355818

Density

pound mass/inch3 (lbm/in3) kilogram/meter3 (kg/m3) 27,679.90

pound mass/foot3 (lbm/ft3) kilogram/meter3 (kg/m3) 16.01846

Energy or Work

British thermal unit (BTU) Joule (J) 1055.056

foot-pound force (ft � lbf) Joule (J) 1.355818

kilowatt-hour (KWh) Joule (J) 3,600,000*

Force

kip (1000 lbf) Newton (N) 4448.222

pound force (lbf) Newton (N) 4.448222

Length

foot (ft) meter (m) 0.3048*

inch (in) meter (m) 0.0254*

mile (mi), U.S. statute meter (m) 1609.347

mile (mi), International, nautical meter (m) 1852*

Mass

pound mass (lbm) kilogram (kg) 0.4535924

slug (lbf � s2ft) kilogram (kg) 14.5939

ton (short, 2000 lbm) kilogram (kg) 907.1847

ton (long, 2240 lbm) kilogram (kg) 1016.047

tonne (t, metric ton) kilogram (kg) 1000*
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TABLE 1.1 (Continued)

To convert from U.S.�British To SI units Multiply by

Power

foot-pound/minute (ft � lbf/min) Watt (W) 0.02259697

horsepower (550 ft � lbf/s) Watt (W) 745.6999

Pressure or Stress

atmosphere (std) (14.7 lbf/in2) Newton/meter2 (N/m2 or Pa) 101,325*

one bar (b) Newton/meter2 (N/m2 or Pa) 100,000*

pound/foot2 (lbf/ft2) Newton/meter2 (N/m2 or Pa) 47.88026

pound/inch2 (lbf/in2 or psi) Newton/meter2 (N/m2 or Pa) 6894.757

Velocity

foot/minute (ft/min) meter/second (m/s) 0.00508*

foot/second (ft/s) meter/second (m/s) 0.3048*

knot (nautical mi/h), international meter/second (m/s) 0.5144444

mile/hour (mi/h), international meter/second (m/s) 0.44704*

mile/hour (mi/h), international kilometer/hour (km/h) 1.609344*

mile/second (mi/s), international kilometer/second (km/s) 1.609344*

Volume

foot3 (ft3) meter3 (m3) 0.02831685

inch3 (in3) meter3 (m3) 1.638706E�05

gallon (Canadian liquid) meter3 (m3) 0.004546090

gallon (U.K. liquid) meter3 (m3) 0.004546092

gallon (U.S. dry) meter3 (m3) 0.004404884

gallon (U.S. liquid) meter3 (m3) 0.003785412

one liter (L) meter3 (m3) 0.001*

ounce (U.K. fluid) meter3 (m3) 2.841307E�05

ounce (U.S. fluid) meter3 (m3) 2.957353E�05

pint (U.S. dry) meter3 (m3) 5.506105E�04

pint (U.S. liquid) meter3 (m3) 4.731765E�04

quart (U.S. dry) meter3 (m3) 0.001101221

quart (U.S. liquid) meter3 (m3) 9.463529E�04

* Exact conversion factor.
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C H A P T E R

2

Optimum Design Problem
Formulation

Upon comp le t i on o f th i s chap te r, you wi l l be ab l e to

• Translate a descriptive statement of the

design problem into a mathematical

statement for optimization

• Identify and define the problem’s design

variables

• Identify and define an optimization criterion

for the problem

• Identify and define the design problem’s

constraints

• Transcribe the problem formulation

into a standard model for design

optimization

It is generally accepted that the proper definition and formulation of a problem take roughly
50 percent of the total effort needed to solve it. Therefore, it is critical to follow well-defined
procedures for formulating design optimization problems. In this chapter, we describe the
process of transforming the design of a selected system and/or subsystem into an optimum
design problem.

Several simple and moderately complex applications are discussed in this chapter to
illustrate the problem formulation process. More advanced applications are discussed
in Chapters 6 and 7 and 14 through 19.

The importance of properly formulating a design optimization problem must be stressed
because the optimum solution will be only as good as the formulation. For example, if we
forget to include a critical constraint in the formulation, the optimum solution will most
likely violate it. Also, if we have too many constraints, or if they are inconsistent, there
may be no solution. However, once the problem is properly formulated, good software is
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usually available to deal with it. For most design optimization problems, we will use the
following five-step formulation procedure:

Step 1: Project/problem description
Step 2: Data and information collection
Step 3: Definition of design variables
Step 4: Optimization criterion
Step 5: Formulation of constraints

2.1 THE PROBLEM FORMULATION PROCESS

The formulation of an optimum design problem involves translating a descriptive state-
ment of it into a well-defined mathematical statement. We will describe the tasks to be
performed in each of the foregoing five steps to develop a mathematical formulation for
the design optimization problem. These steps are illustrated with some examples in this
section and in later sections.

At this stage, it is also important to understand the solution process for optimization of
a design problem. As illustrated earlier in Figure 1.2(b), optimization methods are iterative
where the solution process is started by selecting a trial design or a set of trial designs. The
trial designs are analyzed and evaluated, and a new trial design is generated. This iterative
process is continued until an optimum solution is reached.

2.1.1 Step 1: Project/Problem Description
Are the Project Goals Clear?

The formulation process begins by developing a descriptive statement for the project/
problem, usually by the project’s owner/sponsor. The statement describes the overall
objectives of the project and the requirements to be met. This is also called the statement
of work.

EXAMPLE 2.1 DESIGN OF A CANTILEVER BEAM—PROBLEM
DESCRIPTION

Cantilever beams are used in many practical applications in civil, mechanical, and aerospace

engineering. To illustrate the step of problem description, we consider the design of a hollow

square-cross-section cantilever beam to support a load of 20 kN at its end. The beam, made of

steel, is 2 m long, as shown in Figure 2.1. The failure conditions for the beam are as follows:

(1) the material should not fail under the action of the load, and (2) the deflection of the free end

should be no more than 1 cm. The width-to-thickness ratio for the beam should be no more than 8.

A minimum-mass beam is desired. The width and thickness of the beam must be within the

following limits:
60#width# 300 mm ðaÞ
10# thickness# 40 mm ðbÞ

18 2. OPTIMUM DESIGN PROBLEM FORMULATION

I. THE BASIC CONCEPTS



2.1.2 Step 2: Data and Information Collection
Is All the Information Available

to Solve the Problem?

To develop a mathematical formulation for the problem, we need to gather information
on material properties, performance requirements, resource limits, cost of raw materials,
and so forth. In addition, most problems require the capability to analyze trial designs.
Therefore, analysis procedures and analysis tools must be identified at this stage. For exam-
ple, the finite-element method is commonly used for analysis of structures, so the software
tool available for such an analysis needs to be identified. In many cases, the project state-
ment is vague, and assumptions about modeling of the problem need to be made in order
to formulate and solve it.

EXAMPLE 2.2 DATA AND INFORMATION COLLECTION
FOR A CANTILEVER BEAM

The information needed for the cantilever beam design problem of Example 2.1 includes expres-

sions for bending and shear stresses, and the expression for the deflection of the free end. The

notation and data for this purpose are defined in the table that follows.

Useful expressions for the beam are

A5w2 2 ðw2 2tÞ2 5 4tðw2 tÞ; mm2 ðcÞ

I5
8

3
wt3 1

2

3
w3t2 2w2t2 2

4

3
t4; mm4 ðdÞ

Q5
3

4
w2t2

3

2
wt2 1 t3; mm3 ðeÞ

M5PL; N �mm ðfÞ
V5P; N ðgÞ

σ5
Mw

2I
; N �mm22 ðhÞ

L

P

t

w

w

FIGURE 2.1 Cantilever beam of a
hollow square cross-section.
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τ5
VQ

2It
; N �mm22 ðiÞ

q5
PL3

3EI
; mm ðjÞ

2.1.3 Step 3: Definition of Design Variables
What Are These Variables?
How Do I Identify Them?

The next step in the formulation process is to identify a set of variables that describe
the system, called the design variables. In general, these are referred to as optimization vari-
ables and are regarded as free because we should be able to assign any value to them.
Different values for the variables produce different designs. The design variables should
be independent of each other as far as possible. If they are dependent, their values cannot
be specified independently because there are constraints between them. The number of
independent design variables gives the design degrees of freedom for the problem.

Notation Data

A cross-sectional area, mm2

E modulus of elasticity, 213 104 N �mm22

G shear modulus, 83 104 N �mm22

I moment of inertia, mm4

L length of the member, 2000 mm

M bending moment, N �mm

P load at the free end, 20,000 N

Q moment about the neutral axis of the area above the neutral axis, mm3

q vertical deflection of the free end, mm

qa allowable vertical deflection of the free end, 10 mm

V shear force, N

w width (depth) of the section, mm

t wall thickness, mm

σ bending stress, N �mm22

σa allowable bending stress, 165 N �mm22

τ shear stress, N �mm22

τa allowable shear stress, 90 N �mm22
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For some problems, different sets of variables can be identified to describe the same sys-
tem. Problem formulation will depend on the selected set. We will present some examples
later in this chapter to elaborate on this point.

Once the design variables are given numerical values, we have a design of the system.
Whether this design satisfies all requirements is another question. We will introduce a num-
ber of concepts to investigate such questions in later chapters.

If proper design variables are not selected for a problem, the formulation will be either
incorrect or not possible. At the initial stage of problem formulation, all options for specifi-
cation of design variables should be investigated. Sometimes it may be desirable to desig-
nate more design variables than apparent design degrees of freedom. This gives added
flexibility to problem formulation. Later, it will be possible to assign a fixed numerical
value to any variable and thus eliminate it from the formulation.

At times it is difficult to clearly identify a problem’s design variables. In such a case, a com-
plete list of all variables may be prepared. Then, by considering each variable individually,
we can decide whether or not to treat it as an optimization variable. If it is a valid design vari-
able, the designer should be able to specify a numerical value for it to select a trial design.

We will use the term “design variables” to indicate all optimization variables for the
optimization problem and will represent them in the vector x. To summarize, the follow-
ing considerations should be given in identifying design variables for a problem:

• Design variables should be independent of each other as far as possible. If they are not,
there must be some equality constraints between them (explained later).

• A minimum number of design variables required to properly formulate a design
optimization problem must exist.

• As many independent parameters as possible should be designated as design variables
at the problem formulation phase. Later on, some of the variables can be assigned fixed
values.

• A numerical value should be given to each identified design variable to determine if a
trial design of the system is specified.

EXAMPLE 2.3 DESIGN VARIABLES FOR A CANTILEVER BEAM

Only dimensions of the cross-section are identified as design variables for the cantilever beam

design problem of Example 2.1; all other parameters are specified:

w5width (depth) of the section, mm

t5wall thickness, mm

2.1.4 Step 4: Optimization Criterion
How Do I Know that My Design Is the Best?

There can be many feasible designs for a system, and some are better than others. The ques-
tion is how we compare designs and designate one as better than another. For this, we must
have a criterion that associates a number with each design. Thus, the merit of a given design is
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specified. The criterion must be a scalar function whose numerical value can be obtained once
a design is specified; that is, it must be a function of the design variable vector x. Such a criterion is
usually called an objective function for the optimum design problem, and it needs to be maxi-
mized or minimized depending on problem requirements. A criterion that is to be minimized is
usually called a cost function in engineering literature, which is the term used throughout this
text. It is emphasized that a valid objective function must be influenced directly or indirectly by the
variables of the design problem; otherwise, it is not a meaningful objective function.

The selection of a proper objective function is an important decision in the design pro-
cess. Some objective functions are cost (to be minimized), profit (to be maximized), weight
(to be minimized), energy expenditure (to be minimized), and, for example, ride quality of
a vehicle (to be maximized). In many situations an obvious objective function can be iden-
tified. For example, we always want to minimize the cost of manufacturing goods or maxi-
mize return on investment. In some situations, two or more objective functions may be
identified. For example, we may want to minimize the weight of a structure and at the
same time minimize the deflection or stress at a certain point. These are called multiobjec-
tive design optimization problems and are discussed in a later chapter.

For some design problems, it is not obvious what the objective function should be or how it
should relate to the design variables. Some insight and experience may be needed to identify a
proper objective function. For example, consider the optimization of a passenger car. What are
the design variables? What is the objective function, and what is its functional form in terms of
the design variables? Although this is a very practical problem, it is quite complex. Usually,
such problems are divided into several smaller subproblems and each one is formulated as an
optimum design problem. For example, design of a passenger car can be divided into a num-
ber of optimization subproblems involving the trunk lid, doors, side panels, roof, seats, sus-
pension system, transmission system, chassis, hood, power plant, bumpers, and so on. Each
subproblem is now manageable and can be formulated as an optimum design problem.

EXAMPLE 2.4 OPTIMIZATION CRITERION FOR A
CANTILEVER BEAM

For the design problem in Example 2.1, the objective is to design a minimum-mass cantilever

beam. Since the mass is proportional to the cross-sectional area of the beam, the objective func-

tion for the problem is taken as the cross-sectional area:

fðw; tÞ5A5 4tðw2 tÞ; mm2 ðkÞ

2.1.5 Step 5: Formulation of Constraints
What Restrictions Do I Have on My Design?

All restrictions placed on the design are collectively called constraints. The final step in
the formulation process is to identify all constraints and develop expressions for them.
Most realistic systems must be designed and fabricated with the given resources and must
meet performance requirements. For example, structural members should not fail under nor-
mal operating loads. The vibration frequencies of a structure must be different from the
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operating frequency of the machine it supports; otherwise, resonance can occur and cause
catastrophic failure. Members must fit into the available space.

These constraints, as well as others, must depend on the design variables, since only
then do their values change with different trial designs; that is, a meaningful constraint
must be a function of at least one design variable. Several concepts and terms related to
constraints are explained next.

Linear and Nonlinear Constraints

Many constraint functions have only first-order terms in design variables. These are
called linear constraints. Linear programming problems have only linear constraints and objec-
tive functions. More general problems have nonlinear cost and/or constraint functions.
These are called nonlinear programming problems. Methods to treat both linear and nonlinear
constraints and objective functions are presented in this text.

Feasible Design

The design of a system is a set of numerical values assigned to the design variables (i.e., a
particular design variable vector x). Even if this design is absurd (e.g., negative radius) or inad-
equate in terms of its function, it can still be called a design. Clearly, some designs are useful
and others are not. A design meeting all requirements is called a feasible design (acceptable or
workable).An infeasible design (unacceptable) does not meet one or more of the requirements.

Equality and Inequality Constraints

Design problems may have equality as well as inequality constraints. The problem
description should be studied carefully to determine which requirements need to be formu-
lated as equalities and which ones as inequalities. For example, a machine component may
be required to move precisely by Δ to perform the desired operation, so we must treat this
as an equality constraint. A feasible design must satisfy precisely all equality constraints.
Also, most design problems have inequality constraints, sometimes called unilateral or one-
sided constraints. Note that the feasible region with respect to an inequality constraint is much
larger than that with respect to the same constraint expressed as equality.

To illustrate the difference between equality and inequality constraints, we consider a con-
straint written in both equality and inequality forms. Figure 2.2(a) shows the equality con-
straint x15 x2. Feasible designs with respect to the constraint must lie on the straight line A�B.
However, if the constraint is written as an inequality x1 # x2, the feasible region is much
larger, as shown in Figure 2.2(b). Any point on the line A�B or above it gives a feasible design.

Implicit Constraints

Some constraints are quite simple, such as the smallest and largest allowable values for the
design variables, whereas more complex ones may be indirectly influenced by the design vari-
ables. For example, deflection at a point in a large structure depends on its design. However,
it is impossible to express deflection as an explicit function of the design variables except for
very simple structures. These are called implicit constraints. When there are implicit functions
in the problem formulation, it is not possible to formulate the problem functions explicitly in
terms of design variables alone. Instead, we must use some intermediate variables in the prob-
lem formulation. We will discuss formulations having implicit functions in Chapter 14.
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EXAMPLE 2.5 CONSTRAINTS FOR A CANTILEVER
BEAM

Using various expressions given in Eqs. (c) through (j), we formulate the constraints for the

cantilever beam design problem from Example 2.1 as follows:

Bending stress constraint: σ#σa

PLw

2I
2σa # 0 ðlÞ

(a)

(b)

B

A

(line A–B)

Feasible region

x2

x1

for x1 = x2

A

B
Feasible

x2

x1

x1 = x2

region for x1 ≤ x2

FIGURE 2.2 Shown here is the distinction between equality and inequality constraints: (a) Feasible region for
constraint x15 x2 (line A2B); (b) feasible region for constraint x1# x2 (line A2B and the region above it).
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Shear stress constraint: τ# τa
PQ

2It
2 τa # 0 ðmÞ

Deflection constraint: q# qa
PL3

3EI
2 qa # 0 ðnÞ

Width�thickness restriction: wt # 8
w2 8t# 0 ðoÞ

Dimension restrictions
602w# 0; mm; w2 300# 0; mm ðpÞ

32 t# 0; mm; t2 15# 0; mm ðqÞ

Thus the optimization problem is to find w and t to minimize the cost function of Eq. (k) subject

to the eight inequality constraints of Eqs. (l) through (q). Note that the constraints of Eqs. (l) through

(n) are nonlinear functions and others are linear functions of the design variables. There are eight

inequality constraints and no equality constraints for this problem. Substituting various expres-

sions, Eqs. (l) through (n) can be expressed explicitly in terms of the design variables, if desired.

2.2 DESIGN OF A CAN

STEP 1: PROJECT/PROBLEM DESCRIPTION The purpose of this project is to design a
can, shown in Figure 2.3, to hold at least 400 ml of liquid (1 ml5 1 cm3), as well as to meet
other design requirements. The cans will be produced in the billions, so it is desirable to
minimize their manufacturing costs. Since cost can be directly related to the surface area
of the sheet metal used, it is reasonable to minimize the amount of sheet metal required.
Fabrication, handling, aesthetics, and shipping considerations impose the following restric-
tions on the size of the can: The diameter should be no more than 8 cm and no less than
3.5 cm, whereas the height should be no more than 18 cm and no less than 8 cm.

STEP 2: DATA AND INFORMATION COLLECTION Data for the problem are given in the
project statement.

H

D

FIGURE 2.3 Can.
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STEP 3: DEFINITION OF DESIGN VARIABLES The two design variables are defined as

D5diameter of the can, cm
H5height of the can, cm

STEP 4: OPTIMIZATION CRITERION The design objective is to minimize the total sur-
face area S of the sheet metal for the three parts of the cylindrical can: the surface area of
the cylinder (circumference3height) and the surface area of the two ends. Therefore, the
optimization criterion, or cost function (the total area of sheet metal), is given as

S5πDH1 2
π
4
D2

� �
; cm2 ðaÞ

STEP 5: FORMULATION OF CONSTRAINTS The first constraint is that the can must hold
at least 400 cm3 of fluid, which is written as

π
4
D2H$ 400; cm3 ðbÞ

If it had been stated that “the can must hold 400 ml of fluid,” then the preceding volume
constraint would be an equality. The other constraints on the size of the can are

3:5#D# 8; cm

8#H# 18; cm
ðcÞ

The explicit constraints on design variables in Eqs. (c) have many different names in the
literature, such as side constraints, technological constraints, simple bounds, sizing constraints,
and upper and lower limits on the design variables. Note that for the present problem there
are really four constraints in Eqs. (c). Thus, the problem has two design variables and a
total of five inequality constraints.

Note also that the cost function and the first constraint are nonlinear in variables; the
remaining constraints are linear.

2.3 INSULATED SPHERICALTANK DESIGN

STEP 1: PROJECT/PROBLEM DESCRIPTION The goal of this project is to choose an insu-
lation thickness t to minimize the life-cycle cooling cost for a spherical tank. The cooling
costs include installing and running the refrigeration equipment, and installing the insula-
tion. Assume a 10-year life, a 10 percent annual interest rate, and no salvage value. The
tank has already been designed having r (m) as its radius.

STEP 2: DATA AND INFORMATION COLLECTION To formulate this design optimization
problem, we need some data and expressions. To calculate the volume of the insulation
material, we require the surface area of the spherical tank, which is given as

A5 4πr2; m2 ðaÞ
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To calculate the capacity of the refrigeration equipment and the cost of its operation, we
need to calculate the annual heat gain G, which is given as

G5
ð365Þð24ÞðΔTÞA

c1t
; Watt-hours ðbÞ

where ΔT is the average difference between the internal and external temperatures in
Kelvin, c1 is the thermal resistivity per unit thickness in Kelvin-meter per Watt, and t is
the insulation thickness in meters. ΔT can be estimated from the historical data for tem-
peratures in the region in which the tank is to be used. Let c25 the insulation cost per
cubic meter ($/m3), c35 the cost of the refrigeration equipment per Watt-hour of capacity
($/Wh), and c45 the annual cost of running the refrigeration equipment per Watt-hour
($/Wh).

STEP 3: DEFINITION OF DESIGN VARIABLES Only one design variable is identified for
this problem:

t5 insulation thickness, m

STEP 4: OPTIMIZATION CRITERION The goal is to minimize the life-cycle cooling cost
of refrigeration for the spherical tank over 10 years. The life-cycle cost has three compo-
nents: insulation, refrigeration equipment, and operations for 10 years. Once the annual
operations cost has been converted to the present cost, the total cost is given as

Cost5 c2At1 c3G1 c4G ðcÞ
where uspwf (0.1, 10)5 6.14457 is the uniform series present worth factor, calculated using
the equation

uspwfði;nÞ5 1

i
12 ð12 iÞ2n
� � ðdÞ

where i is the rate of return per dollar per period and n is the number of periods. Note
that to calculate the volume of the insulation as At, it is assumed that the insulation thick-
ness is much smaller than the radius of the spherical tank; that is, t { r.

STEP 5: FORMULATION OF CONSTRAINTS Although no constraints are indicated in the
problem statement, it is important to require that the insulation thickness be non-negative
(i.e., t $ 0). Although this may appear obvious, it is important to include the constraint
explicitly in the mathematical formulation of the problem. Without its explicit inclusion,
the mathematics of optimization may assign negative values to thickness, which is, of
course, meaningless. Note also that in reality t cannot be zero because it appears in the
denominator of the expression for G. Therefore, the constraint should really be expressed
as t . 0. However, strict inequalities cannot be treated mathematically or numerically in the
solution process because they give an open feasible set. We must allow the possibility of
satisfying inequalities as equalities; that is, we must allow the possibility that t5 0 in the
solution process. Therefore, a more realistic constraint is t $ tmin, where tmin is the smal-
lest insulation thickness available on the market.
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EXAMPLE 2.6 FORMULATION OF THE SPHERICAL
TANK PROBLEM WITH INTERMEDIATE VARIABLES

A summary of the problem formulation for the design optimization of insulation for a spheri-

cal tank with intermediate variables is as follows:

Specified data: r, ΔT, c1, c2, c3, c4, tmin

Design variable: t, m

Intermediate variables: A5 4πr2

G5
ð365Þð24ÞðΔTÞA

c1t

ðeÞ

Cost function: Minimize the life-cycle cooling cost of refrigeration of the spherical tank,

Cost5 c2At1 c3G1 6:14457c4G ðfÞ

Constraint: t$ tmin ðgÞ

Note that A and G may also be treated as design variables in this formulation. In such a case, A

must be assigned a fixed numerical value since r has already been determined, and the expres-

sion for G must be treated as an equality constraint.

EXAMPLE 2.7 FORMULATION OF THE SPHERICAL TANK
PROBLEM WITH THE DESIGN VARIABLE ONLY

Following is a summary of the problem formulation for the design optimization of insulation

for a spherical tank in terms of the design variable only:

Specified data: r, ΔT, c1, c2, c3, c4, tmin

Design variable: t, m

Cost function: Minimize the life-cycle cooling cost of refrigeration of the spherical tank,

Cost5 at1
b

t
; a5 4c2πr2;

b5
ðc3 1 6:14457c4Þ

c1
ð365Þð24ÞðΔTÞð4πr2Þ

ðhÞ

Constraint: t$ tmin ðiÞ

2.4 SAWMILL OPERATION

STEP 1: PROJECT/PROBLEM DESCRIPTION A company owns two sawmills and
two forests. Table 2.1 shows the capacity of each of the mills (logs/day) and the distances
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between the forests and the mills (km). Each forest can yield up to 200 logs/day for the
duration of the project, and the cost to transport the logs is estimated at $10/km/log. At
least 300 logs are needed daily. The goal is to minimize the total daily cost of transporting
the logs.

STEP 2: DATA AND INFORMATION COLLECTION Data are given in Table 2.1 and in the
problem statement.

STEP 3: DEFINITION OF DESIGN VARIABLES The design problem is to determine how
many logs to ship from Forest i to Mill j, as shown in Figure 2.4. Therefore, the design
variables are identified and defined as follows:

x15number of logs shipped from Forest 1 to Mill A
x25number of logs shipped from Forest 2 to Mill A
x35number of logs shipped from Forest 1 to Mill B
x45number of logs shipped from Forest 2 to Mill B

Note that if we assign numerical values to these variables, an operational plan for the proj-
ect is specified and the cost of daily log transportation can be calculated. The selected
design may or may not satisfy all constraints.

STEP 4: OPTIMIZATION CRITERION The design objective is to minimize the daily cost
of transporting the logs to the mills. The cost of transportation, which depends on the dis-
tance between the forests and the mills, is

Cost5 24ð10Þx1 1 20:5ð10Þx2 1 17:2ð10Þx3 1 18ð10Þx4
5 240:0x1 1 205:0x2 1 172:0x3 1 180:0x4

ðaÞ

TABLE 2.1 Data for sawmills

Mill

Distance from

Mill 1

Distance from

Mill 2

Mill capacity

per day

A 24.0 km 20.5 km 240 logs

B 17.2 km 18.0 km 300 logs

Forest 1 Forest 2

Mill A

x1 x4
x2 x3

Mill B

FIGURE 2.4 Sawmill operation.
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STEP 5: FORMULATION OF CONSTRAINTS The constraints for the problem are based
on mill capacity and forest yield:

x1 1 x2 # 240 ðMill A capacityÞ
x3 1 x4 # 300 ðMill B capacityÞ
x1 1 x3 # 200 ðForest 1 yieldÞ
x2 1 x4 # 200 ðForest 2 yieldÞ

ðbÞ

The constraint on the number of logs needed for each day is expressed as

x1 1 x2 1 x3 1 x4 $ 300 ðdemand for logsÞ ðcÞ
For a realistic problem formulation, all design variables must be non-negative; that is,

xi $ 0; i5 1 to 4 ðdÞ
The problem has four design variables, five inequality constraints, and four non-

negativity constraints on the design variables. Note that all problem functions are linear in
design variables, so this is a linear programming problem. Note also that for a meaningful
solution, all design variables must have integer values. Such problems are called integer
programming problems and require special solution methods. Some such methods are
discussed in Chapter 15.

It is also noted that the problem of sawmill operation falls into a class known as trans-
portation problems. For such problems, we would like to ship items from several distribu-
tion centers to several retail stores to meet their demand at a minimum cost of
transportation.

2.5 DESIGN OF ATWO-BAR BRACKET

STEP 1: PROJECT/PROBLEM DESCRIPTION The objective of this project is to design a
two-bar bracket (shown in Figure 2.5) to support a load W without structural failure. The
load is applied at an angle θ, which is between 0 and 90�, h is the height, and s is the
bracket’s base width. The bracket will be produced in large quantities. It has also been
determined that its total cost (material, fabrication, maintenance, and so on) is directly
related to the size of the two bars. Thus, the design objective is to minimize the total mass
of the bracket while satisfying performance, fabrication, and space limitations.

STEP 2: DATA AND INFORMATION COLLECTION First, the load W and its angle
of application θ need to be specified. Since the bracket may be used in several applications,
it may not be possible to specify just one angle for W. It is possible to formulate the
design optimization problem such that a range is specified for angle θ (i.e., load W
may be applied at any angle within that specified range). In this case, the formulation will
be slightly more complex because performance requirements will need to be satisfied for
each angle of application. In the present formulation, it is assumed that angle θ is specified.

Second, the material to be used for the bars must be specified because the material
properties are needed to formulate the optimization criterion and performance
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requirements. Whether the two bars are to be fabricated using the same material also
needs to be determined. In the present formulation, it is assumed that they are, although it
may be prudent to assume otherwise for some advanced applications. In addition, we
need to determine the fabrication and space limitations for the bracket (e.g., on the size of
the bars, height, and base width).

In formulating the design problem, we also need to define structural performance more
precisely. Forces F1 and F2 carried by bars 1 and 2, respectively, can be used to define fail-
ure conditions for the bars. To compute these forces, we use the principle of static equilib-
rium. Using the free-body diagram for node 1 (shown in Figure 2.5(b)), equilibrium of forces
in the horizontal and vertical directions gives

2F1sinα1 F2sinα5W cosθ
2F1cosα2 F2cosα5W sinθ

ðaÞ

From the geometry of Figure 2.5, sinα5 0.5 s/l and cosα5 h/l, where l is the length of

members given as l5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 1 ð0:5sÞ2

q
. Note that F1 and F2 are shown as tensile forces in the

free-body diagram. The solution to Eqs. (a) will determine the magnitude and direction of
the forces. In addition, the tensile force will be taken as positive. Thus, the bar will be in com-
pression if the force carried by it has negative value. By solving the two equations simulta-
neously for the unknowns F1 and F2, we obtain

F1 5 20:5Wl
sinθ
h

1
2 cosθ

s

� �

F2 5 20:5Wl
sinθ
h

2
2 cosθ

s

� � ðbÞ

To avoid bar failure due to overstressing, we need to calculate bar stress. If we know the
force carried by a bar, then the stress σ can be calculated as the force divided by the bar’s
cross-sectional area (stress5 force/area). The SI unit for stress is Newton/meter2 (N/m2),

W

W

1

1

1

2

2

3

Height = h

θ

θ

α α

l l

s/2 s/2

F1 F2 

(a) (b)

FIGURE 2.5 Two-bar bracket: (a) structure and (b) free-body diagram for node 1.
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also called Pascal (Pa), whereas the U.S.�British unit is pound/in2 (written as psi). The
expression for the cross-sectional area depends on the cross-sectional shape used for the
bars and selected design variables. Therefore, a structural shape for the bars and associated
design variables must be selected. This is illustrated later in the formulation process.

In addition to analysis equations, we need to define the properties of the selected mate-
rial. Several formulations for optimum design of the bracket are possible depending on
the application’s requirements. To illustrate, a material with known properties is assumed
for the bracket. However, the structure can be optimized using other materials along with
their associated fabrication costs. Solutions can then be compared to select the best possi-
ble one for the structure.

For the selected material, let ρ be the mass density and σa . 0 be the allowable design
stress. As a performance requirement, it is assumed that if the stress exceeds this allowable
value, the bar is considered to have failed. The allowable stress is defined as the material
failure stress (a property of the material) divided by a factor of safety greater than one. In
addition, it is assumed that the allowable stress is calculated in such a way that the buck-
ling failure of a bar in compression is avoided.

STEP 3: DEFINITION OF DESIGN VARIABLES Several sets of design variables may be
identified for the two-bar structure. The height h and span s can be treated as design vari-
ables in the initial formulation. Later, they may be assigned numerical values, if desired,
to eliminate them from the formulation. Other design variables will depend on the cross-
sectional shape of bars 1 and 2. Several cross-sectional shapes are possible, as shown in
Figure 2.6, where design variables for each shape are also identified.

Note that for many cross-sectional shapes, different design variables can be selected.
For example, in the case of the circular tube in Figure 2.6(a), the outer diameter do and the
ratio between the inner and outer diameters r5 di/do may be selected as the design vari-
ables. Or do and di may be selected. However, it is not desirable to designate do, di, and r
as the design variables because they are not independent of each other. If they are selected,
then a relationship between them must be specified as an equality constraint. Similar
remarks can be made for the design variables associated with other cross-sections, also
shown in Figure 2.6.

As an example of problem formulation, consider the design of a bracket with hollow
circular tubes, as shown in Figure 2.6(a). The inner and outer diameters di and do and wall
thickness t may be identified as the design variables, although they are not all indepen-
dent of each other. For example, we cannot specify di5 10, do5 12, and t5 2 because it vio-
lates the physical condition t5 0.5(do2 di). Therefore, if we formulate the problem with
di, do, and t as design variables, we must also impose the constraint t5 0.5(do2 di). To illus-
trate a formulation of the problem, let the design variables be defined as

x15height h of the bracket
x25 span s of the bracket
x35 outer diameter of bar 1
x45 inner diameter of bar 1
x55 outer diameter of bar 2
x65 inner diameter of bar 2
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In terms of these variables, the cross-sectional areas A1 and A2 of bars 1 and 2 are
given as

A1 5
π
4
ðx23 2 x24Þ; A2 5

π
4
ðx25 2 x26Þ ðcÞ

Once the problem is formulated in terms of the six selected design variables, it is always
possible to modify it to meet more specialized needs. For example, the height x1 may be
assigned a fixed numerical value, thus eliminating it from the problem formulation. In
addition, complete symmetry of the structure may be required to make its fabrication eas-
ier; that is, it may be necessary for the two bars to have the same cross-section, size, and
material. In such a case, we set x35 x5 and x45 x6 in all expressions of the problem formu-
lation. Such modifications are left as exercises.

STEP 4: OPTIMIZATION CRITERION The structure’s mass is identified as the objective
function in the problem statement. Since it is to be minimized, it is called the cost function
for the problem. An expression for the mass is determined by the cross-sectional shape of

(e) (f)

t2

t1 d

b

t2

t1

d

b

(c) (d)

dt

b

d

b

(a) (b)

do

di
d

FIGURE 2.6 Bar cross-sectional shapes: (a) circular
tube; (b) solid circular; (c) rectangular tube; (d) solid
rectangular; (e) I-section; (f) channel section.
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the bars and associated design variables. For the hollow circular tubes and selected design
variables, the total mass of the structure is calculated as (density3material volume):

Mass5 ρ lðA1 1A2Þ½ �5 ρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 1 0:5x2ð Þ2

q� �
π
4
ðx23 2 x24 1 x25 2 x26Þ ðdÞ

Note that if the outer diameter and the ratio between the inner and outer diameters are
selected as design variables, the form of the mass function changes. Thus, the final form
depends on the design variables selected for the problem.

STEP 5: FORMULATION OF CONSTRAINTS It is important to include all constraints in
the problem formulation because the final solution depends on them. For the two-bar
structure, the constraints are on the stress in the bars and on the design variables them-
selves. These constraints will be formulated for hollow circular tubes using the previously
defined design variables. They can be similarly formulated for other sets of design vari-
ables and cross-sectional shapes.

To avoid overstressing a bar, the calculated stress σ (tensile or compressive) must not
exceed the material allowable stress σa . 0. The stresses σ1 and σ2 in the two bars are
calculated as force/area:

σ1 5
F1
A1

ðstress in bar 1Þ

σ2 5
F2
A2

ðstress in bar 2Þ
ðeÞ

Note that to treat positive and negative stresses (tension and compression), we must
use the absolute value of the calculated stress in writing the constraints (e.g., jσj# σa). The
absolute-value constraints can be treated by different approaches in optimization methods.
Here we split each absolute-value constraint into two constraints. For example, the stress
constraint for bar 1 is written as the following two constraints:

σ1 #σa ðtensile stress in bar 1Þ
2σ1 #σa ðcompressive stress in bar 1Þ ðfÞ

With this approach, the second constraint is satisfied automatically if bar 1 is in tension,
and the first constraint is automatically satisfied if bar 1 is in compression. Similarly, the
stress constraint for bar 2 is written as

σ2 #σa ðtensile stress in bar 2Þ
2σ2 #σa ðcompressive stress in bar 2Þ ðgÞ

Finally, to impose fabrication and space limitations, constraints on the design variables
are imposed as

xiL # xi # xiU ; i5 1 to 6 ðhÞ
where xiL and xiU are the minimum and maximum allowed values for the ith design vari-
able. Their numerical values must be specified before the problem can be solved.

Note that the expression for bar stress changes if different design variables are chosen
for circular tubes, or if a different cross-sectional shape is chosen for the bars. For example,
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inner and outer radii, mean radius and wall thickness, or outside diameter and the ratio of
inside to outside diameter as design variables will all produce different expressions for the
cross-sectional areas and stresses. These results show that the choice of design variables greatly
influences the problem formulation.

Note also that we had to first analyze the structure (calculate its response to given
inputs) to write the constraints properly. It was only after we had calculated the forces in
the bars that we were able to write the constraints. This is an important step in any
engineering design problem formulation: We must be able to analyze the system before we can
formulate the design optimization problem.

In the following examples, we summarize two formulations of the problem. The first
uses several intermediate variables, which is useful when the problem is transcribed into a
computer program. Because this formulation involves simpler expressions of various
quantities, it is easier to write and debug a computer program. In the second formulation,
all intermediate variables are eliminated to obtain the formulation exclusively in terms of
design variables. This formulation has slightly more complex expressions. It is important
to note that the second formulation may not be possible for all applications because some
problem functions may only be implicit functions of the design variables. One such formu-
lation is presented in Chapter 14.

EXAMPLE 2.8 FORMULATION OF THE TWO-BAR BRACKET
PROBLEM WITH INTERMEDIATE VARIABLES

A summary of the problem formulation for optimum design of the two-bar bracket using

intermediate variables is as follows:

Specified data: W, θ, σa . 0, xiL and xiU, i5 1 to 6

Design variables: x1, x2, x3, x4, x5, x6
Intermediate variables:

Bar cross-sectional areas: A1 5
π
4
ðx23 2 x24Þ; A2 5

π
4
ðx25 2 x26Þ ðaÞ

Length of bars:
l5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 1 0:5x2ð Þ2

q
ðbÞ

Forces in bars:

F1 5 20:5Wl
sinθ
x1

1
2 cosθ
x2

2
4

3
5

F2 5 20:5Wl
sinθ
x1

2
2 cosθ
x2

2
4

3
5

ðcÞ

Bar stresses:
σ1 5

F1
A1

; σ2 5
F2
A2

ðdÞ

Cost function: Minimize the total mass of the bars,

Mass5 ρlðA1 1A2Þ ðeÞ
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Constraints:

Bar stress:
2σ1 #σa; σ1 #σa; 2σ2 #σa; σ2 #σa ðfÞ

Design variable limits:
xiL # xi # xiU ; i5 1 to 6 ðgÞ

Note that the intermediate variables, such as A1, A2, F1, F2, σ1, and σ2, may also be treated as

optimization variables. However, in that case, we have six equality constraints between the vari-

ables, in addition to the other constraints.

EXAMPLE 2.9 FORMULATION OF THE TWO-BAR BRACKET
WITH DESIGN VARIABLES ONLY

A summary of the problem formulation for optimum design of the two-bar bracket in terms

of design variables only is obtained by eliminating the intermediate variables from all the expres-

sions as follows:

Specified data: W, θ, σa . 0, xiL and xiU, i5 1 to 6

Design variables: x1, x2, x3, x4, x5, x6
Cost function: Minimize total mass of the bars,

Mass5
πρ
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 1 ð0:5x2Þ2

q
ðx23 2 x24 1 x25 2 x26Þ ðaÞ

Constraints:

Bar stress:

2W
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 1 ð0:5x2Þ2

q
πðx23 2 x24Þ

sinθ
x1

1
2 cosθ
x2

� �
#σa ðbÞ

22W
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 1 ð0:5x2Þ2

q
πðx23 2 x24Þ

sinθ
x1

1
2 cosθ
x2

� �
#σa ðcÞ

2W
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 1 ð0:5x2Þ2

q
πðx25 2 x26Þ

sinθ
x1

2
2 cosθ
x2

� �
#σa ðdÞ

22W
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 1 ð0:5x2Þ2

q
πðx25 2 x26Þ

sinθ
x1

2
2 cosθ
x2

� �
#σa ðeÞ

Design variable limits:
xiL # xi # xiU ; i5 1 to 6 ðfÞ
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2.6 DESIGN OF A CABINET

STEP 1: PROJECT/PROBLEM DESCRIPTION A cabinet is assembled from components C1,
C2, and C3. Each cabinet requires 8 C1, 5 C2, and 15 C3 components. The assembly of C1

requires either 5 bolts or 5 rivets, whereas C2 requires 6 bolts or 6 rivets, and C3 requires 3
bolts or 3 rivets. The cost of installing a bolt, including the cost of the bolt itself, is $0.70 for
C1, $1.00 for C2, and $0.60 for C3. Similarly, riveting costs are $0.60 for C1, $0.80 for C2, and
$1.00 for C3. Bolting and riveting capacities per day are 6000 and 8000, respectively. To min-
imize the cost for the 100 cabinets that must be assembled each day, we wish to determine
the number of components to be bolted and riveted (after Siddall, 1972).

STEP 2: DATA AND INFORMATION COLLECTION All data for the problem are given in
the project statement. This problem can be formulated in several different ways depending
on the assumptions made and the definition of the design variables. Three formulations
are presented, and for each one, the design variables are identified and expressions for the
cost and constraint functions are derived; that is, steps 3 through 5 are presented.

2.6.1 Formulation 1 for Cabinet Design

STEP 3: DEFINITION OF DESIGN VARIABLES In the first formulation, the following
design variables are identified for 100 cabinets:

x15number of C1 to be bolted for 100 cabinets
x25number of C1 to be riveted for 100 cabinets
x35number of C2 to be bolted for 100 cabinets
x45number of C2 to be riveted for 100 cabinets
x55number of C3 to be bolted for 100 cabinets
x65number of C3 to be riveted for 100 cabinets

STEP 4: OPTIMIZATION CRITERION The design objective is to minimize the total cost
of cabinet fabrication, which is obtained from the specified costs for bolting and riveting
each component:

Cost5 0:70ð5Þx1 1 0:60ð5Þx2 1 1:00ð6Þx3 1 0:80ð6Þx4 1 0:60ð3Þx5 1 1:00ð3Þx6
5 3:5x1 1 3:0x2 1 6:0x3 1 4:8x4 1 1:8x5 1 3:0x6

ðaÞ

STEP 5: FORMULATION OF CONSTRAINTS The constraints for the problem consist of
riveting and bolting capacities and the number of cabinets fabricated each day. Since 100
cabinets must be fabricated, the required numbers of C1, C2, and C3 are given in the
following constraints:

x1 1 x2 5 83 100 ðnumber of C1 neededÞ
x3 1 x4 5 53 100 ðnumber of C2 neededÞ
x5 1 x6 5 153 100 ðnumber of C3 neededÞ

ðbÞ
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Bolting and riveting capacities must not be exceeded. Thus,

5x1 1 6x3 1 3x5 # 6000 ðbolting capacityÞ
5x2 1 6x4 1 3x6 # 8000 ðriveting capacityÞ ðcÞ

Finally, all design variables must be non-negative to find a meaningful solution:

xi $ 0; i5 1 to 6 ðdÞ

2.6.2 Formulation 2 for Cabinet Design

STEP 3: DEFINITION OF DESIGN VARIABLES If we relax the constraint that each compo-
nent must be bolted or riveted, then the following design variables can be defined:

x15 total number of bolts required for all C1

x25 total number of bolts required for all C2

x35 total number of bolts required for all C3

x45 total number of rivets required for all C1

x55 total number of rivets required for all C2

x65 total number of rivets required for all C3

STEP 4: OPTIMIZATION CRITERION The objective is still to minimize the total cost of
fabricating 100 cabinets, given as

Cost5 0:70x1 1 1:00x2 1 0:60x3 1 0:60x4 1 0:80x5 1 1:00x6 ðeÞ

STEP 5: FORMULATION OF CONSTRAINTS Since 100 cabinets must be built every day,
it will be necessary to have 800 C1, 500 C2, and 1500 C3 components. The total number of
bolts and rivets needed for all C1, C2, and C3 components is indicated by the following
equality constraints:

x1 1 x4 5 53 800 ðbolts and rivets needed for C1Þ
x2 1 x5 5 63 500 ðbolts and rivets needed for C2Þ
x3 1 x6 5 33 1500 ðbolts and rivets needed for C3Þ

ðfÞ

Constraints on capacity for bolting and riveting are

x1 1 x2 1 x3 # 6000 ðbolting capacityÞ
x4 1 x5 1 x6 # 8000 ðriveting capacityÞ ðgÞ

Finally, all design variables must be non-negative:

xi $ 0; i5 1 to 6 ðhÞ
Thus, this formulation also has six design variables, three equality constraints, and two

inequality constraints. After an optimum solution has been obtained, we can decide how
many components to bolt and how many to rivet.
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2.6.3 Formulation 3 for Cabinet Design

STEP 3: DEFINITION OF DESIGN VARIABLES Another formulation of the problem is
possible if we require that all cabinets be identical. The following design variables can be
identified:

x15number of C1 to be bolted on one cabinet
x25number of C1 to be riveted on one cabinet
x35number of C2 to be bolted on one cabinet
x45number of C2 to be riveted on one cabinet
x55number of C3 to be bolted on one cabinet
x65number of C3 to be riveted on one cabinet

STEP 4: OPTIMIZATION CRITERION With these design variables, the cost of fabricating
100 cabinets each day is given as

Cost5 100½0:70ð5Þx1 1 0:60ð5Þx2 1 1:00ð6Þx3 1 0:80ð6Þx4 1 0:60ð3Þx5 1 1:00ð3Þx6�
5 350x1 1 300x2 1 600x3 1 480x4 1 180x5 1 300x6

ðiÞ

STEP 5: FORMULATION OF CONSTRAINTS Since each cabinet needs 8 C1, 5 C2, and
15 C3 components, the following equality constraints can be identified:

x1 1 x2 5 8 ðnumber of C1 neededÞ
x3 1 x4 5 5 ðnumber of C2 neededÞ
x5 1 x6 5 15 ðnumber of C3 neededÞ

ðjÞ

Constraints on the capacity to rivet and bolt are expressed as the following inequalities:

ð5x1 1 6x3 1 3x5Þ100# 6000 ðbolting capacityÞ
ð5x2 1 6x4 1 3x6Þ100# 8000 ðriveting capacityÞ ðkÞ

Finally, all design variables must be non-negative:

xi $ 0; i5 1 to 6 ðlÞ
The following points are noted for the three formulations:

1. Because cost and constraint functions are linear in all three formulations, they are linear
programming problems. It is conceivable that each formulation will yield a different
optimum solution. After solving the problems, the designer can select the best strategy
for fabricating cabinets.

2. All formulations have three equality constraints, each involving two design variables.
Using these constraints, we can eliminate three variables from the problem and thus
reduce its dimension. This is desirable from a computational standpoint because the
number of variables and constraints is reduced. However, because the elimination of
variables is not possible for many complex problems, we must develop and use
methods to treat both equality and inequality constraints.
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3. For a meaningful solution for these formulations, all design variables must have integer
values. These are called integer programming problems. Some numerical methods to treat
this class of problem are discussed in Chapter 15.

2.7 MINIMUM-WEIGHT TUBULAR COLUMN DESIGN

STEP 1: PROJECT/PROBLEM DESCRIPTION Straight columns are used as structural ele-
ments in civil, mechanical, aerospace, agricultural, and automotive structures. Many such
applications can be observed in daily life—for example, a street light pole, a traffic light
post, a flag pole, a water tower support, a highway sign post, a power transmission pole.
It is important to optimize the design of a straight column since it may be mass-produced.
The objective of this project is to design a minimum-mass tubular column of length l sup-
porting a load P without buckling or overstressing. The column is fixed at the base and
free at the top, as shown in Figure 2.7. This type of structure is called a cantilever column.

STEP 2: DATA AND INFORMATION COLLECTION The buckling load (also called the critical
load) for a cantilever column is given as

Pcr 5
π2EI

4l2
ðaÞ

The buckling load formula for a column with other support conditions is different from
this formula (Crandall, Dahl, and Lardner, 1999). Here, I is the moment of inertia for the
cross-section of the column and E is the material property, called the modulus of elasticity
(Young’s modulus). Note that the buckling load depends on the design of the column
(i.e., the moment of inertia I). It imposes a limit on the applied load; that is, the column fails
if the applied load exceeds the buckling load. The material stress σ for the column is
defined as P/A, where A is the cross-sectional area of the column. The material allowable
stress under the axial load is σa, and the material mass density is ρ (mass per unit volume).

(b)

t

2R
(c)

Ro

Ri

(a)

P

l

FIGURE 2.7 (a) Tubular column; (b) formulation 1; (c) formulation 2.
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A cross-section of the tubular column is shown in Figure 2.7. Many formulations for the
design problem are possible depending on how the design variables are defined. Two
such formulations are described here.

2.7.1 Formulation 1 for Column Design

STEP 3: DEFINITION OF DESIGN VARIABLES For the first formulation, the following
design variables are defined:

R5mean radius of the column
t5wall thickness

Assuming that the column wall is thin (R c t), the material cross-sectional area and
moment of inertia are

A5 2πRt; I5 πR3t ðbÞ

STEP 4: OPTIMIZATION CRITERION The total mass of the column to be minimized is
given as

Mass5 ρðlAÞ5 2ρlπRt ðcÞ

STEP 5: FORMULATION OF CONSTRAINTS The first constraint is that the stress (P/A)
should not exceed the material allowable stress σa to avoid material failure. This is
expressed as the inequality σ # σa. Replacing σ with P/A and then substituting for A, we
obtain

P

2πRt
# σa ðdÞ

The column should not buckle under the applied load P, which implies that the applied
load should not exceed the buckling load (i.e., P#Pcr). Using the given expression for the
buckling load in Eq. (a) and substituting for I, we obtain

P#
π3ER3t

4l2
ðeÞ

Finally, the design variables R and t must be within the specified minimum and maximum
values:

Rmin #R#Rmax; tmin # t# tmax ðfÞ

2.7.2 Formulation 2 for Column Design

STEP 3: DEFINITION OF DESIGN VARIABLES Another formulation of the design prob-
lem is possible if the following design variables are defined:

Ro5 outer radius of the column
Ri5 inner radius of the column
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In terms of these design variables, the cross-sectional area A and the moment of inertia
I are

A5 πðR2
o 2R2

i Þ; I5
π
4
ðR4

o 2R4
i Þ: ðgÞ

STEP 4: OPTIMIZATION CRITERION Minimize the total mass of the column:

Mass5 ρðlAÞ5πρlðR2
o 2R2

i Þ ðhÞ

STEP 5: FORMULATION OF THE CONSTRAINTS The material crushing constraint is
(P/A# σa):

P

πðR2
o 2R2

i Þ
#σa ðiÞ

Using the foregoing expression for I, the buckling load constraint is (P#Pcr):

P#
π3E

16l3
ðR4

o 2R4
i Þ ðjÞ

Finally, the design variables Ro and Ri must be within specified limits:

Ro min #Ro #Ro max; Ri min #Ri #Ro max ðkÞ
When this problem is solved using a numerical method, a constraint Ro. Ri must also

be imposed. Otherwise, some methods may take the design to the point where Ro, Ri.
This situation is not physically possible and must be explicitly excluded to numerically
solve the design problem.

In addition to the foregoing constraints, local buckling of the column wall needs to be
considered for both formulations. Local buckling can occur if the wall thickness becomes
too small. This can be avoided if the ratio of mean radius to wall thickness is required to
be smaller than a limiting value, that is,

ðRo 1RiÞ
2ðRo 2RiÞ

# k or
R

t
# k ðlÞ

where k is a specified value that depends on Young’s modulus and the yield stress of the
material. For steel with E5 29,000 ksi and a yield stress of 50 ksi, k is given as 32 (AISC,
2005).

2.8 MINIMUM-COST CYLINDRICALTANK DESIGN

STEP 1: PROJECT/PROBLEM DESCRIPTION Design a minimum-cost cylindrical tank
closed at both ends to contain a fixed volume of fluid V. The cost is found to depend
directly on the area of sheet metal used.

STEP 2: DATA AND INFORMATION COLLECTION Let c be the dollar cost per unit area
of the sheet metal. Other data are given in the project statement.
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STEP 3: DEFINITION OF DESIGN VARIABLES The design variables for the problem are
identified as

R5 radius of the tank
H5height of the tank

STEP 4: OPTIMIZATION CRITERION The cost function for the problem is the dollar cost
of the sheet metal for the tank. Total surface area of the sheet metal consisting of the end
plates and cylinder is given as

A5 2πR2 1 2πRH ðaÞ
Therefore, the cost function for the problem is given as

f 5 cð2πR2 1 2πRHÞ ðbÞ

STEP 5: FORMULATION OF CONSTRAINTS The volume of the tank (πR2H) is required
to be V. Therefore,

πR2H5V ðcÞ
Also, both of the design variables R and H must be within some minimum and maximum
values:

Rmin #R#Rmax; Hmin #H#Hmax ðdÞ
This problem is quite similar to the can problem discussed in Section 2.2. The only differ-

ence is in the volume constraint. There the constraint is an inequality and here it is an equality.

2.9 DESIGN OF COIL SPRINGS

STEP 1: PROJECT/PROBLEM DESCRIPTION Coil springs are used in numerous practical
applications. Detailed methods for analyzing and designing such mechanical components
have been developed over the years (e.g., Spotts, 1953; Wahl, 1963; Shigley, Mischke, and
Budynas, 2004; Haug and Arora, 1979). The purpose of this project is to design a mini-
mum-mass spring (shown in Figure 2.8) to carry a given axial load (called a tension-
compression spring) without material failure and while satisfying two performance
requirements: The spring must deflect by at least Δ (in) and the frequency of surge waves
must not be less than ω0 (Hertz, Hz).

STEP 2: DATA AND INFORMATION COLLECTION To formulate the problem of design-
ing a coil spring, see the notation and data defined in Table 2.2.

D
P P

d
δ

FIGURE 2.8 Coil spring.
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The wire twists when the spring is subjected to a tensile or a compressive load.
Therefore, shear stress needs to be calculated so that a constraint on it can be included in
the formulation. In addition, surge wave frequency needs to be calculated. These and other
design equations for the spring are given as

Load deflection equation: P5Kδ ðaÞ

Spring constant: K5
d4G

8D3N
ðbÞ

Shear stress: τ5
8kPD

πd3
ðcÞ

Wahl stress concentration factor: k5
ð4D2 dÞ
4ðD2 dÞ 1

0:615d

D
ðdÞ

Frequency of surge waves: ω5
d

2πND2

ffiffiffiffiffi
G

2ρ

s
ðeÞ

TABLE 2.2 Information to design a coil spring

Notation Data

Deflection along the axis of spring δ, in

Mean coil diameter D, in

Wire diameter d, in

Number of active coils N

Gravitational constant g5 386 in/s2

Frequency of surge waves ω, Hz

Weight density of spring material γ5 0.285 lb/in3

Shear modulus G5 (1.153 107) lb/in2

Mass density of material (ρ5 γ/g) ρ5 (7.383423 1024) lb-s2/in4

Allowable shear stress τa5 80,000 lb/in2

Number of inactive coils Q5 2

Applied load P5 10 lb

Minimum spring deflection Δ5 0.5 in

Lower limit on surge wave frequency ω05 100 Hz

Limit on outer diameter of coil Do5 1.5 in
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The expression for the Wahl stress concentration factor k in Eq. (d) has been determined
experimentally to account for unusually high stresses at certain points on the spring.
These analysis equations are used to define the constraints.

STEP 3: DEFINITION OF DESIGN VARIABLES The three design variables for the problem
are defined as

d5wire diameter, in
D5mean coil diameter, in
N5number of active coils, integer

STEP 4: OPTIMIZATION CRITERION The problem is to minimize the mass of the spring,
given as volume3mass density:

Mass5
π
4
d2

� �
ðN1QÞπD½ �ρ5 1

4
ðN1QÞπ2Dd2ρ ðfÞ

STEP 5: FORMULATION OF CONSTRAINTS

Deflection constraint. It is often a requirement that deflection under a load P be at least Δ.
Therefore, the constraint is that the calculated deflection δ must be greater than or equal
to Δ. Such a constraint is common to spring design. The function of the spring in
many applications is to provide a modest restoring force as parts undergo large
displacement in carrying out kinematic functions. Mathematically, this performance
requirement (δ $ Δ) is stated in an inequality form, using Eq. (a), as

P

K
$Δ ðgÞ

Shear stress constraint. To prevent material overstressing, shear stress in the wire must be
no greater than τa, which is expressed in mathematical form as

τ# τa ðhÞ
Constraint on the frequency of surge waves. We also wish to avoid resonance in dynamic
applications by making the frequency of surge waves (along the spring) as great as
possible. For the present problem, we require the frequency of surge waves for the
spring to be at least ω0 (Hz). The constraint is expressed in mathematical form as

ω$ω0 ðiÞ
Diameter constraint. The outer diameter of the spring should not be greater than Do, so

D1 d#D0 ðjÞ
Explicit bounds on design variables. To avoid fabrication and other practical difficulties,
we put minimum and maximum size limits on the wire diameter, coil diameter, and
number of turns:

dmin # d# dmax

Dmin #D#Dmax

Nmin #N#Nmax

ðkÞ
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Thus, the purpose of the minimum-mass spring design problem is to select the design
variables d, D, and N to minimize the mass of Eq. (f), while satisfying the ten inequality
constraints of Eqs. (g) through (k). If the intermediate variables are eliminated, the prob-
lem formulation can be summarized in terms of the design variables only.

EXAMPLE 2.10 FORMULATION OF THE SPRING DESIGN
PROBLEM WITH DESIGN VARIABLES ONLY

A summary of the problem formulation for the optimum design of coil springs is as follows:

Specified data: Q, P, ρ, γ, τa, G, Δ, ω0, D0, dmin, dmax, Dmin, Dmax, Nmin, Nmax

Design variables: d, D, N

Cost function: Minimize the mass of the spring given in Eq. (f).

Constraints:

Deflection limit:
8PD3N

d4G
$Δ ðlÞ

Shear stress:
8PD

πd3
4D2 dð Þ
4 D2 dð Þ 1

0:615d

D

� �
# τa ðmÞ

Frequency of surge waves: d

2πND2

ffiffiffiffiffi
G

2ρ

s
$ω0 ðnÞ

Diameter constraint: Given in Eq. (j).

Design variable bounds: Given in Eqs. (k).

2.10 MINIMUM-WEIGHT DESIGN OF A SYMMETRIC
THREE-BAR TRUSS

STEP 1: PROJECT/PROBLEM DESCRIPTION As an example of a slightly more complex
design problem, consider the three-bar structure shown in Figure 2.9 (Schmit, 1960; Haug
and Arora, 1979). This is a statically indeterminate structure for which the member forces
cannot be calculated solely from equilibrium equations. The structure is to be designed for
minimum volume (or, equivalently, minimum mass) to support a force P. It must satisfy
various performance and technological constraints, such as member crushing, member
buckling, failure by excessive deflection of node 4, and failure by resonance when the
natural frequency of the structure is below a given threshold.

STEP 2: DATA AND INFORMATION COLLECTION Needed to solve the problem are geom-
etry data, properties of the material used, and loading data. In addition, since the structure
is statically indeterminate, the static equilibrium equations alone are not enough to analyze
it. We need to use advanced analysis procedures to obtain expressions for member forces,
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nodal displacements, and the natural frequency to formulate constraints for the problem.
Here we will give such expressions.

Since the structure must be symmetric, members 1 and 3 will have the same cross-
sectional area, say A1. Let A2 be the cross-sectional area of member 2. Using analysis pro-
cedures for statically indeterminate structures, horizontal and vertical displacements u and
v of node 4 are calculated as

u5

ffiffiffi
2

p
lPu

A1E
; v5

ffiffiffi
2

p
lPv

A1 1
ffiffiffi
2

p
A2

	 

E

ðaÞ

where E is the modulus of elasticity for the material, Pu and Pv are the horizontal and ver-
tical components of the applied load P given as Pu5P cosθ and Pv5P sinθ, and l is the
height of the truss as shown in Figure 2.9. Using the displacements, forces carried by the
members of the truss can be calculated. Then the stresses σ1, σ2, and σ3 in members 1, 2,
and 3 under the applied load P can be computed from member forces as (stress5 force/
area; σi5 Fi/Ai):

σ1 5
1ffiffiffi
2

p Pu

A1
1

Pv

A1 1
ffiffiffi
2

p
A2

	 

" #

ðbÞ

σ2 5

ffiffiffi
2

p
Pv

A1 1
ffiffiffi
2

p
A2

	 
 ðcÞ

σ3 5
1ffiffiffi
2

p 2
Pu

A1
1

Pv

A1 1
ffiffiffi
2

p
A2

	 

" #

ðdÞ

Note that the member forces, and hence stresses, are dependent on the design of the struc-
ture, that is, the member areas.

Many structures support moving machinery and other dynamic loads. These structures
vibrate with a certain frequency known as natural frequency. This is an intrinsic dynamic

1

1

2

4

2

3

3

l

l

l

θ
u

v

P

FIGURE 2.9 Three-bar truss.
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property of a structural system. There can be several modes of vibration, each having its
own frequency. Resonance causes catastrophic failure of the structure, which occurs when
any one of its vibration frequencies coincides with the frequency of the operating machin-
ery it supports.

Therefore, it is reasonable to demand that no structural frequency be close to the fre-
quency of the operating machinery. The mode of vibration corresponding to the lowest
natural frequency is important because that mode is excited first. It is important to make
the lowest (fundamental) natural frequency of the structure as high as possible to avoid
any possibility of resonance. This also makes the structure stiffer. Frequencies of a struc-
ture are obtained by solving an eigenvalue problem involving the structure’s stiffness and
mass properties. The lowest eigenvalue ζ related to the lowest natural frequency of the
symmetric three-bar truss is computed using a consistent-mass model:

ζ5
3EA1

ρl2 4A1 1
ffiffiffi
2

p
A2

	 
 ðeÞ

where ρ is the material mass per unit volume (mass density). This completes the analysis
of the structure.

STEP 3: DEFINITION OF DESIGN VARIABLES The following design variables are defined
for the symmetric structure:

Al5 cross-sectional area of material for members 1 and 3
A25 cross-sectional area of material for member 2

Other design variables for the problem are possible depending on the cross-sectional
shape of members, as shown in Figure 2.6.

STEP 4: OPTIMIZATION CRITERION The relative merit of any design for the problem is
measured in its material weight. Therefore, the total weight of the structure serves as a
cost function (weight of member5 cross-sectional area3 length3weight density):

Volume5 lγ 2
ffiffiffi
2

p
A1 1A2

� �
ðfÞ

where γ is the weight density.

STEP 5: FORMULATION OF CONSTRAINTS The structure is designed for use in two
applications. In each application, it supports different loads. These are called loading con-
ditions for the structure. In the present application, a symmetric structure is obtained if
the following two loading conditions are considered. The first load is applied at an angle θ
and the second one, of same magnitude, at an angle (π2 θ), where the angle θ (0� # θ #
90�) is shown earlier in Figure 2.9. If we let member 1 be the same as member 3, then the
second loading condition can be ignored. Therefore, we consider only one load applied at
an angle θ (0� # θ # 90�).

Note from Eqs. (b) and (c) that the stresses σ1 and σ2 are always positive (tensile). If σa .
0 is an allowable stress for the material, then the stress constraints for members 1 and 2 are

σ1 # σa; σ2 #σa ðgÞ
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However, from Eq. (c), stress in member 3 can be positive (tensile) or negative (compres-
sive) depending on the load angle. Therefore, both possibilities need to be considered in
formulating the stress constraint for member 3. One way to formulate such a constraint
was explained in Section 2.5. Another way is as follows:

IF ðσ3 , 0Þ THEN 2σ3#σa ELSE σ3#σa ðhÞ
Since the sign of the stress does not change with design, if the member is in compres-

sion, it remains in compression throughout the optimization process. Therefore, the con-
straint function remains continuous and differentiable.

A similar procedure can be used for stresses in bars 1 and 2 if the stresses can reverse
their sign (e.g., when the load direction is reversed). Horizontal and vertical deflections of
node 4 must be within the specified limits Δu and Δv, respectively. Using Eq. (a), the
deflection constraints are

u#Δu; v#Δv ðiÞ
As discussed previously, the fundamental natural frequency of the structure should be

higher than a specified frequency ω0 (Hz). This constraint can be written in terms of
the lowest eigenvalue for the structure. The eigenvalue corresponding to a frequency of ω0

(Hz) is given as (2πω0)
2. The lowest eigenvalue ζ for the structure given in Eq. (e) should

be higher than (2πω0)
2, that is,

ζ$ ð2πω0Þ2 ðjÞ
To impose buckling constraints for members under compression, an expression for the

moment of inertia of the cross-section is needed. This expression cannot be obtained because
the cross-sectional shape and dimensions are not specified. However, the moment of inertia I
can be related to the cross-sectional area of the members as I5 βA2, where A is the cross-sec-
tional area and β is a nondimensional constant. This relation follows if the shape of the
cross-section is fixed and all of its dimensions are varied in the same proportion.

The axial force for the ith member is given as Fi5Aiσi, where i5 1, 2, 3 with tensile
force taken as positive. Members of the truss are considered columns with pin ends.
Therefore, the buckling load for the ith member is given as π2EI/li

2, where li is the length
of the ith member (Crandall, Dahl, and Lardner, 1999). Buckling constraints are expressed
as 2Fi # π2EI/li

2, where i5 1, 2, 3. The negative sign for Fi is used to make the left side
of the constraints positive when the member is in compression. Also, there is no need to
impose buckling constraints for members in tension. With the foregoing formulation, the
buckling constraint for tensile members is automatically satisfied. Substituting various
quantities, member buckling constraints are

2σ1 #
π2EβA1

2l2
#σa; 2σ2 #

π2EβA2

l2
#σa; 2σ3 #

π2EβA1

2l2
#σa ðkÞ

Note that the buckling load has been divided by the member area to obtain the buckling
stress in Eqs. (k). The buckling stress is required not to exceed the material allowable
stress σa. It is additionally noted that with the foregoing formulation, the load P in
Figure 2.9 can be applied in the positive or negative direction. When the load is applied in
the opposite direction, the member forces are also reversed. The foregoing formulation for
the buckling constraints can treat both positive and negative load in the solution process.
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Finally, A1 and A2 must both be non-negative, that is, A1, A2 $ 0. Most practical design
problems require each member to have a certain minimum area, Amin. The minimum area
constraints can be written as

A1; A2 $Amin ðlÞ
The optimum design problem, then, is to find cross-sectional areas A1, A2 $ Amin to

minimize the volume of Eq. (f) subject to the constraints of Eqs. (g) through (l). This small-
scale problem has 11 inequality constraints and 2 design variables.

2.11 A GENERAL MATHEMATICAL MODEL
FOR OPTIMUM DESIGN

To describe optimization concepts and methods, we need a general mathematical state-
ment for the optimum design problem. Such a mathematical model is defined as the mini-
mization of a cost function while satisfying all equality and inequality constraints. The
inequality constraints in the model are always transformed as “# types.” This will
be called the standard design optimization model that is treated throughout this text. It
will be shown that all design problems can easily be transcribed into the standard form.

2.11.1 Standard Design Optimization Model

In previous sections, several design problems were formulated. All problems have an
optimization criterion that can be used to compare various designs and to determine an
optimum or the best one. Most design problems must also satisfy certain constraints.
Some design problems have only inequality constraints, others have only equality con-
straints, and some have both. We can define a general mathematical model for optimum
design to encompass all of the possibilities. A standard form of the model is first stated,
and then transformation of various problems into the standard form is explained.

Standard Design Optimization Model

Find an n-vector x5 (x1, x2, . . ., xn) of design variables to

Minimize a cost function:

fðxÞ5 fðx1; x2; . . . ; xnÞ ð2:1Þ
subject to the p equality constraints:

hjðxÞ5 hjðx1; x2; . . . ; xnÞ5 0; j5 1 to p ð2:2Þ
and the m inequality constraints:

giðxÞ5 giðx1; x2; . . . ; xnÞ# 0; i5 1 to m ð2:3Þ
Note that the simple bounds on design variables, such as xi $ 0, or xiL # xi # xiU, where
xiL and xiU are the smallest and largest allowed values for xi, are assumed to be included
in the inequalities of Eq. (2.3).
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In numerical methods, these constraints are treated explicitly to take advantage of their
simple form to achieve efficiency. However, in discussing the basic optimization concepts,
we assume that the inequalities in Eq. (2.3) include these constraints as well.

2.11.2 Maximization Problem Treatment

The general design model treats only minimization problems. This is no restriction, as
maximization of a function F(x) is the same as minimization of a transformed function
f(x)5 2F(x). To see this graphically, consider a plot of the function of one variable F(x),
shown in Figure 2.10(a). The function F(x) takes its maximum value at the point x*. Next
consider a graph of the function f(x)5 2F(x), shown in Figure 2.10(b). It is clear that f(x) is
a reflection of F(x) about the x-axis. It is also clear from the graph that f(x) takes on a mini-
mum value at the same point x* where the maximum of F(x) occurs. Therefore, minimiza-
tion of f(x) is equivalent to maximization of F(x).

2.11.3 Treatment of “Greater Than Type” Constraints

The standard design optimization model treats only “# type” inequality constraints.
Many design problems may also have “$ type” inequalities. Such constraints can be

F (x)

F (x)

x*

(a)

(b)

x

x
x*

FIGURE 2.10 Point maximizing F(x) equals point mini-
mizing 2F(x): (a) plot of F(x); (b) plot of f(x)5 2 F(x).
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converted to the standard form without much difficulty. The “$ type” constraint Gj(x) $
0 is equivalent to the “# type” inequality gj(x)5 2Gj(x) # 0. Therefore, we can multiply
any “$ type” constraint by 21 to convert it to a “# type.”

2.11.4 Application to Different Engineering Fields

Design optimization problems from different fields of engineering can be transcribed
into the standard model. It must be realized that the overall process of designing different engi-
neering systems is the same. Analytical and numerical methods for analyzing systems can
differ. Formulation of the design problem can contain terminology that is specific to the
particular domain of application. For example, in the fields of structural, mechanical, and
aerospace engineering, we are concerned with the integrity of the structure and its compo-
nents. The performance requirements involve constraints on member stresses, strains,
deflections at key points, frequencies of vibration, buckling failure, and so on. These con-
cepts are specific to each field, and designers working in the particular field understand
their meaning and the constraints.

Other fields of engineering also have their own terminology to describe design optimiza-
tion problems. However, once the problems from different fields have been transcribed into
mathematical statements using a standard notation, they have the same mathematical form.
They are contained in the standard design optimization model defined in Eqs. (2.1) through
(2.3). For example, all of the problems formulated earlier in this chapter can be transformed
into the form of Eqs. (2.1) through (2.3). Therefore, the optimization concepts and methods
described in the text are quite general and can be used to solve problems from diverse fields.
The methods can be developed without reference to any design application. This is a key point and
must be kept in mind while studying the optimization concepts and methods.

2.11.5 Important Observations about the Standard Model

Several points must be clearly understood about the standard model:

1. Dependence of functions on design variables: First of all, the functions f(x), hj(x), and gi(x)
must depend, explicitly or implicitly, on some of the design variables. Only then are they
valid for the design problem. Functions that do not depend on any variable have no
relation to the problem and can be safely ignored.

2. Number of equality constraints: The number of independent equality constraints must be
less than, or at the most equal to, the number of design variables (i.e., p # n). When
p . n, we have an overdetermined system of equations. In that case, either some equality
constraints are redundant (linearly dependent on other constraints) or they are
inconsistent. In the former case, redundant constraints can be deleted and, if p , n,
the optimum solution for the problem is possible. In the latter case, no solution
for the design problem is possible and the problem formulation needs to be closely
reexamined. When p5 n, no optimization of the system is necessary because the
roots of the equality constraints are the only candidate points for optimum design.

3. Number of inequality constraints: While there is a restriction on the number of
independent equality constraints, there is no restriction on the number of inequality
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constraints. However, the total number of active constraints (satisfied at equality) must,
at the optimum, be less than or at the most equal to the number of design variables.

4. Unconstrained problems: Some design problems may not have any constraints. These
are called unconstrained; those with constraints are called constrained.

5. Linear programming problems: If all of the functions f(x), hj(x), and gi(x) are linear in
design variables x, then the problem is called a linear programming problem. If any of
these functions is nonlinear, the problem is called a nonlinear programming problem.

6. Scaling of problem functions: It is important to note that if the cost function is scaled by
multiplying it with a positive constant, the optimum design does not change. However,
the optimum cost function value does change. Also, any constant can be added to the
cost function without affecting the optimum design. Similarly, the inequality constraints
can be scaled by any positive constant and the equalities by any constant. This will
not affect the feasible region and hence the optimum solution. All the foregoing
transformations, however, affect the values of the Lagrange multipliers (defined in
Chapter 4). Also, performance of the numerical algorithms for a solution to the
optimization problem may be affected by these transformations.

2.11.6 Feasible Set

The term feasible set will be used throughout the text. A feasible set for the design problem
is a collection of all feasible designs. The terms constraint set and feasible design space are also
used to represent the feasible set of designs. The letter S is used to represent the feasible
set. Mathematically, the set S is a collection of design points satisfying all constraints:

S5 fx j hjðxÞ5 0; j5 1 to p; giðxÞ# 0; i5 1 to mg ð2:4Þ
The set of feasible designs is sometimes referred to as the feasible region, especially for opti-

mization problems with two design variables. It is important to note that the feasible region
usually shrinks when more constraints are added to the design model and expands when some con-
straints are deleted. When the feasible region shrinks, the number of possible designs that
can optimize the cost function is reduced; that is, there are fewer feasible designs. In this
event, the minimum value of the cost function is likely to increase. The effect is completely
the opposite when some constraints are dropped. This observation is significant for practi-
cal design problems and should be clearly understood.

2.11.7 Active/Inactive/Violated Constraints

We will quite frequently refer to a constraint as active, tight, inactive, or violated. We
define these terms precisely. An inequality constraint gj(x) # 0 is said to be active at a
design point x* if it is satisfied at equality (i.e., gj(x*)5 0). This is also called a tight or bind-
ing constraint. For a feasible design, an inequality constraint may or may not be active.
However, all equality constraints are active for all feasible designs.

An inequality constraint gj(x) # 0 is said to be inactive at a design point x* if it is strictly
satisfied (i.e., gj(x*) , 0). It is said to be violated at a design point x* if its value is positive
(i.e., gj(x*) . 0). An equality constraint hi(x)5 0 is violated at a design point x* if hi(x*) is not
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identically zero. Note that by these definitions, an equality constraint is either active or
violated at a given design point.

2.11.8 Discrete and Integer Design Variables

So far, we have assumed in the standard model that variables xi can have any numerical
value within the feasible region. Many times, however, some variables are required to
have discrete or integer values. Such variables appear quite often in engineering design
problems. We encountered problems in Sections 2.4, 2.6, and 2.9 that have integer design
variables. Before describing how to treat them, let us define what we mean by discrete
and integer variables.

A design variable is called discrete if its value must be selected from a given finite set of
values. For example, a plate thickness must be one that is available commercially: 1/8,
1/4, 3/8, 1/2, 5/8, 3/4, 1 in, and so on. Similarly, structural members must be selected
from a catalog to reduce fabrication cost. Such variables must be treated as discrete in the
standard formulation.

An integer variable, as the name implies, must have an integer value, for example, the
number of logs to be shipped, the number of bolts used, the number of coils in a spring,
the number of items to be shipped, and so on. Problems with such variables are called
discrete and integer programming problems. Depending on the type of problem functions, the
problems can be classified into five different categories. These classifications and the meth-
ods to solve them are discussed in Chapter 15.

In some sense, discrete and integer variables impose additional constraints on the
design problem. Therefore, as noted before, the optimum value of the cost function is
likely to increase with these variables compared with the same problem that is solved
with continuous variables. If we treat all design variables as continuous, the minimum
value of the cost function represents a lower bound on the true minimum value when dis-
crete or integer variables are used. This gives some idea of the “best” optimum solution if
all design variables are continuous. The optimum cost function value is likely to increase
when discrete values are assigned to variables. Thus, the first suggested procedure is
to solve the problem assuming continuous design variables if possible. Then the nearest
discrete/integer values are assigned to the variables and the design is checked for feasibil-
ity. With a few trials, the best feasible design close to the continuous optimum can be
obtained.

As a second approach for solving such problems, an adaptive numerical optimization pro-
cedure may be used. An optimum solution with continuous variables is first obtained if
possible. Then only the variables that are close to their discrete or integer value are
assigned that value. They are held fixed and the problem is optimized again. The proce-
dure is continued until all variables have been assigned discrete or integer values. A few
further trials may be carried out to improve the optimum cost function value. This proce-
dure has been demonstrated by Arora and Tseng (1988).

The foregoing procedures require additional computational effort and do not guaran-
tee a true minimum solution. However, they are quite straightforward and do not
require any additional methods or software for solution of discrete/integer variable
problems.
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2.11.9 Types of Optimization Problems

The standard design optimization model can represent many different problem types.
We saw that it can be used to represent unconstrained, constrained, linear programming,
and nonlinear programming optimization problems. It is important to understand other
optimization problems that are encountered in practical applications. Many times these
problems can be transformed into the standard model and solved by the optimization
methods presented and discussed in this text. Here we present an overview of the types of
optimization problems.

Continuous/Discrete-Variable Optimization Problems

When the design variables can have any numerical value within their allowable range,
the problem is called a continuous-variable optimization problem. When the problem
has only discrete/integer variables, it is called a discrete/integer-variable optimization prob-
lem. When the problem has both continuous and discrete variables, it is called a mixed-
variable optimization problem. Numerical methods for these types of problems have been
developed, as discussed in later chapters.

Smooth/Nonsmooth Optimization Problems

When its functions are continuous and differentiable, the problem is referred to as
smooth (differentiable). There are numerous practical optimization problems in which the
functions can be formulated as continuous and differentiable. There are also many practi-
cal applications where the problem functions are not differentiable or even discontinuous.
Such problems are called nonsmooth (nondifferentiable).

Numerical methods to solve these two classes of problems can be different. Theory
and numerical methods for smooth problems are well developed. Therefore, it is most
desirable to formulate the problem with continuous and differentiable functions as far as
possible. Sometimes, a problem with discontinuous or nondifferentiable functions can be
transformed into one that has continuous and differentiable functions so that optimiza-
tion methods for smooth problems can be used. Such applications are discussed in
Chapter 6.

Network Optimization Problems

A network or a graph consists of points and lines connecting pairs of points. Network
models are used to represent many practical problems and processes from different
branches of engineering, computer science, operations research, transportation, telecom-
munication, decision support, manufacturing, airline scheduling, and many other disci-
plines. Depending on the application type, network optimization problems have been
classified as transportation problems, assignment problems, shortest-path problems, maxi-
mum-flow problems, minimum-cost-flow problems, and critical path problems.

To understand the concept of network problems, let us describe the transportation
problem in more detail. Transportation models play an important role in logistics and sup-
ply chain management for reducing cost and improving service. Therefore the goal is to
find the most effective way to transport goods. A shipper having m warehouses with sup-
ply si of goods at the ith warehouse must ship goods to n geographically dispersed retail
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centers, each with a customer demand dj that must be met. The objective is to determine
the minimum cost distribution system, given that the unit cost of transportation between
the ith warehouse and the jth retail center is cij.

This problem can be formulated as one of linear programming. Since such network
optimization problems are encountered in diverse fields, special methods have been devel-
oped to solve them more efficiently and perhaps in real time. Many textbooks are available
on this subject. We do not address these problems in any detail, although some of the
methods presented in Chapters 15 through 20 can be used to solve them.

Dynamic-Response Optimization Problems

Many practical systems are subjected to transient dynamic inputs. In such cases, some
of the problem constraints are time-dependent. Each of these constraints must be imposed
for the entire time interval of interest. Therefore each represents an infinite set of con-
straints because the constraint must be imposed at each time point in the given interval.
The usual approach to treating such a constraint is to impose it at a finite number of time
points in the given interval. This way the problem is transformed into the standard form
and treated with the methods presented in this textbook.

Design Variables as Functions

In some applications, the design variables are not parameters but functions of one, two,
or even three variables. Such design variables arise in optimal control problems where the
input needs to be determined over the desired range of time to control the behavior of the
system. The usual treatment of design functions is to parameterize them. In other words,
each function is represented in terms of some known functions, called the basis functions,
and the parameters multiplying them. The parameters are then treated as design variables.
In this way the problem is transformed into the standard form and the methods presented
in this textbook can be used to solve it.

EXERCISES FOR CHAPTER 2

2.1 A 1003 100-m lot is available to construct a multistory office building. At least 20,000m2 of

total floor space is needed. According to a zoning ordinance, the maximum height of the

building can be only 21m, and the parking area outside the building must be at least 25

percent of the total floor area. It has been decided to fix the height of each story at 3.5m.

The cost of the building in millions of dollars is estimated at 0.6h1 0.001A, where A is the

cross-sectional area of the building per floor and h is the height of the building. Formulate

the minimum-cost design problem.

2.2 A refinery has two crude oils:

1. Crude A costs $120/barrel (bbl) and 20,000 bbl are available.

2. Crude B costs $150/bbl and 30,000 bbl are available.

The company manufactures gasoline and lube oil from its crudes. Yield and sale price per

barrel and markets are shown in Table E2.2. How much crude oil should the company use

to maximize its profit? Formulate the optimum design problem.
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2.3 Design a beer mug, shown in Figure E2.3, to hold as much beer as possible. The height and

radius of the mug should be no more than 20 cm. The mug must be at least 5 cm in radius.

The surface area of the sides must be no greater than 900 cm2 (ignore the bottom area of the

mug and mug handle). Formulate the optimum design problem.

2.4 A company is redesigning its parallel-flow heat exchanger of length l to increase its heat

transfer. An end view of the unit is shown in Figure E2.4. There are certain limitations on

the design problem. The smallest available conducting tube has a radius of 0.5 cm, and all

tubes must be of the same size. Further, the total cross-sectional area of all of the tubes

cannot exceed 2000 cm2 to ensure adequate space inside the outer shell. Formulate the

problem to determine the number of tubes and the radius of each one to maximize the

surface area of the tubes in the exchanger.

2.5 Proposals for a parking ramp have been defeated, so we plan to build a parking lot in the

downtown urban renewal section. The cost of land is 200W1 100D, where W is the width

along the street and D is the depth of the lot in meters. The available width along the street

is 100 m, while the maximum depth available is 200 m. We want the size of the lot to be at

least 10,000 m2. To avoid unsightliness, the city requires that the longer dimension of any

TABLE E2.2 Data for refinery operations

Yield/bbl
Sale price

per bbl ($)

Market

(bbl)Product Crude A Crude B

Gasoline 0.6 0.8 200 20,000

Lube oil 0.4 0.2 450 10,000

H

R

Ignore bottom surface

FIGURE E2.3 Beer mug.

Outer
shell

Individual
tubes

FIGURE E2.4 Cross-section of a heat exchanger.
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lot be no more than twice the shorter dimension. Formulate the minimum-cost design

problem.

2.6 A manufacturer sells products A and B. Profit from A is $10/kg and is $8/kg from B.

Available raw materials for the products are 100 kg of C and 80 kg of D. To produce 1 kg of

A, we need 0.4 kg of C and 0.6 kg of D. To produce 1 kg of B, we need 0.5 kg of C and

0.5 kg of D. The markets for the products are 70 kg for A and 110 kg for B. How much of A

and B should be produced to maximize profit? Formulate the design optimization problem.

2.7 Design a diet of bread and milk to get at least 5 units of vitamin A and 4 units of vitamin B

daily. The amount of vitamins A and B in 1 kg of each food and the cost per kilogram of

the food are given in Table E2.7. Formulate the design optimization problem so that we get

at least the basic requirements of vitamins at the minimum cost.

TABLE E2.7 Data for the diet problem

Vitamin Bread Milk

A 1 2

B 3 2

Cost/kg, $ 2 1

2.8 Enterprising chemical engineering students have set up a still in a bathtub. They can produce

225 bottles of pure alcohol each week. They bottle two products from alcohol: (1) wine, at

20 proof, and (2) whiskey, at 80 proof. Recall that pure alcohol is 200 proof. They have an

unlimited supply of water, but can only obtain 800 empty bottles per week because of stiff

competition. The weekly supply of sugar is enough for either 600 bottles of wine or 1200

bottles of whiskey. They make a $1.00 profit on each bottle of wine and a $2.00 profit on each

bottle of whiskey. They can sell whatever they produce. How many bottles of wine and

whiskey should they produce each week to maximize profit? Formulate the design

optimization problem (created by D. Levy).

2.9 Design a can closed at one end using the smallest area of sheet metal for a specified interior

volume of 600 cm3. The can is a right-circular cylinder with interior height h and radius r.

The ratio of height to diameter must not be less than 1.0 nor greater than 1.5. The height

cannot be more than 20 cm. Formulate the design optimization problem.

2.10 Design a shipping container closed at both ends with dimensions b3 b3 h to minimize the

ratio: (round-trip cost of shipping container only)/(one-way cost of shipping contents only).

Use the data in the following table. Formulate the design optimization problem.

Mass of container/surface area 80 kg/m2

Maximum b 10 m

Maximum h 18 m

One-way shipping cost, full or empty $18/kg gross mass

Mass of contents 150 kg/m3
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2.11 Certain mining operations require an open-top rectangular container to transport materials.

The data for the problem are as follows:

Construction costs:

� Sides: $50/m2

� Ends: $60/m2

� Bottom: $90/m2

Minimum volume needed: 150 m3

Formulate the problem of determining the container dimensions at a minimum cost.

2.12 Design a circular tank closed at both ends to have a volume of 250 m3. The fabrication

cost is proportional to the surface area of the sheet metal and is $400/m2. The tank is to

be housed in a shed with a sloping roof. Therefore, height H of the tank is limited by the

relation H # (102D/2), where D is the tank’s diameter. Formulate the minimum-cost

design problem.

2.13 Design the steel framework shown in Figure E2.13 at a minimum cost. The cost of a

horizontal member in one direction is $20 w and in the other direction it is $30 d. The

cost of a vertical column is $50 h. The frame must enclose a total volume of at least

600 m3. Formulate the design optimization problem.

2.14 Two electric generators are interconnected to provide total power to meet the load. Each

generator’s cost is a function of the power output, as shown in Figure E2.14. All costs

and power are expressed on a per-unit basis. The total power needed is at least 60 units.

Formulate a minimum-cost design problem to determine the power outputs P1 and P2.

2.15 Transportation problem. A company has mmanufacturing facilities. The facility at the ith

location has capacity to produce bi units of an item. The product should be shipped to n

distribution centers. The distribution center at the jth location requires at least aj units of the

item to satisfy demand. The cost of shipping an item from the ith plant to the jth distribution

center is cij. Formulate a minimum-cost transportation system to meet each of the distribution

center’s demands without exceeding the capacity of any manufacturing facility.

2.16 Design of a two-bar truss. Design a symmetric two-bar truss (both members have the same

cross-section), as shown in Figure E2.16, to support a load W. The truss consists of two steel

tubes pinned together at one end and supported on the ground at the other. The span of

d

h

w

FIGURE E2.13 Steel frame.
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the truss is fixed at s. Formulate the minimum-mass truss design problem using height and

cross-sectional dimensions as design variables. The design should satisfy the following

constraints:

1. Because of space limitations, the height of the truss must not exceed b1 and must not be

less than b2.

2. The ratio of mean diameter to thickness of the tube must not exceed b3.

3. The compressive stress in the tubes must not exceed the allowable stress σa for steel.
4. The height, diameter, and thickness must be chosen to safeguard against member

buckling.

Use the following data: W5 10 kN; span s5 2 m; b15 5 m; b25 2 m; b35 90; allowable stress

σa5 250 MPa; modulus of elasticity E5 210 GPa; mass density ρ5 7850 kg/m3; factor of

safety against buckling FS5 2; 0.1 # D # 2 (m); and 0.01 # t # 0.1 (m).

2.17 A beam of rectangular cross-section (Figure E2.17) is subjected to a maximum bending

moment of M and a maximum shear of V. The allowable bending and shearing stresses are

σa and τa, respectively. The bending stress in the beam is calculated as

σ5
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FIGURE E2.14 Graphic
of a power generator.
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FIGURE E2.16 Two-bar structure.
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and the average shear stress in the beam is calculated as

τ5
3V

2bd

where d is the depth and b is the width of the beam. It is also desirable to have the depth of

the beam not exceed twice its width. Formulate the design problem for minimum cross-

sectional area using this data: M5 140 kN �m, V5 24 kN, σa5 165 MPa, τa5 50 MPa.

2.18 A vegetable oil processor wishes to determine how much shortening, salad oil, and

margarine to produce to optimize the use its current oil stock supply. At the present time,

he has 250,000 kg of soybean oil, 110,000 kg of cottonseed oil, and 2000 kg of milk-base

substances. The milk-base substances are required only in the production of margarine.

There are certain processing losses associated with each product: 10 percent for

shortening, 5 percent for salad oil, and no loss for margarine. The producer’s back orders

require him to produce at least 100,000 kg of shortening, 50,000 kg of salad oil, and

10,000 kg of margarine. In addition, sales forecasts indicate a strong demand for all

products in the near future. The profit per kilogram and the base stock required per

kilogram of each product are given in Table E2.18. Formulate the problem to maximize

profit over the next production scheduling period. (created by J. Liittschwager)

TABLE E2.18 Data for the vegetable oil processing problem

Parts per kg of base stock requirements

Product Profit per kg Soybean Cottonseed Milk base

Shortening 1.00 2 1 0

Salad oil 0.80 0 1 0

Margarine 0.50 3 1 1

Section 2.11: A General Mathematical Model for Optimum Design
2.19 Answer True or False:

1. Design of a system implies specification of the design variable values.

2. All design problems have only linear inequality constraints.

3. All design variables should be independent of each other as far as possible.

b

d

FIGURE E2.17 Cross-section of a rectangular beam.
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4. If there is an equality constraint in the design problem, the optimum solution must

satisfy it.

5. Each optimization problem must have certain parameters called the design variables.

6. A feasible design may violate equality constraints.

7. A feasible design may violate “$ type” constraints.

8. A “# type” constraint expressed in the standard form is active at a design point if it

has zero value there.

9. The constraint set for a design problem consists of all feasible points.

10. The number of independent equality constraints can be larger than the number of

design variables for the problem.

11. The number of “# type” constraints must be less than the number of design variables

for a valid problem formulation.

12. The feasible region for an equality constraint is a subset of that for the same constraint

expressed as an inequality.

13. Maximization of f(x) is equivalent to minimization of 1/f(x).

14. A lower minimum value for the cost function is obtained if more constraints are added

to the problem formulation.

15. Let fn be the minimum value for the cost function with n design variables for a

problem. If the number of design variables for the same problem is increased to, say,

m5 2n, then fm . fn, where fm is the minimum value for the cost function with m

design variables.

*2.20 A trucking company wants to purchase several new trucks. It has $2 million to spend. The

investment should yield a maximum of trucking capacity for each day in

tonnes3kilometers. Data for the three available truck models are given in Table E2.20:

truck load capacity, average speed, crew required per shift, hours of operation for three

shifts, and cost of each truck. There are some limitations on the operations that need to be

considered. The labor market is such that the company can hire at most 150 truck drivers.

Garage and maintenance facilities can handle at the most 25 trucks. How many trucks of

each type should the company purchase? Formulate the design optimization problem.

TABLE E2.20 Data for available trucks

Truck

model

Truck load

capacity

(tonnes)

Average truck

speed (km/h)

Crew

required per

shift

No. of hours of

operations per day

(3 shifts)

Cost of

each truck

($)

A 10 55 1 18 40,000

B 20 50 2 18 60,000

C 18 50 2 21 70,000

*2.21 A large steel corporation has two iron ore reduction plants. Each plant processes iron ore

into two different ingot stocks, which are shipped to any of three fabricating plants where

they are made into either of two finished products. In total, there are two reduction plants,

two ingot stocks, three fabricating plants, and two finished products. For the upcoming

season, the company wants to minimize total tonnage of iron ore processed in its
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reduction plants, subject to production and demand constraints. Formulate the design

optimization problem and transcribe it into the standard model.

Nomenclature

a(r, s)5 tonnage yield of ingot stock s from 1 ton of iron ore processed at reduction plant r

b(s, f, p)5 total yield from 1 ton of ingot stock s shipped to fabricating plant f and

manufactured into product p

c(r)5 ore-processing capacity in tonnage at reduction plant r

k(f)5 capacity of fabricating plant f in tonnage for all stocks

D(p)5 tonnage demand requirement for product p

Production and Demand Constraints

1. The total tonnage of iron ore processed by both reduction plants must equal the total

tonnage processed into ingot stocks for shipment to the fabricating plants.

2. The total tonnage of iron ore processed by each reduction plant cannot exceed its capacity.

3. The total tonnage of ingot stock manufactured into products at each fabricating plant

must equal the tonnage of ingot stock shipped to it by the reduction plants.

4. The total tonnage of ingot stock manufactured into products at each fabricating plant

cannot exceed the plant’s available capacity.

5. The total tonnage of each product must equal its demand.

Constants for the Problem
a(1,1)5 0.39 c(1)5 1,200,000 k(1)5 190,000 D(1)5 330,000
a(1,2)5 0.46 c(2)5 1,000,0 00 k(2)5 240,000 D(2)5 125,000
a(2,1)5 0.44 k(3)5 290,000
a(2,2)5 0.48

b(1,1,1)5 0.79 b(1,1,2)5 0.84
b(2,1,1)5 0.68 b(2,1,2)5 0.81
b(1,2,1)5 0.73 b(1,2,2)5 0.85
b(2,2,1)5 0.67 b(2,2,2)5 0.77
b(1,3,1)5 0.74 b(1,3,2)5 0.72
b(2,3,1)5 0.62 b(2,3,2)5 0.78

2.22 Optimization of a water canal. Design a water canal having a cross-sectional area of

150 m2. The lowest construction costs occur when the volume of the excavated material

equals the amount of material required for the dykes, as shown in Figure E2.22. Formulate

the problem to minimize the dug-out material A1. Transcribe the problem into the

standard design optimization model.

2 m
1 m

H2

H1

A3

Dyke

A2/2A2/2

A1

w

FIGURE E2.22 Graphic of a cross-
section of a canal. (Created by V. K. Goel.)
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2.23 A cantilever beam is subjected to the point load P (kN), as shown in Figure E2.23. The

maximum bending moment in the beam is PL (kN �m) and the maximum shear is P (kN).

Formulate the minimum-mass design problem using a hollow circular cross-section. The

material should not fail under bending or shear stress. The maximum bending stress is

calculated as

σ5
PL

I
Ro

where I5moment of inertia of the cross-section. The maximum shearing stress is calculated

as

τ5
P

3I
ðR2

o 1RoRi 1R2
i Þ

Transcribe the problem into the standard design optimization model (also use Ro #

40.0 cm, Ri # 40.0 cm). Use this data: P5 14 kN; L5 10 m; mass density ρ5 7850 kg/m3;

allowable bending stress σb5 165 MPa; allowable shear stress τa5 50 MPa.

2.24 Design a hollow circular beam-column, shown in Figure E2.24, for two conditions: When

P5 50 (kN), the axial stress σ must not exceed an allowable value σa, and when P5 0,

deflection δ due to self-weight should satisfy δ # 0.001L. The limits for dimensions are

t5 0.10 to 1.0 cm, R5 2.0 to 20.0 cm, and R/t # 20 (AISC, 2005). Formulate the minimum-

weight design problem and transcribe it into the standard form. Use the following data:

δ5 5wL4/384EI; w5 self-weight force/length (N/m); σa5 250 MPa; modulus of elasticity

E5 210 GPa; mass density ρ5 7800 kg/m3; σ5P/A; gravitational constant g5 9.80 m/s2;

moment of inertia I5πR3t (m4).

PP

2R

tBeam-column

A

A

Section A–A

δ

L = 3m

FIGURE E2.24 Graphic of a hollow
circular beam-column.

Beam

A

A

Section A–A
L (m)

P

Ro

Ri

FIGURE E2.23 Cantilever beam.

64 2. OPTIMUM DESIGN PROBLEM FORMULATION

I. THE BASIC CONCEPTS



C H A P T E R

3

Graphical Optimization and Basic
Concepts

Upon comp le t i on o f th i s chap te r, you wi l l be ab l e to

• Graphically solve any optimization problem

having two design variables

• Plot constraints and identify their feasible/

infeasible side

• Identify the feasible region (feasible set) for

a problem

• Plot objective function contours through the

feasible region

• Graphically locate the optimum solution for

a problem and identify active/inactive

constraints

• Identify problems that may have multiple,

unbounded, or infeasible solutions

• Explain basic concepts and terms associated

with optimum design

Optimization problems having only two design variables can be solved by observing
how they are graphically represented. All constraint functions are plotted, and a set of fea-
sible designs (the feasible set) for the problem is identified. Objective function contours are
then drawn, and the optimum design is determined by visual inspection. In this chapter,
we illustrate the graphical solution process and introduce several concepts related to opti-
mum design problems. In Section 3.1, a design optimization problem is formulated and
used to describe the solution process. Several more example problems are solved in later
sections to illustrate concepts and the procedure.

3.1 GRAPHICAL SOLUTION PROCESS

3.1.1 Profit Maximization Problem

STEP 1: PROJECT/PROBLEM DESCRIPTION A company manufactures two machines, A
and B. Using available resources, either 28 A or 14 B can be manufactured daily. The sales
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department can sell up to 14 A machines or 24 B machines. The shipping facility can han-
dle no more than 16 machines per day. The company makes a profit of $400 on each
A machine and $600 on each B machine. How many A and B machines should the com-
pany manufacture every day to maximize its profit?

STEP 2: DATA AND INFORMATION COLLECTION Data and information are defined in
the project statement.

STEP 3: DEFINITION OF DESIGN VARIABLES The following two design variables are
identified in the problem statement:

xl5number of A machines manufactured each day
x25number of B machines manufactured each day

STEP 4: OPTIMIZATION CRITERION The objective is to maximize daily profit, which
can be expressed in terms of design variables as

P5 400x1 1 600x2 ðaÞ
STEP 5: FORMULATION OF CONSTRAINTS Design constraints are placed on manu-

facturing capacity, on sales personnel, and on the shipping and handling facility. The
constraint on the shipping and handling facility is quite straightforward:

x1 1 x2 # 16 ðshipping and handling constraintÞ ðbÞ
Constraints on manufacturing and sales facilities are a bit tricky. First, consider the

manufacturing limitation. It is assumed that if the company is manufacturing xl
A machines per day, then the remaining resources and equipment can be proportionately
used to manufacture x2 B machines, and vice versa. Therefore, noting that xl/28 is the
fraction of resources used to produce A and x2/14 is the fraction used to produce B, the
constraint is expressed as

x1
28

1
x2
14

# 1 ðmanufacturing constraintÞ ðcÞ

Similarly, the constraint on sales department resources is given as

x1
14

1
x2
24

# 1 ðlimitation on sales departmentÞ ðdÞ

Finally, the design variables must be non-negative as

x1; x2 $ 0 ðeÞ
Note that for this problem, the formulation remains valid even when a design variable

has zero value. The problem has two design variables and five inequality constraints. All
functions of the problem are linear in variables xl and x2. Therefore, it is a linear program-
ming problem. Note also that for a meaningful solution, both design variables must have
integer values at the optimum point.
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3.1.2 Step-by-Step Graphical Solution Procedure

STEP 1: COORDINATE SYSTEM SET-UP The first step in the solution process is to set up
an origin for the x-y coordinate system and scales along the x- and y-axes. By looking at
the constraint functions, a coordinate system for the profit maximization problem can be
set up using a range of 0 to 25 along both the x and y axes. In some cases, the scale may
need to be adjusted after the problem has been graphed because the original scale may
provide too small or too large a graph for the problem.

STEP 2: INEQUALITY CONSTRAINT BOUNDARY PLOT To illustrate the graphing of a
constraint, let us consider the inequality x11 x2 # 16 given in Eq. (b). To represent the
constraint graphically, we first need to plot the constraint boundary; that is, the points that
satisfy the constraint as an equality x11 x25 16. This is a linear function of the variables x1
and x2. To plot such a function, we need two points that satisfy the equation x11 x25 16.
Let these points be calculated as (16,0) and (0,16). Locating them on the graph and joining
them by a straight line produces the line F�J, as shown in Figure 3.1. Line F�J then repre-
sents the boundary of the feasible region for the inequality constraint x11 x2 # 16. Points
on one side of this line violate the constraint, while those on the other side satisfy it.

STEP 3: IDENTIFICATION OF THE FEASIBLE REGION FOR AN INEQUALITY The next
task is to determine which side of constraint boundary F�J is feasible for the constraint
x11 x2 # 16. To accomplish this, we select a point on either side of F�J and evaluate the
constraint function there. For example, at point (0,0), the left side of the constraint has a
value of 0. Because the value is less than 16, the constraint is satisfied and the region

0 5 10 15 20 25

0

5

10

15

20

25

x1

x2

F
(0,16)

J

(16,0)

x1 + x2 = 16

FIGURE 3.1 Constraint boundary
for the inequality x11 x2 # 16 in the
profit maximization problem.
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below F�J is feasible. We can test the constraint at another point on the opposite side of
F�J, say at point (10,10). At this point the constraint is violated because the left side of the
constraint function is 20, which is larger than 16. Therefore, the region above F�J is infea-
sible with respect to the constraint, as shown in Figure 3.2. The infeasible region is
“shaded-out,” a convention that is used throughout this text.

Note that if this were an equality constraint x11 x25 16, the feasible region for it would
only be the points on line F�J. Although there are infinite points on F�J, the feasible
region for the equality constraint is much smaller than that for the same constraint written
as an inequality. This shows the importance of properly formulating all the constraints of
the problem.

STEP 4: IDENTIFICATION OF THE FEASIBLE REGION By following the procedure that is
described in step 3, all inequalities are plotted on the graph and the feasible side of each
one is identified (if equality constraints were present, they would also be plotted at this
stage). Note that the constraints x1, x2 $ 0 restrict the feasible region to the first quadrant
of the coordinate system. The intersection of feasible regions for all constraints provides
the feasible region for the profit maximization problem, indicated as ABCDE in Figure 3.3.
Any point in this region or on its boundary provides a feasible solution to the problem.

STEP 5: PLOTTING OF OBJECTIVE FUNCTION CONTOURS The next task is to plot the
objective function on the graph and locate its optimum points. For the present problem, the
objective is to maximize the profit P5 400x11 600x2, which involves three variables: P, x1,
and x2. The function needs to be represented on the graph so that the value of P can be

0 5 10 15 20 25

0

5

10

15

20

F

J

25

x1

x2

10,10

(0,0)

x1 + x2 = 16

Infeasible

x1 + x2 > 16

Feasible

x1 + x2 < 16

FIGURE 3.2 Feasible/infeasible side
for the inequality x11 x2 # 16 in the
profit maximization problem.
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compared for different feasible designs to locate the best design. However, because there
are infinite feasible points, it is not possible to evaluate the objective function at every point.
One way of overcoming this impasse is to plot the contours of the objective function.

A contour is a curve on the graph that connects all points having the same objective
function value. A collection of points on a contour is also called the level set. If the objective
function is to be minimized, the contours are also called isocost curves. To plot a contour
through the feasible region, we need to assign it a value. To obtain this value, consider a
point in the feasible region and evaluate the profit function there. For example, at point
(6,4), P is P5 63 4001 43 6005 4800. To plot the P5 4800 contour, we plot the function
400x11 600x25 4800. This contour is a straight line, as shown in Figure 3.4.

STEP 6: IDENTIFICATION OF THE OPTIMUM SOLUTION To locate an optimum point
for the objective function, we need at least two contours that pass through the feasible
region. We can then observe trends for the values of the objective function at different fea-
sible points to locate the best solution point. Contours for P5 2400, 4800, and 7200 are
plotted in Figure 3.5. We now observe the following trend: As the contours move up
toward point D, feasible designs can be found with larger values for P. It is clear from
observation that point D has the largest value for P in the feasible region. We now simply
read the coordinates of point D (4, 12) to obtain the optimum design, having a maximum
value for the profit function as P5 8800.

Thus, the best strategy for the company is to manufacture 4 A and 12 B machines to maxi-
mize its daily profit. The inequality constraints in Eqs. (b) and (c) are active at the optimum;
that is, they are satisfied at equality. These represent limitations on shipping and handling
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FIGURE 3.3 Feasible region for the
profit maximization problem.
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FIGURE 3.4 Plot of P5 4800 objec-
tive function contour for the profit
maximization problem.
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FIGURE 3.5 Graphical solution to
the profit maximization problem: opti-
mum point D5 (4, 12); maximum profit,
P5 8800.
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facilities, and on manufacturing. The company can think about relaxing these constraints to
improve its profit. All other inequalities are strictly satisfied and therefore inactive.

Note that in this example the design variables must have integer values. Fortunately,
the optimum solution has integer values for the variables. If this had not been the case, we
would have used the procedure suggested in Section 2.11.8 or in Chapter 15 to solve this
problem. Note also that for this example all functions are linear in design variables.
Therefore, all curves in Figures 3.1 through 3.5 are straight lines. In general, the functions
of a design problem may not be linear, in which case curves must be plotted to identify
the feasible region, and contours or isocost curves must be drawn to identify the optimum
design. To plot a nonlinear function, a table of numerical values for xl and x2 must be gener-
ated. These points must be then plotted on a graph and connected by a smooth curve.

3.2 USE OF MATHEMATICA FOR GRAPHICAL OPTIMIZATION

It turns out that good programs, such as Mathematica and MATLABs, are available to
implement the step-by-step procedure of the previous section and obtain a graphical solu-
tion for the problem on the computer screen. Mathematica is an interactive software pack-
age with many capabilities; however, we will explain its use to solve a two-variable
optimization problem by plotting all functions on the computer screen. Although other
commands for plotting functions are available, the most convenient for working with
inequality constraints and objective function contours is the ContourPlot command. As
with most Mathematica commands, this one is followed by what we call subcommands
as “arguments” that define the nature of the plot. All Mathematica commands are case-
sensitive, so it is important to pay attention to which letters are capitalized.

Mathematica input is organized into what is called a notebook. A notebook is divided
into cells, with each cell containing input that can be executed independently. To explain
the graphical optimization capability of Mathematica, we will again use the profit maximi-
zation problem. (Note that the commands used here may change in future releases of the pro-
gram.) We start by entering in the notebook the problem functions as follows (the first two
commands are for initialization of the program):

,,Graphics`Arrow`
Clear[x1,x2];

P=400*x1+600*x2;
g1=x1+x2-16; (*shipping and handling constraint*)
g2=x1/28+x2/14−1; (*manufacturing constraint*)
g3=x1/14+x2/24−1; (*limitation on sales department*)
g4=−x1; (*non-negativity*)
g5=−x2; (*non-negativity*)

This input illustrates some basic features concerning Mathematica format. Note that the
ENTER key acts simply as a carriage return, taking the blinking cursor to the next line.
Pressing SHIFT and ENTER actually inputs the typed information into Mathematica.
When no immediate output from Mathematica is desired, the input line must end with a
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semicolon (;). If the semicolon is omitted, Mathematica will simplify the input and display
it on the screen or execute an arithmetic expression and display the result. Comments are
bracketed as (*Comment*). Note also that all constraints are assumed to be in the standard
"#" form. This helps in identifying the infeasible region for constraints on the screen
using the ContourPlot command.

3.2.1 Plotting Functions

The Mathematica command used to plot the contour of a function, say g1=0, is entered
as follows:

Plotg1=ContourPlot[g1,{x1,0,25},{x2,0,25}, ContourShading-False, Contours-{0},
ContourStyle-{{Thickness[.01]}}, Axes-True, AxesLabel-{“x1”,”x2”},
PlotLabel-“Profit Maximization Problem”, Epilog-{Disk[{0,16},{.4,.4}],
Text[“(0,16)”,{2,16}], Disk[{16,0},{.4,.4}], Text[“(16,0)”,{17,1.5}],
Text[“F”,{0,17}], Text[“J”,{17,0}], Text[“x1+x2=16”,{13,9}], Arrow[{13,8.3},{10,6}]},
DefaultFont-{“Times”,12}, ImageSize-72.5];

Plotg1 is simply an arbitrary name referring to the data points for the function g1 deter-
mined by the ContourPlot command; it is used in future commands to refer to this partic-
ular plot. This ContourPlot command plots a contour defined by the equation g1=0 as
shown earlier in Figure 3.1. Arguments of the ContourPlot command containing various
subcommands are explained as follows (note that the arguments are separated by commas
and are enclosed in square brackets ([ ]):

g1: function to be plotted.
{x1,0,25}, {x2,0,25}: ranges for the variables x1 and x2; 0 to 25.
ContourShading-False: indicates that shading will not be used to plot contours,
whereas ContourShading-True would indicate that shading will be used. Note that
most subcommands are followed by an arrow (-) or (-.) and a set of parameters
enclosed in braces ({}).
Contours-{0}: contour values for g1; one contour is requested having 0 value.
ContourStyle-{{Thickness[.01]}}: defines characteristics of the contour such as
thickness and color. Here, the thickness of the contour is specified as ".01". It is given as
a fraction of the total width of the graph and needs to be determined by trial and error.
Axes-True: indicates whether axes should be drawn at the origin; in the present
case, where the origin (0,0) is located at the bottom left corner of the graph, the
Axes subcommand is irrelevant except that it allows for the use of the AxesLabel command.
AxesLabel-{"x1","x2"}: allows one to indicate labels for each axis.
PlotLabel-"Profit Maximization Problem": places a label at the top of the graph.
Epilog-{...}: allows insertion of additional graphics primitives and text in the
figure on the screen figure on the screen; Disk [{0,16}, {.4,.4}] allows insertion
of a dot at the location (0,16) of radius .4 in both directions; Text ["(0,16)",
(2,16)] allows "(0,16)" to be placed at the location (2,16).
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ImageSize-72 5: indicates that the width of the plot should be 5 inches; the size of the
plot can be adjusted by selecting the image and dragging one of the black square
control points; the images in Mathematica can be copied and pasted to a word
processor file.
DefaultFont-{"Times",12}: specifies the preferred font and size for the text.

3.2.2 Identification and Shading of Infeasible Region for an Inequality

Figure 3.2 is created using a slightly modified ContourPlot command used earlier for
Figure 3.1:

Plotg1=ContourPlot[g1,{x1,0,25},{x2,0,25}, ContourShading-False, Contours-{0,.65},
ContourStyle-{{Thickness[.01]}, {GrayLevel[.8],Thickness[.025]}}, Axes-True,
AxesLabel-{"x1","x2"}, PlotLabel-"Profit Maximization Problem",
Epilog-{Disk[{10,10},{.4,.4}], Text["(10,10)",{11,9}], Disk[{0,0},{.4,.4}],
Text["(0,0)",{2,.5}], Text["x1+x2=16",{18,7}], Arrow[{18,6.3},{12,4}],
Text["Infeasible",{17,17}], Text["x1+x2.16",{17,15.5}], Text["Feasible",{5,6}],
Text["x1+x2,16",{5,4.5}]}, DefaultFont-{"Times",12}, ImageSize-72.5];

Here, two contour lines are specified, the second one having a small positive value. This is
indicated by the command: Contours-{0,.65}. The constraint boundary is represented
by the contour g1=0. The contour g1=0.65 will pass through the infeasible region, where
the positive number 0.65 is determined by trial and error.

To shade the infeasible region, the characteristics of the contour are changed. Each set
of brackets {} with the ContourStyle subcommand corresponds to a specific contour. In
this case, {Thickness[.01]} provides characteristics for the first contour g1=0, and
{GrayLevel[.8],Thickness[0.025]} provides characteristics for the second contour
g1=0.65. GrayLevel specifies a color for the contour line. A gray level of 0 yields a black
line, whereas a gray level of 1 yields a white line. Thus, this ContourPlot command essen-
tially draws one thin, black line and one thick, gray line. This way the infeasible side of an
inequality is shaded out.

3.2.3 Identification of Feasible Region

By using the foregoing procedure, all constraint functions for the problem are plotted
and their feasible sides are identified. The plot functions for the five constraints g1 through
g5 are named Plotg1, Plotg2, Plotg3, Plotg4, and Plotg5. All of these functions are quite
similar to the one that was created using the ContourPlot command explained earlier. As
an example, the Plotg4 function is given as

Plotg4=ContourPlot[g4,{x1,−1,25},{x2,−1,25}, ContourShading-False, Contours-{0,.35},
ContourStyle-{{Thickness[.01]}, {GrayLevel[.8],Thickness[.02]}},
DisplayFunction-Identity];

The DisplayFunction-Identity subcommand is added to the ContourPlot command
to suppress display of output from each Plotgi function; without that, Mathematica
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executes each Plotgi function and displays the results. Next, with the following Show
command, the five plots are combined to display the complete feasible set in Figure 3.3:

Show[{Plotg1,Plotg2,Plotg3,Plotg4,Plotg5}, Axes-True,AxesLabel-{"x1","x2"},
PlotLabel-"Profit Maximization Problem", DefaultFont-{"Times",12}, Epilog-
{Text["g1",{2.5,16.2}], Text["g2",{24,4}], Text["g3",{2,24}], Text["g5",{21,1}],
Text["g4",{1,10}], Text["Feasible",{5,6}]}, DefaultFont-{"Times",12},
ImageSize-72.5,DisplayFunction- $DisplayFunction];

The Text subcommands are included to add text to the graph at various locations. The
DisplayFunction-$DisplayFunction subcommand is added to display the final graph;
without that it is not displayed.

3.2.4 Plotting of Objective Function Contours

The next task is to plot the objective function contours and locate its optimum point.
The objective function contours of values 2400, 4800, 7200, and 8800, shown in Figure 3.4,
are drawn by using the ContourPlot command as follows:

PlotP=ContourPlot[P,{x1,0,25},{x2,0,25}, ContourShading-False, Contours-{4800},
ContourStyle-{{Dashing[{.03,.04}], Thickness[.007]}}, Axes-True,
AxesLabel-{“x1”,”x2”}, PlotLabel-“Profit Maximization Problem”,
DefaultFont-{“Times”,12}, Epilog-{Disk[{6,4},{.4,.4}], Text[“P= 4800”,{9.75,4}]},
ImageSize-72.5];

The ContourStyle subcommand provides four sets of characteristics, one for each con-
tour. Dashing[{a,b}] yields a dashed line with "a" as the length of each dash and "b" as
the space between dashes. These parameters represent a fraction of the total width of the
graph.

3.2.5 Identification of Optimum Solution

The Show command used to plot the feasible region for the problem in Figure 3.3 can be
extended to plot the profit function contours as well. Figure 3.5 contains the graphical
representation of the problem, obtained using the following Show command:

Show[{Plotg1,Plotg2,Plotg3,Plotg4,Plotg5, PlotP}, Axes-True, AxesLabel-{"x1","x2"},
PlotLabel-"Profit Maximization Problem", DefaultFont-{"Times",12},
Epilog-{Text["g1",{2.5,16.2}], Text["g2",{24,4}], Text["g3",{3,23}], Text["g5",{23,1}],
Text["g4",{1,10}],Text["P= 2400",{3.5,2}], Text["P= 8800",{17,3.5}],Text["G",{1,24.5}],
Text["C",{10.5,4}], Text["D",{3.5,11}], Text["A",{1,1}], Text["B",{14,−1}],
Text["J",{16,−1}], Text["H",{25,−1}], Text["E",{−1,14}], Text["F",{−1,16}]},
DefaultFont-{"Times",12}, ImageSize-72.5, DisplayFunction- $DisplayFunction];

Additional Text subcommands have been added to label different objective function con-
tours and different points. The final graph is used to obtain the graphical solution. The Disk
subcommand can be added to the Epilog command to put a dot at the optimum point.
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3.3 USE OF MATLAB FOR GRAPHICAL OPTIMIZATION

MATLAB has many capabilities for solving engineering problems. For example, it can
plot problem functions and graphically solve a two-variable optimization problem. In this
section, we explain how to use the program for this purpose; other uses of the program
for solving optimization problems are explained in Chapter 7.

There are two modes of input with MATLAB. We can enter commands interactively, one
at a time, with results displayed immediately after each one. Alternatively, we can create an
input file, called an m-file that is executed in batch mode. The m-file can be created using
the text editor in MATLAB. To access this editor, select "File," "New," and "m-file."
When saved, this file will have the suffix ".m" (dot m). To submit or run the file, after start-
ing MATLAB, we simply type the name of the file we wish to run in the command window,
without the suffix (the current directory in the MATLAB program must be one where the file
is located). In this section, we will solve the profit maximization problem of the previous
section using MATLAB7.6. It is important to note that with future releases, the commands
we will discuss may change.

3.3.1 Plotting of Function Contours

For plotting all of the constraints with MATLAB and identifying the feasible region,
it is assumed that all inequality constraints are written in the standard "#" form. The
M-file for the profit maximization problem with explanatory comments is displayed in
Table 3.1. Note that the file comments are preceded by the percent sign, %. The comments
are ignored during MATLAB execution. For contour plots, the first command in the input
file is entered as follows:

[x1,x2]=meshgrid(−1.0:0.5:25.0, −1.0:0.5:25.0);

This command creates a grid or array of points where all functions to be plotted are eval-
uated. The command indicates that x1 and x2 will start at �1.0 and increase in increments
of 0.5 up to 25.0. These variables now represent two-dimensional arrays and require special
attention in operations using them. "*" (star) and "/" (slash) indicate scalar multiplication
and division, respectively, whereas ".*" (dot star) and "./" (dot slash) indicate element-by-
element multiplication and division. The ".^" (dot hat) is used to apply an exponent to each
element of a vector or a matrix. The semicolon ";" after a command prevents MATLAB
from displaying the numerical results immediately (i.e., all of the values for x1 and x2).

This use of a semicolon is a convention in MATLAB for most commands. Note that
matrix division and multiplication capabilities are not used in the present example, as the
variables in the problem functions are only multiplied or divided by a scalar rather than
another variable. If, for instance, a term such as x1x2 is present, then the element-by-
element operation x1.*x2 is necessary. The "contour" command is used for plotting all
problem functions on the screen.

The procedure for identifying the infeasible side of an inequality is to plot two contours
for the inequality: one of value 0 and the other of a small positive value. The second
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TABLE 3.1 MATLAB file for the profit maximization problem

m-file with explanatory comments

%Create a grid from −1 to 25 with an increment of 0.5 for the variables x1 and x2
[x1,x2]=meshgrid(−1:0.5:25.0,−1:0.5:25.0);
%Enter functions for the profit maximization problem
f=400*x1+600*x2;
g1=x1+x2−16;
g2=x1/28+x2/14−1;
g3=x1/14+x2/24−1;
g4=−x1;
g5=−x2;
%Initialization statements; these need not end with a semicolon

cla reset
axis auto %Minimum and maximum values for axes are determined automatically

%Limits for x- and y-axes may also be specified with the command
%axis ([xmin xmax ymin ymax])

xlabel(‘x1’),ylabel(‘x2’) %Specifies labels for x- and y-axes
title (‘Profit Maximization Problem’) %Displays a title for the problem
hold on %retains the current plot and axes properties for all subsequent plots

%Use the “contour” command to plot constraint and cost functions
cv1=[0 .5]; %Specifies two contour values, 0 and .5
const1=contour(x1,x2,g1,cv1,‘k’); %Plots two specified contours of g1; k=black

color
clabel(const1) %Automatically puts the contour value on the graph
text(1,16,‘g1’) %Writes g1 at the location (1, 16)
cv2=[0 .03];
const2=contour(x1,x2,g2,cv2,‘k’);
clabel(const2)
text(23,3,‘g2’)
const3=contour(x1,x2,g3,cv2,‘k’);
clabel(const3)
text(1,23,‘g3’)
cv3=[0 .5];
const4=contour(x1,x2,g4,cv3,‘k’);
clabel(const4)
text(.25,20,‘g4’)
const5=contour(x1,x2,g5,cv3,‘k’);
clabel(const5)
text(19,.5,‘g5’)
text(1.5,7,’Feasible Region’)
fv=[2400, 4800, 7200, 8800]; %Defines 4 contours for the profit function
fs=contour(x1,x2,f,fv,‘k�’); %‘k�’ specifies black dashed lines for profit

function contours
clabel(fs)
hold off %Indicates end of this plotting sequence

%Subsequent plots will appear in separate windows
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contour will pass through the problem’s infeasible region. The thickness of the infeasible
contour is changed to indicate the infeasible side of the inequality using the graph-editing
capability, which is explained in the following subsection.

In this way all constraint functions are plotted and the problem’s feasible region is iden-
tified. By observing the trend of the objective function contours, the optimum point for the
problem is identified.

3.3.2 Editing of Graph

Once the graph has been created using the commands just described, we can edit it
before printing it or copying it to a text editor. In particular, we may need to modify the
appearance of the constraints’ infeasible contours and edit any text. To do this, first select
“Current Object Properties. . .” under the “Edit” tab on the graph window. Then double-
click on any item in the graph to edit its properties. For instance, we can increase the
thickness of the infeasible contours to shade out the infeasible region. In addition, text
may be added, deleted, or moved as desired. Note that if MATLAB is re-run, any changes
made directly to the graph are lost. For this reason, it is a good idea to save the graph as a
".fig" file, which may be recalled with MATLAB.

Another way to shade out the infeasible region is to plot several closely spaced contours
in it using the following commands:

cv1=[0:0.01:0.5]; %[Starting contour: Increment: Final contour]
const1=contour(x1,x2,g1,cv1,'g'); % g = green color

There are two ways to transfer the graph to a text document. First, select “Copy Figure”
under the “Edit” tab so that the figure can be pasted as a bitmap into a document.
Alternatively, select “Export. . .” under the “File” tab. The figure is exported as the specified
file type and can be inserted into another document through the “Insert” command. The
final MATLAB graph for the profit maximization problem is shown in Figure 3.6.

3.4 DESIGN PROBLEM WITH MULTIPLE SOLUTIONS

A situation can arise in which a constraint is parallel to the cost function. If the con-
straint is active at the optimum, there are multiple solutions to the problem. To illustrate
this situation, consider the following design problem:

Minimize
fðxÞ5 2x1 2 0:5x2 ðaÞ

subject to
2x1 1 3x2 # 12; 2x1 1 x2 # 8; 2x1 # 0; 2x2 # 0 ðbÞ

In this problem, the second constraint is parallel to the cost function. Therefore, there is
a possibility of multiple optimum designs. Figure 3.7 provides a graphical solution to the
problem. It is seen that any point on the line B�C gives an optimum design, giving the
problem infinite optimum solutions.
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FIGURE 3.7 Example problem with multiple solutions.
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3.5 PROBLEM WITH UNBOUNDED SOLUTIONS

Some design problems may not have a bounded solution. This situation can arise if we
forget a constraint or incorrectly formulate the problem. To illustrate such a situation, con-
sider the following design problem:

Minimize
fðxÞ5 2x1 1 2x2 ðcÞ

subject to
22x1 1 x2 # 0; 22x1 1 3x2 # 6; 2x1 # 0; 2x2 # 0 ðdÞ

The feasible set for the problem is shown in Figure 3.8 with several cost function con-
tours. It is seen that the feasible set is unbounded. Therefore, there is no finite optimum
solution, and we must re-examine the way the problem was formulated to correct the situ-
ation. Figure 3.8 shows that the problem is underconstrained.

3.6 INFEASIBLE PROBLEM

If we are not careful in formulating it, a design problem may not have a solution, which
happens when there are conflicting requirements or inconsistent constraint equations.
There may also be no solution when we put too many constraints on the system; that is, the
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FIGURE 3.8 Example problem with an
unbounded solution.
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constraints are so restrictive that no feasible solution is possible. These are called infeasible
problems. To illustrate them, consider the following:

Minimize
fðxÞ5 x1 1 2x2 ðeÞ

subject to
3x1 1 2x2 # 6; 2x1 1 3x2 $ 12; x1; x2 # 5; x1; x2 $ 0 ðfÞ

Constraints for the problem are plotted in Figure 3.9 and their infeasible side is shaded-
out. It is evident that there is no region within the design space that satisfies all constraints;
that is, there is no feasible region for the problem. Thus, the problem is infeasible. Basically,
the first two constraints impose conflicting requirements. The first requires the feasible
design to be below the line A�G, whereas the second requires it to be above the line C�F.
Since the two lines do not intersect in the first quadrant, the problem has no feasible region.

3.7 GRAPHICAL SOLUTION FOR THE MINIMUM-WEIGHT
TUBULAR COLUMN

The design problem formulated in Section 2.7 will now be solved by the graphical

method using the following data: P5 10 MN, E5 207 GPa, ρ5 7833 kg/m3, l5 5.0 m, and
σa5 248 MPa. Using these data, formulation 1 for the problem is defined as “Find mean
radius R (m) and thickness t (m) to minimize the mass function”:

fðR;tÞ5 2ρlπRt5 2ð7833Þð5ÞπRt5 2:46083 105Rt; kg ðaÞ
subject to the four inequality constraints
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FIGURE 3.9 Infeasible design optimization problem.
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g1ðR;tÞ5
P

2πRt
2 σa 5

103 106

2πRt
2 2483 106 # 0 ðstress constraintÞ ðbÞ

g2ðR;tÞ5P2
π3ER3t

4l2
5 103 106 2

π3ð2073 109ÞR3t

4ð5Þð5Þ # 0 ðbuckling load constraintÞ ðcÞ

g3ðR; tÞ5 2R# 0 ðdÞ

g4ðR; tÞ5 2t# 0 ðeÞ

Note that the explicit bound constraints discussed in Section 2.7 are simply replaced
by the non-negativity constraints g3 and g4. The constraints for the problem are plotted
in Figure 3.10, and the feasible region is indicated. Cost function contours for
f5 1000 kg, 1500 kg, and 1579 kg are also shown. In this example the cost function con-
tours run parallel to the stress constraint g1. Since g1 is active at the optimum, the prob-
lem has infinite optimum designs, that is, the entire curve A�B in Figure 3.10. We can
read the coordinates of any point on the curve A�B as an optimum solution. In particu-
lar, point A, where constraints g1 and g2 intersect, is also an optimum point where
R*5 0.1575 m and t*5 0.0405 m.

The superscript “*”on a variable indicates its optimum value, a notation that will be
used throughout this text.

B
Optimum solution curve A–B

Feasible region

(0.0405,0.1575)

A

Direction of decrease
for cost function

f = 1579 kg
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FIGURE 3.10 A graphical solution to the
problem of designing a minimum-weight tubu-
lar column.
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3.8 GRAPHICAL SOLUTION FOR A BEAM
DESIGN PROBLEM

STEP 1: PROJECT/PROBLEM DESCRIPTION A beam of rectangular cross-section is sub-
jected to a bending moment M (N �m) and a maximum shear force V (N). The bending
stress in the beam is calculated as σ5 6M/bd2 (Pa), and average shear stress is calculated as
τ5 3V/2bd (Pa), where b is the width and d is the depth of the beam. The allowable stresses
in bending and shear are 10 MPa and 2 MPa, respectively. It is also desirable that the depth
of the beam not exceed twice its width and that the cross-sectional area of the beam be mini-
mized. In this section, we formulate and solve the problem using the graphical method.

STEP 2: DATA AND INFORMATION COLLECTION Let bending moment M5 40 kN �m
and the shear force V5 150 kN. All other data and necessary equations are given in the
project statement. We shall formulate the problem using a consistent set of units, N and
mm.

STEP 3: DEFINITION OF DESIGN VARIABLES The two design variables are

d5depth of beam, mm
b5width of beam, mm

STEP 4: OPTIMIZATION CRITERION The cost function for the problem is the cross-
sectional area, which is expressed as

fðb; dÞ5 bd ðaÞ

STEP 5: FORMULATION OF CONSTRAINTS Constraints for the problem consist of
bending stress, shear stress, and depth-to-width ratio. Bending and shear stresses are
calculated as

σ5
6M

bd2
5

6ð40Þð1000Þð1000Þ
bd2

; N=mm2 ðbÞ

τ5
3V

2bd
5

3ð150Þð1000Þ
2bd

; N=mm2 ðcÞ

Allowable bending stress σa and allowable shear stress τa are given as

σa 5 10 MPa5 103 106 N=m2 5 10 N=mm2 ðdÞ
τa 5 2 MPa5 23 106 N=m2 5 2 N=mm2 ðeÞ

Using Eqs. (b) through (e), we obtain the bending and shear stress constraints as

g1 5
6ð40Þð1000Þð1000Þ

bd2
2 10# 0 ðbending stressÞ ðfÞ

g2 5
3ð150Þð1000Þ

2bd
2 2# 0 ðshear stressÞ ðgÞ
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The constraint that requires that the depth be no more than twice the width can be
expressed as

g3 5 d2 2b# 0 ðhÞ
Finally, both design variables should be non-negative:

g4 5 2b# 0; g5 5 2d# 0 ðiÞ
In reality, b and d cannot both have zero value, so we should use some minimum value

as a lower bound on them (i.e., b $ bmin and d $ dmin)

Graphical Solution

Using MATLAB, the constraints for the problem are plotted in Figure 3.11, and the fea-
sible region is identified. Note that the cost function is parallel to the constraint g2 (both
functions have the same form: bd5 constant). Therefore, any point along the curve A�B
represents an optimum solution, so there are infinite optimum designs. This is a desirable
situation since a wide choice of optimum solutions is available to meet a designer’s needs.

The optimum cross-sectional area is 112,500 mm2. Point B corresponds to an optimum
design of b5 237 mm and d5 474 mm. Point A corresponds to b5 527.3 mm and
d5 213.3 mm. These points represent the two extreme optimum solutions; all other solu-
tions lie between these two points on the curve A�B.

EXERCISES FOR CHAPTER 3

Solve the following problems using the graphical method.

3.1 Minimize f(x1, x2)5 (x12 3)21 (x22 3)2

subject to x11 x2 # 4

x1, x2 $ 0

Optimum solution curve A–B

Feasible region
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g5 = 0

g1 = 0
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FIGURE 3.11 Graphical solution to the
minimum-area beam design problem.
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3.2 Maximize F(x1, x2)5 x11 2x2
subject to 2x11 x2 # 4

x1, x2 $ 0

3.3 Minimize f(x1, x2)5 x11 3x2
subject to x11 4x2 $ 48

5x11 x2 $ 50

x1, x2 $ 0

3.4 Maximize F(x1, x2)5 x11 x21 2x3
subject to 1 # x1 # 4

3x22 2x35 6

21 # x3 # 2

x2 $ 0

3.5 Maximize F(x1, x2)5 4x1x2
subject to x11 x2 # 20

x22 x1 # 10

x1, x2 $ 0

3.6 Minimize f(x1, x2)5 5x11 10x2
subject to 10x11 5x2 # 50

5x12 5x2 $ 2 20

x1, x2 $ 0

3.7 Minimize f(x1, x2)5 3x11 x2
subject to 2x11 4x2 # 21

5x11 3x2 # 18

x1, x2 $ 0

3.8 Minimize fðx1; x2Þ5 x21 2 2x22 2 4x1
subject to x11 x2 # 6

x2 # 3

x1, x2 $ 0

3.9 Minimize f(x1, x2)5 x1x2
subject to x11 x22 # 0

x211 x22 # 9

3.10 Minimize f(x1, x2)5 3x11 6x2
subject to2 3x11 3x2 # 2

4x11 2x2 # 4

2x11 3x2 $ 1

Develop an appropriate graphical representation for the following problems and determine the

minimum and the maximum points for the objective function.

3.11 f(x, y)5 2x21 y22 2xy2 3x2 2y

subject to y2 x # 0

x21 y22 15 0

3.12 f(x, y)5 4x21 3y22 5xy2 8x

subject to x1 y5 4
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3.13 f(x, y)5 9x21 13y21 18xy2 4

subject to x21 y21 2x5 16

3.14 f(x, y)5 2x1 3y2 x32 2y2

subject to x1 3y # 6

5x1 2y # 10

x, y $ 0

3.15 f(r, t)5 (r2 8)21 (t2 8)2

subject to 12 $ r1 t

t # 5

r, t $ 0

3.16 fðx1; x2Þ5 x31 2 16x1 1 2x2 2 3x22
subject to x11 x2 # 3

3.17 f(x, y)5 9x21 13y21 18xy2 4

subject to x21 y21 2x $ 16

3.18 f(r, t)5 (r2 4)21 (t2 4)2

subject to 102 r2 t $ 0

5 $ r

r, t $ 0

3.19 f(x, y)5 2 x1 2y

subject to2x21 6x1 3y # 27

18x2 y2 $ 180

x, y $ 0

3.20 f(x1, x2)5 (x12 4)21 (x22 2)2

subject to 10 $ x11 2x2
0 # x1 # 3

x2 $ 0

3.21 Solve the rectangular beam problem of Exercise 2.17 graphically for the following data:

M5 80 kN �m, V5 150 kN, σa5 8 MPa, and τa5 3 MPa.

3.22 Solve the cantilever beam problem of Exercise 2.23 graphically for the following data:

P5 10 kN; l5 5.0 m; modulus of elasticity, E5 210 Gpa; allowable bending stress,

σa5 250 MPa; allowable shear stress, τa5 90 MPa; mass density, ρ5 7850 kg/m3; Ro #

20.0 cm; Ri # 20.0 cm.

3.23 For the minimum-mass tubular column design problem formulated in Section 2.7, consider

the following data: P5 50 kN; l5 5.0 m; modulus of elasticity, E5 210 Gpa; allowable stress,

σa5 250 MPa; mass density ρ5 7850 kg/m3.

Treating mean radius R and wall thickness t as design variables, solve the design

problem graphically, imposing an additional constraint R/t # 50. This constraint is needed

to avoid local crippling of the column. Also impose the member size constraints as

0:01#R# 1:0 m; 5# t# 200 mm

3.24 For Exercise 3.23, treat outer radius Ro and inner radius Ri as design variables, and solve

the design problem graphically. Impose the same constraints as in Exercise 3.23.

3.25 Formulate the minimum-mass column design problem of Section 2.7 using a hollow square

cross-section with outside dimension w and thickness t as design variables. Solve the

problem graphically using the constraints and the data given in Exercise 3.23.
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3.26 Consider the symmetric (members are identical) case of the two-bar truss problem

discussed in Section 2.5 with the following data: W5 10 kN; θ5 30�; height h5 1.0 m; span

s5 1.5 m; allowable stress, σa5 250 MPa; modulus of elasticity, E5 210 GPa.

Formulate the minimum-mass design problem with constraints on member stresses and

bounds on design variables. Solve the problem graphically using circular tubes as members.

3.27 Formulate and solve the problem of Exercise 2.1 graphically.

3.28 In the design of the closed-end, thin-walled cylindrical pressure vessel shown in

Figure E3.28, the design objective is to select the mean radius R and wall thickness t to

minimize the total mass. The vessel should contain at least 25.0 m3 of gas at an internal

pressure of 3.5 MPa. It is required that the circumferential stress in the pressure vessel

not exceed 210 MPa and the circumferential strain not exceed (1.0E203). The

circumferential stress and strain are calculated from the equations

σc 5
PR

t
; εc 5

PRð22 νÞ
2Et

where ρ5mass density (7850 kg/m3), σc5 circumferential stress (Pa), εc5 circumferential

strain, P5 internal pressure (Pa), E5Young’s modulus (210 GPa), and ν5Poisson’s ratio

(0.3). Formulate the optimum design problem, and solve it graphically.

3.29 Consider the symmetric three-bar truss design problem formulated in Section 2.10. Formulate

and solve the problem graphically for the following data: l5 1.0 m; P5 100 kN; θ5 30�;
mass density, ρ5 2800 kg/m3; modulus of elasticity, E5 70 GPa; allowable stress,

σa5 140 MPa;Δu5 0.5 cm;Δv5 0.5 cm; ωo5 50 Hz; β5 1.0; A1, A2 $ 2 cm2.

3.30 Consider the cabinet design problem in Section 2.6. Use the equality constraints to eliminate

three design variables from the problem. Restate the problem in terms of the remaining three

variables, transcribing it into the standard form.

3.31 Graphically solve the insulated spherical tank design problem formulated in Section 2.3 for

the following data: r5 3.0 m, c15 $10,000, c25 $1000, c35 $1, c45 $0.1, ΔT5 5.

3.32 Solve the cylindrical tank design problem given in Section 2.8 graphically for the following

data: c5 $1500/m2, V5 3000 m3.

3.33 Consider the minimum-mass tubular column problem formulated in Section 2.7. Find the

optimum solution for it using the graphical method for the data: load, P5 100 kN; length,

l5 5.0 m; Young’s modulus, E5 210 GPa; allowable stress, σa5 250 MPa; mass density,

ρ5 7850 kg/m3; R # 0.4 m; t # 0.1 m; R, t $ 0.

Gas

l = 8.0 m

3 cm

P R

FIGURE E3.28 Graphic of a
cylindrical pressure vessel.
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*3.34 Design a hollow torsion rod, shown in Figure E3.34, to satisfy the following requirements

(created by J. M. Trummel):

1. The calculated shear stress τ shall not exceed the allowable shear stress τa under the
normal operating torque To (N �m).

2. The calculated angle of twist, θ, shall not exceed the allowable twist, θa (radians).
3. The member shall not buckle under a short duration torque of Tmax (N �m).

Requirements for the rod and material properties are given in Tables E3.34 (select a

material for one rod). Use the following design variables: x15 outside diameter of the

rod; x25 ratio of inside/outside diameter, di/do.

Using graphical optimization, determine the inside and outside diameters for a

minimum-mass rod to meet the preceding design requirements. Compare the hollow rod

Torque

di

do
l

FIGURE E3.34 Graphic of a
hollow torsion rod.

TABLE E3.34(a) Rod requirements

Torsion
rod no.

Length l
(m)

Normal torque
To (kN �m)

Maximum Tmax

(kN �m)
Allowable twist
θa (degrees)

1 0.50 10.0 20.0 2

2 0.75 15.0 25.0 2

3 1.00 20.0 30.0 2

TABLE E3.34(b) Materials and properties for the torsion rod

Material

Density,

ρ (kg/m3)

Allowable
shear stress,

τa (MPa)

Elastic
modulus,

E (GPa)

Shear
modulus,

G (GPa)

Poisson
ratio

(ν)

1. 4140 alloy steel 7850 275 210 80 0.30

2. Aluminum alloy 24 ST4 2750 165 75 28 0.32

3. Magnesium alloy A261 1800 90 45 16 0.35

4. Berylium 1850 110 300 147 0.02

5. Titanium 4500 165 110 42 0.30
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with an equivalent solid rod (di/do5 0). Use a consistent set of units (e.g., Newtons

and millimeters) and let the minimum and maximum values for design variables be

given as

0:02 # do # 0:5 m; 0:60 #
di
do

# 0:999

Useful expressions

Mass M5
π
4
ρlðd2o 2 d2i Þ; kg

Calculated shear stress τ5
c

J
To; Pa

Calculated angle of twist θ5
l

GJ
To; radians

Critical buckling torque
Tcr 5

πd3oE
12

ffiffiffi
2

p
ð12 ν2Þ0:75 12

di
do

� �2:5

; N �m

Notation

M mass (kg)
do outside diameter (m)
di inside diameter (m)
ρ mass density of material (kg/m3)
l length (m)
To normal operating torque (N �m)
c distance from rod axis to extreme fiber (m)
J polar moment of inertia (m4)
θ angle of twist (radians)
G modulus of rigidity (Pa)
Tcr critical buckling torque (N �m)
E modulus of elasticity (Pa)
ν Poisson’s ratio

*3.35 Formulate and solve Exercise 3.34 using the outside diameter do and the inside diameter di
as design variables.

*3.36 Formulate and solve Exercise 3.34 using the mean radius R and wall thickness t as design

variables. Let the bounds on design variables be given as 5 # R # 20 cm and 0.2 #

t # 4 cm.

3.37 Formulate the problem in Exercise 2.3 and solve it using the graphical method.

3.38 Formulate the problem in Exercise 2.4 and solve it using the graphical method.

3.39 Solve Exercise 3.23 for a column pinned at both ends. The buckling load for such a column

is given as π2EI/l2. Use the graphical method.

3.40 Solve Exercise 3.23 for a column fixed at both ends. The buckling load for such a column is

given as 4π2EI/l2. Use the graphical method.

3.41 Solve Exercise 3.23 for a column fixed at one end and pinned at the other. The buckling

load for such a column is given as 2π2EI/l2. Use the graphical method.
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3.42 Solve Exercise 3.24 for a column pinned at both ends. The buckling load for such a column

is given as π2EI/l2. Use the graphical method.

3.43 Solve Exercise 3.24 for a column fixed at both ends. The buckling load for such a column is

given as 4π2EI/l2. Use the graphical method.

3.44 Solve Exercise 3.24 for a column fixed at one end and pinned at the other. The buckling

load for such a column is given as 2π2EI/l2. Use the graphical method.

3.45 Solve the can design problem formulated in Section 2.2 using the graphical method.

3.46 Consider the two-bar truss shown in Figure 2.5. Using the given data, design a minimum-

mass structure where W5 100 kN; θ5 30�; h5 1 m; s5 1.5 m; modulus of elasticity

E5 210 GPa; allowable stress σa5 250 MPa; mass density ρ5 7850 kg/m3. Use Newtons

and millimeters as units. The members should not fail in stress and their buckling should

be avoided. Deflection at the top in either direction should not be more than 5 cm.

Use cross-sectional areas A1 and A2 of the two members as design variables and let the

moment of inertia of the members be given as I5A2. Areas must also satisfy the constraint

1 # Ai # 50 cm2.

3.47 For Exercise 3.46, use hollow circular tubes as members with mean radius R and wall

thickness t as design variables. Make sure that R/t # 50. Design the structure so that

member 1 is symmetric with member 2. The radius and thickness must also satisfy the

constraints 2 # t # 40 mm and 2 # R # 40 cm.

3.48 Design a symmetric structure defined in Exercise 3.46, treating cross-sectional area A and

height h as design variables. The design variables must also satisfy the constraints 1 # A

# 50 cm2 and 0.5 # h # 3 m.

3.49 Design a symmetric structure defined in Exercise 3.46, treating cross-sectional area A and

span s as design variables. The design variables must also satisfy the constraints 1 # A #

50 cm2 and 0.5 # s # 4 m.

3.50 Design a minimum-mass symmetric three-bar truss (the area of member 1 and that of

member 3 are the same) to support a load P, as was shown in Figure 2.9. The following

notation may be used: Pu5P cos θ, Pv5P sin θ, A15 cross-sectional area of members 1 and

3, A25 cross-sectional area of member 2.

The members must not fail under the stress, and the deflection at node 4 must not

exceed 2 cm in either direction. Use Newtons and millimeters as units. The data is given

as P5 50 kN; θ5 30�; mass density, ρ5 7850 kg/m3; l5 1 m; modulus of elasticity,

E5 210 GPa; allowable stress, σa5 150 MPa. The design variables must also satisfy the

constraints 50 # Ai # 5000 mm2.

*3.51 Design of a water tower support column. As an employee of ABC Consulting Engineers,

you have been asked to design a cantilever cylindrical support column of minimum mass

for a new water tank. The tank itself has already been designed in the teardrop shape,

shown in Figure E3.51. The height of the base of the tank (H), the diameter of the tank (D),

and the wind pressure on the tank (w) are given as H5 30 m, D5 10 m, and w5 700 N/m2.

Formulate the design optimization problem and then solve it graphically (created by

G. Baenziger).

In addition to designing for combined axial and bending stresses and buckling,

several limitations have been placed on the design. The support column must have an

inside diameter of at least 0.70 m (di) to allow for piping and ladder access to the interior

89EXERCISES FOR CHAPTER 3

I. THE BASIC CONCEPTS



of the tank. To prevent local buckling of the column walls, the diameter/thickness ratio

(do/t) cannot be greater than 92. The large mass of water and steel makes deflections

critical, as they add to the bending moment. The deflection effects, as well as an

assumed construction eccentricity (e) of 10 cm, must be accounted for in the design

process. Deflection at the center of gravity (C.G.) of the tank should not be greater

than Δ.

Limits on the inner radius and wall thickness are 0.35 # R # 2.0 m and 1.0 # t # 20 cm.

Pertinent constants and formulas

Height of water tank h5 10 m

Allowable deflection Δ5 20 cm

Unit weight of water γw5 10 kN/m3

Unit weight of steel γs5 80 kN/m3

Modulus of elasticity E5 210 GPa

Moment of inertia of the column I5 π
64 d4o 2 ðdo 2 2tÞ4� �

Cross-sectional area of column material A5πt(do2 t)

Allowable bending stress σb5 165 MPa

Allowable axial stress
σa 5

12π2E

92ðH=rÞ2 (calculated using the

critical buckling load with a factor of safety of 23/12)

Radius of gyration r5
ffiffiffiffiffiffiffiffi
I=A

p
Average thickness of tank wall tt5 1.5 cm

Volume of tank V5 1.2πD2h

Surface area of tank As5 1.25πD2

Projected area of tank, for wind loading
Ap 5

2Dh

3
Load on the column due to weight of
water and steel tank

P5Vγw1Asttγs

Lateral load at the tank C.G. due to wind
pressure

W5wAp

w h

H

D

A A

Elevation Section A–A

t di

do

FIGURE E3.51 Graphic of a
water tower support column.
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Deflection at C.G. of tank δ5 δ11 δ2, where

δ1 5
WH2

12EI
ð4H1 3hÞ

δ2 5
H

2EI
ð0:5Wh1PeÞðH1 hÞ

Moment at base M5W(H1 0.5h)1 (δ1 e)P
Bending stress fb 5

M
2I do

Axial stress
fað5P=AÞ5 Vγw 1Asγstt

πtðdo 2 tÞ
Combined stress constraint fa

σa
1

fb
σb

# 1

Gravitational acceleration g5 9.81 m/s2

*3.52 Design of a flag pole. Your consulting firm has been asked to design a minimum-mass flag

pole of height H. The pole will be made of uniform hollow circular tubing with do and di as

outer and inner diameters, respectively. The pole must not fail under the action of high

winds.

For design purposes, the pole will be treated as a cantilever that is subjected to a

uniform lateral wind load of w (kN/m). In addition to the uniform load, the wind induces a

concentrated load of P (kN) at the top of the pole, as shown in Figure E3.52. The flag pole

must not fail in bending or shear. The deflection at the top should not exceed 10 cm. The

ratio of mean diameter to thickness must not exceed 60. The pertinent data are given in the

table that follows. Assume any other data if needed. The minimum and maximum values of

design variables are 5 # do # 50 cm and 4 # di # 45 cm.

Formulate the design problem and solve it using the graphical optimization technique.

Pertinent constants and equations

Cross-sectional area A5
π
4
ðd2o 2 d2i Þ

Moment of inertia I5
π
64

ðd4o 2 d4i Þ
Modulus of elasticity E5 210 GPa
Allowable bending stress σb5 165 MPa
Allowable shear stress τs5 50 MPa
Mass density of pole material ρ5 7800 kg/m3

Wind load w5 2.0 kN/m
Height of flag pole H5 10 m
Concentrated load at top P5 4.0 kN
Moment at base M5 (PH1 0.5wH2), kN �m
Bending stress

σ5
M

2I
do; kPa

Shear at base S5 (P1wH), kN
Shear stress

τ5
S

12I
ðd2o 1 dodi 1 d2i Þ; kPa

Deflection at top
δ5

PH3

3EI
1

wH4

8EI
Minimum and maximum thickness 0.5 and 2 cm
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*3.53 Design of a sign support column. A company’s design department has been asked to

design a support column of minimum weight for the sign shown in Figure E3.53. The

height to the bottom of the sign H, the width b, and the wind pressure p on the sign are

as follows: H5 20 m, b5 8 m, p5 800 N/m2.

The sign itself weighs 2.5 kN/m2(w). The column must be safe with respect to combined

axial and bending stresses. The allowable axial stress includes a factor of safety with

respect to buckling. To prevent local buckling of the plate, the diameter/thickness ratio

do/t must not exceed 92. Note that the bending stress in the column will increase as a result

of the deflection of the sign under the wind load. The maximum deflection at the sign’s

center of gravity should not exceed 0.1 m. The minimum and maximum values of design

variables are 25 # do # 150 cm and 0.5 # t # 10 cm (created by H. Kane).

P

H

A A

Section A–A

di

do

FIGURE E3.52 Flag pole.

h

b

H

A A
Section A–A

p

do

Optimize

Front Side

t

FIGURE E3.53 A sign support
column.
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Pertinent constants and equations

Height of sign h5 4.0 m
Cross-sectional area A5

π
4

d2o 2 ðdo 2 2tÞ2� �
Moment of inertia I5

π
64

ðd4o 2 ðdo 2 2tÞ4Þ
Radius of gyration r5

ffiffiffiffiffiffiffiffi
I=A

p
Young’s modulus (aluminum alloy) E5 75 GPa
Unit weight of aluminum γ5 27 kN/m3

Allowable bending stress σb5 140 MPa
Allowable axial stress

σa 5
12π2E

92ðH=rÞ2
Wind force F5 pbh
Weight of sign W5wbh
Deflection at center of gravity of sign

δ5
F

EI

H3

3
1

H2h

2
1

Hh2

4

� �

Bending stress in column
fb 5

M

2I
do

Axial stress
fa 5

W

A
Moment at base

M5 F H1
h

2

� �
1Wδ

Combined stress requirement fa
σa

1
fb
σb

# 1

*3.54 Design of a tripod. Design a minimum mass tripod of height H to support a vertical load

W5 60 kN. The tripod base is an equilateral triangle with sides B5 1200 mm. The struts

have a solid circular cross-section of diameter D (Figure E3.54).

W

+

H

B

l

FIGURE E3.54 Tripod.

93EXERCISES FOR CHAPTER 3

I. THE BASIC CONCEPTS



The axial stress in the struts must not exceed the allowable stress in compression, and

the axial load in the strut P must not exceed the critical buckling load Pcr divided by a

safety factor FS5 2. Use consistent units of Newtons and centimeters. The minimum and

maximum values for the design variables are 0.5 # H # 5 m and 0.5 # D # 50 cm.

Material properties and other relationships are given next:

Material aluminum alloy 2014-T6
Allowable compressive stress σa5 150 MPa
Young’s modulus E5 75 GPa
Mass density ρ5 2800 kg/m3

Strut length
l5 H2 1

1

3
B2

� �0:5

Critical buckling load
Pcr 5

π2EI

l2

Moment of inertia I5
π
64

D4

Strut load
P5

Wl

3H
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C H A P T E R

4

Optimum Design Concepts
Optimality Conditions

Upon comp le t i on o f th i s chap te r, you wi l l be ab l e to

• Define local and global minima (maxima)

for unconstrained and constrained

optimization problems

• Write optimality conditions for

unconstrained problems

• Write optimality conditions for constrained

problems

• Check optimality of a given point for

unconstrained and constrained problems

• Solve first-order optimality conditions for

candidate minimum points

• Check convexity of a function and the

design optimization problem

• Use Lagrange multipliers to study changes

to the optimum value of the cost function

due to variations in a constraint

In this chapter, we discuss basic ideas, concepts and theories used for design optimization (the
minimization problem). Theorems on the subject are stated without proofs. Their implica-
tions and use in the optimization process are discussed. Useful insights regarding the opti-
mality conditions are presented and illustrated. It is assumed that the variables are
continuous and that all problem functions are continuous and at least twice continuously
differentiable. Methods for discrete variable problems that may or may not need deriva-
tives of the problem functions are presented in later chapters.

The student is reminded to review the basic terminology and notation explained in
Section 1.5 as they are used throughout the present chapter and the remaining text.

Figure 4.1 shows a broad classification of the optimization approaches for continuous
variable constrained and unconstrained optimization problems. The following two philo-
sophically different viewpoints are shown: optimality criteria (or indirect) methods and
search (or direct) methods.
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Optimality Criteria Methods—Optimality criteria are the conditions a function must
satisfy at its minimum point. Optimization methods seeking solutions (perhaps using
numerical methods) to the optimality conditions are often called optimality criteria or
indirect methods. In this chapter and the next, we describe methods based on this
approach.
Search Methods—Search (direct) methods are based on a different philosophy. Here
we start with an estimate of the optimum design for the problem. Usually the starting
design will not satisfy the optimality criteria; therefore, it is improved iteratively until
they are satisfied. Thus, in the direct approach we search the design space for optimum
points. Methods based on this approach are described in later chapters.

A thorough knowledge of optimality conditions is important for an understanding of the
performance of various numerical (search) methods discussed later in the text. This chapter
and the next one focus on optimality conditions and the solution methods based on them.
Simple examples are used to explain the underlying concepts and ideas. The examples
will also show practical limitations of the methods.

The search methods are presented in Chapters 8 through 13 and refer to the results dis-
cussed in this chapter. Therefore, the material in the present chapter should be understood thor-
oughly. We will first discuss the concept of the local optimum of a function and the
conditions that characterize it. The problem of global optimality of a function will be dis-
cussed later in this chapter.

4.1 DEFINITIONS OF GLOBAL AND LOCAL MINIMA

Optimality conditions for a minimum point of the function are discussed in later sec-
tions. In this section, concepts of local and global minima are defined and illustrated using
the standard mathematical model for design optimization, defined in Chapter 2. The design
optimization problem is always converted to minimization of a cost function subject to
equality and inequality constraints. The problem is restated as follows:

Find design variable vector x to minimize a cost function f(x) subject to the equality
constraints hj(x)5 0, j5 1 to p and the inequality constraints gi(x) # 0, i5 1 to m.

Optimization methods

Optimality criteria methods
(indirect methods)

Search methods
(direct methods)

Constrained
problem

Unconstrained
problem

Constrained
problem

Unconstrained
problem

FIGURE 4.1 Classification of optimization methods.
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4.1.1 Minimum

In Section 2.11, we defined the feasible set S (also called the constraint set, feasible region,
or feasible design space) for a design problem as a collection of feasible designs:

S5 fxjhjðxÞ5 0; j5 1 to p; giðxÞ# 0; i5 1 to mg ð4:1Þ
Since there are no constraints in unconstrained problems, the entire design space is fea-

sible for them. The optimization problem is to find a point in the feasible design space that
gives a minimum value to the cost function. Methods to locate optimum designs are dis-
cussed throughout the text. We must first carefully define what is meant by an optimum.
In the following discussion, x* is used to designate a particular point of the feasible set.

Global (Absolute) Minimum

A function f(x) of n variables has a global (absolute) minimum at x* if the value of the func-

tion at x* is less than or equal to the value of the function at any other point x in the feasible set

S. That is,

fðx�Þ# fðxÞ ð4:2Þ

for all x in the feasible set S. If strict inequality holds for all x other than x* in Eq. (4.2), then x* is

called a strong (strict) global minimum; otherwise, it is called a weak global minimum.

Local (Relative) Minimum

A function f(x) of n variables has a local (relative) minimum at x* if Inequality (4.2) holds for

all x in a small neighborhood N (vicinity) of x* in the feasible set S. If strict inequality holds, then

x* is called a strong (strict) local minimum; otherwise, it is called a weak local minimum.

Neighborhood N of point x* is defined as the set of points

N5 fxjxAS with jjx2 x�jj , δg ð4:3Þ
for some small δ. 0. Geometrically, it is a small feasible region around point x*.

Note that a function f(x) can have strict global minimum at only one point. It may, how-
ever, have a global minimum at several points if it has the same value at each of those
points. Similarly, a function f(x) can have a strict local minimum at only one point in the
neighborhood N (vicinity) of x*. It may, however, have a local minimum at several points
in N if the function value is the same at each of those points.

Note also that global and local maxima are defined in a similar manner by simply revers-
ing the inequality in Eq. (4.2). We also note here that these definitions do not provide a
method for locating minimum points. Based on them, however, we can develop analyses
and computational procedures to locate them. Also, we can use these definitions to check
the optimality of points in the graphical solution process presented in Chapter 3.
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To understand the graphical significance of global and local minima, consider graphs of a
function f(x) of one variable, as shown in Figure 4.2. In Part (a) of the figure, where x is
between 2N and N (2N# x#N), points B and D are local minima since the function
has its smallest value in their neighborhood. Similarly, both A and C are points of local
maxima for the function. There is, however, no global minimum or maximum for the func-
tion since the domain and the function f(x) are unbounded; that is, x and f(x) are allowed
to have any value between 2N and N. If we restrict x to lie between 2a and b, as in Part
(b) of Figure 4.2, then point E gives the global minimum and F the global maximum for
the function. Both of these points have active constraints, while points A, B, C, and D are
unconstrained.

• A global minimum point is the one where there are no other feasible points with better
cost function values.

• A local minimum point is the one where there are no other feasible points “in the
vicinity” with better cost function values.

(a)

(b)

A

B
D

C

f (x)

x 

A

B

E
D

C

f (x)

x 

F

x = –a

x = b

FIGURE 4.2 Representation of optimum
points. (a) The unbounded domain and func-
tion (no global optimum). (b) The bounded
domain and function (global minimum and
maximum exist).
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We will further illustrate these concepts for constrained problems with Examples 4.1
through 4.3.

EXAMPLE 4.1 USE OF THE DEFINITION OF MINIMUM
POINT: UNCONSTRAINED MINIMUM FOR A
CONSTRAINED PROBLEM

An optimum design problem is formulated and transcribed into the standard form in terms

of the variables x and y:

Minimize
fðx; yÞ5 ðx2 4Þ2 1 ðy2 6Þ2 ðaÞ

subject to
g1 5 x1 y2 12# 0 ðbÞ

g2 5 x2 8# 0 ðcÞ
g3 52x# 0 ðx$ 0Þ ðdÞ
g4 52y# 0 ðy$ 0Þ ðeÞ

Find the local and global minima for the function f(x,y) using the graphical method.

Solution
Using the procedure for graphical optimization described in Chapter 3, the constraints for the

problem are plotted and the feasible set S is identified as ABCD in Figure 4.3. The contours of

the cost function f(x,y), which is an equation of a circle with center at (4, 6), are also shown.

Unconstrained points To locate the minimum points, we use the definition of local minimum

and check the inequality f(x*,y*)# f(x,y) at a candidate feasible point (x*,y*) in its small feasible

neighborhood. Note that the cost function always has a non-negative value at any point with the

smallest value as zero at the center of the circle. Since the center of the circle at E(4, 6) is feasible,

it is a local minimum point with a cost function value of zero.

Constrained points We check the local minimum condition at some other points as follows:

Point A(0, 0): f(0, 0)5 52 is not a local minimum point because the inequality f(0,0)# f(x,y) is

violated for any small feasible move away from point A; that is, the cost function reduces as

we move away from the point A in the feasible region.

Point F(4, 0): f(4, 0)5 36 is also not a local minimum point since there are feasible moves from

the point for which the cost function can be reduced.

It can be checked that points B, C, D, and G are also not local minimum points. In fact, there

is no other local minimum point. Thus, point E is a local, as well as a global, minimum point for

the function. It is important to note that at the minimum point no constraints are active; that is,

constraints play no role in determining the minimum points for this problem. However, this is not

always true, as we will see in Example 4.2.
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EXAMPLE 4.2 USE OF THE DEFINITION OF MINIMUM
POINT: CONSTRAINED MINIMUM

Solve the optimum design problem formulated in terms of variables x and y as

Minimize
fðx; yÞ5 ðx2 10Þ2 1 ðy2 8Þ2 ðaÞ

subject to the same constraints as in Example 4.1.

Solution
The feasible region for the problem is the same as for Example 4.1, as ABCD in Figure 4.4.

The cost function is an equation of a circle with the center at point E(10,8), which is an infeasible

point. Two cost contours are shown in the figure. The problem now is to find a point in the feasi-

ble region that is closest to point E, that is, with the smallest value for the cost function. It is seen

that point G, with coordinates (7, 5) and f5 18, has the smallest distance from point E. At this

point, the constraint g1 is active. Thus, for the present objective function, the constraints play a promi-

nent role in determining the minimum point for the problem.

Use of the definition of minimum Use of the definition of a local minimum point also indi-

cates that point G is indeed a local minimum for the function since any feasible move from G

results in an increase in the cost function. The use of the definition also indicates that there is no

other local minimum point. Thus, point G is a global minimum point as well.

16
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12
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2

0

–2
–2 0 2 4 6 8

x
10 12 14 16

y

g1

g3

g2

g4

G

B

E

C

DF

Feasible set S

A

f =2

f =1

Local minimum: point E(4,6)

Global minimum: point E(4,6)

FIGURE 4.3 Representation
of unconstrained minimum for
Example 4.1.
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EXAMPLE 4.3 USE OF THE DEFINITION OF MAXIMUM POINT

Solve the optimum design problem formulated in terms of variables x and y as

Maximize

fðx; yÞ5 ðx2 4Þ2 1 ðy2 6Þ2 ðaÞ
subject to the same constraints as in Example 4.1.

Solution
The feasible region for the problem is ABCD, as shown in Figure 4.3. The objective function is

an equation of a circle with center at point E(4, 6). Two objective function contours are shown in

the figure. It is seen that point D(8, 0) is a local maximum point because any feasible move away

from the point results in reduction of the objective function. Point C(8, 4) is not a local maximum

point since a feasible move along the line CD results in an increase in the objective function, thus

violating the definition of a local max-point [f(x*,y*) $ f(x,y)]. It can be verified that points A and

B are also local maximum points that and point G is not. Thus, this problem has the following

three local maximum points:

Point A(0, 0): f(0, 0)5 52

Point B(0, 12): f(0, 12)5 52

Point D(8, 0): f(8, 0)5 52
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g4
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f =8

f =18

E

Minimum point: G(7,5)

Feasible set S

FIGURE 4.4 Representation of
constrained minimum for Example
4.2.
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It is seen that the objective function has the same value at all three points. Therefore, all of the

points are global maximum points. There is no strict global minimum point. This example shows

that an objective function can have several global optimum points in the feasible region.

4.1.2 Existence of a Minimum

In general, we do not know before attempting to solve a problem if a minimum even
exists. In certain cases we can ensure existence of a minimum, even though we may not
know how to find it. The Weierstrass theorem guarantees this when certain conditions are
satisfied.

THEOREM 4 . 1

Weierstrass Theorem—Existence of a Global

Minimum If f(x) is continuous on a non-

empty feasible set S that is closed and

bounded, then f(x) has a global minimum in S.

To use the theorem, we must understand the meaning of a closed and bounded set. A set
S is closed if it includes all of its boundary points and every sequence of points has a subse-
quence that converges to a point in the set. This implies that there cannot be strictly
“, type” inequality constraints in the formulation of the problem.

A set is bounded if for any point, x A S, xTx , c, where c is a finite number. Since the
domain of the function in Figure 4.2(a) is not closed, and the function is also unbounded,
a global minimum or maximum for the function is not ensured. Actually, there is no
global minimum or maximum for the function. However, in Figure 4.2(b), since the feasi-
ble set is closed and bounded with 2a # x # b and the function is continuous, it has
global minimum as well as maximum points.

It is important to note that in general it is difficult to check the boundedness condition
xTx , c since this condition must be checked for the infinite points in S. The foregoing
examples are simple, where a graphical representation of the problem is available and it is
easy to check the conditions. Nevertheless, it is important to keep the theorem in mind
while using a numerical method to solve an optimization problem. If the numerical pro-
cess is not converging to a solution, then perhaps some conditions of this theorem are not
met and the problem formulation needs to be re-examined carefully. Example 4.4 further
illustrates the use of the Weierstrass theorem.

EXAMPLE 4.4 EXISTENCE OF A GLOBAL MINIMUM USING
THE WEIERSTRASS THEOREM

Consider a function f(x)521/x defined on the set S5 {x j 0 , x # 1}. Check the existence of

a global minimum for the function.
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Solution
The feasible set S is not closed since it does not include the boundary point x5 0. The condi-

tions of the Weierstrass theorem are not satisfied, although f is continuous on S. The existence of

a global minimum is not guaranteed, and indeed there is no point x* satisfying f(x*) # f(x) for all

x A S. If we define S5 {x j 0 # x # 1}, then the feasible set is closed and bounded. However, f is

not defined at x5 0 (hence not continuous), so the conditions of the theorem are still not satisfied

and there is no guarantee of a global minimum for f in the set S.

Note that when conditions of the Weierstrass theorem are satisfied, the existence of a
global optimum is guaranteed. It is important, however, to realize that when they are not
satisfied, a global solution may still exist; that is, it is not an “if-and-only-if” theorem. The
theorem does not rule out the possibility of a global minimum . The difference is that we
cannot guarantee its existence. For example, consider the problem of minimizing f(x)5 x2

subject to the constraints 21 , x , 1. Since the feasible set is not closed, conditions of the
Weierstrass theorem are not met; therefore, it cannot be used. However, the function has a
global minimum at the point x5 0.

Note also that the theorem does not provide a method for finding a global minimum
point even if its conditions are satisfied; it is only an existence theorem.

4.2 REVIEW OF SOME BASIC CALCULUS CONCEPTS

Optimality conditions for a minimum point are discussed in later sections. Since most
optimization problems involve functions of several variables, these conditions use ideas
from vector calculus. Therefore, in this section, we review basic concepts from calculus using
the vector and matrix notations. Basic material related to vector and matrix algebra (linear
algebra) is described in Appendix A. It is important to be comfortable with these materials
in order to understand the optimality conditions.

The partial differentiation notation for functions of several variables is introduced. The
gradient vector for a function of several variables requiring first partial derivatives of the
function is defined. The Hessian matrix for the function requiring second partial derivatives
of the function is then defined. Taylor’s expansions for functions of single and multiple vari-
ables are discussed. The concept of quadratic forms is needed to discuss sufficiency condi-
tions for optimality. Therefore, notation and analyses related to quadratic forms are
described.

The topics from this review material may be covered all at once or reviewed on
an “as needed” basis at an appropriate time during coverage of various topics in this
chapter.

4.2.1 Gradient Vector: Partial Derivatives of a Function

Consider a function f(x) of n variables x1, x2, . . ., xn. The partial derivative of the func-
tion with respect to x1 at a given point x* is defined as @f(x*)/@x1, with respect to x2 as
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@f(x*)/@x2, and so on. Let ci represent the partial derivative of f(x) with respect to xi at the
point x*. Then, using the index notation of Section 1.5, we can represent all partial deriva-
tives of f(x) as follows:

ci 5
@fðx�Þ
@xi

; i5 1 to n ð4:4Þ

For convenience and compactness of notation, we arrange the partial derivatives @f(x*)/
@x1, @f(x*)/@x2, . . ., @f(x*)/@xn into a column vector called the gradient vector and represent
it by any of the following symbols: c, rf, @f/@x, or grad f, as

c5rfðx�Þ5

@fðx�Þ
@x1

@fðx�Þ
@x2

^
@fðx�Þ
@xn

2
66666666664

3
77777777775
5

@fðx�Þ
@x1

@fðx�Þ
@x2

. . .
@fðx�Þ
@xn

� �T
ð4:5Þ

where superscript T denotes transpose of a vector or a matrix. Note that all partial deriva-
tives are calculated at the given point x*. That is, each component of the gradient vector is
a function in itself which must be evaluated at the given point x*.

Geometrically, the gradient vector is normal to the tangent plane at the point x*, as shown in
Figure 4.5 for a function of three variables. Also, it points in the direction of maximum
increase in the function. These properties are quite important, and will be proved and dis-
cussed in Chapter 11. They will be used in developing optimality conditions and numeri-
cal methods for optimum design. In Example 4.5 the gradient vector for a function is
calculated.

f (x1, x2, x3)
= constant

x1

x3

x2

Surface

f (x*) 

Δ

x*

FIGURE 4.5 Gradient vector for f(x1, x2, x3) at the
point x*.
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EXAMPLE 4.5 CALCULATION OF A GRADIENT VECTOR

Calculate the gradient vector for the function f(x)5 (x12 1)21 (x22 1)2 at the point x*5 (1.8, 1.6).

Solution
The given function is the equation for a circle with its center at the point (1, 1). Since f(1.8,

1.6)5 (1.82 1)21 (1.62 1)25 1, the point (1.8, 1.6) lies on a circle of radius 1, shown as point A in

Figure 4.6. The partial derivatives for the function at the point (1.8, 1.6) are calculated as

@f

@x1
ð1:8; 1:6Þ5 2ðx1 2 1Þ5 2ð1:82 1Þ5 1:6 ðaÞ

@f

@x2
ð1:8; 1:6Þ5 2ðx2 2 1Þ5 2ð1:62 1Þ5 1:2 ðbÞ

Thus, the gradient vector for f(x) at point (1.8, 1.6) is given as c5 (1.6, 1.2). This is shown in

Figure 4.6. It is seen that vector c is normal to the circle at point (1.8, 1.6). This is consistent with

the observation that the gradient is normal to the surface.

4.2.2 Hessian Matrix: Second-Order Partial Derivatives

Differentiating the gradient vector once again, we obtain a matrix of second partial deri-
vatives for the function f(x) called the Hessian matrix or, simply, the Hessian. That is, differ-
entiating each component of the gradient vector given in Eq. (4.5) with respect to x1,
x2, . . ., xn, we obtain

@2f

@x@x
5

@2f

@x21

@2f

@x1@x2
. . .

@2f

@x1@xn

@2f

@x2@x1

@2f

@x22
. . .

@2f

@x2@xn

^ ^ ^

@2f

@xn@x1

@2f

@xn@x2
. . .

@2f

@x2n

2
6666666666664

3
7777777777775

ð4:6Þ

2

1

0 1

(1,1)

2 3

x2

f = 1

f(x) = (x1 –1)2 + (x2 – 1)2

1
A (1.8,1.6)

Gradient vector
c

Tangent

x1

0.8
0.6

FIGURE 4.6 Gradient vector (that is not to
scale) for the function f(x) of Example 4.5 at the
point (1.8, 1.6).
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where all derivatives are calculated at the given point x*. The Hessian is an n3 n matrix,
also denoted as H or r2f. It is important to note that each element of the Hessian is a function in
itself that is evaluated at the given point x*. Also, since f(x) is assumed to be twice continu-
ously differentiable, the cross partial derivatives are equal; that is,

@2f

@xi@xj
5

@2f

@xj@xi
; i5 1 to n; j5 1 to n ð4:7Þ

Therefore, the Hessian is always a symmetric matrix. It plays a prominent role in the suffi-
ciency conditions for optimality as discussed later in this chapter. It will be written as

H5
@2f

@xj@xi

� �
; i5 1 to n; j5 1 to n ð4:8Þ

The gradient and Hessian of a function are calculated in Example 4.6.

EXAMPLE 4.6 EVALUATION OF THE GRADIENT AND HESSIAN
OF A FUNCTION

For the following function, calculate the gradient vector and the Hessian matrix at the

point (1, 2):

fðxÞ5 x31 1 x32 1 2x21 1 3x22 2 x1x2 1 2x1 1 4x2 ðaÞ

Solution
The first partial derivatives of the function are given as

@f

@x1
5 3x21 1 4x1 2 x2 1 2;

@f

@x2
5 3x22 1 6x2 2 x1 1 4 ðbÞ

Substituting the point x15 1, x25 2, the gradient vector is given as c5 (7, 27).

The second partial derivatives of the function are calculated as

@2f

@x21
5 6x1 1 4;

@2f

@x1@x2
521;

@2f

@x2@x1
521;

@2f

@x22
5 6x2 1 6: ðcÞ

Therefore, the Hessian matrix is given as

HðxÞ5 6x1 1 4 21
21 6x2 1 6

� �
ðdÞ

The Hessian matrix at the point (1, 2) is given as

Hð1; 2Þ5 10 21
21 18

� �
ðeÞ

4.2.3 Taylor’s Expansion

The idea of Taylor’s expansion is fundamental to the development of optimum design
concepts and numerical methods, so it is explained here. A function can be approximated
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by polynomials in a neighborhood of any point in terms of its value and derivatives using
Taylor’s expansion. Consider first a function f(x) of one variable. Taylor’s expansion for
f(x) about the point x* is

fðxÞ5 fðx�Þ1 dfðx�Þ
dx

ðx2 x�Þ1 1

2

d2fðx�Þ
dx2

ðx2 x�Þ2 1R ð4:9Þ

where R is the remainder term that is smaller in magnitude than the previous terms if x is
sufficiently close to x*. If we let x2 x*5 d (a small change in the point x*), Taylor’s expan-
sion of Eq. (4.9) becomes a quadratic polynomial in d:

fðx� 1 dÞ5 fðx�Þ1 dfðx�Þ
dx

d1
1

2

d2fðx�Þ
dx2

d2 1R ð4:10Þ

For a function of two variables f(x1, x2), Taylor’s expansion at the point (x1*, x2*) is

fðx1; x2Þ5 fðx�1; x�2Þ1
@f

@x1
d1 1

@f

@x2
d2 1

1

2

@2f

@x21
d21 1 2

@2f

@x1@x2
d1d2 1

@2f

@x22
d22

� �
ð4:11Þ

where d1 5 x1 2 x�1; d2 5 x2 2 x�2, and all partial derivatives are calculated at the given point
(x1*,x2*). For notational compactness, the arguments of these partial derivatives are omitted
in Eq. (4.11) and in all subsequent discussions. Taylor’s expansion in Eq. (4.11) can be writ-
ten using the summation notation defined in Section 1.5 as

fðx1; x2Þ5 fðx�1; x�2Þ1
X2
i51

@f

@xi
di 1

1

2

X2
i51

X2
j51

@2f

@xi@xj
didj ð4:12Þ

It is seen that by expanding the summations in Eq. (4.12), Eq. (4.11) is obtained.
Recognizing the quantities @f/@xi as components of the gradient of the function given in
Eq. (4.5) and @2f/@xi@xj as the Hessian of Eq. (4.8) evaluated at the given point x*, Taylor’s
expansion can also be written in matrix notation as

f x� 1 dð Þ5 fðx�Þ1rfTd1
1

2
dTHd1R ð4:13Þ

where x5 (x1, x2), x*5 (x1*, x2*), x2 x*5d, and H is the 23 2 Hessian matrix. Note that
with matrix notation, Taylor’s expansion in Eq. (4.13) can be generalized to functions of n
variables. In that case, x, x*, and rf are n-dimensional vectors and H is the n3 n Hessian
matrix.

Often a change in the function is desired when x* moves to a neighboring point x. Defining
the change as Δf5 f(x)2 f(x*), Eq. (4.13) gives

Δf 5rfTd1
1

2
dTHd1R ð4:14Þ

A first-order change in f(x) at x* (denoted as δf ) is obtained by retaining only the first
term in Eq. (4.14):

δf 5rfTδx5rf � δx ð4:15Þ
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where δx is a small change in x* (δx5 x2 x*). Note that the first-order change in the function
given in Eq. (4.15) is simply a dot product of the vectors rf and δx. A first-order change is an
acceptable approximation for change in the original function when x is near x*.

In Examples 4.7 through 4.9, we now consider some functions and approximate them at
the given point x* using Taylor’s expansion. The remainder R will be dropped while using
Eq. (4.13).

EXAMPLE 4.7 TAYLOR’S EXPANSION OF A FUNCTION
OF ONE VARIABLE

Approximate f(x)5 cosx around the point x*5 0.

Solution
Derivatives of the function f(x) are given as

df

dx
52sinx;

d2f

dx2
52cosx ðaÞ

Therefore, using Eq. (4.9), the second-order Taylor’s expansion for cosx at the point x*5 0 is

given as

cosx � cos 02 sin 0ðx2 0Þ1 1

2
ð2cos 0Þðx2 0Þ2 5 12

1

2
x2 ðbÞ

EXAMPLE 4.8 TAYLOR’S EXPANSION OF A FUNCTION
OF TWO VARIABLES

Obtain a second-order Taylor’s expansion for the function f(x)5 3x1
3x2 at the point x*5 (1, 1).

Solution
The gradient and Hessian of the function f(x) at the point x*5 (1,1) using Eqs. (4.5) and (4.8)

are

rfðxÞ5

@f

@x1

@f

@x2

2
66664

3
777755

9x21x2
3x31

� �
5

9
3

� �
; H5

18x1x2 9x21
9x21 0

� �
5

18 9
9 0

� �
ðaÞ

Substituting these in the matrix form of Taylor’s expression given in Eq. (4.12), and using

d5 x2 x*, we obtain an approximation �f(x) for f(x) as

fðxÞ5 31
9
3

� �T ðx1 2 1Þ
ðx2 2 1Þ

� �
1

1

2

ðx1 2 1Þ
ðx2 2 1Þ

� �T
18 9
9 0

� � ðx1 2 1Þ
ðx2 2 1Þ

� �
ðbÞ

where f(x*)5 3 has been used. Simplifying the expression by expanding vector and matrix pro-

ducts, we obtain Taylor’s expansion for f(x) about the point (1, 1) as

f xð Þ5 9x21 1 9x1x2 2 18x1 2 6x2 1 9 ðcÞ
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This expression is a second-order approximation of the function 3x1
3x2 about the point x*5 (1,

1). That is, in a small neighborhood of x*, the expression will give almost the same value as the

original function f(x). To see how accurately f(x) approximates f(x), we evaluate these functions

for a 30 percent change in the given point (1, 1), that is, at the point (1.3, 1.3) as f(x)5 8.2200 and

f(x)5 8.5683. Therefore, the approximate function underestimates the original function by only 4

percent. This is quite a reasonable approximation for many practical applications.

EXAMPLE 4.9 A LINEAR TAYLOR’S EXPANSION
OF A FUNCTION

Obtain a linear Taylor’s expansion for the function

fðxÞ5 x21 1 x22 2 4x1 2 2x2 1 4 ðaÞ
at the point x*5 (1, 2). Compare the approximate function with the original function in a neigh-

borhood of the point (1, 2).

Solution
The gradient of the function at the point (1, 2) is given as

rfðxÞ5

@f

@x1

@f

@x2

2
66664

3
777755

ð2x1 2 4Þ
ð2x2 2 2Þ

� �
5

22
2

� �
ðbÞ

Since f(1, 2)5 1, Eq. (4.13) gives a linear Taylor’s approximation for f(x) as

fðxÞ5 11 22 2½ � ðx1 2 1Þ
ðx2 2 2Þ

� �
522x1 1 2x2 2 1 ðcÞ

To see how accurately f(x) approximates the original f(x) in the neighborhood of (1, 2), we cal-

culate the functions at the point (1.1, 2.2), a 10 percent change in the point as f(x)5 1.20 and

f(x)5 1.25. We see that the approximate function underestimates the real function by 4 percent.

An error of this magnitude is quite acceptable in many applications. Note, however, that the

errors will be different for different functions and can be larger for highly nonlinear functions.

4.2.4 Quadratic Forms and Definite Matrices

Quadratic Form

The quadratic form is a special nonlinear function having only second-order terms
(either the square of a variable or the product of two variables). For example, the function

FðxÞ5 x21 1 2x22 1 3x23 1 2x1x2 1 2x2x3 1 2x3x1 ð4:16Þ
Quadratic forms play a prominent role in optimization theory and methods. Therefore, in
this subsection, we discuss some results related to them. Generalizing the quadratic form
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of three variables in Eq. (4.16) to n variables and writing it in the double summation nota-
tion (refer to Section 1.5 for the summation notation), we obtain

FðxÞ5
Xn
i5 1

Xn
j5 1

pijxixj ð4:17Þ

where pij are constants related to the coefficients of various terms in Eq. (4.16). It is
observed that the quadratic form of Eq. (4.17) matches the second-order term of Taylor’s
expansion in Eq. (4.12) for n variables, except for the factor of 1/2.

The Matrix of the Quadratic Form

The quadratic form can be written in the matrix notation. Let P5 [pij] be an n3n matrix
and x5 (x1, x2, . . ., xn) be an n-dimensional vector. Then the quadratic form of Eq. (4.17) is
given as

FðxÞ5 xTPx ð4:18Þ
P is called the matrix of the quadratic form F(x). Elements of P are obtained from the coeffi-
cients of the terms in the function F(x).

There are many matrices associated with the given quadratic form; in fact, there are
infinite such matrices. All of the matrices are asymmetric except one. The symmetric
matrix A associated with the quadratic form can be obtained from any asymmetric matrix
P as

A5
1

2
ðP1PTÞ or aij 5

1

2
ðpij 1 pjiÞ; i; j5 1 to n ð4:19Þ

Using this definition, the matrix P can be replaced with the symmetric matrix A and the
quadratic form of Eq. (4.18) becomes

FðxÞ5 xTAx ð4:20Þ
The value or expression of the quadratic form does not change with P replaced by A.

The symmetric matrix A is useful in determining the nature of the quadratic form, which
will be discussed later in this section. Example 4.10 illustrates identification of matrices
associated with a quadratic form.

There are many matrices associated with a quadratic form. However, there is only
one symmetric matrix associated with it.

EXAMPLE 4.10 A MATRIX OF THE QUADRATIC
FORM

Identify a matrix associated with the quadratic form:

Fðx1; x2; x3Þ5 2x21 1 2x1x2 1 4x1x3 2 6x22 2 4x2x3 1 5x23 ðaÞ
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Solution
Writing F in the matrix form (F(x)5 xTPx), we obtain

FðxÞ5 ½x1 x2 x3�
2 2 4
0 26 24
0 0 5

2
4

3
5 x1

x2
x3

2
4

3
5 ðbÞ

The matrix P of the quadratic form can be easily identified by comparing the above expression

with Eq. (4.18). The ith diagonal element pii is the coefficient of xi
2. Therefore, p115 2, the coeffi-

cient of x1
2; p22526, the coefficient of x2

2; and p335 5, the coefficient of x3
2. The coefficient of xixj

can be divided in any proportion between the elements pij and pji of the matrix P as long as the

sum pij1 pji is equal to the coefficient of xixj. In the above matrix, p125 2 and p215 0, giving

p121 p215 2, which is the coefficient of x1x2. Similarly, we can calculate the elements p13, p31, p23,

and p32.

Since the coefficient of xixj can be divided between pij and pji in any proportion, there are

many matrices associated with a quadratic form. For example, the following matrices are also

associated with the same quadratic form:

P5
2 0:5 1
1:5 26 26
3 2 5

2
4

3
5; P5

2 4 5
22 26 4
21 28 5

2
4

3
5 ðcÞ

Dividing the coefficients equally between the off-diagonal terms, we obtain the symmetric matrix

associated with the quadratic form in Eq. (a) as

A5
2 1 2
1 26 22
2 22 5

2
4

3
5 ðdÞ

The diagonal elements of the symmetric matrix A are obtained from the coefficient of xi
2 as

before. The off-diagonal elements are obtained by dividing the coefficient of the term xixj equally

between aij and aji. Any of the matrices in Eqs. (b) through (d) give a matrix associated with the

quadratic form.

Form of a Matrix

Quadratic form F(x)5 xTAx may be either positive, negative, or zero for any x. The
following are the possible forms for the function F(x) and the associated symmetric
matrix A:

1. Positive Definite. F(x). 0 for all x 6¼ 0. The matrix A is called positive definite.
2. Positive Semidefinite. F(x). 0 for all x 6¼ 0. The matrix A is called positive semidefinite.
3. Negative Definite. F(x). 0 for all x 6¼ 0. The matrix A is called negative definite.
4. Negative Semidefinite. F(x). 0 for all x 6¼ 0. The matrix A is called negative semidefinite.
5. Indefinite. The quadratic form is called indefinite if it is positive for some values of x

and negative for some others. In that case, the matrix A is also called indefinite.
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EXAMPLE 4.11 DETERMINATION OF THE FORM OF A MATRIX

Determine the form of the following matrices:

ðiÞ A5
2 0 0
0 4 0
0 0 3

2
4

3
5 ðiiÞ A5

21 1 0
1 21 0
0 0 21

2
4

3
5 ðaÞ

Solution
The quadratic form associated with the matrix (i) is always positive because

xTAx5 2x21 1 4x22 1 3x23
� �

. 0 ðbÞ

unless x15 x25 x35 0 (x5 0). Thus, the matrix is positive definite.

The quadratic form associated with the matrix (ii) is negative semidefinite, since

xTAx5 ð2x21 2 x22 1 2x1x2 2 x23Þ5 f2x23 2 ðx1 2 x2Þ2g# 0 ðcÞ
for all x, and xTAx5 0 when x35 0, and x15 x2 (e.g., x5 (1, 1, 0)). The quadratic form is not nega-

tive definite but is negative semidefinite since it can have a zero value for nonzero x. Therefore,

the matrix associated with it is also negative semidefinite.

We will now discuss methods for checking positive definiteness or semidefiniteness (form)
of a quadratic form or a matrix. Since this involves calculation of eigenvalues or principal
minors of a matrix, Sections A.3 and A.6 in Appendix A should be reviewed at this point.

THEOREM 4 . 2

Eigenvalue Check for the Form of a

Matrix Let λi, i5 1 to n be the eigenvalues

of a symmetric n3 n matrix A associated

with the quadratic form F(x)5 xTAx (since

A is symmetric, all eigenvalues are real).

The following results can be stated regard-

ing the quadratic form F(x) or the matrix A:

1. F(x) is positive definite if and only if all

eigenvalues of A are strictly positive; i.e.,

λi. 0, i5 1 to n.

2. F(x) is positive semidefinite if and only if all

eigenvalues of A are non-negative; i.e.,

λi $ 0, i5 1 to n (note that at least one

eigenvalue must be zero for it to be

called positive semidefinite).

3. F(x) is negative definite if and only if all

eigenvalues of A are strictly negative;

i.e., λi , 0, i5 1 to n.

4. F(x) is negative semidefinite if and only if all

eigenvalues of A are nonpositive; i.e.,

λi # 0, i5 1 to n (note that at least one

eigenvalue must be zero for it to be

called negative semidefinite).

5. F(x) is indefinite if some λi , 0 and some

other λj. 0.

Another way of checking the form of a matrix is provided in Theorem 4.3.
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THEOREM 4 . 3

Check for the Form of a Matrix Using

Principal Minors Let Mk be the kth lead-

ing principal minor of the n3n symmetric

matrix A defined as the determinant of a

k3 k submatrix obtained by deleting the last

(n2 k) rows and columns of A (Section A.3).

Assume that no two consecutive principal min-

ors are zero. Then

1. A is positive definite if and only if all

Mk. 0, k5 1 to n.

2. A is positive semidefinite if and only if

Mk. 0, k5 1 to r, where r , n is the rank

of A (refer to Section A.4 for a definition

of the rank of a matrix).

3. A is negative definite if and only ifMk , 0

for k odd andMk. 0 for k even, k5 1 to n.

4. A is negative semidefinite if and only if

Mk , 0 for k odd and Mk. 0 for k even,

k5 1 to r , n.

5. A is indefinite if it does not satisfy any of

the preceding criteria.

This theorem is applicable only if the assumption of no two consecutive principal min-
ors being zero is satisfied. When there are consecutive zero principal minors, we may
resort to the eigenvalue check of Theorem 4.2. Note also that a positive definite matrix cannot
have negative or zero diagonal elements. The form of a matrix is determined in Example 4.12.

The theory of quadratic forms is used in the second-order conditions for a local opti-
mum point in Section 4.4. Also, it is used to determine the convexity of functions of the
optimization problem. Convex functions play a role in determining the global optimum
point in Section 4.8.

EXAMPLE 4.12 DETERMINATION OF THE FORM OF A MATRIX

Determine the form of the matrices given in Example 4.11.

Solution
For a given matrix A, the eigenvalue problem is defined as Ax5λx, where λ is an eigenvalue

and x is the corresponding eigenvector (refer to Section A.6 for more details). To determine

the eigenvalues, we set the so-called characteristic determinant to zero j(A2λI)j5 0. Since the

matrix (i) is diagonal, its eigenvalues are the diagonal elements (i.e., λ15 2, λ25 3, and λ35 4).

Since all eigenvalues are strictly positive, the matrix is positive definite. The principal minor

check of Theorem 4.3 also gives the same conclusion.

For the matrix (ii), the characteristic determinant of the eigenvalue problem is

212λ 1 0
1 212λ 0
0 0 212λ

������
������5 0 ðaÞ

Expanding the determinant by the third row, we obtain

ð212λÞ ½ð212λÞ2 2 1�5 0 ðbÞ

1134.2 REVIEW OF SOME BASIC CALCULUS CONCEPTS

I. THE BASIC CONCEPTS



Therefore, the three roots give the eigenvalues as λ1522, λ2521, and λ35 0. Since all eigenva-

lues are nonpositive, the matrix is negative semidefinite.

To use Theorem 4.3, we calculate the three leading principal minors as

M1 5 21; M2 5
21 1
1 21

����
����5 0; M3 5

21 1 0
1 21 0
0 0 21

������
������5 0 ðcÞ

Since there are two consecutive zero leading principal minors, we cannot use Theorem 4.3.

Differentiation of a Quadratic Form

Often we want to find the gradient and Hessian matrix for the quadratic form. We con-
sider the quadratic form of Eq. (4.17) with the coefficients pij replaced by their symmetric
counterparts aij. To calculate the derivatives of F(x), we first expand the summations, dif-
ferentiate the expression with respect to xi, and then write it back in the summation or
matrix notation:

@FðxÞ
@xi

5 2
Xn
j51

aijxj; or rFðxÞ5 2Ax ð4:21Þ

Differentiating Eq. (4.21) once again with respect to xi we get

@2FðxÞ
@xj@xi

5 2aij; or H5 2A ð4:22Þ

Example 4.13 shows the calculations for the gradient and the Hessian of the quadratic form.

EXAMPLE 4.13 CALCULATIONS FOR THE GRADIENT
AND HESSIAN OF THE QUADRATIC FORM

Calculate the gradient and Hessian of the following quadratic form:

FðxÞ5 2x21 1 2x1x2 1 4x1x3 2 6x22 2 4x2x3 1 5x23 ðaÞ
Solution

Differentiating F(x) with respect to x1, x2, and x3, we get gradient components as

@F

@x1
5 ð4x1 1 2x2 1 4x3Þ;

@F

@x2
5 ð2x1 2 12x2 2 4x3Þ;

@F

@x3
5 ð4x1 2 4x2 1 10x3Þ ðbÞ

Differentiating the gradient components once again, we get the Hessian components as

@2F

@x21
5 4;

@2F

@x1@x2
5 2;

@2F

@x1@x3
5 4

@2F

@x2@x1
5 2;

@2F

@x22
5212;

@2F

@x2@x3
524 ðcÞ
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@2F

@x3@x1
5 4;

@2F

@x3@x2
524;

@2F

@x23
5 10

Writing the given quadratic form in a matrix form, we identify matrix A as

A5
2 1 2
1 26 22
2 22 5

2
4

3
5

Comparing elements of the matrix A with second partial derivatives of F, we observe that the

Hessian H5 2A. Using Eq. (4.21), the gradient of the quadratic form is also given as

rFðxÞ5 2
2 1 2
1 26 22
2 22 5

2
4

3
5 x1

x2
x3

2
4

3
55

ð4x1 1 2x2 1 4x3Þ
ð2x1 2 12x2 2 4x3Þ
ð4x1 2 4x2 1 10x3Þ

2
4

3
5 ðeÞ

4.3 CONCEPT OF NECESSARY
AND SUFFICIENT CONDITIONS

In the remainder of this chapter, we will describe necessary and sufficient conditions
for optimality of unconstrained and constrained optimization problems. It is important to
understand the meaning of the terms necessary and sufficient. These terms have general
meaning in mathematical analyses. However we will discuss them for the optimization
problem only.

Necessary Conditions

The optimality conditions are derived by assuming that we are at an optimum point,
and then studying the behavior of the functions and their derivatives at that point. The
conditions that must be satisfied at the optimum point are called necessary. Stated differently, if a
point does not satisfy the necessary conditions, it cannot be optimum. Note, however, that the
satisfaction of necessary conditions does not guarantee optimality of the point; that is,
there can be nonoptimum points that satisfy the same conditions. This indicates that the
number of points satisfying necessary conditions can be more than the number of optima.
Points satisfying the necessary conditions are called candidate optimum points. We must,
therefore, perform further tests to distinguish between optimum and nonoptimum points,
both satisfying the necessary conditions.

Sufficient Condition

If a candidate optimum point satisfies the sufficient condition, then it is indeed an optimum
point. If the sufficient condition is not satisfied, however, or cannot be used, we may not
be able to conclude that the candidate design is not optimum. Our conclusion will depend
on the assumptions and restrictions used in deriving the sufficient condition. Further
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analyses of the problem or other higher-order conditions are needed to make a definite
statement about optimality of the candidate point.

1. Optimum points must satisfy the necessary conditions. Points that do not satisfy them
cannot be optimum.

2. A point satisfying the necessary conditions need not be optimum; that is, nonoptimum
points may also satisfy the necessary conditions.

3. A candidate point satisfying a sufficient condition is indeed optimum.
4. If the sufficiency condition cannot be used or it is not satisfied, we may not be able to

draw any conclusions about the optimality of the candidate point.

4.4 OPTIMALITY CONDITIONS:
UNCONSTRAINED PROBLEM

We are now ready to discuss the theory and concepts of optimum design. In this sec-
tion, we will discuss necessary and sufficient conditions for unconstrained optimization
problems defined as “Minimize f(x) without any constraints on x.” Such problems arise
infrequently in practical engineering applications. However, we consider them here
because optimality conditions for constrained problems are a logical extension of these
conditions. In addition, one numerical strategy for solving a constrained problem is to con-
vert it into a sequence of unconstrained problems. Thus, it is important to completely
understand unconstrained optimization concepts.

The optimality conditions for unconstrained or constrained problems can be used in
two ways:

1. They can be used to check whether a given point is a local optimum for the
problem.

2. They can be solved for local optimum points.

We discuss only the local optimality conditions for unconstrained problems. Global opti-
mality is covered in Section 4.8. First the necessary and then the sufficient conditions are
discussed. As noted earlier, the necessary conditions must be satisfied at the minimum
point; otherwise, it cannot be a minimum point. These conditions, however, may also be
satisfied by points that are not minima. A point satisfying the necessary conditions is simply
a candidate local minimum. The sufficient conditions distinguish minimum points from
non-minimum points. We elaborate on these concepts with examples.

4.4.1 Concepts Related to Optimality Conditions

The basic concept for obtaining local optimality conditions is to assume that we are at a mini-
mum point x* and then examine its neighborhood to study properties of the function and
its derivatives. Basically, we use the definition of a local minimum, given in Inequality
(4.2), to derive the optimality conditions. Since we examine only a small neighborhood,
the conditions we obtain are called local optimality conditions.

Let x* be a local minimum point for f(x). To investigate its neighborhood, let x be any
point near x*. Define increments d and Δf in x* and f(x*) as d5 x2 x* and Δf5 f(x)2 f(x*).
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Since f(x) has a local minimum at x*, it will not reduce any further if we move a small dis-
tance away from x*. Therefore, a change in the function for any move in a small neighbor-
hood of x* must be non-negative; that is, the function value must either remain constant or
increase. This condition, also obtained directly from the definition of local minimum given
in Eq. (4.2), can be expressed as the following inequality:

Δf 5 fðxÞ2 fðx�Þ$ 0 ð4:23Þ
for all small changes d. The inequality in Eq. (4.23) can be used to derive necessary and
sufficient conditions for a local minimum point. Since d is small, we can approximate Δf
by Taylor’s expansion at x* and derive optimality conditions using it.

4.4.2 Optimality Conditions for Functions of a Single Variable

First-Order Necessary Condition

Let us first consider a function of only one variable. Taylor’s expansion of f(x) at the point
x* gives

fðxÞ5 fðx�Þ1 f 0ðx�Þd1 1

2
fvðx�Þd2 1R ð4:24Þ

where R is the remainder containing higher-order terms in d and “primes” indicate
the order of the derivatives. From this equation, the change in the function at x* (i.e.,
Δf5 f(x)2 f(x*)) is given as

ΔfðxÞ5 f 0ðx�Þd1 1

2
fvðx�Þd2 1R ð4:25Þ

Inequality (4.23) shows that the expression for Δf must be non-negative ($0) because x*
is a local minimum for f(x). Since d is small, the first-order term f 0(x*)d dominates other
terms, and therefore Δf can be approximated as Δf5 f 0(x*)d. Note that Δf in this equation
can be positive or negative depending on the sign of the term f 0(x*)d. Since d is arbitrary (a
small increment in x*), it may be positive or negative. Therefore, if f 0(x*) 6¼ 0, the term
f 0(x*)d (and hence Δf ) can be negative.

To see this more clearly, let the term be positive for some increment d1 that satisfies
Inequality (4.23)( i.e., Δf5 f 0(x*)d1. 0). Since the increment d is arbitrary, it is reversible, so
d252d1 is another possible increment. For d2, Δf becomes negative, which violates
Inequality (4.23). Thus, the quantity f 0(x*)d can have a negative value regardless of the sign
of f 0(x*), unless it is zero. The only way it can be non-negative for all d in a neighborhood
of x* is when

f 0ðx�Þ5 0 ð4:26Þ

STATIONARY POINTS

Equation (4.26) is a first-order necessary condition for the local minimum of f(x) at x*. It is
called “first-order” because it only involves the first derivative of the function. Note that
the preceding arguments can be used to show that the condition of Eq. (4.26) is also neces-
sary for local maximum points. Therefore, since the points satisfying Eq. (4.26) can be local
minima or maxima, or neither minimum nor maximum (inflection points), they are called
stationary points.
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Sufficient Condition

Now we need a sufficient condition to determine which of the stationary points are
actually minimum for the function. Since stationary points satisfy the necessary condition
f 0(x*)5 0, the change in function Δf of Eq. (4.24) becomes

ΔfðxÞ5 1

2
fvðx�Þd2 1R ð4:27Þ

Since the second-order term dominates all other higher-order terms, we need to focus on
it. Note that the term can be positive for all d 6¼ 0 if

fvðx�Þ.0 ð4:28Þ
Stationary points satisfying Inequality (4.28) must be at least local minima because they

satisfy Inequality (4.23) (Δf. 0). That is, the function has positive curvature at the mini-
mum points. Inequality (4.28) is then the sufficient condition for x* to be a local minimum.
Thus, if we have a point x* satisfying both conditions in Eqs. (4.26) and (4.28), then any
small move away from it will either increase the function value or keep it unchanged. This
indicates that f(x*) has the smallest value in a small neighborhood (local minimum) of
point x*. Note that the foregoing conditions can be stated in terms of the curvature of the
function since the second derivative is the curvature.

Second-Order Necessary Condition

If fv(x*)5 0, we cannot conclude that x* is not a minimum point. Note, however, from
Eqs. (4.23) and (4.25), that f(x*) cannot be a minimum unless

fvðx�Þ$ 0 ð4:29Þ
That is, if fv evaluated at the candidate point x* is less than zero, then x* is not a local min-
imum point. Inequality (4.29) is known as a second-order necessary condition, so any point
violating it (e.g., fv(x*) , 0) cannot be a local minimum (actually, it is a local maximum
point for the function).

It is important to note that if the sufficiency condition in Eq. (4.28) is satisfied, then the
second-order necessary condition in Eq. (4.29) is satisfied automatically.

If fv(x*)5 0, we need to evaluate higher-order derivatives to determine if the point is a
local minimum (see Examples 4.14 through 4.18). By the arguments used to derive
Eq. (4.26), fv0 (x*) must be zero for the stationary point (necessary condition) and f IV(x*). 0
for x* must be a local minimum.

In general, the lowest nonzero derivative must be even-ordered for stationary points
(necessary conditions), and it must be positive for local minimum points (sufficiency
conditions). All odd-ordered derivatives lower than the nonzero even-ordered
derivative must be zero as the necessary condition.

1. The necessary conditions must be satisfied at the minimum point; otherwise, it
cannot be a minimum.

2. The necessary conditions may also be satisfied by points that are not minima.
A point satisfying the necessary conditions is simply a candidate local minimum.

3. If the sufficient condition is satisfied at a candidate point, then it is indeed a
minimum point.
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EXAMPLE 4.14 DETERMINATION OF LOCAL MINIMUM
POINTS USING NECESSARY CONDITIONS

Find the local minima for the function

fðxÞ5 sinx ðaÞ

Solution
Differentiating the function twice,

f 0 5 cosx; fv52sinx; ðbÞ
Stationary points are obtained as roots of fv(x)5 0 (cosx5 0). These are

x56π=2; 6 3π=2; 6 5π=2; 6 7π=2; . . . ðcÞ
Local minima are identified as

x� 5 3π=2; 7π=2; . . . ; 2π=2;25π=2; . . . ðdÞ
since these points satisfy the sufficiency condition of Eq. (4.28) (fv52sinx. 0 at these points).

The value of sinx at the points x* is 21. This is true from the graph of the function sinx. There

are infinite minimum points, and they are all actually global minima.

The points π/2, 5π/2, . . ., and 23π/2, 27π/2, . . . are global maximum points where sinx has

a value of 1. At these points, f 0(x)5 0 and fv(x) , 0.

EXAMPLE 4.15 DETERMINATION OF LOCAL MINIMUM
POINTS USING NECESSARY CONDITIONS

Find the local minima for the function

fðxÞ5 x2 2 4x1 4 ðaÞ

Solution
Figure 4.7 shows a graph for the function f(x)5 x22 4x1 4. It can be seen that the function

always has a positive value except at x5 2, where it is zero. Therefore, this is a local as well as a

global minimum point for the function. Let us see how this point will be determined using the

necessary and sufficient conditions.

Differentiating the function twice,

f 0 5 2x2 4; fv5 2 ðbÞ
The necessary condition f 0 5 0 implies that x*5 2 is a stationary point. Since fv. 0 at x*5 2 (actu-

ally for all x), the sufficiency condition of Eq. (4.28) is satisfied. Therefore x*5 2 is a local mini-

mum for f(x). The minimum value of f is 0 at x*5 2.

Note that at x*5 2, the second-order necessary condition for a local maximum fv # 0 is violated

since fv(2)5 2. 0. Therefore the point x*5 2 cannot be a local maximum point. In fact the graph

of the function shows that there is no local or global maximum point for the function.
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EXAMPLE 4.16 DETERMINATION OF LOCAL MINIMUM
POINTS USING NECESSARY CONDITIONS

Find the local minima for the function

fðxÞ5 x3 2 x2 2 4x1 4 ðaÞ

Solution
Figure 4.8 shows the graph of the function. It can be seen that point A is a local minimum

point and point B is a local maximum point. We will use the necessary and sufficient conditions

to prove that this is indeed true. Differentiating the function, we obtain

f 0 5 3x2 2 2x2 4; fv5 6x2 2 ðbÞ
For this example there are two points satisfying the necessary condition of Eq. (4.26), that is,

stationary points. These are obtained as roots of the equation f 0(x)5 0 in Eqs. (b):

x�1 5
1

6
ð21 7:211Þ5 1:535 ðPoint AÞ ðcÞ

x�2 5
1

6
ð22 7:211Þ520:8685 ðPoint BÞ ðdÞ

Evaluating fv at these points,
fvð1:535Þ5 7:211.0 ðeÞ

fvð20:8685Þ527:211,0 ðfÞ
We see that only x�1 satisfies the sufficiency condition (fv. 0) of Eq. (4.28). Therefore, it is a

local minimum point. From the graph in Figure 4.8, we can see that the local minimum f(x�1) is

7

6

5

4

3

2

1

0
–1

–1

–2

1 2 3 4 5
x 

Minimum point
x* = 2

f (x*) = 0

f (x) FIGURE 4.7 Representation of f(x)
5 x22 4x1 4 of Example 4.15.
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not the global minimum. A global minimum for f(x) does not exist since the domain as well as the func-

tion is not bounded (Theorem 4.1). The value of the function at the local minimum is obtained as

20.88 by substituting x�1 5 1.535 in f(x).

Note that x�2 520.8685 is a local maximum point since fv(x�2) , 0. The value of the function at

the maximum point is 6.065. There is no global maximum point for the function.

Checking Second-Order Necessary Conditions. Note that the second-order necessary condition for

a local minimum (fv(x*) $ 0) is violated at x�2 520.8685. Therefore, this stationary point

cannot be a local minimum point. Similarly, the stationary point x�1 5 1.535 cannot be a local

maximum point.

Checking the Optimality of a Given Point. As noted earlier, the optimality conditions can also be

used to check the optimality of a given point. To illustrate this, let us check optimality of the

point x5 1. At this point, f 0 5 3(1)22 2(1)2 4523 6¼ 0. Therefore x5 1 is not a stationary

point and thus cannot be a local minimum or maximum for the function.

EXAMPLE 4.17 DETERMINATION OF LOCAL MINIMUM
POINTS USING NECESSARY CONDITIONS

Find the minimal for the function

fðxÞ5 x4 ðaÞ

Solution
Differentiating the function twice,

f 0 5 4x3; fv5 12x2 ðbÞ

Local maximum
point

Local minimum
point

10

5

B

–3 –2 –1

–5

–10

1 2 3A

f (x)

x

FIGURE 4.8 Representation of f(x)
5 x32 x22 4x1 4 of Example 4.16.
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The necessary condition gives x*5 0 as a stationary point. Since fv(x*)5 0, we cannot conclude

from the sufficiency condition of Eq. (4.28) that x* is a minimum point. However, the second-

order necessary condition of Eq. (4.29) is satisfied, so we cannot rule out the possibility of x*

being a minimum point. In fact, a graph of f(x) versus x will show that x* is indeed the global

minimum point. fv0 5 24x, which is zero at x*5 0. f IV(x*)5 24, which is strictly greater than zero.

Therefore, the fourth-order sufficiency condition is satisfied, and x*5 0 is indeed a local mini-

mum point. It is actually a global minimum point with f(0)5 0.

EXAMPLE 4.18 MINIMUM-COST SPHERICAL TANK DESIGN
USING NECESSARY CONDITION

The result of a problem formulation in Section 2.3 is a cost function that represents the life-

time cooling-related cost of an insulated spherical tank as

fðxÞ5 ax1 b=x; a; b.0 ðaÞ
where x is the thickness of insulation, and a and b are positive constants.

Solution
To minimize f, we solve the equation (necessary condition)

f 0 5 a2 b=x2 5 0 ðbÞ
The solution is x*5

ffiffiffiffiffiffiffi
b=a

p
. Note that the root x*52

ffiffiffiffiffiffiffi
b=a

p
is rejected for this problem because

thickness x of the insulation cannot be negative. If negative values for x are allowed, then

x*52
ffiffiffiffiffiffiffi
b=a

p
satisfies the sufficiency condition for a local maximum for f(x) since fv (x*) , 0.

To check if the stationary point x*5
ffiffiffiffiffiffiffi
b=a

p
is a local minimum, evaluate

fvðx�Þ5 2b=x�3 ðcÞ
Since b and x* are positive, fv(x*) is positive, and x* is a local minimum point. The value of the

function at x* is 2
ffiffiffiffiffiffiffi
b=a

p
. Note that since the function cannot have a negative value because of the

physics of the problem, x* represents a global minimum for the problem as well.

4.4.3 Optimality Conditions for Functions of Several Variables

For the general case of a function of several variables f(x) where x is an n-vector, we can
repeat the derivation of the necessary and sufficient conditions using the multidimensional
form of Taylor’s expansion:

fðxÞ5 fðx�Þ1rfðx�ÞTd1
1

2
dTHðx�Þd1R ð4:30Þ

Alternatively, a change in the function Δf 5 fðxÞ2 fðx�Þ is given as

Δf 5rfðx�ÞTd1
1

2
dTHðx�Þd1R ð4:31Þ

If we assume a local minimum at x* then Δf must be non-negative due to the definition
of a local minimum given in Inequality (4.2), that is, Δf $ 0. Concentrating only on the
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first-order term in Eq. (4.31), we observe (as before) that Δf can be non-negative for all
possible d unless rfðx�Þ5 0 ð4:32Þ

In other words, the gradient of the function at x* must be zero. In the component form,
this necessary condition becomes

@fðx�Þ
@xi

5 0; i5 1 to n ð4:33Þ

Points satisfying Eq. (4.33) are called stationary points.
Considering the second term in Eq. (4.31) evaluated at a stationary point, the positivity

of Δf is assured if

dTHðx�Þd . 0 ð4:34Þ
for all d 6¼ 0. This is true if the Hessian H(x*) is a positive definite matrix (see Section 4.2),
which is then the sufficient condition for a local minimum of f(x) at x*. Conditions (4.33)
and (4.34) are the multidimensional equivalent of Conditions (4.26) and (4.28), respec-
tively. We summarize the development of this section in Theorem 4.4.

THEOREM 4 . 4

Necessary and Sufficient Conditions for

Local Minimum

Necessary condition. If f(x) has a local

minimum at x* then

@fðx�Þ
@xi

5 0; i5 1 to n ðaÞ

Second-order necessary condition. If f(x) has a

local minimum at x*, then the Hessian

matrix of Eq. (4.8)

Hðx�Þ5 @2f

@xi@xj

� �
ðn3 nÞ

ðbÞ

is positive semidefinite or positive

definite at the point x*.

Second-order sufficiency condition. If the

matrix H(x*) is positive definite at the

stationary point x*, then x* is a local

minimum point for the function f(x).

Note that if H(x*) at the stationary point x* is indefinite, then x* is neither a local mini-
mum nor a local maximum point because the second-order necessary condition is violated
for both cases. Such stationary points are called inflection points. Also if H(x*) is at least
positive semidefinite, then x* cannot be a local maximum since it violates the second-order
necessary condition for a local maximum of f(x). In other words, a point cannot be a local
minimum and a local maximum simultaneously. The optimality conditions for a function
of a single variable and a function of several variables are summarized in Table 4.1.

In addition, note that these conditions involve derivatives of f(x) and not the value of the
function. If we add a constant to f(x), the solution x* of the minimization problem remains
unchanged. Similarly, if we multiply f(x) by any positive constant, the minimum point x* is
unchanged but the value f(x*) is altered.
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In a graph of f(x) versus x, adding a constant to f(x) changes the origin of the coordinate
system but leaves the shape of the surface unchanged. Similarly, if we multiply f(x) by any
positive constant, the minimum point x* is unchanged but the value f(x*) is altered. In a graph
of f(x) versus x this is equivalent to a uniform change of the scale of the graph along the f(x)-
axis, which again leaves the shape of the surface unaltered. Multiplying f(x) by a negative con-
stant changes the minimum at x* to a maximum. We may use this property to convert maxi-
mization problems to minimization problems by multiplying f(x) by 21, as explained earlier
in Section 2.11. The effect of scaling and adding a constant to a function is shown in Example
4.19. In Examples 4.20 and 4.23, the local minima for a function are found using optimality
conditions, while in Examples 4.21 and 4.22, use of the necessary conditions is explored.

EXAMPLE 4.19 EFFECTS OF SCALING OR ADDING
A CONSTANT TO THE COST FUNCTION

Discuss the effect of the preceding variations for the function f(x)5 x22 2x1 2.

Solution
Consider the graphs in Figure 4.9. Part (a) represents the function f(x)5 x22 2x1 2, which

has a minimum at x*5 1. Parts (b), (c), and (d) show the effect of adding a constant to the func-

tion [f(x)1 1], multiplying f(x) by a positive number [2f(x)], and multiplying it by a negative

number [2f (x)]. In all cases, the stationary point remains unchanged.

TABLE 4.1 Optimality conditions for unconstrained problems

Function of one variable minimize f(x) Function of several variable minimize f(x)

First-order necessary condition: f 0 5 0. Any point
satisfying this condition is called a stationary point;
it can be a local maximum, local minimum, or
neither of the two (inflection point)

First-order necessary condition: rf5 0. Any point
satisfying this condition is called a stationary point;
it can be a local minimum, local maximum,
or neither of the two (inflection point)

Second-order necessary condition for a local
minimum: f v $ 0

Second-order necessary condition for a local minimum:
H must be at least positive semidefinite

Second-order necessary condition for a local
maximum: f v # 0

Second-order necessary condition for a local maximum:
H must be at least negative semidefinite

Second-order sufficient condition for a local
minimum: f v. 0

Second-order sufficient condition for a local minimum:
H must be positive definite

Second-order sufficient condition for a local
maximum: f v, 0

Second-order sufficient condition for a local maximum:
H must be negative definite

Higher-order necessary conditions for a local minimum
or local maximum: Calculate a higher-ordered
derivative that is not 0; all odd-ordered derivatives
below this one must be 0

Higher-order sufficient condition for a local minimum
Highest nonzero derivative must be even-ordered
and positive
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EXAMPLE 4.20 LOCAL MINIMA FOR A FUNCTION
OF TWO VARIABLES USING OPTIMALITY
CONDITIONS

Find local minimum points for the function

fðxÞ5 x21 1 2x1x2 1 2x22 2 2x1 1 x2 1 8 ðaÞ
Solution

The necessary conditions for the problem give

@f

@x
5

ð2x1 1 2x2 2 2Þ
ð2x1 1 4x2 1 1Þ

� �
5

0
0

� �
ðbÞ

f (x)

f (x) f (x)

f (x)

f (x) = x 2 – 2x + 2

f (x) = 2(x 2 – 2x + 2) f (x) = –(x 2 – 2x + 2)

f (x) = (x 2 – 2x + 2) + 14

2

4

2

2121

1 2

1 2

xx

xx

8

6

4

4

2

–2

2

(a) (b)

(c) (d)

FIGURE 4.9 Graphs for Example 4.19.
Effects of scaling or of adding a constant to
a function. (a) A graph of f(x)5 x22 2x1 2.
(b) The effect of addition of a constant to
f(x). (c) The effect of multiplying f(x) by a
positive constant. (d) Effect of multiplying
f(x) by 21.
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These equations are linear in variables x1 and x2. Solving the equations simultaneously, we get

the stationary point as x*5 (2.5, 21.5). To check if the stationary point is a local minimum, we

evaluate H at x*:

H 2:5;21:5ð Þ5

@2f

@x21

@2f

@x1@x2

@2f

@x2@x1

@2f

@x22

2
66664

3
777755

2 2
2 4

� �
ðcÞ

By either of the tests of Theorems 4.2 and 4.3 or (M15 2. 0, M25 4. 0) or (λ15 5.236. 0,

λ25 0.764. 0), H is positive definite at the stationary point x*. Thus, it is a local minimum with

f(x*)5 4.75. Figure 4.10 shows a few isocost curves for the function of this problem. It is seen that

the point (2.5,21.5) is the minimum for the function.

Checking the optimality of a given point As noted earlier, the optimality conditions can

also be used to check the optimality of a given point. To illustrate this, let us check the optimality

of the point (1, 2). At this point, the gradient vector is calculated as (4, 11), which is not zero.

Therefore, the first-order necessary condition for a local minimum or a local maximum is vio-

lated and the point is not a stationary point.

2

1

–1

–1

–2

–3

–4

–5

Minimum point
x* = (2.5, –1.5)

f (x*) = 4.75

1 2 3 4 5 6

4.9

6.0

8.0
10.0

x1

x2

5.0

FIGURE 4.10 Isocost curves for the func-
tion of Example 4.20.
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EXAMPLE 4.21 CYLINDRICAL TANK DESIGN USING
NECESSARY CONDITIONS

In Section 2.8, a minimum-cost cylindrical storage tank problem was formulated. The tank is

closed at both ends and is required to have volume V. The radius R and height H are selected as

design variables. It is desired to design the tank having minimum surface area.

Solution
For the problem, we may simplify the cost function as

f 5R2 1RH ðaÞ
The volume constraint is an equality,

h5πR2H2V5 0 ðbÞ
This constraint cannot be satisfied if either R or H is zero. We may then neglect the non-

negativity constraints on R and H if we agree to choose only the positive value for them. We

may further use the equality constraint (b) to eliminate H from the cost function:

H5
V

πR2
ðcÞ

Therefore, the cost function of Eq. (a) becomes

f 5R2 1
V

πR
ðdÞ

This is an unconstrained problem in terms of R for which the necessary condition gives

df

dR
5 2R2

V

πR2
5 0 ðeÞ

The solution to the necessary condition gives

R� 5
V

2π

� 	1=3

ðfÞ

Using Eq. (c), we obtain

H� 5
4V

π

� 	1=3

ðgÞ

Using Eq. (e), the second derivative of f with respect to R at the stationary point is

d2f

dR2
5

2V

πR3
1 25 6 ðhÞ

Since the second derivative is positive for all positive R, the solution in Eqs. (f) and (g) is a

local minimum point. Using Eq. (a) or (d), the cost function at the optimum is given as

f R�; H�ð Þ5 3
V

2π

� 	2=3

ðiÞ
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EXAMPLE 4.22 NUMERICAL SOLUTION TO THE NECESSARY
CONDITIONS

Find stationary points for the following function and check the sufficiency conditions for

them:
fðxÞ5 1

3
x2 1 cosx ðaÞ

Solution
The function is plotted in Figure 4.11. It is seen that there are three stationary points: x5 0

(point A), x between 1 and 2 (point C), and x between 21 and 22 (point B). The point x5 0 is a

local maximum for the function, and the other two are local minima.

The necessary condition is

f 0ðxÞ5 2

3
x2 sinx5 0 ðbÞ

It is seen that x5 0 satisfies Eq. (b), so it is a stationary point. We must find other roots of

Eq. (b). Finding an analytical solution for the equation is difficult, so we must use numerical

methods.

We can either plot f 0(x) versus x and locate the point where f 0(x)5 0, or use a numerical

method for solving nonlinear equations, such as the Newton-Raphson method. By either of the two

methods, we find that x*5 1.496 and x*521.496 satisfy f 0(x)5 0 in Eq. (b). Therefore, these are

additional stationary points.

To determine whether they are local minimum, maximum, or inflection points, we must

determine fv at the stationary points and use the sufficient conditions of Theorem 4.4. Since

fv5 2/32 cosx, we have

1. x*5 0; fv521/3 , 0, so this is a local maximum with f(0)5 1.

2. x*5 1.496; fv5 0.592. 0, so this is a local minimum with f(1.496)5 0.821.

3. x*521.496; fv5 0.592. 0, so this is a local minimum with f(21.496)5 0.821.

These results agree with the graphical solutions observed in Figure 4.11.

7

6

5

4

3

2

1
A

B C

–5 –4 –3 –2

–2

–1 1 2 3 4 5
–1

Local minima: B and C
Local maximum: A

f (x)

x  

FIGURE 4.11 Graph of f(x)5 1
3x

21 cosx of
Example 4.22.
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Global optima Note that x*5 1.496 and x* 521.496 are actually global minimum points for

the function, although the function is unbounded and the feasible set is not closed. Therefore,

although the conditions of the Weierstrass Theorem 4.1 are not met, the function has global mini-

mum points. This shows that Theorem 4.1 is not an “if-and-only-if” theorem. Note also that there

is no global maximum point for the function since the function is unbounded and x is allowed to

have any value.

EXAMPLE 4.23 LOCAL MINIMA FOR A FUNCTION OF TWO
VARIABLES USING OPTIMALITY CONDITIONS

Find a local minimum point for the function

fðxÞ5 x1 1
ð43 106Þ
x1x2

1 250x2 ðaÞ

Solution
The necessary conditions for optimality are

@f

@x1
5 0; 12

ð43 106Þ
x21x2

5 0 ðbÞ

@f

@x2
5 0; 2502

ð43 106Þ
x1x22

5 0 ðcÞ

Equations (b) and (c) give

x21x2 2 ð43 106Þ5 0; 250x1x
2
2 2 ð43 106Þ5 0 ðdÞ

These equations give

x21x2 5 250x1x
2
2; or x1x2ðx1 2 250x2Þ5 0 ðeÞ

Since neither x1 nor x2 can be zero (the function has singularity at x15 0 or x25 0), the preced-

ing equation gives x15 250x2. Substituting this into Eq. (c), we obtain x25 4. Therefore, x1*5 1000,

and x�2 5 4 is a stationary point for the function f(x). Using Eqs. (b) and (c), the Hessian matrix

for f(x) at the point x* is given as

H5
ð43 106Þ
x21x

2
2

2x2
x1

1

1
2x1
x2

2
66664

3
77775; Hð1000; 4Þ5 ð43 106Þ

ð4000Þ2
0:008 1
1 500

� �
ðfÞ

Eigenvalues of the Hessian are: λ15 0.0015 and λ25 125. Since both eigenvalues are positive:

the Hessian of f(x) at the point x* is positive definite. Therefore: x*5 (1000, 4) satisfies the suffi-

ciency condition for a local minimum point with f(x*)5 3000. Figure 4.12 shows some isocost

curves for the function of this problem. It is seen that x15 1000 and x25 4 is the minimum point.

(Note that the horizontal and vertical scales are quite different in Figure 4.12; this is done to

obtain reasonable isocost curves.)
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4.5 NECESSARY CONDITIONS: EQUALITY-CONSTRAINED
PROBLEM

We saw in Chapter 2 that most design problems include constraints on variables and on
performance of a system. Therefore, constraints must be included in discussing the optimal-
ity conditions. The standard design optimization model introduced in Section 2.11 needs
to be considered. As a reminder, this model is restated in Table 4.2.

We begin the discussion of optimality conditions for the constrained problem by includ-
ing only the equality constraints in the formulation in this section; that is, inequalities in
Eq. (4.37) are ignored. The reason is that the nature of equality constraints is quite differ-
ent from that of inequality constraints. Equality constraints are always active for any feasi-
ble design, whereas an inequality constraint may not be active at a feasible point. This
changes the nature of the necessary conditions for the problem when inequalities are
included, as we will see in Section 4.6.

The necessary conditions for an equality-constrained problem are discussed and illus-
trated with examples. These conditions are contained in the Lagrange Multiplier Theorem

14

12

10

8

6

4

2

500 1000 1500 2000 2500 3000

40003600
3200

3150
3100

3050
4400

4800

5200

Minimum solution
x* = (1000, 4)

f(x*) = 3000

x2

x1

FIGURE 4.12 Isocost curves for the
function of Example 4.23 (the horizontal
and the vertical scales are different).

TABLE 4.2 General design optimization model

Design variable vector x5 (x1, x2, . . ., xn)

Cost function fðxÞ5 fðx1; x2; . . . ; xnÞ ð4:35Þ

Equality constraints hiðxÞ5 0; i5 1 top ð4:36Þ

Inequality constraints giðxÞ# 0; i5 1 to m ð4:37Þ
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generally discussed in textbooks on calculus. The necessary conditions for the general con-
strained optimization problem are obtained as an extension of the Lagrange Multiplier
Theorem in the next section.

4.5.1 Lagrange Multipliers

It turns out that a scalar multiplier is associated with each constraint, called the
Lagrange multiplier. These multipliers play a prominent role in optimization theory as well
as in numerical methods. Their values depend on the form of the cost and constraint func-
tions. If these functions change, the values of the Lagrange multipliers also change. We
will discuss this aspect later in Section 4.7.

Here we will introduce the idea of Lagrange multipliers by considering a simple exam-
ple problem. The example outlines the development of the Lagrange Multiplier theorem.
Before presenting the example problem, however, we consider an important concept of a
regular point of the feasible set.

*REGULAR POINT Consider the constrained optimization problem of minimizing f(x)
subject to the constraints hi(x)5 0, i5 1 to p. A point x* satisfying the constraints h(x*)5 0
is said to be a regular point of the feasible set if f(x*) is differentiable and gradient vectors
of all constraints at the point x* are linearly independent. Linear independence means that
no two gradients are parallel to each other, and no gradient can be expressed as a linear
combination of the others (refer to Appendix A for more discussion on the linear indepen-
dence of a set of vectors). When inequality constraints are also included in the problem
definition, then for a point to be regular, gradients of all of the active constraints must also
be linearly independent.

EXAMPLE 4.24 LAGRANGE MULTIPLIERS AND THEIR
GEOMETRICAL MEANING

Minimize
fðx1; x2Þ5 ðx1 2 1:5Þ2 1 ðx2 2 1:5Þ2 ðaÞ

subject to an equality constraint:

hðx1; x2Þ5 x1 1 x2 2 25 0 ðbÞ
Solution

The problem has two variables and can be solved easily by the graphical procedure.

Figure 4.13 is a graphical representation of it. The straight line A�B represents the problem’s

equality constraint and its feasible region. Therefore, the optimum solution must lie on the line

A�B. The cost function is an equation of a circle with its center at point (1.5, 1.5). Also shown

are the isocost curves, having values of 0.5 and 0.75. It is seen that point C, having coordinates

(1, 1), gives the optimum solution for the problem. The cost function contour of value 0.5 just

touches the line A�B, so this is the minimum value for the cost function.

Lagrange multipliers Now let us see what mathematical conditions are satisfied at the mini-

mum point C. Let the optimum point be represented as (x�1, x
�
2). To derive the conditions and to
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introduce the Lagrange multiplier, we first assume that the equality constraint can be used to

solve for one variable in terms of the other (at least symbolically); that is, assume that we can

write
x2 5φðx1Þ ðcÞ

where φ is an appropriate function of x1. In many problems, it may not be possible to explicitly

write the function φ(x1), but for derivation purposes, we assume its existence. It will be seen later

that the explicit form of this function is not needed. For the present example, φ(x1) from Eq. (b)

is given as
x2 5φðx1Þ52x1 1 2 ðdÞ

Substituting Eq. (c) into Eq. (a), we eliminate x2 from the cost function and obtain the uncon-

strained minimization problem in terms of x1 only:

Minimize
fðx1; φðx1ÞÞ ðeÞ

For the present example, substituting Eq. (d) into Eq. (a), we eliminate x2 and obtain the mini-

mization problem in terms of x1 alone:

fðx1Þ5 ðx1 2 1:5Þ2 1 ð2x1 1 22 1:5Þ2 ðfÞ
The necessary condition df/dx15 0 gives x1*5 1. Then Eq. (d) gives x2*5 1, and the cost function

at the point (1, 1) is 0.5. It can be checked that the sufficiency condition d2f/dx1
2. 0 is also satis-

fied, and so the point is indeed a local minimum, as seen in Figure 4.13.

If we assume that the explicit form of the function φ(x1) cannot be obtained (which is gener-

ally the case), then some alternate procedure must be developed to obtain the optimum solution.

We will derive such a procedure and see that the Lagrange multiplier for the constraint is intro-

duced naturally in the process. Using the chain rule of differentiation, we write the necessary

condition df/dx15 0 for the problem defined in Eq. (e) as

dfðx1; x2Þ
dx1

5
@fðx1; x2Þ

@x1
1

@fðx1; x2Þ
@x2

dx2
dx1

5 0 ðgÞ

2

1

0 1 2

Minimum point C

3

x* = (1,1)
f (x*) = 0.5

B

Feasible region:
line A–B

A T

C

D

f = 0.75

f = 0.5

(1.5,1.5)

 h

 h

 x1 + x2 – 2 = 0 f
 f

Δ

Δ

Δ
Δ

x1

x2 FIGURE 4.13 Graphical solution for Example 4.24. Geo-
metrical interpretation of necessary conditions (the vectors
are not to scale).
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Substituting Eq. (c), Eq. (g) can be written at the optimum point (x�1, x
�
2) as

@fðx�1 ; x�2Þ
@x1

1
@fðx�1; x�2Þ

@x2

dφ
dx1

5 0 ðhÞ

Since φ is not known, we need to eliminate dφ/dx1 from Eq. (h). To accomplish this, we differen-

tiate the constraint equation h(x1, x2)5 0 at the point (x�1, x
�
2) as

dhðx�1; x�2Þ
dx1

5
@hðx�1; x�2Þ

@x1
1

@hðx�1 ; x�2Þ
@x2

dφ
dx1

5 0 ðiÞ

Or, solving for dφ/dx1, we obtain (assuming @h/@x2 6¼ 0)

dφ
dx1

52
@hðx�1; x�2Þ=@x1
@hðx�1; x�2Þ=@x2

ðjÞ

Now, substituting for dφ/dx1 from Eq. (j) into Eq. (h), we obtain

@fðx�1 ; x�2Þ
@x1

2
@fðx�1; x�2Þ

@x2

@hðx�1; x�2Þ=@x1
@hðx�1; x�2=@x2Þ

� 	
5 0 ðkÞ

If we define a quantity v as

v52
@fðx�1; x�2Þ=@x2
@h ðx�1; x�2Þ=@x2

ðlÞ

and substitute it into Eq. (k), we obtain

@fðx�1; x�2Þ
@x1

1 v
@hðx�1; x�2Þ

@x1
5 0 ðmÞ

Also, rearranging Eq. (l), which defines v, we obtain

@fðx�1; x�2Þ
@x2

1 v
@hðx�1; x�2Þ

@x2
5 0 ðnÞ

Equations (m) and (n) along with the equality constraint h(x1, x2)5 0 are the necessary condi-

tions of optimality for the problem. Any point that violates these conditions cannot be a minimum point

for the problem. The scalar quantity v defined in Eq. (l) is called the Lagrange multiplier. If the mini-

mum point is known, Eq. (l) can be used to calculate its value. For the present example, @f(1,1)/

@x2521 and @h(1,1)/@x25 1; therefore, Eq. (l) gives v*5 1 as the Lagrange multiplier at the opti-

mum point.

Recall that the necessary conditions can be used to solve for the candidate minimum points;

that is, Eqs. (m), (n), and h(x1, x2)5 0 can be used to solve for x1, x2, and v. For the present exam-

ple, these equations give

2ðx1 2 1:5Þ1 v5 0; 2ðx2 2 1:5Þ1 v5 0; x1 1 x2 2 25 0 ðoÞ
The solution to these equations is indeed, x�1 5 1, x�2 5 1, and v*5 1.

Geometrical meaning of the Lagrange multipliers It is customary to use what is known as

the Lagrange function in writing the necessary conditions. The Lagrange function is denoted as L

and defined using cost and constraint functions as

Lðx1; x2; vÞ5 fðx1; x2Þ1 vhðx1; x2Þ ðpÞ
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It is seen that the necessary conditions of Eqs. (m) and (n) are given in terms of L as

@Lðx�1; x�2Þ
@x1

5 0;
@Lðx�1; x�2Þ

@x2
5 0 ðqÞ

Or, in the vector notation, we see that the gradient of L is zero at the candidate minimum point,

that is, rL(x�1, x�2)5 0. Writing this condition, using Eq. (m), or writing Eqs. (m) and (n) in the

vector form, we obtain rfðx�Þ1 vrhðx�Þ5 0 ðrÞ

where gradients of the cost and constraint functions are given as

rfðx�Þ5

@fðx�1; x�2Þ
@x1

@fðx�1; x�2Þ
@x2

2
66664

3
77775; rh5

@hðx�1; x�2Þ
@x1

@hðx�1; x�2Þ
@x2

2
66664

3
77775 ðsÞ

Equation (r) can be rearranged as

rfðx�Þ52vrhðx�Þ ðtÞ
The preceding equation brings out the geometrical meaning of the necessary conditions. It

shows that at the candidate minimum point for the present example: gradients of the cost and

constraint functions are along the same line and proportional to each other, and the Lagrange

multiplier v is the proportionality constant.

For the present example, the gradients of cost and constraint functions at the candidate opti-

mum point are given as

rfð1; 1Þ5 21
21

� �
; rhð1; 1Þ5 1

1

� �
ðuÞ

These vectors are shown at point C in Figure 4.13. Note that they are along the same line. For

any other feasible point on line A�B, say (0.4,1.6), the gradients of cost and constraint functions

will not be along the same line, as seen in the following:

rfð0:4; 1:6Þ5 22:2
0:2

� �
; rhð0:4; 1:6Þ5 1

1

� �
ðvÞ

As another example, point D in Figure 4.13 is not a candidate minimum since gradients of

cost and constraint functions are not along the same line. Also, the cost function has a higher

value at these points compared to the one at the minimum point; that is, we can move away

from point D toward point C and reduce the cost function.

It is interesting to note that the equality constraint can be multiplied by 2 1 without affecting

the minimum point; that is, the constraint can be written as 2 x12 x21 25 0. The minimum

solution is still the same: x�1 5 1, x�2 5 1, and f(x*)5 0.5; however, the sign of the Lagrange multi-

plier is reversed (i.e., v*5 2 1). This shows that the Lagrange multiplier for the equality constraint is

free in sign; that is, the sign is determined by the form of the constraint function.

It is also interesting to note that any small move from point C in the feasible region (i.e., along

the line A�B) increases the cost function value, and any further reduction in the cost function is

accompanied by violation of the constraint. Thus, point C satisfies the sufficiency condition for a
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local minimum point because it has the smallest value in a neighborhood of point C (note that

we have used the definition of a local minimum given in Eq. (4.2)). Thus, it is indeed a local min-

imum point.

4.5.2 Lagrange Multiplier Theorem

The concept of Lagrange multipliers is quite general. It is encountered in many engi-
neering applications other than optimum design. The Lagrange multiplier for a constraint can
be interpreted as the force required to impose the constraint. We will discuss a physical meaning
of Lagrange multipliers in Section 4.7. The idea of a Lagrange multiplier for an equality
constraint, introduced in Example 4.24, can be generalized to many equality constraints. It
can also be extended to inequality constraints.

We will first discuss the necessary conditions with multiple equality constraints in
Theorem 4.5 and then describe in the next section their extensions to include the inequality
constraints. Just as for the unconstrained case, solutions to the necessary conditions give
candidate minimum points. The sufficient conditions—discussed in Chapter 5—can be
used to determine if a candidate point is indeed a local minimum.

THEOREM 4 . 5

Lagrange Multiplier Theorem Consider the

optimization problem defined in Eqs. (4.35)

and (4.36):

Minimize f(x)

subject to equality constraints

hiðxÞ5 0; i5 1 to p

Let x* be a regular point that is a local

minimum for the problem. Then there exist

unique Lagrange multipliers vj*, j5 1 to p

such that

@fðx�Þ
@xi

1
Xp
j51

v�j
@hjðx�Þ
@xi

5 0; i5 1 to n ð4:38Þ

hjðx�Þ5 0; j5 1 to p ð4:39Þ

It is convenient to write these conditions

in terms of a Lagrange function, defined as

Lðx; vÞ5 fðxÞ1
Xp
j5 1

vjhjðxÞ

5 fðxÞ1 vThðxÞ
ð4:40Þ

Then Eq. (4.38) becomes

rLðx�; v�Þ5 0; or
@Lðx�; v�Þ

@xi
5 0;

i5 1 to n

ð4:41Þ

Differentiating L(x, v) with respect to vj,

we recover the equality constraints as

@Lðx�;v�Þ
@vj

5 0.hjðx�Þ5 0; j5 1 to p ð4:42Þ

The gradient conditions of Eqs. (4.41) and (4.42) show that the Lagrange function is stationary
with respect to both x and v. Therefore, it may be treated as an unconstrained function in the
variables x and v to determine the stationary points. Note that any point that does not sat-
isfy the conditions of the theorem cannot be a local minimum point. However, a point
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satisfying the conditions need not be a minimum point either. It is simply a candidate
minimum point, which can actually be an inflection or maximum point. The second-order
necessary and sufficient conditions given in Chapter 5 can distinguish between the mini-
mum, maximum, and inflection points.

The n variables x and the p multipliers v are the unknowns, and the necessary condi-
tions of Eqs. (4.41) and (4.42) provide enough equations to solve for them. Note also that
the Lagrange multipliers vi are free in sign; that is, they can be positive, negative, or zero.
This is in contrast to the Lagrange multipliers for the inequality constraints, which are
required to be non-negative, as discussed in the next section.

The gradient condition of Eq. (4.38) can be rearranged as

@fðx�Þ
@xi

52
Xp
j51

v�j
@hjðx�Þ
@xi

; i5 1 to n ð4:43Þ

This form shows that the gradient of the cost function is a linear combination of the gradients
of the constraints at the candidate minimum point. The Lagrange multipliers vj* act as the
scalars of the linear combination. This linear combination interpretation of the necessary
conditions is a generalization of the concept discussed in Example 4.24 for one constraint:
“. . . at the candidate minimum point gradients of the cost and constraint functions are
along the same line.” Example 4.28 illustrates the necessary conditions for an equality-
constrained problem.

EXAMPLE 4.25 CYLINDRICAL TANK DESIGN—USE
OF LAGRANGE MULTIPLIERS

We will re-solve the cylindrical storage tank problem (Example 4.21) using the Lagrange mul-

tiplier approach. The problem is to find radius R and length H of the cylinder to

Minimize
f 5R2 1RH ðaÞ

subject to
h5πR2H2V5 0 ðbÞ

Solution
The Lagrange function L of Eq. (4.40) for the problem is given as

L5R2 1RH1 vðπR2H2VÞ ðcÞ
The necessary conditions of the Lagrange Multiplier Theorem 4.5 give

@L

@R
5 2R1H1 2πvRH5 0 ðdÞ

@L

@H
5R1πvR2 5 0 ðeÞ

@L

@v
5πR2H2V5 0 ðfÞ
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These are three equations in three unknowns v, R, and H. Note that they are nonlinear. However,

they can be easily solved by the elimination process, giving the solution to the necessary conditions as

R� 5
V

2π

� 	1=3
; H� 5

4V

π

� 	1=3
; v� 52

1

πR
52

2

π2V

� 	1=3
; f� 5 3

V

2π

� 	2=3
ðgÞ

This is the same solution as obtained for Example 4.21, treating it as an unconstrained prob-

lem. It can be also verified that the gradients of the cost and constraint functions are along the

same line at the optimum point.

Note that this problem has only one equality constraint. Therefore, the question of linear

dependence of the gradients of active constraints does not arise; that is, the regularity condition

for the solution point is satisfied.

Often, the necessary conditions of the Lagrange Multiplier Theorem lead to a nonlinear
set of equations that cannot be solved analytically. In such cases, we must use a numerical
algorithm, such as the Newton-Raphson method, to solve for their roots and the candidate
minimum points. Several commercial software packages, such as Excel, MATLAB, and
Mathematica, are available to find roots of nonlinear equations. We will describe the use
of Excel in Chapter 6 and MATLAB in Chapter 7 for this purpose.

4.6 NECESSARY CONDITIONS FOR A GENERAL
CONSTRAINED PROBLEM

4.6.1 The Role of Inequalities

In this section we will extend the Lagrange Multiplier Theorem to include inequality
constraints. However, it is important to understand the role of inequalities in the necessary
conditions and the solution process. As noted earlier, the inequality constraint may be
active or inactive at the minimum point. However, the minimum points are not known a
priori; we are trying to find them. Therefore, it is not known a priori if an inequality is
active or inactive at the solution point. The question is, How do we determine the status
of an inequality at the minimum point? The answer is that the determination of the status
of an inequality is a part of the necessary conditions for the problem.

Examples 4.26 through 4.28 illustrate the role of inequalities in determining the mini-
mum points.

EXAMPLE 4.26 ACTIVE INEQUALITY

Minimize
fðxÞ5 ðx1 2 1:5Þ2 1 ðx2 2 1:5Þ2 ðaÞ

subject to
g1ðxÞ5 x1 1 x2 2 2 # 0 ðbÞ

g2ðxÞ52x1 # 0; g3ðxÞ52x2 # 0 ðcÞ
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Solution
The feasible set S for the problem is a triangular region, shown in Figure 4.14. If constraints

are ignored, f(x) has a minimum at the point (1.5, 1.5) with the cost function as f*5 0, which vio-

lates the constraint g1 and therefore is an infeasible point for the problem. Note that contours of

f(x) are circles. They increase in diameter as f(x) increases. It is clear that the minimum value for

f(x) corresponds to a circle with the smallest radius intersecting the feasible set. This is the point

(1, 1) at which f(x)5 0.5. The point is on the boundary of the feasible region where the inequality

constraint g1(x) is active (i.e., g1(x)5 0). Thus, the location of the optimum point is governed by

the constraint for this problem as well as the cost function contours.

EXAMPLE 4.27 INACTIVE INEQUALITY

Minimize

fðxÞ5 ðx1 2 0:5Þ2 1 ðx2 2 0:5Þ2 ðaÞ
subject to the same constraints as in Example 4.26.

Solution
The feasible set S is the same as in Example 4.26. The cost function, however, has been modi-

fied. If constraints are ignored, f(x) has a minimum at (0.5, 0.5). Since the point also satisfies all

of the constraints, it is the optimum solution. The solution to this problem therefore occurs in the

interior of the feasible region and the constraints play no role in its location; all inequalities are

inactive.

Note that a solution to a constrained optimization problem may not exist. This can
happen if we over-constrain the system. The requirements can be conflicting such
that it is impossible to build a system to satisfy them. In such a case we must re-
examine the problem formulation and relax constraints. Example 4.28 illustrates the
situation.

f = 0.75x2

f (x*) = 0.5
x* = (1,1)

f = 0.5

Cost function
contours

Minimum point(1.5,1.5)

Feasible
region

1

1

2

2 3

g1 = x1 + x2 – 2 = 0

x1
0

FIGURE 4.14 Example 4.26 graphical representation.
Constrained optimum point.
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EXAMPLE 4.28 INFEASIBLE PROBLEM

Minimize
fðxÞ5 ðx1 2 2Þ2 1 ðx2 2 2Þ2 ðaÞ

subject to the constraints:
g1ðxÞ5 x1 1 x2 2 2# 0 ðbÞ
g2ðxÞ52x1 1 x2 1 3# 0 ðcÞ

g3ðxÞ52x1 # 0; g4ðxÞ52x2 # 0 ðdÞ

Solution
Figure 4.15 shows a plot of the constraints for the problem. It is seen that there is no design

satisfying all of the constraints. The feasible set S for the problem is empty and there is no solu-

tion (i.e., no feasible design). Basically, the constraints g1(x) and g2(x) conflict with each other

and need to be modified to obtain feasible solutions to the problem.

4.6.2 Karush-Kuhn-Tucker Necessary Conditions

We now include inequality constraints gi(x) # 0 and consider the general design optimi-
zation model defined in Eqs. (4.35) through (4.37). We can transform an inequality con-
straint into an equality constraint by adding a new variable to it, called the slack variable.
Since the constraint is of the form “# ”, its value is either negative or zero at a feasible
point. Thus, the slack variable must always be non-negative (i.e., positive or zero) to make
the inequality an equality.

An inequality constraint gi(x) # 0 is equivalent to the equality constraint gi(x)1 si5 0,
where si $ 0 is a slack variable. The variables si are treated as unknowns of the design
problem along with the original variables. Their values are determined as a part of the
solution. When the variable si has zero value, the corresponding inequality constraint is
satisfied at equality. Such inequality is called an active (tight) constraint; that is, there is no
“slack” in the constraint. For any si. 0, the corresponding constraint is a strict inequality.
It is called an inactive constraint, and has slack given by si. Thus, the status of an inequality
constraint is determined as a part of the solution to the problem.

3

2

1

0 1 2 3 4

Infeasible

x2

x1

g1 = 0

g3 = 0

g2 = 0

g4 = 0

g2 ≤ 0g1 ≤ 0

FIGURE 4.15 Plot of constraints for Example
4.28 infeasible problem.
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Note that with the preceding procedure, we must introduce one additional variable si and an
additional constraint si $ 0 to treat each inequality constraint. This increases the dimen-
sion of the design problem. The constraint si $ 0 can be avoided if we use si

2 as the slack
variable instead of just si. Therefore, the inequality gi # 0 is converted to an equality as

gi 1 s2i 5 0 ð4:44Þ
where si can have any real value. This form can be used in the Lagrange Multiplier
Theorem to treat inequality constraints and to derive the corresponding necessary condi-
tions. The m new equations needed for determining the slack variables are obtained
by requiring the Lagrangian L to be stationary with respect to the slack variables as well
@L
@s 5 0
� �

.

Note that once a design point is specified, Eq. (4.44) can be used to calculate the slack
variable si

2. If the constraint is satisfied at the point (i.e., gi # 0), then si
2 $ 0. If it is vio-

lated, then si
2 is negative, which is not acceptable; that is, the point is not a candidate mini-

mum point.
There is an additional necessary condition for the Lagrange multipliers of “# type” con-

straints given as

u�j $ 0; j5 1 to m ð4:45Þ
where uj* is the Lagrange multiplier for the jth inequality constraint. Thus, the Lagrange
multiplier for each “# ” inequality constraint must be non-negative. If the constraint is inactive
at the optimum, its associated Lagrange multiplier is zero. If it is active (gi5 0), then the
associated multiplier must be non-negative. We will explain the condition of Eq. (4.45)
from a physical point of view in Section 4.7. Example 4.29 illustrates the use of necessary
conditions in an inequality-constrained problem.

EXAMPLE 4.29 INEQUALITY-CONSTRAINED PROBLEM—
USE OF NECESSARY CONDITIONS

We will re-solve Example 4.24 by treating the constraint as an inequality. The problem is to

Minimize
fðx1; x2Þ5 ðx1 2 1:5Þ2 1 ðx2 2 1:5Þ2 ðaÞ

subject to
gðxÞ5 x1 1 x2 2 2 # 0 ðbÞ

Solution
The graphical representation of the problem remains the same as earlier in Figure 4.13 for

Example 4.24, except that the feasible region is enlarged; it is line A2B and the region below it.

The minimum point for the problem is same as before: x1*5 1, x2*5 1, f(x*)5 0.5.

Introducing a slack variable s2 for the inequality, the Lagrange function of Eq. (4.40) for the

problem is defined as

L5 ðx1 2 1:5Þ2 1 ðx2 2 1:5Þ2 1 uðx1 1 x2 2 21 s2Þ ðcÞ
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where u is the Lagrange multiplier for the inequality constraint. The necessary conditions of the

Lagrange Theorem give (treating x1, x2, u and s as unknowns):

@L

@x1
5 2ðx1 2 1:5Þ1 u5 0 ðdÞ

@L

@x2
5 2ðx2 2 1:5Þ1 u5 0 ðeÞ

@L

@u
5 x1 1 x2 2 21 s2 5 0 ðfÞ

@L

@s
5 2us5 0 ðgÞ

These are four equations for four unknowns x1, x2, u, and s. The equations must be solved

simultaneously for all of the unknowns. Note that the equations are nonlinear. Therefore, they

can have multiple roots.

One solution can be obtained by setting s to zero to satisfy the condition 2us5 0 in Eq. (g).

Equations (d) through (f) are solved to obtain x1*5 x2*5 1, u*5 1, s5 0. When s5 0, the inequal-

ity constraint is active. x1, x2, and u are solved from the remaining three equations, (d) through

(f), which are linear in the variables. This is a stationary point of L, so it is a candidate minimum

point. Note from Figure 4.13 that it is actually a minimum point, since any move away from x*

either violates the constraint or increases the cost function.

The second stationary point is obtained by setting u5 0 to satisfy the condition of Eq. (g) and solv-

ing the remaining equations for x1, x2, and s. This gives x1*5 x2*5 1.5, u*5 0, s25 2 1. This is

not a valid solution, as the constraint is violated at the point x* because g5 2 s25 1. 0.

It is interesting to observe the geometrical representation of the necessary conditions for

inequality-constrained problems. The gradients of the cost and constraint functions at the candi-

date point (1, 1) are calculated as

rf 5 2ðx1 2 1:5Þ
2ðx2 2 1:5Þ

� �
5

2 1
2 1

� �
; rg5 1

1

� �
ðhÞ

These gradients are along the same line but in opposite directions, as shown in Figure 4.13.

Observe also that any small move from point C either increases the cost function or takes the

design into the infeasible region to reduce the cost function any further (i.e., the condition for a

local minimum given in Eq. (4.2) is violated). Thus, point (1, 1) is indeed a local minimum point.

This geometrical condition is called the sufficient condition for a local minimum point.

It turns out that the necessary condition u $ 0 ensures that the gradients of the cost and the con-

straint functions point in opposite directions. This way f cannot be reduced any further by stepping

in the negative gradient direction for the cost function without violating the constraint. That is,

any further reduction in the cost function leads to leaving the earlier feasible region at the candi-

date minimum point. This can be observed in Figure 4.13.

The necessary conditions for the equality- and inequality-constrained problem written
in the standard form, as in Eqs. (4.35) through (4.37), can be summed up in what are com-
monly known as the Karush-Kuhn-Tucker (KKT) first-order necessary conditions, displayed in
Theorem 4.6.
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THEOREM 4 . 6

Karush-Kuhn-Tucker Optimality Conditions

Let x* be a regular point of the feasible set

that is a local minimum for f(x), subject to

hi(x)5 0; i5 1 to p; gj(x) # 0; j5 1 to m.

Then there exist Lagrange multipliers v* (a

p-vector) and u* (an m-vector) such that

the Lagrangian function is stationary with

respect to xj, vi, uj, and sj at the point x*.

1. Lagrangian Function for the Problem

Written in the Standard Form:

Lðx; v;u; sÞ5 fðxÞ1
Xp
i51

vihiðxÞ

1
Xm
j51

ujðgjðxÞ1 s2j Þ

5 fðxÞ1vThðxÞ1uTðgðxÞ1 s2Þ
ð4:46Þ

2. Gradient Conditions:

@L

@xk
5

@f

@xk
1

Xp
i5 1

v�i
@hi
@xk

ð4:47Þ

1
Xm
j5 1

u�j
@gj
@xk

5 0; k5 1 to n

@L

@vi
5 0.hiðx�Þ5 0; i5 1 to p ð4:48Þ

@L

@uj
5 0.ðgjðx�Þ1 s2j Þ5 0; j5 1 to m ð4:49Þ

3. Feasibility Check for Inequalities:

s2j $ 0; or equivalently gj # 0;

j5 1 to m
ð4:50Þ

4. Switching Conditions:

@L

@sj
5 0.2u�j sj 5 0; j5 1 to m ð4:51Þ

5. Non-negativity of Lagrange Multipliers for

Inequalities:

u�j $ 0; j5 1 to m ð4:52Þ

6. Regularity Check: Gradients of the active

constraints must be linearly independent.

In such a case the Lagrange multipliers

for the constraints are unique.

Geometrical Meaning of the Gradient Condition

It is important to understand the use of KKT conditions to (i) check the possible opti-
mality of a given point, and (ii) determine the candidate local minimum points. Note first
from Eqs. (4.48) through (4.50) that the candidate minimum point must be feasible, so we must
check all of the constraints to ensure their satisfaction. The gradient conditions of
Eq. (4.47) must also be satisfied simultaneously. These conditions have a geometrical mean-
ing. To see this, rewrite Eq. (4.47) as

2
@f

@xj
5

Xp
i51

v�i
@hi
@xj

1
Xm
i51

u�i
@gi
@xj

; j5 1 to n ð4:53Þ

which shows that at the stationary point, the negative gradient direction on the left side
(steepest-descent direction) for the cost function is a linear combination of the gradients of
the constraints, with Lagrange multipliers that are the scalar parameters of the linear
combination.
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Switching Conditions

The m conditions in Eq. (4.51) are known as the switching conditions or the complementary
slackness conditions. They can be satisfied by setting either si5 0 (zero slack implies active
inequality, gi5 0) or ui5 0 (in this case gi must be # 0 to satisfy feasibility). These condi-
tions determine several solution cases, and their use must be clearly understood. As dis-
cussed in Example 4.29, there was only one switching condition, which gave two
possible cases: Case 1, where the slack variable was zero, and Case 2, where the
Lagrange multiplier u for the inequality constraint was zero. Each of the two cases was
solved for the unknowns.

For general problems, there is more than one switching condition in Eq. (4.51); the num-
ber of switching conditions is equal to the number of inequality constraints for the prob-
lem. Various combinations of these conditions can give many solution cases. In general,
with m inequality constraints, the switching conditions lead to 2m distinct normal solution
cases (the abnormal case is the one where both ui5 0 and si5 0). For each case, we need to
solve the remaining necessary conditions for candidate local minimum points. Also each
case may give several candidate minimum points. Depending on the functions of the prob-
lem, it may or may not be possible to solve analytically the necessary conditions of each
case. If the functions are nonlinear, we must use numerical methods to find their roots.
This will be discussed in Chapters 6 and 7.

KKT Conditions

To write the KKT conditions, the optimum design problem must be written in the
standard form as displayed in Eqs. (4.35) through (4.37). We will illustrate the use of the
KKT conditions in several example problems. In Example 4.29, there were only two variables,
one Lagrange multiplier and one slack variable. For general problems, the unknowns are
x, u, s, and v. These are n-, m-, m-,and p-dimensional vectors. Thus, there are (n1 2m1 p)
unknown variables and we need (n1 2m1 p) equations to determine them. The equations
needed for their solution are available in the KKT necessary conditions. The number of
equations is (n1 2m1 p) in Eqs. (4.47) through (4.51). These equations must be solved
simultaneously for the candidate minimum points. The remaining necessary conditions
of Eqs. (4.50) and (4.52) must then be checked for the candidate minimum points. The
conditions of Eq. (4.50) ensure feasibility of the candidate local minimum points with
respect to the inequality constraints gi(x) # 0; i5 1 to m. And the conditions of Eq. (4.52)
say that the Lagrange multipliers of the “# type” inequality constraints must be non-
negative.

Note that evaluation of si
2 essentially implies evaluation of the constraint function

gi(x), since si
25 2 gi(x). This allows us to check the feasibility of the candidate points

with respect to the constraint gi(x) # 0. It is also important to note the following
conditions:

• If the inequality constraint gi(x) # 0 is inactive at the candidate minimum point x*
(i.e., gi(x*) , 0, or si

2. 0), then the corresponding Lagrange multiplier ui*5 0 to satisfy the
switching condition of Eq. (4.51).

• If the inequality constraint gi(x) # 0 is active at the candidate minimum point x*
(i.e., gi(x*)5 0), then the Lagrange multiplier must be non-negative, ui* $ 0.
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These conditions ensure that there are no feasible directions with respect to the ith con-
straint gi(x*) # 0 at the candidate point x* along which the cost function can reduce any
further. Stated differently, the condition ensures that any reduction in the cost function at
x* can occur only by stepping into the infeasible region for the constraint gi(x*) # 0.

Note further that the necessary conditions of Eqs. (4.47) through (4.52) are generally a nonlinear
system of equations in the variables x, u, s, and v. It may not be easy to solve this system ana-
lytically. Therefore, we may have to use numerical methods such as the Newton-Raphson
method to find the roots of the system. Fortunately, programs such as Excel, MATLAB,
Mathematica, and others are available to solve a nonlinear set of equations. Use of Excel is
discussed in Chapters 6 and use of MATLAB is discussed later in this chapter and in
Chapter 7.

Important Observations about KKT Conditions

The following important points should be noted relative to the KKT first-order neces-
sary conditions for the problem written in the standard form as is displayed in Eqs. (4.35)
through (4.37):

1. The KKT conditions are not applicable at the points that are not regular. In those cases
their use may yield candidate minimum points; however, the Lagrange multipliers may
not be unique. This is illustrated with an example in Chapter 5.

2. Any point that does not satisfy the KKT conditions cannot be a local minimum point unless
it is an irregular point (in that case the KKT conditions are not applicable). Points
satisfying the conditions are called KKT points.

3. The points satisfying the KKT conditions can be constrained or unconstrained. They are
unconstrained when there are no equalities and all inequalities are inactive. If the
candidate point is unconstrained, it can be a local minimum, maximum, or
inflection point depending on the form of the Hessian matrix of the cost function
(refer to Section 4.4 for the necessary and sufficient conditions for unconstrained
problems).

4. If there are equality constraints and no inequalities are active (i.e., u5 0), then the
points satisfying the KKT conditions are only stationary. They can be minimum,
maximum, or inflection points.

5. If some inequality constraints are active and their multipliers are positive, then the
points satisfying the KKT conditions cannot be local maxima for the cost function (they
may be local maximum points if active inequalities have zero multipliers). They may
not be local minima either; this will depend on the second-order necessary and
sufficient conditions discussed in Chapter 5.

6. It is important to note that the value of the Lagrange multiplier for each constraint
depends on the functional form for the constraint. For example, the Lagrange multiplier
for the constraint x/y2 10 # 0 (y. 0) is different for the same constraint expressed as
x2 10y # 0 or 0.1x/y2 1 # 0. The optimum solution for the problem does not change
by changing the form of the constraint, but its Lagrange multiplier is changed. This is
further explained in Section 4.7.

Examples 4.30 through 4.32 illustrate various solutions of the KKT necessary conditions
for candidate local minimum points.
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EXAMPLE 4.30 SOLUTION TO KKT NECESSARY CONDITIONS

Write the KKT necessary conditions and solve them for the problem

Minimize

fðxÞ5 1

3
x3 2

1

2
ðb1 cÞx2 1 bcx1 f0 ðaÞ

subject to
a# x# d ðbÞ

where 0 , a , b , c , d and f0 are specified constants (created by Y. S. Ryu).

Solution
A graph for the cost function and constraints is shown in Figure 4.16. It is seen that point A is a

constrained minimum: point B is an unconstrained maximum, point C is an unconstrained mini-

mum, and point D is a constrained maximum. We will show how the KKT conditions distinguish

between these points. Note that since only one constraint can be active at the candidate minimum

point (x cannot be at points A and D simultaneously), all of the feasible points are regular.

There are two inequality constraints in Eq. (b) that are written in the standard form as

g1 5 a2 x# 0; g2 5 x2 d# 0 ðcÞ
The Lagrangian function of Eq. (4.46) for the problem is given as

L5
1

3
x3 2

1

2
ðb1 cÞx2 1 bcx1 f0 1u1ða2 x1 s21Þ1 u2ðx2 d1 s22Þ ðdÞ

where u1 and u2 are the Lagrange multipliers and s1 and s2 are the slack variables for the two

inequalities in Eq. (c). The KKT conditions give

@L

@x
5 x2 2 ðb1 cÞx1 bc2 u1 1 u2 5 0 ðeÞ

ða2 xÞ1 s21 5 0; s21 $ 0; ðx2 dÞ1 s22 5 0; s22 $ 0 ðfÞ
u1s1 5 0; u2s2 5 0 ðgÞ
u1 $ 0; u2 $ 0 ðhÞ

The switching conditions in Eq. (g) give four cases for the solution to the KKT conditions.

Each case will be considered separately and solved.

A

B

C D

a b c d

f (x )

f0

x

FIGURE 4.16 Example 4.30 graphical representation.
Point A, constrained local minimum; B, unconstrained
local maximum; C, unconstrained local minimum; D,
constrained local maximum.
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Case 1: u150, u250. For this case, Eq. (e) gives two solutions as x5 b and x5 c. For these points

both the inequalities are strictly satisfied because slack variables calculated from Eq. (f) are

for x5 b : s21 5 b2 a. 0; s22 5 d2 b. 0 ðiÞ
for x5 c : s21 5 c2 a. 0; s22 5 d2 c. 0 ðjÞ

Thus, all of the KKT conditions are satisfied, and these are the candidate minimum points. Since

the points are unconstrained, they are actually stationary points. We can check the sufficient con-

ditions by calculating the curvature of the cost function at the two candidate points:

x5 b;
d2f

dx2
5 2x2 ðb1 cÞ5 b2 c, 0 ðkÞ

Since b , c, d2f/dx2 is negative. Therefore, the sufficient condition for a local minimum is not

met. Actually, the second-order necessary condition of Eq. (4.29) is violated, so the point cannot

be a local minimum for the function. It is actually a local maximum point because it satisfies the

sufficient condition for that, as also seen in Figure 4.16.

x5 c;
d2f

dx2
5 c2 b. 0 ðlÞ

Since b , c, d2f/dx2 is positive. Therefore, the second-order sufficient condition of Eq. (4.28) is

satisfied, and this is a local minimum point, as also seen in Figure 4.16. It cannot be a local maxi-

mum point since second order necessary condition for local maximum is violated.

Case 2: u150, s250. g2 is active for this case, and because s25 0, , x5 d. Equation (e) gives

u2 52½d2 2 ðb1 cÞd1 bc�52ðd2 cÞðd2 bÞ ðmÞ
Since d. c . b, u2 is , 0. Actually the term within the square brackets is also the slope of the

function at x5 d, which is positive, so u2 , 0 in Eq. (m). The KKT necessary condition is violated,

so there is no solution for this case; that is, x5 d is not a candidate minimum point. This is true,

as can be observed for point D in Figure 4.16. Actually, it can be checked that the point satisfies

the KKT necessary conditions for the local maximum point.

Case 3: s150, u250. s15 0 implies that g1 is active and therefore x5 a. Equation (c) gives

u1 5 a2 2 ðb1 cÞa1 bc5 ða2 bÞða2 cÞ. 0 ðnÞ
Also, since u15 the slope of the function at x5 a, it is positive and all of the KKT conditions are

satisfied. Thus, x5 a is a candidate minimum point. Actually x5 a is a local minimum point

because a feasible move from the point increases the cost function. This is a sufficient condition,

which we will discuss in Chapter 5.

Case 4: s150, s250. This case, for which both constraints are active, does not give any

valid solution since x cannot be simultaneously equal to a and d.

EXAMPLE 4.31 SOLUTION TO THE KKT NECESSARY
CONDITIONS

Solve the KKT condition for the problem:

Minimize
fðxÞ5 x21 1 x22 2 3x1x2 ðaÞ
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subject to
g5 x21 1 x22 2 6 # 0 ðbÞ

Solution
The feasible region for the problem is a circle with its center at (0,0) and its radius as

ffiffiffi
6

p
. This

is plotted in Figure 4.17. Several cost function contours are shown there. It can be seen that

points A and B give minimum value for the cost function. The gradients of cost and constraint

functions at these points are along the same line but in opposite directions, so the KKT necessary

conditions are satisfied. We will verify this by writing these conditions and solving them for the

minimum points.

The Lagrange function of Eq. (4.46) for the problem, which is already written in the standard

form of Eqs. (4.35) and (4.37), is

L5 x21 1 x22 2 3x1x2 1uðx21 1 x22 2 61 s2Þ ðcÞ
Since there is only one constraint for the problem, all points of the feasible region are regular, so

the KKT necessary conditions are applicable. They are given as

@L

@x1
5 2x1 2 3x2 1 2ux1 5 0 ðdÞ

@L

@x2
5 2x2 2 3x1 1 2ux2 5 0 ðeÞ

x21 1 x22 2 61 s2 5 0; s2 $ 0; u$ 0 ðfÞ
us5 0 ðgÞ
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FIGURE 4.17 Graphical solution
for Example 4.31. Local minimum
points, A and B (the vectors are not to
scale).
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Equations (d) through (g) are the four equations for four unknowns, x1, x2, s, and u. Thus, in

principle, we have enough equations to solve for all of the unknowns. The system of equations is

nonlinear; however, it is possible to analytically solve for all of the roots.

There are three possible ways of satisfying the switching condition of Eq. (g): (i) u5 0, (ii) s5 0

(implying that g is active), or (iii) u5 0 and s5 0. We will consider each case separately and solve

for the roots of the necessary conditions.

Case 1: u50. In this case, the inequality constraint is considered as inactive at the solution

point. We will solve for x1 and x2 and then check the constraint. Equations (d) and (e) reduce to

2x1 2 3x2 5 0; 23x1 1 2x2 5 0 ðhÞ
This is a 23 2 homogeneous system of linear equations (the right side is zero). Such a system

has a nontrivial solution only if the determinant of the coefficient matrix is zero. However, since

the determinant of the matrix is 25, the system has only a trivial solution, x15 x25 0. This solu-

tion gives s25 6 from Eq. (f), so the inequality is not active. Thus, the candidate minimum point

for this case is
x�1 5 0; x�2 5 0; u� 5 0; f 0; 0ð Þ5 0 ðiÞ

Case 2: s50. In this case, s5 0 implies that the inequality is active. We must solve Eqs. (d)

through (f) simultaneously for x1, x2, and u. Note that this is a nonlinear set of equations, so there

can be multiple roots. Equation (d) gives u5211 3x2/2x1. Substituting for u in Eq. (e), we obtain

x1
25 x2

2. Using this in Eq. (f), solving for x1 and x2 and then solving for u, we obtain the four roots

of Eqs. (d), (e), and (f) as

x1 5 x2 5
ffiffiffi
3

p
; u5

1

2
; x1 5 x2 52

ffiffiffi
3

p
; u5

1

2
ðjÞ

x1 52x2 5
ffiffiffi
3

p
; u52

5

2
; x1 52x2 52

ffiffiffi
3

p
; u52

5

2
ðkÞ

The last two roots violate the KKT necessary condition, u $ 0. Therefore, there are two candidate

minimum points for this case. The first corresponds to point A and the second to point B in

Figure 4.17.

Case 3: u50, s50. With these conditions, Eqs. (d) and (e) give x15 0, x25 0. Substituting

these into Eq. (f), we obtain s25 6 6¼ 0. Therefore, since s 6¼ 0, this case does not give any solution

for the KKT conditions.

The case where both u and s are zero usually does not give any additional KKT points and may

be ignored. Finally, the points satisfying the KKT necessary conditions for the problem are

summarized:

1. x1*5 0, x2*5 0, u*5 0, f *(0, 0)5 0, point O in Figure 4.17

2. x1*5 x2* 5
ffiffiffi
3

p
, u*5 1/2, f *(

ffiffiffi
3

p
,

ffiffiffi
3

p
)523, point A in Figure 4.17

3. x1*5 x2*52
ffiffiffi
3

p
, u*5 1/2, f *(2

ffiffiffi
3

p
, 2

ffiffiffi
3

p
)523, point B in Figure 4.17

It is interesting to note that points A and B satisfy the sufficient condition for local minima.

As can be observed from Figure 4.17, any feasible move from the points results in an increase in

the cost, and any further reduction in the cost results in violation of the constraint. It can also be

observed that point O does not satisfy the sufficient condition because there are feasible direc-

tions that result in a decrease in the cost function. So point O is only a stationary point. We will

check the sufficient conditions for this problem in Chapter 5.
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Solution to optimality conditions using MATLAB MATLAB, introduced in Chapter 3 for

graphical optimization, has many capabilities for engineering calculations and analyses. It can

also be used to solve a set of nonlinear equations as well. The primary command used for this

purpose is fsolve. This command is part of the MATLAB Optimization Toolbox (Chapter 7),

which must be installed in the computer. We will discuss use of this capability by solving the

KKT conditions for the problem in Example 4.31. Use of the Optimization Toolbox to solve

design optimization problems is explained in Chapter 7.

When using MATLAB, it is necessary to first create a separate m-file containing the equations

in the form F(x)5 0. For the present example, components of the vector x are defined as x(1)5 x1,

x(2)5 x2, x(3)5u, and x(4)5 s. In terms of these variables, the KKT conditions of Eqs. (d) through

(g) are given as
2�xð1Þ � 3�xð2Þ1 2�xð3Þ�xð1Þ5 0 ðlÞ
2�x 2ð Þ � 3�x 1ð Þ1 2�x 3ð Þ�x 2ð Þ5 0 ðmÞ

xð1Þ2 1 xð2Þ2 2 61 xð4Þ2 5 0 ðnÞ
xð3Þ�xð4Þ5 0 ðoÞ

The file defining the equations is prepared as follows:

Function F=kktsystem(x)
F=[2*x(1) - 3*x(2)+2*x(3)*x(1);
2*x(2) - 3*x(1)+2*x(3)*x(2);
x(1)^2+x(2)^2 - 6+x(4)^2;
x(3)*x(4)];

The first line defines a function, kktsystem, that accepts a vector of variable x and

returns a vector of function values F. This file should be named kktsystem (the same name

as the function itself), and as with other MATLAB files, it should be saved with a suffix of

".m". Next the main commands are entered interactively or in a separate file as follows:

x0=[1;1;1;1];
options=optimset(‘Display’,‘iter’)
x=fsolve(@kktsystem,x0,options)

x0 is the starting point or the initial guess for the root of the nonlinear equations. The

options command displays output for each iteration. If the command options=optimset
(‘Display’,’off’”) is used, then only the final solution is provided. The command fsolve
finds a root of the system of equations provided in the function kktsystem. Although there may

be many potential solutions, the solution closest to the initial guess is obtained and provided.

Consequently, different starting points must be used to find different points that satisfy the KKT

conditions. Starting with the given point, the solution is obtained as (1.732, 1.732, 0.5, 0).

The foregoing two examples illustrate the procedure of solving the KKT necessary condi-
tions for candidate local minimum points. It is important to understand the procedure
clearly. Example 4.31 had only one inequality constraint. The switching condition of Eq. (g)
gave only two normal cases—either u5 0 or s5 0 (the abnormal case, where u5 0 and s5 0,
rarely gives additional candidate points, so it can be ignored).
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Each of the cases gave the candidate minimum point x*. For Case 1 (u5 0), there was
only one point x* satisfying Eqs. (d), (e), and (f). However, for Case 2 (s5 0), there were
four roots for Eqs. (d), (e), and (f). Two of the four roots did not satisfy the non-negativity
conditions on the Lagrange multipliers. Therefore, the corresponding two roots were not
candidate local minimum points.

The preceding procedure is valid for more general nonlinear optimization problems.

In Example 4.32, we illustrate the procedure for a problem with two design variables
and two inequality constraints.

EXAMPLE 4.32 SOLUTION TO THE KKT NECESSARY
CONDITIONS

Maximize
Fðx1; x2Þ5 2x1 1 x2 2 x21 2 x22 2 2 ðaÞ

subject to 2x1 1 x2 $ 4; x1 1 2x2 $ 4 ðbÞ

Solution
First we write the problem in the standard form of Eqs. (4.35) and (4.37) as

Minimize
fðx1; x2Þ5 x21 1 x22 2 2x1 2 2x2 1 2 ðcÞ

subject to g1 522x1 2 x2 1 4 # 0; g2 52x1 2 2x2 1 4 # 0 ðdÞ

Figure 4.18 is a graphical representation of the problem. The two constraint functions are plot-

ted and the feasible region is identified. It is seen that point A(4/3, 4/3), where both of the

inequality constraints are active, is the optimum solution to the problem. Since it is a two-

variable problem, only two vectors can be linearly independent. It can be seen in Figure 4.18 that

the constraint gradients rg1 and rg2 are linearly independent (hence, the optimum point is regu-

lar), so any other vector can be expressed as a linear combination of them.

In particular, 2rf (the negative gradient of the cost function) can be expressed as linear com-

bination of rg1 and rg2, with positive scalars as the multipliers of the linear combination, which

is precisely the KKT necessary condition of Eq. (4.47). In the following, we will write these condi-

tions and solve them to verify the graphical solution.

The Lagrange function of Eq. (4.46) for the problem defined in Eqs. (a) and (b) is given as

L5 x21 1 x22 2 2x1 2 2x2 1 21u1ð2 2x1 2 x2 1 41 s21Þ1 u2ð2 x1 2 2x2 1 41 s22Þ ðeÞ
The KKT necessary conditions are

@L

@x1
5 2x1 2 22 2u1 2 u2 5 0 ðfÞ

@L

@x2
5 2x2 2 22u1 2 2u2 5 0 ðgÞ
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g1 522x1 2 x2 1 41 s21 5 0; s21 $ 0; u1 $ 0 ðhÞ
g2 52x1 2 2x2 1 41 s22 5 0; s22 $ 0; u2 $ 0 ðiÞ

uisi 5 0; i5 1; 2 ðjÞ
Equations (f) through (j) are the six equations for six unknowns: xl, x2, sl, s2, ul, and u2. We

must solve them simultaneously for candidate local minimum points. One way to satisfy the

switching conditions of Eq. (j) is to identify various cases and then solve them for the roots.

There are four cases, and we consider each separately and solve for all of the unknowns:

1. u15 0, u25 0

2. u15 0, s25 0 (g25 0)

3. s15 0 (g15 0), u25 0

4. s15 0 (g15 0), s25 0 (g25 0)

Case 1: u150, u250. Equations (f) and (g) give xl5 x25 1. This is not a valid solution as it

gives s1
2521 (g15 1), s2

2521 (g25 1) from Eqs. (h) and (i), which implies that both inequalities

are violated. Thus, the design x15 1 and x25 1 is not feasible.

Case 2: u150, s250. With these conditions, Eqs. (f), (g), and (i) become

2x1 2 22u2 5 0; 2x2 2 22 2u2 5 0; 2x1 2 2x2 1 45 0 ðkÞ
These are three linear equations for the three unknowns x1, x2, and u2. Any method of solving a

linear system of equations, such as Gaussian elimination or method of determinants (Cramer’s

rule), can be used to find roots. Using the elimination procedure, we obtain x15 1.2, x25 1.4, and

u25 0.4. Therefore, the solution for this case is

x1 5 1:2; x2 5 1:4; u1 5 0; u2 5 0:4; f 5 0:2 ðlÞ

4
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0.64
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f (x*) = 2/9
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f

Δ

Δ

Δ

FIGURE 4.18 Example 4.32 graphical solution
(the vectors are not to scale).
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We need to check for the feasibility of this design point with respect to constraint g1 before it can

be claimed as a candidate local minimum point. Substituting x15 1.2 and x25 1.4 into Eq. (h), we

find that s1
2520.2, 0 (g15 0.2), which is a violation of constraint g1. Therefore, Case 2 also does

not give any candidate local minimum point. It can be seen in Figure 4.18 that point (1.2,1.4) cor-

responds to point B, which is not in the feasible set.

Case 3: s150, u250. With these conditions, Eqs. (f), (g), and (h) give

2x1 2 22 2u1 5 0; 2x2 2 22 u1 5 0; 22x1 2 x2 1 45 0 ðmÞ

This is again a linear system of equations for the variables x1, x2, and u1. Solving the system, we

obtain the solution as
x1 5 1:4; x2 5 1:2; u1 5 0:4; u2 5 0; f 5 0:2 ðnÞ

Checking this design for feasibility with respect to constraint g2, we find from Eq. (i) that

s2
2520.2, 0 (g25 0.2). This is not a feasible design. Therefore, Case 3 also does not give any can-

didate local minimum point. It can be observed in Figure 4.18 that point (1.4, 1.2) corresponds to

point C, which is not in the feasible set.

Case 4: s150, s250. For this case, Eqs. (f) through (i) must be solved for the four unknowns

x1, x2, u1, and u2. This system of equations is again linear and can be solved easily. Using the

elimination procedure as before, we obtain x1 and x2 from Eqs. (h) and (i), and u1 and u2 from

Eqs. (f) and (g):
x1 5 4=3; x2 5 4=3; u1 5 2=9. 0; u2 5 2=9. 0 ðoÞ

To check regularity condition for the point, we evaluate the gradients of the active constraints

and define the constraint gradient matrix A as

rg1 5 22
21

� �
; rg2 5 21

22

� �
; A5

22 21
21 22

� �
ðpÞ

Since rank (A)5 the number of active constraints, the gradients rg1 and rg2 are linearly inde-

pendent. Thus, all of the KKT conditions are satisfied and the preceding solution is a candidate

local minimum point. The solution corresponds to point A in Figure 4.18. The cost function at

the point has a value of 2/9.

It can be observed from Figure 4.18 that the vector 2rf can be expressed as a linear combina-

tion of the vectors rg1 and rg2 at point A. This satisfies the necessary condition of Eq. (4.53). It

is also seen from the figure that point A is indeed a local minimum because any further reduc-

tion in the cost function is possible only if we go into the infeasible region. Any feasible move

from point A results in an increase in the cost function.

4.6.3 Summary of the KKT Solution Approach

Note the following points regarding the KKT first-order necessary conditions:

1. The conditions can be used to check whether a given point is a candidate minimum; the
point must be feasible; the gradient of the Lagrangian with respect to the design
variables must be zero; and the Lagrange multipliers for the inequality constraints must
be non-negative.
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2. For a given problem, the conditions can be used to find candidate minimum points.
Several cases defined by the switching conditions must be considered and solved. Each
case can provide multiple solutions.

3. For each solution case, remember to
(i) Check all inequality constraints for feasibility (e.g., gi # 0 or si

2 $ 0).
(ii) Calculate all of the Lagrange multipliers.
(iii) Ensure that the Lagrange multipliers for all of the inequality constraints are non-

negative.

Limitation of the KKT Solution Approach

Note that addition of an inequality to the problem formulation doubles the number of
KKT solution cases. With 2 inequalities, we had 4 KKT cases; with 3 inequalities, we have
8 cases; and with 4 inequalities, we have 16 cases. Therefore, the number of cases quickly
becomes out of hand, and thus this solution procedure cannot be used to solve most prac-
tical problems. Based on these conditions, however, numerical methods have been devel-
oped that can handle any number of equality and inequality constraints. In Section 4.9, we
will solve two problems having 16 and 32 cases, respectively.

4.7 POSTOPTIMALITY ANALYSIS: THE PHYSICAL
MEANING OF LAGRANGE MULTIPLIERS

The study of variations in the optimum solution when some of the original problem
parameters are changed is known as postoptimality or sensitivity analysis. This is an impor-
tant topic for optimum design of engineering systems, as we can gain some insights
regarding the optimum solution. Variations in the optimum cost function and design vari-
ables due to changes in certain problem parameters can be studied. Since sensitivity of the
cost function to the variations in the constraint limit values can be studied without any
further calculations, we will focus on this aspect of sensitivity analysis only.

4.7.1 Effect of Changing Constraint Limits

We will assume that the minimization problem has been solved with hi(x)5 0 and
gj(x) # 0, that is, with the current limit values for the constraints as zero. We want to know
what happens to the optimum cost function value if more resources become available
(a constraint is relaxed) or if resources are reduced (a constraint needs to be tightened).

It turns out that the Lagrange multipliers (v*, u*) at the optimum design provide infor-
mation to answer the foregoing sensitivity question. The investigation of this question also
leads to a physical interpretation of the Lagrange multipliers that can be very useful in
practical applications. The interpretation will also show why the Lagrange multipliers for
the “# type” constraints have to be non-negative.

To discuss changes in the cost function due to changes in the constraint limits, we con-
sider the modified problem:

Minimize
fðxÞ ð4:54Þ
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subject to
hiðxÞ5 bi; i5 1 to p ð4:55Þ
gjðxÞ# ej; j5 1 to m ð4:56Þ

where bi and ej are small variations in the neighborhood of zero. It is clear that the opti-
mum point for the perturbed problem depends on vectors b and e; that is, it is a function
of b and e that can be written as x*5 x*(b,e). Also, optimum cost function value depends
on b and e: f*5 f*(b,e). However, explicit dependence of the cost function on b and e is
not known; an expression for f* in terms of bi and ej cannot be obtained. The following the-
orem gives a way of obtaining the partial derivatives @f*/@bi and @f*/@ej.

THEOREM 4 . 7

Constraint Variation Sensitivity Theorem

Let f(x), hi(x), i5 1 to p, and gj(x), j5 1 to m

have two continuous derivatives. Let x* be a

regular point that, together with the multi-

pliers vi* and uj*, satisfies both the KKT

necessary conditions and the sufficient con-

ditions (presented in the next chapter) for an

isolated local minimum point for the prob-

lem defined in Eqs. (4.35) through (4.37).

If, for each gj(x*), it is true that uj*. 0,

then the solution x*(b,e) of the modified

optimization problem defined in Eqs. (4.54)

through (4.56) is a continuously differentia-

ble function of b and e in some neighbor-

hood of b5 0, e5 0. Furthermore,

@f�

@bi
5

@fðx�ð0;0ÞÞ
@bi

52v�i ; i5 1 to p ð4:57Þ

@f�

@ej
5

@fðx�ð0;0ÞÞ
@ej

52u�j ; j5 1 to m ð4:58Þ

First-Order Changes in the Cost Function

The theorem gives values for implicit first-order derivatives of the cost function f* with
respect to the right side parameters of the constraints bi and ej. The derivatives can be
used to calculate changes in the cost function as bi and ej are changed. Note that the the-
orem is applicable only when the inequality constraints are written in the “# ” form.
Using the theorem we can estimate changes in the cost function if we decide to adjust
the right side of the constraints in the neighborhood of zero. For this purpose, Taylor’s
expansion for the cost function in terms of bi and ej can be used. Let us assume that we
want to vary the right sides, bi and ej, of the ith equality and jth inequality constraints.
First-order Taylor’s expansion for the cost function f(bi, ej) about the point bi5 0 and
ej5 0 is given as

fðbi; ejÞ5 f�ð0; 0Þ1 @f�ð0; 0Þ
@bi

bi 1
@f�ð0; 0Þ

@ej
ej ð4:59Þ

Or, substituting from Eqs. (4.57) and (4.58), we obtain

fðbi; ejÞ5 f�ð0;0Þ2 v�i bi 2 u�j ej ð4:60Þ
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where f(0, 0) is the optimum cost function value that is obtained with bi5 0 and ej5 0.
Using Eq. (4.60), a first-order change in the cost function δf due to small changes in bi and ej is
given as

δf� 5 fðbi; ejÞ2 f�ð0; 0Þ52v�i bi 2 u�j ej ð4:61Þ
For given values of bi and ej we can estimate the new value of the cost function from

Eq. (4.60). Also, Eqs. (4.60) and (4.61) can be used for physical interpretation of the Lagrange
multipliers. It is seen that the multipliers give the benefit of relaxing a constraint or the penalty
associated with tightening it; relaxation enlarges the feasible set, while tightening contracts it.

If we want to change the right side of more constraints, we simply include them in
Eq. (4.61) and obtain the change in cost function as

δf� 52
X

v�i bi 2
X

u�j ej ð4:62Þ

It is useful to note that if the conditions of Theorem 4.7 are not satisfied, the
existence of implicit derivatives of Eqs. (4.57) and (4.58) is not ruled out by the
theorem. That is, the derivatives may still exist but their existence cannot be
guaranteed by Theorem 4.7.

This observation will be verified in an example problem in Section 4.9.2.

Non-negativity of Lagrange Multipliers

Equation (4.61) can also be used to show that the Lagrange multiplier corresponding to a
“# type” constraint must be non-negative. To see this, let us assume that we want to relax
an inequality constraint gj # 0 that is active (gj5 0) at the optimum point; that is, we
select ej. 0 in Eq. (4.56). When a constraint is relaxed, the feasible set for the design
problem expands. We allow more feasible designs to be candidate minimum points.
Therefore, with the expanded feasible set we expect the optimum cost function to reduce
further or at the most remain unchanged (Example 4.33). We observe from Eq. (4.61)
that if uj*, 0, then relaxation of the constraint (ej. 0) results in an increase in cost (that
is, δf*52uj*ej. 0). This is a contradiction, as it implies that there is a penalty for relaxing
the constraint. Therefore, the Lagrange multiplier for a “# type” constraint must be non-
negative.

EXAMPLE 4.33 EFFECT OF VARIATIONS OF CONSTRAINT
LIMITS ON THE OPTIMUM COST FUNCTION

To illustrate the use of constraint variation sensitivity theorem, we consider the following

problem solved as Example 4.31 and discuss the effect of changing the limit for the constraint:

Minimize
fðx1; x2Þ5 x21 1 x22 2 3x1x2 ðaÞ

subject to
gðx1; x2Þ5 x21 1 x22 2 6# 0: ðbÞ
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Solution
The graphical solution to the problem is given in Figure 4.17. A point satisfying both neces-

sary and sufficient conditions is

x�1 5 x�2 5
ffiffiffi
3

p
; u� 5

1

2
; fðx�Þ523 ðcÞ

We want to see what happens if we change the right side of the constraint equation to a value

“e” from zero. Note that the constraint g(x1, x2) # 0 gives a circular feasible region with its center

at (0,0) and its radius as
ffiffiffi
6

p
, as shown earlier in Figure 4.17. Therefore, changing the right side

of the constraint changes the radius of the circle.

From Theorem 4.7, we have
@fðx�Þ
@e

52u� 52
1

2
ðdÞ

If we set e5 1, the new value of the cost function will be approximately 231 (21/2)(1)5 23.5

using Eq. (4.60). This is consistent with the new feasible set because with e5 1, the radius of the

circle becomes
ffiffiffi
7

p
and the feasible region is expanded (as can be seen in Figure 4.17). We should

expect some reduction in the cost function.

If we set e521, then the effect is the opposite. The feasible set becomes smaller and the cost

function increases to22.5 using Eq. (4.60).

Practical Use of Lagrange Multipliers

From the foregoing discussion and example, we see that optimum Lagrange multipliers
give very useful information about the problem. The designer can compare the magnitude of
the multipliers for the active constraints. The multipliers with relatively larger values will
have a significant effect on the optimum cost if the corresponding constraints are changed.
The larger the value of the Lagrange multiplier, the larger the dividend to relax the constraint, or
the larger the penalty to tighten the constraint. Knowing this, the designer can select a few
critical constraints having the greatest influence on the cost function, and then analyze to
see if they can be relaxed to further reduce the optimum cost function value.

4.7.2 Effect of Cost Function Scaling on Lagrange Multipliers

On many occasions, a cost function for the problem is multiplied by a positive constant.
As noted in Section 4.3, any scaling of the cost function does not alter the optimum point.
It does, however, change the optimum value for the cost function. The scaling should also
influence the implicit derivatives of Eqs. (4.57) and (4.58) for the cost function with respect
to the right side parameters of the constraints. We observe from these equations that all the
Lagrange multipliers are also multiplied by the same constant.

Let uj* and vi* be the Lagrange multipliers for the inequality and equality constraints,
respectively, and f(x*) be the optimum value of the cost function at the solution point x*. Let
the cost function be scaled as f(x)5Kf(x), where K. 0 is a given constant, and uj* and vi* are
the optimum Lagrange multipliers for the inequality and equality constraints, respectively,
for the changed problem. Then the optimum design variable vector for the perturbed
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problem is x* and the relationship between optimum Lagrange multipliers is derived using
the KKT necessary conditions for the original and the changed problems as follows:

u�j 5Ku�j and v�i 5Kv�i ð4:63Þ
Thus all the Lagrange multipliers are scaled by the factor K. Example 4.34 shows the

effect of scaling the cost function on the Lagrange multipliers.

EXAMPLE 4.34 EFFECT OF SCALING THE COST FUNCTION
ON THE LAGRANGE MULTIPLIERS

Consider Example 4.31 written in the standard form:

Minimize
fðxÞ5 x1

2 1 x2
2 2 3x1x2 ðaÞ

subject to
gðxÞ5 x1

2 1 x2
2 2 6 # 0 ðbÞ

Study the effect on the optimum solution of scaling the cost function by a constant K. 0.

Solution
A graphical solution to the problem is given in Figure 4.17. A point satisfying both the neces-

sary and sufficient conditions is

x�1 5 x�2 5
ffiffiffi
3

p
; u� 5

1

2
; fðx�Þ523 ðcÞ

x�1 5 x�2 52
ffiffiffi
3

p
; u� 5

1

2
; fðx�Þ523 ðdÞ

Let us solve the scaled problem by writing KKT conditions. The Lagrangian for the problem

is given as (quantities with an over bar are for the perturbed problem):

L5Kðx21 1 x22 2 3x1x2Þ1uðx21 1 x22 2 61 s2Þ ðeÞ
The necessary conditions give

@L

@x1
5 2Kx1 2 3Kx2 1 2ux1 5 0 ðfÞ

@L

@x2
5 2Kx2 2 3Kx1 1 2ux2 5 0 ðgÞ

x21 1 x22 2 61 s2 5 0; s2 $ 0 ðhÞ

us5 0; u$ 0 ðiÞ

As in Example 4.31, the case where s5 0 gives candidate minimum points. Solving Eqs. (f)

through (h), we get the two KKT points as

x�1 5 x�2 5
ffiffiffi
3

p
; u� 5K=2; fðx�Þ523K ðjÞ

x�1 5 x�2 52
ffiffiffi
3

p
; u� 5K=2; fðx�Þ523K ðkÞ

Therefore, comparing the solutions with those obtained in Example 4.31, we observe that ū*5Ku*.
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4.7.3 Effect of Scaling a Constraint on Its Lagrange Multiplier

Many times, a constraint is scaled by a positive constant. We want to know the effect of
this scaling on the Lagrange multiplier for the constraint.

It should be noted that the scaling of a constraint does not change the constraint
boundary, so it has no effect on the optimum solution. Only the Lagrange
multiplier for the scaled constraint is affected. Looking at the implicit derivatives
of the cost function with respect to the constraint’s right-side parameters, we
observe that the Lagrange multiplier for the scaled constraint is divided by the
scaling parameter.

Let Mj. 0 and Pi be the scale parameters for the jth inequality and ith equality con-
straints (gj5Mjgj; hi5Pihi), with uj* and and vi* and ūj* and vi* as the corresponding
Lagrange multipliers for the original and the scaled constraints, respectively. Then the fol-
lowing relations hold for the Lagrange multipliers:

u�j 5 u�j =Mj and v�i 5 v�i =Pi ð4:64Þ
Example 4.35 illustrates the effect of scaling a constraint on its Lagrange multiplier.

EXAMPLE 4.35 EFFECT OF SCALING A CONSTRAINT
ON ITS LAGRANGE MULTIPLIER

Consider Example 4.31 and study the effect of multiplying the inequality by a constant M. 0.

Solution
The Lagrange function for the problem with a scaled constraint is given as

L5 x21 1 x22 2 3x1x2 1 u ½Mðx21 1 x22 2 6Þ1 s2� ðaÞ
The KKT conditions give

@L

@x1
5 2x1 2 3x2 1 2uMx1 5 0 ðbÞ

@L

@x2
5 2x2 2 3x1 1 2uMx2 5 0 ðcÞ

Mðx21 1 x22 2 6Þ1 s2 5 0; s2 $ 0 ðdÞ
us5 0; u$ 0 ðeÞ

As in Example 4.31, only the case with s5 0 gives candidate optimum points. Solving this

case, we get the two KKT points:

x�1 5 x�2 5
ffiffiffi
3

p
; u� 5

1

2M
; fðx�Þ523 ðfÞ

x�1 5 x�2 5 2
ffiffiffi
3

p
; u� 5

1

2M
; fðx�Þ523 ðgÞ

Therefore, comparing these solutions with the ones for Example 4.31, we observe that ū*5 ū*/M.
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4.7.4 Generalization of the Constraint Variation Sensitivity Result

Many times variations are desired with respect to parameters that are embedded in the
constraint expression in a complex way. Therefore, the sensitivity expressions given in
Eqs. (4.57) and (4.58) cannot be used directly and need to be generalized. We will pursue
these generalizations for the inequality constraints only in the following paragraphs;
equality constraints can be treated in similar ways. It turns out that the sensitivity of the
optimum cost function with respect to an inequality constraint can be written as

@fðx�Þ
@gj

5 u�j ; j5 1 to m ð4:65Þ

If the constraint function depends on a parameter s as gj(s), then variations with respect
to the parameter s can be written using the chain rule of differentiation as

dfðx�Þ
ds

5
@fðx�Þ
@gj

dgj
ds

5 u�j
dgj
ds

ð4:66Þ

Therefore, a change in the cost function due to a small change δs in the parameter s is
given as

δf� 5
df

ds
δs5 u�j

dgj
ds

δs ð4:67Þ

Another way of writing this small change to the cost function is to express it in terms of
changes to the constraint function itself, using Eq. (4.65) as

δf� 5
@f

@gj
δgj 5 u�j δgj ð4:68Þ

Sometimes the right side ej is dependent on a parameter s. In that case the sensitivity of
the cost function f with respect to s (the derivative of f with respect to s) can be obtained
directly from Eq. (4.57) using the chain rule of differentiation as

dfðx�Þ
ds

5
@fðx�Þ
@ej

dej
ds

52u�j
dej
ds

ð4:69Þ

4.8 GLOBAL OPTIMALITY

In the optimum design of systems, the question of the global optimality of a solution
always arises. In general, it is difficult to answer the question satisfactorily. However, an
answer can be attempted in the following two ways:

1. If the cost function f(x) is continuous on a closed and bounded feasible set, then the
Weierstrauss Theorem 4.1 guarantees the existence of a global minimum. Therefore, if
we calculate all the local minimum points, the point that gives the least value to the
cost function can be selected as a global minimum for the function. This is called
exhaustive search.

2. If the optimization problem can be shown to be convex, then any local minimum is also a
global minimum. Also the KKT necessary conditions are sufficient for the minimum point.
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Both of these procedures can involve substantial computations. Methods based on the first
procedure are described in Chapter 18. In this section we pursue the second approach and
discuss topics of convexity and convex programming problems. Such problems are defined in
terms of convex sets and convex functions, specifically, convexity of the feasible set and the
cost function. Therefore, we introduce these concepts and discuss results regarding global
optimum solutions.

4.8.1 Convex Sets

A convex set S is a collection of points (vectors x) having the following property: If P1

and P2 are any points in S, then the entire line segment P1�P2 is also in S. This is a neces-
sary and sufficient condition for convexity of the set S. Figure 4.19 shows some examples
of convex and nonconvex sets.

To explain convex sets further, let us consider points on a real line along the x-axis
(Figure 4.20). Points in any interval on the line represent a convex set. Consider an interval
between points a and b as shown in Figure 4.20. To show that it is a convex set, let x1 and
x2 be two points in the interval.

The line segment between the points can be written as

x5αx2 1 ð12αÞx1; 0#α# 1 ð4:70Þ

(a)

(b)

P1 P2 P1 P2

P1

P2
P1

P2

FIGURE 4.19 (a) Convex sets. (b) Nonconvex sets.

a b

α

x1 x2x
x

α = 0 α = 1

FIGURE 4.20 Convex interval between a and b on a real
line.

160 4. OPTIMUM DESIGN CONCEPTS

I. THE BASIC CONCEPTS



In this equation, if α5 0, x5 x1; if α5 1, x5 x2. It is clear that the line defined in Eq. (4.70)
is in the interval [a, b]. The entire line segment is on the line between a and b. Therefore,
the set of points between a and b is a convex set.

In general, for the n-dimensional space, the line segment between any two points x(1) and
x(2) is written as

x5αxð2Þ 1 ð12αÞxð1Þ; 0#α# 1 ð4:71Þ
Equation (4.71) is a generalization of Eq. (4.70) and is called the parametric representation of
a line segment between the points x(1) and x(2). If the entire line segment of Eq. (4.71) is
in the set S, then it is a convex set. A check of the convexity of a set is demonstrated in
Example 4.36.

EXAMPLE 4.36 CHECK FOR CONVEXITY OF A SET

Show the convexity of the set

S5 fx j x21 1 x22 2 1:0# 0g ðaÞ

Solution
To show the set S graphically, we first plot the constraint as an equality that represents a cir-

cle of radius 1 centered at (0, 0), as shown in Figure 4.21. Points inside or on the circle are in S.

Geometrically we see that for any two points inside the circle, the line segment between them is

also inside the circle.

Therefore, S is a convex set. We can also use Eq. (4.71) to show convexity of S. To do this,

take any two points x(1) and x(2) in the set S. Use of Eq. (4.71) to calculate x and the condition

that the distance between x(1) and x(2) is non-negative (that is, jjx(1)2 x(2)jj $ 0) will show x A S.

This will prove the convexity of S and is left as an exercise.

Note that if the foregoing set S is defined by reversing the inequality as x1
21 x2

22 1.0 $ 0,

then the feasible set S will consist of points outside the circle. Such a set is clearly nonconvex

because it violates the condition that the line segment of Eq. (4.71) defined by any two points in

the set is not entirely in the set.

P1

P2

x2

x1

x 1 + x 2 = 1

S

2 2

FIGURE 4.21 Convex set S for Example 4.36.
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4.8.2 Convex Functions

Consider a function of a single variable f(x)5 x2. A graph of the function is shown in
Figure 4.22. If a straight line is constructed between any two points (x1,f(x1)) and (x2,f(x2))
on the curve, the line lies above the graph of f(x) at all points between x1 and x2. This
property characterizes convex functions.

The convex function of a single variable f(x) is defined on a convex set; that is, the indepen-
dent variable x must lie in a convex set. A function f(x) is called convex on the convex set
S if the graph of the function lies below the line joining any two points on the curve f(x).
Figure 4.23 is a geometrical representation of a convex function. Using the geometry, the
foregoing definition of a convex function can be expressed by the inequality

fðxÞ#αfðx2Þ1 ð12αÞ fðx1Þ ð4:72Þ
Since x5αx21 (12α)x1, the above inequality becomes

fðαx2 1 ð12αÞx1Þ#αfðx2Þ1 ð12αÞfðx1Þ for 0#α# 1 ð4:73Þ
The foregoing definition of a convex function of one variable can be generalized to func-

tions of n variables. A function f(x) defined on a convex set S is convex if it satisfies the
inequality

fðαxð2Þ 1 ð12αÞxð1ÞÞ#αfðxð2ÞÞ1 ð12αÞfðxð1ÞÞ for 0#α# 1 ð4:74Þ

f (x)

f (x1)

f (x2)

x1 x2
x

FIGURE 4.22 Convex function f(x)5 x2.

f (x1)

f (x2)

αf (x2) + (1 – α)f (x1)

f (x )

f (x )

α

x1 x2x
x

x = αx2 + (1 – α )x1

FIGURE 4.23 Characterization of a convex function.
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for any two points x(1) and x(2) in S. Note that convex set S is a region in the n-dimensional
space satisfying the convexity condition. Equations (4.73) and (4.74) give necessary and suffi-
cient conditions for the convexity of a function. However, they are difficult to use in practice
because we have to check an infinite number of pairs of points. Fortunately, the following
theorem gives an easier way of checking the convexity of a function.

THEOREM 4 . 8

Check for the Convexity of a Function

A function of n variables f(x1, x2,. . ., xn)

defined on a convex set S is convex if and

only if the Hessian matrix of the function is

positive semidefinite or positive definite at all

points in the set S. If the Hessian matrix is

positive definite for all points in the feasible

set, then f is called a strictly convex function.

(Note: The converse of this is not true:

A strictly convex function may have only a

positive semidefinite Hessian at some

points; for example, f(x)5 x4 is a strictly

convex function but its second derivative is

zero at x5 0.)

Note that the Hessian condition of Theorem 4.8 is both necessary and sufficient; that is,
the function is not convex if the Hessian is not at least positive semidefinite for all points
in the set S. Therefore, if it can be shown that the Hessian is not positive definite or posi-
tive semidefinite at some points in the set S, then the function is not convex because the
condition of Theorem 4.8 is violated.

In one dimension, the convexity check of the theorem reduces to the condition that the
second derivative (curvature) of the function be non-negative. The graph of such a func-
tion has non-negative curvature, as for the functions in Figures 4.22 and 4.23. The theorem
can be proved by writing a Taylor’s expansion for the function f(x) and then using the
definitions of Eqs. (4.73) and (4.74). Examples 4.37 and 4.38 illustrate the check for convex-
ity of functions.

EXAMPLE 4.37 CHECK FOR CONVEXITY OF A FUNCTION

fðxÞ5 x21 1 x22 2 1 ðaÞ

Solution
The domain for the function (which is all values of x1 and x2) is convex. The gradient and

Hessian of the function are given as

rf 5 2x1
2x2

� �
; H5

2 0
0 2

� �
ðbÞ

By either of the tests given in Theorems 4.2 and 4.3 (M15 2, M25 4, λ15 2, λ25 2), we see

that H is positive definite everywhere. Therefore, f is a strictly convex function.
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EXAMPLE 4.38 CHECK FOR THE CONVEXITY
OF A FUNCTION

fðxÞ5 102 4x1 2x2 2 x3 ðaÞ

Solution
The second derivative of the function is d2f/dx25 42 6x. For the function to be convex,

d2f/dx2 $ 0. Thus, the function is convex only if 42 6x $ 0 or x # 2/3. The convexity check

actually defines a domain for the function over which it is convex. The function f(x) is plotted in

Figure 4.24. It can be seen that the function is convex for x # 2/3 and concave for x $ 2/3

(a function f(x) is called concave if 2f(x) is convex).

4.8.3 Convex Programming Problem

If a function gi(x) is convex, then the set gi(x) # ei is convex, where ei is any constant. If
functions gi(x) for i5 1 to m are convex, then the set defined by gi(x) # ei for i5 1 to m is
also convex. The set gi(x) # ei for i5 1 to m is the intersection of sets defined by the indi-
vidual constraints gi(x) # ei. Therefore, the intersection of convex sets is itself a convex set.
We can relate convexity of functions and sets by using Theorem 4.9.

140
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–20

–40

–60

–80

–100

–120

–140

–160

–5 –4 –3 –2 –1 1 2 3 4 5 6

Function is
convex for x ≤ 2/3

f (x)

x

FIGURE 4.24 Example 4.38 graph for
the function f(x)5 102 4x1 2x22 x3.
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THEOREM 4 . 9

Convex Functions and Convex Sets Let

the feasible set S be defined, with the con-

straints of the general optimization problem

defined in the standard form in Eqs. (4.35)

through (4.37), as

S5 fx j hiðxÞ5 0; i5 1 to p;

gjðxÞ# 0; j5 1 to mg ð4:75Þ

Then S is a convex set if functions gj are

convex and functions hi are linear.

The set S of Example 4.36 is convex because it is defined by a convex function. It is
important to realize that if we have a nonlinear equality constraint hi(x)5 0, then the feasi-
ble set S is always nonconvex. This can be seen from the definition of a convex set. For an
equality constraint, the set S is a collection of points lying on the surface hi(x)5 0. If we
take any two points on the surface, the straight line joining them cannot be on the surface,
unless it is a plane (linear equality). Therefore, a feasible set defined by any nonlinear
equality constraint is always nonconvex. On the contrary, a feasible set defined by a linear
equality or inequality is always convex.

If all inequality constraint functions for an optimum design problem are convex, and all
equality constraint are linear, then the feasible set S is convex by Theorem 4.9. If the cost
function is also convex over the set S, then we have what is known as a convex program-
ming problem. Such problems have a very useful property, which is that KKT necessary
conditions are also sufficient and any local minimum is also a global minimum.

It is important to note that Theorem 4.9 does not say that the feasible set S cannot be
convex if a constraint function fails the convexity check (i.e., it is not an “if and only if”
theorem). There are some problems where the constraint functions fail the convexity
check, but the feasible set is still convex. Thus, the conditions of the theorem are only sufficient
but not necessary for the convexity of the problem.

THEOREM 4 . 1 0

Global Minimum If f(x*) is a local mini-

mum for a convex function f(x) that is

defined on a convex feasible set S, then it is

also a global minimum.

It is important to note that the theorem does not say that x* cannot be a global mini-
mum point if functions of the problem fail the convexity test.

The point may indeed be a global minimum; however, we cannot claim global optimal-
ity using Theorem 4.10. We will have to use some other procedure, such as exhaustive
search. Note also that the theorem does not say that the global minimum is unique; that is,
there can be multiple minimum points in the feasible set, all having the same cost function
value. The convexity of several problems is checked in Examples 4.39 to 4.41.
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EXAMPLE 4.39 CHECK FOR THE CONVEXITY OF A PROBLEM

Minimize

fðx1; x2Þ5 x31 2 x32 ðaÞ

subject to
x1 $ 0; x2 # 0 ðbÞ

Solution
The constraints actually define the domain for the function f(x), which is the fourth quadrant

of a plane (shown in Figure 4.25). This domain is convex. The Hessian of f is given as

H5
6x1 0
0 26x2

� �
ðcÞ

The Hessian is positive semidefinite or positive definite over the domain defined by the con-

straints (x1 $ 0, x2 # 0). Therefore, the cost function is convex and the problem is convex. Note

that if constraints x1 $ 0 and x2 # 0 are not imposed, then the cost function will not be convex

for all feasible x. This can be observed in Figure 4.25, where several cost function contours are

shown. Thus, the condition of positive semidefiniteness of the Hessian (6x1 $ 0, 26x2 $ 0) can

define the domain for the function over which it is convex.
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FIGURE 4.25 Example 4.39 graphical representation.
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EXAMPLE 4.40 CHECK FOR THE CONVEXITY OF A PROBLEM

Minimize

fðx1; x2Þ5 2x1 1 3x2 2 x31 2 2x22 ðaÞ

subject to
x1 1 3x2 # 6; 5x1 1 2x2 # 10; x1; x2 $ 0 ðbÞ

Solution
Since all of the constraint functions are linear in the variables xl and x2, the feasible set for the

problem is convex. If the cost function f is also convex, then the problem is convex. The Hessian

of the cost function is

H5
26x1 0
0 24

� �
ðcÞ

The eigenvalues ofH are 26x1 and 24. Since the first eigenvalue is nonpositive for x1 $ 0, and the

second eigenvalue is negative, the function is not convex (Theorem 4.8), so the problem cannot be clas-

sified as a convex programming problem. Global optimality of a local minimum is not guaranteed.

Figure 4.26 shows the feasible set for the problem along with several isocost curves. It is seen

that the feasible set is convex but the cost function is not. Thus the problem can have multiple

local minima having different values for the cost function.
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FIGURE 4.26 Example 4.40 graphical representation.
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EXAMPLE 4.41 CHECK FOR THE CONVEXITY OF A PROBLEM

Minimize

fðx1; x2Þ5 9x21 2 18x1x2 1 13x22 2 4 ðaÞ
subject to

x21 1 x22 1 2x1 $ 16 ðbÞ

Solution
To check for the convexity of the problem, we need to write the constraint in the standard

form as

gðxÞ52x21 2 x22 2 2x1 1 16 # 0 ðcÞ
The Hessian of g(x) is

H5
22 0
0 22

� �
ðdÞ

Eigenvalues of the Hessian are 22 and 22. Since, the Hessian is neither positive definite nor

positive semidefinite, g(x) is not convex (in fact, the Hessian is negative definite, so g(x) is

concave). Therefore, the problem cannot be classified as a convex programming problem, and

global optimality for the solution cannot be guaranteed by Theorem 4.10.

4.8.4 Transformation of a Constraint

A constraint function can be transformed into a different form that is equivalent to the
original function; that is, the constraint boundary and the feasible set for the problem do
not change but the form of the function changes. Transformation of a constraint function,
however, may affect its convexity check: A transformed constraint function may fail the
convexity check. The convexity of the feasible set is, however, not affected by the
transformation.

In order to illustrate the effect of transformations, let us consider the following inequal-
ity constraint:

g1 5
a

x1x2
2 b# 0 ðaÞ

with x1. 0, x2. 0, and a and b as the given positive constants. To check the convexity of
the constraint, we calculate the Hessian matrix as

r2g1 5
2a

x21x
2
2

x2
x1

0:5

0:5
x1
x2

2
6664

3
7775 ðbÞ

Both eigenvalues, as well as the two leading principal minors of the preceding matrix, are
strictly positive, so the matrix is positive definite and the constraint function g1 is
convex. The feasible set for g1 is convex.
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Now let us transform the constraint by multiplying throughout by x1x2 (since x1. 0,
x2. 0, the sense of the inequality is not changed) to obtain

g2 5 a2 bx1x2 # 0 ðcÞ
The constraints g1 and g2 are equivalent and will give the same optimum solution for the
problem. To check convexity of the constraint function, we calculate the Hessian matrix as

r2g2 5
0 2b

2b 0

� �
ðdÞ

The eigenvalues of the preceding matrix are: λ152b and λ25 b. Therefore, the matrix
is indefinite by Theorem 4.2 and, by Theorem 4.8, the constraint function g2 is not convex.
Thus, we lose the convexity of the constraint function and we cannot claim convexity of
the feasible set by Theorem 4.9. Since the problem cannot be shown to be convex, we can-
not use results related to convex programming problems.

4.8.5 Sufficient Conditions for Convex Programming Problems

If we can show convexity of a problem, any solution to the necessary conditions will
automatically satisfy the sufficient conditions (see Example 4.42). In addition, the solution
will be a global minimum. Following the procedure of Section 4.4, we consider various
cases defined by the switching conditions of Eq. (4.51) until a solution is found. We can
stop there, as the solution is a global optimum design.

THEOREM 4 . 1 1

Sufficient Conditions for Convex Program-

ming Problems If f(x) is a convex cost func-

tion defined on a convex feasible set, then

the first-order KKT conditions are necessary

as well as sufficient for a global minimum.

EXAMPLE 4.42 CHECK FOR THE CONVEXITY OF A PROBLEM

Let us consider Example 4.29 again and check for its convexity:

Minimize
fðxÞ5 ðx1 2 1:5Þ2 1 ðx2 2 1:5Þ2 ðaÞ

subject to
gðxÞ5 x1 1 x2 2 2# 0 ðbÞ

Solution
The KKT necessary conditions give the candidate local minimum as xl*5 1, x2*5 1, and u*5 1.

The constraint function g(x) is linear, so it is convex. Since the inequality constraint function is
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convex and there is no equality constraint, the feasible set S is convex. The Hessian matrix for

the cost function is

H5
2 0
0 2

� �
ðcÞ

Since H is positive definite everywhere by Theorem 4.2 or Theorem 4.3, the cost function f(x)

is strictly convex by Theorem 4.8. Therefore, the problem is convex and the solution x�1 5 1; x�2 5 1

satisfies the sufficiency condition of Theorem 4.11. It is a strict global minimum point for the

problem.

The convexity results are summarized in Table 4.3.

TABLE 4.3 Convex programming problem—summary of results

Problem must be written in standard form: Minimize f(x), subject to hi(x)5 0, gj(x)# 0

1. Convex set The geometrical condition, that a line joining two points in the
set is to be in the set, is an “if-and-only-if” condition for the
convexity of the set.

2. Convexity of
feasible set S

All of the constraint functions should be convex. This condition
is sufficient but not necessary; that is, functions failing the
convexity check may still define convex sets.
� Nonlinear equality constraints always give nonconvex

sets.
� Linear equalities or inequalities always give convex

sets.

3. Convex functions A function is convex if and only if its Hessian is at least positive
semidefinite everywhere. A function is strictly convex if its
Hessian is positive definite everywhere; however, the converse is
not true: A strictly convex function may not have a positive
definite Hessian everywhere. Thus this condition is sufficient
but not necessary.

4. Form of constraint
function

Changing the form of a constraint function can result in
failure of the convexity check for the new constraint or vice
versa.

5. Convex
programming
problem

f(x) is convex over the convex feasible set S.
� KKT first-order conditions are necessary as well as

sufficient for global minimums
� Any local minimum point is also a global minimum

point.

6. Nonconvex
programming
problem

If a problem fails a convexity check, it does not imply that
there is no global minimum for the problem. It could have
only one local minimum in the feasible set S, which would
then be a global minimum as well.
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4.9 ENGINEERING DESIGN EXAMPLES

The procedures described in the previous sections are used to solve two engineering
design examples. The problems are formulated, convexity is verified, KKT necessary con-
ditions are written and solved, and the Constraint Variation Sensitivity Theorem is illus-
trated and discussed.

4.9.1 Design of a Wall Bracket

The wall bracket that is shown in Figure 4.27 is to be designed to support a load of
W5 1.2 MN. The material for the bracket should not fail under the action of forces in the
bars. These are expressed as the following stress constraints:

Bar 1 : σ1 #σa ðaÞ
Bar 2 : σ2 #σa ðbÞ

where

σa5 allowable stress for the material (16,000 N/cm2)
σ15 stress in Bar 1 which is given as F1/A1, N/cm2

σ25 stress in Bar 2 which is given as F2/A2, N/cm2

A15 cross-sectional area of Bar 1, cm2

A25 cross-sectional area of Bar 2, cm2

F15 force due to load W in Bar 1, N
F25 force due to load W in Bar 2, N

Total volume of the bracket is to be minimized.

Problem Formulation

The cross-sectional areas A1 and A2 are the two design variables, and the cost function
for the problem is the volume, which is given as

fðA1;A2Þ5 l1A1 1 l2A2; cm
3 ðcÞ

1

C

B A2

s

W

h

FIGURE 4.27 Graphic of a wall bracket. h5 30 cm, s5 40 cm,
and W5 1.2 MN.
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where l15
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
302 1 402

p
5 50 cm is the length of member 1 and l25 40 cm is the length of

member 2. To write the stress constraints, we need forces in the members, which are
obtained using static equilibrium of node A as follows: F15 2.03 106 N, F25 1.63 106 N.
Therefore, the stress constraints of Eqs. (a) and (b) are given as

g1 5
ð2:03 106Þ

A1
2 16; 000# 0 ðdÞ

g2 5
ð1:63 106Þ

A2
2 16; 000# 0 ðeÞ

The cross-sectional areas must both be non-negative:

g3 52A1 # 0; g4 52A2 # 0 ðfÞ
Constraints for the problem are plotted in Figure 4.28, and the feasible region is identi-

fied. A few cost function contours are also shown. It is seen that the optimum solution is
at the point A with A1*5 125 cm2, A2*5 100 cm2, and f5 10,250 cm3.

Convexity

Since the cost function of Eq. (c) is linear in terms of design variables, it is convex. The
Hessian matrix for the constraint g1 is

r2g1 5

ð4:03 106Þ
A3

1

0

0 0

2
64

3
75 ðgÞ

200

175

150

125

100

75

50

25

0

0 30 60 90 120 150 180 210 240

12,250
11,250

10,250
9250

8250

Cost function
contours

A

Feasible region

A2

A1

g1 = 0

g2 = 0

FIGURE 4.28 Graphical solution for the
wall bracket problem.
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which is a positive semidefinite matrix for A1. 0, so g1 is convex. Similarly, g2 is convex,
and since g3 and g4 are linear, they are convex. Thus the problem is convex, the KKT neces-
sary conditions are sufficient and any design satisfying the KKT conditions is a global
minimum.

KKT Necessary Conditions

To use the KKT conditions, we introduce slack variables into the constraints and define
the Lagrange function of Eq. (4.46) for the problem as

L5 ðl1A1 1 l2A2Þ1 u1
ð2:03 106Þ

A1
2 16;0001 s21

� �
1 u2

ð1:63 106Þ
A2

2 16;0001 s22

� �

1 u3ð2A1 1 s23Þ1 u4ð2A2 1 s24Þ
ðhÞ

The necessary conditions become

@L

@A1
5 l1 2 u1

ð2:03 106Þ
A2

1

2 u3 5 0 ðiÞ

@L

@A2
5 l2 2 u2

ð1:63 106Þ
A2

2

2 u4 5 0 ðjÞ

uisi 5 0; ui $ 0; gi 1 s2i 5 0; s2i $ 0; i5 1 to 4 ðkÞ
The switching conditions in Eqs. (k) give 16 solution cases. These cases can be identified

using a systematic procedure, as shown in Table 4.4. Note that any case that requires
s35 0 (that is, g35 0) makes the area A15 0. For such a case the constraint g1 of Eq. (d) is
violated, so it does not give a candidate solution. Similarly, s45 0 makes A25 0, which vio-
lates the constraint of Eq. (e). In addition, A1 and A2 cannot be negative because the corre-
sponding solution has no physical meaning. Therefore, all of the cases requiring s35 0
and/or s45 0 do not give any candidate solution.

These cases need not be considered any further. This leaves only Cases 1 through 3 and
Case 6 for further consideration, and we solve them as follows. (Any of the cases giving
A1, 0 or A2, 0 will also be discarded.)

Case 1: u15 0, u25 0, u35 0, u45 0. This gives l15 0 and l25 0 in Eqs. (i) and (j) which
is not acceptable.
Case 2: s15 0, u25 0, u35 0, u45 0. This gives l15 0 in Eq. (i), which is not acceptable.
Case 3: u15 0, s25 0, u35 0, u45 0. This gives l25 0 in Eq. (j), which is not acceptable.

In Case 6, s15 0, s25 0, u35 0, u45 0, and Equations (d) and (e) give A�
1 5 125 cm2,

A�
2 5 100 cm2. Equations (i) and (j) give the Lagrange multipliers as u15 0.391 and

u25 0.25, and since both are non-negative, all of the KKT conditions are satisfied. The cost
function at optimum is obtained as f� 5 50(125)1 40(100), or f� 5 10,250 cm3. The gradients
of the active constraints are [(22.03 106)/A2

1, 0) , (0, (21.03 106)/A2
2]. These vectors are lin-

early independent, and so the minimum point is a regular point of the feasible set. By con-
vexity, this point is a global minimum point for f.
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Sensitivity Analysis

If the allowable stress changes to 16,500 N/cm2 from 16,000 N/cm2, we need to know
how the cost function will change. Using Eq. (4.61) we get the change in the cost function
as δf� 52u1e12 u2e2, where e15 e25 16,5002 16,0005 500 N/cm2. Therefore, the change in
the cost function is δf� 520.391(500) 2 0.25(500)52320.5 cm3. The volume of the bracket
thus reduces by 320.5 cm3.

4.9.2 Design of a Rectangular Beam

In Section 3.8, a rectangular beam design problem was formulated and solved graphi-
cally. We will solve the same problem using the KKT necessary conditions. The problem is
formulated as follows. Find b and d to minimize

fðb; dÞ5 bd ðaÞ
subject to the inequality constraints

g1 5
ð2:403 108Þ

bd2
2 10# 0 ðbÞ

TABLE 4.4 Definition of KKTcases with four inequalities

No. Case Active constraints

1 u15 0, u25 0, u35 0, u45 0 No inequality active

2 s15 0, u25 0, u35 0, u45 0 One inequality active at a time

3 u15 0, s25 0, u35 0, u45 0

4 u15 0, u25 0, s35 0, u45 0

5 u15 0, u25 0, u35 0, s45 0

6 s15 0, s25 0, u35 0, u45 0 Two inequalities active at a time

7 u15 0, s25 0, s35 0, u45 0

8 u15 0, u25 0, s35 0, s45 0

9 s15 0, u25 0, u35 0, s45 0

10 s15 0, u25 0, s35 0, u45 0

11 u15 0, s25 0, u35 0, s45 0

12 s15 0, s25 0, s35 0, u45 0 Three inequalities active at a time

13 u15 0, s25 0, s35 0, s45 0

14 s15 0, u25 0, s35 0, s45 0

15 s15 0, s25 0, u35 0, s45 0

16 s15 0, s25 0, s35 0, s45 0 Four inequalities active at a time
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g2 5
ð2:253 105Þ

bd
2 2# 0 ðcÞ

g3 522b1 d# 0 ðdÞ

g4 52b# 0; g5 52d# 0 ðeÞ

Convexity

Constraints g3, g4, and g5 are linear in terms of b and d, and are therefore convex. The
Hessian for the constraint g1 is given as

r2g1 5
ð4:803 108Þ

b3d4
d2 bd
bd 3b2

� �
ðfÞ

Since this matrix is positive definite for b. 0 and d. 0, g1 is a strictly convex function. The
Hessian for the constraint g2 is given as

r2g2 5
ð2:253 105Þ

b3d3
2d2 bd
bd 2b2

� �
ðgÞ

This matrix is positive definite, so the constraint g2 is also strictly convex. Because all of
the constraints of the problem are convex, the feasible convex.

It is interesting to note that constraints g1 and g2 can be transformed as (since b. 0 and
d. 0, the sense of inequality is not changed)

g1 5 ð2:403 108Þ2 10bd2 # 0 ðhÞ
g2 5 ð2:253 105Þ2 2bd# 0 ðiÞ

Hessians of the functions g1 and g2 are given as

r2g1 5
0 220d

220d 220b

� �
; r2g2 5

0 22
22 0

� �
ðjÞ

Both of the preceding matrices are not positive semidefinite. Therefore, the constraint
functions g1 and g2 given in Eqs. (f) and (g) are not convex. This goes to show that convexity of
a function can be lost if it is changed into another form. This is an important observation, and it
shows that we should be careful in transformation of constraint functions. Note, however,
that the transformation of constraints does not change the optimum solution. It does
change the values of the Lagrange multipliers for the constraints, however, as discussed in
Section 4.7.

To check convexity of the cost function, we write its Hessian as

r2f 5
0 1
1 0

� �
ðkÞ

This matrix is indefinite, so the cost function is nonconvex. The problem fails the convexity
check of Theorem 4.9, and we cannot guarantee global optimality of the solution by
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Theorem 4.10. Note that this does not say that a local minimum cannot be a global minimum. It
may still be a global minimum, but cannot be guaranteed by Theorem 4.10.

KKT Necessary Conditions

To use the KKT conditions, we introduce slack variables into the constraints and define
the Lagrange function for the problem as

L5 bd1 u1
ð2:403 108Þ

bd2
2101 s21

� 	
1 u2

ð2:253 105Þ
bd

2 21 s22

� 	
1 u3ðd2 2b1 s23Þ

1 u4ð2b1 s24Þ1 u5ð2d1 s25Þ
ðlÞ

The necessary conditions give

@L

@b
5 d1 u1

ð22:403 108Þ
b2d2

1 u2
ð22:253 105Þ

b2d
2 2u3 2 u4 5 0 ðmÞ

@L

@d
5 b1 u1

ð24:803 108Þ
bd3

1 u2
ð22:253 105Þ

bd2
1 u3 2 u5 5 0 ðnÞ

uisi 5 0; ui $ 0; gi 1 s2i 5 0; s2i $ 0; i5 1 to 5 ðoÞ
The switching conditions in Eq. (o) give 32 cases for the necessary conditions. However,

note that the cases requiring either s45 0 or s55 0, or both as zero, do not give any candidate
optimum points because they violate the constraint of either Eqs. (b) and (c) or of Eq. (d).
Therefore, these cases will not be considered, which can be done by setting u45 0 and u55 0
in the remaining cases. This leaves the following eight cases for further consideration:

1. u15 0, u25 0, u35 0, u45 0, u55 0
2. u15 0, u25 0, s35 0, u45 0, u55 0
3. u15 0, s25 0, u35 0, u45 0, u55 0
4. s15 0, u25 0, u35 0, u45 0, u55 0
5. u15 0, s25 0, s35 0, u45 0, u55 0
6. s15 0, s25 0, u35 0, u45 0, u55 0
7. s15 0, u25 0, s35 0, u45 0, u55 0
8. s15 0, s25 0, s35 0, u45 0, u55 0

We consider each case one at a time and solve for the candidate optimum points. Note
that any solution having b, 0 or d, 0 violates constraint g4 or g5 and will be discarded.

Case 1: u15 0, u25 0, u35 0, u45 0, u55 0. This case gives d5 0, b5 0 in Eqs. (k) and (l).
Therefore, this case does not give a solution.
Case 2: u15 0, u25 0, s35 0, u45 0, u55 0. Equation (d) gives d5 2b. Equations (k) and
(l) give d2 2u35 0 and d1 u35 0. These three equations give b5 0 and d5 0, which is
not feasible.
Case 3: u15 0, s25 0, u35 0, u45 0, u55 0. Equations (k), (l), and (c) give

d2 u2
ð2:253 105Þ

b2d
5 0 ðpÞ
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b2 u2
ð2:253 105Þ

bd2
5 0 ðqÞ

ð2:253 105Þ
bd

2 25 0 ðrÞ

These equations give a solution as u25 (5.6253 104) and bd5 (1.1253 105). Since u2. 0,
this is a valid solution. Actually, there is a family of solutions given by bd5 (1.1253 105);
for any d. 0, b can be found from this equation. However, there must be some limits on
the values of b and d for which this family of solutions is valid. These ranges are provided
by requiring s1

2 $ 0 and s3
2 $ 0, or g1 # 0 and g3 # 0.

Substituting b5 (1.1253 105)/d from Eq. (p) into g1 (Eq. b),

ð2:403 108Þ
ð1:1253 105Þ d 2 10# 0; or d$ 213:33 mm ðsÞ

Substituting b5 (1.1253 105)/d from Eq. (p) into g3 (Eq. d),

d2
ð2:253 105Þ

bd
# 0; or d# 474:34 mm ðtÞ

This gives limits on the depth d. We can find limits on the width b by substituting Eqs. (s)
and (t) into bd5 (1.1253 105) from Eq. (r):

d$ 213:33; b# 527:34 ðuÞ
d# 474:33; b$ 237:17 ðvÞ

Therefore, there are infinite solutions for this case as

237:17# b# 527:34 mm; 213:33# d# 474:33 mm ðwÞ
bd5 ð1:1253 105Þ mm2 ðxÞ

Case 4: s15 0, u25 0, u35 0, u45 0, u55 0. Equations (m) and (n) reduce to

d2
ð2:403 108Þ

b2d2
5 0; or b2d3 5 ð2:403 108Þ ðyÞ

b2
4:803 108
� �

bd3
5 0; or b2d3 5 4:803 108

� � ðzÞ

Since these two equations are inconsistent, there is no solution for this case.
Case 5: u15 0, s25 0, s35 0, u45 0, u55 0. Equations (c) and (d) can be solved for b and
d—for example, by substituting b5 2d from Eq. (d) into Eq. (c), we get b5 237.17 mm.
Therefore, d5 2(237.17)5 474.34 mm. We can calculate u2 and u3 from Eqs. (m) and
(n) as u25 (5.6253 104), u35 0. Substituting values of b and d into Eq. (b), we get
g1525.5, 0, so the constraint is satisfied (i.e., s1

2. 0). It can be verified that the
gradients of g2 and g3 at the candidate point are linearly independent, and so the
regularity condition is satisfied. Since all of the necessary conditions are satisfied, this
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is a valid solution. The Constraint Sensitivity Theorem 4.7 and Eq. (4.57) tell us that,
because u35 0, we can move away from that constraint toward the feasible region
without affecting the optimum cost function value. This can also be observed from
Figure 3.11 where the graphical solution for the problem was given. In the figure, point
B represents the solution for this case. We can leave point B toward point A and remain
on the constraint g25 0 for optimum designs.
Case 6: s15 0, s25 0, u35 0, u45 0, u55 0. Equations (b) and (c) can be solved for the
band d as b5 527.34 mm and d5 213.33 mm. We can solve for u1 and u2 from Eqs. (m)
and (n) as u15 0 and u25 (5.6253 104). Substituting values of b and d into Eq. (d), we
get g352841.35, 0, so the constraint is satisfied (i.e., s3

2 $ 0). It can also be verified
that the point also satisfies the regularity condition. Since all of the KKT conditions are
satisfied, this is a valid solution. It is quite similar to the one for Case 5. The solution
corresponds to point A in Figure 3.11. If we leave constraint g15 0 (point A) and
remain on the curve A2B, we obtain other optimum designs near point A.
Case 7: s15 0, u25 0, s35 0, u45 0, u55 0. Equations (b) and (d) can be solved as
b5 181.71 mm and d5 363.42 mm. Equations (m) and (n) give the Lagrange multipliers
u15 4402.35 and u35260.57. Since u3, 0, this case does not give a valid solution.
Case 8: s15 0, s25 0, s35 0, u45 0, u55 0. This case gives three equations in two
unknowns (an over-determined system), which has no solution.

Sensitivity Analysis

It should be observed that none of the candidate minimum points (A and B and curve A2B
in Figure 3.11) satisfies the sufficiency conditions presented in the next chapter. Therefore, the
existence of partial derivatives of the cost function with respect to the right-side parameters in Eq.
(4.58) is not guaranteed by Theorem 4.7. However, since we have a graphical solution to the
problem in Figure 3.11, we can check what happens if we do use the sensitivity theorem.

For point A in Figure 3.11 (Case 6), constraints g1 and g2 are active, b5 527.34 mm,
d5 213.33 mm, u15 0, and u25 (5.6253 104). Since u15 0, Eq. (4.58) gives @f/@e15 0. This
means that any small change in the constraint limit does not change the optimum cost
function value. That this is true can be observed from Figure 3.11. The optimum point A is
changed but constraint g2 remains active; that is, bd5 (1.1253 105) must be satisfied since
point A stays on the g2 boundary. Any change in g2 moves the constraint parallel to itself,
changing the optimum solution (the design variables and the cost function). Because
u25 (5.6253 104), Eq. (4.58) gives @f/@e25 (2 5.6253 104). It can be verified that the sensi-
tivity coefficient predicts correct changes in the cost function.

It can also be verified that the other two solution cases (Cases 3 and 5) also give correct
values for the sensitivity coefficients.

EXERCISES FOR CHAPTER 4

Section 4.2 Review of Some Basic Calculus Concepts
4.1 Answer True or False.

1. A function can have several local minimum points in a small neighborhood of x*.

2. A function cannot have more than one global minimum point.

3. The value of the function having a global minimum at several points must be the same.
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4. A function defined on an open set cannot have a global minimum.

5. The gradient of a function f(x) at a point is normal to the surface defined by the level

surface f(x)5 constant.

6. The gradient of a function at a point gives a local direction of maximum decrease in the

function.

7. The Hessian matrix of a continuously differentiable function can be asymmetric.

8. The Hessian matrix for a function is calculated using only the first derivatives of the

function.

9. Taylor series expansion for a function at a point uses the function value and its

derivatives.

10. Taylor series expansion can be written at a point where the function is discontinuous.

11. Taylor series expansion of a complicated function replaces it with a polynomial function

at the point.

12. Linear Taylor series expansion of a complicated function at a point is only a good local

approximation for the function.

13. A quadratic form can have first-order terms in the variables.

14. For a given x, the quadratic form defines a vector.

15. Every quadratic form has a symmetric matrix associated with it.

16. A symmetric matrix is positive definite if its eigenvalues are non-negative.

17. A matrix is positive semidefinite if some of its eigenvalues are negative and others are

non-negative.

18. All eigenvalues of a negative definite matrix are strictly negative.

19. The quadratic form appears as one of the terms in Taylor’s expansion of a function.

20. A positive definite quadratic form must have positive value for any x 6¼ 0.

Write the Taylor’s expansion for the following functions up to quadratic terms.

4.2 cosx about the point x*5π/4
4.3 cosx about the point x*5π/3
4.4 sinx about the point x*5π/6
4.5 sinx about the point x*5π/4
4.6 ex about the point x*5 0

4.7 ex about the point x*5 2

4.8 f(x1, x2)5 10x1
42 20x1

2x21 10x2
21 x1

22 2x11 5 about the point (1, 1). Compare approximate

and exact values of the function at the point (1.2, 0.8).

Determine the nature of the following quadratic forms.

4.9 F(x)5 x1
21 4x1x21 2x1x32 7x2

22 6x2x31 5x3
2

4.10 F(x)5 2x1
21 2x2

22 5x1x2
4.11 F(x)5 x1

21 x2
21 3x1x2

4.12 F(x)5 3x1
21 x2

22 x1x2
4.13 F(x)5 x1

22 x2
21 4x1x2

4.14 F(x)5 x1
22 x2

21 x3
22 2x2x3

4.15 F(x)5 x1
22 2x1x21 2x2

2

4.16 F(x)5 x1
22 x1x22 x2

2
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4.17 F(x)5 x1
21 2x1x32 2x2

21 4x3
22 2x2x3

4.18 F(x)5 2x1
21 x1x21 2x2

21 3x3
22 2x1x3

4.19 F(x)5 x1
21 2x2x31 x2

21 4x3
2

4.20 F(x)5 4x1
21 2x1x32 x2

21 4x3
2

Section 4.4 Optimality Conditions: Unconstrained Problems
4.21 Answer True or False.

1. If the first-order necessary condition at a point is satisfied for an unconstrained

problem, it can be a local maximum point for the function.

2. A point satisfying first-order necessary conditions for an unconstrained function may

not be a local minimum point.

3. A function can have a negative value at its maximum point.

4. If a constant is added to a function, the location of its minimum point is changed.

5. If a function is multiplied by a positive constant, the location of the function’s

minimum point is unchanged.

6. If curvature of an unconstrained function of a single variable at the point x* is zero,

then it is a local maximum point for the function.

7. The curvature of an unconstrained function of a single variable at its local minimum

point is negative.

8. The Hessian of an unconstrained function at its local minimum point must be positive

semidefinite.

9. The Hessian of an unconstrained function at its minimum point is negative definite.

10. If the Hessian of an unconstrained function is indefinite at a candidate point, the point

may be a local maximum or minimum.

Find stationary points for the following functions (use a numerical method or a software package like

Excel, MATLAB, and Mathematica, if needed). Also determine the local minimum, local maximum, and

inflection points for the functions (inflection points are those stationary points that are neither minimum

nor maximum).

4.22 f(x1, x2)5 3x1
21 2x1x21 2x2

21 7

4.23 f(x1, x2)5 x1
21 4x1x21 x2

21 3

4.24 f(x1, x2)5 x1
31 12x1x2

21 2x2
21 5x1

21 3x2
4.25 fðx2; x2Þ5 5x1 2 1

16 x
2
1x2 1

1
4x1

x22
4.26 f(x)5 cosx

4.27 f(x1, x2)5 x1
21 x1x21 x2

2

4.28 f(x)5 x2e2 x

4.29 fðx1; x2Þ5 x1 2
10
x1x2

1 5x2
4.30 f(x1, x2)5 x1

22 2x11 4x2
22 8x21 6

4.31 f(x1, x2)5 3x1
22 2x1x21 5x2

21 8x2
4.32 The annual operating cost U for an electrical line system is given by the following

expression

U5
ð21:93 107Þ

V2C
1 ð3:93 106ÞC1 1000 V

where V5 line voltage in kilovolts and C5 line conductance in mhos. Find stationary

points for the function, and determine V and C to minimize the operating cost.
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4.33 f(x1, x2)5 x1
21 2x2

22 4x12 2x1x2
4.34 f(x1, x2)5 12x1

21 22x2
22 1.5x12 x2

4.35 f(x1, x2)5 7x1
21 12x2

22 x1
4.36 f(x1, x2)5 12x1

21 21x2
22 x2

4.37 f(x1, x2)5 25x1
21 20x2

22 2x12 x2
4.38 f(x1, x2, x3)5 x1

21 2x2
21 2x3

21 2x1x21 2x2x3

4.39 fðx1; x2Þ5 8x21 1 8x22 2 80
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 1 x22 2 20x2 1 100

q
2 80

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 1 x22 1 20x2 1 100

q
2 5x1 2 5x2

4.40 fðx1; x2Þ5 9x21 1 9x22 2 100
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 1 x22 2 20x2 1 100

q
2 64

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 1 x22 1 16x2 1 64

q
2 5x1 2 41x2

4.41 f(x1, x2)5 100(x22 x1
2)21 (12 x1)

2

4.42 f(x1, x2, x3, x4)5 (x12 10x2)
21 5(x32 x4)

21 (x22 2x3)
41 10(x12 x4)

4

Section 4.5 Necessary Conditions: Equality Constrained Problem
Find points satisfying the necessary conditions for the following problems; check if they are optimum

points using the graphical method (if possible).

4.43 Minimize f(x1, x2)5 4x1
21 3x2

22 5x1x22 8x1
subject to x11 x25 4

4.44 Maximizte f(x1, x2)5 4x1
21 3x2

22 5x1x22 8x1
subject to x11 x25 4

4.45 Minimize f(x1, x2)5 (x12 2)21 (x21 1)2

subject to 2x11 3x22 45 0

4.46 Minimize f(x1, x2)5 4x1
21 9x2

21 6x22 4x11 13

subject to x12 3x21 35 0

4.47 Minimize f(x)5 (x12 1)21 (x21 2)21 (x32 2)2

subject to 2x11 3x22 15 0

x11 x21 2x32 45 0

4.48 Minimize f(x1, x2)5 9x1
21 18x1x21 13x2

22 4

subject to x1
21 x2

21 2x15 16

4.49 Minimize f(x1, x2)5 (x12 1)21 (x22 1)2

subject to x11 x22 45 0

4.50 Consider the following problem with equality constraints:

Minimize (x12 1)21 (x22 1)2

subject to x11 x22 45 0

x12 x22 25 0

1. Is it a valid optimization problem? Explain.

2. Explain how you would solve the problem? Are necessary conditions needed to find the

optimum solution?

4.51 Minimize f(x1, x2)5 4x1
21 3x2

22 5x1x22 8

subject to x11 x25 4

4.52 Maximize F(x1, x2)5 4x1
21 3x2

22 5x1x22 8

subject to x11 x25 4

181EXERCISES FOR CHAPTER 4

I. THE BASIC CONCEPTS



Section 4.6 Necessary Conditions for General Constrained Problem
4.53 Answer True or False.

1. A regular point of the feasible region is defined as a point where the cost function

gradient is independent of the gradients of active constraints.

2. A point satisfying KKT conditions for a general optimum design problem can be a local

max-point for the cost function.

3. At the optimum point, the number of active independent constraints is always more

than the number of design variables.

4. In the general optimum design problem formulation, the number of independent

equality constraints must be “# ” to the number of design variables.

5. In the general optimum design problem formulation, the number of inequality

constraints cannot exceed the number of design variables.

6. At the optimum point, Lagrange multipliers for the “# type” inequality constraints

must be non-negative.

7. At the optimum point, the Lagrange multiplier for a “# type” constraint can be zero.

8. While solving an optimum design problem by KKT conditions, each case defined by the

switching conditions can have multiple solutions.

9. In optimum design problem formulation, “$ type” constraints cannot be treated.

10. Optimum design points for constrained optimization problems give stationary value to

the Lagrange function with respect to design variables.

11. Optimum design points having at least one active constraint give stationary value to the

cost function.

12. At a constrained optimum design point that is regular, the cost function gradient is

linearly dependent on the gradients of the active constraint functions.

13. If a slack variable has zero value at the optimum, the inequality constraint is inactive.

14. Gradients of inequality constraints that are active at the optimum point must be zero.

15. Design problems with equality constraints have the gradient of the cost function as zero

at the optimum point.

Find points satisfying KKT necessary conditions for the following problems; check if they are optimum

points using the graphical method (if possible).

4.54 Maximize F(x1, x2)5 4x1
21 3x2

22 5x1x22 8

subject to x11 x2 # 4

4.55 Minimize f(x1, x2)5 4x1
21 3x2

22 5x1x22 8

subject to x11 x2 # 4

4.56 Maximize F(x1, x2)5 4x1
21 3x2

22 5x1x22 8x1
subject to x11 x2 # 4

4.57 Minimize f(x1, x2)5 (x12 1)21 (x22 1)2

subject to x11 x2 $ 4

x12 x22 25 0

4.58 Minimize f(x1, x2)5 (x12 1)21 (x22 1)2

subject to x11 x25 4

x12 x22 2 $ 0
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4.59 Minimize f(x1, x2)5 (x12 1)21 (x22 1)2

subject to x11 x2 $ 4

x12 x2 $ 2

4.60 Minimize f(x, y)5 (x2 4)21 (y2 6)2

subject to 12 $ x1 y

x $ 6, y $ 0

4.61 Minimize f(x1, x2)5 2x11 3x22 x1
32 2x2

2

subject to x11 3x2 # 6

5x11 2x2 # 10

x1, x2 $ 0

4.62 Minimize f(x1, x2)5 4x1
21 3x2

22 5x1x22 8x1
subject to x11 x2 # 4

4.63 Minimize f(x1, x2)5 x1
21 x2

22 4x12 2x21 6

subject to x11 x2 $ 4

4.64 Minimize f(x1, x2)5 2x1
22 6x1x21 9x2

22 18x11 9x2
subject to x11 2x2 # 10

4x12 3x2 # 20; xi $ 0; i5 1, 2

4.65 Minimize f(x1, x2)5 (x12 1)21 (x22 1)2

subject to x11 x22 4 # 0

4.66 Minimize f(x1, x2)5 (x12 1)21 (x22 1)2

subject to x11 x22 4 # 0

x12 x22 2 # 0

4.67 Minimize f(x1, x2)5 (x12 1)21 (x22 1)2

subject to x11 x22 4 # 0

22 x1 # 0

4.68 Minimize f(x1, x2)5 9x1
22 18x1x21 13x2

22 4

subject to x1
21 x2

21 2x1 $ 16

4.69 Minimize f(x1, x2)5 (x12 3)21 (x22 3)2

subject to x11 x2 # 4

x12 3x25 1

4.70 Minimize f(x1, x2)5 x1
32 16x11 2x22 3x2

2

subject to x11 x2 # 3

4.71 Minimize f(x1, x2)5 3x1
22 2x1x21 5x2

21 8x2
subject to x1

22 x2
21 8x2 # 16

4.72 Minimize f(x, y)5 (x2 4)21 (y2 6)2

subject to x1 y # 12

x # 6

x, y $ 0

4.73 Minimize f(x, y)5 (x2 8)21 (y2 8)2

subject to x1 y # 12

x # 6

x, y $ 0
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4.74 Maximize F(x, y)5 (x2 4)21 (y2 6)2

subject to x1 y # 12

6 $ x

x, y $ 0

4.75 Maximize F(r, t)5 (r2 8)21 (t2 8)2

subject to 10 $ r1 t

t # 5

r, t $ 0

4.76 Maximize F(r, t)5 (r2 3)21 (t2 2)2

subject to 10 $ r1 t

t # 5

r, t $ 0

4.77 Maximize F(r, t)5 (r2 8)21 (t2 8)2

subject to r1 t # 10

t $ 0

r # 0

4.78 Maximize F(r, t)5 (r2 3)21 (t2 2)2

subject to 10 $ r1 t

t $ 5

r, t $ 0

4.79 Consider the problem of designing the “can” formulated in Section 2.2. Write KKT

conditions and solve them. Interpret the necessary conditions at the solution point

graphically.

4.80 A minimum weight tubular column design problem is formulated in Section 2.7 using

mean radius R and thickness t as design variables. Solve the KKT conditions for the

problem imposing an additional constraint R/t # 50 for this data: P5 50 kN, l5 5.0 m,

E5 210 GPa, σa5 250 MPa and ρ5 7850 kg/m3. Interpret the necessary conditions at the

solution point graphically.

4.81 A minimum weight tubular column design problem is formulated in Section 2.7 using

outer radius Ro and inner radius Ri as design variables. Solve the KKT conditions for

the problem imposing an additional constraint 0.5(Ro1Ri)/(Ro2Ri) # 50 Use the

same data as in Exercise 4.80. Interpret the necessary conditions at the solution point

graphically.

4.82 An engineering design problem is formulated as

Minimize f(x1, x2)5 x1
21 320x1x2

subject to 1
100 ðx1 2 60x2Þ# 0

12
1

3600
x1ðx1 2 x2Þ# 0

x1, x2 $ 0

Write KKT necessary conditions and solve for the candidate minimum designs.

Verify the solutions graphically. Interpret the KKT conditions on the graph for the

problem.
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Formulate and solve the following problems graphically. Verify the KKT conditions at the solution

point and show gradients of the cost function and active constraints on the graph.

4.83 Exercise 2.1 4.84 Exercise 2.2 4.85 Exercise 2.3

4.86 Exercise 2.4 4.87 Exercise 2.5 4.88 Exercise 2.6

4.89 Exercise 2.7 4.90 Exercise 2.8 4.91 Exercise 2.9

4.92 Exercise 2.10 4.93 Exercise 2.11 4.94 Exercise 2.12

4.95 Exercise 2.13 4.96 Exercise 2.14

Section 4.7 Physical Meaning of Lagrange Multipliers
Solve the following problems graphically, verify the KKT necessary conditions for the solution points

and study the effect on the cost function of changing the boundary of the active constraint(s) by one unit.

4.97 Exercise 4.43 4.98 Exercise 4.44 4.99 Exercise 4.45

4.100 Exercise 4.46 4.101 Exercise 4.47 4.102 Exercise 4.48

4.103 Exercise 4.49 4.104 Exercise 4.50 4.105 Exercise 4.51

4.106 Exercise 4.52 4.107 Exercise 4.54 4.108 Exercise 4.55

4.109 Exercise 4.56 4.110 Exercise 4.57 4.111 Exercise 4.58

4.112 Exercise 4.59 4.113 Exercise 4.60 4.114 Exercise 4.61

4.115 Exercise 4.62 4.116 Exercise 4.63 4.117 Exercise 4.64

4.118 Exercise 4.65 4.119 Exercise 4.66 4.120 Exercise 4.67

4.121 Exercise 4.68 4.122 Exercise 4.69 4.123 Exercise 4.70

4.124 Exercise 4.71 4.125 Exercise 4.72 4.126 Exercise 4.73

4.127 Exercise 4.74 4.128 Exercise 4.75 4.129 Exercise 4.76

4.130 Exercise 4.77 4.131 Exercise 4.78

Section 4.8 Global Optimality
4.132 Answer True or False.

1. A linear inequality constraint always defines a convex feasible region.

2. A linear equality constraint always defines a convex feasible region.

3. A nonlinear equality constraint cannot give a convex feasible region.

4. A function is convex if and only if its Hessian is positive definite everywhere.

5. An optimum design problem is convex if all constraints are linear and the cost function

is convex.

6. A convex programming problem always has an optimum solution.

7. An optimum solution for a convex programming problem is always unique.

8. A nonconvex programming problem cannot have global optimum solution.

9. For a convex design problem, the Hessian of the cost function must be positive

semidefinite everywhere.

10. Checking for the convexity of a function can actually identify a domain over which the

function may be convex.

4.133 Using the definition of a line segment given in Eq. (4.71), show that the following set is

convex

S5 fx j x21 1 x22 2 1:0# 0g
4.134 Find the domain for which the following functions are convex: (i) sinx, (ii) cosx.
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Check for convexity of the following functions. If the function is not convex everywhere, then determine

the domain (feasible set S) over which the function is convex.

4.135 f(x1, x2)5 3x1
21 2x1x21 2x2

21 7

4.136 f(x1, x2)5 x1
21 4x1x21 x2

21 3

4.137 f(x1, x2)5 x1
31 12x1x2

21 2x2
21 5x1

21 3x2
4.138 fðx1; x2Þ5 5x1 2 1

16 x
2
1x

2
2 1

1
4x1

x22
4.139 f(x1, x2)5 x1

21 x1x21 x2
2

4.140 U5 ð21:93 107Þ
V2C 1 ð3:93 106ÞC1 1000 V

4.141 Consider the problem of designing the “can” formulated in Section 2.2. Check convexity of

the problem. Solve the problem graphically and check the KKT conditions at the solution

point.

Formulate and check convexity of the following problems; solve the problems graphically and verify the

KKT conditions at the solution point.

4.142 Exercise 2.1 4.143 Exercise 2.3 4.144 Exercise 2.4

4.145 Exercise 2.5 4.146 Exercise 2.9 4.147 Exercise 2.10

4.148 Exercise 2.12 4.149 Exercise 2.14

Section 4.9 Engineering Design Examples
4.150 The problem of minimum weight design of the symmetric three-bar truss of Figure 2.6 is

formulated as follows:

Minimize f(x1, x2)5 2x11 x2
subject to the constraints

g1 5
1ffiffiffi
2

p Pu

x1
1

Pv

ðx1 1
ffiffiffi
2

p
x2Þ

� �
2 20;000# 0

g2 5

ffiffiffi
2

p
Pv

ðx1 1
ffiffiffi
2

p
x2Þ

2 20;000# 0

g3 52x1 # 0

g4 52x2 # 0

where x1 is the cross-sectional area of members 1 and 3 (symmetric structure) and x2 is the

cross-sectional area of member 2, Pu5P cosθ, Pv5P sinθ, with P. 0 and 0 # θ # 90.

Check for convexity of the problem for θ5 60�.
4.151 For the three-bar truss problem of Exercise 4.150, consider the case of KKT conditions with

g1 as the only active constraint. Solve the conditions for optimum solution and determine

the range for the load angle θ for which the solution is valid.

4.152 For the three-bar truss problem of Exercise 4.150, consider the case of KKT conditions with

only g1 and g2 as active constraints. Solve the conditions for optimum solution and

determine the range for the load angle θ for which the solution is valid.
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4.153 For the three-bar truss problem of Exercise 4.150, consider the case of KKT conditions with

g2 as the only active constraint. Solve the conditions for optimum solution and determine

the range for the load angle θ for which the solution is valid.

4.154 For the three-bar truss problem of Exercise 4.150, consider the case of KKT conditions with

g1 and g4 as active constraints. Solve the conditions for optimum solution and determine

the range for the load angle θ for which the solution is valid.
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C H A P T E R

5

More on Optimum Design Concepts
Optimality Conditions

Upon comp le t i on o f th i s chap te r, you wi l l be ab l e to :

• Write and use an alternate form of

optimality conditions for constrained

problems

• Determine if the candidate minimum points

are irregular

• Check the second-order optimality conditions

at the candidate minimum points for general

constrained problems

• Describe duality theory in nonlinear

programming

In this chapter, we discuss some additional topics related to the optimality condition for
constrained problems. Implications of the regularity requirement in the Karush-Kuhn-
Tucker (KKT) necessary conditions are discussed. Second-order optimality conditions for
the problem are presented and discussed. These topics are usually not covered in a first
course on optimization. Also, they may be omitted in a first reading of this book. They are
more suitable for a second course or a graduate level course on the subject.

5.1 ALTERNATE FORM OF KKT NECESSARY CONDITIONS

There is an alternate but entirely equivalent form for the KKT necessary conditions. In
this form, the slack variables are not added to the inequality constraints and the conditions
of Eqs. (4.46) through (4.52) are written without them. It can be seen that in the necessary
conditions of Eqs. (4.46) through (4.52), the slack variable si appears in only two equations:
Eq. (4.49) as gi(xT)1 si

25 0, and Eq. (4.51) as uiTsi5 0. We will show that both the equations
can be written in an equivalent form without the slack variable si.

Consider first Eq. (4.49): gi(xT)1 si
25 0 for i5 1 to m. The purpose of this equation is to

ensure that all the inequalities remain satisfied at the candidate minimum point. The equa-
tion can be written as si

252gi(xT) and, since si
2$ 0 ensures satisfaction of the constraint,
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we get 2 gi(xT) $ 0, or gi(xT)# 0 for i5 1 to m. Thus, Eq. (4.49), gi(xT)1 si
25 0, can be sim-

ply replaced by gi(xT)# 0.
The second equation involving the slack variable is Eq. (4.51), uiTsi5 0, i5 1 to m.

Multiplying the equation by si, we get uiTsi
25 0. Now substituting si

25 2 gi(xT), we get
uiTgi(xT)5 0, i5 1 to m. This way the slack variable is eliminated from the equation and the
switching condition of Eq. (4.51) can be written as uiTgi(xT)5 0, i5 1 to m. These conditions
can be used to define various cases as uiT5 0 or gi5 0 (instead of si5 0). Table 5.1 gives the
KKT conditions of Theorem 4.6 in the alternate form without the slack variables, and
Examples 5.1 and 5.2 provide an illustration of its use.

EXAMPLE 5.1 USE OF THE ALTERNATE FORM OF THE KKT
CONDITIONS

Minimize
fðx; yÞ5 ðx2 10Þ2 1 ðy2 8Þ2 ðaÞ

subject to
g1 5 x1 y2 12# 0 ðbÞ

g2 5 x2 8# 0 ðcÞ

Solution
The problem is already expressed in the standard form. The KKT conditions are

1. Lagrangian function definition of Eq. (5.1):

L5 ðx2 10Þ2 1 ðy2 8Þ2 1u1ðx1 y2 12Þ1u2ðx2 8Þ ðdÞ

TABLE 5.1 Alternate form of KKT necessary conditions

Problem: Minimize f(x) subject to hi(x)5 0, i5 1 to p; gj (x)# 0, j5 1 to m

1. Lagrangian function definition L5 f 1
Xp
i51

vihi 1
Xm
j51

ujgj ð5:1Þ

2. Gradient conditions @L

@xk
5 0;

@f

@xk
1
Xp
i51

v�i
@hi
@xk

1
Xm
j51

u�j
@gj
@xk

5 0; k5 1 to n ð5:2Þ

3. Feasibility check hiðxTÞ5 0; i5 1 to p; gjðxTÞ# 0; j5 1 to m ð5:3Þ

4. Switching conditions u�j gjðxTÞ5 0; j5 1 to m ð5:4Þ

5. Non-negativity of Lagrange multipliers for
inequalities

u�j $ 0; j5 1 to m ð5:5Þ

6. Regularity check: Gradients of active
constraints must be linearly independent.
In such a case, the Lagrange multipliers
for the constraints are unique.
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2. Gradient condition of Eq. (5.2):

@L

@x
5 2ðx2 10Þ1 u1 1 u2 5 0

@L

@y
5 2ðy2 8Þ1 u1 5 0

ðeÞ

3. Feasibility check of Eq. (5.3):
g1 # 0; g2 # 0 ðfÞ

4. Switching conditions of Eq. (5.4):

u1g1 5 0; u2g2 5 0 ðgÞ
5. Non-negativity of Lagrange multipliers of Eq. (5.5):

u1; u2 $ 0 ðhÞ
6. Regularity check.

The switching conditions of Eq. (g) give the following four cases:

1. u15 0, u25 0 (both g1 and g2 inactive)

2. u15 0, g25 0 (g1 inactive, g2 active)

3. g15 0, u25 0 (g1 active, g2 inactive)

4. g15 0, g25 0 (both g1 and g2 active)

Case 1: u150, u250 (both g1 and g2 inactive). Equations (a) give the solution as, x5 10,

y5 8. Checking feasibility of this point gives g15 6. 0, g25 2. 0; thus both constraints are

violated and so this case does not give any feasible candidate minimum point.

Case 2: u150, g250 (g1 inactive, g2 active). g25 0 gives x5 8. Equations (a) give y5 8 and

u25 4. At the point (8, 8), g15 4. 0, which is a violation. Thus the point (8, 8) is infeasible and

this case also does not give any feasible candidate minimum points.

Case 3: g150, u250 (g1 active, g2 inactive). Equations (a) and g15 0 give x5 7, y5 5,

u15 6. 0. Checking feasibility, g25 2 1, 0, which is satisfied. Since there is only one active con-

straint, the question of linear dependence of gradients of active constraints does not arise; there-

fore, regularity condition is satisfied. Thus point (7, 5) satisfies all the KKT necessary conditions.

Case 4: g150, g250 (both g1 and g2 active). The case g15 0, g25 0 gives x5 8, y5 4.

Equations (a) give u15 8, u2524, 0, which is a violation of the necessary conditions. Therefore,

this case also does not give any candidate minimum points.

It may be checked that this is a convex programming problem since constraints are linear and

the cost function is convex. Therefore, the point obtained in Case 3 is indeed a global minimum

point according to the convexity results of Section 4.8.

EXAMPLE 5.2 CHECK FOR KKT NECESSARY CONDITIONS

An optimization problem has one equality constraint h and one inequality constraint g. Check the

KKT necessary conditions at what is believed to be the minimum point using the following information:

h5 0; g5 0; rf 5 ð2; 3; 2Þ; rh5 ð1; 2 1; 1Þ; rg5 ð2 1; 2 2; 2 1Þ ðaÞ
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Solution
At the candidate minimum point, the gradients of h and g are linearly independent, so the

given point is regular. The KKT conditions are

rL5rf 1 vrh1 urg5 0

h5 0; g# 0; ug5 0; u$ 0
ðbÞ

Substituting for rf, rh and rg, we get the following three equations:

21 v2u5 0; 32 v2 2u5 0; 21 v2u5 0 ðcÞ
These are three equations in two unknowns; however, only two of them are linearly indepen-

dent. Solving for u and v, we get u5 5/3 $ 0 and v5 2 1/3. Thus, all of the KKT necessary con-

ditions are satisfied.

5.2 IRREGULAR POINTS

In all of the examples that have been considered thus far it is implicitly assumed that
conditions of the KKT Theorem 4.6 or the Lagrange Theorem 4.5 are satisfied. In particu-
lar; we have assumed that xT is a regular point of the feasible design space. That is, gradi-
ents of all the active constraints at xT are linearly independent (i.e., they are not parallel to
each other, nor can any gradient be expressed as a linear combination of others). It must
be realized that necessary conditions are applicable only if the assumption of the regularity of
xT is satisfied. To show that the necessary conditions are not applicable if xT is not a regu-
lar point, we consider Example 5.3.

EXAMPLE 5.3 CHECK FOR KKT CONDITIONS AT IRREGULAR
POINTS

Minimize
fðx1; x2Þ5 x1

2 1 x22 2 4x1 1 4 ðaÞ
subject to

g1 5 2 x1 # 0 ðbÞ
g2 5 2 x2 # 0 ðcÞ

g3 5 x2 2 ð12 x1Þ3 # 0 ðdÞ

Check if the minimum point (1, 0) satisfies the KKT necessary conditions (McCormick, 1967).

Solution
The graphical solution, shown in Figure 5.1, gives the global minimum for the problem at

xT 5 (1, 0). Let us see if the solution satisfies the KKT necessary conditions:

1. Lagrangian function definition of Eq. (5.1):

L5 x1
2 1 x22 2 4x1 1 41u1ð2 x1Þ1u2ð2 x2Þ1 u3ðx2 2 ½12 x1�3Þ ðeÞ
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2. Gradient condition of Eq. (5.2):

@L

@x1
5 2x1 2 42 u1 1u3ð3Þð12 x1Þ2 5 0

@L

@x2
5 2x2 2 u2 1u3 5 0

ðfÞ

3. Feasibility check of Eq. (5.3):

gi # 0; i5 1; 2; 3 ðgÞ
4. Switching conditions of Eq. (5.4):

uigi 5 0; i5 1; 2; 3 ðhÞ
5. Non-negativity of Lagrange multipliers of Eq. (5.5):

ui $ 0; i5 1; 2; 3 ðiÞ
6. Regularity check. At xT5 (1, 0) the first constraint (g1) is inactive and the second and third

constraints are active. The switching conditions in Eq. (h) identify the case as u15 0, g25 0,

g35 0. Substituting the solution into Eqs. (f), we find that the first equation gives 225 0 and

therefore, it is not satisfied. Thus, the KKT necessary conditions are not satisfied at the

minimum point.

This apparent contradiction can be resolved by checking the regularity condition at the mini-

mum point xT5 (1, 0). The gradients of the active constraints g2 and g3 are given as

rg2 5 0
2 1

� �
; rg3 5 0

1

� �
ðjÞ

These vectors are not linearly independent. They are along the same line but in opposite direc-

tions, as shown in Figure 5.1. Thus xT is not a regular point of the feasible set. Since this is

assumed in the KKT conditions, their use is invalid here. Note also that the geometrical interpre-

tation of the KKT conditions of Eq. (4.53) is violated; that is, for the present example, rf at (1, 0)

x* = (1,0), Δf(x*) = (–2,0)

∇g2 (x*)

∇g3 (x*)

∇f(x*)

x*

g1 = 0
g3 = 0

x2

x1

g2 = 0

f = 5
f = 4

f = 1

1.51.0

1.0

0.5

0.5

–0.5

0

FIGURE 5.1 Graphic solution for Example 5.3: irregu-
lar optimum point.
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cannot be written as a linear combination of the gradients of the active constraints g2 and g3.

Actually, rf is normal to both rg2 and rg3, as shown in the figure.

Note that for some problems, irregular points can be obtained as a solution to the KKT condi-

tions; however, in such cases, the Lagrange multipliers of the active constraints cannot be

guaranteed to be unique. Also, the constraint variation sensitivity result of Section 4.7 may or

may not be applicable to some values of the Lagrange multipliers.

5.3 SECOND-ORDER CONDITIONS FOR CONSTRAINED
OPTIMIZATION

Solutions to the first-order necessary conditions are candidate local minimum designs.
In this section, we will discuss second-order necessary and sufficiency conditions for con-
strained optimization problems. As in the unconstrained case, second-order information
about the functions at the candidate point xT will be used to determine if the point is
indeed a local minimum. Recall for the unconstrained problem that the local sufficiency of
Theorem 4.4 requires the quadratic part of Taylor’s expansion for the function at xT to be
positive for all nonzero design changes d. In the constrained case, we must also consider active
constraints at xT to determine feasible changes d. We will consider only the points x5 xT1d
in the neighborhood of xT that satisfy the active constraint equations.

Any d 6¼ 0 satisfying active constraints to the first order must be in the constraint tangent
hyperplane (Figure 5.2). Such d’s are then orthogonal to the gradients of the active con-
straints since constraint gradients are normal to the constraint tangent hyperplane.
Therefore, the dot product of d with each of the constraint gradients rhi and rgi must be
zero; that is, rhiTd5 0 and rgiTd5 0. These equations are used to determine directions d
that define a feasible region around the point xT. Note that only active inequality con-
straints (gi5 0) are used in determining d. The situation is depicted in Figure 5.2 for one
inequality constraint.

To derive the second-order conditions, we write Taylor’s expansion of the Lagrange
function and consider only those d that satisfy the preceding conditions. xT is then a local
minimum point if the second-order term of Taylor’s expansion is positive for all d in the constraint
tangent hyperplane. This is then the sufficient condition for an isolated local minimum
point. As a necessary condition the second-order term must be nonnegative. We summa-
rize these results in Theorems 5.1 and 5.2.

Constraint tangent plane

dd

x*

gi(x) = 0

∇gi(x) FIGURE 5.2 Directions d used in second-order
conditions.
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THEOREM 5 . 1

Second-Order Necessary Conditions for

General Constrained Problems Let xT sat-

isfy the first-order KKT necessary conditions

for the general optimum design problem.

Define the Hessian of the Lagrange function

L at xT as

r2L5r2f 1
Xp
i51

vTir2hi 1
Xm
i51

uTir2gi ð5:6Þ

Let there be nonzero feasible directions,

d 6¼ 0, satisfying the following linear sys-

tems at the point xT:

rhTi d5 0; i5 1 to p ð5:7Þ
rgTi d5 0;

for all active inequalities

ði:e:; for those i with

giðxTÞ5 0Þ

ð5:8Þ

Then, if xT is a local minimum point for the

optimum design problem, it must be true

that

Q$ 0 where Q5dTr2LðxTÞd ð5:9Þ

Note that any point that does not satisfy the second-order necessary conditions
cannot be a local minimum point.

THEOREM 5 . 2

Sufficient Conditions for General Con-

strained Problems Let xT satisfy the first-

order KKT necessary conditions for the

general optimum design problem. Define the

Hessian of the Lagrange function L at xT as

shown in Eq. (5.6). Define nonzero feasible

directions, d 6¼ 0, as solutions to the linear

systems:

rhTi d5 0; i5 1 to p ð5:10Þ

rgTi d5 0 for all active

inequalities with uTi.0
ð5:11Þ

Also let rgiTd# 0 for those active inequal-

ities with uiT5 0. If

Q. 0; where Q5dTr2LðxTÞd ð5:12Þ
then xT is an isolated local minimum point

(isolated means that there are no other local

minimum points in the neighborhood of xT).

Insights for Second-Order Conditions

Note first the difference in the conditions for the directions d in Eq. (5.8) for the neces-
sary condition and Eq. (5.11) for the sufficient condition. In Eq. (5.8) all active inequalities
with non-negative multipliers are included, whereas in Eq. (5.11) only those active
inequalities with a positive multiplier are included. Equations (5.10) and (5.11) simply say
that the dot product of vectors rhi and d and rgi (having uiT . 0) and d should be zero.
Thus, only the d orthogonal to the gradients of equality and active inequality constraints
with uiT . 0 are considered. Stated differently, only d in the tangent hyperplane to the
active constraints at the candidate minimum point are considered. Equation (5.12) says
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that the Hessian of the Lagrangian must be positive definite for all d lying in the con-
straint tangent hyperplane. Note that rhi, rgi, and r2L are calculated at the candidate local
minimum points xT satisfying the KKT necessary conditions.

It should also be emphasized that if the inequality in Eq. (5.12) is not satisfied (i.e.,
Q { 0), we cannot conclude that xT is not a local minimum. It may still be a local minimum
but not an isolated one. Note also that the theorem cannot be used for any xT if its assump-
tions are not satisfied. In that case, we cannot draw any conclusions for the point xT.

It is important to note that if matrix r2L(xT) is negative definite or negative semidefinite
then the second-order necessary condition in Eq. (5.9) for a local minimum is violated and
xT cannot be a local minimum point. Also if r2L(xT) is positive definite (i.e., Q in Eq. (5.12)
is positive for any d 6¼ 0) then xT satisfies the sufficiency condition for an isolated local mini-
mum and no further checks are needed. The reason is that if r2L(xT) is positive definite,
then it is positive definite for those d that satisfy Eqs. (5.10) and (5.11). However, if r2L(xT)
is not positive definite (i.e., it is positive semidefinite or indefinite), then we cannot conclude that xT
is not an isolated local minimum. We must calculate d to satisfy Eqs. (5.10) and (5.11) and carry
out the sufficiency test given in Theorem 5.2. This result is summarized in Theorem 5.3.

THEOREM 5 . 3

Strong Sufficient Condition Let xT sat-

isfy the first-order Karush-Kuhn-Tucker

necessary conditions for the general opti-

mum design problem. Define Hessian r2L

(xT) for the Lagrange function at xT as

shown in Eq. (5.6). Then, if r2L(xT) is posi-

tive definite, xT is an isolated minimum

point.

One case arising in some applications needs special mention. This occurs when the total
number of active constraints (with at least one inequality) at the candidate minimum point xT
is equal to the number of independent design variables; that is, there are no design degrees of
freedom at the candidate minimum point. Since xT satisfies the KKT necessary conditions,
the gradients of all the active constraints are linearly independent. Thus, the only solution for
the system of Eqs. (5.10) and (5.11) is d 5 0 and Theorem 5.2 cannot be used. However, since
d 5 0 is the only solution, there are no feasible directions in the neighborhood that can
reduce the cost function any further. Thus, the point xT is indeed a local minimum for the
cost function (see also the definition of a local minimum in Section 4.1.1). We consider
Examples 5.4 through 5.6 to illustrate the use of second-order conditions of optimality.

EXAMPLE 5.4 CHECK FOR SECOND-ORDER CONDITIONS

Check the second-order condition for Example 4.30:

Minimize

fðxÞ5 1

3
x3 2

1

2
ðb1 cÞx2 1 bcx1 f0 ðaÞ
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subject to
a# x# d ðbÞ

where 0, a, b, c, d and f0 are specified constants.

Solution
There is only one constrained candidate local minimum point, x 5 a. Since there is only

one design variable and one active constraint, the condition rg1d5 0 of Eq. (5.11) gives d5 0

as the only solution (note that d is used as a direction for sufficiency check since d is used as

a constant in the example). Therefore, Theorem 5.2 cannot be used for a sufficiency check.

Also note that at x5 a, d2L/dx25 2a2 b2 c, which can be positive, negative, or zero depend-

ing on the values of a, b, and c, so we cannot use curvature of the function to check the suffi-

ciency condition (Strong Sufficient Theorem 5.3). However, from Figure 4.16 we observe that

x5 a is indeed an isolated local minimum point. From this example we can conclude that if

the number of active inequality constraints is equal to the number of independent design

variables and all other KKT conditions are satisfied, then the candidate point is indeed a local

minimum point.

EXAMPLE 5.5 CHECK FOR SECOND-ORDER CONDITIONS

Consider the optimization problem of Example 4.31:

Minimize

fðxÞ5 x1
2 1 x22 2 3x1x2 ðaÞ

subject to

gðxÞ5 x1
2 1 x22 2 6# 0 ðbÞ

Check for sufficient conditions for the candidate minimum points.

Solution
The points satisfying KKT necessary conditions are

ðiÞ xT5 0; 0ð Þ; uT5 0; ðiiÞ xT5 ð
ffiffiffi
3

p
;
ffiffiffi
3

p
Þ; uT5 1

2
; ðiiiÞ xT5 ð2

ffiffiffi
3

p
; 2

ffiffiffi
3

p
Þ; uT5 1

2
ðcÞ

It was observed in Example 4.31 and Figure 4.17 that the point (0, 0) did not satisfy the suffi-

ciency condition and that the other two points did satisfy it. Those geometrical observations will

be mathematically verified using the second-order optimality conditions.

The Hessian matrices for the cost and constraint functions are

r2f 5
2 2 3

2 3 2

� �
; r2g5

2 0
0 2

� �
ðdÞ

By the method of Appendix A, eigenvalues of r2g are λ15 2 and λ25 2. Since both eigenvalues

are positive, the function g is convex, and so the feasible set defined by g(x)# 0 is convex by

Theorem 4.9. However, since eigenvalues of r2f are 21 and 5, f is not convex. Therefore, it
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cannot be classified as a convex programming problem and sufficiency cannot be shown by

Theorem 4.11. We must resort to the General Sufficiency Theorem 5.2.

The Hessian of the Lagrangian function is given as

r2L5r2f 1 ur2g5
21 2u 2 3
2 3 21 2u

� �
ðeÞ

(i) For the first point xT5 (0, 0), uT5 0, r2L becomes r2f (the constraint g(x)# 0 is inactive). In

this case the problem is unconstrained and the local sufficiency requires dTr2f(xT)d . 0 for

all d. Or r2f should be positive definite at xT. Since both eigenvalues of r2f are not positive,

we conclude that the above condition is not satisfied. Therefore, xT5 (0, 0) does not satisfy

the second-order sufficiency condition.

Note that since λ15 2 1 and λ25 5, the matrix r2f is indefinite at xT. The point xT5
(0, 0), then, violates the second-order necessary condition of Theorem 4.4 requiring r2f to be

at least positive semidefinite at the candidate local minimum point. Thus, xT5 (0, 0)

cannot be a local minimum point. This agrees with graphical observation made in

Example 4.31.

(ii) At points xT5 ð
ffiffiffi
3

p
;

ffiffiffi
3

p
Þ; uT5

1

2
and xT5 ð2

ffiffiffi
3

p
; 2

ffiffiffi
3

p
Þ; uT5

1

2
;

r2L5r2f 1 ur2g5
21 2u 2 3
2 3 21 2u

� �
5

3 2 3
2 3 3

� �
ðfÞ

rg56 ð2
ffiffiffi
3

p
; 2

ffiffiffi
3

p
Þ562

ffiffiffi
3

p
ð1; 1Þ ðgÞ

It may be checked that r2L is not positive definite at either of the two points. Therefore, we

cannot use Theorem 5.3 to conclude that xT is a minimum point. We must find d satisfying

Eqs. (5.10) and (5.11). If we let d5 (d1, d2), then rgTd5 0 gives

6 2
ffiffiffi
3

p
1 1
� � d1

d2

� �
5 0; or d1 1 d2 5 0 ðhÞ

Thus, d15 2 d25 c, where c 6¼ 0 is an arbitrary constant, and a d 6¼0 satisfying rgTd5 0 is

given as d5 c(l, 2 1). The sufficiency condition of Eq. (5.12) gives

Q5dTðr2LÞd5 c½12 1� 3 2 3
23 3

� �
c

1
2 1

� �
5 12c2 . 0 for c 6¼ 0 ðiÞ

The points xT5 ð
ffiffiffi
3

p
;
ffiffiffi
3

p
Þ and xT5 ð2

ffiffiffi
3

p
; 2

ffiffiffi
3

p
Þ satisfy the sufficiency condition of

Eq. (5.12). They are therefore, isolated local minimum points, as was observed graphically

in Example 4.31 and Figure 4.17. We see for this example that r2L is not positive definite

at xT, but xT is still an isolated minimum point.

Note that since f is continuous and the feasible set is closed and bounded, we are guaranteed

the existence of a global minimum by the Weierstrass Theorem 4.1. Also we have examined

every possible point satisfying necessary conditions. Therefore, we must conclude by elimination

that xT5 ð
ffiffiffi
3

p
;
ffiffiffi
3

p
Þ and xT5 ð2

ffiffiffi
3

p
; 2

ffiffiffi
3

p
Þ are global minimum points. The value of the cost func-

tion for both points is f(xT) 5 2 3.
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EXAMPLE 5.6 CHECK FOR SECOND-ORDER
CONDITIONS

Consider Example 4.32:

Minimize
fðx1; x2Þ5 x1

2 1 x22 2 2x1 2 2x2 1 2 ðaÞ
subject to

g1 5 2 2x1 2 x2 1 4# 0 ðbÞ
g2 5 2 x1 2 2x2 1 4# 0 ðcÞ

Check the second-order conditions for the candidate minimum point.

Solution
The KKT necessary conditions are satisfied for the point

xT1 5
4

3
; xT2 5

4

3
; uT1 5

2

9
; uT2 5

2

9
ðdÞ

Since all the constraint functions are linear, the feasible set S is convex. The Hessian of the cost func-

tion is positive definite. Therefore, it is also convex and the problem is convex. By Theorem 4.11,

xT1 5
4

3
; xT2 5

4

3

satisfies sufficiency conditions for a global minimum with the cost function as fðxTÞ5 2

9
Note that local sufficiency cannot be shown by the method of Theorem 5.2. The reason is that

the conditions of Eq. (5.11) give two equations in two unknowns:

2 2d1 2 d2 5 0; 2 d1 2 2d2 5 0 ðeÞ
This is a homogeneous system of equations with a nonsingular coefficient matrix. Therefore, its

only solution is d15 d25 0. Thus, we cannot find a d 6¼ 0 for use in the condition of Eq. (5.12), and

Theorem 5.2 cannot be used. However, we have seen in the foregoing and in Figure 4.18 that the

point is actually an isolated global minimum point. Since it is a two-variable problem and two

inequality constraints are active at the KKT point, the condition for a local minimum is satisfied.

5.4 SECOND-ORDER CONDITIONS FOR THE RECTANGULAR
BEAM DESIGN PROBLEM

The rectangular beam problem was formulated and graphically solved in Section 3.8.
The KKT necessary conditions were written and solved in Section 4.9.2. Several points that
satisfy the KKT conditions are obtained. It is seen from the graphical representation of the
problem that all of these points are global minima for the problem; however, none of the
points is an isolated minimum. Let us show that the sufficiency condition will not be satis-
fied for any of these points.

Cases 3, 5, and 6 in Section 4.9.2 gave solutions that satisfy the KKT conditions. Cases 5
and 6 had two active constraints; however, only the constraint with positive multiplier
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needs to be considered in Eq. (5.11). The sufficiency theorem requires only constraints
with ui. 0 to be considered in calculating the feasible directions for use in Eq. (5.12).
Therefore, only the g2 constraint needs to be included in the check for sufficiency condi-
tions. Thus, all three cases have the same sufficiency check.

We need to calculate Hessians of the cost function and the second constraint:

r2f 5
0 1
1 0

� �
; r2g2 5

ð2:253 105Þ
b3d3

2d2 bd
bd 2b2

� �
ðaÞ

Since bd 5 (1.125 3 105), r2g2 becomes

r2g2 5 2

2

b2
ð1:1253 105Þ2 1

ð1:1253 105Þ2 1 2

d2

2
664

3
775 ðbÞ

The Hessian of the Lagrangian is given as

r2L5r2f 1 u2r2g2 5
0 1
1 0

� �
1 2ð56; 250Þ

2

b2
ð1:1253 105Þ2 1

ð1:1253 105Þ2 1 2

d2

2
664

3
775 ðcÞ

r2L5

ð2:253 105Þ
b2

2

2
ð2:253 105Þ

d2

2
6664

3
7775 ðdÞ

The determinant of r2L is 0 for bd5 (1.1253 105); the matrix is only positive semidefi-
nite. Therefore, the Strong Sufficiency Theorem 5.3 cannot be used to show the sufficiency
of xT. We must check the sufficiency condition of Eq. (5.12). In order to do that, we must
find directions y satisfying Eq. (5.11). The gradient of g2 is given as

rg2 5
2 ð2:253 105Þ

b2d
;

2 ð2:253 105Þ
bd2

� �
ðeÞ

The feasible directions y are given by rg2Ty 5 0, as

1

b
y1 1

1

d
y2 5 0; or y2 5 2

d

b
y1 ðfÞ

Therefore, vector y is given as y 5 (1, 2 d/b)c, where c 5 y1 is any constant. Using r2L
and y, Q of Eq. (5.12) is given as

Q5 yTr2Ly5 0 ðgÞ
Thus, the sufficiency condition of Theorem 5.2 is not satisfied. The points satisfying bd5

(1.1253 105) are not isolated minimum points. This is, of course, true from Figure 3.11. Note,
however, that since Q5 0, the second-order necessary condition of Theorem 5.1 is satisfied
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for Case 3. Theorem 5.2 cannot be used for solutions to Cases 5 and 6 since there are two
active constraints for this two-variable problem; therefore, there are no nonzero d vectors.

It is important to note that this problem does not satisfy the condition for a convex pro-
gramming problem and all of the points satisfying KKT conditions do not satisfy the suffi-
ciency condition for an isolated local minimum. Yet all of the points are actually global
minimum points. Two conclusions can be drawn from this example:

1. Global minimum points can be obtained for problems that cannot be classified as convex
programming problems. We cannot show global optimality unless we find all of the
local minimum points in the closed and bounded set (the Weierstrass Theorem 4.1).

2. If sufficiency conditions are not satisfied, the only conclusion we can draw is that the
candidate point need not be an isolated minimum. It may have many local optima in
the neighborhood, and they may all be actually global minimum points.

5.5 DUALITY IN NONLINEAR PROGRAMMING

Given a nonlinear programming problem, there is another nonlinear programming
problem closely associated with it. The former is called the primal problem, and the latter is
called the dual problem. Under certain convexity assumptions, the primal and dual pro-
blems have the same optimum objective function values and therefore, it is possible to
solve the primal problem indirectly by solving the dual problem. As a by-product of one
of the duality theorems, we obtain the saddle point necessary conditions.

Duality has played an important role in the development of optimization theory and
numerical methods. Development of the duality theory requires assumptions about the con-
vexity of the problem. However to be broadly applicable, the theory should require a min-
imum of convexity assumptions. This leads to the concept of local convexity and to the
local duality theory

In this section, we will present only the local duality. The theory can be used to develop
computational methods for solving optimization problems. We will see in Chapter 11 that
it can be used to develop the so-called augmented Lagrangian methods.

5.5.1 Local Duality: Equality Constraints Case

For sake of developing the local duality theory, we consider the equality-constrained
problem first.

Problem E

Find an n-vector x to

Minimize
fðxÞ ð5:13Þ

subject to
hiðxÞ5 0; i5 1 to p ð5:14Þ
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Later on we will extend the theory to both equality and inequality constrained pro-
blems. The theory we are going to present is sometimes called the strong duality or
Lagrangian duality. We assume that functions f and hi are twice continuously differentiable.
We will first define a dual function associated with Problem E and study its properties.
Then we will define the dual problem.

To present the duality results for Problem E the following notation is used.

The Lagrangian function:

Lðx; vÞ5 fðxÞ1
Xp
i51

vihi 5 fðxÞ1 ðv �hÞ ð5:15Þ

The Hessian of the Lagrangian function with respect to x:

Hxðx;vÞ5 @2L

@x2
5

@2fðxÞ
@x2

1
Xp
i51

vi
@2hi
@x2

ð5:16Þ

The gradient matrix of equality constraints:

N5
@hj
@xi

� �
n3 p

ð5:17Þ

In these equations, v is the p-dimensional Lagrange multiplier vector for the equality
constraints.

Let xT be a local minimum of Problem E that is also a regular point of the feasible set.
Then there exists a unique Lagrange multiplier vTi for each constraint such that the first-
order necessary condition is met:

@LðxT;vTÞ
@x

5 0; or
@fðxTÞ
@x

1
Xp
i51

vTi
@hiðxTÞ
@x

5 0 ð5:18Þ

For development of the local duality theory, we make the assumption that the Hessian
of the Lagrangian function Hx(xT,vT) at the minimum point xT is positive definite. This
assumption guarantees that the Lagrangian of Eq. (5.15) is locally convex at xT. This also
satisfies the sufficiency condition for xT to be an isolated local minimum of Problem E.
With this assumption, the point xT is not only a local minimum of Problem E, it is also a
local minimum for the unconstrained problem:

minimize
x

Lðx;vTÞ or minimize
x

fðxÞ1
Xp
i51

vTi hi

 !
ð5:19Þ

where vT is a vector of Lagrange multipliers at xT. The necessary and sufficient conditions
for the above unconstrained problem are the same as for the constrained Problem E (with
Hx(xT,vT) being positive definite). In addition for any v sufficiently close to vT, the Lagrange
function L(x,v) will have a local minimum at a point x near xT. Now we will establish the
condition that x(v) exists and is a differentiable function of v.
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The necessary condition at the point (x,v) in the vicinity of (xT,vT) is given as

@Lðx;vÞ
@x

5
@fðxÞ
@x

1
Xp
i51

vi
@hi
@x

5 0; or
@fðxÞ
@x

1Nv5 0 ð5:20Þ

Since Hx(xT,vT) is positive definite, it is nonsingular. Also because of this positive definite-
ness, Hx(x,v) is positive definite in the vicinity of (xT,vT) and thus nonsingular. This is a
generalization of a theorem from calculus: If a function is positive at a point, it is positive in a
neighborhood of that point. Note that Hx(x,v) is also the Jacobian of the necessary conditions
of Eq. (5.20) with respect to x. Therefore, Eq. (5.20) has a solution x near xT when v is near
vT. Thus, locally there is a unique correspondence between v and x through a solution to
the unconstrained problem:

minimize
x

Lðx;vÞ or minimize
x

fðxÞ1
Xp
i51

vihi

" #
ð5:21Þ

Furthermore, for a given v, x(v) is a differentiable function of v (by the Implicit Functions
Theorem of calculus).

Dual Function

Near vT, we define the dual function φ(v) by the equation

φðvÞ5 minimize
x

Lðx; vÞ5 minimize
x

fðxÞ1
Xp
i51

vihi

" #
ð5:22Þ

where the minimum is taken locally with respect to x near xT.

Dual Problem
maximize

v
φðvÞ ð5:23Þ

With this definition of the dual function we can show that locally the original con-
strained Problem E is equivalent to unconstrained local maximization of the dual function
φ(v) with respect to v. Thus, we can establish equivalence between a constrained problem
in x and an unconstrained problem in v. To establish the duality relation, we must prove
two lemmas.

LEMMA 5.1
The gradient of the dual function φ(v) is given as

@φðvÞ
@v

5hðxðvÞÞ ð5:24Þ

Proof Let x(v) represent a local minimum for the Lagrange function

Lðx;vÞ5 fðxÞ1 ðv �hÞ ð5:25Þ
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Therefore, the dual function can be explicitly written from Eq. (5.22) as

φðxðvÞÞ5 fðxðvÞÞ1 ðv �hðxðvÞÞÞ� � ð5:26Þ
where x(v) is a solution of the necessary condition in Eq. (5.20).

Now, differentiating φ(v) in Eq. (5.26) with respect to v, and using the fact that x(v) is a differentiable
function of v, we get

@φðxðvÞÞ
@v

5
@φðvÞ
@v

1
@xðvÞ
@v

@φ
@x

5hðxðvÞÞ1 @xðvÞ
@v

@L

@x
ð5:27Þ

where
@xðvÞ
@v

is a p 3 n matrix. But @L/@x in Eq. (5.27) is zero because x(v) minimizes the Lagrange function

of Eq. (5.25). This proves the result of Eq. (5.24).

Lemma 5.1 is of practical importance because it shows that the gradient of the dual func-
tion is quite simple to calculate. Once the dual function is evaluated by minimization with
respect to x, the corresponding h(x), which is the gradient of φ(v), can be evaluated without
any further calculation.

LEMMA 5.2
The Hessian of the dual function is given as

Hv 5
@2φðvÞ
@v2

5 2NT HxðxÞ½ �21N ð5:28Þ

Proof Using Lemma 5.1 in Eq. (5.24),

Hv 5
@

@v

@φðxðvÞÞ
@v

� �
5

@hðxðvÞÞ
@v

1
@xðvÞ
@v

N ð5:29Þ

To calculate
@x vð Þ
@v

, we differentiate the necessary condition of Eq. (5.20) with respect to v to obtain

NT 1
@xðvÞ
@v

HxðxÞ5 0 ð5:30Þ

Solving for
@x vð Þ
@v

from Eq. (5.30), we get

@xðvÞ
@v

5 2NT HxðxÞ½ �21 ð5:31Þ

Substituting Eq. (5.31) into Eq. (5.29), we obtain the result of Eq. (5.28), which was to be proved.

Since [Hx(x)]
2 1 is positive definite, and since N is of full column rank near x, we have

Hv(v), a p 3 p matrix (Hessian of φ(v)), to be negative definite. This observation and the
Hessian of φ(v) play a role in the analysis of dual methods.

THEOREM 5 . 4

Local Duality Theorem For Problem E,

let

(i) xT be a local minimum.

(ii) xT be a regular point.

(iii) vT be the Lagrange multipliers at xT.
(iv) Hx(xT, vT) be positive definite.

Then for the dual problem

Maximize

φðvÞ ð5:32Þ

has a local solution at vT with xT5 x(vT).
The maximum value of the dual function is
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equal to the minimum value of f(x); that is,

φðvTÞ5 fðxTÞ ð5:33Þ
Proof It is clear that xT5 x(vT) by definition
of φ(v). Now, at vT, we have Lemma 5.1:

@φðvTÞ
@v

5hðxÞ5 0 ðaÞ

Also, by Lemma 5.2, the Hessian of φ(v) is neg-
ative definite. Thus, vT satisfies the first-order

necessary and second-order sufficiency conditions
for an unconstrained maximum point of φ(v).

Substituting vT in the definition of φ(v) in
Eq. (5.26), we get

φðvTÞ5 ½fðxðvTÞÞ1 ðvT �hðxðvTÞÞÞ�
5 ½fðxTÞ1 ðvT �hðxTÞÞ� ðbÞ
5 fðxTÞ

which was to be proved.

EXAMPLE 5.7 SOLUTION TO THE DUAL PROBLEM

Consider the following problem in two variables:

Minimize

f 5 2 x1x2 ðaÞ
subject to

ðx1 2 3Þ2 1 x22 5 5 ðbÞ

Solution
Let us first solve the primal problem using the optimality conditions. The Lagrangian for the

problem is given as

L5 2 x1x2 1 v½ðx1 2 3Þ2 1 x22 2 5� ðcÞ
The first-order necessary conditions are

2 x2 1 ð2x1 2 6Þv5 0 ðdÞ
2 x1 1 2x2v5 0 ðeÞ

Together with the equality constraint in Eq. (b), these equations have a solution:

xT1 5 4; xT2 5 2; vT5 1; fT5 2 8 ðfÞ
The Hessian of the Lagrangian function is given as

HxðxT; vTÞ5 2 2 1
2 1 2

� �
ðgÞ

Since this is a positive definite matrix, we conclude that the solution obtained is an isolated local

minimum.

Since Hx(xT,vT) is positive definite, we can apply the local duality theory near the solution

point. Define a dual function as
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φðvÞ5 minimize
x

Lðx; vÞ ðhÞ

Solving Eqs. (d) and (e), we get x1 and x2 in terms of v, provided that

4v2 2 1 6¼ 0 ðiÞ

as
x1 5

12v2

4v2 2 1
; x2 5

6v

4v2 2 1
ðjÞ

Substituting Eqs. (j) into Eq. (c), the dual function of Eq. (h) is given as

φðvÞ5 4v1 4v3 2 80v5

ð4v2 2 1Þ2 ðkÞ

which is valid for v 6¼ 61
2. This φ(v) has a local maximum at vT5 1. Substituting v5 1 in Eqs. (j),

we get the same solution as in Eqs. (f). Note that φ(v*)528, which is the same as fT in Eq. (f).

5.5.2 Local Duality: The Inequality Constraints Case

Consider the equality/inequality-constrained problem.

Problem P

In addition to the equality constraints in Problem E, we impose inequality constraints:

giðxÞ# 0; i5 1 to m ð5:34Þ
The feasible set S is defined as

S5 fxjhiðxÞ5 0; i5 1 to p; gjðxÞ# 0; j5 1 to mg ð5:35Þ

The Lagrangian function is defined as

Lðx; v;uÞ5 fðxÞ1
Xp
i51

vihi 1
Xm
j51

ujgj

5 fðxÞ1 ðv �hÞ1 ðu � gÞ; uj $ 0; j5 1 to m

ð5:36Þ

The dual function for Problem P is defined as

φðv;uÞ5 minimize
x

Lðx;v;uÞ; uj $ 0; j5 1 to m ð5:37Þ

The dual problem is defined as

maximize
v;u

φðv;uÞ; uj $ 0; j5 1 to m ð5:38Þ
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THEOREM 5 . 5

Strong Duality Theorem Let the fol-

lowing apply:

(i) xT be a local minimum of Problem

P.

(ii) xT be a regular point.

(iii) Hx(xT, vT, uT) be positive definite.

(iv) vT, uT be the Lagrange multipliers

at the optimum point xT.

Then vT, uT solves the dual problem that is

defined in Eq. (5.38) with f(xT)5φ(vT,uT)
and xT5 x(vT, uT).

If the assumption of the positive definiteness of Hx(xT,vT) is not made, we get the weak
duality theorem.

THEOREM 5 . 6

Weak Duality Theorem Let x be a fea-

sible solution for Problem P and let v and u

be the feasible solution for the dual problem

that is defined in Eq. (5.38); thus, hiðxÞ5 0;

i5 1 to p, and gjðxÞ#0 and uj$0; j51 to m.

Then

φðv;uÞ# fðxÞ ð5:39Þ

Proof By definition

φðv;uÞ5 minimize
x

Lðx;v;uÞ

5
minimize

x
ðfðxÞ1 ðv �hÞ1 ðu �gÞÞ

# ðfðxÞ1 ðv �hÞ1 ðu � gÞÞ# fðxÞ
since ui$ 0, gi(x)# 0, and uigi5 0 for i5 1 to m;
and hi(x)5 0, i5 1 to p.

From Theorem 5.5, we obtain the following results:

1. Minimum [f(x) with x A S] $ maximum [φ(v, u) with ui $ 0, i5 1 to m].
2. If f(xT)5φ(vT, uT) with ui$ 0, i5 1 to m and xTA S, then xT and (vT, uT) solve the

primal and dual problems, respectively.
3. If Minimum [f(x) with xAS]52N, then the dual is infeasible, and vice versa (i.e., if dual

is infeasible, the primal is unbounded).
4. If Maximum [φ(v, u) with ui $ 0, i5 1 to m]5N, then the primal problem has no

feasible solution, and vice versa (i.e., if primal is infeasible, the dual is unbounded).

LEMMA 5.3 LOWER BOUND FOR PRIMAL COST FUNCTION
For any v and u with ui $ 0, i5 1 to m

φðv;uÞ# fðxTÞ ð5:40Þ
Proof φ(v, u)#maximum φ(v, u); ui $ 0, i5 1 to m

5
maximize

v;u
minimize

x
ðfðxÞ1 ðv �hÞ1 ðu �gÞÞ; ui $ 0; i5 1 to m
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5
maximize

v;u
fðxðv;uÞÞ1 ðv �hÞ1 ðu � gÞ� �

; ui $ 0; i5 1 to m

5 fðxðvT;uTÞÞ1 ðvT �hÞ1 ðuT �gÞ5 fðxTÞ

Lemma 5.3 is quite useful for practical applications. It tells us how to find a lower
bound on the optimum primal cost function. The dual cost function for arbitrary vi, i5 1
to p and ui $ 0, i5 1 to m provides a lower bound for the primal cost function. For any x A
S, f(x) provides an upper bound for the optimum cost function.

SADDLE POINTS Let L(x,v,u) be the Lagrange function. L has a saddle point at xT,vT,
uT subject to ui$ 0, i5 1 to m if

LðxT;v;uÞ# LðxT;vT;uTÞ# Lðx;vT;uTÞ ð5:41Þ
holds for all x near xT and (v, u) near (vT, uT) with ui $ 0 for i5 1 to m.

THEOREM 5 . 7

Saddle Point Theorem For Problem P

let all functions be twice continuously dif-

ferentiable and let L(x, v, u) be defined as

Lðx;v;uÞ5 fðxÞ1 ðv �hÞ1 ðu �gÞ;
uj $ 0; j5 1 to m

ð5:42Þ

Let L(xT, vT, uT) exist with uTi $ 0; i5 1 to

m. Also let Hx(xT, vT, uT) be positive definite.

Then xT satisfying a suitable constraint quali-

fication is a local minimum of Problem P if

and only if (xT, vT, uT) is a saddle point of the

Lagrangian; that is,

LðxT; v;uÞ# LðxT; vT;uTÞ# Lðx; vT;uTÞ ð5:43Þ
for all x near xT and all (v, u) near (vT, uT),
with ui $ 0 for i5 1 to m.

See Bazaraa et al. (2006) for proof of Theorem 5.7.

EXERCISES FOR CHAPTER 5

5.1 Answer True or False.

1. A convex programming problem always has a unique global minimum point.

2. For a convex programming problem, KKT necessary conditions are also sufficient.

3. The Hessian of the Lagrange function must be positive definite at constrained minimum points.

4. For a constrained problem, if the sufficiency condition of Theorem 5.2 is violated, the

candidate point xT may still be a minimum point.

5. If the Hessian of the Lagrange function at xT, r2L(xT), is positive definite, the optimum

design problem is convex.

6. For a constrained problem, the sufficient condition at xT is satisfied if there are no feasible

directions in a neighborhood of xT along which the cost function reduces.

5.2 Formulate the problem of Exercise 4.84. Show that the solution point for the problem is not a

regular point. Write KKT conditions for the problem, and study the implication of the

irregularity of the solution point.
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5.3 Solve the following problem using the graphical method:

Minimize f(x1, x2)5 (x12 10)21 (x22 5)2

subject to x11 x2# 12, x1# 8, x12 x2# 4

Show that the minimum point does not satisfy the regularity condition. Study the

implications of this situation.

Solve the following problems graphically. Check necessary and sufficient conditions for candidate local

minimum points and verify them on the graph for the problem.

5.4 Minimize f(x1, x2)5 4x1
21 3x222 5x1x22 8x1

subject to x11 x25 4

5.5 Maximize F(x1, x2)5 4x1
21 3x222 5x1x22 8x1

subject to x11 x25 4

5.6 Minimize f(x1, x2)5 (x12 2)21 (x21 1)2

subject to 2x11 3x22 45 0

5.7 Minimize f(x1, x2)5 4x1
21 9x221 6x22 4x11 13

subject to x12 3x21 35 0

5.8 Minimize f(x)5 (x12 1)21 (x21 2)21 (x32 2)2

subject to 2x11 3x22 15 0

x11 x21 2x32 45 0

5.9 Minimize f(x1, x2)5 9x1
21 18x1x21 13x222 4

subject to x1
21 x221 2x15 16

5.10 Minimize f(x1, x2)5 (x12 1)21 (x22 1)2

subject to x11 x22 45 0

5.11 Minimize f(x1, x2)5 4x1
21 3x222 5x1x22 8

subject to x11 x25 4

5.12 Maximize F(x1, x2)5 4x1
21 3x222 5x1x22 8

subject to x11 x25 4

5.13 Maximize F(x1, x2)5 4x1
21 3x222 5x1x22 8

subject to x11 x2# 4

5.14 Minimize f(x1, x2)5 4x1
21 3x222 5x1x22 8

subject to x11 x2# 4

5.15 Maximize F(x1, x2)5 4x1
21 3x222 5x1x22 8x1

subject to x11 x2# 4

5.16 Minimize f(x1, x2)5 (x12 1)21 (x22 1)2

subject to x11 x2$ 4

x12 x22 25 0

5.17 Minimize f(x1, x2)5 (x12 1)21 (x22 1)2

subject to x11 x25 4

x12 x22 2$ 0

5.18 Minimize f(x1, x2)5 (x12 1)21 (x22 1)2

subject to x11 x2$ 4

x12 x2$ 2

5.19 Minimize f(x, y)5 (x2 4)21 (y2 6)2

subject to 12$ x1 y

x$ 6, y$ 0
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5.20 Minimize f(x1, x2)5 2x11 3x22 x1
32 2x22

subject to x11 3x2# 6

5x11 2x2# 10

x1, x2$ 0

5.21 Minimize f(x1, x2)5 4x1
21 3x222 5x1x22 8x1

subject to x11 x2# 4

5.22 Minimize f(x1, x2)5 x1
21 x222 4x12 2x21 6

subject to x11 x2$ 4

5.23 Minimize f(x1, x2)5 2x1
22 6x1x21 9x222 18x11 9x2

subject to x11 2x2# 10

4x12 3x2# 20; xi$ 0; i5 1, 2

5.24 Minimize f(x1, x2)5 (x12 1)21 (x22 1)2

subject to x11 x22 4# 0

5.25 Minimize f(x1, x2)5 (x12 1)21 (x22 1)2

subject to x11 x22 4# 0

x12 x22 2# 0

5.26 Minimize f(x1, x2)5 (x12 1)21 (x22 1)2

subject to x11 x22 4# 0

22 x1# 0

5.27 Minimize f(x1, x2)5 9x1
22 18x1x21 13x222 4

subject to x1
21 x221 2x1$ 16

5.28 Minimize f(x1, x2)5 (x12 3)21 (x22 3)2

subject to x11 x2# 4

x12 3x25 1

5.29 Minimize f(x1, x2)5 x1
32 16x11 2x22 3x22

subject to x11 x2# 3

5.30 Minimize f(x1, x2)5 3x1
22 2x1x21 5x221 8x2

subject to x1
22 x221 8x2# 16

5.31 Minimize f(x, y)5 (x2 4)21 (y2 6)2

subject to x1 y# 12

x# 6

x, y$ 0

5.32 Minimize f(x, y)5 (x2 8)21 (y2 8)2

subject to x1 y# 12

x# 6

x, y$ 0

5.33 Maximize F(x, y)5 (x2 4)21 (y2 6)2

subject to x1 y# 12

6$ x

x, y$ 0

5.34 Maximize F(r, t)5 (r2 8)21 (t2 8)2

subject to 10$ r1 t

t# 5

r, t$ 0
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5.35 Maximize F(r, t)5 (r2 3)21 (t2 2)2

subject to 10$ r1 t

t# 5

r, t$ 0

5.36 Maximize F(r, t)5 (r2 8)21 (t2 8)2

subject to r1 t# 10

t$ 0

r$ 0

5.37 Maximize F(r, t)5 (r2 3)21 (t2 2)2

subject to 10$ r1 t

t$ 5

r, t$ 0

5.38 Formulate and graphically solve Exercise 2.23 of the design of a cantilever beam using

hollow circular cross section. Check the necessary and sufficient conditions at the optimum

point. The data for the problem are P5 10 kN; l5 5 m; modulus of elasticity, E5 210 GPa;

allowable bending stress, σa5 250 MPa; allowable shear stress, τa 5 90 MPa; and mass

density, ρ5 7850 kg/m3; 0#Ro# 20 cm, and 0#Ri# 20 cm.

5.39 Formulate and graphically solve Exercise 2.24. Check the necessary and sufficient

conditions for the solution points and verify them on the graph.

5.40 Formulate and graphically solve Exercise 3.28. Check the necessary and sufficient

conditions for the solution points and verify them on the graph.

Find optimum solutions for the following problems graphically. Check necessary and

sufficient conditions for the solution points and verify them on the graph for the problem.

5.41 A minimum weight tubular column design problem is formulated in Section 2.7 using

mean radius R and thickness t as design variables. Solve the problem by imposing an

additional constraint R/t# 50 for the following data: P5 50 kN, l5 5.0 m, E5 210 GPa,

σa5 250 MPa, and ρ5 7850 kg/m3.

5.42 A minimum weight tubular column design problem is formulated in Section 2.7 using

outer radius Ro and inner radius Ri as design variables. Solve the problem by imposing

an additional constraint 0.5(Ro1Ri)/(Ro2Ri)# 50. Use the same data as in Exercise 5.41.

5.43 Solve the problem of designing a “can” formulated in Section 2.2.

5.44 Exercise 2.1

*5.45 Exercise 3.34

*5.46 Exercise 3.35

*5.47 Exercise 3.36

*5.48 Exercise 3.54

5.49 Answer True or False.

1. Candidate minimum points for a constrained problem that do not satisfy second-order

sufficiency conditions can be global minimum designs.

2. Lagrange multipliers may be used to calculate the sensitivity coefficient for the

cost function with respect to the right side parameters even if Theorem 4.7 cannot

be used.

3. Relative magnitudes of the Lagrange multipliers provide useful information for practical

design problems.
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5.50 A circular tank that is closed at both ends is to be fabricated to have a volume of 250π m3.

The fabrication cost is found to be proportional to the surface area of the sheet metal needed

for fabrication of the tank and is $400/m2. The tank is to be housed in a shed with a sloping

roof which limits the height of the tank by the relation H# 8D, where H is the height and D

is the diameter of the tank. The problem is formulated as minimize f(D,H)5 400

(0.5πD21πDH) subject to the constraints π
4D

2H5 250π, and H# 8D. Ignore any other

constraints.

1. Check for convexity of the problem.

2. Write KKT necessary conditions.

3. Solve KKT necessary conditions for local minimum points. Check sufficient conditions

and verify the conditions graphically.

4. What will be the change in cost if the volume requirement is changed to 255π m3 in

place of 250π m3?

5.51 A symmetric (area of member 1 is the same as area of member 3) three-bar truss problem is

described in Section 2.10.

1. Formulate the minimum mass design problem treating A1 and A2 as design variables.

2. Check for convexity of the problem.

3. Write KKT necessary conditions for the problem.

4. Solve the optimum design problem using the data: P5 50 kN, θ5 30�, ρ5 7800 kg/m3,

σa5 150 MPa. Verify the solution graphically and interpret the necessary conditions on

the graph for the problem.

5. What will be the effect on the cost function if σa is increased to 152 MPa?

Formulate and solve the following problems graphically; check necessary and sufficient conditions at

the solution points, verify the conditions on the graph for the problem and study the effect of variations in

constraint limits on the cost function.

5.52 Exercise 2.1 5.53 Exercise 2.3 5.54 Exercise 2.4

5.55 Exercise 2.5 5.56 Exercise 2.9 5.57 Exercise 4.92

5.58 Exercise 2.12 5.59 Exercise 2.14 5.60 Exercise 2.23

5.61 Exercise 2.24 5.62 Exercise 5.41 5.63 Exercise 5.42

5.64 Exercise 5.43 5.65 Exercise 3.28 *5.66 Exercise 3.34

*5.67 Exercise 3.35 *5.68 Exercise 3.36 *5.69 Exercise 3.39

*5.70 Exercise 3.40 *5.71 Exercise 3.41 *5.72 Exercise 3.46

*5.73 Exercise 3.47 *5.74 Exercise 3.48 *5.75 Exercise 3.49

*5.76 Exercise 3.50 *5.77 Exercise 3.51 *5.78 Exercise 3.52

*5.79 Exercise 3.53 *5.80 Exercise 3.54
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C H A P T E R

6

Optimum Design with Excel Solver

Upon comp le t i on o f th i s chap te r, you wi l l be ab l e to

• Prepare an Excel worksheet for use with

Excel Solver

• Solve for the roots of nonlinear equations

using Solver

• Formulate practical design problems as

optimization problems

• Solve unconstrained optimization problems

using Solver

• Solve linear optimum design problems

using Solver

• Solve nonlinear constrained optimum

design problems using Solver

• Interpret the Solver solution

It turns out that several commercial computer programs, such as Excel Solver, Mathematica
Optimization Tool Box, MATLAB Optimization Tool Box, and others, are available to solve an
optimization problem once it has been properly formulated. In this chapter we describe how to
solve optimization problems using Excel Solver. Solutions using the Solver involve (1) prepara-
tion of an Excel worksheet; (2) initialization of the Solver; and (3) interpretation of the optimum
solution. The basic concepts and methods implemented in the optimization software are
presented and discussed in later chapters.

The purpose of introducing a numerical optimization program early on is to allow stu-
dents to start work on class projects that involve real-world optimization problems, while
the instructor is covering basic concepts and numerical methods in class. In addition to
starting class projects early on, students can use these programs to verify their homework
solutions. This approach is believed to be conducive to learning optimization concepts and
computational algorithms.

6.1 INTRODUCTION TO NUMERICAL METHODS
FOR OPTIMUM DESIGN

So far we have discussed problem formulation, graphical optimization, and optimality
conditions. The graphical method is applicable to two-variable problems only. The
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approach to solving optimality conditions described in Chapters 4 and 5 becomes difficult
to use when the number of variables or the number of constraints is greater than three.
Also, this approach leads to a set of nonlinear equations that needs to be solved using a
numerical method anyway. Therefore, numerical methods, which can handle many variables
and constraints, as well as directly search for optimum points, have been developed. In
this section, we describe some basic concepts of numerical optimization methods and present
an overview of different classes of search methods for nonlinear problems. Also “what to do
if the solution process fails” and si mple scaling of design variables are discussed.

6.1.1 Classification of Search Methods

Derivative-Based Methods

Search methods for smooth problems are based on the assumption that all functions of
the problem are continuous and at least twice continuously differentiable. Also, at least
the first-order derivatives of the functions can be calculated accurately. In addition, design
variables are assumed to be continuous within their allowable range. Methods in this class
are also known as gradient-based search methods.

Most methods in this class are based on the following iterative equation:

xðk11Þ
i 5 xðkÞi 1ΔxðkÞi ; i5 1 to n; and k5 0; 1; 2; . . . ð6:1Þ

In this equation, the subscript i refers to the design variable number, and the superscript k
refers to the iteration number. The iterative search process starts with an initial estimate of
the design variables, xð0Þi . By selecting different initial estimates, or starting points, different
optimum solutions can be obtained. Using values of the functions, gradients of the func-
tions, and in some cases Hessians of the functions, a change in the design, ΔxðkÞi , is calcu-
lated. The design is then updated using Eq. (6.1) and the process is repeated until some
stopping criterion is satisfied.

It is important to note that since the methods based on Eq. (6.1) use only local informa-
tion about the problem functions, the methods always converge to a local minimum point
only. However, strategies based on these methods can be developed to find global solu-
tions to smooth problems. Such strategies are presented in Chapter 18.

Based on the philosophy of Eq. (6.1), numerous methods have been developed and eval-
uated during the last several decades. From those works, several good algorithms have
emerged that are implemented in commercial programs such as Excel, MATLAB,
Mathematica, and others. We will present and discuss, in Chapters 9 through 13, some of
the methods for unconstrained and constrained nonlinear optimization problems.

Direct Search Methods

Direct search methods do not use, calculate, or approximate derivatives of functions in
their search strategy. The functions are assumed to be continuous and differentiable; how-
ever, their derivatives are either unavailable or not trustworthy. Only the functions’ values
are calculated and used in the search. Even if the numerical values for the functions are
not available, the methods can still be used as long as it can be determined which point
leads to a better value for the function compared to other points. Several methods and
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their variants are available in the literature (Lewis, et al, 2000; Kolda, et al., 2003). We will
describe two prominent methods in this class: the Hooke-Jeeves pattern search method
(Chapter 11) and the Nelder-Mead simplex method (Chapter 18).

Derivative-Free Methods

The term derivative-free refers to a class of methods that do not require explicit calcula-
tion of analytical derivatives of the functions. However, an approximation of derivatives is
used to construct a local model. The functions are assumed to be continuous and differen-
tiable. Approximation of the derivatives is generated using the function values only, such
as in the finite difference approach. This class also includes the response surface methods
that generate approximation for complex functions using only the function values and
regression analysis (Box and Wilson, 1951). A method based on this approach is described
in Chapter 20.

Nature-Inspired Search Methods

During the past several years, many methods have been proposed and evaluated that
are based on observation of some natural phenomenon. These methods also use only the
values of the problem functions in their solution procedure. Most of these methods use
statistical concepts and random numbers to advance the search toward a solution point.
One class of methods starts with an initial design and updates it to a new design using
various statistical calculations (simulated annealing, described in Chapter 15). In another
class, we start with an initial set of designs and generate a new set using the initial set,
random numbers, and statistical concepts (genetic algorithms, described in Chapter 16).
Some other methods in this class are presented in Chapter 19.

Methods in this class are quite general because they can be used to solve all kinds of
optimization problems, smooth problems, nonsmooth problems, discrete/integer program-
ming problems, network optimization problems, and problems with noisy functions for
which derivatives are difficult or expensive to calculate. The methods use only the func-
tion values that may be evaluated by any means. Since no trend information about the
problem functions is used, the methods typically require thousands of function evalua-
tions. This can be quite time-consuming. However, modern computers and parallel com-
putations can be used to reduce the wall-clock time for solving complex problems.

6.1.2 What to Do If the Solution Process Fails

Optimization methods are iterative, and each iteration can require a large number of
calculations depending on the application. For smooth problems, these iterations are based
on the design update procedure given in Eq. (6.1). The basic steps to implement an itera-
tion of an optimization algorithm for smooth problems are as follows:

1. Calculation of cost and constraint functions and their gradients at the current point.
2. Definition of a subproblem, using the function values and their gradients to determine

the search direction for design update, followed by solution to the subproblem for the
search direction.

3. Step size determination in the search direction to update the current design point.
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Each of the foregoing steps can require substantial computations depending on the
complexity of the application. The round-off and truncation errors can accumulate and
can cause the iterative process to fail without producing the final solution. The solution
process can also fail if the formulation of the design problem is inaccurate or inconsistent.
In this subsection, we discuss some steps that can be used to analyze the situation and fix
the cause of failure of the optimization process.

How to Find Feasible Points

First, it is useful to determine if the problem has feasible points. There are several meth-
ods to find feasible points for a problem. However, a simple procedure that has worked
well is to use the original formulation of the problem with the cost function replaced by a
constant. That is, the optimization problem is redefined as

Minimize f 5 constant

subject to all constraints
ð6:2Þ

In this way, the cost function is essentially ignored and the optimization iterations are
performed to correct the constraint violations to determine a feasible point. The same algo-
rithm that is to be used for the original problem can be used to solve the problem with a
constant cost function. An advantage to this approach is that the original formulation for
the constraints, as well as the solution algorithm, can be used to check the feasibility of the
problem. Note that this process gives a single feasible point. When the process is repeated
with multiple initial points, a set of feasible points can be obtained.

If a feasible point cannot be found starting from an initial point, several other starting
points should be tried before declaring that the problem has no feasible solution.

A Feasible Point Cannot Be Obtained

There can be several reasons for this condition. The following steps should be followed
to analyze the situation and fix the problem:

1. Check the formulation to ensure that the constraints are formulated properly and that
there are no inconsistencies in them. Ensure that all of the functions are continuous and
differentiable for a smooth optimization problem.

2. The problem defined in Eq. (6.2) can be used to check the feasibility of individual
constraints or a subset of constraints while ignoring the remaining ones. In this way,
constraints causing infeasibility can be identified.

3. Ensure that the formulation and data are properly transferred to the optimization
software.

4. The constraint limits may be too severe. Relax the constraint limits, if possible, and see
if that alleviates the difficulty.

5. Check the constraint feasibility tolerance; relax it to see if that resolves the difficulty.
6. Normalize the constraints if they have different orders of magnitude.
7. Check derivation and implementation of the gradients of the constraint functions. If the

gradients are evaluated using finite differences, then their accuracy needs to be verified.
8. Increase precision of all calculations, if possible.
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Algorithm Does Not Converge

There can be several reasons for this condition. The following steps can help in analyz-
ing and fixing the problem:

1. Check the formulation to ensure that the constraints and the cost function are
formulated properly. Ensure that all of the functions are continuous and differenti-
able for a smooth optimization problem.

2. Normalize the constraints and the cost function if they have different orders of
magnitude.

3. Check the implementation of the cost function and the constraint functions
evaluations.

4. Check the derivation and implementation of the gradients of all of the functions. If
the gradients are evaluated using finite differences, then their accuracy needs to be
verified.

5. Examine the final point reported by the program; it may actually be a solution point.
The termination/stopping criterion may be too stringent for the algorithm to meet; try
relaxing it.

6. If an overflow of calculations is reported, the problem may be unbounded. Additional
constraints may be needed to obtain a bounded solution point.

7. Try different starting points.
8. Ignore some of the constraints and solve the resulting problem. If the algorithm

converges, add some of the ignored constraints and solve the problem again. Continue
this process until the algorithm does not converge. In this way the problematic
constraint can be identified.

9. Use a smaller limit on the number of iterations and restart the algorithm with the final
point of the previous run of the program as the starting point.

10. If the design variables are of differing orders of magnitude, try scaling them so that
the scaled variables have the same order of magnitude. For example, if x1 is of the
order 105 and x2 is of the order 1025, then define the scaled variables y1 and y2 using
the transformations:

x1 5 105y1; x2 5 1025y2 ð6:3Þ
This way the scaled variables y1 and y2 are of the order 1. Note that this transforma-
tion of variables changes the gradients of all functions as well.

11. Ensure that the optimization algorithm has been proven to converge to a local
minimum point starting from any initial guess, and that it is implemented in a
robust way. This may be done by solving a few difficult problems with known
solutions.

12. Increase the precision of the calculations, if possible.

6.1.3 Simple Scaling of Variables

There are several ways to define scaling of variables; Eq. (6.3) shows one such way.
Some advanced procedures require knowledge of the Hessian matrix, or its approximation
at the solution point for the cost function, or the Lagrangian function. Such procedures
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can be quite useful in accelerating the rate of convergence of the iterative procedure.
However, in this subsection, we discuss some other simple scaling procedures.

Let a variable x have lower and upper bounds as a and b with b . a:

a# x# b ð6:4Þ
In the following procedures, it is assumed that a and b are realistic practical bounds; other-
wise, the scaling procedure may actually be detrimental for calculations.

1. If it is desired that the scaled variable y vary between 21 and 1, then the
transformation from x to y is defined as

y5
2x

ðb2 aÞ 2
ðb1 aÞ
ðb2 aÞ ; 21# y# 1 ð6:5Þ

2. If the largest value of the scaled variable y is desired to be 1, then the transformation
from x to y is defined as

y5
x

b
;

a

b
# y# 1 ð6:6Þ

3. If the scaled variable y is desired to be 1 in the middle of the range for x, then the
transformation from x to y is defined as

y5
2x

ðb1 aÞ ;
2a

ðb1 aÞ # y#
2b

ðb1 aÞ ð6:7Þ

6.2 EXCEL SOLVER: AN INTRODUCTION

In this section, we describe Excel Solver and demonstrate it for solution of nonlinear
equations. Preparation of the Excel worksheet for the Solver is explained, as is the Solver
Dialog Box, which sets up the solution conditions and various parameters. It turns out
that the Solver can also be used for solution of linear and nonlinear programming pro-
blems. Therefore, the material in this section should be thoroughly understood because it
will be used in all subsequent sections.

6.2.1 Excel Solver

Excel is a spreadsheet program that has many useful capabilities for engineering cal-
culations. In particular, it can be used to solve a system of simultaneous equations and
optimization problems. Online help is available to assist with using the program. When
the program is invoked, it opens what is called a “workbook.” A workbook contains sev-
eral pages called “worksheets.” These worksheets are used to store related data and
information. Each worksheet is divided into cells that are referenced by their location
(i.e., their column/row numbers). All of the information and the data and its manipula-
tion must be organized in terms of cells. Cells contain raw data, formulas, and references
to other cells.
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“Solver” is the tool available in Excel to solve a nonlinear equation, a system of linear/
nonlinear equations, and optimization problems. Use of this tool to solve linear and non-
linear optimization problems is demonstrated later in this chapter. In this section, we
introduce the use of this tool to solve for roots of nonlinear equations. Solver is invoked
through the Data tab. If it is not visible under the Data tab, then it is not yet installed on
your computer. To install it, use the Add-in capability under the File—Excel Options
menu. Note that the location of Solver and other commands, and the procedure to install
Solver, may change with later versions of Excel.

To use the Excel Solver, two major steps need to be followed:

1. An Excel worksheet for the problem needs to be prepared, identifying the cells that are
the variables for the problem. Also, all equations for the problem need to be entered
into different cells.

2. The Solver is then invoked, which results in the display of the Solver Parameters dialog
box. In this box, the actual problem to be solved is defined. The cells that contain the
variables for the problem are identified. The cell containing the objective function for
the problem is identified. The cells defining various constraints for the problem are
identified. Various Options for the Solver are also invoked.

In the following sections, we elaborate on these two steps and show their use to solve sev-
eral different types of problems.

6.2.2 Roots of a Nonlinear Equation

Here we will use Solver to find the roots of the nonlinear equation

2x

3
2 sinx5 0 ð6:8Þ

This equation was obtained as a necessary condition for the minimization problem of
Example 4.22. We need to prepare a worksheet that defines the problem. The worksheet
can be prepared in many different ways; Figure 6.1 shows one.

We rename cell C3 as x, which is the solution variable, and show a value of 2 for it. To
name a cell, use the “Define Name” command under the “Formulas” tab. Defining

(a) (b)

FIGURE 6.1 Excel worksheet for finding roots of 2x
3 2 sinx5 0: (a) worksheet; (b) worksheet with formulas

showing.
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meaningful names for cells allows them to be referenced by their names rather than their
cell numbers. The cells in Figure 6.1 contain the following information:

Cell A3: indicates that row 3 is associated with the variable x (inactive cell)
Cell A4: indicates that row 4 is associated with the equation (inactive cell)
Cell B3: the variable name that will appear later in the Answer Report (inactive cell)
Cell C3: the starting value for the variable named x (the current value is shown as 2);
will be updated later by Solver to a final value (active cell)
Cell B4: the equation whose roots need to be found; it will appear later in the Answer
Report (inactive cell)
Cell C4: contains the expression for the equation: “5 2*x/3 2 sin(x)”; currently it
displays the value of the expression for x5 2 in cell C3; to see the expression in cell C4,
use the Show Formulas command under the Formulas tab (active cell).

Solver Parameters Dialog Box

Whenever the value in cell C3 is changed, cell C4 is updated automatically. Now Solver
is invoked under the Data tab to define the target cell and the cell to be varied. Figure 6.2
shows the Solver Parameters dialog box. We set the target cell as C4 because it contains
the equation whose roots need to be determined. We set its value to zero in the dialog box
because when the root is found its value should be zero. (Solver uses the $ symbol to iden-
tify cells; for example, $C$4 refers to cell C4. Use of $ in a cell reference is convenient
when the “copy formula” capability is used. With the “copy formula” command, a refer-
ence to a cell that uses a $ symbol is not changed.)

Next, we define the cell whose value needs to be treated as the variable by inserting x
in the By Changing Cells box. Then, by clicking the Options button, we can reset some of

FIGURE 6.2 A Solver Parameters
dialog box to define the problem.
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the parameters related to the solution procedure, if desired. Otherwise, we click the Solve
button to find a root starting from x5 2.

SOLVER OUTPUT

When Solver is finished, it produces three reports: Answer, Sensitivity, and Limits.
(See the Solver Results dialog box in Figure 6.3.) We select only the Answer Report
because it contains the relevant information for the roots of the nonlinear equation. When
OK is clicked with the Answer option highlighted under Reports, Solver produces another
worksheet that contains the final results, as shown in Figure 6.4.

Other roots for the equation can be found by changing the starting value of x in
cell C3. If one starting value does not work, another value should be tried. Using this
procedure, three roots of the equation are found as 0, 1.496, and 21.496, as given in
Example 4.22.

FIGURE 6.3 A Solver Results
dialog box and the final worksheet.

FIGURE 6.4 A Solver Answer Report for roots
of 2x

3 2 sin x5 0.
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6.2.3 Roots of a Set of Nonlinear Equations

Excel Worksheet

Solver can also be used to find the roots of a set of nonlinear equations, such as the
ones obtained from the KKT necessary conditions. We will use this capability to solve the
KKT first-order necessary conditions that were determined in Example 4.31. Equations of
the necessary conditions are

2x1 2 3x2 1 2ux1 5 0 ð6:9aÞ
2x2 2 3x1 1 2ux2 5 0 ð6:9bÞ

x21 1 x22 2 61 s2 5 0; s2 $ 0; u$ 0 ð6:9cÞ
us5 0 ð6:9dÞ

The first step in the solution process is to prepare an Excel worksheet to describe the
problem functions. Then Solver is invoked under the Data tab to define equations and con-
straints. As noted earlier, an Excel worksheet can be prepared in a number of different
ways. One way is shown in Figure 6.5, which shows not only the completed worksheet

FIGURE 6.5 Worksheet and Solver
Parameters dialog box for KKT con-
ditions for Example 4.31.
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but also the Solver Parameters dialog box for the problem. Various cells are defined as
follows:

Cells A3 to A6: variable names that will appear later in the Answer Report worksheet
(inactive cells)
Cells A8 to A13: expressions for the KKT conditions given in Eqs. (6.9a) through (6.9d);
these expressions will appear later in the Answer Report (inactive cells)
Cells B3 to B6: renamed x, y, u, and s, respectively, containing the starting values for
the four variables; note that the variables x1 and x2 have been changed to x and y
because x1 and x2 are not valid names in Excel; current starting values are shown as 1,
22, 2, 0 (active cells)
Cell B8:5 2*x2 3*y1 2*u*x (expression for @L/@x) (active cell)
Cell B9:5 2*y2 3*x1 2*u*y (expression for @L/@y) (active cell)
Cell B10:5 x*x1 y*y 2 61 s*s (constraint, g1 s2) (active cell)
Cell B11: 5 u*s (switching condition) (active cell)
Cell B12: 5 s*s (active cell)
Cell B13: 5 u (active cell)
Cells C8 to C13: right side of expressions in Cells B8 to B13 (inactive cells)

The current values for the expressions in cells B8 through B13 at the starting values of
the variables in cells B3 through B6 are given as 12, 215, 21, 0, 0, and 2. Expressions
coded in cells B8 through B13 are seen by using the Show Formulas command under the
Data tab.

Solver Parameters Dialog Box

Now the Solver is invoked under the Data tab and the root-finding problem is defined
in the Solver Parameters dialog box. The target cell is set to B8, whose value is set to zero
at the solution point, as shown in Figure 6.5. The variable cells are identified as B3 through
B6. The rest of the equations are entered as constraints by clicking the Add button. Note
that in order to solve a set of nonlinear equations, one of them is identified as the target
equation, Eq. (6.9a) in the present case, and the rest are identified as equality constraints.
Once the problem has been defined, the Solve button is clicked to solve it. Solver solves
the problem and reports the final results by updating the original worksheet and opening
the Solver Results dialog box, as shown in Figure 6.6. The final Answer worksheet can be
generated if desired. The current starting point of (1, 22, 2, 0) gave the KKT point as
(21.732, 21.732, 0.5, 0).

Solution to KKT Cases with Solver

It is important to note that with the worksheet shown in Figure 6.5, the two KKT cases
can be solved separately. These cases can be generated using starting values for the slack
variable and the Lagrange multiplier in cells B5 and B6. For example, selecting u5 0 and
s . 0 generates the case where the inequality constraint is inactive. This gives the solution:
x5 0 and y5 0. Selecting u . 0 and s5 0 gives the case where the inequality constraint is
active. Selecting different starting values for x and y gives two other points as solutions to
the necessary conditions. When there are two or more inequality constraints, various KKT
cases can be generated in a similar way.
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6.3 EXCEL SOLVER FOR UNCONSTRAINED
OPTIMIZATION PROBLEMS

Excel Solver can be used to solve any unconstrained optimization problem. To show
this, let us consider the unconstrained optimization problem:

Minimize
fðx; y; zÞ5 x2 1 2y2 1 2z2 1 2xy1 2yz ð6:10Þ

Figure 6.7 shows the worksheet and the Solver Parameters dialog box for the problem.
The worksheet can be prepared in several different ways, as explained in Section 6.2. For
the present example, cells B4 through B6 define the design variables for the problem.
These are renamed as x, y, and z and show the starting values for the design variables as
2, 4, and 10. Cell D9 defines the final expression for the cost function. Once the worksheet
has been prepared, Solver is invoked under the Data tab, and the Options button is used
to invoke the conjugate gradient method. The Newton method can also be used. The for-
ward finite difference option is selected for calculation of the gradient of the cost function.
The central difference approach can also be used. The algorithm converges to the solution
(0,0,0) with f*5 0 after five iterations.

FIGURE 6.6 Solver Results for
KKT conditions for Example 4.31.
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6.4 EXCEL SOLVER FOR LINEAR PROGRAMMING PROBLEMS

Excel Solver can be used to solve linear programming problems as well. The procedure
for solving this type of problem is basically the same as the procedure explained for solv-
ing nonlinear equations or unconstrained optimization problems in the previous two sec-
tions. To start, an Excel worksheet needs to be prepared that contains all of the data and
equations for the problem. Next, the Solver dialog box is activated under the Data tab.
Last, the objective function, the design variables, and the constraints are defined, and the
problem is solved. We will demonstrate this process by solving the problem given as

Maximize
z5 x1 1 4x2 ð6:11aÞ

subject to
x1 1 2x2 # 5 ð6:11bÞ
2x1 1 x2 5 4 ð6:11cÞ
x1 2 x2 $ 1 ð6:11dÞ

FIGURE 6.7 Excel worksheet and Solver Parameters dialog box for unconstrained problem.
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x1; x2 $ 0 ð6:11eÞ
The Excel worksheet for the problem can be organized in many different ways.

Figure 6.8 shows one possible format for setting up the problem. The original problem is
entered at the top of the sheet just as a reminder. Other cells containing data about the
problem are explained as follows:

A10 to A15: row designations (inactive cell)
C11, D11: starting values for the variables x1 and x2, respectively; currently set to 0
(active cell)
C12, D12: objective function coefficients for x1 and x2 (inactive cell)
C13 to D15: coefficients of constraints in Eqs. (6.11b) through (6.11d). (inactive cell)
E12: formula to calculate the objective function value using the design variable values
in the cells C11 and D11 (active cell)
E13: formula to calculate left side of the “# type” constraint in Eq. (6.11b) (active cell)
E14: formula to calculate the left side of the equality constraint in Eq. (6.11c) (active cell)
E15: formula to calculate the left side of the “$ type” constraint in Eq. (6.11d) (active
cell)
F13 to F15: right-side limits for the constraints. (inactive cell)

Note that for the present example, the design variable cells C11 and D11 are not
renamed. The Show Formulas command under the Formulas tab is used to display the for-
mulas in cells E12 through E15; without that command the cells display the current evalu-
ation of the formulas. The formula in cell E12 is entered, and the rest of the formulas are
generated using the Copy Cell command. It is important to note the $ signs used in referenc-
ing some of the cells in the formulas entered in cell E12, as =C12*$C$11+D12*$D$11. The cells

FIGURE 6.8 Excel worksheet for the linear programming problem.
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required to remain fixed in the formula while copying need to have a $ prefix. For example,
cells C11 and D11 have design variable values that are needed with each formula; therefore
these cells are entered as $C$11 and $D$11. References to these cells do not change in the for-
mulas in cells E13 through E15. Alternatively, equations can be entered manually in each
cell.

The next step is to identify the objective function, variables, and constraints for
Solver by invoking Solver under the Data tab. This is shown in Figure 6.9, where cell
E12 is identified as the objective function in the Target Cell. The Max button is selected
to indicate that the objective is to be maximized. Next, the design variables are entered
as cells C11 and D11 in the By Changing Cells text box. Excel will change the values in
these cells as it determines the optimum solution. The constraints are entered by click-
ing the Add button; a dialog box appears in which the cells for the left and right sides
of a constraint are entered. The final set-up for the present problem in the Solver
Parameters dialog box is shown in Figure 6.9. Now we click the Options button and
identify the problem as a Linear Model and click the Solve button to obtain the Solver
results.

Figure 6.10 shows the Solver Results dialog box and the updated worksheet. Since the
Keep Solver Solution option is chosen, the Solver updates the values of the cells C11, D11,
and E12 through E15. Three reports are produced in separate worksheets: Answers,
Sensitivity, and Limits. Any of these can be highlighted before clicking OK. Figure 6.11
shows the Answer Report. Figure 6.12 shows the Sensitivity Report;. it gives ranges for the
right-side parameters and the objective function coefficients. The Limits Report (not shown)
gives the lower and upper limits for each variable and the corresponding value of the objec-
tive function. Solver determines these limits by rerunning the optimizer with all variables
fixed to their optimal values except one, which is optimized.

6.5 EXCEL SOLVER FOR NONLINEAR PROGRAMMING:
OPTIMUM DESIGN OF SPRINGS

Now we consider a nonlinear programming problem and solve it using Excel Solver.
The spring design problem was described and formulated in Section 2.9. An Excel
worksheet for the problem is prepared as shown in Figure 6.13. After normalizing the
constraints, the final formulation for the problem is given as follows: find d, D, and
N to

Minimize
f 5 ðN1 2ÞDd2 ð6:12aÞ

subject to the constraints

g1 5 12
P

KΔ
# 0 ðDeflectionÞ ð6:12bÞ

g2 5
τ
τa

2 1# 0 ðShear StressÞ ð6:12cÞ
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g3 5 12
ω
ω0

# 0 ðFrequencyÞ ð6:12dÞ

g4 5
D1 d

1:5
2 1# 0 ðOuter DiameterÞ ð6:12eÞ

The lower and upper bounds for the design variables are selected as shown in
Figure 6.13. Note that the constant π2ρ/4 is ignored in the cost function of Eq. (6.12a); the
mass, however, is calculated in cell C24.

FIGURE 6.9 Solver Parameters dialog box for the linear programming problem.
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In the worksheet of Figure 6.13, the following notation is used for some of the variables
(others are the same as in the formulation):

D_coil: mean coil diameter D, in
Def: deflection δ, in
Def_min: minimum required deflection Δ, 0.5 in
omega: frequency of surge waves ω, Hz
omega_0: lower limit on surge wave frequency ω0, 100 Hz
rho: mass density of the material ρ, lb-s2/in
tau: shear stress τ, psi
tau_a: allowable shear stress τa, 80,000 psi

In Figure 6.13, rows 4 through 6 contain the design variable data, rows 8 through 15
contain the data for the problem, rows 17 through 21 contain calculations for the analysis
variables, row 23 defines the objective function, and rows 26 through 29 define the con-
straints of Eqs. (6.12b) through (6.12e).

FIGURE 6.10 Solver Results dialog box for the linear programming problem.
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FIGURE 6.11 Answer Report from Solver for linear programming problem.

FIGURE 6.12 Sensitivity Report from Solver for the linear programming problem.
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The starting point for the design variables is selected as (0.2, 1.3, 2), where the cost func-
tion value is 0.208. The solver found an optimum solution as (0.0517, 0.3565, 11.31), with
the cost function value as 0.01268, as seen in the Answer Report in Figure 6.14. The deflec-
tion and the shear stress constraints are active at the optimum solution with their
Lagrange multipliers as (0.0108, 0.0244). The Lagrange multipliers are given in the
Sensitivity Report (not shown).

It is observed that the number of coils is not an integer at the optimum solution. If
desired, we can now fix the number of coils to 11 or 12 and reoptimize the problem. When
this is done, the following solution is obtained: (0.0512, 0.3454, 12), with f*5 0.01268.

6.6 OPTIMUM DESIGN OF PLATE GIRDERS
USING EXCEL SOLVER

STEP 1: PROJECT/PROBLEM DESCRIPTION Welded plate girders are used in many prac-
tical applications, such as overhead cranes and highway and railway bridges. As an

FIGURE 6.13 Excel worksheet for the spring design problem.
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example of the formulation of a practical design problem and the optimization solution
process, we will present the design of a welded plate girder for a highway bridge to mini-
mize its cost.

Other applications of plate girders can be formulated and solved in a similar way. It
has been determined that the life-cycle cost of the girder is related to its total mass. Since
mass is proportional to material volume, the objective of this project is to design a mini-
mum-volume girder and at the same time satisfy the requirements of the American
Association of State Highway and Transportation Officials (AASHTO) Specifications (Arora
et al., 1997). The dead load for the girder consists of the weight of the pavement and the
girder’s self-weight. The live load consists of the equivalent uniform load and concen-
trated loads based on the HS-20(MS18) truck-loading condition. The cross-section of the
girder is shown in Figure 6.15.

FIGURE 6.14 Solver “Answer Report” for the spring design problem.
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In this section, we present a formulation for the problem using the procedure described
in Chapter 2. Preparation of the Excel worksheet to solve the problem is explained and the
problem is solved using Excel Solver.

STEP 2: DATA AND INFORMATION COLLECTION Material and loading data and other
parameters for the plate girder are specified as follows:

L 5 span, 25 m
E 5 modulus of elasticity, 210 GPa
σy 5 yield stress, 262 MPa
σa 5 allowable bending stress, 0.55σy5 144.1 MPa
τa 5 allowable shear stress, 0.33σy5 86.46 MPa
σt 5 allowable fatigue stress, 255 MPa
Da 5 allowable deflection, L/800, m
Pm 5 concentrated load for moment, 104 kN
Ps 5 concentrated load for shear, 155 kN
LLIF5 live load impact factor, 11 50

ðL1 125Þ

Note that the live load impact factor depends on the span length L. For L5 25 m, this
factor is calculated as 1.33, and it is assumed that the loads Pm and Ps already incorporate
this factor. The dependent variables for the problem that can be evaluated using the cross-
sectional dimensions and other data are defined as

Cross-sectional area:

A5 ðhtw 1 2btf Þ; m2 ð6:13aÞ
Moment of inertia:

I5
1

12
twh

3 1
2

3
bt3f 1

1

2
btfhðh1 2tf Þ; m4 ð6:13bÞ

Uniform load for the girder:

w5 ð191 77AÞ; kN=m ð6:13cÞ

h

tw

tf

b

FIGURE 6.15 Cross-section of plate girder.
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Bending moment:

M5
L

8
ð2Pm 1wLÞ; kN�m ð6:13dÞ

Bending stress:

σ5
M

1000I
ð0:5h1 tf Þ; MPa ð6:13eÞ

Flange buckling stress limit:

σf 5 72; 845
tf
b

� �2

; MPa ð6:13fÞ

Web crippling stress limit:

σw 5 3; 648; 276
tw
h

� �2

; MPa ð6:13gÞ

Shear force:

S5 0:5ðPs 1wLÞ; kN ð6:13hÞ
Deflection:

D5
L3

3843 106 EI
ð8Pm 1 5wLÞ; m ð6:13iÞ

Average shear stress:

τ5
S

1000htw
; MPa ð6:13jÞ

STEP 3: DEFINITION OF DESIGN VARIABLES The cross-sectional dimensions of the
plate girder are treated as four design variables for the problem:

h = web height, m
b = flange width, m
tf = flange thickness, m
tw = web thickness, m

STEP 4: OPTIMIZATION CRITERION The objective is to minimize the material volume
of the girder:

Vol5AL5 ðhtw 1 2btf ÞL; m3 ð6:14Þ

STEP 5: FORMULATION OF CONSTRAINTS The following constraints for the plate
girder are defined:

Bending stress:

σ#σa ð6:15Þ
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Flange buckling:

σ#σf ð6:16Þ
Web crippling:

σ#σw ð6:17Þ
Shear stress:

τ# τa ð6:18Þ
Deflection:

D#Da ð6:19Þ
Fatigue stress:

σ#
1

2
σt ð6:20Þ

Size constraints:

0:30# h# 2:5; 0:30# b# 2:5

0:01# tf # 0:10; 0:01# tw # 0:10
ð6:21Þ

Note that the lower and upper limits on the design variables have been specified arbi-
trarily in the present example. In practice, appropriate values for the given design problem
will have to be specified based on the available plate sizes. It is also important to note that
the constraints of Eqs. (6.15) through (6.20) can be written explicitly in terms of the design
variables h, b, tf, and tw by substituting into them expressions for all of the dependent vari-
ables. However, there are many applications where it is not possible or convenient to elim-
inate the dependent variables to obtain explicit expressions for all functions of the
optimization problem in terms of the design variables alone. In such cases, the dependent
variables must be kept in the problem formulation and treated in the solution process. In
addition, use of dependent variables makes it easier to read and debug the program that
contains the problem formulation.

SPREADSHEET LAYOUT

The layout of the spreadsheet for solving the KKT optimality conditions, linear pro-
gramming problems, and unconstrained problems was explained earlier in this chapter.
As previously noted, Solver is an “Add-in” to Microsoft Excel. If it does not appear under
the Data tab, then it can be easily installed by following the steps outlined in Section 6.2.
Figure 6.16 shows the layout of the spreadsheet showing formulas for the plate girder
design problem in various cells. The spreadsheet can be organized in any convenient way.
The main requirement is that the cells containing objective and constraint functions and
the design variables be clearly identified. For the present problem, the spreadsheet is
organized into five distinct blocks.

Block 1 contains information about the design variables. Symbols for the variables and
their upper and lower limits are defined. The cells containing the starting values for the
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variables are identified as D3 through D6. These are updated during the solution
process. Also, since these cells are used in all expressions, they are given real names,
such as h, b, tf, and tw. This is done with the Define Name command under the
Formulas tab.
Block 2 defines various data and parameters for the problem. Material properties,
loading data, and span length are defined.
Block 3 contains equations for the dependent variables in cells C18 through C25.
Although it is not necessary to include them, it can be very useful because they can be
incorporated explicitly into the constraint and objective function formulas. First, they
simplify the formulation of the constraint expressions, reducing algebraic manipulation
errors. Second, they provide a check of these intermediate quantities for debugging
purposes and for information feedback.
Block 4 identifies the cell that contains the objective function, cell C28.
Block 5 contains information about the constraints. Cells B31 through B36 contain the
left sides, and cells D31 through D36 contain the right sides of the constraints.

FIGURE 6.16 Layout of the spreadsheet for plate girder design problem.
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Constraints are implemented in Excel by relating two cells through an inequality (# or $)
or an equality (5) relationship. This is defined in the Solver Parameters dialog box, which is
described next. Although many of the quantities appearing in the constraint section also
appear elsewhere in the spreadsheet, they are simply references to other cells in the spread-
sheet’s variables and parameters sections (see the formulas in Figure 6.16). Thus, the only
cells that need to be modified during a “what-if” analysis are those in the independent vari-
able or parameters section. The constraints are automatically updated to reflect any changes.

SOLVER PARAMETERS DIALOG BOX

Once the spreadsheet has been created, the next step is to define the optimization prob-
lem for the Solver. Figure 6.17 shows a screen shot of the Solver Parameters dialog box.
The objective function cell is entered as the Target Cell, which is to be minimized. The
independent design variables are identified next under the By Changing Cells: heading. A
range of cells has been entered here, but individual cells, separated by commas, could be
entered instead. Finally, the constraints are entered under the Subject to the Constraints

FIGURE 6.17 Solver parameters dialog box and spreadsheet for plate girder design problem.
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heading. The constraints are defined by clicking the Add button and then providing the
appropriate information. The constraints include not only those identified in the con-
straints section of the spreadsheet but also the bounds on the design variables.

SOLUTION

Once the problem has been defined in the Solver Parameters dialog box, clicking the
Solve button initiates the optimization process. Once Solver has found the solution, the
design variable cells (D3�D6), the dependent variable cells (C18�C25), and the constraint
function cells (B31�B36 and D31�D36) are updated using the optimum values of the
design variables. Solver also generates three reports in separate worksheets, Answer,
Sensitivity, and Limits (as explained earlier in this chapter). The Lagrange multipliers
and constraint activity can be recovered from these reports.

The optimum solution for the plate girder is obtained as follows:

h5 2.0753 m, b5 0.3960 m, tf5 0.0156 m, tw5 0.0115 m, Vol5 0.90563 m3

The flange buckling, web crippling, and deflection constraints are active at the optimum
point.

It is important to note that once a design problem has been formulated and coupled to an
optimization software program such as Excel, variations in the operating environment and
other conditions for the problem can be investigated in a very short amount of time. “What
if” type questions can be investigated and insights into the behavior of the system can be
gained. For example, the problem can be quickly solved for the following conditions:

1. What happens if the deflection or web crippling constraint is omitted from the
formulation?

2. What if the span length is changed?
3. What if some material properties change?
4. What if a design variable is assigned a fixed value?
5. What if the bounds on the variables are changed?

6.7 OPTIMUM DESIGN OF TENSION MEMBERS

STEP 1: PROJECT/PROBLEM DESCRIPTION Tension members are encountered in many
practical applications such as truss structures. This project’s goal is to design minimum-
weight tension members made of steel to satisfy the American Institute of Steel
Construction (AISC) Manual of Steel Construction Requirements (AISC, 2005). Many cross-
sectional shapes of steel members are available for use as tension members, such as wide-
flange sections (W-shape), angle sections, channel sections, tee sections, hollow circular or
square tubes, tension rods (solid circular or square sections), and cables.

A W-shape for the present application is desired. Other cross-sectional shapes can be
treated by using a procedure similar to the one demonstrated here. The cross-section of
the member is shown in Figure 6.18. The load for the member is calculated based on the
application and loads requirement of the region where the structure is located (ASCE,
2005). The specified material is ASTM A992, grade 50 steel.
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STEP 2: DATA AND INFORMATION COLLECTION To formulate the problem of optimiz-
ing the design of tension members, the information that needs to be collected includes
AISC requirements, load, and material properties. To achieve these objectives, see the
notation and data defined in Table 6.1.

Some useful expressions for problem formulation are:

Ag 5 2bf tf 1 ðd2 2tf Þtw; in2 ð6:22aÞ

Iy 5 2
1

12
tf b

3
f

� �
1

1

12
ðd2 2tf Þt3w; in4 ð6:22bÞ

ry 5
ffiffiffiffiffiffiffiffiffiffiffiffi
Iy=Ag

q
; in ð6:22cÞ

STEP 3: DEFINITION OF DESIGN VARIABLES The design variables for the member are
its cross-sectional dimensions, shown in Figure 6.18. Thus, the design variable vector is
x5 (d,bf,tf,tw).

STEP 4: OPTIMIZATION CRITERION The goal is to select the lightest possible W-shape
for the member. Thus we minimize the weight of the member per unit length, given as
cross-sectional area3density:

f 5 12γAg; lbs=ft ð6:23Þ

STEP 5: FORMULATION OF CONSTRAINTS AISC (2005) requires three limit states to be
satisfied by the member:

1. Yielding of the gross section
2. Rupture of the net section
3. Slenderness limit state

d

tw

tf

bf

Flange

Web

x x

y

y

x-x is the major (strong) axis
y-y is the minor (weak) axis

FIGURE 6.18 W-shape for a member.
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The yield limit says that the required strength should be less than or equal to the allow-
able yield strength (capacity of the member in tension). The allowable yield strength is
obtained by dividing the nominal yield strength Pny by a factor of safety. Thus the yield
limit state is written as

Pa #
Pny

Ωt
; Pny 5 FyAg ð6:24Þ

Since Ωt5 5/3 the yield limit state constraint becomes

Pa # 0:6FyAg ð6:25Þ

TABLE 6.1 Data for optimizing the design of tension members

Notation Data

Ag Gross area of the section, in2

An Net area (gross area minus cross-sectional areas due to bolt holes), in2

Ae Effective net area (reduction of net area to account for stress concentrations at holes and
shear lag effect where not all cross-sectional elements are connected to transmit load),
Ae5UAn, in

2

bf Width of flange, in

d Depth of section, in

Fy Specified minimum yield stress, 50 ksi for A992 steel, ksi

Fu Specified minimum ultimate stress, 65 ksi for A992 steel, ksi

L Laterally unsupported length of member, in

Pn Nominal axial strength, kips

Pa Required strength, kips

ry Least radius of gyration, in

tf Thickness of flange, in

tw Thickness of web, in

U Shear lag coefficient: reduction coefficient for net area whenever tension is transmitted
through some but not all cross-sectional elements of member (such as angle section,
where only one leg of angle is connected to a gusset plate), U5 12 x=l. Also, connection
design should be such that U$ 0.6. Table D3.1 of AISC Manual (AISC, 2005) can be used
to evaluate U for different conditions.

x Distance from plane of shear transfer (plane of connection) to centroid of tension
member cross-section, in

Ωt Factor of safety for tension; 1.67 for yielding of gross cross-section and 2.00 for rupture
(fracture) of net cross-section

γ Density of steel, 0.283 lb/in3
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The rupture limit state imposes the constraint that the required strength be no more
than the allowable rupture strength of the net section. The allowable rupture strength is
obtained by dividing the nominal rupture strength by a factor of safety. Thus the rupture
limit state constraint is written as

Pa #
Pnr

Ωt
; Pnr 5 FuAe ð6:26Þ

Since Ωt5 2 for the rupture limit state, this constraint becomes

Pa # 0:5FuAe ð6:27Þ

Calculation of the net effective area Ae depends on the details of the connection (e.g.,
length of connection, number and arrangement of bolts, and distance of the shear plane
from the centroid of the section). Since these details are not known at the initial design
stage, assumptions are made about the effective net area Ae and are then verified once the
design of the member is known. For the present application, Ae5 0.75Ag is used.

The slenderness ratio constraint is written as

L

ry
# 300 ð6:28Þ

Although this constraint is not required for tension members, AISC (2005) suggests impos-
ing it to avoid having members that are too slender. This may also avoid buckling of the
members if reversal of loads occurs.

EXAMPLE 6.1 SELECTION OF A W10 SHAPE

To solve the optimization problem formulated in the foregoing section for a member of length

25 ft, we use Excel Solver. Since the W10 shape is to be selected, the following lower and upper

limits for the design variables are specified based on the data in the dimensions table in the

AISC Manual (2005):

9:73# d# 11:4 in ðaÞ
3:96# bf # 10:4 in ðbÞ
0:21# tf # 1:25 in ðcÞ
0:19# tw # 0:755 in ðdÞ

Based on an analysis of loads for the structure, it is determined that the service dead load is

50 kips and the live load is 100 kips for the tension member. Therefore, the required strength Pa

for the member is 150 kips.

The Excel worksheet for the problem is prepared, and the Solver is invoked. In the implemen-

tation, the constraints are normalized with respect to their limit values; for example, the yielding
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limit state constraint of Eq. (6.25) is normalized as 1# 0.6FyAg/Pa. The initial design is selected

as a W103 15 section, for which the constraints of Eqs. (6.25), (6.27), and (6.28) are violated; the

section is therefore not adequate. The initial values of the design variables are set as (10.00, 4.00,

0.27, 0.23) for the W103 15 section. The initial cost function value is 14.72 lbs/ft. The Solver gives

the following optimum design:

x� 5 ðd5 11:138; bf 5 4:945; tf 5 0:321; tw 5 0:2838Þ in;

Weight5 20:90 lbs=ft; Ag 5 6:154 in:2; ry 5 1:027 in;
ðeÞ

Several different starting points give basically the same optimum weight but slightly different

design variable values. Analyzing the optimum design, we observe that the rupture limit state

constraint is active at the optimum point. When using the optimum design, it is suggested that

we use a W103 22 section, which has allowable strengths of 194 kips and 158 kips in the yielding

and rupture limit states, respectively.

EXAMPLE 6.2 SELECTION OF A W8 SHAPE

Now we want to investigate the use of a W8 section for the member. For the W8 shape, the

following lower and upper limits for the design variables are specified based on the data in the

dimensions table in the AISC Manual (2005):

7:93# d# 9:00 in ðaÞ
3:94# bf # 8:28 in ðbÞ
0:205# tf # 0:935 in ðcÞ
0:17# tw # 0:507 in ðdÞ

The initial design is selected as a W83 15 section. For this section, the constraints of

Eqs. (6.25), (6.27), and (6.28) are violated, so the section is not adequate. Using the W83 15

section, the initial design variable values are set as (8.11, 4.01, 0.315, 0.245), where the cost func-

tion has a value of 14.80 lbs/ft. The Solver gives the following optimum design:

x� 5 ðd5 8:764; bf 5 5:049; tf 5 0:385; tw 5 0:284Þ in

Weight5 20:90 lbs=ft; Ag 5 6:154 in:2; ry 5 1:159 in
ðeÞ

Several different starting points give the same optimum weight but different design variable

values. Analyzing the optimum design, we observe that only the rupture limit state constraint is

active at the optimum point. When using the optimum design, it is suggested that we use a

W83 24 section, which has allowable strengths of 208 kips and 169 kips in yielding and rupture

limit states, respectively. A W83 21 section did not meet the rupture limit state constraint. Also, it

appears that a W103 22 section is lighter in this application. If there is no particular restriction on

the depth of the section, a W12 or even a W14 section could be tried for an even lighter section.
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DISCUSSION

It is important to note that while designing the connection for the member, the assump-
tion for the net effective area Ae5 0.75Ag must be verified. AISC (2005) also requires check-
ing the section for block shear failure of the member. Block shear is a failure phenomenon
at the bolted connections for the member. The member or the gusset plate can shear off
and/or rupture in tension. There can be several modes of block shear failure, depending
on the details of the connection. All of the modes need to be guarded against shear failure
by either yielding or rupture. Sections J4.2 and J4.3 of the AISC Specification (2005) should
be consulted for more details.

In the present application, we have treated members made of steel. Members made of
other materials, such as aluminum and wood, can be optimized in a manner similar to the
one described here.

6.8 OPTIMUM DESIGN OF COMPRESSION MEMBERS

6.8.1 Formulation of the Problem

STEP 1: PROJECT/PROBLEM DESCRIPTION Compression members are encountered in
many practical applications, such as pole structures, columns in building frames and
members of truss structures. In this project, the goal is to design minimum weight com-
pression members made of steel to satisfy the AISC Manual requirements (AISC, 2005).
Many cross-sectional shapes of steel members are available for use as compression mem-
bers, such as wide-flange sections (W-shape), angle sections, channel sections, tee sections,
hollow circular or square tubes, tension rods (solid circular or square sections) and cables.
A W-shape is desired for the present application. The cross-section of the member is
shown in Figure 6.18. The load for the member is calculated based on the application and
load requirements of the region where the structure is located (ASCE, 2005). The specified
material is ASTM A992 Grade 50 steel.

STEP 2: DATA/INFORMATION COLLECTION To formulate the problem of optimizing
the design of compression members, the information that needs to be collected includes
AISC requirements, load, and material properties. To achieve these goals, see the notation
and data defined in Table 6.2.

Some useful expressions for the problem formulation are:

Ag 5 2bf tf 1 ðd2 2tf Þtw; in2 ð6:29aÞ

Ix 5 2
1

12
bf t

3
f

� �
1

1

12
twðd2 2tf Þ3 1 2bf tf

d

2
2

tf
2

� �2

; in4 ð6:29bÞ

Iy 5 2
1

12
tf b

3
f

� �
1

1

12
ðd2 2tf Þt3w; in4 ð6:29cÞ

rx 5
ffiffiffiffiffiffiffiffiffiffiffiffi
Ix=Ag

q
; in ð6:29dÞ
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TABLE 6.2 Data for optimizing the design of compression members

Notation Data

Ag Gross area of the section, in2

bf Width of the flange, in

d Depth of the section, in

E Modulus of elasticity; 29,000 ksi

Fe Euler stress, ksi

Fex Euler stress for buckling with respect to the strong (x) axis, ksi

Fey Euler stress for buckling with respect to the weak (y) axis, ksi

Fy Specified minimum yield stress; 50 ksi for A992 steel

Fcr Critical stress for the member, ksi

Fcrx Critical stress for the member for buckling with respect to the strong (x) axis, ksi

Fcry Critical stress for the member for buckling with respect to the weak (y) axis, ksi

Ix Moment of inertia about the strong (x) axis, in4

Iy Moment of inertia about the weak (y) axis, in4

K Dimensionless coefficient called the effective length factor; its value depends on the end conditions
for the member

Kx Effective length factor for buckling with respect to the strong (x) axis; 1.0

Ky Effective length factor for buckling with respect to the weak (y) axis; 1.0

Lx Laterally unsupported length of the member for buckling with respect to strong (x) axis, 420 in

Ly Laterally unsupported length of the member for buckling with respect to weak (y) axis, 180 in

Pn Nominal axial compressive strength, kips

Pa Required compressive strength; 1500 kips

rx Radius of gyration about the strong (x) axis, in

ry Radius of gyration about the weak (y) axis, in

tf Thickness of the flange, in

tw Thickness of the web, in

Ωc Factor of safety for compression; 5/3 for the yielding of the gross cross-section

λ Slenderness ratio

λe Limiting value of slenderness ratio for elastic/inelastic buckling

λx Slenderness ratio for buckling with respect to strong (x) axis

λy Slenderness ratio for buckling with respect to weak (y) axis

γ Density of steel; 0.283 lb/in3
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ry 5
ffiffiffiffiffiffiffiffiffiffiffiffi
Iy=Ag

q
; in ð6:29eÞ

λ5
KL

r
ð6:29fÞ

λe 5 4:71

ffiffiffiffiffi
E

Fy

s
ð6:29gÞ

λx 5
KxLx
rx

ð6:29hÞ

λy 5
KyLy
ry

ð6:29iÞ

The American Institute of Steel Construction requirements for design of compression
members using the allowable strength design (ASD) approach are

(i) the required strength # the available (allowable) strength of the section
(ii) KL/r # 200

The strength constraint is written as:

Pa #
Pn

Ωc
5 0:6Pn ð6:30Þ

The nominal strength Pn is given as:

Pn 5 FcrAg ð6:31Þ

To calculate the nominal strength Pn, the critical stress Fcr needs to be calculated. The criti-
cal stress for the member depends on several factors, such as buckling about the strong (x)
axis or the weak (y) axis, unbraced length of the member, end conditions for the member,
slenderness ratio, material properties, and elastic or inelastic buckling. When the following
condition is met, buckling is inelastic and the critical stress is given by Eq. (6.33):

λ#λe ðor; Fe $ 0:44FyÞ ð6:32Þ

Fcr 5 ð0:658Fy=Fe ÞFy ð6:33Þ
When the following condition is met, buckling is elastic and the critical stress is given

by Eq. (6.35):

λ.λe ðor; Fe , 0:44FyÞ ð6:34Þ

Fcr 5 0:877Fe ð6:35Þ
In the foregoing expressions, the Euler stress Fe is given as

Fe 5
π2E

λ2
ð6:36Þ
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In calculating the Euler stress, it needs to be determined whether the buckling is about the
strong (x) axis or about the weak (y) axis. This means that the slenderness ratios λ about
the x and y axes need to be calculated. The larger of these two values determines the buck-
ling axis.

STEP 3: DEFINITION OF DESIGN VARIABLES The design variables for the member are
the cross-sectional dimensions of the member, shown in Figure 6.18. Thus the design vari-
able vector is x5 (d, bf, tf, tw).

STEP 4: OPTIMIZATION CRITERION The goal is to select the lightest possible W-shape
for the member. Thus we minimize the weight of the member per unit length given as the
cross-sectional area 3 density:

f 5 12γAg; lbs=ft ð6:37Þ

STEP 5: FORMULATION OF CONSTRAINTS It is challenging to formulate the constraint
of Eq. (6.30) for a derivative-based optimization algorithm. The reason is that the con-
straint depends on two “IF THEN ELSE” conditions, which could make the constraint
function discontinuous or at least non-differentiable at some points in the feasible set for
the problem. The first “IF THEN ELSE” condition is for calculation of the Euler stress Fe
in Eq. (6.36):

IF λx #λy; THEN Fe 5
π2E

ðλyÞ2
ð6:38Þ

ELSE; Fe 5
π2E

ðλxÞ2
ð6:39Þ

This condition basically says that a smaller value of Fe from Eqs. (6.38) and (6.39) should
be used in calculating the critical stress in Eqs. (6.33) and (6.35). To overcome this uncer-
tainty of buckling about the x or y axis, we use both the expressions for Fe in Eqs. (6.38)
and (6.39) to calculate the critical stress and impose the strength requirement constraint
for both the cases. Therefore we define:

Fey 5
π2E

ðλyÞ2
ð6:40Þ

Fex 5
π2E

ðλxÞ2
ð6:41Þ

where Fey and Fex are the Euler stresses with respect to the buckling about weak (y) and
strong (x) axes, respectively. These expressions are used to calculate critical stresses, Fcrx
and Fcry, from Eqs. (6.33) and (6.35).

The second major difficulty with the formulation is with the “IF THEN ELSE” condition
in Eq. (6.32), which determines whether the buckling is going to be elastic or inelastic.
This condition determines which of the two expressions, given in Eqs. (6.33) and (6.35),

246 6. OPTIMUM DESIGN WITH EXCEL SOLVER

II. NUMERICAL METHODS FOR CONTINUOUS VARIABLE OPTIMIZATION



governs the critical stress value for the section. To overcome this difficulty, we design the
member to remain in the inelastic buckling mode or remain in the elastic buckling mode.
In other words, we impose a constraint requiring the member to remain in the inelastic
buckling mode and optimize the member. Then we re-optimize the problem by imposing
the condition for the member to remain in the elastic buckling mode. The better of the two
solutions is then used as the final design.

6.8.2 Formulation of the Problem for Inelastic Buckling

We formulate the problem where the inelastic buckling constraint is imposed. To opti-
mize the problem, we first assume buckling of the member about the weak (y) axis and
impose the following constraints:

λy #λe ð6:42Þ
Pa # 0:6FcryAg ð6:43Þ

where the critical stress Fcry is given from Eq. (6.33) as

Fcry 5 ð0:658Fy=FeyÞFy ð6:44Þ
We monitor the slenderness ratio λx about the strong (x) axis. If λx $λy at the optimum

solution, then the buckling would be about the strong (x) axis. We re-optimize the problem
by imposing the following constraints:

λx #λe ð6:45Þ
Pa # 0:6FcrxAg ð6:46Þ

where the critical stress Fcrx is given from Eq. (6.33) as

Fcrx 5 ð0:658Fy=FexÞFy ð6:47Þ
To avoid local buckling of the flange and the web, the following constraints are

imposed (AISC, 2005):

ðd2 2tf Þ
tw

# 0:56

ffiffiffiffiffi
E

Fy

s
ð6:48Þ

bf
2tf

# 1:49

ffiffiffiffiffi
E

Fy

s
ð6:49Þ

EXAMPLE 6.3 INELASTIC BUCKLING SOLUTION

As indicated before, we assume that the member is going to buckle about the weak (y) and

optimize the problem. We also assume that a W18 shape is desired for the member and impose

the following lower and upper limits for the design variables based on the data that is in the
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dimensions table in the AISC Manual (2005) (if other W-shapes for the member are desired,

appropriate upper and lower limits for the design variables can be imposed):

17:7# d# 21:1 in ðaÞ
6:0# bf # 11:7 in ðbÞ

0:425# tf # 2:11 in ðcÞ

0:30# tw # 1:16 in ðdÞ

The optimization problem becomes: find design variables d, bf, tf, tw to minimize the cost func-

tion of Eq. (6.37) subject to the constraints of Eqs. (6.42), (6.43), (6.48), (6.49) and (a) through (d).

The Excel sheet for the problem is prepared, and the Solver is invoked. In the implementation,

the constraints are normalized with respect to their limit values, e.g., the yielding limit state

constraint of Eq. (6.43) is normalized as 1# 0.6FcryAa/Pa. The initial values of the design variables

are set to their lower limits as (17.70, 6.00, 0.425, 0.30). The initial cost function value is

34.5 lbs/ft. The Solver gives the following optimum design:

ðd5 18:48; bf 5 11:70; tf 5 2:11; tw 5 1:16Þ in
Weight5 224 lbs=ft; Ag 5 65:91 in2

λx 5 56:8; λy 5 61:5; λe 5 113:4; Fcrx 5 39:5 ksi; Fcry 5 37:9 ksi

ðeÞ

Several different starting points give the same optimum solution.

Analyzing the optimum design, we observe that the strength constraint for buckling about

the y axis is active along with upper bounds for flange width, flange thickness, and web thick-

ness at the optimum point. Since λy . λx, the assumption of buckling about the weak axis is cor-

rect. Based on the optimum design, it is suggested to use the W183 234 section that has

allowable strength of 1550 kips.

To gain some insights into the behavior of the column and the solution process, we assume

buckling of the member to take place about the strong (x) axis and then re-optimize the column.

The optimization problem becomes: find design variables d, bf, tf, tw to minimize the cost function

of Eq. (6.37) subject to the constraints of Eqs. (6.45), (6.46), (6.48), (6.49) and (a) through (d). The

initial values of the design variables are set as (17.70, 6.00, 0.425, 0.30). The initial cost function

value is 34.5 lbs/ft. The Solver gives the following optimum design:

ðd5 21:1; bf 5 11:70; tf 5 2:11; tw 5 0:556Þ in
Weight5 199:6 lbs=ft; Ag 5 58:77 in2

λx 5 47:0; λy 5 58:1; λe 5 113:4; Fcrx 5 42:54 ksi; Fcry 5 39:1 ksi

ðfÞ

Several different starting points give the same optimum solution. Analyzing the optimum

design, we observe that the strength constraint for buckling about the x axis is active along with

upper bounds for section depth, flange width, and flange thickness at the optimum point.

However, at the optimum point, λy.λx, indicating buckling about the weak (y) axis. Therefore

this optimum design is not acceptable.
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6.8.3 Formulation of the Problem for Elastic Buckling

Now we formulate the problem for the case where buckling is assumed to be elastic.
Just as for the inelastic buckling formulation, we first assume buckling of the member
about the weak (y) axis and optimize the column by imposing the following constraints:

λe #λy # 200 ð6:50Þ

Pa # 0:6FcryAg ð6:51Þ
where the critical stress Fcry is given from Eq. (6.35) as

Fcry 5 0:877Fey ð6:52Þ
We monitor the slenderness ratio λx about the strong (x) axis. If λx$λy at the optimum

point, then the buckling would be about the strong (x) axis. We then re-optimize the prob-
lem by imposing the following constraints:

λe #λx # 200 ð6:53Þ

Pa # 0:6FcrxAg ð6:54Þ
where the critical stress Fcrx is given from Eq. (6.33) as

Fcrx 5 0:877Fex ð6:55Þ

EXAMPLE 6.4 ELASTIC BUCKLING SOLUTION

As indicated before, we assume that the member is going to buckle about the weak (y) axis

and optimize the problem. We also assume that a W18 shape is desired for the member. The

optimization problem becomes: find design variables d, bf, tf, tw to minimize the cost function of

Eq. (6.37) subject to the constraints of Eqs. (6.50), (6.51), (6.48), (6.49), and (a) through (d). The

Excel worksheet for the problem is prepared, and the Solver is invoked. In the implementation,

the constraints are normalized with respect to their limit values, as for the previous example.

The initial values of the design variables are set as (17.70, 6.00, 0.425, 0.30). The initial cost func-

tion value is 34.5 lbs/ft. The Solver could not find a feasible solution since the strength constraint

of Eq. (6.51) could not be satisfied. The depth of the section reached its lower limit, and the thick-

nesses of the flange and the web reached their upper limits. Thus elastic buckling of a W18 shape

about its weaker axis is not possible for this problem.

To investigate the possibility of buckling of the member about the strong axis, we re-optimize

the column. The optimization problem becomes: find design variables d, bf, tf, tw to minimize the

cost function of Eq. (6.37) subject to the constraints of Eqs. (6.53), (6.54), (6.48), (6.49), and (a)

through (d). The initial values of the design variables are set as (17.70, 6.00, 0.425, 0.30). The ini-

tial cost function value is 34.5 lbs/ft. Again the Solver could not find a feasible solution for the

problem. The constraint on the lower limit of the slenderness ratio in Eq. (6.53) could not be sat-

isfied. The depth of the section and its flange width reached their lower limits, the web thickness

reached its upper limit, and the flange thickness almost reached its upper limit.
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The foregoing two solutions indicate that for this problem, elastic buckling of the W18 shape

is not possible for the required strength. Therefore, the final solution for the problem is a

W183 234 shape for the column where the column buckles inelastically about the weak (y) axis.

DISCUSSION

In this section, we have formulated the problem of optimizing compression members to
comply with the AISC Manual requirements (AISC, 2005). It turns out that the Manual
requirements cannot be formulated as continuous and differentiable functions. Therefore a
derivative-based optimization algorithm may not be appropriate for the problem. An
approach is presented here to handle these requirements in a derivative-based optimiza-
tion method. Basically the problem is solved four times where the formulation is continu-
ous and differentiable so that a derivative-based optimization method can be used. This
approach works quite well and yields an optimum design for the problem.

6.9 OPTIMUM DESIGN OF MEMBERS FOR FLEXURE

STEP 1: PROJECT/PROBLEM DESCRIPTION Beams are encountered in many practical
applications, such as building frames, bridges, and other structures. In this project, the
goal is to design minimum-weight steel beams to satisfy the AISC Manual requirements
(AISC, 2005). Many cross-sectional shapes of steel members are available for use as flex-
ural members, such as wide-flange sections (W-shape), angle sections, channel sections,
tee sections, and hollow circular or square tubes.

A W-shape should be selected for the present application. The cross-section of the mem-
ber is shown in Figure 6.19. The load is calculated based on the application and load
requirement of the region where the structure is located (ASCE, 2005). The specified mate-
rial is ASTM A992, Grade 50 steel.

We will first present a general formulation of this problem and then solve several
examples.

STEP 2: DATA AND INFORMATION COLLECTION To formulate the problem of optimiz-
ing the design of flexural members, the information that needs to be collected includes
AISC requirements, load, and material properties. To achieve these goals, see the notation
and data defined in Table 6.3.

Some useful expressions for W-shapes for formulation of the problem of optimum
design of members for flexure are as follows:

h5 d2 2tf ; in:; h0 5 d2 tf ; in ð6:55aÞ
Ag 5 2bf tf 1 ðd2 2tf Þtw; in2 ð6:55bÞ

y5
1

Ag
bf t

2
f 1 htwð0:25h1 tf Þ

h i
; in ð6:55cÞ
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Zx 5 0:5aAg; in
3; a5 d2 2y; in ð6:55dÞ

Mp 5
1

12
FyZx; kip-ft; My 5

1

12
FySx; kip-ft ð6:55eÞ

Cb 5
12:5Mmax

2:5Mmax 1 3MA 1 4MB 1 3MC
Rm # 3:0 ð6:55fÞ

Cw 5
1

4
Iyh

2
0; in

6 ðfor doubly symmetric W-shapeÞ ð6:55gÞ

Fcr 5
Cbπ2E

Lb
rts

� �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11 0:078

Jc

Sxho

Lb
rts

� �2
s

; ksi ð6:55hÞ

Ix 5 2
1

12
bf t

3
f

� �
1

1

12
twðd2 2tf Þ3 1 2bf tf

d

2
2

tf
2

� �2

; in4 ð6:55iÞ

Iy 5 2
1

12
tfb

3
f

� �
1

1

12
ðd2 2tf Þt3w; in4 ð6:55jÞ

Sx 5
Ix

0:5d
; in3 ð6:55kÞ

J5
1

3
ð2bf t3f 1 h0t

3
wÞ; in4 ð6:55lÞ

Lp 5 1:76ry

ffiffiffiffiffi
E

Fy

s
; in; ry 5

ffiffiffiffiffiffiffiffiffiffiffiffi
Iy=Ag

q
; in ð6:55mÞ

Lr 5 1:95rts
E

0:7Fy

ffiffiffiffiffiffiffiffiffi
Jc

Sxho

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11 6:76

0:7Fy
E

Sxho
Jc

� �2
svuut

; in ð6:55nÞ

d x x

y

y

a

y

x-x is the major (strong) axis
y-y is the minor (weak) axis

tw

tf

Flange

Web

bf

FIGURE 6.19 W-shape for the flex-
ural member.
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TABLE 6.3 Data for optimizing the design of flexural members

Notation Data

Ag Gross area of section, in2

Aw Area of web � dtw, in
2

a Distance between centroids of two half-areas of cross-section, in

bf Width of flange, in

C Parameter (1 for doubly symmetric shapes)

Cb Factor (beam bending coefficient) that takes into account nonuniform bending moment distribution over
unbraced length Lb

Cv Ratio of critical web stress to shear yield stress

Cw Warping constant, in6

d Depth of section, in

E Modulus of elasticity; 29,000 ksi

Fy Specified minimum yield stress; 50 ksi for A992 grade 50 steel

Fcr Critical stress for member, ksi

FLB Flange Local Buckling

G Shear modulus of steel; 11,200 ksi

h Height of web, in

h0 Distance between flange centroids, in

Ix Moment of inertia with respect to strong (x) axis, in4

Iy Moment of inertia with respect to weak (y) axis, in4

J Torsional constant, in4

Lb Unbraced length; distance between points braced against lateral displacement of compression
flange, in

Lp Limiting laterally unbraced length for full plastic bending capacity (property of section), in

Lr Limiting laterally unbraced length for inelastic lateral-torsional buckling (property of section), in

LTB Lateral-Torsional Buckling

Ma Required moment strength (i.e., maximum moment corresponding to controlling load combination
(ASCE, 2005), kip-ft

MA Absolute value of moment at quarter point of unbraced segment, kip-ft

MB Absolute value of moment at mid-point of unbraced segment, kip-ft

MC Absolute value of moment at three-quarter point of unbraced segment, kip-ft

(Continued)
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TABLE 6.3 (Continued)

Notation Data

Mmax Absolute value of maximum moment in unbraced segment, kip-ft

Mp Plastic moment, kip-ft

My Moment that brings beam to point of yielding, kip-ft

Mn Nominal moment strength, kip-ft

Rm Cross-section monosymmetry parameter (1 for doubly symmetric sections)

rx Radius of gyration with respect to strong (x) axis, in

ry Radius of gyration with respect to weak (y) axis, in

rts Property of cross-section, in

Sx Section modulus, in3

tf Thickness of flange, in

tw Thickness of web, in

Va Maximum shear based on controlling combination of loads, kips

Vn Nominal shear strength of section, kips

WLB Web Local Buckling

y Distance of centroid of half-area of cross-section from extreme fiber, in

Zx Plastic section modulus, in3

Ωb Safety factor for bending; 5/3

Ωv Safety factor for shear

λ Width-thickness ratio

λp Upper limit for λ for compactness

λr Upper limit for λ for noncompactness

λf Width-thickness ratio for flange

λpf Upper limit for λf for compactness of flange

λrf Upper limit for λf for noncompactness of flange

λw Width-thickness ratio for web

λpw Upper limit for λw for compactness of web

λrw Upper limit for λw for noncompactness of web

γ Density of steel; 0.283 lb/in3

Δ Maximum deflection due to live loads, in
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r2ts 5

ffiffiffiffiffiffiffiffiffiffi
IyCw

p
Sx

; in2 ð6:55oÞ

λf 5
bf
2tf

; λw 5
h

tw
ð6:55pÞ

λpf 5 0:38

ffiffiffiffiffi
E

Fy

s
; λrf 5

ffiffiffiffiffi
E

Fy

s
ð6:55qÞ

λpw 5 3:76

ffiffiffiffiffi
E

Fy

s
; λrw 5 5:70

ffiffiffiffiffi
E

Fy

s
ð6:55rÞ

The American Institute of Steel Construction requirements for design of flexural mem-
bers using the allowable strength design (ASD) approach are

(i) The required moment strength for the member will not exceed the available
(allowable) moment strength of the member.

(ii) The required shear strength for the member will not exceed the available (allowable)
shear strength of the member.

(iii) The deflection of the beam will not exceed a specified limit

MOMENT STRENGTH REQUIREMENT

The required moment strength must not exceed the available (allowable) moment
strength of the member:

Ma #
Mn

Ωb
5 0:6Mn ð6:56Þ

To determine the nominal strength Mn of the beam, several failure modes for the beam
need to be considered: elastic or inelastic lateral-torsional buckling (global buckling of the
beam), elastic or inelastic flange local buckling, and elastic or inelastic web local buckling.
For each of these failure modes, the nominal strength of the section is calculated. Then the
smallest of these values is taken as the nominal strength Mn for the beam.

For local buckling considerations, AISC (2005) classifies cross-sectional shapes as com-
pact, noncompact, and slender, depending on the width-thickness ratios.

1. Compact. The section is classified as compact if the width-thickness ratio for the flange
and the web satisfies the following condition (for compact shapes, the local buckling of
web and flange is not a failure mode):

λ#λp ð6:57Þ
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2. Noncompact. The section is classified as noncompact if the width-thickness ratio for the
flange or the web satisfies the following condition (local buckling of web or flange or of
both needs to be considered for a noncompact shape):

λp ,λ # λr ð6:58Þ
3. Slender. The section is classified as slender if the width-thickness ratio for the flange or

the web satisfies the following condition (the tension flange yielding state needs to be
considered in addition to the global and local buckling and yielding limit states):

λ.λr ð6:59Þ

The foregoing conditions are based on the worst width-thickness ratio of the elements
of the cross-section. The width-thickness ratio limits for flexure of rolled I-shapes are given
in Eqs. (6.55q) and (6.55r). When the shape is compact (λ#λp for both flange and web),
there is no need to check flange local buckling or web local buckling. Most of the standard
rolled W-shapes are compact for Fy # 65 ksi; noncompact shapes are identified with a
footnote f in the AISC Manual (AISC, 2005). Moreover, all of the standard rolled shapes
satisfy the width-thickness ratio for the web, so only the flanges of the standard rolled
W-shapes identified with the footnote f are noncompact. Built-up welded I-shapes such as
plate girders can have noncompact or slender flanges and/or web.

NOMINAL BENDING STRENGTH OF COMPACT SHAPES

The nominal flexural strength Mn for compact shapes will be the lower value obtained
from two failure modes:

1. Limit states of yielding (plastic moment)
2. Lateral-Torsional Buckling (LTB)

For the limit state of yielding, the nominal moment is given as

Mn 5Mp 5 FyZx ð6:60Þ
To calculate the nominal moment strength Mn for the LTB limit state, we need to first

determine if the buckling is elastic or inelastic. To do that, we calculate the lengths Lp and
Lr for I-shaped members using Eqs. (6.55m) and (6.55n), respectively. The nominal
strength is calculated as follows:

1. The LTB is not a failure mode if

Lb # Lp ð6:61Þ
The limit state of yielding gives the nominal moment strength as the plastic moment in
Eq. (6.60).

2. Inelastic LTB occurs if

Lp , Lb # Lr ð6:62Þ
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In this case, the nominal moment strength is given as

Mn 5Cb Mp 2 ðMp 2 0:7FySxÞ
Lb 2 Lp
Lr 2 Lp

� �� �
#Mp ð6:63Þ

3. Elastic LTB occurs when (the member is classified as slender)

Lb . Lr ð6:64Þ
In this case, the nominal moment strength is given as

Mn 5 FcrSx # Mp ð6:65Þ
where the critical stress Fcr is calculated using Eq. (6.55h). If the bending moment is uni-
form, all moment values are the same in Eq. (6.55f), giving Cb5 1. This is also true for a
conservative design.

NOMINAL BENDING STRENGTH OF NONCOMPACT SHAPES

Most standard rolled W, M, S and C shapes are compact for Fy # 65 ksi. A few are non-
compact because of the flange width�thickness ratio, but none are slender. In general, a
noncompact beam may fail by LTB, FLB, or web local buckling (WLB). Any of these fail-
ures can be elastic or inelastic. All of them need to be investigated to calculate the nominal
moment strength of the member.

The webs of all hot-rolled shapes in the AISC Manual (AISC, 2005) are compact, so the
noncompact shapes are subject only to the limit states of LTB and FLB. If the shape is
noncompact (λp,λ#λr) because of the flange, then the nominal moment strength is the
smallest of the following:

1. For LTB, the nominal moment is calculated using Eqs. (6.60), (6.63), or (6.65).
2. For FLB, the Mn is calculated as follows:

(i) There is no FLB if

λf #λpf ð6:66Þ
(ii) The flange is noncompact and FLB is inelastic if

λpf ,λf # λrf ð6:67Þ
The nominal moment strength is given as

Mn 5 Mp 2 ðMp 2 0:7FySxÞ
λf 2λpf

λrf 2λpf

� �� �
#Mp ð6:68Þ

(iii) The flange is slender and FLB is elastic if

λf .λrf ð6:69Þ
The nominal moment strength is given as

Mn 5
0:9EkcSx

λ2
f

#Mp ð6:70Þ
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kc 5
4ffiffiffiffiffiffiffiffiffiffi
h=tw

p ð6:71Þ

The value of kc will not be taken as less than 0.35 or greater than 0.76.

SHEAR STRENGTH REQUIREMENT

The required shear strength (applied shear) must not exceed the available (allowable)
shear strength (AISC, 2005):

Va #
Vn

Ωv
ð6:72Þ

AISC (2005) Specification covers both beams with stiffened webs and beams with unstif-
fened webs. The basic nominal shear strength equation is

Vn 5 ð0:6FyÞAwCv ð6:73Þ

where 0.6Fy5 shear yield stress (60% of the tensile yield stress). The value of Cv depends
on whether the limit state is web shear yielding, web shear inelastic buckling, or web
shear elastic buckling. For the special case of hot-rolled I-shapes with

h

tw
# 2:24

ffiffiffiffiffi
E

Fy

s
ð6:74Þ

the limit state is shear yielding, and

Cv 5 1:0; Ωv 5 1:50 ð6:75Þ
Most W-shapes with Fy # 65 ksi fall into this category (AISC, 2005). For all other dou-

bly and singly symmetric shapes, except for round hollow-structural-sections (HSS),

Ωv 5 1:67 ð6:76Þ
and Cv is determined as follows:

1. There is no web shear instability if

h

tw
# 1:10

ffiffiffiffiffiffiffiffi
kvE

Fy

s
ð6:77Þ

Cv 5 1:0 ð6:78Þ
2. Inelastic web shear buckling occurs if

1:10

ffiffiffiffiffiffiffiffi
kvE

Fy

s
,

h

tw
# 1:37

ffiffiffiffiffiffiffiffi
kvE

Fy

s
ð6:79Þ
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Cv 5
1:10

ffiffiffiffiffiffi
kvE
Fy

q
h=tw

ð6:80Þ

3. The limit state is elastic web shear buckling if

h

tw
.1:37

ffiffiffiffiffiffiffiffi
kvE

Fy

s
ð6:81Þ

Cv 5
1:51Ekv

ðh=twÞ2Fy
ð6:82Þ

where kv5 5. This value of kv is for unstiffened webs with h
tw
# 260.

Equation (6.82) is based on elastic stability theory, and Eq. (6.80) is an empirical equa-
tion for the inelastic region, providing a transition between the limit states of web shear
yielding and web shear elastic buckling.

DEFLECTION REQUIREMENT

Deflection of the beam should not be excessive under service loads. This is the service-
ability requirement for a structure. It turns out that the live load deflection is more impor-
tant to control because the dead load deflection is usually controlled by providing a
camber to the beam. The live load deflection requirement for the beam is taken as

Δ5
L

240
ð6:83Þ

where L is the length of the beam and Δ is the deflection due to live loads.

STEP 3: DEFINITION OF DESIGN VARIABLES The design variables for the member are
the cross-sectional dimensions of the member, shown in Figure 6.19. Thus the design vari-
able vector is x5 (d, bf, tf, tw)

STEP 4: OPTIMIZATION CRITERION The goal is to select the lightest possible W-shape
for the member. Thus we minimize the weight of the member per unit length given as
cross-sectional area3density:

f 5 12γAg; lbs=ft ð6:84Þ

STEP 5: FORMULATION OF CONSTRAINTS It is challenging to formulate the strength
constraints for the beam design problem for a derivative-based optimization algorithm.
The reason is that the constraint depends on several “IF THEN ELSE” conditions that
could make the constraint function discontinuous or at least nondifferentiable at some
points in the feasible set for the problem. The first “IF THEN ELSE” condition is for classi-
fying shapes as compact, noncompact, or slender. If the shape is compact, then local buck-
ling of flanges or the web is not a failure mode. Next, it needs to be decided for compact
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shapes if there is LTB. If there is, then it further needs to be decided whether the buckling
is elastic or inelastic. Thus several conditions need to be checked before the nominal
strength of even the compact shapes can be decided. The nominal strength for the section
is given as the smallest value from Eqs. (6.60) through (6.65).

The second “IF THEN ELSE” condition is related to noncompact sections where the
FLB failure mode must also be considered in addition to LTB, as discussed above. In addi-
tion, FLB can be inelastic or elastic, and this needs to be determined. Therefore, the nomi-
nal moment strength is given by the smaller value from Eqs. (6.60) through (6.70).

In design of beams, the usual procedure is to size the member for the moment strength
and then check it for shear strength and the deflection requirement. We will follow this
procedure. Also, we first design the member as a compact section and then as a noncom-
pact section and compare the two designs. More detailed formulations of the problem for
these two cases are presented in the following examples.

EXAMPLE 6.5 DESIGN OF A COMPACT SHAPE
FOR INELASTIC LTB

We wish to design a simply supported beam of span 30 ft that is braced only at the ends. The

beam is subjected to a uniform dead load of 2 kip/ft and a concentrated live load of 15 kips at

the mid-span, as shown in Figure 6.20. The material for the beam is A992 grade 50 steel.

Following the procedure outlined above, we optimize the member for its flexural strength

and then check its adequacy for shear and deflection requirements. Analysis of the beam gives

the required moment and shear strengths as

Ma 5 337:5 kip-ft; Va 5 37:5 kips ðaÞ
Since we require the section to be compact, we impose the following constraints on the width-

thickness ratios of the flange and the web:

λf #λpf and λw #λpw ðbÞ

Since the unbraced length Lb5 30 ft is fairly large, the LTB failure mode must be considered.

First, we assume the LTB to be inelastic (later we will consider it to be elastic) implying that the

following constraints for the unbraced length need to be imposed:

Lp ,Lb # Lr ðcÞ

Live Load 15 kips
15 ft

Dead Load 2 kips/ft

30 ft

FIGURE 6.20 A simply supported beam
subjected to dead and live loads.
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Since the beam is subjected to a nonuniform bending moment, the factor Cb is calculated

using Eq. (6.55f) as 1.19. The nominal strength Mn for the section is given by Eq. (6.63). This

value must not exceed the plastic moment for the section, thus giving the constraint

Mn #Mp ðdÞ

Now the strength constraint of Eq. (6.56) is written as

Ma # 0:6Mn ðeÞ

We also assume that a W14-shape is desired for the member and impose the following lower

and upper limits for the design variables (if other W-shapes for the member are desired, appro-

priate upper and lower limits on the design variables can be imposed):

ð13:7# d# 16:4; 5:0# bf # 16:0; 0:335# tf # 1:89; 0:23# tw # 1:18Þ in ðfÞ

The optimization problem becomes one of finding the design variables d, bf, tf, tw to minimize

the cost function of Eq. (6.84) subject to the constraint in Eqs. (b) through (f). The Excel work-

sheet for the problem is prepared and the Solver is invoked. In the implementation, the con-

straints are normalized with respect to their limit values; for example, the moment strength

constraint of Eq. (e) is normalized as 1# 0.6Mn/Ma. The initial values of the design variables are

set as (16.40, 16.00, 1.89, 1.18). The initial cost function value is 256 lbs/ft. The Solver gives the

following optimum design:

ðd5 16:4; bf 5 12:96; tf 5 0:71; tw 5 0:23Þ in
Weight5 74:1 lbs=ft; Ag 5 21:81 in2; Zx 5 157:0 in3; Sx 5 145:8 in3

ðgÞ

Lp 5 12:1 ft; Lr 5 34:7 ft; Vn 5 113:2 kips; Δ5 0:42 in

Analyzing the optimum design, we observe the following: The moment strength con-

straint, the flange compactness constraint, the upper limit on depth, and the lower limit on

web thickness are active at the optimum point. We also observe that, since the allowable

shear strength of Vn

Ωv
5 113:2

1:5 5 75:5 kips exceeds the required shear strength of 37.5 kips, the

optimum design satisfies the shear strength constraint. Also the live load deflection constraint

is satisfied since the allowable deflection of L/2405 1.5 in exceeds the actual deflection of

0.42 in.

Based on the optimum weight of 74.1 lbs for the section, we select a W143 82 shape.

However, this section has an allowable moment strength of only 270.0 kip-ft, which violates the

required moment strength constraint of Eq. (e). The next two heavier sections are W143 90 and

W143 99; however, both are noncompact. Therefore, we select the W143 109 shape, which has

an allowable bending strength of 464.4 kip-ft satisfying the required moment strength constraint.

All other constraints are also satisfied.

If we relax the constraints on design variables, we can select a W18-shape with the following

limits on the design variables:

ð17:7# d# 20:7; 6:0# bf # 11:6; 0:425# tf # 1:91; 0:30# tw # 1:06Þ in ðhÞ
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The initial values of the design variables are set as (16.40, 12.96, 0.71, 0.23). The initial cost func-

tion value is 74.2 lbs/ft. The Solver gives the following optimum design:

ðd5 18:38; bf 5 11:6; tf 5 0:76; tw 5 0:3Þ in
Weight5 77:0 lbs=ft; Ag 5 22:7 in2; Zx 5 176:6 in3; Sx 5 162 in3

ðiÞ

Lp 5 10:43 ft; Lr 5 30 ft; Vn 5 165:4 kips; Δ5 0:34 in

Analyzing the optimum design, we observe that the moment strength constraint, the upper

limit on the unbraced length, the upper limit on the flange width, and the lower limit on web

thickness are active at the optimum point. Based on the optimum design, we choose a W183 97

section that has an available (allowable) bending strength of 390.9 kip-ft and meets all other con-

straints. Other lighter sections did not meet all of the constraints.

If we further relax the upper bound constraints on design variables, we can select a W21 or a

W24 shape:

ð13:7# d# 25:5; 5:0# bf # 13:0; 0:335# tf # 2:11; 0:23# tw # 1:16Þ in ðjÞ

The initial values of the design variables are set as (16.40, 16.0, 1.89, 1.18). The initial cost func-

tion value is 256.0 lbs/ft. The Solver gives the following optimum design:

ðd5 19:47; bf 5 12:31; tf 5 0:67; tw 5 0:23Þ in
Weight5 70:4 lbs=ft; Ag 5 20:73 in2; Zx 5 174:55 in3; Sx 5 162:1 in3

ðkÞ

Lp 5 11:2 ft; Lr 5 30 ft; Vn 5 134:38 kips; Δ5 0:32 in

Analyzing the optimum design, we observe that the moment strength constraint, the upper

limit on the unbraced length, the upper limit on the flange the compactness, and the lower limit

on the web thickness are active at the optimum point. Based on the optimum design, it is sug-

gested that we use a W213 101 or a W243 117 section in order to meet all of the constraints.

EXAMPLE 6.6 DESIGN OF A COMPACT SHAPE
WITH ELASTIC LTB

Next we require the LTB to be elastic. Therefore, we impose the constraint in Eq. (6.64) and

calculate the nominal strength using Eq. (6.65). Lower and upper limits on the design variables

are set as in Eq. (j). The initial values of the design variables are set as (24.1, 12.8, 0.75, 0.5). The

initial cost function value is 103.6 lbs/ft. The Solver gives the following optimum design:

ðd5 22:15; bf 5 12:06; tf 5 0:0659; tw 5 0:23Þ in
Weight5 70:2 lbs=ft; Ag 5 20:68 in2; Zx 5 195:61 in3; Sx 5 181:28 in3

ðlÞ

Lp 5 10:78 ft; Lr 5 28:07 ft; Vn 5 152:80 kips; Δ5 0:25 in

Analyzing the optimum design, we observe that the moment strength constraint, the upper

limit on web compactness, the upper limit on flange compactness, and the lower limit on web
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thickness are active at the optimum point. Based on the optimum design, it is suggested that we

use a W183 97 section in order to meet all of the constraints.

Based on the solutions in Examples 6.5 and 6.6, it appears that W183 97 is the lightest com-

pact shape for the problem.

EXAMPLE 6.7 DESIGN OF A NONCOMPACT SHAPE

Now we redesign the problem of Example 6.5, assuming the shape to be noncompact. The

web of the section is still required to be compact; therefore, the constraint of Eq. (6.57) is imposed

for the web width-thickness ratio. The flange is required to be noncompact; therefore, the con-

straints of Eq. (6.58) are imposed for the flange width-thickness ratio. The nominal strength for

the section assuming inelastic FLB is calculated using Eq. (6.68). This value is used in the bend-

ing strength constraint of Eq. (e).

We also assume that the LTB for the member is inelastic; therefore, the constraints for the

unbraced length given in Eq. (c) are imposed. The nominal strength for this failure mode is cal-

culated using Eq. (6.63). This is used in another constraint on the required bending strength

given in Eq. (e).

The Excel Solver sheet for Example 6.5 is modified for the noncompact shape. A W18-shape is

desired, so the constraints bound by the design variables, Eq. (h), are imposed. The Solver gives

the following optimum design:

ðd5 18:24; bf 5 11:7; tf 5 0:63; tw 5 0:81Þ in
Weight5 96:9 lbs=ft; Ag 5 28:5 in2; Zx 5 188:6 in3; Sx 5 162:1 in3

ðmÞ

Lp 5 8:61 ft; Lr 5 30:00 ft; Vn 5 442:3 kips; Δ5 0:34 in

The starting point is selected as (15.79, 11.7, 0.50, 0.41), which has a weight of 60.4 lbs/ft.

Analyzing the optimum design, we observe the active constraints to be as follows: The lower

limit on the flange width-thickness ratio, the inelastic LTB moment strength constraint, the upper

bound on the unbraced length, and the upper limit on the flange width. Note that the optimum

weight obtained for the noncompact shape is much greater than that obtained for the compact

shape in Eqs. (i). Based on the solution, a W183 97 shape is suggested for the member.

Although this is a compact shape, it is selected because no noncompact shape near the optimum

weight is available in the AISC Manual.

DISCUSSION

In this section, we formulate the problem of optimizing beams to comply with the AISC
Manual requirements (AISC, 2005). It turns out that these requirements cannot be formulated as
continuous and differentiable functions. Therefore, a derivative-based optimization algorithm
may not be appropriate for the problem; direct search methods are more appropriate.

An approach is presented here to handle these requirements with a derivative-based
optimization method. Basically the problem is formulated as a compact or a noncompact
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shape, and either an inelastic or an elastic LTB condition is imposed. In this way, all of the
problem functions are continuous and differentiable so that a derivative-based optimiza-
tion method can be used. This approach works quite well and yields an optimum design
for each of the formulations.

6.10 OPTIMUM DESIGN OF TELECOMMUNICATION POLES

STEP 1: PROJECT/PROBLEM DESCRIPTION Steel poles are encountered in many practi-
cal applications, such as telecommunication poles, electrical transmission line poles, and
others. The goal of this project is to design a minimum-weight telecommunication steel
pole based on Allowable Stress Design (ASD). The pole is tapered and has a hollow circu-
lar cross-section. It is subjected to horizontal wind loads Fh and ph and gravity dead loads
Fv and pv, as shown in Figure 6.21. These are the main loads that act on the structure due
to wind and the dead load of the platforms, antennas, cables, ladder, and the steel pole
itself. The pole should perform its function safely; that is, the material should not fail
when the loads Fh, ph, Fv, and pv are applied. Also, it should not deflect too much at the
top so that it can perform its function correctly.

The height of the pole is H, the tip diameter is dt, the taper is τ, and the wall thickness
is t, as shown in Figure 6.21. Figure 6.22 shows a real structure installed in the field (cre-
ated by Marcelo A. da Silva).

STEP 2: DATA AND INFORMATION COLLECTION To formulate the problem of optimiz-
ing the design of a telecommunication pole, the information that needs to be collected
includes procedure for analysis of the structure, expressions for stresses, and cross-
sectional properties. In addition, various data for the problem, such as material properties,
wind loads, dead loads, and constraint limits, are needed. To achieve these goals, see the
notation and data defined in Table 6.4.

y

t

z

(b)(a)

H

dt

Fv

Fh

pv phT
ap

er
 τ

FIGURE 6.21 Pole structure and loads.
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Some useful expressions for the structural analysis are

qðzÞ5 463:1 z0:25 ð6:85aÞ
Fh 5CtAtqðHÞ5CtAtð463:1 H0:25Þ ð6:85bÞ

deðzÞ5 dt 1 2τðH2 zÞ ð6:85cÞ
diðzÞ5 deðzÞ2 2t ð6:85dÞ

AðzÞ5 π
4

deðzÞ2 2 diðzÞ2
	 
 ð6:85eÞ

IðzÞ5 π
64

deðzÞ4 2 diðzÞ4
	 
 ð6:85fÞ

SðzÞ5 2IðzÞ
deðzÞ

ð6:85gÞ

phðyÞ5 ½AlcClc 1 deðzÞCp�qðzÞ; z5H2 y ð6:85hÞ
pvðyÞ5 plc 1AðzÞγ; z5H2 y ð6:85iÞ

NðzÞ5 Fv 1

ðH2z

0

pvðyÞdy ð6:85jÞ

MðzÞ5 FhðH2 zÞ1
ðH2z

0

phðyÞðH2 z2 yÞdy ð6:85kÞ

Pole Body

Platform,
Supports and
Antennas

Ladder and
Cables

FIGURE 6.22 Real telecommunication steel pole.
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TABLE 6.4 Data for optimizing the design of a telecommunication pole

Notation Data

Alc Distributed area of ladder and cables, 0.3 m2/m

At Projected area on vertical plane of platforms, supports, and antennas, 10 m2

A(z) Cross-sectional area of pole section at height z, m2

Clc Drag coefficient of wind load acting on ladder and cables, taken as 1

Cp Drag coefficient of wind load acting on pole body, taken as 0.75

Ct Drag coefficient of wind load acting on area At, taken as 1

de External diameter of given pole section, m

di Internal diameter of given pole section, m

dt External diameter of pole tip, m

E Modulus of elasticity, 2103 109 Pa

Fh Wind load at top due to platform, supports, and antennas, N

Fv Dead load at top due to weight of platform, supports, and antennas, taken as 10,400 N

H Height of pole, 30 m

I(z) Moment of inertia of section at height z, m4

lmax Maximum allowable value for ratio de/t

M(z) Bending moment at a height z, N/m

N(z) Axial load at height z, N

plc Self-weight of ladder and cables, taken as 400 N/m

ph(y) Horizontal distributed load at distance y from top, N/m

pv(y) Vertical distributed load at distance y from top, N/m

V0 Basic wind velocity, also called maximum wind velocity, determined as 40 m/s

Voper Operational wind velocity, considered 55% V0, 22 m/s

q Effective wind velocity pressure, N/m2

S(z) Section modulus of pole at height z, m3

t Thickness of pole wall, m

va Allowable tip deflection, taken as 2%H5 0.60 m

v0a Allowable rotation under operational wind loading, taken as 0� 300 5 30
60 3

π
180 5 0:00873 radians

v(z) Horizontal displacement at height z, m

v0(z) Rotation in vertical plane of pole section at height z, radians

v0oper(z) Rotation in vertical plane of section at height z due to operational wind loading, radians

(Continued)
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σðzÞ5 NðzÞ
AðzÞ 1

MðzÞ
SðzÞ ð6:85lÞ

The expression for the effective wind velocity pressure q(z) in Eq. (6.85a) has been
obtained using several factors such as the wind velocity, which depends on the region
where the pole is to be installed, a topographic factor that depends on the surrounding
terrain, and an importance factor for the structure, as given by the NBR-6123 code (ABNT,
1988). The effective wind velocity (V0) is also called the maximum wind velocity, distin-
guished from Voper (operational wind velocity).

Therefore, q(z) in Eq. (6.85a) is also called the maximum wind pressure. The internal
loads, stresses, displacements, rotations, and curvatures derived from q(z) are based on the
maximum wind velocity. The expressions for the loads and moment in Eqs. (6.85h)
through (6.85l) are derived by considering a section at height z, as shown in Figure 6.23.
Note that the vertical load expression in Eq. (6.85i) contains the self-weight of the pole.
This implies that the total axial load and the moment at a point are dependent on the
pole’s design.

TABLE 6.4 Data for optimizing the design of a telecommunication pole (Continued)

Notation Data

vv(z) Curvature in vertical plane of pole section at height z, m21

y Distance from pole tip to given section, m

z Height above ground of given pole section, m

γ Specific weight of steel, 78,500 N/m3

σa Steel allowable stress, 1503 106 Pa (obtained by dividing yield stress by factor of safety larger than 1)

σ(z) Axial stress in pole section at height z, Pa

τ Taper of pole, m/m

H

z

y

dy

FIGURE 6.23 Pole structure � section at height z.
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To develop expressions for the cost and constraint functions, considerable background
information is needed. First, we need to calculate stresses in the pole section at height z,
which requires analysis of the structure. The members are subjected to both bending
moment and axial load, and the stresses of these internal loads are combined in Eq. (6.85l)
to obtain the effective axial stress. For the cantilever pole, the maximum stress occurs at
ground level, where the structure is clamped. To be safe, the effective stress constraint is
imposed at section z5 0. In the present analysis, the effect of the shear load is neglected to
calculate stress and tip deflection. However, this must be taken into account in the design
of the foundation, which is not considered in the present project.

Assuming linearly elastic behavior of the structure, the displacements can be computed
by integration of the differential elastic line equation (Hibbeler, 2007) given as

ElðzÞvvðzÞ5 2MðzÞ ð6:86Þ

with boundary conditions as v(0)5 0 and v0(0)5 0. This differential equation must be inte-
grated twice to calculate the displacements. It is difficult to integrate this equation analyti-
cally since the moment M(z) and the moment of inertia I(z) vary along z. A practical
procedure to accomplish this integration is the trapezoidal rule presented below. For this
purpose the pole is divided into n segments by introducing (n1 1) node points along the
pole axis as {z0, z1, . . . zi, . . . zn}. At each point zi, i . 0, we compute vi5 v(zi), v

0
i5 v0(zi)

and vvi5 vv(zi) using the following integration scheme:

vvi 5 2
MðziÞ
ElðziÞ

v0i 5 v0i21 1
vvi 1 vvi21

2
h

vi 5 vi21 1
v0i 1 v0i21

2
h

ð6:87Þ

where h5 zi � zi21. Once the structural dimensions, material properties, loading, and inter-
nal loads are known, the displacements are calculated from Eqs. (6.87).

One important subject that is not treated in the current formulation of the problem is
the dynamic analysis of this kind of structure. When the pole’s first natural frequency of
vibration is smaller than 1 Hz, the dynamic effects of the wind loads cannot be neglected,
and dynamic analysis of the structure must be performed. In addition, geometric nonlinear
effects should be included for more accurate analysis of the pole. Verification of these
effects is left as a topic of further study.

STEP 3: DEFINITION OF DESIGN VARIABLES Since the height, loading, and material for
the structure are specified, only the cross-sectional dimensions need to be determined to
complete its design. Therefore, the three design variables for the pole are identified as

dt 5 external diameter of tip section, m
t 5 thickness of section wall, m
τ 5 taper of pole, m/m
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Thus the design variable vector is x5 (dt, t, τ).

STEP 4: OPTIMIZATION CRITERION The objective is to minimize the weight of the pole
structure, which is calculated using the following integral:

f 5

ðH
0

AðyÞγdy ð6:88Þ

Carrying out the integration, the weight function is given as

f 5
1

24τ
πγ ððdt 1 2τHÞ3 2 ðdtÞ3Þ2 ððdt 1 2τH2 2tÞ3 2 ðdt 2 2tÞ3Þ	 


; N ð6:89Þ

An approximation of the weight function is given as

f 5
1

3
γH AðHÞ1Að0Þ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðHÞAð0Þ

ph i
; N ð6:90Þ

STEP 5: FORMULATION OF CONSTRAINTS The first constraint for the problem is on the
material failure, which is written as σ(0)#σa. Substituting z5 0 in Eq. (6.85l), we obtain
the stress constraint for the ground-level section (the most stressed) as follows:

Nð0Þ
Að0Þ 1

Mð0Þ
Sð0Þ # σa ð6:91Þ

The second constraint is related to the tip deflection, which must be within its allowable
value:

vðHÞ # va: ð6:92Þ
Note that to obtain v, it is necessary to twice integrate the elastic line equation, Eq. (6.86),
as explained earlier, and va5 0.60 m.

Simple bounds on the design variables are imposed as

0:30# dt # 1:0; m ð6:93aÞ
0:0032# t# 0:0254; m ð6:93bÞ
0# τ# 0:05; m=m ð6:93cÞ

Thus the formulation of the problem is stated as follows: Find the design variables dt, t,
and τ to minimize the cost function of Eq. (6.90), subject to the stress constraint of
Eq. (6.91), the deflection constraint of Eq. (6.92), and the explicit design variable�bound
constraints of Eqs. (6.93a) through (6.93c).

EXAMPLE 6.8 OPTIMUM DESIGN OF POLE

To solve this optimization problem, we use Excel Solver. The Excel worksheet is prepared to

implement all equations of the formulation, and the Solver is invoked. The stress and the dis-

placement constraints are normalized as σ
σa

# 1, and v/va # 1 in implementation. The initial
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values of the design variables are set as (0.400, 0.005, 0.020), where the cost function has a value

of 36,804 N, the maximum stress is 723 106 Pa, and the tip deflection is 0.24 m. Note that the

starting design is feasible and can be improved. The Solver gives the following optimum design:

x*5 (dt5 0.30 m, t5 0.0032 m, τ5 0.018 m/m)

Cost function5 19,730 N

Stress at the base, σ5 1413 106 Pa

Tip deflection, v(30)5 0.60 m

Analyzing the optimum design, we observe that the minimum tip diameter, the minimum

wall thickness, and the tip deflection constraints are active at the optimum point. The Lagrange

multiplier for the tip deflection constraint is 673.

EXAMPLE 6.9 OPTIMUM DESIGN WITH THE TIP ROTATION
CONSTRAINT

In practice, the pole’s antennas must not lose the link with the receiver under operational

wind conditions due to wind velocity, Voper. In this case, the rotation of the antennas must be

smaller than a given limit, called the maximum rotation allowable for the antennas ðv0aÞ.
Figure 6.24 shows this rotational limit constraint. Antenna A is installed on pole A and has a

link with antenna B on pole B. Because the antennas are fixed on the pole, if the poles rotate

more than the allowable value for them, they will lose their link and the system will go off

the air.

For that reason, we impose a new constraint that is related to tip rotation, which must be

within its allowable value:

v0operðHÞ # v0a ð6:94Þ

Note that to obtain v
0
oper, it is necessary to integrate the elastic line equation, Eq. (6.86), for opera-

tional wind loading, as explained earlier. It is noted that for linear analysis we have

v0operðHÞ5 v0ðHÞ3 0:552 ð6:95Þ

Pole A Pole B

Antenna A Antenna B

Link

va′

FIGURE 6.24 Geometrical view of the allow-
able rotation for the antenna.
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where v0(H) is computed using the expressions in Eqs. (6.87). With this, the constraint of

Eq. (6.94) is rewritten as

v0ðHÞ3 0:552 # v0a ð6:96Þ

The optimization problem is now defined by Eqs. (6.90) through (6.93c) and Eq. (6.96).

Starting with the same initial design as for Example 6.8, where the rotation at the top is 0.00507

rad, the Solver gives the following optimum design:

x*5 (dt5 0.5016 m, t5 0.0032 m, τ5 0.015 m/m)

Cost function5 22,447 N

Stress at the base, σ5 1463 106 Pa

Tip deflection, v(30)5 0.47 m

Tip rotation, v0oper(30)5 0.00873 rad

Analyzing the optimum design, we observe that the minimum wall thickness and the tip rota-

tion constraints are active at the optimum point. The Lagrange multiplier for the tip rotation con-

straint is 806.

EXAMPLE 6.10 OPTIMUM DESIGN WITH THE LOCAL
BUCKLING CONSTRAINT

If the wall of the pole is too thin, local buckling can happen, causing catastrophic failure of

the pole. One way to avoid local buckling is to constrain the ratio of diameter to wall thickness

in the design process. Thus the following additional constraint is imposed in the formulation:

deð0Þ=t# lmax ð6:97Þ

where lmax is an upper limit on the diameter over the thickness ratio. For demonstration pur-

poses, it is taken as 200; however, the value depends on the applicable design code. The optimi-

zation problem is now defined by Eqs. (6.90) through (6.93c) and Eq. (6.96) and (6.97). With the

same initial design as for Examples 6.8 and 6.9, the de(0)/t ratio is 320, which violates the local

buckling constraint. The Solver gives the following optimum design:

x*5 (dt5 0.5565 m, t5 0.0053 m, τ5 0.0084 m/m)

Cost function5 31,504 N

Stress at the base, σ5 1503 106 Pa

Tip deflection, v(30)5 0.52 m

Tip rotation, v0oper(30)5 0.00873 rad

Ratio, de(0)/t5 200

Analyzing the optimum design, we observe that the constraints related to the stress at the

base, the tip rotation, and the local buckling are active at the optimum point. The Lagrange mul-

tipliers for the constraints are 180, 1546, and 1438.
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EXERCISES FOR CHAPTER 6

Section 6.3 Excel Solver for Unconstrained Optimization Problems
Solve the following problems using the Excel Solver (choose any reasonable starting point):

6.1 Exercise 4.32 6.2 Exercise 4.39 6.3 Exercise 4.40

6.4 Exercise 4.41 6.5 Exercise 4.42

Section 6.4 Excel Solver for Linear Programming Problems
Solve the following LP problems using the Excel Solver:

6.6 Maximize z5 x11 2x2
subject to2x11 3x2 # 10

x11 x2 # 6

x12 x2 # 2

x11 3x2 $ 6

x1, x2 $ 0

6.7 Maximize z5 x11 4x2
subject to x11 2x2 # 5

x11 x25 4

x12 x2 $ 3

x1, x2 $ 0

6.8 Minimize f5 5x11 4x22 x3
subject to x11 2x22 x3 $ 1

2x11 x21 x3 $ 4

x1, x2 $ 0; x3 is unrestricted in sign

6.9 Maximize z5 2x11 5x22 4.5x31 1.5x4
subject to 5x11 3x21 1.5x3 # 8

1.8x12 6x21 4x31 x4 $ 3

23.6x11 8.2x21 7.5x31 5x45 15

xi $ 0; i5 1 to 4

6.10 Minimize f5 8x2 3x21 15x3
subject to 5x12 1.8x22 3.6x3 $ 2

3x11 6x21 8.2x3 $ 5

1.5x12 4x21 7.5x3 $24.5

2x21 5x3 $ 1.5

x1, x2 $ 0; x3 is unrestricted in sign

6.11 Maximize z5 10x11 6x2
subject to 2x11 3x2 # 90

4x11 2x2 # 80

x2 $ 15

5x11 x25 25

x1, x2 $ 0

Section 6.5 Excel Solver for Nonlinear Programming
6.12 Exercise 3.35 6.13 Exercise 3.50

6.14 Exercise 3.51 6.15 Exercise 3.54
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6.16 Solve the spring design problem for the following data: Applied load (P)5 20 lb.

6.17 Solve the spring design problem for the following data: Number of active coils (N)5 20,

limit on outer diameter of the coil (D0)5 1in, number of inactive coils (Q)5 4.

6.18 Solve the spring design problem for the following data: Aluminum coil with shear modulus

(G)5 4,000,000 psi, mass density (ρ)5 2.58920x102 4 lb-s2/in4, and allowable shear stress

(τa)5 50,000 lb/in2.

Section 6.6 Optimum Design of Plate Girders Using Excel Solver
6.19 Solve the plate girder design problem for the following data: Span length (L)5 35 ft.

6.20 Solve the plate girder design problem for the following data: A36 steel with modulus of

elasticity (E)5 200 GPa, yield stress (sigma_y)5 250 MPa, allowable fatigue stress

(sigma_t)5 243 MPa.

6.21 Solve the plate girder design problem for the following data: Web height (h)5 1.5 m, flange

thickness (tf)5 0.015 m.

Section 6.7 Optimum Design of Tension Members
6.22 Solve the problem of this section where a W14 shape is desired.

6.23 Solve the problem of this section where a W12 shape is desired.

6.24 Solve the problem of this section where a W8 shape is desired, the required strength Pa for

the member is 200 kips, the length of the member is 13 ft, and the material is A992 Grade 50

steel.

6.25 Same as 6.24; select a W10 shape.

Section 6.8 Optimum Design of Compression Members
6.26 Solve the problem of this section where W14 shape is desired.

6.27 Solve the problem of this section where W12 shape is desired and required strength Pa is

1000 kips.

6.28 Design a compression member to carry a load of 400 kips. The length of the member is

26 ft, and the material is A572 Grade 50 steel. The member is not braced. Select a W18

shape.

6.29 Same as 6.24; select a W14 shape. The member is not braced.

6.30 Same as 6.24; select a W12 shape. The member is not braced.

Section 6.9 Optimum Design of Members for Flexure
6.31 Solve the problem of Example 6.5 for a beam of span 40 ft. Assume compact shape and

inelastic LTB.

6.32 Solve the problem of Example 6.5 for a beam of span 40 ft. Assume compact shape and

elastic LTB.

6.33 Solve the problem of Example 6.5 for a beam of span 10 ft. Assume noncompact shape and

inelastic LTB.

6.34 Solve the problem of Example 6.5 for a beam of span 40 ft. Assume noncompact shape and

elastic LTB.

6.35 Design a cantilever beam of span 15 ft subjected to a dead load of 3 kips/ft and a point live

load of 20 kips at the end. The material of the beam is A572 Grade 50 steel. Assume

compact shape and inelastic LTB.
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6.36 Design a cantilever beam of span 15 ft subjected to a dead load of 3 kips/ft and a point live

load of 20 kips at the end. The material of the beam is A572 Grade 50 steel. Assume

compact shape and elastic LTB.

6.37 Design a cantilever beam of span 15 ft subjected to a dead load of 3 kips/ft and a point live

load of 20 kips at the end. The material of the beam is A572 Grade 50 steel. Assume

noncompact shape and inelastic LTB.

6.38 Design a cantilever beam of span 15 ft subjected to a dead load of 1 kips/ft and a point live

load of 10 kips at the end. The material of the beam is A572 Grade 50 steel. Assume

noncompact shape and elastic LTB.

Section 6.10 Optimum Design of Telecommunication Poles
6.39 Solve the problem of Example 6.8 for a pole of height 40 m.

6.40 Solve the problem of Example 6.9 for a pole of height 40 m.

6.41 Solve the problem of Example 6.10 for a pole of height 40 m.
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C H A P T E R

7

Optimum Design with MATLABs

Upon comp le t i on o f th i s chap te r you w i l l b e ab l e t o

• Use the capabilities of the Optimization

Toolbox in MATLAB to solve both

unconstrained and constrained optimization

problems

MATLAB was used in Chapter 3 to graphically solve two variable optimization pro-
blems. In Chapter 4 it was used to solve a set of nonlinear equations obtained as
Karush-Kuhn-Tucker (KKT) optimality conditions for constrained optimization pro-
blems. In this chapter, we describe the capabilities of the Optimization Toolbox in
MATLAB to solve linear, quadratic, and nonlinear programming problems. We start by
describing the basic capabilities of this toolbox. Some operators and syntax used to enter
expressions and data are described. In subsequent sections, we illustrate the use of the
program for unconstrained and constrained optimization problems. Then some engineer-
ing design optimization problems are solved using the program (created by Tae Hee
Lee).

7.1 INTRODUCTION TO THE OPTIMIZATION TOOLBOX

7.1.1 Variables and Expressions

MATLAB can be considered a high-level programming language for numerical compu-
tation, data analysis, and graphics for applications in many fields. It interprets and evalu-
ates expressions entered at the keyboard. The statements are usually in the form
variable=expression. The variables can be scalars, arrays, or matrices. Arrays may store

Note: The original draft of this chapter was provided by Tae Hee Lee. The contribution to this book is very

much appreciated.
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many variables at a time. A simple way to define a scalar, array, or matrix is to use assign-
ment statements as follows:

a5 1; b5 ½1; 1�; c5 ½1; 0; 0; 1; 1; 0; 1; 22; 1� ð7:1Þ
Note that several assignment statements can be entered in one row as in Eq. (7.1).

A semicolon (;) at the end of a statement prevents the program from displaying the results.
The variable a denotes a scalar that is assigned a value of 1; the variable b denotes a 13 2
row vector, and the variable c denotes a 33 3 matrix assigned as follows:

b5 1 1
� �

; c5
1 0 0
1 1 0
1 22 1

2
4

3
5 ð7:2Þ

The semicolons inside the brackets of the expression for c separate the rows, and the
values in the rows can be separated by commas or blanks. MATLAB has a rule that the
variable name must be a single word without spaces, and it must start with a letter followed
by any number of letters, digits, or underscores. It is important to note that variable names
are case sensitive. In addition, there are several built-in variables, for example, pi for the
ratio of the circumference of a circle to its diameter; eps for the smallest number in the
computer; inf for infinity, and so on.

7.1.2 Scalar, Array, and Matrix Operations

The arithmetic operators for scalars in MATALB are: addition (+), subtraction (−),
multiplication (*), division (/), and exponentiation (^). Vector and matrix calculations can
also be organized in a simple way using these operators. For example, multiplication of
two matrices A and B is expressed as A * B. Slight modification of the standard operators
with a “dot” prefix is used for element-by-element operations between vectors and matri-
ces: (.*) for multiplication, (./) for division, and (.^) for exponentiation.

For example, element-by-element multiplication of vectors of the same dimension is
accomplished using the operator .*:

c5 a :� b5
a1b1
a2b2
a3b3

2
4

3
5 ð7:3Þ

Here a, b, and c are column vectors with three elements. For addition and subtraction, ele-
ment-by-element and usual matrix operations are the same. Other useful matrix operators
are: A25A.* A, A215 inv(A), determinant as det(A), and transpose as A0.

7.1.3 Optimization Toolbox

The Optimization Toolbox for MATLAB can solve unconstrained and constrained opti-
mization problems. In addition, it has an algorithm to solve nonsmooth optimization pro-
blems. Some of the optimization algorithms implemented in the Optimization Toolbox are
presented in later chapters. These algorithms are based on the basic concepts of algorithms
for smooth and nonsmooth problems that are presented in Section 6.1. That material
should be reviewed at this point.
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The Optimization Toolbox must be installed in the computer in addition to the basic
MATLAB program before it can be used. Table 7.1 shows some of the functions available
in the toolbox. Most of these optimization routines require m-files (stored in the current
directory) containing a definition of the problem to be solved; several such files are pre-
sented and discussed later. Default optimization parameters are used extensively; how-
ever, they can be modified through an options command available in the program.

The syntax of invoking an optimization function is generally of the form

½x; FunValue; ExitFlag; Output�5fminXð`ObjFun´; . . . ;optionsÞ ð7:4Þ

The left side of the statement represents the quantities returned by the function. These out-
put arguments are described in Table 7.2. On the right side, fminX represents one of the
functions given in Table 7.1. There can be several arguments for the function fminX—for
example, starting values for the variables; upper and lower bounds for the variables;
m-file names containing problem functions and their gradients; optimization algorithm�
related data; and so on. Use of this function is demonstrated in subsequent sections for
various types of problems and conditions. For further explanation of various functions
and commands, extensive online help is available in MATLAB.

TABLE 7.2 Explanation of output from optimization function

Argument Description

x The solution vector or matrix found by the optimization function. If ExitFlag . 0, then x is a
solution; otherwise, x is the latest value from the optimization routine.

FunValue The value of the objective function, ObjFun, at the solution x.

ExitFlag The exit condition for the optimization function. If ExitFlag is positive then the optimization routine
converged to a solution x. If ExitFlag is zero, then the maximum number of function evaluations was
reached. If ExitFlag is negative then the optimization routine did not converge to a solution.

Output The Output structure contains several pieces of information about the optimization process. It
provides the number of function evaluations (Output.iterations), the name of the algorithm used to
solve the problem (Output.algorithm), and Lagrange multipliers for constraints, etc.

TABLE 7.1 Optimization Toolbox functions

Problem Type Formulation Function

One-variable minimization in
fixed intervals

Find x A [xL xU] to minimize f(x) fminbnd

Unconstrained minimization Find x to minimize f(x) fminunc, fminsearch

Constrained minimization Find x to minimize f(x) subject to
Ax # b, Nx5 e

fmincon

gi(x)# 0, i5 1, . . ., m
hj5 0, j5 1, . . ., p
xiL# xi# xiU

Linear programming Find x to minimize f(x)5 cTx subject
to Ax#b, Nx5 e

linprog

Quadratic programming Find x to minimize fðxÞ5 cTx1 1
2 x

THx

subject to Ax#b, Nx5 e

quadprog
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7.2 UNCONSTRAINED OPTIMUM DESIGN PROBLEMS

In this section, we first illustrate the use of the fminbnd function for minimization of a
function of single variable f(x) with bounds on x as xL# x # xU. Then the use of the func-
tion fminunc is illustrated for minimization of a function f(x) of several variables. The m-
files for the problems, containing extensive comments, are included to explain the use of
these functions. Example 7.1 demonstrates use of the function fminbnd for functions of sin-
gle variable, and Example 7.2 demonstrates the use of functions fminsearch and fminunc
for multivariable unconstrained optimization problems.

EXAMPLE 7.1 SINGLE-VARIABLE UNCONSTRAINED
MINIMIZATION

Find x to

Minimize

fðxÞ5 22 4x1 ex; 210# x# 10 ðaÞ

Solution
To solve this problem, we write an m-file that returns the objective function value. Then we

invoke fminbnd, the single-variable minimization function, in fixed intervals through another

m-file that is shown in Table 7.3. The file that evaluates the function, shown in Table 7.4, is called

through fminbnd.

The output from the function is

x=1.3863, FunVal = 0.4548, ExitFlag = 1 . 0 (i.e., minimum was found),

output5 (iterations: 14, funcCount: 14, algorithm: golden section search, parabolic

interpolation).

TABLE 7.3 m-file for calling fminbnd to find single variable minimizer in fixed interval for Example 7.1

% All comments start with %

% File name: Example7_1.m

% Problem: minimize f(x)5 22 4x1 exp(x)

clear all

% Set lower and upper bound for the design variable

Lb = −10; Ub = 10;

% Invoke single variable unconstrained optimizer fminbnd;

% The argument ObjFunction7_1 refers to the m-file that

% contains expression for the objective function

[x,FunVal,ExitFlag,Output] = fminbnd('ObjFunction7_1',Lb,Ub)
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EXAMPLE 7.2 MULTIVARIABLE UNCONSTRAINED
MINIMIZATION

Consider a two-variable problem:

Minimize

fðxÞ5 100ðx2 2 x21Þ2 1 ð12 x1Þ2 starting from xð0Þ 5 ð21:2; 1:0Þ ðaÞ

Solve the problem using different algorithms available in the Optimization Toolbox.

Solution
The optimum solution for the problem is known as x*5 (1.0, 1.0) with f(x*)5 0 (Schittkowski,

1987). The syntax for the functions fminsearch and fminunc used to solve a multivariable uncon-

strained optimization problem is given as follows:

½x;FunValue;ExitFlag;Output�5fminsearch ð`ObjFun´;x0;optionsÞ ðbÞ

½x;FunValue;ExitFlag;Output�5fminunc ð`ObjFun´;x0;optionsÞ ðcÞ
where

ObjFun5 the name of the m-file that returns the function value and its gradient if

programmed

x05 the starting values of the design variables

options5 a data structure of parameters that can be used to invoke various conditions for the

optimization process

fminsearch uses the Simplex search method of Nelder-Mead, which does not require numeri-

cal or analytical gradients of the objective function. Thus it is a nongradient-based method (direct

search method) that can be used for problems where the cost function is not differentiable.

Since fminunc does require the gradient value, with the option LargeScale set to off, it uses the

BFGS quasi-Newton method (refer to Chapter 11 for details) with a mixed quadratic and cubic

line search procedure. The DFP formula (refer to Chapter 11 for details), which approximates the

inverse Hessian matrix, can be selected by setting the option HessUpdate to dfp. The steepest-

descent method can be selected by setting option HessUpdate to steepdesc. fminsearch is generally

less efficient than fminunc. However, it can be effective for problems for which the gradient eval-

uation is expensive or not possible.

TABLE 7.4 m-file for objective function for Example 7.1

% File name: ObjFunction7_1.m

% Example 7.1 Single variable unconstrained minimization

function f = ObjFunction7_1(x)
f = 2 − 4*x + exp(x);
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To solve this problem, we write an m-file that returns the objective function value. Then, the

unconstrained minimization function fminsearch or fminunc is invoked through execution of

another m-file, shown in Table 7.5. The m-file for function and gradient evaluations is shown in

Table 7.6.

The gradient evaluation option can be omitted if automatic evaluation of gradients by the

finite difference method is desired. Three solution methods are used, as shown in Table 7.5. All

methods converge to the known solution.

TABLE 7.5 m-file for unconstrained optimization routines for Example 7.2

% File name: Example7_2

% Rosenbruck valley function with analytical gradient of

% the objective function

clear all
x0=[−1.2 1.0]'; % Set starting values

% Invoke unconstrained optimization routines

% 1. Nelder-Mead simplex method, fminsearch

% Set options: medium scale problem, maximum number of function evaluations

% Note that “. . .” indicates that the text is continued on the next line

options = optimset('LargeScale', 'off', 'MaxFunEvals', 300);
[x1, FunValue1, ExitFlag1, Output1] = . . .

fminsearch ('ObjAndGrad7_2', x0, options)

% 2. BFGS method, fminunc, default option

% Set options: medium scale problem, maximum number of function evaluations,

% gradient of objective function

options = optimset('LargeScale', 'off', 'MaxFunEvals', 300, . . .

'GradObj', 'on');
[x2, FunValue2, ExitFlag2, Output2] = . . .

fminunc ('ObjAndGrad7_2', x0, options)

% 3. DFP method, fminunc, HessUpdate5dfp

% Set options: medium scale optimization, maximum number of function evaluation,

% gradient of objective function, DFP method

options = optimset('LargeScale', 'off', 'MaxFunEvals', 300, . . .
'GradObj', 'on', 'HessUpdate', 'dfp');

[x3, FunValue3, ExitFlag3, Output3] = . . .

fminunc ('ObjAndGrad7_2', x0, options)
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7.3 CONSTRAINED OPTIMUM DESIGN PROBLEMS

The general constrained optimization problem treated by the function fmincon is
defined in Table 7.1. The procedure for invoking this function is the same as for uncon-
strained problems except that an m-file containing the constraint functions must also be
provided. If analytical gradient expressions are programmed in the objective function and
constraint functions m-files, they are declared through the options command. Otherwise,
fmincon uses numerical gradient calculations based on the finite difference method.
Example 7.3 shows the use of this function for an inequality constrained problem.
Equalities, if present, can be included similarly.

EXAMPLE 7.3 CONSTRAINED MINIMIZATION
PROBLEM USING FMINCON IN OPTIMIZATION
TOOLBOX

Solve the problem:

Minimize

fðxÞ5 ðx1 2 10Þ3 1 ðx2 2 20Þ3 ðaÞ
subject to

g1ðxÞ5 1002 ðx1 2 5Þ2 2 ðx2 2 5Þ2 # 0 ðbÞ

g2ðxÞ5 282:812 ðx1 2 6Þ2 2 ðx2 2 5Þ2 # 0 ðcÞ
13# x1 # 100; 0# x2 # 100 ðdÞ

TABLE 7.6 m-file for objective function and gradient evaluations for Example 7.2

% File name: ObjAndGrad7_2.m

% Rosenbrock valley function

function [f, df]= ObjAndGrad7_2(x)

% Re-name design variable x

x1 = x(1); x2 = x(2); %

% Evaluate objective function

f = 100(x2 − x1^2)^2 + (1 − x1)^2;

% Evaluate gradient of the objective function

df(1) = −400*(x2−x1^2)*x1 − 2*(1−x1);
df(2) = 200*(x2−x1^2);
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Solution
The optimum solution for the problem is known as x5 (14.095, 0.84296) and f(x*)5 26961.8

(Schittkowski, 1981). Three m-files for the problem are given in Tables 7.7 through 7.9. The script

m-file in Table 7.7 invokes the function fmincon with appropriate arguments and options.

The function m-file in Table 7.8 contains the cost function and its gradient expressions, and the

function m-file in Table 7.9 contains the constraint functions and their gradients.

The problem is solved successfully, and the output from the function is given as

Active constraints: 5, 6 (i.e., g(1) and g(2))

x5 (14.095, 0.843), FunVal5 26.9618e1 003, ExitFlag5 1 > 0 (i.e., minimum was found)

output5 (iterations: 6, funcCount: 13, stepsize: 1, algorithm: medium scale: SQP,

quasi-Newton, line-search).

Note that the Active constraints listed at the optimum solution are identified with their index

counted as Lb, Ub, inequality constraints, and equality constraints. If Display off is included in

the options command, the set of active constraints is not printed.

TABLE 7.7 m-file for constrained minimizer fmincon for Example 7.3

% File name: Example7_3

% Constrained minimization with gradient expressions available

% Calls ObjAndGrad7_3 and ConstAndGrad7_3

clear all

% Set options; medium scale, maximum number of function evaluation,

% gradient of objective function, gradient of constraints, tolerances

% Note that three periods "..." indicate continuation on next line

options = optimset ('LargeScale', 'off', 'GradObj', 'on', . . .

'GradConstr', 'on', 'TolCon', 1e-8, 'TolX', 1e-8);

% Set bounds for variables

Lb=[13; 0]; Ub = [100; 100];

% Set initial design

x0 = [20.1; 5.84];

% Invoke fmincon; four [ ] indicate no linear constraints in the problem

[x,FunVal, ExitFlag, Output] = . . .

fmincon('ObjAndGrad7_3',x0,[ ],[ ],[ ],[ ],Lb, . . .

Ub,'ConstAndGrad7_3',options)
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TABLE 7.9 Constraint functions and their gradients evaluation m-file for Example 7.3

% File name: ConstAndGrad7_3.m

function [g, h, gg, gh] = ConstAndGrad7_3(x)

% g returns inequality constraints; h returns equality constraints

% gg returns gradients of inequalities; each column contains a gradient

% gh returns gradients of equalities; each column contains a gradient

% Re-name design variables

x1 = x(1); x2 = x(2);

% Inequality constraints

g(1) = 100−(x1−5)^2−(x2−5)^2;
g(2) = −82.81+(x1−6)^2 + (x2−5)^2;

% Equality constraints (none)

h = [ ];

% Gradients of constraints

if nargout . 2
gg(1,1) = −2*(x1−5);
gg(2,1) = −2*(x2−5);
gg(1,2) = 2*(x1−6);
gg(2,2) = 2*(x2−5);
gh = [];

end

TABLE 7.8 m-file for objective function and gradient evaluations for Example 7.3

% File name: ObjAndGrad7_3.m

function [f, gf] = ObjAndGrad7_3(x)

% f returns value of objective function; gf returns objective function gradient

% Re-name design variables x

x1 = x(1); x2 = x(2);

% Evaluate objective function

f = (x1−10)^3 + (x2−20)^3;

% Compute gradient of objective function

if nargout > 1
gf(1,1) = 3*(x1−10)^2;
gf(2,1) = 3*(x2−20)^2;

end
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7.4 OPTIMUM DESIGN EXAMPLES WITH MATLAB

7.4.1 Location of Maximum Shear Stress for Two Spherical Bodies in Contact

PROJECT/PROBLEM STATEMENT There are many practical applications where two
spherical bodies come into contact with each other, as shown in Figure 7.1. We want to
determine the maximum shear stress and its location along the z-axis for a given value of
the Poisson’s ratio of the material, ν5 0.3.

DATA AND INFORMATION COLLECTION The shear stress along the z-axis is calculated
using the principal stresses as (Norton, 2000)

σxz 5
pmax

2

12 2v

2
1

ð11 vÞαffiffiffiffiffiffiffiffiffiffiffiffiffi
11α2

p 2
3

2

α3ffiffiffiffiffiffiffiffiffiffiffiffiffi
11α2

p� �3
0
B@

1
CA ðaÞ

where α5 z/a and a represent the contact-patch radius, as shown in Figure 7.1. The maxi-
mum pressure occurs at the center of the contact patch and is given as

pmax 5
3P

2πa2
ðbÞ

It is well known that the peak shear stress does not occur at the contact surface but
rather at a small distance below it. The subsurface location of the maximum shear stress is
believed to be a significant factor in the surface fatigue failure called pitting.

DEFINITION OF DESIGN VARIABLES The only design variable for the problem is α.

OPTIMIZATION CRITERION The objective is to locate a point along the z-axis where
the shear stress is maximum. Transforming to the standard minimization form and nor-
malizing with respect to pmax, the problem becomes finding α to minimize

P

x

z

x

y

z

a

pmax

FIGURE 7.1 Graphic of spherical bod-
ies in contact and pressure distribution
on contact patch.
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fðαÞ5 2
σxz

pmax
ðcÞ

FORMULATION OF CONSTRAINTS There are no constraints for the problem except
bounds on the variable α taken as 0 # α # 5.

SOLUTION

The exact solution for the problem is given as

σxz

pmax max
5

1

2

12 2v

2
1

2

9
ð11 vÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð11 vÞ

p� �
at α5

ffiffiffiffiffiffiffiffiffiffiffiffiffi
21 2v

72 2v

r					 ðdÞ

This is a single-variable optimization problem with only lower and upper bounds on the
variable. Therefore, the function fminbnd in the Optimization Toolbox can be used to solve
the problem. Table 7.10 shows the script m-file that invokes the function fminbnd, and
Table 7.11 shows the function m-file that evaluates the function to be minimized. The script
m-file also contains commands to plot the shear stress as a function of z, which is shown in
Figure 7.2. The optimum solution matches the exact solution for ν5 0.3 and is given as

alpha5 0:6374; FunVal5 20:3329 ½α� 5 0:6374; fðα�Þ5 20:3329� ðeÞ

TABLE 7.10 m-file to invoke function fminbnd for spherical contact problem

% File name: sphcont_opt.m

% Design variable: ratio of the max shear stress location to

% size of the contact patch

% Find location of the maximum shear stress along the z-axis

clear all

% Set lower and upper bound for the design variable

Lb = 0; Ub = 5;

% Plot normalized shear stress distribution along the z-axis in spherical contact

z = [Lb: 0.1: Ub]';
n = size (z);
for i = 1: n
outz(i) = −sphcont_objf(z(i));
end
plot(z, outz); grid
xlabel ('normalized depth z/a');
ylabel ('normalized shear stress');

% Invoke the single-variable unconstrained optimizer

[alpha, FunVal, ExitFlag, Output] = fminbnd ('sphcont_objf', Lb, Ub)

2857.4 OPTIMUM DESIGN EXAMPLES WITH MATLAB

II. NUMERICAL METHODS FOR CONTINUOUS VARIABLE OPTIMIZATION



7.4.2 Column Design for Minimum Mass

PROJECT/PROBLEM STATEMENT As noted in Section 2.7, columns are used as structural
members in many practical applications. Many times such members are subjected to eccen-
tric loads, such as those applied by a jib crane. The problem is to design a minimum-mass
tubular column that is subjected to an eccentric load, as shown in Figure 7.3. The cross-
section of the column is a hollow circular tube with R and t as the mean radius and wall
thickness, respectively.

DATA AND INFORMATION COLLECTION The notation and the data for the problem
are given as follows:

P Load, 100 kN
L Length, 5 m
R Mean radius, m
E Young’s modulus, 210 GPa
σa Allowable stress, 250 MPa

TABLE 7.11 m-file for evaluation of objective function for the spherical contact problem

% File name5 sphcont_objf.m

% Location of max shear stress along z-axis for spherical contact problem

function f = sphcont_objf(alpha)

% f52shear stress/max pressure

nu = 0.3; % Poisson's ratio
f = −0.5*((1−2*nu)/2 + (1+nu)*alpha/sqrt(1+alpha^2)− . . .

1.5*(alpha/sqrt(1+alpha^2))^3);
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FIGURE 7.2 Normalized shear stress
along the z-axis.
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e Eccentricity (2% of radius), 0.02R, m
Δ Allowable lateral deflection, 0.25 m
ρ Mass density, 7850 kg/m3

A Cross-sectional area, 2πRt, m2

I Moment of inertia, πR3t, m4

C Distance to the extreme fiber, R1 1
2t; m

An analysis of the structure yields the following design equations:

Normal stress:

σ5
P

A
11

ec

k2
sec

L

k

ffiffiffiffiffiffiffi
P

EA

r !" #
; k2 5

I

A
ðaÞ

Buckling load:

Pcr 5
π2EI

4L2
ðbÞ

Deflection:

δ5 e sec L

ffiffiffiffiffi
P

EI

r !
2 1

" #
ðcÞ

DEFINITION OF DESIGN VARIABLES Two design variables for the problem are defined as

R5mean radius of the tube, m
t5wall thickness, m

2R

t

e

P

L

FIGURE 7.3 Configuration of vertical column
with an eccentric load.
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OPTIMIZATION CRITERION The objective is to minimize the mass of the column, which
is given as

fðxÞ5 ρLA5 ð7850Þð5Þð2πRtÞ; kg ðdÞ

FORMULATION OF CONSTRAINTS Constraints for the problem are on performance of
the structure, the maximum radius-to-thickness ratio, and the bounds on the radius and
thickness:

Stress constraint:

σ#σa ðeÞ
Buckling load constraint:

P#Pcr ðfÞ
Deflection constraint:

δ#Δ ðgÞ
Radius/thickness constraint:

R

t
# 50 ðhÞ

Bounds on variables:

0:01#R# 1; 0:005# t# 0:2 ðiÞ

SOLUTION

Let us redefine the design variables and other parameters for MATLAB as

x1 5R; x2 5 t ðjÞ

c5 x1 1
1

2
x2; e5 0:02x1 ðkÞ

A5 2πx1x2; I5πx31x2; k2 5
I

A
5

x21
2

ðlÞ

All constraints are normalized and rewritten using these redefined design variables.
Therefore, the optimization problem is stated in the standard form as follows:

Minimize

fðxÞ5 2πð5Þð7850Þx1x2 ðmÞ
subject to

g1ðxÞ5 P

2πx1x2σa
11

23 0:02ðx1 1 0:5x2Þ
x1

sec

ffiffiffi
2

p
L

x1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

Eð2πx1x2Þ

s !" #
2 1# 0 ðnÞ
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g2ðxÞ5 12
π2Eðπx31x2Þ

4L2P
# 0 ðoÞ

g3ðxÞ5
0:02x1
Δ

sec L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

Eðπx31x2Þ

s !
2 1

" #
2 1# 0 ðpÞ

g4ðxÞ5 x1
50x2

2 1# 0 ðqÞ

0:01# x1 # 1; 0:005# x2 # 0:2 ðrÞ

The problem is solved using the fmincon function in the Optimization Toolbox.
Table 7.12 shows the script m-file for invoking this function and setting various options
for the optimization process. Tables 7.13 and 7.14 show the function m-files for the objec-

TABLE 7.12 m-file for invoking minimization function for column design problem

% File name 5 column_opt.m

clear all

% Set options

options = optimset ('LargeScale', 'off', 'TolCon', 1e-8, 'TolX', 1e − 8);

% Set the lower and upper bounds for design variables

Lb = [0.01 0.005]; Ub = [1 0.2];

% Set initial design

x0 = [1 0.2];

% Invoke the constrained optimization routine, fmincon

[x, FunVal, ExitFlag, Output] = ...
fmincon('column_objf', x0, [], [], [], [], Lb, Ub, 'column_conf', options)

TABLE 7.13 m-file for objective function for the minimum-mass column design problem

% File name 5 column_objf.m

% Column design

function f = column_objf (x)

% Rename design variables

x1 = x(1); x2 = x(2);

% Set input parameters

L = 5.0; % length of column (m)
rho = 7850; % density (kg/m^3)

f = 2*pi*L*rho*x1*x2; % mass of the column
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tive and constraint functions, respectively. Note that analytical gradients are not provided
for the problem functions.

The output from the function is given as

Active Constraints: 2, 5, that is, the lower limit for thickness and g(1).
x5 (0.0537, 0.0050), FunVal5 66.1922, ExitFlag5 1, Output5 (iterations: 31, funcCount:

149, stepsize: 1, algorithm: medium-scale: SQP, Quasi-Newton, line-search).

7.4.3 Flywheel Design for Minimum Mass

PROJECT/PROBLEM STATEMENT Shafts are used in practical applications to transfer
torque from a source point to another point. However, the torque to be transferred can fluc-
tuate, causing variations in the angular speed of the shaft, which is not desirable. Flywheels
are used on the shaft to smooth out these speed variations (Norton, 2000; Shigley and
Mischke, 2001). The purpose of this project is to design a flywheel to smooth out variations
in the speed of a solid shaft of radius ri. The flywheel-shaft system is shown in Figure 7.4.
The input torque function, which varies during a cycle, is shown in Figure 7.5. The torque
variation about its average value is shown there as a function of the shaft angle from 0 to
360 degrees. The kinetic energy due to this variation is obtained by integrating the torque
pulse above and below its average value (shaded area) during the cycle and is given as
Ek5 26,105 in�lb. The shaft is rotating at a nominal angular speed of ω5 800 rad/s.

DATA AND INFORMATION COLLECTION One cycle of torque variation shown in
Figure 7.5 is assumed to be repetitive and, thus, representative of the steady-state

TABLE 7.14 m-file for constraint functions for the column design problem

% File name 5 column_conf.m

% Column design

function [g, h] 5 column_conf (x)

x1 = x(1); x2 = x(2);

% Set input parameters

P = 50000; % loading (N)
E = 210e9; % Young's modulus (Pa)
L = 5.0; % length of the column (m)
Sy = 250e6; % allowable stress (Pa)
Delta = 0.25; % allowable deflection (m)

% Inequality constraints

g(1) = P/(2*pi*x1*x2)*(1 + . . .

2*0.02*(x1+x2/2)/x1*sec(5*sqrt(2)/x1*sqrt(P/E/(2*pi*x1*x2))))/Sy − 1;
g(2) = 1 − pi^3*E*x1^3*x2/4/L^2/P;
g(3) = 0.02*x1*(sec(L*sqrt(P/(pi*E*x1^3*x2))) − 1)/Delta − 1;
g(4) = x1/x2/50 − 1;

% Equality constraint (none)

h = [];
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condition. The desired coefficient of fluctuation is assumed to be 0.05 (Cf). The coefficient
of fluctuation represents the ratio of variation of angular velocity to the nominal angular
velocity: Cf5 (ωmax2ωmin)/ω. The system is assumed to be in continuous operation with
minimal start-stop cycles. The minimum-mass moment of inertia for the flywheel is deter-
mined using the required change in kinetic energy, Ek, specified earlier, as

Is 5
Ek

Cfω2
5

26; 105

0:05ð800Þ2 5 0:816 lb�in�s2 ðaÞ

The design data and equations needed to formulate the minimum-mass flywheel prob-
lem are given as

γ Specific weight, 0.28 lb/in3

G Gravitational constant, 386 in/s2

Sy Yield stress, 62,000 psi
ω Nominal angular velocity, 800 rad/s

Shaft angle 0 

π2

Torque

Average 

rms 

FIGURE 7.5 Fluctuation about the
average value of input torque for
one cycle.

t

ri

ro

r 

FIGURE 7.4 Flywheel-shaft system.
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ν Poisson’s ratio, 0.28
ri Inner radius of flywheel, 1.0 in
ro Outer radius of flywheel, in
t Thickness of flywheel, in

Some useful expressions for the flywheel are

Mass moment of inertia of flywheel:

Im 5
π
2

γ
g
ðr4o 2 r4i Þt; lb�in�s2 ðbÞ

Tangential stress in flywheel at radius r:

σt 5
γ
g
ω231 v

8
r2i 1 r2o 1

r2i r
2
o

r2
2
11 3v

31 v
r2

� �
; psi ðcÞ

Radial stress in flywheel at radius r:

σr 5
γ
g
ω231 v

8
r2i 1 r2o 2

r2i r
2
o

r2
2 r2

� �
; psi ðdÞ

von Mises stress:

σ0 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
r 2σrσt 1σ2

t

q
; psi ðeÞ

DEFINITION OF DESIGN VARIABLES The two design variables for the problem are
defined as

ro5 outer radius of the flywheel, in
t5 thickness of the flywheel, in

OPTIMIZATION CRITERION The objective of the project is to design a flywheel of
minimum mass. Since mass is proportional to material volume, we want to minimize the
volume of the flywheel, which is given as

f 5πðr2o 2 r2i Þt; in3 ðfÞ

FORMULATION OF CONSTRAINTS Performance and other constraints are expressed as

Mass moment of inertia requirement:

Im $ Is ðgÞ
von Mises stress constraint:

σ0 #
1

2
Sy ðhÞ

Limits on design variables:

4:5# ro # 9:0; 0:25# t# 1:25 ðiÞ
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SOLUTION

The problem is solved using the fmincon function in the Optimization Toolbox.
Table 7.15 shows the script m-file that invokes the fmincon function for the flywheel prob-
lem. Table 7.16 shows the function m-file that calculates the problem’s objective function.
Table 7.17 shows the function m-file for calculation of the constraints. Note that the von
Mises stress constraint is imposed at the point of maximum stress. Therefore, this maxi-
mum is calculated using the fminbnd function. Table 7.18 shows the function m-file that
calculates the von Mises stress. This file is called by the constraint evaluation function.
Also note that all constraints are entered in the normalized “# ” form. The solution and
other output from the function are given as follows:

Active constraints are 2 and 5 (i.e., lower bound on thickness and g(1))
ro*5 7.3165 in, t*5 0.25 in, f*5 13.1328, Output5 [iterations: 8, funcCount: 37]

TABLE 7.15 m-file to invoke constrained minimization routine for flywheel design problem

% File name 5 flywheel_opt.m

% Flywheel design

% Design variables: outside radius (ro), and thickness (t)

clear all

% Set options

options = optimset ('LargeScale', 'off');

% Set limits for design variables

Lb = [4.5, 0.25]; % lower limit
Ub = [9, 1.25]; % upper limit

% Set initial design

x0 = [6, 1.0];

% Set radius of shaft

ri = 1.0;
[x, FunVal, ExitFlag, Output] = ...

fmincon('flywheel_objf', x0, [], [], [], [], Lb, Ub, 'flywheel_conf', options, ri)

TABLE 7.16 m-file for objective function for flywheel design problem

% File name 5 flywheel_objf.m

% Objective function for flywheel design problem

function f = flywheel_objf(x, ri)

% Rename the design variables x

ro = x(1);
t = x(2);
f = pi*(ro^2 − ri^2)*t; % volume of flywheel
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EXERCISES FOR CHAPTER 7*

Formulate and solve the following problems.

7.1 Exercise 3.34 7.2 Exercise 3.35 7.3 Exercise 3.36

7.4 Exercise 3.50 7.5 Exercise 3.51 7.6 Exercise 3.52

7.7 Exercise 3.53 7.8 Exercise 3.54

7.9 Consider the cantilever beam-mass system shown in Figure E7.9. Formulate and solve the

minimum weight design problem for the rectangular cross section so that the fundamental

TABLE 7.17 m-file for constraint functions for flywheel design problem

% Constraint functions for flywheel design problem

function [g, h] = flywheel_conf(x, ri)

%Rename design variables x

ro = x(1);
t = x(2);

% Constraint limits

Is = 0.816;
Sy = 62000; % yield strength

% Normalized inequality constraints

g(1) = 1 − pi/2*(0.28/386)*(ro^4 − ri^4)*t/Is;

% Evaluate maximum von Mises stress

options = [];
[alpha, vonMS] = fminbnd('flywheel_vonMs', ri, ro, options, ri, ro);
g(2) = − vonMS/(0.5*Sy) − 1;

% Equality constraint (none)

h = [];

TABLE 7.18 m-file for computation of maximum von Mises stress for the current design

% File name 5 flywheel_vonMS.m

% von Mises stress

function vonMS = flywheel_vonMS (x, ri, ro)
temp = (0.28/386)*(800)^2*(3+0.28)/8;

% Tangential stress

st = temp*(ri^2 + ro^2 + ri^2*ro^2/x^2 − (1+3*0.28)/(3+0.28)*x^2 );

% Radial stress

sr = temp*(ri^2 + ro^2 − ri^2*ro^2/x^2 − x^2); % radial stress
vonMS = −sqrt(st^2 − st*sr + sr^2); % von Mises stress
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vibration frequency is larger than 8rad/s and the cross-sectional dimensions satisfy the

limitations

0:5 # b # 1:0; in

0:2 # h # 2:0; in
ðaÞ

Use a nonlinear programming algorithm to solve the problem. Verify the solution graphically

and trace the history of the iterative process on the graph of the problem. Let the starting

point be (0.5, 0.2). The data and various equations for the problem are as shown in the

following.

Fundamental vibration frequency ω5
ffiffiffiffiffiffiffiffiffiffi
ke=m

p
rad=s ðbÞ

Equivalent spring constant ke
1

ke
5

1

k
1

L3

3EI
ðcÞ

Mass attached to the spring m5W=g ðdÞ
Weight attached to the spring W 5 50 lb ðeÞ
Length of the beam L5 12 in ðfÞ
Modulus of elasticity E5 ð33 107Þpsi ðgÞ
Spring constant k5 10 lb=in ðhÞ
Moment of inertia I; in4 ðiÞ
Gravitational constant g; in=s2 ðjÞ

7.10 A prismatic steel beam with symmetric I cross section is shown in Figure E7.10. Formulate

and solve the minimum weight design problem subject to the following constraints:

1. The maximum axial stress due to combined bending and axial load effects

should not exceed 100 MPa.

2. The maximum shear stress should not exceed 60 MPa.

3. The maximum deflection should not exceed 15 mm.

4. The beam should be guarded against lateral buckling.

5. Design variables should satisfy the limitations b$ 100 mm, t1# 10 mm,

t2# 15 mm, h# 150 mm.

Solve the problem using a numerical optimization method, and verify the solution using KKT

necessary conditions for the data shown after the figures on the next page.

y

x

k

h
b

L
A

A

Section A–A

W

FIGURE E7.9 Cantilever beam with spring-mass
at the free end.

295EXERCISES FOR CHAPTER 7

II. NUMERICAL METHODS FOR CONTINUOUS VARIABLE OPTIMIZATION



Modulus of elasticity, E5 200 GPa

Shear modulus, G5 70 GPa

Load, P5 70 kN

Load angle, θ5 45�

Beam length, L5 1.5 m

7.11 Shape optimization of a structure. The design objective is to determine the shape of the

three-bar structure shown in Figure E7.11 to minimize its weight (Corcoran, 1970). The

design variables for the problem are the member cross-sectional areas A1, A2, and A3 and

the coordinates of nodes A, B, and C (note that x1, x2, and x3 have positive values in the

figure; the final values can be positive or negative), so that the truss is as light as possible

while satisfying the stress constraints due to the following three loading conditions:

Condition no. Load Pj Angle θj
j (lb) (degrees)

1 40,000 45
2 30,000 90
3 20,000 135

y

P

x
θ

h

b

L A

A

Section A–A

t2

t1
FIGURE E7.10 Graphic of a cantilever
I beam. Design variables b, t1, t2, and h.
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1 3
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L

v

FIGURE E7.11 A three-bar structure�shape
optimization graphic.
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The stress constraints are written as

25000 # σ1j # 5000; psi

220;000 # σ2j # 20;000; psi

25000 # σ3j # 5000; psi

where j5 1, 2, 3 represents the index for the three loading conditions and the stresses are

calculated from the following expressions:

σ1j 5
E

L1
uj cosα1 1 vj sinα1

� �
5

E

L21
ðujx1 1 vjLÞ

σ2j 5
E

L2
uj cosα2 1 vj sinα2

� �
5

E

L22
ðujx2 1 vjLÞ

σ3j 5
E

L3
uj cosα3 1 vj sinα3

� �
5

E

L23
ð2ujx3 1 vjLÞ

ðaÞ

where L5 10 in and

L1 5 length of member 15
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 1 x21

q
L2 5 length of member 25

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 1 x22

q
L3 5 length of member 35

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 1 x23

q ðbÞ

and uj and vj are the horizontal and vertical displacements for the jth loading

condition determined from the following linear equations:

k11 k12
k21 k22


 �
uj
vj


 �
5

Pj cos θj
Pj sin θj


 �
; j5 1; 2; 3 ðcÞ

where the stiffness coefficients are given as (E5 3.0E1 07psi)

k11 5E
A1x

2
1

L31
1

A2x
2
2

L32
1

A3x
2
3

L33

0
@

1
A

k12 5E
A1Lx1
L31

1
A2Lx2
L32

2
A3Lx3
L33

0
@

1
A5 k21

k22 5E
A1L2

L31
1

A2L2

L32
1

A3L3

L33

0
@

1
A

ðdÞ

Formulate the design problem and find the optimum solution starting from the point

A1 5 6:0; A2 5 6:0; A3 5 6:0

x1 5 5:0; x2 5 0:0; x3 5 5:0
ðeÞ

Compare the solution with that given later in Table 14.7.
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FIGURE E7.12 Schematic arrangement of a
nine-speed gear train.

7.12 Design synthesis of a nine-speed gear drive. The arrangement of a nine-speed gear train is

shown in Figure E7.12. The objective of the synthesis is to find the size of all gears from the

mesh and speed ratio equations such that the size of the largest gears are kept to a minimum

(Osman et al., 1978). Because of the mesh and speed ratio equations, it is found that only

the following three independent parameters need to be selected:

x1 5 gear ratio; d=a

x2 5 gear ratio; e=a

x3 5 gear ratio; j=a

Because of practical considerations, it is found that the minimization of jx2 2 x3j
results in the reduction of the cost of manufacturing the gear drive.

The gear sizes must satisfy the following mesh equations:

φ2x1ðx1 1 x3 2 x2Þ2 x2x3 5 0

φ3x1 2 x2ð11 x2 2 x1Þ5 0
ðaÞ

where φ is the step ratio in speed. Find the optimum solution for the problem for two

different values of φ as
ffiffiffi
2

p
and (2)1/3.
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C H A P T E R

8

Linear Programming Methods
for Optimum Design

Upon comp le t i on o f th i s chap te r, you wi l l be ab l e to

• Transform a linear programming problem

into the standard form

• Explain terminology and concepts related to

linear programming problems

• Use the two-phase Simplex method to solve

linear programming problems

• Perform postoptimality analysis for linear

programming problems

An optimum design problem having linear cost and constraint functions in the design
variables is called a linear programming (LP) problem. Linear programming problems arise
in some fields of engineering such as water resources, systems engineering, traffic flow
control, resources management, and transportation engineering. In the areas of aerospace,
automotive, structural, or mechanical system design, most problems are not linear.
However, one way of solving nonlinear programming (NLP) problems is to transform
them into a sequence of linear programs (Chapter 12).

In addition, some NLP methods solve an LP problem during their iterative solution pro-
cesses. Thus, linear programming methods are useful in many applications and must be
clearly understood. This chapter describes the basic theory and the concepts for solving
such problems.

In Section 2.11, a general mathematical model for optimum design of nonlinear problems
was defined to minimize a cost function subject to equality and “# ” inequality constraints.
In Chapter 4, a general theory of optimum design for treating the model was described.
That theory can also be used to solve LP problems. However, more efficient and elegant
numerical methods are available to solve the LP problem directly. Since there are numerous
LP problems in the real world, it is worthwhile to discuss these methods in detail.

In this chapter, we will first define a standard LP problem that is different from the
standard NLP problem defined in Chapter 2. Then details of the Simplex method are
described to show the numerical steps needed to solve LP problems. Before attempting to
implement the method in a computer program, however, standard packages for solving
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LP problems must be investigated. Many programs are available to treat such problems—
for example, Excel, MATLAB, LINDO (Schrage, 1991).

It is noted here that the subject of linear programming is well developed and several
excellent full-length textbooks are available on the subject. These books may be consulted
for a more in-depth treatment of the subject.

8.1 LINEAR FUNCTIONS

Cost Function

Any linear function f(x) of k variables x, such as the cost function, has only first-degree
terms and is written in the expanded, summation or matrix form as:

fðxÞ5 c1x1 1 c2x2 1?1 ckxk 5
Xk

i51

cixi 5 cTx ð8:1Þ

where ci, i5 1 to k are constants.

Constraints

All functions of an LP problem can be represented in the form of Eq. (8.1). However,
when there are multiple linear functions, the constants ci must be represented by double
subscripts rather than just one subscript. We will use the symbols aij to represent constants
in the constraint expressions. The ith linear constraint involving k design variables, xj, j5 1
to k has one of the following three possible forms, “# ,” “5 ,” or “$ ” (written in
expanded or summation notation):

ai1x1 1?1 aikxk # bi or
Xk
j51

aijxj # bi ð8:2Þ

ai1x1 1?1 aikxk 5 bi or
Xk

j51

aijxj 5 bi ð8:3Þ

ai1x1 1?1 aikxk $ bi or
Xk

j51

aijxj $ bi ð8:4Þ

where aij and bi are known constants. The right sides bi of the constraints are sometimes
called the resource limits.

8.2 DEFINITION OF A STANDARD LINEAR
PROGRAMMING PROBLEM

8.2.1 Standard LP Definition

Linear programming problems may have equality as well as inequality constraints.
Also, many problems require maximization of a function, whereas others require
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minimization. Although the standard LP problem can be defined and treated in several dif-
ferent ways, here we define it as minimization of a cost function with equality constraints and
non-negativity of design variables. This definition will be used to describe the method (the
Simplex method) to solve LP problems. The form is not as restrictive as it may appear
since all other LP problems can be transcribed into it. We will explain the process of tran-
scribing a given LP problem into the standard form.

Expanded Form of the Standard LP Problem

For notational clarity, let x represent an n-vector consisting of the original design vari-
ables and any additional variables used to transcribe the problem into the standard form.
The standard LP problem is defined as finding the variables xi, i5 1 to n to

Minimize

f 5 c1x1 1 c2x2 1?1 cnxn ð8:5Þ
subject to the m independent equality constraints

a11x1 1 a12x2 1?1 a1nxn 5 b1

a21x1 1 a22x2 1?1 a2nxn 5 b2

: : ? : :

: : ? : :

am1x1 1 am2x2 1?1 amnxn 5 bm

ð8:6Þ

with bi $ 0, i5 1 to m, and non-negativity constraints on the variables

xj $ 0; j5 1 to n ð8:7Þ
The quantities bi $ 0, cj, and aij (i5 1 to m and j5 1 to n) are known constants, and m

and n are positive integers. Note that all bi are required to be positive or, at the most, zero.
This is required while developing the algorithm to solve the LP problem, as we will
see later.

Summation Form of the Standard LP Problem

The standard LP problem can also be written in the summation notation as finding the
variables xi, i5 1 to n to

Minimize

f 5
Xn
i51

cixi ð8:8Þ

subject to m independent equality constraints

Xn
j51

aijxj 5 bi; bi $ 0; i5 1 to m ð8:9Þ

and the non-negativity constraints of Eq. (8.7).
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Matrix Form of the Standard LP Problem

Matrix notation may also be used to define the standard LP problem as finding the
n-vector x to

Minimize
f 5 cTx ð8:10Þ

subject to the constraints

Ax5b; b $ 0 ð8:11Þ
x $ 0 ð8:12Þ

where A5 [aij] is an m3 n matrix, c and x are n-vectors, and b is an m-vector. Note that
the vector inequalities, such as b $ 0 in Eq. (8.11), are assumed to be applied to each com-
ponent of the vector throughout the text. Also, it is assumed that the matrix A has full
row rank; that is, all constraints are linearly independent.

8.2.2 Transcription to Standard LP

The formulations given in Eqs. (8.5) through (8.12) are more general than what may
appear at first sight because all LP problems can be transcribed into them. “# type” and
“$ type” inequalities can be converted to equalities using slack and surplus variables.
Unrestricted variables can be decomposed into the difference of two non-negative vari-
ables. Maximization of functions can also be routinely treated. These transformations are
explained in the following paragraphs.

Non-Negative Constraint Limits

The resource limits (right side of constraints) in the standard LP are assumed to be
always non-negative (i.e., bi $ 0). If any bi is negative, it can be made non-negative by
multiplying both sides of the constraint by 21. Note, however, that multiplication by 21
changes the sense of the original inequality: “# type” becomes “$ type” and vice versa.
For example, a constraint x11 2x2 #22 must be transformed as 2x12 2x2 $ 2 to have a
non-negative right side.

Treatment of Inequalities

Since only equality constraints are treated in standard linear programming, the inequal-
ities in Eqs. (8.2) and (8.4) must be converted to equalities. This is no real restriction since
any inequality can be converted to equality by introducing a non-negative slack or surplus
variable, as explained in the following paragraphs. Note also that since all bi are required
to be non-negative in Eq. (8.4), it is not always possible to convert “$ ” inequalities to the
“# form” and keep bi $ 0. In Chapters 2 through 5, this was done, where a standard
optimization problem was defined with only “# type” constraints. However, in this chap-
ter, we will have to explicitly treat “$ type” linear inequalities with non-negative right
sides. It will be seen later that “$ type” constraints do require a special treatment in the
LP method.

302 8. LINEAR PROGRAMMING METHODS FOR OPTIMUM DESIGN

II. NUMERICAL METHODS FOR CONTINUOUS VARIABLE OPTIMIZATION



Treatment of “# Type” Constraints

For the ith “# type” constraint in Eq. (8.2) with a non-negative right side, we introduce
a non-negative slack variable si $ 0 and convert it to an equality as

ai1x1 1?1 aikxk 1 si 5 bi; bi $ 0; si $ 0 ð8:13Þ
We introduced the idea of slack variables in Chapter 4. There, si

2 was used as a slack
variable instead of si. That was done to avoid the additional constraint si $ 0. However, in
LP problems we cannot use si

2 as a slack variable because it makes the problem nonlinear.
Therefore, we will use si as a slack variable along with the additional constraint si $ 0. For
example, a constraint 2x12 x2 # 4 will be transformed into 2x12 x21 s15 4 with s1 $ 0 as
its slack variable.

Treatment of “$ Type” Constraints

Similarly, the ith “$ type” constraint in Eq. (8.4) with a non-negative right side is con-
verted to equality by subtracting a non-negative surplus variable si $ 0, as

ai1x1 1?1 aikxk 2 si 5 bi; bi $ 0; si $ 0 ð8:14Þ
The idea of a surplus variable is very similar to that of a slack variable. For the “$ type”
constraint, the left side always has to be greater than or equal to the right side, so we
must subtract a non-negative variable to transform it into an equality. For example, a con-
straint 2x11 2x2 $ 2 will be transformed as 2x11 2x22 s15 2 with s1 $ 0 as its surplus
variable.

The slack and surplus variables are additional unknowns that must be determined as
a part of the solution for the LP problem. At the optimum point, if the slack or
surplus variable si is positive, the corresponding constraint is inactive; if si is zero,
it is active.

Unrestricted Variables

In addition to the equality constraints, we require that all design variables to be non-
negative in the standard LP problem (i.e., xi $ 0, i5 1 to k). If a design variable xj is unre-
stricted in sign, it can always be written as the difference of two non-negative variables:

xj 5 x1j 2 x2j ; x1j $ 0; x2j $ 0 ð8:15Þ
This decomposition is substituted into all equations, and x1j and x2j are treated as

unknowns in the problem. At the optimum, if x1j $ x2j then xj is non-negative, and if
x1j # x2j, then xj is nonpositive, as seen in Eq. (8.15).

Splitting each free variable into its positive and negative parts increases the
dimension of the design variable vector by one.

Maximization of a Function

Maximization of functions can be treated routinely. For example, if the objective is to
maximize a function, we simply minimize its negative. That is
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Maximize

z5 ðd1x1 1 d2x2 1 . . . 1 dnxnÞ3minimize f 52ðd1x1 1 d2x2 1 . . . 1 dnxnÞ ð8:16Þ
Note that a function that is to be maximized is denoted as z in this chapter.

It is henceforth assumed that the LP problem has been converted into the standard form
defined in Eqs. (8.5) through (8.12). Example 8.1 shows conversion to the standard LP form.

EXAMPLE 8.1 CONVERSION TO STANDARD LP FORM

Convert the following problem into the standard LP form:

Maximize
z5 2y1 1 5y2 ðaÞ

subject to
3y1 1 2y2 # 12 ðbÞ
22y1 2 3y2 #26 ðcÞ

y1 $ 0; and y2 is unrestricted in sign: ðdÞ

Solution
To transform the problem into the standard LP form, we take the following steps:

1. Since y2 is unrestricted in sign, we split it into its positive and negative parts as

y2 5 y12 2 y22 with y12 $ 0; y22 $ 0 ðeÞ
2. Substituting this definition of y2 into the problem functions, we get:

Maximize
z5 2y1 1 5ðy12 2 y2

2 Þ ðfÞ
subject to

3y1 1 2ðy12 2 y2
2 Þ # 12 ðgÞ

22y1 2 3ðy12 2 y2
2 Þ #26 ðhÞ

y1 $ 0; y12 $ 0; y22 $ 0 ðiÞ
3. The right side of the constraint in Eq. (g) is non-negative, so it conforms to the standard form.

However, the right side of Eq. (h) is negative, so multiplying it by21, we transform it into the

standard form as

2y1 1 3ðy12 2 y2
2 Þ $ 6 ðjÞ

4. Converting to a minimization problem subject to equality constraints after introduction of

slack and surplus variables, we get the problem in the standard form:

Minimize

f 522y1 25ðy12 2 y22 Þ ðkÞ
subject to

3y1 1 2ðy12 2 y22 Þ1 s1 5 12 ðlÞ
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2y1 1 3ðy12 2 y22 Þ2 s2 5 6 ðmÞ
y1 $ 0; y12 $ 0; y2

2 $ 0; s1 $ 0; s2 $ 0 ðnÞ
where s15 slack variable for the constraint in Eq. (g) and s25 surplus variable for the

constraint in Eq. (j).

5. We can redefine the solution variables as

x1 5 y1; x2 5 y12 ; x3 5 y22 ; x4 5 s1; x5 5 s2 ðoÞ
and rewrite the problem in the standard form as:

Minimize

f 522x1 2 5x2 1 5x3 ðpÞ
subject to

3x1 1 2x2 2 2x3 1 x4 5 12 ðqÞ
2x1 1 3x2 2 3x3 2 x5 5 6 ðrÞ

xi $ 0; i5 1 to 5 ðsÞ

Comparing the preceding equations with Eqs. (8.10) through (8.12), we can define the follow-

ing quantities:

m5 2 (the number of equations); n5 5 (the number of variables)

x5 ½x1 x2 x3 x4 x5�T c5 22 25 5 0 0 �T� ðtÞ

b5 ½12 6�T A5 ½aij�23 5 5
3 2 22 1 0
2 3 23 0 21

� �
ðuÞ

8.3 BASIC CONCEPTS RELATED TO LINEAR
PROGRAMMING PROBLEMS

Several terms related to LP problems are defined and explained. Some fundamental
properties of LP problems are discussed. It is shown that the optimum solution for the LP
problem always lies on the boundary of the feasible set. In addition, the solution is at least
at one of the vertices of the convex feasible set (called the convex polyhedral set). Some LP
theorems are stated and their significance is discussed. The geometrical meaning of the
optimum solution is explained.

8.3.1 Basic Concepts

Convexity of LP

Since all functions are linear in an LP problem, the feasible set defined by linear equali-
ties or inequalities is convex (Section 4.8). Also, the cost function is linear, so it is convex.
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Therefore, the LP problem is convex, and if an optimum solution exists, it is a global opti-
mum, as stated in Theorem 4.10.

LP Solution on the Boundary of the Feasible Set

It is important to note that even when there are inequality constraints in an LP design
problem, the optimum solution, if it exists, always lies on the boundary of the feasible set; that is,
some constraints are always active at the optimum. This can be seen by writing the neces-
sary conditions of Theorem 4.4 for an unconstrained optimum. These conditions,
@f/@xi5 0, when used for the cost function of Eq. (8.8), give ci5 0 for i5 1 to n. This is not
possible, as all ci are not zero. If all ci were zero, there would be no cost function.
Therefore, by contradiction, the optimum solution for any LP problem must lie on the boundary
of the feasible set. This is in contrast to general nonlinear problems, where the optimum
point can be inside or on the boundary of the feasible set.

Infinite Roots of Ax5b

An optimum solution to the LP problem must also satisfy the equality constraints in
Eq. (8.6). Only then can the solution be feasible for the problem. Therefore, to have a
meaningful optimum design problem, Eq. (8.6) must have more than one solution. Only
then is there a choice of feasible solutions that can have minimum cost. To have many
solutions, the number of linearly independent equations in Eq. (8.6) must be less than n,
the number of variables in the LP problem (refer to Section A.4 for further discussion of a
general solution of m equations in n unknowns).

It is assumed in the following discussion that all of the m rows of the matrixA in Eq. (8.11)
are linearly independent and that m , n. This means that there are no redundant equations.
Therefore, Eq. (8.6) or (8.11) have infinite solutions, and we seek a feasible solution that also mini-
mizes the cost function. A method for solving simultaneous equations (8.6) based on Gaussian
elimination is described in Appendix A. The Simplex method for LP problems described later
in the chapter uses the steps of the Gaussian elimination procedure. Therefore, that proce-
dure must be reviewed thoroughly before studying the Simplex method.

We will use Example 8.2 to illustrate the preceding ideas and to introduce LP terminol-
ogy and the basic concepts related to the Simplex method.

EXAMPLE 8.2 PROFIT MAXIMIZATION PROBLEM—
INTRODUCTION TO LP TERMINOLOGY AND CONCEPTS

As an example of solving constraint equations, we consider the profit maximization problem

formulated and solved graphically in Chapter 3. The problem is to find x1 and x2 to

Minimize
f52400x1 2 600x2 ðaÞ

subject to
x1 1 x2 # 16 ðbÞ

1

28
x1 1

1

14
x2 # 1 ðcÞ
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1

14
x1 1

1

24
x2 # 1 ðdÞ

x1 $ 0; x2 $ 0 ðeÞ

Solution
The graphical solution to the problem is given in Figure 8.1. All constraints of Eqs. (b)

through (e) are plotted and some isocost lines are shown. Each point of the region bounded by

the polygon ABCDE satisfies all the constraints of Eqs. (b) through (d) and the non-negativity

conditions of Eq. (e). It is seen from Figure 8.1 that the vertex D gives the optimum solution.

Conversion to standard LP form In Eq. (e), both of the variables are already required to be

non-negative. The cost function in Eq. (a) is already in the standard minimization form. The

right sides of constraints in Eqs. (b) through (d) are also in the standard form: bi $ 0.

Therefore, only the constraints need to be converted to the equality form to transform the prob-

lem into standard LP form.

Introducing slack variables for constraints of Eqs. (b) through (d) and writing the problem in

the standard LP form, we have

Minimize
f 52400x1 2 600x2 ðfÞ

subject to
x1 1 x2 1 x3 5 16 ðgÞ

5

5

0
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I
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x1

f = –4800 f = –8800
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FIGURE 8.1 Solution to the
profit maximization problem.
Optimum point5 (4, 12). Opti-
mum cost528800.
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1

28
x1 1

1

14
x2 1 x4 5 1 ðhÞ

1

14
x1 1

1

24
x2 1 x5 5 1 ðiÞ

xi $ 0; i5 1 to 5 ðjÞ

where x3, x4, and x5 are slack variables for the first, second, and third constraints, respectively.

Canonical form of Ax5b: general solution Note that the three equations in Eqs. (g) through

(i) are linearly independent. These equations give the linear system of equations Ax5b defined

in Eq. (8.11). Since the number of variables (n5 5) exceeds the number of constraint equations

(m5 3), a unique solution cannot exist for Eqs. (g) through (i) (see Appendix A). Actually there

are infinite solutions. To see this, we write a general solution for the equations by transferring the

terms associated with the variables x1 and x2 to the right side of Eqs. (g) through (i) as

x3 5 162 x1 2 x2 ðkÞ

x4 5 12
1

28
x1 2

1

14
x2 ðlÞ

x5 5 12
1

14
x1 2

1

24
x2 ðmÞ

Note that the variables x3, x4, and x5 appear in one and only one equation in the system

Ax5b in Eqs. (g) through (i), x3 only in Eq. (g), x4 only in Eq. (h), and x5 only in Eq. (i). In addi-

tion, the coefficient of each of these variables is 11. Such a linear system is called a canonical

representation of the equations Ax5b. Note that when all of the constraints in the LP problem

are “# type” with non-negative right sides, such as Eqs. (b) through (d), a general solution for

the system Ax5b is obtained without any calculations.

In Eqs. (k) through (m), x1 and x2 act as independent variables that can be assigned any value,

and x3, x4, and x5 are dependent on them. Different values for x1 and x2 generate different values

for x3, x4, and x5. Thus there are infinite solutions for Ax5b.

It is important to also note that the form of the general solution given in Eqs. (k) through (m)

will change if a different set of variables is selected as independent variables. For example, if x1
and x3 are selected as independent variables, then the remaining variables x2, x4, and x5 can

appear in one and only one equation in Eqs. (g) through (i). This can be achieved by using the

Gauss-Jordan elimination procedure described in Sections A.3 and A.4.

To determine another general solution, let us select x2 to become a dependent variable in

Eqs. (g) through (i) instead of an independent variable. This means that x2 must appear in one

and only one equation. The next question is, in which equation, Eq. (g), (h), or (i)? Each of these

selections will give a different form for the general solution and hence different independent and

dependent variables. For example, if x2 is eliminated from Eqs. (g) and (i) using Eq. (h), the fol-

lowing canonical form of the equations is obtained:

1

2
x1 1 x3 214x4 5 2 ðnÞ
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1

2
x1 1 x2 1 14x4 5 14 ðoÞ

17

336
x1 2

7

12
x4 1 x5 5

5

12
ðpÞ

Thus x3 appears only in Eq. (n), x2 in Eq. (o), and x5 in Eq. (p). In the canonical form of Eqs. (n)

through (p), x1 and x4 are independent variables and x2, x3 and x5 are dependent variables.

If Eq. (g) is used to eliminate x2 from Eqs. (h) and (i), then the independent variables are x1
and x3 instead of x1 and x4. And, if Eq. (i) is used to eliminate x2 from Eqs. (g) and (h), then the

independent variables are x1 and x5 instead of x1 and x4.

Basic solution A solution of particular interest in LP problems is obtained by setting p of the

variables to zero and solving for the rest, where p is the difference between the number of vari-

ables (n) and the number of independent constraint equations (m) in Ax5b (i.e., p5 n2m—e.g.,

p5 2 in the case of Eqs. (g) through (i)). With two variables set to zero, a unique solution to

Eqs. (g) through (i) exists for the remaining three variables since there are now three indepen-

dent equations in three unknowns. A solution obtained by setting p independent variables to

zero is called the basic solution. For example, a basic solution is obtained from Eqs. (g) through (i)

or (k) through (m) by setting x15 0 and x25 0, and solving for the remaining variables as x35 16,

x45 1, x55 1. The independent variables that are set to zero are called nonbasic variables in LP ter-

minology (e.g., x1 and x2). The variables that are solved from the independent equations are

called the basic variables (e.g., x3, x4, and x5 in Eqs (k) through (m)).

Another basic solution is obtained by setting x15 0, x35 0, and solving the three equations in

Eqs. (g) through (i) for the remaining three unknowns as x25 16, x4521/7, x55 1/3. Still

another basic solution is obtained from Eqs. (n) through (p) by setting x15 0 and x45 0, and solv-

ing for the remaining variables as x35 2, x25 14, and x55 5/12. Since there are 10 different ways

in which combinations of 2 variables (out of 5) can be set to zero, there are 10 basic solutions

(later a formula is given for the number of basic solutions).

Table 8.1 shows all 10 basic solutions for the present example obtained using the procedure

just described. A systematic way to generate these solutions is to use the Gauss-Jordan elimina-

tion method given in Appendix A, which is demonstrated later as a way to obtain basic solu-

tions. For each of the basic solutions given in Table 8.1, the nonbasic variables have zero value

and the basic variables have nonzero values.

Basic feasible solution Note that of the 10 basic solutions in Table 8.1, exactly 5 (solutions 1,

2, 6, 8, and 9) correspond to the vertices of the feasible polygon ABCDE in Figure 8.1. The

remaining 5 basic solutions violate the non-negativity condition on the variables and correspond

to the infeasible vertices, F, G, H, I, and J. Therefore, 5 of the 10 basic solutions are feasible.

These are called the basic feasible solutions.

Optimum solution By moving the isocost line parallel to itself, it is seen that the optimum

solution is at point D. Note that the optimum point is at one of the vertices of the feasible polygon.

This will be observed later as a general property of any LP problem. That is, if an LP has a solu-

tion, it is at least at one of the vertices of the feasible set.

The terms canonical form and general solution in reference to Ax5b are synonymous
and will be used interchangeably. They both give a basic solution to Ax5b.
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8.3.2 LP Terminology

We will now summarize various definitions and terms that are related to the LP prob-
lem. Example 8.2 and Figure 8.1 are used to illustrate the meaning of these terms. Also,
the definitions of convex set, convex function, and line segment introduced in Section 4.8 will
be used here.

• Vertex (Extreme) Point. This is a point of the feasible set that does not lie on a line
segment joining two other points of the set. For example, every point on the
circumference of a circle and each vertex of the polygon satisfy the requirements
for an extreme point.

• Feasible Solution. Any solution of the constraint Eq. (8.6) satisfying the non-negativity
conditions of Eq. (8.7) is a feasible solution. In the profit maximization example of
Figure 8.1, every point bounded by the polygon ABCDE (convex set) is a feasible
solution, including the boundary points.

• Basic Solution. A basic solution is a solution of the constraint Eq. (8.6) obtained by
setting the “redundant number” (n2m) of the variables to zero and solving the
equations simultaneously for the remaining variables (e.g., the 10 solutions given in
Table 8.1).

• Nonbasic Variables. The variables set to zero in the basic solution are called nonbasic.
For example, x1 and x5 are set to zero in solution 4 of Table 8.1. Therefore, they are
nonbasic variables.

• Basic Variables. The variables that are not set to zero in the basic solution are called
basic.

• Basic Feasible Solution. A basic solution satisfying the non-negativity conditions on the
variables in Eq. (8.7) is called a basic feasible solution. In the profit maximization
example, each of the 10 solutions in Table 8.1 is basic, but only A, B, C, D, and E are
basic and feasible (solutions 1, 2, 6, 8, and 9).

TABLE 8.1 Ten basic solutions for the profit maximization problem

Solution no. x1 x2 x3 x4 x5 f Vertex in Figure 8.1

1 0 0 16 1 1 0 A

2 0 14 2 0 5
12 28400 E

3 0 16 0 21
7

1
3 — F (infeasible)

4 0 24 28 25
7 0 — G (infeasible)

5 16 0 0 3
7 21

7 — J (infeasible)

6 14 0 2 1
2 0 �5600 B

7 28 0 212 0 21 — H (infeasible)

8 4 12 0 0 3
14 28800 D

9 11.2 4.8 0 1
5 0 27360 C

10 140
17

168
17 236

17 0 0 — I (infeasible)
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• Degenerate Basic Solution. If a basic variable has a zero value in a basic solution, the
solution is a degenerate basic solution.

• Degenerate Basic Feasible Solution. If a basic variable has a zero value in a basic feasible
solution, the solution is a degenerate basic feasible solution.

• Optimum Solution. A feasible solution minimizing the cost function is an optimum
solution. The point D in Figure 8.1 corresponds to the optimum solution.

• Optimum Basic Solution. The optimum basic solution is a basic feasible solution that
has an optimum cost function value. From Table 8.1 and Figure 8.1 it is clear that
only solution number 8 is the optimum basic solution.

• Convex Polyhedron. If the feasible set for an LP problem is bounded, it is a convex
polyhedron. As an example, the polygon ABCDE in Figure 8.1 represents a convex
polyhedron for the problem in Example 8.2.

• Basis. Columns of the coefficient matrix A in Eq. (8.11) of the constraint equations
corresponding to the basic variables are said to form a basis for the m-dimensional
vector space. Any other m-dimensional vector can be expressed as a linear combination
of the basis vectors.

EXAMPLE 8.3 BASIC SOLUTIONS TO AN LP PROBLEM

Find all basic solutions to the following problem and identify basic feasible solutions in a

figure of the feasible set:

Maximize

z5 4x1 1 5x2 ðaÞ
subject to

2x1 1 x2 # 4 ðbÞ
x1 1 x2 # 6 ðcÞ
x1; x2 $ 0 ðdÞ

Solution
The feasible region for the problem is shown in Figure 8.2. For conversion of the problem into

the standard LP form, we observe that the right sides of the constraints are already non-negative

($0) and both of the variables are required to be non-negative. Therefore, no transformations are

needed for these two conditions.

Since both of the constraints are “# type”, introducing the slack variables x3 and x4 into the

constraint equations and converting maximization of z to minimization, the problem is written

in the standard LP form as

Minimize

f 524x1 2 5x2 ðeÞ
subject to

2x1 1 x2 1 x3 5 4 ðfÞ
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x1 1 x2 1 x4 5 6 ðgÞ
xi $ 0; i5 1 to 4 ðhÞ

Since there are four variables and two constraints in Eqs. (f) and (g) (n5 4, m5 2), the prob-

lem has six basic solutions; that is, there are six different ways in which two of the four variables

can be chosen as nonbasic (independent variables).

These solutions are obtained from Eqs. (f) and (g) by choosing two variables as nonbasic and

the remaining two as basic. For example, x1 and x2 may be chosen as nonbasic (i.e., x15 0,

x25 0). Then Eqs. (f) and (g) give x35 4, x45 6. Also, with x15 0 and x35 0, Eqs. (f) and (g) give

x25 2 and x45 2 as another basic solution. Similarly, the remaining basic solutions are obtained

by selecting two variables as nonbasic (zero) and solving for the other two from Eqs. (f) and (g).

The six basic solutions for the problem are summarized in Table 8.2 along with the corre-

sponding cost function values. The basic feasible solutions are 1, 2, 5, and 6. These correspond to

4

4

6

6 –x
1 

+ 
x 2 

= 
4

2

2

A

B
C

D

E

Optimum point = (1, 5)
z* = 29

x2

x1

z = 10

z = 20

z = 30

x1 + x2 = 6

FIGURE 8.2 Graphical solution to the Example
8.3 LP problem. Optimum point5 (1, 5), z*5 29.

TABLE 8.2 Basic solutions for Example 8.3

Solution no. x1 x2 x3 x4 f Vertex in Figure 8.2

1 0 0 4 6 0 A

2 0 4 0 2 220 B

3 0 6 22 0 — E (infeasible)

4 24 0 0 10 — Not shown (infeasible)

5 6 0 10 0 224 D

6 1 5 0 0 229 C
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points A(0,0), B(0,4), D(6,0), and C(1,5), respectively, in Figure 8.2. The minimum value of the

cost function is obtained at the point C(1,5) as f5 229 (maximum value of z5 29).

In Section 8.4, we will introduce a systematic tabular procedure based on the Gaussian-

Jordan elimination method of Sections A.3 and A.4 in Appendix A to determine basic solutions

of Eqs. (f) and (g).

8.3.3 Optimum Solution to LP Problems

Now two important theorems that define the optimum solution for LP problems are
stated and explained.

THEOREM 8 . 1

Extreme Points and the Basic Feasible Solu-

tions The collection of feasible solutions for

an LP problem constitutes a convex set whose

extreme points correspond to basic feasible

solutions. This theorem relates extreme points

of the convex polyhedron to the basic feasible

solutions.

This is an important result, giving geometric meaning to the basic feasible solutions;
they are the vertices of the polyhedron representing the feasible set for an LP problem. As
an example, basic feasible solutions in Table 8.1 correspond to vertices of the feasible set
in Figure 8.1.

THEOREM 8 . 2

The Basic Theorem of Linear Programming

This theorem establishes the importance of the

basic feasible solutions.

Let the m 3 n coefficient matrix A of the

constraint equations have full row rank (i.e.,

rank (A)5m). Then

1. If there is a feasible solution, there is a

basic feasible solution.

2. If there is an optimum feasible solution,

there is an optimum basic feasible

solution.

Part 1 of the theorem says that if there is any feasible solution to the LP problem, then
there must be at least one extreme point or vertex of the convex feasible set. Part 2 of the the-
orem says that if the LP problem has an optimum solution, then it is at least at one of the
vertices of the convex polyhedron representing all of the feasible solutions; that is, it is at
least one of the basic feasible solutions. There can be multiple optimum solutions if the
cost function is parallel to one of the active constraints, as we saw in Chapter 3.
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Number of Basic Solutions

As noted earlier, the LP problem has infinite feasible designs. We seek a feasible design
that minimizes the cost function. Theorem 8.2 says that such a solution must be one of the
basic feasible solutions, that is, at one of the extreme points of the convex feasible set. Thus,
our task of solving an LP problem is reduced to the search for an optimum only among the
basic feasible solutions. For a problem having n variables and m constraints, the maximum
number of basic solutions is obtained by counting the total number of combinations where
m variables are nonzero out of a total of n variables. This number is given by the formula:

# of basic solutions5
n
m

� �
5

n!

m!ðn2mÞ! ð8:17Þ

This formula gives a finite number of basic solutions. Thus, according to Theorem 8.2, the
optimum solution is at one of these basic solutions that is also feasible. We need to search
this solution set systematically for the optimum.

The Simplex method of Section 8.5 is based on searching among the basic feasible
solutions to reduce the cost function continuously until an optimum point is reached.

8.4 CALCULATION OF BASIC SOLUTIONS

In the last section, we observed the importance of basic solutions to the linear equations
Ax5b; the optimum solution for the LP problem is at least one of the basic feasible solu-
tions. Therefore, it is important to generate basic solutions for the problem in a systematic
way. In this section we describe such a method, called the Gauss-Jordan elimination method,
presented in Appendix A. The Simplex method, described in the next section, uses this pro-
cedure to search for the optimum solution among the basic feasible solutions to Ax5b.

8.4.1 The Tableau

It is customary to represent the linear system Ax5b in a tableau. A tableau is defined
as the representation of a scene or a picture. It is a convenient way of representing all nec-
essary information related to an LP problem. In the Simplex method, the tableau consists
of coefficients of the variables in the cost and constraint functions. In this section we will
focus only on the linear system Ax5b and its representation in a tableau; the cost function
will be added in the tableau in the next section.

EXAMPLE 8.4 STRUCTURE OF THE TABLEAU

Constraints for the profit maximization problem of Example 8.2 are given in the standard

form Ax5b as follows:

x1 1 x2 1 x3 5 16 ðaÞ
1

28
x1 1

1

14
x2 1 x4 5 1 ðbÞ

314 8. LINEAR PROGRAMMING METHODS FOR OPTIMUM DESIGN

II. NUMERICAL METHODS FOR CONTINUOUS VARIABLE OPTIMIZATION



1

14
x1 1

1

24
x2 1 x5 5 1 ðcÞ

Write the linear system in a tableau and explain its notation.

Solution
The linear system Ax5b is written in the tableau form in Table 8.3. It is important to under-

stand the structure and notation of the tableau as explained in the following because the tableau

is used later to develop the Simplex method.

1. Rows of the tableau: Each row of the tableau contains coefficients of an equation in Eqs. (a)

through (c); that is, the first, second, and third rows contain coefficients of Eqs. (a) through

(c), respectively.

2. Columns of the tableau: Columns of the tableau are associated with variables (e.g., x1 column, x2
column, and so on). This is because these columns contain the coefficients of each variable in

Ax5b; for example, column x1 contains coefficients of the variable x1 in each of the equations

in Eqs. (a) through (c) and column RS contains the coefficient on the right side of each

equation.

3. Identity submatrix in the tableau: The system Ax5b is in the canonical form; that is, there are

variables that appear in one and only one equation. For example, x3 appears in only the first

equation, x4 in the second, and x5 in the third. Therefore, columns x3, x4, and x5 have unit

elements in one location and zeroes everywhere else. These columns form an identity

submatrix in the matrix A.

4. Identity columns: Columns of the identity submatrix in the tableau are called identity columns.

Note that these columns can appear anywhere in the tableau. They need not be in any

sequence either.

5. Basic variable for each row: Each row of the tableau is also associated with a variable, as

indicated in the “Basic” column on the left side in Table 8.3. These variables correspond to

the columns of the identity submatrix in the tableau. The row location of the unit element

in an identity column determines the association of the basic variable with a row. Thus, x3
is associated with the first row, x4 with the second row, and x5 with the third row. These

are called the basic variables. This will become clearer later when we solve example

problems.

6. Basic solution associated with the tableau: The tableau identifies basic and nonbasic variables and

gives their values; that is, it gives a basic solution. For the tableau in Table 8.3, the basic

solution is given as

7. Nonbasic variables: x15 0, x25 0

8. Basic variables: x3 5 16; x4 5 1; x5 5 1

We will see later that the tableau can be augmented with the cost function expression, and in

that case, it will also immediately give the value of the cost function associated with the basic

solution.

9. Basic and nonbasic columns: Columns associated with basic variables are called basic columns,

and others are called nonbasic columns; for example, x1 and x2 are nonbasic columns and in

Table 8.3 the others are basic. Basic columns also correspond to the identity submatrix’s

columns.
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8.4.2 The Pivot Step

In the Simplex method, we want to systematically search among the basic feasible solu-
tions for the optimum design. We must have a basic feasible solution to initiate the Simplex
method. Starting from the basic feasible solution, we want to find another one that
decreases the cost function. This can be done by interchanging a current basic variable
with a nonbasic variable. That is, a current basic variable is made nonbasic (i.e., reduced
to 0 from a positive value), and a current nonbasic variable is made basic (i.e., increased
from 0 to a positive value). The pivot step of the Gauss-Jordan elimination method accom-
plishes this task and results in a new canonical form (general solution), as explained in
Example 8.5. The definitions of pivot column, pivot row, and pivot element are also given.

EXAMPLE 8.5 PIVOT STEP—INTERCHANGE OF BASIC AND
NONBASIC VARIABLES

The problem in Example 8.3 is written as follows in the standard form with the linear system

Ax5b in the canonical form:

Minimize
f 524x1 2 5x2 ðaÞ

subject to
2x2 1 x2 1 x3 5 4 ðbÞ
x1 1 x2 1 x4 5 6 ðcÞ

xi $ 0; i5 1 to 4 ðdÞ

Obtain a new canonical form by interchanging the roles of the variables x1 and x4 (i.e., make x1 a

basic variable and x4 a nonbasic variable).

Solution
The given canonical form can be written as the initial tableau, as shown in Table 8.4; x1 and x2

are nonbasic, and x3 and x4 are basic ( x15 x25 0, x35 4, x45 6). This corresponds to point A in

Figure 8.2. In the tableau, the basic variables are identified in the leftmost column, and their

values are given in the rightmost column. Also, the basic variables can be identified by examin-

ing the columns of the tableau. The variables associated with the columns of the identity subma-

trix are basic (e.g., variables x3 and x4 in Table 8.4). The location of the positive unit element in a

basic column identifies the row whose right side parameter bi is the current value of the basic

TABLE 8.3 Tableau form of Ax5 b for the profit maximization
problem

Basic k x1 x2 x3 x4 x5 RS: b

1. x3 1 1 1 0 0 16

2. x4
1
28

1
14 0 1 0 1

3. x5
1
14

1
24 0 0 1 1
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variable associated with that row. For example, the basic column x3 has a unit element in the first

row, so x3 is the basic variable associated with the first row, having a value of 4. Similarly, x4 is

the basic variable associated with row 2 having a value of 6.

Pivot column: Since x1 is to become a basic variable, it should become an identity column; that

is, x1 should be eliminated from all rows in the x1 column except one. Since x4 is to become a

nonbasic variable and is associated with row 2, the unit element in the x1 column should

appear in row 2. This is achieved by eliminating x1 for row 1 (i.e., Eq. (b)). The column in

which eliminations are performed is called the pivot column.

Pivot row: The row that is used to perform elimination of a variable from various equations is

called the pivot row (e.g., row 2 in the initial tableau in Table 8.4).

Pivot element: The intersection of the pivot column and the pivot row determines the pivot

element (e.g., a215 1 for the initial tableau in Table 8.4; the pivot element is boxed).

Pivot operation: To make x1 a basic variable and x4 a nonbasic variable, we need to make

a215 1 and a115 0. This will replace x1 with x4 as the basic variable and a new canonical form

will be obtained. Performing Gauss-Jordan elimination in the first column with a215 1 as the

pivot element, we obtain the second canonical form as shown in Table 8.4 (add row 2 to row

1). For this canonical form, x25 x45 0 are the nonbasic variables and x15 6 and x35 10 are

the basic variables. Thus, referring to Figure 8.2, this pivot step results in a move from the

extreme point A(0, 0) to an adjacent extreme point D(6, 0).

8.4.3 Basic Solutions to Ax5 b

Using the Gauss-Jordan elimination method, we can systematically generate all of the
basic solutions for an LP problem. Then, evaluating the cost function for the basic feasible

TABLE 8.4 Pivot step to interchange basic variable x4 with
nonbasic variable x1 for Example 8.5

Initial tableau

Basick x1 x2 x3 x4 b

1. x3 2 1 1 1 0 4

2. x4 1 1 0 1 6

Basic solution: Nonbasic variables: x15 0, x25 0; basic variables: x35 4, x45 6

To interchange x1 with x4, choose row 2 as the pivot row and
column 1 as the pivot column. Perform elimination using a21 as
the pivot element.

Second tableau: Result of the pivot operation

Basick x1 x2 x3 x4 b

1. x3 0 2 1 1 10

2. x1 1 1 0 1 6

Basic solution: Nonbasic variables: x25 0, x45 0; basic variables: x15 6, x35 10
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solutions, we can determine the optimum solution for the problem. The Simplex method
described in the next section uses this approach with one exception: It searches through
only the basic feasible solutions and stops once an optimum solution is obtained. Example
8.6 illustrates the process of generating basic solutions.

EXAMPLE 8.6 CALCULATION OF BASIC SOLUTIONS

For the profit maximization problem of Example 8.2, determine three basic solutions using

the Gauss-Jordan elimination method.

Solution
The problem has been transcribed into the standard form in Eqs. (f) through (j) in Example 8.2 as

Minimize

f52400x1 2 600x2 ðaÞ
subject to

x1 1 x2 1 x3 5 16 ðbÞ
1

28
x1 1

1

14
x2 1 x4 5 1 ðcÞ

1

14
x1 1

1

24
x2 1 x5 5 1 ðdÞ

xi $ 0; i5 1 to 5 ðeÞ
First tableau The constraint Eqs. (b) through (d) are written in the tableau form in Table 8.5

identified as the first tableau. Columns x3, x4, and x5 are the identity columns; therefore, x3, x4,

and x5 are the basic variables. Since the unit element in the x3 column appears in the first row, x3
is the basic variable associated with the first row in the tableau. Similarly, x4 and x5 are the basic

variables associated with the second and third rows. Thus the basic solution from the first tab-

leau is given as (corresponds to solution 1 in Table 8.1):

Basic variables: x3 5 16; x4 5 1; x5 5 1

Nonbasic variables: x1 5 0; x2 5 0

Second tableau To obtain a new basic solution, we need to obtain a new canonical form

(a new general solution). This can be done if we choose different nonbasic variables. Let us

select x4 (a current basic variable) to become a nonbasic variable and x1 (a current nonbasic

variable) to become a basic variable. That is, we interchange the roles of variables x1 and x4;

x1 will become a basic column, and x4 will become a nonbasic column. Since x1 is to become

a basic variable, it should appear in one and only one equation. This will be equation #2

since we have selected x4 to become a nonbasic variable that is associated with the second

row in the first tableau. In terms of the tableau terminology, we have selected the x1 column

to be the pivot column and the second row to be the pivot row. This identifies the pivot ele-

ment to be a215
1
28. The pivot element is boxed and the pivot column and pivot row are

highlighted in the first tableau of Table 8.5.

Now we complete the pivot operation to obtain the second tableau as follows (details of the

calculations for each of the following steps are displayed in Table 8.6).
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1. We divide the pivot row by the pivot element a215
1

1=28; this is shown as row 5 in the second

tableau of Table 8.5.

2. To eliminate x1 from the first equation, we subtract row 5 from row 1. This is shown as row 4

in the second tableau of Table 8.5.

3. To eliminate x1 from the third equation, we multiply row 5 by 1/14 and subtract it from row

3. This is shown as row 6 in the second tableau of Table 8.5.

Thus equations of this canonical form (general solution) are given as

2x2 1 x3 2 28x4 5212 ðgÞ

TABLE 8.5 Basic solutions for the profit maximization problem

First tableau: Basic variable x4 is selected to be replaced with the

nonbasic variable x1 to obtain a new basic solution

Basick x1 x2 x3 x4 x5 b Remarks

1. x3 1 1 1 0 0 16 Column x1 is the pivot column
and row 2 is the pivot row

2. x4
1
28

1
14 0 1 0 1

3. x5
1
14

1
24 0 0 1 1

Second tableau: x3 is selected to be replaced with x2 in the basic set

Basick x1 x2 x3 x4 x5 b Remarks

4. x3 0 21 1 228 0 212 x2 is the pivot column and row
4 is the pivot row

5. x1 1 2 0 28 0 28

6. x5 0 2 17
168 0 22 1 21

Third tableau

Basick x1 x2 x3 x4 x5 b

7. x2 0 1 21 28 0 12

8. x1 1 0 2 228 0 4

9. x5 0 0 2 17
168

5
6 1 3

14

TABLE 8.6 Detailed calculation for second tableau of profit maximization problem of Example 8.6

Basick x1 x2 x3 x4 x5 b

4. x3 12 15 0 12 2521 12 05 1 02 285228 0 162 285212

5. x1
1=28
1=28 5 1 1=14

1=28 5 2 0 1
1=28 5 28 0 1

1=28 5 28

6. x5
1
14 2 13 1

145 0 1
24 2 23 1

14 52 17
168 0 02 283 1

14522 1 15 283 1
14521

Note: Eliminations are performed in x1 column using row 5.
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x1 1 2x2 1 28x4 5 28 ðhÞ

2
17

168
x2 2 2x4 1 x5 521 ðiÞ

The basic solution from the second tableau is given as

Basic variables: x3 5212; x1 5 28; x5 521

Nonbasic variables: x2 5 0; x4 5 0

This basic solution is infeasible and corresponds to the infeasible vertex H in Figure 8.1 (solution

7 in Table 8.1).

Third tableau Next we want to obtain another basic solution by exchanging x3 (a current basic

variable) with x2 (a current nonbasic variable). This will make x2 an identity column and x3 a non-

basic column. Thus x2 is identified as the pivot column and the first row of the second tableau

(row 4) is identified as the pivot row with a12521 as the pivot element. (It is noted that in the

Simplex method presented in the next section, a negative number is never selected as the pivot ele-

ment, although here we allow that to obtain another basic solution.) The pivot operation will elimi-

nate x2 from all of the equations except the first one. Thus x2 will become the identity column,

similar to the x3 column in the second tableau.

Details of the pivot operation are presented in Table 8.7, and the final results are summarized

in Table 8.5. The pivot operation is carried out using the following steps:

1. We divide the pivot row by the pivot element a12521; this is shown as the seventh row in

the third tableau of Table 8.7.

2. To eliminate x2 from the second equation, we multiply row 7 by 2 and subtract it from row 5.

This is shown as row 8 in the third tableau of Table 8.7, and the results are summarized in

Table 8.5.

3. To eliminate x2 from the third equation, we multiply row 7 by 17/168 and add it to row 6.

This is shown as row 9 in the third tableau of Table 8.7, and the results are summarized in

Table 8.5.

The basic solution from the third tableau in Table 8.5 is given as

Basic variables: x2 5 12; x1 5 4; x5 5 3
14

Nonbasic variables: x3 5 0; x4 5 0

This basic feasible solution corresponds to the optimum vertex D in Figure 8.1 (solution 8 in

Table 8.1).

TABLE 8.7 Detailed calculation for third tableau of profit maximization problem of Example 8.6

Basick x1 x2 x3 x4 x5 b

7. x2 0 21/215 1 1/21521 228/215 28 0 212/215 12

8. x1 1 22 13 25 0 02 (21)3 25 2 282 23 285228 0 282 123 25 4

9. x5 0 2 17
168 1 13 17

1685 0 02 13 17
168 52 17

168 221 283 17
168 5 5

6 1 211 17
168 3 125 3

14

Note: Eliminations are performed in the x2 column using row 7.
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8.5 THE SIMPLEX METHOD

8.5.1 The Simplex

A Simplex in two-dimensional space is formed by any three points that do not lie on a
straight line. In three-dimensional space, it is formed by four points that do not lie in the
same plane. Three points can lie in a plane, but the fourth has to lie outside. In general, a
Simplex in the n-dimensional space is a convex hull of any (n1 1) points that do not lie on
one hyperplane. A convex hull of (n1 1) points is the smallest convex set containing all of
the points. Thus, the Simplex represents a convex set.

8.5.2 Basic Steps in the Simplex Method

The basics of the Simplex method for solving LP problems are described in this section.
The ideas of canonical form, pivot row, pivot column, pivot element, and pivot step, which
were introduced in the previous section, are used. The method is described as an exten-
sion of the standard Gauss-Jordan elimination procedure for solving a system of linear
equations Ax5b, where A is an m 3 n (m,n) matrix, x is an n-vector, and b is an
m-vector. In this section, the Simplex method is developed and illustrated for “# type”
constraints, since with such constraints, the method can be developed in a straightforward
manner. In the next section, “$ type” and equality constraints that require special treat-
ment in the Simplex method are discussed. A detailed derivation of the Simplex method is
presented in Chapter 9.

Basic idea of the Simplex method

Theorem 8.2 guarantees that one of the basic feasible solutions is an optimum
solution for the LP problem. The basic idea of the Simplex method is to proceed
from one basic feasible solution to another in a way that continually decreases the
cost function until the minimum is reached. The method never calculates basic
infeasible solutions. The Gauss-Jordan elimination procedure, described in the
previous section, is used to systematically find basic feasible solutions of the
linear system of equations Ax5b until the optimum is reached.

In this subsection, we will illustrate the basic steps of the Simplex method with an
example problem. The method starts with a basic feasible solution (i.e., at a vertex of the
convex feasible set). A move is then made to an adjacent vertex while maintaining the fea-
sibility of the new solution (i.e., all xi $ 0) as well as reducing the cost function. This is
accomplished by replacing a basic variable with a nonbasic variable in the current basic
feasible solution. Two basic questions now arise:

1. How do we choose a current nonbasic variable that should become basic?
2. Which variable from the current basic set should become nonbasic?

The Simplex method answers these questions based on theoretical considerations,
which are discussed in Chapter 9. Here, we consider an example to illustrate the basic
steps of the Simplex method that answer the foregoing two questions.
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Reduced Cost Coefficients

Let the cost function be given only in terms of the nonbasic variables. The cost coeffi-
cients of the nonbasic variables are called the reduced cost coefficients, written as c0j.

Cost Function in Terms of Nonbasic Variables

Before presentation of the example problem, an important requirement of the Simplex
method is discussed. At the start of the Simplex iteration, the cost function must be in terms
of the nonbasic variables only. This is readily available, as we will see in the example pro-
blems that follow. Also, at the end of each Simplex iteration, the cost function must again
be available in terms of the nonbasic variables only. This can be achieved if we write the
cost function cTx5 f as the last row of the tableau and perform elimination of the basic
variable in that row as well. The coefficients in the nonbasic columns of the last row are
thus the reduced cost coefficients c0j.

The cost function must be in terms of the nonbasic variables only in order to check the
following two conditions:

Optimality of the current basic feasible solution: If all the reduced cost coefficients c0j are
non-negative ($0), then the current basic feasible solution is optimum.
Determination of a nonbasic variable to become basic: If the current point is not optimum (i.e., all
the reduced cost coefficients c0j are not non-negative), then a negative coefficient c0j determines
which nonbasic variable needs to become basic to further reduce the cost function.

Example 8.7 describes and illustrates the steps of the Simplex method in a systematic way.

EXAMPLE 8.7 STEPS OF THE SIMPLEX METHOD

Solve the following LP problem using the Simplex method:

Maximize

z5 2x1 1 x2 ðaÞ
subject to

24x1 2 3x2 $ 212 ðbÞ
4 $ 2x1 1 x2 ðcÞ
x1 1 2x2 # 4 ðdÞ
x1; x2 $ 0 ðeÞ

Solution
The graphical solution to the problem is given in Figure 8.3. It can be seen that the problem

has an infinite number of solutions along the line C�D (z*5 4) because the objective function is

parallel to the second constraint. The Simplex method is illustrated in the following steps.

1. Convert the problem to the standard form. To convert the problem to the standard LP form, we

first rewrite the constraints so that their right sides are non-negative. To accomplish this, the

first constraint is written as 4x11 3x2 # 12 and the second constraint is written as
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2x11 x2 # 4. Maximization of z is converted to minimization of f522x12 x2. Since all

constraints are now in the “# form”, we add the slack variables x3, x4, and x5 to the

constraints and write the problem in the standard form as

Minimize

f 522x1 2 x2 ðfÞ
subject to

4x1 1 3x2 1 x3 5 12 ðgÞ
2x1 1 x2 1 x4 5 4 ðhÞ
x1 1 2x2 1 x5 5 4 ðiÞ
xi $ 0; i5 1 to 5 ðjÞ

We use the tableau and notation of Table 8.3, augmented with the cost function expression as

the last row. The initial tableau for the problem is shown in Table 8.8, where the cost function

expression 22x12 x25 f is written as the last row. Note also that the cost function is in terms

of only the nonbasic variables x1 and x2. This is one of the basic requirements of the Simplex

method—that the cost function always be in terms of the nonbasic variables. When the cost function

is only in terms of the nonbasic variables, then the cost coefficients in the last row are the

reduced cost coefficients, written as c0j. Note that the left-most column in Table 8.8 contains the

basic variables associated with each constraint.

2. Initial basic feasible solution. To initiate the Simplex method, a basic feasible solution is needed.

This is already available in Table 8.8 and is given as:

Basic variables: x35 12, x45 4, x55 4

4

2x
1  + x

2  = 4

4x
1  + 3x

2  = 12

x1 + 2x2 = 4

4

3

3

2

2

1

10

A

B

C

D F

E

Optimum solution line C–D
z* = 4

x2

x1
G

z = 2

z = 3

FIGURE 8.3 Graphical solution to the LP prob-
lem of Example 8.7. Optimum solution along line
C�D. z*5 4.
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Nonbasic variables: x15 0, x25 0

Cost function: f5 0

Note that the cost row gives 05 f after substituting for x1 and x2. This solution represents

point A in Figure 8.3, where none of the constraints is active except the non-negativity

constraints on the variables.

3. Optimality check. We scan the cost row in Table 8.8, which should have nonzero entries only in

the nonbasic columns (the x1 and x2 columns). Therefore, c’1522, c’2521. If all of the nonzero

entries are non-negative, then we have an optimum solution because the cost function cannot

be reduced any further and the Simplex method is terminated. Since there are negative entries

in the nonbasic columns of the cost row, the current basic feasible solution is not optimum.

4. Selection of a nonbasic variable to become basic. We select a nonbasic column having a negative

cost coefficient; that is, c’1522 in the x1 column. This identifies the nonbasic variable (x1)

associated with the selected column that should become basic. Thus, eliminations will be

performed in the x1 column; that is, it is the pivot column. This answers question 1 posed

earlier: “How does one choose a current nonbasic variable that should become basic?” Note

also that when there is more than one negative entry in the cost row, the variable tapped to

become basic is arbitrary among the indicated possibilities. The usual convention is to select a

variable associated with the smallest value in the cost row (or the negative element with the

largest absolute value).

Notation: The reduced cost coefficients in the nonbasic columns are set in bold. The

boxed negative reduced cost coefficient in Table 8.8 indicates that the nonbasic variable

associated with that column is selected to become basic variable.

5. Selection of a basic variable to become nonbasic. To identify which current basic variable should

become nonbasic (i.e., to select the pivot row), we take ratios of the right-side parameters with

the positive elements in the selected pivot column (i.e., the x1 column), as shown in Table 8.9.

We identify the row having the smallest positive ratio (the second row). This will make the

current basic variable x4 a nonbasic variable. The pivot element is a215 2 (the intersection of

the pivot row and the pivot column). This answers question 2 posed earlier: “Which variable

from the current basic set should become nonbasic?” Selection of the row with the smallest

ratio as the pivot row maintains the feasibility of the new basic solution (all xi $ 0). This is

justified in Chapter 9.

TABLE 8.8 Initial tableau for the LP problem of
Example 8.7

Basick x1 x2 x3 x4 x5 b

1. x3 4 3 1 0 0 12

2. x4 2 1 0 1 0 4

3. x5 1 2 0 0 1 4

4. Cost function 22 21 0 0 0 f
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Notation: The selected pivot element is boxed, and the pivot column and row are shaded.

6. Pivot step. We perform eliminations in column x1 using row 2 as the pivot row to eliminate x1
from rows 1, 3, and the cost row. Here, we use the steps illustrated in Example 8.6 as follows:

• Divide row 2 by 2, the pivot element.

• Multiply the new row 2 by 4 and subtract it from row 1 to eliminate x1 from row 1.

• Subtract the new row 2 from row 3 to eliminate x1 from row 3.

• Multiply the new row 2 by 2 and add it to the cost row to eliminate x1.

As a result of this elimination step, a new tableau is obtained, as shown in Table 8.10. The

new basic feasible solution is given as

Basic variables: x35 4, x15 2, x55 2

Nonbasic variables: x25 0, x45 0

Cost function: 05 f1 4, f524 (z5 4)

7. Optimum solution. This solution is identified as point D in Figure 8.3. We see that the cost

function has been reduced from 0 to 24. The coefficients in the nonbasic columns of the last

row are non-negative c’25 0, c’45 1, so no further reduction of the cost function is possible.

Thus, the foregoing solution is the optimum point. Note that for this example, only one

iteration of the Simplex method gave the optimum solution. In general, more iterations are

needed until all coefficients in the cost row become non-negative.

TABLE 8.9 Selection of pivot column and pivot row for Example 8.7

Basick x1 x2 x3 x4 x5 b Ratio: bi/ai1; ai1 . 0

1. x3 4 3 1 0 0 12 12/45 3

2. x4 2 1 0 1 0 4 4/25 2’ smallest

3. x5 1 2 0 0 1 4 4/15 4

4. Cost function 22 21 0 0 0 f

The selected pivot element is boxed. Selected pivot row and column are highlighted. x1 should
become basic (pivot column). x4 row has the smallest ratio, and so x4 should become nonbasic
(pivot row).

TABLE 8.10 Second tableau for Example 8.7
making x1 a basic variable

Basick x1 x2 x3 x4 x5 b

1. x3 0 1 1 22 0 4

2. x1 1 0.5 0 0.5 0 2

3. x5 0 1.5 0 20.5 1 2

4. Cost function 0 0 0 1 0 f1 4

The cost coefficients in nonbasic columns are non-negative; the
tableau gives the optimum solution.
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Consequence of zero reduced cost coefficient

The cost coefficient corresponding to the nonbasic variable x2 in the last row is zero in the

final tableau. This is an indication of multiple solutions to the problem. In general, when the

reduced cost coefficient in the last row corresponding to a nonbasic variable is zero, the problem

may have multiple solutions. We will discuss this point later in more detail.

Consequence of incorrect pivot selection

Let us see what happens if we do not select a row with the smallest ratio as the pivot row.

Let a315 1 in the third row be the pivot element in Table 8.8. This will interchange the nonbasic

variable x1 with the basic variable x5. Performing the elimination steps in the first column as

explained earlier, we obtain the new tableau given in Table 8.11. From the tableau, we have

Basic variables: x3524, x4524, x15 4

Nonbasic variables: x25 0, x55 0

Cost function: 05 f1 8, f528

The foregoing solution corresponds to point G in Figure 8.3. We see that this basic solution is

not feasible because x3 and x4 have negative values. Thus, we conclude that if a row with the smal-

lest ratio (of right sides with positive elements in the pivot column) is not selected in Step 5, the new basic

solution is not feasible.

Note that a spreadsheet program, such as Excel, can be used to carry out the pivot step.
Such a program can facilitate learning of the Simplex method without getting bogged
down with the manual elimination process.

8.5.3 Basic Theorems of Linear Programming

In the previous subsection, the basic steps of the Simplex method were explained and
illustrated with an example problem. In this subsection, the underlying principles for these
steps are summarized in two theorems, the basic theorems of linear programming. We
have seen that, in general, the reduced cost coefficients c0j of the nonbasic variables may
be positive, negative, or zero.

Let one c0j be negative; then if a positive value is assigned to the associated nonbasic var-
iable (i.e., it is made basic), the value of f will decrease. If more than one negative c0j is

TABLE 8.11 Result of improper pivoting in
Simplex method for LP problem

Basick x1 x2 x3 x4 x5 b

1. x3 0 25 1 0 24 24

2. x4 0 23 0 1 22 24

3. x1 1 2 0 0 1 4

4. Cost function 0 3 0 0 4 f1 8

The pivot step making x1 basic and x5 nonbasic in Table 8.8
gives a basic solution that is not feasible.
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present, a widely used rule of thumb is to choose the nonbasic variable associated with
the smallest c0j (i.e., the most negative) to become basic.

Thus, if any c0j for nonbasic variables is negative, then it is possible to find a new basic
feasible solution (if one exists) that will further reduce the cost function. If a c0j is zero, then
the associated nonbasic variable can be made basic without affecting the cost function
value (a multiple-solution case, such as in Example 8.7). If all c0j are non-negative, then it is
not possible to reduce the cost function any further, and the current basic feasible solution
is optimum. These ideas are summarized in the following Theorems 8.3 and 8.4.

THEOREM 8 . 3

Improvement of the Basic Feasible Solution

Given a nondegenerate basic feasible solu-

tion with the corresponding cost function f0,

suppose that c0j , 0 for some j.

1. Improved basic feasible solution. There is a

feasible solution with f, f0. If the jth

nonbasic column associated with c0j can
be substituted for some column in the

original basis, the new basic feasible

solution will have f, f0.

2. Unbounded cost function. If the jth column

cannot be substituted to yield a basic

feasible solution (i.e., there is no positive

element in the jth column), then the

feasible set is unbounded and the cost

function can be made arbitrarily small

(toward negative infinity).

THEOREM 8 . 4

Optimum Solutions to Linear Programming

Problems If a basic feasible solution has

reduced cost coefficients c0j $ 0 for all j, then

it is optimum.

According to Theorem 8.3, the basic procedure of the Simplex method is to start with
an initial basic feasible solution, that is, at the vertex of the convex polyhedron. If this solu-
tion is not optimum according to Theorem 8.4, then a move is made to an adjacent vertex
to reduce the cost function. The procedure is continued until the optimum is reached.

Multiple Solutions

Note that when all reduced cost coefficients c0j in the nonbasic columns are strictly posi-
tive, the optimum solution is unique. If at least one c0j is zero in a nonbasic column, there
is the possibility of an alternate optimum solution. If the nonbasic variable associated with
a zero reduced cost coefficient can be made basic by using the foregoing pivot step proce-
dure, the extreme point (vertex) corresponding to an alternate optimum is obtained. Since
the reduced cost coefficient is zero, the optimum cost function value does not change. Any
point on the line segment joining the optimum extreme points also corresponds to an opti-
mum point. Note that all of these optima are global as opposed to local, although there is
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no distinct global optimum. Geometrically, multiple optima for an LP problem imply that
the cost function hyperplane is parallel to one of the constraint hyperplanes.

Examples 8.8 and 8.9 show how to obtain a solution for an LP problem using the
Simplex method. Example 8.10 shows how to recognize multiple solutions for the prob-
lem, and Example 8.11 shows how to recognize an unbounded cost function.

EXAMPLE 8.8 SOLUTION BY THE SIMPLEX METHOD

Using the Simplex method, in order to find the optimum (if one exists) for the LP problem of

Example 8.3,

Minimize

f 524x1 25x2 ðaÞ
subject to

2x1 1 x2 1 x3 5 4 ðbÞ
x1 1 x2 1 x4 5 6 ðcÞ

xi $ 0; i5 1 to 4 ðdÞ
Solution

Writing the problem in the Simplex tableau, we obtain the initial tableau shown in Table 8.12.

From the initial tableau, the basic feasible solution is

Basic variables: x35 4, x45 6

Nonbasic variables: x15 x25 0

Cost function: f5 0 from the last row of the tableau

Note that the cost function in the last row of the initial tableau is in terms of only the nonbasic

variables x1 and x2. Thus, the coefficients in the x1 and x2 columns and the last row are the reduced

cost coefficients c0j. Scanning the last row, we observe that there are negative coefficients. Therefore,

the current basic feasible solution is not optimum. In the last row, the most negative coefficient of

25 corresponds to the second column. Therefore, we select x2 to become a basic variable; that is,

elimination should be performed in the x2 column. Now, taking the ratios of the right-side para-

meters with positive coefficients in the second column bi/ai2, we obtain a minimum ratio for the first

row as 4. This identifies the first row as the pivot row according to Step 5 of the Simplex method.

Therefore, the current basic variable associated with the first row, x3, should become nonbasic.

Performing the pivot step on column 2 with a12 as the pivot element, we obtain the second

tableau, as shown in Table 8.12. For this canonical form, the basic feasible solution is

Basic variables: x25 4, x45 2

Nonbasic variables: x15 x35 0

The cost function is f5220 (05 f1 20), which is an improvement over f5 0. Thus, this pivot

step results in a move from (0, 0) through (0, 4) on the convex polyhedron of Figure 8.2.

The reduced cost coefficient corresponding to the nonbasic column x1 is still negative in the second

tableau. Therefore, the cost function can be reduced further. Repeating the above-mentioned process

for the second tableau, we obtain a215 2 as the pivot element, implying that x1 should become basic
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and x4 should become nonbasic. After the pivot operation, the third tableau is obtained, as shown in

Table 8.12. For this tableau, all the reduced cost coefficients c0j (corresponding to the nonbasic vari-

ables) in the last row are $ 0. Therefore, the tableau yields the optimum solution:

Basic variables: x15 1, x25 5

Nonbasic variables: x35 0, x45 0

Cost function: f5229 ( f1 295 0)

This solution corresponds to the point C (1, 5) in Figure 8.2.

EXAMPLE 8.9 SOLUTION TO PROFIT MAXIMIZATION
PROBLEM BY THE SIMPLEX METHOD

Use the Simplex method to find the optimum solution for the profit maximization problem in

Example 8.2.

Solution
Introducing slack variables in the constraints of Eqs. (c) through (e) in Example 8.2, we get

the LP problem in the standard form:

Minimize

f 52400x1 2 600x2 ðaÞ

TABLE 8.12 Solution of Example 8.8 by the Simplex method

Initial tableau: x3 is identified to be replaced with x2 in the basic set

Basick x1 x2 x3 x4 b Ratio: bi/ai2

1. x3 21 1 1 0 4 4
15 4’smallest

2. x4 1 1 0 1 6 6
15 6

3. Cost 24 25 0 0 f

Second tableau: x4 is identified to be replaced with x1 in the basic set

Basick x1 x2 x3 x4 b Ratio: bi/ai1

4. x2 21 1 1 0 4 Negative

5. x4 2 0 21 1 2 2
25 1

6. Cost 29 0 5 0 f1 20

Third tableau: Reduced cost coefficients in nonbasic columns are non-

negative; the tableau gives optimum point

Basick x1 x2 x3 x4 b Ratio: bi/aiq

7. x2 0 1 1
2

1
2 5 Not needed

8. x1 1 0 21
2

1
2 1 Not needed

9. Cost 0 0 1
2

9
2 f1 29
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subject to

x1 1 x2 1 x3 5 16 ðbÞ
1

28
x1 1

1

14
x2 1 x4 5 1 ðcÞ

1

14
x1 1

1

24
x2 1 x5 5 1 ðdÞ

xi $ 0; i5 1 to 5 ðeÞ

Now, writing the problem in the Simplex tableau, we obtain the initial tableau as shown in

Table 8.13. Thus the initial basic feasible solution is x15 0, x25 0, x35 16, x45 x55 1, f5 0, which

corresponds to point A in Figure 8.1. The initial cost function is zero, and x3, x4, and x5 are the

basic variables.

Using the Simplex procedure, we note that a225 1/14 is the pivot element in the initial tab-

leau. This implies that x4 should be replaced by x2 in the basic set. Carrying out the pivot opera-

tion using the second row as the pivot row, we obtain the second tableau (canonical form)

TABLE 8.13 Solution of Example 8.9 by the Simplex method

Initial tableau: x4 is identified to be replaced with x2 in the basic set

Basick x1 x2 x3 x4 x5 b Ratio: bi/ai2

1. x3 1 1 1 0 0 16 16
1 5 16

2. x4
1
28

1
14 0 1 0 1 1

1=145 14’smallest

3. x5
1
14

1
24 0 0 1 1 1

1=245 24

4. Cost 2400 2600 0 0 0 f2 0

Second tableau: x3 is identified to be replaced with x1 in the basic set

Basick x1 x2 x3 x4 x5 b Ratio: bi/ai1

5. x3
1
2 0 1 214 0 2 2

1=25 4’smallest

6. x2
1
2 1 0 14 0 14 14

1=25 28

7. x5
17
336 0 0 2 7

12 1 5
12

5=12
17=336 5 140

17

8. Cost 2100 0 0 8400 0 f1 8400

Third tableau: Reduced cost coefficients in the nonbasic columns are non-negative;
the tableau gives the optimum solution

Basick x1 x2 x3 x4 x5 b Ratio

9. x1 1 0 2 228 0 4 Not needed

10. x2 0 1 21 28 0 12 Not needed

11. x5 0 0 2 17
168

5
6 1 3

14 Not needed

12. Cost 0 0 200 5600 0 f1 8800
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shown in Table 8.13. At this point the basic feasible solution is x15 0, x25 14, x35 2, x45 0,

x55 5/12, which corresponds to point E in Figure 8.1. The cost function is reduced to 28400.

The pivot element for the next iteration is a115 1/2 in the second tableau, implying that x3
should be replaced by x1 in the basic set. Carrying out the pivot operation, we obtain the third

tableau shown in Table 8.13. At this point, all reduced cost coefficients (corresponding to nonba-

sic variables) are non-negative (c035 200, c045 5600), so according to Theorem 8.4 we have the

optimum solution:

Basic variables: x15 4, x25 12, x5 5 3/14

Nonbasic variables: x35 0, x45 0

Cost function: f5�8800

This corresponds to point D in Figure 8.1. Note that c0j, corresponding to the nonbasic variables

x3 and x4, are positive. Therefore, the global optimum solution is unique, as may be observed in

Figure 8.1 as well.

The problem in Example 8.10 has multiple solutions. The example illustrates how to
recognize such solutions with the Simplex method.

EXAMPLE 8.10 LP PROBLEM WITH MULTIPLE SOLUTIONS

Solve the following problem with the Simplex method:

Maximize

z5 x1 1 0:5x2 ðaÞ
subject to

2x1 1 3x2 # 12 ðbÞ
2x1 1 x2 # 8 ðcÞ
x1; x2 $ 0 ðdÞ

Solution
The problem was solved graphically in Section 3.4 3. It has multiple solutions, as could be seen in

Figure 3.7. We will solve the problem using the Simplex method and discuss how multiple solu-

tions can be recognized for general LP problems. The problem is converted to standard LP form:

Minimize
f 52x1 2 0:5x2 ðeÞ

subject to

2x1 1 3x2 1 x3 5 12 ðfÞ
2x1 1 x2 1 x4 5 8 ðgÞ
xi $ 0; i5 1 to 4 ðhÞ
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Here x3 is the slack variable for the first constraint and x4 is the slack variable for the second

constraint. Table 8.14 contains iterations of the Simplex method. The optimum point is reached

in just one iteration because all the reduced cost coefficients are non-negative in the second tab-

leau. The optimum solution is given as

Basic variables: x15 4, x35 4

Nonbasic variables: x25 x45 0

Optimum cost function: f524 (z5 4)

This solution corresponds to point B in Figure 3.7.

In the second tableau, the reduced cost coefficient for the nonbasic variable x2 is zero. This means

that it is possible to make x2 basic without any change in the optimum cost function value. This

suggests the existence of multiple optimum solutions.

Performing the pivot operation in the x2 column, we find another solution, given in the third

tableau of Table 8.14:

Basic variables: x15 3, x25 2

Nonbasic variables: x35 x45 0

Optimum cost function: f524 (z5 4)

TABLE 8.14 Solution by the Simplex method for Example 8.10

Initial tableau: x4 is identified to be replaced with x1 in the basic set

Basick x1 x2 x3 x4 b Ratio: bi/ai1

1. x3 2 3 1 0 12 12
2 5 6

2. x4 2 1 0 1 8 8
25 4’smallest

3. Cost 21 20.5 0 0 f2 0

Second tableau: First optimum point; reduced cost coefficients in

nonbasic columns are non-negative; the tableau gives optimum

solution; c02 5 0 indicates possibility of multiple solutions; x3 is
identified to be replaced with x2 in the basic set to obtain another
optimum point

Basick x1 x2 x3 x4 b Ratio: bi/ai2

4. x3 0 2 1 21 4 4
25 2’smallest

5. x1 1 1
2 0 1

2 4 4
1=25 8

6. Cost 0 0 0 1
2 f1 4

Third tableau: Second optimum point

Basick x1 x2 x3 x4 b Ratio

7. x2 0 1 1
2 21

2 2 Not needed

8. x1 1 0 21
4

3
4 3 Not needed

9. Cost 0 0 0 1
2 f1 4
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This solution corresponds to point C on Figure 3.7. Note that any point on the line B�C also

gives an optimum solution. Multiple solutions can occur when the cost function is parallel to

one of the constraints. For the present example, the cost function is parallel to the second con-

straint, which is active at the optimum.

In general, if a reduced cost coefficient corresponding to a nonbasic variable is zero in
the final tableau, multiple optimum solutions are possible. From a practical standpoint,
this is not a bad situation. Actually, it may be desirable because it gives the designer
options; any suitable point on the straight line joining the two optimum designs can be
selected to better suit his or her needs. Note that all optimum design points are global
solutions as opposed to local solutions.

Example 8.11 demonstrates how to recognize an unbounded solution for a problem.

EXAMPLE 8.11 IDENTIFICATION OF AN UNBOUNDED
SOLUTION WITH THE SIMPLEX METHOD

Solve the LP problem:

Maximize
z5 x1 22x2 ðaÞ

subject to
2x1 2 x2 $ 0 ðbÞ

22x1 1 3x2 # 6 ðcÞ
x1; x2 $ 0 ðdÞ

Solution
The problem was solved graphically in Section 3.5. It can be seen from Figure 3.8 that the

solution is unbounded; the feasible set is not closed. We will solve the problem using the

Simplex method and see how we can recognize unbounded problems.

Writing the problem in the standard Simplex form, we obtain the initial tableau shown in

Table 8.15, where x3 and x4 are the slack variables (note that the first constraint has been trans-

formed as 22x11 x2 # 0). The basic feasible solution is

Basic variables: x35 0, x45 6

TABLE 8.15 Initial canonical form for Example 8.11
(unbounded solution)

Basick x1 x2 x3 x4 b

1. x3 22 1 1 0 0

2. x4 22 3 0 1 6

3. Cost 21 2 0 0 f2 0
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Nonbasic variables: x15 x25 0

Cost function: f5 0

Scanning the last row, we find that the reduced cost coefficient for the nonbasic variable x1 is

negative. Therefore, x1 should become a basic variable. However, a pivot element cannot be

selected in the x1 column because there is no positive element. There is no other possibility of

selecting another nonbasic variable to become basic; the reduced cost coefficient for x2 (the other

nonbasic variable) is positive. Therefore, no pivot steps can be performed, and yet we are not at

the optimum point. Thus, the feasible set for the problem is unbounded. The foregoing observa-

tion will be true in general. For unbounded solutions, there will be negative reduced cost coeffi-

cients for nonbasic variables but no possibility of pivot steps.

8.6 THE TWO-PHASE SIMPLEX METHOD—ARTIFICIALVARIABLES

The basic Simplex method of Section 8.5 is extended to handle “$ type” and equality
constraints. A basic feasible solution is needed to initiate the Simplex solution process.
Such a solution is immediately available if only “# type” constraints are present.
However, for the “$ type” and/or equality constraints, an initial basic feasible solution is
not available. To obtain such a solution, we introduce artificial variables for the “$ type”
and equality constraints, define an auxiliary minimization LP problem, and solve it. The
standard Simplex method can still be used to solve the auxiliary problem. This is called
Phase I of the Simplex procedure. At the end of Phase I, a basic feasible solution for the
original problem becomes available. Phase II then continues to find a solution to the origi-
nal LP problem. We will illustrate the method with examples.

8.6.1 Artificial Variables

When there are “$ type” constraints in the linear programming problem, surplus vari-
ables are subtracted from them to transform the problem into the standard form. The
equality constraints, if present, are not changed because they are already in the standard
form. For such problems, an initial basic feasible solution cannot be obtained by selecting
the original design variables as nonbasic (setting them to zero), as is the case when there
are only “# type” constraints (e.g., for all of the examples in Section 8.5). To obtain an ini-
tial basic feasible solution, the Gauss-Jordan elimination procedure can be used to convert
Ax5b to the canonical form.

However, an easier way is to introduce non-negative auxiliary variables for the
“$ type” and equality constraints, define an auxiliary LP problem, and solve it using the
Simplex method. The auxiliary variables are called artificial variables. These are variables in
addition to the surplus variables for the “$ type” constraints. They have no physical
meaning, but with their addition we obtain an initial basic feasible solution for the auxil-
iary LP problem by treating the artificial variables as basic along with any slack variables
for the “# type” constraints. All other variables are treated as nonbasic (i.e., set to zero).

Example 8.12 illustrates the process of adding artificial variables for “$ type” and
equality constraints.
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EXAMPLE 8.12 INTRODUCTION OF ARTIFICIAL VARIABLES

Introduce artificial variables and obtain an initial basic feasible solution for the following LP

problem:

Maximize
z5 x1 1 4x2 ðaÞ

subject to
x1 1 2x2 # 5 ðbÞ
2x1 1 x2 5 4 ðcÞ

2x1 1 x2 #21 ðdÞ
x1 $ 0; x2 $ 0 ðeÞ

Solution
To transform the problem into the standard form, we multiply the inequality in Eq. (d) by 21

to make the right side of the constraint non-negative as x12 x2 $ 1. Now we introduce slack and

surplus variables for the constraint in Eq. (b) and Eq. (d), respectively, and obtain the problem in

the standard form as

Minimize
f 52x1 24x2 ðfÞ

subject to
x1 1 2x2 1 x3 5 5 ðgÞ

2x1 1 x2 5 4 ðhÞ
x1 2 x2 2 x4 5 1 ðiÞ
xi $ 0; i5 1 to 4 ðjÞ

where x3 $ 0 is a slack variable and x4 $ 0 is a surplus variable.

The linear system Ax5b in Eqs. (g) through (i) is not in the canonical form; Therefore, a basic

feasible solution is not available to initiate the Simplex method. We introduce non-negative artificial

variables x5 $ 0 and x6 $ 0 in Eqs (h) and (i) and rewrite the constraints in Eqs. (g) through (i) as

x1 1 2x2 1 x3 5 5 ðkÞ
2x1 1 x2 1 x5 5 4 ðlÞ

x1 2 x2 2 x4 1 x6 5 1 ðmÞ
The linear system in Eqs. (k) through (m) is in the canonical form as displayed in Table 8.16.

x3, x5, and x6 are noted as the identity columns in the system Ax5b. Therefore, x3 , x5, and x6
are identified as the basic variables, and the remaining ones are identified as the nonbasic vari-

ables. Association of the basic variables with the rows of the tableau depends on the location of

the unit element in the identity columns as seen in Table 8.16. The initial basic feasible solution

for the auxiliary problem from Table 8.16 is given as

Basic variables: x35 5, x55 4, x65 1

Nonbasic variables: x15 0, x25 0, x45 0
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8.6.2 Artificial Cost Function

The artificial variable for each equality and “$ type” constraint is introduced to obtain
an initial basic feasible solution for the auxiliary problem. These variables have no physi-
cal meaning and need to be eliminated from the problem. To eliminate the artificial vari-
ables from the problem, we define an auxiliary cost function called the artificial cost
function and minimize it subject to the constraints of the problem and the non-negativity
of all of the variables. The artificial cost function is simply a sum of all the artificial
variables and will be designated as w:

w5
X

ðall artificial variablesÞ ð8:18Þ

As an example, the artificial cost function in Example 8.12 is given as

w5 x5 1 x6 ð8:19Þ

8.6.3 Definition of the Phase I Problem

Since the artificial variables are introduced simply to obtain an initial basic feasible
solution for the original problem, they need to be eliminated eventually. This elimination
is done by defining and solving an LP problem called the Phase I problem. The objective
of this problem is to make all the artificial variables nonbasic so they have zero value. In
that case, the artificial cost function in Eq. (8.18) will be zero, indicating the end of Phase I.

Thus, the Phase I problem is to minimize the artificial cost function in Eq. (8.18) subject
to all of the constraints of the problem. However, it is not yet in a form suitable to initiate
the Simplex method. The reason is that the reduced cost coefficients c0j of the nonbasic vari-
ables in the artificial cost function are not yet available to determine the pivot element and
perform the pivot step. Currently, the artificial cost function in Eq. (8.18) is in terms of
basic variables, such as the one in Eq. (8.19). Therefore, the reduced cost coefficients c0j can-
not be identified. They can be identified only if the artificial cost function w is in terms of
nonbasic variables.

To obtain w in terms of nonbasic variables, we use the constraint expressions to elimi-
nate the basic variables from the artificial cost function. For example, we substitute for
x5 and x6 from Eqs. (l) and (m) in Example 8.12 and obtain the artificial cost function of
Eq. (8.19) in terms of the nonbasic variables as

w5 ð422x1 2 x2Þ1 ð12 x1 1 x2 1 x4Þ5 52 3x1 1 x4 ð8:20Þ

TABLE 8.16 Initial basic feasible solution for
Example 8.12

Basick x1 x2 x3 x4 x5 x6 b

1. x3 1 2 1 0 0 0 5

2. x5 2 1 0 0 1 0 4

3. x6 1 21 0 21 0 1 1
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If there are also “# type” constraints in the original problem, these are cast into the
standard LP form by adding slack variables that serve as basic variables in Phase I.
Therefore, the number of artificial variables is less than or at the most equal to the total
number of constraints.

8.6.4 Phase I Algorithm

The standard Simplex procedure described in Section 8.5 can now be employed to solve
the auxiliary optimization problem of Phase I. During this phase, the artificial cost func-
tion is used to determine the pivot element. The original cost function is treated as a con-
straint, and the elimination step is also executed for it. This way, the real cost function is
only in terms of the nonbasic variables at the end of Phase I, and the Simplex method can
be continued during Phase II. All artificial variables should become nonbasic at the end of
Phase I. Since w is the sum of all of the artificial variables, its minimum value is clearly
zero. When w5 0, an extreme point of the original feasible set is reached; w is then dis-
carded in favor of f and iterations continue in Phase II until the minimum of f is obtained.
Example 8.13 illustrates calculations for Phase I of the Simplex method.

Infeasible Problem

Suppose, however, that w cannot be driven to zero at the end of Phase I. This will be
apparent when none of the reduced cost coefficients for the artificial cost function are neg-
ative and yet w is greater than zero. Clearly, this means that we cannot reach the original
feasible set and, therefore, no feasible solution exists for the original design problem; that is, it is
an infeasible problem. At this point the designer should re-examine the formulation of the
problem, which may be over-constrained or improperly formulated.

EXAMPLE 8.13 PHASE I OF THE SIMPLEX METHOD

For Example 8.12, complete Phase I of the Simplex method.

Solution
Using the constraints given in Eqs. (k) through (m) in Example 8.12, the initial tableau for

the problem is set up as shown in Table 8.17. The artificial cost function of Eq. (8.20) is written

as the last row of the tableau, and the real cost function of Eq. (f) is written as the next-to-last

row.

Now the Simplex iterations are carried out using the artificial cost row to determine the pivot

element. The Gauss-Jordan elimination procedure, as demonstrated earlier, is used to complete

the pivot operations. In the initial tableau, the element a315 1 is identified as the pivot element.

The pivot operation is performed in column x1 using row 3 as the pivot row. With this pivot

operation, the artificial variable x6 is replaced by x1 in the basic set. Thus the artificial variable x6
becomes nonbasic and assumes a zero value.

In the second tableau, a225 3 is identified as the pivot element. Thus eliminations are per-

formed in the x2 column using row 7 as the pivot row. At the end of the second pivot operation,

x5 is replaced by x2 in the basic set; that is, the artificial variable x5 assumes a zero value. Since

both of the artificial variables have become nonbasic, the artificial cost function has attained a
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zero value. This indicates the end of Phase I of the Simplex method. An examination of the artifi-

cial cost row shows that the reduced cost coefficients in the nonbasic columns x4, x5, and x6 are

non-negative, which also indicates the end of Phase I.

The basic feasible solution for the original problem is reached as

Basic variables: x15 5/3, x25 2/3, x35 2

Nonbasic variables: x45 x55 x65 0

Cost function: f5213/3

Now we can discard the artificial cost row and the artificial variable columns x5 and x6 in

Table 8.17 and continue with the Simplex iterations using the real cost row to determine the

pivot column.

TABLE 8.17 Phase I of Simplex method for Example 8.13

Initial tableau: x6 is identified to be replaced with x1 in the basic set

Basick x1 x2 x3 x4 x5 x6 b Ratio

1. x3 1 2 1 0 0 0 5 5/1

2. x5 2 1 0 0 1 0 4 4/2

3. x6 1 21 0 21 0 1 1 1/1

4. Cost 21 24 0 0 0 0 f20

5. Artificial 23 0 0 1 0 0 w25

Second tableau: x5 is identified to be replaced with x2 in the basic set

Basick x1 x2 x3 x4 x5 x6 b Ratio

6. x3 0 3 1 1 0 21 4 4/3

7. x5 0 3 0 2 1 22 2 2/3

8. x1 1 21 0 21 0 1 1 Negative

9. Cost 0 25 0 21 0 1 f1 1

10. Artificial 0 23 0 22 0 3 w22

Third tableau: Reduced cost coefficients in nonbasic columns are non-negative; the

tableau gives Optimum point. End of Phase I

Basick x1 x2 x3 x4 x5 x6 b

11. x3 0 0 1 21 21 1 2

12. x2 0 1 0 2
3

1
3 22

3
2
3

13. x1 1 0 0 21
3

1
3

1
3

5
3

14. Cost 0 0 0 7
3

5
3 27

3 f 1 13
3

15. Artificial 0 0 0 0 1 1 w20

x3, slack variable; x4, surplus variable; x5, x6, artificial variables.
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8.6.5 Phase II Algorithm

In the final tableau from Phase I, the artificial cost row is replaced by the actual cost
function equation and the Simplex iterations continue based on the algorithm explained in
Section 8.5. The basic variables, however, should not appear in the cost function. Thus, the
pivot steps need to be performed on the cost function equation to eliminate the basic vari-
ables from it. A convenient way of accomplishing this is to treat the cost function as one of
the equations in the Phase I tableau, say the second equation from the bottom. Elimination
is performed on this equation along with the others. In this way, the cost function is in the
correct form to continue with Phase II.

The foregoing procedure was used in Example 8.13 and Table 8.17. The real cost was
written before the artificial cost row, and eliminations were performed in the cost row as
well. It took two iterations of the Simplex method to solve the Phase I linear programming
problem.

Examining the real cost row in the third tableau in Table 8.17, we observe that the
reduced cost coefficient in the nonbasic column x4 is positive (artificial columns x5 and x6
are ignored in Phase II). This indicates the end of Phase II of the algorithm, and the
solution obtained from the third tableau is the optimum point. Note that the artificial
variable column (x6) is the negative of the surplus variable column (x4) for the “$ type”
constraint. This is true in general and can serve as a check for correctness of the Simplex
iterations.

The artificial variable columns can also be discarded for Phase II calculations. However,
they are kept in the tableau because they provide useful information useful for postoptimality
analysis.

Features of the Simplex method

1. If there is a solution to the LP problem, the method finds it (Example 8.14).
2. If the problem is infeasible, the method indicates that (Example 8.15).
3. If the problem is unbounded, the method indicates that (Examples 8.11

and 8.16).
4. If there are multiple solutions, the method indicates that (Examples 8.7

and 8.10).

EXAMPLE 8.14 USE OF ARTIFICIAL VARIABLES FOR
“$ TYPE” CONSTRAINTS

Find the optimum solution for the following LP problem using the Simplex method:

Maximize
z5 y1 1 2y2 ðaÞ

subject to
3y1 1 2y2 # 12 ðbÞ
2y1 1 3y2 $ 6 ðcÞ

y1 $ 0; y2 is unrestricted in sign: ðdÞ
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Solution
The graphical solution to the problem is shown in Figure 8.4. It can be seen that the optimum

solution is at point B. We will use the two-phase Simplex method to verify the solution. Since y2
is free in sign, we decompose it as y25 y122 y22. To write the problem in the standard form, we

redefine the variables as x15 y1, x25 y12, and x35 y22 and transform the problem:

Minimize
f 52x1 22x2 1 2x3 ðeÞ

subject to
3x1 1 2x2 2 2x3 1 x4 5 12 ðfÞ
2x1 1 3x2 2 3x3 2 x5 5 6 ðgÞ

xi $ 0; i5 1 to 5 ðhÞ
where x4 is a slack variable for the first constraint and x5 is a surplus variable for the second con-

straint. It is seen that if we select the real variables as nonbasic (i.e., x15 0, x25 0, x35 0), the result-

ing basic solution is infeasible because x5526. Therefore, we need to use the two-phase

algorithm. Accordingly, we introduce an artificial variable x6 in the second constraint of Eq. (g) as

2x1 1 3x2 2 3x3 2 x5 1 x6 5 6 ðiÞ
The artificial cost function is defined as w5 x6. Since w must be in terms of nonbasic variables

(x6 is basic), we substitute for x6 from Eq. (i) and obtain w as

w5 x6 5 62 2x1 23x2 1 3x3 1 x5 ðjÞ

2y1  + 3y2  = 6

z = 10

z = 6

z = 2 

4

4

6

6

2

2

0

A

B

C

D

Optimum point
y1 = 0, y2 = 6, z* = 12

y2

y1

3y1 + 2y2 = 12

FIGURE 8.4 Graphical solution to the LP prob-
lem of Example 8.14.
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The initial tableau for Phase I is shown in Table 8.18. The initial basic feasible solution is

given as

Basic variables: x45 12, x65 6

Nonbasic variables: x15 x25 x35 x55 0

Cost function: f5 0;

Artificial cost function: w5 6

This solution corresponds to the infeasible point D in Figure 8.4. According to the Simplex algo-

rithm, the pivot element is identified as a225 3, which implies that x2 should become basic and

x6 should become nonbasic. Performing the pivot operation in column x2 using row 2 as the

pivot row, we obtain the second tableau given in Table 8.18.

For the second tableau, x45 8 and x25 2 are the basic variables and all others are nonbasic. This

corresponds to the feasible point A in Figure 8.4. Since the reduced cost coefficients of the artificial

cost function in the nonbasic columns are non-negative and the artificial cost function is zero, an ini-

tial basic feasible solution for the original problem is obtained. Therefore, this is the end of Phase I.

For Phase II, column x6 should be ignored while determining the pivot column. For the next

step, the pivot element is identified as a155 2/3 in the second tableau according to the steps of

TABLE 8.18 Solution by the two-phase Simplex method for Example 8.14

Initial tableau: x6 is identified to be replaced with x2 in the basic set

Basick x1 x2 x3 x4 x5 x6 b Ratio

1. x4 3 2 22 1 0 0 12 12
2 5 6

2. x6 2 3 23 0 21 1 6 6
35 2

3. Cost 21 22 2 0 0 0 f2 0

4. Artificial cost 22 23 3 0 1 0 w2 6

Second tableau: x4 is identified to be replaced with x5 in the basic set. End of

Phase I

Basick x1 x2 x3 x4 x5 x6 b Ratio

5. x4
5
3 0 0 1 2

3 22
3 8 8

2=35 12

6. x2
2
3 1 21 0 21

3
1
3 2 Negative

7. Cost 1
3 0 0 0 22

3
2
3 f1 4

8. Artificial cost 0 0 0 0 0 1 w2 0

Third tableau: Reduced cost coefficients in nonbasic columns are non-negative; the

third tableau gives optimum solution. End of Phase II

Basick x1 x2 x3 x4 x5 x6 b

9. x5
5
2 0 0 3

2 1 21 12

10. x2
3
2 1 21 1

2 0 0 6

11. Cost 2 0 0 1 0 0 f1 12
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the Simplex method. This implies that x4 should be replaced by x5 as a basic variable in row 5.

After the pivot operation, the third tableau is obtained, as shown in Table 8.18. This tableau

yields an optimum solution to the problem since the reduced cost coefficients in the nonbasic

columns x1, x3, and x4 are non-negative:

Basic variables: x55 12, x25 6

Nonbasic variables: x15 x35 x45 0

Cost function: f5 212

The solution to the original design problem is then

y15 x15 0, y25 x2 � x35 6 � 05 6, z52f5 12

which agrees with the graphical solution in Figure 8.4.

Note that the artificial variable column (x6) in the final tableau is the negative of the surplus

variable column (x5). This is true for all “$ type” constraints.

EXAMPLE 8.15 USE OF ARTIFICIAL VARIABLES FOR EQUALITY
CONSTRAINTS (INFEASIBLE PROBLEM)

Solve the LP problem:

Maximize
z5 x1 1 4x2 ðaÞ

subject to
x1 1 2x2 # 5 ðbÞ
2x1 1 x2 5 4 ðcÞ
x1 2 x2 $ 3 ðdÞ
x1; x2 $ 0 ðeÞ

Solution
The constraints for the problem are plotted in Figure 8.5. It is seen that the problem has no

feasible solution. We will solve the problem using the Simplex method to see how we can recog-

nize an infeasible problem. Writing the problem in the standard LP form, we obtain

Minimize
f 52x1 2 4x2 ðfÞ

subject to
x1 1 2x2 1 x3 5 5 ðgÞ
2x1 1 x2 1 x5 5 4 ðhÞ

x1 2 x2 2 x4 1 x6 5 3 ðiÞ
xi $ 0; i5 1 to 6 ðjÞ
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Here x3 is a slack variable, x4 is a surplus variable, and x5 and x6 are artificial variables.

Table 8.19 shows the Phase I iterations of the Simplex method. It is seen that after the first pivot

step, all the reduced cost coefficients of the artificial cost function for nonbasic variables are posi-

tive, indicating the end of Phase I. However, the artificial cost function is not zero (w5 1).

Therefore, there is no feasible solution to the original problem.

4

2x
1  + x

2  = 4

x1 + 2x2 = 5

x 1–
x 2 

= 
3

4 5

3

3

2

2

1

10

A

G

B C D

E

x2

x1

F

H

FIGURE 8.5 Graphic of the constraints for the
LP problem of Example 8.15: Infeasible problem.

TABLE 8.19 Solution to Example 8.15 (infeasible problem)

Initial tableau: x5 is identified to be replaced with x1 in the basic set

Basick x1 x2 x3 x4 x5 x6 b Ratio

1. x3 1 2 1 0 0 0 5 5
15 5

2. x5 2 1 0 0 1 0 4 4
25 2

3. x6 1 21 0 21 0 1 3 3
15 3

4. Cost 21 24 0 0 0 0 f2 0

5. Artificial cost 23 0 0 1 0 0 w2 7

Second tableau: End of Phase I

Basick x1 x2 x3 x4 x5 x6 b

6. x3 0 3
2 1 0 21

2 0 3

7. x1 1 1
2 0 0 1

2 0 2

8. x6 0 23
2 0 21 21

2 1 1

9. Cost 0 27
2 0 0 1

2 0 f1 2

10. Artificial cost 0 3
2 0 1 3

2 0 w2 1
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EXAMPLE 8.16 USE OF ARTIFICIAL VARIABLES (UNBOUNDED
SOLUTION)

Solve the LP problem:

Maximize
z5 3x1 2 2x2 ðaÞ

subject to
x1 2 x2 $ 0 ðbÞ
x1 1 x2 $ 2 ðcÞ
x1; x2 $ 0 ðdÞ

Solution
The constraints for the problem are plotted in Figure 8.6. It is seen that the feasible set for the

problem is unbounded. We will solve the problem with the Simplex method and see how to rec-

ognize unboundedness. Transforming the problem to the standard form, we get:

Minimize
f 523x1 1 2x2 ðeÞ

subject to
2x1 1 x2 1 x3 5 0 ðfÞ

x1 1 x2 2 x4 1 x5 5 2 ðgÞ
xi $ 0; i5 1 to 5 ðhÞ

where x3 is a slack variable, x4 is a surplus variable, and x5 is an artificial variable. Note that the

right side of the first constraint is zero, so it can be treated as either “# type” or “$ type.”

We will treat it as “# type.” Note also that the second constraint is “$ type,” so we must use an

artificial variable and an artificial cost function to find the initial basic feasible solution.

x
1  + x

2  = 2

3

2

2

1

10

A

B

C

D

Feasible region unbounded

x2

x1

x 1 
+ x 2 

= 0

FIGURE 8.6 Constraints for the LP problem of
Example 8.16: Unbounded problem.
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The initial set-up of the problem and its solution are given in Table 8.20. For the initial tab-

leau, x35 0 and x55 2 are basic variables and all others are nonbasic. Note that this is a degenerate

basic feasible solution. The solution corresponds to point A (the origin) in Figure 8.6. Scanning the

artificial cost row, we observe that there are two possibilities for pivot columns x1 or x2. If x2 is

selected as the pivot column, then the first row must be the pivot row with a125 1 as the pivot

element. This will make x2 basic and x3 nonbasic. However, x2 will remain zero, and the result-

ing solution will be degenerate, corresponding to point A. One more iteration will be necessary

to move from A to D.

If we choose x1 as the pivot column, then a215 1 will be the pivot element, making x1 as basic

and x5 as nonbasic. Carrying out the pivot step, we obtain the second tableau as shown in

Table 8.20. The basic feasible solution is x15 2, x35 2, and the other variables are zero. This solu-

tion corresponds to point D in Figure 8.6. This is the basic feasible solution to the original prob-

lem because the artificial cost function is zero (i.e., w5 0). The original cost function has also

reduced from 0 to 26. This is the end of Phase I.

Scanning the cost function row in the second tableau, we find that the reduced cost coefficient

c04 is negative, but the pivot element cannot be determined; that is, x4 cannot be made basic

because all the elements in the x4 column are negative in the second tableau. However, we are

not at an optimum point. This indicates the problem to be unbounded.

8.6.6 Degenerate Basic Feasible Solution

It is possible that during iterations of the Simplex method, a basic variable attains a
zero value, that is, the basic feasible solution becomes degenerate. What are the implica-
tions of this situation? We will discuss them in Example 8.17.

TABLE 8.20 Solution to Example 8.16 (unbounded problem)

Initial tableau: x5 is identified to be replaced with x1 in the basic set

Basick x1 x2 x3 x4 x5 b Ratio

1. x3 21 1 1 0 0 0 Negative

2. x5 1 1 0 21 1 2 2
15 2

3. Cost 23 2 0 0 0 f2 0

4. Artificial cost 21 21 0 1 0 w2 2

Second tableau: End of Phase I. End of Phase II

Basick x1 x2 x3 x4 x5 b Ratio

5. x3 0 2 1 21 1 2 Negative

6. x1 1 1 0 21 1 2 Negative

7. Cost 0 5 0 23 3 f1 6

8. Artificial cost 0 0 0 0 1 w2 0
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EXAMPLE 8.17 IMPLICATIONS OF THE DEGENERATE BASIC
FEASIBLE SOLUTION

Solve the following LP problem by the Simplex method:

Maximize
z5 x1 1 4x2 ðaÞ

subject to
x1 1 2x2 # 5 ðbÞ
2x1 1 x2 # 4 ðcÞ
2x1 1 x2 $ 4 ðdÞ
x1 2 x2 $ 1 ðeÞ
x1; x2 $ 0: ðfÞ

Solution
The problem is transcribed into the standard LP form as follows:

Minimize
f 52x1 24x2 ðgÞ

subject to
x1 1 2x2 1 x3 5 5 ðhÞ
2x1 1 x2 1 x4 5 4 ðiÞ

2x1 1 x2 2 x5 1 x7 5 4 ðjÞ
x1 2 x2 2 x6 1 x8 5 1 ðkÞ
xi $ 0; i5 1 to 8 ðlÞ

where x3 and x4 are slack variables, x5 and x6 are surplus variables, and x7 and x8 are artificial

variables. The two-phase Simplex procedure takes three iterations to reach the optimum point.

These iterations are given in Table 8.21.

It is seen that in the third tableau, the basic variable x4 has a zero value so the basic feasible

solution is degenerate. At this iteration, it is determined that x5 should become basic so x5 is the

pivot column. We need to determine the pivot row. We take the ratios of the right sides with the

positive elements in the x5 column. This determines the second row as the pivot row because it

has the smallest ratio (zero).

In general, if the element in the pivot column and the row that gives the degenerate basic var-

iable is positive, then that row must always be the pivot row; otherwise, the new solution cannot

be feasible. Also, in this case, the new basic feasible solution will be degenerate, as for the final

tableau in Table 8.21. The only way the new feasible solution can be nondegenerate is when the

element in the pivot column and the degenerate variable row is negative. In that case the new

basic feasible solution will be nondegenerate.

It is theoretically possible for the Simplex method to fail by cycling between two degenerate basic feasible

solutions. However, in practice this usually does not happen. The final solution to this problem is

Basic variables: x15 5/3, x25 2/3, x35 2, x55 0

Nonbasic variables: x45 x65 x75 x85 0

Optimum cost function: f5213/3 or z5 13/3
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TABLE 8.21 Solution to Example 8.17 (degenerate basic feasible
solution)

Initial tableau: x8 is identified to be replaced with x1 in the basic set

Basick x1 x2 x3 x4 x5 x6 x7 x8 b Ratio

1. x3 1 2 1 0 0 0 0 0 5 5
15 5

2. x4 2 1 0 1 0 0 0 0 4 4
25 2

3. x7 2 1 0 0 21 0 1 0 4 4
25 2

4. x8 21 21 0 0 0 21 0 1 1 1
15 1

5. Cost 21 24 0 0 0 0 0 0 f20

6. Artificial 23 0 0 0 1 1 0 0 w25

Second tableau: x7 is identified to be replaced with x2 in the basic set

Basick x1 x2 x3 x4 x5 x6 x7 x8 b Ratio

7. x3 0 3 1 0 0 1 0 21 4 4
3

8. x4 0 3 0 1 0 2 0 22 2 2
3

9. x7 0 3 0 0 21 2 1 22 2 2
3

10. x1 1 21 0 0 0 21 0 1 1 Negative

11. Cost 0 25 0 0 0 21 0 1 f1 1

12. Artificial 0 23 0 0 1 22 0 3 w2 2

Third tableau: x4 is identified to be replaced with x5 in the basic set.

End of Phase I

Basick x1 x2 x3 x4 x5 x6 x7 x8 b Ratio

13. x3 0 0 1 0 1 21 21 1 2 2
15 2

14. x4 0 0 0 1 1 0 21 0 0 0
15 0

15. x2 0 1 0 0 21
3

2
3

1
3 22

3
2
3 Negative

16. x1 1 0 0 0 21
3 21

3
1
3

1
3

5
3 Negative

17. Cost 0 0 0 0 25
3

7
3

5
3 27

3 f1 13
3

18. Artificial 0 0 0 0 0 0 1 0 w2 0

Final tableau: End of Phase II

Basick x1 x2 x3 x4 x5 x6 x7 x8 b

19. x3 0 0 1 21 0 21 0 1 2

20. x5 0 0 0 1 1 0 21 0 0

21. x2 0 1 0 1
3 0 2

3 0 22
3

2
3

22. x1 1 0 0 1
3 0 21

3 0 1
3

5
3

23. Cost 0 0 0 5
3 0 7

3 0 27
3 f 1 13

3

3478.6 THE TWO-PHASE SIMPLEX METHOD—ARTIFICIAL VARIABLES

II. NUMERICAL METHODS FOR CONTINUOUS VARIABLE OPTIMIZATION



8.7 POSTOPTIMALITY ANALYSIS

The optimum solution to the LP problem depends on the parameters in vectors c and b
and the matrix A defined in Eqs. (8.10) through (8.12). These parameters are prone to
errors in practical design problems. Thus we are interested not only in the optimum solu-
tion but also in how it changes when these parameters change. The changes may be either
discrete or continuous.

The study of discrete parameter changes is often called sensitivity analysis, and that of continu-
ous changes is called parametric programming. There are five basic parametric changes
affecting the optimum solution:

1. Changes in the cost function coefficients, cj
2. Changes in the resource limits, bi
3. Changes in the constraint coefficients, aij
4. The effect of including additional constraints
5. The effect of including additional variables

A thorough discussion of these changes, while not necessarily that difficult, is
beyond our scope here. In principle, we can imagine solving a new problem for every
change. Fortunately, for a small number of changes there are useful shortcuts. Almost
all computer programs for LP problems provide some information about parameter var-
iations. We will study the parametric changes defined in items 1 through 3. The final
tableau for the LP problem contains all of the information needed to study these changes. We
will describe the information contained in the final tableau and its use to study the
three parametric changes. For other variations, full-length texts on linear programming
may be consulted.

It turns out that the optimum solution to the altered problem can be computed using
the optimum solution to the original problem and the information in the final tableau as
long as the change in the parameters is within certain limits. This is especially beneficial
for problems that take a long time to solve. In the following discussion we use a0ij, c0j, and
b0i to represent the corresponding values of the parameters aij, cj, and bi in the final
tableau.

8.7.1 Changes in Constraint Limits

Recovery of Lagrange Multipliers

First, we study how the optimum value of the cost function for the problem changes if
we change the right-side parameters, bi (also known as resource limits), of the constraints.
The Constraint Variation Sensitivity Theorem 4.7 can be used to study the effect of these
changes. Use of that theorem requires knowledge of the Lagrange multipliers for the con-
straints. Theorem 8.5 gives a way of recovering the multipliers for the constraints of an LP
problem from the final tableau. Calculation of the new values of the design variables for
the changed problem is explained later.
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THEOREM 8 . 5

Lagrange Multiplier Values Let the stan-

dard linear programming problem be solved

using the Simplex method:

1. For “# type” constraints, the Lagrange

multiplier equals the reduced cost

coefficient in the slack variable column

associated with the constraint.

2. For “5 ” and “$ type” constraints, the

Lagrange multiplier equals the reduced

cost coefficient in the artificial variable

column associated with the constraint.

3. The Lagrange multiplier is always $ 0

for the “# type” constraint, always # 0

for the “$ type” constraint, and free in

sign for the “5 type” constraint.

Change in Cost Function

In Section 4.7, the physical meaning of the Lagrange multipliers was described. There, the
Lagrange multipliers were related to derivatives of the cost function with respect to the
right-side parameters. Equality and inequality constraints were treated separately, with vi
and ui as their Lagrange multipliers, respectively. However, in this section, we use a
slightly different notation defined as follows:

ei the right-side parameter of the ith constraint
yi the Lagrange multiplier of the ith constraint

Using this notation and Theorem 4.7, we obtain the following derivative of the cost func-
tion with respect to the right-side parameters, and the change in the optimum cost
function:

@f

@ei
52yi; Δf 52yiΔei 52yiðeinew 2 eioldÞ ð8:21Þ

It is noted here that Eq. (8.21) is applicable only for minimization of the cost function.
Also, Theorem 8.5 and Eq. (8.21) are applicable only if changes in the right-side para-
meters are within certain limits; that is, there are upper and lower limits on changes in the
resource limits for which Eq. (8.21) is valid. The changes need not be small, as was stipu-
lated for nonlinear problems in Section 4.7. Calculations for the limits are discussed later
in this section. Note that the calculation for Δf remains valid for simultaneous changes to
multiple constraints; in that case all the changes are added.

It is also noted that Theorem 4.7 and Eq. (8.21) were discussed in Section 4.7 for the
general problem written as the minimization of a cost function with “# type” and equality
constraints. However, Eq. (8.21) is applicable to “$ type” constraints too, as long as care
is exercised in using the appropriate sign for the Lagrange multiplier yi and the change in
right side Δei. We will demonstrate use of Theorem 8.5 and Eq. (8.21) with examples.

It is also important to note that if an inequality is inactive at the optimum, then its slack
or surplus variable is greater than 0. Therefore, its Lagrange multiplier is 0 to satisfy the
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switching condition, yisi5 0 (except for the abnormal case, where both the Lagrange multi-
plier and the constraint function have zero value). This observation can help in verifying
the correctness of the Lagrange multipliers recovered from the final LP tableau. Example
8.18 describes the recovery of the Lagrange multipliers from the final tableau for the
“# type” constraints.

The Lagrange multipliers are also called the dual variables (or dual prices) for the prob-
lem. The concept of duality in linear programming is described in Chapter 9. Example
8.19 demonstrates recovery of Lagrange multipliers for equality and “$ type” constraints.

EXAMPLE 8.18 RECOVERY OF LAGRANGE MULTIPLIERS
FOR “# TYPE” CONSTRAINTS

Consider the problem:

Maximize
z5 5x1 22x2 ðaÞ

subject to
2x1 1 x2 # 9 ðbÞ
x1 2 2x2 # 2 ðcÞ

23x1 1 2x2 # 3 ðdÞ
x1; x2 $ 0 ðeÞ

Solve the problem by the Simplex method. Recover the Lagrange multipliers for the constraints.

Solution
Constraints for the problem and cost function contours are plotted in Figure 8.7. The optimum

solution is at point C and is given as x15 4, x25 1, z5 18. The problem is transformed into the

standard form as

Minimize
f 525x1 1 2x2 ðfÞ

subject to
2x1 1 x2 1 x3 5 9 ðgÞ
x1 2 2x2 1 x4 5 2 ðhÞ

23x1 1 2x2 1 x5 5 3 ðiÞ
xi $ 0; i5 1 to 5 ðjÞ

where x3, x4, and x5 are the slack variables. Solving the problem using the Simplex method, we

obtain the sequence of calculations given in Table 8.22. From the final tableau,

Basic variables: x15 4, x25 1, x55 13

Nonbasic variables: x35 0, x45 0

Objective function: z5 18 ( f5218)
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In the problem formulation, x3, x4, and x5 are the slack variables for the three constraints.

Since all constraints are “# type,” the reduced cost coefficients for the slack variables in the final

tableau are the Lagrange multipliers as follows:

1. For 2x11 x2 # 9:
y1 5 1:6 ðc03 in column x3Þ ðkÞ

2. For x12 2x2 # 2:
y2 5 1:8 ðc04 in column x4Þ ðlÞ

3. For 23x11 2x2 # 3:
y3 5 0 ðc05 in column x5Þ ðmÞ

Therefore, Eq. (8.21) gives partial derivatives of f with respect to ei as

@f

@e1
521:6;

@f

@e2
521:8;

@f

@e3
5 0 ðnÞ

where f52(5x122x2). If the right side of the first constraint changes from 9 to 10, the cost func-

tion f changes by
Δf 5 1:6ðe1new 2 e1oldÞ521:6ð102 9Þ521:6 ðoÞ

That is, the new value of f will be 219.6 (z5 19.6). Point F in Figure 8.7 gives the new optimum

solution to this case.
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FIGURE 8.7 Graphical solution to the LP
problem of Example 8.18.
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If the right side of the second constraint changes from 2 to 3, the cost function f changes by

Δf521.8(32 2)521.8 to 219.8. Point G in Figure 8.7 gives the new optimum solution. Note that

any small change in the right side of the third constraint will have no effect on the cost function.

When the right sides of the first and second constraints are changed to 10 and 3 simultaneously, the net

change in the cost function is 2(1.61 1.8) (i.e., new f will be 221.4). The new solution is at point

H in Figure 8.7.

EXAMPLE 8.19 RECOVERY OF LAGRANGE MULTIPLIERS
FOR “ 5 ” AND “$ TYPE” CONSTRAINTS

Solve the following LP problem and recover the proper Lagrange multipliers for the constraints:

Maximize
z5 x1 1 4x2 ðaÞ

TABLE 8.22 Solution to Example 8.18 by the Simplex method

Initial tableau: x4 is identified to be replaced with x1 in the basic set

Basick x1 x2 x3 x4 x5 b

1. x3 2 1 1 0 0 9

2. x4 1 22 0 1 0 2

3. x5 �3 2 0 0 1 3

4. Cost 25 2 0 0 0 f20

Second tableau: x3 is identified to be replaced with x2 in the basic set

Basick x1 x2 x3 x4 x5 b

5. x3 0 5 1 22 0 5

6. x1 1 22 0 1 0 2

7. x5 0 24 0 3 1 9

8. Cost 0 28 0 5 0 f1 10

Third tableau: Reduced cost coefficients in nonbasic columns are
non-negative; the tableau gives optimum point

Basick x1 x2 x3 x4 x5 b

9. x2 0 1 0.2 20.4 0 1

10. x1 1 0 0.4 0.2 0 4

11. x5 0 0 0.8 1.4 1 13

12. Cost 0 (c01) 0 (c02) 1.6 (c03) 1.8 (c04) 0 (c05) f1 18

x3, x4 and x5 are slack variables.

352 8. LINEAR PROGRAMMING METHODS FOR OPTIMUM DESIGN

II. NUMERICAL METHODS FOR CONTINUOUS VARIABLE OPTIMIZATION



subject to
x1 1 2x2 # 5 ðbÞ
2x1 1 x2 5 4 ðcÞ
x1 2 x2 $ 1 ðdÞ

x1; x2 $ 0 ðeÞ

Solution
Constraints for the problem are plotted in Figure 8.8. It is seen that line E�C is the feasible

region for the problem and point E gives the optimum solution. The equality constraint and the

“$ type” constraint in Eq. (d) are active at the optimum point. The optimum point, calculated

using the active constraints, is given as (5/3, 2/3).

This problem was solved in Example 8.13 using the two-phase Simplex method. The optimum

point was reached after two Simplex iterations, where Phases I and II ended simultaneously. The

Simplex iterations are given in Table 8.17. The final tableau for the problem is copied from

Table 8.17 into Table 8.23, where x3 is the slack variable for the “# type” constraint in Eq. (b), x4
is the surplus variable for the “$ type” constraint in Eq. (d), and x5 and x6 are artificial variables

for the equality and “$ type” constraints, respectively. Note that the artificial variable column

(x6) is the negative of the surplus variable column (x4) for the “$ type” constraint in Eq. (d). The

solution from the final tableau is

Basic variables: x1 5 5=3; x2 5 2=3; x3 5 2 ðfÞ
Nonbasic variables: x4 5 x5 5 x6 5 0 ðgÞ
Cost function: f 5213=3 ðhÞ

4

2x
1  + x

2  = 4

x1 + 2x2 = 5

x 1 
– 

x 2 
= 

1

4 5

3

3

2

2

1

10

A B C

F

D

E Optimum
point

x2

x1

f = –4 

f = –5 

f = –6 

FIGURE 8.8 Constraints for the LP prob-
lem from Example 8.19. Feasible region: line
E�C.
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Using Theorem 8.5, the Lagrange multipliers for the constraints are

1. For x11 2x2 # 5:
y1 5 0 ðc03 in the slack variable column x3Þ ðiÞ

2. For 2x11 x25 4:

y2 5
5

3
ðc05 in the artificial variable column x5Þ ðjÞ

3. For x12 x2 $ 1:

y3 52
7

3
ðc06 in the artificial variable column x6Þ ðkÞ

When the right side of the third constraint is changed to 2 (x12 x2 $ 2), the cost function f5

(2x12 4x2) changes by

Δf 52y3Δe3 52 2
7

3

� �
ð22 1Þ5 7

3
ðlÞ

That is, the cost function will increase by 7/3 from 213/3 to 22 (z5 2). This can also be

observed in Figure 8.8. We will demonstrate that the same result is obtained when the third con-

straint is written in the “# form” (2x11 x2 # 21). The Lagrange multiplier for the constraint is

7/3, which is the negative of the preceding value.

Note that it is also c04 in the surplus variable column x4. When the right side of the third con-

straint is changed to 2 (i.e., it becomes2x11 x2 #22), the cost function f5 (2 x12 4x2) changes by

Δf52y3Δe3 52 2
7

3

� �
½222 ð21Þ�5 7

3
ðmÞ

which is the same as before.

When the right side of the equality constraint is changed to 5 from 4, the cost function f5

(2x12 4x2) changes by

Δf 52y2Δe2 52
5

3
ð52 4Þ52

5

3
ðnÞ

That is, the cost function will decrease by 5/3, from 213/3 to 26 (z5 6).

8.7.2 Ranging Right-Side Parameters

When the right side of a constraint is changed, the constraint boundary moves parallel to
itself, changing the feasible region for the problem. However, the isocost lines do not change.

TABLE 8.23 Final tableau for Example 8.19

Basick x1 x2 x3 x4 x5 x6 b

11. x3 0 0 1 21 21 1 2

12. x2 0 1 0 2
3

1
3 22

3
2
3

13. x1 1 0 0 21
3

1
3

1
3

5
3

14. Cost 0 (c01) 0 (c02) 0 (c03) 7
3ðc04Þ 5

3ðc05Þ 27
3 ðc06Þ f1 13

3

Note: x35 slack variable; x45 surplus variable; x5 , x65 artificial variables.
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Since the feasible region is changed, the optimum solution, that is, the design variables as
well as the cost function, may change. There are, however, certain limits on changes for which
the set of active constraints at the optimum point is not altered. In other words, if the changes
are within certain limits, the sets of basic and nonbasic variables do not change. In that case,
the solution to the altered problem can be obtained from the information contained in the
final tableau. Otherwise, Eq. (8.21) cannot be used and more iterations of the Simplex method
are needed to obtain a solution to the altered problem. Theorem 8.6 describes determination
of the limits and the new right sides when the changes are within the limits.

THEOREM 8 . 6

Limits on Changes in Resources Let Δk

be the possible change in the right side bk of

the kth constraint. If Δk satisfies the follow-

ing inequalities, then no more iterations of

the Simplex method are required to obtain

the solution to the altered problem, and

Eq. (8.21) can be used to determine changes

to the cost function:

maxfri # 0; a0ij.0g#Δk #minfri $ 0; a0ij,0g;

ri 52
b0i
a0ij

; i5 1 to m ð8:22Þ

where

b0i5 right-side parameter for the ith

constraint in the final tableau.

a0ij5parameters in the jth column of the

final tableau; the jth column corresponds

to xj, which is the slack variable for a

“# type” constraint, or the artificial

variable for an equality, or “$ type”

constraint.

ri5negative of the ratios of the right

sides with the parameters in the jth

column.

Δk5possible change in the right side of

the kth constraint; the slack or artificial

variable for the kth constraint determines

the index j of the column with elements

that are used in the inequalities of

Eq. (8.22).

To determine the range, we first determine the column index j according to the rules
given in Theorem 8.6. Then, using the elements in the jth column, we determine the ratios
ri52b0i/a0ij (a0ij 6¼ 0).

1. The largest negative ratio ri gives the lower limit on change Δk in bk. If there is no
a0ij . 0, then the said ratio cannot be found, and so there is no lower bound on Δk

(i.e., the lower limit is 2N).
2. The smallest positive ratio ri gives the upper limit on change Δk in bk. If there is no

a0ij , 0, then the said ratio cannot be found, and there is no upper bound on Δk

(i.e., the upper limit is N).

New Values of the Basic Variables

The new right-side parameters bvj due to a change of Δk in bk are given as

bvi 5 b0i 1Δka
0
ij; i5 1 to m ð8:23Þ
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Using Eq. (8.23) and the final tableau, new values for the basic variables in each row can
be obtained. Equation (8.23) is applicable only if Δk is in the range determined by inequal-
ities of Eq. (8.22).

Example 8.20 demonstrates calculations of the ranges for the right side parameters and
new values for the right side (i.e., the basic variables) for a problem with “# type”
constraints.

EXAMPLE 8.20 RANGES FOR RESOURCE LIMITS—“# TYPE”
CONSTRAINTS

Find ranges for the right-side parameters of constraints for the problem solved in Example

8.18.

Solution
The graphical solution to the problem is shown in Figure 8.7. The final tableau for the prob-

lem is given in Table 8.22. For the first constraint, x3, is the slack variable, so j5 3 in the inequal-

ities of Eq. (8.22) for the calculation of range for Δ1, which is the change to the constraint’s right

side. The ratios of the right side parameters with the elements in x3 column, ri of Eq. (8.22) are

calculated as

ri 52
b0i
a0i3

5 2
1

0:2
;2

4

0:4
;2

13

0:8

� �
5 25:0; 210:0; 216; 25f g ðaÞ

Since there is no positive ri, there is no upper limit on Δ1. The lower limit is determined as

the largest element among the negative ratios according to the inequality of Eq. (8.22):

maxf25:0; 210:0; 216:25g # Δ1; or 25 # Δ1 ðbÞ
Thus, limits for Δ1 are 25 # Δ1 #N and the range on b1 is obtained by adding the current

value of b15 9 to both sides:

251 9 # b1 # N1 9; or 4 # b1 # N ðcÞ
For the second constraint (k5 2), x4 is the slack variable. Therefore, we will use elements in

the x4 column of the final tableau (a0i4, j5 4) in the inequalities of Eq. (8.22). The ratios of the

right-side parameters with the elements in the x4 column, ri of Eq. (8.22), are calculated as

ri 52
b0i
a0i4

5 2
1

20:4
; 2

4

0:2
; 2

13

1:4

� �
5 2:5; 220:0; 29:286f g ðdÞ

According to the inequalities in Eq. (8.22), lower and upper limits for Δ2 are given as

maxf220; 29:286g# Δ2 # minf2:5g; or 29:286 # Δ2 # 2:5 ðeÞ
Therefore, the allowed decrease in b2 is 9.286 and the allowed increase is 2.5. Adding 2 to the

above inequality (the current value of b2), the range of b2 is given as

27:286 # b2 # 4:5 ðfÞ
Similarly, for the third constraint, the ranges for Δ3 and b3 are

213 # Δ3 #N; 210 # b3 #N ðgÞ
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New Values of Basic Variables
Let us calculate new values for the design variables if the right side of the first constraint is

changed from 9 to 10. Note that this change is within the limits determined in the foregoing sec-

tion. In Eq. (8.23), k5 1, so Δ15 102 95 1. Also, j5 3, so we use the third column from

Table 8.22 in Eq. (8.23) and obtain new values of the basic variables as

x2 5 bv1 5 b01 1Δ1a
0
13 5 11 ð1Þð0:2Þ5 1:2 ðhÞ

x1 5 bv2 5 b02 1Δ1a
0
23 5 41 ð1Þð0:4Þ5 4:4 ðiÞ

x5 5 bv3 5 b03 1Δ1a
0
33 5 131 ð1Þð0:8Þ5 13:8 ðjÞ

The other variables remain nonbasic, so they have zero values. The new solution corresponds to

point F in Figure 8.7.

Similarly, if the right side of the second constraint is changed from 2 to 3, the new values of

the variables, using Eq. (8.23) and the x4 column from Table 8.22, are calculated as x25 0.6,

x15 4.2, and x55 14.4. This solution corresponds to point G in Figure 8.7.

When the right sides of two or more constraints are changed simultaneously, we can use

Eq. (8.23) to determine the new values of the design variables. However, we have to make sure

that the new right sides do not change the basic and nonbasic variable sets, that is, the vertex

that gives the optimum solution must not change. In other words, no new constraint becomes

active. As an example, let us calculate the new values of design variables using Eq. (8.23) when

the right sides of the first and second constraints are changed to 10 and 3, from 9 and 2,

respectively:

x2 5 bv1 5 b01 1Δ1a
0
13 1Δ2a

0
14 5 11 ð1Þð0:2Þ1 ð1Þð20:4Þ5 0:8 ðkÞ

x1 5 bv2 5 b02 1Δ1a
0
23 1Δ2a

0
24 5 41 ð1Þð0:4Þ1 ð1Þð0:2Þ5 4:6 ðlÞ

x5 5 bv3 5 b03 1Δ1a
0
33 1Δ2a

0
34 5 131 ð1Þð0:8Þ1 ð1Þð1:4Þ5 15:2 ðmÞ

It can be verified that the new solution corresponds to point H in Figure 8.7.

Example 8.21 demonstrates calculations of the ranges for the right-side parameters and
the new values for the right sides (i.e., the basic variables) for a problem with equality and
“$ type” constraints.

EXAMPLE 8.21 RANGES FOR RESOURCE LIMITS—EQUALITY
AND “$ TYPE” CONSTRAINTS

Find ranges for the right-side parameters of the problem solved in Example 8.19.

Solution
The final tableau for the problem is given earlier in Table 8.23. The graphical solution to the

problem is given in Figure 8.8. In the tableau, x3 is a slack variable for the first constraint, x4 is a

surplus variable for the third constraint, x5 is an artificial variable for the second constraint, and

x6 is an artificial variable for the third constraint. For the first constraint, x3 is the slack variable,
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and therefore, index j for use in the inequalities of Eq. (8.22) is determined as 3. Using the same

procedure as for Example 8.20, the ranges for Δ1 and b1 are calculated as 22 # Δ1 # N and

3 # b1 # N.

Since the second constraint is an equality, the index j for use in Eq. (8.22) is determined by

the artificial variable x5 for the constraint, i.e., j5 5. Accordingly, ratios ri in Eq. (8.22) and the

range for Δ2 are calculated as

ri 52
b01
a0i5

5 2
2

21
; 2

2=3

1=3
; 2

5=3

1=3

� �
5 2:0; 22:0; 25:0f g ðaÞ

maxf22:0; 25:0g # Δ2 # minf2:0g; or 22 # Δ2 # 2 ðbÞ
The range for b2 can be found by adding the current value of b25 4 to both sides of the above

inequality as 2 # b2 # 6.

The third constraint is a “$ type”, so index j for use in the inequalities of Eq. (8.22) is deter-

mined by its artificial variable x6 (i.e., j5 6). Accordingly, ratios ri in Eq. (8.22) and the range for

Δ3 are calculated as

ri 52
b0i
a0i6

5 2
2

1
; 2

2=3

22=3
; 2

5=3

1=3

� �
5 22:0; 1:0; 25:0f g ðcÞ

maxf22:0; 25:0g # Δ3 # minf1:0g; or 22 # Δ3 # 1 ðdÞ
The limits on changes in b3 are (by adding the current value of b35 1 to both sides of the above

inequality) 21 # b3 # 2.

New values of basic variables We can use Eq. (8.23) to calculate the new values of the basic

variables for the right-side changes that remain within the previously determined ranges. It can

be seen that since the first constraint is not active, it does not affect the optimum solution as long

as its right side remains within the range of 3 # b1 #N determined previously.

Let us determine the new solution when the right side of the second constraint is changed to

5 from 4 (the change is within the range determined previously). The second constraint has x5 as

an artificial variable, so we use column 5 (j5 5) from Table 6.19 in Eq. (8.23) and obtain the new

values of the basic variables as follows:

x3 5 bv1 5 b01 1Δ2a
0
15 5 21 ð1Þð21Þ5 1 ðeÞ

x2 5 bv2 5 b02 1Δ2a
0
25 5

2
31 ð1Þ 1

3

	 

5 1 ðfÞ

x1 5 bv3 5 b03 1Δ2a
0
35 5

5
31 ð1Þ 1

3

	 

5 2 ðgÞ

To determine the new values of the basic variables when the right side of the third constraint is

changed from 1 to 2, we use the x6 column (j5 6) from Table 8.23 in Eq. (8.23) and obtain the

new solution as

x3 5 bv1 5 b01 1Δ3a
0
16 5 21 ð1Þð1Þ5 3 ðhÞ

x2 5 bv2 5 b02 1Δ3a
0
26 5

2
31 ð1Þ22

3

	 

5 0 ðiÞ

x1 5 bv3 5 b03 1Δ3a
0
36 5

5
31 ð1Þ 1

3

	 

5 2 ðjÞ

It can easily be seen from Figure 8.8 that the new solution corresponds to point C.
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8.7.3 Ranging Cost Coefficients

If a cost coefficient ck is changed to ck1Δck, we want to find an admissible range on
Δck such that the optimum values of the variables are not changed. Note that when the cost
coefficients are changed, the feasible region for the problem does not change. However, the orien-
tation of the cost function hyperplane and the value of the cost function do change. Limits
on the change Δck for the coefficient ck depend on whether xk is a basic variable at the opti-
mum. Thus, we must consider the two cases separately. Theorems 8.7 and 8.8 give ranges
for the cost coefficients for the two cases, respectively.

THEOREM 8 . 7

Range for Cost Coefficient of the Nonbasic

Variables Let ck be such that x*k is not a

basic variable. If this ck is replaced by any

ck1Δck, where 2c0k # Δck # N, then the

optimum solution (design variables and cost

function) does not change. Here, c0k is the

reduced cost coefficient corresponding to x*k
in the final tableau.

THEOREM 8 . 8

Range for the Cost Coefficient of the Basic

Variables Let ck be such that x*k is a basic

variable, and let x*k5 b0r (a superscript * is

used to indicate optimum value). Then the

range for the change Δck in ck for which the

variables’ optimum values do not change is

given as follows:

max dj, 0
� �

# Δck # min dj. 0
� �

;

dj 5
c0j
a0rj

ð8:24Þ

where

a0rj5 element in the rth row and the jth

column of the final tableau. The index

r is determined by the row that

determines x*k. Index j corresponds to

each of the nonbasic columns, excluding

artificial columns. (Note that if no a0rj . 0,

then there is no upper limit; if no a0rj , 0,

then there is no lower limit.)

c0j5 reduced cost coefficient in the jth

nonbasic column, excluding artificial

variable columns.

dj5 ratios of reduced cost coefficients,

with the elements in the rth row

corresponding to nonbasic columns,

excluding artificial columns.

When Δck satisfies the inequality of Eq.

(8.24), the optimum value of the cost function

is f*1Δckx*k.

To determine possible changes in the cost coefficient of a basic variable, the first step is
to determine the row index r for use in Inequalities (8.24). This represents the row deter-
mining the basic variable x*k. After r has been determined, we determine ratios of the
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reduced cost coefficients and elements in the rth row according to the rules given in
Theorem 8.8. The lower limit on Δck is determined by the maximum of the negative ratios.
The upper limit is determined by the minimum of the positive ratios. Example 8.22
demonstrates the procedure for the “# type” constraints and Example 8.23 demonstrates
it for the equality and “$ type” constraints.

EXAMPLE 8.22 RANGES FOR COST COEFFICIENTS—“# TYPE”
CONSTRAINTS

Determine ranges for the cost coefficients of the problem solved in Example 8.18.

Solution
The final tableau for the problem is given earlier in Table 8.22. The problem is solved as a

minimization of the cost function f525x11 2x2. Therefore, we will find ranges for the cost coef-

ficients c1525 and5 c25 2. Note that since both x1 and x2 are basic variables, Theorem 8.8 will

be used.

Since the second row determines the basic variable x1, r5 2 (the row number) for use in the

inequalities of Eq. (8.24). Columns 3 and 4 are nonbasic; therefore, j5 3, 4 are the column indices

for use in Eq. (8.24). After calculating the ratios dj, the range for Δc1 is calculated as

dj 5
c0j
a02j

5
1:6

0:4
;
1:8

0:2

� �
5 4; 9f g; 2N # Δc1 # min 4;9f g; or 2N # Δc1 # 4 ðaÞ

The range for c1 is obtained by adding the current value of c1525 to both sides of the above

inequality:

2N2 5 # c1 # 42 5; 2N # c1 # 21 ðbÞ
Thus, if c1 changes from 25 to 24, the new cost function value is given as

f�new 5 f� 1Δc1x
�
1 52181 ð242 ð25ÞÞð4Þ5214 ðcÞ

That is, the cost function will increase by 4.

For the second cost coefficient, r5 1 (the row number) because the first row determines x2 as

a basic variable. After calculating the ratios dj, the range for Δc2 is calculated as

dj 5
c0j
a01j

5
1:6

0:2
;

1:8

20:4

� �
5 f8; 24:5g; maxf24:5g # Δc2 # minf8g; or 24:5 # Δc2 # 8 ðdÞ

The range for c2 is obtained by adding the current value of c25 2 to both sides of the above

inequality:

24:51 2 # c2 # 81 2; 22:5 # c2 # 10 ðeÞ
Thus, if c2 is changed from 2 to 3, the new cost function value is given as

f�new 5 f� 1Δc1x
�
2 52181 ð322Þð1Þ5217 ðfÞ

Note that the range for the coefficients of the maximization function (z5 5x122x2) can be

obtained from Eqs. (b) and (e). To determine these ranges, we multiply Eqs. (b) and (e) by 21.

Therefore, the ranges for d15 5 and d2522 are given as:

1 # d1 #N; 210 # d2 # 2:5 ðgÞ
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EXAMPLE 8.23 RANGES FOR COST COEFFICIENTS—EQUALITY
AND “$ TYPE” CONSTRAINTS

Find ranges for the cost coefficients of the problem solved in Example 8.19.

Solution
The final tableau for the problem is given in Table 8.23. In the tableau, x3 is a slack variable for the

first constraint, x4 is a surplus variable for the third constraint, and x5 and x6 are artificial variables

for the second and third constraints, respectively. Since both x1 and x2 are basic variables, we will use

Theorem 8.8 to find ranges for the cost coefficients c1521 and c2524. Note that the problem is

solved as the minimization of the cost function f52x12 4x2. Columns 4, 5, and 6 are nonbasic.

However, since artificial columns 5 and 6 must be excluded, only column 4 can be used in Eq. (8.24).

To find the range for Δc1, r5 3 is used because the third row determines x1 as a basic vari-

able. Using the inequalities of Eq. (8.24) with r5 3 and j5 4, we have

max
7

3

.
2
1

3

� �� �
# Δc1 # N; or 27 # Δc1 # N ðaÞ

The range for c1 is obtained by adding the current value of c1521 to both sides of the inequality:

272 1 # c1 # N21; 28 # c1 # N ðbÞ
Thus, if c1 changes from 21 to 22, the new optimum cost function value is given as

f�new 5 f� 1Δc1x
�
1 52

13

3
1 ð222 ð21ÞÞ 5

3

� �
526 ðcÞ

For the second cost coefficient, r5 2 because the second row determines x2 as a basic variable.

Using Eq. (8.24) with r5 2 and j5 4, the ranges for Δc2 and for c2524 are given as

2N # Δc2 # 3:5; 2N # c2 # 20:5 ðdÞ
If c2 changes from 24 to 23, the new value of the cost function is given as

f�new 5 f� 1Δc2x
�
2 52

13

3
1 ð232 ð24ÞÞ 2

3

� �
52

11

3
ðeÞ

The ranges for coefficients of the maximization function (z5 x11 4x2) are obtained by multiplying

the preceding ranges by 21:

2N # c1 # 8 ð2N # Δc1 # 7Þ and 0:5 # c2 # N ð23:5 # Δc2 # NÞ ðeÞ

*8.7.4 Changes in the Coefficient Matrix

Any change in the coefficient matrix A in Eq. (8.11) changes the feasible region for the
problem. This may change the optimum solution to the problem depending on whether
the change is associated with a basic variable. Let aij be replaced by aij1Δaij. We will
determine limits for Δaij so that with minor computations the optimum solution to the
changed problem can be obtained. We must consider the two cases:

1. when the change is associated with a nonbasic variable
2. when the change is associated with a basic variable
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Results for these two cases are summarized in Theorems 8.9 and 8.10, respectively.

THEOREM 8 . 9

Change That Is Associated with a Nonbasic

Variable Let j in aij be such that xj is not a

basic variable and let k be the column index

for the slack or artificial variable associated

with the constraint of the ith row. Define a

vector
cB 5 ½cB1 cB2 . . . cBm�T ð8:25Þ

where cBi5 cj if x*j5 b*i, i5 1 to m (i.e., the

index i corresponds to the row that deter-

mines the optimum value of variable xj).

Recall that m is the number of constraints.

Also define a scalar

R5
Xm
r51

cBra
0
rk ð8:26Þ

With this notation, if Δaij satisfies one of

the following sets of inequalities, then the

optimum solution (design variables and

cost function) does not change when aij is

replaced by any aij1Δaij:

Δaij $ c0j=R when R. 0; and

Δaij #N when R5 0
ð8:27Þ

or

Δaij # c0j=R when R, 0; and

Δaij $2N when R5 0
ð8:28Þ

Also, if R5 0, the solution does not change

for any value of Δaij.

To use the theorem, a first step is to determine indices j and k. Then we determine the
vector cB of Eq. (8.25) and the scalar R of Eq. (8.26). Conditions of the inequalities of
Eqs. (8.27) and (8.28) then determine whether the given Δaij will change the optimum
solution. If the inequalities are not satisfied, then we have to re-solve the problem to obtain
the new solution.

THEOREM 8 . 1 0

Change That Is Associated with a Basic

Variable Let j in aij be such that xj is a

basic variable and let x*j5 b0t (i.e., t is the

row index that determines the optimum

value of xj).

Let the index k and the scalar R be

defined as in Theorem 8.9. Let Δaij satisfy

the following inequalities:

max
r6¼t

fb0r=Ar; Ar, 0g # Δaij

# min
r 6¼t

fb0r=Ar; Ar.0g ð8:29Þ

Ar 5 b0ta
0
rk 2 b0ra

0
tk; r5 1 to m; r 6¼ t ð8:30Þ

and

max
q

f2c0q=Bq; Bq. 0g
# Δaij # min

q
f2c0q=Bq; Bq, 0g ð8:31Þ

Bq 5 ðc0qa0tk 1 a0iqRÞ for all

q not in the basis
ð8:32Þ

and

11 a0tkΔaij. 0 ð8:33Þ

Note that the upper and lower limits on Δaij do not exist if the corresponding denomi-
nators in Eqs. (8.29) and (8.31) do not exist. If Δaij satisfies the above inequalities, then the
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optimum solution of the changed problem can be obtained without any further iterations
of the Simplex method. If br

0 for r5 1 to m is replaced by

bvr 5 b0r 2Δaija
0
rk=ð11Δaija

0
tkÞ; r5 1 to m; r 6¼ t

bvt 5 b0t=ð11Δaija
0
tkÞ

ð8:34Þ

in the final tableau, then the new optimum values for the basic variables can be obtained
when aij is replaced by aij1Δaij. In other words, if x*j5 b0r, then x0j5 bvr, where x0j refers to
the optimum solution to the changed problem.

To use the theorem, we need to determine indices j, t, and k. Then we determine the
constants Ar and Bq from Eqs. (8.30) and (8.32). With these, ranges on Δaij can be deter-
mined from the inequalities of Eqs. (8.29) and (8.31). If these inequalities are satisfied by
Δaij, Eq. (8.34) determines the new solution. If the inequalities are not satisfied, the prob-
lem must be re-solved for the new solution.

EXERCISES FOR CHAPTER 8

Section 8.2 Definition of a Standard Linear Programming Problem
8.1 Answer True or False.

1. A linear programming problem having maximization of a function cannot be

transcribed into the standard LP form.

2. A surplus variable must be added to a “# type” constraint in the standard

LP formulation.

3. A slack variable for an LP constraint can have a negative value.

4. A surplus variable for an LP constraint must be non-negative.

5. If a “# type” constraint is active, its slack variable must be positive.

6. If a “$ type” constraint is active, its surplus variable must be zero.

7. In the standard LP formulation, the resource limits are free in sign.

8. Only “# type” constraints can be transcribed into the standard LP form.

9. Variables that are free in sign can be treated in any LP problem.

10. In the standard LP form, all the cost coefficients must be positive.

11. All variables must be non-negative in the standard LP definition.

Convert the following problems to the standard LP form.

8.2 Minimize f5 5x11 4x22 x3
subject to x11 2x22 x3 $ 1

2x11 x21 x3 $ 4

x1, x2 $ 0; x3 is unrestricted in sign

8.3 Maximize z5 x11 2x2
subject to 2x11 3x2 # 10

x11 x2 # 6

x12 x2 # 2

x11 3x2 $ 6

x1, x2 $ 0

363EXERCISES FOR CHAPTER 8

II. NUMERICAL METHODS FOR CONTINUOUS VARIABLE OPTIMIZATION



8.4 Minimize f5 2x123x2
subject to x11 x2 # 1

22x11 x2 $ 2

x1, x2 $ 0

8.5 Maximize z5 4x11 2x2
subject to 22x11 x2 # 4

x11 2x2 $ 2

x1, x2 $ 0

8.6 Maximize z5 x11 4x2
subject to x11 2x2 # 5

x11 x25 4

x12 x2 $ 3

x1, x2 $ 0

8.7 Maximize z5 x11 4x2
subject to x11 2x2 # 5

2x11 x25 4

x12 x2 $ 1

x1, x2 $ 0

8.8 Minimize f5 9x11 2x21 3x3
subject to 22x12 x21 3x3 #25

x12 2x21 2x3$22

x1, x2, x3 $ 0

8.9 Minimize f5 5x11 4x22 x3
subject to x11 2x22 x3 $ 1

2x11 x21 x3 $ 4

x1, x2 $ 0; x3 is unrestricted in sign

8.10 Maximize z5210x1218x2
subject to x123x2 #23

2x11 2x2 $ 5

x1, x2 $ 0

8.11 Minimize f5 20x126x2
subject to 3x12 x2 $ 3

24x11 3x2528

x1, x2 $ 0

8.12 Maximize z5 2x11 5x224.5x31 1.5x4
subject to 5x11 3x21 1.5x3 # 8

1.8x126x21 4x31 x4 $ 3

23.6x11 8.2x21 7.5x31 5x45 15

xi $ 0; i5 1 to 4

8.13 Minimize f5 8x123x21 15x3
subject to 5x121.8x223.6x3 $ 2

3x11 6x21 8.2x3 $ 5

1.5x124x21 7.5x3 $ 24.5

2x21 5x3 $ 1.5

x1, x2 $ 0; x3 is unrestricted in sign
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8.14 Maximize z5 10x11 6x2
subject to 2x11 3x2 # 90

4x11 2x2 # 80

x2 $ 15

5x11 x25 25

x1, x2 $ 0

8.15 Maximize z522x11 4x2
subject to 2x11 x2 $ 3

2x11 10x2 # 18

x1, x2 $ 0

8.16 Maximize z5 x11 4x2
subject to x11 2x2 # 5

2x11 x25 4

x12 x2 $ 3

x1 $ 0, x2 is unrestricted in sign

8.17 Minimize f5 3x11 2x2
subject to x12 x2 $ 0

x11 x2 $ 2

x1, x2 $ 0

8.18 Maximize z5 3x11 2x2
subject to x12 x2 $ 0

x11 x2 $ 2

2x11 x2 # 6

x1, x2 $ 0

8.19 Maximize z5 x11 2x2
subject to 3x11 4x2 # 12

x11 3x2 $ 3

x1 $ 0; x2 is unrestricted in sign

Section 8.3 Basic Concepts Related to Linear Programming Problems,
and Section 8.4 Calculation of Basic Solutions
8.20 Answer True or False.

1. In the standard LP definition, the number of constraint equations (i.e., rows in the

matrix A) must be less than the number of variables.

2. In an LP problem, the number of “# type” constraints cannot be more than the

number of design variables.

3. In an LP problem, the number of “$ type” constraints cannot be more than the

number of design variables.

4. An LP problem has an infinite number of basic solutions.

5. A basic solution must have zero value for some of the variables.

6. A basic solution can have negative values for some of the variables.

7. A degenerate basic solution has exactly m variables with nonzero values,

where m is the number of equations.

8. A basic feasible solution has all variables with non-negative values.

9. A basic feasible solution must have m variables with positive values,

where m is the number of equations.
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10. The optimum point for an LP problem can be inside the feasible region.

11. The optimum point for an LP problem lies at a vertex of the feasible region.

12. The solution to any LP problem is only a local optimum.

13. The solution to any LP problem is a unique global optimum.

Find all the basic solutions for the following LP problems using the Gauss-Jordan elimination method.

Identify basic feasible solutions and show them on graph paper.

8.21 Maximize z5 x11 4x2
subject to x11 2x2 # 5

2x11 x25 4

x12 x2 $ 1

x1, x2 $ 0

8.22 Maximize z5 210x12 18x2
subject to x12 3x2 #23

2x11 2x2 $ 5

x1, x2 $ 0

8.23 Maximize z5 x11 2x2
subject to 3x11 4x2 # 12

x11 3x2 $ 3

x1 $ 0, x2 is unrestricted in sign

8.24 Minimize f5 20x12 6x2
subject to 3x12 x2 $ 3

24x11 3x2528

x1, x2 $ 0

8.25 Maximize z5 5x122x2
subject to 2x11 x2 # 9

x122x2 # 2

23x11 2x2 # 3

x1, x2 $ 0

8.26 Maximize z5 x11 4x2
subject to x11 2x2 # 5

x11 x25 4

x12 x2 $ 3

x1, x2 $ 0

8.27 Minimize f5 5x11 4x22 x3
subject to x11 2x22 x3 $ 1

2x11 x21 x3 $ 4

x1, x3 $ 0; x2 is unrestricted in sign

8.28 Minimize f5 9x11 2x21 3x3
subject to 22x12 x21 3x3 #25

x12 2x21 2x3$22

x1, x2, x3 $ 0
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8.29 Maximize z5 4x11 2x2
subject to 22x11 x2 # 4

x11 2x2 $ 2

x1, x2 $ 0

8.30 Maximize z5 3x11 2x2
subject to x12 x2 $ 0

x11 x2 $ 2

x1, x2 $ 0

8.31 Maximize z5 4x11 5x2
subject to 2x11 2x2 # 10

3x11 2x2 # 18

x1, x2 $ 0

Section 8.5 The Simplex Method
Solve the following problems by the Simplex method and verify the solution graphically whenever possible.

8.32 Maximize z5 x11 0.5x2
subject to 6x11 5x2 # 30

3x11 x2 # 12

x11 3x2 # 12

x1, x2 $ 0

8.33 Maximize z5 3x11 2x2
subject to 3x11 2x2 # 6

24x11 9x2 # 36

x1, x2 $ 0

8.34 Maximize z5 x11 2x2
subject to 2x11 3x2 # 10

x11 x2 # 6

x12 x2 # 2

x1, x2 $ 0

8.35 Maximize z5 2x11 x2
subject to 2x11 2x2 # 10

3x11 2x2 # 18

x1, x2 $ 0

8.36 Maximize z5 5x122x2
subject to 2x11 x2 # 9

x12 x2 # 2

23x11 2x2 # 3

x1, x2 $ 0

8.37 Minimize f5 2x12 x2
subject to 2x11 2x2 # 10

3x11 2x2 # 18

x1, x2 $ 0
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8.38 Minimize f52x11 x2
subject to 2x11 x2 # 4

2x12 2x2$24

x1, x2 $ 0

8.39 Maximize z5 2x12 x2
subject to x11 2x2 # 6

2 $ x1
x1, x2 $ 0

8.40 Maximize z5 x11 x2
subject to 4x11 3x2 # 12

x11 2x2 # 4

x1, x2 $ 0

8.41 Maximize z522x11 x2
subject to x1 # 2

x11 2x2 # 6

x1, x2 $ 0

8.42 Maximize z5 2x11 x2
subject to 4x11 3x2 # 12

x11 2x2 # 4

x1, x2 $ 0

8.43 Minimize f5 9x11 2x21 3x3
subject to 2x11 x22 3x3$25

x122x21 2x3$22

x1, x2, x3 $ 0

8.44 Maximize z5 x11 x2
subject to 4x11 3x2 # 9

x11 2x2 # 6

2x11 x2 # 6

x1, x2 $ 0

8.45 Minimize f52x124x2
subject to x11 x2 # 16

x11 2x2 # 28

24 $ 2x11 x2
x1, x2 $ 0

8.46 Minimize f5 x12 x2
subject to 4x11 3x2 # 12

x11 2x2 # 4

4 $ 2x11 x2
x1, x2 $ 0

8.47 Maximize z5 2x11 3x2
subject to x11 x2 # 16

2x122x2$228

24 $ 2x11 x2
x1, x2 $ 0
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8.48 Maximize z5 x11 2x2
subject to 2x12 x2 $ 0

2x11 3x2 $26

x1, x2 $ 0

8.49 Maximize z5 2x11 2x21 x3
subject to 10x11 9x3 # 375

x11 3x21 x3 # 33

2 $ x3
x1, x2, x3 $ 0

8.50 Maximize z5 x11 2x2
subject to 22x12 x2$25

3x11 4x2 # 10

x1 # 2

x1, x2 $ 0

8.51 Minimize f522x12 x2
subject to 22x12 x2$25

3x11 4x2 # 10

x1 # 3

x1, x2 $ 0

8.52 Maximize z5 12x11 7x2
subject to 2x11 x2 # 5

3x11 4x2 # 10

x1 # 2

x2 # 3

x1, x2 $ 0

8.53 Maximize z5 10x11 8x21 5x3
subject to 10x11 9x2 # 375

5x11 15x21 3x3 # 35

3 $ x3
x1, x2, x3 $ 0

Section 8.6 Two-Phase Simplex Method—Artificial Variables
8.54 Answer True or False.

1. A pivot step of the Simplex method replaces a current basic variable with a

nonbasic variable.

2. The pivot step brings the design point to the interior of the constraint set.

3. The pivot column in the Simplex method is determined by the largest reduced

cost coefficient corresponding to a basic variable.

4. The pivot row in the Simplex method is determined by the largest ratio of

right-side parameters with the positive coefficients in the pivot column.

5. The criterion for a current basic variable to leave the basic set is to keep the

new solution basic and feasible.

6. A move from one basic feasible solution to another corresponds to extreme points

of the convex polyhedral set.
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7. A move from one basic feasible solution to another can increase the cost function

value in the Simplex method.

8. The right sides in the Simplex tableau can assume negative values.

9. The right sides in the Simplex tableau can become zero.

10. The reduced cost coefficients corresponding to the basic variables must be positive

at the optimum.

11. If a reduced cost coefficient corresponding to a nonbasic variable is zero at

the optimum point, there may be multiple solutions to the problem.

12. If all elements in the pivot column are negative, the problem is infeasible.

13. The artificial variables must be positive in the final solution.

14. If artificial variables are positive at the final solution, the artificial cost function is

also positive.

15. If artificial cost function is positive at the optimum solution, the problem is unbounded.

Solve the following LP problems by the Simplex method and verify the solution graphically, whenever

possible.

8.55 Maximize z5 x11 2x2
subject to 2x11 3x2 # 10

x11 x2 # 6

x12 x2 # 2

x11 3x2 $ 6

x1, x2 $ 0

8.56 Maximize z5 4x11 2x2
subject to 22x11 x2 # 4

x11 2x2 $ 2

x1, x2 $ 0

8.57 Maximize z5 x11 4x2
subject to x11 2x2 # 5

x11 x25 4

x12 x2 $ 3

x1, x2 $ 0

8.58 Maximize z5 x11 4x2
subject to x11 2x2 # 5

2x11 x25 4

x12 x2 $ 1

x1, x2 $ 0

8.59 Minimize f5 3x11 x21 x3
subject to 22x12 x21 3x3 #25

x12 2x21 3x3$22

x1, x2, x3 $ 0

8.60 Minimize f5 5x11 4x22 x3
subject to x11 2x22 x3 $ 1

2x11 x21 x3 $ 4

x1, x2 $ 0; x3 is unrestricted in sign
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8.61 Maximize z5 210x12 18x2
subject to x12 3x2#23

2x11 2x2 $ 5

x1, x2 $ 0

8.62 Minimize f5 20x12 6x2
subject to 3x12 x2 $ 3

24x11 3x2528

x1, x2 $ 0

8.63 Maximize z5 2x11 5x22 4.5x31 1.5x4
subject to 5x11 3x21 1.5x3 # 8

1.8x12 6x21 4x31 x4 $ 3

23.6x11 8.2x21 7.5x31 5x45 15

xi $ 0; i5 1 to 4

8.64 Minimize f5 8x12 3x21 15x3
subject to 5x12 1.8x22 3.6x3 $ 2

3x11 6x21 8.2x3 $ 5

1.5x12 4x21 7.5x3$24.5

2x21 5x3 $ 1.5

x1, x2 $ 0; x3 is unrestricted in sign

8.65 Maximize z5 10x11 6x2
subject to 2x11 3x2 # 90

4x11 2x2 # 80

x2 $ 15

5x11 x25 25

x1, x2 $ 0

8.66 Maximize z5 22x11 4x2
subject to 2x11 x2 $ 3

2x11 10x2 # 18

x1, x2 $ 0

8.67 Maximize z5 x11 4x2
subject to x11 2x2 # 5

2x11 x25 4

x12 x2 $ 3

x1 $ 0; x2 is unrestricted in sign

8.68 Minimize f5 3x11 2x2
subject to x12 x2 $ 0

x11 x2 $ 2

x1, x2 $ 0

8.69 Maximize z5 3x11 2x2
subject to x12 x2 $ 0

x11 x2 $ 2

2x11 x2 # 6

x1, x2 $ 0
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8.70 Maximize z5 x11 2x2
subject to 3x11 4x2 # 12

x11 3x2 # 3

x1 $ 0; x2 is unrestricted in sign

8.71 Minimize f5 x11 2x2
subject to 2x11 3x2 # 20

x11 x2 # 6

x12 x2 # 12

x11 3x2 $ 6

x1, x2 $ 0

8.72 Maximize z5 3x11 8x2
subject to 3x11 4x2 # 20

x11 3x2 $ 6

x1 $ 0; x2 is unrestricted in sign

8.73 Minimize f5 2x123x2
subject to x11 x2 # 1

22x11 x2 $ 2

x1, x2 $ 0

8.74 Minimize f5 3x123x2
subject to 2x11 x2 # 0

x11 x2 $ 2

x1, x2 $ 0

8.75 Minimize f5 5x11 4x22 x3
subject to x11 2x22 x3 $ 1

2x11 x21 x3 $ 4

x1, x2 $ 0; x3 is unrestricted in sign

8.76 Maximize z5 4x11 5x2
subject to x12 2x2#210

3x11 2x2 # 18

x1, x2 $ 0

8.77 Formulate and solve the optimum design problem of Exercise 2.2. Verify the solution

graphically.

8.78 Formulate and solve the optimum design problem of Exercise 2.6. Verify the solution

graphically.

8.79 Formulate and solve the optimum design problem of Exercise 2.7. Verify the

solution graphically.

8.80 Formulate and solve the optimum design problem of Exercise 2.8. Verify the

solution graphically.

*8.81 Formulate and solve the optimum design problem of Exercise 2.18.

*8.82 Formulate and solve the optimum design problem of Exercise 2.20.

8.83 Solve the “saw mill” problem formulated in Section 2.4.

*8.84 Formulate and solve the optimum design problem of Exercise 2.21.

*8.85 Obtain solutions for the three formulations of the “cabinet design” problem given

in Section 2.6. Compare solutions for the three formulations.
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Section 8.7 Postoptimality Analysis
8.86 Formulate and solve the “crude oil” problem stated in Exercise 2.2. What is the effect on the

cost function if the market for lubricating oil suddenly increases to 12,000 barrels? What is

the effect on the solution if the price of Crude A drops to $110/bbl? Verify the solutions

graphically.

8.87 Formulate and solve the problem stated in Exercise 2.6. What are the effects of

the following changes? Verify your solutions graphically.

1. The supply of material C increases to 120kg.

2. The supply of material D increases to 100kg.

3. The market for product A decreases to 60.

4. The profit for A decreases to $8/kg.

Solve the following problems and determine Lagrange multipliers for the constraints at the optimum point.

8.88 Exercise 8.55 8.89 Exercise 8.56 8.90 Exercise 8.57

8.91 Exercise 8.58 8.92 Exercise 8.59 8.93 Exercise 8.60

8.94 Exercise 8.61 8.95 Exercise 8.62 8.96 Exercise 8.63

8.97 Exercise 8.64 8.98 Exercise 8.65 8.99 Exercise 8.66

8.100 Exercise 8.67 8.101 Exercise 8.68 8.102 Exercise 8.69

8.103 Exercise 8.70 8.104 Exercise 8.71 8.105 Exercise 8.72

8.106 Exercise 8.73 8.107 Exercise 8.74 8.108 Exercise 8.75

8.109 Exercise 8.76

Solve the following problems and determine ranges for the right-side parameters.

8.110 Exercise 8.55 8.111 Exercise 8.56 8.112 Exercise 8.57

8.113 Exercise 8.58 8.114 Exercise 8.59 8.115 Exercise 8.60

8.116 Exercise 8.61 8.117 Exercise 8.62 8.118 Exercise 8.63

8.119 Exercise 8.64 8.120 Exercise 8.65 8.121 Exercise 8.66

8.122 Exercise 8.67 8.123 Exercise 8.68 8.124 Exercise 8.69

8.125 Exercise 8.70 8.126 Exercise 8.71 8.127 Exercise 8.72

8.128 Exercise 8.73 8.129 Exercise 8.74 8.130 Exercise 8.75

8.131 Exercise 8.76

Solve the following problems and determine ranges for the coefficients of the objective function.

8.132 Exercise 8.55 8.133 Exercise 8.56 8.134 Exercise 8.57

8.135 Exercise 8.58 8.136 Exercise 8.59 8.137 Exercise 8.60

8.138 Exercise 8.61 8.139 Exercise 8.62 8.140 Exercise 8.63

8.141 Exercise 8.64 8.142 Exercise 8.65 8.143 Exercise 8.66

8.144 Exercise 8.67 8.145 Exercise 8.68 8.146 Exercise 8.69

8.147 Exercise 8.70 8.148 Exercise 8.71 8.149 Exercise 8.72

8.150 Exercise 8.73 8.151 Exercise 8.74 8.152 Exercise 8.75

8.153 Exercise 8.76

*8.154 Formulate and solve the optimum design problem of Exercise 2.2. Determine Lagrange

multipliers for the constraints. Calculate the ranges for the right-side parameters, and the

coefficients of the objective function. Verify your results graphically.
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*8.155 Formulate and solve the optimum design problem of Exercise 2.6. Determine Lagrange

multipliers for the constraints. Calculate the ranges for the parameters of the right side

and the coefficients of the objective function. Verify your results graphically.

8.156 Formulate and solve the “diet” problem stated in Exercise 2.7. Investigate the effect

on the optimum solution of the following changes:

1. The cost of milk increases to $1.20/kg.

2. The need for vitamin A increases to 6 units.

3. The need for vitamin B decreases to 3 units.

Verify the solution graphically.

8.157 Formulate and solve the problem stated in Exercise 2.8. Investigate the effect

on the optimum solution of the following changes:

1. The supply of empty bottles decreases to 750.

2. The profit on a bottle of wine decreases to $0.80.

3. Only 200 bottles of alcohol can be produced.

*8.158 Formulate and solve the problem stated in Exercise 2.18. Investigate the effect

on the optimum solution of the following changes:

1. The profit on margarine increases to $0.06/kg.

2. The supply of milk base substances increases to 2500kg.

3. The supply of soybeans decreases to 220,000kg.

8.159 Solve the “saw mill” problem formulated in Section 2.4. Investigate the effect

on the optimum solution of the following changes:

1. The transportation cost for the logs increases to $0.16 per kilometer per log.

2. The capacity of Mill A decreases to 200logs/day.

3. The capacity of Mill B decreases to 270logs/day.

*8.160 Formulate and solve the problem stated in Exercise 2.20. Investigate the effect

on the optimum solution of the following changes:

1. Due to demand on capital, the available cash decreases to $1.8 million.

2. The initial investment for truck B increases to $65,000.

3. Maintenance capacity decreases to 28 trucks.

*8.161 Formulate and solve the “steel mill” problem stated in Exercise 2.21. Investigate the

effect on the optimum solution of the following changes:

1. The capacity of reduction plant 1 increases to 1,300,000.

2. The capacity of reduction plant 2 decreases to 950,000.

3. The capacity of fabricating plant 2 increases to 250,000.

4. The demand for product 2 increases to 130,000.

5. The demand for product 1 decreases to 280,000.

*8.162 Obtain solutions for the three formulations of the “cabinet design” problem given

in Section 2.6. Compare the three formulations. Investigate the effect on the optimum

solution of the following changes:

1. Bolting capacity is decreased to 5500/day.

2. The cost of riveting the Cl component increases to $0.70.

3. The company must manufacture only 95 devices per day.
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8.163 Given the following problem:

Minimize f5 2x124x2
subject to g15 10x11 5x2 # 15

g25 4x11 10x2 # 36

x1 $ 0, x2 $ 0

Slack variables for g1 and g2 are x3 and x4, respectively. The final tableau for the problem

is given in Table E8.163. Using the given tableau:

1. Determine the optimum values of f and x.

2. Determine Lagrange multipliers for g1 and g2.

3. Determine the ranges for the right sides of g1 and g2.

4. What is the smallest value that f can have, with the current basis, if the right side

of g1 is changed? What is the right side of g1 for that case?

TABLE E8.163 Final tableau for
Exercise 8.163

x1 x2 x3 x4 b

2 1 1
5 0 3

216 0 22 1 6

10 0 4
5 0 f1 12
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C H A P T E R

9

More on Linear Programming
Methods for Optimum Design

Upon comp le t i on o f th i s chap te r, you wi l l be ab l e to

• Derive the Simplex method and understand

the theory behind its steps

• Use an alternate form of the two-phase

Simplex method called the Big-M method

• Write a dual problem for the given LP

problem

• Recover the solution to the original LP

problem from the solution to the dual

problem

• Solve quadratic programming (QP)

problems using the Simplex method

This chapter presents some additional topics related to linear programming problems.
These topics are usually not covered in an undergraduate course on optimum design.
They may also be omitted in the first independent reading of the book.

9.1 DERIVATION OF THE SIMPLEX METHOD

In the previous chapter, we presented the basic ideas and concepts of the Simplex
method. The steps of the method were described and illustrated in several examples. In
this section, we describe the theory that leads to the steps used in the example problems.

9.1.1 General Solution to Ax5 b

Canonical Form

An m3 n system of simultaneous equations Ax5b with rank (A)5m is said to be in
the canonical form if each equation has a variable (with unit coefficient) that does not
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appear in any other equation. A canonical form in general is written as follows:

xi 1
Xn
j5m11

aijxj 5 bi; i5 1 to m ð9:1Þ

Note that variables x1 to xm appear in only one of the equations; x1 appears in the first
equation, x2 in the second equation, and so on. Note also that this sequence of variables x1
to xm in Eq. (9.1) is chosen only for convenience. In general, any of the variables x1 to xn
may be associated with the first equation as long as it does not appear in any other equa-
tion. Similarly, the second equation need not be associated with the second variable x2.

Additionally, it is possible to write the canonical form of Eq. (9.1) as a matrix equation,
as was also explained in Section A.4:

IðmÞxðmÞ 1Qxðn2mÞ 5b ð9:2Þ
where

I(m)5m-dimensional identity matrix
x(m)5 [x1 x2 ... xm]

T; vector of dimension m
x(n2m)5 [xm11 ... xn]

T; vector of dimension (n2m)
Q5m3 (n2m); matrix consisting of coefficients of the variables xm11 to xn in Eq. (9.1)
b5 [b1 b2 ... bm]

T; vector of dimension m

GENERAL SOLUTION The canonical form in Eq. (9.1) or Eq. (9.2) gives a general solution
to Ax5b as

xðmÞ 5b2Qxðn2mÞ ð9:3Þ
It is seen that x(n2m) can be assigned different values and the corresponding values for x(m)

can be calculated from Eq. (9.3). Thus x(m) are dependent variables and x(n2m) are independent
variables.

BASIC SOLUTION A particular solution to the equations is obtained if we set the inde-
pendent variables to zero (i.e., x(n2m)5 0). Then from Eq. (9.3), x(m)5b. The solution thus
obtained is called a basic solution.

BASIC FEASIBLE SOLUTION If the right side parameters bi are $ 0 in Eq. (9.1), then the
particular solution (the basic solution) is called a basic feasible solution.

NONBASIC VARIABLES The independent variables that are set to zero in x(n2m) to
obtain a basic solution are called nonbasic.

BASIC VARIABLES The dependent variables x(m) that are solved from Eq. (9.3) are
called basic.

THE TABLEAU It is customary to represent the canonical form in a tableau, as shown
in Table 9.1. The leftmost column of the tableau identifies the basic variable associated
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with each row. The rightmost column RS contains the right side of each equation. Each of
the remaining columns is associated with a variable of the problem. The tableau contains
m identity columns to form the m3m identity matrix and the remaining columns form the
m3 (n2m) matrix Q. The tableau gives a basic solution to Ax5b.

9.1.2 Selection of a Nonbasic Variable that Should Become Basic

If the current basic feasible solution to the problem is not an optimum point, then an
improved basic feasible solution needs to be calculated by replacing one of the basic vari-
ables with a nonbasic variable. Derivation of the Simplex method is based on answering
the two questions posed earlier: (1) which current nonbasic variable should become basic,
and (2) which current basic variable should become nonbasic. We will answer the first
question in this subsection and the second question in the next subsection.

Cost Function in Terms of Nonbasic Variables

The main idea of bringing a nonbasic variable into the basic set is to improve the design, that
is, to reduce the current value of the cost function. A clue to the desired improvement is obtained
if we examine the cost function expression. To do this we need to transform the cost function to
be in terms of the nonbasic variables only. We substitute the current values of the basic variables
from Eq. (9.1) into the cost function to eliminate the basic variables from it. Current values of
the basic variables are given in terms of the nonbasic variables from Eq. (9.1) as

xi 5 bi 2
Xn
j5m11

aijxj; i5 1 to m ð9:4Þ

Substituting Eq. (9.4) into the cost function expression in Eq. (8.8) and simplifying, we
obtain an expression for the cost function in terms of the nonbasic variables (xj, j5m1 1 to n) as

f 5 f0 1
Xn
j5m11

c0jxj ð9:5Þ

TABLE 9.1 Representation of a canonical form in a tableau

No. Basick x1 x2 • • • xm xm11 xm12 • • • xn RS

1 x1 1 0 • • • 0 a1,m11 a1,m12 • • • a1,n b1

2 x2 0 1 • • • 0 a2,m11 a2,m12 • • • a2,n b2

3 x3 0 0 • • • 0 a3,m11 a3,m12 • • • a3,n b3

• • • • • • • • • • • • • • •

• • • • • • • • • • • • • • •

m xm 0 0 • • • 1 am,m11 am,m12 • • • am,n bm
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where f0 is the current value of the cost function given as

f0 5
Xm
i51

bici ð9:6Þ

and the parameters c0j are

c0j 5 cj 2
Xm
i51

aijci; j5 ðm1 1Þ to n ð9:7Þ

Since x0j for (m1 1)# j# n are nonbasic variables, they have a zero value. Therefore, the
current cost function value f is equal to f0 from Eq. (9.5).

Reduced Cost Coefficients

The cost coefficients c0j of the nonbasic variables in Eq. (9.7) play a key role in the
Simplex method and are called the reduced or relative cost coefficients. They are used to iden-
tify a nonbasic variable that should become basic to reduce the current value of the cost
function. Expressing the cost function in terms of the current nonbasic variables is a key
step in the Simplex method. We have seen that this is not difficult to accomplish because
the Gauss-Jordan elimination steps can be used routinely on the cost function expression
to eliminate basic variables from it. Once this has been done, the reduced cost coefficients
c0j are readily identified.

c0j is the reduced cost coefficient associated with the jth nonbasic variable. Since the
basic variables do not appear in the cost function, their coefficients have a zero value.

Optimum Cost Function

In general the reduced cost coefficients c0j of the nonbasic variables may be positive, neg-
ative, or zero. If all c0j are non-negative, then it is not possible to reduce the cost function
any further and the current basic feasible solution is optimum. This is revealed by an exam-
ination of Eq. (9.5): If any nonbasic variable xi is made basic (i.e., it attains a positive value)
when all c0j are non-negative, the cost function will either increase or at the most remain
the same.

Note that when all c0j are strictly positive, the optimum solution is unique. If at least one c0j is
zero, then there is a possibility of alternate optima. If the nonbasic variable associated with a
zero reduced cost coefficient can be made basic, the extreme point corresponding to an
alternate optimum is obtained. Since the reduced cost coefficient is zero, the optimum cost
function value will not change, as seen in Eq. (9.5). Any point on the line segment joining
the optimum extreme points also corresponds to an optimum. Note that these optima are
global as opposed to local, although there is no distinct global optimum. Geometrically,
multiple optima for an LP problem imply that the cost function hyperplane is parallel to
an active constraint hyperplane.

Selection of a Nonbasic Variable to Become Basic

Let one of c0j be negative. This identifies the corresponding nonbasic variable xi to
become a basic variable. It is seen from Eq. (9.5) that the current value of f will decrease
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since xi will have a positive value (because it will be basic). If more than one negative c0j is
present, a widely used rule of thumb is to choose the nonbasic variable associated with
the smallest c0j (i.e., negative c0j with the largest absolute value) to become basic. Thus if
any c0j is negative, then it is possible to find a new basic feasible solution (if one exists) that
will further reduce the cost function.

Unbounded Problem

Note that if the nonbasic variable associated with the negative reduced cost coefficient
c0j cannot be made basic (e.g., when all aij in the c0j column are negative), then the feasible
region is unbounded.

9.1.3 Selection of a Basic Variable that Should Become Nonbasic

Assume that xq is a nonbasic variable tapped to become basic. This indicates that the
qth nonbasic column should replace some current basic column. After this interchange,
there should be all zero elements in the qth column except a positive unit element at one
location.

In order to answer the second question posed earlier, which current basic variable
should become nonbasic, we need to determine the pivot row for the elimination process.
This way the current basic variable associated with that row will become nonbasic after
the elimination step. To determine the pivot row, we transfer all of the terms associated
with the current nonbasic variable xq (tapped to become basic) to the right side of the
canonical form of Eq. (9.1). The system of equations becomes

xi 1
Xn
j5m11
j 6¼q

aijxj 5 bi 2 aiqxq; i5 1 to m ð9:8Þ

Since the summation term on the left side of Eq. (9.8) is zero, the equation becomes

xi 5 bi 2 aiqxq; i5 1 to m ð9:9Þ
Since xq is to become a basic variable, its value should become non-negative in the new
basic feasible solution. The right sides of Eq. (9.9) represent values of the basic variables
for the next Simplex iteration once xq is assigned a value greater than or equal to 0. An
examination of these right sides shows that xq cannot increase arbitrarily. The reason is
that if xq becomes arbitrarily large, then some of the new right-side parameters (bi2 aiq xq),
i5 1 to m may become negative. Since right-side parameters are the new values of the
basic variables, the new basic solution will not be feasible. Thus for the new solution to be
basic and feasible, the following constraint must be satisfied by the right side of Eq. (9.9)
in selecting a current basic variable that should become nonbasic (i.e., attain a zero value):

bi 2 aiqxq $ 0; i5 1 to m ð9:10Þ
Any aiq that are non-positive pose no limit on how much xq can be increased since

Inequality (9.10) remains satisfied; recall that bi$ 0. For a positive aiq, xq can be increased
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from zero until one of the inequalities in Eq. (9.10) becomes active, that is, one of the right
sides of Eq. (9.9) becomes zero. A further increase would violate the non-negativity condi-
tions of Eq. (9.10). Thus, the maximum value that the incoming variable xq can take is
given as

bp
apq

5 min
i

bi
aiq

; aiq. 0; i5 1 to m

� �
ð9:11Þ

where p is the index of the smallest ratio, bt/atq. Equation (9.11) says that we take ratios of
the right-side parameters bi with the positive elements in the qth column (aiq) and we select
the row index p giving the smallest ratio. In the case of a tie, the choice for the index p is arbi-
trary among the tying indices and in such a case the resulting basic feasible solution will be
degenerate.

Thus, Eq. (9.11) identifies a row with the smallest ratio bi/aiq. The basic variable xp asso-
ciated with this row should become nonbasic. If all aiq are nonpositive in the qth column, then
xq can be increased indefinitely. This indicates the LP problem to be unbounded. Any practical
problem with this situation is not properly constrained, so the problem formulation should
be reexamined.

9.1.4 Artificial Cost Function

Artificial Variables

When there are “$ type” (with positive right side) and equality constraints in the LP
problem, an initial basic feasible solution is not readily available. We must use the two-
phase Simplex method to solve the problem. To define the Phase I minimization problem,
we introduce an artificial variable for each “$ type” and equality constraint.

For the sake of simplicity of discussion, let us assume that each constraint of the stan-
dard LP problem requires an artificial variable in Phase I of the Simplex method. The con-
straints that do not require an artificial variable can also be treated routinely, as we saw in
the example problems in the previous chapter. Recalling that the standard LP problem has
n variables and m equality constraints, the constraint equations Ax5b augmented with
the artificial variables are now given as

Xn
j51

aijxj 1 xn1i 5 bi; i5 1 to m ð9:12Þ

where xn1i, i5 1 to m are the artificial variables. Thus the initial basic feasible solution to
the Phase I problem is given as

Basic variables: xn1i5 bi, i5 1 to m
Nonbasic variables: xj5 0, j5 1 to n

Note that the artificial variables basically augment the convex polyhedron of the origi-
nal problem. The initial basic feasible solution to the Phase I problem corresponds to an
extreme point (vertex) located in the expanded space. The problem now is to traverse the
extreme points in the expanded space until an extreme point is reached in the original
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space. When the original space is reached, all artificial variables will be nonbasic (i.e., they
will have zero values) and the artificial cost function will have a zero value. At this point
the augmented space is literally removed so that future movements are only among the
extreme points of the original space until the optimum point is reached. In short, after
creating artificial variables, we eliminate them as quickly as possible.

Artificial Cost Function

To eliminate the artificial variables from the problem, we define an auxiliary function,
called the artificial cost function, and minimize it subject to the constraints of Eq. (9.12) and
the non-negativity of all of the variables. The artificial cost function is simply a sum of all
of the artificial variables and will be designated as w:

w5 xn11 1 xn12 1 . . . 1 xn1m 5
Xm
i51

xn1i ð9:13Þ

The objective of the Phase I problem is to make all of the artificial variables nonbasic so
that they have zero value. In that case, the artificial cost function in Eq. (9.13) will be zero,
indicating the end of Phase I.

However, the Phase I problem is not yet in a form suitable to initiate the Simplex
method. The reason is that the reduced cost coefficients c0j of the nonbasic variables in the
artificial cost function are not yet available to determine the pivot element and perform
the pivot step.

Currently, the artificial cost function in Eq. (9.13) is in terms of the basic variables
xn11, . . ., xn1m. Therefore the reduced cost coefficients c0j cannot be identified. They can be
identified only if the artificial cost function w is in terms of the nonbasic variables x1, . . ., xn.
To obtain w in terms of nonbasic variables, we use the constraint expressions to eliminate
the basic variables from the artificial cost function. Calculating xn11, . . ., xn1m from
Eqs. (9.12) and substituting into Eq. (9.13), we obtain the artificial cost function w in terms
of the nonbasic variables as

w5
Xm
i51

bi 2
Xn
j51

Xm
i51

aijxj ð9:14Þ

The reduced cost coefficients c0j are identified as the coefficients of the nonbasic variables xj
in Eq. (9.14) as

c0j 52
Xm
i51

aij; j5 1 to n ð9:15Þ

If there are also “# type” constraints in the original problem, these are cast into the
standard LP form by adding slack variables that serve as basic variables in Phase I.
Therefore, the number of artificial variables is less than m—the total number of constraints.
Accordingly, the number of artificial variables required to obtain an initial basic feasible
solution is also less than m. This implies that the sums in Eqs. (9.14) and (9.15) are not for
all of the m constraints. They are only for the constraints requiring an artificial variable.
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9.1.5 The Pivot Step

The pivot step, based on the Guass-Jordan elimination procedure, interchanges a basic
variable with a nonbasic variable. Let a basic variable xp (1# p#m) be selected to replace
a nonbasic variable xq for (n2m)# q# n. The pth basic column is to be interchanged with
the qth nonbasic column. That is, the qth column will become a column of the identity
matrix, and the pth column will no longer be the identity matrix column. This is possible
only when the pivot element in the pth column and qth row is nonzero (i.e., apq 6¼ 0). The
current nonbasic variable xq will be basic if it is eliminated from all of the equations except
the pth one. This can be accomplished by performing a Gauss-Jordan elimination step on the
qth column of the tableau shown earlier in Table 9.1 using the pth row for elimination.
This will give apq5 1 and zeros elsewhere in the qth column.

Let a0ij denote the new coefficients in the canonical form of Ax5b after the pivot step.
Then the pivot step for performing elimination in the qth column using the pth row as the
pivot row is described by the following general equations.

1. Divide the pivot row (p) by the pivot element apq:

a0pj 5 apj=apq for j5 1 to n; b0p 5 bp=apq ð9:16Þ
2. Eliminate xq from all rows except the pth row by performing the Gauss-Jordan

elimination step:

a0ij 5 aij 2 apj=apq
� �

aiq;
i 6¼ p; i5 1 to m

j5 1 to n

�
ð9:17Þ

b0i 5 bi 2 ðbp=apqÞaiq; i 6¼ p; i5 1 to m ð9:18Þ

In Eq. (9.16), the pth row of the tableau is simply divided by the pivot element apq.
Equations (9.17) and (9.18)) perform the elimination step in the qth column of the tableau.
Elements in the qth column above and below the pth row are reduced to zero by the
elimination process, thus eliminating xq from all of the rows except the pth row. These
equations may be coded into a computer program to perform the pivot step. On comple-
tion of the pivot step, a new canonical form for the equation Ax5b is obtained; that is, a
new basic solution to the equations is obtained.

9.1.6 The Simplex Algorithm

The steps of the Simplex method were illustrated in Example 8.7 with only “# type”
constraints. They are summarized for the general LP problem as follows:

Step 1. Problem in the standard form. Transcribe the problem into the standard LP
form.
Step 2. Initial basic feasible solution. This is readily available if all constraints are
“# type” because the slack variables are basic and the real variables are nonbasic. If
there are equality and/or “$ type” constraints, then the two-phase Simplex procedure
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must be used. Introduction of artificial variable for each equality and “$ type”
constraint gives an initial basic feasible solution to the Phase I problem.
Step 3. Optimality check: The cost function must be in terms of only the nonbasic variables.
This is readily available when there are only “# type” constraints. For equality and/or
“$ type” constraints, the artificial cost function for the Phase I problem can also be
easily transformed to be in terms of the nonbasic variables.
If all of the reduced cost coefficients for nonbasic variables are non-negative ($ 0),
we have the optimum solution (end of Phase I). Otherwise, there is a possibility of
improving the cost function (artificial cost function). We need to select a nonbasic
variable that should become basic.
Step 4. Selection of a nonbasic variable to become basic. We scan the cost row (the artificial
cost row for the Phase I problem) and identify a column having negative reduced cost
coefficient because the nonbasic variable associated with this column should become
basic to reduce the cost (artificial cost) function from its current value. This is called the
pivot column.
Step 5. Selection of a basic variable to become nonbasic. If all elements in the pivot column
are negative, then we have an unbounded problem. If there are positive elements in
the pivot column, then we take ratios of the right-side parameters with the positive
elements in the pivot column and identify a row with the smallest positive ratio
according to Eq. (9.11). In the case of a tie, any row among the tying ratios can
be selected. The basic variable associated with this row should become nonbasic (i.e.,
zero). The selected row is called the pivot row, and its intersection with the pivot
column identifies the pivot element.
Step 6. Pivot step. Use the Gauss-Jordan elimination procedure and the pivot row
identified in Step 5. Elimination must also be performed in the cost function (artificial cost)
row so that it is only in terms of nonbasic variables in the next tableau. This step
eliminates the nonbasic variable identified in Step 4 from all of the rows except the
pivot row; that is, it becomes a basic variable.
Step 7. Optimum solution. If the optimum solution is obtained, then read the values
of the basic variables and the optimum value of the cost function from the tableau.
Otherwise, go to Step 3.

9.2 AN ALTERNATE SIMPLEX METHOD

A slightly different procedure can be used to solve linear programming problems
having “$ type” and equality constraints. The artificial variables are introduced into
the problem as before. However, the artificial cost function is not used. Instead, the origi-
nal cost function is augmented by adding to it the artificial variables multiplied by large positive
constants. The additional terms act as penalties for having artificial variables in the problem.
Since artificial variables are basic, they need to be eliminated from the cost function
before the Simplex method can be used to solve the preceding modified problem. This
can easily be done using the appropriate equations that contain artificial variables, as in
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Eq. (9.14). Once this has been done, the regular Simplex method can be used to solve
the problem. We illustrate the procedure, sometimes called the Big-M Method, with
Example 9.1.

EXAMPLE 9.1 THE BIG-M METHOD FOR EQUALITY
AND “$TYPE” CONSTRAINTS

Find the numerical solution to the problem given in Example 8.14 using the alternate Simplex

procedure:

Maximize

z5 y1 1 2y2 ðaÞ
subject to

3y1 1 2y2 #12 ðbÞ
2y1 1 3y2 $ 6 ðcÞ

y1 $ 0; y2 is unrestricted in sign ðdÞ

Solution
Since y2 is unrestricted, it has been defined as y25 x22 x3. Converting the problem to the stan-

dard form, and defining x15 y1, we obtain:

Minimize

f 52x1 2 2x2 1 2x3 ðeÞ
subject to

3x1 1 2x2 2 2x3 1 x4 5 12 ðfÞ

2x1 1 3x2 2 3x3 2 x5 1 x6 5 6 ðgÞ
xi $ 0; i5 1 to 6 ðhÞ

where x4 is a slack variable, x5 is a surplus variable, and x6 is an artificial variable.

Following the alternate Simplex procedure, we add Mx6 (with, say, M5 10) to the cost func-

tion and obtain f52x12 2x21 2x31 10x6. Note that if there is a feasible solution to the problem,

then all artificial variables will become nonbasic (i.e., zero), and we will recover the original cost

function. Also note that if there are other artificial variables in the problem, they will be multi-

plied by M and added to the cost function. Now, substituting for x6 from Eq. (g) into the forego-

ing cost function, we get the augmented cost function as

f 52x1 2 2x2 1 2x3 1 10ð62 2x1 2 3x2 1 3x3 1 x5Þ5 602 21x1 2 32x2 1 32x3 1 10x5 ðiÞ
This is written as 221x12 32x21 32x31 10x55 f2 60 in the Simplex tableau. With this cost function,

iterations of the Simplex method are shown in Table 9.2. It can be seen that the final solution is the

same as given in Table 8.18 and Figure 8.4.
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9.3 DUALITY IN LINEAR PROGRAMMING

Associated with every LP problem is another problem called the dual problem. The origi-
nal LP is called the primal problem. Some theorems related to dual and primal problems are
stated and explained. Dual variables are related to the Lagrange multipliers of the primal
constraints. The solution to the dual problem can be recovered from the final primal solu-
tion, and vice versa. Therefore, only one of the two problems needs to be solved. This is
illustrated with examples.

9.3.1 Standard Primal LP Problem

There are several ways of defining the primal and the corresponding dual problems.
We will define a standard primal problem as finding x1, x2, . . .,xn to maximize a primal objec-
tive function:

zp 5 d1x1 1 . . . 1 dnxn 5
Xn
i51

dixi 5dTx ð9:19Þ

TABLE 9.2 Solution to Example 9.1 by alternate Simplex method

Initial tableau: x6 is identified to be replaced with x2 in the basic set

Basick x1 x2 x3 x4 x5 x6 b Ratio

x4 3 2 22 1 0 0 12 12
2 5 6

x6 2 3 23 0 21 1 6 6
35 2

Cost 221 232 32 0 10 0 f2 60

Second tableau: x4 is identified to be replaced with x5 in the basic set

Basick x1 x2 x3 x4 x5 x6 b Ratio

x4
5
3 0 0 1 2

3 22
3 8 8

2=35 12

x2
2
3 1 21 0 21

3
1
3 2 Negative

Cost 1
3 0 0 0 22

3
32
3 f1 4

Third tableau: Reduced cost coefficients in nonbasic columns are

non-negative; the tableau gives optimum point

Basick x1 x2 x3 x4 x5 x6 b

x5
5
2 0 0 3

2 1 21 12

x2
3
2 1 21 1

2 0 0 6

Cost 2 0 0 1 0 10 f1 12
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subject to the constraints

a11x1 1 . . . 1 a1nxn # e1

. . . ðAx# eÞ
am1x1 1 . . . 1 amnxn # em

xj $ 0; j5 1 to n

ð9:20Þ

We will use a subscript p on z to indicate the primal objective function. Also, z is used
as the maximization function. It must be understood that in the standard LP problem
defined in Eqs. (8.5) through (8.7), all constraints were equalities and right-side parameters
bi were non-negative. However, in the definition of the standard primal problem, all
constraints must be “# type” and there is no restriction on the sign of the right-side para-
meters ei. Therefore, “$ type” constraints must be multiplied by 21 to convert them to
“# type.” Equalities should be also converted to “# type” constraints. This is explained
later in this section. Note that to solve the preceding primal LP problem by the Simplex
method, we must transform it into the standard Simplex form of Eqs. (8.5) through (8.7).

9.3.2 Dual LP Problem

The dual for the standard primal is defined as follows: Find the dual variables y1, y2, ...,
ym to minimize a dual objective function:

fd 5 e1y1 1 . . . 1 emym 5
Xm
i51

eiyi 5 eTy ð9:21Þ

subject to the constraints

a11y1 1 . . . 1 am1ym $ d1

. . . ðATy$dÞ
a1ny1 1 . . . 1 amnym $ dn

yi $ 0; i5 1 to m

ð9:22Þ

We use a subscript d on f to indicate that it is the cost function for the dual problem. Note
the following relations between the primal and dual problems:

1. The number of dual variables is equal to the number of primal constraints. Each dual
variable is associated with a primal constraint. For example, yi is associated with the ith
primal constraint.

2. The number of dual constraints is equal to the number of primal variables. Each primal
variable is associated with a dual constraint. For example, xi is associated with the ith
dual constraint.

3. Primal constraints are “# type” inequalities, whereas dual constraints are “$ type.”
4. The maximization of the primal objective function is replaced by the minimization of

the dual cost function.
5. The coefficients di of the primal objective function become the right side of the dual

constraints. The right-side parameters ei of the primal constraints become coefficients
for the dual cost function.
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6. The coefficient matrix [aij] of the primal constraints is transposed to [aji] for the dual
constraints.

7. The non-negativity condition applies to both primal and dual variables.

Example 9.2 illustrates how to write the dual problem for a given LP problem.

EXAMPLE 9.2 THE DUAL OF AN LP PROBLEM

Write the dual of the problem

Maximize
zp 5 5x1 2 2x2 ðaÞ

subject to
2x1 1 x2 # 9 ðbÞ
x1 2 2x2 # 2 ðcÞ
23x1 1 2x2 # 3 ðdÞ

x1; x2 $ 0 ðeÞ

Solution
The problem is already in the standard primal form, and the following associated vectors and

matrices can be identified:

d5
5

22

� �
; e5

9
2
3

2
4

3
5; A5

2 1
1 22

23 2

2
4

3
5 ðfÞ

Since there are three primal constraints, there are three dual variables for the problem. Let y1,

y2, and y3 be the dual variables associated with the three constraints. Therefore, Eqs. (9.21) and

(9.22) give the dual for the problem as

Minimize
fd 5 9y1 1 2y2 1 3y3 ðgÞ

subject to
2y1 1 y2 2 3y3 $ 5 ðhÞ
y1 2 2y2 1 2y3 $2 2 ðiÞ

y1; y2; y3 $ 0 ðjÞ

9.3.3 Treatment of Equality Constraints

Many design problems have equality constraints. Each equality constraint can be replaced
by a pair of inequalities. For example, 2x11 3x25 5 can be replaced by the pair 2x11 3x2$ 5
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and 2x11 3x2# 5. We can multiply the “$ type” inequality by 21 to convert it into the stan-
dard primal form. Example 9.3 illustrates treatment of equality and “$ type” constraints.

EXAMPLE 9.3 THE DUAL OF AN LP PROBLEM WITH EQUALITY
AND “$ TYPE” CONSTRAINTS

Write the dual for the problem

Maximize
zp 5 x1 1 4x2 ðaÞ

subject to
x1 1 2x2 # 5 ðbÞ
2x1 1 x2 5 4 ðcÞ
x1 2 x2 $ 1 ðdÞ
x1; x2 $ 0 ðeÞ

Solution
The equality constraint 2x11 x25 4 is equivalent to the two inequalities 2x11 x2$ 4 and

2x11 x2# 4. The “$ type” constraints are multiplied by 21 to convert them into the “# ” form.

Thus, the standard primal for the given problem is

Maximize
zp 5 x1 1 4x2 ðfÞ

subject to
x1 1 2x2 # 5 ðgÞ
2x1 1 x2 # 4 ðhÞ

22x1 2 x2 #2 4 ðiÞ
2x1 1 x2 #21 ðjÞ
x1; x2 $ 0 ðkÞ

Using Eqs. (9.21) and (9.22), the dual for the primal is

Minimize
fd 5 5y1 1 4ðy2 2 y3Þ2 y4 ðlÞ

subject to
y1 1 2ðy2 2 y3Þ2 y4 $ 1 ðmÞ
2y1 1 ðy2 2 y3Þ1 y4 $ 4 ðnÞ
y1; y2; y3; y4 $ 0 ðoÞ
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9.3.4 Alternate Treatment of Equality Constraints

We will show that it is not necessary to replace an equality constraint by a pair of
inequalities to write the dual problem. Note that there are four dual variables for Example
9.3. The variables y2 and y3 correspond to the second and third primal constraints written
in the standard form. The second and third constraints are actually equivalent to the origi-
nal equality constraint. Note also that the term (y22 y3) appears in all of the expressions of
the dual problem. We define

y5 5 y2 2 y3 ðaÞ
which can be positive, negative, or zero, since it is the difference of two non-negative vari-
ables (y2$ 0, y3$ 0). Substituting for y5, the dual problem in Example 9.3 is rewritten as

Minimize
fd 5 5y1 1 4y5 2 y4 ðbÞ

subject to
y1 1 2y5 2 y4 $ 1 ðcÞ

2y1 1 y5 1 y4 $ 4 ðdÞ

y1; y4 $ 0; y5 5 y2 2 y3 is unrestricted in sign ðeÞ

The number of dual variables is now only three. Since the number of dual variables is
equal to the number of the original primal constraints, the dual variable y5 must be associ-
ated with the equality constraint 2x11 x25 4. Thus, we can draw the following conclusion:
If the ith primal constraint is left as an equality, the ith dual variable is unrestricted in sign. In a
similar manner, we can show that if a primal variable is unrestricted in sign, then the ith
dual constraint is an equality. This is left as an exercise. Example 9.4 demonstrates recov-
ery of the primal formulation from the dual formulation.

EXAMPLE 9.4 RECOVERY OF PRIMAL FORMULATION
FROM DUAL FORMULATION

Note that we can convert a dual problem into the standard primal form and write its dual

again. It can be shown that the dual of this problem gives the primal problem back again. To see

this, let us convert the preceding dual problem into standard primal form:

Maximize
zp 525y1 2 4y5 1 y4 ðaÞ

subject to
2y1 2 2y5 1 y4 # 21 ðbÞ

22y1 2 y5 2 y4 # 24 ðcÞ
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y1; y4 $ 0; y5 5 y2 2 y3 is unrestricted in sign ðdÞ
Writing the dual of the above problem, we obtain

Minimize
fd 52x1 2 4x2 ðeÞ

subject to
2x1 2 2x2 $ 25 ðfÞ
22x1 2 x2 524 ðgÞ
x1 2 x2 $ 1 ðhÞ
x1; x2 $ 0 ðiÞ

which is the same as the original problem (Example 9.3). Note that in the preceding dual

problem, the second constraint is an equality because the second primal variable (y5) is unre-

stricted in sign. Theorem 9.1 states this result.

THEOREM 9 . 1

Dual of a Dual Problem The dual of the dual problem is the primal problem.

9.3.5 Determination of the Primal Solution from the Dual Solution

It remains to be determined how the optimum solution to the primal is obtained from
the optimum solution to the dual, or vice versa. First, let us multiply each dual inequality
in Eq. (9.22) by x1, x2, . . ., xn and add them. Since x0js are restricted to be non-negative, we
get the inequality

x1ða11y1 1 . . . 1 am1ymÞ1 x2ða12y1 1 . . . 1 am2ymÞ
1 . . . 1 xnða1ny1 1 . . . 1 amnymÞ$ d1x1 1 d2x2 1 . . . 1 dnxn

ð9:23Þ

Or, in matrix form,

xTATy $ xTd ð9:24Þ
Rearranging the equation by collecting terms with y1, y2,...ym (or taking the transpose of

the left side as yTAx), we obtain

y1ða11x1 1 a12x2 1 . . . 1 a1nxnÞ1 y2ða21x1 1 a22x2 1 . . . 1 a2nxnÞ
1 . . . 1 ymðam1x1 1 am2x2 1 . . . 1 amnxnÞ$ d1x1 1 d2x2 1 . . . 1 dnxn

ð9:25Þ
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In the matrix form, the preceding inequality can be written as yTAx$ xTd. Each term in
parentheses in Eq. (9.25) is less than the corresponding value of e on the right side of
Inequalities (9.20). Therefore, replacing these terms with the corresponding e from
Inequalities (9.20) preserves the inequality in Eq. (9.25):

y1e1 1 y2e2 1 . . . 1 ymem $ d1x1 1 d2x2 1 . . . 1 dnxn; or yTe$ xTd ð9:26Þ
Note that in Inequality (9.26) the left side is the dual cost function and the right side is

the primal objective function. Therefore, from Inequality (9.26), fd$ zp for all (x1, x2, . . ., xn)
and (y1, y2, . . ., ym), satisfying Eqs. (9.19) through (9.22). Thus, the vectors x and y with
zp5 fd maximize zp while minimizing fd. The optimum (minimum) value of the dual cost
function is also the optimum (maximum) value of the primal objective function. Theorems
9.2, 9.3, and 9.4 regarding primal and dual problems can be stated as follows.

THEOREM 9 . 2

The Relationship between Primal and Dual

Problems Let x and y be in the feasible sets

of the primal and dual problems, respec-

tively (as defined in Eqs. (9.19) through

(9.22)). Then the following conditions hold:

1. fd(y)$ zp(x).

2. If fd5 zp, then x and y are the solutions

to the primal and the dual problems,

respectively.

3. If the primal is unbounded, the

corresponding dual is infeasible, and

vice versa.

4. If the primal is feasible and the dual is

infeasible, then the primal is unbounded,

and vice versa.

THEOREM 9 . 3

Primal and Dual Solutions Let both the

primal and the dual have feasible points.

Then both have optimum solutions in x and

y, respectively, and fd(y)5 zp(x).

THEOREM 9 . 4

Solution to Primal From Dual If the ith

dual constraint is a strict inequality at opti-

mum, then the corresponding ith primal

variable is nonbasic (i.e., it vanishes). Also,

if the ith dual variable is basic, then the ith

primal constraint is satisfied at equality.
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The conditions of Theorem 9.4 can be written as (if the jth dual constraint is a strict
inequality, then the jth primal variable is nonbasic)

if
Xm
i51

aijyi . dj; then xj 5 0 ð9:27Þ

(if the ith dual variable is basic, the ith primal constraint is satisfied at equality that is, active):

if yi . 0; then
Xn
j51

aijxj 5 ei ð9:28Þ

These conditions can be used to obtain primal variables using the dual variables. The
primal constraints satisfied at equality are identified from the values of the dual variables.
The resulting linear equations can be solved simultaneously for the primal variables.
However, this is not necessary because the final dual tableau can be used directly to obtain
the primal variables. We illustrate the use of these theorems in Example 9.5.

EXAMPLE 9.5 PRIMAL AND DUAL SOLUTIONS

Consider the following problem:

Maximize

zp 5 5x1 2 2x2 ðaÞ
subject to

2x1 1 x2 # 9 ðbÞ
x1 2 2x2 # 2 ðcÞ

23x1 1 2x2 # 3 ðdÞ
x1; x2 $ 0 ðeÞ

Solve the primal and dual problems and study their final tableaux.

Solution
The problem was solved using the Simplex method in Example 8.18 and Table 8.22. The final

tableau is reproduced in Table 9.3. From the final primal tableau,

Basic variables: x1 5 4; x2 5 1; x5 5 13 ðfÞ
Nonbasic variables: x3 5 0; x4 5 0 ðgÞ
Optimum objective function: zp 5 18 ðminimum value is 218Þ ðhÞ

Now, let us write the dual for the problem and solve it using the Simplex method. Note that

the original problem is already in the standard primal form. There are three primal inequality

constraints, so there are three dual variables. There are two primal variables, so there are two
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dual constraints. Let y1, y2, and y3 be the dual variables. Therefore, the dual of the problem is

given as

Minimize
fd 5 9y1 1 2y2 1 3y3 ðiÞ

subject to
2y1 1 y2 2 3y3 $ 5 ðjÞ
y1 2 2y2 1 2y3 $22 ðkÞ

y1; y2; y3 $ 0 ðlÞ
Writing the constraints in the standard Simplex form by introducing slack, surplus, and artifi-

cial variables, we obtain
2y1 1 y2 2 3y3 2 y4 1 y6 5 5 ðmÞ
2y1 1 2y2 2 2y3 1 y5 5 2 ðnÞ

yi $ 0; i5 1 to 6 ðoÞ
where y4 is a surplus variable, y5 is a slack variable, and y6 is an artificial variable. The two-

phase Simplex procedure is used to solve the problem, as displayed in Table 9.4. From the final

dual tableau, we obtain the following solution:

Basic variables: y15 1.6, y25 1.8

Nonbasic variables: y35 0, y45 0, y55 0

Optimum value of dual function: fd5 18

Note that at the optimum fd5 zp, which satisfies the conditions of Theorems 9.2 and 9.3.

Using Theorem 9.4, we see that the first and second primal constraints must be satisfied at equal-

ity since the dual variables y1 and y2 associated with the constraints are positive (basic) in

Table 9.4. Therefore, primal variables x1 and x2 are obtained as a solution to the first two primal

constraints satisfied at equality: 2x11 x25 9, x12 2x25 2. The solution to these equations is given

as x15 4, x25 1, which is the same as obtained from the final primal tableau.

9.3.6 Use of the Dual Tableau to Recover the Primal Solution

It turns out that we do not need to follow the preceding procedure (Theorem 9.4) to
recover the primal variables. The final dual tableau contains all of the information to
recover the primal solution. Similarly, the final primal tableau contains all of the informa-
tion to recover the dual solution. Looking at the final tableau in Table 9.4 for Example 9.5,
we observe that the elements in the last row of the dual tableau match the elements in the
last column of the primal tableau in Table 9.3. Similarly, the reduced cost coefficients in
the final primal tableau match the dual variables. To recover the primal variables from the
final dual tableau, we use reduced cost coefficients in the columns corresponding to the
slack or surplus variables. We note that the reduced cost coefficient in column y4 is pre-
cisely x1 and the reduced cost coefficient in column y5 is precisely x2.
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Reduced cost coefficients corresponding to the slack and surplus variables in the
final dual tableau give the values of the primal variables.

Similarly, if we solve the primal problem, we can recover the dual solution from the
final primal tableau. Theorem 9.5 summarizes this result.

TABLE 9.3 Final tableau for Example 9.5 by Simplex
method (primal solution)

Basick x1 x2 x3 x4 x5 b

x2 0 1 0.2 20.4 0 1

x1 1 0 0.4 0.2 0 4

x5 0 0 0.8 1.4 1 13

Cost 0 0 1.6 1.8 0 fp1 18

TABLE 9.4 Solution to dual of the problem in Example 9.5

Initial tableau: y6 is identified to be replaced with y1 in the basic set

Basick y1 y2 y3 y4 y5 y6 b

y6 2 1 23 21 0 1 5

y5 21 2 22 0 1 0 2

Cost 9 2 3 0 0 0 fd20

Artificial cost 22 21 3 1 0 0 w25

Second tableau: End of Phase I. y5 is identified to be replaced with y2
in the basic set

Basick y1 y2 y3 y4 y5 y6 b

y1 1 0.5 21.5 20.5 0 0.5 2.5

y5 0 2:5 23.5 20.5 1 0.5 4.5

Cost 0 22:5 16.5 4.5 0 24.5 fd222.5

Artificial cost 0 0 0 0 0 1 w20

Third tableau: Reduced cost coefficients in nonbasic columns are

non-negative; the tableau gives optimum point. End of Phase II

Basick y1 y2 y3 y4 y5 y6 b

y1 1 0 20.8 20.4 20.2 0.4 1.6

y2 0 1 21.4 20.2 0.4 0.2 1.8

Cost 0 0 13.0 4.0 1.0 24.0 fd218
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THEOREM 9 . 5

Recovery of the Primal Solution From the

Dual Tableau Let the dual of the stan-

dard primal defined earlier in Eqs. (9.19)

and (9.20) (i.e., maximize dTx subject to

Ax # e, x $ 0) be solved by the standard

Simplex method. Then the value of the ith

primal variable equals the reduced cost

coefficient of the slack or surplus variable

associated with the ith dual constraint in

the final dual tableau. In addition, if a dual

variable is nonbasic, then its reduced cost

coefficient equals the value of the slack or

surplus variable for the corresponding pri-

mal constraint.

Note that if a dual variable is nonbasic (i.e., has a zero value), then its reduced cost coeffi-
cient equals the value of the slack or surplus variable for the corresponding primal constraint.
In Example 9.5, y3, the dual variable corresponding to the third primal constraint, is nonbasic.
The reduced cost coefficient in the y3 column is 13. Therefore, the slack variable for the third
primal constraint has a value of 13; that is, the constraint is inactive. This is the same as
obtained from the final primal tableau. We also note that the dual solution can be obtained
from the final primal tableau using Theorem 9.5 as y15 1.6, y25 1.8, y35 0, which is the same
solution as before. While using Theorem 9.5, the following additional points should be noted:

1. When the final primal tableau is used to recover the dual solution, the dual variables
correspond to the primal constraints expressed in the “# ” form only. However, the
primal constraints must be converted to standard Simplex form while solving the
problem. Recall that all of the right sides of the constraints must be non-negative for the
Simplex method. The dual variables are non-negative only for the constraints written in
the “# ” form.

2. When a primal constraint is an equality, it is treated in the Simplex method by adding
an artificial variable in Phase I. There is no slack or surplus variable associated with an
equality. We also know from the previous discussion that the dual variable associated
with the equality constraint is unrestricted in sign. Then the question becomes how to
recover the dual variable for the equality constraint from the final primal tableau. There
are a couple of ways of doing this.

The first procedure is to convert the equality constraint into a pair of inequalities, as
noted previously. For example, the constraint 2x11 x25 4 is written as the pair of
inequalities 2x11 x2# 4, 22x12 x2#24. The two inequalities are treated in a standard
way in the Simplex method. The corresponding dual variables are recovered from the
final primal tableau using Theorem 9.5. Let y2$ 0 and y3$ 0 be the dual variables
associated with the two inequality constraints, respectively, and y1 be the dual variable
associated with the original equality constraint. Then y15 y22 y3. Accordingly, y1 is
unrestricted in sign and its value is known using y2 and y3.

The second way of recovering the dual variable for the equality constraint is to carry
along its artificial variable column in Phase II of the Simplex method. Then the dual
variable for the equality constraint is the reduced cost coefficient in the artificial variable
column in the final primal tableau. We illustrate these procedures in Example 9.6.
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EXAMPLE 9.6 USE OF THE FINAL PRIMAL TABLEAU
TO RECOVER DUAL SOLUTIONS

Solve the following LP problem and recover its dual solution from the final primal tableau:

Maximize
zp 5 x1 1 4x2 ðaÞ

subject to
x1 1 2x2 # 5; ðbÞ
2x1 1 x2 5 4; ðcÞ
x1 2 x2 $ 1; ðdÞ
x1; x2 $ 0 ðeÞ

Solution
When the equality constraint is converted into a pair of inequalities—that is, 2x11 x2# 4,

22x12 x2#24—the problem is the same as the one solved in Example 8.17. The final tableau

for the problem was given in Table 8.21. Using Theorem 9.5, the dual variables for the preceding

four constraints are

1. x11 2x2# 5: y15 0, reduced cost coefficient of x3, the slack variable

2. 2x11 x2# 4: y25 5/3, reduced cost coefficient of x4, the slack variable

3. 22x12 x2#24: y35 0, reduced cost coefficient of x5, the surplus variable

4. 2x11 x2#21: y45 7/3, reduced cost coefficient of x6, the surplus variable

Thus, from the above discussion, the dual variable for the equality constraint 2x11 x25 4 is

y22 y35 5/3. Note also that y45 7/3 is the dual variable for the fourth constraint, written

as 2x11 x2#21, and not for the constraint x12x2$ 1.

Now let us re-solve the same problem with the equality constraint as it is. The problem is the

same as the one solved in Example 8.19. The final tableau for the problem is given in Table 8.23.

Using Theorem 9.5 and the preceding discussion, the dual variables for the given three

constraints are

1. x11 2x2# 5: y15 0, reduced cost coefficient of x3, the slack variable

2. 2x11 x25 4: y25 5/3, reduced cost coefficient of x5, the artificial variable

3. 2x11 x2#21: y35 7/3, reduced cost coefficient of x4, the surplus variable

We see that the foregoing two solutions are the same. Therefore, we do not have to replace an

equality constraint by two inequalities in the standard Simplex method. The reduced cost coeffi-

cient corresponding to the artificial variable associated with the equality constraint gives the

value of the dual variable for the constraint.

9.3.7 Dual Variables as Lagrange Multipliers

Section 8.7 describes how the optimum value of the cost function for the problem
changes if we change the right-side parameters of constraints bi, the resource limits. The
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Constraint Variation Sensitivity Theorem 4.7 (Chapter 4) is used to study this effect. Use of
that theorem requires knowledge of the Lagrange multipliers for the constraints that must
be determined. It turns out that the dual variables of the problem are related to the
Lagrange multipliers. Theorem 9.6 gives this relationship.

THEOREM 9 . 6

Dual Variables as Lagrange Multipliers

Let x and y be optimal solutions for the pri-

mal and dual problems stated in Eqs. (9.19)

through (9.22), respectively. Then the dual

variables y are also the Lagrange multipliers

for the primal constraints of Eq. (9.20).

Proof The theorem can be proved by writing the
Karush-Kuhn-Tucker (KKT) necessary conditions of
Theorem 4.6 for the primal problem defined in
Eqs. (9.19) and (9.20). To write these conditions, con-
vert the primal problem to a minimization problem
and then define a Lagrange function of Eq. (4.46) as

L52
Xn
j51

djxj 1
Xm
i51

yi
Xn
j51

aijxj 2 ei

0
@

1
A2

Xn
j51

vjxj

52dTx1yTðAx2 eÞ2 vTx

ðaÞ

where yi is the Lagrange multiplier for the ith pri-
mal constraint of Eq. (9.20) and vj is the Lagrange
multiplier for the jth non-negativity constraint for
the variable xj. Write the KKT necessary condi-
tions of Theorem 4.6 as

2dj 1
Xm
i51

yiaij 2 vj 5 0;

j5 1 to n ð@L=@xj 5 0Þ
ðbÞ

yi
Xn
j51

aijxj 2 ei

0
@

1
A5 0; i5 1 to m ðcÞ

vixi 5 0; xi $ 0; i5 1 to n ðdÞ
yi $ 0; i5 1 to m ðeÞ
vi $ 0; i5 1 to n ðfÞ

Rewrite Eq. (b) as

2dj 1
Xm
i51

aijyi 5 vj; j5 1 to n ð2d1ATy5 vÞ

Using conditions (f) in the preceding equation,
we conclude that

Xm
i51

aijyi $ dj; j5 1 to n ðATy$dÞ ðgÞ

Thus yi are feasible solutions for the dual con-
straints of Eq. (9.22).

Now let xi represent the optimum solution to
the primal problem. Then m of the xi are positive
(barring degeneracy), and the corresponding vi
are equal to zero from Eq. (d). The remaining xi
are zero and the corresponding vi are greater
than zero. Therefore, from Eq. (g), we obtain

ðiÞ vj.0; xj 5 0;
Xm
i51

aijyi . dj ðhÞ

ðiiÞ vj 5 0; xj.0;
Xm
i51

aijyi 5 dj ðiÞ

Adding the m rows given in Eq. (c), interchanging
the sums on the left side, and rearranging, we
obtain

Xn
j51

xj
Xm
i51

aijyi 5
Xm
i51

yiei ðxTATy5 yTeÞ ðjÞ

Using Eqs. (h) and (i), Eq. (j) can be written as

Xn
j51

djxj 5
Xm
i51

yiei ðdTx5 yTeÞ ðkÞ

Equation (k) also states that

zp 5
Xm
i51

yiei 5 yTe ðlÞ

The right side of Eq. (l) represents the dual
cost function. According to Theorem 9.2, if the
primal and dual functions have the same values
and if x and y are feasible points for the primal
and dual problems, then they are optimum solu-
tions for the respective problems. Thus, the dual
variables yi, i5 1 to m that solve the dual problem
defined in Eqs. (9.21) and (9.22) are also the
Lagrange multipliers for the primal constraints.
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9.4 KKT CONDITIONS FOR THE LP PROBLEM

Now we write the KKT optimality conditions for the linear programming (LP) problem
and show that the Simplex method essentially solves these conditions in a systematic way.
The LP problem is defined in the standard form as

fðxÞ5 cTx ð9:29Þ
Ax5b; b$ 0 ð9:30Þ

x$ 0 ð9:31Þ

where the dimensions of various vectors and matrices are c(n), x(n), b(m), and A(m3n). It is
assumed that the rank of A is m; that is., all of the equations are linearly independent in
Eq. (9.30).

9.4.1. KKT Optimality Conditions

The Lagrangian for the problem is defined as

L5 cTx1 yTðAx2bÞ1 vTð2xÞ ð9:32Þ
where y(m) and v(n) are the Lagrange multipliers. The KKT necessary conditions give

@L

@x
5 c1ATy2 v5 0 ð9:33Þ

Ax5b ð9:34Þ
vixi 5 0; vi $ 0; i5 1 to n ð9:35Þ

9.4.2. Solution to the KKT Conditions

Equations (9.33) through (9.35) can be solved for x, y, and v. Partition various vectors
and matrices into basic and nonbasic parts as

x5
xB
xN

� �
; xBðmÞ; xNðn2mÞ ð9:36Þ

v5
vB
vN

� �
; vBðmÞ;vNðn2mÞ ð9:37Þ

c5
cB
cN

� �
; cBðmÞ; cNðn2mÞ ð9:38Þ
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A5 B N
� 	

; Bðm3mÞ; Nðm3n2mÞ ð9:39Þ

Equation (9.34) can be now partitioned as

BxB 1NxN 5b; or xB 5B21ð2NxN 1bÞ ð9:40Þ
It is assumed that xB and xN are selected in such a way that B21 exists. This is always

possible since A has full row rank. Equation (9.40) expresses the basic variables xB in terms
of the nonbasic variables xN. This is called a general solution to Ax5b. Any specification
of xN gives xB. In particular, if xN is set to zero, xB is given as

xB 5B21b ð9:41Þ
This is called a basic solution to Ax5b. If all of the basic variables are also non-negative,
then the solution is called a basic feasible solution.

Equation (9.33) can be written in the partitioned form as

cB
cN

� �
1

BT

NT

� �
y2

vB
vN

� �
5

0
0

� �
ð9:42Þ

Since xB 6¼ 0, vB5 0 to satisfy Eq. (9.35). Therefore, from the first row of Eq. (9.42), we obtain

y52B2TcB ð9:43Þ
From the second row of Eq. (9.42), we obtain

vN 5 cN 1NTy ð9:44Þ
Substituting for y from Eq. (9.43) into Eq. (9.44), we obtain

vN 5 cN 2NTB2TcB ð9:45Þ
The cost function is written in terms of the basic and nonbasic variables as

f 5 cTBxB 1 cTNxN ð9:46Þ
Substituting for xB from Eq. (9.40) into Eq. (9.46) and collecting terms, we obtain

f 5 cTBðB21bÞ1 ðcN 2NTB2TcBÞTxN ð9:47Þ
Substituting Eq. (9.45) into Eq. (9.47), we obtain

f 5 cTBðB21bÞ1 vTNxN ð9:48Þ
This equation expresses the cost function in terms of only the nonbasic variables. The

coefficients of the nonbasic variables are the reduced cost coefficients. Since these are
also the Lagrange multipliers, they are required to be non-negative at the optimum
point; that is,

vN $ 0 ð9:49Þ
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This was precisely the condition that was used to recognize the optimum solution in the
Simplex method. Also, since xN are nonbasic variables, they have a zero value. Therefore,
the optimum cost function is given from Eq. (9.48) as

f� 5 cTBðB21bÞ ð9:50Þ
The optimization procedure is to determine the basic variables xB$ 0 and nonbasic vari-

ables xN such that the optimality condition vN$ 0 is satisfied for a feasible point. This is
achieved by the Simplex method of linear programming, as seen earlier.

The Simplex tableau is set up using Eqs. (9.40) and (9.48) as follows:

xB xN RS

I B21N B21b
0 uN 2cTBðB21bÞ

� �
ð9:51Þ

The first row is Eq. (9.40) and the second row is the cost function in Eq. (9.48). The first
column belongs to xB and the second column belongs to xN. The third column is the right
side of Eqs. (9.40) and (9.48). A Simplex tableau can be set up to carry out the pivot opera-
tions until the solution is obtained.

9.5 QUADRATIC PROGRAMMING PROBLEMS

A quadratic programming (QP) problem has a quadratic cost function and linear con-
straints. Such problems are encountered in many real-world applications. In addition,
many general nonlinear programming algorithms require solution to a quadratic program-
ming subproblem at each iteration. The QP subproblem is obtained when a nonlinear
problem is linearized and a quadratic step size constraint is imposed (Chapter 12).

It is important to solve the QP subproblem efficiently so that large-scale problems can
be treated. Thus, it is not surprising that substantial research effort has been expended in
developing and evaluating many algorithms for solving QP problems (Gill et al., 1981;
Luenberger, 1984; Nocedal and Wright, 2006). Also, several commercially available soft-
ware packages are available for solving QP problems, for example, MATLAB, QPSOL (Gill
et al., 1984), VE06A (Hopper, 1981), and E04NAF (NAG, 1984). Some of the available LP
codes also have an option for solving QP problems (Schrage, 1991).

To give a flavor of the calculations needed to solve QP problems, we will describe a
method that is an extension of the Simplex method. Many other methods are available to
solve QP problems.

9.5.1. Definition of a QP Problem

Let us define a general QP problem as follows:

Minimize

qðxÞ5 cTx1
1

2
xTHx ð9:52Þ
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subject to the linear equality and inequality constraints

NTx5 e ð9:53Þ
ATx#b ð9:54Þ

and the non-negativity of the variables

x$ 0 ð9:55Þ

where

c 5 n-dimensional constant vector
x 5 n-dimensional vector of unknowns
b 5m-dimensional constant vector
e 5 p-dimensional constant vector
H 5 n3 n constant Hessian matrix
A 5 n3m constant matrix
N 5 n3 p constant matrix

Note that all of the linear inequality constraints are expressed in the “# form.” This is
needed because we will use the KKT necessary conditions of Section 4.6, which require
this form. Note also that if the matrix H is positive semidefinite, the QP problem is convex,
so any solution (if one exists) represents a global minimum point (which need not be
unique). Further, if the matrix H is positive definite, the problem is strictly convex.
Therefore, the problem has a unique global solution (if one exists). We will assume that
the matrix H is at least positive semidefinite. This is not an unreasonable assumption in
practice, as many applications satisfy it.

Note also that the variables x are required to be non-negative in Eq. (9.55). Variables
that are free in sign can be easily treated by the method described in Section 8.2.

9.5.2. KKT Necessary Conditions for the QP Problem

A procedure for solving the QP problem of Eqs. (9.52) through (9.55) is to first write the
KKT necessary conditions of Section 4.6 and then transform them into a form that can be
treated by Phase I of the Simplex method of Section 8.5. To write the necessary conditions,
we introduce slack variables s for Inequalities (9.54) and transform them into equalities as

ATx1 s5b; with s$ 0 ð9:56Þ
The slack variable for the jth inequality in Eq. (9.54) can be expressed using Eq. (9.56) as

sj 5 bj 2
Xn
i51

aijxi ðs5b2ATxÞ ð9:57Þ

Note the non-negativity constraints of Eq. (9.55) (when expressed in the standard
form 2x# 0) do not need slack variables because xi$ 0 itself is a slack variable.
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Let us now define the Lagrange function of Eq. (4.46) for the QP problem as

L5 cTx1 0:5xTHx1uTðATx1 s2bÞ2 ξTx1 vTðNTx2 eÞ ð9:58Þ
where u, v, and ξ are the Lagrange multiplier vectors for the inequality constraints of
Eq. (9.56), the equality constraints of Eq. (9.53), and the non-negativity constraints
(2x# 0), respectively. The KKT necessary conditions give

@L

@x
5 c1Hx1Au2 ξ1Nv5 0 ð9:59Þ

ATx1 s2b5 0 ð9:60Þ
NTx2 e5 0 ð9:61Þ

uisi 5 0; i5 1 to m ð9:62Þ
ξixi 5 0; i5 1 to n ð9:63Þ

si; ui $ 0 for i5 1 to m; xi; ξi $ 0 for i5 1 to n ð9:64Þ
These conditions need to be solved for x, u, v, s, and ξ.

9.5.3. Transformation of KKT Conditions

Before discussing the method for solving the KKT conditions, we will transform them
into a more compact form in this subsection. Since the Lagrange multipliers v for the
equality constraints are free in sign, we may decompose them as

v5 y2 z with y; z$ 0 ð9:65Þ
Now, writing Eqs. (9.59) through (9.61) into a matrix form, we get

H A 2IðnÞ 0ðn3mÞ N 2N
AT 0ðm3mÞ 0ðm3nÞ IðmÞ 0ðm3pÞ 0ðm3pÞ
NT 0ðp3mÞ 0ðp3nÞ 0ðp3mÞ 0ðp3pÞ 0ðp3pÞ

2
4

3
5

x
u
ξ
s
y
z

2
6666664

3
7777775
5

2c
b
e

2
4

3
5 ð9:66Þ

where I(n) and I(m) are n3 n and m3m identity matrices, respectively, and 0 are zero
matrices of the indicated order. In a compact matrix notation, Eq. (9.66) becomes

BX5D ð9:67Þ
where matrix B and vectors X and D are identified from Eq. (9.66) as

B5

H A 2IðnÞ 0ðn3mÞ N 2N
AT 0ðm3mÞ 0ðm3nÞ IðmÞ 0ðm3pÞ 0ðm3pÞ
NT 0ðp3mÞ 0ðp3nÞ 0ðp3mÞ 0ðp3pÞ 0ðp3pÞ

2
4

3
5

ðn1m1pÞ3 ð2n12m12pÞ½ �
ð9:68Þ
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X5

x
u
ξ
s
y
z

2
6666664

3
7777775
ð2n12m12pÞ

D5
2c
b
e

2
4

3
5
ðn1m1pÞ

ð9:69Þ

The KKT conditions are now reduced to finding X as a solution to the linear system in
Eq. (9.67) subject to the constraints of Eqs. (9.62) through (9.64). In the new variables Xi,
the complementary slackness conditions of Eqs. (9.62) and (9.63), reduce to

XiXn1m1i 5 0; i5 1 to ðn1mÞ ð9:70Þ
and the non-negativity conditions of Eq. (9.64) reduce to

Xi $ 0; i5 1 to ð2n1 2m1 2pÞ ð9:71Þ

9.5.4. The Simplex Method for Solving QP Problem

A solution to the linear system in Eq. (9.67) that satisfies the complementary slackness
condition of Eq. (9.70) and the non-negativity condition of Eq. (9.71) is a solution to the orig-
inal QP problem. Note that the complementary slackness condition of Eq. (9.70) is nonlinear
in the variables Xi. Therefore, it may appear that the Simplex method for LP problems can-
not be used to solve Eq. (9.67). However, a procedure developed by Wolfe (1959) and
refined by Hadley (1964) can be used instead. The procedure converges to a solution in the
finite number of steps provided that the matrix H in Eq. (9.52) is positive definite. It can be
further shown (Kunzi and Krelle, 1966, p. 123) that the method converges even when H is
positive semidefinite provided that the vector c in Eq. (9.52) is zero.

The method is based on Phase I of the Simplex procedure from Chapter 8, where we
introduced an artificial variable for each equality constraint, defined an artificial cost func-
tion, and used it to determine an initial basic feasible solution. Following that procedure,
we introduce an artificial variable Yi for each of the Eqs. (9.67) as

BX1Y5D ð9:72Þ
where Y is an (n1m1 p)-dimensional vector. In this way, we initially choose all Xi as
nonbasic variables and all Yj as basic variables. Note that all of the elements in D must be
non-negative for the initial basic solution to be feasible. If any of the elements in D are
negative, the corresponding equation in Eq. (9.67) must be multiplied by 21 to have a
non-negative element on the right side.

The artificial cost function for the problem is defined as the summation of all of the arti-
ficial variables:

w5
Xn1m1p

i51

Yi ð9:73Þ
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To use the Simplex procedure, we need to express the artificial cost function w in terms of
the nonbasic variables X only. We eliminate basic variables Yi from Eq. (9.73) by substitut-
ing Eq. (9.72) into it as

w5
Xn1m1p

i51

Di 2
X2ðn1m1pÞ

j51

Xn1m1p

i51

BijXj 5w0 1
X2ðn1m1pÞ

j51

CjXj ð9:74Þ

Cj 52
Xn1m1p

i51

Bij and w0 5
Xn1m1p

i51

Di ð9:75Þ

Thus w0 is the initial value of the artificial cost function and Cj is the initial relative cost
coefficient obtained by adding the elements of the jth column of the matrix B and chang-
ing its sign.

Before we can use Phase I of the Simplex method, we need to develop a procedure to
impose the complementary slackness condition of Eq. (9.70). The condition is satisfied if
both Xi and Xn1m1i are not simultaneously basic variables. Or, if they are, then one of
them must have a zero value (degenerate basic feasible solution). These conditions can be
easily checked while determining the pivot element in the Simplex method.

It is useful to note here that a slightly different procedure to solve the KKT necessary
conditions for the QP problem has been developed by Lemke (1965). It is known as the
complementary pivot method. Numerical experiments have shown that method to be compu-
tationally more attractive than many other methods for solving QP problems when matrix
H is positive semidefinite (Ravindran and Lee, 1981).

Example 9.7 illustrates the use of the Simplex method to solve a QP problem.

EXAMPLE 9.7 THE SOLUTION TO A QP PROBLEM

Minimize

fðxÞ5 ðx1 2 3Þ2 1 ðx2 2 3Þ2 ðaÞ
subject to

x1 1 x2 # 4 ðbÞ

x1 2 3x2 5 1 ðcÞ
x1; x2 $ 0 ðdÞ

Solution
The cost function for the problem can be expanded as f(x)5 x1

22 6x11 x2
22 6x21 18. We will

ignore the constant 18 in the cost function and minimize the following quadratic function

expressed in the form of Eq. (9.52):

qðxÞ5 26 26½ � x1
x2

� �
1 0:5 x1 x2½ � 2 0

0 2

� �
x1
x2

� �
ðeÞ
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From the foregoing equations, the following quantities can be identified:

c5
26
26

� �
; H5

2 0
0 2

� �
; A5

1
1

� �
; b5 4½ �; N5

1
23

� �
; e5 1½ � ðfÞ

Using these quantities, matrix B and vectors D and X of Eqs. (9.68) and (9.69) are identified as

B5

2 0 1 21 0 0 1 21
0 2 1 0 21 0 23 3
1 1 0 0 0 1 0 0
1 23 0 0 0 0 0 0

2
664

3
775 D5 6 6 j 4 j 1� 	T

X5
h
x1 x2 j u1 j ξ1 ξ2 j s1 j y1 z1

iT
ðgÞ

Table 9.5 shows the initial Simplex tableau as well as the four iterations to reach the opti-

mum solution. Note that the relative cost coefficient Cj in the initial tableau is obtained by

adding all of the elements in the jth column and changing the sign of the sum. Also, the

complementary slackness condition of Eq. (9.70) requires X1X45 0, X2X55 0, and X3X65 0,

implying that X1 and X4, X2 and X5, and X3 and X6 cannot be basic variables simulta-

neously. We impose these conditions while determining the pivots in Phase I of the Simplex

procedure.

After four iterations of the Simplex method, all of the artificial variables are nonbasic and the

artificial cost function is zero. Therefore, the optimum solution is given as

X1 5
13

4
; X2 5

3

4
; X3 5

3

4
; Xs 5

3

4

X4 5 0; X5 5 0; X6 5 0; X7 5 0

ðhÞ

Using these values, the optimum solution to the original QP problem is recovered as

x1 5
13

4
; x2 5

3

4
; u1 5

3

4
; ξ1 5 0; ξ2 5 0

s1 5 0; y1 5 0; z1 5
5

4
; v1 5 y1 2 z1 52

5

4

f
13

4
;

3

4

0
@

1
A5

41

8

ðiÞ

It can be verified that the solution satisfies all of the KKT optimality conditions for the

problem.
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TABLE 9.5 Simplex solution procedure for QP problem of Example 9.7

X1 X2 X3 X4 X5 X6 X7 X8 Y1 Y2 Y3 Y4 D

Initial
Y1 2 0 1 21 0 0 1 21 1 0 0 0 6

Y2 0 2 1 0 21 0 23 3 0 1 0 0 6

Y3 1 1 0 0 0 1 0 0 0 0 1 0 4

Y4 1 23 0 0 0 0 0 0 0 0 0 1 1

24 0 22 1 1 21 2 22 0 0 0 0 w2 17

1st iteration
Y1 0 6 1 21 0 0 1 21 1 0 0 22 4

Y2 0 2 1 0 21 0 23 3 0 1 0 0 6

Y3 0 4 0 0 0 1 0 0 0 0 1 21 3

X1 1 23 0 0 0 0 0 0 0 0 0 1 1

0 212 2 1 1 21 2 22 0 0 0 4 w2 13

2nd iteration
X2 0 1 1

6 21
6 0 0 1

6 21
6

1
6 0 0 21

3
2
3

Y2 0 0 2
3

1
3 21 0 210

3
10
3 21

3 1 0 2
3

14
3

Y3 0 0 22
3

2
3 0 1 22

3
2
3 22

3 0 1 1
3

1
3

X1 1 0 1
2 21

2 0 0 1
2 21

2
1
2 0 0 0 3

0 0 0 21 1 21 4 24 2 0 0 0 w2 5

3rd iteration
X2 0 1 0 0 0 1

4 0 0 0 0 1
4 21

4
3
4

Y2 0 0 4 23 21 25 0 0 3 1 25 21 3

X8 0 0 21 1 0 3
2 21 1 21 0 3

2 1 1
2

X1 1 0 0 0 0 3
4 0 0 0 0 3

4
1
4 134

0 0 2 4 3 1 5 0 0 22 0 6 2 w2 3

4th iteration
X2 0 1 0 0 0 1

4 0 0 0 0 1
4 21

4
3
4

X3 0 0 1 23
4 21

4 25
4 0 0 3

4
1
4 25

4 21
4

3
4

X8 1 0 0 1
4 21

4
1
4 21 1 21

4
1
4

1
4

1
4

5
4

X1 0 0 0 0 0 3
4 0 0 0 0 3

4
1
4

13
4

0 0 0 0 0 0 0 0 1 1 1 1 w2 0

408 9. MORE ON LINEAR PROGRAMMING METHODS FOR OPTIMUM DESIGN

II. NUMERICAL METHODS FOR CONTINUOUS VARIABLE OPTIMIZATION



EXERCISES FOR CHAPTER 9

Write dual problems for the following problems; solve the dual problem and recover the values of the

primal variables from the final dual tableau; verify the solution graphically whenever possible.

9.1 Exercise 8.55 9.2 Exercise 8.56 9.3 Exercise 8.57

9.4 Exercise 8.58 9.5 Exercise 8.59 9.6 Exercise 8.60

9.7 Exercise 8.61 9.8 Exercise 8.62 9.9 Exercise 8.63

9.10 Exercise 8.64 9.11 Exercise 8.65 9.12 Exercise 8.66

9.13 Exercise 8.67 9.14 Exercise 8.68 9.15 Exercise 8.69

9.16 Exercise 8.70 9.17 Exercise 8.71 9.18 Exercise 8.72

9.19 Exercise 8.73 9.20 Exercise 8.74 9.21 Exercise 8.75

9.22 Exercise 8.76
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C H A P T E R

10

Numerical Methods for
Unconstrained Optimum Design

Upon comp le t i on o f th i s chap te r, you wi l l be ab l e to

• Explain gradient-based search and direct

search methods (derivative-free) for design

optimization

• Explain the concept of iterative numerical

search methods for smooth optimum design

problems

• Explain two basic calculations in gradient-

based search methods for optimum design:

(1) calculation of a search direction, and

(2) calculation of a step size in the search

direction

• Explain the basic concept of a descent

direction for unconstrained optimization

• Verify the descent condition for a given

search direction for unconstrained

optimization

• Calculate the search direction for the

steepest-descent and conjugate gradient

methods

• Calculate a step size along the search

direction using an interval-reducing method

When some or all of the functions of the problem (cost function and/or constraint func-
tions) are nonlinear for an optimization problem, it is called a nonlinear programming (NLP)
problem. This chapter and the next concentrate on the concepts and description of methods
for unconstrained nonlinear optimization problems. Chapters 12 and 13 treat constrained
problems. Before presenting the numerical methods for solving optimization problems, we
discuss the two classes of methods for unconstrained and constrained problems.

10.1 GRADIENT-BASED AND DIRECT SEARCH METHODS

Gradient-Based Search Methods

These methods, as the name implies, use gradients of the problem functions to perform
the search for the optimum point. Therefore, all of the problem functions are assumed to
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be smooth and at least twice continuously differentiable everywhere in the feasible design
space. Also, the design variables are assumed to be continuous that can have any value in
their allowable ranges.

The gradient-based methods have been developed extensively since the 1950s, and
many good ones are available to solve smooth nonlinear optimization problems. Since
these methods use only local information (functions and their gradients at a point) in their
search process, they converge only to a local minimum point for the cost function.
However, based on these methods strategies have been developed to search for global
minimum points for the cost function. Such methods are discussed in Chapter 18.

Direct Search Methods

The term “direct search methods” refers to a class of methods that do not calculate, use,
or approximate derivatives of the problem functions. Only the function values are used in
the search process. The methods were developed in 1960s and 1970s. They have been
employed quite regularly since then because of their simplicity and ease of use. Recently,
convergence properties of the methods have been studied, and it has been shown that
under certain conditions the methods are convergent to the minimum point for the func-
tion (Lewis et al., 2000; Kolda et al., 2003). We will discuss two prominent methods in this
class: Hooke-Jeeves in Chapter 11, and Nelder-Mead in Chapter 18.

Nature-Inspired Search Methods

Nature-inspired methods also use only the function values in their search process.
Problem functions need not be differentiable or even continuous. The methods, developed
since 1980s, use stochastic ideas in their search. Many methods have been developed and
evaluated. It turns out that they tend to converge to a global minimum point for the cost
function as opposed to a local minimum as with gradient-based methods. Another good
feature of the methods is that they are more general than gradient-based methods because
they can be used for smooth and nonsmooth problems as well as problems with discrete,
integer, and binary variables. Their drawbacks are that (1) they do not have a good
stopping criterion (since no optimality conditions are used) and (2) they are slower than
gradient-based methods. We will present some of these methods in Chapters 16 and 19.

In this chapter, we describe the basic concepts of gradient-based methods for smooth
unconstrained optimization problems.

10.2 GENERAL CONCEPTS: GRADIENT-BASED METHODS

In this section, we describe some basic concepts that are applicable to numerical optimi-
zation methods. The idea of iterative numerical algorithms is introduced to search for opti-
mum solutions for the design problem. The algorithms are initiated with an estimate for
the optimum solution that is improved iteratively if it does not satisfy the optimality
conditions.
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10.2.1 General Concepts

Gradient-based search methods are iterative where the same calculations are repeated
in every iteration. In such approaches, we estimate an initial design and improve it until
optimality conditions are satisfied. Many numerical methods have been developed for NLP
problems. Detailed derivations and theories of the various methods are beyond the scope
of the present text. However, it is important to understand a few basic concepts, ideas,
and procedures that are used in most algorithms for unconstrained and constrained opti-
mization. Therefore, the approach followed in this text is to stress these underlying concepts with
example problems.

Some details of the numerical algorithms are also presented to give the student a flavor
of the calculations performed while searching for the optimum solution. These algorithms
are rarely done “by hand”; they require a computer program for their effective use. Many
computer programs for optimization are available for general use such as MATLAB, Excel, and
others. Therefore, coding of the algorithms should be attempted only as a last resort. It is, however,
important to understand the underlying ideas to be able to use the programs and the
methods properly.

The unconstrained optimization problems are classified as one-dimensional and mul-
tidimensional problems, as shown in Figure 10.1. Numerical methods for solving
unconstrained problems have been developed over the last several decades. Substantial
work, however, was done during the 1950s and 1960s because it was shown that con-
strained optimization problems could be transformed into a sequence of unconstrained
problems (these procedures are presented in Chapter 11). Consequently, the methods
have gained considerable importance, and substantial effort has been expended in
developing efficient algorithms and computer programs for unconstrained optimization
problems.

10.2.2 A General Iterative Algorithm

Many gradient-based optimization methods are described by the following iterative
prescription:

Vector form: xðk11Þ 5 xðkÞ 1ΔxðkÞ; k5 0; 1; 2; . . . ð10:1Þ

Component form: xðk11Þ
i 5 xi

ðkÞ 1ΔxðkÞi ; i5 1 to n; k5 0; 1; 2; . . . ð10:2Þ

Unconstrained optimization

One-dimensional or line
search problems

Multidimensional problems

To find a scalar α* to minimize
a function f (α)

To find points x* to minimize
a function f (x) = f (x1, x2, … xn)

FIGURE 10.1 Graphic of the classi-
fication of unconstrained optimization
problems.
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where

k 5 superscript representing the iteration number
i 5 subscript denoting the design variable number
x(0) 5 starting point
Δx(k)5 change in the current point

The iterative scheme described in Eq. (10.1) or (10.2) is continued until the optimality
conditions are satisfied or a termination criterion is satisfied. This iterative scheme is appli-
cable to constrained as well as unconstrained problems. For unconstrained problems, cal-
culations for Δx(k) depend on the cost function and its derivatives at the current design
point. For constrained problems, the constraints must also be considered while computing
the change in design Δx(k). Therefore, in addition to the cost function and its derivatives,
the constraint functions and their derivatives play a role in determining Δx(k). There are
several methods for calculating Δx(k) for unconstrained and constrained problems. This
chapter focuses on methods for unconstrained optimization problems.

In most methods, the change in design Δx(k) is further decomposed into two parts as

ΔxðkÞ 5αkd
ðkÞ ð10:3Þ

where

d(k)5 “desirable” search direction in the design space
αk 5positive scalar called the step size in the search direction

If the direction d(k) is any “good,” then the step size must be greater than 0; this will
become clearer when we relate the search direction to a descent direction for the cost func-
tion. Thus, the process of computing Δx(k) involves solving two separate subproblems:

1. The direction-finding subproblem
2. The step length determination subproblem (scaling along the direction)

The process of moving from one design point to the next is illustrated in Figure 10.2.
In the figure, B is the current design point x(k), d(k) is the search direction, and αk is a

x(k)

x(k+1)

x(k–1)

αkd(k)

d(k)

A

B

C

FIGURE 10.2 Conceptual diagram for iterative steps of an
optimization method.
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step length. Therefore, when αkd
(k) is added to the current design x(k), we reach a new point

C in the design space, x(k11). The entire process is repeated from point C. There are many
procedures for calculating the step size αk and the search direction d(k). Various combina-
tions of these procedures are used to develop different optimization algorithms.

A General Algorithm

The iterative process just described represents an organized search through the design
space for points that represent local minima. The process is summarized as a general algo-
rithm that is applicable to both constrained and unconstrained problems:

Step 1. Estimate a reasonable starting design x(0). Set the iteration counter k5 0.
Step 2. Compute a search direction d(k) at the point x(k) in the design space. This
calculation generally requires a cost function value and its gradient for unconstrained
problems and, in addition, constraint functions and their gradients for constrained
problems.
Step 3. Check for convergence of the algorithm. If it has converged, stop; otherwise,
continue.
Step 4. Calculate a positive step size αk in the direction d(k).
Step 5. Update the design as follows, set k5 k1 1, and go to Step 2:

xðk11Þ 5 xðkÞ 1αkd
ðkÞ ð10:4Þ

In the remaining sections of this chapter, we present some basic methods for calculating
the step size αk and the search direction d(k) for unconstrained optimization problems to
implement the above algorithm.

10.3 DESCENT DIRECTION AND CONVERGENCE
OF ALGORITHMS

The unconstrained minimization problem is defined as finding x to

Minimize

fðxÞ ð10:5Þ

Since we want to minimize the cost function, the idea of a descent step is introduced, which
simply means that changes in the design at every search step must reduce the cost function value.
Convergence of an algorithm and its rate of convergence are also briefly described.

10.3.1 Descent Direction and Descent Step

We have referred to d(k) as a desirable direction of design change in the iterative pro-
cess. Now we discuss what we mean by a desirable direction. The objective of the itera-
tive optimization process is to reach a minimum point for the cost function f(x).
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Let us assume that we are in the kth iteration and have determined that x(k) is not a
minimum point; that is, the optimality conditions of Theorem 4.4 are not satisfied. If x(k) is
not a minimum point, then we should be able to find another point x(k11) with a smaller
cost function value than the one at x(k). This statement can be expressed mathematically as

fðxðk11ÞÞ , fðxðkÞÞ ð10:6Þ
Substitute x(k11) from Eq. (10.4) into the preceding inequality to obtain

fðxðkÞ 1αkd
ðkÞÞ , fðxðkÞÞ ð10:7Þ

Approximating the left side of Eq. (10.7) by the linear Taylor’s expansion at the point x(k),
we get

fðx kð ÞÞ1αkðc kð Þ �d kð ÞÞ , fðx kð ÞÞ ð10:8Þ
where

c(k)5rf(x(k)) is the gradient of f(x) at the point x(k)

(a �b)5dot product of the vectors a and b

Subtracting f(x(k)) from both sides of Inequality (10.8), we get αk(c
(k) �d(k)) , 0. Since

αk . 0, it may be dropped without affecting the inequality. Therefore, we get the
condition

ðcðkÞ �dðkÞÞ , 0 ð10:9Þ

Since c(k) is a known vector (the gradient of the cost function), the search direction d(k)

must satisfy Inequality (10.9). Any small move in such a direction will decrease the cost
function. Geometrically, using the definition of the dot product of two vectors, the
inequality shows that the angle between the vectors c(k) and d(k) must be between 90�

and 270�.
We can now define a desirable direction of change as any vector d(k) satisfying Inequality

(10.9). Such vectors are also called directions of descent for the cost function, and Inequality
(10.9) is called the descent condition. A step of the iterative optimization method based on
these directions is called a descent step. There can be several directions of descent at a
design point and each optimization algorithm computes it differently. A method based on
the idea of a descent step is called a descent method. Clearly, such a method will not con-
verge to a local maximum point for the function.

The descent direction is also sometimes called the “downhill” direction. The problem of
minimizing f(x) can be considered as a problem of trying to reach the bottom of a hill from
a high point. From the top, we find a downhill direction and travel along it to the lowest
point. From the lowest point in the direction, we repeat the process until the bottom of the
hill is reached.

The concepts of descent directions and descent step are used in most gradient-based opti-
mization methods. Therefore, they should be clearly understood. Example 10.1 illustrates
the concept of a descent direction.
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EXAMPLE 10.1 CHECK FOR THE DESCENT CONDITION

For the function

fðxÞ5 x21 2 x1x2 1 2x22 2 2x1 1 eðx11x2Þ ðaÞ

check if the direction d5 (1,2) at point (0, 0) is a descent direction for the function f.

Solution
If d5 (1,2) is a descent direction, then it must satisfy Inequality (10.9). To verify this, we

calculate the gradient c of the function f(x) at (0, 0) and evaluate (c �d) as
c5 ð2x1 2 x2 2 21 eðx11x2Þ; 2x1 1 4x2 1 eðx11x2ÞÞ5 ð21; 1Þ ðbÞ

ðc �dÞ5 ð21; 1Þ 1
2

� �
5211 25 1 . 0 ðcÞ

Inequality (10.9) is violated, and thus the given d is not a descent direction for the function f(x).

10.3.2 Convergence of Algorithms

The central idea behind numerical methods of optimization is to search for the opti-
mum point in an iterative manner, generating a sequence of designs. It is important to
note that the success of a method depends on the guarantee of convergence of the
sequence to the optimum point. The property of convergence to a local optimum point
irrespective of the starting point is called global convergence of the numerical method. It
is desirable to employ such convergent numerical methods because they are more reli-
able. For unconstrained problems, a convergent algorithm must reduce the cost function
at each iteration until a minimum point is reached. It is important to note that the algo-
rithms converge to a local minimum point only, as opposed to a global minimum, since
they use only local information about the cost function and its derivatives in the search
process. Methods to search for global minima are described in Chapter 18.

10.3.3 Rate of Convergence

In practice, a numerical method may take a large number of iterations to reach the
optimum point. Therefore, it is important to employ methods having a convergence rate
that is faster. An algorithm’s rate of convergence is usually measured by the number of
iterations and function evaluations that is needed to obtain an acceptable solution. Rate
of convergence is a measure of how fast the difference between the solution point and its esti-
mates goes to zero. Faster algorithms usually use second-order information about the
problem functions when calculating the search direction. They are known as Newton
methods. Many algorithms also approximate second-order information using only first-
order information. They are known as quasi-Newton methods and they are described in
Chapter 11.
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10.4 STEP SIZE DETERMINATION: BASIC IDEAS

Unconstrained numerical optimization methods are based on the iterative formula
that is given in Eq. (10.1). As discussed earlier, the problem of obtaining the design change
Δx is usually decomposed into two subproblems, as expressed in Eq. (10.3):

1. Direction-finding subproblem
2. Step size determination subproblem

We need to discuss numerical methods for solving both subproblems. In the following
paragraphs, we first discuss basic ideas related to the problem of step size determination.
This is often called one-dimensional (or line) search. Such problems are simpler to solve.
This is one reason for discussing them first. After presenting one-dimensional minimiza-
tion numerical methods in Section 10.5, two methods are described in Sections 10.6 and
10.7 for computing a descent direction d in the design space.

10.4.1 Definition of the Step Size Determination Subproblem

Reduction to a Function of One Variable

For an optimization problem with several variables, the direction-finding subproblem
must be solved first. Then, a step size must be determined by searching for the minimum
of the cost function along the search direction. This is always a one-dimensional minimiza-
tion problem, also called a line search problem. To see how the line search will be used in
multidimensional problems, let us assume for the moment that a search direction d(k) has
been computed.

Then, in Eqs. (10.1) and (10.3), scalar αk is the only unknown. Since the best step size αk

is yet unknown, we replace it by α in Eq. (10.3), which is then treated as an unknown in
the step size calculation subproblem. Then, using Eqs. (10.1) and (10.3), the cost function f
(x) at the new point x(k11) is given as f(x(k11))5 f(x(k)1αd(k)). Now, since d(k) is known, the
right side becomes a function of the scalar parameter α only. This process is summarized
in the following equations:

Design update: xðk11Þ 5 xðkÞ 1αdðkÞ ð10:10Þ

Cost function evaluation: fðxðk11ÞÞ5 fðxðkÞ 1αdðkÞÞ5 fðαÞ ð10:11Þ

where f(α) is the new function, with α as the only independent variable (in the sequel, we
will drop the over bar for functions of a single variable). Note that at α5 0, f(0)5 f(x(k))
from Eq. (10.11), which is the current value of the cost function. It is important to under-
stand this reduction of a function of n variables to a function of only one variable since this pro-
cedure is used in almost all gradient-based optimization methods. It is also important to
understand the geometric significance of Eq. (10.11). We elaborate on these ideas in the
following paragraphs.
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One-Dimensional Minimization Problem

If x(k) is not a minimum point, then it is possible to find a descent direction d(k) at the
point and reduce the cost function further. Recall that a small move along d(k) reduces the cost
function. Therefore, using Eqs. (10.6) and (10.11), the descent condition for the cost function
can be expressed as the inequality:

fðαÞ , fð0Þ ð10:12Þ
Since f(α) is a function of single variable (also called the line search function), we can plot

f(α) versus α. To satisfy Inequality (10.12), the curve f(α) versus α must have a negative
slope at the point α5 0. Such a function is shown by the solid curve in Figure 10.3. It must
be understood that if the search direction is that of descent, the graph of f(α) versus α can-
not be the one shown by the dashed curve because a small positive α would cause the
function f(α) to increase, violating Inequality (10.12). This is also a contradiction as d(k) is a
direction of descent for the cost function.

Therefore, the graph of f(α) versus α must be the solid curve in Figure 10.3 for all pro-
blems. In fact, the slope of the curve f(α) at α5 0 is calculated by differentiating Eq. (10.11)
as f 0(0)5 (c(k) �d(k)), which is negative, as seen in Eq. (10.9). This discussion shows that if
d(k) is a descent direction, then α must always be a positive scalar in Eq. (10.3). Thus, the step
size determination subproblem is to find α to

Minimize

fðαÞ ð10:13Þ

Solving this problem gives the step size αk5α* for use in Eq. (10.3).

10.4.2 Analytical Method to Compute Step Size

If f(α) is a simple function, then we can use the necessary and sufficient conditions of
Section 4.3 to determine αk. The necessary condition is df(αk)/dα5 0, and the sufficient

f (α)

f (0)

α = αk
α 

tan–1 |c⋅⋅d|

FIGURE 10.3 Graph of f(α) versus α.
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condition is d2f(αk)/dα
2 . 0. We will illustrate the analytical line search procedure with

Example 10.2. Note that differentiation of f(x(k11)) in Eq. (10.11) with respect to α, using
the chain rule of differentiation and setting it to zero, gives

dfðxðk11ÞÞ
dα

5
@fTðxðk11ÞÞ

@x

dðxðk11ÞÞ
dα

5rfðxðk11ÞÞ �dðkÞ 5 cðk11Þ �dðkÞ 5 0 ð10:14Þ

Since the dot product of two vectors is zero in Eq. (10.14), the gradient of the cost func-
tion at the new point is orthogonal to the search direction at the kth iteration; that is, c(k1 1)

is normal to d(k). The condition in Eq. (10.14) is important for two reasons:

1. It can be used directly to obtain an equation in terms of α whose smallest root gives the
exact step size, αk.

2. It can be used to check the accuracy of the step size in a numerical procedure to
calculate α; thus it is called the line search termination criterion.

Many times numerical line search methods will give an approximate or inexact value of
the step size along the search direction. The line search termination criterion is useful for
determining the accuracy of the step size (i.e., by checking the condition (c(k11) �d(k))5 0).

EXAMPLE 10.2 ANALYTICAL STEP SIZE DETERMINATION

Let a direction of change for the function

fðxÞ5 3x21 1 2x1x2 1 2x22 1 7 ðaÞ
at the point (1,2) be given as (21,21). Compute the step size αk to minimize f(x) in the given

direction.

Solution
For the given point x(k)5 (1,2), f(x(k))5 22, and d(k)5 (21,21). We first check to see if d(k) is a

direction of descent using Inequality (10.9). To do that, we need the gradient of the cost function,

which is given as

c5
6x1 1 2x2
2x1 1 4x2

� �
ðbÞ

Thus substituting the current point (1,2) into Eq. (b), the gradient of the function at (1,2) is given

as c(k)5 (10,10) and (c(k) �d(k))5 10(21)1 10(21)5220 , 0. Therefore, (21,21) is a direction of

descent.

The new point x(k11) using Eq. (10.10) is given in terms of α as

x1
x2

� � k11ð Þ
5

1
2

� �
1α 21

21

� �
; or x k11ð Þ

1 5 12α; x k11ð Þ
2 5 22α ðcÞ

Substituting these equations into the cost function of Eq. (a), we get

fðx k11ð ÞÞ5 3ð12αÞ2 1 2ð12αÞð22αÞ1 2ð22αÞ2 1 75 7α2 2 20α1 225 fðαÞ ðdÞ
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Therefore, along the given direction (21, 21), f(x) becomes a function of the single variable α.
Note from Eq. (d) that f(0)5 22, which is the cost function value at the current point, and that

f 0(0)5 220 , 0, which is the slope of f(α) at α5 0 (also recall that f0(0)5 c(k) �d(k), which is 220).

Now, using the necessary and sufficient conditions of optimality for f(α) in Eq. (d), we obtain

df

dα
5 14αk 2 205 0; αk 5

10

7
;

d2f

dα2
5 14.0 ðeÞ

Therefore, αk5 10/7 minimizes f(x) in the direction (21,21). The new point is obtained by substi-

tuting the step size in Eq. (c) as

x1
x2

� �ðk11Þ
5

1
2

� �
1

10

7

� �
21
21

� �
5

2
3

7

4

7

2
66664

3
77775 ðfÞ

Substituting the new design (23/7, 4/7) into the cost function f(x), we find the new value of

the cost function as 54/7. This is a substantial reduction from the cost function value of 22 at the

previous point.

Note that Eq. (e) for calculation of step size α can also be obtained by directly using the condi-

tion given in Eq. (10.14). Using Eq. (c), the gradient of f at the new design point in terms of α is

cðk11Þ 5 ð6x1 1 2x2; 2x1 1 4x2Þ5 ð102 8α; 102 6αÞ ðgÞ
Using the condition of Eq. (10.14), we get 14α2 205 0, which is same as Eq. (e).

10.5 NUMERICAL METHODS TO COMPUTE STEP SIZE

10.5.1 General Concepts

In Example 10.2, it was possible to simplify expressions and obtain an explicit form for the
function f(α). Also, the functional form of f(α) was quite simple. Therefore, it was possible
to use the necessary and sufficient conditions of optimality to find the minimum of f(α)
and analytically calculate the step size αk. For many problems, it is not possible to obtain
an explicit expression for f(α). Moreover, even if the functional form of f(α) is known, it
may be too complicated to lend itself to analytical solution. Therefore, a numerical method
must be used to find αk to minimize f(x) in the known direction d(k).

Unimodal Functions

The numerical line search process is itself iterative, requiring several iterations before a
minimum point for f(α) is reached. Many line search techniques are based on comparing
function values at several points along the search direction. Usually, we must make some
assumptions on the form of the line search function f(α) to compute step size by numerical
methods. For example, it must be assumed that a minimum exists and that it is unique in
some interval of interest. A function with this property is called the unimodal function.
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Figure 10.4 shows the graph of such a function that decreases continuously until the mini-
mum point is reached. Comparing Figures 10.3 and 10.4, we observe that f(α) is a unimo-
dal function in some interval. Therefore, it has a unique minimum point.

Most one-dimensional search methods assume the line search function to be a unimodal
function in some interval. This may appear to be a severe restriction on the methods; how-
ever, it is not. For functions that are not unimodal, we can think of locating only a local
minimum point that is closest to the starting point (i.e., closest to α5 0). This is illustrated
in Figure 10.5, where the function f(α) is not unimodal for 0 # α # α0. Points A, B, and C
are all local minima. If we restrict α to lie between 0 and α, however, there is only one
local minimum point A because the function f(α) is unimodal for 0 # α # α. Thus, the
assumption of unimodality is not as restrictive as it may appear.

Interval-Reducing Methods

The line search problem, then, is to find α in an interval 0 # α # α at which the function
f(α) has a global minimum. This statement of the problem, however, requires some modifi-
cation. Since we are dealing with numerical methods, it is not possible to locate the exact
minimum point α*. In fact, what we determine is the interval in which the minimum lies—
some lower and upper limits αl and αu for α*. The interval (αl, αu) is called the interval of
uncertainty and is designated as I5αu2αl. Most numerical methods iteratively reduce the

f (α)

α∗
α

α–

FIGURE 10.4 Unimodal function f(α).

A
B C

f (α)

α∗
α

α = α– α = α0

FIGURE 10.5 Nonunimodal function f(α) for 0 # α
# α0 (unimodal for 0 # α # α).
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interval of uncertainty until it satisfies a specified tolerance ε, (i.e., I , ε). Once this stop-
ping criterion is satisfied, α* is taken as 0.5(αl1αu).

Methods based on the preceding philosophy are called interval-reducing methods. In this
chapter, we will only present line search methods that are based on this idea. The basic
procedure for these methods can be divided into two phases. In Phase I, the location of the
minimum point is bracketed and the initial interval of uncertainty is established. In Phase
II, the interval of uncertainty is reduced by eliminating regions that cannot contain the
minimum. This is done by computing and comparing function values in the interval of
uncertainty. We will describe the two phases for these methods in more detail in the
following subsections.

It is important to note that the performance of most optimization methods depends
heavily on the step size calculation procedure. Therefore, it is not surprising that numer-
ous procedures have been developed and evaluated for step size calculation. In the follow-
ing paragraphs, we describe two rudimentary methods to give students a flavor of the
calculations needed to evaluate a step size. In Chapter 11, more advanced methods based
on the concept of an inexact line search are described and discussed.

10.5.2 Equal-Interval Search

Initial Bracketing of Minimum—Phase I

As mentioned earlier, the basic idea of any interval-reducing method is to succes-
sively reduce the interval of uncertainty to a small acceptable value. To clearly describe
the idea, we start with a very simple approach called equal-interval search. The idea is
quite elementary, as illustrated in Figure 10.6. In the interval 0 # α # α, the function
f(α) is evaluated at several points using a uniform grid on the α axis in Phase I. To do
this, we select a small number δ and evaluate the function at the α values of δ, 2δ,
3δ, . . . , qδ, (q1 1) δ, and so on, as can be seen in Figure 10.6(a). We compare the values
of the function at two successive points, say q and (q1 1). Then, if the function at
the point qδ is larger than that at the next point (q1 1)δ—that is, f(qδ) . f((q1 1)δ)—the
minimum point has not been surpassed yet.

However, if the function has started to increase, that is,

fðqδÞ , fððq1 1ÞδÞ ð10:15Þ
then the minimum has been surpassed. Note that once the condition in Eq. (10.15) is satis-
fied for points qδ and (q1 1)δ, the minimum can be between either the points (q21)δ and
qδ or the points qδ and (q1 1)δ. To account for both possibilities, we take the minimum to
lie between the points (q2 1)δ and (q1 1)δ. Thus, lower and upper limits for the interval
of uncertainty are established as

αl 5 ðq2 1Þδ; αu 5 ðq1 1Þδ; I5αu 2αl 5 2δ ð10:16Þ

Reducing the Interval of Uncertainty—Phase II

Establishment of the lower and upper limits on the minimum value of α indicates the
end of Phase I. In Phase II, we restart the search process from the lower end of the interval
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of uncertainty α5αl with some reduced value for the increment δ, say rδ, where r {1.
Then the preceding process of Phase I is repeated from α5αl with the reduced δ, and the
minimum is again bracketed. Now the interval of uncertainty I is reduced to 2rδ. This is
illustrated in Figure 10.6(b). The value of the increment is further reduced to, say, r2δ, and
the process is repeated until the interval of uncertainty is reduced to an acceptable value ε.
Note that the method is convergent for unimodal functions and can be easily coded into a
computer program.

The efficiency of a method, such as equal-interval search, depends on the number of
function evaluations needed to achieve the desired accuracy. Clearly, this is dependent
on the initial choice for the value of δ. If δ is very small, the process may take many
function evaluations to initially bracket the minimum. An advantage of using a smaller
δ, however, is that the interval of uncertainty at the end of the Phase I is fairly small.
Subsequent improvements to the interval of uncertainty require fewer function evalua-
tions. It is usually advantageous to start with a larger value of δ and quickly bracket the
minimum point first. Then Phase II calculations are continued until the accuracy require-
ment is met.

f (α)

f (α)

δ

α
α–

α∗
2δ

qδ

δ

rδ

αl
α

α∗ αu

(a)

(b)

(q –1)δ (q+1)δ

FIGURE 10.6 Equal-interval search process. (a) Phase I:
initial bracketing of minimum. (b) Phase II: reducing the
interval of uncertainty.
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10.5.3 Alternate Equal-Interval Search

A slightly different computational procedure can be followed to reduce the interval of
uncertainty in Phase II once the minimum has been bracketed in Phase I. This procedure
is a precursor to the more efficient golden sections search presented in the next subsection.
The procedure is to evaluate the function at two new points, say αa and αb in the interval
of uncertainty. The points αa and αb are located at a distance of I/3 and 2I/3 from the
lower limit αl, respectively, where I5αu2αl. That is,

αa 5αl 1
1

3
I; αb 5αl 1

2

3
I5αu 2

1

3
I ð10:17Þ

This is shown in Figure 10.7.
Next the function is evaluated at the two new points αa and αb. Let these be designated

as f(αa) and f(αb). The following two conditions must now be checked:

1. If f(αa) , f(αb), then the minimum lies between αl and αb. The right one-third interval
between αb and αu is discarded. New limits for the interval of uncertainty are α0

l5αl

and α0
u5αb (the prime on α is used to indicate revised limits for the interval of

uncertainty). Therefore, the reduced interval of uncertainty is I0 5α0
u2α0

l5αb2αl.
The procedure is repeated with the new limits.

2. If f(αa) . f(αb), then the minimum lies between αa and αu. The interval between αl and
αa is discarded. The procedure is repeated with α0

l5αa and α0
u5αu(I

0 5α0
u2α0

l).

With the preceding calculations, the interval of uncertainty is reduced to I0 5 2I/3 after
every set of two function evaluations. The entire process is continued until the interval of
uncertainty is reduced to an acceptable value.

10.5.4 Golden Section Search

Golden section search is an improvement over the alternate equal-interval search and is
one of the better methods in the class of interval-reducing methods. The basic idea of the
method is still the same: Evaluate the function at predetermined points, compare them to

αl αa αb αu
α

(αu – αl) / 3

f (α) FIGURE 10.7 Graphic of an alternate equal-interval
solution process.
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bracket the minimum in Phase I, and then converge on the minimum point in Phase II by
systematically reducing the interval of uncertainty. The method uses fewer function eva-
luations to reach the minimum point compared with other similar methods. The number
of function evaluations is reduced during both the phases, the initial bracketing phase as
well as the interval-reducing phase.

Initial Bracketing of Minimum—Phase I

In the equal-interval methods, the selected increment δ is kept fixed to bracket the mini-
mum initially. This can be an inefficient process if δ happens to be a small number. An
alternate procedure is to vary the increment at each step, that is, multiply it by a constant
r . 1. This way initial bracketing of the minimum is rapid; however, the length of the ini-
tial interval of uncertainty is increased. The golden section search procedure is such a vari-
able-interval search method. In it the value of r is not selected arbitrarily. It is selected as the
golden ratio, which can be derived as 1.618 in several different ways. One derivation is
based on the Fibonacci sequence, defined as

F0 5 1; F1 5 1; Fn 5 Fn21 1 Fn22; n5 2; 3; . . . ð10:18Þ
Any number of the Fibonacci sequence for n . 1 is obtained by adding the previous

two numbers, so the sequence is given as 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89.... The sequence
has the property

Fn
Fn21

-1:618 as n-N ð10:19Þ

That is, as n becomes large, the ratio between two successive numbers Fn and Fn21 in the
Fibonacci sequence reaches a constant value of 1.618 or ð

ffiffiffi
5

p
1 1Þ=2. This golden ratio has

many other interesting properties that will be exploited in the one-dimensional search pro-
cedure. One property is that 1/1.6185 0.618.

Figure 10.8 illustrates the process of initially bracketing the minimum using a sequence
of larger increments based on the golden ratio. In the figure, starting at q5 0, we evaluate
f(α) at α5 δ, where δ . 0 is a small number. We check to see if the value f(δ) is smaller
than the value f(0). If it is, we then take an increment of 1.618δ in the step size (i.e., the

0

q = 0

2.618δ 5.236δ 9.472δα∗
α

δ

1 2 3 …

f (α) FIGURE 10.8 Initial bracketing of the minimum point
in the golden section method.
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increment is 1.618 times the previous increment δ). This way we evaluate the function at
the following points and compare them:

q5 0; α0 5 δ

q5 1; α1 5 δ1 1:618δ5 2:618δ5
X1
j50

δð1:618Þ j

q5 2; α2 5 2:618δ1 1:618 1:618δð Þ5 5:236δ5
X2
j50

δð1:618Þ j ð10:20Þ

q5 3; α2 5 5:236δ1 1:6183δ5 9:472δ5
X3
j50

δð1:618Þ j

. . .

. . .

In general, we continue to evaluate the function at the points

αq 5
Xq
j50

δð1:618Þ j; q5 0; 1; 2; . . . ð10:21Þ

Let us assume that the function at αq21 is smaller than that at the previous point αq22 and
the next point αq; that is,

fðαq21Þ , fðαq22Þ and fðαq21Þ , fðαqÞ ð10:22Þ
Therefore, the minimum point has been surpassed. Actually, the minimum point lies
between the previous two intervals, that is, between αq2 2 and αq, as in equal-interval
search. Therefore, upper and lower limits on the interval of uncertainty are

αu 5αq 5
Xq
j50

δð1:618Þ j; αl 5αq22 5
Xq22
j50

δð1:618Þ j ð10:23Þ

Thus, the initial interval of uncertainty is calculated as

I5αu 2αl 5
Xq
j50

δð1:618Þ j 2
Xq22
j50

δð1:618Þ j 5 δð1:618Þq21 1 δð1:618Þq

5 δð1:618Þq21ð11 1:618Þ5 2:618ð1:618Þq21δ
ð10:24Þ

Reducing the Interval of Uncertainty—Phase II

The next task is to start reducing the interval of uncertainty by evaluating and compar-
ing functions at some points in the established interval of uncertainty I. The method uses
two function values within the interval I, just as in the alternate equal-interval search shown
in Figure 10.7. However, the points αa and αb are not located at I/3 from either end of the
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interval of uncertainty. Instead, they are located at a distance of 0.382I (or 0.618I) from
either end. The factor 0.382 is related to the golden ratio, as we will see in the following.

To see how the factor 0.618 is determined, consider two points symmetrically located a dis-
tance from either end, as shown in Figure 10.9(a)—points αa and αb are located at distance τI
from either end of the interval. Comparing function values at αa and αb, either the left (αl, αa)
or the right (αb, αu) portion of the interval is discarded because the minimum cannot lie there.
Let us assume that the right portion is discarded, as shown in Figure 10.9(b), so α0

l and α0
u

are the new lower and upper bounds on the minimum. The new interval of uncertainty
is I0 5 τI.

There is one point in the new interval at which the function value is known. It is
required that this point be located at a distance of τI0 from the left end; therefore, τI0 5
(12 τ)I. Since I0 5 τI, this gives the equation τ21 τ2 15 0. The positive root of this equa-
tion is τ5 ð211

ffiffiffi
5

p
Þ=25 0:618: Thus the two points are located at a distance of 0.618I or

0.382I from either end of the interval.
The golden section search can be initiated once the initial interval of uncertainty is

known. If the initial bracketing is done using the variable step increment (with a factor of
1.618, which is 1/0.618), then the function value at one of the points αq21 is already
known. It turns out that αq21 is automatically the point αa. This can be seen by multiplying
the initial interval I in Eq. (10.24) by 0.382. If the preceding procedure is not used to ini-
tially bracket the minimum, then the points αa and αb will have to be located at a distance
of 0.382I from the lower and upper limits for the interval of uncertainty.

Algorithm for One-Dimensional Search by Golden Sections

Find α to minimize f(α).

Step 1. Phase I: For a chosen small number δ, calculate fð0Þ; fðα0Þ; fðα1Þ; . . ., where αi are
given by Eq. (10.21). Let q be the smallest integer to satisfy Eqs. (10.22), where αq, αq21,
and αq22 are calculated from Eq. (10.21). The upper and lower bounds (αl and αu) on α*
(optimum value for α) are given by Eq. (10.23). The interval of uncertainty is given as
I5αu2αl.

I

τI

I′

τI
αa

αl

α′l

αb

α′b

αu

α′u

(1– τ)I 

(1– τ)I

τI′ (1– τ)I′

(a)

(b)

FIGURE 10.9 Graphic of a golden
section partition.
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Step 2. Phase II: Compute f(αb), where αb5αl1 0.618I. Note that, at the first iteration,
αa5αl1 0.382I5αq21, and so f(αa) is already known.
Step 3. Compare f(αa) and f(αb), and go to (i), (ii), or (iii).
(i) If f(αa) , f(αb), then minimum point α* lies between αl and αb, that is, αl # α* #

αb. The new limits for the reduced interval of uncertainty are α0
l5αl and α0

u5αb.
Also, α0

b5αa. Compute f(α0
a), where α0

a5α0
l1 0.382(α0

u2α0
l) and go to Step 4.

(ii) If f(αa) . f(αb), then minimum point α* lies between αa and αu, that is, αa # α* #
αu. Similar to the procedure in Step 3(i), let α0

l5αa and α0
u5αu, so that α0

a5αb.
Compute f(α0

b), where α0
b5α0

l1 0.618(α0
u2α0

l) and go to Step 4.
(iii) If f(αa)5 f(αb), let αl5αa and αu5αb and return to Step 2.
Step 4. If the new interval of uncertainty I0 5α0

u2α0
l is small enough to satisfy a

stopping criterion (i.e., I0 , ε), let α*5 (α0
u1α0

l)/2 and stop. Otherwise, delete the
primes on α0

l, α0
a, and α0

b and return to Step 3.

Example 10.3 illustrates the golden sections method for step size calculation.

EXAMPLE 10.3 MINIMIZATION OF A FUNCTION BY GOLDEN
SECTION SEARCH

Consider the function f(α)5 22 4α1 eα. Use golden section search to find the minimum

within an accuracy of ε5 0.001. Use δ5 0.5.

Solution
Analytically, the solution is α*5 1.3863, f(α*)5 0.4548. In the golden section search, we need to

first bracket the minimum point (Phase I) and then iteratively reduce the interval of uncertainty

(Phase II). Table 10.1 shows various iterations of the method. In Phase I, we use Eq. (10.21) to calcu-

late the trial step sizes αq and the function values at these points. It is seen that the minimum point

is bracketed in only four iterations, as seen in the first part of Table 10.1 because f(2.618034) .

f(1.309017). The initial interval of uncertainty is calculated as I5 (αu2αl)5 2.6180342 0.55 2.118034.

Note that this interval is larger than the one obtained using equal-interval search.

Now, to reduce the interval of uncertainty in Phase II, let us calculate αb as (αl1 0.618I) or

αb5αu2 0.382I (each iteration of Phase II is shown in the second part of Table 10.1). Note that

αa and f(αa) are already known and need no further calculation. This is the main advantage of

the golden section search; only one additional function evaluation is needed in the interval of

uncertainty in each iteration, compared with the two function evaluations needed for the alter-

nate equal-interval search. We describe Iteration 1 of Phase II in Table 10.1 as follows.

We calculate αb5 1.809017 and f(αb)5 0.868376. Note that the new calculation of the function

is shown in boldface for each iteration. Since f(αa) , f(αb), we are at Step 3(i) of the algorithm,

and the new limits for the reduced interval of uncertainty are α0
l5 0.5 and α0

u5 1.809017. Also,

α0
b5 1.309017, at which the function value is already known. We need to compute only f(α0

a),

where α0
a5α0

l1 0.382(α0
u2α0

l)5 1.000. The known values for α and the function are transferred

to row 2 of Table 10.1 in Phase II, as indicated by the arrows. The cell for which new α and func-

tion values are evaluated is shaded.

Further refinement of the interval of uncertainty is repetitive and can be accomplished by

writing a computer program.
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A subroutine, GOLD, implementing the golden section search procedure is given in
Appendix B. The minimum for the function f is obtained at α*5 1.386511 with f(α*)5
0.454823 in 22 function evaluations, as shown in Table 10.1. The number of function eva-
luations is a measure of an algorithm’s efficiency. The problem was also solved using
equal-interval search, and 37 function evaluations were needed to obtain the same solu-
tion. This verifies our earlier observation that golden section search is a better method for
a specified accuracy and initial step length.

It may appear that if the initial step length δ is too large in the equal-interval or golden
section method, the line search fails, that is, f(δ) . f(0). Actually, it indicates that initial δ is
not proper and needs to be reduced until f(δ) , f(0). With this procedure, convergence of
the method can be numerically enforced. This numerical procedure is implemented in the
GOLD subroutine given in Appendix B.

TABLE 10.1 Golden section search for f(α)5 22 4α1 eα from Example 10.3

Phase I: Initial Bracketing of Minimum

Number q Trial step α Function value, f(α)

1. α5 0 0.000000 3.000000

2. q5 0 α05 δ 0.500000’αl 1.648721

3. q5 1 α1 5
P1
j50

δð1:618Þj 5 1:309017 0.466464

4. q5 2 α2 5
P2
j50

δð1:618Þj 5 2:618034’αu 5.236610

Phase II: Reducing Interval of Uncertainty

Iteration no. αl;[f(αl)] αa;[f(αa)] αb;[f(αb)] αu;[f(αu)] I5αu2αl

1 0.500000
[1.648721] k

1.309017
[0.466 464] r

1.809017

[0.868376] r
2.618034
[5.236610]

2.118034

2 0.500000
[1.648721]

1.000000

t[0.718282]

1.309017
t[0.466464]

1.809017
[0.868376] k

1.309017

3 1.000000
[0.718282]

1.309017
[0.466 464]

1.500000

[0.481689]

1.809017
[0.868376]

0.809017

— — — — — —

— — — — — —

16 1.385438
[0.454824]

1.386031
[0.454823]

1.386398

[0.454823]

1.386991
[0.454824]

0.001553

17 1.386031
[0.454823]

1.386398
[0.454823]

1.386624

[0.454823]

1.386991
[0.454823]

0.000960

α*5 0.5(1.3863981 1.386624)5 1.386511; f(α)5 0.454823

Note: New calculation for each iteration is shown as boldfaced and shaded; the arrows indicate direction of data transfer to the next row/

iteration.
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10.6 SEARCH DIRECTION DETERMINATION: THE
STEEPEST-DESCENT METHOD

Thus far we have assumed that a search direction in the design space is known and we
have tackled the problem of step size determination. In this section, and the next, we will
address the question of how to determine the search direction d. The basic requirement for d
is that the cost function be reduced if we take a small step along d; that is, the descent condi-
tion of Eq. (10.9) must be satisfied. This will be called the descent direction.

Several methods are available for determining a descent direction for unconstrained
optimization problems. The steepest-descent method is the simplest, the oldest, and probably
the best known numerical method for unconstrained optimization. The philosophy of the
method, introduced by Cauchy in 1847, is to find the direction d, at the current iteration,
in which the cost function f(x) decreases most rapidly, at least locally. Because of this phi-
losophy, the method is called the steepest-descent search technique. Also, properties of the
gradient of the cost function are used in the iterative process, which is the reason for its
alternate name: the gradient method. The steepest-descent method is a first-order method
since only the gradient of the cost function is calculated and used to evaluate the search
direction. In the next chapter, we will discuss second-order methods in which the Hessian of
the function will also be used in determining the search direction.

The gradient of a scalar function f(x1, x2, . . ., xn) was defined in Chapter 4 as the column
vector:

c5rf 5 @f

@x1

@f

@x2
. . .

@f

@xn

� �T
ð10:25Þ

To simplify the notation, we will use vector c to represent the gradient of the cost function
f(x); that is, ci5 @f/@xi. We will use a superscript to denote the point at which this vector is
calculated:

cðkÞ 5 cðxðkÞÞ5 @fðxðkÞÞ
@xi

� �T
ð10:26Þ

The gradient vector has several properties that are used in the steepest-descent method.
These will be discussed in the next chapter in more detail. The most important property is
that the gradient at a point x points in the direction of maximum increase in the cost function.
Thus the direction of maximum decrease is opposite to that, that is, negative of the gradi-
ent vector. Any small move in the negative gradient direction will result in the maximum
local rate of decrease in the cost function. The negative gradient vector thus represents a
direction of steepest descent for the cost function and is written as

d52c; or di 5 2ci 5 2
@f

@xi
; i5 1 to n ð10:27Þ

Note that since d5 2 c, the descent condition of inequality (10.9) is always satisfied as

ðc �dÞ5 2jjcjj2 , 0 ð10:28Þ
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Steepest-Descent Algorithm

Equation (10.27) gives a direction of change in the design space for use in Eq. (10.4).
Based on the preceding discussion, the steepest-descent algorithm is stated as follows:

Step 1. Estimate a starting design x(0) and set the iteration counter k5 0. Select a
convergence parameter ε . 0.
Step 2. Calculate the gradient of f(x) at the current point x(k) as c(k)5rf(x(k)).
Step 3. Calculate the length of c(k) as jjc(k)jj. If jjc(k)jj , ε, then stop the iterative process
because x*5 x(k) is a local minimum point. Otherwise, continue.
Step 4. Let the search direction at the current point x(k) be d(k)5 2c(k).
Step 5. Calculate a step size αk that minimizes f(α)5 f(x(k)1αd(k)) in the direction d(k).
Any one-dimensional search algorithm may be used to determine αk.
Step 6. Update the design using Eq. (10.4) as x(k11)5 x(k)1αkd

(k). Set k5 k1 1, and go to
Step 2.

The basic idea of the steepest-descent method is quite simple. We start with an initial
estimate for the minimum design. The direction of steepest descent is computed at that
point. If the direction is nonzero, we move as far as possible along it to reduce the cost
function. At the new design point, we calculate the steepest-descent direction again and
repeat the entire process. Examples 10.4 and 10.5 illustrate the calculations involved in the
steepest-descent method.

EXAMPLE 10.4 USE OF THE STEEPEST-DESCENT ALGORITHM

Minimize

fðx1; x2Þ5 x21 1 x22 2 2x1x2 ðaÞ

using the steepest-descent method starting from point (1, 0).

Solution
To solve the problem, we follow the steps of the steepest-descent algorithm:

1. The starting design is given as x(0)5 (1, 0). Set k5 0 and ε5 0.0001.

2. c(0)5 (2x12 2x2, 2x22 2x1)5 (2, 22).

3. jjcð0Þjj5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22 1 22

p
5 2

ffiffiffi
2

p
.ε; continue.

4. Set d(0)5 2c(0)5 (22, 2).

5. Calculate α to minimize f(α)5 f(x(0)1αd(0)), where x(0)1αd(0)5 (12 2α, 2α):

fðxð0Þ 1αdð0ÞÞ5 ð12 2αÞ2 1 ð2αÞ2 1 ð2αÞ2 2 2ð12 2αÞð2αÞ5 16α2 2 8α1 15 fðαÞ ðbÞ
Since this is a simple function of α, we can use necessary and sufficient conditions to solve

for the optimum step length. In general, a numerical one-dimensional search will have to be

used to calculate α. Using the analytic approach to solve for optimum α, we get

df αð Þ
dα

5 0; 32α2 85 0 or α0 5 0:25 ðcÞ
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d2fðαÞ
dα2

5 32. 0 ðdÞ

Therefore, the sufficiency condition for a minimum for f(α) is satisfied.

6. Update the design (x(0)1α0d
(0)): xð1Þ1 5 12 0.25(2)5 0.5, xð1Þ2 5 01 0.25(2)5 0.5. Solving for c(1)

from the expression in Step 2, we see that c(1)5 (0, 0), which satisfies the stopping criterion.

Therefore, (0.5, 0.5) is a minimum point for f(x) where f� 5 fðx�Þ5 0.

The preceding problem is quite simple and an optimum point is obtained in only one
iteration of the steepest-descent method. This is because the condition number of the
Hessian of the cost function is 1 (the condition number is a scalar associated with a square
matrix; refer to Section A.7). In such a case, the steepest-descent method converges in just
one iteration with any starting point. In general, the algorithm will require several itera-
tions before an acceptable optimum is reached.

EXAMPLE 10.5 USE OF THE STEEPEST-DESCENT
ALGORITHM

Minimize

fðx1; x2; x3Þ5 x21 1 2x22 1 2x23 1 2x1x2 1 2x2x3 ðaÞ

using the steepest-descent method with a starting design of (2, 4, 10). Select 0.005 as the conver-

gence parameter ε. Perform a line search by golden section search with an initial step length

δ5 0.05 and an accuracy of 0.0001.

Solution
1. The starting point is set as x(0)5 (2, 4, 10). Set k5 0 and ε5 0.005.

2. c5rf5 (2x11 2x2, 4x21 2x11 2x3, 4x31 2x2); c
(0)5 (12, 40, 48).

3. jjcð0Þjj5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
122 1 402 1 482

p
5

ffiffiffiffiffiffiffiffiffiffi
4048

p
5 63:6 . ε ðcontinueÞ:

4. d(0)5 2c(0)5 (212,240,248).

5. Calculate α0 by golden section search to minimize f(α)5 f(x(0)1αd(0)); α05 0.1587.

6. Update the design as x(1)5 x(0)1α0d
(0)5 (0.0956,22.348, 2.381). At the new design,

c(1)5 (24.5,24.438, 4.828), jjc(1)jj5 7.952 . ε.

Note that (c(1) �d(0))5 0, which verifies the exact line search termination criterion given in

Eq. (10.14). The steps in steepest-descent algorithm should be repeated until the convergence crite-

rion is satisfied. Appendix B contains the computer program and user-supplied subroutines

FUNCT and GRAD to implement the steps of the steepest-descent algorithm. The optimum results

for the problem from the computer program are given in Table 10.2. The true optimum cost func-

tion value is 0.0 and the optimum point is x*5 (0,0,0). Note that large numbers of iterations and

function evaluations are needed to reach the optimum for this problem.
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Although the method of steepest descent is quite simple and robust (it is convergent), it
has some drawbacks:

1. Even if convergence of the steepest-descent method is guaranteed, a large number of
iterations may be required to reach the minimum point.

2. Each iteration of the method is started independently of others, which can be
inefficient. Information calculated at the previous iterations is not used.

3. Only first-order information about the function is used at each iteration to determine
the search direction. This is one reason that convergence of the method is slow. The
rate of convergence of the steepest-descent method depends on the condition number
of the Hessian of the cost function at the optimum point. If the condition number
is large, the rate of convergence of the method is slow.

4. Practical experience with the steepest-descent method has shown that a substantial
decrease in the cost function is achieved in the initial few iterations and then this
decreases slows considerably in later iterations.

10.7 SEARCH DIRECTION DETERMINATION:
THE CONJUGATE GRADIENT METHOD

Many optimization methods are based on the concept of conjugate gradients; however,
we will describe a method attributed to Fletcher and Reeves (1964) in this section. The con-
jugate gradient method is a very simple and effective modification of the steepest-descent
method. It is shown in the next chapter that the steepest-descent directions at two consecu-
tive steps are orthogonal to each other. This tends to slow down the steepest-descent
method, although it is guaranteed to converge to a local minimum point. The conjugate
gradient directions are not orthogonal to each other. Rather, these directions tend to cut
diagonally through the orthogonal steepest-descent directions. Therefore, they improve
the rate of convergence of the steepest-descent method considerably. Actually, the conju-
gate gradient directions d(i) are orthogonal with respect to a symmetric and positive definite
matrix A, that is,

dðiÞTAdðjÞ 5 0 for all i and j; i 6¼ j ð10:29Þ

TABLE 10.2 Optimum solution for Example 10.5 with the steepest-descent method

fðx1; x2; x3Þ5 x21 1 2x22 1 2x23 1 2x1x2 1 2x2x3

Starting values of design variables 2, 4, 10

Optimum design variables 8.04787E-03, 26.81319E-03, 3.42174E-03

Optimum cost function value 2.473 47E-05

Norm of gradient of the cost function at optimum 4.970 71E-03

Number of iterations 40

Total number of function evaluations 753
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Conjugate Gradient Algorithm

Step 1. Estimate a starting design as x(0). Set the iteration counter k5 0. Select the
convergence parameter ε. Calculate

dð0Þ 5 2cð0Þ 5 2rfðxð0ÞÞ ð10:30Þ
Check the stopping criterion. If jjc(0)jj , ε, then stop. Otherwise, go to Step 5 (note that the
first iteration of the conjugate gradient and steepest-descent methods is the same).
Step 2. Compute the gradient of the cost function as c(k)5rf(x(k)).
Step 3. Calculate jjc(k)jj. If jjc(k)jj , ε, then stop; otherwise continue.
Step 4. Calculate the new conjugate direction as

d kð Þ 5 2c kð Þ 1βkd
k21ð Þ ð10:31Þ

βk 5
kcðkÞk
kcðk21Þk

� �2

ð10:32Þ

Step 5. Compute a step size αk5α to minimize f(α)5 f(x(k)1αd(k)).
Step 6. Change the design as follows: set k5 k1 1 and go to Step 2.

xðk11Þ 5 xðkÞ 1αkd
ðkÞ ð10:33Þ

Note that the conjugate direction shown in Eq. (10.31) satisfies the descent condition of
Inequality (10.9). This can be shown by substituting d(k) from Eq. (10.31) into Inequality
(10.9) and using the step size determination condition given in Eq. (10.14). The first itera-
tion of the conjugate gradient method is just the steepest-descent iteration. The only differ-
ence between the conjugate gradient and steepest-descent methods is in Eq. (10.31). In this
equation, the current steepest-descent direction is modified by adding a scaled direction
that was used in the previous iteration.

The scale factor is determined by using lengths of the gradient vector at the two
iterations, as shown in Eq. (10.32). Thus, the conjugate direction is nothing but a deflected
steepest-descent direction. This is a simple modification that requires little additional cal-
culation. It is, however, very effective in substantially improving the rate of convergence
of the steepest-descent method. Therefore, the conjugate gradient method should always be pre-
ferred over the steepest-descent method. In the next chapter, an example is discussed that com-
pares the rate of convergence of the steepest-descent, conjugate gradient, and Newton’s
methods. We will see there that the conjugate gradient method performs quite well com-
pared with the other two.

Convergence of the Conjugate Gradient Method

The conjugate gradient algorithm finds the minimum in n iterations for positive definite
quadratic functions having n design variables. For general functions, if the minimum has
not been found by then, the iterative process needs to be restarted every (n1 1) iterations
for computational stability. That is, set x(0)5 x(n11) and restart the process from Step 1 of
the algorithm. The algorithm is very simple to program and works very well for general
unconstrained minimization problems. Example 10.6 illustrates the calculations involved
in the conjugate gradient method.
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EXAMPLE 10.6 USE OF THE CONJUGATE GRADIENT
ALGORITHM

Consider the problem solved in Example 10.5:

Minimize

f x1; x2; x3ð Þ5 x21 1 2x22 1 2x23 1 2x1x2 1 2x2x3 ðaÞ

Carry out two iterations of the conjugate gradient method starting from the design (2, 4, 10).

Solution
The first iteration of the conjugate gradient method is the same as the steepest descent given

in Example 10.5:

c 0ð Þ 5 12; 40; 48ð Þ; :c 0ð Þ:5 63:6; f x 0ð Þ� �
5 332:0 ðbÞ

x 1ð Þ 5 0:0956; 22:348; 2:381ð Þ ðcÞ

The second iteration starts from Step 2 of the conjugate gradient algorithm:

2. Calculate the gradient and the cost function at x(1)

cð1Þ 5 ð2x1 1 2x2; 2x1 1 4x2 1 2x3; 2x2 1 4x3Þ5 ð24:5; 24:438; 4:828Þ; fðxð1ÞÞ5 10:75 ðdÞ

3. jjc(1)jj5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð24:5Þ2 1 ð24:438Þ2 1 ð4:828Þ2

q
5 7.952 . ε, so continue.

4.
β1 5 ½jjcð1Þ=c 0ð Þ�2 5 ð7:952=63:3Þ2 5 0:015633 ðeÞ

dð1Þ 5 2cð1Þ 1β1d
ð0Þ 5 2

24:500
24:438
4:828

2
4

3
51 ð0:015633Þ

212
240
248

2
4

3
55

4:31241
3:81268

25:57838

2
4

3
5 ðfÞ

5. The step size in the direction d(1) is calculated as α5 0.3156.

6. The design is updated as

xð2Þ 5
0:0956

22:348
2:381

2
4

3
51α

4:31241
3:81268

25:57838

2
4

3
55

1:4566
21:1447
0:6205

2
4

3
5 ðgÞ

Calculating the gradient at this point, we get c(2)5 (0.6238,2 0.4246, 0.1926). jjc(2)jj5 0.7788 . ε,
so we need to continue the iterations. It can be verified that (c(2) �d(1))5 0; that is, the line search

termination criterion is satisfied for the step size of α5 0.3156.

The problem is solved using the conjugate gradient method available in Excel Solver with

ε5 0.0001. Table 10.3 summarizes the performance results for the method. It can be seen that a

very precise optimum is obtained in only four iterations. Comparing these with the steepest-

descent method results given in Table 10.2, we conclude that the conjugate gradient method is

superior for this example.
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10.8 OTHER CONJUGATE GRADIENT METHODS

Several other formulas for β in Eq. (10.32) have been derived, giving different conjugate
gradient methods. In this section we briefly describe these methods. First we define the
difference in the gradients of the cost function at two successive iterations as

yðkÞ 5 cðkÞ 2 cðk21Þ ð10:34Þ
Different formulas for β are given as

Hestenes-Stiefel (1952):

βk 5
ðcðkÞ �yðkÞÞ
ðdðk21Þ �yðkÞÞ ð10:35Þ

Fletcher-Reeves (1964):

βk 5
ðcðkÞ � cðkÞÞ

ðcðk21Þ � cðk21ÞÞ ð10:36Þ

Polak-Ribiére (1969):

βk 5
ðcðkÞ �yðkÞÞ

ðcðk21Þ � cðk21ÞÞ ð10:37Þ

The Fletcher-Reeves formula given in Eq. (10.36) is the same as given in Eq. (10.32). All
of the three formulas given are equivalent for the quadratic function with a positive definite
Hessian matrix when exact line search is used. However, for a general function they can
have quite different values. The Fletcher-Reeves and Polak-Ribiére formulas have shown
good numerical performance. Based on numerical experiments, the following procedure is
recommended for selection of a β value:

βk 5
βprk ; if 0# βprk # βfrk
βfrk ; if βprk . βfrk
0; if βprk , 0

8><
>: ð10:38Þ

TABLE 10.3 Optimum solution for Example 10.6 with the conjugate gradient method

fðx1; x2; x3Þ5 x21 1 2x22 1 2x23 1 2x1x2 1 2x2x3

Starting values of design variables 2, 4, 10

Optimum design variables 1.01E-07, 21.70E-07, 1.04E-09

Optimum cost function value 24.0E-14

Norm of gradient at optimum 5.20E-07

Number of iterations 4
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where βprk is the value obtained using the Polak-Ribiére formula in Eq. (10.37) and βfrk is
the value obtained using the Fletcher-Reeves formula in Eq. (10.36).

EXERCISES FOR CHAPTER 10

Section 10.3 Descent Direction and Convergence of Algorithms
10.1 Answer True or False.

1. All optimum design algorithms require a starting point to initiate the iterative process.

2. A vector of design changes must be computed at each iteration of the iterative process.

3. The design change calculation can be divided into step size determination and direction

finding subproblems.

4. The search direction requires evaluation of the gradient of the cost function.

5. Step size along the search direction is always negative.

6. Step size along the search direction can be zero.

7. In unconstrained optimization, the cost function can increase for an arbitrary small step

along the descent direction.

8. A descent direction always exists if the current point is not a local minimum.

9. In unconstrained optimization, a direction of descent can be found at a point where the

gradient of the cost function is zero.

10. The descent direction makes an angle of 0�90� with the gradient of the cost function.

Determine whether the given direction at the point is that of descent for the following functions (show

all of the calculations).

10.2 f(x)5 3x211 2x11 2x221 7; d5 (21, 1) at x5 (2, 1)

10.3 f(x)5 x211 x222 2x12 2x21 4; d5 (2, 1) at x5 (1, 1)

10.4 f(x)5 x211 2x221 2x231 2x1x21 2x2x3; d5 (23, 10, 212) at x5 (1, 2, 3)

10.5 f(x)5 0.1x211 x222 10; d5 (1, 2) at x5 (4, 1)

10.6 f(x)5 (x12 2)21 (x221)2; d5 (2, 3) at x5 (4, 3)

10.7 f(x)5 10(x22 x21)
21 (12 x1)

2; d5 (162,2 40) at x5 (2, 2)

10.8 f(x)5 (x12 2)21 x22; d5 (22, 2) at x5 (1, 1)

10.9 f(x)5 0.5x211 x222 x1x22 7x127x2; d5 (7, 6) at x5 (1, 1)

10.10 f(x)5 (x11 x2)
21 (x21 x3)

2; d5 (4, 8, 4,) at x5 (1, 1, 1)

10.11 f(x)5 x211 x221 x23; d5 (2, 4,2 2) at x5 (1, 2,21)

10.12 f(x)5 (x11 3x21 x3)
21 4(x12 x2)

2; d5 (22,2 6,2 2) at x5 (21,21,21)

10.13 f(x)5 92 8x12 6x22 4x32 2x211 2x221 x231 2x1x21 2x2x3; d5 (22, 2, 0) at x5 (1, 1, 1)

10.14 f(x)5 (x121)21 (x22 2)21 (x32 3)21 (x42 4)2; d5 (2,22, 2,22) at x5 (2, 1, 4, 3)

Section 10.5 Numerical Methods to Compute Step Size
10.15 Answer True or False.

1. Step size determination is always a one-dimensional problem.

2. In unconstrained optimization, the slope of the cost function along the descent direction

at zero step size is always positive.

3. The optimum step lies outside the interval of uncertainty.

4. After initial bracketing, the golden section search requires two function evaluations to

reduce the interval of uncertainty.
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10.16 Find the minimum of the function f(α)5 7α22 20α1 22 using the equal-interval search

method within an accuracy of 0.001. Use δ5 0.05.

10.17 For the function f(α)5 7α22 20α1 22, use the golden section method to find the minimum

with an accuracy of 0.005 (final interval of uncertainty should be less than 0.005). Use

δ5 0.05.

10.18 Write a computer program to implement the alternate equal-interval search process shown

in Figure 10.7 for any given function f(α). For the function f(α)5 22 4α1 eα, use your

program to find the minimum within an accuracy of 0.001. Use δ5 0.50.

10.19 Consider the function f(x1, x2, x3)5 x211 2x221 2x231 21x21 2x2x3. Verify whether the vector

d5 (212,240,248) at the point (2, 4, 10) is a descent direction for f. What is the slope of

the function at the given point? Find an optimum step size along d by any numerical

method.

10.20 Consider the function f(x)5 x211 x222 2x12 2x21 4. At the point (1, 1), let a search direction

be defined as d5 (1, 2). Express f as a function of one variable at the given point along d.

Find an optimum step size along d analytically.

For the following functions, direction of change at a point is given. Derive the function of one variable

(line search function) that can be used to determine optimum step size (show all calculations).

10.21 f(x)5 0.1x211 x22210; d5 (21,22) at x5 (5, 1)

10.22 f(x)5 (x12 2)21 (x22 1)2; d5 (24,26) at x5 (4, 4)

10.23 f(x)5 10(x22 x21)
21 (12 x1)

2; d5 (2162, 40) at x5 (2, 2)

10.24 f(x)5 (x12 2)21 x22; d5 (2,22) at x5 (1, 1)

10.25 f(x)5 0.5x211 x222 x1x22 7x12 7x2; d5 (7, 6) at x5 (1, 1)

10.26 f(x)5 (x11 x2)
21 (x21 x3)

2; d5 (24,28,24) at x5 (1, 1, 1)

10.27 f(x)5 x211 x221 x23; d5 (22,24, 2) at x5 (1, 2,21)

10.28 f(x)5 (x11 3x21 x3)
21 4(x12 x2)

2; d5 (1, 3, 1) at x5 (21,21,21)

10.29 f(x)5 92 8x12 6x22 4x31 2x211 2x221 x231 2x1x21 2x2x3; d5 (2, 22, 0) at x5 (1, 1, 1)

10.30 f(x)5 (x121)21 (x22 2)21 (x32 3)21 (x42 4)2; d5 (22, 2,22, 2) at x5 (2, 1, 4, 3)

For the following problems, calculate the initial interval of uncertainty for the equal-interval search

with δ5 0.05 at the given point and the search direction.

10.31 Exercise 10.21 10.32 Exercise 10.22 10.33 Exercise 10.23

10.34 Exercise 10.24 10.35 Exercise 10.25 10.36 Exercise 10.26

10.37 Exercise 10.27 10.38 Exercise 10.28 10.39 Exercise 10.29

10.40 Exercise 10.30

For the following problems, calculate the initial interval of uncertainty for the golden section search

with δ5 0.05 at the given point and the search direction; then complete two iterations of the Phase II of

the method.

10.41 Exercise 10.21 10.42 Exercise 10.22 10.43 Exercise 10.23

10.44 Exercise 10.24 10.45 Exercise 10.25 10.46 Exercise 10.26

10.47 Exercise 10.27 10.48 Exercise 10.28 10.49 Exercise 10.29

10.50 Exercise 10.30
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Section 10.6 Search Direction Determination: Steepest-Descent Method
10.51 Answer True or False.

1. The steepest-descent method is convergent.

2. The steepest-descent method can converge to a local maximum point starting from a

point where the gradient of the function is nonzero.

3. Steepest-descent directions are orthogonal to each other.

4. Steepest-descent direction is orthogonal to the cost surface.

For the following problems, complete two iterations of the steepest-descent method starting from the

given design point.

10.52 f(x1, x2)5 x211 2x222 4x12 2x1x2; starting design (1, 1)

10.53 f(x1, x2)5 12.096x211 21.504x2221.7321x12 x2; starting design (1, 1)

10.54 f(x1, x2)5 6.983x211 12.415x222 x1; starting design (2, 1)

10.55 f(x1, x2)5 12.096x211 21.504x222 x2; starting design (1, 2)

10.56 f(x1, x2)5 25x211 20x222 2x12 x2; starting design (3, 1)

10.57 f(x1, x2, x3)5 x211 2x221 2x231 2x1x21 2x2x3; starting design (1, 1, 1)

10.58 fðx1; x2Þ5 8x21 1 8x22 2 80
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 1 x22 2 20x2 1 100

q
1 80

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 1 x22 1 20x2 1 100

q
2 5x1 2 5x2

Starting design (4, 6); the step size may be approximated or calculated using a computer

program.

10.59 fðx1; x2Þ5 9x21 1 9x22 2 100
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 1 x22 2 20x2 1 100

q
2 64

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 1 x22 1 16x2 1 64

q
2 5x1 2 41x2

Starting design (5, 2); the step size may be approximated or calculated using a computer

program.

10.60 f(x1, x2)5 100(x22 x21)
21 (12 x1)

2; starting design (5,2)

10.61 f(x1, x2, x3, x4)5 (x1210x2)
21 5(x32 x4)

21 (x22 2x3)
41 10(x12 x4)

4

Let the starting design be (1, 2, 3, 4).

10.62 Solve Exercises 10.52 to 10.61 using the computer program given in Appendix B for the

steepest-descent method.

10.63 Consider the following three functions:

f1 5 x21 1 x22 1 x23; f2 5 x21 1 10x22 1 100x23; f3 5 100x21 1 x22 1 0:1x23

Minimize f1, f2, and f3 using the program for the steepest-descent method given in

Appendix B. Choose the starting design to be (1, 1, 2) for all functions. What do you

conclude from observing the performance of the method on the foregoing functions?

10.64 Calculate the gradient of the following functions at the given points by the forward,

backward, and central difference approaches with a 1 percent change in the point and

compare them with the exact gradient:

1. f(x)5 12.096x211 21.504x2221.7321x12 x2 at (5, 6)

2. f(x)5 50(x22 x21)
21 (22 x1)

2 at (1, 2)

3. f(x)5 x211 2x221 2x231 2x1x21 2x2x3 at (1, 2, 3)

10.65 Consider the following optimization problem

maximize
Xn
i51

ui
@f

@xi
5 c �uð Þ
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subject to the constraint
Xn
i51

u2i 5 1

Here u5 (u1, u2, . . ., un) are components of a unit vector. Solve this optimization problem

and show that the u that maximizes the preceding objective function is indeed in the direc-

tion of the gradient c.

Section 10.7 Search Direction Determination: Conjugate Gradient Method
10.66 Answer True or False.

1. The conjugate gradient method usually converges faster than the steepest-descent

method.

2. Conjugate directions are computed from gradients of the cost function.

3. Conjugate directions are normal to each other.

4. The conjugate direction at the kth point is orthogonal to the gradient of the cost

function at the (k1 l)th point when an exact step size is calculated.

5. The conjugate direction at the kth point is orthogonal to the gradient of the cost

function at the (k21)th point.

For the following problems, complete two iterations of the conjugate gradient method.

10.67 Exercise 10.52 10.68 Exercise 10.53 10.69 Exercise 10.54

10.70 Exercise 10.55 10.71 Exercise 10.56 10.72 Exercise 10.57

10.73 Exercise 10.58 10.74 Exercise 10.59 10.75 Exercise 10.60

10.76 Exercise 10.61

10.77 Write a computer program to implement the conjugate gradient method (or, modify the

steepest-descent program given in Appendix B). Solve Exercises 10.52 to 10.61 using your

program.

For the following problems, write an Excel worksheet and solve the problems using Solver.

10.78 Exercise 10.52 10.79 Exercise 10.53 10.80 Exercise 10.54

10.81 Exercise 10.55 10.82 Exercise 10.56 10.83 Exercise 10.57

10.84 Exercise 10.58 10.85 Exercise 10.59 10.86 Exercise 10.60

10.87 Exercise 10.61
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C H A P T E R

11

More on Numerical Methods for
Unconstrained Optimum Design

Upon comp le t i on o f th i s chap te r, you wi l l be ab l e to

• Use some alternate procedures for step size

calculation

• Explain the properties of the gradient vector

used in the steepest-descent method

• Use scaling of design variables to

improve the performance of optimization

methods

• Use the second-order methods for

unconstrained optimization, such as the

Newton method, and understand their

limitations

• Use approximate second-order methods for

unconstrained optimization, called the

quasi-Newton methods

• Transform constrained problems into

unconstrained problems and use

unconstrained optimization methods to

solve them

• Explain the rate of convergence of

algorithms

• Explain and use direct search methods

The material in this chapter builds on the basic concepts and numerical methods for
unconstrained problems presented in the previous chapter. Topics covered include poly-
nomial interpolation for step size calculation, inexact line search, properties of the gradient
vector, a Newton method that uses the Hessian of the cost function in numerical optimiza-
tion, scaling of design variables, approximate second-order methods (quasi-Newton meth-
ods), and transformation methods that transform a constrained problem into a problem
that is unconstrained so that unconstrained optimization methods can be used to solve
constrained problems. These topics may be omitted in an undergraduate course on opti-
mum design or in a first independent reading of the text.

Recall that the unconstrained minimization problem is to find an n-dimensional vector x
to minimize the function f(x) without any constraints.
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11.1 MORE ON STEP SIZE DETERMINATION

The interval-reducing methods described in Chapter 10 can require too many function
evaluations during line search to determine an appropriate step size. In realistic engineer-
ing design problems, function evaluation requires a significant amount of computational
effort. Therefore, methods such as golden section search are inefficient for many practical
applications. In this section, we present some other line search methods such as polyno-
mial interpolation and inexact line search.

Recall that the step size calculation problem is to find α to

Minimize

fðαÞ5 fðxðkÞ 1αdðkÞÞ ð11:1Þ

It is assumed that the search direction d(k) is that of descent at the current point x(k), that
is,

cðkÞ �dðkÞ, 0 ð11:2Þ
Also, differentiating f(α) with respect to α and using the chain rule of differentiation, we
get

f 0ðαÞ5 ðcðxðkÞ 1αdðkÞÞ �d kð ÞÞ; cðxðkÞ 1αdðkÞÞ5rfðxðkÞ 1αdðkÞÞ ð11:3Þ
where “prime” indicates the first derivative of f (α). Evaluating Eq. (11.3) at α5 0, we get

f 0ð0Þ5 ðcðkÞ �dðkÞÞ, 0 ð11:4Þ
Thus the slope of the curve f (α) versus α is negative at α5 0, as can be observed in
Figure 10.3. If an exact step size is determined as αk, then f 0(αk)5 0, which gives the fol-
lowing condition from Eq. (11.3), called the line search termination criterion:

cðk11Þ �dðkÞ 5 0 ð11:5Þ

11.1.1 Polynomial Interpolation

Instead of evaluating the function at numerous trial points, we can pass a curve through
a limited number of points and use the analytical procedure to calculate the step size. Any
continuous function on a given interval can be approximated as closely as desired by pass-
ing a higher-order polynomial through its data points and then calculating its minimum
explicitly. The minimum point of the approximating polynomial is often a good estimate of
the exact minimum of the line search function f(α). Thus, polynomial interpolation can be
an efficient technique for one-dimensional search. Whereas many polynomial interpolation
schemes can be devised, we will present two procedures based on quadratic interpolation.

Quadratic Curve Fitting

Many times it is sufficient to approximate the function f(α) on an interval of uncertainty by
a quadratic function. To replace a function in an interval with a quadratic function, we need
to know the function value at three distinct points to determine the three coefficients of the
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quadratic polynomial. It must also be assumed that the function f(α) is sufficiently smooth and
unimodal, and that the initial interval of uncertainty (αl, αu) is known. Let αi be any intermediate
point in the interval (αl, αu), and let f(αl), f(αi), and f(αu) be the function values at the respective
points. Figure 11.1 shows the function f(α) and the quadratic function q(α) as its approximation
in the interval (αl, αu). α is the minimum point of the quadratic function q(α), whereas α* is the
exact minimum point of f(α). Iteration can be used to improve the estimate α for α*.

Any quadratic function q(α) can be expressed in the general form as

qðαÞ5 a0 1 a1α1 a2α2 ð11:6Þ
where a0, a1, and a2 are the unknown coefficients. Since the function q(α) must have the
same value as the function f(α) at the points αl, αi, and αu, we get three equations in three
unknowns a0, a1, and a2 as follows:

a0 1 a1αl 1 a2α2
l 5 fðαlÞ ð11:7Þ

a0 1 a1αi 1 a2α2
i 5 fðαiÞ ð11:8Þ

a0 1 a1αu 1 a2α2
u 5 fðαuÞ ð11:9Þ

Solving the system of linear simultaneous equations for a0, a1, and a2, we get

a2 5
1

ðαu 2αiÞ
fðαuÞ2 fðαlÞ
ðαu 2αlÞ

2
fðαiÞ2 fðαlÞ
ðαi 2αlÞ

� �
ð11:10Þ

a1 5
fðαiÞ2 fðαlÞ
ðαi 2αlÞ

2 a2ðαl 1αiÞ ð11:11Þ

a0 5 fðαlÞ2 a1αl 2 a2α2
l ð11:12Þ

The minimum point α of the quadratic function q(α) in Eq. (11.6) is calculated by solving
the necessary condition dq/dα5 0 and verifying the sufficiency condition d2q/dα2. 0:

α52
1

2a2
a1; if

d2q

dα2
5 2a2. 0 ð11:13Þ

f (α)

f (α)

q (α)
Quadratic

approximation to f(α)
α

αi αuα* ααl

FIGURE 11.1 Graphic of a quadratic approxima-
tion for function f(α).
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Thus, if a2. 0, α is a minimum of q(α). Additional iterations may be used to further
refine the interval of uncertainty. The quadratic curve-fitting technique may now be given
in the form of a computational algorithm:

Step 1. Select a small number δ, and locate the initial interval of uncertainty (αl, αu).
Any method discussed in Chapter 10 may be used.
Step 2. Let αi be an intermediate point in the interval (αl, αu) and f(αi) be the value of
f(α) at αi.
Step 3. Compute the coefficients a0, a1, and a2 from Eqs. (11.10) through (11.12), α from
Eq. (11.13), and fðαÞ .
Step 4. Compare αi and α. If αi,α, continue with this step. Otherwise, go to Step 5.

(a) If fðαiÞ, fðαÞ, then αl # α� # α . The new limits of the reduced interval of
uncertainty are α0

l 5αl;α0
u 5α, and α0

i5αi. Go to Step 6 (a prime on α indicates its
updated value).

(b) If fðαiÞ. fðαÞ, then αi#α*#αu. The new limits of the reduced interval of
uncertainty are α0

l5αI, α0
u5αu, and α0

i 5α. Go to Step 6.
Step 5.

(a) If fðαiÞ, fðαÞ, then α # α� # αu. The new limits of the reduced interval of
uncertainty are α0

l 5α, α0
u5αu, and α0

i5αi. Go to Step 6.
(b) If fðαiÞ. fðαÞ, then αl#α*#αi. The new limits of the reduced interval of

uncertainty are α0
l5αl, α0

u5αi, and α0
i 5α. Go to Step 6.

Step 6. If the two successive estimates of the minimum point of f(α) are sufficiently
close, then stop. Otherwise, delete the primes on α0

l, α0
i, and α0

u and return to Step 3.

Example 11.1 illustrates the evaluation of step size using quadratic interpolation.

EXAMPLE 11.1 ONE-DIMENSIONAL MINIMIZATION
WITH QUADRATIC INTERPOLATION

Find the minimum point of

fðαÞ5 22 4α1 eα ðaÞ
from Example 10.3 by polynomial interpolation. Use the golden section search with δ5 0.5 to

bracket the minimum point initially.

Solution
Iteration 1 From Example 10.3 the following information is known.

αl 5 0:50; αi 5 1:309017; αu 5 2:618034 ðbÞ
f αlð Þ5 1:648721; f αið Þ5 0:466464; f αuð Þ5 5:236610 ðcÞ

The coefficients a0, a1, and a2 are calculated from Eqs. (11.10) through (11.12) as

a2 5
1

1:30902

3:5879

2:1180
2

21:1823

0:80902

� �
5 2:410 ðdÞ

a1 5
21:1823

0:80902
2 2:41ð Þ 1:80902ð Þ525:821 ðeÞ
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a0 5 1:6482712 ð25:821Þð0:50Þ2 2:41ð0:25Þ5 3:957 ðfÞ
Therefore, α5 1:2077 from Eq. (11.13), and fðαÞ5 0:5149. Note that αi . α and fðαiÞ, fðαÞ; there-
fore, Step 5(a) of the above algorithm should be used. The new limits of the reduced interval of

uncertainty are α0
l 5α5 1:2077, α0

u5αu5 2.618034, and α0
i5αi5 1.309017.

Iteration 2 We have the new limits for the interval of uncertainty, the intermediate point,

and the respective values as

αl 5 1:2077; αi 5 1:309017; αu 5 2:618034 ðgÞ
fðαlÞ5 0:5149; fðαiÞ5 0:466464; fðαuÞ5 5:23661 ðhÞ

In Step 3 of the algorithm, coefficients a0, a1, and a2 are calculated as before: a05 5.7129,

a1527.8339, and a25 2.9228. Thus, α5 1:34014 and fðαÞ5 0:4590.

Comparing these results with the optimum solution given in Table 10.1, we observe that α
and fðαÞ are quite close to the final solution. One more iteration can give a very good approxima-

tion of the optimum step size. Note that only five function evaluations are used to obtain a fairly

accurate optimum step size for the function f(α). Therefore, the polynomial interpolation

approach can be quite efficient for one-dimensional minimization.

Alternate Quadratic Interpolation

In this approach, we use known information about the function at α5 0 to perform qua-
dratic interpolation; that is, we can use f(0) and f 0(0) in the interpolation process. Example 11.2
illustrates this alternate quadratic interpolation procedure.

EXAMPLE 11.2 ONE-DIMENSIONAL MINIMIZATION
WITH ALTERNATE QUADRATIC INTERPOLATION

Find the minimum point of
fðαÞ5 22 4α1 eα ðaÞ

using f(0), f 0(0), and f(αu) to fit a quadratic curve, where αu is an upper bound on the minimum

point of f(α).

Solution
Let the general equation for a quadratic curve be a01 a1α1 a2α

2, where a0, a1, and a2 are the

unknown coefficients. Let us select the upper bound on α* to be 2.618034 (αu) from the golden sec-

tion search. Using the given function f(α), we have f(0)5 3, f(2.618034)5 5.23661, and f 0(0)523.

Now, as before, we get the following three equations to solve for the unknown coefficients a0, a1,

and a2:

a0 5 f 0ð Þ5 3 ðbÞ
f 2:618034ð Þ5 a0 1 2:618034a1 1 6:854a2 5 5:23661 ðcÞ

a1 5 f 0ð0Þ523 ðdÞ
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Solving the three equations simultaneously, we get a05 3, a1523, and a25 1.4722. The mini-

mum point of the parabolic curve using Eq. (11.13) is given as α5 1:0189 and fðαÞ5 0:69443. This

estimate can be improved using an iteration, as demonstrated in Example 11.1.

Note that an estimate of the minimum point of the function f(α) is found in only two function

evaluations f(0) and f(2.618034). However, in an optimization algorithm only one function evalu-

ation is needed since f(0) is the current value of the cost function, which is already available.

Also, the slope f 0(0) 5 c(k) �d(k) is already known.

11.1.2 Inexact Line Search: Armijo’s Rule

Exact line search during unconstrained or constrained minimization can be quite time-
consuming. Therefore, inexact line search procedures that also satisfy global convergence
requirements are usually employed in most computer implementations. The basic concept
of inexact line search is that the step size should not be too large or too small, and there
should be a sufficient decrease in the cost function value along the search direction.
Using these requirements, several inexact line search procedures have been developed
and used. Here, we discuss some basic concepts and present a procedure for inexact line
search.

Recall that a step size αk. 0 exists if d(k) satisfies the descent condition (c(k) �d(k)), 0.
Generally, an iterative method, such as quadratic interpolation, is used during line search,
and the process is terminated when the step size is sufficiently accurate; that is, the line
search termination criterion (c(k11) �d(k))5 0 of Eq. (11.5) is satisfied with sufficient accu-
racy. However, note that to check this condition, we need to calculate the gradient of the
cost function at each trial step size, which can be quite expensive. Therefore, some other
simple strategies have been developed that do not require this calculation. One such strat-
egy is called Armijo’s rule.

The essential idea of Armijo’s rule is first to guarantee that the selected step size α is
not too large; that is, the current step is not far beyond the optimum step size. Next, the
step size should not be too small such that there is little progress toward the minimum
point (i.e., there is very little reduction in the cost function).

Let the line search function be defined as f(α)5 f(x(k)1αd(k)), as in Eq. (10.11). Armijo’s
rule uses a linear function of α as

qðαÞ5 fð0Þ1α½ρf 0ð0Þ� ð11:14Þ
where ρ is a fixed number between 0 and 1; 0, ρ, 1. This function is shown as the
dashed line in Figure 11.2. A value of α is considered not too large if the corresponding
function value f(α) lies below the dashed line; that is,

fðαÞ # qðαÞ ð11:15Þ
In other words, the step size α is to the left of point C in Figure 11.2. This is also called the
sufficient-decrease condition.

To ensure that α is not too small, a number η. 1 is selected. Then α is considered not
too small if it satisfies the following inequality:
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fðηαÞ. qðηαÞ ð11:16Þ
This means that if α is increased by a factor η, it will not meet the test given in Eq. (11.15);
that is, f(ηα) is above the dashed line in Figure 11.2 and the point ηα is to the right of
point C.

Algorithm for Armijo’s Rule

Armijo’s rule can be used to determine the step size as follows: We start with an arbi-
trary α. If it satisfies Eq. (11.15), it is repeatedly increased by η (η5 2 and ρ5 0.2 are often
used) until Eq. (11.15) is violated. The largest α satisfying Eq. (11.15) is selected as the step
size. If, on the other hand, the starting value of α does not satisfy Eq. (11.15), it is repeat-
edly divided by η until Inequality (11.15) is satisfied.

Another procedure, known as the backtracking algorithm, is to start with a larger step
size, say α5 1. The condition of Eq. (11.15) is checked and, if it is violated, the step size is
divided by η. This process is continued until the condition of Eq. (11.15) is satisfied.

It is noted that once f(α) is known at several points, an interpolation scheme (quadratic
or cubic) can always be used to obtain a better estimate for the step size α.

Use of a procedure similar to Armijo’s rule is demonstrated in a numerical algorithm
for constrained problems in Chapter 13.

11.1.3 Inexact Line Search: Wolfe Conditions

The sufficient-decrease condition of Eq. (11.15) is not enough by itself to ensure that the
algorithm is making reasonable progress, because it can be satisfied by small values for α.
To overcome this drawback, Wolfe (Nocedal and Wright, 2006) introduced another condi-
tion for the step size, known as the curvature condition, which requires α to satisfy

f 0ðαÞ $ βf 0ð0Þ ð11:17Þ

tan−1|ρf ′(0)|

tan−1| f ′(0)|

Acceptable range

A

B

CO
α

q (α) = f(0) + α [ρf ′(0)]

f (α)

f (0)

FIGURE 11.2 This is a graphic
of an inexact line search that uses
Armijo’s rule.
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for some constant β, ρ, β, 1 (also, 0, ρ, 0.5). This condition says that at the acceptable
step size the slope of f(α) is greater than that at α5 0 by the factor β (recall that the slope
at α5 0 is negative). This is because, if f 0(α) is strongly negative, we can further reduce the
function f(α). The sufficient-decrease condition of Eq. (11.15) and the curvature condition
of Eq. (11.17) are known as Wolfe conditions.

Note that the curvature condition of Eq. (11.17) is satisfied even when f 0(α) is a large
positive number. This implies that the acceptable step size can be far away from the true
minimum for f(α) where f 0(α)5 0. To overcome this, the curvature condition is modified
using absolute values for the slopes as

f 0ðαÞ
�� �� # β f 0ð0Þ

�� �� ð11:18Þ
Generally β5 0.1 to 0.9 and ρ5 1024 to ρ5 1024 to 1023 are taken. Note that a smaller β

gives a more accurate step size. For Newton’s and quasi-Newton methods, β is selected
typically as 0.9 and for the conjugate gradient method as 0.1 (since the conjugate gradient
method requires more accurate step size). Conditions in Eqs. (11.15) and (11.18) are called
strong Wolfe conditions (Nocedal and Wright, 2006).

The criterion of Eq. (11.18) requires evaluation of the gradient of the cost function at
each trial step size. If the gradient evaluation is too expensive, a finite-difference approxi-
mation may be used for it and Eq. (11.18) may be replaced by

fðαÞ2 fðνÞ
�� ��

α2 ν
# β f 0ð0Þ

�� �� ð11:19Þ

where ν is any scalar such that 0 # ν , α.

11.1.4 Inexact Line Search: Goldstein Test

The Goldstein test is somewhat similar to Armijo’s rule. A value of α is considered not
too large if it satisfies Eq. (11.15), with ρ given as 0, ρ, 0.5. A value of α is considered not
too small in the Goldstein test if

fðαÞ $ fð0Þ1α½ð12 ρÞf 0ð0Þ� ð11:20Þ
That is, f(α) must lie above the lower dashed line shown in Figure 11.3. In terms of the
original function, an acceptable value of α satisfies

ρ #
fðαÞ2 fð0Þ
αf 0ð0Þ # ð12 ρÞ ð11:21Þ

Goldstein conditions are often used in Newton-type methods but are not well suited to
quasi-Newton methods (Nocedal and Wright 2006). The Goldstein condition in Eq. (11.20)
can be easily checked in the Armijo procedure for the step size calculation described ear-
lier. Note that unless ρ is assigned a proper value, the Goldstein tests in Eqs. (11.15) and
(11.20) can omit the true minimum point of f(α).

450 11. MORE ON NUMERICAL METHODS FOR UNCONSTRAINED OPTIMUM DESIGN

II. NUMERICAL METHODS FOR CONTINUOUS VARIABLE OPTIMIZATION



11.2 MORE ON THE STEEPEST-DESCENT METHOD

In this section we will study the properties of the gradient vector that is used in the
steepest-descent method. Proofs of the properties are given since they are quite instructive.
We will also show that the steepest-descent directions at successive iterations are orthogo-
nal to each other.

11.2.1 Properties of the Gradient Vector

Property 1
The gradient vector c of a function f(x1, x2, . . . , xn) at the given point x*5 (x*1, x*2, . . . , xn*) is orthogonal

(normal) to the tangent hyperplane for the surface f(x1, x2, . . . , xn)5 constant.

Proof This is an important property of the gradient vector and is shown graphically in Figure 11.4.
The figure shows the surface f(x)5 constant; x* is a point on the surface; C is any curve on the surface
through the point x*; T is a vector tangent to C at point x*; u is any unit vector; and c is the gradient vector
at x*. According to the above property, vectors c and T are normal to each other; that is, their dot product
is zero, c �T5 0.

To prove this property, we take any curve C on the surface f(x1, x2, . . . , xn)5 constant, as was shown
in Figure 11.4. Let the curve pass through the point x*5 (x1*, x2*, . . . , xn*). Also, let s be a parameter along
C. Then a unit tangent vector T along C at point x* is given as

T5
@x1
@s

@x2
@s

?
@xn
@s

� �T
ðaÞ

Since f(x)5 constant, the derivative of f along curve C is zero; that is, df/ds5 0 (the directional derivative of
f in the direction s). Or, using the chain rule of differentiation, we get

df

ds
5

@f

@x1

@x1
@s

1?1
@f

@xn

@xn
@s

5 0 ðbÞ

Acceptable range

A

B

CD

O
α

f (0) + α [ρf ′(0)]

f (0) + α [(1 – ρ)f ′(0)]

f (0)

f (α) FIGURE 11.3 Goldstein Test.
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Writing Eq. (b) in the vector form after identifying @f/@xi and @xi/@s (from Eq. (a)) as components of the
gradient and the unit tangent vectors, we obtain c �T5 0, or cTT5 0. Since the dot product of the gradient
vector c with the tangential vector T is zero, the vectors are normal to each other. But T is any tangent vec-
tor at x*, and so c is orthogonal to the tangent hyperplane for the surface f(x)5 constant at point x*.

Property 2
The second property is that the gradient represents a direction of maximum rate of increase for the

function f(x) at the given point x*.

Proof To show this, let u be a unit vector in any direction that is not tangent to the surface. This is
shown in Figure 11.4. Let t be a parameter along u. The derivative of f(x) in the direction u at the point x*
(i.e., the directional derivative of f ) is given as

df

dt
5 lim

ε-0

fðx1 εuÞ2 fðxÞ
ε

ðcÞ

where ε is a small number and t is a parameter along u. Using Taylor’s expansion, we have

fðx1 εuÞ5 fðxÞ1 ε u1
@f

@x1
1u2

@f

@x2
1?1 un

@f

@xn

� �
1 oðε2Þ ðdÞ

where ui are components of the unit vector u and o(ε2) are terms of order ε2. Rewriting the foregoing
equation,

fðx1 εuÞ2 fðxÞ5 ε
Xn
i51

ui
@f

@xi
1 oðε2Þ ðeÞ

Substituting Eq. (e) into Eq. (c) and taking the indicated limit, we get

df

dt
5

Xn
i51

ui
@f

@xi
5 c �u5 cTu ðfÞ

Using the definition of the dot product in Eq. (e), we get

df

dt
5 jjcjj jjujj cosθ ðgÞ

where θ is the angle between the c and u vectors. The right side of Eq. (g) will have extreme values when
θ5 0�, or 180�. When θ5 0�, vector u is along c and cosθ5 1.

Therefore, from Eq. (g), df/dt represents the maximum rate of increase for f(x) when θ5 0�. Similarly,
when θ5 180�, vector u points in the negative c direction. From Eq. (g), then, df/dt represents the maxi-
mum rate of decrease for f(x) when θ5 180�.

T

C

Surface f (x) = constant

t

s

c

u

x*

θ

FIGURE 11.4 Gradient vector for the surface
f(x)5 constant at the point x*.
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According to the foregoing property of the gradient vector, if we need to move away
from the surface f(x)5 constant, the function increases most rapidly along the gradient
vector compared with a move in any other direction. In Figure 11.4, a small move along
the direction c will result in a larger increase in the function, compared with a similar
move along the direction u. Of course, any small move along the direction T results in no
change in the function since T is tangent to the surface.

Property 3
The maximum rate of change in f(x) at any point x* is the magnitude of the gradient vector.

Proof Since u is a unit vector, the maximum value of df/dt from Eq. (g) is given as

max
df

dt

����
����5 jjcjj ðhÞ

since the maximum value of cosθ is 1 when θ5 0�. However, for θ5 0�, u is in the direction of the
gradient vector. Therefore, the magnitude of the gradient represents the maximum rate of change for the
function f(x).

These properties show that the gradient vector at any point x* represents a direction of
maximum increase in the function f(x) and the rate of increase is the magnitude of the vec-
tor. The gradient is therefore called a direction of steepest ascent for the function f(x) and
the negative of the gradient is called the direction of steepest descent. Example 11.3 verifies
the properties of the gradient vector.

EXAMPLE 11.3 VERIFICATION OF THE PROPERTIES
OF THE GRADIENT VECTOR

Verify the properties of the gradient vector for the following function when it is at the point

x(0)5 (0.6, 4).

fðxÞ5 25x21 1 x22 ðaÞ

Solution
Figure 11.5 shows in the x12 x2 plane the contours of values 25 and 100 for the function f.

The value of the function at (0.6, 4) is f(0.6, 4)5 25. The gradient of the function at (0.6, 4) is

given as

c5rfð0:6;4Þ5 ð@f=@x1; @f=@x2Þ5 ð50x1; 2x2Þ5 ð30; 8Þ ðbÞ

jjcjj5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
303 301 83 8

p
5 31:04835 ðcÞ

Therefore, a unit vector along the gradient is given as

C5 c=jjc jj5 ð0:966235; 0:257663Þ ðdÞ
Using the given function, a vector tangent to the curve at the point (0.6, 4) is given as

t5 ð24;15Þ ðeÞ
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This vector is obtained by differentiating the equation for the following curve at the point (0.6, 4)

with respect to the parameter s along the curve:

25x21 1 x22 5 25 ðfÞ
Differentiating this equation with respect to s at the point (0.6, 4) gives

253 2x1
@x1
@s

1 2x2
@x2
@s

5 0; or @x1=@s52ð4=15Þ@x2=@s ðgÞ

Then the vector t tangent to the curve is obtained as (@x1/@s, @x2/@s). The unit tangent vector is

calculated as
T5 t=jjt jj5 ð20:257663; 0:966235Þ ðhÞ

Property 1
If the gradient is normal to the tangent, then C �T5 0. This is indeed true for the preceding data. We can

also use the condition that if two lines are orthogonal, then m1m2521, where m1 and m2 are the slopes of the
two lines (this result can be proved using the rotational transformation of coordinates through 90 degrees).

To calculate the slope of the tangent, we use the equation for the curve 25x1
21 x225 25, or x2 5 5

ffiffiffiffiffiffiffiffiffiffiffiffiffi
12 x21

q
.

Therefore, the slope of the tangent at the point (0.6, 4) is given as

m1 5
dx2
dx1

5 25x1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
12 x21

q
52

15

4
ðiÞ

This slope is also obtained directly from the tangent vector t5 (24,15). The slope of the gradient vector
c5 (30, 8) is m2 5

8
30 5 4

15. Thus, m1m2 is indeed 21, and the two lines are normal to each other.

Property 2
Consider any arbitrary direction d5 (0.501034, 0.865430) at the point (0.6,4), as shown in Figure 11.5. If C

is the direction of steepest ascent, then the function should increase more rapidly along C than along d. Let
us choose a step size α5 0.1 and calculate two points, one along C and the other along d:

xð1Þ 5 xð0Þ 1αC5
0:6
4:0

� �
1 0:1

0:966235
0:257633

� �
5

0:6966235
4:0257663

� �
ðjÞ

xð2Þ 5 xð0Þ 1αd5
0:6
4:0

� �
1 0:1

0:501034
0:865430

� �
5

0:6501034
4:0865430

� �
ðkÞ

Now we calculate the function at these points and compare their values: f(x(1))5 28.3389, f(x(2))5 27.2657.
Since f(x(1)) . f(x(2)), the function increases more rapidly along C than along d.

Property 3
If the magnitude of the gradient vector represents the maximum rate of change in f(x), then (c � c). (c �d),

(c � c)5 964.0, and (c �d)5 21.9545. Therefore, the gradient vector satisfies this property also.
Note that the last two properties are valid only in a local sense—that is, only in a small neighborhood of

the point at which the gradient is evaluated.

11.2.2 Orthogonality of Steepest-Descent Directions

It is interesting that the successive directions of steepest descent are normal to one
another; that is, (c(k) � c(k11))5 0. This can be shown quite easily using necessary conditions
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to determine the optimum step size. The step size determination problem is to compute αk

that minimizes f(x(k)1αd(k)). The necessary condition for this is df/dα5 0. Using the chain
rule of differentiation, we get

dfðxðk11ÞÞ
dα

5
@fðxðk11ÞÞ

@x

� �T
@xðk11Þ

@α
5 0 ð11:22Þ

which gives (since d(k11)52c(k11), the steepest-descent direction)

ðcðk11Þ �dðkÞÞ5 0 or ðcðk11Þ � cðkÞÞ5 0 ð11:23Þ

cðk11Þ 5
@fðxðk11ÞÞ

@x
and

@xðk11Þ

@α
5

@

@α
ðxðkÞ 1αdðkÞÞ5dðkÞ ð11:24Þ

In the two-dimensional case, x5 (x1, x2). Figure 11.6 is an illustration of the design vari-
able space. The closed curves in the figure are contours of the cost function f(x). The
figure shows several steepest-descent directions that are orthogonal to each other.

x2

x1

f = 100

f = 25

(0.6, 4)

c = (30, 8)

t = (–4, 15)

d

8
30

FIGURE 11.5 Contours of the function f5 25x21 1 x22 for f5 25
and 100.
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11.3 SCALING OF DESIGN VARIABLES

The rate of convergence of the steepest-descent method is at best linear even for a qua-
dratic cost function. It is possible to accelerate this rate of convergence of the steepest-
descent method if the condition number of the Hessian of the cost function can be reduced
by scaling the design variables. For a quadratic cost function, it is possible to scale the
design variables such that the condition number of the Hessian matrix, with respect to the
new design variables, is unity (the condition number of a matrix is calculated as the ratio of
the largest to the smallest eigenvalues of the matrix).

The steepest-descent method converges in only one iteration for a positive definite qua-
dratic function with a unit condition number. To obtain the optimum point with the origi-
nal design variables, we can then unscale the transformed design variables. The main
objective of scaling the design variables, then, is to define transformations such that the
condition number of the Hessian with respect to the transformed variables is 1. We will
demonstrate the advantage of scaling the design variables with Examples 11.4 and 11.5.

EXAMPLE 11.4 EFFECT OF SCALING THE DESIGN VARIABLES

Minimize

fðx1; x2Þ5 25x21 1 x22 ðaÞ
starting from (1,1) using the steepest-descent method. How would we scale the design variables

to accelerate the rate of convergence?

Solution
Let us solve the problem using the computer program for the steepest-descent method given

in Appendix B. The results are summarized in Table 11.1. Note the inefficiency of the method

x*
x(3)

x(2)

x(0)

x1

x2

x(1)

FIGURE 11.6 The graphic shows the orthogonal
steepest-descent paths.
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with such a simple quadratic cost function; the method takes 5 iterations and 111 function eva-

luations. Figure 11.7 shows the contours of the cost function and the progress of the method

from the initial design.

The Hessian of f(x1, x2) is a diagonal matrix, given as

H5
50 0
0 2

� �
ðbÞ

The condition number of the Hessian is 50/25 25 since its eigenvalues are 50 and 2. Now let us

introduce new design variables y1 and y2 such that

x5Dy where D5

1ffiffiffiffiffi
50

p 0

0
1ffiffiffi
2

p

2
66664

3
77775 ðcÞ

Note that in general we may use Dii 5 1=
ffiffiffiffiffiffi
Hii

p
for i5 1 to n if the Hessian is a diagonal matrix

(the diagonal elements are the eigenvalues of H). The transformation in Eq. (c) gives

x1 5 y1=
ffiffiffiffiffi
50

p
and x2 5 y2=

ffiffiffi
2

p
and fðy1; y2Þ5

1

2
ðy21 1 y22Þ: ðdÞ

The minimum point of f(y1, y2) is found in just one iteration by the steepest-descent method,

compared with the five iterations for the original function, since the condition number of the

transformed Hessian is 1.

The optimum point is (0, 0) in the new design variable space. To obtain the minimum point in

the original design space, we have to unscale the transformed design variables as

x�1 5 y1=
ffiffiffiffiffi
50

p
5 0 and x�2 5 y2=

ffiffiffi
2

p
5 0. Therefore, for this example, the use of design variable scal-

ing is quite beneficial.

TABLE 11.1 Optimum solution to Example 11.4 with the steepest-
descent method

fðxÞ5 25x21 1 x22

Starting values of design variables 1, 1

Optimum design variables 22.35450E206, 1.37529E203

Optimum cost function value 1.89157E206

Norm of gradient at optimum 2.75310E203

Number of iterations 5

Number of function evaluations 111
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EXAMPLE 11.5 EFFECT OF SCALING THE DESIGN VARIABLES

Minimize

fðx1; x2Þ5 6x21 2 6x1x2 1 2x22 2 5x1 1 4x2 1 2 ðaÞ
starting from (21,22) using the steepest-descent method. Scale the design variables to have a condi-

tion number of unity for the Hessian matrix of the function with respect to the new design variables.

Solution
Note that, unlike the previous example, the function f in this problem contains the cross-

product term x1x2. Therefore, the Hessian matrix is not diagonal, and we need to compute its

eigenvalues and eigenvectors to find a suitable scaling or transformation of the design variables.

The Hessian H of the function f is given as

H5
12 26
26 4

� �
ðbÞ

x2
x2

x1

x1

Detail A

Detail A

x(0) = (1, 1)

x* = (0, 0)

f = 26

x(1)

FIGURE 11.7 Iteration history for Example 11.4 with the
steepest-descent method.
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The eigenvalues of the Hessian are calculated as 0.7889 and 15.211 (therefore, the condition

number5 15.211/0.78895 19.3). The corresponding eigenvectors are (0.4718, 0.8817) and

(20.8817, 0.4718). Now let us define new variables y1 and y2 by the following transformation:

x5Qy where Q5
0:4718 20:8817
0:8817 0:4718

� �
ðcÞ

Note that the columns of Q are the eigenvectors of the Hessian matrix H. The transformation of

variables defined by Eq. (c) gives the function in terms of y1 and y2 as

fðy1; y2Þ5 0:5ð0:7889y21 1 15:211y22Þ1 1:678y1 1 6:2957y2 1 2 ðdÞ
The condition number of the Hessian matrix in the new design variables y1 and y2 is still not

unity. To achieve the condition number equal to unity for the Hessian, we must define another

transformation of y1 and y2 using the eigenvalues of the Hessian matrix as

y5Dz; whereD5

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:7889

p 0

0
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

15:211
p

2
66664

3
77775 ðeÞ

where z1 and z2 are the new design variables, which can be calculated from the equations

y1 5
z1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:7889
p and y2 5

z2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15:211

p ðfÞ

The transformed objective function is given as

fðz1; z2Þ5 0:5ðz21 1 z22Þ1 1:3148z1 1 1:6142z2 ðgÞ
Since the condition number of the Hessian of f(z1,z2) is 1, the steepest-descent method converges

to the solution to f(z1,z2) in just one iteration as (21.3158,21.6142). The minimum point in the

original design space is found by defining the inverse transformation as x5QDz. This gives the

minimum point in the original design space as ð21
3 ; 2

3
2Þ:

It is important to note that the Hessian matrix for Examples 11.4 and 11.5 is a constant
matrix. Therefore, the transformation matrix for the variables is quite easily obtained. In
general, the Hessian matrix depends on the design variables. Therefore, the transformation
matrix depends on the design variables and will keep changing from iteration to iteration.
Actually, we need the Hessian of the function at the minimum point that we are trying to
find. Therefore, some approximations must be used to develop the transformation matrices.

11.4 SEARCH DIRECTION DETERMINATION:
NEWTON’S METHOD

With the steepest-descent method, only first-order derivative information is used to
determine the search direction. If second-order derivatives are available, we can use them
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to represent the cost surface more accurately, and a better search direction can be found.
With the inclusion of second-order information, we can expect a better rate of convergence
as well. For example, Newton’s method, which uses the Hessian of the function in calcu-
lating the search direction, has a quadratic rate of convergence (meaning that it converges
very rapidly when the design point is within certain radius of the minimum point). For
any positive definite quadratic function, the method converges in just one iteration with a
step size of one.

11.4.1 Classical Newton’s Method

The basic idea of the classical Newton’s method is to use a second-order Taylor’s expansion
of the function around the current design point. This gives a quadratic expression for the
change in design Δx. The necessary condition for minimization of this function then gives
an explicit calculation for design change. In the following, we will omit the argument x(k)

from all functions because the derivation applies to any design iteration. Using a second-
order Taylor’s expansion for the function f(x), we obtain

fðx1ΔxÞ5 fðxÞ1 cTΔx1 0:5ΔxTHΔx ð11:25Þ

where Δx is a small change in design and H is the Hessian of f at the point x (sometimes
denoted r2f ). Equation (11.25) is a quadratic function in terms of Δx. The theory of convex
programming problems (Chapter 4) guarantees that if H is positive semidefinite, then
there is a Δx that gives a global minimum for the function of Eq. (11.25). In addition, if H
is positive definite, then the minimum for Eq. (11.25) is unique.

Writing optimality conditions (@f/@(Δx)5 0) for the function of Eq. (11.25),

c1HΔx5 0 ð11:26Þ

Assuming H to be nonsingular, we get an expression for Δx as

Δx52H21c ð11:27Þ

Using this value for Δx, the design is updated as

xð1Þ 5 xð0Þ 1Δx ð11:28Þ

Since Eq. (11.25) is just an approximation for f at the point x(0), x(1) will probably not be
the precise minimum point of f(x). Therefore, the process will have to be repeated to obtain
improved estimates until the minimum is reached.

Each iteration of Newton’s method requires computation of the Hessian of the cost
function. Since it is a symmetric matrix, it needs computation of n(n1 1)/2 second-order
derivatives of f(x) (recall that n is the number of design variables). This can require consid-
erable computational effort.
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11.4.2 Modified Newton’s Method

Note that the classical Newton’s method does not have a step size associated with the
calculation of design change Δx in Eq. (11.27); that is, the step size is taken as one (a step
of length one is called an ideal step size or a Newton’s step). Therefore, there is no way
to ensure that the cost function will be reduced at each iteration (i.e., to ensure that
f(x(k11)), f(x(k))). Thus, the method is not guaranteed to converge to a local minimum point
even with the use of second-order information that requires large calculations.

This situation can be corrected if we incorporate the use of a step size in the calculation
of the design change Δx. In other words, we treat the solution of Eq. (11.27) as the search
direction and use any of the one-dimensional search methods to calculate the step size in
the search direction. This is called the modified Newton’s method and is stated as a step-by-
step algorithm:

Step 1. Make an engineering estimate for a starting design x(0). Set the iteration counter
k5 0. Select a tolerance ε for the stopping criterion.
Step 2. Calculate ci

(k)5 @f(x(k))/@xi for i5 1 to n. If jjc(k)jj, ε, stop the iterative process.
Otherwise, continue.
Step 3. Calculate the Hessian matrix H(k) at the current point x(k).
Step 4. Calculate the search by solving Eq. (11.27) as

dðkÞ 52½HðkÞ�21cðkÞ ð11:29Þ

Note that the calculation of d(k) is symbolic. For computational efficiency, the linear
equation H(k)d(k)52c(k) is solved directly instead of evaluating the inverse of the
Hessian matrix.
Step 5. Update the design as x(k11)5 x(k)1αkd

(k), where αk is calculated to minimize
f(x(k)1αd(k)). Any one-dimensional search procedure may be used to calculate α.
Step 6. Set k5 k1 1 and go to Step 2.

It is important to note here that unless H is positive definite, the direction d(k) deter-
mined from Eq. (11.29) may not be that of descent for the cost function. To see this, we
substitute d(k) from Eq. (11.29) into the descent condition of Eq. (11.2) to obtain

2cðkÞTH21cðkÞ, 0 ð11:30Þ
The foregoing condition will always be satisfied if H is positive definite. If H is negative
definite or negative semidefinite, the condition is always violated. With H as indefinite or
positive semidefinite, the condition may or may not be satisfied, so we must check for it. If
the direction obtained in Step 4 is not that of descent for the cost function, then we should
stop there because a positive step size cannot be determined. Based on the foregoing dis-
cussion, it is suggested that the descent condition of Eq. (11.2) should be checked for
Newton’s search direction at each iteration before calculating the step size. Later we will
present methods known as quasi-Newton methods; these use an approximation for the
Hessian matrix that is kept positive definite. Because of that the search direction is always
that of descent.

Examples 11.6 and 11.7 demonstrate use of the modified Newton’s method.
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EXAMPLE 11.6 USE OF THE MODIFIED NEWTON’S METHOD

Minimize

fðxÞ5 3x21 1 2x1x2 1 2x22 1 7 ðaÞ
using the modified Newton’s algorithm starting from the point (5, 10). Use ε5 0.0001 as the stop-

ping criterion.

Solution
We will follow the steps of the modified Newton’s method.

Step 1. x(0) is given as (5, 10).

Step 2. The gradient vector c(0) at the point (5, 10) is given as

cð0Þ 5 ð6x1 1 2x2; 2x1 1 4x2Þ5 ð50; 50Þ ðbÞ

:cð0Þ:5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
502 1 502

p
5 50

ffiffiffi
2

p
. ε ðcÞ

Therefore, the convergence criterion is not satisfied.

Step 3. The Hessian matrix at the point (5, 10) is given as

Hð0Þ 5
6 2
2 4

� �
ðdÞ

Note that the Hessian does not depend on the design variables and is positive definite (since

its eigenvalues are 7.24 and 2.76). Therefore, Newton’s direction satisfies the descent

condition at each iteration.

Step 4. The direction of design change is

dð0Þ 52H21cð0Þ 5
21

20

4 22
22 6

� �
50
50

� �
5

25
210

� �
ðeÞ

Step 5. Calculate the Step size α to minimize f(x(0)1αd(0)):

xð1Þ 5 xð0Þ 1αdð0Þ 5
5

10

� �
1α 25

210

� �
5

525α
10210α

� �
ðfÞ

df

dα
5 0; or rfðxð1ÞÞ �dð0Þ 5 0 ðgÞ

where the chain rule of differentiation shown in Eq. (11.22) has been used in Eq. (g). Using

the Step 2 calculations, calculate rf(x(1)) and the dot product rf(x(1)) �d(0):

rfðxð1ÞÞ5 6ð525αÞ1 2ð10210αÞ
2ð525αÞ1 4ð10210αÞ

� �
5

50250α
50250α

� �
ðhÞ

rfðxð1ÞÞ �dð0Þ 5 ð50250α; 50250αÞ 25
210

� �
5 0 ðiÞ

Or 25ð50250αÞ210ð50250αÞ5 0 ðjÞ
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Solving the preceding equation, we get α5 1. Note that the golden section search also gives

α5 1. Therefore,

xð1Þ 5
525α

10210α

� �
5

0
0

� �
ðkÞ

The gradient of the cost function at x(1) is calculated as

cð1Þ 5
50250α
50250α

� �
5

0
0

� �
ðlÞ

Since jjc(k)jj, ε, Newton’s method has given the solution in just one iteration. This is because

the function is a positive definite quadratic form (the Hessian of f is positive definite every-

where). Note that the condition number of the Hessian is not 1; therefore the steepest-descent

method will not converge in one iteration, as was the case in Examples 11.4 and 11.5.

A computer program based on the modified Newton’s method is given in Appendix B.
It needs three user-supplied subroutines FUNCT, GRAD, and HASN. These subroutines evalu-
ate the cost function, the gradient, and the Hessian matrix of the cost function, respec-
tively. The program is used to solve the problem in Example 11.7.

EXAMPLE 11.7 USE OF THE MODIFIED NEWTON’S METHOD

Minimize

fðxÞ5 10x41 220x21x2 1 10x22 1 x21 22x1 1 5 ðaÞ
using the computer program for the modified Newton’s method given in Appendix B from the

point (21, 3). Golden section search may be used for step size determination with δ5 0.05 and

line search accuracy equal to 0.0001. For the stopping criterion, use ε5 0.005.

Solution
Note that f(x) is not a quadratic function in terms of the design variables. Thus, we cannot

expect Newton’s method to converge in one iteration. The gradient of f(x) is given as

c5rfðxÞ5 ð40x31 2 40x1x2 1 2x1 2 2; 220x21 1 20x2Þ ðbÞ
and the Hessian matrix of f(x) is

H5r2fðxÞ5 120x21 2 40x2 1 2 240x1
2 40x1 20

� �
ðcÞ

Results with the modified Newton’s method for the problem are given in Table 11.2. The opti-

mum point is (1, 1) and the optimum value of f(x) is 4.0. Newton’s method has converged to the

optimum solution in eight iterations. Figure 11.8 shows the contours for the function and the

progress of the method from the starting design (21, 3). It is noted that the step size was approx-

imately equal to one in the last phase of the iterative process. This is because the function resem-

bles a quadratic function sufficiently close to the optimum point and the step size is equal to

unity for a quadratic function.
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The drawbacks of the modified Newton method for general applications include the
following:

1. It requires calculations of second-order derivatives at each iteration, which is usually
quite time-consuming. In some applications it may not even be possible to calculate
such derivatives. Also, a linear system of equations in Eq. (11.29) needs to be solved.
Therefore, each iteration of the method requires substantially more calculations
compared with the steepest-descent or conjugate gradient method.

2. The Hessian of the cost function may be singular at some iterations. Thus, Eq. (11.29)
cannot be used to compute the search direction. Also, unless the Hessian is positive
definite, the search direction cannot be guaranteed to be that of descent for the cost
function, as discussed earlier.

3. The method is not convergent unless the Hessian remains positive definite and a step
size is calculated along the search direction to update the design. However, the method

TABLE 11.2 Optimum solution to Example 11.7 with the modified
Newton’s method

fðxÞ5 10x41 2 20x21x2 1 10x22 1 x21 2 2x1 1 5

Starting point �1, 3

Optimum design variables 9.99880E�01, 9.99681E�01

Optimum cost function value 4.0

Norm of gradient at optimum 3.26883E�03

Number of iterations 8

Number of function evaluations 198

x1

x2
(–1, 3)

3.0

2.0

2.0
–1.0

–2.0 –1.0

1.0

1.0

0

0

x(0)

x(1)

9

x(2)

x(3)

x(4)

Optimum point
(1, 1) and f * = 4

7

5

35
14

6

f = 65 FIGURE 11.8 Iteration history for Example 11.7 with
Newton’s method.
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has a quadratic rate of convergence when it works. For a strictly convex quadratic
function, the method converges in just one iteration from any starting design.

A comparison of the steepest-descent, conjugate gradient, and modified Newton’s
methods is presented in Example 11.8.

EXAMPLE 11.8 COMPARISON OF STEEPEST-DESCENT,
CONJUGATE GRADIENT, AND MODIFIED
NEWTON METHODS

Minimize

fðxÞ5 50ðx2 2 x21Þ2 1 ð22 x1Þ2 ðaÞ
starting from the point (5,25). Use the steepest-descent, Newton, and conjugate gradient meth-

ods, and compare their performance.

Solution
The minimum point for the function is (2, 4) with f(2,4)5 0. We use exact gradient expressions

and ε5 0.005 to solve the problem using the steepest-descent and Newton’s method programs

given in Appendix B, and the conjugate gradient method available in IDESIGN. Table 11.3 sum-

marizes the final results with the three methods.

For the steepest-descent method, δ05 0.05 and a line search termination criterion of 0.00001

are used. For the modified Newton’s method, they are 0.05 and 0.0001, respectively. Golden sec-

tion search is used with both methods. It can be observed again that for the present example the

steepest-descent method is the most inefficient and the conjugate gradient is the most efficient.

Therefore, the conjugate gradient method is recommended for general applications.

11.4.3 Marquardt Modification

As noted before, the modified Newton’s method has several drawbacks that can cause
numerical difficulties. For example, if the Hessian H of the cost function is not positive
definite, the direction found from Eq. (11.29) may not be that of descent for the cost

TABLE 11.3 Comparative evaluation of three methods for Example 11.8

fðxÞ5 50ðx2 2 x21Þ2 1 ð22 x1Þ2

Steepest-descent Conjugate gradient Modified Newton’s

x1 1.9941E100 2.0000E100 2.0000E100

x2 3.9765E100 3.9998E100 3.9999E100

f 3.4564E205 1.0239E208 2.5054E210

jjcjj 3.3236E203 1.2860E204 9.0357E204

Number of function evaluations 138236 65 349

Number of iterations 9670 22 13
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function. In that case, a step cannot be executed along the direction. Marquardt (1963) sug-
gested a modification to the direction-finding process that has the desirable features of the
steepest-descent and Newton’s methods. It turns out that far away from the solution point,
the method behaves like the steepest-descent method, which is quite good there. Near the
solution point, it behaves like the Newton’s method, which is very effective there.

In Marquardt’s method, the Hessian is modified as (H1λI), where λ is a positive con-
stant. λ is initially selected as a large number that is reduced as iterations progress. The
search direction is computed from Eq. (11.29) as

dðkÞ 52½HðkÞ 1λkI�21cðkÞ ð11:31Þ
Note that when λ is large, the effect ofH is essentially neglected and d(k) is essentially 2(1/λ)
c(k), which is the steepest-descent direction with 1/λ as the step size.

As the algorithm proceeds, λ is reduced (i.e., the step size is increased). When λ
becomes sufficiently small, then the effect of λI is essentially neglected and the Newton
direction is obtained from Eq. (11.31). If the direction d(k) of Eq. (11.31) does not reduce the
cost function, then λ is increased (the step size is reduced) and the search direction is
recomputed. Marquardt’s algorithm is summarized in the following steps.

Step 1. Make an engineering estimate for the starting design x(0). Set the iteration
counter at k5 0. Select a tolerance ε as the stopping criterion and λ0 as a large constant
(say 1000).
Step 2. Calculate ci

(k)5 @f(x(k))/@xi for i5 1 to n. If jjc(k)jj, ε, stop. Otherwise, continue.
Step 3. Calculate the Hessian matrix H(x(k)).
Step 4. Calculate the search direction by solving Eq. (11.31).
Step 5. If f(x(k)1d(k)), f(x(k)), then continue. Otherwise, increase λk (say to 2λk), and go
to Step 4.
Step 6. Reduce λk, say to λk115 0.5λk. Set k5 k1 1 and go to Step 2.

11.5 SEARCH DIRECTION DETERMINATION:
QUASI-NEWTON METHODS

In Section 10.6 the steepest-descent method was described. Some of the drawbacks of
that method were pointed out. It was noted that the method has a poor rate of conver-
gence because only first-order information is used. This flaw is corrected with Newton’s
method, where second-order derivatives are used. Newton’s method has very good con-
vergence properties. However, it can be inefficient because it requires calculation of
n(n1 1)/2 second-order derivatives to generate the Hessian matrix (recall that n is the
number of design variables). For most engineering design problems, calculation of second-
order derivatives may be tedious or even impossible. Also, Newton’s method runs into
difficulties if the Hessian of the function is singular at any iteration.

The methods presented in this section overcome the drawbacks of Newton’s method by
generating an approximation for the Hessian matrix or its inverse at each iteration. Only
the first derivatives of the function are used to generate these approximations. Therefore

466 11. MORE ON NUMERICAL METHODS FOR UNCONSTRAINED OPTIMUM DESIGN

II. NUMERICAL METHODS FOR CONTINUOUS VARIABLE OPTIMIZATION



the methods have desirable features of both the steepest-descent and the Newton’s meth-
ods. They are called quasi-Newton methods.

The quasi-Newton methods were initially developed for positive definite quadratic func-
tions. For such functions they converge to the exact optimum in at most n iterations. However,
this ideal behavior does not carry over to general cost functions, and the methods usually
need to be restarted at every (n1 1)th iteration, just as with the conjugate gradient method.

There are several ways to approximate the Hessian or its inverse. The basic idea is to
update the current approximation of the Hessian using two pieces of information: changes in
design and the gradient vectors between two successive iterations. While updating, the prop-
erties of symmetry and positive definiteness are preserved. Positive definiteness is essential
because without it the search direction may not be a descent direction for the cost function.

The derivation of the updating procedures is based on the so-called quasi-Newton condi-
tion, also called the secant equation (Gill et al., 1981; Nocedal and Wright, 2006). This condition
is derived by requiring the curvature of the cost function in the search direction d(k) to be the
same at two consecutive points x(k) and x(k11). The enforcement of this condition gives the
updating formulas for the Hessian of the cost function or its inverse. For a strictly convex qua-
dratic function, the updating procedure converges to the exact Hessian in n iterations. We
will describe two of the most popular methods in the class of quasi-Newton methods.

11.5.1 Inverse Hessian Updating: The DFP Method

The DFP method, initially proposed by Davidon (1959), was modified by Fletcher and
Powell (1963); their version is presented here. DFP is one of the most powerful methods
for the minimization of a general function f(x). The method builds an approximate inverse of
the Hessian of f(x) using only the first derivatives. It is often called the DFP (Davidon-
Fletcher-Powell) method:

Step 1. Estimate an initial design x(0). Choose a symmetric positive definite n3 n
matrix A(0) as an estimate for the inverse of the Hessian of the cost function. In the
absence of more information, A(0)5 I may be chosen. Also, specify a convergence
parameter ε. Set k5 0. Compute the gradient vector as c(0)5rf(x(0)).
Step 2. Calculate the norm of the gradient vector as jjc(k)jj. If jjc(k)jj,ε, then stop the
iterative process. Otherwise, continue.
Step 3. Calculate the search direction as

dðkÞ 5 2AðkÞcðkÞ ð11:32Þ
Step 4. Compute the optimum step size:

αk5α to minimize fðxðkÞ 1αdðkÞÞ ð11:33Þ
Step 5. Update the design as

xðk11Þ 5 xðkÞ 1αkd
ðkÞ ð11:34Þ

Step 6. Update the matrix A(k)—the approximation for the inverse of the Hessian of the
cost function—as

Aðk11Þ 5AðkÞ 1BðkÞ 1CðkÞ ð11:35Þ
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where the correction matrices B(k) and C(k) are calculated using the quasi-Newton condi-
tion mentioned earlier:

BðkÞ 5
sðkÞsðkÞT

ðsðkÞ �yðkÞÞ ; CðkÞ 5
2zðkÞzðkÞT

ðyðkÞ � zðkÞÞ ð11:36Þ

sðkÞ 5αkd
ðkÞðchange in designÞ; yðkÞ 5 cðk11Þ 2 cðkÞðchange in gradientÞ ð11:37Þ

cðk11Þ 5rfðxðk11ÞÞ; zðkÞ 5AðkÞyðkÞ ð11:38Þ
Step 7. Set k5 k1 1 and go to Step 2.

Note that the first iteration of the method is the same as that for the steepest-descent
method. Fletcher and Powell (1963) prove the following properties of the algorithm:

1. The matrix A(k) is positive definite for all k. This implies that the method will always
converge to a local minimum point, since

d

dα
fðxðkÞ 1αdðkÞÞ a50 52cðkÞTAðkÞcðkÞ, 0

�� ð11:39Þ

as long as c(k) 6¼ 0. This means that f(x(k)) may be decreased by choosing α. 0 if c(k) 6¼ 0
(i.e., d(k) is a direction of descent).

2. When this method is applied to a positive definite quadratic form, A(k) converges to the
inverse of the Hessian of the quadratic form.

Example 11.9 illustrates calculations for two iterations of the DFP method.

EXAMPLE 11.9 APPLICATION OF THE DFP METHOD

Execute two iterations of the DFP method for the problem starting from the point (1,2):

Minimize
fðxÞ5 5x21 1 2x1x2 1 x22 1 7 ðaÞ

Solution
We will follow steps of the algorithm.

Iteration 1 (k5 0)

1. x(0)5 (1, 2); A(0)5 I, k5 0, ε5 0.001

c(0)5 (10x11 2x2, 2x11 2x2)5 (14, 6)

2. :cð0Þ:5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
142 1 62

p
5 15:232. ε; so continue

3. d(0)52c(0)5 (214,26)

4. x(1)5 x(0)1αd(0)5 (1214α, 22 6α)

fðxð1ÞÞ5 fðαÞ5 5ð12 14αÞ2 1 2ð12 14αÞð22 6αÞ1 ð22 6αÞ2 1 7 ðbÞ
df

dα
5 5 2ð Þ 214ð Þ 12 14αð Þ1 2 214ð Þ 22 6αð Þ1 2 26ð Þ 12 14αð Þ1 2 26ð Þ 22 6αð Þ5 0 ðcÞ

α0 5 0:099
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d2f

dα2
5 2348. 0

Therefore, a step size of α5 0.099 is acceptable.

5. xð1Þ 5 xð0Þ 1α0d
ð0Þ 5

1
2

� �
1 0:099

214
26

� �
5

20:386
1:407

� �

6. sð0Þ 5α0d
ð0Þ 5 ð21:386; 20:593Þ; cð1Þ 5 ð21:046; 2:042Þ ðdÞ

yð0Þ 5 cð1Þ 2 cð0Þ 5 ð215:046; 23:958Þ; zð0Þ 5yð0Þ 5 ð215:046; 23:958Þ ðeÞ

sð0Þ � yð0Þ 5 23:20; yð0Þ � zð0Þ 5 242:05 ðfÞ

sð0Þsð0ÞT 5
1:921 0:822
0:822 0:352

� �
; Bð0Þ 5

sð0Þ sð0ÞT

sð0Þ � yð0Þ 5
0:0828 0:0354
0:0354 0:0152

� �
ðgÞ

zð0Þzð0ÞT 5
226:40 59:55
59:55 15:67

� �
; Cð0Þ 52

zð0Þzð0ÞT

yð0Þ � zð0Þ 5
20:935 20:246
20:246 20:065

� �
ðhÞ

Að1Þ 5Að0Þ 1Bð0Þ 1Cð0Þ 5
0:148 20:211

20:211 0:950

� �
ðiÞ

Iteration 2 (k5 1)

2. jjc(1)jj5 2.29 . ε, so continue

3. d(1)52A(1)c(1)5 (0.586, 21.719); compare this to the steepest-descent direction, d(1)52c(1)5

(1.046,22.042)

4. Step size determination:

Minimize f(x(1)1αd(1)); α15 0.776

5. x(2)5 x(1)1α1d
(1)5 (20.386, 1.407)1 0.776(0.586,21.719)5 (0.069, 0.073)

6. s(1)5α1d
(1)5 (0.455, 21.334)

cð2Þ 5 ð0:836; 0:284Þ; yð1Þ 5 cð2Þ 2 cð1Þ 5 ð1:882; 21:758Þ ðjÞ

zð1Þ 5Að1Þyð1Þ 5 ð0:649; 22:067Þ; sð1Þ � yð1Þ 5 3:201; yð1Þ � zð1Þ 5 4:855 ðkÞ

sð1Þsð1ÞT 5
0:207 20:607

20:607 1:780

� �
; B 1ð Þ 5

sð1Þsð1ÞT

sð1Þ � yð1Þ 5
0:0647 20:19

20:19 0:556

� �
ðlÞ

zð1Þzð1ÞT 5
0:421 21:341

21:341 4:272

� �
; Cð1Þ 52

zð1Þzð1ÞT

yð1Þ � zð1Þ 5
20:0867 0:276
0:276 20:880

� �
ðmÞ

Að2Þ 5Að1Þ 1Bð1Þ 1Cð1Þ 5
0:126 20:125

20:125 0:626

� �
ðoÞ

It can be verified that the matrix A(2) is quite close to the inverse of the Hessian of the cost

function. One more iteration of the DFP method will yield the optimum solution of (0, 0).
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11.5.2 Direct Hessian Updating: The BFGS Method

It is possible to update the Hessian rather than its inverse at every iteration. Several
such updating methods are available; however, we will present a popular method that has
proven to be most effective in applications. Detailed derivation of the method is given in
works by Gill and coworkers (1981) and Nocedal and Wright (2006). It is known as the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) method and is summarized in the following
algorithm:

Step 1. Estimate an initial design x(0). Choose a symmetric positive definite n3 nmatrixH(0)

as an estimate for the Hessian of the cost function. In the absence of more information, let
H(0)5 I. Choose a convergence parameter ε. Set k5 0, and compute the gradient vector as
c(0)5rf(x(0)).
Step 2. Calculate the norm of the gradient vector as jjc(k)jj. If jjc(k)jj, ε, stop the
iterative process; otherwise, continue.
Step 3. Solve the following linear system of equations to obtain the search direction:

HðkÞdðkÞ 52cðkÞ ð11:40Þ
Step 4. Compute the optimum step size:

αk 5α to minimize fðxðkÞ 1αdðkÞÞ ð11:41Þ
Step 5. Update the design as

xðk11Þ 5 xðkÞ 1αkd
ðkÞ ð11:42Þ

Step 6. Update the Hessian approximation for the cost function as

Hðk11Þ 5HðkÞ 1DðkÞ 1EðkÞ ð11:43Þ
where the correction matrices D(k) and E(k) are given as

DðkÞ 5
yðkÞyðkÞT

ðyðkÞ � sðkÞÞ ; EðkÞ 5
cðkÞcðkÞT

ðcðkÞ �dðkÞÞ
ð11:44Þ

sðkÞ 5 akd
ðkÞðchange in designÞ; yðkÞ 5 cðk11Þ 2 cðkÞ ðchange in gradientÞ; cðk11Þ 5rfðxðk11ÞÞ

ð11:45Þ
Step 7. Set k5 k1 1 and go to Step 2.

Note again that the first iteration of the method is the same as that for the steepest-
descent method when H(0)5 I. It can be shown that the BFGS update formula keeps
the Hessian approximation positive definite if an accurate line search is used. This is
important to know because the search direction is guaranteed to be that of descent for
the cost function if H(k) is positive definite. In numerical calculations, difficulties can
arise because the Hessian can become singular or indefinite as a result of inexact line
search and round-off and truncation errors. Therefore, some safeguards against numeri-
cal difficulties must be incorporated into computer programs for stable and convergent
calculations.
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Another numerical procedure that is extremely useful is to update decomposed factors
(Cholesky factors) of the Hessian rather than the Hessian itself. With that procedure, the
matrix can numerically be guaranteed to remain positive definite, and the linear equation
H(k)d(k)52c(k) can be solved more efficiently.

Example 11.10 illustrates calculations for two iterations of the BFGS method.

EXAMPLE 11.10 APPLICATION OF THE BFGS METHOD

Execute two iterations of the BFGS method for the problem starting from the point (1, 2):

Minimize

fðxÞ5 5x1
2 1 2x1x2 1 x22 1 7:

Solution
We will follow the steps of the algorithm. Note that the first iteration gives the steepest-

descent step for the cost function.

Iteration 1 (k5 0)

1. x(0)5 (1, 2), H(0)5 I, ε5 0.001, k5 0

cð0Þ 5 ð10x1 1 2x2; 2x1 1 2x2Þ5 ð14; 6Þ ðaÞ
2. :cð0Þ:5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
142 1 62

p
5 15:232. ε; so continue

3. d(0)52c(0)5 (214, 26); since H(0)5 I

4. Step size determination (same as Example 11.9): α05 0.099

5. x(1)5 x(0)1α0d
(0)5 (20.386, 1.407)

6. s(0)5α0d
(0)5 (21.386, 20.593); c(1)5 (21.046, 2.042)

yð0Þ 5 cð1Þ 2 cð0Þ 5 ð215:046;23:958Þ; yð0Þ � sð0Þ 5 23:20; cð0Þ �dð0Þ 52232:0 ðbÞ

yð0Þyð0ÞT 5
226:40 59:55
59:55 15:67

� �
; Dð0Þ 5

yð0Þyð0ÞT

yð0Þ � sð0Þ 5
9:760 2:567
2:567 0:675

� �
ðcÞ

cð0Þcð0ÞT 5
196 84
84 36

� �
; Eð0Þ 5

cð0Þcð0ÞT

cð0Þ �dð0Þ 5
20:845 20:362
20:362 20:155

� �
ðdÞ

Hð1Þ 5Hð0Þ 1Dð0Þ 1Eð0Þ 5
9:915 2:205
2:205 1:520

� �
ðeÞ

Iteration 2 (k5 1)

2. jjc(1)jj5 2.29. ε, so continue

3. H(1)d(1)52c(1); or, d(1)5 (0.597,22.209)

4. Step size determination: α15 0.638

5. x(2)5 x(1)1α1d
(1)5 (20.005,20.002)

6. s(1)5α1d
(1)5 (0.381,21.409); c(2)5 (20.054,20.014)

yð1Þ 5 cð2Þ 2 cð1Þ 5 ð0:992; 22:056Þ; yð1Þ � sð1Þ 5 3:275; cð1Þ �dð1Þ 525:135 ðfÞ
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yð1Þyð1ÞT 5
0:984 22:04

22:04 4:227

� �
; Dð1Þ 5

yð1Þ yð1ÞT

yð1Þ � sð1Þ 5
0:30 20:623

20:623 1:291

� �
ðgÞ

cð1Þcð1ÞT 5
1:094 22:136

22:136 4:170

� �
; Eð1Þ 5

cð1Þ cð1ÞT

cð1Þ �dð1Þ 5
20:213 0:416
0:416 20:812

� �
ðhÞ

Hð2Þ 5Hð1Þ 1Dð1Þ 1Eð1Þ 5
10:002 1:998
1:998 1:999

� �
ðiÞ

It can be verified that H(2) is quite close to the Hessian of the given cost function. One more

iteration of the BFGS method will yield the optimum solution of (0, 0).

11.6 ENGINEERING APPLICATIONS OF UNCONSTRAINED
METHODS

There are several engineering applications where unconstrained optimization methods
can be used. For example, linear as well as nonlinear equations can be solved with uncon-
strained optimization methods. Such equations arise while calculating the response of
structural and mechanical systems. The procedures have been incorporated into some
commercial software packages as well, such as finite element analysis programs.

11.6.1 Data Interpolation

Another very common application of unconstrained optimization techniques is the
interpolation of discrete numerical data. Here we want to develop an analytical represen-
tation for the discrete numerical data. These data may be collected from experiments or
some other observations. For example, we may have discrete data (xi, yi), i5 1 to n that
relate two variables x and y. The data need to be represented as a function y5 q(x). The
function q(x) may be linear (straight line), polynomial (curve), exponential, logarithmic, or
any other function. Similarly, we may have data involving three or more variables. In that
case a function of several variables needs to be developed.

The problem of data interpolation is called regression analysis. The problem can be for-
mulated as an unconstrained optimization problem where the error between the available
data and its analytical representation is minimized. The parameters that characterize the
interpolation function are treated as the design variables for the optimization problem.
Different error functions may be defined. The most common error function is the sum of
squares of the errors at each discrete point, defined as

fðqÞ5
Xn
i51

½yi 2 qðxiÞ�2 ð11:46Þ

Thus the unconstrained optimization problem is to minimize

fðqÞ5
Xn
i51

½yi 2 qðxiÞ�2 ð11:47Þ
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This is known as the least squares minimization problem.
If a linear relationship is desired between the variables x and y, then q(x) is represented as

qðxÞ5 ax1 b ð11:48Þ
where a and b are the unknown parameters. Substituting Eq. (11.48) in Eq. (11.47), we
obtain the linear least squares problem as

Minimize

fða;bÞ5
Xn
i51

½yi 2 ðaxi 1 bÞ�2 ð11:49Þ

The problem, then, is to determine a and b to minimize the error function of Eq. (11.49).
This problem can be solved in a closed form by writing the optimality condition and solv-
ing the resulting system of two linear equations.

Depending on the variability in the available data, many other functions may be used
for q(x) in Eq. (11.48), such as higher-order polynomials, logarithmic functions, exponential
functions, and the like.

11.6.2 Minimization of Total Potential Energy

The equilibrium states of structural and mechanical systems are characterized by the sta-
tionary points of the total potential energy of the system. This is known as the principle of sta-
tionary potential energy. If at a stationary point the potential energy actually has a minimum
value, the equilibrium state is called stable. In structural mechanics, these principles are of
fundamental importance and form the basis for numerical methods of structural analysis.

To demonstrate the principle, we consider the symmetric two-bar truss shown in
Figure 11.9. The structure is subjected to a load W at node C. Under the action of this load,
node C moves to a point C0. The problem is to compute the displacements x1 and x2 of

A

1

B

C
C′θ

β

s

W

h

x2

x1

2

FIGURE 11.9 Two-bar truss.
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node C. This can be done by writing the total potential energy of the structure in terms of
x1 and x2 and then minimizing it. Once the displacements x1 and x2 are known, member
forces and stresses can be calculated using them. Let

E 5modulus of elasticity, N/m2 (this is the property of a material that relates stresses
in the material to strains)

s 5 span of the truss, m
h 5height of the truss, m
A15 cross-sectional area of member 1, m2

A25 cross-sectional area of member 2, m2

θ 5 angle at which load W is applied, degrees

L 5 length of the members; L5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 1 0:25s2

p
, m

W5 load, N
x15horizontal displacement, m
x25vertical displacement, m

The total potential energy of the system, assuming small displacements, is given as

Pðx1; x2Þ5
EA1

2L
ðx1 cosβ1 x2 sinβÞ2 1 EA2

2L
ð2x1 cosβ1 x2 sinβÞ2

2Wx1 cosθ2Wx2 sinθ; NUm
ð11:50Þ

where the angle β is shown in Figure 11.9. Minimization of P with respect to x1 and x2
gives the displacements x1 and x2 for the equilibrium state of the two-bar structure.
Example 11.11 demonstrates this calculation.

EXAMPLE 11.11 MINIMIZATION OF THETOTAL POTENTIAL
ENERGY OF A TWO-BAR TRUSS

For the two-bar truss problem, use the following numerical data:

A15A25 1025 m2

h5 1.0 m, s5 1.5 m

W5 10 kN

θ5 30�

E5 207 GPa

Minimize the total potential energy given in Eq. (11.50) by (1) the graphical method, (2) the ana-

lytical method, and (3) the conjugate gradient method.

Solution
Substituting these data into Eq. (11.50) and simplifying, we get (note that cosβ5 s/2L and

sinβ5 h/L)

Pðx1; x2Þ5
EA

L

s

2L

� 	2

x21 1
EA

L

h

2L

� �2

x22 2Wx1 cosθ2Wx2 sinθ

5 ð5:9623 106Þx21 1 ð1:05983 106Þx22 28660x1 25000x2; N �m
ðaÞ
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Contours for the function are shown in Figure 11.10. The optimum solution from the graph is

calculated as x15 (7.26343 1022) m; x25 (2.33593 1022) m; P5237.348 N �m.

Using the necessary conditions of optimality (rP5 0), we get

2ð5:9623 106Þx1 286605 0; x1 5 ð7:26293 1023Þ;m ðbÞ
2ð1:05983 106Þx2 250005 0; x2 5 ð2:35893 1023Þ;m ðcÞ

The conjugate gradient method given in IDESIGN (Arora and Tseng, 1987a,b) also converges to

the same solution.

11.6.3 Solutions to Nonlinear Equations

Unconstrained optimization methods can be used to find the roots of a nonlinear sys-
tem of equations. To demonstrate this, we consider the following 23 2 system:

F1ðx1; x2Þ5 0; F2ðx1; x2Þ5 0 ð11:51Þ
We define a function that is the sum of the squares of the functions F1 and F2 as

fðx1; x2Þ5 F21ðx1; x2Þ1 F22ðx1; x2Þ ð11:52Þ
Note that if x1 and x2 are the roots of Eq. (11.51), then f5 0 in Eq. (11.52). If x1 and x2

are not the roots, then the function f . 0 represents the sum of the squares of the errors in
the equations F15 0 and F25 0. Thus, the optimization problem is to find x1 and x2 to min-
imize the function f(x1, x2) of Eq. (11.52). We need to show that the necessary conditions
for minimization of f(x) give the roots for the nonlinear system of equations. The necessary
conditions of optimality give

@f

@x1
5 2F1

@F1
@x1

1 2F2
@F2
@x1

5 0 ð11:53Þ
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FIGURE 11.10 Contours
of the potential energy func-
tion P(x1, x2) for a two-bar
truss (P5 0, 29.0, 218.0, 227.0,
236.0, and 237.348 N�m).
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@f

@x2
5 2F1

@F1
@x2

1 2F2
@F2
@x2

5 0 ð11:54Þ

Note that the necessary conditions are satisfied if F15 F25 0, x1 and x2 are the roots of the
equations F15 0, and F25 0. At this point f5 0. Note also that the necessary conditions can be
satisfied if @Fi/@xj5 0 for i, j5 1, 2. If @Fi/@xj5 0, x1 and x2 are stationary points for the func-
tions F1 and F2. For most problems it is unlikely that the stationary points for F1 and F2 will
also be the roots of F15 0 and F25 0, so we may exclude these cases. In any case, if x1 and x2
are the roots of the equations, then f must have a zero value. Also if the optimum value of f is
different from zero (f 6¼ 0), then x1 and x2 cannot be the roots of the nonlinear system. Thus, if
the optimization algorithm converges with f 6¼ 0, then the optimum point for the problem of
minimization of f is not a root of the nonlinear system. The algorithm should be restarted
from a different initial point. Example 11.12 illustrates this root-finding process.

EXAMPLE 11.12 FINDING ROOTS OF NONLINEAR EQUATIONS
BY UNCONSTRAINED MINIMIZATION

Find the roots of the equations

F1ðxÞ5 3x1
2 1 12x22 1 10x1 5 0; F2ðxÞ5 24x1x2 1 4x2 1 35 0 ðaÞ

Solution
We define the error function f(x) as

fðxÞ5F21 1 F22 5 ð3x21 1 12x22 1 10x1Þ2 1 ð24x1x2 1 4x2 1 3Þ2 ðbÞ
To minimize this function, we can use any of the methods discussed previously. Table 11.4

shows the iteration history with the conjugate gradient method available in IDESIGN (Arora and

Tseng, 1987a,b).

One root of the equations is x15 20.3980, x25 0.5404 starting from the point (21, 1). Starting

from a different point (250, 50), another root is found as (23.331, 0.03948). However, starting

from another point (2, 3), the program converges to (0.02063,20.2812) with f5 4.351. Since f 6¼ 0,

this point is not a root of the given system of equations. When this happens, we start from a dif-

ferent point and re-solve the problem.

TABLE 11.4 Root of the nonlinear equations in Example 11.12

Number x1 x2 F1 F2 f

0 �1.0000 1.0000 5.0000 �17.0000 314.0000

1 �0.5487 0.4649 �1.9900 �1.2626 5.5530

2 �0.4147 0.5658 0.1932 �0.3993 0.1968

3 �0.3993 0.5393 �0.0245 �0.0110 7.242E�4

4 �0.3979 0.5403 �9.377E�4 �1.550E�3 2.759E�6

5 �0.3980 0.5404 �4.021E�4 �3.008E�4 1.173E�8
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Note that the preceding procedure can be generalized to a system of n equations in n
unknowns. In this case, the error function f(x) will be defined as

fðxÞ5
Xn
i51

½FiðxÞ�2 ð11:55Þ

11.7 SOLUTIONS TO CONSTRAINED PROBLEMS USING
UNCONSTRAINED OPTIMIZATION METHODS

It turns out that unconstrained optimization methods can also be used to solve constrained
design problems. This section briefly describes such methods that transform the constrained
problem to a sequence of unconstrained problems. The basic idea is to construct a compos-
ite function using the cost and constraint functions. The composite function also contains
certain parameters—called penalty parameters—that penalize the composite function for
violation of constraints. The larger the violation, the larger the penalty. Once the composite
function is defined for a set of penalty parameters, it is minimized using any of the uncon-
strained optimization techniques. The penalty parameters are then adjusted based on cer-
tain conditions, and the composite function is redefined and minimized again. The process
is continued until there is no significant improvement in the estimate for the optimum
point.

Methods based on the foregoing philosophy have generally been called sequential
unconstrained minimization techniques, or SUMTs (Fiacco and McCormick, 1968). It can
be seen that the basic idea of SUMTs is quite straightforward. Because of their simplicity,
the methods have been extensively developed and tested for engineering design problems.
A very brief discussion of the basic concepts and philosophy of the methods is included here
to give students a flavor for the techniques. For more detailed presentations, texts by Gill,
Murray, and Wright (1981), Nocedal and Wright (2006), and others should be consulted.

The term “transformation method” is used to describe any method that solves the con-
strained optimization problem by transforming it into one or more unconstrained pro-
blems. Such methods include the so-called penalty and barrier function methods (exterior
and interior penalty methods, respectively) as well as the multiplier methods (also called
augmented Lagrangian methods). To remind the reader of the original constrained problem
that we are trying to solve, we restate it as follows: Find an n-vector x5 (x1, x2, . . . , xn) to

Minimize

f 5 fðxÞ ð11:56Þ
subject to

hiðxÞ5 0; i5 1 to p ð11:57Þ
giðxÞ # 0; i5 1 to m ð11:58Þ

All transformation methods convert this constrained optimization problem into an uncon-
strained problem using a transformation function of the form:

Φðx; rÞ5 fðxÞ1PðhðxÞ; gðxÞ; rÞ ð11:59Þ
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where r is a vector of penalty parameters and P is a real-valued function whose action of
imposing the penalty on the cost function is controlled by r. The form of penalty function
P depends on the method used.

The basic procedure is to choose an initial design estimate x(0) and define the function Φ
of Eq. (11.59). The penalty parameters r are also initially selected. The function Φ is mini-
mized for x, keeping r fixed. Then the parameters r are adjusted and the procedure is
repeated until no further improvement is possible.

11.7.1 Sequential Unconstrained Minimization Techniques

Sequential unconstrained minimization techniques consist of two different types of pen-
alty functions. The first one is called the penalty function method and the second is called
the barrier function method.

Penalty Function Method

The basic idea of the penalty function approach is to define the function P in Eq. (11.48)
in such a way that if there are constraint violations, the cost function f(x) is penalized by
addition of a positive value. Several penalty functions can be defined. The most popular
one is called the quadratic loss function, defined as

PðhðxÞ; gðxÞ; rÞ5 r
Xp
i51

½hiðxÞ�2 1
Xm
i51

½g1i ðxÞ�2
( )

; g1i ðxÞ5max ð0; giðxÞÞ ð11:60Þ

where r. 0 is a scalar penalty parameter. Note that gi
1 (x)$ 0; it is zero if the inequality is

active or inactive (gi(x)# 0) and it is positive if the inequality is violated. It can be seen that
if the equality constraint is not satisfied (hi(x) 6¼ 0) or the inequality is violated (gi(x). 0),
then Eq. (11.60) gives a positive value to the function P, and the cost function is penalized,
as seen in Eq. (11.59). The starting point for the method can be arbitrary. The methods based
on the philosophy of penalty functions are sometimes called the exterior methods because they iterate
through the infeasible region.

The advantages and disadvantages of the penalty function method are as follows:

1. It is applicable to general constrained problems with equality and inequality constraints.
2. The starting point can be arbitrary.
3. The method iterates through the infeasible region where the cost and/or constraint

functions may be undefined.
4. If the iterative process terminates prematurely, the final point may not be feasible and

hence not usable.

Barrier Function Methods

The following methods are applicable only to the inequality-constrained problems.
Popular barrier functions are

1. Inverse barrier function: PðgðxÞ; rÞ5 1

r

Xm
i51

21

giðxÞ
ð11:61Þ
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2. Log barrier function: PðgðxÞ; rÞ5 1

r

Xm
i51

logð2giðxÞÞ ð11:62Þ

These are called the barrier function methods because a large barrier is constructed
around the feasible region. In fact, the function P becomes infinite if any of the inequalities is
active. Thus, when the iterative process is started from a feasible point, it is not possilbe for
it to go into the infeasible region because it cannot cross the huge barrier on the boundary of
the feasible set.

For both penalty function and barrier function methods, it can be shown that as r-N,
x(r)-x*, where x(r) is a point that minimizes the transformed function Φ(x, r) of Eq. (11.59)
and x* is a solution of the original constrained optimization problem.

The advantages and disadvantages of the barrier function methods are as follows:

1. The methods are applicable to inequality-constrained problems only.
2. The starting point must be feasible. It turns out, however, that the penalty function

defined in Eq. (11.60) can be minimized to determine a feasible starting point (Haug
and Arora, 1979).

3. The method always iterates through the feasible region, so if it terminates prematurely,
the final point is feasible and hence usable.

The sequential unconstrained minimization techniques have certain weaknesses that are
most serious when r is large. The penalty and barrier functions tend to be ill-behaved near
the boundary of the feasible set, where the optimum points usually lie. There is also a
problem of selecting the sequence r(k). The choice of r(0) and the rate at which r(k) tends to
infinity can seriously affect the computational effort to find a solution. Furthermore, the
Hessian matrix of the unconstrained function becomes ill-conditioned as r-N.

11.7.2 Augmented Lagrangian (Multiplier) Methods

To alleviate some of the difficulties of the methods presented in the previous subsec-
tion, a different class of transformation methods has been developed in the literature.
These are called the multiplier or augmented Lagrangian methods. In these methods, there is
no need for the penalty parameters r to go to infinity. As a result the transformation func-
tion Φ has good conditioning with no singularities. The multiplier methods are conver-
gent, as are the SUMTs. That is, they converge to a local minimum starting from any
point. It has been proven that they possess a faster rate of convergence than the two meth-
ods of the previous subsection.

The augmented Lagrangian function can be defined in several different ways (Arora,
Chahande, and Paeng, 1991). As the name implies, this transformed function adds a penalty
term to the Lagrangian function for the problem. There are different forms of the penalty
function for the augmented Lagrangian methods. A form that uses a penalty parameter and
a multiplier for each constraint separately in the penalty function is defined as

PðhðxÞ; gðxÞ; r; θÞ5 1

2

Xp
i51

r0iðhi 1 θ0iÞ2 1
1

2

Xm
i51

ri½ðgi 1 θiÞ1�2 ð11:63Þ
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where θi. 0, ri. 0, and θ0i, r0i. 0 are parameters associated with the ith inequality and
equality constraints, respectively, and (gi1 θi)

1 5max(0, gi1 θi).
If θi5 θ0i5 0 and ri5 r0i5 r, then Eq. (11.63) reduces to the well-known quadratic loss

function given in Eq. (11.49), where convergence is enforced by letting r-N. However,
the objective of the multiplier methods is to keep each ri and r0i finite and still achieve
convergence of the numerical algorithm. The idea of multiplier methods is to start with
some ri, r0i, θ0i, and θi and to minimize the transformation function of Eq. (11.59). The
parameters ri, r

0
i, θ0i, and θi are then adjusted using some procedures and the entire pro-

cess is repeated until all of the optimality conditions are satisfied. This form of the aug-
mented Lagrangian function has been implemented and applied to several engineering
design applications (Belegundu and Arora, 1984; Arora et al., 1991), especially for
dynamic response optimization problems (Paeng and Arora, 1989; Chahande and Arora,
1993, 1994).

Another common form for the augmented Lagrangian uses the Lagrange multipliers for
the constraints directly and only one penalty parameter for all of the constraints (Gill,
Murray, and Wright, 1991; Nocedal and Wright, 2006). Before we define this augmented
Lagrangian for the general optimization problem, let us first define the augmented
Lagrangian function for the equality-constrained problem as

ΦEðx; hðxÞ; rÞ5 fðxÞ1
Xp
i51

vihiðxÞ1
1

2
rh2i ðxÞ

� �
ð11:64Þ

where r. 0 is a penalty parameter, and vi is the Lagrange multiplier for the ith equality
constraint. Now the augmented function for the equality-inequality�constrained problem
is defined as

Φðx; hðxÞ; gðxÞ; rÞ5ΦEðx; hðxÞ; rÞ1
Xm
j51

ujgjðxÞ1
1

2
rg2j ðxÞ; if gj 1

uj
r

$ 0

2
1

2r
u2j ; if gj 1

uj
r
, 0

8>>><
>>>:

ð11:65Þ

where uj$ 0 is the Lagrange multiplier for the jth inequality constraint.

Augmented Lagrangian Algorithm

The steps of the augmented Lagrangian algorithm are as follows:

Step 1. Set the iteration counter at k5 0, K5N (a large number); estimate vectors x(0),
v(0), u(0)$ 0, r.0 and scalars α. 1, β. 1, ε. 0, where ε is the desired accuracy; α is
used to enforce a sufficient decrease in the constraint violations, and β is used to
increase the penalty parameter.
Step 2. Set k5 k1 1
Step 3. Minimize Φ(x, h(x), g(x), rk) of Eq. (11.65) with respect to x, starting from the
point x(k21). Let x(k) be the best point obtained in this step.
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Step 4. Evaluate the constraint functions hi(x
(k), i5 1 to p, and gi(x

(k)), j5 1 to m.
Calculate the maximum constraint violation parameter K as follows:

K5max jhij; i5 1 to p; jmaxðgj; 2 uj=rkÞj; j5 1 to m

 � ð11:66Þ

Check for convergence of the algorithm; if the termination criteria are satisfied, stop.
Otherwise, continue to Step 5.
Step 5. If K $ K (i.e., the constraint violation did not improve), set rk115βrk and go to
Step 2. That is, increase the penalty parameter by the factor β while keeping the
Lagrange multipliers unchanged. If K,K, continue to Step 6.
Step 6. Update the multipliers (this step is executed only when the constraint violations
have improved) by setting:

vðk11Þi 5 vki 1 rkhiðxðkÞÞ; i5 1 to p ð11:67Þ

uðk11Þj 5 uðkÞj 1 rk max ½gjðxðkÞÞ; 2uðkÞj =rk�; j5 1 to m ð11:68Þ

If K # K=α (the constraint violation has improved by the factor α), set K5K and go to
Step 2; otherwise, continue to Step 7.
Step 7. Set rk115 βrk (note that this step is executed only when the constraint violations
do not improve by the factor α). Set K5K and go to Step 2.

In Step 4 of the algorithm, the following termination criteria are used:

K # ε1 ð11:69Þ

jjrΦðxðkÞÞjj # ε2fmax ð1; jjxðkÞjjÞg; Or; jjrΦðxðkÞÞjj # ε2fmaxð1; jΦðxðkÞÞjÞg ð11:70Þ

where ε1 and ε2 are the user-specified parameters.

11.8 RATE OF CONVERGENCE OF ALGORITHMS

In this section, we briefly discuss concepts related to the rate of convergence of iterative
sequences—the focus is on the sequences generated by optimization algorithms (Luenberger,
1984).

11.8.1 Definitions

We now consider unconstrained optimization algorithms that have global convergence
properties. These algorithms generate a sequence of vectors that converges to a solution
point x* starting from any point x(0), that is, a local minimum point for the function f(x). In
the following, we assume that the algorithm generates a sequence {x(k)} that converges to
x*. The most effective way to measure the rate of convergence is to compare improvement
toward the solution point at two successive iterations of the algorithm, that is, the close-
ness of x(k11) to x* relative to the closeness of x(k) to x*.
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ORDER OF CONVERGENCE A sequence {x(k)} is said to converge to x* with order p,
where p is the largest number, such that

0 # lim
k-N

jjxðk11Þ 2 x�jj
jjxðkÞ 2 x�jjp ,N ð11:70Þ

Note that this definition is applicable to the tail end of the sequence. Also, the condition
needs to be checked in the limit as k-N. p is usually referred as the rate of convergence.

CONVERGENCE RATIO If the sequence {x(k)} converges to x* with an order of conver-
gence p, then the following limit is called the convergence ratio:

β5 lim
k-N

jjxðk11Þ 2 x�jj
jjxðkÞ 2 x�jjp ð11:71Þ

β is sometimes called the asymptotic error constant. Note that the ratio on the right side of
Eq. (11.71) can also be viewed as the ratio of errors from the solution point at the (k1 1)th
and kth iterations when p5 1. In terms of β, Eq. (11.70) is written as 0 # β,N, which
implies that the convergence ratio β is bounded (remains finite). The comparison of algo-
rithms is based on their convergence ratio: The smaller the ratio the faster the rate.

LINEAR CONVERGENCE If p5 1 in Eq. (11.70), the sequence is said to display linear
convergence; in this case β must be less than one for the sequence to converge.

QUADRATIC CONVERGENCE If p5 2 in Eq. (11.70), the sequence is said to have qua-
dratic convergence.

SUPERLINEAR CONVERGENCE If β5 0 when p is taken as unity in Eq. (11.70), the asso-
ciated convergence is called superlinear. Note that an order of convergence greater than
unity implies superlinear convergence.

11.8.2 Steepest-Descent Method

We here discuss the convergence properties of the steepest-descent method.

QUADRATIC FUNCTION We first consider a quadratic function:

qðxÞ5 1

2
xTQx2bTx ð11:72Þ

where Q is a symmetric, constant, and positive definite matrix. Further define an error
function E(x) as

EðxÞ5 1
2ðx2 x�ÞTQðx2 x�Þ ð11:73Þ

Expanding the term on the right side of Eq. (11.73) and using the condition Qx*5b at
the minimum point of quadratic function q(x), we obtain EðxÞ5 qðxÞ1 1

2x
�TQx�. This shows

that E(x) differs from q(x) by a constant.
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THEOREM 1 1 . 1

For any starting point x(0), the method

of steepest descent converges to the unique

minimum point x* of q(x). Furthermore,

with E(x) defined in Eq. (11.73), there holds

at every step k

Eðxðk11ÞÞ # r21

r1 1

� �2
EðxðkÞÞ ð11:74Þ

where r5λmax/λmin is the condition number

of Q and λmax and λmin are the largest and

smallest eigenvalues of Q.

Thus the method converges linearly with a convergence ratio no greater than [(r21)/
(r1 1)]2. It should be clear that as r becomes large, the number [(r21)/(r1 1)]2 approaches
unity and the convergence is slowed; that is, the error in Eq. (11.73) reduces quite slowly
from one iteration to the next. The method converges in one iteration if r5 1.

NONQUADRATIC CASE The above result is generalized to the nonquadratic case. We
replace Q by the Hessian H(x*) at the minimum point.

THEOREM 1 1 . 2

Let f(x) have a local minimum at x*. Let

H(x*) be positive definite with λmax and

λmin as its largest and its smallest eigen-

values, and r as its condition number. If the

sequence {x(k)} generated by the steepest-

descent method converges to x*, then the

sequence of cost function values {f(x(k))}

converges to f(x*) linearly with a conver-

gence ratio no greater than β:

β5
r21

r1 1

� �2

ð11:75Þ

11.8.3 Newton’s Method

The following theorem defines the order of convergence of the Newton’s method.

THEOREM 1 1 . 3

Let f(x) be continuously differentiable

three times, and the Hessian H(x*) be posi-

tive definite. Then the sequence of points

generated by Newton’s method converges to

x*. The order of convergence is at least two.
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11.8.4 Conjugate Gradient Method

For a positive definite quadratic function, the conjugate gradient method converges in n
iterations. For the nonquadratic case, assume that H(x*) is positive definite. We expect the
asymptotic convergence rate per step to be at least as good as the steepest-descent method,
since this is true in the quadratic case. In addition to this bound on the single-step rate, we
expect the method to have quadratic convergence with respect to each complete cycle of n
steps; that is,

:xðk1nÞ 2 x�: # c:xðkÞ 2 x�:2 ð11:76Þ
for some c and k5 0, n, 2n, . . .

11.8.5 Quasi-Newton Methods

DFP METHOD: QUADRATIC CASE To study the rate of convergence of quasi-Newton
methods, consider the quadratic function defined in Eq. (11.72). Using the DFP quasi-
Newton method, the search direction is determined as

dðkÞ 52AðkÞ cðkÞ ð11:77Þ
where c(k) is the gradient of the cost function and A(k) is the quasi-Newton approximation
for the Hessian inverse at the kth iteration. It can be shown that the directions generated
by Eq. (11.77) are Q conjugate. Therefore, the method is a conjugate gradient method
where the minimum point of q(x) is obtained in n iterations; moreover, A(n)5Q21. The
rate of convergence of the DFP method is then determined by the eigenvalue structure
of the matrix (A(k)Q).

THEOREM 11 . 4

Let x* be the unique minimum point of

q(x), and define the error function E(x) as in

Eq. (11.73). Then, for the DFP quasi-Newton

algorithm, there holds at every step k

Eðxðk11ÞÞ # rk 21

rk 1 1

� �2

EðxðkÞÞ ð11:78Þ

where rk is the condition number for the

matrix A(k)Q.

The preceding theorem shows that the order of convergence is one. However, if A(k) is
close to Q21, then the condition number of (A(k)Q) is close to unity and the convergence
ratio in Eq. (11.78) is close to zero.

DFP METHOD: NONQUADRATIC CASE The method is globally convergent. It needs to
be restarted after every n iterations, just as in the conjugate gradient method. Each cycle, if
at least n steps in duration, will then contain one complete cycle of an approximation to
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the conjugate gradient method. Asymptotically, at the tail of the generated sequence, this
approximation becomes arbitrarily accurate, and hence we may conclude (as for any
method approaching the conjugate gradient method asymptotically) that the method con-
verges superlinearly (at least if viewed at the end of each cycle).

BFGS QUASI-NEWTON METHOD Under the assumptions of continuity and bounded-
ness of the Hessian matrix, the method can be shown to be convergent to a minimum
point x* starting from any point x(0). The rate of convergence is superlinear (Nocedal and
Wright, 2006).

11.9 DIRECT SEARCH METHODS

In this section, we discuss methods commonly known as direct search. The term was intro-
duced by Hooke and Jeeves (1961) and refers to methods that do not require derivatives of
the functions in their search strategy. This means that the methods can be used for problems
where the derivatives are expensive to calculate or are unavailable due to lack of differentia-
bility of functions. However, convergence of the methods can be proved if functions are
assumed to be continuous and differentiable. A more detailed discussion of the state of the
art of direct search methods is presented by Lewis et al. (2000) and Kolda et al. (2003).

There are two prominent methods in the direct search class: the Nelder-Mead simplex
method (not to be confused with the Simplex method of linear programming), described
in Chapter 18 as part of a global optimization algorithm; and the Hooke-Jeeves method,
described in this section. Before describing Hooke-Jeeves, we present another direct search
method, called univariate search.

11.9.1 Univariate Search

This method is based on a simple idea to minimize the function with respect to one var-
iable at a time, keeping all other variables fixed. In other words, minimize f(x) with respect
to x1, keeping all other variables fixed at their current value, then minimize with respect to
x2, and so on. The method is described by the following iterative equation:

xðk11Þi 5 xðkÞi 1αi; i5 1 to n ð11:79Þ
where superscript k refers to the iteration number, x(0) is an initial point, and the increment
αi is calculated to minimize the function in the coordinate direction xi:

minimize
α fðxðkÞi 1αÞ ð11:80Þ

Any one-dimensional minimization technique that uses only the function values may be
used to solve this one-dimensional problem. If the problem in Eq. (11.80) fails, then an
increment of 2α is tried in Eqs. (11.79) and (11.80). If that also fails, then xðkÞi is unchanged
and the search moves to the next design variable (i.e., the next coordinate direction).

This one-variable-at-a-time approach can result in very small step sizes, which can be
quite inefficient. It has been shown that cycling can occur, resulting in the failure of the
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method. Pattern search methods, such as Hooke-Jeeves, have been developed to overcome
the drawbacks of univariate search and improve its efficiency.

11.9.2 Hooke-Jeeves Method

Hooke-Jeeves falls into a class of direct search methods known as pattern search methods.
The univariate search discussed in the previous subsection is always performed along the
fixed directions (i.e., the coordinate directions). In the pattern search method, the search
direction is not always fixed. At the end of one cycle of complete univariate search, the
search direction is calculated as the difference between the two previous design points,
and the design is incremented in that direction. From there the univariate search is
resumed. The first part of this method is exploratory search and the second part is pattern
search. These are described as follows.

Exploratory Search

Here univariate search is performed with a fixed step size in each coordinate direction
(or a search for a minimum can be performed in each coordinate direction, as described in
the previous section). The exploration starts from an initial point. The point is incremented
in a coordinate direction by the specified step in that direction. The cost function is evalu-
ated; if it does not increase, the move is accepted. If it increases, the move is made in the
opposite direction, and the cost function is evaluated again. If the cost function does not
increase, the move is accepted; otherwise, it is rejected. When all of the n coordinate direc-
tions have been explored, the exploratory search step is complete. If the search is success-
ful, the new design point is called the base point. On the other hand, if the search fails, the
step sizes are reduced by a factor and the search is repeated.

Pattern Search

Pattern search consists of a single step in the direction determined by the difference in
the two most recent base points. The design is updated as

xðk11Þp 5 xðkÞ 1dðkÞ; dðkÞ 5 ðxðkÞ 2 xðk21ÞÞ ð11:81Þ
where d(k) is the search direction and xðk11Þp is the temporary new base point. To accept this
point, we perform exploratory search from there. If this search is successful, that is, if the
cost function value reduces, then the temporary base point is accepted as the new base
point; otherwise, it is rejected and a new exploratory search is performed from the current
base point x(k). This procedure is continued until the exploratory search fails. Then the
step sizes are reduced by a factor and the exploratory search is repeated. Eventually the
entire search process stops when the step sizes become sufficiently small.

Hooke-Jeeves Algorithm

To state the foregoing procedure in a step-by-step algorithm, we introduce the follow-
ing notation:

x(k) 5 current base point
x(k21)5previous base point
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xðk11Þp 5 temporary base point
x(k11)5new base point

Step 0. Select a starting point x(0); step sizes αi, i5 1 to n; step reduction parameter
η. 1; and termination parameter ε. Set the iteration counter to k5 1.
Step 1. Perform the exploratory search from the current point. Let the result of this
search be x(k). If the exploratory search is successful, go to Step 4; otherwise, continue.
Step 2. Check the termination criterion: If jjαjj, ε, stop; otherwise, continue.
Step 3. Reduce the step sizes: αi 5

αi
η ; i5 1 to n. Go to Step 1.

Step 4. Calculate the temporary base point xðk11Þp using Eq. (11.81).
Step 5. Perform the exploratory search from xðk11Þp , resulting in a new base point x(k11). If
this exploratory search is not successful, go to Step 3. Otherwise, set k5 k1 1, and go to
Step 4.

The algorithm given above can be implemented in several different ways. For example,
once the search direction d(k) has been determined in Eq. (11.81), a step size can be calcu-
lated to minimize f(x) in that direction.

EXERCISES FOR CHAPTER 11*

Section 11.1 More on Step Size Determination
11.1 Write a computer program to implement the polynomial interpolation with a quadratic

curve fitting. Choose a function f(α)5 7α22 20α1 22. Use the golden section method to

initially bracket the minimum point of f(α) with δ5 0.05. Use your program to find the

minimum point of f(α). Comment on the accuracy of the solution.

11.2 For the function f(α)5 7α22 20α1 22, use two function values, f(0) and f(αu), and the slope

of f at α5 0 to fit a quadratic curve. Here αu is any upper bound on the minimum point of

f(α). What is the estimate of the minimum point from the preceding quadratic curve? How

many iterations will be required to find α*? Why?

11.3 Under what situation can the polynomial interpolation approach not be used for one-

dimensional minimization?

11.4 Given
fðxÞ5 102 x1 1 x1x2 1 x22

xð0Þ 5 ð2; 4Þ; dð0Þ 5 ð21;21Þ
For the one-dimensional search, three values of α, αl5 0, αi5 2, and αu5 4 are tried. Using

quadratic polynomial interpolation, determine

1. At what value of α is the function a minimum? Prove that this is a minimum point and

not a maximum.

2. At what values of α is f(α)5 15?

Section 11.2 More on the Steepest-Descent Method
Verify the properties of the gradient vector for the following functions at the given point.

11.5 f(x)5 6x1
226x1x21 2x2225x11 4x21 2; x(0)5 (21, 22)

11.6 f(x)5 3x1
21 2x1x21 2x221 7; x(0)5 (5, 10)

11.7 f(x)5 10(x1
22 x2)1 x1

222x11 5; x(0)5 (21, 3)
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Section 11.3 Scaling of Design Variables
11.8 Consider the following three functions:

f1 5 x21 1 x22 1 x23; f2 5 x21 1 10x22 1 100x23; f3 5 100x21 1 x22 1 0:1x23

Minimize f1, f2, and f3 using the program for the steepest-descent method given in

Appendix B. Choose the starting design to be (1, 1, 2) for all functions. What do you

conclude from observing the performance of the method on the foregoing functions?

How would you scale the design variables for the functions f2 and f3 to improve the rate

of convergence of the method?

Section 11.4 Search Direction Determination: Newton’s Method
11.9 Answer True or False.

1. In Newton’s method, it is always possible to calculate a search direction at any point.

2. The Newton direction is always that of descent for the cost function.

3. Newton’s method is convergent starting from any point with a step size of 1.

4. Newton’s method needs only gradient information at any point.

For the following problems, complete one iteration of the modified Newton’s method; also check the

descent condition for the search direction.

11.10 Exercise 10.52 11.11 Exercise 10.53 11.12 Exercise 10.54

11.13 Exercise 10.55 11.14 Exercise 10.56 11.15 Exercise 10.57

11.16 Exercise 10.58 11.17 Exercise 10.59 11.18 Exercise 10.60

11.19 Exercise 10.61

11.20 Write a computer program to implement the modified Newton’s algorithm. Use equal

interval search for line search. Solve Exercises 10.52 to 10.61 using the program.

Section 11.5 Search Direction Determination: Quasi-Newton Methods
11.21 Answer True or False for unconstrained problems.

1. The DFP method generates an approximation to the inverse of the Hessian.

2. The DFP method generates a positive definite approximation to the inverse of the

Hessian.

3. The DFP method always gives a direction of descent for the cost function.

4. The BFGS method generates a positive definite approximation to the Hessian of the cost

function.

5. The BFGS method always gives a direction of descent for the cost function.

6. The BFGS method always converges to the Hessian of the cost function.

For the following problems, complete two iterations of the Davidon-Fletcher-Powell method.

11.22 Exercise 10.52 11.23 Exercise 10.53 11.24 Exercise 10.54

11.25 Exercise 10.55 11.26 Exercise 10.56 11.27 Exercise 10.57

11.28 Exercise 10.58 11.29 Exercise 10.59 11.30 Exercise 10.60

11.31 Exercise 10.61

11.32 Write a computer program to implement the Davidon-Fletcher-Powell method. Solve

Exercises 10.52 to 10.61 using the program.
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For the following problems, complete two iterations of the BFGS method.

11.33 Exercise 10.52 11.34 Exercise 10.53 11.35 Exercise 10.54

11.36 Exercise 10.55 11.37 Exercise 10.56 11.38 Exercise 10.57

11.39 Exercise 10.58 11.40 Exercise 10.59 11.41 Exercise 10.60

11.42 Exercise 10.61

11.43 Write a computer program to implement the BFGS method. Solve Exercises 10.52 to 10.61

using the program.

Section 11.6 Engineering Applications of Unconstrained Methods
Find the equilibrium configuration for the two-bar structure of Figure 11.9 using the following numeri-

cal data.

11.44 A15 1.5 cm2, A25 2.0 cm2, h5 100 cm, s5 150 cm, W5 100,000 N, θ5 45�, E5 21 MN/cm2

11.45 A15 100 mm2, A25 200 mm2, h5 1000 mm, s5 1500 mm, W5 50,000 N, θ5 60�, E5 210,000

N/mm2

Find the roots of the following nonlinear equations using the conjugate gradient method.

11.46 F(x)5 3x2 ex5 0

11.47 F(x)5 sinx5 0

11.48 F(x)5 cosx5 0

11.49 FðxÞ5 2x
3 2 sinx5 0

11.50 F1ðxÞ5 12 10
x2
1
x2
5 0; F2ðxÞ5 12 2

x1x22
5 0

11.51 F1ðxÞ5 52 1
8 x1x2 2

1
4x2

1

x22 5 0; F2ðxÞ52 1
16 x

2
1 1

1
2x1

x2 5 0
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C H A P T E R

11

More on Numerical Methods for
Unconstrained Optimum Design

Upon comp le t i on o f th i s chap te r, you wi l l be ab l e to

• Use some alternate procedures for step size

calculation

• Explain the properties of the gradient vector

used in the steepest-descent method

• Use scaling of design variables to

improve the performance of optimization

methods

• Use the second-order methods for

unconstrained optimization, such as the

Newton method, and understand their

limitations

• Use approximate second-order methods for

unconstrained optimization, called the

quasi-Newton methods

• Transform constrained problems into

unconstrained problems and use

unconstrained optimization methods to

solve them

• Explain the rate of convergence of

algorithms

• Explain and use direct search methods

The material in this chapter builds on the basic concepts and numerical methods for
unconstrained problems presented in the previous chapter. Topics covered include poly-
nomial interpolation for step size calculation, inexact line search, properties of the gradient
vector, a Newton method that uses the Hessian of the cost function in numerical optimiza-
tion, scaling of design variables, approximate second-order methods (quasi-Newton meth-
ods), and transformation methods that transform a constrained problem into a problem
that is unconstrained so that unconstrained optimization methods can be used to solve
constrained problems. These topics may be omitted in an undergraduate course on opti-
mum design or in a first independent reading of the text.

Recall that the unconstrained minimization problem is to find an n-dimensional vector x
to minimize the function f(x) without any constraints.
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11.1 MORE ON STEP SIZE DETERMINATION

The interval-reducing methods described in Chapter 10 can require too many function
evaluations during line search to determine an appropriate step size. In realistic engineer-
ing design problems, function evaluation requires a significant amount of computational
effort. Therefore, methods such as golden section search are inefficient for many practical
applications. In this section, we present some other line search methods such as polyno-
mial interpolation and inexact line search.

Recall that the step size calculation problem is to find α to

Minimize

fðαÞ5 fðxðkÞ 1αdðkÞÞ ð11:1Þ

It is assumed that the search direction d(k) is that of descent at the current point x(k), that
is,

cðkÞ �dðkÞ, 0 ð11:2Þ
Also, differentiating f(α) with respect to α and using the chain rule of differentiation, we
get

f 0ðαÞ5 ðcðxðkÞ 1αdðkÞÞ �d kð ÞÞ; cðxðkÞ 1αdðkÞÞ5rfðxðkÞ 1αdðkÞÞ ð11:3Þ
where “prime” indicates the first derivative of f (α). Evaluating Eq. (11.3) at α5 0, we get

f 0ð0Þ5 ðcðkÞ �dðkÞÞ, 0 ð11:4Þ
Thus the slope of the curve f (α) versus α is negative at α5 0, as can be observed in
Figure 10.3. If an exact step size is determined as αk, then f 0(αk)5 0, which gives the fol-
lowing condition from Eq. (11.3), called the line search termination criterion:

cðk11Þ �dðkÞ 5 0 ð11:5Þ

11.1.1 Polynomial Interpolation

Instead of evaluating the function at numerous trial points, we can pass a curve through
a limited number of points and use the analytical procedure to calculate the step size. Any
continuous function on a given interval can be approximated as closely as desired by pass-
ing a higher-order polynomial through its data points and then calculating its minimum
explicitly. The minimum point of the approximating polynomial is often a good estimate of
the exact minimum of the line search function f(α). Thus, polynomial interpolation can be
an efficient technique for one-dimensional search. Whereas many polynomial interpolation
schemes can be devised, we will present two procedures based on quadratic interpolation.

Quadratic Curve Fitting

Many times it is sufficient to approximate the function f(α) on an interval of uncertainty by
a quadratic function. To replace a function in an interval with a quadratic function, we need
to know the function value at three distinct points to determine the three coefficients of the
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quadratic polynomial. It must also be assumed that the function f(α) is sufficiently smooth and
unimodal, and that the initial interval of uncertainty (αl, αu) is known. Let αi be any intermediate
point in the interval (αl, αu), and let f(αl), f(αi), and f(αu) be the function values at the respective
points. Figure 11.1 shows the function f(α) and the quadratic function q(α) as its approximation
in the interval (αl, αu). α is the minimum point of the quadratic function q(α), whereas α* is the
exact minimum point of f(α). Iteration can be used to improve the estimate α for α*.

Any quadratic function q(α) can be expressed in the general form as

qðαÞ5 a0 1 a1α1 a2α2 ð11:6Þ
where a0, a1, and a2 are the unknown coefficients. Since the function q(α) must have the
same value as the function f(α) at the points αl, αi, and αu, we get three equations in three
unknowns a0, a1, and a2 as follows:

a0 1 a1αl 1 a2α2
l 5 fðαlÞ ð11:7Þ

a0 1 a1αi 1 a2α2
i 5 fðαiÞ ð11:8Þ

a0 1 a1αu 1 a2α2
u 5 fðαuÞ ð11:9Þ

Solving the system of linear simultaneous equations for a0, a1, and a2, we get

a2 5
1

ðαu 2αiÞ
fðαuÞ2 fðαlÞ
ðαu 2αlÞ

2
fðαiÞ2 fðαlÞ
ðαi 2αlÞ

� �
ð11:10Þ

a1 5
fðαiÞ2 fðαlÞ
ðαi 2αlÞ

2 a2ðαl 1αiÞ ð11:11Þ

a0 5 fðαlÞ2 a1αl 2 a2α2
l ð11:12Þ

The minimum point α of the quadratic function q(α) in Eq. (11.6) is calculated by solving
the necessary condition dq/dα5 0 and verifying the sufficiency condition d2q/dα2. 0:

α52
1

2a2
a1; if

d2q

dα2
5 2a2. 0 ð11:13Þ

f (α)

f (α)

q (α)
Quadratic

approximation to f(α)
α

αi αuα* ααl

FIGURE 11.1 Graphic of a quadratic approxima-
tion for function f(α).
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Thus, if a2. 0, α is a minimum of q(α). Additional iterations may be used to further
refine the interval of uncertainty. The quadratic curve-fitting technique may now be given
in the form of a computational algorithm:

Step 1. Select a small number δ, and locate the initial interval of uncertainty (αl, αu).
Any method discussed in Chapter 10 may be used.
Step 2. Let αi be an intermediate point in the interval (αl, αu) and f(αi) be the value of
f(α) at αi.
Step 3. Compute the coefficients a0, a1, and a2 from Eqs. (11.10) through (11.12), α from
Eq. (11.13), and fðαÞ .
Step 4. Compare αi and α. If αi,α, continue with this step. Otherwise, go to Step 5.

(a) If fðαiÞ, fðαÞ, then αl # α� # α . The new limits of the reduced interval of
uncertainty are α0

l 5αl;α0
u 5α, and α0

i5αi. Go to Step 6 (a prime on α indicates its
updated value).

(b) If fðαiÞ. fðαÞ, then αi#α*#αu. The new limits of the reduced interval of
uncertainty are α0

l5αI, α0
u5αu, and α0

i 5α. Go to Step 6.
Step 5.

(a) If fðαiÞ, fðαÞ, then α # α� # αu. The new limits of the reduced interval of
uncertainty are α0

l 5α, α0
u5αu, and α0

i5αi. Go to Step 6.
(b) If fðαiÞ. fðαÞ, then αl#α*#αi. The new limits of the reduced interval of

uncertainty are α0
l5αl, α0

u5αi, and α0
i 5α. Go to Step 6.

Step 6. If the two successive estimates of the minimum point of f(α) are sufficiently
close, then stop. Otherwise, delete the primes on α0

l, α0
i, and α0

u and return to Step 3.

Example 11.1 illustrates the evaluation of step size using quadratic interpolation.

EXAMPLE 11.1 ONE-DIMENSIONAL MINIMIZATION
WITH QUADRATIC INTERPOLATION

Find the minimum point of

fðαÞ5 22 4α1 eα ðaÞ
from Example 10.3 by polynomial interpolation. Use the golden section search with δ5 0.5 to

bracket the minimum point initially.

Solution
Iteration 1 From Example 10.3 the following information is known.

αl 5 0:50; αi 5 1:309017; αu 5 2:618034 ðbÞ
f αlð Þ5 1:648721; f αið Þ5 0:466464; f αuð Þ5 5:236610 ðcÞ

The coefficients a0, a1, and a2 are calculated from Eqs. (11.10) through (11.12) as

a2 5
1

1:30902

3:5879

2:1180
2

21:1823

0:80902

� �
5 2:410 ðdÞ

a1 5
21:1823

0:80902
2 2:41ð Þ 1:80902ð Þ525:821 ðeÞ
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a0 5 1:6482712 ð25:821Þð0:50Þ2 2:41ð0:25Þ5 3:957 ðfÞ
Therefore, α5 1:2077 from Eq. (11.13), and fðαÞ5 0:5149. Note that αi . α and fðαiÞ, fðαÞ; there-
fore, Step 5(a) of the above algorithm should be used. The new limits of the reduced interval of

uncertainty are α0
l 5α5 1:2077, α0

u5αu5 2.618034, and α0
i5αi5 1.309017.

Iteration 2 We have the new limits for the interval of uncertainty, the intermediate point,

and the respective values as

αl 5 1:2077; αi 5 1:309017; αu 5 2:618034 ðgÞ
fðαlÞ5 0:5149; fðαiÞ5 0:466464; fðαuÞ5 5:23661 ðhÞ

In Step 3 of the algorithm, coefficients a0, a1, and a2 are calculated as before: a05 5.7129,

a1527.8339, and a25 2.9228. Thus, α5 1:34014 and fðαÞ5 0:4590.

Comparing these results with the optimum solution given in Table 10.1, we observe that α
and fðαÞ are quite close to the final solution. One more iteration can give a very good approxima-

tion of the optimum step size. Note that only five function evaluations are used to obtain a fairly

accurate optimum step size for the function f(α). Therefore, the polynomial interpolation

approach can be quite efficient for one-dimensional minimization.

Alternate Quadratic Interpolation

In this approach, we use known information about the function at α5 0 to perform qua-
dratic interpolation; that is, we can use f(0) and f 0(0) in the interpolation process. Example 11.2
illustrates this alternate quadratic interpolation procedure.

EXAMPLE 11.2 ONE-DIMENSIONAL MINIMIZATION
WITH ALTERNATE QUADRATIC INTERPOLATION

Find the minimum point of
fðαÞ5 22 4α1 eα ðaÞ

using f(0), f 0(0), and f(αu) to fit a quadratic curve, where αu is an upper bound on the minimum

point of f(α).

Solution
Let the general equation for a quadratic curve be a01 a1α1 a2α

2, where a0, a1, and a2 are the

unknown coefficients. Let us select the upper bound on α* to be 2.618034 (αu) from the golden sec-

tion search. Using the given function f(α), we have f(0)5 3, f(2.618034)5 5.23661, and f 0(0)523.

Now, as before, we get the following three equations to solve for the unknown coefficients a0, a1,

and a2:

a0 5 f 0ð Þ5 3 ðbÞ
f 2:618034ð Þ5 a0 1 2:618034a1 1 6:854a2 5 5:23661 ðcÞ

a1 5 f 0ð0Þ523 ðdÞ
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Solving the three equations simultaneously, we get a05 3, a1523, and a25 1.4722. The mini-

mum point of the parabolic curve using Eq. (11.13) is given as α5 1:0189 and fðαÞ5 0:69443. This

estimate can be improved using an iteration, as demonstrated in Example 11.1.

Note that an estimate of the minimum point of the function f(α) is found in only two function

evaluations f(0) and f(2.618034). However, in an optimization algorithm only one function evalu-

ation is needed since f(0) is the current value of the cost function, which is already available.

Also, the slope f 0(0) 5 c(k) �d(k) is already known.

11.1.2 Inexact Line Search: Armijo’s Rule

Exact line search during unconstrained or constrained minimization can be quite time-
consuming. Therefore, inexact line search procedures that also satisfy global convergence
requirements are usually employed in most computer implementations. The basic concept
of inexact line search is that the step size should not be too large or too small, and there
should be a sufficient decrease in the cost function value along the search direction.
Using these requirements, several inexact line search procedures have been developed
and used. Here, we discuss some basic concepts and present a procedure for inexact line
search.

Recall that a step size αk. 0 exists if d(k) satisfies the descent condition (c(k) �d(k)), 0.
Generally, an iterative method, such as quadratic interpolation, is used during line search,
and the process is terminated when the step size is sufficiently accurate; that is, the line
search termination criterion (c(k11) �d(k))5 0 of Eq. (11.5) is satisfied with sufficient accu-
racy. However, note that to check this condition, we need to calculate the gradient of the
cost function at each trial step size, which can be quite expensive. Therefore, some other
simple strategies have been developed that do not require this calculation. One such strat-
egy is called Armijo’s rule.

The essential idea of Armijo’s rule is first to guarantee that the selected step size α is
not too large; that is, the current step is not far beyond the optimum step size. Next, the
step size should not be too small such that there is little progress toward the minimum
point (i.e., there is very little reduction in the cost function).

Let the line search function be defined as f(α)5 f(x(k)1αd(k)), as in Eq. (10.11). Armijo’s
rule uses a linear function of α as

qðαÞ5 fð0Þ1α½ρf 0ð0Þ� ð11:14Þ
where ρ is a fixed number between 0 and 1; 0, ρ, 1. This function is shown as the
dashed line in Figure 11.2. A value of α is considered not too large if the corresponding
function value f(α) lies below the dashed line; that is,

fðαÞ # qðαÞ ð11:15Þ
In other words, the step size α is to the left of point C in Figure 11.2. This is also called the
sufficient-decrease condition.

To ensure that α is not too small, a number η. 1 is selected. Then α is considered not
too small if it satisfies the following inequality:
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fðηαÞ. qðηαÞ ð11:16Þ
This means that if α is increased by a factor η, it will not meet the test given in Eq. (11.15);
that is, f(ηα) is above the dashed line in Figure 11.2 and the point ηα is to the right of
point C.

Algorithm for Armijo’s Rule

Armijo’s rule can be used to determine the step size as follows: We start with an arbi-
trary α. If it satisfies Eq. (11.15), it is repeatedly increased by η (η5 2 and ρ5 0.2 are often
used) until Eq. (11.15) is violated. The largest α satisfying Eq. (11.15) is selected as the step
size. If, on the other hand, the starting value of α does not satisfy Eq. (11.15), it is repeat-
edly divided by η until Inequality (11.15) is satisfied.

Another procedure, known as the backtracking algorithm, is to start with a larger step
size, say α5 1. The condition of Eq. (11.15) is checked and, if it is violated, the step size is
divided by η. This process is continued until the condition of Eq. (11.15) is satisfied.

It is noted that once f(α) is known at several points, an interpolation scheme (quadratic
or cubic) can always be used to obtain a better estimate for the step size α.

Use of a procedure similar to Armijo’s rule is demonstrated in a numerical algorithm
for constrained problems in Chapter 13.

11.1.3 Inexact Line Search: Wolfe Conditions

The sufficient-decrease condition of Eq. (11.15) is not enough by itself to ensure that the
algorithm is making reasonable progress, because it can be satisfied by small values for α.
To overcome this drawback, Wolfe (Nocedal and Wright, 2006) introduced another condi-
tion for the step size, known as the curvature condition, which requires α to satisfy

f 0ðαÞ $ βf 0ð0Þ ð11:17Þ

tan−1|ρf ′(0)|

tan−1| f ′(0)|

Acceptable range

A

B

CO
α

q (α) = f(0) + α [ρf ′(0)]

f (α)

f (0)

FIGURE 11.2 This is a graphic
of an inexact line search that uses
Armijo’s rule.
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for some constant β, ρ, β, 1 (also, 0, ρ, 0.5). This condition says that at the acceptable
step size the slope of f(α) is greater than that at α5 0 by the factor β (recall that the slope
at α5 0 is negative). This is because, if f 0(α) is strongly negative, we can further reduce the
function f(α). The sufficient-decrease condition of Eq. (11.15) and the curvature condition
of Eq. (11.17) are known as Wolfe conditions.

Note that the curvature condition of Eq. (11.17) is satisfied even when f 0(α) is a large
positive number. This implies that the acceptable step size can be far away from the true
minimum for f(α) where f 0(α)5 0. To overcome this, the curvature condition is modified
using absolute values for the slopes as

f 0ðαÞ
�� �� # β f 0ð0Þ

�� �� ð11:18Þ
Generally β5 0.1 to 0.9 and ρ5 1024 to ρ5 1024 to 1023 are taken. Note that a smaller β

gives a more accurate step size. For Newton’s and quasi-Newton methods, β is selected
typically as 0.9 and for the conjugate gradient method as 0.1 (since the conjugate gradient
method requires more accurate step size). Conditions in Eqs. (11.15) and (11.18) are called
strong Wolfe conditions (Nocedal and Wright, 2006).

The criterion of Eq. (11.18) requires evaluation of the gradient of the cost function at
each trial step size. If the gradient evaluation is too expensive, a finite-difference approxi-
mation may be used for it and Eq. (11.18) may be replaced by

fðαÞ2 fðνÞ
�� ��

α2 ν
# β f 0ð0Þ

�� �� ð11:19Þ

where ν is any scalar such that 0 # ν , α.

11.1.4 Inexact Line Search: Goldstein Test

The Goldstein test is somewhat similar to Armijo’s rule. A value of α is considered not
too large if it satisfies Eq. (11.15), with ρ given as 0, ρ, 0.5. A value of α is considered not
too small in the Goldstein test if

fðαÞ $ fð0Þ1α½ð12 ρÞf 0ð0Þ� ð11:20Þ
That is, f(α) must lie above the lower dashed line shown in Figure 11.3. In terms of the
original function, an acceptable value of α satisfies

ρ #
fðαÞ2 fð0Þ
αf 0ð0Þ # ð12 ρÞ ð11:21Þ

Goldstein conditions are often used in Newton-type methods but are not well suited to
quasi-Newton methods (Nocedal and Wright 2006). The Goldstein condition in Eq. (11.20)
can be easily checked in the Armijo procedure for the step size calculation described ear-
lier. Note that unless ρ is assigned a proper value, the Goldstein tests in Eqs. (11.15) and
(11.20) can omit the true minimum point of f(α).
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11.2 MORE ON THE STEEPEST-DESCENT METHOD

In this section we will study the properties of the gradient vector that is used in the
steepest-descent method. Proofs of the properties are given since they are quite instructive.
We will also show that the steepest-descent directions at successive iterations are orthogo-
nal to each other.

11.2.1 Properties of the Gradient Vector

Property 1
The gradient vector c of a function f(x1, x2, . . . , xn) at the given point x*5 (x*1, x*2, . . . , xn*) is orthogonal

(normal) to the tangent hyperplane for the surface f(x1, x2, . . . , xn)5 constant.

Proof This is an important property of the gradient vector and is shown graphically in Figure 11.4.
The figure shows the surface f(x)5 constant; x* is a point on the surface; C is any curve on the surface
through the point x*; T is a vector tangent to C at point x*; u is any unit vector; and c is the gradient vector
at x*. According to the above property, vectors c and T are normal to each other; that is, their dot product
is zero, c �T5 0.

To prove this property, we take any curve C on the surface f(x1, x2, . . . , xn)5 constant, as was shown
in Figure 11.4. Let the curve pass through the point x*5 (x1*, x2*, . . . , xn*). Also, let s be a parameter along
C. Then a unit tangent vector T along C at point x* is given as

T5
@x1
@s

@x2
@s

?
@xn
@s

� �T
ðaÞ

Since f(x)5 constant, the derivative of f along curve C is zero; that is, df/ds5 0 (the directional derivative of
f in the direction s). Or, using the chain rule of differentiation, we get

df

ds
5

@f

@x1

@x1
@s

1?1
@f

@xn

@xn
@s

5 0 ðbÞ

Acceptable range

A

B

CD

O
α

f (0) + α [ρf ′(0)]

f (0) + α [(1 – ρ)f ′(0)]

f (0)

f (α) FIGURE 11.3 Goldstein Test.
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Writing Eq. (b) in the vector form after identifying @f/@xi and @xi/@s (from Eq. (a)) as components of the
gradient and the unit tangent vectors, we obtain c �T5 0, or cTT5 0. Since the dot product of the gradient
vector c with the tangential vector T is zero, the vectors are normal to each other. But T is any tangent vec-
tor at x*, and so c is orthogonal to the tangent hyperplane for the surface f(x)5 constant at point x*.

Property 2
The second property is that the gradient represents a direction of maximum rate of increase for the

function f(x) at the given point x*.

Proof To show this, let u be a unit vector in any direction that is not tangent to the surface. This is
shown in Figure 11.4. Let t be a parameter along u. The derivative of f(x) in the direction u at the point x*
(i.e., the directional derivative of f ) is given as

df

dt
5 lim

ε-0

fðx1 εuÞ2 fðxÞ
ε

ðcÞ

where ε is a small number and t is a parameter along u. Using Taylor’s expansion, we have

fðx1 εuÞ5 fðxÞ1 ε u1
@f

@x1
1u2

@f

@x2
1?1 un

@f

@xn

� �
1 oðε2Þ ðdÞ

where ui are components of the unit vector u and o(ε2) are terms of order ε2. Rewriting the foregoing
equation,

fðx1 εuÞ2 fðxÞ5 ε
Xn
i51

ui
@f

@xi
1 oðε2Þ ðeÞ

Substituting Eq. (e) into Eq. (c) and taking the indicated limit, we get

df

dt
5

Xn
i51

ui
@f

@xi
5 c �u5 cTu ðfÞ

Using the definition of the dot product in Eq. (e), we get

df

dt
5 jjcjj jjujj cosθ ðgÞ

where θ is the angle between the c and u vectors. The right side of Eq. (g) will have extreme values when
θ5 0�, or 180�. When θ5 0�, vector u is along c and cosθ5 1.

Therefore, from Eq. (g), df/dt represents the maximum rate of increase for f(x) when θ5 0�. Similarly,
when θ5 180�, vector u points in the negative c direction. From Eq. (g), then, df/dt represents the maxi-
mum rate of decrease for f(x) when θ5 180�.

T

C

Surface f (x) = constant

t

s

c

u

x*

θ

FIGURE 11.4 Gradient vector for the surface
f(x)5 constant at the point x*.
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According to the foregoing property of the gradient vector, if we need to move away
from the surface f(x)5 constant, the function increases most rapidly along the gradient
vector compared with a move in any other direction. In Figure 11.4, a small move along
the direction c will result in a larger increase in the function, compared with a similar
move along the direction u. Of course, any small move along the direction T results in no
change in the function since T is tangent to the surface.

Property 3
The maximum rate of change in f(x) at any point x* is the magnitude of the gradient vector.

Proof Since u is a unit vector, the maximum value of df/dt from Eq. (g) is given as

max
df

dt

����
����5 jjcjj ðhÞ

since the maximum value of cosθ is 1 when θ5 0�. However, for θ5 0�, u is in the direction of the
gradient vector. Therefore, the magnitude of the gradient represents the maximum rate of change for the
function f(x).

These properties show that the gradient vector at any point x* represents a direction of
maximum increase in the function f(x) and the rate of increase is the magnitude of the vec-
tor. The gradient is therefore called a direction of steepest ascent for the function f(x) and
the negative of the gradient is called the direction of steepest descent. Example 11.3 verifies
the properties of the gradient vector.

EXAMPLE 11.3 VERIFICATION OF THE PROPERTIES
OF THE GRADIENT VECTOR

Verify the properties of the gradient vector for the following function when it is at the point

x(0)5 (0.6, 4).

fðxÞ5 25x21 1 x22 ðaÞ

Solution
Figure 11.5 shows in the x12 x2 plane the contours of values 25 and 100 for the function f.

The value of the function at (0.6, 4) is f(0.6, 4)5 25. The gradient of the function at (0.6, 4) is

given as

c5rfð0:6;4Þ5 ð@f=@x1; @f=@x2Þ5 ð50x1; 2x2Þ5 ð30; 8Þ ðbÞ

jjcjj5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
303 301 83 8

p
5 31:04835 ðcÞ

Therefore, a unit vector along the gradient is given as

C5 c=jjc jj5 ð0:966235; 0:257663Þ ðdÞ
Using the given function, a vector tangent to the curve at the point (0.6, 4) is given as

t5 ð24;15Þ ðeÞ
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This vector is obtained by differentiating the equation for the following curve at the point (0.6, 4)

with respect to the parameter s along the curve:

25x21 1 x22 5 25 ðfÞ
Differentiating this equation with respect to s at the point (0.6, 4) gives

253 2x1
@x1
@s

1 2x2
@x2
@s

5 0; or @x1=@s52ð4=15Þ@x2=@s ðgÞ

Then the vector t tangent to the curve is obtained as (@x1/@s, @x2/@s). The unit tangent vector is

calculated as
T5 t=jjt jj5 ð20:257663; 0:966235Þ ðhÞ

Property 1
If the gradient is normal to the tangent, then C �T5 0. This is indeed true for the preceding data. We can

also use the condition that if two lines are orthogonal, then m1m2521, where m1 and m2 are the slopes of the
two lines (this result can be proved using the rotational transformation of coordinates through 90 degrees).

To calculate the slope of the tangent, we use the equation for the curve 25x1
21 x225 25, or x2 5 5

ffiffiffiffiffiffiffiffiffiffiffiffiffi
12 x21

q
.

Therefore, the slope of the tangent at the point (0.6, 4) is given as

m1 5
dx2
dx1

5 25x1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
12 x21

q
52

15

4
ðiÞ

This slope is also obtained directly from the tangent vector t5 (24,15). The slope of the gradient vector
c5 (30, 8) is m2 5

8
30 5 4

15. Thus, m1m2 is indeed 21, and the two lines are normal to each other.

Property 2
Consider any arbitrary direction d5 (0.501034, 0.865430) at the point (0.6,4), as shown in Figure 11.5. If C

is the direction of steepest ascent, then the function should increase more rapidly along C than along d. Let
us choose a step size α5 0.1 and calculate two points, one along C and the other along d:

xð1Þ 5 xð0Þ 1αC5
0:6
4:0

� �
1 0:1

0:966235
0:257633

� �
5

0:6966235
4:0257663

� �
ðjÞ

xð2Þ 5 xð0Þ 1αd5
0:6
4:0

� �
1 0:1

0:501034
0:865430

� �
5

0:6501034
4:0865430

� �
ðkÞ

Now we calculate the function at these points and compare their values: f(x(1))5 28.3389, f(x(2))5 27.2657.
Since f(x(1)) . f(x(2)), the function increases more rapidly along C than along d.

Property 3
If the magnitude of the gradient vector represents the maximum rate of change in f(x), then (c � c). (c �d),

(c � c)5 964.0, and (c �d)5 21.9545. Therefore, the gradient vector satisfies this property also.
Note that the last two properties are valid only in a local sense—that is, only in a small neighborhood of

the point at which the gradient is evaluated.

11.2.2 Orthogonality of Steepest-Descent Directions

It is interesting that the successive directions of steepest descent are normal to one
another; that is, (c(k) � c(k11))5 0. This can be shown quite easily using necessary conditions
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to determine the optimum step size. The step size determination problem is to compute αk

that minimizes f(x(k)1αd(k)). The necessary condition for this is df/dα5 0. Using the chain
rule of differentiation, we get

dfðxðk11ÞÞ
dα

5
@fðxðk11ÞÞ

@x

� �T
@xðk11Þ

@α
5 0 ð11:22Þ

which gives (since d(k11)52c(k11), the steepest-descent direction)

ðcðk11Þ �dðkÞÞ5 0 or ðcðk11Þ � cðkÞÞ5 0 ð11:23Þ

cðk11Þ 5
@fðxðk11ÞÞ

@x
and

@xðk11Þ

@α
5

@

@α
ðxðkÞ 1αdðkÞÞ5dðkÞ ð11:24Þ

In the two-dimensional case, x5 (x1, x2). Figure 11.6 is an illustration of the design vari-
able space. The closed curves in the figure are contours of the cost function f(x). The
figure shows several steepest-descent directions that are orthogonal to each other.

x2

x1

f = 100

f = 25

(0.6, 4)

c = (30, 8)

t = (–4, 15)

d

8
30

FIGURE 11.5 Contours of the function f5 25x21 1 x22 for f5 25
and 100.

45511.2 MORE ON THE STEEPEST-DESCENT METHOD

II. NUMERICAL METHODS FOR CONTINUOUS VARIABLE OPTIMIZATION



11.3 SCALING OF DESIGN VARIABLES

The rate of convergence of the steepest-descent method is at best linear even for a qua-
dratic cost function. It is possible to accelerate this rate of convergence of the steepest-
descent method if the condition number of the Hessian of the cost function can be reduced
by scaling the design variables. For a quadratic cost function, it is possible to scale the
design variables such that the condition number of the Hessian matrix, with respect to the
new design variables, is unity (the condition number of a matrix is calculated as the ratio of
the largest to the smallest eigenvalues of the matrix).

The steepest-descent method converges in only one iteration for a positive definite qua-
dratic function with a unit condition number. To obtain the optimum point with the origi-
nal design variables, we can then unscale the transformed design variables. The main
objective of scaling the design variables, then, is to define transformations such that the
condition number of the Hessian with respect to the transformed variables is 1. We will
demonstrate the advantage of scaling the design variables with Examples 11.4 and 11.5.

EXAMPLE 11.4 EFFECT OF SCALING THE DESIGN VARIABLES

Minimize

fðx1; x2Þ5 25x21 1 x22 ðaÞ
starting from (1,1) using the steepest-descent method. How would we scale the design variables

to accelerate the rate of convergence?

Solution
Let us solve the problem using the computer program for the steepest-descent method given

in Appendix B. The results are summarized in Table 11.1. Note the inefficiency of the method

x*
x(3)

x(2)

x(0)

x1

x2

x(1)

FIGURE 11.6 The graphic shows the orthogonal
steepest-descent paths.
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with such a simple quadratic cost function; the method takes 5 iterations and 111 function eva-

luations. Figure 11.7 shows the contours of the cost function and the progress of the method

from the initial design.

The Hessian of f(x1, x2) is a diagonal matrix, given as

H5
50 0
0 2

� �
ðbÞ

The condition number of the Hessian is 50/25 25 since its eigenvalues are 50 and 2. Now let us

introduce new design variables y1 and y2 such that

x5Dy where D5

1ffiffiffiffiffi
50

p 0

0
1ffiffiffi
2

p

2
66664

3
77775 ðcÞ

Note that in general we may use Dii 5 1=
ffiffiffiffiffiffi
Hii

p
for i5 1 to n if the Hessian is a diagonal matrix

(the diagonal elements are the eigenvalues of H). The transformation in Eq. (c) gives

x1 5 y1=
ffiffiffiffiffi
50

p
and x2 5 y2=

ffiffiffi
2

p
and fðy1; y2Þ5

1

2
ðy21 1 y22Þ: ðdÞ

The minimum point of f(y1, y2) is found in just one iteration by the steepest-descent method,

compared with the five iterations for the original function, since the condition number of the

transformed Hessian is 1.

The optimum point is (0, 0) in the new design variable space. To obtain the minimum point in

the original design space, we have to unscale the transformed design variables as

x�1 5 y1=
ffiffiffiffiffi
50

p
5 0 and x�2 5 y2=

ffiffiffi
2

p
5 0. Therefore, for this example, the use of design variable scal-

ing is quite beneficial.

TABLE 11.1 Optimum solution to Example 11.4 with the steepest-
descent method

fðxÞ5 25x21 1 x22

Starting values of design variables 1, 1

Optimum design variables 22.35450E206, 1.37529E203

Optimum cost function value 1.89157E206

Norm of gradient at optimum 2.75310E203

Number of iterations 5

Number of function evaluations 111
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EXAMPLE 11.5 EFFECT OF SCALING THE DESIGN VARIABLES

Minimize

fðx1; x2Þ5 6x21 2 6x1x2 1 2x22 2 5x1 1 4x2 1 2 ðaÞ
starting from (21,22) using the steepest-descent method. Scale the design variables to have a condi-

tion number of unity for the Hessian matrix of the function with respect to the new design variables.

Solution
Note that, unlike the previous example, the function f in this problem contains the cross-

product term x1x2. Therefore, the Hessian matrix is not diagonal, and we need to compute its

eigenvalues and eigenvectors to find a suitable scaling or transformation of the design variables.

The Hessian H of the function f is given as

H5
12 26
26 4

� �
ðbÞ

x2
x2

x1

x1

Detail A

Detail A

x(0) = (1, 1)

x* = (0, 0)

f = 26

x(1)

FIGURE 11.7 Iteration history for Example 11.4 with the
steepest-descent method.
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The eigenvalues of the Hessian are calculated as 0.7889 and 15.211 (therefore, the condition

number5 15.211/0.78895 19.3). The corresponding eigenvectors are (0.4718, 0.8817) and

(20.8817, 0.4718). Now let us define new variables y1 and y2 by the following transformation:

x5Qy where Q5
0:4718 20:8817
0:8817 0:4718

� �
ðcÞ

Note that the columns of Q are the eigenvectors of the Hessian matrix H. The transformation of

variables defined by Eq. (c) gives the function in terms of y1 and y2 as

fðy1; y2Þ5 0:5ð0:7889y21 1 15:211y22Þ1 1:678y1 1 6:2957y2 1 2 ðdÞ
The condition number of the Hessian matrix in the new design variables y1 and y2 is still not

unity. To achieve the condition number equal to unity for the Hessian, we must define another

transformation of y1 and y2 using the eigenvalues of the Hessian matrix as

y5Dz; whereD5

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:7889

p 0

0
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

15:211
p

2
66664

3
77775 ðeÞ

where z1 and z2 are the new design variables, which can be calculated from the equations

y1 5
z1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:7889
p and y2 5

z2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15:211

p ðfÞ

The transformed objective function is given as

fðz1; z2Þ5 0:5ðz21 1 z22Þ1 1:3148z1 1 1:6142z2 ðgÞ
Since the condition number of the Hessian of f(z1,z2) is 1, the steepest-descent method converges

to the solution to f(z1,z2) in just one iteration as (21.3158,21.6142). The minimum point in the

original design space is found by defining the inverse transformation as x5QDz. This gives the

minimum point in the original design space as ð21
3 ; 2

3
2Þ:

It is important to note that the Hessian matrix for Examples 11.4 and 11.5 is a constant
matrix. Therefore, the transformation matrix for the variables is quite easily obtained. In
general, the Hessian matrix depends on the design variables. Therefore, the transformation
matrix depends on the design variables and will keep changing from iteration to iteration.
Actually, we need the Hessian of the function at the minimum point that we are trying to
find. Therefore, some approximations must be used to develop the transformation matrices.

11.4 SEARCH DIRECTION DETERMINATION:
NEWTON’S METHOD

With the steepest-descent method, only first-order derivative information is used to
determine the search direction. If second-order derivatives are available, we can use them
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to represent the cost surface more accurately, and a better search direction can be found.
With the inclusion of second-order information, we can expect a better rate of convergence
as well. For example, Newton’s method, which uses the Hessian of the function in calcu-
lating the search direction, has a quadratic rate of convergence (meaning that it converges
very rapidly when the design point is within certain radius of the minimum point). For
any positive definite quadratic function, the method converges in just one iteration with a
step size of one.

11.4.1 Classical Newton’s Method

The basic idea of the classical Newton’s method is to use a second-order Taylor’s expansion
of the function around the current design point. This gives a quadratic expression for the
change in design Δx. The necessary condition for minimization of this function then gives
an explicit calculation for design change. In the following, we will omit the argument x(k)

from all functions because the derivation applies to any design iteration. Using a second-
order Taylor’s expansion for the function f(x), we obtain

fðx1ΔxÞ5 fðxÞ1 cTΔx1 0:5ΔxTHΔx ð11:25Þ

where Δx is a small change in design and H is the Hessian of f at the point x (sometimes
denoted r2f ). Equation (11.25) is a quadratic function in terms of Δx. The theory of convex
programming problems (Chapter 4) guarantees that if H is positive semidefinite, then
there is a Δx that gives a global minimum for the function of Eq. (11.25). In addition, if H
is positive definite, then the minimum for Eq. (11.25) is unique.

Writing optimality conditions (@f/@(Δx)5 0) for the function of Eq. (11.25),

c1HΔx5 0 ð11:26Þ

Assuming H to be nonsingular, we get an expression for Δx as

Δx52H21c ð11:27Þ

Using this value for Δx, the design is updated as

xð1Þ 5 xð0Þ 1Δx ð11:28Þ

Since Eq. (11.25) is just an approximation for f at the point x(0), x(1) will probably not be
the precise minimum point of f(x). Therefore, the process will have to be repeated to obtain
improved estimates until the minimum is reached.

Each iteration of Newton’s method requires computation of the Hessian of the cost
function. Since it is a symmetric matrix, it needs computation of n(n1 1)/2 second-order
derivatives of f(x) (recall that n is the number of design variables). This can require consid-
erable computational effort.
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11.4.2 Modified Newton’s Method

Note that the classical Newton’s method does not have a step size associated with the
calculation of design change Δx in Eq. (11.27); that is, the step size is taken as one (a step
of length one is called an ideal step size or a Newton’s step). Therefore, there is no way
to ensure that the cost function will be reduced at each iteration (i.e., to ensure that
f(x(k11)), f(x(k))). Thus, the method is not guaranteed to converge to a local minimum point
even with the use of second-order information that requires large calculations.

This situation can be corrected if we incorporate the use of a step size in the calculation
of the design change Δx. In other words, we treat the solution of Eq. (11.27) as the search
direction and use any of the one-dimensional search methods to calculate the step size in
the search direction. This is called the modified Newton’s method and is stated as a step-by-
step algorithm:

Step 1. Make an engineering estimate for a starting design x(0). Set the iteration counter
k5 0. Select a tolerance ε for the stopping criterion.
Step 2. Calculate ci

(k)5 @f(x(k))/@xi for i5 1 to n. If jjc(k)jj, ε, stop the iterative process.
Otherwise, continue.
Step 3. Calculate the Hessian matrix H(k) at the current point x(k).
Step 4. Calculate the search by solving Eq. (11.27) as

dðkÞ 52½HðkÞ�21cðkÞ ð11:29Þ

Note that the calculation of d(k) is symbolic. For computational efficiency, the linear
equation H(k)d(k)52c(k) is solved directly instead of evaluating the inverse of the
Hessian matrix.
Step 5. Update the design as x(k11)5 x(k)1αkd

(k), where αk is calculated to minimize
f(x(k)1αd(k)). Any one-dimensional search procedure may be used to calculate α.
Step 6. Set k5 k1 1 and go to Step 2.

It is important to note here that unless H is positive definite, the direction d(k) deter-
mined from Eq. (11.29) may not be that of descent for the cost function. To see this, we
substitute d(k) from Eq. (11.29) into the descent condition of Eq. (11.2) to obtain

2cðkÞTH21cðkÞ, 0 ð11:30Þ
The foregoing condition will always be satisfied if H is positive definite. If H is negative
definite or negative semidefinite, the condition is always violated. With H as indefinite or
positive semidefinite, the condition may or may not be satisfied, so we must check for it. If
the direction obtained in Step 4 is not that of descent for the cost function, then we should
stop there because a positive step size cannot be determined. Based on the foregoing dis-
cussion, it is suggested that the descent condition of Eq. (11.2) should be checked for
Newton’s search direction at each iteration before calculating the step size. Later we will
present methods known as quasi-Newton methods; these use an approximation for the
Hessian matrix that is kept positive definite. Because of that the search direction is always
that of descent.

Examples 11.6 and 11.7 demonstrate use of the modified Newton’s method.
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EXAMPLE 11.6 USE OF THE MODIFIED NEWTON’S METHOD

Minimize

fðxÞ5 3x21 1 2x1x2 1 2x22 1 7 ðaÞ
using the modified Newton’s algorithm starting from the point (5, 10). Use ε5 0.0001 as the stop-

ping criterion.

Solution
We will follow the steps of the modified Newton’s method.

Step 1. x(0) is given as (5, 10).

Step 2. The gradient vector c(0) at the point (5, 10) is given as

cð0Þ 5 ð6x1 1 2x2; 2x1 1 4x2Þ5 ð50; 50Þ ðbÞ

:cð0Þ:5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
502 1 502

p
5 50

ffiffiffi
2

p
. ε ðcÞ

Therefore, the convergence criterion is not satisfied.

Step 3. The Hessian matrix at the point (5, 10) is given as

Hð0Þ 5
6 2
2 4

� �
ðdÞ

Note that the Hessian does not depend on the design variables and is positive definite (since

its eigenvalues are 7.24 and 2.76). Therefore, Newton’s direction satisfies the descent

condition at each iteration.

Step 4. The direction of design change is

dð0Þ 52H21cð0Þ 5
21

20

4 22
22 6

� �
50
50

� �
5

25
210

� �
ðeÞ

Step 5. Calculate the Step size α to minimize f(x(0)1αd(0)):

xð1Þ 5 xð0Þ 1αdð0Þ 5
5

10

� �
1α 25

210

� �
5

525α
10210α

� �
ðfÞ

df

dα
5 0; or rfðxð1ÞÞ �dð0Þ 5 0 ðgÞ

where the chain rule of differentiation shown in Eq. (11.22) has been used in Eq. (g). Using

the Step 2 calculations, calculate rf(x(1)) and the dot product rf(x(1)) �d(0):

rfðxð1ÞÞ5 6ð525αÞ1 2ð10210αÞ
2ð525αÞ1 4ð10210αÞ

� �
5

50250α
50250α

� �
ðhÞ

rfðxð1ÞÞ �dð0Þ 5 ð50250α; 50250αÞ 25
210

� �
5 0 ðiÞ

Or 25ð50250αÞ210ð50250αÞ5 0 ðjÞ
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Solving the preceding equation, we get α5 1. Note that the golden section search also gives

α5 1. Therefore,

xð1Þ 5
525α

10210α

� �
5

0
0

� �
ðkÞ

The gradient of the cost function at x(1) is calculated as

cð1Þ 5
50250α
50250α

� �
5

0
0

� �
ðlÞ

Since jjc(k)jj, ε, Newton’s method has given the solution in just one iteration. This is because

the function is a positive definite quadratic form (the Hessian of f is positive definite every-

where). Note that the condition number of the Hessian is not 1; therefore the steepest-descent

method will not converge in one iteration, as was the case in Examples 11.4 and 11.5.

A computer program based on the modified Newton’s method is given in Appendix B.
It needs three user-supplied subroutines FUNCT, GRAD, and HASN. These subroutines evalu-
ate the cost function, the gradient, and the Hessian matrix of the cost function, respec-
tively. The program is used to solve the problem in Example 11.7.

EXAMPLE 11.7 USE OF THE MODIFIED NEWTON’S METHOD

Minimize

fðxÞ5 10x41 220x21x2 1 10x22 1 x21 22x1 1 5 ðaÞ
using the computer program for the modified Newton’s method given in Appendix B from the

point (21, 3). Golden section search may be used for step size determination with δ5 0.05 and

line search accuracy equal to 0.0001. For the stopping criterion, use ε5 0.005.

Solution
Note that f(x) is not a quadratic function in terms of the design variables. Thus, we cannot

expect Newton’s method to converge in one iteration. The gradient of f(x) is given as

c5rfðxÞ5 ð40x31 2 40x1x2 1 2x1 2 2; 220x21 1 20x2Þ ðbÞ
and the Hessian matrix of f(x) is

H5r2fðxÞ5 120x21 2 40x2 1 2 240x1
2 40x1 20

� �
ðcÞ

Results with the modified Newton’s method for the problem are given in Table 11.2. The opti-

mum point is (1, 1) and the optimum value of f(x) is 4.0. Newton’s method has converged to the

optimum solution in eight iterations. Figure 11.8 shows the contours for the function and the

progress of the method from the starting design (21, 3). It is noted that the step size was approx-

imately equal to one in the last phase of the iterative process. This is because the function resem-

bles a quadratic function sufficiently close to the optimum point and the step size is equal to

unity for a quadratic function.
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The drawbacks of the modified Newton method for general applications include the
following:

1. It requires calculations of second-order derivatives at each iteration, which is usually
quite time-consuming. In some applications it may not even be possible to calculate
such derivatives. Also, a linear system of equations in Eq. (11.29) needs to be solved.
Therefore, each iteration of the method requires substantially more calculations
compared with the steepest-descent or conjugate gradient method.

2. The Hessian of the cost function may be singular at some iterations. Thus, Eq. (11.29)
cannot be used to compute the search direction. Also, unless the Hessian is positive
definite, the search direction cannot be guaranteed to be that of descent for the cost
function, as discussed earlier.

3. The method is not convergent unless the Hessian remains positive definite and a step
size is calculated along the search direction to update the design. However, the method

TABLE 11.2 Optimum solution to Example 11.7 with the modified
Newton’s method

fðxÞ5 10x41 2 20x21x2 1 10x22 1 x21 2 2x1 1 5

Starting point �1, 3

Optimum design variables 9.99880E�01, 9.99681E�01

Optimum cost function value 4.0

Norm of gradient at optimum 3.26883E�03

Number of iterations 8

Number of function evaluations 198

x1

x2
(–1, 3)

3.0

2.0

2.0
–1.0

–2.0 –1.0

1.0

1.0

0

0

x(0)

x(1)

9

x(2)

x(3)

x(4)

Optimum point
(1, 1) and f * = 4

7

5

35
14

6

f = 65 FIGURE 11.8 Iteration history for Example 11.7 with
Newton’s method.
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has a quadratic rate of convergence when it works. For a strictly convex quadratic
function, the method converges in just one iteration from any starting design.

A comparison of the steepest-descent, conjugate gradient, and modified Newton’s
methods is presented in Example 11.8.

EXAMPLE 11.8 COMPARISON OF STEEPEST-DESCENT,
CONJUGATE GRADIENT, AND MODIFIED
NEWTON METHODS

Minimize

fðxÞ5 50ðx2 2 x21Þ2 1 ð22 x1Þ2 ðaÞ
starting from the point (5,25). Use the steepest-descent, Newton, and conjugate gradient meth-

ods, and compare their performance.

Solution
The minimum point for the function is (2, 4) with f(2,4)5 0. We use exact gradient expressions

and ε5 0.005 to solve the problem using the steepest-descent and Newton’s method programs

given in Appendix B, and the conjugate gradient method available in IDESIGN. Table 11.3 sum-

marizes the final results with the three methods.

For the steepest-descent method, δ05 0.05 and a line search termination criterion of 0.00001

are used. For the modified Newton’s method, they are 0.05 and 0.0001, respectively. Golden sec-

tion search is used with both methods. It can be observed again that for the present example the

steepest-descent method is the most inefficient and the conjugate gradient is the most efficient.

Therefore, the conjugate gradient method is recommended for general applications.

11.4.3 Marquardt Modification

As noted before, the modified Newton’s method has several drawbacks that can cause
numerical difficulties. For example, if the Hessian H of the cost function is not positive
definite, the direction found from Eq. (11.29) may not be that of descent for the cost

TABLE 11.3 Comparative evaluation of three methods for Example 11.8

fðxÞ5 50ðx2 2 x21Þ2 1 ð22 x1Þ2

Steepest-descent Conjugate gradient Modified Newton’s

x1 1.9941E100 2.0000E100 2.0000E100

x2 3.9765E100 3.9998E100 3.9999E100

f 3.4564E205 1.0239E208 2.5054E210

jjcjj 3.3236E203 1.2860E204 9.0357E204

Number of function evaluations 138236 65 349

Number of iterations 9670 22 13

46511.4 SEARCH DIRECTION DETERMINATION: NEWTON’S METHOD

II. NUMERICAL METHODS FOR CONTINUOUS VARIABLE OPTIMIZATION



function. In that case, a step cannot be executed along the direction. Marquardt (1963) sug-
gested a modification to the direction-finding process that has the desirable features of the
steepest-descent and Newton’s methods. It turns out that far away from the solution point,
the method behaves like the steepest-descent method, which is quite good there. Near the
solution point, it behaves like the Newton’s method, which is very effective there.

In Marquardt’s method, the Hessian is modified as (H1λI), where λ is a positive con-
stant. λ is initially selected as a large number that is reduced as iterations progress. The
search direction is computed from Eq. (11.29) as

dðkÞ 52½HðkÞ 1λkI�21cðkÞ ð11:31Þ
Note that when λ is large, the effect ofH is essentially neglected and d(k) is essentially 2(1/λ)
c(k), which is the steepest-descent direction with 1/λ as the step size.

As the algorithm proceeds, λ is reduced (i.e., the step size is increased). When λ
becomes sufficiently small, then the effect of λI is essentially neglected and the Newton
direction is obtained from Eq. (11.31). If the direction d(k) of Eq. (11.31) does not reduce the
cost function, then λ is increased (the step size is reduced) and the search direction is
recomputed. Marquardt’s algorithm is summarized in the following steps.

Step 1. Make an engineering estimate for the starting design x(0). Set the iteration
counter at k5 0. Select a tolerance ε as the stopping criterion and λ0 as a large constant
(say 1000).
Step 2. Calculate ci

(k)5 @f(x(k))/@xi for i5 1 to n. If jjc(k)jj, ε, stop. Otherwise, continue.
Step 3. Calculate the Hessian matrix H(x(k)).
Step 4. Calculate the search direction by solving Eq. (11.31).
Step 5. If f(x(k)1d(k)), f(x(k)), then continue. Otherwise, increase λk (say to 2λk), and go
to Step 4.
Step 6. Reduce λk, say to λk115 0.5λk. Set k5 k1 1 and go to Step 2.

11.5 SEARCH DIRECTION DETERMINATION:
QUASI-NEWTON METHODS

In Section 10.6 the steepest-descent method was described. Some of the drawbacks of
that method were pointed out. It was noted that the method has a poor rate of conver-
gence because only first-order information is used. This flaw is corrected with Newton’s
method, where second-order derivatives are used. Newton’s method has very good con-
vergence properties. However, it can be inefficient because it requires calculation of
n(n1 1)/2 second-order derivatives to generate the Hessian matrix (recall that n is the
number of design variables). For most engineering design problems, calculation of second-
order derivatives may be tedious or even impossible. Also, Newton’s method runs into
difficulties if the Hessian of the function is singular at any iteration.

The methods presented in this section overcome the drawbacks of Newton’s method by
generating an approximation for the Hessian matrix or its inverse at each iteration. Only
the first derivatives of the function are used to generate these approximations. Therefore
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the methods have desirable features of both the steepest-descent and the Newton’s meth-
ods. They are called quasi-Newton methods.

The quasi-Newton methods were initially developed for positive definite quadratic func-
tions. For such functions they converge to the exact optimum in at most n iterations. However,
this ideal behavior does not carry over to general cost functions, and the methods usually
need to be restarted at every (n1 1)th iteration, just as with the conjugate gradient method.

There are several ways to approximate the Hessian or its inverse. The basic idea is to
update the current approximation of the Hessian using two pieces of information: changes in
design and the gradient vectors between two successive iterations. While updating, the prop-
erties of symmetry and positive definiteness are preserved. Positive definiteness is essential
because without it the search direction may not be a descent direction for the cost function.

The derivation of the updating procedures is based on the so-called quasi-Newton condi-
tion, also called the secant equation (Gill et al., 1981; Nocedal and Wright, 2006). This condition
is derived by requiring the curvature of the cost function in the search direction d(k) to be the
same at two consecutive points x(k) and x(k11). The enforcement of this condition gives the
updating formulas for the Hessian of the cost function or its inverse. For a strictly convex qua-
dratic function, the updating procedure converges to the exact Hessian in n iterations. We
will describe two of the most popular methods in the class of quasi-Newton methods.

11.5.1 Inverse Hessian Updating: The DFP Method

The DFP method, initially proposed by Davidon (1959), was modified by Fletcher and
Powell (1963); their version is presented here. DFP is one of the most powerful methods
for the minimization of a general function f(x). The method builds an approximate inverse of
the Hessian of f(x) using only the first derivatives. It is often called the DFP (Davidon-
Fletcher-Powell) method:

Step 1. Estimate an initial design x(0). Choose a symmetric positive definite n3 n
matrix A(0) as an estimate for the inverse of the Hessian of the cost function. In the
absence of more information, A(0)5 I may be chosen. Also, specify a convergence
parameter ε. Set k5 0. Compute the gradient vector as c(0)5rf(x(0)).
Step 2. Calculate the norm of the gradient vector as jjc(k)jj. If jjc(k)jj,ε, then stop the
iterative process. Otherwise, continue.
Step 3. Calculate the search direction as

dðkÞ 5 2AðkÞcðkÞ ð11:32Þ
Step 4. Compute the optimum step size:

αk5α to minimize fðxðkÞ 1αdðkÞÞ ð11:33Þ
Step 5. Update the design as

xðk11Þ 5 xðkÞ 1αkd
ðkÞ ð11:34Þ

Step 6. Update the matrix A(k)—the approximation for the inverse of the Hessian of the
cost function—as

Aðk11Þ 5AðkÞ 1BðkÞ 1CðkÞ ð11:35Þ
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where the correction matrices B(k) and C(k) are calculated using the quasi-Newton condi-
tion mentioned earlier:

BðkÞ 5
sðkÞsðkÞT

ðsðkÞ �yðkÞÞ ; CðkÞ 5
2zðkÞzðkÞT

ðyðkÞ � zðkÞÞ ð11:36Þ

sðkÞ 5αkd
ðkÞðchange in designÞ; yðkÞ 5 cðk11Þ 2 cðkÞðchange in gradientÞ ð11:37Þ

cðk11Þ 5rfðxðk11ÞÞ; zðkÞ 5AðkÞyðkÞ ð11:38Þ
Step 7. Set k5 k1 1 and go to Step 2.

Note that the first iteration of the method is the same as that for the steepest-descent
method. Fletcher and Powell (1963) prove the following properties of the algorithm:

1. The matrix A(k) is positive definite for all k. This implies that the method will always
converge to a local minimum point, since

d

dα
fðxðkÞ 1αdðkÞÞ a50 52cðkÞTAðkÞcðkÞ, 0

�� ð11:39Þ

as long as c(k) 6¼ 0. This means that f(x(k)) may be decreased by choosing α. 0 if c(k) 6¼ 0
(i.e., d(k) is a direction of descent).

2. When this method is applied to a positive definite quadratic form, A(k) converges to the
inverse of the Hessian of the quadratic form.

Example 11.9 illustrates calculations for two iterations of the DFP method.

EXAMPLE 11.9 APPLICATION OF THE DFP METHOD

Execute two iterations of the DFP method for the problem starting from the point (1,2):

Minimize
fðxÞ5 5x21 1 2x1x2 1 x22 1 7 ðaÞ

Solution
We will follow steps of the algorithm.

Iteration 1 (k5 0)

1. x(0)5 (1, 2); A(0)5 I, k5 0, ε5 0.001

c(0)5 (10x11 2x2, 2x11 2x2)5 (14, 6)

2. :cð0Þ:5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
142 1 62

p
5 15:232. ε; so continue

3. d(0)52c(0)5 (214,26)

4. x(1)5 x(0)1αd(0)5 (1214α, 22 6α)

fðxð1ÞÞ5 fðαÞ5 5ð12 14αÞ2 1 2ð12 14αÞð22 6αÞ1 ð22 6αÞ2 1 7 ðbÞ
df

dα
5 5 2ð Þ 214ð Þ 12 14αð Þ1 2 214ð Þ 22 6αð Þ1 2 26ð Þ 12 14αð Þ1 2 26ð Þ 22 6αð Þ5 0 ðcÞ

α0 5 0:099
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d2f

dα2
5 2348. 0

Therefore, a step size of α5 0.099 is acceptable.

5. xð1Þ 5 xð0Þ 1α0d
ð0Þ 5

1
2

� �
1 0:099

214
26

� �
5

20:386
1:407

� �

6. sð0Þ 5α0d
ð0Þ 5 ð21:386; 20:593Þ; cð1Þ 5 ð21:046; 2:042Þ ðdÞ

yð0Þ 5 cð1Þ 2 cð0Þ 5 ð215:046; 23:958Þ; zð0Þ 5yð0Þ 5 ð215:046; 23:958Þ ðeÞ

sð0Þ � yð0Þ 5 23:20; yð0Þ � zð0Þ 5 242:05 ðfÞ

sð0Þsð0ÞT 5
1:921 0:822
0:822 0:352

� �
; Bð0Þ 5

sð0Þ sð0ÞT

sð0Þ � yð0Þ 5
0:0828 0:0354
0:0354 0:0152

� �
ðgÞ

zð0Þzð0ÞT 5
226:40 59:55
59:55 15:67

� �
; Cð0Þ 52

zð0Þzð0ÞT

yð0Þ � zð0Þ 5
20:935 20:246
20:246 20:065

� �
ðhÞ

Að1Þ 5Að0Þ 1Bð0Þ 1Cð0Þ 5
0:148 20:211

20:211 0:950

� �
ðiÞ

Iteration 2 (k5 1)

2. jjc(1)jj5 2.29 . ε, so continue

3. d(1)52A(1)c(1)5 (0.586, 21.719); compare this to the steepest-descent direction, d(1)52c(1)5

(1.046,22.042)

4. Step size determination:

Minimize f(x(1)1αd(1)); α15 0.776

5. x(2)5 x(1)1α1d
(1)5 (20.386, 1.407)1 0.776(0.586,21.719)5 (0.069, 0.073)

6. s(1)5α1d
(1)5 (0.455, 21.334)

cð2Þ 5 ð0:836; 0:284Þ; yð1Þ 5 cð2Þ 2 cð1Þ 5 ð1:882; 21:758Þ ðjÞ

zð1Þ 5Að1Þyð1Þ 5 ð0:649; 22:067Þ; sð1Þ � yð1Þ 5 3:201; yð1Þ � zð1Þ 5 4:855 ðkÞ

sð1Þsð1ÞT 5
0:207 20:607

20:607 1:780

� �
; B 1ð Þ 5

sð1Þsð1ÞT

sð1Þ � yð1Þ 5
0:0647 20:19

20:19 0:556

� �
ðlÞ

zð1Þzð1ÞT 5
0:421 21:341

21:341 4:272

� �
; Cð1Þ 52

zð1Þzð1ÞT

yð1Þ � zð1Þ 5
20:0867 0:276
0:276 20:880

� �
ðmÞ

Að2Þ 5Að1Þ 1Bð1Þ 1Cð1Þ 5
0:126 20:125

20:125 0:626

� �
ðoÞ

It can be verified that the matrix A(2) is quite close to the inverse of the Hessian of the cost

function. One more iteration of the DFP method will yield the optimum solution of (0, 0).
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11.5.2 Direct Hessian Updating: The BFGS Method

It is possible to update the Hessian rather than its inverse at every iteration. Several
such updating methods are available; however, we will present a popular method that has
proven to be most effective in applications. Detailed derivation of the method is given in
works by Gill and coworkers (1981) and Nocedal and Wright (2006). It is known as the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) method and is summarized in the following
algorithm:

Step 1. Estimate an initial design x(0). Choose a symmetric positive definite n3 nmatrixH(0)

as an estimate for the Hessian of the cost function. In the absence of more information, let
H(0)5 I. Choose a convergence parameter ε. Set k5 0, and compute the gradient vector as
c(0)5rf(x(0)).
Step 2. Calculate the norm of the gradient vector as jjc(k)jj. If jjc(k)jj, ε, stop the
iterative process; otherwise, continue.
Step 3. Solve the following linear system of equations to obtain the search direction:

HðkÞdðkÞ 52cðkÞ ð11:40Þ
Step 4. Compute the optimum step size:

αk 5α to minimize fðxðkÞ 1αdðkÞÞ ð11:41Þ
Step 5. Update the design as

xðk11Þ 5 xðkÞ 1αkd
ðkÞ ð11:42Þ

Step 6. Update the Hessian approximation for the cost function as

Hðk11Þ 5HðkÞ 1DðkÞ 1EðkÞ ð11:43Þ
where the correction matrices D(k) and E(k) are given as

DðkÞ 5
yðkÞyðkÞT

ðyðkÞ � sðkÞÞ ; EðkÞ 5
cðkÞcðkÞT

ðcðkÞ �dðkÞÞ
ð11:44Þ

sðkÞ 5 akd
ðkÞðchange in designÞ; yðkÞ 5 cðk11Þ 2 cðkÞ ðchange in gradientÞ; cðk11Þ 5rfðxðk11ÞÞ

ð11:45Þ
Step 7. Set k5 k1 1 and go to Step 2.

Note again that the first iteration of the method is the same as that for the steepest-
descent method when H(0)5 I. It can be shown that the BFGS update formula keeps
the Hessian approximation positive definite if an accurate line search is used. This is
important to know because the search direction is guaranteed to be that of descent for
the cost function if H(k) is positive definite. In numerical calculations, difficulties can
arise because the Hessian can become singular or indefinite as a result of inexact line
search and round-off and truncation errors. Therefore, some safeguards against numeri-
cal difficulties must be incorporated into computer programs for stable and convergent
calculations.
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Another numerical procedure that is extremely useful is to update decomposed factors
(Cholesky factors) of the Hessian rather than the Hessian itself. With that procedure, the
matrix can numerically be guaranteed to remain positive definite, and the linear equation
H(k)d(k)52c(k) can be solved more efficiently.

Example 11.10 illustrates calculations for two iterations of the BFGS method.

EXAMPLE 11.10 APPLICATION OF THE BFGS METHOD

Execute two iterations of the BFGS method for the problem starting from the point (1, 2):

Minimize

fðxÞ5 5x1
2 1 2x1x2 1 x22 1 7:

Solution
We will follow the steps of the algorithm. Note that the first iteration gives the steepest-

descent step for the cost function.

Iteration 1 (k5 0)

1. x(0)5 (1, 2), H(0)5 I, ε5 0.001, k5 0

cð0Þ 5 ð10x1 1 2x2; 2x1 1 2x2Þ5 ð14; 6Þ ðaÞ
2. :cð0Þ:5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
142 1 62

p
5 15:232. ε; so continue

3. d(0)52c(0)5 (214, 26); since H(0)5 I

4. Step size determination (same as Example 11.9): α05 0.099

5. x(1)5 x(0)1α0d
(0)5 (20.386, 1.407)

6. s(0)5α0d
(0)5 (21.386, 20.593); c(1)5 (21.046, 2.042)

yð0Þ 5 cð1Þ 2 cð0Þ 5 ð215:046;23:958Þ; yð0Þ � sð0Þ 5 23:20; cð0Þ �dð0Þ 52232:0 ðbÞ

yð0Þyð0ÞT 5
226:40 59:55
59:55 15:67

� �
; Dð0Þ 5

yð0Þyð0ÞT

yð0Þ � sð0Þ 5
9:760 2:567
2:567 0:675

� �
ðcÞ

cð0Þcð0ÞT 5
196 84
84 36

� �
; Eð0Þ 5

cð0Þcð0ÞT

cð0Þ �dð0Þ 5
20:845 20:362
20:362 20:155

� �
ðdÞ

Hð1Þ 5Hð0Þ 1Dð0Þ 1Eð0Þ 5
9:915 2:205
2:205 1:520

� �
ðeÞ

Iteration 2 (k5 1)

2. jjc(1)jj5 2.29. ε, so continue

3. H(1)d(1)52c(1); or, d(1)5 (0.597,22.209)

4. Step size determination: α15 0.638

5. x(2)5 x(1)1α1d
(1)5 (20.005,20.002)

6. s(1)5α1d
(1)5 (0.381,21.409); c(2)5 (20.054,20.014)

yð1Þ 5 cð2Þ 2 cð1Þ 5 ð0:992; 22:056Þ; yð1Þ � sð1Þ 5 3:275; cð1Þ �dð1Þ 525:135 ðfÞ
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yð1Þyð1ÞT 5
0:984 22:04

22:04 4:227

� �
; Dð1Þ 5

yð1Þ yð1ÞT

yð1Þ � sð1Þ 5
0:30 20:623

20:623 1:291

� �
ðgÞ

cð1Þcð1ÞT 5
1:094 22:136

22:136 4:170

� �
; Eð1Þ 5

cð1Þ cð1ÞT

cð1Þ �dð1Þ 5
20:213 0:416
0:416 20:812

� �
ðhÞ

Hð2Þ 5Hð1Þ 1Dð1Þ 1Eð1Þ 5
10:002 1:998
1:998 1:999

� �
ðiÞ

It can be verified that H(2) is quite close to the Hessian of the given cost function. One more

iteration of the BFGS method will yield the optimum solution of (0, 0).

11.6 ENGINEERING APPLICATIONS OF UNCONSTRAINED
METHODS

There are several engineering applications where unconstrained optimization methods
can be used. For example, linear as well as nonlinear equations can be solved with uncon-
strained optimization methods. Such equations arise while calculating the response of
structural and mechanical systems. The procedures have been incorporated into some
commercial software packages as well, such as finite element analysis programs.

11.6.1 Data Interpolation

Another very common application of unconstrained optimization techniques is the
interpolation of discrete numerical data. Here we want to develop an analytical represen-
tation for the discrete numerical data. These data may be collected from experiments or
some other observations. For example, we may have discrete data (xi, yi), i5 1 to n that
relate two variables x and y. The data need to be represented as a function y5 q(x). The
function q(x) may be linear (straight line), polynomial (curve), exponential, logarithmic, or
any other function. Similarly, we may have data involving three or more variables. In that
case a function of several variables needs to be developed.

The problem of data interpolation is called regression analysis. The problem can be for-
mulated as an unconstrained optimization problem where the error between the available
data and its analytical representation is minimized. The parameters that characterize the
interpolation function are treated as the design variables for the optimization problem.
Different error functions may be defined. The most common error function is the sum of
squares of the errors at each discrete point, defined as

fðqÞ5
Xn
i51

½yi 2 qðxiÞ�2 ð11:46Þ

Thus the unconstrained optimization problem is to minimize

fðqÞ5
Xn
i51

½yi 2 qðxiÞ�2 ð11:47Þ
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This is known as the least squares minimization problem.
If a linear relationship is desired between the variables x and y, then q(x) is represented as

qðxÞ5 ax1 b ð11:48Þ
where a and b are the unknown parameters. Substituting Eq. (11.48) in Eq. (11.47), we
obtain the linear least squares problem as

Minimize

fða;bÞ5
Xn
i51

½yi 2 ðaxi 1 bÞ�2 ð11:49Þ

The problem, then, is to determine a and b to minimize the error function of Eq. (11.49).
This problem can be solved in a closed form by writing the optimality condition and solv-
ing the resulting system of two linear equations.

Depending on the variability in the available data, many other functions may be used
for q(x) in Eq. (11.48), such as higher-order polynomials, logarithmic functions, exponential
functions, and the like.

11.6.2 Minimization of Total Potential Energy

The equilibrium states of structural and mechanical systems are characterized by the sta-
tionary points of the total potential energy of the system. This is known as the principle of sta-
tionary potential energy. If at a stationary point the potential energy actually has a minimum
value, the equilibrium state is called stable. In structural mechanics, these principles are of
fundamental importance and form the basis for numerical methods of structural analysis.

To demonstrate the principle, we consider the symmetric two-bar truss shown in
Figure 11.9. The structure is subjected to a load W at node C. Under the action of this load,
node C moves to a point C0. The problem is to compute the displacements x1 and x2 of

A

1

B

C
C′θ

β

s

W

h

x2

x1

2

FIGURE 11.9 Two-bar truss.
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node C. This can be done by writing the total potential energy of the structure in terms of
x1 and x2 and then minimizing it. Once the displacements x1 and x2 are known, member
forces and stresses can be calculated using them. Let

E 5modulus of elasticity, N/m2 (this is the property of a material that relates stresses
in the material to strains)

s 5 span of the truss, m
h 5height of the truss, m
A15 cross-sectional area of member 1, m2

A25 cross-sectional area of member 2, m2

θ 5 angle at which load W is applied, degrees

L 5 length of the members; L5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 1 0:25s2

p
, m

W5 load, N
x15horizontal displacement, m
x25vertical displacement, m

The total potential energy of the system, assuming small displacements, is given as

Pðx1; x2Þ5
EA1

2L
ðx1 cosβ1 x2 sinβÞ2 1 EA2

2L
ð2x1 cosβ1 x2 sinβÞ2

2Wx1 cosθ2Wx2 sinθ; NUm
ð11:50Þ

where the angle β is shown in Figure 11.9. Minimization of P with respect to x1 and x2
gives the displacements x1 and x2 for the equilibrium state of the two-bar structure.
Example 11.11 demonstrates this calculation.

EXAMPLE 11.11 MINIMIZATION OF THETOTAL POTENTIAL
ENERGY OF A TWO-BAR TRUSS

For the two-bar truss problem, use the following numerical data:

A15A25 1025 m2

h5 1.0 m, s5 1.5 m

W5 10 kN

θ5 30�

E5 207 GPa

Minimize the total potential energy given in Eq. (11.50) by (1) the graphical method, (2) the ana-

lytical method, and (3) the conjugate gradient method.

Solution
Substituting these data into Eq. (11.50) and simplifying, we get (note that cosβ5 s/2L and

sinβ5 h/L)

Pðx1; x2Þ5
EA

L

s

2L

� 	2

x21 1
EA

L

h

2L

� �2

x22 2Wx1 cosθ2Wx2 sinθ

5 ð5:9623 106Þx21 1 ð1:05983 106Þx22 28660x1 25000x2; N �m
ðaÞ
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Contours for the function are shown in Figure 11.10. The optimum solution from the graph is

calculated as x15 (7.26343 1022) m; x25 (2.33593 1022) m; P5237.348 N �m.

Using the necessary conditions of optimality (rP5 0), we get

2ð5:9623 106Þx1 286605 0; x1 5 ð7:26293 1023Þ;m ðbÞ
2ð1:05983 106Þx2 250005 0; x2 5 ð2:35893 1023Þ;m ðcÞ

The conjugate gradient method given in IDESIGN (Arora and Tseng, 1987a,b) also converges to

the same solution.

11.6.3 Solutions to Nonlinear Equations

Unconstrained optimization methods can be used to find the roots of a nonlinear sys-
tem of equations. To demonstrate this, we consider the following 23 2 system:

F1ðx1; x2Þ5 0; F2ðx1; x2Þ5 0 ð11:51Þ
We define a function that is the sum of the squares of the functions F1 and F2 as

fðx1; x2Þ5 F21ðx1; x2Þ1 F22ðx1; x2Þ ð11:52Þ
Note that if x1 and x2 are the roots of Eq. (11.51), then f5 0 in Eq. (11.52). If x1 and x2

are not the roots, then the function f . 0 represents the sum of the squares of the errors in
the equations F15 0 and F25 0. Thus, the optimization problem is to find x1 and x2 to min-
imize the function f(x1, x2) of Eq. (11.52). We need to show that the necessary conditions
for minimization of f(x) give the roots for the nonlinear system of equations. The necessary
conditions of optimality give

@f

@x1
5 2F1

@F1
@x1

1 2F2
@F2
@x1

5 0 ð11:53Þ

0.008

0.008 0.012 0.016

Optimum point
(7.263E–03, 2.359E–03) (m)
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3 
4 
5
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x 2
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m
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FIGURE 11.10 Contours
of the potential energy func-
tion P(x1, x2) for a two-bar
truss (P5 0, 29.0, 218.0, 227.0,
236.0, and 237.348 N�m).
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@f

@x2
5 2F1

@F1
@x2

1 2F2
@F2
@x2

5 0 ð11:54Þ

Note that the necessary conditions are satisfied if F15 F25 0, x1 and x2 are the roots of the
equations F15 0, and F25 0. At this point f5 0. Note also that the necessary conditions can be
satisfied if @Fi/@xj5 0 for i, j5 1, 2. If @Fi/@xj5 0, x1 and x2 are stationary points for the func-
tions F1 and F2. For most problems it is unlikely that the stationary points for F1 and F2 will
also be the roots of F15 0 and F25 0, so we may exclude these cases. In any case, if x1 and x2
are the roots of the equations, then f must have a zero value. Also if the optimum value of f is
different from zero (f 6¼ 0), then x1 and x2 cannot be the roots of the nonlinear system. Thus, if
the optimization algorithm converges with f 6¼ 0, then the optimum point for the problem of
minimization of f is not a root of the nonlinear system. The algorithm should be restarted
from a different initial point. Example 11.12 illustrates this root-finding process.

EXAMPLE 11.12 FINDING ROOTS OF NONLINEAR EQUATIONS
BY UNCONSTRAINED MINIMIZATION

Find the roots of the equations

F1ðxÞ5 3x1
2 1 12x22 1 10x1 5 0; F2ðxÞ5 24x1x2 1 4x2 1 35 0 ðaÞ

Solution
We define the error function f(x) as

fðxÞ5F21 1 F22 5 ð3x21 1 12x22 1 10x1Þ2 1 ð24x1x2 1 4x2 1 3Þ2 ðbÞ
To minimize this function, we can use any of the methods discussed previously. Table 11.4

shows the iteration history with the conjugate gradient method available in IDESIGN (Arora and

Tseng, 1987a,b).

One root of the equations is x15 20.3980, x25 0.5404 starting from the point (21, 1). Starting

from a different point (250, 50), another root is found as (23.331, 0.03948). However, starting

from another point (2, 3), the program converges to (0.02063,20.2812) with f5 4.351. Since f 6¼ 0,

this point is not a root of the given system of equations. When this happens, we start from a dif-

ferent point and re-solve the problem.

TABLE 11.4 Root of the nonlinear equations in Example 11.12

Number x1 x2 F1 F2 f

0 �1.0000 1.0000 5.0000 �17.0000 314.0000

1 �0.5487 0.4649 �1.9900 �1.2626 5.5530

2 �0.4147 0.5658 0.1932 �0.3993 0.1968

3 �0.3993 0.5393 �0.0245 �0.0110 7.242E�4

4 �0.3979 0.5403 �9.377E�4 �1.550E�3 2.759E�6

5 �0.3980 0.5404 �4.021E�4 �3.008E�4 1.173E�8

476 11. MORE ON NUMERICAL METHODS FOR UNCONSTRAINED OPTIMUM DESIGN

II. NUMERICAL METHODS FOR CONTINUOUS VARIABLE OPTIMIZATION



Note that the preceding procedure can be generalized to a system of n equations in n
unknowns. In this case, the error function f(x) will be defined as

fðxÞ5
Xn
i51

½FiðxÞ�2 ð11:55Þ

11.7 SOLUTIONS TO CONSTRAINED PROBLEMS USING
UNCONSTRAINED OPTIMIZATION METHODS

It turns out that unconstrained optimization methods can also be used to solve constrained
design problems. This section briefly describes such methods that transform the constrained
problem to a sequence of unconstrained problems. The basic idea is to construct a compos-
ite function using the cost and constraint functions. The composite function also contains
certain parameters—called penalty parameters—that penalize the composite function for
violation of constraints. The larger the violation, the larger the penalty. Once the composite
function is defined for a set of penalty parameters, it is minimized using any of the uncon-
strained optimization techniques. The penalty parameters are then adjusted based on cer-
tain conditions, and the composite function is redefined and minimized again. The process
is continued until there is no significant improvement in the estimate for the optimum
point.

Methods based on the foregoing philosophy have generally been called sequential
unconstrained minimization techniques, or SUMTs (Fiacco and McCormick, 1968). It can
be seen that the basic idea of SUMTs is quite straightforward. Because of their simplicity,
the methods have been extensively developed and tested for engineering design problems.
A very brief discussion of the basic concepts and philosophy of the methods is included here
to give students a flavor for the techniques. For more detailed presentations, texts by Gill,
Murray, and Wright (1981), Nocedal and Wright (2006), and others should be consulted.

The term “transformation method” is used to describe any method that solves the con-
strained optimization problem by transforming it into one or more unconstrained pro-
blems. Such methods include the so-called penalty and barrier function methods (exterior
and interior penalty methods, respectively) as well as the multiplier methods (also called
augmented Lagrangian methods). To remind the reader of the original constrained problem
that we are trying to solve, we restate it as follows: Find an n-vector x5 (x1, x2, . . . , xn) to

Minimize

f 5 fðxÞ ð11:56Þ
subject to

hiðxÞ5 0; i5 1 to p ð11:57Þ
giðxÞ # 0; i5 1 to m ð11:58Þ

All transformation methods convert this constrained optimization problem into an uncon-
strained problem using a transformation function of the form:

Φðx; rÞ5 fðxÞ1PðhðxÞ; gðxÞ; rÞ ð11:59Þ
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where r is a vector of penalty parameters and P is a real-valued function whose action of
imposing the penalty on the cost function is controlled by r. The form of penalty function
P depends on the method used.

The basic procedure is to choose an initial design estimate x(0) and define the function Φ
of Eq. (11.59). The penalty parameters r are also initially selected. The function Φ is mini-
mized for x, keeping r fixed. Then the parameters r are adjusted and the procedure is
repeated until no further improvement is possible.

11.7.1 Sequential Unconstrained Minimization Techniques

Sequential unconstrained minimization techniques consist of two different types of pen-
alty functions. The first one is called the penalty function method and the second is called
the barrier function method.

Penalty Function Method

The basic idea of the penalty function approach is to define the function P in Eq. (11.48)
in such a way that if there are constraint violations, the cost function f(x) is penalized by
addition of a positive value. Several penalty functions can be defined. The most popular
one is called the quadratic loss function, defined as

PðhðxÞ; gðxÞ; rÞ5 r
Xp
i51

½hiðxÞ�2 1
Xm
i51

½g1i ðxÞ�2
( )

; g1i ðxÞ5max ð0; giðxÞÞ ð11:60Þ

where r. 0 is a scalar penalty parameter. Note that gi
1 (x)$ 0; it is zero if the inequality is

active or inactive (gi(x)# 0) and it is positive if the inequality is violated. It can be seen that
if the equality constraint is not satisfied (hi(x) 6¼ 0) or the inequality is violated (gi(x). 0),
then Eq. (11.60) gives a positive value to the function P, and the cost function is penalized,
as seen in Eq. (11.59). The starting point for the method can be arbitrary. The methods based
on the philosophy of penalty functions are sometimes called the exterior methods because they iterate
through the infeasible region.

The advantages and disadvantages of the penalty function method are as follows:

1. It is applicable to general constrained problems with equality and inequality constraints.
2. The starting point can be arbitrary.
3. The method iterates through the infeasible region where the cost and/or constraint

functions may be undefined.
4. If the iterative process terminates prematurely, the final point may not be feasible and

hence not usable.

Barrier Function Methods

The following methods are applicable only to the inequality-constrained problems.
Popular barrier functions are

1. Inverse barrier function: PðgðxÞ; rÞ5 1

r

Xm
i51

21

giðxÞ
ð11:61Þ
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2. Log barrier function: PðgðxÞ; rÞ5 1

r

Xm
i51

logð2giðxÞÞ ð11:62Þ

These are called the barrier function methods because a large barrier is constructed
around the feasible region. In fact, the function P becomes infinite if any of the inequalities is
active. Thus, when the iterative process is started from a feasible point, it is not possilbe for
it to go into the infeasible region because it cannot cross the huge barrier on the boundary of
the feasible set.

For both penalty function and barrier function methods, it can be shown that as r-N,
x(r)-x*, where x(r) is a point that minimizes the transformed function Φ(x, r) of Eq. (11.59)
and x* is a solution of the original constrained optimization problem.

The advantages and disadvantages of the barrier function methods are as follows:

1. The methods are applicable to inequality-constrained problems only.
2. The starting point must be feasible. It turns out, however, that the penalty function

defined in Eq. (11.60) can be minimized to determine a feasible starting point (Haug
and Arora, 1979).

3. The method always iterates through the feasible region, so if it terminates prematurely,
the final point is feasible and hence usable.

The sequential unconstrained minimization techniques have certain weaknesses that are
most serious when r is large. The penalty and barrier functions tend to be ill-behaved near
the boundary of the feasible set, where the optimum points usually lie. There is also a
problem of selecting the sequence r(k). The choice of r(0) and the rate at which r(k) tends to
infinity can seriously affect the computational effort to find a solution. Furthermore, the
Hessian matrix of the unconstrained function becomes ill-conditioned as r-N.

11.7.2 Augmented Lagrangian (Multiplier) Methods

To alleviate some of the difficulties of the methods presented in the previous subsec-
tion, a different class of transformation methods has been developed in the literature.
These are called the multiplier or augmented Lagrangian methods. In these methods, there is
no need for the penalty parameters r to go to infinity. As a result the transformation func-
tion Φ has good conditioning with no singularities. The multiplier methods are conver-
gent, as are the SUMTs. That is, they converge to a local minimum starting from any
point. It has been proven that they possess a faster rate of convergence than the two meth-
ods of the previous subsection.

The augmented Lagrangian function can be defined in several different ways (Arora,
Chahande, and Paeng, 1991). As the name implies, this transformed function adds a penalty
term to the Lagrangian function for the problem. There are different forms of the penalty
function for the augmented Lagrangian methods. A form that uses a penalty parameter and
a multiplier for each constraint separately in the penalty function is defined as

PðhðxÞ; gðxÞ; r; θÞ5 1

2

Xp
i51

r0iðhi 1 θ0iÞ2 1
1

2

Xm
i51

ri½ðgi 1 θiÞ1�2 ð11:63Þ
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where θi. 0, ri. 0, and θ0i, r0i. 0 are parameters associated with the ith inequality and
equality constraints, respectively, and (gi1 θi)

1 5max(0, gi1 θi).
If θi5 θ0i5 0 and ri5 r0i5 r, then Eq. (11.63) reduces to the well-known quadratic loss

function given in Eq. (11.49), where convergence is enforced by letting r-N. However,
the objective of the multiplier methods is to keep each ri and r0i finite and still achieve
convergence of the numerical algorithm. The idea of multiplier methods is to start with
some ri, r0i, θ0i, and θi and to minimize the transformation function of Eq. (11.59). The
parameters ri, r

0
i, θ0i, and θi are then adjusted using some procedures and the entire pro-

cess is repeated until all of the optimality conditions are satisfied. This form of the aug-
mented Lagrangian function has been implemented and applied to several engineering
design applications (Belegundu and Arora, 1984; Arora et al., 1991), especially for
dynamic response optimization problems (Paeng and Arora, 1989; Chahande and Arora,
1993, 1994).

Another common form for the augmented Lagrangian uses the Lagrange multipliers for
the constraints directly and only one penalty parameter for all of the constraints (Gill,
Murray, and Wright, 1991; Nocedal and Wright, 2006). Before we define this augmented
Lagrangian for the general optimization problem, let us first define the augmented
Lagrangian function for the equality-constrained problem as

ΦEðx; hðxÞ; rÞ5 fðxÞ1
Xp
i51

vihiðxÞ1
1

2
rh2i ðxÞ

� �
ð11:64Þ

where r. 0 is a penalty parameter, and vi is the Lagrange multiplier for the ith equality
constraint. Now the augmented function for the equality-inequality�constrained problem
is defined as

Φðx; hðxÞ; gðxÞ; rÞ5ΦEðx; hðxÞ; rÞ1
Xm
j51

ujgjðxÞ1
1

2
rg2j ðxÞ; if gj 1

uj
r

$ 0

2
1

2r
u2j ; if gj 1

uj
r
, 0

8>>><
>>>:

ð11:65Þ

where uj$ 0 is the Lagrange multiplier for the jth inequality constraint.

Augmented Lagrangian Algorithm

The steps of the augmented Lagrangian algorithm are as follows:

Step 1. Set the iteration counter at k5 0, K5N (a large number); estimate vectors x(0),
v(0), u(0)$ 0, r.0 and scalars α. 1, β. 1, ε. 0, where ε is the desired accuracy; α is
used to enforce a sufficient decrease in the constraint violations, and β is used to
increase the penalty parameter.
Step 2. Set k5 k1 1
Step 3. Minimize Φ(x, h(x), g(x), rk) of Eq. (11.65) with respect to x, starting from the
point x(k21). Let x(k) be the best point obtained in this step.
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Step 4. Evaluate the constraint functions hi(x
(k), i5 1 to p, and gi(x

(k)), j5 1 to m.
Calculate the maximum constraint violation parameter K as follows:

K5max jhij; i5 1 to p; jmaxðgj; 2 uj=rkÞj; j5 1 to m

 � ð11:66Þ

Check for convergence of the algorithm; if the termination criteria are satisfied, stop.
Otherwise, continue to Step 5.
Step 5. If K $ K (i.e., the constraint violation did not improve), set rk115βrk and go to
Step 2. That is, increase the penalty parameter by the factor β while keeping the
Lagrange multipliers unchanged. If K,K, continue to Step 6.
Step 6. Update the multipliers (this step is executed only when the constraint violations
have improved) by setting:

vðk11Þi 5 vki 1 rkhiðxðkÞÞ; i5 1 to p ð11:67Þ

uðk11Þj 5 uðkÞj 1 rk max ½gjðxðkÞÞ; 2uðkÞj =rk�; j5 1 to m ð11:68Þ

If K # K=α (the constraint violation has improved by the factor α), set K5K and go to
Step 2; otherwise, continue to Step 7.
Step 7. Set rk115 βrk (note that this step is executed only when the constraint violations
do not improve by the factor α). Set K5K and go to Step 2.

In Step 4 of the algorithm, the following termination criteria are used:

K # ε1 ð11:69Þ

jjrΦðxðkÞÞjj # ε2fmax ð1; jjxðkÞjjÞg; Or; jjrΦðxðkÞÞjj # ε2fmaxð1; jΦðxðkÞÞjÞg ð11:70Þ

where ε1 and ε2 are the user-specified parameters.

11.8 RATE OF CONVERGENCE OF ALGORITHMS

In this section, we briefly discuss concepts related to the rate of convergence of iterative
sequences—the focus is on the sequences generated by optimization algorithms (Luenberger,
1984).

11.8.1 Definitions

We now consider unconstrained optimization algorithms that have global convergence
properties. These algorithms generate a sequence of vectors that converges to a solution
point x* starting from any point x(0), that is, a local minimum point for the function f(x). In
the following, we assume that the algorithm generates a sequence {x(k)} that converges to
x*. The most effective way to measure the rate of convergence is to compare improvement
toward the solution point at two successive iterations of the algorithm, that is, the close-
ness of x(k11) to x* relative to the closeness of x(k) to x*.

48111.8 RATE OF CONVERGENCE OF ALGORITHMS

II. NUMERICAL METHODS FOR CONTINUOUS VARIABLE OPTIMIZATION



ORDER OF CONVERGENCE A sequence {x(k)} is said to converge to x* with order p,
where p is the largest number, such that

0 # lim
k-N

jjxðk11Þ 2 x�jj
jjxðkÞ 2 x�jjp ,N ð11:70Þ

Note that this definition is applicable to the tail end of the sequence. Also, the condition
needs to be checked in the limit as k-N. p is usually referred as the rate of convergence.

CONVERGENCE RATIO If the sequence {x(k)} converges to x* with an order of conver-
gence p, then the following limit is called the convergence ratio:

β5 lim
k-N

jjxðk11Þ 2 x�jj
jjxðkÞ 2 x�jjp ð11:71Þ

β is sometimes called the asymptotic error constant. Note that the ratio on the right side of
Eq. (11.71) can also be viewed as the ratio of errors from the solution point at the (k1 1)th
and kth iterations when p5 1. In terms of β, Eq. (11.70) is written as 0 # β,N, which
implies that the convergence ratio β is bounded (remains finite). The comparison of algo-
rithms is based on their convergence ratio: The smaller the ratio the faster the rate.

LINEAR CONVERGENCE If p5 1 in Eq. (11.70), the sequence is said to display linear
convergence; in this case β must be less than one for the sequence to converge.

QUADRATIC CONVERGENCE If p5 2 in Eq. (11.70), the sequence is said to have qua-
dratic convergence.

SUPERLINEAR CONVERGENCE If β5 0 when p is taken as unity in Eq. (11.70), the asso-
ciated convergence is called superlinear. Note that an order of convergence greater than
unity implies superlinear convergence.

11.8.2 Steepest-Descent Method

We here discuss the convergence properties of the steepest-descent method.

QUADRATIC FUNCTION We first consider a quadratic function:

qðxÞ5 1

2
xTQx2bTx ð11:72Þ

where Q is a symmetric, constant, and positive definite matrix. Further define an error
function E(x) as

EðxÞ5 1
2ðx2 x�ÞTQðx2 x�Þ ð11:73Þ

Expanding the term on the right side of Eq. (11.73) and using the condition Qx*5b at
the minimum point of quadratic function q(x), we obtain EðxÞ5 qðxÞ1 1

2x
�TQx�. This shows

that E(x) differs from q(x) by a constant.
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THEOREM 1 1 . 1

For any starting point x(0), the method

of steepest descent converges to the unique

minimum point x* of q(x). Furthermore,

with E(x) defined in Eq. (11.73), there holds

at every step k

Eðxðk11ÞÞ # r21

r1 1

� �2
EðxðkÞÞ ð11:74Þ

where r5λmax/λmin is the condition number

of Q and λmax and λmin are the largest and

smallest eigenvalues of Q.

Thus the method converges linearly with a convergence ratio no greater than [(r21)/
(r1 1)]2. It should be clear that as r becomes large, the number [(r21)/(r1 1)]2 approaches
unity and the convergence is slowed; that is, the error in Eq. (11.73) reduces quite slowly
from one iteration to the next. The method converges in one iteration if r5 1.

NONQUADRATIC CASE The above result is generalized to the nonquadratic case. We
replace Q by the Hessian H(x*) at the minimum point.

THEOREM 1 1 . 2

Let f(x) have a local minimum at x*. Let

H(x*) be positive definite with λmax and

λmin as its largest and its smallest eigen-

values, and r as its condition number. If the

sequence {x(k)} generated by the steepest-

descent method converges to x*, then the

sequence of cost function values {f(x(k))}

converges to f(x*) linearly with a conver-

gence ratio no greater than β:

β5
r21

r1 1

� �2

ð11:75Þ

11.8.3 Newton’s Method

The following theorem defines the order of convergence of the Newton’s method.

THEOREM 1 1 . 3

Let f(x) be continuously differentiable

three times, and the Hessian H(x*) be posi-

tive definite. Then the sequence of points

generated by Newton’s method converges to

x*. The order of convergence is at least two.
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11.8.4 Conjugate Gradient Method

For a positive definite quadratic function, the conjugate gradient method converges in n
iterations. For the nonquadratic case, assume that H(x*) is positive definite. We expect the
asymptotic convergence rate per step to be at least as good as the steepest-descent method,
since this is true in the quadratic case. In addition to this bound on the single-step rate, we
expect the method to have quadratic convergence with respect to each complete cycle of n
steps; that is,

:xðk1nÞ 2 x�: # c:xðkÞ 2 x�:2 ð11:76Þ
for some c and k5 0, n, 2n, . . .

11.8.5 Quasi-Newton Methods

DFP METHOD: QUADRATIC CASE To study the rate of convergence of quasi-Newton
methods, consider the quadratic function defined in Eq. (11.72). Using the DFP quasi-
Newton method, the search direction is determined as

dðkÞ 52AðkÞ cðkÞ ð11:77Þ
where c(k) is the gradient of the cost function and A(k) is the quasi-Newton approximation
for the Hessian inverse at the kth iteration. It can be shown that the directions generated
by Eq. (11.77) are Q conjugate. Therefore, the method is a conjugate gradient method
where the minimum point of q(x) is obtained in n iterations; moreover, A(n)5Q21. The
rate of convergence of the DFP method is then determined by the eigenvalue structure
of the matrix (A(k)Q).

THEOREM 11 . 4

Let x* be the unique minimum point of

q(x), and define the error function E(x) as in

Eq. (11.73). Then, for the DFP quasi-Newton

algorithm, there holds at every step k

Eðxðk11ÞÞ # rk 21

rk 1 1

� �2

EðxðkÞÞ ð11:78Þ

where rk is the condition number for the

matrix A(k)Q.

The preceding theorem shows that the order of convergence is one. However, if A(k) is
close to Q21, then the condition number of (A(k)Q) is close to unity and the convergence
ratio in Eq. (11.78) is close to zero.

DFP METHOD: NONQUADRATIC CASE The method is globally convergent. It needs to
be restarted after every n iterations, just as in the conjugate gradient method. Each cycle, if
at least n steps in duration, will then contain one complete cycle of an approximation to
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the conjugate gradient method. Asymptotically, at the tail of the generated sequence, this
approximation becomes arbitrarily accurate, and hence we may conclude (as for any
method approaching the conjugate gradient method asymptotically) that the method con-
verges superlinearly (at least if viewed at the end of each cycle).

BFGS QUASI-NEWTON METHOD Under the assumptions of continuity and bounded-
ness of the Hessian matrix, the method can be shown to be convergent to a minimum
point x* starting from any point x(0). The rate of convergence is superlinear (Nocedal and
Wright, 2006).

11.9 DIRECT SEARCH METHODS

In this section, we discuss methods commonly known as direct search. The term was intro-
duced by Hooke and Jeeves (1961) and refers to methods that do not require derivatives of
the functions in their search strategy. This means that the methods can be used for problems
where the derivatives are expensive to calculate or are unavailable due to lack of differentia-
bility of functions. However, convergence of the methods can be proved if functions are
assumed to be continuous and differentiable. A more detailed discussion of the state of the
art of direct search methods is presented by Lewis et al. (2000) and Kolda et al. (2003).

There are two prominent methods in the direct search class: the Nelder-Mead simplex
method (not to be confused with the Simplex method of linear programming), described
in Chapter 18 as part of a global optimization algorithm; and the Hooke-Jeeves method,
described in this section. Before describing Hooke-Jeeves, we present another direct search
method, called univariate search.

11.9.1 Univariate Search

This method is based on a simple idea to minimize the function with respect to one var-
iable at a time, keeping all other variables fixed. In other words, minimize f(x) with respect
to x1, keeping all other variables fixed at their current value, then minimize with respect to
x2, and so on. The method is described by the following iterative equation:

xðk11Þi 5 xðkÞi 1αi; i5 1 to n ð11:79Þ
where superscript k refers to the iteration number, x(0) is an initial point, and the increment
αi is calculated to minimize the function in the coordinate direction xi:

minimize
α fðxðkÞi 1αÞ ð11:80Þ

Any one-dimensional minimization technique that uses only the function values may be
used to solve this one-dimensional problem. If the problem in Eq. (11.80) fails, then an
increment of 2α is tried in Eqs. (11.79) and (11.80). If that also fails, then xðkÞi is unchanged
and the search moves to the next design variable (i.e., the next coordinate direction).

This one-variable-at-a-time approach can result in very small step sizes, which can be
quite inefficient. It has been shown that cycling can occur, resulting in the failure of the
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method. Pattern search methods, such as Hooke-Jeeves, have been developed to overcome
the drawbacks of univariate search and improve its efficiency.

11.9.2 Hooke-Jeeves Method

Hooke-Jeeves falls into a class of direct search methods known as pattern search methods.
The univariate search discussed in the previous subsection is always performed along the
fixed directions (i.e., the coordinate directions). In the pattern search method, the search
direction is not always fixed. At the end of one cycle of complete univariate search, the
search direction is calculated as the difference between the two previous design points,
and the design is incremented in that direction. From there the univariate search is
resumed. The first part of this method is exploratory search and the second part is pattern
search. These are described as follows.

Exploratory Search

Here univariate search is performed with a fixed step size in each coordinate direction
(or a search for a minimum can be performed in each coordinate direction, as described in
the previous section). The exploration starts from an initial point. The point is incremented
in a coordinate direction by the specified step in that direction. The cost function is evalu-
ated; if it does not increase, the move is accepted. If it increases, the move is made in the
opposite direction, and the cost function is evaluated again. If the cost function does not
increase, the move is accepted; otherwise, it is rejected. When all of the n coordinate direc-
tions have been explored, the exploratory search step is complete. If the search is success-
ful, the new design point is called the base point. On the other hand, if the search fails, the
step sizes are reduced by a factor and the search is repeated.

Pattern Search

Pattern search consists of a single step in the direction determined by the difference in
the two most recent base points. The design is updated as

xðk11Þp 5 xðkÞ 1dðkÞ; dðkÞ 5 ðxðkÞ 2 xðk21ÞÞ ð11:81Þ
where d(k) is the search direction and xðk11Þp is the temporary new base point. To accept this
point, we perform exploratory search from there. If this search is successful, that is, if the
cost function value reduces, then the temporary base point is accepted as the new base
point; otherwise, it is rejected and a new exploratory search is performed from the current
base point x(k). This procedure is continued until the exploratory search fails. Then the
step sizes are reduced by a factor and the exploratory search is repeated. Eventually the
entire search process stops when the step sizes become sufficiently small.

Hooke-Jeeves Algorithm

To state the foregoing procedure in a step-by-step algorithm, we introduce the follow-
ing notation:

x(k) 5 current base point
x(k21)5previous base point

486 11. MORE ON NUMERICAL METHODS FOR UNCONSTRAINED OPTIMUM DESIGN

II. NUMERICAL METHODS FOR CONTINUOUS VARIABLE OPTIMIZATION



xðk11Þp 5 temporary base point
x(k11)5new base point

Step 0. Select a starting point x(0); step sizes αi, i5 1 to n; step reduction parameter
η. 1; and termination parameter ε. Set the iteration counter to k5 1.
Step 1. Perform the exploratory search from the current point. Let the result of this
search be x(k). If the exploratory search is successful, go to Step 4; otherwise, continue.
Step 2. Check the termination criterion: If jjαjj, ε, stop; otherwise, continue.
Step 3. Reduce the step sizes: αi 5

αi
η ; i5 1 to n. Go to Step 1.

Step 4. Calculate the temporary base point xðk11Þp using Eq. (11.81).
Step 5. Perform the exploratory search from xðk11Þp , resulting in a new base point x(k11). If
this exploratory search is not successful, go to Step 3. Otherwise, set k5 k1 1, and go to
Step 4.

The algorithm given above can be implemented in several different ways. For example,
once the search direction d(k) has been determined in Eq. (11.81), a step size can be calcu-
lated to minimize f(x) in that direction.

EXERCISES FOR CHAPTER 11*

Section 11.1 More on Step Size Determination
11.1 Write a computer program to implement the polynomial interpolation with a quadratic

curve fitting. Choose a function f(α)5 7α22 20α1 22. Use the golden section method to

initially bracket the minimum point of f(α) with δ5 0.05. Use your program to find the

minimum point of f(α). Comment on the accuracy of the solution.

11.2 For the function f(α)5 7α22 20α1 22, use two function values, f(0) and f(αu), and the slope

of f at α5 0 to fit a quadratic curve. Here αu is any upper bound on the minimum point of

f(α). What is the estimate of the minimum point from the preceding quadratic curve? How

many iterations will be required to find α*? Why?

11.3 Under what situation can the polynomial interpolation approach not be used for one-

dimensional minimization?

11.4 Given
fðxÞ5 102 x1 1 x1x2 1 x22

xð0Þ 5 ð2; 4Þ; dð0Þ 5 ð21;21Þ
For the one-dimensional search, three values of α, αl5 0, αi5 2, and αu5 4 are tried. Using

quadratic polynomial interpolation, determine

1. At what value of α is the function a minimum? Prove that this is a minimum point and

not a maximum.

2. At what values of α is f(α)5 15?

Section 11.2 More on the Steepest-Descent Method
Verify the properties of the gradient vector for the following functions at the given point.

11.5 f(x)5 6x1
226x1x21 2x2225x11 4x21 2; x(0)5 (21, 22)

11.6 f(x)5 3x1
21 2x1x21 2x221 7; x(0)5 (5, 10)

11.7 f(x)5 10(x1
22 x2)1 x1

222x11 5; x(0)5 (21, 3)
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Section 11.3 Scaling of Design Variables
11.8 Consider the following three functions:

f1 5 x21 1 x22 1 x23; f2 5 x21 1 10x22 1 100x23; f3 5 100x21 1 x22 1 0:1x23

Minimize f1, f2, and f3 using the program for the steepest-descent method given in

Appendix B. Choose the starting design to be (1, 1, 2) for all functions. What do you

conclude from observing the performance of the method on the foregoing functions?

How would you scale the design variables for the functions f2 and f3 to improve the rate

of convergence of the method?

Section 11.4 Search Direction Determination: Newton’s Method
11.9 Answer True or False.

1. In Newton’s method, it is always possible to calculate a search direction at any point.

2. The Newton direction is always that of descent for the cost function.

3. Newton’s method is convergent starting from any point with a step size of 1.

4. Newton’s method needs only gradient information at any point.

For the following problems, complete one iteration of the modified Newton’s method; also check the

descent condition for the search direction.

11.10 Exercise 10.52 11.11 Exercise 10.53 11.12 Exercise 10.54

11.13 Exercise 10.55 11.14 Exercise 10.56 11.15 Exercise 10.57

11.16 Exercise 10.58 11.17 Exercise 10.59 11.18 Exercise 10.60

11.19 Exercise 10.61

11.20 Write a computer program to implement the modified Newton’s algorithm. Use equal

interval search for line search. Solve Exercises 10.52 to 10.61 using the program.

Section 11.5 Search Direction Determination: Quasi-Newton Methods
11.21 Answer True or False for unconstrained problems.

1. The DFP method generates an approximation to the inverse of the Hessian.

2. The DFP method generates a positive definite approximation to the inverse of the

Hessian.

3. The DFP method always gives a direction of descent for the cost function.

4. The BFGS method generates a positive definite approximation to the Hessian of the cost

function.

5. The BFGS method always gives a direction of descent for the cost function.

6. The BFGS method always converges to the Hessian of the cost function.

For the following problems, complete two iterations of the Davidon-Fletcher-Powell method.

11.22 Exercise 10.52 11.23 Exercise 10.53 11.24 Exercise 10.54

11.25 Exercise 10.55 11.26 Exercise 10.56 11.27 Exercise 10.57

11.28 Exercise 10.58 11.29 Exercise 10.59 11.30 Exercise 10.60

11.31 Exercise 10.61

11.32 Write a computer program to implement the Davidon-Fletcher-Powell method. Solve

Exercises 10.52 to 10.61 using the program.
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For the following problems, complete two iterations of the BFGS method.

11.33 Exercise 10.52 11.34 Exercise 10.53 11.35 Exercise 10.54

11.36 Exercise 10.55 11.37 Exercise 10.56 11.38 Exercise 10.57

11.39 Exercise 10.58 11.40 Exercise 10.59 11.41 Exercise 10.60

11.42 Exercise 10.61

11.43 Write a computer program to implement the BFGS method. Solve Exercises 10.52 to 10.61

using the program.

Section 11.6 Engineering Applications of Unconstrained Methods
Find the equilibrium configuration for the two-bar structure of Figure 11.9 using the following numeri-

cal data.

11.44 A15 1.5 cm2, A25 2.0 cm2, h5 100 cm, s5 150 cm, W5 100,000 N, θ5 45�, E5 21 MN/cm2

11.45 A15 100 mm2, A25 200 mm2, h5 1000 mm, s5 1500 mm, W5 50,000 N, θ5 60�, E5 210,000

N/mm2

Find the roots of the following nonlinear equations using the conjugate gradient method.

11.46 F(x)5 3x2 ex5 0

11.47 F(x)5 sinx5 0

11.48 F(x)5 cosx5 0

11.49 FðxÞ5 2x
3 2 sinx5 0

11.50 F1ðxÞ5 12 10
x2
1
x2
5 0; F2ðxÞ5 12 2

x1x22
5 0

11.51 F1ðxÞ5 52 1
8 x1x2 2

1
4x2

1

x22 5 0; F2ðxÞ52 1
16 x

2
1 1

1
2x1

x2 5 0
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C H A P T E R

12

Numerical Methods for Constrained
Optimum Design

Upon comp le t i on o f th i s chap te r, you wi l l be ab l e to

• Explain the basic steps of a numerical

algorithm for solving smooth constrained

nonlinear optimization problems

• Explain the concepts of descent direction

and descent step for smooth constrained

nonlinear optimization problems

• Linearize a constrained nonlinear

optimization problem and define a linear

programming subproblem

• Use a sequential linear programming

algorithm to solve constrained nonlinear

optimization problems

• Define a quadratic programming

subproblem with a solution that gives a

search direction for the constrained

nonlinear optimization problem

• Use an optimization algorithm to solve

nonlinear constrained optimization

problems

In the previous chapter, the constrained nonlinear programming problem was
transformed into a sequence of unconstrained problems for its solution. In this chap-
ter, we describe numerical methods to directly solve the original constrained problem.
For convenience of reference, the problem defined in Section 2.11 is restated as fol-
lows: Find x5 (x1, . . ., xn), a design variable vector of dimension n, to minimize f5 f(x)
subject to

hiðxÞ5 0; i5 1 to p; giðxÞ# 0; i5 1 to m ð12:1Þ

and the explicit bounds on design variables xiL# xi# xiU; i5 1 to n, where xiL and xiU are,
respectively, the smallest and largest allowed values for the ith design variable xi.
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These simple bound constraints are easy to treat in actual numerical implementations.
However, in the discussion and illustration of the numerical methods, we will assume that
they are included in the inequality constraints in Eq. (12.1). Note also that we will present
only the methods that can treat the general constrained problem with the equality and
inequality constraints defined in Eq. (12.1). That is, the methods that treat only equalities
or only inequalities are not presented.

Just as for unconstrained problems, several methods have been developed and evalu-
ated for the general constrained optimization problems in Eq. (12.1). Most methods follow
the two-phase approach as for the unconstrained problems: the search direction and step
size determination phases. The approach followed here is to describe the underlying ideas
and concepts of the methods. Comprehensive coverage of all of the methods giving their
advantages and disadvantages is avoided. Only a few simple and generally applicable
methods are described and illustrated with examples.

In Section 10.6 we described the steepest-descent method for solving unconstrained
optimization problems. That method is quite straightforward. It is, however, not directly
applicable to constrained problems. One reason is that we must consider constraints while
computing the search direction and the step size. In this chapter, we will describe a con-
strained steepest-descent method that computes the direction of design change considering
the local behavior of cost and constraint functions.

The method (and most others) is based on linearization of the problem about the cur-
rent estimate of the optimum design. Therefore, linearization of the problem is quite
important and is discussed in detail. Once the problem has been linearized, it is natural to
ask if it can be solved using linear programming methods. The answer is yes, and we first
describe a method that is a simple extension of the Simplex method of linear program-
ming. Then we describe the constrained steepest-descent method.

12.1 BASIC CONCEPTS RELATED TO
NUMERICAL METHODS

This section contains basic concepts, ideas, and definitions of the terms used in numeri-
cal methods for constrained optimization. The status of a constraint at a design point is
defined, along with active, inactive, violated, and ε-active constraints. Normalization of
constraints and its advantages are explained with examples. The ideas of a descent func-
tion and convergence of algorithms are explained.

12.1.1 Basic Concepts Related to Algorithms for Constrained Problems

In the numerical search methods, we select a design to initiate the iterative process, as for
the unconstrained methods described in Chapters 10 and 11. The iterative process is con-
tinued until no further moves are possible and the optimality conditions are satisfied.
Most of the general concepts of iterative numerical algorithms discussed in Section 10.2
also apply to methods for constrained optimization problems. Therefore, those concepts
should be thoroughly reviewed.
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Iterative Process

All numerical methods discussed in this chapter are based on the following iterative
prescription, as also given in Eqs. (10.1) and (10.2) for unconstrained problems:

Vector form: xðk1 1Þ 5 xðkÞ 1ΔxðkÞ; k5 0; 1; 2; . . . ð12:2Þ

Component form: xðk1 1Þ
i 5 xðkÞi 1ΔxðkÞi ; k5 0; 1; 2; . . . ; i5 1 to n ð12:3Þ

The superscript k represents the iteration or design cycle number, the subscript i refers to
the ith design variable, x(0) is the starting design estimate, and Δx(k) represents a change in
the current design.

As in the unconstrained numerical methods, the change in design Δx(k) is decom-
posed as

ΔxðkÞ 5αkd
ðkÞ ð12:4Þ

where αk is a step size in the search direction d(k). Thus, design improvement involves
solving the search direction and step size determination subproblems. Solution of both
subproblems can involve values of cost and constraint functions as well as their gradients
at the current design point.

IMPLEMENTATION OF ITERATIONS

Conceptually, algorithms for unconstrained and constrained optimization problems are
based on the same iterative philosophy. There is one important difference, however:
Constraints must be considered while determining the search direction as well as the step
size. A different procedure for determining either one can give a different optimization
algorithm. We will describe, in general terms, a couple of ways in which the algorithms
may proceed in the design space. All algorithms need a design estimate to initiate the iter-
ative process. The starting design can be feasible or infeasible. If it is inside the feasible set
as is point A in Figure 12.1, then there are two possibilities:

1. The gradient of the cost function vanishes at the point, so it is an unconstrained
stationary point. We need to check the second-order conditions for optimality of the
point.

2. If the current point is not stationary, then we can reduce the cost function by moving
along a descent direction, say, the steepest-descent direction (2c), as shown in
Figure 12.1. We continue such iterations until either a constraint is encountered or an
unconstrained minimum point is reached.

For the remaining discussion, we assume that the optimum point is on the boundary
of the feasible set; that is, some constraints are active (inequality is satisfied at equality).
Once the constraint boundary is encountered at point B, one strategy is to travel along a
tangent to the boundary such as the direction B�C in Figure 12.1. This results in an
infeasible point from where the constraints are corrected in order to again reach the
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feasible point D. From there the preceding steps are repeated until the optimum point is
reached.

Another strategy is to deflect the tangential direction B�C toward the feasible region by
a certain angle θ when there are no equality constraints. Then a line search is performed
through the feasible region to reach the boundary point E, as shown in Figure 12.1. The
procedure is then repeated from there.

When the starting point is infeasible, like point A in Figure 12.2, one strategy is to cor-
rect constraints to reach the constraint boundary at point B. From there, the strategies
described in the preceding paragraph can be followed to reach the optimum point. This is
shown in path 1 in Figure 12.2. The second strategy is to iterate through the infeasible
region by computing directions that take successive design points closer to the optimum
point, shown as path 2 in Figure 12.2.

Several algorithms based on the strategies described in the foregoing have been devel-
oped and evaluated. Some algorithms are better for a certain class of problems than others.
A few algorithms work well if the problem has only inequality constraints, whereas others
can treat both equality and inequality constraints simultaneously. In this text, we will con-
centrate mostly on general algorithms that have no restriction on the form of the functions
or the constraints.

Cost function contours

Optimum point

Feasible set

Pa
th

 1
Pat

h 
2

A

B

C

D

FIGURE 12.2 The conceptual
steps of the constrained optimi-
zation algorithms initiated from
a point that is infeasible.

Cost function
contours

Optimum point

Feasible setA

B

C

D
E

−c

θ

FIGURE 12.1 The conceptual steps
of the constrained optimization algo-
rithms initiated from a feasible point.
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Most of the algorithms that we will describe in this chapter and the next can treat feasi-
ble or infeasible initial designs. They are based on the following four basic steps of a numer-
ical algorithm to solve constrained optimization problems.

1. Linearization of cost and constraint functions about the current design point.
2. Definition of a search direction determination subproblem using the linearized functions.
3. Solution of the subproblem that gives a search direction in the design space.
4. Calculation of a step size to minimize a descent function in the search direction.

12.1.2 Constraint Status at a Design Point

An inequality constraint can be either active, ε-active, violated, or inactive at a design
point. On the other hand, an equality constraint is either active or violated at a design
point. The precise definitions of the status of a constraint at a design point are needed
in the development and discussion of numerical methods.

Active constraint: An inequality constraint gi(x)# 0 is said to be active (or tight) at a
design point x(k) if it is satisfied as an equality at that point (i.e., gi(x

(k))5 0).
Inactive constraint: An inequality constraint gi(x)# 0 is said to be inactive at a design
point x(k) if it has negative value at that point (i.e., gi(x

(k)), 0).
Violated constraint: An inequality constraint gi(x)# 0 is said to be violated at a design
point x(k) if it has a positive value there (i.e., gi(x

(k)). 0). An equality constraint hi(x
(k))5 0

is violated at a design point x(k) if it has a nonzero value there (i.e., hi(x
(k)) 6¼ 0). Note that

by these definitions, an equality constraint is always either active or violated at a design
point.
ε-Active inequality constraint: Any inequality constraint gi(x

(k))# 0 is said to be ε-active
at the point x(k) if gi(x

(k)), 0 but gi(x
(k))1 ε$ 0, where ε. 0 is a small number. This

means that the point is close to the constraint boundary on the feasible side (within an
ε-band, as shown in Figure 12.3). That is, the constraint is strictly inactive but it is close
to becoming active. Note that the concept of an ε-active constraint applies only to
inequality constraints.

To understand the idea of the status of a constraint, refer to Figure 12.3. Consider the ith
inequality constraint gi(x)# 0. The constraint boundary (the surface in the n-dimensional
space), gi(x)5 0, is plotted, and feasible and infeasible sides for the constraint are identified.
An artificial boundary at a distance of ε from the boundary gi(x)5 0 and inside the feasible
region is also plotted. We consider four design points A, B, C, and D, as shown in

D

CB

A

Infeasible

Feasible
gi (x) = 0

gi (x) + ε = 0

ε

FIGURE 12.3 Status of a constraint
at design points A, B, C, and D.
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Figure 12.3. For design point A, the constraint gi(x) is negative and even gi(x)1 ε, 0. Thus,
the constraint is inactive for design point A. For design point B, gi(x) is strictly less than
zero, so it is inactive. However, gi(x)1 ε. 0, so the constraint is ε-active for design point B.
For design point C, gi(x)5 0, so the constraint is active there. For design point D, gi(x) is
greater than zero, so the constraint is violated.

If gi(x) were an equality constraint, it would be active at point C and violated at points
A, B and D in Figure 12.3.

12.1.3 Constraint Normalization

In numerical calculations, it is desirable to normalize all of the constraint functions with
respect to their limit values. As noted earlier, active and violated constraints are used in
computing a desirable direction of design change. In addition, feasibility of a constraint
needs to be checked at the optimum point. Usually one value for ε (say 0.01) is used in
checking the status of all of the constraints to check for the ε-active constraint condition.
Since different constraints involve different orders of magnitude, it is not proper to use the
same ε for all of the constraints unless they are normalized. For example, consider a stress
constraint as

σ#σa; or σ2σa # 0 ð12:5Þ
and a displacement constraint as

δ# δa; or δ2 δa # 0 ð12:6Þ
where

σ 5 calculated stress at a point
σa5 allowable stress
δ 5 calculated deflection at a point
δa 5 allowable deflection

Note that the units for the two constraints are different. The constraint of Eq. (12.5)
involves stress, which has units of Pascals (Pa, N/m2). For example, the allowable stress
for steel is 250 MPa. The constraint in Eq. (12.6) involves deflections of the structure, which
may be only a few centimeters. The allowable deflection δa may be, say, only 2 cm. Thus,
the values of the two constraints are of widely differing orders of magnitude. If the con-
straints are violated, it is difficult to judge the severity of their violation. We can, however,
normalize the constraints by dividing them by their respective allowable values to obtain
the normalized constraint as

R2 1:0# 0 ð12:7Þ
where R5σ/σa for the stress constraint and R5 δ/δa for the deflection constraint. Here,
both σa and δa are assumed to be positive; otherwise, the sense of the inequality changes.
For normalized constraints, it is easy to check for ε-active constraints using the same value
of ε for both of them.

There are other constraints that must be written in the form

1:02R# 0 ð12:8Þ

496 12. NUMERICAL METHODS FOR CONSTRAINED OPTIMUM DESIGN

II. NUMERICAL METHODS FOR CONTINUOUS VARIABLE OPTIMIZATION



when normalized with respect to their nominal value. For example, the fundamental vibra-
tion frequency ω of a structure or a structural element must be above a given threshold value
of ωa (i.e., ω$ωa). When the constraint is normalized and converted to the standard “less
than” form, it is given as in Eq. (12.8) with R5ω/ωa. In subsequent discussions, it is assumed
that all equality as well as inequality constraints have been converted to the normalized form.

There are some constraints that cannot be normalized. For these the allowable values
may be zero. One example is the lower bound on some design variables. Such constraints
cannot be normalized with respect to lower bounds. They may be kept in their original
form, or they may be divided by 100 to transform them into a percent value.

Example 12.1 illustrates the constraint normalization process and checking of the con-
straint status.

EXAMPLE 12.1 CONSTRAINT NORMALIZATION AND STATUS
AT A POINT

Consider the two constraints

h5 x21 1
1

2
x2 5 18 ðaÞ

g5 500x1 2 30;000x2 # 0 ðbÞ
At the design points (1, 1) and (24.5,24.5), investigate whether the constraints are active, vio-

lated, ε-active, or inactive. Use ε5 0.1 to check the ε-active constraints.

Solution
Let us normalize the equality constraint in Eq. (a) and express it in the standard form as

h5
1

18
x21 1

1

36
x2 21:05 0 ðcÞ

Evaluating the constraint at the two given points (1, 1) and (24.5,24.5), we get

hð1;1Þ5 1

18
ð1Þ2 1 1

36
ð1Þ21520:9166 6¼ 0 ðdÞ

hð24:5;24:5Þ5 1

18
ð24:5Þ2 1 1

36
ð24:5Þ2 15 0 ðeÞ

Therefore, the equality constraint is violated at (1, 1) and satisfied (active) at (24.5,24.5).

The inequality constraint cannot be normalized by dividing it by 500x1 or 30,000x2 because x1
and x2 can have negative values that will change the sense of the inequality. We must normalize

the constraint functions using only positive constants or positive variables. To treat this situation,

we may divide the constraint by 30,000jx2j and obtain a normalized constraint as
x1

60 x2j j 2
x2
x2j j # 0.

However, this type of normalization is not desirable since it changes the nature of the constraint

from linear to nonlinear. Linear constraints are more efficient to treat than the nonlinear constraints

in numerical calculations. Therefore, care and judgment need to be exercised while normalizing

some of the constraints. If a normalization procedure changes the nature of the constraint, then

another procedure should be tried.
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In some cases, it may be better to use the constraints in their original form, especially the

equality constraints. Thus, in numerical calculations some experimentation with normalization of

constraints may be needed for some constraint forms. For the present constraint in Eq. (b), we

normalize it with respect to the constant 500 and then divide by 100 to obtain it in the percent

form (or we use some typical value for the constraint):

g5
1

100
ðx1 2 60x2Þ# 0 ðfÞ

At the points (1, 1) and (24.5,24.5), the constraint is evaluated as

gð1;1Þ5 1

100
ð12 603 1Þ520:59,0 ðgÞ

gð24:5;24:5Þ5 1

100
ð24:5260ð24:5ÞÞ5 2:655. 0 ðhÞ

Thus, the constraint is inactive at the point (1, 1) and violated at the point (24.5,24.5). At the

point (1, 1), the constraint is not even ε-active since

gð1;1Þ1 ε520:591 0:10520:49, 0 ðiÞ

12.1.4 The Descent Function

For unconstrained optimization, each algorithm in Chapters 10 and 11 required reduc-
tion in the cost function at every design iteration. With that requirement, a descent toward
the minimum point was maintained. A function used to monitor progress toward the minimum
is called the descent, or merit, function. The cost function is used as the descent function in
unconstrained optimization problems.

The idea of a descent function is very important in constrained optimization as well. With
some constrained optimization methods, the cost function can be used as the descent func-
tion. However, with many modern numerical methods, it cannot be so used. Therefore,
many other descent functions have been proposed and used. We will discuss one such
function later in this chapter.

At this point, the purpose of the descent function should be well understood. The basic
idea is to compute a search direction d(k) and then a step size along it such that the descent
function is reduced. With this requirement, proper progress toward the minimum point is
maintained. The descent function also has the property that its minimum value is the
same as that of the original cost function.

12.1.5 Convergence of an Algorithm

The idea of convergence of an algorithm is very important in constrained optimization
problems. We first define and then discuss its importance and how to achieve it. An algorithm
is said to be convergent if it reaches a local minimum point starting from an arbitrary point. An algo-
rithm that has been proven to converge starting from an arbitrary point is called a robust
method. In practical applications of optimization, such reliable algorithms are highly desirable.
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Many engineering design problems require considerable numerical effort to evaluate func-
tions and their gradients. Failure of the algorithm in such applications can have disastrous
effects with respect to wastage of valuable resources as well as the morale of designers. For
this reason, it is important to use convergent algorithms for practical applications.

A convergent algorithm satisfies the following requirements:
1. There is a descent function for the algorithm. The idea is that the descent function

must decrease at each iteration. This way, progress toward the minimum point can
be monitored.

2. The direction of design change d(k) is a continuous function of the design
variables. This is also an important requirement. It implies that a proper direction
can be found such that descent toward the minimum point can be maintained.
This requirement also avoids “oscillations” or “zigzagging” in the descent
function.

3. The feasible set must be closed and bounded.

The algorithm may or may not converge if these conditions are not satisfied. Note that
the feasible set is closed if all of the boundary points are included in the set; that is, there
are no strict inequalities in the problem formulation. A bounded set implies that there are upper
and lower bounds on the elements of the set. These two requirements are satisfied if all
functions of the problem are continuous. The preceding requirements are not unreasonable
for many engineering applications.

12.2 LINEARIZATION OF THE CONSTRAINED PROBLEM

At each iteration, most numerical methods for constrained optimization compute design
change by solving a subproblem that is obtained by writing linear Taylor’s expansions for
the cost and constraint functions. This idea of approximate or linearized subproblems is
central to the development of many numerical optimization methods and should be thor-
oughly understood.

All search methods start with a design estimate and iteratively improve it, as seen in
Eq. (12.2) or Eq. (12.3). Let x(k) be the design estimate at the kth iteration and Δx(k) be the
change in design. Writing Taylor’s expansion of the cost and constraint functions about
the point x(k), we obtain the linearized subproblem as

Minimize

fðxðkÞ 1ΔxðkÞÞD fðxðkÞÞ1rfTðxðkÞÞΔxðkÞ ð12:9Þ
subject to the linearized equality constraints

hjðxðkÞ 1ΔxðkÞÞD hjðxðkÞÞ1rhTj ðxðkÞÞΔxðkÞ 5 0; j5 1 to p ð12:10Þ
and the linearized inequality constraints

gjðxðkÞ 1ΔxðkÞÞD gjðxðkÞÞ1rgTj ðxðkÞÞΔxðkÞ # 0; j5 1 to m ð12:11Þ
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where rf, rhj, and rgj are the gradients of the cost function, the jth equality constraint,
and the jth inequality constraint, respectively, and “D” implies approximate equality.
All of the functions and gradients are evaluated at the current point x(k).

NOTATION FOR THE LINEARIZED SUBPROBLEM In the following presentation, we intro-
duce some simplified notations for the current design x(k) as follows:

Cost function value:

fk 5 fðxðkÞÞ ð12:12Þ
Negative of the jth equality constraint function value:

ej 52hjðxðkÞÞ ð12:13Þ
Negative of the jth inequality constraint function value:

bj 52gjðxðkÞÞ ð12:14Þ
Derivative of the cost function with respect to xi:

ci 5 @fðxðkÞÞ=@xi ð12:15Þ
Derivative of hj with respect to xi:

nij 5 @hjðxðkÞÞ=@xi ð12:16Þ
Derivative of gj with respect to xi:

aij 5 @gjðxðkÞÞ=@xi ð12:17Þ
Design change:

di 5Δxi
ðkÞ ð12:18Þ

Note also that problem linearization is done at any design iteration, so the argument x(k),
as well as the superscript k indicating the iteration number, will be omitted for some
quantities.

DEFINITION OF THE LINEARIZED SUBPROBLEM Using these notations and dropping
fk in the linearized cost function, the approximate subproblem given in Eqs. (12.9) through
(12.11) is defined as follows:

Minimize

f 5
Xn
i51

cidi ðf 5 cTdÞ ð12:19Þ

subject to the linearized equality constraints

Xn
i51

nijdi 5 ej; j5 1 to p ðNTd5 eÞ ð12:20Þ
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and the linearized inequality constraints

Xn
i51

aijdi # bj; j5 1 to m ðATd#bÞ ð12:21Þ

where columns of the matrix N (n3 p) are the gradients of the equality constraints and
the columns of the matrix A (n3m) are the gradients of the inequality constraints.

Note that fk is a constant, which does not affect solution of the linearized subproblem; it
is dropped from Eq. (12.19). Therefore, f represents the linearized change in the original
cost function. Let n(j) and a(j) represent the gradients of the jth equality and the jth inequal-
ity constraints, respectively. Therefore, they are given as the column vectors:

nðjÞ 5
@hj
@x1

@hj
@x2

. . .
@hj
@xn

� �T
ð12:22Þ

aðjÞ 5
@gj
@x1

@gj
@x2

. . .
@gj
@xn

� �T
ð12:23Þ

The matrices N and A are formed using gradients of the constraints as their columns:

N5 ½nðjÞ�ðn3pÞ ð12:24Þ

A5 ½aðjÞ�ðn3mÞ ð12:25Þ
Examples 12.2 and 12.3 illustrate the linearization process for nonlinear optimization

problems.

EXAMPLE 12.2 DEFINITION OF A LINEARIZED SUBPROBLEM

Consider the optimization problem of Example 4.31:

Minimize

fðxÞ5 x21 1 x22 2 3x1x2 ðaÞ
subject to

g1ðxÞ5
1

6
x21 1

1

6
x22 2 1:0# 0 ðbÞ

g2ðxÞ52x1 # 0; g3ðxÞ52x2 # 0 ðcÞ
Linearize the cost and constraint functions about the point x(0)5 (1,1) and write the approximate

problem given by Eqs. (12.19) through (12.21).

Solution
Note that the constraint in Eq. (b) has been normalized using the constant 6. The graphical

solution to the problem is shown in Figure 12.4. It is seen that the optimum solution is at the
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point
ffiffiffiffiffiffiffiffi
23

p
;

ffiffiffiffiffiffiffiffi
23

p� �
with the cost function as 23. The given point (1, 1) is inside the feasible

region.

Function values Evaluating the cost and constraint functions at the point (1, 1), we get

fð1;1Þ5 ð1Þ2 1 ð1Þ2 23ð1Þð1Þ521 ðdÞ

g1ð1;1Þ5
1

6
ð1Þ2 1 1

6
ð1Þ2 2 1

� �
52

2

3
, 0 ðinactiveÞ ðeÞ

g2ð1;1Þ521, 0 ðinactiveÞ ðfÞ

g3ð1;1Þ521, 0 ðinactiveÞ ðgÞ

Thus the given point (21,21) is feasible, as seen in Figure 12.4.

Function gradients The gradients of the cost and constraint functions at (1, 1) are calculated

as

cð0Þ 5rfð1;1Þ5 ð2x1 23x2; 23x1 1 2x2Þ5 ð23 1233 1; 233 11 23 1Þ5 ð21; 21Þ ðhÞ

rg1ð1,1Þ5
2

6
x1;

2

6
x2

� �
5

1

3
;

1

3

� �
ðiÞ

rg2ð1;1Þ5 ð21; 0Þ ðjÞ
rg3ð1;1Þ5 ð0;21Þ ðkÞ

x2

x1

g3 = 0

g1(x) = x1
2 + x2

2 – 6.0 = 0

f = –25
f = –20

f = –10
f = –3

g2 = 0

A 1

1

2

2

3

3

4

4

Cost function contours

x* = (√3, √3)

C

Bx(0) = (1, 1)

FIGURE 12.4 Graphical representation of
the cost and constraints in Example 12.2.
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Linearized subproblem Using the Taylor’s expansion of Eq. (12.9), the linearized cost func-

tion at the point (1,1) is given as

f 5 fðxð0ÞÞ1rfðxð0ÞÞ �d5211 21 21
� � d1

d2

	 

5212 d1 2 d2 ðlÞ

Similarly, linearizing the constraint functions using Eq. (12.11), we obtain

1

3
d1 1

1

3
d2 #

2

3
ðmÞ

2d1 # 1;2d2 # 1 ðnÞ

Thus the linearized subproblem is defined as minimizing the cost function of Eq. (l) subject to

the constraints of Eqs. (m) and (n).

Note that the matrix A of Eq. (12.17), vector b of Eq. (12.14), and vector c of Eq. (12.15) are

identified from Eqs. (l) to (n) as

A5

1

3
21 0

1

3
0 21

2
66664

3
77775; b5

2

3

1

1

2
6664

3
7775; c5

21
21

	 

ðoÞ

Linearization in Terms of Original Variables Note also that the linearized subproblem is

in terms of the design changes d1 and d2. We may also write the subproblem in terms of the original

variables x1 and x2. To do this we substitute d5 (x2 x(0)) in all of the foregoing expressions or in

the linear Taylor’s expansion, and obtain:

fðx1; x2Þ5 fðxð0ÞÞ1rf � ðx2 xð0ÞÞ5211 ½21 21 � ðx1 21Þ
ðx2 21Þ

	 

52x1 2 x2 1 1 ðjÞ

g1ðx1; x2Þ5 g1ðxð0ÞÞ1rg � ðx2 xð0ÞÞ52
2

3
1

1

3

1

3

" #
ðx1 2 1Þ
ðx2 2 1Þ

	 


5
1

3
ðx1 1 x2 2 4Þ # 0

ðkÞ

g2 52x1 # 0; g3 52x2 # 0 ðlÞ

In the foregoing expressions, the overbar for a function indicates its linearized approximation.

The feasible regions for the linearized subproblem at the point (1, 1) and the original problem

are shown in Figure 12.5. Since the linearized cost function is parallel to the linearized first con-

straint g1, the optimum solution for the linearized subproblem is any point on the line D�E in

Figure 12.5.

It is important to note that the linear approximations for the functions of the problem change

from point to point. Therefore, the feasible region for the linearized subproblem will change

with the point at which the linearization is performed.
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EXAMPLE 12.3 LINEARIZATION OF RECTANGULAR BEAM
DESIGN PROBLEM

Linearize the rectangular beam design problem formulated that is in Section 3.8 at the point

(50,200) mm.

Solution
The normalized problem is defined as follows: Find width b and depth d to

Minimize
fðb; dÞ5 bd ðaÞ

subject to

g1 5
ð2:403 107Þ

bd2
2 1:0# 0 ðbÞ

g2 5
ð1:1253 105Þ

bd
2 1:0# 0 ðcÞ

g3 5
1

100
ð22b1 dÞ# 0 ðdÞ

g4 52b# 0; g5 52d# 0 ðeÞ
Note that constraint g3 in Eq. (d) has been normalized with respect to 100.

Evaluation of problem functions At the given point, the problem functions are evaluated as

fð50;200Þ5 503 2005 10;000 ðfÞ

5

5

4

4

3

3

2

2

1

1

E Linearized constraint g–1(x) = x1 + x2 – 4 = 0
at the point (1, 1)

C

B

A

D(1, 1)

g1(x) = 0

g2 = g–2 = 0

x1

x2

g3 = g–3 = 0

•

FIGURE 12.5 Graphical representation
of the linearized feasible region of Example
12.2.
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g1ð50;200Þ5
2:403 107

503 2002
2 15 11. 0 ðviolationÞ ðgÞ

g2 ð50;200Þ5
1:1253 105

503 200
2 15 10:25. 0 ðviolationÞ ðhÞ

g3 ð50;200Þ5
1

100
ð223 501 200Þ5 1. 0 ðviolationÞ ðiÞ

g4 ð50;200Þ5250, 0 ðinactiveÞ ðjÞ
g5 ð50;200Þ52200, 0 ðinactiveÞ ðkÞ

Evaluation of gradients In the following calculations, we will ignore constraints g4 and g5,

assuming that they will remain satisfied; that is, the design will remain in the first quadrant. The

gradients of the functions are evaluated as

rfð50;200Þ5 ðd; bÞ5 ð200;50Þ ðlÞ

rg1ð50;200Þ5
2ð2:403 107Þ

b2d2
;
2ð2:403 107Þ

bd3

� �

5
2ð2:403 107Þ
502 3 2002

;
2ð2:403 107Þ
503 2003

� �
5 ð20:24; 20:12Þ

ðmÞ

rg2ð50;200Þ5
2ð1:1253 107Þ

b2d
;
2ð1:1253 107Þ

bd2

� �

5
2ð1:1253 107Þ

502 3 200
;
2ð1:1253 107Þ

503 2002

� �
5 ð20:225; 20:05625Þ

ðnÞ

rg3ð50;200Þ5
22

100
;

1

100

� �
5 ð20:02; 0:01Þ ðoÞ

Linearized subproblem Using the function values and their gradients, the linear Taylor’s ex-

pansions given in Eqs. (12.11) through (12.13) give the linearized subproblem at point (50, 200)

in terms of the original variables as

Minimize
fðb; dÞ5 10;0001 200ðb2 50Þ1 50ðd2 200Þ

5 200b1 50d210;000
ðpÞ

subject to
g1ðb; dÞ5 1120:24ðb250Þ20:12ðd2200Þ

520:24b20:12d1 47# 0
ðqÞ

g2ðb; dÞ5 10:252 0:225ðd2 50Þ2 0:05625ðb2 200Þ
520:225b2 0:05625d1 32:75# 0

ðrÞ

g3ðb; dÞ5 12 0:02ðb2 50Þ1 0:01ðd2 200Þ
520:02b1 0:01d# 0

ðsÞ
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Note that the linearized constraint g3 in Eq. (s) has the same form as the original constraint in

Eq. (d), as expected. The linearized constraint functions are plotted in Figure 12.6 and their feasi-

ble region is identified. The feasible region for the original constraints is also identified. It can be

observed that the two regions are quite different. Also observe that the linearized cost function is

parallel to constraint g2. The optimum solution lies at the point H, which is at the intersection of

constraints g1 and g3 and is given as

b5 97:9 mm; d5 195:8 mm; f 5 19; 370 mm2 ðtÞ
For this point, the original constraints g1 and g2 are still violated. Apparently, for nonlinear

constraints, iterations are needed to correct constraint violations and reach the feasible set.

12.3 THE SEQUENTIAL LINEAR PROGRAMMING ALGORITHM

Note that all of the functions in Eqs. (12.19) through (12.21) are linear in the variables di.
Therefore, linear programming methods can be used to solve for di. Such procedures
where linear programming is used to compute design change are referred to as sequential
linear programming, or SLP for short. In this section, we will briefly describe such a proce-
dure and discuss its advantages and drawbacks. The idea of move limits and their needs
are explained and illustrated.

12.3.1 Move Limits in SLP

To solve the LP by the standard Simplex method, the right-side parameters ei and bj in
Eqs. (12.13) and (12.14) must be nonnegative. If any bj is negative, we must multiply the
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FIGURE 12.6 Feasible region for the original and the
linearized constraints of the rectangular beam design
problem in Example 12.3.
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corresponding constraint by 21 to make the right side nonnegative. This will change the
sense of the inequality in Eq. (12.21); that is, it will become a “$ type” constraint.

It must be noted that the problem defined in Eqs. (12.19) through (12.21) may not have
a bounded solution, or the changes in design may become too large, thus invalidating the
linear approximations. Therefore, limits must be imposed on changes in design. Such con-
straints are usually called move limits, expressed as

2ΔðkÞ
il # dðkÞi #ΔðkÞ

iu i5 1 to n ð12:26Þ
where Δil

(k) and Δiu
(k) are the maximum allowed decrease and increase in the ith design vari-

able, respectively, at the kth iteration. The problem is still linear in terms of di, so LP meth-
ods can be used to solve it. Note that the iteration counter k is used to specify Δil

(k) and
Δiu

(k). That is, the move limits may change at every iteration. Figure 12.7 shows the effect of
imposing the move limits on changes in the design x(k); the new design estimate is
required to stay in the rectangular area ABCD for a two-dimensional problem.

The move limits in Eq. (12.26) achieve two important objectives in the linearized
subproblem:

1. They make the linearized subproblem bounded.
2. They give the design changes directly without performing the line search for a step

size.

Selection of Proper Move Limits

Selecting proper move limits is of critical importance because it can mean success or
failure of the SLP algorithm. Their specification, however, requires some experience with
the method as well as knowledge of the problem being solved. Therefore, the user should
not hesitate to try different move limits if one specification leads to failure or improper
design. Many times lower and upper bounds are specified on the real design variables xi.
Therefore, move limits must be selected to remain within the specified bounds.

Also, since linear approximations of the functions are used, the design changes should
not be very large and the move limits should not be excessively large. Usually Δil

(k) and
Δiu
(k) are selected as some fraction of the current design variable values (this may vary from 1 to

100 percent). If the resulting LP problem turns out to be infeasible, the move limits will
need to be relaxed (i.e., larger changes in the design must be allowed) and the subproblem

Feasible

Infeasible

A
B

C
D

Δ1u

Δ2u

x(k)

Δ1

Δ2

FIGURE 12.7 Linear move limits on design changes.
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solved again. Usually, a certain amount of experience with the problem is necessary in
order to select proper move limits and adjust them at every iteration to solve the problem
successfully.

Positive/Negative Design Changes

Another point must be noted before an SLP algorithm can be stated. This concerns the
sign of the variables di (or Δxi), which can be positive or negative. In other words, the cur-
rent values of the design variables can increase or decrease. To allow for such a change,
we must treat the LP variables di as free in sign. This can be done as explained in
Section 8.1. Each free variable di is replaced as di5 d1i 2 d2i in all of the expressions. The LP
subproblem defined in Eqs. (12.19) through (12.21) is then transformed to the standard
form for the Simplex method.

12.3.2 An SLP Algorithm

We must define some stopping criteria before stating the algorithm:

1. All constraints must be satisfied. This can be expressed as gi# ε1; i5 1 to m and jhij# ε1;
i5 1 to p, where ε1. 0 is a specified small number defining tolerance for constraint
violations.

2. The changes in design should be almost zero; that is, jjdjj# ε2, where ε2. 0 is a
specified small number.

The sequential linear programming algorithm is now stated as follows:

Step 1. Estimate a starting design as x(0). Set k5 0. Specify two small positive numbers,
ε1 and ε2.
Step 2. Evaluate the cost and constraint functions at the current design x(k); that is,
calculate fk, bj; j5 1 to m, and ej; j5 1 to p, as defined in Eqs. (12.12) through (12.14).
Also, evaluate the cost and constraint function gradients at the current design x(k).
Step 3. Select move limits Δil

(k) and Δiu
(k) as some fraction of the current design. Define

the LP subproblem of Eqs. (12.19) through (12.21).
Step 4. If needed, convert the LP subproblem to the standard Simplex form (refer to
Section 8.2), and solve it for d(k).
Step 5. Check for convergence. If gi# ε1; i5 1 to m; jhij# ε1; i5 1 to p; and jjd(k)jj# ε2,
then stop. Otherwise, continue.
Step 6. Update the design as x(k11)5 x(k)1d(k). Set k5 k1 1 and go to Step 2.

It is interesting to note here that the LP problem defined in Eqs. (12.19) through (12.21)
can be transformed to be in the original variables by substituting di5 xi2 xi

(k). This was dem-
onstrated in Examples 12.2 and 12.3. The move limits on di of Eq. (12.26) can also be trans-
formed to be in the original variables. This way the solution of the LP problem directly
gives the estimate for the next design point.

Examples 12.4 and 12.5 illustrate the use of sequential linear programming algorithm.
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EXAMPLE 12.4 STUDY OF THE SEQUENTIAL LINEAR
PROGRAMMING ALGORITHM

Consider the problem given in Example 12.2. Define the linearized subproblem at the point

(3, 3) and discuss its solution after imposing the proper move limits.

Solution
To define the linearized subproblem, the problem functions and their gradients are calculated

at the given point (3, 3):

fð3; 3Þ5 32 1 32 2 33 33 3529 ðaÞ

g1ð3; 3Þ5
1

6
ð32Þ1 1

6
ð32Þ215 2 . 0 ðviolationÞ ðbÞ

g2ð3; 3Þ52 x1 523, 0 ðinactiveÞ ðcÞ
g3ð3; 3Þ52x2 523, 0 ðinactiveÞ ðdÞ

cð3; 3Þ5rf 5 ð2x1 2 3x2; 2x2 2 3x1Þ5 ð23 32 33 3; 23 32 33 3Þ5 ð23; 23Þ ðeÞ

rg1ð3; 3Þ5
2x1
6

;
2x2
6

0
@

1
A5

23 3

6
;
23 3

6

0
@

1
A5 ð1; 1Þ

rg2ð3; 3Þ5 ð21; 0Þ; rg3ð3;3Þ5 ð0;21Þ
ðfÞ

The given point is in the infeasible region, as the first constraint is violated. The linearized

subproblem is defined according to Eqs. (12.19) through (12.21) as

Minimize

f 5 ½23 23 � d1
d2

	 

ðgÞ

subject to the linearized constraints

1 1
21 0
0 21

2
4

3
5 d1

d2

	 

#

22
3
3

2
4

3
5 ðhÞ

The subproblem has only two variables, so it can be solved using the graphical solution pro-

cedure shown in Figure 12.8. This figure, when superimposed on Figure 12.4, represents a linear-

ized approximation of the original problem at the point (3, 3). The feasible solution for the

linearized subproblem must lie in the region ABC in Figure 12.8. The cost function is parallel to

the line B�C; thus any point on the line minimizes the function. We may choose d1521 and

d2521 as the solution that satisfies all of the linearized constraints (note that the linearized

change in cost is 6). If 100 percent move limits are selected (i.e., 23# d1# 3 and 23# d2# 3),

then the solution to the LP subproblem must lie in the region ADEF. If the move limits are set as

20 percent of the current value of design variables, the solution must satisfy 20.6# d1# 0.6

and 20.6# d2# 0.6.
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In this case, the solution must lie in the region A1D1E1F1. It can be seen that there is no feasi-

ble solution to this linearized subproblem because region A1D1E1F1 does not intersect the line

B�C. We must enlarge this region by increasing the move limits. Thus, we note that if the move

limits are too restrictive, the linearized subproblem may not have any solution.

If we choose d1521 and d2521, then the improved design is given as (2, 2). This is still an

infeasible point, as can be seen in Figure 12.4. Therefore, although the linearized constraint is sat-

isfied with d1521 and d2521, the original nonlinear constraint g1 is still violated.

EXAMPLE 12.5 USE OF SEQUENTIAL LINEAR PROGRAMMING

Consider the problem given in Example 12.2. Perform one iteration of the SLP algorithm. Use

ε15 ε25 0.001 and choose move limits such that a 15 percent design change is permissible. Let

x(0)5 (1,1) be the starting design.

Solution
The given point represents a feasible solution for the problem, as may be seen in Figure 12.4.

The linearized subproblem with 15 percent move limits on design changes d1 and d2 at the point

x(0) is obtained in Example 12.2 as

Minimize
f 52d1 2 d2 ðaÞ

2

2

–2

–2 4

4

D

EF

C

A

A1 D1

E1F1

B

d1

d2

–4

–4

f = 12

f = 9

FIGURE 12.8 Graphical solution for the linear-
ized subproblem in Example 12.4.
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subject to
1

3
d1 1

1

3
d2 #

2

3
ðbÞ

2ð11 d1Þ# 0; 2 ð11 d2Þ# 0 ðcÞ
20:15# d1 # 0:15; 20:15# d2 # 0:15 ðdÞ

The graphical solution to the linearized subproblem is given in Figure 12.9. Move limits of

15 percent define the solution region as DEFG. The optimum solution for the problem is at point

F where d15 0.15 and d25 0.15. It is seen that much larger move limits are possible in the present

case.

We will solve the problem using the Simplex method as well. Note that in the linearized sub-

problem, the design changes d1 and d2 are free in sign. If we wish to solve the problem by the

Simplex method, we must define new variables, A, B, C, and D such that d15A2B, d25C2D,

with A, B, C, and D$ 0. Variables A, B, C, D may conflict with symbols in the figure. Therefore,

substituting these decompositions into the foregoing equations, we get the following problem,

written in standard form:

Minimize

f 52A1B2C1D ðeÞ
subject to

1

3
ðA2B1C2DÞ# 2

3
ðfÞ

C

2

2

1

1D

FG

–1

–1

A B

d1

d2

E

FIGURE 12.9 Graphical solution to the linear-
ized subproblem in Example 12.5.
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2A1B # 1:0; 2C1D # 1:0 ðgÞ
A2B # 0:15; B2A # 0:15 ðhÞ
C2D # 0:15; D2C # 0:15 ðiÞ

A;B;C;D $ 0 ðjÞ

The solution to the foregoing LP problem with the Simplex method is obtained as: A5 0.15,

B5 0, C5 0.15, and D5 0. Therefore, d15A2B5 0.15 and d25C2D5 0.15. This gives the

updated design as x(1)5 x(0)1d(0)5 (1.15, 1.15). At the new design (1.15, 1.15), we have

f(x(1))521.3225 and g1(x
(1))520.5592. Note that the cost function has decreased for the new

design x(1) without violating the constraint. This indicates that the new design is an improvement

over the previous one. Since the norm of the design change, jjdjj5 0.212, is larger than the per-

missible tolerance (0.001), we need to go through more iterations to satisfy the stopping criterion.

Linearization in terms of original variables It should also be noted that the linearized sub-

problem at the point (1, 1) can be written in the original variables. This was done in Example

12.2, and the linearized subproblem was obtained as

Minimize

f 52 x1 2 x2 1 1 ðkÞ
subject to

g1 5
1

3
ðx1 1 x2 24Þ# 0; g2 52x1 # 0; g3 52x2 # 0 ðlÞ

The 15 percent move limits can also be transformed to be in the original variables using

2Δil # xi2 xi
(0)#Δiu:

20:15# ðx1 21Þ# 0:15 or 0:85# x1 # 1:15 ðmÞ
20:15# ðx2 21Þ# 0:15 or 0:85# x2 # 1:15 ðnÞ

Solving the subproblem, we obtain the same solution (1.15, 1.15) as before.

Observe that when the problem is transformed in terms of the original variables, there is no

need to split the variables into their positive and negative parts since the original variables are

required to be nonnegative anyway.

12.3.3 The SLP Algorithm: Some Observations

The sequential linear programming algorithm is a simple and straightforward approach
to solving constrained optimization problems. It can be applied to engineering design pro-
blems, especially those having a large number of design variables. The following observa-
tions highlight some features and limitations of the SLP method.

1. The method should not be used as a black box approach for engineering design problems. The
selection of move limits is one of trial and error and can be best achieved in an
interactive mode.

2. The method may not converge to the precise minimum since no descent function is defined,
and line search is not performed along the search direction to compute a step size.
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3. The method can cycle between two points if the optimum solution is not a vertex of the
feasible set.

4. The method is quite simple conceptually as well as numerically. Although it may not
be possible to reach the precise local minimum point with it, it may be used to obtain
improved designs in practice.

12.4 SEQUENTIAL QUADRATIC PROGRAMMING

As observed in the previous section, SLP is a simple algorithm to obtain improved
designs for general constrained optimization problems. However, the method has some
limitations, the major one being its lack of robustness. To overcome SLP’s drawbacks,
several other derivative-based methods have been developed to solve smooth nonlinear
programming problems. These include the gradient projection method, the feasible direc-
tions method, and the generalized reduced gradient method. The basic concepts of these
methods are described in Chapter 13. Some methods have good performance for equality-
constrained problems only; others have good performance for inequality-constrained pro-
blems only.

In this text, we primarily focus on general methods that can treat equality as well as
inequality constraints. Sequential quadratic programming (SQP) methods are relatively
new and have become quite popular as a result of their generality, robustness, and effi-
ciency. Also, they can incorporate second-order information about the problem functions
relatively easily. This is explained in the next chapter.

Here, we describe the basic concepts and steps associated with SQP methods. These
methods basically implement the iterative concepts in Eqs. (12.2) through (12.4). That is,
they implements the following two steps:

Step 1. A search direction in the design space is calculated by utilizing the values and
the gradients of the problem functions; a quadratic programming subproblem is
defined and solved.
Step 2. A step size along the search direction is calculated to minimize a descent
function; a step size calculation subproblem is defined and solved.

It can be imagined that the two subproblems can be defined in several ways and solved
using different numerical methods, giving different SQP methods. We will discuss these
in the Sections 12.5 and 12.6 and in Chapter 13.

In most methods, the direction-finding subproblem still uses linearized approximations
of Eqs. (12.19) through (12.21) for the nonlinear cost and constraint functions. However,
the linear move limits of Eq. (12.26) are abandoned in favor of a step size calculation pro-
cedure. In the SQP method the linearized cost function is modified by adding a second-
order term so that it becomes a quadratic function. Thus the direction-finding subproblem
becomes a quadratic programming (QP) subproblem, and it becomes a bounded problem as
well. There are a number of ways to define the modified linearized cost function. In the
next section we define a quadratic programming subproblem with a search direction that
can be interpreted as the constrained steepest-descent direction or the steepest-descent
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direction projected onto the constraint hyperplane. This subproblem uses only the first-
order information about the problem functions. In Chapter 13, we define another QP sub-
problem that uses second-order information about the problem functions.

12.5 SEARCH DIRECTION CALCULATION:
THE QP SUBPROBLEM

In this section, we define a QP subproblem to determine the search direction. We also
discuss a method for solving the problem. Note that in the SLP method of the previous
section, the vector d represents design change at the current point. In this section, the vec-
tor d represents a direction of design change (search direction). A step along this direction
then gives the design change.

12.5.1 Definition of the QP Subproblem

The move limits of Eq. (12.26) in SLP play two roles in the solution process: (1) they
make the linearized subproblem bounded, and (2) they give the design change without
performing line search. It turns out that these two roles of the move limits of Eq. (12.26)
can be achieved by defining and solving a slightly different subproblem to determine the
search direction and then performing a line search for the step size along the search direc-
tion to calculate the design change.

The linearized subproblem can be bounded if we require minimization of the length
of the search direction jjdjj in addition to minimization of the linearized cost function,
(c �d), in Eq. (12.19). This can be accomplished by combining these two objectives. Since
this combined objective is a quadratic function in terms of the search direction d,
the resulting subproblem is called a QP subproblem. It is defined as

Minimize

f 5 cTd1
1

2
dTd ð12:27Þ

subject to the linearized equality and inequality constraints of Eqs. (12.20) and (12.21):

NTd5 e ð12:28Þ
ATd#b ð12:29Þ

The factor of 1/2 with the second term in Eq. (12.27) is introduced to eliminate the fac-
tor of 2 during differentiations. Also, square of the length of d is used instead of its length.
The following two observations about the QP subproblem are noteworthy:

1. The QP subproblem is strictly convex and therefore its minimum (if one exists) is global
and unique.

2. The cost function of Eq. (12.27) represents an equation of a hypersphere with its center
at 2c (circle in two dimensions, sphere in three dimensions).
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Example 12.6 demonstrates how to define a quadratic programming subproblem at a
given point.

EXAMPLE 12.6 DEFINITION OF A QP SUBPROBLEM

Consider the constrained optimization problem:

Minimize

fðxÞ5 2x31 1 15x22 2 8x1x2 2 4x1 ðaÞ
subject to equality and inequality constraints as

hðxÞ5 x21 1 x1x2 1 1:05 0 ðbÞ

gðxÞ5 x1 2
1

4
x22 2 1:0# 0 ðcÞ

Linearize the cost and constraint functions about a point (1, 1) and define the QP subproblem of

Eqs. (12.27) to (12.29).

Solution
Note that the constraints for the problem are already written in the normalized form.

Figure 12.10 is a graphical representation of the problem. The equality constraint has two

branches that are shown as h5 0; the boundary of the inequality constraint is g5 0. The feasible

region for the inequality constraint is identified and several cost function contours are shown.
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FIGURE 12.10 Graphical representation of
Example 12.6.
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Since the equality constraint must be satisfied, the optimum point must lie on the two curves

h5 0. The inequality constraint plays no role in locating the optimum points; its boundary does

not intersect the equality constraint curves. Two local minimum points are identified as

Point A:

x� 5 ð1; 22Þ; fðx�Þ5 74 ðdÞ
Point B:

x� 5 ð21; 2Þ; fðx�Þ5 78 ðeÞ
Evaluation of functions The cost and the constraint functions are evaluated at the point

(1, 1) as

fð1;1Þ5 2ð1Þ3 1 15ð1Þ2 2 83 13 12 43 15 5 ðfÞ

hð1;1Þ5 ð1Þ2 1 13 11 15 3 6¼ 0 ðgÞ

gð1;1Þ5 12
1

4
ð1Þ2 2 1520:25, 0 ðhÞ

Gradient evaluation The gradients of the cost and constraint functions are evaluated as

cð1;1Þ5rfð1;1Þ5 ð6x21 2 8x2 2 4; 30x2 2 8x1Þ5 ð26; 22Þ ðiÞ
rhð1;1Þ5 ð2x1 1 x2; x1Þ5 ð3; 1Þ ðjÞ

rgð1;1Þ5 1;2
1

2
x2

� �
5 ð1;20:5Þ ðkÞ

Linearized subproblem Substituting Eqs. (f) and (i) into Eq. (12.9), the linearized cost func-

tion is

f 5 51 26 22½ � d1
d2

	 

5 526d1 1 22d2 ðlÞ

Similarly the linearized forms of the constraint functions can be written and the linearized

subproblem defined as

Minimize

f 526d1 1 22d2 ðmÞ
subject to

3d1 1 d2 523 ðnÞ
d1 2 0:5d2 # 0:25 ðoÞ

Note that the constant 5 has been dropped from the linearized cost function in Eq. (m) because it

does not affect the solution to the subproblem. Also, the constants 3 and 20.25 in the linearized

constraints have been transferred to the right side in Eqs. (n) and (o).

If 50% move limits are specified for the current point (1, 1) in the SLP algorithm, then each

design variable can change by 60.5. This gives the move limit constraints as

20:5# d1 # 0:5; 20:5# d2 # 0:5 ðpÞ
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QP subproblem The QP subproblem of Eqs. (12.27) and (12.28) is defined as

Minimize

f 5 ð26d1 1 22d2Þ1
1

2
ðd21 1 d22Þ ðqÞ

subject to the linearized constraints of Eqs. (n) and (o).

Note that the move limits of Eqs. (p) are not needed for the QP subproblem.

Solving LP and QP subproblems To compare the solutions, the preceding LP and QP sub-

problems are plotted in Figures 12.11 and 12.12, respectively. In these figures, the solution must

satisfy the linearized equality constraint, so it must lie on the line C�D. The feasible region for

the linearized inequality constraint is also shown. Therefore, the solution to the subproblem

must lie on the line G�C. It can be seen in Figure 12.11 that with 50 percent move limits, the lin-

earized subproblem is infeasible. The move limits require the changes to lie in the square HIJK,

which does not intersect the line G�C. If we relax the move limits to 100 percent, then point L

gives the optimum solution:

d1 52
2

3
; d2 521:0; f 5218 ðrÞ

Thus, we again see that the design change with the linearized subproblem is affected by the move

limits.

With the QP subproblem, the constraint set remains the same but there is no need for the

move limits as seen in Figure 12.12. The cost function f is quadratic in the variables. Actually,
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FIGURE 12.11 Solution to linearized sub-
problem in Example 12.6 at the point (1, 1).
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the cost function in Eq. (q) is an equation of a circle with its center at 2c (i.e., at (6,222)). The

optimum solution is at point G:

d1 520:5; d2 521:5; f5228:75 ðsÞ
Note that the direction determined by the QP subproblem is unique, but it depends on the

move limits with the LP subproblem. The two directions determined by LP and QP subproblems

are in general different.

12.5.2 Solving the QP Subproblem

As noted earlier, many general nonlinear programming algorithms require solving a qua-
dratic programming subproblem at each design cycle. In addition, QP problems are encoun-
tered in many real-world applications. Therefore, it is important to solve a quadratic
programming subproblem efficiently, so it is not surprising that substantial research effort
has been expended in developing and evaluating many numerical methods for solving QP
problems (Gill et al., 1981; Luenberger, 1984; Nocedal and Wright, 2006). Many good pro-
grams have been developed to solve such problems.

Solution to the QP subproblem gives the search direction d. In addition, it gives values
for the Lagrange multipliers for the constraints. These multipliers will be needed to calcu-
late the descent function, as we will see later. In Chapter 9, we described a method for
solving general QP problems that is a simple extension of the Simplex method of linear
programming. If the problem is simple, we can solve it using the Karush-Kuhn-Tucker
(KKT) conditions of optimality given in Theorem 4.6. To aid the KKT solution process, we
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FIGURE 12.12 Solution to the quadratic
programming subproblem in Example 12.6
at the point (1, 1).
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can use a graphical representation of two variable problems to identify the possible solu-
tion case and solve that case only. We present such a procedure in Example 12.7.

EXAMPLE 12.7 SOLUTION TO THE QP SUBPROBLEM

Consider the problem of Example 12.2 linearized as

Minimize

f 52d1 2d2 ðaÞ
subject to

1

3
d1 1

1

3
d2 #

2

3
; 2d1 # 1; 2d2 # 1 ðbÞ

Define the quadratic programming subproblem and solve it.

Solution
The linearized cost function in Eq. (a) is modified to a quadratic function as follows:

f 5 ð2d1 2 d2Þ1 0:5ðd21 1 d22Þ ðcÞ
The quadratic cost function in Eq. (c) corresponds to an equation of a circle with its center at

(2c1,2c2) where ci are components of the gradient of the cost function (i.e., at (1, 1). The graphi-

cal solution to the problem is shown in Figure 12.13, where the triangle ABC represents the feasi-

ble set for the QP subproblem. Cost function contours are circles of different radii. The optimum
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FIGURE 12.13 Solution to the QP sub-
problem in Example 12.7 at the point (1, 1).
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solution is at point D, where d15 1 and d25 1. Note that the QP subproblem is strictly convex

and thus has a unique solution.

A numerical method must generally be used to solve the subproblem. However, since the

present problem is quite simple, it can be solved by writing the KKT necessary conditions of

Theorem 4.6 as follows:

L5 ð2d1 2 d2Þ1 0:5ðd21 1 d22Þ1u1
1

3
ðd1 1 d2 2 2Þ1 s21

� �
1u2ð2 d1 2 11 s22Þ1u3ð2 d2 2 11 s23Þ

ðdÞ

@L

@d1
5211 d1 1

1

3
u1 2 u2 5 0;

@L

@d2
5211 d2 1

1

3
u1 2 u3 5 0 ðeÞ

1

3
ðd1 1 d2 2 2Þ1 s21 5 0 ðfÞ

ð2d1 2 1Þ1 s22 5 0; ð2d2 2 1Þ1 s23 5 0 ðgÞ

uisi 5 0; ui $ 0; s2i $ 0; i5 1; 2; 3 ðhÞ

where u1, u2, and u3 are the Lagrange multipliers for the three constraints and s21, s
2
2, and s23 are

the corresponding slack variables.

The switching conditions uisi5 0 in Eqs. (h) give eight solution cases. However, only one case

can give the optimum solution. The graphical solution shows that only the first inequality is

active at the optimum, giving the case as s15 0, u25 0, u35 0. Solving this case from Eqs. (e) and

(f), we get the solution as

Direction vector: d5 ð1; 1Þ; Lagrange multiplier vector: u5 ð0; 0; 0Þ ðiÞ

12.6 THE STEP SIZE CALCULATION SUBPROBLEM

In this section, we address the problem of step size calculation along the search direc-
tion. A descent function that needs to be minimized along the search direction is defined.
A class of methods called the interval-reducing methods to minimize the descent function
is described. Some other methods to determine the step size are described in Chapter 13.

12.6.1 The Descent Function

Recall that in unconstrained optimization methods the cost function is used as the
descent function to monitor the progress of the algorithms toward the optimum point.
Although the cost function can be used as a descent function with some constrained opti-
mization methods, it cannot be used for general SQP-type methods. For most methods, the
descent function is constructed by adding a penalty for constraint violations to the current
value of the cost function. Based on this idea, many descent functions can be formulated.
In this section, we will describe one of them and show its use.
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One of the properties of a descent function is that its value at the optimum point for the
optimization problem must be the same as that for the original cost function. Also, it
should have the property that a unit step size is admissible in the neighborhood of the
optimum point. We will introduce Pshenichny’s descent function (also called the exact penalty
function) because of its simplicity and success in solving a large number of engineering
design problems (Pshenichny and Danilin, 1982; Belegundu and Arora, 1984a,b). Other
descent functions will be discussed in Chapter 13.

Pshenichny’s descent function Φ at any point x is defined as

ΦðxÞ5 fðxÞ1RVðxÞ ð12:30Þ
where R. 0 is a strictly positive number called the penalty parameter (initially specified by
the user), V(x)$ 0 is either the maximum constraint violation among all of the constraints or
zero, and f (x) is the cost function value at x. As an example, the descent function at the
point x(k) during the kth iteration is calculated as

Φk 5 fk 1RVk ð12:31Þ
where Φk and Vk are the values of Φ(x) and V(x) at x(k):

Φk 5ΦðxðkÞÞ; Vk 5VðxðkÞÞ ð12:32Þ
and R is the most current value of the penalty parameter. As explained later with exam-
ples, the penalty parameter may change during the iterative process. Actually, it must be
ensured that it is greater than or equal to the sum of all of the Lagrange multipliers of the
QP subproblem at the point x(k). This is a necessary condition given as

R $ rk ð12:33Þ
where rk is the sum of all of the Lagrange multipliers at the kth iteration:

rk 5
Xp
i51

vðkÞi

��� ���1 Xm
i51

uðkÞi ð12:34Þ

Since the Lagrange multiplier vi
(k) for an equality constraint is free in sign, its absolute

value is used in Eq. (12.34). ui
(k) is the multiplier for the ith inequality constraint. Thus if Rk

is the current value of the penalty parameter, the necessary condition of Eq. (12.33) is satis-
fied if R is selected as

R5maxðRk; rkÞ ð12:35Þ
The parameter Vk$ 0 related to the maximum constraint violation at the kth iteration

is determined using the calculated values of the constraint functions at the design point
x(k) as

Vk 5maxf0; h1j j; h2j j; . . . ;
��hp��; g1; g2; . . . ; gmg ð12:36Þ

Since the equality constraint is violated if it is different from zero, the absolute value is
used with each hi in Eq. (12.36). Note that Vk is always nonnegative; that is, Vk$ 0. If all
constraints are satisfied at x(k), then Vk5 0.
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Thus to determine the step size, we minimize the descent function of Eq. (12.30). This
implies that we must be able to calculate its values at different points along the search
direction. Example 12.8 illustrates the calculations for the descent function.

EXAMPLE 12.8 CALCULATION OF DESCENT FUNCTION

A design problem is formulated as follows:

Minimize

fðxÞ5 x21 1 320x1x2 ðaÞ
subject to four inequalities:

1

100
ðx1 2 60x2Þ # 0 ðbÞ

12
x1ðx1 2 x2Þ

3600
# 0 ðcÞ

2x1 # 0; 2x2 # 0 ðdÞ

Taking the penalty parameter R as 10,000, calculate the value of the descent function at the point

x(0)5 (40,0.5).

Solution
The cost and constraint functions at the given point x(0)5 (40, 0.5) are evaluated as

f0 5 fð40;0:5Þ5 ð40Þ2 1 320ð40Þð0:5Þ5 8000 ðeÞ

g1 5
1

100
ð402 603 0:5Þ5 0:1. 0 ðviolationÞ ðfÞ

g2 5 12
40ð402 0:5Þ

3600
5 0:5611. 0 ðviolationÞ ðgÞ

g3 5240, 0 ðinactiveÞ ðhÞ
g4 520:5, 0 ðinactiveÞ ðiÞ

Thus, the maximum constraint violation is determined using Eq. (12.36) as

V0 5maxf0; 0:1; 0:5611; 240; 20:5g5 0:5611 ðjÞ
Using Eq. (12.31), the descent function is calculated as

Φ0 5 f0 1RV0 5 80001 ð10;000Þð0:5611Þ5 13; 611 ðkÞ

12.6.2 Step Size Calculation: Line Search

Once the search direction d(k)is determined at the current point x(k), the updated design
in Eqs. (12.2) through (12.4) becomes a function of the step size α as

xðk11Þ 5 xðkÞ 1αdðkÞ ð12:37Þ
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Substituting this updated design into Eq. (12.30), the descent function becomes a function
of the step size α as

ΦðαÞ5ΦðxðkÞ 1αdðkÞÞ ð12:38Þ
Thus the step size calculation subproblem becomes finding α to

Minimize

ΦðαÞ5ΦðxðkÞ 1αdðkÞÞ ð12:39Þ
Before the constrained steepest-descent algorithm can be stated, a step size determina-

tion procedure is needed. The step size determination problem is to calculate an αk for use
in Eq. (12.4) that minimizes the descent function Φ of Eq. (12.30). In most practical imple-
mentations of the algorithm, an inexact line search that has worked fairly well is used to
determine the step size. We will describe that procedure and illustrate its use with exam-
ples in Chapter 13.

In this section we assume that a step size along the search direction can be calculated
using the golden section method described in Chapter 10. However, it is realized that the
method can be inefficient; therefore, inexact line search should be preferred in most con-
strained optimization methods.

In performing line search for the minimum value of the descent function Φ, we need a
notation to represent the trial design points and values of the descent, cost, and constraint
functions. The following notation will be used at iteration k:

αj 5 jth trial step size
xi
(k,j)5 ith design variable value at the jth trial step size

fk,j 5 cost function value at the jth trial point
Φk,j 5descent function value at the jth trial point
Vk,j 5 absolute maximum constraint function value at the jth trial point
Rk 5penalty parameter value that is kept fixed during line search as long as the

necessary condition of Eq. (12.33) is satisfied.

Thus the descent function of Eq. (12.30) is evaluated at the trial step size αj using the fol-
lowing equation:

Φk;j 5 fk;j 1RkVk;j ð12:40Þ
Example 12.9 illustrates the calculations for the descent function during golden section

search.

EXAMPLE 12.9 CALCULATION OF THE DESCENT FUNCTION
FOR GOLDEN SECTION SEARCH

For the design problem in Example 12.8, the QP subproblem has been defined and solved at

the starting point x(0)5 (40, 0.5). The search direction is determined as d(0)5 (25.60, 0.45) and the

Lagrange multipliers for the constraints are determined as u5 (16,300, 19,400, 0, 0). Let the initial

value of the penalty parameter be given as R05 1. Calculate the descent function value at the
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two points during initial bracketing of the step size in the golden section search using δ5 0.1.

Compare the descent function values.

Solution
Since we are evaluating the step size at the initial design point, k5 0 and j will be taken as 0,

1, and 2 in Eq. (12.40).

Descent function value at the initial point, α50 Using the calculations given in Example

12.8 at the initial design point, we get

f0;0 5 8000; V0;0 5 0:5611 ðaÞ
To check the necessary condition of Eq. (12.33) for the penalty parameter, we need to evaluate r0
using Eq. (12.34) as follows:

r0 5
Xm
i51

uð0Þi 5 16;3001 19;4001 01 05 35;700 ðbÞ

The necessary condition of Eq. (12.33) is satisfied if we select the penalty parameter R as

R5maxðR0; r0Þ5maxð1; 35;700Þ5 35;700 ðcÞ
Thus, the descent function value at the starting point is given as

Φ0;0 5 f0;0 1RV0;0 5 80001 ð35;700Þð0:5611Þ5 28;031 ðdÞ
Descent function value at the first trial point Now let us calculate the descent function at

the first trial step size δ5 0.1 (i.e., α05 0.1). Updating the current design point in the search

direction, we get

xð0;1Þ 5
40
0:5

	 

1 ð0:1Þ 25:6

0:45

	 

5

42:56
0:545

	 

ðeÞ

Various functions for the problem given in Eqs. (a) through (d) are calculated at x(0,1) as

f0;1ð42:56;0:545Þ5 ð42:56Þ2 1 320ð42:56Þð0:545Þ5 9233:8 ðfÞ

g1ð42:56;0:545Þ5
1

100
ð42:562 603 0:545Þ5 0:0986. 0 ðviolationÞ ðgÞ

g2ð42:56;0:545Þ5 12
42:56ð42:562 0:545Þ

3600
5 0:5033. 0 ðviolationÞ ðhÞ

g3ð42:56;0:545Þ5242:56, 0 ðinactiveÞ ðiÞ
g4ð42:56;0:545Þ520:545, 0 ðinactiveÞ ðjÞ

Thus, the maximum constraint violation is determined using Eq. (12.36) as

V0;1 5maxf0; 0:0986; 0:5033;242:56; 20:545g5 0:5033 ðkÞ
Now the descent function at the trial step size of α05 0.1 is given (note that the value of the

penalty parameter R is not changed during step size calculation):

Φ0;1 5 f0;1 1RV0;1 5 9233:81 ð35;700Þð0:5033Þ5 27;202 ðlÞ
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Since Φ0,1,Φ0,0 (27,202, 28,031), we need to continue the process of initial bracketing of the

optimum step size.

Descent function value at the second trial point In the golden section search procedure,

the next trial step size has an increment of (1.6183 the previous increment) and is given as

(Section 10.5.4)
α1 5 δ1 1:618δ5 2:618δ5 2:618ð0:1Þ5 0:2618 ðmÞ

The next trial design point using Eq. (12.2) is obtained as

xð0;2Þ 5
40
0:5

	 

1 ð0:2618Þ 25:6

0:45

	 

5

46:70
0:618

	 

ðnÞ

Following the foregoing procedure, various quantities and the descent function are calculated at

the point (46.70, 0.618) as

f0;2 5 11; 416:3; g1 5 0:0962; g2 5 0:4022; g3 5246:70; g4 520:618 ðoÞ
V0;2 5maxf0; 0:0962; 0:4022; 246:70; 20:618g5 0:4022 ðpÞ
Φ0;2 5 f0;2 1RV0;2 5 11; 416:31 ð35;700Þð0:4022Þ5 25; 775 ðqÞ

Since Φ0,2,Φ0,1(25,775, 27,202), the minimum for the descent function has not been sur-

passed yet. Therefore we need to continue the initial bracketing process. The next trial step size

with an increment of (1.6183 the previous increment) is given as

α2 5 2:618δ1 1:6108ð1:618δÞ5 0:5236 ðrÞ
Following the foregoing procedure, Φ0,3 can be calculated and compared with Φ0,2.

Note that the value of the penalty parameter R is calculated at the beginning of the
line search along the search direction and then kept fixed during all subsequent
calculations for step size determination.

12.7 THE CONSTRAINED STEEPEST-DESCENT METHOD

In this section, we summarize a general method, called the constrained steepest-descent
(CSD) method, that can treat equality as well as inequality constraints in its computational
steps. It also requires inclusion of only a few of the critical constraints in the calculation of
the search direction at each iteration; that is, the QP subproblem of Eqs. (12.27) and (12.28)
may be defined using only the active and violated constraints. This can lead to efficient
calculations for larger-scale engineering design problems, as explained in Chapter 13.

The CSD method has been proved to be convergent to a local minimum point
starting from any point. This is considered a model algorithm that illustrates how
most optimization algorithms work.

The method can be extended for more efficient calculations by including second-order
information about the problem, as explained in Chapter 13. Here, a step-by-step procedure
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is given to show the kind of calculations needed to implement the method for numerical cal-
culations. It is important to understand these steps and calculations to effectively use opti-
mization software and to diagnose errors when something goes wrong with an application.

Note that when there are no constraints, or no active ones, minimization of the qua-
dratic function of Eq. (12.27) using the necessary condition @f=@d5 0 gives

d52c ð12:41Þ
This is just the steepest-descent direction of Section 10.6 for unconstrained problems.
When there are constraints, their effect must be included in calculating the search direc-
tion. The search direction must satisfy all of the linearized constraints. Since the search
direction is a modification of the steepest-descent direction to satisfy constraints, it is
called the constrained steepest-descent direction. It is actually a direction obtained by project-
ing the steepest-descent direction on to the constraint hyperplane.

It is important to note that the CSD method presented in this section is the most intro-
ductory and simple interpretation of more powerful sequential quadratic programming (SQP)
methods. Not all features of the algorithms are discussed here in order to keep the presen-
tation of the key ideas simple. It is noted, however, that the methods work equally well
when initiated from feasible or infeasible points.

12.7.1 The CSD Algorithm

We are now ready to state the constrained steepest-descent algorithm in a step-by-step
form. It has been proved that the solution point of the sequence x(k) generated by the algo-
rithm is a KKT point for the general constrained optimization problem (Pshenichny and
Danilin, 1982). The stopping criterion for the algorithm is that jjdjj# ε for a feasible point.
Here ε is a small positive number and d is the search direction that is obtained as a solu-
tion to the QP subproblem. The CSD method is now summarized in the form of a computa-
tional algorithm.

Step 1. Set k5 0. Estimate initial values for the design variables as x(0). Select an initial
value for the penalty parameter R0, and two small numbers ε1. 0 and ε2. 0 that define
the permissible constraint violation and convergence parameter values, respectively.
R05 1 is a reasonable selection.
Step 2. At x(k), compute the cost and constraint functions and their gradients. Calculate
the maximum constraint violation Vk, as defined in Eq. (12.36).
Step 3. Using the cost and constraint function values and their gradients, define the QP
subproblem given in Eqs. (12.27) and (12.28). Solve the QP subproblem to obtain the
search direction d(k) and the Lagrange multipliers vectors v(k) and u(k).
Step 4. Check for the stopping criteria jjd(k)jj# ε2 and the maximum constraint violation
Vk# ε1. If these criteria are satisfied then stop. Otherwise, continue.
Step 5. To check the necessary condition of Eq. (12.33) for the penalty parameter
R, calculate the sum rk of the Lagrange multipliers defined in Eq. (12.34). Set
R5max {Rk, rk}. This will always satisfy the necessary condition of Eq. (12.33).
Step 6. Set x(k11)5 x(k)1αkd

(k), where α5αk is a proper step size. As for the
unconstrained problems, the step size can be obtained by minimizing the descent
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function of Eq. (12.30) along the search direction d(k). Any of the procedures, such as
golden section search, can be used to determine a step size.
Step 7. Save the current penalty parameter as Rk115R. Update the iteration counter as
k5 k1 1, and go to Step 2.

The CSD algorithm, along with the foregoing step size determination procedure, is con-
vergent, provided that second derivatives of all of the functions are piece-wise continuous
(this is the so-called Lipschitz condition) that and the set of design points x(k) are bounded
as follows:

ΦðxðkÞÞ#Φðxð0ÞÞ; k5 1; 2; 3; . . . ð12:42Þ

12.7.2 The CSD Algorithm: Some Observations

These observations can be made about the constrained steepest-descent algorithm:

1. The CSD algorithm is a first-order method that can treat equality and inequality
constraints. The algorithm converges to a local minimum point starting from an
arbitrary point, feasible or infeasible.

2. The potential constraint strategy discussed in the next chapter is not introduced in the
algorithm for the sake of simplicity of presentation. This strategy is useful for
engineering applications and can be easily incorporated into the algorithm (Belegundu
and Arora, 1984).

3. Golden section search can be inefficient and is generally not recommended for
engineering applications. Inexact line search, described in Chapter 13, works quite well
and is recommended.

4. The rate of convergence of the CSD algorithm can be improved by including second-
order information in the QP subproblem. This is discussed in Chapter 13.

5. The starting point can affect performance of the algorithm. For example, at some points
the QP subproblem may not have any solution. This need not mean that the original
problem is infeasible. The original problem may be highly nonlinear, and the linearized
constraints may be inconsistent, giving an infeasible QP subproblem. This situation can
be handled by either temporarily deleting the inconsistent linearized constraints or
starting from another point. For more discussion on the implementation of the
algorithm, Tseng and Arora (1988) may be consulted.

EXERCISES FOR CHAPTER 12

Section 12.1 Basic Concepts Related to Numerical Methods
12.1 Answer True or False.

1. The basic numerical iterative philosophy for solving constrained and unconstrained

problems is the same.

2. Step size determination is a one-dimensional problem for unconstrained problems.

3. Step size determination is a multidimensional problem for constrained problems.

4. An inequality constraint gi(x)# 0 is violated at x(k) if gi(x
(k)). 0.
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5. An inequality constraint gi(x)# 0 is active at x(k) if gi(x
(k)). 0.

6. An equality constraint hi(x)5 0 is violated at x(k) if hi(x
(k)), 0.

7. An equality constraint is always active at the optimum.

8. In constrained optimization problems, search direction is found using the cost gradient

only.

9. In constrained optimization problems, search direction is found using the constraint

gradients only.

10. In constrained problems, the descent function is used to calculate the search direction.

11. In constrained problems, the descent function is used to calculate a feasible point.

12. Cost function can be used as a descent function in unconstrained problems.

13. One-dimensional search on a descent function is needed for convergence of algorithms.

14. A robust algorithm guarantees convergence.

15. A feasible set must be closed and bounded to guarantee convergence of algorithms.

16. A constraint x11 x2# 22 can be normalized as (x11 x2)/(22)# 1.0.

17. A constraint x211 x22# 9 is active at x15 3 and x25 3.

Section 12.2 Linearization of the Constrained Problem
12.2 Answer True or False.

1. Linearization of cost and constraint functions is a basic step for solving nonlinear

optimization problems.

2. General constrained problems cannot be solved by solving a sequence of linear

programming subproblems.

3. In general, the linearized subproblem without move limits may be unbounded.

4. The sequential linear programming method for general constrained problems is

guaranteed to converge.

5. Move limits are essential in the sequential linear programming procedure.

6. Equality constraints can be treated in the sequential linear programming algorithm.

Formulate the following design problems, transcribe them into the standard form, create a linear

approximation at the given point, and plot the linearized subproblem and the original problem on the same

graph.

12.3 Beam design problem formulated in Section 3.8 at the point (b, d)5 (250, 300) mm.

12.4 Tubular column design problem formulated in Section 2.7 at the point (R, t)5 (12, 4) cm.

Let P5 50 kN, E5 210 GPa, l5 500 cm, σa5 250 MPa, and ρ5 7850 kg/m3.

12.5 Wall bracket problem formulated in Section 4.9.1 at the point (A1, A2)5 (150, 150) cm2.

12.6 Exercise 2.1 at the point h5 12 m, A5 4000 m2.

12.7 Exercise 2.3 at the point (R, H)5 (6, 15) cm.

12.8 Exercise 2.4 at the point R5 2 cm, N5 100.

12.9 Exercise 2.5 at the point (W, D)5 (100, 100) m.

12.10 Exercise 2.9 at the point (r, h)5 (6, 16) cm.

12.11 Exercise 2.10 at the point (b, h)5 (5, 10) m.

12.12 Exercise 2.11 at the point, width5 5 m, depth5 5 m, and height5 5 m.

12.13 Exercise 2.12 at the point D5 4 m and H5 8 m.

12.14 Exercise 2.13 at the point w5 10 m, d5 10 m, h5 4 m.
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12.15 Exercise 2.14 at the point P15 2 and P25 1.

Section 12.3 The Sequential Linear Programming Algorithm
Complete one iteration of the sequential linear programming algorithm for the following problems (try

50 percent move limits and adjust them if necessary).

12.16 Beam design problem formulated in Section 3.8 at the point (b, d)5 (250, 300) mm.

12.17 Tubular column design problem formulated in Section 2.7 at the point (R, t)5 (12, 4) cm.

Let P5 50 kN, E5 210 GPa, l5 500 cm, σa5 250 MPa, and σ5 7850 kg/m3.

12.18 Wall bracket problem formulated in Section 4.9.1 at the point (A1, A2)5 (150, 150) cm2.

12.19 Exercise 2.1 at the point h5 12 m, A5 4000 m2.

12.20 Exercise 2.3 at the point (R, H)5 (6, 15) cm.

12.21 Exercise 2.4 at the point R5 2 cm, N5 100.

12.22 Exercise 2.5 at the point (W, D)5 (100, 100) m.

12.23 Exercise 2.9 at the point (r, h)5 (6, 16) cm.

12.24 Exercise 2.10 at the point (b, h)5 (5, 10) m.

12.25 Exercise 2.11 at the point, width5 5 m, depth5 5 m, and height5 5 m.

12.26 Exercise 2.12 at the point D5 4 m and H5 8 m.

12.27 Exercise 2.13 at the point w5 10 m, d5 10 m, h5 4 m.

12.28 Exercise 2.14 at the point P15 2 and P25 1.

Section 12.5 Search Direction Calculation: The QP Subproblem
Solve the following QP problems using KKT optimality conditions.

12.29 Minimize f(x)5 (x12 3)21 (x22 3)2

subject to x11 x2# 5

x1, x2$ 0

12.30 Minimize f(x)5 (x12 1)21 (x22 1)2

subject to x11 2x2# 6

x1, x2$ 0

12.31 Minimize f(x)5 (x12 1)21 (x22 1)2

subject to x11 2x2# 2

x1, x2$ 0

12.32 Minimize f(x)5 x211 x222 x1x22 3x1
subject to x11 x2# 3

x1, x2$ 0

12.33 Minimize f(x)5 (x12 1)21 (x22 1)222x21 2

subject to x11 x2# 4

x1, x2$ 0

12.34 Minimize f(x)5 4x211 3x222 5x1x22 8x1
subject to x11 x25 4

x1, x2$ 0

12.35 Minimize f(x)5 x211 x222 2x12 2x2
subject to x11 x22 45 0

x12 x22 25 0

x1, x2$ 0
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12.36 Minimize f(x)5 4x211 3x222 5x1x22 8x1
subject to x11 x2# 4

x1, x2$ 0

12.37 Minimize f(x)5 x211 x222 4x12 2x2
subject to x11 x2$ 4

x1, x2$ 0

12.38 Minimize f(x)5 2x211 6x1x21 9x222 18x11 9x2
subject to x12 2x2# 10

4x12 3x2# 20

x1, x2$ 0

12.39 Minimize f(x)5 x211 x222 2x12 2x2
subject to x11 x22 4# 0

22 x1# 0

x1, x2$ 0

12.40 Minimize f(x)5 2x211 2x221 x231 2x1x22 x1x32 0.8x2x3
subject to 1.3x11 1.2x21 1.1x3$ 1.15

x11 x21 x35 1

x1# 0.7

x2# 0.7

x3# 0.7

x1, x2, x3$ 0

For the following problems, obtain the quadratic programming subproblem, plot it on a graph, obtain

the search direction for the subproblem, and show the search direction on the graphical representation of

the original problem.

12.41 Beam design problem formulated in Section 3.8 at the point (b, d)5 (250, 300) mm.

12.42 Tubular column design problem formulated in Section 2.7 at the point (R, t)5 (12, 4) cm.

Let P5 50 kN, E5 210 GPa, l5 500 cm, σa5 250 MPa, and ρ5 7850 kg/m3.

12.43 Wall bracket problem formulated in Section 4.9.1 at the point (A1, A2)5 (150, 150) cm2.

12.44 Exercise 2.1 at the point h5 12 m, A5 4000 m2.

12.45 Exercise 2.3 at the point (R, H)5 (6, 15) cm.

12.46 Exercise 2.4 at the point R5 2 cm, N5 100.

12.47 Exercise 2.5 at the point (W, D)5 (100, 100) m.

12.48 Exercise 2.9 at the point (r, h)5 (6, 16) cm.

12.49 Exercise 2.10 at the point (b, h)5 (5, 10) m.

12.50 Exercise 2.11 at the point, width5 5 m, depth5 5 m, and height5 5 m.

12.51 Exercise 2.12 at the point D5 4 m and H5 8 m.

12.52 Exercise 2.13 at the point w5 10 m, d5 10 m, h5 4 m.

12.53 Exercise 2.14 at the point P15 2 and P25 1.

Section 12.7 The Constrained Steepest-descent Method
12.54 Answer True or False.

1. The constrained steepest-descent (CSD) method, when there are active constraints, is

based on using the cost function gradient as the search direction.

2. The constrained steepest-descent method solves two subproblems: the search direction

and step size determination.
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3. The cost function is used as the descent function in the CSD method.

4. The QP subproblem in the CSD method is strictly convex.

5. The search direction, if one exists, is unique for the QP subproblem in the CSD method.

6. Constraint violations play no role in step size determination in the CSD method.

7. Lagrange multipliers of the subproblem play a role in step size determination in the

CSD method.

8. Constraints must be evaluated during line search in the CSD method.

For the following problems, calculate the descent function values Φ0, Φ1, and Φ2 at the trial step sizes

α5 0, δ and 2.618δ (let R05 1, and δ5 0.1).

12.55 Beam design problem formulated in Section 3.8 at the point (b, d)5 (250, 300) mm.

12.56 Tubular column design problem formulated in Section 2.7 at the point (R, t)5 (12, 4) cm.

Let P5 50 kN, E5 210 GPa, l5 500 cm, σa5 250 MPa, and ρ5 7850 kg/m3.

12.57 Wall bracket problem formulated in Section 4.9.1 at the point (A1, A2)5 (150, 150) cm2.

12.58 Exercise 2.1 at the point h5 12 m, A5 4000 m2.

12.59 Exercise 2.3 at the point (R, H)5 (6, 15) cm.

12.60 Exercise 2.4 at the point R5 2 cm, N5 100.

12.61 Exercise 2.5 at the point (W, D)5 (100, 100) m.

12.62 Exercise 2.9 at the point (r, h)5 (6, 16) cm.

12.63 Exercise 2.10 at the point (b, h)5 (5, 10) m.

12.64 Exercise 2.11 at the point, width5 5 m, depth5 5 m, and height5 5 m.

12.65 Exercise 2.12 at the point D5 4 m and H5 8 m.

12.66 Exercise 2.13 at the point w5 10 m, d5 10 m, h5 4 m.

12.67 Exercise 2.14 at the point P15 2 and P25 1.

531EXERCISES FOR CHAPTER 12

II. NUMERICAL METHODS FOR CONTINUOUS VARIABLE OPTIMIZATION



C H A P T E R

13

More on Numerical Methods
for Constrained Optimum Design

Upon comp le t i on o f th i s chap te r, you wi l l be ab l e to

• Use potential constraint strategy in

numerical optimization algorithms for

constrained problems

• Use inexact step size calculation for

constrained optimization methods

• Explain the bound-constrained

optimization algorithm

• Use quasi-Newton methods to solve

constrained nonlinear optimization problems

• Explain the basic concepts associated with

quadratic programming

• Explain the basic ideas behind the feasible

directions, gradient projection, and

generalized reduced gradient methods

In Chapter 12, basic concepts and steps related to constrained optimization methods
were presented and illustrated. In this chapter, we build upon those basic ideas and
describe some concepts and methods that are more appropriate for practical applications.
Topics such as inexact line search, constrained quasi-Newton methods, and potential
constraint strategy to define the quadratic programming subproblem are discussed and
illustrated. The bound-constrained optimization problem is defined and an algorithm to
solve the problem is presented. Methods to solve the quadratic programming problem
for determining the search direction are discussed. These topics usually are not covered
in an undergraduate course on optimum design or on a first independent reading of the
text.

For convenience of reference, the general constrained optimization problem treated in
the previous chapter is restated as: find x5 (x1, . . ., xn), a design variable vector of dimen-
sion n, to

minimize
xAS

fðxÞ; S5 xjhiðxÞ5 0; i5 1 to p; giðxÞ # 0; i5 1 to m
� � ð13:1Þ
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13.1 POTENTIAL CONSTRAINT STRATEGY

It is important to note that for most problems, only a subset of the inequality constraints
is active at the minimum point. However, this subset of active constraints is not known a
priori and must be determined as part of the solution to the problem. Here we introduce
the concept of constraints that could be potentially active at the minimum point. The con-
cept can be incorporated into the numerical algorithms for constrained optimization to
effect efficiency of calculations, especially for large-scale problems.

To evaluate the search direction in numerical methods for constrained optimization, we
need to know the cost and constraint functions and their gradients. The numerical algo-
rithms for constrained optimization can be classified based on whether the gradients of all
of the constraints or only a subset of them are required to define the search direction
determination subproblem. The numerical algorithms that use gradients of only a subset
of the constraints in the definition of this subproblem are said to use potential constraint
strategy. To implement this strategy, a potential constraint index set needs to be defined,
which is composed of active, ε-active, and violated constraints at the current design x(k).
At the kth iteration, we define this potential constraint index set Ik as follows:

Ik 5 j j5 1 to p for equalities
�� �

and i giðxðkÞÞ1 ε $ 0; i5 1 to m
�� �� ��� ð13:2Þ

where ε.0 is a small number. Note that the set Ik contains a list of constraints that satisfy
the criteria given in Eq. (13.2); all of the equality constraints are always included in Ik by defini-
tion. The inequalities that do not meet the criterion given in Eq. (13.2) are ignored at the
current iteration in defining the subproblem for calculation of the search direction.

The main effect of using the potential constraint strategy in an algorithm is on the effi-
ciency of the entire iterative process. This is particularly true for large and complex applica-
tions where the evaluation of gradients of constraints is expensive. With the potential set
strategy, gradients of only the constraints in the set Ik are calculated and used in defining
the search direction determination subproblem. The original problem may have hundreds
of constraints, but only a few of them may be in the potential set. Thus, with this strategy,
not only is the number of gradient evaluations reduced; the dimension of the subproblem
for the search direction is substantially reduced as well. This can result in additional savings
in computational effort. Therefore, the potential set strategy is beneficial and should be used in
practical applications of optimization. Before using software to solve a problem, the designer
should inquire whether the program uses the potential constraint strategy.

Example 13.1 illustrates determination of a potential constraint set for an optimization
problem.

EXAMPLE 13.1 DETERMINATION OF A POTENTIAL
CONSTRAINT SET

Consider the following six constraints:

2x21 1 x2 # 36 ðaÞ
x1 $ 60x2 ðbÞ
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x2 # 10 ðcÞ
x2 1 2 $ 0 ðdÞ

x1 # 10; x1 $ 0 ðeÞ
Let x(k)5 (24.5,24.5) and ε5 0.1. Form the potential constraint index set Ik of Eq. (13.2).

Solution
After normalization and conversion to the standard form, the constraints are given as shown

in the following equations:

g1 5
1

18
x21 1

1

36
x2 21 # 0; g2 5

1

100
ð2x1 1 60x2Þ # 0 ðfÞ

g3 5
1

10
x2 21 # 0; g4 52

1

2
x2 21 # 0 ðgÞ

g5 5
1

10
x1 21 # 0; g6 52x1 # 0 ðhÞ

Since the second constraint does not have a constant in its expression, it is divided by 100 to get

a percent value of it. Evaluating the constraints at the given point (24.5,24.5), and checking for

ε-active constraints, we obtain

g1 1 ε5
1

18
ð24:5Þ2 1 1

36
ð24:5Þ21:01 0:15 0:10. 0 ðε�activeÞ ðiÞ

g2 1 ε5
1

100
2ð24:5Þ1 60ð24:5Þ½ �1 0:10522:555, 0 ðinactiveÞ ðjÞ

g3 1 ε5
24:5

10
21:01 0:10521:35, 0 ðinactiveÞ ðkÞ

g4 1 ε52
1

2
ð24:5Þ21:01 0:105 1:35.0 ðviolatedÞ ðlÞ

g5 1 ε5
1

10
ð24:5Þ21:01 0:10521:35, 0 ðinactiveÞ ðmÞ

g6 1 ε52ð24:5Þ1 0:105 4:6. 0 ðviolatedÞ ðnÞ
Therefore, we see that g1 is active (also ε-active); g4 and g6 are violated; and g2, g3, and g5 are

inactive. The potential constraint index set is thus given as

Ik 5 1; 4; 6f g ðoÞ

Note that the elements of the index set depend on the value of ε used in Eq. (13.2).
Also, the search direction with different index sets can be different, giving a different path
to the optimum point.

It is important to note that a numerical algorithm using the potential constraint strategy
must be proved to be convergent. The potential set strategy has been incorporated into the
CSD algorithm of Chapter 12, which has been proved to be convergent to a local minimum
point starting from any point (Pshenichny and Danilin, 1982).
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Example 13.2 calculates the search directions with and without the potential set strategy
and shows that they are different.

EXAMPLE 13.2 SEARCH DIRECTION WITH AND WITHOUT
POTENTIAL CONSTRAINT STRATEGY

Consider the design optimization problem:

Minimize
fðxÞ5 x21 23x1x2 1 4:5x22 210x1 26x2 ðaÞ

subject to
x1 2 x2 # 3 ðbÞ
x1 1 2x2 # 12 ðcÞ
x1; x2 $ 0 ðdÞ

At the point (4, 4), calculate the search directions with and without the potential set strategy.

Use ε5 0.1.

Solution
Writing constraints in the standard normalized form, we get

g1 5
1

3
ðx1 2 x2Þ21 # 0 ðeÞ

g2 5
1

12
ðx1 1 2x2Þ21 # 0 ðfÞ

g3 52x1 # 0; g4 52x2 # 0 ðgÞ
At the point (4, 4), functions and their gradients are calculated as

fð4;4Þ5224; c5rf 5 ð2x1 2 3x2 2 10;23x1 1 9x2 2 6Þ5 ð214; 18Þ ðhÞ

g1ð4;4Þ521, 0 ðinactiveÞ; að1Þ 5rg1 5
1

3
; 2

1

3

� �
ðiÞ

g2ð4;4Þ5 0 ðactiveÞ; að2Þ 5rg2 5
1

12
;
1

6

� �
ðjÞ

g3ð4;4Þ524, 0 ðinactiveÞ; að3Þ 5rg3 5 ð21; 0Þ ðkÞ
g4ð4;4Þ524, 0 ðinactiveÞ; að4Þ 5rg4 5 ð0; 21Þ ðlÞ

Note that checking for ε-active constraints (gi1 ε$ 0) gives g2 as ε-active and all others as inac-

tive constraints.

When the potential constraint strategy is not used, the QP subproblem of Eqs. (12.27) through

(12.29) is defined as

Minimize

f 5214d1 1 18d2 1
1

2
ðd21 1 d22Þ ðmÞ
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subject to
1

3
2
1

3

1

12

1

6

21 0
0 21

2
66666664

3
77777775

d1
d2

	 

#

1
0
4
4

2
664

3
775 ðnÞ

The problem’s solution, using the Karush-Kuhn-Tucker (KKT) necessary conditions of Theorem

4.6, is given as

d5 ð20:5;23:5Þ; u5 ð43:5; 0; 0; 0Þ ðoÞ
If we use the potential constraint strategy, the index set Ik is defined as Ik5 {2}; that is only

the second constraint needs to be considered in defining the QP subproblem. With this strategy,

the QP subproblem is defined as

Minimize

f5214d1 1 18d2 1
1

2
ðd21 1 d22Þ ðpÞ

subject to
1

12
d1 1

1

6
d2 # 0 ðqÞ

The solution to this problem using the KKT necessary conditions is given as

d5 ð14;218Þ; u5 0 ðrÞ
Thus it is seen that the search directions determined by the two subproblems are quite differ-

ent. The path to the optimum solution and the computational effort will also be different.

13.2 INEXACT STEP SIZE CALCULATION

13.2.1 Basic Concept

In Chapter 12, the constrained steepest-descent (CSD) algorithm was presented. There it
was proposed to calculate the step size using golden section search. Although that method
is quite good among the interval-reducing methods, it is inefficient for many complex
engineering applications. The method can require too many function evaluations, which
for many engineering problems require solving a complex analysis problem. Therefore, in
most practical implementations of algorithms, an inexact line search that has worked fairly
well is used to determine an approximate step size. We will describe the procedure and
illustrate its use in an example.

The philosophy of inexact line search that we will present is quite similar to Armijo’s
procedure, which was presented for unconstrained problems in Chapter 11; other proce-
dures and checks can also be incorporated. The cost function was used to determine the
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approximate step size in Chapter 11; here the descent function Φk defined in Eq. (12.31)
will be used:

Φk 5 fk 1RVk ð13:3Þ
where fk is the cost function value, R. 0 is the penalty parameter, and Vk $ 0 is the maxi-
mum constraint violation as defined in Eq. (12.36) as follows:

Vk 5maxf0; h1j j; h2j j; . . . ; hp
�� ��; g1; g2; . . . ; gmg ð13:4Þ

The basic idea of the approach is to try different step sizes until the condition of suffi-
cient reduction in the descent function is satisfied. Note that all constraints are included in
the calculation of Vk in Eq. (13.4).

To determine an acceptable step size, define a sequence of trial step sizes tj:

tj 5 ðμÞ j; j5 0; 1; 2; 3; 4; . . . ð13:5Þ
Typically μ5 0.5 has been used. In this case, an acceptable step size is one of the numbers
in the sequence 1, 12 ,

1
4 ,

1
8 ,

1
16 , . . .

� �
of trial step sizes. Basically, we start with the trial step

size as t05 1. If a certain descent condition (defined in the following paragraph) is not sat-
isfied, the trial step is taken as half of the previous trial (i.e., t15

1
2). If the descent condition

is still not satisfied, the trial step size is bisected again. The procedure is continued until
the descent condition is satisfied. μ5 0.6 has also been used; however, in the following
examples we will use μ5 0.5.

13.2.2 Descent Condition

In the following development, we will use a second subscript or superscript to indicate the
values of certain quantities at the trial step sizes. For example, let tj be the trial step size at the
kth optimization iteration. Then the trial design point for which the descent condition is
checked is calculated as

xðk11;jÞ 5 xðkÞ 1 tjd
ðkÞ ð13:6Þ

where d(k) is the search direction at the current design point x(k) that is calculated by solv-
ing a quadratic programming (QP) subproblem as defined in Chapter 12. At the kth itera-
tion, we determine an acceptable step size as αk5 tj, with j as the smallest integer (or the
largest number in the sequence 1, 12 ,

1
4 , . . .) to satisfy the descent condition

Φk11;j # Φk 2 tjβk ð13:7Þ
where Φk11,j is the descent function of Eq. (13.3) evaluated at the trial step size tj and the
corresponding design point x(k11,j):

Φk11;j 5Φðxðk11;jÞÞ5 fk11;j 1RVk11;j ð13:8Þ
with fk11,j5 f(x(k11,j)) and Vk11,j$ 0 as the maximum constraint violation at the trial design
point calculated using Eq. (13.4). Note that in evaluating Φk11,j and Φk in Eq. (13.7),
the most recent value of the penalty parameter R is used. The constant βk in Eq. (13.7) is
determined using the search direction d(k):

βk 5 γ:dðkÞ:2 ð13:9Þ
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where γ is a specified constant between 0 and 1. We will later study the effect of γ on the
step size determination process.

Note that in the kth iteration, βk defined in Eq. (13.9) is a constant. As a matter of fact
tj is the only variable on the right side of Inequality (13.7). However, when tj is changed,
the design point is changed, affecting the cost and constraint function values. This way the
descent function value on the left side of Inequality (13.7) is changed.

Inequality (13.7) is called the descent condition. It is an important condition that must be
satisfied at each iteration to obtain a convergent algorithm. Basically, the condition of
Eq. (13.7) requires that the descent function must be reduced by a certain amount at each
iteration of the optimization algorithm.

To understand the meaning of the descent condition (13.7), consider Figure 13.1, where
various quantities are plotted as functions of t. For example, the horizontal line A�B
represents the constant Φk, which is the value of the descent function at the current design
point x(k); line A�C represents the function (Φk2 tβk), the right side of Inequality (13.7);
and the curve AHGD represents the descent function Φ plotted as a function of the step
size parameter t and originating from point A. The line A�C and the curve AHGD inter-
sect at point J which corresponds to the point t5 t on the t-axis. For the descent condition
of Inequality (13.7) to be satisfied, the curve AHGD must be below the line A�C. This
gives only the portion AHJ of the curve AHGD.

Thus we see from the figure that a step size larger than t does not satisfy the descent con-
dition of Inequality (13.7). To verify this, consider points D and E on the line t05 1. Point D
represents Φk11,05Φ(x(k11,0)) and point E represents (Φk2 t0βk). Thus point D represents the
left side (LS) and point E represents the right side (RS) of Inequality (13.7). Since point D is
higher than point E, Inequality (13.7) is violated. Similarly, points G and F on the line t15 1/2

violate the descent condition. Points I and H on the line t25 1/4 satisfy the descent condition,
so the step size αk at the kth iteration is taken as 1/4 for the example of Figure 13.1.

It is important to understand the effect of γ on step size determination. γ is selected as
a positive number between 0 and 1. Let us select γ1. 0 and γ2. 0 with γ2. γ1. A larger γ
gives a larger value for the constant βk in Eq. (13.9). Since βk is the slope of the line tβk, we

Φ

Φ(t) = Φ(x(k) + td(k))

Φk
A

I

B

C

D

G

E

t0βk

0
t  

H J F

t2 = 1 / 4 t1 = 1 / 2 t0 = 1t
–

FIGURE 13.1 Geometrical interpretation of the
descent condition for determining of step size in the
constrained steepest-descent algorithm.
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designate line A�C as γ5 γ1 and A�C0 as γ5 γ2 in Figure 13.2. We observe from the fig-
ure, then, that a larger γ tends to reduce the acceptable range for the step size in order to
satisfy the descent condition of Inequality (13.7). Note that with a larger γ the true mini-
mum of the descent function Φ may be outside the acceptable range for the step size.

For the purpose of checking the descent condition in actual calculations, it may be more
convenient to write the inequality of Eq. (13.7) as

Φk11;j 1 tjβk # Φk; j5 0; 1; 2 . . . ð13:10Þ

We illustrate the procedure for calculating step size in Example 13.3.

EXAMPLE 13.3 CALCULATIONS FOR STEP SIZE
IN THE CONSTRAINED STEEPEST-DESCENT
METHOD

An engineering design problem is formulated as

Minimize
fðxÞ5 x21 1 320x1x2 ðaÞ

subject to

g1ðxÞ5
1

100
ðx1 260x2Þ # 0 ðbÞ

g2ðxÞ5 12
x1ðx1 2 x2Þ

3600
# 0 ðcÞ

g3ðxÞ52x1 # 0; g4ðxÞ52x2 # 0 ðdÞ

At a design point x(0)5 (40,0.5), the search direction is calculated as d(0)5 (25.6,0.45). The

Lagrange multiplier vector for the constraint is calculated as u5 [16,300 19,400 0 0]T. Choose

γ5 0.5 and calculate the step size for design change using the inexact line search procedure.

Φ

γ = γ2

γ = γ1

Φ(t) = Φ (x(k) + td(k))

Φk

A
B

C

C′

D

G

0 t2 = 1 / 4 t1 = 1 / 2 t0 = 1
t 

t
–

FIGURE 13.2 The effect of parameter γ on step-size
determination.
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Solution
Since the Lagrange multipliers for the constraints are given, the initial value of the penalty

parameter is calculated as

R5
X4
i51

ui 5 16;3001 19;4005 35;700 ðeÞ

It is important to note that same value of R is to be used on both sides of the descent condition

in Eq. (13.7) or Eq. (13.10). The constant β0 of Eq. (13.9) is calculated as

β0 5 0:5ð25:62 1 0:452Þ5 328 ðfÞ
Calculation of Φ0 The cost and constraint functions at the starting point x(0)5 (40, 0.5) are

calculated as

f0 5 fð40;0:5Þ5 402 1 320ð40Þð0:5Þ5 8000 ðgÞ

g1ð40;0:5Þ5
1

100
ð402603 0:5Þ5 0:10.0 ðviolationÞ ðhÞ

g2ð40;0:5Þ5 12
40ð4020:5Þ

3600
5 0:5611.0 ðviolationÞ ðiÞ

g3ð40;0:5Þ5240, 0 ðinactiveÞ; g4ð40; 0:5Þ520:5, 0 ðinactiveÞ ðjÞ

The maximum constraint violation using Eq. (12.36) is given as

V0 5max 0; 0:10; 0:5611;240;20:5f g5 0:5611 ðkÞ
Using Eq. (13.3), the current descent function is evaluated as

Φ0 5 f0 1RV0 5 80001 ð35; 700Þð0:5611Þ5 28;031 ðlÞ
Trial step size t051 Let j5 0 in Eq. (13.5), so the trial step size is t05 1. The trial design

point in the search direction is calculated from Eq. (13.6) as

xð1;0Þ1 5 xð0Þ1 1 t0d
ð0Þ
1 5 401 ð1:0Þð25:6Þ5 65:6

xð1;0Þ2 5 xð0Þ2 1 t0d
ð0Þ
2 5 0:51 ð1:0Þð0:45Þ5 0:95

ðmÞ

The cost and constraint functions at the trial design point are calculated as

f1;0 5 fð65:6; 0:95Þ5 ð65:6Þ2 1 320ð65:6Þð0:95Þ5 24;246

g1ð65:6; 0:95Þ5
1

100
ð65:62 603 0:95Þ5 0:086. 0 ðviolationÞ ðnÞ

g2ð65:6; 0:95Þ5 12
65:6ð65:62 0:95Þ

3600
520:1781, 0 ðinactiveÞ

g3ð65:6; 0:95Þ5265:6, 0 ðinactiveÞ
g4ð65:6; 0:95Þ520:95, 0 ðinactiveÞ

ðoÞ

The maximum constraint violation using Eq. (12.36) is given as

V1;0 5max 0; 0:086; 20:1781; 265:6; 20:95f g5 0:086 ðpÞ
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The descent function at the first trial point is calculated using Eq. (13.8) as

Φ1;0 5 f1;0 1RV1;0 5 24;2461 35;700ð0:086Þ5 27;316 ðqÞ
For the descent condition of Eq. (13.10), we get

Φ1;0 1 t0β0 5 27;3161 1ð328Þ5 27;644,Φ0 5 28;031 ðrÞ

Therefore, Inequality (13.10) is satisfied and the step size of t05 1 is acceptable. If Inequality

(13.10) had been violated, the step size of t15 0.5 would have been tried and the foregoing steps

would have been repeated.

13.2.3 CSD Algorithm with Inexact Step Size

Example 13.4 illustrates calculation of the approximate step size in the CSD algorithm.

EXAMPLE 13.4 USE OF THE CSD ALGORITHM

Consider the problem of Example 12.2:

Minimize
fðxÞ5 x21 1 x22 23x1x2 ðaÞ

subject to

g1ðxÞ5
1

6
x21 1

1

6
x22 21:0 # 0 ðbÞ

g2ðxÞ52x1 # 0; g3ðxÞ52x2 # 0 ðcÞ

Let x(0)5 (1,1) be the starting design. Use R05 10, γ5 0.5, and ε15 ε25 0.001 in the CSD method.

Perform only two iterations.

Solution
The functions of the problem are plotted in Figure 12.4. The optimum solution to the problem

is obtained as x5 ð
ffiffiffi
3

p
;

ffiffiffi
3

p
Þ;u5 ð3; 0; 0Þ; f 523:

Iteration 1 (k50) For the CSD method the following steps are implemented.

Step 1. The initial data are specified as x(0)5 (1,1); R05 10; γ5 0.5 (0, γ, 1); ε15 ε25 0.001.

Step 2. To define the QP subproblem for calculating the search direction, the cost and

constraint function values and their gradients must be evaluated at the initial design point x(0):

fð1;1Þ521; rfð1;1Þ5 ð21; 21Þ

g1ð1;1Þ52
2

3
, 0 ðinactiveÞ rg1ð1;1Þ5

�
1

3
;
1

3

�

g2ð1;1Þ521,0 ðinactiveÞ rg2ð1;1Þ5 ð21; 0Þ

g3ð1;1Þ521,0 ðinactiveÞ rg3ð1;1Þ5 ð0; 21Þ

ðdÞ
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Note that all constraints are inactive at the starting point, so V05 0 is calculated from

Eq. (13.4) as V05max{0; 22/3, 21, 21}. The linearized constraints are plotted in Figure 12.5.

Step 3. Using the preceding values, the QP subproblem of Eqs. (12.27) through (12.29) at

(1, 1) is defined as

Minimize

f 5 ð2d1 2 d2Þ1 0:5ðd21 1 d22Þ ðeÞ
subject to

1

3
d1 1

1

3
d2 #

2

3
; 2d1 # 1; 2d2 # 1 ðfÞ

Note that the QP subproblem is strictly convex and thus has a unique solution. A

numerical method must generally be used to solve the subproblem. However, since the

present problem is quite simple, it can be solved by writing the KKT necessary conditions of

Theorem 4.6 as follows:

L5 ð2d1 2 d2Þ1 0:5ðd21 1 d22Þ1u1
1

3
ðd1 1 d2 22Þ1 s21

2
4

3
51u2ð2d1 212 s22Þ

1 u3ð2d2 211 s23Þ
ðgÞ

@L

@d1
5211 d1 1

1

3
u1 2 u2 5 0

@L

@d2
5211 d2 1

1

3
u1 2 u3 5 0

ðhÞ

1

3
ðd1 1 d2 2 2Þ1 s21 5 0

ð2d1 2 1Þ1 s22 5 0; ð2d2 2 1Þ1 s23 5 0

ðiÞ

uisi 5 0; and s2i ;ui $ 0; i5 1; 2; 3 ðjÞ
where u1, u2, and u3 are the Lagrange multipliers for the three constraints and s1

2, s2
2, and s23 are

the corresponding slack variables. Solving the foregoing KKT conditions, we get the direction

vector d(0)5 (1,1), with f 521 and u(0)5 (0,0,0). This solution agrees with the graphical solution

given in Figure 12.13. The feasible region for the subproblem is the triangle ABC, and the opti-

mum solution is at Point D.

Step 4. Because jjd(0)jj5O2.ε2, the convergence criterion is not satisfied.

Step 5. Calculate r0 5 Σ
m

i51
uð0Þi 5 0, as was defined in Eq. (12.34). To satisfy the necessary condition

of Inequality (12.31), let R5max {R0,r0}5max{10,0}5 10. It is important to note that R5 10 is to

be used throughout the first iteration to satisfy the descent condition of Eq. (13.7) or Eq. (13.10).

Step 6. For step size determination, we use inexact line search, which is described earlier in

this section. The current value of the descent function Φ0 of Eq. (13.3) and the constant β0 of

Eq. (13.9) are calculated as

Φ0 5 f0 1RV0 5211 ð10Þð0Þ521 ðkÞ

β0 5 γ:dð0Þ:2 5 0:5ð11 1Þ5 1 ðlÞ
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Let the trial step size be t05 1 and evaluate the new value of the descent function to check the

descent condition of Eq. (13.7):

xð1;0Þ 5 xð0Þ 1 t0d
ð0Þ 5 ð2; 2Þ ðmÞ

At the trial design point, evaluate the cost and constraint functions, and then evaluate the

maximum constraint violation to calculate the descent function:

f1;0 5 fð2;2Þ524

V1;0 5Vð2;2Þ5max 0;
1

3
;22;22

� 
5

1

3

Φ1;0 5 f1;0 1RV1;0 5241 ð10Þ 1
3
52

2

3
Φ0 2 t0β0 52121522

ðnÞ

Since Φ1,0.Φ02 t0β0, the descent condition of Inequality (13.7) is not satisfied.

Let us try j5 1 in Eq. (13.5) (i.e., bisect the step size to t15 0.5), and evaluate the new value

of the descent function to check the descent condition of Eq. (13.7). The design is updated as

xð1;1Þ 5 xð0Þ 1 t1d
ð0Þ 5 ð1:5; 1:5Þ ðoÞ

At the new trial design point, evaluate the cost and constraint functions, and then evaluate

the maximum constraint violation to calculate the descent function:

f1;1 5 fð1:5;1:5Þ522:25

V1;1 5Vð1:5;1:5Þ5max 0; 2
1

4
;21:5;21:5

� 
5 0

Φ1;1 5 f1;1 1RV1;1 522:251 ð10Þ0522:25

Φ0 2 t1β0 5212 0:5521:5

ðpÞ

Now the descent condition of Inequality (13.7) is satisfied (i.e., Φ1,1,Φ02 t1β0), and thus

α05 0.5 is acceptable and x(1)5 (1.5,1.5).

Step 7. Set R0115R05 10, k5 1 and go to Step 2.

Iteration 2 (k51) For the second iteration, Steps 3 through 7 of the CSD algorithm are

repeated as follows:

Step 3. The QP subproblem of Eqs. (12.27) through (12.29) at x(1)5 (1.5,1.5) is defined as

follows:

Minimize
f 5 ð21:5d1 2 1:5d2Þ1 0:5ðd21 1 d22Þ

subject to
0:5d1 1 0:5d2 # 0:25 and 2d1 # 1:5;2d2 # 1:5 ðqÞ

Since all constraints are inactive, the maximum violation V15 0 from Eq. (12.36). The new

cost function is given as f1522.25. The solution to the preceding quadratic programming

subproblem is d(1)5 (0.25, 0.25) and u(1)5 (2.5, 0, 0).

Step 4. Because jjd(1)jj5 0.3535. ε2, the convergence criterion is not satisfied.
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Step 5. Evaluate r1 5 Σ
m

i51
uð1Þi 5 2:5. Therefore, R5max{R1,r1}5max{10,2.5}5 10.

Step 6. For line search, try j5 0 in Inequality (13.7) (i.e., t05 1):

Φ1 5 f1 1RV1 522:251 ð10Þ0522:25

β1 5 γ:dð1Þ:2 5 0:5ð0:125Þ5 0:0625
ðrÞ

Let the trial step size be t05 1 and evaluate the new value of the descent function to check the

descent condition of Eq. (13.7):

xð2;0Þ 5 xð1Þ 1 t0d
ð1Þ 5 ð1:75; 1:75Þ

f2;0 5 fð1:75; 1:75Þ523:0625
ðsÞ

V2;0 5Vð1:75; 1:75Þ5max 0; 0:0208;21:75;21:75f g5 0:0208

Φ2;0 5 f2;0 1RV2;0 523:06251 ð10Þ0:0208522:8541

Φ1 2 t0β1 522:252 ð1Þð0:0625Þ522:3125

ðtÞ

Because the descent condition of Inequality (13.7) is satisfied, α15 1.0 is acceptable and

x(2)5 (1.75,1.75).

Step 7. Set R25R5 10, k5 2, and go to Step 2.

The maximum constraint violation at the new design x(2)5 (1.75,1.75) is 0.0208, which is

greater than the permissible constraint violation. Therefore, we need to go through more itera-

tions of the CSD algorithm to reach the optimum point and the feasible set. Note, however, that

since the optimum point is (1.732, 1.732), the current point is quite close to the solution with

f2523.0625. Also, it is observed that the algorithm iterates through the infeasible region for the

present problem.

Example 13.5 examines the effect of γ (for use in Eq. (13.9)) on the step size determina-
tion in the CSD method.

EXAMPLE 13.5 EFFECT OF γ ON THE PERFORMANCE
OF THE CSD ALGORITHM

For the optimum design problem of Example 13.4, study the effect of variations in the param-

eter γ on the performance of the CSD algorithm.

Solution
In Example 13.4, γ5 0.5 is used. Let us see what happens if a very small value of γ (say 0.01)

is used. All calculations up to Step 6 of Iteration 1 are unchanged. In Step 6, the value of β0 is

changed to β05 γjjd(0)jj25 0.01(2)5 0.02. Therefore,

Φ0 2 t0β0 5212 1ð0:02Þ521:02 ðaÞ
which is smaller than Φ1,0, so the descent condition of Inequality (13.7) is violated. Thus, the step

size in Iteration 1 will be 0.5 as before.
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The calculations in Iteration 2 are unchanged until Step 6, where β15 γjjd(1)jj25 0.01(0.125)5

0.00125. Therefore,
Φ1 2 t0β1 522:252 ð1Þð0:00125Þ522:25125 ðbÞ

The descent condition of Inequality (13.7) is satisfied. A smaller value of γ thus has no effect on

the first two iterations.

Let us see what happens if a larger value for γ (say 0.9) is chosen. It can be verified that in Iteration

1, there is no difference in the calculations. In Iteration 2, the step size is reduced to 0.5. Therefore, the

new design point is x(2)5 (1.625,1.625). At this point f2522.641, g1520.1198, and V15 0, and so, a

larger γ results in a smaller step size and the new design point remains strictly feasible.

Example 13.6 examines the effect of the initial value of the penalty parameter R on the
step size calculation in the CSD method.

EXAMPLE 13.6 EFFECT OF PENALTY PARAMETER R
ON CSD ALGORITHM

For the optimum design problem of Example 13.4, study the effect of variations in the para-

meter R on the performance of the CSD algorithm.

Solution
In Example 13.4, the initial R is selected as 10. Let us see what happens if R is selected as 1.0.

There is no change in the calculations up to Step 5 in Iteration 1. In Step 6,

Φ1;0 5241 ð1Þ 1

3

� �
52

11

3

Φ0 2 t0β0 5211 ð1Þð0Þ521

ðaÞ

Therefore, α05 1 satisfies the descent condition of Inequality (13.7) and the new design is given

as x(1)5 (2,2). This is different from what was obtained in Example 13.4.

Iteration 2 Since the acceptable step size in Iteration 1 has changed compared with that in

Example 13.4, the calculations for Iteration 2 need to be performed again.

Step 3. The QP subproblem of Eqs. (12.27) and (12.29) at x(1)5 (2,2) is defined as follows:

Minimize
f 5 ð22d1 2 2d2Þ1 0:5ðd21 1 d22Þ ðbÞ

subject to
2

3
d1 1

2

3
d2 # 2

1

3
; 2d1 # 2; 2d2 # 2 ðcÞ

At the point (2, 2), V15 1/3 and f1524. The solution to the QP subproblem is given as

dð1Þ 5 ð20:25;20:25Þ and uð1Þ 5
27

8
; 0; 0

� �
ðdÞ

Step 4. As jjd(1)jj5 0.3535. ε2, the convergence criterion is not satisfied.
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Step 5. Evaluate r1 5 Σ
3

i51
uð1Þi 5 27=8. Therefore,

R5max R1; r1f g5max 1;
27

8

� 
5

27

8
ðeÞ

Step 6. For line search, try j5 0 in Inequality (13.7), that is, t05 1:

Φ1 5 f1 1RV1 5241
27

8

� �
1

3

� �
522:875

Φ2;0 5 f2;0 1RV2;0 523:06251
27

8

� �
ð0:0208Þ522:9923

β1 5 γ:dð1Þ:2 5 0:5ð0:125Þ5 0:0625

Φ1 2 t0β1 522:8752 ð1Þð0:0652Þ522:9375

ðfÞ

As the descent condition of Eq. (13.7) is satisfied, α15 1.0 is acceptable and x(2)5 (1.75,1.75).

Step 7. Set R25R15 27/8, k5 2, and go to Step 2.

The design at the end of the second iteration is the same as in Example 13.4. This is just a

coincidence. We observe that a smaller R gave a larger step size in the first iteration. In general,

this can change the history of the iterative process.

Example 13.7 illustrates use of the CSD method for an engineering design problem.

EXAMPLE 13.7 MINIMUM AREA DESIGN OFA RECTANGULAR
BEAM

For the minimum area beam design problem of Section 3.8, find the optimum solution using

the CSD algorithm starting from the points (50, 200) mm and (1000, 1000) mm.

Solution
The problem was formulated and solved graphically in Section 3.8. After normalizing the con-

straints, we define the problem as follows: Find width b and depth d to minimize the cross-

sectional area subject to various constraints:

fðb; dÞ5 bd ðaÞ
Bending stress constraint: ð2:403 107Þ

bd2
21:0 # 0 ðbÞ

Shear stress constraint: ð1:1253 105Þ
bd

21:0 # 0 ðcÞ

Depth constraint: 1

100
ðd22bÞ # 0 ðdÞ

Explicit bound constraint: 10 # b # 1000; 10 # d # 1000 ðeÞ

54713.2 INEXACT STEP SIZE CALCULATION

II. NUMERICAL METHODS FOR CONTINUOUS VARIABLE OPTIMIZATION



The graphical solution to the problem is given in Figure 13.3; any point on the curve AB gives an

optimum solution.

The problem is solved starting from the given points with the CSD algorithm that is available

in the IDESIGN software package (Arora and Tseng, 1987a,b). The algorithm has been imple-

mented using the potential constraint strategy. The constraint violation tolerance and the conver-

gence parameter are set as 0.0001. Iteration histories with the two starting points I and II are

shown in Figure 13.3. Results of the optimization process are summarized in Table 13.1.

The starting point I is infeasible with a maximum constraint violation of 1100 percent. The pro-

gram finds the optimum solution in eight iterations. The algorithm iterates through the infeasible

region to reach the optimum solution, which agrees with the one obtained analytically in Section 3.8.

The starting point II is feasible and takes six iterations to converge to the optimum. Although the

first starting point takes more iterations (eight) to converge to the optimum point compared with
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FIGURE 13.3 History of the itera-
tive process for the rectangular beam
design problem.

TABLE 13.1 Results of the optimum design process for the rectangular beam
design problem

Starting Point I

(50, 200) mm

Starting Point II

(1000, 1000) mm

Optimum point (315.2, 356.9) (335.4, 335.4)

Optimum area 1.1253 105 1.1253 105

Number of iterations to reach optimum 8 6

Number of calls for function evaluations 8 12

Total number of constraint gradients evaluated 14 3

Active constraints at optimum Shear stress Shear stress

Lagrange multipliers for constraints 1.1253 105 1.1253 105
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the second point (six), the number of calls for function evaluations is smaller for the first point. The

total numbers of constraint gradient evaluations with the two points are 14 and 3, respectively.

Note that if the potential constraint strategy had not been used, the total number of gradient

evaluations would have been 24 and 18, respectively, for the two points. These are substantially

higher than the actual number of gradient evaluations with the potential set strategy. It is clear

that for large-scale applications, the potential set strategy can have a substantial impact on the

efficiency of calculations for an optimization algorithm.

13.3 BOUND-CONSTRAINED OPTIMIZATION

The bound-constrained optimization problem is defined as

Minimize
fðxÞ ð13:11Þ

subject to
xiL # xi # xiU; i5 1 to n ð13:12Þ

where xiL and xiU are the lower and upper bounds on the ith variable. Such problems are
encountered in some practical applications—for example, optimal trajectory determination.
In addition, a constrained optimization problem can be transformed into a sequence of
unconstrained problems by using the penalty or the augmented Lagrangian approach, as
discussed in Chapter 11. In such cases it is more efficient to treat the bound constraints on
the variables explicitly in the numerical algorithm. Therefore, it is useful to develop special
algorithms to solve the problem defined in Eqs. (13.11) and (13.12). In this section, we
present one such algorithm.

13.3.1 Optimality Conditions

First we study the KKT optimality conditions for the problem defined in Eqs. (13.11)
and (13.12). We define the Lagrangian function for the problem as

L5 fðxÞ1
Xn
i51

ViðxiL 2 xiÞ1
Xn
i51

Uiðxi 2 xiUÞ ð13:13Þ

where Vi$ 0 and Ui$ 0 are the Lagrange multipliers for the lower- and upper-bound
constraints, respectively. The optimality conditions give

ci 2Vi 1Ui 5 0; i5 1 to n where ci 5
@f

@xi
ð13:14Þ

ViðxiL 2 xiÞ5 0 ð13:15Þ
Uiðxi 2 xiUÞ5 0 ð13:16Þ

Note that these conditions lead to the following conclusions:

If xi 5 xiL; then Vi 5 ci $ 0 and Ui 5 0 by Eqs: ð13:14Þ and ð13:16Þ ð13:17Þ
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If xi 5 xiU ; then Ui 52ci $ 0 and Vi 5 0 by Eqs: ð13:14Þ and ð13:15Þ ð13:18Þ
If xiL, xi, xiU ; then Eqs: ð13:14Þ to ð13:16Þ give Vi 5 0 and Ui 5 0.ci 5 0 ð13:19Þ
In the numerical algorithm to solve the problem defined in Eqs. (13.11) and (13.12), the

set of active constraints at the optimum point is not known and must be determined as a
part of the solution. The following steps can be used to determine the set of active con-
straints and the solution point:

If
xi, xiL; then set xi 5 xiL ð13:20Þ

If
xi. xiU; then set xi 5 xiU ð13:21Þ

If

xi 5 xiL and ci. 0 ðEq: 13:17Þ; then keep xi 5 xiL; otherwise; release it: ð13:22Þ
If

xi 5 xiU and ci, 0 ðEq: 13:18Þ; then keep xi 5 xiU ; otherwise; release it: ð13:23Þ

Once a variable is released, its value can go away from the bound. Thus at any iteration
of the numerical algorithm, the sign of the derivative of the cost function with respect to a
variable (i.e., the Lagrange multiplier) determines whether that variable is to remain on its
bound or not.

13.3.2 Projection Methods

Equations (13.20) and (13.21) constitute a projection of the design variable vector onto
the constraint hyperplane. Methods that incorporate these equations are called projection
methods (projected conjugate gradient method, projected BFGS method, etc.).

The basic idea of the projection method is to identify variables that are on their bounds
at each iteration and keep them fixed at their bound values as long as the conditions in
Eq. (13.20) or (13.21)—whichever are applicable—are satisfied. The problem is then
reduced to an unconstrained problem in the remaining variables. Any method, such as the
conjugate gradient method or a quasi-Newton method, can be used to compute the search
direction in terms of the free variables. Then the line search is performed to update the
design variables. At the new point the entire process is repeated by identifying the set of
active design variables again. This process can identify the final set of active variables
quite rapidly.

To state the numerical algorithm (Schwarz and Polak, 1997), let us define

Projection Operator:

PiðzÞ5
xiL; if z # xiL
z; if xiL, z, xiU
xiU ; if z $ xiU

8<
: ð13:24Þ
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The projection operator basically ensures that all of the design variables remain within
or on their bounds:

Feasible Set:

S5 xARnjxiL # xi # xiU ; i5 1 to n
� � ð13:25Þ

Set of Active Variables:

Ak 5AðxðkÞÞ
Ak 5 ijxiL # xðkÞi # xiL 1 ε and cðkÞi . 0

n
or xiU 2 ε # xðkÞi # xiU and cðkÞi , 0

o
ð13:26Þ

where ε5 0 is a small number. The active set Ak is created to satisfy the conditions given
in Eqs. (13.17) and (13.18), and contains a list of variables that are on or close to their
boundaries (within the ε band). If a design variable is close to its limit, it is included in the
active set.

Set of Inactive Variables:

Ik 5 IðxðkÞÞ

Ik is the complement of Ak in f1; 2; . . . ng ð13:27Þ

Step-by-Step Algorithm

For the data, select

ρ;βA ð0; 1Þ; σ1A ð0; 1Þ; σ2 A ð1;NÞ; εA ð0;NÞ; xð0ÞAS ð13:28Þ

Step 0: Set k5 0.
Step 1: Active/Inactive Variables. Compute c(k)5rf(x(k)) and define the active and
inactive sets of variables using Eqs. (13.26) and (13.27):

Ak 5AðxðkÞÞ; Ik 5 IðxðkÞÞ ð13:29Þ
If the following conditions are satisfied, stop; otherwise, continue:

:cðkÞ:Ik 5 0 and xðkÞi 5 xiL or xiU for iAAk;Ui;Vi $ 0 for i5 1 to n ð13:30Þ

Step 2: Search Direction Definition. Calculate a search direction d(k) satisfying the
following conditions:

dðkÞi 52cðkÞi for all iAAk ð13:31Þ

ðdðkÞ � cðkÞÞIk # 2σ1jjcðkÞjj2Ik ð13:32Þ

:dðkÞ:Ik # σ2:cðkÞ:Ik ð13:33Þ
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The search direction for the variables in the active set is the steepest-descent direction as
seen in Eq. (13.31). The search direction for inactive variables (d(k))Ik, used in Eq. (13.32),
can be calculated using any unconstrained optimization method, such as steepest
descent, conjugate gradient or quasi-Newton.
Step 3: Design Update. During step size calculation, the design needs to be updated
for the trial step size α, which is updated using the projection operator defined in
Eq. (13.24) as

xðkÞðα;dðkÞÞ5PðxðkÞ 1αdðkÞÞ ð13:34Þ
Then, if αk is the step size (calculation is discussed later) at x(k), the design is updated as

xðk11Þ 5 xðkÞðαk;d
ðkÞÞ5PðxðkÞ 1αkd

ðkÞÞ ð13:35Þ
Step 4. Set k5 k1 1 and go to Step 1.

The algorithm has been proved to identify the correct active set in a finite number of
iterations. In addition, it has been proved to converge to a local minimum point starting
from any point (Schwarz and Polak, 1997).

The search direction in Step 2 can be computed by any method. Schwarz and Polak
(1997) have implemented steepest-descent, conjugate gradient, and a limited-memory
BFGS quasi-Newton methods for search direction calculation. Whereas all of the methods
worked well, the BFGS method worked the best, taking the smallest CPU time. The conju-
gate gradient method also performed comparably well. For the conjugate gradient method,
the algorithmic parameters were selected as

ρ5
1

2
; σ1 5 0:2; σ2 5 10; β5

3

5
; ε5 0:2 ð13:36Þ

For the BFGS method, the algorithmic parameters were selected as

ρ5
1

3
; σ1 5 0:0002; σ2 5

ffiffiffiffiffiffiffiffiffiffi
1000

p
3 103; β5

3

5
; ε5 0:2 ð13:37Þ

After a satisfactory step size was obtained using the Armijo-like rule, the quadratic
interpolation was used to further refine the step size. The limit on parameter m in the step
size calculation was set at 20.

13.3.3 Step Size Calculation

The step size for the bound-constrained algorithm can be calculated using any of the
procedures discussed earlier. However, we will discuss an Armijo-like procedure (refer to
Chapter 11 for Armijo’s rule) presented by Schwarz and Polak (1997). We will first give
the step size determination criterion and then discuss its implementation.

An acceptable step size is αk5 βm, where 0,β, 1 and m is the smallest integer to sat-
isfy the Armijo-like rule:

fðαkÞ # fð0Þ1 ρ αkðcðkÞ �dðkÞÞIk 1 ðcðkÞ � fxðk11Þ 2 xðkÞgÞAk

h i
ð13:38Þ
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fðαkÞ5 fðxðkÞðαk;d
ðkÞÞÞ; fð0Þ5 fðxðkÞÞ ð13:39Þ

where the search direction d(k) is calculated as explained in Step 2 of the algorithm.
During line search, the design is updated using Eq. (13.34).

Note that if the set Ak is empty (i.e., there is no active or nearly active variable), then
the terms ðcðkÞ � fxðk11Þ 2 xðkÞgÞAk

on the right side of Eq. (13.38) vanish and the condition
reduces to the Armijo’s rule given in Eq. (11.15). If the set Ak contains all of the variables
that are on their bounds, then ðxðk11Þ 2 xðkÞÞAk

5 0 and the foregoing term again vanishes
and the condition of Eq. (13.38) reduces to the Armijo’s rule in Eq. (11.15). In other words,
we find the step size to minimize f(α) considering only the inactive variables and keeping
the active variables fixed at their bounds. The cases that we need to consider in more
detail are the ones when a variable is close to its bound and is in the active set Ak.

Variable Close to Its Lower Bound

Let the ith variable be in the active set Ak and close to its lower bound. Then, according
to Eq. (13.26), xi

(k) is within the ε-band from the lower bound with ci
(k). 0. Note that if

ci
(k), 0, then the variable is not in the set Ak. Since di

(k)52ci
(k), the ith variable can only

move closer to its lower bound; that is, xi
(k11)2 xi

(k), 0. The term ci
(k)(xi

(k11)2 xi
(k)), 0 on the

right side of Eq. (13.38) which satisfies the descent condition, as for this inactive variable.
Thus the step size calculation criterion in Eq. (13.38) allows the variable to move closer to
its lower bound.

Variable Close to Its Upper Bound

Let the ith variable be in the active set Ak and close to its upper bound. Then, according
to Eq. (13.26), xi

(k) is within the ε-band from the upper bound with ci
(k),0. Note that if ci

(k).0,
then the variable is not in the set Ak. Since di

(k)52 ci
(k), the ith variable can move only closer

to its upper bound; that is xi
(k11)2 xi

(k).0. The term ci
(k)(xi

(k11)2 xi
(k)),0 on the right side of

Eq. (13.38) which satisfies the descent condition, as for the inactive variables. Thus the step
size calculation criterion in Eq. (13.38) allows the variable to move closer to its upper
bound.

13.4 SEQUENTIAL QUADRATIC PROGRAMMING:
SQP METHODS

Thus far we have used only linear approximation for the cost and constraint functions
in defining the search direction determination subproblem for the nonlinear programming
(NLP) problem. The rate of convergence of algorithms based on such subproblems can be
slow. This rate can be improved if second-order information about the problem functions
is incorporated into the solution process. It turns out that the QP subproblem defined in
Section 12.5 can be modified slightly to introduce curvature information for the Lagrange
function into the quadratic cost function of Eq. (12.27) (Wilson, 1963). Since second-order
derivatives of the Lagrange function are quite tedious and difficult to calculate, they are
approximated using only the first-order information (Han, 1976, 1977; Powell, 1978a,b).
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The basic idea is the same as for the unconstrained quasi-Newton methods described in
Section 11.5. Therefore it is important to review that material at this point. There we used
gradients of the cost function at two points for generating the approximate Hessian of the
cost function. Here we use the gradient of the Lagrange function at the two points to
update approximation to the Hessian of the Lagrange function.

These are generally called sequential quadratic programming methods. In the
literature, they have also been called constrained quasi-Newton, constrained
variable metric, or recursive quadratic programming methods.

Several variations of the SQP methods can be generated. However, we will extend the
constrained steepest-descent algorithm to include the Hessian of the Lagrange function in
the definition of the QP subproblem. Derivation of the subproblem is given, and the proce-
dure for updating the approximate Hessian is explained. Sequential quadratic program-
ming methods are quite simple and straightforward, but very effective in their numerical
performance. The methods are illustrated with examples, and numerical aspects are
discussed.

13.4.1 Derivation of the Quadratic Programming Subproblem

There are several ways to derive the quadratic programming (QP) subproblem that
must be solved for the search direction at each optimization iteration. An understanding
of the detailed derivation of the QP subproblem is not necessary in using the SQP meth-
ods. Therefore, the reader who is not interested in the derivation can skip this subsection.

It is customary to derive the QP subproblem by considering only the equality-
constrained design optimization problem as

Minimize
fðxÞ

subject to
hiðxÞ5 0; i5 1 to p ð13:40Þ

Later on, the inequality constraints will be easily incorporated into the subproblem.
The procedure for derivation of the QP subproblem is to write KKT necessary condi-

tions of Theorem 4.6 for the problem defined in Eq. (13.40), and then solve the resulting
nonlinear equations by the Newton-Raphson method. Each iteration of this method can
then be interpreted as being equivalent to the a QP subproblem solution. In the following
derivations, we assume that all functions are twice continuously differentiable and that
the gradients of all constraints are linearly independent.

To write the KKT necessary conditions for the optimization problem defined in
Eq. (13.40), we write the Lagrange function of Eq. (4.46) as

Lðx;vÞ5 fðxÞ1
Xp
i51

vihiðxÞ5 fðxÞ1 v �hðxÞ ð13:41Þ
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where vi is the Lagrange multiplier for the ith equality constraint hi(x)5 0. Note that there
is no restriction on the sign of vi. The KKT necessary conditions give

rLðx;vÞ5 0; or rfðxÞ1
Xp
i51

virhiðxÞ5 0 ð13:42Þ

hiðxÞ5 0; i5 1 to p ð13:43Þ
Note that Eq. (13.42) actually represents n equations because the dimension of the

design variable vector is n. These equations along with the p equality constraints in
Eq. (13.43) give (n1 p) equations in (n1 p) unknowns (n design variables in x and p
Lagrange multipliers in v). These are nonlinear equations, so the Newton-Raphson method
can be used to solve them.

Let us write Eqs. (13.42) and (13.43) in a compact notation as

FðyÞ5 0 ð13:44Þ
where F and y are identified as

F5
rL
h

	 

ðn1pÞ

and y5
x
v

	 

ðn1pÞ

ð13:45Þ

Now, using the iterative procedure of the Newton-Raphson method, we assume that
y(k) at the kth iteration is known and a change Δy(k) is desired. Using linear Taylor’s
expansion for Eq. (13.44), Δy(k) is given as a solution to the linear system:

rFTðyðkÞÞΔyðkÞ 52FðyðkÞÞ ð13:46Þ
where rF is an (n1 p)3 (n1 p) Jacobian matrix for the nonlinear equations whose ith
column is the gradient of the function Fi(y) with respect to the vector y. Substituting defi-
nitions of F and y from Eq. (13.45) into Eq. (13.46), we obtain

r2L N
NT 0

	 
ðkÞ Δx
Δv

	 
ðkÞ
52

rL
h

	 
ðkÞ
ð13:47Þ

where the superscript k indicates that the quantities are calculated at the kth iteration, r2L
is an n3 n Hessian matrix of the Lagrange function, N is an n3 p matrix defined in
Eq. (12.24) with an ith column that is the gradient of the equality constraint hi,
Δx(k)5 x(k11)2 x(k), and Δv(k)5 v(k11)2 v(k).

Equation (13.47) can be converted to a slightly different form by writing the first row as

r2LðkÞΔxðkÞ 1NðkÞΔvðkÞ 52rLðkÞ ð13:48Þ
Substituting Δv(k)5 v(k11)2 v(k) and rL from Eq. (13.42) into Eq. (13.48), we obtain

r2LðkÞΔxðkÞ 1NðkÞðvðk11Þ 2 vðkÞÞ52rfðxðkÞÞ2NðkÞvðkÞ ð13:49Þ
Or the equation is simplified to

r2LðkÞΔxðkÞ 1NðkÞvðk11Þ 52rfðxðkÞÞ ð13:50Þ
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Combining Eq. (13.50) with the second row of Eq. (13.47), we obtain

r2L N
NT 0

	 
ðkÞ
ΔxðkÞ

vðk11Þ

	 

52

rf
h

	 
ðkÞ
ð13:51Þ

Solving Eq. (13.51) gives a change in the design Δx(k) and a new value for the Lagrange
multiplier vector v(k11). The foregoing Newton-Raphson iterative procedure to solve the
KKT necessary conditions is continued until a stopping criterion is satisfied.

It is now shown that Eq. (13.51) is also the solution to a certain QP problem defined at
the kth iteration as (note that the superscript k is omitted for simplicity of presentation):

Minimize
rfTΔx1 0:5ΔxTr2LΔx ð13:52Þ

subject to the linearized equality constraints

hi 1nðiÞTΔx5 0; i5 1 to p ð13:53Þ

where n(i) is the gradient of the function hi. The Lagrange function of Eq. (4.46) for the
problem defined in Eqs. (13.52) and (13.53) is written as L:

L5rfTΔx1 0:5ΔxTr2LΔx1
Xp
i51

viðhi 1nðiÞTΔxÞ ð13:54Þ

The KKT necessary conditions of Theorem 4.6 treating Δx as the unknown variable give

@L

@ðΔxÞ 5 0; or rf 1r2LΔx1Nv5 0 ð13:55Þ

hi 1nðiÞTΔx5 0; i5 1 to p ð13:56Þ
It can be seen that if we combine Eqs. (13.55) and (13.56) and write them in a matrix

form, we get Eq. (13.51). Thus, the problem of minimizing f(x) subject to hi(x)5 0; i5 1 to p
can be solved by iteratively solving the QP subproblem defined in Eqs. (13.52) and (13.53).

Just as in Newton’s method for unconstrained problems, the solution Δx is treated as a
search direction and step size is determined by minimizing an appropriate descent func-
tion to obtain a convergent algorithm. Defining the search direction d5Δx and including
inequality constraints, the QP subproblem for the general constrained optimization problem
is defined as

Minimize
f 5 cTd1 0:5dTHd ð13:57Þ

subject to the constraints of Eqs. (13.4) and (13.5) as

nðiÞTd5 ei; i5 1 to p ð13:58Þ

aðiÞ
T

d # bi; i5 1 to m ð13:59Þ

where the notation defined in Section 12.2 is used, c is the gradient of the cost function,
and H is the Hessian matrix r2L or its approximation.
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Usually, the potential constraint strategy is used in reducing the number of inequalities
in Eq. (13.59), as discussed in Section 13.1. We will further elaborate on this point later.

13.4.2 Quasi-Newton Hessian Approximation

Just as for the quasi-Newton methods of Section 11.5 for unconstrained problems, we
can approximate the Hessian of the Lagrangian function in Eq. (13.57) for the constrained
problems. We assume that the approximate Hessian H(k) at the kth iteration is available
and we want to update it to H(k11). The BFGS formula shown in Section 11.5 for direct
updating of the Hessian can be used. It is important to note that the updated Hessian
should be kept positive definite because, with this property, the QP subproblem defined
in Eqs. (13.57) through (13.59) remains strictly convex. Thus, a unique search direction is
obtained as the solution for the problem.

It turns out that the standard BFGS updating formula can lead to a singular or indefi-
nite Hessian. To overcome this difficulty, Powell (1978a) suggested a modification to the
standard BFGS formula. Although the modification is based on intuition, it has worked
well in most applications. We will give the modified BFGS formula.

Several intermediate scalars and vectors must be calculated before the final formula can
be given. We define these as follows:

Design change vector (αk5 step size):

sðkÞ 5αkd
ðkÞ ð13:60Þ

Vector:
zðkÞ 5HðkÞsðkÞ ð13:61Þ

Difference in the gradients of the Lagrange function at two points:

yðkÞ 5rLðxðk11Þ;uðkÞ; vðkÞÞ2rLðxðkÞ;uðkÞ; vðkÞÞ ð13:62Þ
Scalar:

ξ1 5 s kð Þ �y kð Þ ð13:63Þ
Scalar:

ξ2 5 s kð Þ � z kð Þ ð13:64Þ
Scalar:

θ5 1 if ξ1 $ 0:2 ξ2; otherwise; θ5 0:8 ξ2=ðξ2 2 ξ1Þ ð13:65Þ
Vector:

wðkÞ 5 θyðkÞ 1 ð12 θÞzðkÞ ð13:66Þ
Scalar:

ξ3 5 sðkÞ �wðkÞ ð13:67Þ
An n3n correction matrix:

DðkÞ 5 ð1=ξ3ÞwðkÞwðkÞT ð13:68Þ
An n3n correction matrix:

EðkÞ 5 ð1=ξ2ÞzðkÞzðkÞ
T ð13:69Þ
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With the preceding definition of matrices D(k) and E(k), the Hessian is updated as

Hðk11Þ 5HðkÞ 1DðkÞ 2EðkÞ ð13:70Þ
It turns out that if the scalar ξ1 in Eq. (13.63) is negative, the original BFGS formula can

lead to an indefinite Hessian. The use of the modified vector w(k) given in Eq. (13.66) tends
to alleviate this difficulty. Because of the usefulness of incorporating a Hessian into an
optimization algorithm, several updating procedures have been developed in the literature
(Gill et al., 1981; Nocedal and Wright, 2006). For example, the Cholesky factors of the
Hessian can be directly updated. In numerical implementations, it is useful to incorporate
such procedures because numerical stability can be guaranteed.

13.4.3 SQP Algorithm

The CSD algorithm of Section 12.7 has been extended to include Hessian updating and
potential set strategy (Belegundu and Arora, 1984a; Lim and Arora, 1986; Thanedar et al.,
1986; Huang and Arora, 1996). The original algorithm did not use the potential set strategy
(Han, 1976, 1977; Powell, 1978a,b,c). The new algorithm has been extensively investigated
numerically, and several computational enhancements have been incorporated into it to
make it robust as well as efficient. In the following, we describe a very basic algorithm as
a simple extension of the CSD algorithm and refer to it as the SQP method:

Step 1. The same as Step 1 in the CSD algorithm of Section 12.7, except also set the
initial estimate or the approximate Hessian as identity(i.e., H(0)5 I).
Step 2. Calculate the cost and constraint functions at x(k) and calculate the gradients of
the cost and constraint functions. Calculate the maximum constraint violation Vk as
defined in Eq. (12.36). If k. 0, update the Hessian of the Lagrange function using
Eqs. (13.60) to (13.70). If k5 0, skip updating and go to Step 3.
Step 3. Define the QP subproblem of Eqs. (13.57) through (13.59) and solve it for the
search direction d(k) and the Lagrange multipliers v(k) and u(k).
Steps 4�7. Same as for the CSD algorithm of Section 12.7.

Thus we see that the only difference between the two algorithms is in Steps 2 and 3.
We demonstrate the use of the SQP algorithm with Example 13.9.

EXAMPLE 13.9 USE OF SQP METHOD

Complete two iterations of the SQP algorithm for Example 13.5:

Minimize
fðxÞ5 x21 1 x22 23x1x2 ðaÞ

subject to

g1ðxÞ5
1

6
x21 1

1

6
x22 21:0 # 0 ðbÞ

g2ðxÞ52x1 # 0; g3ðxÞ52x2 # 0: ðcÞ

The starting point is (1, 1), R05 10, γ5 0.5, ε15 ε25 0.001.
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Solution
The first iteration of the SQP algorithm is the same as in the CSD algorithm. From Example

13.5, the results of the first iteration are

dð0Þ 5 ð1;1Þ; α5 0:5; xð1Þ 5 ð1:5;1:5Þ
uð0Þ 5 ð0; 0; 0Þ; R1 5 10; Hð0Þ 5 I:

ðdÞ

Iteration 2 At the point x(1)5 (1.5,1.5), the cost and constraint functions and their gradients

are evaluated as
f 526:75; rf 5 ð21:5;21:5Þ
g1 520:25; rg1 5 ð0:5; 0:5Þ
g2 521:5; rg2 5 ð21; 0Þ
g3 521:5; rg3 5 ð0;21Þ

ðeÞ

To update the Hessian matrix, we define the vectors in Eqs. (13.60) and (13.61) as

sð0Þ 5α0d
ð0Þ 5 ð0:5; 0:5Þ; zð0Þ 5Hð0Þsð0Þ 5 ð0:5; 0:5Þ ðfÞ

Since the Lagrange multiplier vector u(0)5 (0,0,0), the gradient of the Lagrangian rL is simply

the gradient of the cost function rf. Therefore, vector y(0) of Eq. (13.62) is calculated as

yð0Þ 5rfðxð1ÞÞ2rfðxð0ÞÞ5 ð20:5;20:5Þ ðgÞ
Also, the scalars in Eqs. (13.63) and (13.64) are calculated as

ξ1 5 sð0Þ �yð0Þ 520:5; ξ2 5 sð0Þ � zð0Þ 5 0:5 ðhÞ
Since ξ1, 0.2 ξ2, θ in Eq. (13.65) is calculated as

θ5 0:8ð0:5Þ=ð0:51 0:5Þ5 0:4 ðiÞ
The vector w(0) in Eq. (13.66) is calculated as

wð0Þ 5 0:4
20:5
20:5

	 

1 ð12 0:4Þ 0:5

0:5

	 

5

0:1
0:1

	 

ðjÞ

The scalar ξ3 in Eq. (13.67) is calculated as

ξ3 5 ð0:5; 0:5Þ � ð0:1; 0:1Þ5 0:1 ðkÞ
The two correction matrices in Eqs. (13.68) and (13.69) are calculated as

Dð0Þ 5
0:1 0:1
0:1 0:1

	 

; Eð0Þ 5

0:5 0:5
0:5 0:5

	 

ðlÞ

Finally, from Eq. (13.70), the updated Hessian is given as

Hð1Þ 5
1 0
0 1

	 

1

0:1 0:1
0:1 0:1

	 

2

0:5 0:5
0:5 0:5

	 

5

0:6 20:4
20:4 0:6

	 

ðmÞ

Step 3. With the updated Hessian and other data previously calculated, the QP subproblem

of Eqs. (13.57) through (13.59) is defined as:

Minimize
f 521:5d1 2 1:5d2 1 0:5ð0:6d21 20:8d1d2 1 0:6d22Þ ðnÞ
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subject to
0:5d1 1 0:5d2 # 0:25; 2d1 # 1:5; 2d2 # 1:5 ðoÞ

The QP subproblem is strictly convex and thus has a unique solution. Using the KKT conditions,

the solution is obtained as
dð1Þ 5 ð0:25; 0:25Þ; uð1Þ 5 ð2:9; 0; 0Þ ðpÞ

This solution is the same as in Example 13.4. Therefore, the rest of the steps have the same

calculations. It is seen that in this example, inclusion of the approximate Hessian does not actu-

ally change the search direction at the second iteration. In general, it gives different directions

and better convergence.

EXAMPLE 13.10 SOLUTION TO SPRING DESIGN PROBLEM
USING THE SQP METHOD

Solve the spring design problem (Shigley and Mischke, 2001) formulated in Section 2.9 using

the SQP method with the data given there.

Solution
The problem was also solved in Section 6.5 using the Excel Solver. Here we solve the problem

using the SQP method available in the IDESIGN program. The problem is restated in the normal-

ized form as: find d, D, and N to

Minimize
f 5 ðN1 2ÞDd2 ðaÞ

subject to the deflection constraint

g1 5 1:02
D3N

ð71875d4Þ # 0 ðbÞ

the shear stress constraint

g2 5
Dð4D2 dÞ

12566d3ðD2 dÞ 1
2:46

12566d2
21:0 # 0 ðcÞ

the surge wave frequency constraint

g3 5 1:02
140:54d

D2N
# 0 ðdÞ

the outer diameter constraint

g4 5
D1 d

1:5
21:0 # 0 ðeÞ

The lower and upper bounds on the design variables are selected as follows:

0:05 # d # 0:20 in

0:25 # D # 1:30 in

2 # N # 15

ðfÞ

Note that the constant π2ρ/4 in the cost function of Eq. (a) has been neglected. This simply scales

the cost function value without affecting the final optimum solution. The problem has three
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design variables and 10 inequality constraints in Eqs. (b) through (f). If we attempt to solve the

problem analytically using the KKT conditions of Section 4.6, we will have to consider 210 cases,

which is tedious and time-consuming.

The history of the iterative design process with the SQP algorithm is shown in Table 13.2. The

table shows iteration number (Iter.), maximum constraint violation (Max. vio.), convergence parameter

(Conv. parm.), cost function (Cost), and design variable values at each iteration. It also gives the con-

straint activity at the optimum point, indicating whether a constraint is active or not, constraint func-

tion values, and their Lagrange multipliers. Design variable activity is shown at the optimum point,

and the final cost function value and the number of calls to the user-supplied subroutines are given.

The following stopping criteria are used for the present problem:

1. The maximum constraint violation should be less than ε1, that is, V# ε1 in Step 4 of the

algorithm. ε1 is taken as 1.00E204.

2. The length of the direction vector (convergence parameter) should be less than ε2, that
is, jjdjj# ε2 in Step 4 of the algorithm. ε2 is taken as 1.00E203.

The starting design estimate is (0.2, 1.3, 2.0), where the maximum constraint violation is 96.2 per-

cent and the cost function value is 0.208. At the sixth iteration, a feasible design (the maximum

constraint violation is 1.97E205) is obtained at a cost function value of (1.76475E202).

Note that in this example, the constraint correction is accompanied by a substantial reduction

in the cost function (by a factor of 10). However, the constraint correction will most often result

in an increase in cost. The program takes another 12 iterations to reach the optimum design. At

the optimum point, the deflection and shear stress constraints of Eqs. (c) and (d) are active. The

Lagrange multiplier values are (1.077E202) and (2.4405E202). Design variable 1 (wire diameter)

is close to its lower bound.

13.4.4 Observations on SQP Methods

The quasi-Newton methods are considered to be most efficient, reliable, and generally
applicable. Schittkowski and coworkers (1980, 1981, 1987) extensively analyzed the methods
and evaluated them against several other methods using a set of nonlinear programming test
problems. Their conclusion was that the quasi-Newton methods are far superior to others.
Lim and Arora (1986), Thanedar et al. (1986), Thanedar, Arora, et al. (1987), and Arora and
Tseng (1987b) evaluated the methods for a class of engineering design problems. Gabrielle
and Beltracchi (1987) discussed several enhancements of Pshenichny’s constrained steepest-
descent (CSD) algorithm, including incorporation of quasi-Newton updates of the Hessian of
the Lagrangian. In general, these investigations showed the quasi-Newton methods to be
superior. Therefore, they are recommended for general engineering design applications.

Numerical implementation of an algorithm is an art. Considerable care, judgment, safe-
guards, and user-friendly features must be designed and incorporated into the software.
Numerical calculations must be robustly implemented. Each step of the algorithmmust be ana-
lyzed and proper numerical procedures developed in order to implement the intent of the step.
The software must be properly evaluated for performance by solving many different problems.

Many aspects of numerical implementation of algorithms are discussed by Gill et al.
(1981). The steps of the SQP algorithm have been analyzed (Tseng and Arora, 1988).
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TABLE 13.2 History of the iterative optimization process for the spring design problem

Iteration

no.

Maximum

violation

Convergence

parameter Cost d D N

1 9.61791E201 1.00000E100 2.08000E201 2.0000E201 1.3000E100 2.0000E100

2 2.48814E100 1.00000E100 1.30122E202 5.0000E202 1.3000E100 2.0038E100

3 6.89874E201 1.00000E100 1.22613E202 5.7491E202 9.2743E201 2.0000E100

4 1.60301E201 1.42246E201 1.20798E202 6.2522E202 7.7256E201 2.0000E100

5 1.23963E202 8.92216E203 1.72814E202 6.8435E202 9.1481E201 2.0336E100

6 1.97357E205 6.47793E203 1.76475E202 6.8770E202 9.2373E201 2.0396E100

7 9.25486E206 3.21448E202 1.76248E202 6.8732E202 9.2208E201 2.0460E100

8 2.27139E204 7.68889E202 1.75088E202 6.8542E202 9.1385E201 2.0782E200

9 5.14338E203 8.80280E202 1.69469E202 6.7635E202 8.7486E201 2.2346E100

10 8.79064E202 8.87076E202 1.44839E202 6.3848E202 7.1706E201 2.9549E100

11 9.07017E202 6.66881E202 1.31958E202 6.0328E202 5.9653E201 4.0781E100

12 7.20705E202 7.90647E202 1.26517E202 5.7519E202 5.1028E201 5.4942E100

13 6.74501E202 6.86892E202 1.22889E202 5.4977E202 4.3814E201 7.2798E100

14 2.81792E202 4.50482E202 1.24815E202 5.3497E202 4.0092E201 8.8781E100

15 1.57825E202 1.94256E202 1.25465E202 5.2424E202 3.7413E201 1.0202E101

16 5.85935E203 4.93063E203 1.26254E202 5.1790E202 3.5896E201 1.1113E101

17 1.49687E204 2.69244E205 1.26772E202 5.1698E202 3.5692E201 1.1289E101

18 0.00000E100 9.76924E208 1.26787E202 5.1699E202 3.5695E201 1.1289E101

Constraint activity

Iteration no. Active Value Lagrange multiplier

1 Yes 24.66382E209 1.07717E202

2 Yes 22.46286E209 2.44046E202

3 No 24.04792E100 0.00000E100

4 No 27.27568E201 0.00000E100

Design variable activity

Iteration no. Active Design Lower Upper Lagrange multiplier

1 Lower 5.16987E202 5.00000E202 2.00000E201 0.00000E100

2 Lower 3.56950E201 2.50000E201 1.30000E100 0.00000E100

3 No 1.12895E101 2.00000E100 1.50000E101 0.00000E100

Note: Number of calls for cost function evaluation5 18; number of calls for evaluation of cost function gradients5 18; number of calls for
constraint function evaluation5 18; number of calls for evaluation of constraint function gradients5 18; number of total gradient
evaluations5 34.
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Various potential constraint strategies have been incorporated and evaluated. Several
descent functions have been investigated. Procedures to resolve inconsistencies in the QP
subproblem have been developed and evaluated. As a result of these enhancements and
evaluations, a very powerful, robust, and general algorithm for engineering design appli-
cations has become available.

13.4.5 Descent Functions

Descent functions play an important role in SQP methods, so we will discuss them
briefly. Some of the descent functions are nondifferentiable, while others are differentiable.
For example, the descent function of Eq. (12.30) is nondifferentiable. Another nondifferen-
tiable descent function has been proposed by Han (1977) and Powell (1978c). We will
denote this as ΦH and define it as follows at the kth iteration:

ΦH 5 fðxðkÞÞ1
Xp
i51

rðkÞi hij j1
Xm
i51

μðkÞ
i max 0; gi

� � ð13:71Þ

where ri
(k)$ jvi(k)j are the penalty parameters for equality constraints and μi

(k)$ ui
(k) are the

penalty parameters for inequality constraints. Because the penalty parameters sometimes
become very large, Powell (1978c) suggested a procedure to adjust them as follows:

First iteration:

rð0Þi 5 vð0Þi

��� ���; μð0Þ
i 5 uð0Þi ð13:72Þ

Subsequent iterations:

rðkÞi 5max jvðkÞi j; 1

2
ðrðk21Þi 1 jvðkÞi jÞ

� 

μðkÞ
i 5max uðkÞi ;

1

2
ðμðk21Þ

i 1 uðkÞi Þ
�  ð13:73Þ

Schittkowski (1981) has suggested using the following augmented Lagrangian function
ΦA as the descent function:

ΦA 5 fðxÞ1P1ðv;hÞ1P2ðu;gÞ ð13:74Þ

P1ðv;hÞ5
Xp
i51

vihi 1
1

2
rih

2
i

� �
ð13:75Þ

P2ðu;gÞ5
Xm
i51

uigi 1
1

2
μig

2
i

0
@

1
A; if ðgi 1 ui=μiÞ $ 0

1

2
u2i =μi; otherwise

8>>>>><
>>>>>:

ð13:76Þ

where the penalty parameters ri and μi were defined previously in Eqs. (13.72) and (13.73).
One good feature of ΦA is that the function and its gradient are continuous.
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13.5 OTHER NUMERICAL OPTIMIZATION METHODS

Many other methods and their variations for constrained optimization have been devel-
oped and evaluated in the literature. For more details about this, Gill et al. (1981),
Luenberger (1984), and Ravindran et al. (2006) should be consulted. This section briefly
discusses the basic ideas of three methods—feasible directions, gradient projection, and gen-
eralized reduced gradient—that have been used quite successfully for engineering design
problems.

13.5.1 Method of Feasible Directions

The method of feasible directions is one of the earliest for solving constrained optimiza-
tion problems. The basic idea of the method is to move from one feasible point to an improved
feasible point in the design space. Thus, given a feasible design x(k), an “improving feasible
direction” d(k) is determined such that for a sufficiently small step size α. 0, the following
two properties are satisfied:

1. The new design, x(k11)5x(k)1αd(k) is feasible.
2. The new cost function is smaller than the current one (i.e., f(x(k11)), f(x(k))).

Once d(k) is determined, a line search is performed to determine how far to proceed along
d(k). This leads to a new feasible design x(k11), and the process is repeated from there.

The method is based on the general algorithm that was described in Section 12.1.1,
where the design change determination is decomposed into search direction and step size
determination subproblems. The direction is determined by defining a linearized subprob-
lem at the current feasible point, and the step size is determined to reduce the cost func-
tion as well as maintain feasibility of design. Since linear approximations are used, it is
difficult to maintain feasibility with respect to the equality constraints.

Therefore, the method has been developed for and applied mostly to inequality-con-
strained problems. Some procedures have been developed to treat equality constraints in
these methods. However, we will describe the method for problems with only inequality
constraints.

Now we define a subproblem that yields an improving feasible direction at the current
design point. An improving feasible direction is defined as the one that reduces the cost func-
tion while remaining strictly feasible for a small step size. Thus, it is a direction of descent
for the cost function and it points toward the inside of the feasible region. The improving
feasible direction d satisfies the conditions

cTd, 0 and a ið ÞTd, 0 for iA Ik ð13:77Þ
where Ik is a potential constraint set at the current point as defined in Eq. (13.2). Such a
direction is obtained by solving the following min-max optimization problem:

Minimize
maximum ðcTd; aðiÞTd for iA IkÞ

� � ð13:78Þ
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To solve this problem, we transform it into a minimization problem only. Denoting the
maximum of the terms within the regular brackets by β, the direction-finding subproblem is
transformed as

Minimize
β ð13:79Þ

subject to
cTd # β ð13:80Þ

aðiÞTd # β for iA Ik ð13:81Þ
21 # dj # 1; j5 1 to n ð13:82Þ

The normalization constraints of Eq. (13.82) have been introduced to obtain a bounded
solution. Other forms of normalization constraints can also be used.

Let (β, d) be an optimum solution for the problem defined in Eqs. (13.79) through
(13.82). Note that this problem is one of linear programming. Therefore, any method to
solve it can be used. If, at the solution to this problem, β, 0, then d is an improving feasi-
ble direction. If β5 0, then the current design point satisfies the KKT necessary conditions
and the optimization process is terminated. Otherwise, an improving feasible direction at
the current design iteration is obtained. To compute the improved design in this direction,
a step size is needed. Any of the several step size determination methods can be used
here.

To determine a better feasible direction d(k), the constraints of Eq. (13.81) can be
expressed as

aðiÞTd # θiβ ð13:83Þ
where θi. 0 are called the “push-off” factors. The greater the value of θi, the more the
direction vector d is pushed into the feasible region. The reason for introducing θi is to
prevent the iterations from repeatedly hitting the constraint boundary and slowing down
the convergence.

Figure 13.4 shows the physical significance of θi in the direction-finding subproblem.
It depicts a two-variable design space with one active constraint. If θi is taken as zero,
then the right side of Eq. (13.81) (θiβ) becomes zero. The direction d in this case tends to
follow the active constraint; that is, it is tangent to the constraint surface. On the other
hand, if θi is very large, the direction d tends to follow the cost function contour. Thus, a
small value of θi will result in a direction that rapidly reduces the cost function. It may,
however, rapidly encounter the same constraint surface due to nonlinearities. Larger
values of θi will reduce the risk of re-encountering the same constraint, but will not
reduce the cost function as fast. A value of θi5 1 yields acceptable results for most
problems.

The disadvantages of the method are these:

1. A feasible starting point is needed—special procedures must be used to obtain such a
point if it is not known.

2. Equality constraints are difficult to impose and require special procedures for their
implementation.
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13.5.2 Gradient Projection Method

The gradient projection method was developed by Rosen in 1961. Just as in the feasible
directions method, this one uses first-order information about the problem at the current
point. The feasible directions method requires solving an LP problem at each iteration to
find the search direction. In some applications, this can be an expensive calculation. Thus,
Rosen was motivated to develop a method that does not require solving an LP problem.
His idea was to develop a procedure in which the direction vector could be calculated eas-
ily, although it may not be as good as the one obtained from the feasible directions
approach. Thus, he derived an explicit expression for the search direction.

In this method, if the initial point is inside the feasible set, the steepest-descent direction
for the cost function is used until a constraint boundary is encountered. If the starting
point is infeasible, then the constraint correction step is used to reach the feasible set.
When the point is on the boundary, a direction that is tangent to the constraint surface is
calculated and used to change the design. This direction is computed by projecting the
steepest-descent direction for the cost function onto the tangent hyperplane. This was
termed the constrained steepest-descent (CSD) direction in Section 12.7. A step is executed
in the negative projected gradient direction. Since the direction is tangent to the constraint
surface, the new point will be infeasible. Therefore, a series of correction steps needs to be
executed to reach the feasible set.

The iterative process of the gradient projection method is illustrated in Figure 13.5. At the
point x(k), 2c(k) is the steepest-descent direction and d(k) is the negative projected gradient
(constrained steepest-descent) direction. An arbitrary step takes the point x(k) to x(k,1), from
which point constraint correction steps are executed to reach the feasible point x(k11).
Comparing the gradient projection method and the CSD method of Section 12.7, we observe
that at a feasible point where some constraints are active, the two methods have identical

x2

x1

gi (x) = 0

f(x) = constant

0

d

d

d

d

θ = 0

θ = 1

θ
 1

θ
 1

FIGURE 13.4 Effect of push-off factor θi on search
direction d in the feasible directions method.
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directions. The only difference is in step size determination. Therefore, the CSD method is
preferred over the gradient projection method because it has been proved to converge to a
local minimum point starting from an arbitrary point.

Philosophically, the idea of the gradient projection method is quite good, that is, the
search direction is easily computable, although it may not be as good as the feasible direc-
tion. However, numerically the method has considerable uncertainty. The step size specifi-
cation is arbitrary; the constraint correction process is quite tedious. A serious drawback is
that convergence of the algorithm is tedious to enforce. For example, during the constraint
correction steps, it must be ensured that f(x(k11)), f(x(k)). If this condition cannot be satis-
fied or constraints cannot be corrected, then the step size must be reduced and the entire
process must be repeated from the previously updated point. This can be tedious to imple-
ment, resulting in additional calculations. Despite these drawbacks, the method has been
applied quite successfully to some engineering design problems (Haug and Arora, 1979).
In addition, many variations of the method have been investigated in the literature (Gill
et al., 1981; Luenberger, 1984; Belegundu and Arora, 1985).

13.5.3 Generalized Reduced Gradient Method

In 1967, Wolfe developed the reduced gradient method based on a simple variable elim-
ination technique for equality-constrained problems (Abadie, 1970). The generalized
reduced gradient (GRG) method is an extension of the reduced gradient method to accom-
modate nonlinear inequality constraints. In this method, a search direction is found such
that for any small move, the current active constraints remain precisely active. If some
active constraints are not precisely satisfied because of nonlinearity of the constraint func-
tions, the Newton-Raphson method is used to return to the constraint boundary. Thus, the
GRG method can be considered somewhat similar to the gradient projection method.

Since inequality constraints can always be converted to equalities by adding slack vari-
ables, we can form an equality-constrained NLP model. Also, we can employ the potential

x1

x2

x(k)

x(k+1)

x(k, 1)

Constrained steepest-
descent direction

0

Constraint
correction stepsαd–c

FIGURE 13.5 Graphic of the steps in the gradient
projection method.
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constraint strategy and treat all of the constraints in the subproblem as equalities. The direc-
tion-finding subproblem in the GRG method can be defined in the following way (Abadie
and Carpenter, 1969): Let us partition the design variable vector x as [yT, zT]T, where y(n2p)

and z(p) are vectors of independent and dependent design variables, respectively. First-
order changes in the cost and constraint functions (treated as equalities) are given as

Δf 5
@fT

@y
Δy1

@fT

@z
Δz ð13:84Þ

Δhi 5
@hTi
@y

Δy1
@hTi
@z

Δz ð13:85Þ

Since we started with a feasible design, any change in the variables must keep the cur-
rent equalities satisfied at least to first order (i.e., Δhi5 0). Therefore, using Eq. (13.85), this
requirement is written in matrix form as

ATΔyþ BTΔz ¼ 0; or Δz ¼ 2ðB2TATÞΔy ð13:86Þ
where columns of matrices A((n2p)3 p) and B(p3 p) contain gradients of equality constraints
with respect to y and z, respectively. Equation (13.86) can be viewed as the one that deter-
mines Δz (change in dependent variable) when Δy (change in independent variable) is
specified. Substituting Δz from Eq. (13.86) into Eq. (13.84), we can calculate Δf and iden-
tify df/dy as

Δf 5
@fT

@y
2

@fT

@z
B2TAT

� �
Δy;

df

dy
5

@f

@y
2AB21 @f

@z
ð13:87Þ

df/dy is commonly known as the reduced gradient.
In line search, the cost function is treated as the descent function. For a trial value of α, the

design variables are updated using Δy52α df/dy, and Δz from Eq. (13.86). If the trial
design is not feasible, then independent design variables are considered to be fixed and
dependent variables are changed iteratively by applying the Newton-Raphson method
(Eq. (13.86) until we get a feasible design point. If the new feasible design satisfies the descent
condition, line search is terminated; otherwise, the previous trial step size is discarded and
the procedure is repeated with a reduced step size. It can be observed that when df/dy5 0 in
Eq. (13.87), the KKT conditions of optimality are satisfied for the original NLP problem.

The main computational burden associated with the GRG algorithm arises from the
Newton-Raphson iterations during line search. Strictly speaking, the gradients of the con-
straints need to be recalculated and the Jacobian matrix B needs to be inverted at every
iteration during line search. This can be expensive. Toward this end, many efficient
numerical schemes have been suggested—for example, the use of a quasi-Newton formula
to update B21 without recomputing the gradients but requiring only constraint function
values. This can cause problems if the set of independent variables changes during itera-
tions. Another difficulty is to select a feasible starting point. Different procedures must be
used to handle arbitrary starting points, as in the feasible directions method.

In the literature, the reduced gradient method and the gradient projection method are
considered essentially the same (Sargeant, 1974). There can be some differences between
them in implementations depending on how the inequality constraints are treated. It turns
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out that if a potential constraint strategy is used to treat inequalities, the reduced gradient
method becomes essentially the same as the gradient projection method (Belegundu and
Arora, 1985). On the other hand, if inequalities are converted to equalities by adding slack
variables, it behaves quite differently from the gradient projection method.

The generalized reduced gradient method has been implemented in the Excel Solver
program that was described and used in Chapter 6. The program has been used success-
fully for numerous applications.

13.6 SOLUTION TO THE QUADRATIC PROGRAMMING
SUBPROBLEM

It is seen that the quadratic programming (QP) subproblem needs to be solved for the
search direction in many numerical optimization methods for constrained nonlinear opti-
mization problems. In this section we discuss a couple of the methods to solve the QP sub-
problem. Many methods have been developed for solution to such problems; Nocedal and
Wright (2006) should be consulted for more detailed discussion of the algorithms.

The QP subproblem discussed in this section is defined as

Minimize
qðdÞ5 cTd1 0:5dTHd ð13:88Þ

subject to

gj 5
Xn
i51

nijdi 2 ej 5 0; j5 1 to p ðNT
Ed5 eEÞ ð13:89Þ

gj 5
Xn
i51

nijdi 2 ej # 0; j5 p1 1 to m ðNT
I d # eIÞ ð13:90Þ

where the dimensions of various vectors and matrices are

cn31;dn31; eEp31; eIðp2mÞ31;Hn3n;NEn3p; and NIn3ðm2pÞ:

It is assumed that the columns of matrices NE and NI are linearly independent. It is also
assumed that the Hessian H of q(d) is a constant and positive definite matrix. Therefore,
the QP subproblem is strictly convex, and if a solution exists, it is a global minimum for
the objective function. Note that a slightly different notation is used to define the con-
straints in this section to define the QP subproblem in order to present the numerical algo-
rithms in a more compact form; p is the number of equality constraints and m is the total
number of constraints.

It is noted that H is an approximation of the Hessian of the Lagrangian function for the
constrained nonlinear programming problem. Also, an explicit H may not be available
because a limited-memory updating procedure may be used to update H and to calculate
the product of H with a vector or the product of the inverse of H with a vector.

There are two basic approaches to solving the QP subproblem: The first one is to write the
KKT necessary conditions and solve them for the minimum point; the second one is to use a
search method to solve for the minimum point directly. Both approaches are briefly discussed.
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13.6.1 Solving the KKT Necessary Conditions

Since the QP subproblem is strictly convex, solving the KKT necessary conditions, if a
solution exists, gives a global minimum point for the function. One method for solving
such a system was discussed in Section 9.5, where the KKT necessary conditions for the
problem were transformed for solution by the Simplex method of linear programming.
Here we discuss some other approaches for solving the KKT necessary conditions.

To write the KKT conditions, we define the Lagrangian for the problem in Eqs. (13.88)
through (13.90) as

L5 cTd1 0:5dTHd1 vTðNTd2 eÞ ð13:91Þ
where vm31 is a vector of Lagrange multipliers for the constraints, and the matrix Nn3m,
and the vector em31 are defined as

Nn3m 5 NE NI

� �
and em31 5

eE
eI

	 

ð13:92Þ

The KKT optimality conditions give

c1Hd1Nv5 0 ð13:93Þ
NT

Ed5 eE; NT
I d # eI ð13:94Þ

vj $ 0; vjgj 5 0; j5 p1 1 to m ð13:95Þ
Solving for d from Eq. (13.93), we get

d52H21ðNv1 cÞ ð13:96Þ
Now, substituting d from Eq. (13.96) into Eqs. (13.94) and assuming for the moment all

inequalities to be active, we obtain

NTd5 e; or NT½2H21ðNv1 cÞ�5 e ð13:97Þ
Simplifying this equation, we obtain

ðNTH21NÞv52ðe1NTH21cÞ ð13:98Þ
This linear system in v is difficult to solve because the constraints vj $ 0 for

j5 p1 1 to m must be imposed. However, we can transcribe the problem to a bound-
constrained optimization problem as follows: find v to

Minimize
qðvÞ5 0:5vTðNTH21NÞv1 vTðe1NTH21cÞ ð13:99Þ

subject to
vj $ 0 for j5 p1 1 to m ð13:100Þ

This bound-constrained optimization problem can be solved using the algorithm presented
in Section 13.3.

The gradient of the function in Eq. (13.99) is needed in the minimization procedure for
the solution to the problem in Eqs. (13.99) and (13.100). It can be calculated quite effi-
ciently using the limited-memory Hessian updating procedure:

rq vð Þ5 ðNTH21NÞv1 ðe1NTH21cÞ5NTH21ðNv1 cÞ1 e ð13:101Þ
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At the kth iteration of the algorithm to solve the bound-constrained optimization problem,
the current value of vector v(k) is known, and d(k) can be calculated from Eq. (13.96) as

dðkÞ 52H21ðNvðkÞ 1 cÞ ð13:102Þ
Therefore, substituting d(k) into Eq. (13.101), we obtain the gradient of q(v) as

rqðvðkÞÞ52NTdðkÞ 1 e ð13:103Þ
If an inverse Hessian is available, then Eq. (13.102) can be used directly to calculate the

gradient of the function. However, using the limited-memory updating procedure,
H21ðNvðkÞ 1 cÞ can be calculated quite efficiently in Eq. (13.102) (Huang and Arora, 1996;
Nocedal, 1980; Luenberger, 1984; Liu and Nocedal, 1989).

A similar procedure can be used to calculate the quadratic cost function of Eq. (13.99)
during the line search:

qðvÞ5 vTNTH21ð0:5Nv1 cÞ1 vTe ð13:104Þ
Thus the Lagrange multipliers v can be calculated by minimizing the function in Eq. (13.99)
subject to the simple bounds of Eq. (13.100), and the vector d(k) is readily recovered from
Eq. (13.102).

It is important to note that the problem defined in Eqs. (13.99) and (13.100) can also be
derived using the duality theory presented in Chapter 5, Section 5.5. To derive the dual prob-
lem defined in Eq. (5.38), we need to derive an expression for the dual function first. It is
obtained by substituting the expression for d in Eq. (13.96) into the Lagrange function in
Eq. (13.91). The dual function is then maximized subject to the nonnegativity of the Lagrange
multipliers for the inequality constraints. This gives the same problem for v as in Eqs. (13.99)
and (13.100), except for an irrelevant constant 0.5cTH21c in the cost function in Eq. (13.99).

One drawback of the foregoing dual approach is that the simple bound constraints on
the design variables must be treated as any other inequality constraint. This may be ineffi-
cient unless special care is exercised in numerical implementation of the procedure.

13.6.2 Direct Solution to the QP Subproblem

We can use a search method to directly solve the QP subproblem defined in Eqs. (13.88)
through (13.90). For this purpose, we can use the augmented Lagrangian procedure of
Section 11.7. The augmented Lagrangian is defined as

Φ5 qðdÞ1ΦE 1ΦI ð13:105Þ
where ΦE and Φl are the terms that are associated with the equality and inequality con-
straints, given as

ΦE 5
Xp
j51

ðvjgj 1 0:5rg2j Þ ð13:106Þ

ΦI 5
Xm
j5p11

vjgj 1 0:5rg2j ; if rgj 1 vj $ 0

2
v2j
2r

; if rgj 1 vj, 0

8><
>: ð13:107Þ
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where r.0 is a penalty parameter. Thus the optimization problem becomes

Minimize
Φ ð13:108Þ

subject to
diL # di # diU ð13:109Þ

where diL and diU are the lower and upper bounds on di. Here the bound-constrained opti-
mization algorithm given in Section 13.3 can be used to solve the problem defined in
Eqs. (13.108) and (13.109).

In the iterative solution process, the gradient of the augmented function Φ is needed.
Differentiating Φ in Eq. (13.105), we obtain

rΦ5rqðdÞ1rΦE 1rΦI ð13:110Þ
where

rq dð Þ5Hd1 c ð13:111Þ

rΦE 5
Xp
j51

ðvjrgj 1 rgjrgjÞ5
Xp
j51

ðvj 1 rgjÞrgj ð13:112Þ

rΦI 5
Xm
j5p11

ðvj 1 rgjÞrgj; if rgj 1 vj $ 0
0; if rgj 1 vj, 0

�
ð13:113Þ

Note that the product Hd is needed in Eq. (13.111). This can be calculated directly if
H is available. Alternatively, the product Hd can be calculated quite efficiently using the
limited-memory BFGS updating procedure as mentioned earlier.

EXERCISES FOR CHAPTER 13

Section 13.3 Approximate Step Size Determination
For the following problems, complete one iteration of the constrained steepest descent method for the

given starting point (let R05 1 and γ5 0.5, use the approximate step size determination procedure).

13.1 Beam design problem formulated in Section 3.8 at the point (b, d)5 (250, 300) mm.

13.2 Tubular column design problem formulated in Section 2.7 at the point (R, t)5 (12, 4) cm.

Let P5 50 kN, E5 210 GPa, l5 500 cm, σa5 250 MPa, and ρ5 7850 kg/m3.

13.3 Wall bracket problem formulated in Section 4.7.1 at the point (A1, A2)5 (150, 150) cm2.

13.4 Exercise 2.1 at the point h5 12 m, A5 4000 m2.

13.5 Exercise 2.3 at the point (R, H)5 (6, 15) cm.

13.6 Exercise 2.4 at the point R5 2 cm, N5 100.

13.7 Exercise 2.5 at the point (W, D)5 (100, 100) m.

13.8 Exercise 2.9 at the point (r, h)5 (6, 16) cm.

13.9 Exercise 2.10 at the point (b, h)5 (5, 10) m.

13.10 Exercise 2.11 at the point, width5 5 m, depth5 5 m, and height5 5 m.

13.11 Exercise 2.12 at the point D5 4 m and H5 8 m.

13.12 Exercise 2.13 at the point w5 10 m, d5 10 m, h5 4 m.

13.13 Exercise 2.14 at the point P15 2 and P25 1.
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Section 13.4 Constrained Quasi-Newton Methods
Complete two iterations of the constrained quasi-Newton method and compare the search directions

with the ones obtained with the CSD algorithm (note that the first iteration is the same for both methods;

let R05 1, γ5 0.5).

13.14 Beam design problem formulated in Section 3.8 at the point (b, d)5 (250, 300) mm.

13.15 Tubular column design problem formulated in Section 2.7 at the point (R, t)5 (12, 4) cm.

Let P5 50 kN, E5 210 GPa, l5 500 cm, σa5 250 MPa, and ρ5 7850 kg/m3.

13.16 Wall bracket problem formulated in Section 4.7.1 at the point (A1, A2)5 (150, 150) cm2.

13.17 Exercise 2.1 at the point h5 12 m, A5 4000 m2.

13.18 Exercise 2.3 at the point (R, H)5 (6, 15) cm.

13.19 Exercise 2.4 at the point R5 2 cm, N5 100.

13.20 Exercise 2.5 at the point (W, D)5 (100, 100) m.

13.21 Exercise 2.9 at the point (r, h)5 (6, 16) cm.

13.22 Exercise 2.10 at the point (b, h)5 (5, 10) m.

13.23 Exercise 2.11 at the point, width5 5 m, depth5 5 m, and height5 5 m.

13.24 Exercise 2.12 at the point D5 4 m and H5 8 m.

13.25 Exercise 2.13 at the point w5 10 m, d5 10 m, h5 4 m.

13.26 Exercise 2.14 at the point P15 2 and P25 1.

Formulate and solve the following problems using Excel Solver or other software.

*13.27 Exercise 3.34 *13.28 Exercise 3.35 *13.29 Exercise 3.36

*13.30 Exercise 3.50 *13.31 Exercise 3.51 *13.32 Exercise 3.52

*13.33 Exercise 3.53 *13.34 Exercise 3.54
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C H A P T E R

14

Practical Applications
of Optimization

Upon comp le t i on o f th i s chap te r, you wi l l be ab l e to

• Explain what is meant by practical

applications that have implicit functions

• Explain how to evaluate derivatives of

implicit functions for your problem

• Determine which software components

need to be integrated to solve problems

with implicit functions

• Formulate practical design optimization

problems

• Understand alternative formulations

of the practical design optimization

problems

Thus far we have considered simpler engineering design problems to describe
optimization concepts and computational methods. For such problems, explicit expressions
for all the functions of the problem in terms of the design variables could be derived. Whereas
some practical problems can be formulated with explicit functions, there are numerous other
applications for which explicit dependence of the problem functions on design variables is not
known; that is, explicit expressions in terms of the design variables cannot be derived.

In addition, complex systems require large and more sophisticated analysis models.
The number of design variables and constraints can be quite large. A check for convexity
of the problem is almost impossible. The existence of even feasible designs is not guaran-
teed, much less the optimum solution. The calculation of problem functions can require
large computational effort. In many cases large special-purpose software must be used to
compute the problem functions.

Although we will discuss some methods in Chapters 15 and 16 that do not require gra-
dients of functions, computational algorithms for problems with smooth and continuous
variables require gradients of cost and constraint functions. When an explicit form of the
problem functions in terms of the design variables is not known, gradient evaluation
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requires special procedures that must be developed and implemented into proper soft-
ware. Finally, various software components must also be integrated properly to create an
optimum design capability for a particular class of design problems.

In this chapter, issues of the optimum design of complex practical engineering systems
are addressed. Formulation of the problem, gradient evaluation, and other practical issues,
such as algorithm and software selection, are discussed. Some alternative formulations of
the problem are also discussed. These formulations do not have any implicit functions and
therefore do not require any special treatment. The important problem of interfacing a par-
ticular application with design optimization software is discussed, and several engineering
design applications are described.

Although most of the applications discussed in this chapter are related to mechanical
and structural systems, the issues here are also relevant to other areas. Therefore, the meth-
odologies presented and illustrated can serve as guidelines for other application areas.

14.1 FORMULATION OF PRACTICAL DESIGN
OPTIMIZATION PROBLEMS

14.1.1 General Guidelines

The problem formulation of a design task is an important step that must define a realistic
model for the engineering system under consideration. The mathematics of optimization
methods can easily give rise to situations that are absurd or that violate the laws of physics.
Therefore, to transcribe a design task correctly into a mathematical model, the designers
must use intuition, skill, and experience. The following points can serve as guiding princi-
ples to generate a mathematical model that is faithful to the real-world design task.

1. In an initial formulation of the problem, all of the possible parameters should be
viewed as potential design variables. That is, considerable flexibility and freedom must
be allowed for analyzing different possibilities. As we gain more knowledge about the
problem, redundant design variables can be fixed or eliminated from the model.

2. The existence of an optimum solution to a design optimization model depends on its
formulation. If the constraints are too restrictive, there may not be any feasible solution
to the problem. In such a case, the constraints must be relaxed by allowing larger
resource limits for inequality constraints.

3. The problem of optimizing more than one objective function simultaneously (multi-
objective problems) can be transformed into the standard problem by assigning weighting
factors to different objective functions to combine them into a single objective function
(Chapter 17). Or the most important criterion can be treated as the cost function and the
remaining ones as constraints.

4. The potential cost functions for many structural, mechanical, automotive, and aerospace
systems are weight, volume, mass, fundamental frequency, stress at a point,
performance, and system reliability, among others.

5. It is important to have continuous and differentiable cost and constraint functions for
derivative-based methods. In certain instances, it may be possible to replace a
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nondifferentiable function, such as jxj with a smooth function x2 without changing
the problem definition drastically.

6. In general, it is desirable to normalize all of the constraints with respect to their limit values,
as was discussed in Section 12.1.3. In numerical computations, this procedure leads to
more stable behavior.

7. It is sometimes desirable to establish a feasible design to determine feasibility of the
problem formulation.

How to Determine Feasible Points: Ignore the real cost function and solve the
optimization problem with the cost function as a constant, as described in Chapter 6.

14.1.2 Example of a Practical Design Optimization Problem

Optimum design formulation of complex engineering systems requires more general tools
and procedures than the ones discussed previously. We will demonstrate this by considering
a class of problems that has a wide range of applications in automotive, aerospace, mechani-
cal, and structural engineering. This important application area is chosen to demonstrate the
procedure of problem formulation and explain the treatment of implicit functions of the
problem. Evaluation of functions and their gradients will be explained. Readers unfamiliar
with this application area should use the material as a guideline for their area of interest
because similar analyses and procedures will need to be used in other practical applications.

The application area that we have chosen to investigate is the optimum design of sys-
tems modeled by the finite-element technique. It is common practice to analyze complex
structural and mechanical systems using this technique, which is available in many com-
mercial software packages. Displacements, stresses, and strains at various points, vibration
frequencies, and buckling loads for the system can be computed and constraints imposed
on them. We will describe an optimum design formulation for this application area.

Let x represent an n-component vector containing design variables for the system. This
may contain thicknesses of members, cross-sectional areas, parameters describing the
shape of the system, and stiffness and material properties of elements. Once x is specified,
a design of the system is known. To analyze the system (i.e., calculate stresses, strains and
frequencies, buckling load, and displacements), the procedure is to first calculate displace-
ments at some key points—called the grid, or nodal, points—of the finite-element model.
From these displacements, strains (relative displacement of the material particles), and
stresses at various points of the system can be calculated (Cook, 1981; Huebner and
Thornton, 1982; Grandin, 1986; Chandrupatla and Belegundu, 1997; Bhatti, 2005).

Let U be a vector having l components representing generalized displacements at the
system’s key points. The basic equation that determines the displacement vector U for a
linear elastic system—which is called the equilibrium equation in terms of displace-
ments—is given as

KðxÞU5 FðxÞ ð14:1Þ
where K(x) is an l3 l matrix called the stiffness matrix and F(x) is an effective load vector
having l components. The stiffness matrix K(x) is a property of the structural system that
depends explicitly on the design variables, material properties, and geometry of the system.
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Systematic procedures have been developed to automatically calculate the matrix with
different types of structures at the given design x. The load vector F(x), in general, can
also depend on design variables. We will not discuss procedures to calculate K(x) because
that is beyond the scope of the present text. Our objective is to demonstrate how the
design can be optimized once a finite-element model for the problem (meaning Eq. (14.1))
has been developed. We will pursue that objective assuming that the finite-element model
for the system has been developed.

It is seen that once the design x is specified, the displacements U can be calculated
by solving the linear system of Eq. (14.1). Note that a different x will give, in general,
different values for the displacements U. Thus U is a function of x (i.e., U5U(x)).
However, an explicit expression for U(x) in terms of the design variables x cannot be
written. That is, U is an implicit function of the design variables x. The stress σi at the
ith point is calculated using the displacements and is an explicit function of U and x as
σi(U, x). However, since U is an implicit function of x, σi becomes an implicit function of
the design variables x as well. The stress and displacement constraints can be written in
a functional form as

gi ðx; UÞ # 0 ð14:2Þ

In many automotive, aerospace, mechanical, and structural engineering applications,
the amount of material used must be minimized for efficient and cost-effective systems.
Thus, the usual cost function for this class of applications is the weight, mass, or material
volume of the system, which is usually an explicit function of the design variables x.
Implicit cost functions, such as stress, displacement, vibration frequencies, and so forth,
can also be treated by introducing artificial design variables (Haug and Arora, 1979).

In summary, a general formulation for the design problem involving explicit and
implicit functions of design variables is defined as: Find an n-dimensional vector x of
design variables to minimize a cost function f(x) satisfying the implicit design constraints
of Eq. (14.2), with U satisfying the system of Eq. (14.1). Note that equality constraints, if
present, can be routinely included in the formulation as in the previous chapters. We illus-
trate the procedure of problem formulation in Example 14.1.

EXAMPLE 14.1 DESIGN OF A TWO-MEMBER FRAME

Consider the design of a two-member frame subjected to out-of-plane loads, as shown in

Figure 14.1. Such frames are encountered in numerous automotive, aerospace, mechanical, and

structural engineering applications. We want to formulate the problem of minimizing the vol-

ume of the frame subject to stress and size limitations (Bartel, 1969).

Solution
Since the optimum structure will be symmetric, the two members of the frame are identical.

Also, it has been determined that hollow rectangular sections will be used as members with

three design variables defined as

d5width of the member, in
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h5height of the member, in

t5wall thickness, in

Thus, the design variable vector is x5 (d, h, t).

The volume for the structure is taken as the cost function, which is an explicit function of the

design variables given as

fðxÞ5 2Lð2dt1 2ht2 4t2Þ ð14:3Þ
To calculate stresses, we need to solve the analysis problem. The members are subjected to

both bending and torsional stresses, and the combined stress constraint needs to be imposed at

points 1 and 2.

Let σ and τ be the maximum bending and torsional shear stresses in the member, respec-

tively. The failure criterion for the member is based on a combined stress theory, known as the

von Mises (or maximum distortion energy) yield condition (Crandall et al., 1978). With this crite-

rion, the effective stress σe is given as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 1 3τ2

p
and the stress constraint is written in a normal-

ized form as

1

σ2
a

ðσ2 1 3τ2Þ2 1:0 # 0 ð14:4Þ

where σa is the allowable design stress.

The stresses are calculated from the member-end moments and torques, which are calculated

using the finite-element procedure. The three generalized nodal displacements (deflections and

rotations) for the finite-element model shown in Figure 14.1 are defined as

U15vertical displacement at node 2

U25 rotation about line 3�2

U35 rotation about line 1�2

1 3

2

L

x y

h

L
P

U2 U3

t

d

z, U1
FIGURE 14.1 Graphic of a two-member frame.
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Using these, the equilibrium equation (Eq. (14.1)) for the finite-element model that determines

the displacements U1, U2, and U3, is given as (for details of the procedure to obtain the equation

using individual member equilibrium equations, refer to texts by Cook, 1981; Haug and Arora, 1979;

Huebner and Thornton, 1982; Grandin, 1986; Chandrupatla and Belegundu, 1997; Bhatti, 2005):

EI

L3

24 26L 6L

26L 4L2 1 GJ
EIL

2

 !
0

6L 0 4L2 1 GJ
EIL

2

 !

2
6666664

3
7777775

U1

U2

U3

2
4

3
55

P
0
0

2
4

3
5 ð14:5Þ

where

E5modulus of elasticity, 33 107 psi

L5member length, 100 in

G5 shear modulus, 1.1543 107 psi

P5 load at node 2, 210,000 lb

I5moment of inertia5 1
12 dh3 2 ðd2 2tÞðh2 2tÞ3� �

; in4 ð14:6Þ

J5polar moment of inertia5
2tðd2 tÞ2ðh2 tÞ2

ðd1 h2 2tÞ ; in4 ð14:7Þ

A5 area for calculation of torsional shear stress5 ðd2 tÞðh2 tÞ; in2 ð14:8Þ
From Eq. (14.5), the stiffness matrix K(x) and the load vector F(x) of Eq. (14.1) can be identified.

Note that in the present example, the load vector F does not depend on the design variables.

As can be seen from Eq. (14.5), U is an implicit function of x. If K can be inverted explicitly in

terms of the design variables x, then U can be written as an explicit function of x. This is possible

in the present example; however, we will deal with the implicit form to illustrate the procedures

for evaluating constraints and their gradients.

For a given design, once the displacements U1, U2, and U3 have been calculated from Eq. (14.5),

the torque and bending moment at points 1 and 2 for member 1�2 are calculated as

T52
GJ

L
U3; lb-in ð14:9Þ

M1 5
2EI

L2
ð23U1 1U2LÞ; lb-in ðmoment at end 1Þ ð14:10Þ

M2 5
2EI

L2
ð23U1 1 2U2LÞ; lb-in ðmoment at end 2Þ ð14:11Þ

Using these moments, the torsional shear and bending stresses are calculated as

τ5
T

2At
; psi ð14:12Þ

σ1 5
1

2I
M1h; psi ðbending stress at end 1Þ ð14:13Þ

σ2 5
1

2I
M2h; psi ðbending stress at end 2Þ ð14:14Þ
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Thus the stress constraints of Eq. (14.4) at points 1 and 2 are given as

g1ðx; UÞ5 1

σ2
a

ðσ2
1 1 3τ2Þ21:0 # 0 ð14:15Þ

g2ðx; UÞ5 1

σ2
a

ðσ2
2 1 3τ2Þ21:0 # 0 ð14:16Þ

We observe that since moments T, M1, and M2 are implicit functions of the design variables,

the stresses are also implicit functions. They are also explicit functions of the design variables, as

seen in Eqs. (14.13) and (14.14). Therefore, the stress constraints of Eqs. (14.15) and (14.16) are

implicit as well as explicit functions of the design variables. This observation is important

because gradient evaluation for implicit constraint functions requires special procedures, which

are explained in the next section.

In addition to the two stress constraints, the following upper- and lower-bound constraints on

design variables are imposed:
2:5 # d # 10:0

2:5 # h # 10:0

0:1 # t # 1:0

ð14:17Þ

As can easily be observed, the explicit forms of the constraint functions g1 and g2 in terms of

the design variables d, h, and t are quite difficult to obtain even for this simple problem. We will

need an explicit form for the displacements U1, U2, and U3 in Eqs. (14.9) through (14.11) to have

an explicit form for the stress τ, σ1, and σ2. To have an explicit form for U1, U2, and U3, we will

have to explicitly invert the coefficient matrix for the equilibrium equation (14.5). Although this

is not impossible for the present example, it is quite impossible to do in general. Thus we

observe that the constraints are implicit functions of the design variables.

To illustrate the procedure, we select a design point as (2.5, 2.5, 0.1) and calculate the displa-

cements and stresses. Using the given data, we calculate the following quantities that are needed

in further calculations:

I5
1

12
2:54 2 2:34
� �

5 0:9232 in4

J5
1

4:8
2ð0:1Þð2:4Þ2ð2:4Þ2� �

5 1:3824 in4

A5 ð2:4Þð2:4Þ5 5:76 in2

GJ5 ð1:1543 107Þð1:3824Þ5 ð1:59533 107Þ
EI5 ð3:03 107Þð0:9232Þ5 ð2:76963 107Þ

4L2 1
GJ

EI
L2 5 41

1:5953

2:7696

� �
1002 5 ð4:5763 104Þ

ð14:18Þ

Using the foregoing data, the equilibrium equation (Eq. 14.5), is given as

27:696
24 2600 600

2600 45; 760 0
600 0 45;760

2
4

3
5 U1

U2

U3

2
4

3
55

210;000
0
0

2
4

3
5 ð14:19Þ
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Solving the preceding equation, the three generalized displacements of node 2 are given as

U1 5243:68190 in

U2 520:57275

U3 5 0:57275

ð14:20Þ

Using Eqs. (14.9) through (14.11), the torque in the member and the bending moments at

points 1 and 2 are

T52
1:59533 107

100
ð0:57275Þ52ð9:13713 104Þ lb-in

M1 5
2ð2:76963 107Þ

ð100Þð100Þ 23ð243:68190Þ2 0:57275ð100Þ½ �

5 ð4:08613 105Þ lb-in

M2 5
2ð2:76963 107Þ

ð100Þð100Þ 23ð243:6819Þ2 2ð0:57275Þð100Þ½ �

5 ð9:13733 104Þ lb-in

ð14:21Þ

Since M1.M2, σ1 will be larger than σ2, as observed from Eqs. (14.13) and (14.14). Therefore,

only the g1 constraint of Eq. (14.15) needs to be imposed.

Torsional shear and bending stresses at point 1 are calculated from Eqs. (14.12) and (14.13) as

τ5
2ð9:137313 104Þ

2ð5:76Þð0:1Þ 52ð7:93173 104Þpsi

σ1 5
ð4:086313 105Þð2:5Þ

2ð0:9232Þ 5 ð5:532813 105Þpsi ð14:22Þ

Taking the allowable stress σa as 40,000 psi, the effective stress constraint of Eq. (14.15) is given as

g1 5
1

ð4:0E1 04Þ2 ð5:532813 105Þ2 1 3ð27:93173 104Þ2� �
2 15 202:12.0 ð14:23Þ

Therefore, the constraint is very severely violated at the given design.

14.2 GRADIENT EVALUATION OF IMPLICIT FUNCTIONS

To use a derivative-based optimization method, we need to evaluate gradients of constraint
functions with respect to the design variables. When the constraint functions are implicit in the
design variables, we need to develop and utilize special procedures for gradient evaluation.
We will develop a procedure using the finite-element application of Section 14.1.

Let us consider the constraint function gi(x, U) of Eq. (14.2). Using the chain rule of dif-
ferentiation, the total derivative of gi with respect to the jth design variable is given as

dgi
dxj

5
qgi
qxj

1
qgTi
qU

dU

dxj
ð14:24Þ
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where

qgi
qU

5
qgi
qU1

qgi
qU2

. . . qgi
qUl

� �T
ð14:25Þ

and

dU

dxj
5

qU1

qxj

qU2

qxj
. . . qUl

qxj

� �T
ð14:26Þ

Therefore, to calculate the gradient of a constraint, we need to calculate the partial deri-
vatives qgi/qxj and qgi/qU, and the total derivatives dU/dxj. The partial derivatives
qgi/qxj and qgi/qU are quite easy to calculate using the form of the function gi(x, U). To
calculate dU/dxj, we differentiate the equilibrium Eq. (14.1) to obtain

qKðxÞ
qxj

U1KðxÞ dU
dxj

5
qF
qxj

ð14:27Þ

This equation can be rearranged as

KðxÞ dU
dxj

5
qF
qxj

2
qKðxÞ
qxj

U ð14:28Þ

The equation can be used to calculate dU/dxj. The derivative of the stiffness matrix
qK(x)/qxj can be easily calculated if the explicit dependence of K on x is known. Note that
Eq. (14.28) needs to be solved for each design variable. Once dU/dxj are known, the gradient
of the constraint is calculated from Eq. (14.24). The derivative vector in Eq. (14.24) is often
called the design gradient. We will illustrate the procedure with an example problem.

It should be noted that substantial work has been done in developing and implement-
ing efficient procedures for calculating derivatives of implicit functions with respect to the
design variables (Arora and Haug, 1979; Adelman and Haftka, 1986; Arora, 1995). The
subject is generally known as design sensitivity analysis. For efficiency considerations and
proper numerical implementations, the foregoing literature should be consulted. The pro-
cedures have been programmed into general-purpose software for automatic computation
of design gradients.

EXAMPLE 14.2 GRADIENT EVALUATION FOR A
TWO-MEMBER FRAME

Calculate the gradient of the stress constraint g1(x, U) for the two-member frame of Example

14.1 at the design point (2.5, 2.5, 0.1).

Solution
The problem was formulated in Example 14.1. The finite-element model was defined there,

and nodal displacements and member stresses were calculated. We will use Eqs. (14.24) and

(14.28) to evaluate the gradient of the stress constraint of Eq. (14.15).
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The partial derivatives of the constraint of Eq. (14.15) with respect to x and U are given as

qg1
qx

5
1

σ2
a

2σ1
qσ1

qx
1 6τ

qτ
qx

� �
ð14:29Þ

qg1
qU

5
1

σ2
a

2σ1
qσ1

qU
1 6τ

qτ
qU

� �
ð14:30Þ

Using Eqs. (14.9) through (14.14), the partial derivatives of τ and σ1 with respect to x and U are

calculated as follows.

Partial derivatives of shear stress Differentiating the expression for shear stress in

Eq. (14.12) with respect to the design variables x, we get

qτ
qx

5
1

2At

qT
qx

2
T

2A2t

qA
qx

2
T

2At2
qt
qx

ð14:31Þ

where the partial derivatives of the torque T with respect to the design variable x are given as

qT
qx

52
GU3

L

qJ
qx

ð14:32Þ
with qJ/qx calculated as

qJ
qd

5
4tðd2 tÞðh2 tÞ2ðd1 h2 2tÞ2 2tðd2 tÞ2ðh2 tÞ2

ðd1 h2 2tÞ2 5 0:864 ð14:33Þ

qJ
qh

5
4tðd2 tÞ2ðh2 tÞðd1 h2 2tÞ2 2tðd2 tÞ2ðh2 tÞ2

ðd1 h2 2tÞ2 5 0:864 ð14:34Þ

qJ
qt

5
2ðd2 tÞ2ðh2 tÞ2 2 4tðd2 tÞðh2 tÞ2 2 4tðd2 tÞ2ðh2 tÞ

ðd1 h2 2tÞ

2
2tðd2 tÞ2ðh2 tÞ2ð22Þ

ðd1 h2 2tÞ2 5 12:096

ð14:35Þ

Therefore, qJ/qx is assembled as

qJ
qx

5
0:864
0:864

12:096

2
4

3
5 ð14:36Þ

and Eq. (14.32) gives qT/qx as

qT
qx

52
ð1:1543 107Þ

100
ð0:57275Þ

0:864

0:864

12:096

2
64

3
75

52ð6:6103 104Þ
0:864

0:864

12:096

2
64

3
75

ð14:37Þ

Other quantities needed to complete the calculations in Eq. (14.31) are qA/qx and qt/qx,
which are calculated as
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qA
qx

5

ðh2 tÞ
ðd2 tÞ

2ðh2 tÞ2 ðd2 tÞ

2
64

3
755

2:4

2:4

24:6

2
64

3
75

qt
qx

5

0

0

1

2
64
3
75

ð14:38Þ

Substituting various quantities into Eq. (14.31), we get the partial derivative of τ with respect to x as

qτ
qx

5
1

2At

qT
qx

2
T

A

qA
qx

2
T

t

qt
qx

� �
5

21:6533 104

21:6533 104

3:5803 104

2
4

3
5 ð14:39Þ

Differentiating the expression for the shear stress τ in Eq. (14.12) with respect to the general-

ized displacements U, we get

qτ
qU

5
1

2At

qT
qU

ð14:40Þ

where Eq. (14.9) gives

qT
qU

5
0
0

2GJ=L

2
4

3
55

0
0

21:59533 105

2
4

3
5 ð14:41Þ

Therefore, qτ/qU is given as

qτ
qU

5
0
0

21:38483 105

2
4

3
5 ð14:42Þ

Partial derivatives of bending stress Differentiating the expression for σ1 given in

Eq. (14.13) with respect to the design variables x, we get

qσ1

qx
5

h

2I

qM1

qx
1

M1

2I

qh
qx

2
M1h

2I2
qI
qx

ð14:43Þ

where qM1/qx, qI/qx, and qh/qx are given as

qM1

qx
5

2E

L2
ð23U1 1U2LÞ

qI
qx

qI
qd

5
1

12
h3 2 ðh2 2tÞ3� �

5 0:288167

qI
qh

5
1

4
dh2 2 ðd2 2tÞðh2 2tÞ2� �

5 0:8645

qI
qt

5
ðh2 2tÞ3

6
1

ðh2 2tÞ2ðd2 2tÞ
2

5 8:11133

qh
qx

5

0

1

0

2
64
3
75

ð14:44Þ
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Substituting various quantities into Eq. (14.43),

qσ1

qx
5

0
2:21313 105

0

2
4

3
5 ð14:45Þ

Differentiating the expression for σ1 in Eq. (14.13) with respect to generalized displacements

U, we get
qσ1

qU
5

h

2I

qM1

qU
ð14:46Þ

where qM1/qU is given from Eq. (14.10) as

qM1

qU
5

2EI

L2

23
L
0

2
4

3
5 ð14:47Þ

Therefore, qσ1/qU is given as

qσ1

qU
5

Eh

L2

23
L
0

2
4

3
55

22:253 105

7:503 105

0

2
4

3
5 ð14:48Þ

Substituting various quantities into Eqs. (14.29) and (14.30), we obtain the partial derivatives

of constraints as

qg1
qx

5
4:917

157:973
210:648

2
4

3
5

qg1
qU

5
215:561
518:700
41:190

2
4

3
5

ð14:49Þ

Derivatives of the displacements To calculate the derivatives of the displacements, we use

Eq. (14.28). Since the load vector does not depend on the design variables, qF/qxj5 0 for j5 1, 2, 3

in Eq. (14.28). To calculate (qK(x)/qxj)U on the right side of Eq. (14.28), we differentiate Eq. (14.5)

with respect to the design variables. For example, differentiation of Eq. (14.5) with respect to d

gives the following vector:

qKðxÞ
qd

U5
23:12143 103

22:85853 104

2:85853 104

2
4

3
5 ð14:50Þ

Similarly, by differentiating with respect to h and t, we obtain

qKðxÞ
qx

U5 ð1:0E103Þ
23:1214 29:3642 287:861
228:5850 28:4540 3:300
28:5850 228:4540 23:300

2
4

3
5 ð14:51Þ

Since K(x) is already known in Example 14.1, we use Eq. (14.28) to calculate dU/dx as

dU

dx
5

16:9090 37:6450 383:4200
0:2443 0:4711 5:0247

20:2443 20:4711 25:0247

2
4

3
5 ð14:52Þ
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Finally, substituting all of the quantities in Eq. (14.24), we obtain the design gradient for the

effective stress constraint of Eq. (14.15) as

dg1
dx

5
2141:55
2202:87
23577:30

2
4

3
5 ð14:53Þ

As noted in Example 14.1, the stress constraint of Eq. (14.15) is severely violated at the given

design. The signs of the foregoing design derivatives indicate that all of the variables will have

to be increased to reduce the constraint violation at the point (2.5, 2.5, 0.1).

14.3 ISSUES IN PRACTICAL DESIGN OPTIMIZATION

Several issues need to be considered for practical design optimization. For example,
careful consideration needs to be given to the selection of an algorithm and the associated
software. Improper choice of either one can mean failure of the optimum design process.
In this section, we will discuss some of the issues that can have a significant impact on
practical applications of the optimization methodology. This material augments the related
discussion presented in Chapter 6.

14.3.1 Selection of an Algorithm

Many algorithms have been developed and evaluated for practical design optimization.
We need to consider several aspects when selecting an algorithm for practical applications,
such as robustness, efficiency, generality, and ease of use.

Robustness

Characteristics of a robust algorithm were discussed in Section 12.1.5. For practical
applications, it is important to use a method that is theoretically guaranteed to converge.
A method having such a guarantee starting from any initial design estimate is called robust (so
called globally convergent to a local minimum point). Robust algorithms usually require a
few more calculations during each iteration compared with algorithms that have no proof
of convergence. However, they save the designer’s time in the long run and remove uncer-
tainty about the optimum solution.

Potential Constraint Strategy

To evaluate the search direction in numerical methods for constrained optimization, we
need to know the cost and constraint functions and their gradients. The numerical algo-
rithms can be classified into two categories based on whether gradients of all of the constraints or
only a subset of them are required during design iteration. The numerical algorithms that need
the gradients of only a subset of the constraints are said to use potential constraint strategy.
The potential constraint set, in general, is composed of active, nearly active, and violated
constraints at the current iteration. For further discussion on the topic of potential set strat-
egy, refer to Section 13.1.

58714.3 ISSUES IN PRACTICAL DESIGN OPTIMIZATION

II. NUMERICAL METHODS FOR CONTINUOUS VARIABLE OPTIMIZATION



14.3.2 Attributes of a Good Optimization Algorithm

Based on the preceding discussion, the attributes of a good algorithm for practical
design applications are defined as follows:

Reliability. The algorithm must be reliable for general design applications because such
algorithms converge to a minimum point starting from any initial design estimate.
Reliability of an algorithm is guaranteed if it is theoretically proven to converge.
Generality. The algorithm must be general, which implies that it should be able to treat
equality as well as inequality constraints. In addition, it should not impose any
restrictions on the form of the problem functions.
Ease of use. The algorithm must be easy to use by the experienced as well as the
inexperienced designer. From a practical standpoint, this is an important requirement
because an algorithm requiring selection of tuning parameters is difficult to use. The
proper specification of the parameters usually requires not only a complete knowledge
and understanding of the algorithm’s mathematical structure but also experimentation
with each problem. Such an algorithm is unsuitable for practical design applications.
Efficiency. The algorithm must be efficient for general engineering applications. An
efficient algorithm has (1) a faster rate of convergence to the minimum point, and (2)
the fewest number of calculations within one design iteration. The rate of convergence
can be accelerated by incorporating second-order information about the problem into
the algorithm. Incorporation of second-order information, however, requires additional
calculations during an iteration. Therefore, there is a trade-off between the efficiency of
calculation within an iteration and the rate of convergence. Some existing algorithms
use second-order information whereas others do not.

As regards the last item, efficiency within an iteration implies a minimum number of
calculations for search direction and step size. One way to achieve efficiency is to use a
potential constraint strategy in calculating the search direction. Some algorithms use this
strategy in their calculations while others do not. When the potential constraint strategy is
used, the direction-finding subproblem needs the gradients of only the potentially active
constraints. Otherwise, the gradients of all constraints are needed, which is inefficient in
most practical applications.

Another consideration for improving efficiency within an iteration is to keep the num-
ber of function evaluations for step size determination to a minimum. This can be
achieved by using step size determination procedures requiring fewer calls for function
evaluations (e.g., inexact line search and polynomial interpolation).

The designer needs to ask the following questions (all answers should be yes) before
selecting an optimization algorithm for practical applications:

1. Does the algorithm have proof of convergence? That is, is it theoretically guaranteed
to converge to an optimum point starting from any initial design estimate?

2. Can the starting design be infeasible (i.e., arbitrary)?
3. Can the algorithm solve a general optimization problem without any restrictions on

the form of the constraint functions?
4. Can the algorithm treat equality as well as inequality constraints?
5. Is the algorithm easy to use? (In other words, it does not require tuning for each problem.)
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14.4 USE OF GENERAL-PURPOSE SOFTWARE

As we saw in previous sections, practical systems require considerable computer analy-
sis before optimum solutions are obtained. For a particular application, problem functions
and gradient evaluation software, as well as optimization software, must be integrated to
create an optimum design capability. Depending on the application, each of the software
components can be very large. Therefore, to create a design optimization capability, the
most sophisticated and modern computer facilities need to be used to integrate the soft-
ware components.

For the example of structures modeled by the finite elements that were discussed in
Section 14.1.2, large analysis packages must be used to analyze the structure. From the cal-
culated response, constraint functions must be evaluated and programs must be devel-
oped to calculate gradients. All of the software components must be integrated to create
the optimum design capability for structures modeled by finite elements.

In this section we will discuss the issues involved in selecting a general-purpose optimi-
zation software. Interfacing of the software with a particular application will also be
discussed.

14.4.1 Software Selection

Several issues need to be explored before general-purpose optimization software is
selected for integration with other application-dependent software. The most important
question pertains to the optimization algorithm and how well it is implemented.

The attributes of a good algorithm were given in Section 14.3.2. The software must contain
at least one algorithm that satisfies all of the requirements stated there. The algorithm should
also be robustly implemented because a good algorithm when badly implemented is not
very useful. The proof of convergence of most algorithms is based on certain assumptions.
These need to be strictly adhered to while implementing the algorithm. In addition, most
algorithms have some numerical uncertainties in their steps that need to be recognized, and
proper procedures need to be developed for their numerical implementation. It is also
important that the software be well tested on a range of applications of varying difficulty.

Several other user-friendly features are desirable. For example, how good is the user’s
manual? What sample problems are available with the program and how well are they
documented? How easy is it to install the program on different computer systems? Does
the program require the user to select algorithm-related parameters? All of these questions
should be investigated before selecting the software.

14.4.2 Integration of an Application into General-Purpose Software

Each general-purpose program for optimization requires that the particular design
application be integrated into the software. Ease of integration of the software components
for various applications can influence program selection. Also, the amount of data prepa-
ration needed to use the program is important.

Some general-purpose libraries are available that contain various subprograms imple-
menting different algorithms. The user is required to write a main program, defining
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various data before invoking the subprogram. Subprograms for function and gradient
evaluation must also be written. These are then called by the optimization program during
calculation of the search direction. Also, the function evaluation subprograms are called
during the line search to determine the step size.

The other approach is to develop a computer program with options for various optimiza-
tion algorithms. Each application is implanted in the program through a standard interface
that consists of “subprogram calls.” The user prepares a few subprograms to describe the
design problem only. All of the data between the program and the subprograms flow through
the subprogram arguments. For example, design variable data are sent to the subprograms
and the expected output is the constraint function values and their gradients. Interactive capa-
bilities, graphics, and other user-friendly features may be available in the program.

Both procedures described in the foregoing paragraphs have been successfully used for
many practical applications of optimization. In most cases, the choice of the procedure has
been dictated by the availability of the software. We will use the program IDESIGN, which
is based on the second approach, to solve several design optimization problems. The pro-
gram is combined with user-supplied subprograms to create an executable module. The
user-supplied subprograms can be quite simple for problems having explicit functions
and complex for problems having implicit functions. External programs may have to be
called upon to generate the function values and their gradients needed by IDESIGN. This
has been done, and several complex problems have been solved and reported in the litera-
ture (Tseng and Arora, 1987, 1988).

14.5 OPTIMUM DESIGN OF A TWO-MEMBER FRAME
WITH OUT-OF-PLANE LOADS

Figure 14.1 shows the two-member frame subjected to out-of-plane loads. The members
of the frame are subjected to torsional, bending, and shearing loads. The objective of the
problem is to design a structure having minimum volume without material failure due to
applied loads. The problem was formulated in Section 14.1.2 using the finite-element
approach. In defining the stress constraint, the von Mises yield criterion is used and the
shear stress due to the transverse load is neglected.

The formulation and equations given in Sections 14.1.2 and 14.2 are used to develop
appropriate subprograms for IDESIGN. The data given there are used to optimize the
problem. Also, as noted, only the constraint g1 needs to be imposed. Two widely separated
starting designs, (2.5, 2.5, 0.1) and (10, 10, 1), are tried to observe their effect on the conver-
gence rate.

For the first starting point, all of the variables are at their lower bounds; for the second
point, they are all at their upper bounds. Both starting points converge to the same opti-
mum solution with almost the same values for the design variables and Lagrange multi-
pliers for active constraints, as shown in Tables 14.1 and 14.2. However, the number of
iterations and the number of calls for function and gradient evaluations are quite different.
For the first starting point, the stress constraint is severely violated (by 20,212 percent).
Several iterations are expended to bring the design close to the feasible region. For the sec-
ond starting point, the stress constraint is satisfied and the program takes only six iterations
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to find the optimum solution. Note that both solutions reported in Tables 14.1 and 14.2 are
obtained using the Sequential Quadratic Programming option (SQP) available in IDESIGN.
Also, a very severe stopping criterion is used to obtain the precise optimum point.

The notation used in the tables is defined as follows:

• Max violation (maximum violation of among constraints)
• Convergence parameter
• Cost (cost function value)
• Lagrange multiplier (for a constraint)

The preceding discussion shows that the starting design estimate for the iterative pro-
cess can have a substantial impact on the rate of convergence of an algorithm. In many
practical applications, a good starting design is available or can be obtained after some
preliminary analyses. Such a starting design for the optimization algorithm is desirable
because the optimal solution can be obtained rather quickly.

TABLE 14.1 History of the iterative process and optimum solution for a two-member frame,
starting point (2.5, 2.5, 0.10)

Iteration
no.

Maximum
violation

Convergence
parameter Cost d h t

1 2.02119E102 1.00000E100 1.92000E102 2.5000E100 2.5000E100 1.0000E201

2 8.57897E101 1.00000E100 2.31857E102 2.5000E100 3.4964E100 1.0000E201

3 3.58717E101 1.00000E100 2.85419E102 2.5000E100 4.8355E100 1.0000E201

: : : : : : :

17 6.78824E201 1.00000E100 6.14456E102 5.5614E100 1.0000E101 1.0000E201

18 1.58921E201 6.22270E201 6.76220E102 7.1055E100 1.0000E101 1.0000E201

19 1.47260E202 7.01249E202 7.01111E102 7.7278E100 1.0000E101 1.0000E201

20 1.56097E204 7.59355E204 7.03916E102 7.7979E100 1.0000E101 1.0000E201

Constraint activity

Iteration

no. Active Value

Lagrange

multiplier

1 Yes 1.56097E204 1.94631E102

Design variable activity

Iteration

no. Active Design Lower Upper

Lagrange

multiplier

1 No 7.79791E100 2.50000E100 1.00000E101 0.00000E100

2 Upper 1.00000E101 2.50000E100 1.00000E101 7.89773E101

3 Lower 1.00000E201 1.00000E201 1.00000E100 3.19090E102

Cost function at optimum5 703.92; number of calls for cost function evaluation5 20; number of calls for cost function
gradient evaluation5 20; number of calls for constraint function evaluation5 20; number of calls for constraint function
gradient evalution5 20; number of total gradient evaluations5 20.
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14.6 OPTIMUM DESIGN OF ATHREE-BAR STRUCTURE
FOR MULTIPLE PERFORMANCE REQUIREMENTS

In the previous section, we discussed design of a structural system for one performance
requirement—the material must not fail under the applied loads. In this section, we discuss
a similar application where the system must perform safely under several operating environ-
ments. The problem that we have chosen is the three-bar structure that was formulated in
Section 2.10. The structure was shown in Figure 2.6. The design requirement is to minimize
the weight of the structure and satisfy the constraints of member stress, deflection at node 4,
buckling of members, vibration frequency, and explicit bounds on the design variables. We
will optimize the symmetric and asymmetric structures and compare the solutions. A very
strict stopping criterion will be used to obtain the precise optimum designs.

14.6.1 Symmetric Three-Bar Structure

A detailed formulation for the symmetric structure where members 1 and 3 are similar
was discussed in Section 2.10. In the present application, the structure is designed to

TABLE 14.2 History of the iterative process and optimum solution for a two-member
frame, starting point (10, 10, 1)

Iteration
no.

Maximum
violation

Convergence
parameter Cost d h t

1 0.00000E100 6.40000E103 7.20000E103 1.0000E101 1.0000E101 1.0000E100

2 0.00000E100 2.27873E101 7.87500E102 9.9438E100 9.9438E100 1.0000E201

3 1.25020E202 1.31993E100 7.13063E102 9.0133E100 9.0133E100 1.0000E201

4 2.19948E202 1.03643E201 6.99734E102 7.6933E100 1.0000E101 1.0000E201

5 3.44115E204 1.67349E203 7.03880E102 7.7970E100 1.0000E101 1.0000E201

6 9.40469E208 4.30513E207 7.03947E102 7.7987E100 1.0000E101 1.0000E201

Constraint activity

Iteration no. Active Value Lagrange multiplier

1 Yes 9.40469E208 1.94630E102

Design variable activity

Iteration no. Active Design Lower Upper Lagrange multiplier

1 No. 7.79867E100 2.50000E100 1.00000E101 0.00000E100

2 Upper 1.00000E101 2.50000E100 1.00000E101 7.89767E101

3 Lower 1.00000E201 1.00000E200 1.00000E100 3.19090E102

Cost function at optimum5 703.95; number of calls for cost function evaluation5 9; number of calls for cost function
gradient evaluation5 6; number of calls for constraint function evaluation5 9; number of calls for constraint function
gradient evaluation5 4; number of total gradient evaluations5 4.
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withstand three loading conditions and the foregoing constraints. Table 14.3 contains all of
the data used for designing the structure. All of the expressions programmed for IDESIGN
were given in Section 2.10. The constraint functions are appropriately normalized and
expressed in the standard form. The cost function is taken as the total weight of the truss,
which is given as volume3weight density.

To study the effect of imposing more performance requirements, the following three
design cases are defined (note that explicit design variable�bound constraints are included
in all of the cases):

Case 1. Stress constraints only (total constraints5 13).
Case 2. Stress and displacement constraints (total constraints5 19).
Case 3. All constraints—stress, displacement, member buckling, and frequency (total
constraints5 29).

Tables 14.4 through 14.6 that follow contain the history of the iterative process with the
SQP method in IDESIGN. The constraint-numbering scheme for the problem is shown in
Table 14.6. The active constraints at the optimum point and their Lagrange multipliers
(for normalized constraints) are

Case 1. Stress in member 1 under loading condition 1, 21.11.

TABLE 14.3 Design data for a three-bar structure

Structure Data

Allowable stress Members 1 and 3, σ1a5σ3a5 5000 psi
Member 2, σ2a5 20,000 psi

Height l5 10 in

Allowable displacements ua5 0.005 in
νa5 0.005 in

Modulus of elasticity E5 107 psi

Weight density γ5 0.10 lb/in3

Constant β5 1.0

Lower limit on design (0.1,0.1,0.1) in2

Upper limit on design (100,100,100) in2

Starting design (1,1,1) in2

Lower limit on frequency 2500 Hz

Loading conditions 3

Angle, θ (degrees) 45 90 135

Load, P (lb) 40,000 30,000 20,000

59314.6 OPTIMUM DESIGN OF A THREE-BAR STRUCTURE FOR MULTIPLE PERFORMANCE REQUIREMENTS

II. NUMERICAL METHODS FOR CONTINUOUS VARIABLE OPTIMIZATION



Case 2. Stress in member 1 under loading condition 1, 0.0; horizontal displacement
under loading condition 1, 16.97; horizontal displacement under loading condition 1,
6.00; vertical displacement under loading condition 2, 0.0.
Case 3. Same as for Case 2.

Note that the cost function value at the optimum point increases for Case 2 as compared
with Case 1. This is consistent with the hypothesis that more constraints for the system
imply a smaller feasible region, thus giving a higher value for the optimum cost function.
There is no difference between the solutions for Cases 2 and 3 because none of the addi-
tional constraints for Case 3 is active.

14.6.2 Asymmetric Three-Bar Structure

When the symmetry condition for the structure (i.e., member 1 same as member 3) is
relaxed, we get three design variables for the problem compared with only two for the

TABLE 14.4 History of the iterative process and final solution for a symmetric
three-bar structure, Case 1—Stress constraints

Iteration
no.

Maximum
violation

Convergence
parameter Cost A15A3 A2

1 4.65680E100 1.00000E100 3.82843E100 1.0000E100 1.0000E100

2 2.14531E100 1.00000E100 6.72082E100 1.9528E100 1.1973E100

: : : : : :

8 2.20483E204 3.97259E203 2.11068E101 6.3140E100 3.2482E100

9 1.58618E206 5.34172E205 2.11114E101 6.3094E100 3.2657E100

Cost function at optimum5 21.11; number of calls for cost function evaluation5 9; number of calls for
cost function gradient evaluation5 9; number of calls for constraint function evaluation5 9; number of
calls for constraint function gradient evaluation5 9; number of total gradient evaluations5 19.

TABLE 14.5 History of the iterative process and final solution for a symmetric
three-bar structure, Case 2—stress and displacement constraints

Iteration
no.

Maximum
violation

Convergence
parameter Cost A15A3 A2

1 6.99992E100 1.00000E100 3.82843E100 1.0000E100 1.0000E100

2 3.26663E100 1.00000E100 6.90598E100 1.8750E100 1.6027E100

: : : : : :

8 1.50650E204 3.05485E204 2.29695E101 7.9999E100 3.4230E201

9 2.26886E208 4.53876E208 2.29704E101 7.9999E100 3.4320E201

Cost function at optimum5 22.97; number of calls for cost function evaluation5 9; number of calls for
cost function gradient evaluation5 9; number of calls for constraint function evaluation5 9; number of
calls for constraint function gradient evaluation5 9; number of total gradient evaluations5 48.
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TABLE 14.6 History of the iterative process and final solution for a
symmetric three-bar structure, Case 3—All constraints

Iteration

no.

Maximum

violation

Convergence

parameter Cost A15A3 A2

1 6.99992E100 1.00000E100 3.82843E100 1.0000E100 1.0000E100

2 2.88848E100 1.00000E100 7.29279E100 2.0573E100 1.4738E100

: : : : : :

7 7.38741E205 3.18776E204 2.29691E101 7.9993E100 3.4362E201

8 5.45657E209 2.31529E208 2.29704E101 7.9999E100 3.4320E201

Constraint activity

Iteration
no. Active Value

Lagrange
multiplier Notes

1 No 21.56967E201 0.00000E100 (Frequency)

2 Yes 22.86000E202 0.00000E100 (σ1, Loading Condition 1)

3 No 29.71400E201 0.00000E100 (σ2, Loading Condition 1)

4 No 27.64300E201 0.00000E100 (σ3, Loading Condition 1)

5 Yes 5.45657E209 1.69704E101 (u, Loading Condition 1)

6 Yes 25.72000E202 0.00000E100 (v, Loading Condition 1)

7 No 25.00000E201 0.00000E100 (σ1, Loading Condition 2)

8 No 25.00000E201 0.00000E100 (σ2, Loading Condition 2)

9 No 27.50000E201 0.00000E100 (σ3, Loading Condition 2)

10 No 21.00000E100 0.00000E100 (u, Loading Condition 2)

11 Yes 0.00000E100 6.00000E100 (v, Loading Condition 2)

12 No 29.85700E201 0.00000E100 (σ1, Loading Condition 3)

13 No 25.14300E201 0.00000E100 (σ2, Loading Condition 3)

14 No 28.82150E201 0.00000E100 (σ3, Loading Condition 3)

15 No 25.00000E201 0.00000E100 (u, Loading Condition 3)

16 No 25.28600E201 0.00000E100 (v, Loading Condition 3)

Design variable activity

Iteration

no. Active Design Lower Upper

Lagrange

multiplier

1 No 7.99992E100 1.00000E201 1.00000E102 0.00000E100

2 No 3.43200E201 1.00000E201 1.00000E102 0.00000E100

Cost function at optimum5 22.97; number of calls for cost function evaluation5 8; number of calls
for cost function gradient evaluation5 8; number of calls for constraint function evaluation5 8;
number of calls for constraint function gradient evaluation5 8; number of total gradient
evaluations5 50.
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symmetric case (i.e., areas A1, A2, and A3 for members 1, 2, and 3, respectively). With this,
the design space becomes expanded so we can expect better optimum designs compared
with the previous cases.

The data used for the problem are the same as given in Table 14.3. The weight of the
structure is minimized for the following three cases (note that the explicit design variable�
bound constraints are included in all cases):

Case 4. Stress constraints only (total constraints5 15)
Case 5. Stress and displacement constraints (total constraints5 21)
Case 6. All constraints—stress, displacement, buckling, and frequency (total
constraints5 31)

The structure can be analyzed by considering either the equilibrium of node 4 or the
general finite-element procedures. By following the general procedures, the following
expressions for displacements, member stresses, and fundamental vibration frequency are
obtained (note that the notations are defined in Section 2.10):

Displacements:

u5
l

E

ðA1 1 2
ffiffiffi
2

p
A2 1A3ÞPu 1 ðA1 2A3ÞPv

A1A2 1
ffiffiffi
2

p
A1A3 1A2A3

" #
; in

v5
l

E

2 ðA1 2A3ÞPu 1PvðA1 1A3Þ
A1A2 1

ffiffiffi
2

p
A1A3 1A2A3

� �
; in

ð14:54Þ

Member stresses:

σ1 5
ð
ffiffiffi
2

p
A2 1A3ÞPu 1A3Pv

A1A2 1
ffiffiffi
2

p
A1A3 1A2A3

; psi

σ2 5
2ðA1 2A3ÞPu 1 ðA1 1A3ÞPv

A1A2 1
ffiffiffi
2

p
A1A3 1A2A3

; psi

σ3 5
2ðA1 1

ffiffiffi
2

p
A2ÞPu 1A1Pv

A1A2 1
ffiffiffi
2

p
A1A3 1A2A3

; psi

ð14:55Þ

Lowest eigenvalue:

ζ5
3E

2
ffiffiffi
2

p
ρl2

A1 1
ffiffiffi
2

p
A2 1A3 2 ½ðA1 2A3Þ2 1 2A2

2�1=2ffiffiffi
2

p
ðA1 1A3Þ1A2

" #
ð14:56Þ

Fundamental frequency:

ω5
1

2π

ffiffiffi
ζ

p
; Hz ð14:57Þ

Tables 14.7 through 14.9 contain the history of the iterative process with the SQP
method in IDESIGN. The active constraints at the optimum point and their Lagrange mul-
tipliers (for normalized constraints) are as follows.

Case 4. Stress in member 1 under loading condition 1, 11.00; stress in member 3 under
loading condition 3, 4.97.
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TABLE 14.7 History of the iterative process and final solution for an asymmetric
three-bar structure, Case 4—Stress constraints

Iteration
no.

Maximum
violation

Convergence
parameter Cost A1 A2 A3

1 4.65680E100 l.00000E100 3.82843E100 1.0000E100 1.0000E100 1.0000E100

2 2.10635E100 1.00000E100 6.51495E100 1.9491E100 1.4289E100 1.6473E100

: : : : : : :

8 4.03139E204 2.52483E203 1.59620E101 7.0220E100 2.1322E100 2.7572E100

9 4.80986E207 6.27073E205 1.59684E101 7.0236E100 2.1383E100 2.7558E100

Cost function at optimum5 15.97; number of calls for cost function evaluation5 9; number of calls for cost
function gradient evaluation5 9; number of calls for constraint function evaluation5 9; number of calls for
constraint function gradient evaluation5 9; number of total gradient evaluations5 26.

TABLE 14.8 History of the iterative process and final solution for an asymmetric
three-bar structure, Case 5—Stress and displacement constraints

Iteration

no.

Maximum

violation

Convergence

parameter Cost A1 A2 A3

1 6.99992E100 1.00000E100 3.82843E100 1.0000E100 1.0000E100 1.0000E100

2 3.26589E100 1.00000E100 6.77340E100 1.9634E100 1.6469E100 1.6616E100

: : : : : : :

9 2.18702E205 3.83028E204 2.05432E101 8.9108E100 1.9299E100 4.2508E100

10 6.72142E209 1.42507E206 2.05436E101 8.9106E100 1.9295E100 4.2516E100

Cost function at optimum5 20.54; number of calls for cost function evaluation5 10; number of calls for cost
function gradient evaluation5 10; number of calls for constraint function evaluation5 10; number of calls for
constraint function gradient evaluation5 10; number of total gradient evaluations5 43.

TABLE 14.9 History of the iterative process and final solution for an asymmetric
three-bar structure, Case 6—All constraints

Iteration

no.

Maximum

violation

Convergence

parameter Cost A1 A2 A3

1 6.99992E100 1.00000E100 3.82843E100 1.0000E100 1.0000E100 1.0000E100

2 2.88848E100 1.00000E100 7.29279E100 2.0573E100 1.4738E100 2.0573E100

: : : : : : :

7 6.75406E205 2.25516E204 2.10482E101 8.2901E100 1.2017E100 6.7435E100

8 6.46697E209 1.88151E208 2.10494E101 8.2905E100 1.2013E100 5.7442E100

Cost function at optimum5 21.05; number of calls for cost function evaluation5 8; number of calls for cost
function gradient evaluation5 8; number of calls for constraint function evaluation5 8; number of calls for
constraint function gradient evaluation5 8; number of total gradient evaluations5 48.
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Case 5. Horizontal displacement under loading condition 1, 11.96; vertical displacement
under loading condition 2, 8.58.
Case 6. Frequency constraint, 6.73; horizontal displacement under loading condition
1, 13.28; vertical displacement under loading condition 2, 7.77.

Note that the optimum weight for Case 5 is higher than that for Case 4, and for Case 6
it is higher than that for Case 5. This is consistent with the previous observation; the num-
ber of constraints for Case 5 is larger than that for Case 4, and for Case 6 it is larger than
that for Case 5.

14.6.3 Comparison of Solutions

Table 14.10 contains a comparison of solutions for all six cases. Since an asymmetric
structure has a larger design space, the optimum solutions should be better than those for
the symmetric case, and they are; Case 4 is better than Case 1, Case 5 is better than Case 2,
and Case 6 is better than Case 3.

These results show that for better practical solutions, more flexibility should be
allowed in the design process by defining more design variables—that is, by
allowing more design degrees of freedom.

14.7 OPTIMAL CONTROL OF SYSTEMS BY NONLINEAR
PROGRAMMING

14.7.1 A Prototype Optimal Control Problem

Optimal control problems are dynamic in nature. A brief discussion of the differences
between optimal control and optimum design problems is given here. It turns out that
some optimal control problems can be formulated and solved by the nonlinear program-
ming methods described in Chapters 12 and 13. In this section, we consider a simple opti-
mal control problem that has numerous practical applications. Various formulations of the
problem are described and optimal solutions are obtained and discussed.

TABLE 14.10 Comparison of optimum costs for six cases of a three-bar structure

Symmetric structure Asymmetric structure

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Optimum weight (lb) 21.11 22.97 22.97 15.97 20.54 21.05

NITa 9 9 8 9 10 8

NCFa 9 9 8 9 10 8

NGEa 19 48 50 26 43 48

aNIT, number of iterations; NCF, number of calls for function evaluation; NGE, total number of gradients
evaluations.
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The application area that we have chosen to demonstrate the use of nonlinear program-
ming methods is the vibration control of systems. This is an important class of problems
that is encountered in numerous real-world applications. Examples include the control of
structures under earthquake and wind loads, vibration control of sensitive instruments to
blast loading or shock input, control of large-space structures, and precision control of
machines, among others. To treat these problems we will consider a simple model of the
system to demonstrate the basic formulation and solution procedures. Using the demon-
strated procedures, more complex models can be treated to simulate real-world systems
more accurately.

To treat optimal control problems, dynamic response analysis capability must be avail-
able. In the present text, we will assume that students have some background in vibration
analysis of systems. In particular, we will model systems as single-degree-of-freedom lin-
ear spring-mass systems. This leads to a second-order linear differential equation whose
closed-form solution is available (Clough and Penzien, 1975; Chopra, 2007). It may be
worthwhile for the students to briefly review the material on the solution of linear differ-
ential equations in appropriate textbooks.

To demonstrate the formulation and the solution process, we consider the cantilever
structure shown in Figure 14.2. The data for the problem and various notations used in
the figure are defined in Table 14.11. The structure is a highly idealized model of many
systems that are used in practice. The length of the structure is L and its cross-section is
rectangular with its width as b and its depth as h. The system is at rest initially at time
t5 0. It experiences a sudden load due to a shock wave or other similar phenomenon.

The problem is to control the vibrations of the system such that the displacements are
not too large and the system comes to rest in a controlled manner. The system has proper
sensors and actuators that generate the desired force to suppress the vibrations and bring
the system to rest. The control force may also be generated by properly designed dampers
or viscoelastic support pads along the length of the structure. We will not discuss the

(a) (b)

x

x

q(t)

q(t)
y (x, t)

y (x, t)

L

E, I, m

E, I, m

L

h

b

Cross-section
Motion

k
m

q(t)

u(t)

FIGURE 14.2 Model of a system subjected to shock input. (a) Cantilever structure subjected to shock input at
support. (b) Equivalent single degree of freedom model.
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detailed design of the control force�generating mechanisms, but we will discuss the prob-
lem of determining the optimum shape of the control force.

The governing equation that describes the motion of the system is a second-order
partial differential equation. To simplify the analysis, we use separation of variables and
express the deflection function y(x, t) as

yðx;tÞ5ψðxÞqðtÞ ð14:58Þ
where ψ(x) is a known function called the shape function, and q(t) is the displacement at
the tip of the cantilever, as shown in Figure 14.2. Several shape functions can be used;
however, we will use the following one:

ψðxÞ5 1

2
ð3ξ2 2 ξ3Þ; ξ5

x

L
ð14:59Þ

Using kinetic and potential energies for the system, ψ(x) of Eq. (14.59), and the data in
Table 14.11, the mass and spring constants for an equivalent single-degree-of-freedom system
shown in Figure 14.2 are calculated as follows (Clough and Penzien, 1975; Chopra, 2007):

Mass:

kinetic energy5
1

2

ðL
0

m _y2ðtÞdx5 1

2

ðL
0

mψ2ðxÞdx
2
4

3
5 _q2ðtÞ5 1

2
m _q2ðtÞ ð14:60Þ

where the mass m is identified as

m5

ðL
0

mψ2ðxÞdx5 33

140
mL5

33

140
ð1:56Þð1:0Þ5 0:3677 kg ð14:61Þ

Spring constant:

strain energy5
1

2

ðL
0

EI½yvðxÞ�2dx5 1

2

ðL
0

EIðψvðxÞÞ2dx
2
4

3
5q2ðtÞ5 1

2
kq2ðtÞ ð14:62Þ

TABLE 14.11 Data for the optimal control problem

Data Specifics

Length of the structure L5 1.0 m

Width of cross section b5 0.01 m

Depth of cross section h5 0.02 m

Modulus of elasticity E5 200 GPa

Mass density ρ5 7800 kg/m3

Moment of inertia I5 (6.6673 1029) m4

Mass per unit length m5 1.56 kg/m

Control function u(t)5 to be determined

Limit on the control function ua5 30 N

Initial velocity v05 1.5 m/s
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where the spring constant k is identified as

k5

ðL
0

EIðψvðxÞÞ2dx5 3EI

L3
5 3ð2:03 1011Þð6:6673 1029Þ=ð1:0Þ3 5 4000N=m ð14:63Þ

In the foregoing, a dot over a variable indicates derivatives with respect to time; a
prime indicates derivatives with respect to the coordinate x.

The equation of motion for the single-degree-of-freedom system and the initial condi-
tions (initial displacement q0, initial velocity v0) are given as

m €qðtÞ1 kqðtÞ5 uðtÞ ð14:64Þ
qð0Þ5 q0; _qð0Þ5 v0 ð14:65Þ

where u(t) is the control force needed to suppress vibrations due to the initial velocity v0 (shock
loading for the system is transformed to an equivalent initial velocity calculated as the impulse
of the force divided by the mass). Note that the material damping for the system is neglected.
Therefore, if no control force u(t) is used, the system will continue to oscillate. Figure 14.3
shows the displacement response of the system for the initial 0.10 s when u(t)5 0 (i.e., when
no control mechanism is used). The velocity also keeps oscillating between 1.5 and 21.5 m/s.

The control problem is to determine the forcing function u(t) such that the system
comes to rest in a specified time. We can pose the problem as follows: Determine the con-
trol force to minimize the time to bring the system to rest. We will investigate several of
formulations in the following paragraphs.

We note here that for the preceding simple problem, solution procedures other than the
nonlinear programming methods are available (Meirovitch, 1985). Those procedures may be
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FIGURE 14.3 Graphic of the displace-
ment response of the equivalent single-
degree-of-freedom system to shock loading
withnocontrolforce.
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better for other applications and real-time control problems. However, we will use nonlinear
programming formulations to solve the problem to demonstrate generality of the method.

14.7.2 Minimization of Error in the State Variable

As a first formulation, we define the performance index (cost function) as minimization
of error in the state variable (response) in the time interval 0 to T as

f1 5

ðT
0

q2ðtÞdt ð14:66Þ

Constraints are imposed on the terminal response, the displacement response, and the
control force as follows:

Displacement constraint:

qðtÞ
		 		 # qa in the time interval 0 to T ð14:67Þ

Terminal displacement constraint:

qðTÞ5 qT ð14:68Þ
Terminal velocity constraint:

_qðTÞ5 vT ð14:69Þ
Control force constraint:

uðtÞ
		 		 # ua in the interval 0 to T ð14:70Þ

qa is the maximum allowed displacement of the system, qT and vT are small specified
constants, and ua is the limit on the control force. Thus, the design problem is to compute the
control function u(t) in the time interval 0 to T to minimize the performance index of Eq. (14.66)
subject to the constraints of Eqs. (14.67) through (14.70) and satisfaction of the equations of
motion (14.64) and the initial conditions in Eq. (14.65). Note that the constraints of Eqs. (14.67)
and (14.70) are dynamic in nature and need to be satisfied over the entire time interval 0 to T.

Another performance index can be defined as the sum of the squares of the displace-
ment and the velocity:

f2 5

ðT
0

½q2ðtÞ1 _q2ðtÞ� dt ð14:71Þ

Formulation for a Numerical Solution

To obtain numerical results, the following data are used:

Allowable time to suppress motion: T5 0.10 s
Initial velocity: v05 1.5 m/s
Initial displacement: q05 0.0 m
Allowable displacement: qa5 0.01 m
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Terminal velocity: vT5 0.0 m/s
Terminal displacement: qT5 0.0 m
Limit on the control force: ua5 30.0 N

For the present example, the equation of motion is quite simple, and its analytical solution
can be written using Duhamel’s integral (Chopra, 2007) as follows:

qðtÞ5 1

ω
v0 sinωt1 q0 cosωt1

1

mω

ðt
0

uðηÞ sinωðt2 ηÞdη ð14:72Þ

_qðtÞ5 v0 cosωt2 q0ω sinωt1
1

m

ðt
0

uðηÞ cosωðt2 ηÞdη ð14:73Þ

In more complex applications, the equations of motion will have to be integrated using
numerical methods (Shampine, 1994; Hsieh and Arora, 1984).

Since explicit forms for the displacement and velocity in terms of the design variable u
(t) are known, we can calculate their derivatives by differentiating Eqs. (14.72) and (14.73)
with respect to u(η), where η is a point between 0 and T:

dqðtÞ
duðηÞ5

1

mω
sinωðt2 ηÞ for t $ η

5 0 for t, η

ð14:74Þ

d _qðtÞ
duðηÞ5

1

m
cosωðt2 ηÞ for t $ η

5 0 for t, η
ð14:75Þ

In the foregoing expressions, du(t)/du(η)5 δ(t2 η) has been used, where δ(t2 η) is the Dirac
delta function. The derivative expressions can easily be programmed to impose constraints on
the problem. For more general applications, derivatives must be evaluated using numerical
computational procedures. Several such procedures developed and evaluated by Hsieh and
Arora (1984) and Tseng and Arora (1987) can be used for more complex applications.

Equations (14.72) through (14.75) are used to develop the user-supplied subroutines for the
IDESIGN program. Several procedures are needed to solve the problem numerically. First of
all, a grid must be used to discretize the time at which displacement, velocity, and control
force are evaluated. Interpolation methods, such as cubic splines, B-splines (De Boor, 1978),
and the like, can be used to evaluate the functions at points other than the grid points.

Another difficulty concerns the dynamic displacement constraint of Eq. (14.67). The con-
straint must be imposed during the entire time interval 0 to T. Several treatments for such
constraints have been investigated (Hsieh and Arora, 1984; Tseng and Arora, 1987). For
example, the constraint can be replaced by several constraints imposed at the local maxi-
mum points for the function q(t); it may be replaced by an integral constraint; or it may be
imposed at each grid point.

In addition to the foregoing numerical procedures, a numerical integration scheme,
such as simple summation, trapezoidal rule, Simpson’s rule, Gaussian quadrature, and so
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on, must be selected for evaluating the integrals in Eqs. (14.66), (14.72), and (14.73). Based
on some preliminary investigations, the following numerical procedures are selected for
their simplicity to solve the present problem:

• Numerical integration: Simpson’s method
• Dynamic constraint: imposed at each grid point
• Design variable (control force): value at each grid point

Numerical Results

Using the foregoing procedures and the numerical data, the problem is solved using
the SQP method of Section 13.4, available in the IDESIGN software package. The number
of grid points is selected as 41, so there are 41 design variables. The displacement con-
straint of Eq. (14.67) is imposed at the grid points with its limit set as qa5 0.01 m. As an
initial estimate, u(t) is set to zero, so the constraints of Eqs. (14.67) through (14.69) are
violated.

The algorithm finds a feasible design in just three iterations. During these iterations, the
cost function of Eq. (14.66) is also reduced. The algorithm reaches near to the optimum
point at the 11th iteration. As a result of the strict stopping criteria, it takes another 27
iterations to satisfy the specified criteria. The cost function history is plotted in Figure 14.4.
For all practical purposes, the optimum solution is obtained somewhere between the 15th
and 20th iterations.

The final displacement response and the control force history are shown in Figures 14.5
and 14.6. It is noted that the displacement and velocity both go to zero at about 0.05 s, so
the system comes to rest at that point. The control force also has a zero value after that
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point and reaches its limit value at several grid points during that interval. The final cost
function value is (8.536E207).

Effect of Problem Normalization

It turns out that for the present application it is advantageous to normalize the problem
and optimize it with normalized variables. We will briefly discuss these normalizations,
which can be useful in other applications. Without normalization of the present problem,
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the cost function and its gradient, as well as the constraint functions and their gradients,
have quite small values. The algorithm requires a very small value for the convergence
parameter (1.0E209) to converge to the same optimum solution as with the normalized
problem. In addition, the rate of convergence without normalization is slow. This numerical
behavior of the problem is overcome by the normalization procedure that is described next.

The independent variable transformation for the time is defined as

t5 τT or τ5
t

T
ð14:76Þ

where τ is the normalized independent variable. With this transformation, when t varies
between 0 and T, τ varies between 0 and 1. The displacement is normalized as

qðtÞ5TqmaxqðτÞ or qðτÞ5 qðtÞ
Tqmax

ð14:77Þ

where qðτÞ is the normalized displacement and qmax is taken as 0.015. Derivatives of the
displacement with respect to time are transformed as

_qðtÞ5 qmax
_qðτÞ ð14:78Þ

_qð0Þ5 qmax
_qð0Þ or _qð0Þ5 v0

qmax
ð14:79Þ

€qðtÞ5 1

T
qmax

€qðτÞ ð14:80Þ

The control force is normalized as

uðtÞ5 umaxuðτÞ; or uðτÞ5 uðtÞ
umax

ð14:81Þ

With this normalization, qðτÞ varies between 21 and 1 as u(t) varies between 2umax and
umax.

Substituting the preceding transformations into Eqs. (14.64) and (14.65), we get

m €qðτÞ1 kqðτÞ5 uðτÞ ð14:82Þ

qð0Þ5 q0
Tqmax

; _qð0Þ5 v0
qmax

k5
kT

umax
qmax; m5

m

Tumax
qmax

ð14:83Þ

The constraints of Eqs. (14.67) to (14.70) are also normalized as

Displacement constraint:

qðτÞ
		 		 # qa

Tqmax
in the interval 0 # τ # 1 ð14:84Þ

Terminal displacement constraint:

qð1Þ5 1

Tqmax
qT ð14:85Þ
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Terminal velocity constraint:
_qð1Þ5 1

qmax
vT ð14:86Þ

Control force constraint:
uðτÞ
		 		 # 1 in the interval 0 # τ # 1 ð14:87Þ

With the foregoing normalizations, the numerical algorithm behaved considerably bet-
ter and the convergence to the optimum solution as reported earlier was quite rapid.
Therefore, for general usage, normalization of the problem is recommended whenever
possible. We will use the foregoing normalizations in the two additional formulations of
the problem discussed in Sections 14.7.3 and 14.7.4.

Discussion of Results

The final solution to the problem can be affected by the number of grid points and the
stopping criterion. The solution reported previously was obtained using 41 grid points
and a convergence criterion of (1023). A stricter convergence criterion of (1026) also gave
the same solution, using a few more iterations.

The number of grid points can also affect the accuracy of the final solution. The use of
21 grid points also gave approximately the same solution. The shape of the final control
force was slightly different. The final cost function value was slightly higher than that
with 41 grid points, as expected.

It is also important to note that the problem can become infeasible if the limit qa on the
displacement in Eq. (14.67) is too restrictive. For example, when qa was set to 0.008 m, the
problem was infeasible with 41 grid points. However, with 21 grid points a solution was
obtained. This also shows that when the number of grid points is smaller, the displace-
ment constraint may actually be violated between the grid points, although it is satisfied
at the grid points. Therefore, the number of grid points should be selected judiciously.

The foregoing discussion shows that to impose the time-dependent constraints more
precisely, the exact local max-points should be located and the constraint imposed there.
To locate the exact max-points, interpolation procedures may be used, or bisection of the
interval in which the max-point lies can be used (Hsieh and Arora, 1984). The gradient of
the constraint must be evaluated at the max-points. For the present problem, the preceding
procedure is not too difficult to implement because the analytical form of the response is
known. For more general applications, the computational and programming efforts can
increase substantially to implement the foregoing procedure.

It is worthwhile to note that several other starting points for the control force, such as
u(t)5230 N or u(t)5 30 N, converged to the same solution as given in Figures 14.5 and
14.6. The computational effort varied somewhat. The CPU time with 21 grid points was
about 20 percent of that with 41 grid points when u(t)5 0 was used as the starting point.

It is interesting that, at the optimum, the dynamic constraint of Eq. (14.67) is not active
at any time grid point. It is violated at many intermediate iterations. Also, the terminal
response constraints of Eqs. (14.68) and (14.69) are satisfied at the optimum with normal-
ized Lagrange multipliers as (27.97E204) and (5.51E205). Since the multipliers are almost
zero, the constraints can be somewhat relaxed without affecting the optimal solution. This
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can be observed from the final displacement response shown in Figure 14.5. Since the sys-
tem is essentially at rest after t5 0.05 s, there is no effect of imposing the terminal con-
straints of Eqs. (14.68) and (14.69).

The control force is at its limit value (ua5 30 N) at several grid points; for example, it is
at its lower limit at the first six grid points and at its upper limit at the next six grid points.
The Lagrange multiplier for the constraint has its largest value initially and gradually
decreases to zero after the 13th grid point. According to the Constraint Variation Sensitivity
Theorem 4.7, the optimum cost function can be reduced substantially if the limit on the con-
trol force is relaxed for a small duration after the system is disturbed.

14.7.3 Minimum Control Effort Problem

Another formulation for the problem is possible where we minimize the total control
effort, calculated as

f3 5

ðT
0

u2ðtÞdt ð14:88Þ

The constraints are the same as defined in Eqs. (14.67) through (14.70) and Eqs. (14.64) and
(14.65). The numerical procedures for obtaining an optimum solution to the problem are
the same as described in Section 14.7.2.

This formulation of the problem is quite well behaved. The same optimum solution is
obtained quite rapidly (9�27 iterations) with many different starting points. Figures 14.7
and 14.8 give the displacement response and the control force at the optimum solution,
which is obtained starting from u(t)5 0 and 41 grid points. This solution was obtained
in 13 iterations of the SQP method. The final control effort of 7.481 is much smaller than
that for the first case, where it was 28.74. However, the system comes to rest at 0.10 s
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FIGURE 14.7 Graphic of the displace-
ment response at optimum with minimiza-
tion of control effort as performance index
(cost function f3).
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compared with 0.05 s in the previous case. The solution with 21 grid points resulted in a
slightly smaller control effort as a result of the numerical procedures used, as explained
earlier.

Note that the displacement constraint of Eq. (14.67) is active at the eighth grid point
with the normalized Lagrange multiplier as (2.429E202). The constraints on the terminal
displacement and velocity of Eqs. (14.68) and (14.69) are also active with the normalized
Lagrange multipliers as (21.040E202) and (23.753E204). In addition, the control force is
at its lower limit at the first grid point with the Lagrange multiplier as (7.153E204).

14.7.4 Minimum Time Control Problem

The idea of this formulation is to minimize the time required to suppress the motion of
the system subject to various constraints. In the previous formulations, the desired time
to bring the system to rest was specified. In the present formulation, however, we try to
minimize the time T. Therefore, the cost function is

f4 5T ð14:89Þ
The constraints on the system are the same as defined in Eqs. (14.64), (14.65), and

(14.67) through (14.70). Note that compared with the previous formulations, gradients of
constraints with respect to T are also needed. They can be computed quite easily, since
analytical expressions for the functions are known.

The same optimum solution is obtained by starting from several points, such as
T5 0.1,0.04,0.02, and u(t)5 0,30,230. Figures 14.9 through 14.11 show the displacement
and velocity responses and the control force at the optimum with 41 grid points, T5 0.04,
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FIGURE 14.8 Optimum control force to
minimize the control effort to bring the sys-
tem to rest after shock input (cost function f3).
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and u(t)5 0 as the starting point. It takes 0.02933 s to bring the system to rest, requiring 21
iterations of the SQP method. Depending on the starting point, the number of iterations to
converge to the final solution varies between 20 and 56.

Constraints on the terminal displacement and velocity of Eqs. (14.68) and (14.69) are
active with the normalized Lagrange multipliers as (6.395E202) and (21.771E201), respec-
tively. The control force is at its lower limit for the first 22 grid points and at its upper
limit at the remaining points.
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FIGURE 14.9 Displacement response
at optimum with minimization of time as
performance index (cost function f4).
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14.7.5 Comparison of Three Formulations for the Optimal
Control of System Motion

It is interesting to compare the three formulations for the optimal control of motion of
the system shown in Figure 14.2. Table 14.12 is a summary of the optimum solutions with
the three formulations. All of the solutions are obtained with 41 grid points and u(t)5 0 as
the starting point. For the third formulation, T5 0.04 s is used as the starting point.
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FIGURE 14.11 Optimum control force to
minimize time to bring the system to rest after
shock input (cost function f4).

TABLE 14.12 Summary of optimum solutions for three
formulations of the problem of optimal control of motion
of a system subjected to shock input

Formulation 1:

Minimization of error

in state variable

Formulation 2:

Minimization

of control effort

Formulation 3:

Minimization

of terminal time

f1 8.53607E207 2.32008E206 8.64466E207

f2 1.68241E202 2.73540E202 1.45966E202

f3 2.87398E101 7.48104 2.59761E101

f4 0.10 0.10 2.9336E202

NIT 38 13 20

NCF 38 13 20

NGE 100 68 64

NIT, number of iterations; NCF, number of calls for function evaluation; NGE, total
number of gradients evaluated.
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The results in Table 14.12 show that the control effort is the greatest with the first for-
mulation and the least with the second one. The second formulation turns out to be the
most efficient as well as convenient to implement. By varying the total time T, this formu-
lation can be used to generate results for Formulation 3. For example, using T5 0.05 and
0.02933 s, solutions with Formulation 2 were obtained. With T5 0.02933 s, the same results
as with Formulation 3 were obtained. Also, when T5 0.025 s was used, Formulation 2
resulted in an infeasible problem.

14.8 ALTERNATIVE FORMULATIONS FOR STRUCTURAL
OPTIMIZATION PROBLEMS

We have seen that problems with implicit functions require solving an analysis problem
to evaluate the constraints. In addition, special procedures must be used to evaluate the
derivatives of the functions. This can be time-consuming in terms of calculations as well
as numerical implementations. However, there are alternative formulations that treat the
analysis problem and design problem simultaneously in the optimization formulation
(Arora and Wang, 2005). In such formulations, the analysis variables are also treated as
design variables and the equilibrium equations are treated as equality constraints. In this
way all of the functions of the optimization problem are explicit in terms of the optimiza-
tion variables.

In the optimization process with this formulation, the functions and their derivatives
can be evaluated quite easily. Note, however, that the size of the optimization problem is
increased substantially in terms of the number of variables and the number of constraints.
Therefore, algorithms that are particularly suitable for large-scale optimization problems
must be used.

Alternate Formulation for Design of Two-member Frame

As an alternate formulation for this problem, the nodal displacement U1, U2, U3 are
treated as design variables in addition to the cross-sectional dimensions. The optimization
problem becomes: Find the variables d, h, t, U1, U2, U3 to minimize the cost function in
Eq. (14.3):

f 5 2Lð2dt1 2ht2 4t2Þ ð14:90Þ

subject to the equality constraints (equilibrium equations):

h1: P2
EI

L3
24U1 2 6LU2 1 6LU3½ �5 0 ð14:91Þ

h2:
EI

L3
26LU1 1 4L2 1

GJ

EI
L2

� �
U2

� �
5 0 ð14:92Þ

h3:
EI

L3
6LU1 1 4L2 1

GJ

EI
L2

� �
U3

� �
5 0 ð14:93Þ
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and the inequality constraints:

g1 5
1

σ2
a

ðσ2
1 1 3τ2Þ2 1:0 # 0 ð14:94Þ

g2 5
1

σ2
a

ðσ2
2 1 3τ2Þ2 1:0 # 0 ð14:95Þ

The stresses are calculated in terms of the design variables and the displacements using
Eqs. (14.12) through (14.14) as

τ5
T

2At
52

GJU3

2LAt
ð14:96Þ

σ1 5
M1h

2I
5

Eh

L2
ð23U1 1U2LÞ ð14:97Þ

σ2 5
M2h

2I
5

Eh

L2
ð23U1 1 2U2LÞ ð14:98Þ

In addition, the explicit constraints on the design variables given in Eq. (14.17) must be
imposed. The optimum solution obtained with this formulation was the same as reported
in Section 14.5.

Alternative formulations have been developed for truss structures (Wang and Arora,
2005b) and framed structures (Wang and Arora, 2006). These formulations have worked
quite well, and their advantages and disadvantages are discussed in the work of Wang
and Arora. It is important to note that most of the problem functions in the alternative for-
mulations depend on only a few design variables. Therefore, the Jacobian matrix for the
constraints (matrix of partial derivatives) is quite sparsely populated. For large-scale pro-
blems, then, optimization algorithms that take advantage of this sparsity must be used for
efficiency of calculations (Arora and Wang, 2005; Arora, 2007; Wang and Arora, 2007).

14.9 ALTERNATIVE FORMULATIONS FOR
TIME-DEPENDENT PROBLEMS

Time-dependent optimization problems involve integration of linear or nonlinear differential-
algebraic equations (DAEs) or just differential equations (DEs) to determine the response of
the system to external inputs. Then, using the response variables, cost and constraint func-
tions for the problem are formulated. These constraints are implicit functions of the design
variables, and they are time-dependent, which adds to the complexity of the problem.

The most common approach to optimization of such problems has been one in which
only the design variables are treated as optimization variables (Arora, 1999). All of the
response variables, such as displacements, velocities, and accelerations, are treated as
implicit functions of the design variables. Therefore, in the optimization process a system
of DAEs is integrated to obtain the response (state) variables and to calculate the values of
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various functions of the optimization problem. An optimization algorithm is then used to
update the design. This nested process of DAE solution and design update, also called the
conventional approach, is repeated until a stopping criterion is satisfied.

This optimization process is difficult to use in practice. The main difficulty is that the
response-related quantities are implicit functions of the design variables, which requires
special methods for their gradient evaluation. These methods also require integration of
additional DAEs.

It is useful to develop alternative formulations for time-dependent problems that do not
require explicit solution of DAEs at each iteration and there is no need for special proce-
dures to calculate derivatives of problem functions with respect to the design variables. By
formulating the optimization problem in a mixed space of design and state variables, these
two objectives can be met. A complete discussion of all of the alternative formulations is
beyond the scope of this text. Therefore we present an overview of recent developments of
alternative formulations in two applications areas.

Mechanical and Structural Design Problems

In these applications, various state variables, such as the displacements, velocities and
accelerations, are treated as independent variables in addition to the design variables. The
equations of motion become equality constraints in the formulations. Since the state vari-
ables are functions of time, they need to be parameterized for numerical calculations.
Several possible ways to parameterize these variables have been investigated (Wang and
Arora, 2005, 2009).

With alternative formulations, all constraints of the problem are expressed explicitly in
terms of the optimization variables. Therefore, their gradient evaluations become quite
simple. Although the resulting optimization problem is large, it is quite sparse which can
be solved using sparse nonlinear programming algorithms. The formulations have been
applied to some sample problems to evaluate them and study their advantages and
disadvantages.

Digital Human Modeling

Another application area that has seen intense activity recently is the digital human
modeling and simulation. The problem here is to simulate various human tasks using a
skeletal model of the human body. The problem is to determine all of the joint angle pro-
files (time-dependent functions) to accomplish a given task. The motion of the model is
governed by nonlinear differential equations. These equations are difficult to integrate in
order to generate the motion of the skeletal model. Therefore alternative formulations
have been developed where an objective function for the problem is defined and the joint
angle profiles are treated as optimization variables. In the numerical solution process, the
joint angle profiles are parameterized using the B-spline basis functions. This optimiza-
tion-based approach for simulation of human motion has been called predictive dynamics
(Xiang, Chung, et al., 2010). The approach has been used successfully to simulate many
human activities, such as normal and abnormal walking (Xiang et al., 2009, 2011), lifting of
objects (Xiang, Arora, et al., 2010), and throwing of objects (Kim, Xiang, et al., 2010).
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EXERCISES FOR CHAPTER 14*

Formulate and solve the following design problems using a nonlinear programming algorithm starting

with a reasonable design estimate. Also solve the problems graphically whenever possible and trace the his-

tory of the iterative process on the graph of the problem.

14.1 Exercise 3.34 14.2 Exercise 3.35 14.3 Exercise 3.36

14.4 Exercise 3.50 14.5 Exercise 3.51 14.6 Exercise 3.52

14.7 Exercise 3.53 14.8 Exercise 3.54 14.9 Exercise 7.9

14.10 Exercise 7.10 14.11 Exercise 7.11 14.12 Exercise 7.12

14.13 Design of a tapered flag pole. Formulate the flag pole design problem of Exercise 3.52 for

the data given there. Use a hollow tapered circular tube with constant thickness as the

structural member. The mass of the pole is to be minimized subject to various constraints.

Use a numerical optimization method to obtain the final solution and compare it with the

optimum solution for the uniform flag pole.

14.14 Design of a sign support. Formulate the sign support column design problem described in

Exercise 3.53 for the data given there. Use a hollow tapered circular tube with constant

thickness as the structural member. The mass of the pole is to be minimized subject to

various constraints. Use a numerical optimization method to obtain the final solution and

compare it with the optimum solution for the uniform column.

14.15 Repeat the problem of Exercise 14.13 for a hollow square tapered column of uniform

thickness.

x

L

Base motion

y(x, t)

q(t)

E, I, m

M

FIGURE E14.20 Cantilever structure with mass at the tip. (See
exercise on next page.)
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14.16 Repeat the problem of Exercise 14.14 for a hollow square tapered column of uniform

thickness.

14.17 For the optimal control problem of minimization of error in the state variable formulated

and solved in Section 14.7.2, study the effect of changing the limit on the control force (ua)

to 25 N and then to 35 N.

14.18 For the minimum control effort problem formulated and solved in Section 14.7.3, study the

effect of changing the limit on the control force (ua) to 25 N and then to 35 N.

14.19 For the minimum time control problem formulated and solved in Section 14.7.4, study the

effect of changing the limit on the control force (ua) to 25 N and then to 35 N.

14.20 For the optimal control problem of minimization of error in the state variable formulated

and solved in Section 14.7.2, study the effect of having an additional lumped mass M at

the tip of the beam (M5 0.05 kg) as shown in Figure E14.20.

14.21 For the minimum control effort problem formulated and solved in Section 14.7.3, study the

effect of having an additional mass M at the tip of the beam (M5 0.05 kg).

14.22 For the minimum time control problem formulated and solved in Section 14.7.4, study the

effect of having an additional lumped mass M at the tip of the beam (M5 0.05 kg).

14.23 For Exercise 14.20, what will be the optimum solution if the tip mass M is treated as a

design variable with limits on it as 0#M# 0.10 kg?

14.24 For Exercise 14.21, what will be the optimum solution if the tip mass M is treated as a

design variable with limits on it as 0#M# 0.10 kg?

14.25 For Exercise 14.22, what will be the optimum solution if the tip mass M is treated as a

design variable with limits on it as 0#M# 0.10 kg?

14.26 For the optimal control problem of minimization of error in the state variable formulated

and solved in Section 14.7.2 study the effect of including a 1 percent critical damping in

the formulation.

14.27 For the minimum control effort problem formulated and solved in Section 14.7.3, study the

effect of including a 1 percent critical damping in the formulation.

14.28 For the minimum time control problem formulated and solved in Section 14.7.4, study the

effect of including a 1 percent critical damping in the formulation.

14.29 For the spring-mass-damper system shown in Figure E14.29, formulate and solve the

problem of determining the spring constant and damping coefficient to minimize the

maximum acceleration of the system over a period of 10 s when it is subjected to an initial

velocity of 5 m/s. The mass is specified as 5 kg.

The displacement of the mass should not exceed 5 cm for the entire time interval of

10 s. The spring constant and the damping coefficient must also remain within the limits

c

k m

x(t)
FIGURE E14.29 Graphic of a damped single-
degree-of-freedom system.
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1000# k# 3000 N/m; 0# c# 300 N • s/m. (Hint: The objective of minimizing the maximum

acceleration is a min�max problem, which can be converted to a nonlinear programming

problem by introducing an artificial design variable. Let a(t) be the acceleration and A be

the artificial variable. Then the objective can be to minimize A subject to an additional

constraint ja(t)j#A for 0# t# 10).

14.30 Formulate the problem of optimum design of steel transmission poles described in Kocer

and Arora (1996b). Solve the problem as a continuous variable optimization problem.

617EXERCISES FOR CHAPTER 14

II. NUMERICAL METHODS FOR CONTINUOUS VARIABLE OPTIMIZATION



C H A P T E R

15

Discrete Variable Optimum Design
Concepts and Methods

Upon comp le t i on o f th i s chap te r, you wi l l be ab l e to

• Formulate mixed continuous-discrete

variable optimum design problems

• Use the terminology associated with mixed

continuous-discrete variable optimization

problems

• Explain concepts associated with various

types of mixed continuous-discrete variable

optimum design problems and methods

• Determine an appropriate method to solve

a mixed continuous-discrete variable

optimization problem

In many practical applications, discrete and integer design variables occur naturally in
the problem formulation. For example: plate thickness must be selected from the available
ones; number of bolts must be an integer; material properties must correspond to the
available materials; number of teeth in a gear must be an integer; number of reinforcing
bars in a concrete member must be an integer; diameter of reinforcing bars must be
selected from the available ones; number of strands in a prestressed member must be an
integer; structural members must be selected from commercially available ones, and many
more. Types of discrete variables and cost and constraint functions can dictate the method
used to solve such problems.

Discrete Variable. A variable is called discrete if its value must be assigned from a given
set of values.
Integer Variable. A variable that can have only integer values is called an integer
variable. Note that the integer variables are just a special class of discrete variables.
Linked Discrete Variable. If assignment of a value to a variable specifies the values for a
group of parameters, then it is called a linked discrete variable.
Binary Variable. A discrete variable that can have a value of 0 or 1 is called a binary
variable.
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For the sake of brevity, we will refer to these problems as mixed variable (discrete, con-
tinuous, integer) optimization problems, or, in short, MV-OPT. In this chapter, we will
describe various types of MV-OPT problems, and concepts and terminologies associated
with their solution. Various methods for solution of different types of problems will be
described. The approach taken is to stress the basic concepts of the methods and point out
their advantages and disadvantages.

Because of the importance of this class of problems for practical applications, con-
siderable interest has been shown in the literature to study and develop appropriate
methods for their solution. Material for the present chapter is introductory in nature
and describes various solution strategies in the most basic form. The material is
derived from several publications of the author and his coworkers, and numerous
other references cited there (Arora et al., 1994; Arora and Huang, 1996; Huang and
Arora, 1995, 1997a,b; Huang et al., 1997; Arora, 1997, 2002; Kocer and Arora 1996a,b,
1997, 1999, 2002). These references contain numerous examples of various classes of
discrete variable optimization problems. Only a few of these examples are covered in
this chapter.

15.1 BASIC CONCEPTS AND DEFINITIONS

15.1.1 Definition of a Mixed Variable Optimum Design Problem: MV-OPT

The standard design optimization model defined and treated in earlier chapters with
equality and inequality constraints can be extended by defining some of the variables as
continuous and others as discrete, as follows:

Minimize
fðxÞ

subject to

hi 5 0; i5 1 to p; gj # 0; j5 1 to m ð15:1Þ
xiADi; Di 5 ðdi1; di2; . . . ; diqiÞ; i5 1 to nd; xiL # xi # xiU ; i5 ðnd 1 1Þ to n

where f, hi, and gj are cost and constraint functions, respectively; xiL and xiU are the lower
and upper bounds for the continuous design variable xi; p, m, and n are the number of
equality constraints, inequality constraints, and design variables, respectively; nd is the
number of discrete design variables; Di is the set of discrete values for the ith variable; qi is
the number of allowable discrete values; and dik is the kth possible discrete value for the
ith variable.

Note that the foregoing problem definition includes integer variable as well as 0-1 variable
problems. The formulation in Eq. (15.1) can also be used to solve design problems with
linked discrete variables (Arora and Huang 1996; Huang and Arora, 1997a). There are
many design applications where such linked discrete variables are encountered. We will
describe some of them in a later section.
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15.1.2 Classification of Mixed Variable Optimum Design Problems

Depending on the type of design variables, and the cost and constraint functions, mixed
continuous-discrete variable problems can be classified into five different categories as
described in the following paragraphs. Depending on the type of problem, one discrete
variable optimization method may be more effective than another to solve it. In the follow-
ing, we assume that the continuous variables in the problem can be treated with an appro-
priate continuous variable optimization method. Or, if appropriate, a continuous variable
is transformed into a discrete variable by defining a grid for it. Thus we focus only on the
discrete variables.

MV-OPT 1: MIXED DESIGN VARIABLES Problem functions are twice continuously dif-
ferentiable. Discrete variables can have nondiscrete values during the solution process
(i.e., functions can be evaluated at nondiscrete points). Several solution strategies are avail-
able for this class of problem. There are numerous examples of it—such as plate thickness
from specified values and member radii from the ones available in the market.

MV-OPT 2: MIXED DESIGN VARIABLES Problem functions are nondifferentiable at least
at some points in the feasible set; however, discrete variables can have nondiscrete values
during the solution process. An example of this class of problem includes design problems
where constraints from a design code are imposed. Many times these constraints are based
on experiments and experience, and are not differentiable everywhere in the feasible set.
One example is given in Huang and Arora (1997a,b).

MV-OPT 3: MIXED DESIGN VARIABLES Problem functions may or may not be differen-
tiable; some of the discrete variables must have only discrete values in the solution pro-
cess; some of the problem functions can be evaluated only at discrete design variable
values during the solution process. Examples of such variables are the number of strands
in a prestressed beam or column, the number of teeth in a gear, and the number of bolts
for a joint. A problem is not classified as MV-OPT 3 if the effects of the nondiscrete design
points can be “simulated” somehow. For instance, a coil spring must have an integer num-
ber of coils. However, during the solution process, having a noninteger number of coils is
acceptable (it may or may not have any physical meaning) as long as function evaluations
are possible.

MV-OPT 4: MIXED DESIGN VARIABLES Problem functions may or may not be differen-
tiable; some of the discrete variables are linked to others; assignment of a value to one vari-
able specifies values for others. This type of a problem covers many practical applications,
such as structural design with members selected from a catalog, material selection, and
engine-type selection for automotive and other applications.

MV-OPT 5: COMBINATORIAL PROBLEMS These are purely discrete nondifferentiable
problems. A classic example of this class is the traveling salesman problem. The total dis-
tance traveled to visit a number of cities needs to be minimized. A set of integers (cities)
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can be arranged in different orders to specify a travel schedule (a design). A particular
integer can appear only once in a sequence. Examples of this type of engineering design
problem include design of a bolt insertion sequence, a welding sequence, and a member
placement sequence between a given set of nodes (Huang et al., 1997).

As will be seen later, some of the discrete variable methods assume that the functions
and their derivatives can be evaluated at nondiscrete points. Such methods are not appli-
cable to some of the problem types defined above. Various characteristics of the five prob-
lem types are summarized in Table 15.1.

15.1.3 Overview of Solution Concepts

Enumerating on allowable discrete values for each of the design variables can always
solve discrete variable optimization problems. The number of combinations Nc to be evalu-
ated in such a calculation is given as

Nc 5 L
nd

i51

qi ð15:2Þ

The number of combinations that are to be analyzed, however, increases rapidly with an
increase in nd, the number of design variables, and qi, the number of allowable discrete
values for each variable. For this reason, full enumeration can lead to an extremely large
computational effort to solve the problem. Thus many discrete variable optimization meth-
ods try to reduce the search to only a partial list of possible combinations using various
strategies and heuristic rules. This is sometimes called implicit enumeration.

Most of the methods guarantee an optimum solution to only a very restricted class of
problems (linear or convex). For more general nonlinear problems, good usable solutions
can be obtained depending on how much computation is allowed. Note that at a discrete
optimum point, none of the inequalities may be active unless the discrete point happens to
be exactly on the boundary of the feasible set. Also, the final solution is affected by how
widely separated the allowable discrete values are in the sets Di in Eq. (15.1).

It is important to note that if the problem is an MV-OPT 1 type, it is useful to solve it
first using a continuous variable optimization method. The optimum cost function value for
the continuous solution represents a lower bound for the value corresponding to a discrete solution.

TABLE 15.1 Characteristics of design variables and functions for problem types

MV-

OPT

Variable

types

Functions

differentiable?

Functions defined at

nondiscrete points?

Nondiscrete variables allowed

for discrete variables?

Variables

linked?

1 Mixed Yes Yes Yes No

2 Mixed No Yes Yes No

3 Mixed Yes/No No No No

4 Mixed Yes/No No No Yes

5 Discrete No No No Yes/No
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The requirement of discreteness of design variables represents additional constraints on
the problem. Therefore, the optimum cost function with discrete design variables will
have higher value compared with that for the continuous solution. In this way the penalty
paid for a discrete solution can be analyzed.

There are two basic classes of method for MV-OPT: enumerative and stochastic. In the
enumerative category full enumeration is a possibility; however, partial enumeration is
most common, based on branch-and-bound methods. In the stochastic category, the most
common methods are simulated annealing, genetic algorithms, and other such algorithms
(presented in Chapter 19). Simulated annealing will be discussed later in this chapter;
genetic algorithms will be discussed in Chapter 16.

15.2 BRANCH-AND-BOUND METHODS

The branch and bound (BBM) method was originally developed for discrete variable
linear programming (LP) problems for which a global optimum solution is obtained. It is
sometimes called an implicit enumeration method because it reduces the full enumeration in
a systematic manner. It is one of the earliest and the best-known methods for discrete vari-
able problems and has also been used to solve MV-OPT problems. The concepts of branch-
ing, bounding, and fathoming are used to perform the search, as is explained later. The
following definitions are useful for description of the method, especially when applied to
continuous variable problems.

Half-Bandwidth. When r allowable discrete values are taken below and (r21) values are
taken above a given discrete value for a variable, giving 2r allowable values, the
parameter r is called the half-bandwidth. It is used to limit the number of allowable
values for a discrete variable, for example, based on the rounded-off continuous solution.
Completion. Assignment of discrete values from the allowable ones to all of the variables
is called a completion.
Feasible Completion. It is a completion that satisfies all of the constraints.
Partial Solution. It is an assignment of discrete values to some, but not all, of the
variables for a continuous discrete problem.
Fathoming. A partial solution for a continuous problem, or a discrete intermediate
solution for a discrete problem (node of the solution tree), is said to be fathomed if it is
determined that no feasible completion of smaller cost than the one previously known
can be determined from the current point. It implies that all possible completions have
been implicitly enumerated from this node.

15.2.1 Basic BBM

The first use of the branch and bound method for linear problems is attributed to Land
and Doig (1960). Dakin (1965) later modified the algorithm that has been subsequently
used for many applications. There are two basic implementations of the BBM. In the first
one, nondiscrete values for the discrete variables are not allowed (or they are not possible)
during the solution process. This implementation is quite straightforward; the concepts
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of branching, bounding, and fathoming are used directly to obtain the final solution. No
subproblems are defined or solved; only the problem functions are evaluated for different
combinations of design variables.

In the second implementation, nondiscrete values for the design variables are allowed.
Forcing a variable to have a discrete value generates a node of the solution tree. This is done
by defining additional constraints to force out a discrete value for the variable. The subprob-
lem is solved using either LP or NLP methods depending on the problem type. Example
15.1 demonstrates use of the BBM when only discrete values for the variables are allowed.

EXAMPLE 15.1 BBM WITH ONLY DISCRETE VALUES ALLOWED

Solve the following LP problem:

Minimize
f5220x1 2 10x2 ðaÞ

subject to
g1 5220x1 2 10x2 1 75 # 0 ðbÞ
g2 5 12x1 1 7x2 2 55 # 0 ðcÞ
g3 5 25x1 1 10x2 2 90 # 0 ðdÞ

x1A 0; 1; 2; 3f g; and x2A 0; 1; 2; 3; 4; 5; 6f g ðeÞ

Solution
In this implementation of the BBM, variables x1 and x2 can have only discrete values from the

given four and seven values, respectively. Full enumeration would require evaluation of problem

functions for 28 combinations; however, the BBM can find the final solution in fewer evaluations.

For the problem, the derivatives of f with respect to x1 and x2 are always negative. This informa-

tion can be used to advantage in the BBM. We can enumerate the discrete points in descending

order of x1 and x2 to ensure that the cost function is always increased when one of the variables

is perturbed to the next lower discrete value.

The BBM for the problem is illustrated in Figure 15.1. For each point (called a node), the cost

and constraint function values are shown. From each node, assigning the next smaller value to

each of the variables generates two more nodes. This is called branching. At each node, all of the

problem functions are evaluated again. If there is any constraint violation at a node, further

branching is necessary from that node. Once a feasible completion is obtained, the node requires

no further branching since no point with a lower cost is possible from there. Such nodes are said

to have fathomed; that is, they have reached their lowest point on the branch and no further

branching will produce a solution with lower cost. Nodes 6 and 7 are fathomed this way where

the cost function has a value of 280.

For the remaining nodes, this value becomes an upper bound for the cost function. This is

called bounding. Later, any node having a cost function value higher than the current bound is also

fathomed. Nodes 9, 10, and 11 are fathomed because the designs are infeasible with the cost func-

tion value larger than or equal to the current bound of 280. Since no further branching is possible,

the global solution for the problem is found at Nodes 6 and 7 in 11 function evaluations.
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15.2.2 BBM with Local Minimization

For optimization problems where the discrete variables can have nondiscrete values dur-
ing the solution process and all of the functions are differentiable, we can take advantage of
the local minimization procedures to reduce the number of nodes in the solution tree. In
such a BBM procedure, initially an optimum point is obtained by treating all of the discrete
variables as continuous. If the solution is discrete, an optimum point is obtained and the
process is terminated. If one of the variables does not have a discrete value, then its value
lies between two discrete values; for example, dij, xi, dij11. Now two subproblems are
defined, one with the constraint xi# dij and the other with xi $ dij11. This process is also
called branching, which is slightly different from the one explained in Example 15.1 for

x = (3, 5)T  f = –110
g = (–35, 16, 35)T

x = (2, 6)T  f = –100
g = (–25, 11, 20)T

x = (3, 4)T  f = –100
g = (–25, 9, 25)T

x = (2, 5)T  f = –90
g = (–15, 4, 10)T

x = (1, 6)T f = –80
g = (–5, –1, –5)T

x = (1, 5)T  f = –70
g = (5, –8, –15)T

Node 2

Node 4

Node 7

Node 5

Node 9

Node 3

Node 6

Node 1

x = (3, 3)T f = –90
g = (–15, –2, 15)T

Node 8

x = (3, 2)T f = –80
g = (–5, 5, 5)T

Node 10
x = (2, 3)T f = –70
g = (5, –10, –10)T

Node 11

STOP. No
other feasible points

with smaller cost

STOP. No
other feasible points

with smaller cost

STOP. Cost
is larger than –80

STOP. Cost
is larger than –80

STOP. Feasible cost
will be higher than –80

x = (3, 6)T  f = –120
g = (–45, 23, 45)T

x = (2, 4)T  f = –80
g = (–5, –3, 0)T

FIGURE 15.1 Basic branch and bound method without solving continuous subproblems (Huang and Arora,
1997; Arora, 2002).
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purely discrete problems. It basically eliminates some portion of the continuous feasible
region that is not feasible for the discrete problem. However, none of the discrete feasible
solutions is eliminated.

The two subproblems are solved again, and the optimum solutions are stored as nodes
of the tree containing optimum values for all of the variables, the cost function, and the
appropriate bounds on the variables. This process of branching and solving continuous
problems is continued until a feasible discrete solution is obtained. Once this has been
achieved, the cost function corresponding to the discrete feasible solution becomes an
upper bound on the cost function for the remaining subproblems (nodes) to be solved later.
The solutions that have cost values higher than the upper bound are eliminated from fur-
ther consideration (i.e., they are fathomed).

The foregoing process of branching and fathoming is repeated from each of the
unfathomed nodes. The search for the optimum solution terminates when all of the nodes
have been fathomed as a result of one of the following reasons: (1) a discrete optimum
solution is found, (2) no feasible continuous solution can be found, or (3) a feasible solu-
tion is found but the cost function value is higher than the established upper bound.
Example 15.2 illustrates use of the BBM where nondiscrete values for the variables are
allowed during the solution process.

EXAMPLE 15.2 BBM WITH LOCAL MINIMIZATIONS

Re-solve the problem of Example 15.1 treating the variables as continuous during the branch-

ing and bounding process.

Solution
Figure 15.2 shows implementation of the BBM where requirements of discreteness and non-

differentiability of the problem functions are relaxed during the solution process. Here we start

with a continuous solution for the problem. From that solution two subproblems are defined by

imposing an additional constraint requiring that x1 not be between 1 and 2. Subproblem 1

imposes the constraint x1# 1 and Subproblem 2, x1$ 2. Subproblem 1 is solved using the contin-

uous variable algorithm that gives a discrete value for x1 but a nondiscrete value for x2.

Therefore, further branching is needed from this node. Subproblem 2 is also solved using the

continuous variable algorithm that gives discrete values for the variables with the cost function

of 280. This gives an upper bound for the cost function, and no further branching is needed

from this node.

Using the solution of Subproblem 1, two subproblems are defined by requiring that x2 not be

between 6 and 7. Subproblem 3 imposes the constraint x2# 6 and Subproblem 4, x2$ 7.

Subproblem 3 has a discrete solution with f5280, which is the same as the current upper bound.

Since the solution is discrete, there is no need to branch further from there by defining more sub-

problems. Subproblem 4 does not lead to a discrete solution with f5280. Since further branching

from this node cannot lead to a discrete solution with the cost function value smaller than the cur-

rent upper bound of 280, the node is fathomed. Thus, Subproblems 2 and 3 give the two optimum

discrete solutions for the problem, as before.
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Since the foregoing problem has only two design variables, it is fairly straightforward
to decide how to create various nodes of the solution process. When there are more design
variables, node creation and the branching processes are not unique. These aspects are dis-
cussed further for nonlinear problems.

15.2.3 BBM for General MV-OPT

In most practical applications for nonlinear discrete problems, the latter version of the
BBM has been used most often, where functions are assumed to be differentiable and the
design variables can have nondiscrete values during the solution process. Different meth-
ods have been used to solve nonlinear optimization subproblems to generate the nodes.
The branch and bound method has been used successfully to deal with discrete design
variable problems and has proved to be quite robust. However, for problems with a large
number of discrete design variables, the number of subproblems (nodes) becomes large.

Therefore, considerable effort has been spent in investigating strategies to reduce the
number of nodes by trying different fathoming and branching rules. For example, the vari-
able that is used for branching to its upper and lower values for the two subproblems is
fixed to the assigned value, thus eliminating it from further consideration. This reduces

x = (16 / 11, 59 / 11)
f = –82.7

x = (1, 6.15) 
f = –81.5

Subproblem 1 

Continuous solution 

Subproblem 2 

x = (1, 6)
f = –80 

Subproblem 3 

x = (0.5, 7)
f = –80 

Subproblem 4 

x2 ≤ 6 

x1 ≤ 1 x1 ≥ 2 

x2 ≥ 7 

x = (2, 4) 
f = –80 

STOP. Discrete 
feasible solution 

STOP. Discrete 
feasible solution 

STOP. Discrete solution 
will have cost higher than –80 

FIGURE 15.2 Branch and bound method with solution of continuous subproblems (Arora, 2002).
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dimensionality of the subproblem that can result in efficiency. As the iterative process pro-
gresses, more and more variables are fixed and the size of the optimization problem keeps
on decreasing.

Many other variations of the BBM for nonlinear continuous problems have been investi-
gated to improve its efficiency. Since an early establishment of a good upper bound on the
cost is important, it may be possible to accomplish this by choosing an appropriate vari-
able for branching. More nodes or subproblems may be fathomed early if a smaller upper
bound is established. Several ideas have been investigated in this regard. For example, the
distance of a continuous variable from its nearest discrete value, and the cost function
value when a variable is assigned a discrete value, can be used to decide the variable to be
branched.

It is important to note that the BBM is guaranteed to find the global optimum only if the prob-
lem is linear or convex. In the case of general nonlinear nonconvex problems, there is no
such guarantee. It is possible that a node is fathomed too early and one of its branches
actually contains the true global solution.

15.3 INTEGER PROGRAMMING

Optimization problems where the variables are required to take on integer values are
called integer programming (IP) problems. If some of the variables are continuous, we get
a mixed variable problem. With all functions as linear, an integer linear programming
(ILP) problem is obtained; otherwise, it is nonlinear. The ILP problem can be converted to
a 0-1 programming problem. Linear problems with discrete variables can also be con-
verted to 0-1 programming problems. Several algorithms are available to solve such pro-
blems (Sysko et al., 1983; Schrijver, 1986), such as BBM, discussed earlier. Nonlinear
discrete problems can also be solved by sequential linearization procedures if the problem
functions are continuous and differentiable, as discussed later.

In this section, we show how to transform an ILP into a 0-1 programming problem. To
do that, let us consider an ILP as follows:

Minimize
f 5 cTx

subject to

Ax # b
xi $ 0 integer; i5 1 to nd; xiL # xi # xiU ; i5 nd 1 1 to n

ð15:3Þ

Define zij as the 0-1 variables (zij5 0 or 1 for all i and j). Then the ith integer variable is
expressed as

xi 5
Xqi
j51

zijdij;
X
j

zij 5 1; i5 1 to nd ð15:4Þ
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where qi and dij are defined in Eq. (15.1). Substituting this into the foregoing mixed ILP
problem, it is converted to a 0-1 programming problem in terms of zij, as

Minimize

f 5
Xnd
i51

ci
Xqi
j51

zijdij

2
4

3
51

Xn
k5nd11

ckxk

subject to Xnd
j51

aij
Xqj
m51

zjmdjm

" #
1

Xn
k5nd11

aikxk # bi ð15:5Þ

Xqi
j51

zij 5 1; i5 1 to nd; zij 5 0 or 1 for all i and j; xiL # xi # xiU; i5 nd 1 1 to n

It is important to note that many modern computer programs for linear programming
have an option to solve discrete variable LP problems; for example, LINDO (Schrage,
1991).

15.4 SEQUENTIAL LINEARIZATION METHODS

If the problem functions are differentiable, a reasonable approach to solving the MV-
OPT is to linearize the nonlinear problem at each iteration. Then discrete-integer linear
programming (LP) methods can be used to solve the linearized subproblem. There are sev-
eral ways in which a linearized subproblem can be defined and solved. For example, it
can be converted to a 0-1 variable problem. This way the number of variables is increased
considerably. However, several methods are available to solve integer linear programming
problems. Therefore, MV-OPT can be solved using the sequential LP approach and exist-
ing codes.

A modification of this approach is to obtain a continuous optimum point first, if possi-
ble, and then linearize and use integer programming methods. This process can reduce
the number of integer LP subproblems to be solved. Restricting the number of discrete
values to those in the neighborhood of the continuous solution (a small value for r, the
half-bandwidth) can also reduce the size of the ILP problem. It is noted here that once a
continuous solution has been obtained, any discrete variable optimization method can be
used with a reduced set of discrete values for the variables.

Another possible approach to solving an MV-OPT problem is to optimize for discrete
and continuous variables in a sequence. The problem is first linearized in terms of the dis-
crete variables, but keeping the continuous variables fixed at their current values. The line-
arized discrete subproblem is solved using a discrete variable optimization method. Then
the discrete variables are fixed at their current values, and the continuous subproblem is
solved using a nonlinear programming method. The process is repeated a few times to
obtain the final solution.
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15.5 SIMULATED ANNEALING

Simulated annealing (SA) is a stochastic approach for locating a good approximation to
the global minimum of a function. The name of the approach comes from the annealing
process in metallurgy. This process involves heating and controlled cooling of a material
to increase the size of its crystals and reduce their defects. At high temperatures, the atoms
become loose from their initial configuration and move randomly, perhaps through states
of higher internal energy, to reach a configuration having absolute minimum energy. The
cooling process should be slow, and enough time needs to be spent at each temperature,
giving more chance for the atoms to find configurations of lower internal energy. If the
temperature is not lowered slowly and enough time is not spent at each temperature, the
process can get trapped in a state of local minimum for the internal energy. The resulting
crystal may have many defects or the material may even become glass with no crystalline
order.

The simulated annealing method for optimization of systems emulates this process. Given a
long enough time to run, an algorithm based on this concept finds global minima for con-
tinuous-discrete-integer variable nonlinear programming problems.

The basic procedure for implementation of this analogy to the annealing process is to generate
random points in the neighborhood of the current best point and evaluate the problem
functions there. If the cost function (penalty function for constrained problems) value is
smaller than its current best value, the point is accepted and the best function value
is updated. If the function value is higher than the best value known thus far, the point
is sometimes accepted and sometimes rejected. The point’s acceptance is based on the
value of the probability density function of the Bolzman-Gibbs distribution. If this proba-
bility density function has a value greater than a random number, then the trial point is
accepted as the best solution even if its function value is higher than the known best
value.

In computing the probability density function, a parameter called the temperature is
used. For the optimization problem, this temperature can be a target value for the opti-
mum value of the cost function. Initially, a larger target value is selected. As the trials
progress, the target value (the temperature) is reduced (this is called the cooling sched-
ule), and the process is terminated after a large number of trials. The acceptance proba-
bility steadily decreases to zero as the temperature is reduced. Thus, in the initial
stages, the method sometimes accepts worse designs, while in the final stages the worse
designs are almost always rejected. This strategy avoids getting trapped at a local mini-
mum point.

It is seen that the SA method requires evaluation of cost and constraint functions only.
Continuity and differentiability of functions are not required. Thus the method can be
useful for nondifferentiable problems, and problems for which gradients cannot be cal-
culated or are too expensive to calculate. It is also possible to implement the algorithm
on parallel computers to speed up the calculations. The deficiencies of the method are
the unknown rate for reduction of the target level for the global minimum, and the
uncertainty in the total number of trials and the point at which the target level needs to
be reduced.
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Simulated Annealing Algorithm

It is seen that the algorithm is quite simple and easy to program. The following steps
illustrate the basic ideas of the algorithm.

Step 1. Choose an initial temperature T0 (expected global minimum for the cost
function) and a feasible trial point x(0). Compute f(x(0)). Select an integer L (e.g., a limit
on the number of trials to reach the expected minimum value), and a parameter r, 1.
Initialize the iteration counter as K5 0 and another counter k5 1.
Step 2. Generate a new point x(k) randomly in a neighborhood of the current point. If
the point is infeasible, generate another random point until feasibility is satisfied (a
variation of this step is explained later). Compute f(x(k)) and Δf5 f(x(k))2 f(x(0)).
Step 3. If Δf, 0, then accept x(k) as the new best point x(0), set f(x(0))5 f(x(k)) and go to
Step 4. Otherwise, calculate the probability density function:

pðΔfÞ5 exp
2Δf

TK

� �
ð15:6Þ

Generate a random number z uniformly distributed in [0,1]. If z, p(Δf), then accept x(k)

as the new best point x(0) and go to Step 4. Otherwise go to Step 2.
Step 4. If k, L, then set k5 k1 1 and go to Step 2. If k. L and any of the stopping
criteria is satisfied, then stop. Otherwise, go to Step 5.
Step 5. Set K5K1 1, k5 1; set TK5 rTK21; go to Step 2.

The following points are noted for implementation of the algorithm:

1. In Step 2 only one point is generated at a time within a certain neighborhood of the
current point. Thus, although SA randomly generates design points without the need
for function or gradient information, it is not a pure random search within the entire
design space. At the early stage, a new point can be located far away from the current
point to speed up the search process and to avoid getting trapped at a local minimum
point. Once the temperature gets low, the new point is usually created nearby in
order to focus on the local area. This can be controlled by defining a step size
procedure.

2. In Step 2, the newly generated point is required to be feasible. If it is not, another point
is generated until feasibility is attained. Another method for treating constraints is to
use the penalty function approach; that is, the constrained problem is converted to an
unconstrained one, as discussed in Chapter 11. The cost function is replaced by the
penalty function in the algorithm. Therefore, the feasibility requirements are not
imposed explicitly in Step 2.

3. The following stopping criteria are suggested in Step 4:
(a) The algorithm stops if change in the best function value is less than some specified

value for the last J consecutive iterations.
(b) The program stops if I/L, δ, where L is a limit on the number of trials (or the

number of feasible points generated) within one iteration, and I is the number of
trials that satisfy Δf, 0 (see Step 3).

(c) The algorithm stops if K reaches a preset value.
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The foregoing ideas from statistical mechanics can also be used to develop methods for
global optimization of continuous variable problems. For such problems, simulated
annealing may be combined with a local minimization procedure. However, the tempera-
ture T is slowly and continuously decreased so that the effect is similar to annealing.
Using the probability density function given in Eq. (15.6), a criterion can be used to decide
whether to start a local search from a particular point.

15.6 DYNAMIC ROUNDING-OFF METHOD

A simple approach for MV-OPT 1 type problems is to first obtain an optimum solution
using a continuous approach. Then, using heuristics, the variables are rounded off to their
nearest available discrete values to obtain a discrete solution. Rounding-off is a simple
idea that has been used often, but it can result in infeasible designs for problems having a
large number of variables. The main concern of the rounding-off approach is the selection
of variables to be increased and the variables to be decreased. The strategy may not con-
verge, especially in case of high nonlinearity and widely separated allowable discrete
values. In that case, the discrete minimum point need not be in a neighborhood of the con-
tinuous solution.

Dynamic Rounding-off Algorithm

The dynamic rounding-off algorithm is a simple extension of the usual rounding-off
procedure. The basic idea is to round off variables in a sequence rather than all of them at
the same time. After a continuous variable optimum solution is obtained, one or a few
variables are selected for discrete assignment. This assignment can be based on the penalty
that needs to be paid for the increase in the cost function or the Lagrangian function.
These variables are then eliminated from the problem and the continuous variable optimi-
zation problem is solved again. This idea is quite simple because an existing optimization
program can be used to solve discrete variable problems of type MV-OPT 1. The process
can be carried out in an interactive mode, or it can be implemented manually. Whereas
the dynamic rounding-off strategy can be implemented in many different ways, the fol-
lowing algorithm illustrates one simple procedure:

Step 1. Assume that all of the design variables to be continuous and solve the NLP
problem.
Step 2. If the solution is discrete, stop. Otherwise, continue.
Step 3. FOR k5 1 to n
Calculate the Lagrangian function value for each k, with the kth variable perturbed
to its discrete neighbors.
END FOR
Step 4. Choose a design variable that minimizes the Lagrangian in Step 3 and remove
that variable from the design variable set. This variable is assigned the selected discrete
value. Set n5 n21 and if n5 1, stop; otherwise, go to Step 2.

The number of additional continuous problems that needs to be solved by the preced-
ing method is (n21). However, the number of design variables is reduced by one for each
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subsequent continuous problem. In addition, more variables may be assigned discrete
values each time, thus reducing the number of continuous problems to be solved. The
dynamic rounding-off strategy has been used successfully to solve several optimization
problems (Al-Saadoun and Arora, 1989; Huang and Arora, 1997a,b).

15.7 NEIGHBORHOOD SEARCH METHOD

When the number of discrete variables is small and each discrete variable has only a
few choices, the simplest way to find the solution to a mixed variable problem may be just
to explicitly enumerate all of the possibilities. With all of the discrete variables fixed at
their chosen values, the problem is then optimized for the continuous variables. This
approach has some advantages over the BBM: It can be implemented easily with an exist-
ing optimization software, the problem to be solved is smaller, and the gradient informa-
tion with respect to the discrete variables is not needed. However, the approach is far less
efficient than an implicit enumeration method, such as the BBM, as the number of discrete
variables and the size of the discrete set of values become large.

When the number of discrete variables is large and the number of discrete values for
each variable is large, then a simple extension of the above approach is to solve the optimi-
zation problem first by treating all of the variables as continuous. Based on that solution, a
reduced set of allowable discrete values for each variable is then selected. Now the neigh-
borhood search approach is used to solve the MV-OPT 1 problem. A drawback is that the
search for a discrete solution is restricted to only a small neighborhood of the continuous
solution.

15.8 METHODS FOR LINKED DISCRETE VARIABLES

Linked discrete variables occur in many applications. For example, in the design of a
coil spring problem formulated in Chapter 2, we may have choice of three materials as
shown in Table 15.2. Once a material type is specified, all of the properties associated with
it must be selected and used in all calculations. The optimum design problem is to deter-
mine the material type and other variables to optimize an objective function and satisfy all
of the constraints. The problem has been solved in Huang and Arora (1997a,b).

TABLE 15.2 Material data for the spring design problem

Material type G, lb/in2 ρ, lb-s2/in4 τa, lb/in
2 Up

1 11.53 106 7.383423 1024 80,000 1.0

2 12.63 106 8.512113 1024 86,000 1.1

3 13.73 106 9.713623 1024 87,000 1.5

G5 shear modulus; ρ5mass density; τa5 shear stress; Up5 relative unit
price.
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Another practical example where linked discrete variables are encountered is the opti-
mum design of framed structural systems. Here the structural members must be selected
from the ones available in the manufacturer’s catalog. Table 15.3 shows some of the stan-
dard wide-flange sections (W-shapes) available in the catalog. The optimum design prob-
lem is to find the best possible sections for members of a structural frame to minimize a
cost function and satisfy all of the performance constraints. The section number, section
area, moment of inertia, or any other section property can be designated as a linked dis-
crete design variable for the frame member. Once a value for such a discrete variable is
specified from the table, each of its linked variables (properties) must also be assigned the
unique value and used in the optimization process.

These properties affect values of the cost and constraint functions for the problem. A
certain value for a particular property can only be used when appropriate values for other
properties are also assigned. Relationships among such variables and their linked proper-
ties cannot be expressed analytically, and so a gradient-based optimization method may
be applicable only after some approximations. It is not possible to use one of the proper-
ties as the only continuous design variable because other section properties cannot be cal-
culated using just that property. Also, were each property to be treated as an independent
design variable, the final solution would generally be unacceptable since the variables
would have values that cannot co-exist in the table. Solutions for such problems are pre-
sented in Huang and Arora (1997a,b).

It is seen that problems with linked variables are discrete and the problem functions are
not differentiable with respect to them. Therefore, they must be treated by a discrete variable
optimization algorithm that does not require gradients of functions. There are several algo-
rithms for such problems, such as simulated annealing and genetic algorithms. Simulated
annealing was discussed earlier, and genetic algorithms are presented in Chapter 16.

It is noted that for each class of problems having linked discrete variables, it is possible
to develop strategies to treat the problem more efficiently by exploiting the structure of

TABLE 15.3 Some wide flange standard sections

Section A d tw b tf Ix Sx rx Iy Sy ry

W363 300 88.30 36.74 0.945 16.655 1.680 20300 1110 15.20 1300 156 3.830

W363 280 82.40 36.52 0.885 16.595 1.570 18900 1030 15.10 1200 144 3.810

W363 260 76.50 36.26 0.840 16.550 1.440 17300 953 15.00 1090 132 3.780

W363 245 72.10 36.08 0.800 16.510 1.350 16100 895 15.00 1010 123 3.750

W363 230 67.60 35.90 0.760 16.470 1.260 15000 837 14.90 940 114 3.730

W363 210 61.80 36.69 0.830 12.180 1.360 13200 719 14.60 411 67.5 2.580

W363 194 57.00 36.49 0.765 12.115 1.260 12100 664 14.60 375 61.9 2.560

Wn3m, n5 nominal depth of the section, in, m5weight/ft; A5 cross-sectional area, in2; Ix5moment of inertia about the x�x axis, in4;
d5 depth, in; Sx5 elastic section modulus about the x�x axis, in3; tw5web thickness, in; rx5 radius of gyration with respect to the x�x

axis, in; b5 flange width, in; Iy5moment of inertia about the y�y axis, in4; tf5 flange thickness, in; Sy5 elastic section modulus about the
y�y axis, in3; ry5 radius of gyration with respect to the y�y axis, in.
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the problem and knowledge of the problem functions. Two or more algorithms may be
combined to develop strategies that are more effective than the use of a purely discrete
algorithm. For the structural design problem, several such strategies have been developed
(Arora, 2002).

15.9 SELECTION OF A METHOD

Selection of a method to solve a particular mixed variable optimization problem
depends on the nature of the problem functions. Features of the methods and their suit-
ability for various types of MV-OPT problems are summarized in Table 15.4. It is seen that
branch and bound, simulated annealing, and genetic algorithms (discussed in Chapter 16)
are the most general methods. They can be used to solve all the problem types. However,
these are also the most expensive ones in terms of computational effort.

If the problem functions are differentiable and discrete variables can be assigned non-
discrete values during the iterative solution process, then there are numerous strategies
for their solution that are more efficient than the three methods just discussed. Most of
these involve a combination of two or more algorithms.

Huang and Arora (1997a,b) have evaluated the discrete variable optimization methods
presented in this chapter using 15 types of test problems. Applications involving linked
discrete variables are described in Huang and Arora (1997), Arora and Huang (1996), and
Arora (2002). Applications of discrete variable optimization methods to electrical transmis-
sion line structures are described in Kocer and Arora (1996, 1997, 1999, 2002). Discrete var-
iable optimum solutions for the plate girder design problem formulated and solved in
Section 6.6 are described and discussed in Arora et al. (1997).

TABLE 15.4 Characteristics of discrete variable optimization methods

Method

MV-OPT
problem

type

solved

Can find
feasible

discrete

solution?

Can find

global
minimum

for convex

problem?

Need

gradients?

Branch and bound 1�5 Yes Yes No/Yes

Simulated annealing 1�5 Yes Yes No

Genetic algorithm 1�5 Yes Yes No

Sequential
linearization

1 Yes Yes Yes

Dynamic round-off 1 Yes No guarantee Yes

Neighborhood
search

1 Yes Yes Yes
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15.10 ADAPTIVE NUMERICAL METHOD FOR DISCRETE
VARIABLE OPTIMIZATION

In Section 2.11.8, we described a simple adaptive procedure for discrete variable optimi-
zation. In this section, we demonstrate that procedure for a simple design problem. The
basic idea of the procedure is to obtain an optimum solution of the problem with continu-
ous variables, if that is possible. Then the variables that are close to their discrete values
are assigned that value. They are then held fixed and the problem is re-optimized. The
procedure is continued until all of the variables have been assigned discrete values.

The application area that we have chosen is the optimum design of aerospace, automo-
tive, mechanical, and structural systems, by employing finite-element models. The problem
is to design a minimum-weight system with constraints on various performance specifica-
tions. As a sample application, we will consider the 10-bar cantilever structure shown in
Figure 15.3. The loading and other design data for the problem are given in Table 15.5. The
set of discrete values given there is taken from the American Institute of Steel Construction
(AISC) Manual. The final design for the structure must be selected from this set.

The cross-sectional area of each member is treated as a design variable giving a total of 10
variables. Constraints are imposed on member stress (10), nodal displacement (8), member
buckling (10), vibration frequency (1), and explicit bounds on the design variables (20). This
gives a total of 49 constraints. In imposing the member buckling constraint, the moment of
inertia is taken as I5βA2, where β is a constant and A is the member cross-sectional area.

The formulation of the problem is quite similar to that for the three-bar structure dis-
cussed in Section 2.10. The only difference is that the explicit form of the constraint func-
tion is not known. Therefore, we must use the finite-element procedures described in
Sections 14.1 and 14.2 for structural analysis and the gradient evaluation of constraints.

15.10.1 Continuous Variable Optimization

To compare solutions, the continuous variable optimization problem is solved first. To
use the program IDESIGN, user subroutines are developed using the material of Sections
14.1 and 14.2 to evaluate the functions and their gradients. These subroutines contain anal-
ysis of trusses and evaluation of gradients of constraints. The optimum solution, using a
very strict stopping criterion and a uniform starting design of 1.62 in2, is obtained as

Design variables: 28.28, 1.62, 27.262, 13.737, 1.62, 4.0026, 13.595, 17.544, 19.13, 1.62
Optimum cost function: 5396.5 lb
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FIGURE 15.3 Ten-bar cantilever truss.
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Number of iterations: 19
Number of analyses: 21
Maximum constraint violation at optimum: (8.024E210)
Convergence parameter at optimum: (2.660E205)
Active constraints at optimum and their Lagrange multipliers:

Frequency: 392.4
Stress in member 2: 38.06
Displacement at node 2 in the y direction: 4967
Lower bound for member 2: 7.829
Lower bound for member 5: 205.1
Lower bound for member 10: 140.5

15.10.2 Discrete Variable Optimization

We use the adaptive numerical optimization procedure that was described in
Section 2.11.8 to obtain a discrete variable solution. The procedure is to use the IDESIGN
program in the interactive mode. Design conditions are monitored and decisions made to

TABLE 15.5 Design data for a 10-bar structure

Element Data

Modulus of elasticity E5 (107) psi

Material weight density γ5 (0.1) lb/in3

Displacement limit 62.0 in

Stress limit 25,000 psi

Frequency limit 22 Hz

Lower limit on design variables 1.62 in2

Upper limit on design variables None

Constant β (I5βA2) 1.0

LOADING DATA

Node no. Load in y-direction (lb)

1 50,000

2 2150,000

3 50,000

4 2150,000

Available member areas (in2) 1.62, 1.80, 1.99, 2.13, 2.38, 2.62, 2.63, 2.88, 2.93, 3.09, 3.13, 3.38, 3.47, 3.55, 3.63,
3.84, 3.87, 3.88, 4.18, 4.22, 4.49, 4.59, 4.80, 4.97, 5.12, 5.74, 7.22, 7.97, 11.50, 13.50,
13.90, 14.20, 15.50, 16.00, 16.90, 18.80, 19.90, 22.00, 22.90, 26.50, 30.00, 33.50
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fix design variables that are not changing. The interactive facilities used include design
variable histories, maximum constraint violation, and the cost function.

Table 15.6 contains a snapshot of the design conditions at various iterations and the
decisions made. It can be seen that for the first five iterations the constraint violations are
very large, so the constraint correction (CC) algorithm is used to correct the constraints. At
the 6th iteration, it is determined that design variables 5 and 10 are not changing, so they
are fixed to their current value. Similarly, at other iterations, variables are assigned values
from the available set. At the 14th iteration, all variables have discrete values, the con-
straint violation is about 1.4 percent, and the structural weight is 5424.69, which is an
increase of less than 1 percent from the optimum with continuous variables. This is a rea-
sonable final solution.

It should be noted, that with the discrete variables, several solutions near the true opti-
mum point are possible. A different sequence of fixing variables can give a different solu-
tion. For example, starting from the optimum solution with continuous variables, the
following acceptable discrete solutions are obtained interactively:

1. 30.0, 1.62, 26.5, 13.9, 1.62, 4.18, 13.5, 18.8, 18.8, 1.62; cost5 5485.6, maximum
violation5 4.167 percent for stress in member 2.

2. Same as (1) except the 8th design variable is 16.9; cost5 5388.9, and maximum
violation5 0.58 percent.

3. Same as (1) except design variables 2 and 6 are 2.38 and 2.62; cost5 5456.8, maximum
violation5 3.74 percent for stress in member 2

4. Same as (3) except design variable 2 is 2.62; cost5 5465.4; all constraints are satisfied.

TABLE 15.6 Interactive solution for a 10-Member structure with discrete variables

Iteration

no.

Maximum

violation (%)

Cost

function

Algorithm

used

Variables fixed to value

shown in parentheses

1 1.274E104 679.83 CC All free

2 4.556E103 1019.74 CC All free

3 1.268E103 1529.61 CC All free

4 4.623E102 2294.42 CC All free

5 1.144E102 3441.63 CC All free

6 2.020E101 4722.73 CC 5(1.62), 10(1.62)

7 2.418E100 5389.28 CCC 2(1.80)

11 1.223E201 5402.62 SQP 1(30.0), 6(3.84), 7(13.5)

13 5.204E204 5411.13 SQP 3(26.5), 9(19.9)

14 1.388E100 5424.69 — 4(13.5), 8(16.9)

CC5 constraint correction algorithm; CCC5 constraint correction at constant cost; SQP5 sequential
quadratic programming.
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EXERCISES FOR CHAPTER 15*

15.1 Solve Example 15.1 with the available discrete values for the variables as x1A{0, 1, 2, 3},

and x2A{0, 1, 2, 3, 4, 5, 6}. Assume that the functions of the problem are not differentiable.

15.2 Solve Example 15.1 with the available discrete values for the variables as x1A{0, 1, 2, 3},

and x2A{0, 1, 2, 3, 4, 5, 6}. Assuming that the functions of the problem are differentiable,

use a continuous variable optimization procedure to solve for discrete variables.

15.3 Formulate and solve Exercise 3.34 using the outside diameter d0 and the inside diameter di
as design variables. The outside diameter and thickness must be selected from the

following available sets:

d0Af0:020; 0:022; 0:024; . . . ; 0:48; 0:50gm; tAf5; 7; 9; . . . ; 23; 25gmm

Check your solution using the graphical method of Chapter 3. Compare continuous and

discrete solutions.

15.4 Consider the minimum mass tubular column problem formulated in Section 2.7. Find

the optimum solution for the problem using the following data: P5 100 kN, length, l5 5 m,

Young’s modulus, E5 210 GPa, allowable stress, σa5 250 MPa, mass density, ρ5 7850 kg/m3,

R# 0.4 m, t# 0.05 m, and R, t$ 0. The design variables must be selected from the following

sets:

RAf0:01; 0:012; 0:014; . . . ; 0:38; 0:40gm; tAf4; 6; 8; . . . ; 48; 50gmm

Check your solution using the graphical method of Chapter 3. Compare continuous and

discrete solutions.

15.5 Consider the plate girder design problem described and formulated in Section 6.6.

The design variables for the problem must be selected from the following sets

h; bAf0:30; 0:31; 0:32; . . . ; 2:49; 2:50gm; tw; tfAf10; 12; 14; . . . ; 98; 100gmm

Assume that the functions of the problem are differentiable and a continuous variable

optimization program can be used to solve subproblems, if needed. Solve the discrete

variable optimization problem. Compare the continuous and discrete solutions.

15.6 Consider the plate girder design problem described and formulated in Section 6.6.

The design variables for the problem must be selected from the following sets

h; bAf0:30; 0:31; 0:32; . . . ; 2:49; 2:50gm; tw; tfAf10; 12; 14; . . . ; 98; 100gmm

Assume functions of the problem to be nondifferentiable. Solve the discrete variable

optimization problem. Compare the continuous and discrete solutions.

15.7 Consider the plate girder design problem described and formulated in Section 6.6.

The design variables for the problem must be selected from the following sets

h; bAf0:30; 0:31; 0:32; . . . ; 2:48; 2:50gm; tw; tfAf10; 14; 16; . . . ; 96; 100gmm

Assume that the functions of the problem are differentiable and a continuous variable

optimization program can be used to solve subproblems, if needed. Solve the discrete

variable optimization problem. Compare the continuous and discrete solutions.
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15.8 Consider the plate girder design problem described and formulated in Section 6.6. The

design variables for the problem must be selected from the following sets

h; bAf0:30; 0:32; 0:34; . . . ; 2:48; 2:50gm; tw; tfAf10; 14; 16; . . . ; 96; 100gmm

Assume functions of the problem to be nondifferentiable. Solve the discrete variable

optimization problem. Compare the continuous and discrete solutions.

15.9 Solve the problems of Exercises 15.3 and 15.5. Compare the two solutions, commenting

on the effect of the size of the discreteness of variables on the optimum solution. Also,

compare the continuous and discrete solutions.

15.10 Consider the spring design problem formulated in Section 2.9 and solved in Section 6.5.

Assume that the wire diameters are available in increments of 0.01 in, the coils can

be fabricated in increments of 1/16th of an inch, and the number of coils must be an

integer. Assume functions of the problem to be differentiable. Compare the continuous

and discrete solutions.

15.11 Consider the spring design problem formulated in Section 2.9 and solved in Section 6.5.

Assume that the wire diameters are available in increments of 0.01 in, the coils can

be fabricated in increments of 1/16th of an inch, and the number of coils must be an

integer. Assume the functions of the problem to be nondifferentiable. Compare the

continuous

and discrete solutions.

15.12 Consider the spring design problem formulated in Section 2.9 and solved in Section 6.5.

Assume that the wire diameters are available in increments of 0.015 in, the coils can

be fabricated in increments of 1/8th of an inch, and the number of coils must be an

integer. Assume functions of the problem to be differentiable. Compare the continuous

and discrete solutions.

15.13 Consider the spring design problem formulated in Section 2.9 and solved in Section 6.5.

Assume that the wire diameters are available in increments of 0.015 in, the coils can be

fabricated in increments of 1/8th of an inch, and the number of coils must be an integer.

Assume the functions of the problem to be nondifferentiable. Compare the continuous and

discrete solutions.

15.14 Solve problems of Exercises 15.8 and 15.10. Compare the two solutions, commenting

on the effect of the size of the discreteness of variables on the optimum solution. Also,

compare the continuous and discrete solutions.

15.15 Formulate the problem of optimum design of prestressed concrete transmission poles

described in Kocer and Arora (1996a). Use a mixed variable optimization procedure to

solve the problem. Compare the solution to that given in the reference.

15.16 Formulate the problem of optimum design of steel transmission poles described in Kocer

and Arora (1996b). Solve the problem as a continuous variable optimization problem.

15.17 Formulate the problem of optimum design of steel transmission poles described in Kocer

and Arora (1996b). Assume that the diameters can vary in increments of 0.5 in and the

thicknesses can vary in increments of 0.05 in. Solve the problem as a discrete variable

optimization problem.
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15.18 Formulate the problem of optimum design of steel transmission poles using standard

sections described in Kocer and Arora (1997). Compare your solution to the solution given

there.

15.19 Solve the following mixed variable optimization problem (Hock and Schittkowski, 1981):

Minimize
f 5 ðx1 2 10Þ2 1 5ðx2 2 12Þ2 1 3ðx4 2 11Þ2 1 10x65

1 7x26 1 x47 2 4x6x7 2 10x6 2 8x7

subject to
g1 5 2x21 1 3x42 1 x3 1 4x24 1 5x5 # 127

g2 5 7x1 1 3x2 1 10x23 1 x4 2 x5 # 282

g3 5 23x1 1 x22 1 6x26 2 8x7 # 196

g4 5 4x21 1 x22 2 3x1x2 1 2x23 1 5x6 2 11x7 # 0

The first three design variables must be selected from the following sets

x1Af1; 2; 3; 4; 5g; x2; x3Af1; 2; 3; 4; 5g
15.20 Formulate and solve the three-bar truss of Exercise 3.50 as a discrete variable problem

where the cross-sectional areas must be selected from the following discrete set:

AiAf50; 100; 150; . . . ; 4950; 5000gmm2

Check your solution using the graphical method of Chapter 3. Compare continuous and

discrete solutions.
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C H A P T E R

16

Genetic Algorithms for Optimum
Design

Upon comp le t i on o f th i s chap te r, you wi l l be ab l e to

• Explain the basic concepts and terminology

associated with genetic algorithms

• Explain the basic steps of a genetic

algorithm

• Use software that is based on a genetic

algorithm to solve your optimum design

problem

Genetic algorithms (GA) belong to the class of stochastic search optimization methods, such
as the simulated annealing method described in Chapter 15. These algorithms also belong
to a class of methods known as evolutionary methods or nature-inspired methods, presented in
Chapter 19. As you get to know basics of the algorithms, you will see that decisions made
in most computational steps of the algorithms are based on random number generation.
Therefore, executed at different times, the algorithm can lead to a different sequence of
designs and a different problem solution even with the same initial conditions.

The genetic algorithms use only the function values in the search process to make prog-
ress toward a solution without regard to how the functions are evaluated. Continuity or
differentiability of the problem functions is neither required nor used in calculations of the
algorithms. Therefore, the algorithms are very general and can be applied to all kinds of
problems—discrete, continuous, and nondifferentiable. In addition, the methods determine
global optimum solutions as opposed to the local solutions determined by a derivative-
based optimization algorithm. The methods are easy to use and program since they do not
require the use of gradients of cost or constraint functions.

The drawbacks of genetic algorithms are as follows:

1. They require a large amount of calculation for even reasonably sized problems or for
problems where evaluation of functions itself requires massive calculation.

2. There is no absolute guarantee that a global solution has been obtained.
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The first drawback can be overcome to some extent by the use of massively parallel com-
puters. The second drawback can be overcome to some extent by executing the algorithm
several times and allowing it to run longer.

Recall that the optimization problem considered is defined as

Minimize
fðxÞ for xAS ð16:1Þ

where S is the set of feasible designs defined by equality and inequality constraints. For
unconstrained problems, S is the entire design space. Note that to use a genetic algorithm,
the constrained problem is converted to an unconstrained problem using the penalty
approach discussed in Chapter 11.

In the remaining sections of this chapter, concepts and terminology associated with
genetic algorithms are defined and explained for the optimization problem. Fundamentals
of genetic algorithms are presented and explained. Although the algorithm can be used for
continuous problems, our focus will be on discrete variable optimization problems. Various
steps of a genetic algorithm are described that can be implemented in different ways.

Most of the material for this chapter is derived from the work of the author and his
coworkers and is introductory in nature (Arora et al., 1994; Huang and Arora, 1997;
Huang et al., 1997; Arora, 2002). Numerous other good references on the subject are avail-
able (e.g., Holland, 1975; Goldberg, 1989; Mitchell, 1996; Gen and Cheng, 1997; Coello-
Coello et al., 2002; Osyczka, 2002; Pezeshk and Camp, 2002).

16.1 BASIC CONCEPTS AND DEFINITIONS

Genetic algorithms loosely parallel biological evolution and are based on Darwin’s theory
of natural selection. The specific mechanics of the algorithm uses the language of microbi-
ology, and its implementation mimics genetic operations. We will explain this in subse-
quent paragraphs and sections. The basic idea of the approach is to start with a set of designs,
randomly generated using the allowable values for each design variable. Each design is
also assigned a fitness value, usually using the cost function for unconstrained problems
or the penalty function for constrained problems. From the current set of designs, a subset
is selected randomly with a bias allocated to more fit members of the set. Random pro-
cesses are used to generate new designs using the selected subset of designs.

The size of the design set is kept fixed. Since more fit members of the set are used to cre-
ate new designs, the successive sets of designs have a higher probability of having designs
with better fitness values. The process is continued until a stopping criterion is met. In the
following paragraphs, some details of implementing these basic steps are presented and
explained. First we will define and explain various terms associated with the algorithm.

Population. The set of design points at the current iteration is called a population. It
represents a group of designs as potential solution points. Np5number of designs in a
population; this is also called the population size.
Generation. An iteration of the genetic algorithm is called a generation. A generation
has a population of size Np that is manipulated in a genetic algorithm.
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Chromosome. This term is used to represent a design point. Thus a chromosome
represents a design of the system, whether feasible or infeasible. It contains values for
all the design variables of the system.
Gene. This term is used for a scalar component of the design vector; that is, it
represents the value of a particular design variable.

Design Representation

A method is needed to represent design variable values in their allowable sets and to
represent design points so that they can be used and manipulated in the algorithm. This is
called a schema, and it needs to be encoded (i.e., defined). Although binary encoding is the
most common approach, real-number coding and integer encoding are also possible.
Binary encoding implies a string of 0s and 1s. Binary strings are also useful because it is
easier to explain the operations of the genetic algorithm with them.

A binary string of 0s and 1s can represent a design variable (a gene). Also, an L-digit
string with a 0 or 1 for each digit, where L is the total number of binary digits, can be
used to specify a design point (a chromosome). Elements of a binary string are called bits;
a bit can have a value of 0 or 1. We will use the term “V-string” for a binary string that repre-
sents the value of a variable; that is, the component of a design vector (a gene). Also, we will
use the term “D-string” for a binary string that represents a design of the system—that is, a par-
ticular combination of n V-strings, where n is the number of design variables. This is also
called a genetic string (or a chromosome).

An m-digit binary string has 2m possible 0�1 combinations implying that 2m discrete
values can be represented. The following method can be used to transform a V-string con-
sisting of a combination of m 0’s and 1’s to its corresponding discrete value of a variable
having Nc allowable discrete values: let m be the smallest integer satisfying 2m . Nc; calcu-
late the integer j:

j5
Xm
i51

ICHðiÞ2ði21Þ 1 1 ð16:2Þ

where ICH(i) is the value of the ith digit (either 0 or 1). Thus the jth allowable discrete
value corresponds to this 0�1 combination; that is, the jth discrete value corresponds to
this V-string. Note that when j . Nc in Eq. (16.2), the following procedure can be used to
adjust j such that j # Nc:

j5 INT
Nc

2m 2Nc

� �
ðj2NcÞ ð16:3Þ

where INT(x) is the integer part of x. As an example, consider a problem with three design
variables each having Nc5 10 possible discrete values. Thus, we will need a 4-digit binary
string to represent discrete values for each design variable; that is, m5 4 implying that 16
possible discrete values can be represented. Let a design point x5 (x1, x2, x3) be encoded
as the following D-string (genetic string):

x1 x2 x3
0110j j 1111j j 1101j j

� �
ð16:4Þ
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Using Eq. (16.2), the j values for the three V-strings are calculated as 7, 16, and 14. Since
the last two numbers are larger than Nc5 10, they are adjusted by using Eq. (16.3) as 6
and 4, respectively. Thus the foregoing D-string (genetic string) represents a design point
where the seventh, sixth, and fourth allowable discrete values are assigned to the design
variables x1, x2, and x3, respectively.

Initial Generation/Starting Design Set

With a method to represent a design point defined, the first population consisting of Np

designs needs to be created. This means that Np D-strings need to be created. In some
cases, the designer already knows some good usable designs for the system. These can be
used as seed designs to generate the required number of designs for the population using
some random process. Otherwise, the initial population can be generated randomly via
the use of a random number generator. Several methods can be used for this purpose. The
following procedure shows a way to produce a 32-digit D-string:

1. Generate two random numbers between 0 and 1 as “0.3468 0254 7932 7612 and 0.6757
2163 5862 3845.”

2. Create a string by combining the two numbers as “3468 0254 7932 7612 6757 2163 5862
3845.”

3. The 32 digits of the above string are converted to 0’s and 1’s by using a rule in which
“0” is used for any value between 0 and 4 and “1” for any value between 5 and 9, as
“0011 0010 1100 1100 1111 0010 1110 0101.”

Fitness Function

The fitness function defines the relative importance of a design. A higher fitness value
implies a better design. The fitness function may be defined in several different ways; it
can be defined using the cost function value as follows:

Fi 5 ð11 εÞfmax 2 fi; ð16:5Þ
where fi is the cost function (penalty function value for a constrained problems) for the ith
design, fmax is the largest recorded cost (penalty) function value, and ε is a small value
(e.g., 23 1027) to prevent numerical difficulties when Fi becomes 0.

16.2 FUNDAMENTALS OF GENETIC ALGORITHMS

The basic idea of a genetic algorithm is to generate a new set of designs (population) from the
current set such that the average fitness of the population is improved. The process is continued
until a stopping criterion is satisfied or the number of iterations exceeds a specified limit.
Three genetic operators are used to accomplish this task: reproduction, crossover, and
mutation.

Reproduction is an operator where an old design (D-string) is copied into the new
population according to the design’s fitness. There are many different strategies to
implement this reproduction operator. This is also called the selection process.
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Crossover corresponds to allowing selected members of the new population to
exchange characteristics of their designs among themselves. Crossover entails selection
of starting and ending positions on a pair of randomly selected strings (called mating
strings), and simply exchanging the string of 0s and 1s between these positions.
Mutation is the third step that safeguards the process from a complete premature
loss of valuable genetic material during reproduction and crossover. In terms of a
binary string, this step corresponds to selection of a few members of the population,
determining a location on the strings at random, and switching the 0 to 1 or vice versa.

The foregoing three steps are repeated for successive generations of the population until
no further improvement in fitness is attainable. The member in this generation with the
highest level of fitness is taken as the optimum design. Some details of the GA implemen-
ted by Huang and Arora (1997a) are described in the sequel.

Reproduction Procedure

Reproduction is a process of selecting a set of designs (D-strings) from the current pop-
ulation and carrying them into the next generation. The selection process is biased toward
more fit members of the current design set (population). Using the fitness value Fi for each
design in the set, its probability of selection is calculated as

Pi 5
Fi
Q
; Q5

XNp

j51

Fj ð16:6Þ

It is seen that the members with higher fitness value have larger probability of selection.
To explain the process of selection, let us consider a roulette wheel with a handle shown
in Figure 16.1. The wheel has Np segments to cover the entire population, with the size of
the ith segment proportional to the probability Pi. Now a random number w is generated
between 0 and 1. The wheel is then rotated clockwise, with the rotation proportional to the

P1

P2

P3

P4

P5

PNp

PNp

P2
P3

P4

P5

P1

Rotated PositionInitial Position

The second member is selected 
since P1 ≤ w ≤ (P1 + P2)

Spin based on a random 
number w (0 ≤ w ≤ 1) 

FIGURE 16.1 Roulette wheel process for selection of designs for new generation (reproduction).
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random number w. After spinning the wheel, the member pointed to by the arrow at the
starting location is selected for inclusion in the next generation. In the example shown in
Figure 16.1, member 2 is carried into the next generation. Since the segments on the wheel
are sized according to the probabilities Pi, the selection process is biased toward the more
fit members of the current population.

Note that a member copied to the mating pool remains in the current population for
further selection. Thus, the new population may contain identical members and may not
contain some of the members found in the current population. This way, the average fit-
ness of the new population is increased.

Crossover

Once a new set of designs is determined, crossover is conducted as a means to introduce
variation into a population. Crossover is the process of combining or mixing two different
designs (chromosomes) into the population. Although there are many methods for perform-
ing crossover, the most common ones are the one-cut-point and two-cut-point methods. A cut
point is a position on the D-string (genetic string). In the one-cut method a position on the
string is randomly selected that marks the point at which two parent designs (chromosomes)
split. The resulting four halves are then exchanged to produce new designs (children).

The process is illustrated in Figure 16.2, where the cut point is determined as four digits
from the right end. The new designs produced x1

0
and x2

0
and replace the old designs (par-

ents). Similarly, the two-cut-point method is illustrated in Figure 16.3. Selecting how many
or what percentage of chromosomes cross over, and at what points the crossover operation
occurs, is part of the heuristic nature of genetic algorithms. There are many different
approaches, and most are based on random selections.

Mutation

Mutation is the next operation on the members of the new design set (population). The
idea of mutation is to safeguard the process from a complete premature loss of valuable
genetic material during the reproduction and crossover steps. In terms of a genetic string,

x1 = 101110|1001 x2 = 010100|1011

(a)

(b)

x1′ = 101110|1011 x2′ = 010100|1001

FIGURE 16.2 Crossover operation with one-cut point.

x1′ = 101|1001|001 x2′ = 010|1101|011

x2 = 010|1001|011x1 = 101|1101|001

(a)

(b)

FIGURE 16.3 Crossover operation with two-cut point.
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this step corresponds to selecting a few members of the population, determining a location
on each string randomly, and switching 0 to 1 or vice versa. The number of members
selected for mutation is based on heuristics, and the selection of location on the string for
mutation is based on a random process. Let us select a design as “10 1110 1001” and select
location 7 from the right end of its D-string. The mutation operation involves replacing the
current value of 1 at the seventh location with 0 as “10 1010 1001.”

Number of Crossovers and Mutations

For each generation (iteration), three operators—reproduction or selection, crossover,
and mutation—are performed. While the number of the reproduction operations is always
equal to the size of the population, the number of crossovers and mutation can be adjusted
to fine-tune the performance of the algorithm.

To show the type of operations needed to implement the mutation and crossover at
each generation, we present a possible procedure as follows.

1. Set Imax as an integer that controls the amount of crossover. Calculate Im, which controls
the amount of mutation as Im5 INT(PmNp), where Pm represents a fraction of the
population that is selected for mutation, and Np is the size of the population. Too many
crossovers can result in a poorer performance of the algorithm since it may produce
designs that are far away from the mating designs. Therefore, Imax should be set to a
small number. The mutation, however, changes designs in the neighborhood of the
current design; therefore, a larger amount of mutation may be allowed. Note also that
the population size Np needs to be set to a reasonable number for each problem. It may
be heuristically related to the number of design variables and the number of all possible
designs determined by the number of allowable discrete values for each variable.

2. Let f *K denote the best cost (or penalty) function value for the population at the Kth
iteration. If the improvement in f *K is less than some small positive number ε0 for the last
two consecutive iterations, then Imax is doubled temporarily. This “doubling” strategy
continues at the subsequent iterations and returns to the original value as soon as f *K
is reduced. The concept behind this is that we do not want too much crossover or
mutation to ruin the good designs in D-strings as long as they keep producing better
offspring. On the other hand, we need more crossover and mutation to trigger changes
when progress stops.

3. If improvement in f *K is less than ε0 for the last Ig consecutive iterations, Pm is doubled.
4. The crossover and mutation may be performed as follows:

FOR i = 1, Imax

Generate a random number z uniformly distributed in [0, 1]
If z . 0.5, perform crossover.
If z # 0.5, skip crossover.
FOR j = 1, Im

Generate a random number z uniformly distributed in [0, 1]
If z . 0.5, perform mutation.
If z # 0.5, skip to next j.
ENDFOR

ENDFOR
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Leader of the Population

At each generation, the member having the lowest cost function value among all of
the designs is defined as the “leader” of the population. If several members have the
same lowest cost, only one of them is chosen as the leader. The leader is replaced if
another member with lower cost appears. In this way, it is safeguarded from extinction
(as a result of reproduction, crossover, or mutation). In addition, the leader is guaranteed
a higher probability of selection for reproduction. One benefit of using a leader is that
the best cost (penalty) function value of the population can never increase from one itera-
tion to another, and some of the best design variable values (V-strings or genes) will be
able to always survive.

Stopping Criteria

If the improvement for the best cost (penalty) function value is less than ε0 for the last
I consecutive iterations, or if the number of iterations exceeds a specified value, then the
algorithm terminates.

Genetic Algorithm

Based on the ideas presented here, a sample genetic algorithm is stated.

Step 1. Define a schema to represent different design points. Randomly generate Np

genetic strings (members of the population) according to the schema, where Np is
the population size. Or use the seed designs to generate the initial population. For
constrained problems, only the feasible strings are accepted when the penalty function
approach is not used. Set the iteration counter K5 0. Define a fitness function for the
problem, as in Eq. (16.5).
Step 2. Calculate the fitness values for all the designs in the population. Set K5K1 1,
and the counter for the number of crossovers Ic5 1.
Step 3. Reproduction: Select designs from the current population according to the
roulette wheel selection process described earlier for the mating pool (next generation)
from which members for crossover and mutation are selected.
Step 4. Crossover: Select two designs from the mating pool. Randomly choose two sites
on the genetic strings and swap strings of 0’s and 1’s between the two chosen sites. Set
Ic5 Ic1 1.
Step 5. Mutation: Choose a fraction (Pm) of the members from the mating pool and
switch a 0 to 1 or vice versa at a randomly selected site on each chosen string. If, for
the past Ig consecutive generations, the member with the lowest cost remains the same,
the mutation fraction Pm is doubled. Ig is an integer defined by the user.
Step 6. If the member with the lowest cost remains the same for the past two
consecutive generations, then increase Imax. If Ic , Imax, go to Step 4. Otherwise,
continue.
Step 7. Stopping criterion: If after the mutation fraction Pm is doubled, the best value of
the fitness is not updated for the past Ig consecutive generations, then stop. Otherwise,
go to Step 2.
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Immigration

It may be useful to introduce completely new designs into the population in an effort to
increase diversity. This is called immigration, which may be done at a few iterations dur-
ing the solution process when progress toward the solution point is slow.

Multiple Runs for a Problem

It is seen that the genetic algorithms make decisions at several places based on random
number generation. Therefore, when the same problem is run at different times, it may
give different final designs. It is suggested that the problem be run a few times to ensure
that the best possible solution has been obtained.

16.3 GENETIC ALGORITHM FOR SEQUENCING-TYPE PROBLEMS

There are many applications in engineering where the sequence of operations needs to
be determined. To introduce the type of problems being treated, let us consider the design
of a metal plate that is to have 10 bolts at the locations shown in Figure 16.4. The bolts are
to be inserted into predrilled holes by a computer-controlled robotic arm. The objective is
to minimize the movement of the robot arm while it passes over and inserts a bolt into
each hole. This class of problems is generally known as traveling salesperson problem, which
is defined as follows: Given a list of N cities and a means to calculate the traveling dis-
tance between the two cities, we must plan a salesperson’s route that passes through each
city once (with the option of returning to the starting point) while minimizing the total
distance.

For such problems, a feasible design is a string of numbers (a sequence of the cities to
be visited) that do not repeat themselves (e.g., “1 3 4 2” is feasible and “3 1 3 4” is not).
Typical operators used in genetic algorithms, such as crossover and mutation, are not
applicable to these types of problems since they usually create infeasible designs with
repeated numbers. Therefore, other operators need to be used to solve such problems. We
will describe some such operators in the following paragraphs.

4"

4"

8"8"

10"

10"

10

87

2

6

34

5

1

9

FIGURE 16.4 Bolt insertion sequence determination at
10 locations (Huang et al., 1997).
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Permutation Type 1. Let n1 be a fraction for selection of the mating pool members for
carrying out Type 1 permutation. Choose Nn1 members from the mating pool at
random, and reverse the sequence between two randomly selected sites on each chosen
string. For example, a chosen member with a string of “345216” and two randomly
selected sites of “4” and “1,” is changed to “312546.”
Permutation Type 2. Let n2 be a fraction for selection of the mating pool members for
carrying out the Type 2 permutation. Choose Nn2 members from the mating pool at
random, and exchange the numbers of two randomly selected sites on each chosen
string. For example, a chosen member with a string of “345216” and two randomly
selected sites of “4” and “1,” is changed to “315246.”
Permutation Type 3. Let n3 be a fraction for selection of the mating pool members for
carrying out the Type 3 permutation. Choose Nn3 members from the mating pool at
random, and exchange the numbers of one randomly selected site and the site next to it
on each chosen string. For example, a chosen member with a string of “345216” and a
randomly selected site of “4”, is changed to “354216”.

Relocation

Let nr be a fraction for selection of the mating pool members for carrying out relocation.
Choose Nnr members from the mating pool at random, remove the number of a randomly
selected site, and insert it in front of another randomly selected site on each chosen string.
For example, a chosen member with a string of “345216” and two randomly selected sites
of “4” and “1”, is changed to “352416.”

A computer program based on the previously mentioned operators is developed and
used to solve the bolt insertion sequence problem in Example 16.1.

EXAMPLE 16.1 BOLT INSERTION SEQUENCE DETERMINATION
AT 10 LOCATIONS

Solve the problem shown in Figure 16.4 using the genetic algorithm to minimize the total dis-

tance travelled by the robotic arm.

Solution
The problem is solved by using a genetic algorithm (Huang and Arora, 1997). The population

size Np is set to 150, and Ig (the number of consecutive iterations for which the best cost function

did not improve by at least ε0 ) is set to 10. No seed designs are used for the problem. The opti-

mum bolting sequence is not unique to the problem. With hole 1 as the starting point, the opti-

mum sequence is determined as (1, 5, 4, 10, 7, 8, 9, 3, 6, 2) and the cost function value is 74.63 in.

The number of function evaluations is 1445, which is much smaller than the total number of pos-

sibilities (10!5 3,628,800).

Two other problems are solved in Huang and Arora (1997). The first problem concerns deter-

mining the bolting sequence for 16 locations. The optimum sequence is not unique for this exam-

ple either. The solution is obtained in 3358 function evaluations compared with the total number

of possibilities, 16! D 2.0923 1013.

The second example concerns the A-pillar subassembly welding sequence determination for a pas-

senger vehicle. There are 14 welding locations. The objective is to determine the best welding
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sequence that minimizes the deformation at some critical points of the structure. Cases where

one and two welding guns are used are also considered. This is equivalent to having two sales-

men traveling between N cities for the traveling salesman problem. The optimum sequences are

obtained with 3341 and 3048 function evaluations for the two cases, which are much smaller

than those for the full enumeration.

16.4 APPLICATIONS

Numerous applications of genetic algorithms for different classes of problems have been
presented in the literature. There are specialty conferences focusing on developments in
genetic and other evolutionary algorithms and their applications. The literature in this area
is substantial. Therefore, a survey of all the applications is not attempted here. For mechani-
cal and structural design, some of the applications are covered in Arora (2002), Pezeshk and
Camp (2002), Arora and Huang (1996), and Chen and Rajan (2000). Applications of the
genetic algorithms for optimum design of electric transmission line structures are given in
Kocer and Arora (1996, 1997, 1999, 2002).

EXERCISES FOR CHAPTER 16*

Solve the following problems using a genetic algorithm.

16.1 Example 15.1 with the available discrete values for the variables as x1 A {0, 1, 2, 3}, and x2
A {0, 1, 2, 3, 4, 5, 6}. Compare the solution with that obtained with the branch and bound

method.

16.2 Exercise 3.34 using the outside diameter d0 and the inside diameter di as design variables.

The outside diameter and thickness must be selected from the following available sets:

d0Af0:020; 0:022; 0:024; . . . ; 0:48; 0:50g m; tAf5; 7; 9; . . . ; 23; 25gmm

Check your solution using the graphical method of Chapter 3. Compare continuous and

discrete solutions. Study the effect of reducing the number of elements in the available

discrete sets.

16.3 Formulate the minimum mass tubular column problem described in Section 2.7 using the

following data: P5 100 kN, length, l5 5 m, Young’s modulus, E5 210 GPa, allowable

stress, σa5 250 MPa, mass density, ρ5 7850 kg/m3, R # 0.4 m, t # 0.05 m, and R, t $ 0.

The design variables must be selected from the following sets:

RAf0:01; 0:012; 0:014; . . . ; 0:38; 0:40gm; tAf4; 6; 8; . . . ; 48; 50g mm

Check your solution using the graphical method of Chapter 3. Compare continuous and

discrete solutions. Study the effect of reducing the number of elements in the available

discrete sets.

16.4 Consider the plate girder design problem described and formulated in Section 6.6.

The design variables for the problem must be selected from the following sets

h; bAf0:30; 0:31; 0:32; . . . ; 2:49; 2:50g m; tw; tfAf10; 12; 14; . . . ; 98; 100g mm
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Compare the continuous and discrete solutions. Study the effect of reducing the number of

elements in the available discrete sets.

16.5 Consider the plate girder design problem described and formulated in Section 6.6. The

design variables for the problem must be selected from the following sets

h; bAf0:30; 0:32; 0:34; . . . ; 2:48; 2:50g m; tw; tfAf10; 14; 16; . . . ; 96; 100g mm

Compare the continuous and discrete solutions. Study the effect of reducing the number of

elements in the available discrete sets.

16.6 Solve problems of Exercises 16.4 and 16.5. Compare the two solutions, commenting on the

effect of the size of the discreteness of variables on the optimum solution. Also, compare

the continuous and discrete solutions.

16.7 Formulate the spring design problem described in Section 2.9 and solved in Section 6.5.

Assume that the wire diameters are available in increments of 0.01 in., the coils can be

fabricated in increments of 1
16= in, and the number of coils must be an integer. Compare

the continuous and discrete solutions. Study the effect of reducing the number of elements

in the available discrete sets.

16.8 Formulate the spring design problem described in Section 2.9 and solved in Section 6.5.

Assume that the wire diameters are available in increments of 0.015 in, the coils can be

fabricated in increments of 1
8= in, and the number of coils must be an integer. Compare

the continuous and discrete solutions. Study the effect of reducing the number of elements

in the available discrete sets.

16.9 Solve problems of Exercises 16.7 and 16.8. Compare the two solutions, commenting on the

effect of the size of the discreteness of variables on the optimum solution. Also, compare

the continuous and discrete solutions.

16.10 Formulate the problem of optimum design of prestressed concrete transmission poles

described in Kocer and Arora (1996a). Compare your solution to that given in the reference.

16.11 Formulate the problem of optimum design of steel transmission poles described in Kocer

and Arora (1996b). Solve the problem as a continuous variable optimization problem.

16.12 Formulate the problem of optimum design of steel transmission poles described in Kocer

and Arora (1996b). Assume that the diameters can vary in increments of 0.5 in and the

thicknesses can vary in increments of 0.05 in. Compare your solution to that given in the

reference.

16.13 Formulate the problem of optimum design of steel transmission poles using standard

sections described in Kocer and Arora (1997). Compare your solution to the solution given

in the reference.

16.14 Formulate and solve three-bar truss of Exercise 3.50 as a discrete variable problem where

the cross-sectional areas must be selected from the following discrete set:

AiAf50; 100; 150; . . . ; 4950; 5000g mm2

Check your solution using the graphical method of Chapter 3. Compare continuous and

discrete solutions. Study the effect of reducing the number of elements in the available

discrete sets.

16.15 Solve Example 16.1 of bolt insertion sequence at 10 locations. Compare your solution to

the one given in the example.
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16.16 Solve the 16-bolt insertion sequence determination problem described in Huang and

coworkers (1997). Compare your solution to the one given in the reference.

16.17 The material for the spring in Exercise 16.7 must be selected from one of three possible

materials given in Table E16.17 (refer to Section 15.8 for more discussion of the problem)

(Huang and Arora, 1997). Obtain a solution to the problem.

16.18 The material for the spring in Exercise 16.8 must be selected from one of three possible

materials given in Table E16.17 (refer to Section 15.8 for more discussion of the problem)

(Huang and Arora, 1997). Obtain a solution to the problem.

TABLE E16.17 Material data for the spring design problem

Material Type G, lb/in2 ρ, lb-s2/in4 τa, lb/in
2 Up

1 11.53 106 7.383423 1024 80,000 1.0

2 12.63 106 8.512113 1024 86,000 1.1

3 13.73 106 9.713623 1024 87,000 1.5

G5 shear modulus, ρ5mass density, τa5 shear stress, Up5 relative unit price.
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C H A P T E R

17

Multi-objective Optimum
Design Concepts
and Methods

Upon comp le t i on o f th i s chap te r, you wi l l be ab l e to

• Explain basic terminology and concepts

related to multi-objective optimization

problems

• Explain the concepts of Pareto optimality

and Pareto optimal set

• Solve your multi-objective optimization

problem using a suitable formulation

Thus far, we have considered problems in which only one objective function needed to
be optimized. However, there are many practical applications where the designer may want
to optimize two or more objective functions simultaneously. These are called multi-objective,
multicriteria, or vector optimization problems; we refer to them as multi-objective optimization
problems.

In this chapter, we describe basic terminology, concepts, and solution methods for such
problems. The material is introductory in nature and is derived from Marler and Arora
(2004, 2009) and many other references cited there (e.g., Ehrgott and Grandibleaux, 2000).1

1The original draft of this chapter was provided by R. T. Marler. The contribution to this book is very

much appreciated.
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17.1 PROBLEM DEFINITION

The general design optimization model defined in Chapter 2 is modified to treat multi-
objective optimization problems as follows:

Minimize

fðxÞ5 ðf1ðxÞ; f2ðxÞ; . . . ; fkðxÞÞ ð17:1Þ
subject to

hiðxÞ5 0; i5 1 to p ð17:2Þ
gjðxÞ # 0; j5 1 to m ð17:3Þ

where k is the number of objective functions, p is the number of equality constraints, and
m is the number of inequality constraints. f(x) is a k-dimensional vector of objective func-
tions. Recall that the feasible set S (also called the feasible design space) is defined as a collec-
tion of all of the feasible design points:

S5fxjhiðxÞ # 0; i5 1 to p; and gjðxÞ # 0; j5 1 to mg ð17:4Þ
The problem shown in Eqs. (17.1) through (17.3) usually does not have a unique solu-

tion, and this idea is illustrated by contrasting single-objective and multi-objective pro-
blems. Note that we will use the terms “cost function” and “objective function” interchangeably
in this chapter. Examples 17.1 and 17.2 illustrate the basic difference between single-
objective and multi-objective optimization problems.

EXAMPLE 17.1 SINGLE-OBJECTIVE OPTIMIZATION PROBLEM

Minimize

f1ðxÞ5 ðx1 22Þ2 1 ðx2 25Þ2 ðaÞ
subject to

g1 52x1 2 x2 1 10 # 0 ðbÞ
g2 522x1 1 3x2 210 # 0 ðcÞ

Solution
Figure 17.1 is a graphical representation of the problem. The feasible set S is convex, as shown

in the figure. A few objective function contours are also shown. It is seen that the problem has a

distinct minimum at the point A(4, 6) with the objective function value of f1(4,6)5 5. At the mini-

mum point, both constraints are active. Note that since the objective function is also strictly con-

vex, point A represents the unique global minimum for the problem.
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EXAMPLE 17.2 TWO-OBJECTIVE OPTIMIZATION
PROBLEM

A second objective function is added to Example 17.1 to obtain the following two-objective

problem:

Minimize
f1ðxÞ5 ðx1 22Þ2 1 ðx2 25Þ2 ðaÞ

f2ðxÞ5 ðx1 24:5Þ2 1 ðx2 28:5Þ2 ðbÞ

subject to same constraints as for Example 17.1.

Solution
Figure 17.2 is a modification of Figure 17.1, where the contours of the second objective func-

tion are also shown. The minimum value of f2 is 3.25 at point B(5.5, 7.0). Note that f2 is also a

strictly convex function, and so point B is a unique global minimum point for f2. The minimum

points for the two objective functions are different. Therefore, if one wishes to minimize f1 and f2
simultaneously, pinpointing a single optimum point is not possible. In fact, there are infinitely

many possible solution points, called the Pareto optimal set, which is explained later. The challenge is

to find a solution that suits requirements of the designer. This dilemma requires the description

of additional terminology and solution concepts.
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FIGURE 17.1 Graphical representation of
a single-objective optimization problem.
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17.2 TERMINOLOGY AND BASIC CONCEPTS

17.2.1 Criterion Space and Design Space

Example 17.2 is depicted in the design space in Figure 17.2. That is, the constraints g1
and g2 and the objective function contours are plotted as functions of the design variables
x1 and x2. Alternatively, a multi-objective optimization problem may also be depicted in
the criterion space (also called the cost space), where the axes represent different objective
functions. For the present problem, f1 and f2 are the axes in the criterion space, as shown
in Figures 17.3 and 17.4. q1 represents the g1 boundary, and q2 represents the g2 boundary.

In general, a curve in the design space in the form gj(x)5 0 is translated into a curve qj
in the criterion space simply by evaluating the values of the objective functions at different
points on the constraint curve in the design space. The feasible criterion space Z is defined
simply as the set of objective function values corresponding to the feasible points in the
design space; that is,

Z5ffðxÞjx in the feasible set Sg ð17:5Þ
The feasible points in the design space map onto a set of points in the criterion space.

Note that although qj represents gj in the criterion space, it may not necessarily represent
the boundaries of the feasible criterion space. This is seen in Figure 17.3, where the feasible
criterion space for the problem in Example 17.2 is displayed. All portions of the curves q1
and q2 do not form boundaries of the feasible criterion space. This concept of feasible crite-
rion space is important and used frequently, so we will discuss it further.
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Let us first consider the single-objective function problem depicted in Figure 17.1. The
feasible criterion space for the problem is the line f1 that starts at 5, the minimum value
for the function, and goes to infinity. Note that each feasible design point corresponds
only to one objective function value; it maps onto only one point on the feasible criterion
line. However, for one objective function value, there may be many different feasible
design points in the feasible design space S. For instance, in Figure 17.1, there are infi-
nitely many design points that result in f15 16.25, as seen for the contour f15 16.25. Note
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also that the contour f15 16.25 passes through the infeasible region as well. Thus, for a
given objective function value (a given point in the feasible criterion space), there can be
feasible or infeasible points in the design space. Note also that the objective function
values for design points on the constraint boundaries for g1 and g2 fall on the line f1 in
the criterion space.

Now let us consider the problem with two objective functions and study the relation-
ship between constraint boundaries in the design space and the corresponding curves in
the criterion space. Let us consider two feasible points E and F in the criterion space, as
shown in Figure 17.3. Both points are on the curve q1 and have a value of 16.25 for f1.
Since both points are on the curve q1, they must also lie on the constraint boundary g1 in
the design space. They indeed are on the g1 line in the design space at E(1.076, 8.924) and
F(5.924, 4.076), as shown in Figure 17.2. Whereas both points satisfy the constraint g1, the
point E violates the constraint g2 and thus is not in the feasible set S. The question is, then,
how can point E be in the feasible criterion space?

It turns out that there is another point G on the f15 16.25 contour in Figure 17.2 that
is feasible and has the same value for f2 as for the point E. Therefore, point G also
maps onto point E in the criterion space, as shown in Figure 17.3. Thus, a feasible point
in the criterion space can map onto multiple points in the design space, some of which
may violate constraints. Note that the feasible point C and the infeasible point D in
Figure 17.2 both map onto a feasible point C in the criterion space, as can be seen in
Figure 17.4. An infeasible point H in the criterion space in Figure 17.3 having f15 16.25
maps onto an infeasible point H in the design space, as seen in Figure 17.2. Thus, the
feasible criterion space consists of all the points obtained using the feasible points in the
design space.

A concept that is related to the feasibility of design points is that of attainability.
Feasibility of a design implies that no constraint is violated in the design space.
Attainability implies that a point in the criterion space can be related to a point in the fea-
sible design space. Whereas each point in the feasible design space translates to a point in
the criterion space, the reverse may not be true; that is, every point in the criterion space
does not necessarily correspond to a single point x in the feasible design space S, as we
saw in the foregoing example. Thus, even with an unconstrained problem, only certain
points in the criterion space are attainable. We will use the symbol Z to indicate points in
the criterion space that are attainable and correspond to a feasible point in the set S. The
set Z is also referred to as the attainable set.

For the relatively simple problem in Example 17.2, it is possible to depict Z, as illus-
trated in Figures 17.3 and 17.4, but generally it is not possible to depict the feasible crite-
rion space directly.

As noted earlier in Example 17.1, the feasible criterion space is the real line starting at 5
and going up to infinity. Therefore, only the objective function values of 5 and higher are
attainable and constitute the feasible criterion space Z for that problem.

17.2.2 Solution Concepts

From a classical standpoint, optimizing a single function simply entails determining a
set of stationary points, identifying a local maximum or minimum, and possibly finding
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the global optimum, such as point A in Figure 17.1. In contrast, the process of determining
a solution for a multi-objective optimization problem is slightly more complex and less
definite than that for a single-objective problem. As seen in Example 17.2 and depicted in
Figure 17.2, point A is the minimum for f1 and point B is the minimum for f2. But which
design point minimizes both f1 and f2 simultaneously? This is not clear even for this simple
problem. Therefore, it is not clear what is meant by the minimum of multiple functions
that may have opposing characteristics since what decreases the value of one function
may increase the value of another. Therefore, in this section we describe some solution
concepts related to multi-objective optimization problems.

Pareto Optimality

The predominant solution concept in defining solutions for multi-objective optimization
problems is that of Pareto optimality (Pareto, 1906). A point x* in the feasible design space S
is called Pareto optimal if there is no other point x in the set S that reduces at least one
objective function without increasing another one. This is defined more precisely as
follows:

A point x* in the feasible design space S is Pareto optimal if and only if there does not exist another point
x in the set S such that f(x) # f(x*) with at least one fi(x) , fi(x*).

Note that inequalities between vectors apply to every component of each vector; for
example, f(x) # f(x*) implies f1 # f1*, f2 # f2*, and so on. The set of all Pareto optimal
points is called the Pareto optimal set, and this term can refer to points in the design space,
or to points in the criterion space. The preceding definition means that for x* to be called
the Pareto optimal point, no other point exists in the feasible design space S that improves
at least one objective function while keeping others unchanged.

As an example of a Pareto optimal point, consider point A in Figures 17.2 and 17.4. It
is not possible to move from this point and simultaneously decrease the value of f1 and
f2 without violating a constraint, that is, without moving into the infeasible region.
Therefore, point A is a Pareto optimal point. However, it is possible to move from point
C and simultaneously reduce the values of both f1 and f2. This can be seen most clearly
in Figure 17.4. Thus, point C is not Pareto optimal. In Figure 17.2, the points on the line
between A and B along g2 represent the Pareto optimal set. In Figure 17.4, the Pareto
optimal set is shown as the curve between points A and B along q2. In fact, the Pareto
optimal set is always on the boundary of the feasible criterion space Z. When there are just two
objective functions, as with this example, then the minimum points of each objective
function define the endpoints of the Pareto optimal curve, assuming the minima to be
unique.

Note that although the Pareto optimal set is always on the boundary of Z, it is not
necessarily defined by the constraints. As noted earlier, Z exists even for unconstrained
problems. In such a case, the Pareto optimal set is defined by the relationship between
the gradients of the objective functions. In the simple case when there are just two objective
functions, the gradients of the functions point in opposite directions at all Pareto optimal points.
An exception to this rule is the individual minimum points for the functions at which
the gradient is zero.
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For Example 17.2 without the constraints g1 and g2, the Pareto optimal set is along the
line connecting the centers of the circles for the two objective functions—that is, points (2,
5) and (4.5, 8.5). This line maps onto a curve in the criterion space in Figure 17.3.

Weak Pareto Optimality

A concept closely related to Pareto optimality is that of weak Pareto optimality. At the
weakly Pareto optimal points, it is possible to improve some objective functions without
penalizing others. A weakly Pareto optimal point is defined as follows:

A point x* in the feasible design space S is weakly Pareto optimal if and only if there does not exist
another point x in the set S such that f(x) , f(x*). That is, there is no point that improves all of the objective
functions simultaneously; however, there may be points that improve some of the objectives while keeping
others unchanged.

In contrast to weakly Pareto optimal points, no objective function can be improved
from a Pareto optimal point without detriment to another objective function. It will be
seen later that there are numerical algorithms for multi-objective optimization that may
converge to weakly Pareto optimal solutions as opposed to always giving Pareto optimal
solutions.

Efficiency and Dominance

Efficiency is another primary concept in multi-objective optimization and is defined as
follows:

A point x* in the feasible design space S is efficient if and only if there does not exist another point x in
the set S such that f(x) # f(x*) with at least one fi(x) , fi(x*). Otherwise, x* is inefficient. The set of all effi-
cient points is called the efficient frontier.

Another common concept is that of nondominated and dominated points, which is defined
as follows:

A vector of objective functions f*5 f(x*) in the feasible criterion space Z is nondominated if and only if
there does not exist another vector f in the set Z such that f # f*, with at least one fi , fi*. Otherwise, f* is
dominated.

Note that the definitions of Pareto optimal and efficient points are the same. Also, the
definitions of efficient and nondominated points are similar. The only distinction is that
efficiency refers to points in the design space and nondominance refers to the points in the
criterion space. Pareto optimality, however, generally refers to both the design and the cri-
terion spaces. In numerical algorithms, the idea of nondomination in the criterion space is
often used for a subset of points; one point may be nondominated compared with other
points in the subset. Pareto optimality, on the other hand, implies a condition in terms of
the complete feasible design or criterion space.

Genetic algorithms and some random search methods for multi-objective optimization
update and store a discrete set of potential solution points in each iteration. Each new
addition to this set is compared with all of the objective function values of potential
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solution points to determine if the new point is dominated. If it is nondominated, then it is
kept in the set of potential solution points; note, however, that this point may not be
Pareto optimal.

Utopia Point

This is a unique point in the criterion space that is defined as follows:

A point f� in the criterion space is called the utopia point if f�i5min{fi(x) j for all x in the set S}, i5 1 to
k. It is also called the ideal point.

The utopia point is obtained by minimizing each objective function without regard for
other objective functions. Each minimization yields a design point in the design space and
the corresponding value for the objective function. It is rare that each minimization will
end up at the same point in the design space. That is, one design point cannot simulta-
neously minimize all of the objective functions. Thus, the utopia point exists only in the crite-
rion space and, in general, it is not attainable.

Figure 17.4 shows the Pareto optimal set and the utopia point for the problem in
Example 17.2. The Pareto optimal set is on the boundary of Z and coincides with the curve
q2. The utopia point is located at the point (5, 3.25), as calculated before. Note that the uto-
pia point is not in Z, and is therefore unattainable.

Compromise Solution

The next best thing to a utopia point is a solution that is as close as possible to the uto-
pia point. Such a solution is called a compromise solution. The term closeness can be defined
in several different ways. Usually, it implies that one minimizes the Euclidean distance
D(x) from the utopia point in the criterion space, which is defined as follows:

DðxÞ5 jjfðxÞ2 f�jj5
Xk

i51

½fiðxÞ2 fi
��2

( )1=2

ð17:6Þ

where f�i represents a component of the utopia point in the criterion space. Compromise solu-
tions are Pareto optimal.

17.2.3 Preferences and Utility Functions

Because mathematically there are infinitely many Pareto optimal solutions, we often
have to make decisions concerning which solution is preferred. Fundamentally, this speci-
fication of preferences is based on opinions concerning points in the criterion space.
Ideally, a multi-objective optimization method should reflect the user’s preferences, if
known; that is, it should incorporate how the user feels about different solution points.
However, having a mathematical model or algorithm to represent one’s preferences per-
fectly is usually impossible. Nonetheless, different methods for multi-objective optimiza-
tion try to incorporate preferences in different ways.

This idea of accurately incorporating and reflecting preferences is a common and signif-
icant issue for multi-objective optimization methods. Consequently, some work has been
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done to develop methods that effectively incorporate preferences. These methods typically
try to capture knowledge about the problem functions and incorporate it into mathemati-
cal expressions that are then used in multi-objective optimization methods. One such
recent method that captures this knowledge quite accurately is called physical programming.
The method has been used successfully in several applications (Messac, 1996; Chen et al.,
2000, Messac et al., 2001; Messac and Mattson, 2002).

Essentially, there are three approaches to expressing preferences about different objec-
tive functions. Preferences can be declared before solving the multi-objective optimization
problem. For instance, one may specify weights associated with each objective, indicating
their relative importance. Alternatively, preferences can be indicated by interacting with
the optimization routine and making choices based on intermediate optimization results.
For engineering applications, such approaches can be awkward, especially with problems
that require a significant amount of time to evaluate the problem functions.

Finally, it is possible to calculate the complete Pareto optimal set (or its approximation)
and then select a single solution point after the problem has been solved. This, however, is
not practical for more than three objective functions (although selected subsets of two or
three objectives functions may be displayed). In some instances, the decision maker may
not be able to concretely define preferences. Thus, as a special case, one may choose not to
declare preferences at all.

A utility function is a mathematical expression that attempts to model the decision
maker’s preferences. It is most relevant to methods that indicate preferences before the
problem is solved. In this context, utility, which is modeled with a utility function, repre-
sents an individual’s degree of contentment. Utility emphasizes a decision maker’s satis-
faction, which is slightly different from the usual meaning of usefulness or worth. The
utility function is a scalar function incorporating various objective functions.

17.2.4 Vector Methods and Scalarization Methods

Two predominant classifications for multi-objective approaches are scalarization and vec-
tor optimization methods. With scalarization methods, the components of objective function
vectors are combined to form a scalar objective function. Then we can use standard single-
objective methods to optimize the result. Alternatively, the term “vector optimization”
implies that each objective function is treated independently. We will describe examples of
both approaches.

17.2.5 Generation of Pareto Optimal Set

A key characteristic of multi-objective optimization methods is the nature of the solutions
that they provide. Some methods always yield Pareto optimal solutions but may skip cer-
tain points in the Pareto optimal set; that is, they may not be able to yield all of the Pareto
optimal points. Other methods are able to capture all of the points in the Pareto optimal set
(when the problem is solved by changing the method parameters), but may also provide
non-Pareto optimal points. The former quality is beneficial when we are interested in using
a method to obtain just one solution point. The latter quality is useful when the complete
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Pareto optimal set needs to be generated. We will note this feature of each method when it
is described in later sections. The tendency of a particular method to result in non-Pareto
optimal points, and the ability of a method to capture all of the Pareto optimal points,
depend not only on the method itself but also on the nature of the problem being solved.

17.2.6 Normalization of Objective Functions

Many multi-objective optimization methods involve comparing and making decisions
about different objective functions. However, values of different functions may have dif-
ferent units and/or significantly different orders of magnitude, making comparisons diffi-
cult. Thus, it is usually necessary to transform the objective functions such that they all
have similar orders of magnitude. Although there are many approaches, the most robust
is to normalize the objective functions as follows:

fnormi 5
fiðxÞ2 fi

�

fmax
i 2 fi

� ð17:7Þ

where f
�
i is the utopia point. fi

norm(x) generally has values between 0 and 1, depending on
the accuracy and method with which fi

max(x) and f
�
i (x) are determined.

There are two approaches for determining fi
max(x). One can define it such that

fi
max(x)5 1#j#k

max fi(x*j ), where x*j is the point that minimizes the jth objective function. This
implies that each objective fj(x) needs to be minimized to determine x*j. Then all objective
functions need to be evaluated at x*j. The maximum of all of the fi values is fi

max(x). This
process also determines the utopia point f

�
i(x). It is noted that this normalization process

may not be practical in some cases. Therefore, instead of fi
max(x), we can use the absolute

maximum value of fi(x), or its approximation based on engineering intuition. Similarly, the
utopia point may be replaced with a reasonable estimate (called the aspiration point, target
value, or goal). We will assume that the objective functions have been normalized. Note,
however, that if all of the objective functions have similar values, normalization may not
be needed.

17.2.7 Optimization Engine

Most approaches for solving multi-objective optimization problems actually entail for-
mulating the multiple objective functions into a single-objective problem or a series of pro-
blems. Then a standard single-objective optimization routine is used to solve the
consequent formulation. We call this routine the optimization engine. The performance of
most multi-objective methods depends on which optimization engine is used.

17.3 MULTI-OBJECTIVE GENETIC ALGORITHMS

Genetic algorithms (GAs) for single-objective optimization can be extended to provide
an effective approach for solving multi-objective optimization problems as well. Since GAs
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for multi-objective optimization build on the GAs for single-objective optimization, the
concepts and procedures described previously in Chapter 16 should be reviewed.

Because genetic algorithms do not require gradient information, they can be effective
regardless of the nature of the problem functions. They combine the use of random num-
bers and information from previous iterations to evaluate and improve a population of
points (a group of potential solutions) rather than a single point at a time. Another appeal
of genetic algorithms is their ability to converge to the Pareto optimal set rather than a single
Pareto optimal point (Osyczka, 2002).

Although the algorithms in this section are intended for application to engineering pro-
blems, much of the literature uses terminology from the fields of biology and genetics.
Thus, for the sake of clarity, the basic definitions from Chapter 16 are reviewed here and
some new terms are introduced.

A population represents a set of design points in the design space. A subpopulation is a
subset of points in a generation. Generation refers to a computational iteration. To say that
a point survives into the next generation means that the point is selected for use in the next
iteration. A niche is a group of points that are close together (typically in terms of distance
in the criterion space).

Multi-objective Genetic Algorithms

The primary questions when developing genetic algorithms for multi-objective pro-
blems are how to evaluate fitness, how to incorporate the idea of Pareto optimality, and
how to determine which potential solution points should be selected (will survive) for the
next iteration (generation). Note that the fitness of a design point (determined usually by a
fitness function) is used in the selection process, that is, to decide whether to include the
design in the next generation.

However, in some multi-objective genetic algorithms, the fitness of a design is neither
defined nor used; instead, some selection strategy is used directly to select the designs for
the next iteration (generation). The approaches that are described in this section collec-
tively address these two issues. Different selection techniques are discussed that serve as
potential ingredients in a genetic multi-objective optimization algorithm. Once a set of
designs is selected for the next generation, the crossover and mutation operators,
described in Chapter 16, are used to create a new set of designs that are subjected to the
selection process again; thus, the iterations continue this way.

In general, genetic algorithms for multi-objective optimization continue to evolve. We will
describe some basic ideas and techniques that can be combined, modified, and used in differ-
ent ways in a specific genetic algorithm for selection of designs for the next generation.

Vector-Evaluated Genetic Algorithm

One of the first treatments of multi-objective genetic algorithms was presented by Schaffer
(1985); it has provided a foundation for later developments. The general idea behind the
approach, called the vector-evaluated genetic algorithm (VEGA), involves producing smaller
subsets (subpopulations) of the current designs (population) in a given iteration (generation).
One subset is created by evaluating one objective function at a time rather than aggregating
all of the functions. The selection process is composed of a series of computational loops, and
during each loop the fitness of each member of the current set of designs is evaluated using a
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single-objective function. Then certain members of the population are selected and passed on
to the next generation using the stochastic processes discussed in Chapter 16. This process is
repeated for each objective function. Consequently, for a problem with k objectives, k subsets
are created, each with Np/k members, where Np is the size of the entire set (population size).
The resulting subsets are then combined to yield a new population.

The selection process is based on the idea that the minimum of a single-objective func-
tion is a Pareto optimal point (assuming that the minimum is unique). Such minima gener-
ally define the vertices of the Pareto optimal set. Consequently, Schaffer’s method does
not yield an even distribution of Pareto optimal points. Solutions in a given generation
tend to cluster around individual function minima. This is analogous to the evolution of
species, where a species is a class of organisms with common attributes.

Ranking

A class of alternatives to VEGA, when it comes to evaluating fitness and selecting
designs for the next generation, involves giving each design a rank based on whether it
is dominated in the criterion space (Goldberg, 1989; Srinivas and Deb, 1995; Cheng and
Li, 1998). Fitness is then based on a design’s rank within a population. The means of
determining rank and of assigning fitness values associated with it may vary from
method to method, but a general approach is common, as described in the following
discussion.

For a given set of designs, the objective functions are evaluated at each point. All non-
dominated points receive a rank of 1. Determining whether a point is dominated (a nondo-
minated check) entails comparing the vector of objective function values at that point with
the vector at all other points. Then the points with a rank of 1 are temporarily removed
from consideration, and the points that are nondominated relative to the remaining group
are given a rank of 2. This process is repeated until all points are ranked. The points with
the lowest rank have the highest fitness value. That is, fitness is determined such that it is
inversely proportional to rank.

Pareto Fitness Function

The fitness function for a problem with multiple objectives can be defined in many dif-
ferent ways (Balling et al., 1999, 2000; Balling, 2000). The following function, called the
maximin fitness function, has been used successfully in some applications (Balling, 2003):

FðxiÞ5 max
j6¼i; jAP

min
l#s#k

ffsðxiÞ2 fsðxjÞg
� �

ð17:8Þ

Here, F(xi) is the fitness of the ith design, and P is the set of nondominated points in the
current population; it is assumed that each objective function has been scaled by dividing
it by an appropriate positive constant. Thus, with each iteration one must first determine
all of the nondominated points before evaluating the fitness of the designs. Note that the
nondominated points have negative fitness values. This fitness function automatically
penalizes clustering of the nondominated points. Thus, compared with other selection
approaches, this one is relatively simple and effective.
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Pareto-Set Filter

It is possible to have a Pareto optimal point in a particular iteration that does not appear
in subsequent iterations; that is, it may be dropped from further consideration during the
selection process. To guard against this situation, a Pareto-set filter can be used. Regardless
of how fitness is determined, most genetic multi-objective optimization methods incorpo-
rate some type of Pareto-set filter to avoid losing potential Pareto optimal solutions. One
type is described as follows (Cheng and Li, 1997). Basically, the algorithm stores two sets
of solutions: the current population and the filter (another set of potential solutions). The
filter is called an approximate Pareto set and provides an approximation of the Pareto opti-
mal set.

With each iteration, points with a rank of 1 are saved in the filter. When new points
from subsequent iterations are added to the filter, they are subjected to a nondominated
check within the filter; the dominated points are discarded. The capacity of the filter is
typically set to the size of the population. When the filter is full, points at a minimum dis-
tance from other points are discarded in order to maintain an even distribution of Pareto
optimal points. The filter eventually converges on the true Pareto optimal set.

Elitist Strategy

Although the elitist strategy is similar to the Pareto-set filter approach, it provides an
alternative means for ensuring that Pareto optimal solutions are not lost (Ishibuchi and
Murata, 1996; Murata et al., 1996). It functions independently of the ranking scheme. As
with the Pareto-set filter, two sets of solutions are stored: a current population and a tenta-
tive set of nondominated solutions, which is an approximate Pareto optimal set. With each
iteration, all points in the current population that are not dominated by any points in the
tentative set are added to the tentative set. Then the dominated points in the tentative set
are discarded. After crossover and mutation operations are applied, a user-specified num-
ber of points from the tentative set are reintroduced into the current population. These are
called elite points. In addition, the k solutions with the best values for each objective func-
tion can be regarded as elite points and preserved for the next generation.

Tournament Selection

Tournament selection is another technique for choosing designs that are used in subse-
quent iterations. Although it concerns the selection process, it circumvents the idea of fit-
ness. It is an alternative to the ranking approach previously described.

Tournament selection proceeds as follows (Horn et al., 1994; Srinivas and Deb, 1995).
Two points, called candidate points, are randomly selected from the current population.
These candidate points essentially compete for survival in the next generation. A separate
set of points, called a tournament (or comparison) set also is randomly compiled. The candi-
date points are then compared with each member of the tournament set. If both points are
dominated by the points in the tournament set, another pair is selected. If there is only
one candidate that is nondominated relative to the tournament set, that candidate is
selected for use in the next iteration.

However, if there is no preference between candidates, or if there is a tie, fitness sharing,
which is explained later, is used to select a candidate. The size of the tournament set is

670 17. MULTI-OBJECTIVE OPTIMUM DESIGN CONCEPTS AND METHODS

III. ADVANCED AND MODERN TOPICS IN OPTIMUM DESIGN



prespecified as a percentage of the total population. It imposes the degree of difficulty in
surviving, which is called the domination pressure. An insufficient number of Pareto optimal
points will be found if the tournament size is too small, and premature convergence may
result if the tournament size is too large.

Niche Techniques

A niche in genetic algorithms is a group of points that are close to each other, typically
in the criterion space. Niche techniques (also called niche schemes or niche-formation methods)
are methods for ensuring that a set of designs does not converge to a niche (i.e., a limited
number of Pareto optimal points). Thus, these techniques foster an even spread of points
(in the criterion space). Genetic multi-objective algorithms tend to create a limited number
of niches; they converge to or cluster around a limited set of Pareto optimal points. This
phenomenon is known as genetic or (population) drift, and niche techniques force the devel-
opment of multiple niches while limiting the growth of any single niche.

Fitness sharing is a common niche technique, the basic idea of which is to penalize the
fitness of points in crowded areas, thus reducing the probability of their survival for the
next iteration (Deb, 1989; Fonseca and Fleming, 1993; Horn et al., 1994; Srinivas and Deb,
1995; Narayana and Azarm, 1999). The fitness of a given point is divided by a constant
that is proportional to the number of other points within a specified distance in the crite-
rion space. In this way the fitness of all points in a niche is shared in some sense—thus
the term “fitness sharing.”

In reference to tournament selection, when two candidates are both either nondomi-
nated or dominated, the most fit candidate is the one with the least number of individuals
surrounding it (within a specified distance in the criterion space). This is called equivalence
class sharing.

17.4 WEIGHTED SUM METHOD

The most common approach to multi-objective optimization is the weighted sum method:

U5
Xk

i51

wifiðxÞ ð17:9Þ

Here w is a vector of weights typically set by the decision maker such that
Pk
i51

wi5 1 and

w . 0. If objectives are not normalized, wi need not add to 1.
As with most methods that involve objective function weights, setting one or more of

the weights to 0 can result in weakly Pareto optimal points. The relative value of the
weights generally reflects the relative importance of the objectives. This is another com-
mon characteristic of weighted methods. If all of the weights are omitted or are set to 1,
then all objectives are treated equally.

The weights can be used in two ways. The user may either set w to reflect prefer-
ences before the problem is solved or systematically alter w to yield different Pareto
optimal points (to generate the Pareto optimal set). In fact, most methods that involve
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weights can be used in both of these capacities—to generate a single solution or multiple
solutions.

This method is easy to use, and if all of the weights are positive, the minimum of Eq. (17.9)
is always Pareto optimal. However, there are a few recognized difficulties with the weighted
sum method (Koski, 1985; Das and Dennis, 1997). First, even with some of the methods dis-
cussed in the literature for determining weights, a satisfactory a priori weight selection does
not necessarily guarantee that the final solution will be acceptable; one may have to re-solve
the problem with new weights. In fact, this is true of most weighted methods.

The second problem is that it is impossible to obtain points on nonconvex portions of
the Pareto optimal set in the criterion space (Marler and Arora, 2010). Although nonconvex
Pareto optimal sets are relatively uncommon, some examples are noted in the literature
(Koski, 1985; Stadler and Dauer, 1992; Stadler, 1995). The final difficulty with the weighted
sum method is that varying the weights consistently and continuously may not necessarily
result in an even distribution of Pareto optimal points and an accurate, complete represen-
tation of the Pareto optimal set.

17.5 WEIGHTED MIN-MAX METHOD

The weighted min-max method (also called the weighted Tchebycheff method) is formulated
to minimize U, which is given as follows:

U5 max
i

fwi½fiðxÞ2 fi
��g ð17:10Þ

A common approach to treatment of Eq. (17.10) is to introduce an additional unknown
parameter λ as follows:

Minimize λ

subject to additional constraints

wi½fiðxÞ2 fi
��2λ # 0; i5 1 to k ð17:11Þ

Whereas the weighted sum method discussed in Section 17.4 always yields Pareto
optimal points, but may miss certain points when the weights are varied, this method
can provide all of the Pareto optimal points (the complete Pareto optimal set). However,
it may provide non-Pareto optimal points as well. Nonetheless, the solution using the
min-max approach is always weakly Pareto optimal, and if the solution is unique, then
it is Pareto optimal.

The advantages of the method are as follows:

1. It provides a clear interpretation of minimizing the largest difference between fi(x)
and f �i.

2. It can provide all of the Pareto optimal points.
3. It always provides a weakly Pareto optimal solution.
4. It is relatively well suited for generating the complete Pareto optimal set (with variation

in the weights).
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The disadvantages are as follows:

1. It requires the minimization of each objective when using the utopia point, which can
be computationally expensive.

2. It requires that additional constraints be included.
3. It is not clear exactly how to set the weights when only one solution point is desired.

17.6 WEIGHTED GLOBAL CRITERION METHOD

This is a scalarization method that combines all objective functions to form a single
function which is then minimized. Although the term “global criterion” can refer to any
scalarized function, it has been used in the literature primarily for formulations similar to
the ones presented in this section. Although a global criterion may be a mathematical func-
tion with no correlation to preferences, a weighted global criterion is a type of utility func-
tion in which the parameters are used to model preferences. The most common weighted
global criterion is defined as follows:

U5
Xk
i51

wi fiðxÞ2 fi
�� ��p� �1=p(

ð17:12Þ

Solutions using the global criterion formulation depend on the values of both w and p.
Generally, p is proportional to the amount of emphasis placed on minimizing the function
with the largest difference between fi(x) and f

�
i. The root 1/p may be omitted because the

formulations with and without it theoretically provide the same solution. Typically, p and
w are not varied or determined in unison. Rather, a fixed value for p is selected, and then
w is either selected to reflect preferences before the problem is solved or systematically
altered to yield different Pareto optimal points.

Depending on how p is set, the global criteria can be reduced to other common meth-
ods. For instance, when p5 1, Eq. (17.12) is similar to a weighted sum with the objective
functions adjusted with the utopia point. When p5 2 and weights are equal to 1,
Eq. (17.12) represents the distance from the utopia point, and the solution is usually con-
sidered a compromise, as discussed earlier. When p5N, Eq. (17.12) reduces to Eq. (17.10).

With the weighted global criterion method, increasing the value of p can increase its
effectiveness in providing the complete Pareto optimal set (Athan and Papalambros, 1996;
Messac et al., 2000a,b). This explains why the weighted min-max approach can provide
the complete Pareto optimal set with variation in the weights; as shown in Eq. (17.10) it is
the limit of Eq. (17.12) as p - N.

For computational efficiency, or in cases where a function’s independent minimum may
be difficult to determine, one may approximate the utopia point with z, which is called an
aspiration point, reference point, goal, or target point. When this is done, U is called an achieve-
ment function. The user thus has three different parameters that can be used to specify dif-
ferent types of preferences: w, p, and z. Assuming that w is fixed, every Pareto optimal
point may be captured using a different aspiration point z, as long as the aspiration point
is not in the feasible criterion space Z.
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However, this is not a practical approach for generating the complete Pareto optimal set.
Often it is not possible to determine whether z is in the feasible criterion space Z before solv-
ing the problem. In addition, if the aspiration point is in the feasible criterion space, the
method may provide non-Pareto optimal solutions. Thus, it is recommended that the utopia
point be used whenever possible. In addition, the aspiration point should not be varied as a
parameter of the method but only as an approximation of the utopia point.

Equation (17.12) always yields a Pareto optimal solution as long as w . 0 and as
long as the utopia point is used. However, it may skip certain Pareto optimal points,
depending on the nature of the objective functions and the value of p that is used.
Generally, using a higher value for p enables us to better capture all Pareto optimal points
(with variation in w).

We can view the arguments of the summation in Eq. (17.12) in two ways: as transforma-
tions of the original objective functions or as components of a distance function that mini-
mizes the distance between the solution point and the utopia point in the criterion space.
Consequently, global criterion methods are often called utopia point, or compromise program-
ming, methods, as the decision maker usually has to compromise between the final solu-
tion and the utopia point.

The advantages of the global criterion method are as follows:

1. It gives a clear interpretation of minimizing the distance from the utopia point (or the
aspiration point).

2. It gives a general formulation that reduces to many other approaches.
3. It allows multiple parameters to be set to reflect preferences.
4. It always provides a Pareto optimal solution when the utopia point is used.

The disadvantages are as follows:

1. The use of the utopia point requires minimization of each objective function, which
can be computationally expensive.

2. The use of an aspiration point requires that it be infeasible in order to yield a Pareto
optimal solution.

3. The setting of parameters is not intuitively clear when only one solution point is
desired.

17.7 LEXICOGRAPHIC METHOD

With the lexicographic method, preferences are imposed by ordering the objective func-
tions according to their importance or significance, rather than by assigning weights. In
this way, the following optimization problems are solved one at a time:

Minimize

fiðxÞ
subject to

fjðxÞ # fjðx�j Þ; j5 1 to ði21Þ; i . 1; i5 1 to k ð17:13Þ
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Here i represents a function’s position in the preferred sequence, and fj(x*j) represents
the minimum value for the jth objective function, found in the jth optimization problem.
Note that after the first iteration (j . 1), fj(x*j) is not necessarily the same as the indepen-
dent minimum of fj(x) because new constraints are introduced for each problem. The algo-
rithm terminates once a unique optimum is determined. Generally, this is indicated when
two consecutive optimization problems yield the same solution point. However, determin-
ing if a solution is unique (within the feasible design space S) can be difficult, especially
with local gradient-based optimization engines.

For this reason, often with continuous problems, this approach terminates after simply
finding the optimum of the first objective f1(x). Thus, it is best to use a global optimization
engine with this approach. In any case, the solution is, theoretically, always Pareto opti-
mal. Note that this method is classified as a vector multi-objective optimization method
because each objective is treated independently.

The advantages of the method are as follows:

1. It is a unique approach to specifying preferences.
2. It does not require that the objective functions be normalized.
3. It always provides a Pareto optimal solution.

The disadvantages are as follows:

1. It can require the solution of many single-objective problems to obtain just one solution
point.

2. It requires that additional constraints to be imposed.
3. It is most effective when used with a global optimization engine, which can be

expensive.

17.8 BOUNDED OBJECTIVE FUNCTION METHOD

The bounded objective function method minimizes the single most important objective
function fs(x) with other objective functions treated as constraints: li # fi(x) # εi; i5 1 to k;
i 6¼ s. li and εi are the lower and upper bounds for fi(x), respectively. In this way, the user
imposes preferences by setting limits on the objectives. li is obsolete unless the intent is to
achieve a goal or fall within a range of values for fi(x).

The ε-constraint approach (also referred to as e-constraint or trade-off) is a variation of the
bounded objective function method in which li is excluded. In this case, a systematic varia-
tion of εi yields a set of Pareto optimal solutions. However, improper selection of the
ε-vector can result in a formulation with no feasible solution. Guidelines for selecting
ε-values that reflect preferences are discussed in the literature (Cohon, 1978; Stadler, 1988).
A general mathematical guideline for selecting εi is provided as follows (Carmichael,
1980):

fiðx�i Þ # εi # fsðx�i Þ ð17:14Þ
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A solution to the ε-constraint formulation, if it exists, is weakly Pareto optimal. If the
solution is unique, then it is Pareto optimal. Of course, uniqueness can be difficult to ver-
ify, although if the problem is convex and if fs(x) is strictly convex, then the solution is nec-
essarily unique. Solutions with active e-constraints (and nonzero Lagrange multipliers) are
necessarily Pareto optimal (Carmichael, 1980).

The advantages of the method are as follows:

1. It focuses on a single objective with limits on others.
2. It always provides a weakly Pareto optimal point, assuming that the formulation gives

a solution.
3. It is not necessary to normalize the objective functions.
4. It gives Pareto optimal solution if one exists and is unique.

The only disadvantage is that the optimization problem may be infeasible if the bounds on
the objective functions are not appropriate.

17.9 GOAL PROGRAMMING

With goal programming, goals bj are specified for each objective function fj(x). Then the

total deviation from the goals
Pk
i51

jdjj is minimized, where dj is the deviation from the goal

bj for the jth objective function. To model the absolute values, dj is split into positive and
negative parts such that dj5 d1j2 d2j with d1j $ 0, d2j $ 0, and d1j d

2
j5 0. Consequently,

jdjj5 (d1j 1 d2j ). d
1
j and d2j represent underachievement and overachievement, respectively,

where achievement implies that a goal has been reached. The optimization problem is for-
mulated as follows:

Minimize

Xk
i51

ðd1
i 1 d2

i Þ ð17:15Þ

subject to

fjðxÞ1 d1
j 2 d2

j 5 bj; d1
j ; d

2
j $ 0; d1

j d2
j 5 0; i5 1 to k ð17:16Þ

In the absence of any other information, goals may be set to the utopia point: bj5 f
�
j. In

this case Eq. (17.15) can be considered a type of global criterion method. Lee and Olson
(1999) provide an extensive review of applications for goal programming. However,
despite its popularity, there is no guarantee that this method provides a Pareto optimal
solution. Also, Eq. (17.15) has additional variables and nonlinear equality constraints, both
of which can be troublesome with larger problems.

The advantages of the method are as follows:

1. It is easy to assess whether the predetermined goals have been reached.
2. It is easy to tailor the method to a variety of problems.
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The disadvantages are as follows:

1. There is no guarantee that the solution is even weakly Pareto optimal.
2. There is an increase in the number of variables.
3. There is an increase in the number of constraints.

17.10 SELECTION OF METHODS

Deciding which multi-objective optimization method is the most appropriate or the
most effective can be difficult. It depends on the user’s preferences and what types of solu-
tions might be acceptable (Floudas et al., 1990). Knowledge of the problem functions can
aid in the selection process. The following key characteristics of the methods discussed in
this chapter are helpful in selecting the most appropriate one for a particular application:

1. Always provides a Pareto optimal solution.
2. Can provide all of the Pareto optimal solutions.
3. Involves weights to express preferences.
4. Depends on the continuity of the problem functions.
5. Uses the utopia point or its approximation.

Table 17.1 summarizes these characteristics.

TABLE 17.1 Characteristics of multi-objective optimization methods

Method

Always yields

Pareto optimal

point?

Can yield

all Pareto

optimal

points?

Involves

weights?

Depends on

function

continuity? Uses utopia point?

Genetic Yes Yes No No No

Weighted sum Yes No Yes Problem type and
optimization
engine determines
this

Utopia point or its
approximation is
needed for function
normalization or in
the formulation of the
method

Weighted min-max Yes1 Yes Yes Same as above Same as above

Weighted global
criterion

Yes No Yes Same as above Same as above

Lexicographic Yes2 No No Same as above No

Bounded objective func. Yes3 No No Same as above No

Goal programming No No No4 Same as above No

1Sometimes solution is only weakly Pareto optimal.
2Lexicographic method always provides Pareto optimal solution only if global optimization engine is used or if solution point is unique.
3Always weak Pareto optimal if it exists; Pareto optimal if solution is unique.
4Weights may be incorporated into objective function to represent relative significance of deviation from particular goal.
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EXERCISES FOR CHAPTER 17*

17.1 In the design space, plot the objective function contours for the following unconstrained

problem and sketch the Pareto optimal set, which should turn out to be a curve:

Minimize

f1 5 ðx1 20:75Þ2 1 ðx2 22Þ2

f2 5 ðx1 22:5Þ2 1 ðx2 21:5Þ2

Draw the gradients of each function at any point on the Pareto optimal curve. Comment

on the relationship between the two gradients.

17.2 Sketch the Pareto optimal set for Exercise 17.1 in the criterion space.

17.3 In the design space, plot the following constrained problem and sketch the Pareto optimal set:

Minimize

f1 5 ðx1 2 3Þ2 1 ðx2 2 7Þ2

f2 5 ðx1 2 9Þ2 1 ðx2 2 8Þ2

subject to
g1 5 702 4x2 2 8x1 # 0

g2 522:5x2 1 3x1 # 0

g3 526:81 x1 # 0

17.4 Identify the weakly Pareto optimal points in the plot in Figure E17.4.

17.5 Plot the following global criterion contour in the criterion space, using p-values of 1, 2, 5,

and 20 (plot one contour line for each p-value):

U5 ðf p1 1 f
p
2 Þ1=p 5 1:0

Comment on the difference between the shapes of the different contours. Which case

represents the weighted sum utility function (with all weights equal to 1)?

1 2 3 4 5 6 7

1

2

3

4

5

6

7

f1

f2

Edge of the feasible 
criterion space

Z

FIGURE E17-4 Identification of weakly Pareto optimal
points.

678 17. MULTI-OBJECTIVE OPTIMUM DESIGN CONCEPTS AND METHODS

III. ADVANCED AND MODERN TOPICS IN OPTIMUM DESIGN



17.6 Plot contours for the following min-max utility function in the criterion space:

U5max½f1; f2�
Compare the shape of these contours with those determined in Exercise 17.5.

17.7 Solve the following problem using the Karush-Kuhn-Tucker (KKT) optimality conditions

of Chapter 4 with the weighted sum method:

Minimize

f1 5 ðx1 2 3Þ2 1 ðx2 2 7Þ2

f2 5 ðx1 2 9Þ2 1 ðx2 2 8Þ2

Write your solution for the design variables in terms of the two weights w1 and w2.

Comment on how the different weights affect the final solution.

17.8 Solve the following problem using KKT optimality conditions of Chapter 4 with the

weighted sum method:

Minimize

f1 5 20ðx1 2 0:75Þ2 1 ð2x2 2 2Þ2

f2 5 5ðx1 2 1:6Þ2 1 2x2

subject to
g1 52x2 # 0

First, use w15 0.1 and w25 0.9. Then, resolve the problem using w15 0.9 and w25 0.1.

Comment on the constraint activity in each case.

17.9 Formulate the following problem (Stadler and Dauer, 1992) and solve it using Excel with

the weighted sum method.

Determine the optimal height and radius of a closed-end cylinder necessary to simultaneously

maximize the volume and minimize the surface area. Assume that the cylinder has negligible

thickness. The height must be at least 0.1 m, and the radius must be at least half the height.

Neither the height nor the radius should be greater than 2.0 m.

Use a starting point of x(0)5 (1, 1). Use the following vectors of weights and comment on the

solution that each yields: w5 (1, 0); w5 (0.75, 0.25); w5 (0.5, 0.5); w5 (0.25, 0.75); w5 (0, 1).

17.10 Solve Exercise 17.9 using Excel with a weighted global criterion. Use x(0)5 (1, 1), w5 (0.5, 0.5),

and p5 2.0. Compare the solution with those determined in Exercise 17.9.

17.11 Plot the objective functions contours for the following problem (on the same graph) and

solve the problem using the lexicographic method:

Minimize

f1 5 ðx2 1Þ2ðx2 4Þ2

f2 5 4ðx2 2Þ2

f3 5 8ðx2 3Þ2

Indicate the final solution point on the graph. Assume the functions are prioritized in the

following order: f1, f2, f3, with f1 being the most important.
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C H A P T E R

18

Global Optimization Concepts
and Methods

Upon comp le t i on o f th i s chap te r, you wi l l be ab l e to

• Explain the basic concepts associated with

finding a global solution to a design

problem

• Explain the basic ideas, procedures, and

limitations of deterministic and stochastic

methods for global optimization

• Use an appropriate method for solving a

global optimization problem

The standard design optimization model treated in this text is minimizing f(x) for x in
the feasible set S defined as

S5 xjhiðxÞ5 0; i5 1 to p; gjðxÞ # 0; j5 1 to m
� � ð18:1Þ

The discrete variables in the problem are treated as explained in Chapter 15. Thus far in
this text, we have addressed mainly the problem of finding a local minimum for the cost
function in the feasible set. In this chapter, we focus on presentation and discussion of
concepts and methods for the global optimum solutions because, in some practical appli-
cations, it is important to find such solutions as opposed to local ones.

The material for the chapter is introductory in nature and is derived from the work of
the author and his coworkers (Arora et al., 1995; Elwakeil and Arora, 1996a,b). Numerous
other references are cited in these articles that contain more exposition on the subject
(Dixon and Szego, 1978; Evtushenko, 1985; Pardalos and Rosen, 1987; Rinnooy and
Timmer, 1987a,b; Törn and Žilinskas, 1989; Pardalos et al., 2002).
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18.1 BASIC CONCEPTS OF SOLUTION METHODS

18.1.1 Basic Solution Concepts

Most of the methods presented in this chapter assume continuous variables and func-
tions. For discrete and nondifferentiable problems, the simulated annealing and genetic
algorithms are appropriate for global optimization and may be used as described in
Chapters 15 and 16. It is important to note that many methods for global optimization pre-
sented in the literature consider the unconstrained problem only. It is assumed that the con-
straints can be treated implicitly using the penalty or augmented Lagrangian methods that are
discussed in Chapter 11. A possible disadvantage of this approach is that some methods can
terminate at infeasible points. Many, however, can treat, or may even require, explicit
bound constraints on the design variables. To discuss such methods, let us define a set Sb
of feasible points with respect to the explicit bound constraints as

Sb 5 xijxiL # xi # xiU; i5 1 to n
� � ð18:2Þ

Recall that n is the number of design variables, and xiL and xiu are the lower and upper
bounds on the ith variable.

Also, note that many global optimization methods repeatedly search for local minima
in their algorithm. These methods are relatively easy to implement and use for solving
global optimization problems. It is important to use robust and efficient software to search
for local minima. We will assume that such an optimization engine is available for use
with these global optimization methods.

Definition of Global Minimum: Before describing the methods for finding global
minima, let us first recall definitions of local and global minima from Chapter 4.
A point x* is called a local minimum for the problem if f(x*)# f(x) for all x in a small
feasible neighborhood of the point x*. A point x*G is defined as a global minimum for
the problem if f(x*G)# f(x) for all x in the feasible set S.

Characterization of a Global Minimum

A problem can have multiple global minimum points that must have the same cost
function value. If the feasible set S is closed and bounded and the cost function is continu-
ous on it, the Weierstrass Theorem 4.1 in Chapter 4 guarantees the existence of a global min-
imum point. However, finding it is a different matter altogether. At a local optimum
point, the Karush-Kuhn-Tucker (KKT) necessary conditions apply (as was described in
Chapters 4 and 5). Although a global minimum point must also be a local minimum
point, there are no mathematical conditions that characterize a global minimum point, except
when the problem can be shown to be convex. In most practical applications, however, it
is difficult to check for convexity of the problem. Therefore, the problem is generally
assumed to be nonconvex.

There are no mathematical conditions that characterize a global minimum point,
except when the problem can be shown to be convex.
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Have We Found a Global Minimum?

An important issue, then, is how we know that a numerical search process has termi-
nated at a global minimum point. The answer is that, in general, we do not know. Because
of this, it is difficult to define a precise stopping criterion for a computational algorithm
for global optimization. Usually, the best solution obtained by an algorithm after it is
allowed to run for a long time is accepted as the global solution to the problem. The qual-
ity of the solution usually depends on how long the algorithm is allowed to run. It is
important to note that the computational effort to solve a global optimization problem is
substantial, and it increases enormously as the number of design variables increase. Thus,
solving global optimization problems remains a challenge from a mathematical as well as
a computational viewpoint. It is noted, however, that some algorithms can be implemen-
ted on parallel processors, which can reduce the “wall clock” time to solve the problem.

When to Stop Searching for a Global Minimum

It is seen that because of the lack of global optimality conditions for general problems, a
global solution to the problem can be obtained only by an exhaustive search of the design
space (the feasible set S). The procedure for such a search is to specify some sample points
in the set Sb and evaluate the cost function at them. The point where the function has the
smallest value is taken as the global minimum point. We see that the location and value of
the global minimum depend on the sample size. An exact solution to the problem requires
an infinite number of calculations. Generally, this infinite calculation is avoided by accept-
ing the best solution as a global minimum point obtained by an algorithm after it is
allowed to run for a sufficiently long time. When a point within a distance ε from x*G is
sought, many strategies exist that only require a finite number of function evaluations. These
strategies, however, are of limited practical use since ε cannot be specified because x*G is
not known. Thus, either a further restriction on the class of cost functions or a further relaxa-
tion of what is required of an algorithm is necessary.

18.1.2 Overview of Methods

Deterministic and Stochastic Methods

Global optimization methods can be divided into two major categories: deterministic and
stochastic. This classification is mainly based on whether the method incorporates any sto-
chastic elements to solve the global optimization problem. Deterministic methods find the
global minimum by an exhaustive search over the set Sb. The success of the method can be
guaranteed for only the functions that satisfy certain conditions. We will describe four
deterministic methods: covering, zooming, generalized descent, and tunneling.

Several stochastic methods have been developed as variations of pure random search.
Some are useful for only discrete optimization problems while others can be used for pro-
blems that are both discrete and continuous. All of the stochastic methods involve random
elements to determine the global minimum point, each one trying to reduce the computa-
tional burden of pure random search. At the outset, a random sample of points in the set
Sb is picked. Then each method manipulates the sample points in a different manner. In
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some cases the two operations are simultaneous; that is, a random point is picked and
manipulated or used before the next one is chosen. We will briefly describe some of these
methods: multistart, clustering, control random search, acceptance-rejection, stochastic
integration, stochastic zooming, and domain elimination.

In the remaining sections of this chapter, we describe the basic concepts and ideas underly-
ing various methods for global optimization. Algorithms for some of the methods are
described and discussed to give the student a flavor of the type of calculations needed to find
a global solution to a design problem. Some of the methods describe calculations for the
global minimum of the cost function without reference to constraints. It is assumed in these
methods that the constraints are used to define a penalty function, which is then minimized.
Some of the algorithms have been implemented on the computer to evaluate their perfor-
mance on mathematical programming test problems as well as on structural design problems.
These numerical experiments are described, and the performance results are discussed.

18.2 OVERVIEW OF DETERMINISTIC METHODS

Deterministic methods find the global minimum by an exhaustive search over the set Sb. If an
absolute guarantee of success is desired for such a method, additional assumptions about
the cost function are needed to avoid huge calculations. The most popular approach is to
assume the Lipschitz continuity condition for the function: There exists a Lipschitz constant L
such that for all x, y in the set Sb, jf(x)2 f(y)j# Ljjx2 yjj; that is, the rate of change in the func-
tion is bounded. The upper bound on the rate of change of f(x) (first derivatives of the func-
tion) implied by the Lipschitz constant can be used in various ways to perform an
exhaustive search over the set Sb (Evtushenko, 1985). Unfortunately, it is difficult in prac-
tice to verify whether a function satisfies such a condition for all points in the set Sb.

Deterministic methods for global optimization are further classified as finite exact and
heuristic. Finite exact methods provide an absolute guarantee that the global minimum will be
found in a finite number of steps. Generally, the number of steps is very large, so the meth-
ods require large computational effort, especially when the number of design variables is
more than two. However, for some problems, it is essential to find the global minimum
with an absolute guarantee, irrespective of the computational effort needed. Since no other
method gives an absolute guarantee of finding the global minimum in a finite number of
steps, these methods become important. Heuristic methods, on the other hand, offer only an
empirical guarantee of finding the global optimum.

18.2.1 Covering Methods

As the name implies, the basic idea of covering methods is to “cover” the set Sb by eval-
uating the cost function at all of the points in searching for the global minimum. This is, of
course, an infinite calculation and is therefore impossible to implement and use. All of the
covering methods therefore devise procedures to evaluate the functions at selected points
but still cover the entire set Sb implicitly.

Some covering methods take advantage of certain properties of the cost function to
define a mesh of points that may or may not be uniform for evaluating functions at these
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points. Some of the covering methods are relatively efficient but can treat only simple cost
functions (which occur only in standard test problems). In these methods, upper and
lower bounds on the cost function over a subset of Sb are computed by interval arithmetic.
Different means to exclude inferior intervals are then used. The branch-and-bound methods
discussed in Chapter 15 are based on such ideas. Other methods successively form closer
approximations (of given functions) that can be separated into convex and concave terms.

The covering method of Evtushenko (1985) uses a nonuniform mesh to cover the set Sb.
An approximation of the solution point x*G is obtained for a given positive tolerance ε such
that it belongs to the set Aε of points with cost function values less than f(x*G)1 ε; that is,
Aε is defined as

Aε 5 xASj ðfðxÞ2 εÞ # fðx�GÞ
� � ð18:3Þ

The set Aε can never be constructed since x*G is not known. The solution, however, is
guaranteed to belong to it; that is, it is within ε of the global minimum value.

In some covering methods, the mesh density is determined using the Lipschitz constant
L. The upper bound on the rate of change in f(x) implied by the Lipschitz constant is used
in various ways to sequentially generate a mesh and perform an exhaustive search over
the set Sb. Unfortunately, it is hard, in practice, to verify whether a function satisfies such
a condition for all points in the set Sb. Also, the computational effort required to compute
L is substantial, so only an approximation to L can be used.

In Evtushenko’s method, the mesh points are generated as centers of hyperspheres. The
union of these spheres has to completely cover Sb for the approximate solution to be valid.
The covering is done sequentially; one sphere after another is constructed until the entire
set is covered. Therefore, the total number of mesh points is not known until the covering
is complete. In multidimensional problems, covering by hyperspheres is difficult and inef-
ficient, as the hyperspheres must overlap to cover the entire set Sb.

For this reason, hypercubes inscribed in the hyperspheres are used instead. In two
dimensions the design space is filled with squares; in three dimensions it is filled with
cubes, and so on. The resulting mesh is nonuniform in the first variable and uniform in the
rest of the variables. Since finding the true value of the Lipschitz constant L is a difficult
task, a smaller approximation for L and a larger value for the tolerance ε are used initially.
Then the approximation for L is increased and that of ε is decreased, and the entire covering
procedure is repeated. The repetition is continued until the difference between two consecu-
tive solutions is less than ε. In some methods, departing from purely deterministic proce-
dures, the Lipschitz constant is estimated using some statistical models of the cost function.
An advantage to Evtushenko’s method is that it yields a guaranteed estimate of the global
minimum for any upper-bound approximation of the Lipschitz constant.

It is seen that the covering methods are generally not practical for problems having
more than two variables. However, any two-variable problem can be solved more effi-
ciently by the graphical optimization method of Chapter 3.

18.2.2 Zooming Method

The zooming method was designed especially for problems with general constraints. It
strives to achieve a specified target value for the global minimum of the cost function.
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Once the target is achieved, it is reduced further to “zoom in” on the global minimum.
The method combines a local minimization method with successive truncation of the feasi-
ble set S to eliminate regions of local minima to zoom in on the global solution. The basic
idea is to initiate the search for a constrained local minimum from any point—feasible or
infeasible. Once a local minimum point has been found, the problem is redefined in such a
way that the current solution is eliminated from any further search by adding the follow-
ing constraint to the problem:

fðxÞ # γ fðx�Þ ð18:4Þ
where f(x*) is the cost function value at the current local minimum point and 0, γ, 1 if
f(x*). 0, and γ. 1 if f(x*), 0. The redefined problem is solved again and the process con-
tinued until no more minimum points can be found.

The zooming method appears to be a good alternative to stochastic (discussed later in
this chapter) and other methods for constrained global optimization problems. It is quite
simple to use: The formulation is modified slightly by adding the zooming constraint of
Eq. (18.4), and existing local minimization software is used.

However, there are certain limitations of the method. As the target level for the global
minimum of the cost function is lowered, the feasible set for the problem keeps on shrink-
ing. It may also result in a disjointed feasible set. Therefore, as the global minimum is
approached, finding even a feasible point for the redefined problem becomes quite diffi-
cult. Several different trial starting points need to be tried before declaring the redefined
problem to be infeasible and accepting the previous local minimum as the global mini-
mum. The only stopping criterion is the limit on the number of trials allowed to search for
a feasible point for the reduced feasible set. An improvement in the method, described
later, introduces some stochastic elements into the computational procedure.

18.2.3 Methods of Generalized Descent

Generalized descent methods are classified as heuristic deterministic. They are a generali-
zation of the descent methods, described in Chapters 10 and 11, in which finite-descent
steps are taken along straight lines—that is, the search directions. For nonquadratic pro-
blems, it is sometimes difficult to find a suitable step size along the search direction.
Therefore, it may be more effective if we deliberately follow a curvilinear path in the design
space (also called a trajectory). Before describing the generalized descent methods for
global optimization, we will describe the basic ideas of trajectory methods that generate cur-
vilinear paths in the design space in search of minimum points.

A trajectory can be considered a design history of the cost function from the starting
point x(0) to a local minimum point x*. Let the design vector x be dependent on the param-
eter t that monotonically increases along the solution curve x(t) and is zero at x(0). The sim-
plest path from an arbitrary initial point x(0) to x* is a continuous steepest-descent
trajectory given as solution of the vector differential equation:

_xðtÞ52rfðxÞ; with xð0Þ5 xð0Þ ð18:5Þ
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where an “over-dot” represents the derivative with respect to t. We can also use a con-
tinuous Newton’s trajectory by changing the right side of Eq. (18.5) to 2[H(x)]21rf(x),
where H(x) is the Hessian of the cost function that is assumed to be nonsingular for all x.
It is noted that good software is available to solve the first-order differential equation
(18.5).

The generalized descent methods for global optimization are extensions of the foregoing
trajectory methods. In these methods, the trajectories are solutions for certain second-order
differential equations rather than the first-order Eq. (18.5). The search for the global mini-
mum is based on solution properties of these differential equations. The most important
property is that their trajectories pass through the majority of the stationary points of the
cost function (or in their neighborhood). Certain conditions determine if the trajectory will
pass through all of the local minima of the function. In that case, the global minimum is
guaranteed to be found. The differential equations use the function values and function
gradients along the trajectories.

There are two types of generalized descent methods: (1) trajectory methods, which mod-
ify the differential equation describing the local descent trajectory so as to make it con-
verge to a global rather than a local minimum, and (2) penalty methods, which apply the
standard local algorithm repeatedly to a modified cost function so as to prevent the
descent trajectory from converging to local minima previously found. Examples of penalty
methods are: algebraic functions, filled function, and tunneling. In this section we will
describe the trajectory methods only. The tunneling methods will be described in the next
section.

Alternation of Descents and Ascents

Trajectory methods have been implemented in two ways: alternation of descents and
ascents and the so-called golf methods. The first method consists of three subalgorithms
that are modifications of the local descent algorithms. These are: descent to a local mini-
mum, ascent from a local minimum, and pass through a saddle point. First, to descend to a
local minimum from a starting point, we use a combination of steepest-descent and
Newton’s methods based on whether or not the Hessian matrix of the cost function is pos-
itive definite at a point along the trajectory (this is the modified Newton’s method for local
minimization).

Second, to get from the local minimum point to a saddle point, we use the eigenvector
corresponding to the maximum eigenvalue of the Hessian as the search direction. Third,
to pass through the saddle point, we use Newton’s method. To descend to the next local
minimum, we use the direction of the last step of the passing operation as a starting direc-
tion for the descent operation. The three operations are repeated until some stopping crite-
rion is satisfied. Note that all local minimum points are recorded so that if the trajectory
retraces itself, a new initial point is chosen to restart the algorithm.

The disadvantages of this method are the large number of function evaluations wasted
in ascending from a local minimum, and difficulties with solving problems of dimensions
larger than two. It is also difficult to apply the method if we do not have an expression for
the cost function gradient.
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Golf Methods

Golf methods are analogous to the mechanics of inertial motion of a particle of mass m
moving in a force field. The resulting trajectory is analogous to that of the optimization
problem. Mathematically, the assignment of mass means introducing a second-order term
into the particle’s equation of motion. Taking the mass as a function of time m(t), the parti-
cle is thus moving in a force field defined by the cost function f(x) and subjected to a dissi-
pating or nonconservative resistance force (e.g., air resistance) given by 2nðtÞ_xðtÞ, where
n(t) is the resistance function. The force field of f(x) is given as 2rf(x). Thus, the motion of
the particle is described by the system of differential equations:

mðtÞ€xðtÞ2 nðtÞ_xðtÞ52rfðxÞ; mðtÞ$ 0 nðtÞ# 0 ð18:6Þ
where _xðtÞ and €xðtÞ are the velocity and acceleration vectors of the particle, respectively.

Under some conditions, the trajectory, which is a solution for the system of equations,
converges to a local minimum point of f(x). Moreover, the trajectory leaves some local min-
ima that are not deep enough—hence the name, golf methods. It is obvious that algorithm
efficiency is a function of the mass and resistance functions m(t) and n(t). For some func-
tions, the differential equation is simplified by assuming the mass of the particle as 1 and
a frictionless force field (i.e., m(t)5 1 and n(t)5 0). In this case the differential equation is
simplified to €xðtÞ52rfðxÞ. Such a class of functions is encountered if f(x) is an interpola-
tion of noisy data from some experiments.

18.2.4 Tunneling Method

The tunneling method falls into the class of heuristic generalized descent penalty meth-
ods. It was initially developed for unconstrained problems and then extended for con-
strained problems (Levy and Gomez, 1985). The basic idea is to execute the following two
phases successively until some stopping criterion is satisfied: the local minimization phase
and the tunneling phase. The first phase consists of finding a local minimum x* for the
problem using any reliable and efficient method. The tunneling phase determines a start-
ing point that is different from x* but has a cost function value smaller than or equal to
the known minimum value. However, finding a suitable point in the tunneling phase is
also a global problem that is as hard as the original problem. When a rough estimate of
the global minimum is required, the tunneling or zooming method is justified instead of
one that can guarantee a global minimum at the expense of a large computational effort.

The basic idea of the tunneling method is depicted graphically in Figure 18.1 for a one-
dimensional problem. Starting from the initial minimum point x*(1), the method tunnels
under many other local minima and locates a new starting point x0(2). From there, a new
local minimum is found, and the process is repeated. The tunneling phase is accomplished
by finding a root of the nonlinear tunneling function, T(x). This function is defined in such
a way that it avoids previously determined local minima and the starting points. The new
point found during the tunneling phase should not be a local minimum either because the
local minimization procedure cannot be started from such a point.

Therefore, if the tunneling phase yields a local minimum point, a new root of the
tunneling function is sought. Once a suitable point is obtained through the tunneling
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phase, local minimization is started to obtain a new local minimum point. The two phases
are repeated until no suitable roots of the tunneling function can be found, which is real-
ized numerically when T(x)$ 0 for all x. We note here that such a criterion is very expen-
sive to satisfy in terms of the number of function evaluations needed. The first few
tunneling phases are relatively efficient in that they require little computing effort. As the
tunneling level approaches the global minimum, the number of computations increases
because there are fewer roots of the tunneling function. This difficulty is similar to the one
noted for the zooming method.

The tunneling method has the global descent property: The local minima, obtained by the
minimization phase approaches the global minimum in an orderly fashion. Tunneling
takes place below irrelevant local minima regardless of their number or location. Because
of this property, the tunneling method can be efficient relative to other methods, especially
for problems with a large number of local minima. It has the advantage that a point with a
smaller cost function value is reached at each iteration. Therefore, a point with a relatively
small cost function value is obtained very quickly, as with the zooming method. Such a
solution is acceptable for some engineering applications. In these cases, the tunneling or
the zooming method is justified instead of a method that can guarantee a global minimum
at the expense of a large computational effort.

18.3 OVERVIEW OF STOCHASTIC METHODS

Let S* be the set of all local minima of the optimization problem. The aim of many sto-
chastic methods is to determine this set S*. The best point of the set is then claimed as the
global minimum point. Generally, far better results have been obtained using stochastic
methods than deterministic methods.

x*
G

x0(3)

f (x)

x 

x*(1) x0(2)

x*(2)

FIGURE 18.1 Basic concept of tunneling method. The method tunnels below irrelevant minima to approach
the global minimum.
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Stochastic methods usually have two phases: global and local. In the global phase,
the function is evaluated at a number of randomly sampled points. In the local
phase, the sample points are manipulated, for example, by local searches, to yield
candidate global minima.

The global phase is necessary because there is no local improvement strategy that, start-
ing from an arbitrary point, can be guaranteed to converge to the global minimum. The
global phase locates a candidate global minimum point in every subset of the feasible set
Sb to ensure reliability of the method. Local search techniques are efficient tools for finding
a point with a relatively small function value. Therefore, the local phase is incorporated
into stochastic methods to improve their efficiency. A challenge for global optimization
algorithms is to increase their efficiency while maintaining reliability.

There are many stochastic methods for global optimization, such as random search, mul-
tistart, clustering, controlled random search, simulated annealing, acceptance-rejection, sto-
chastic integration, genetic, and tabu search. We will describe only the ideas that lay the
foundation for computations of these methods. More details can be found in Arora and
et al. (1995) and other references cited therein.

Most stochastic methods are based on some variation of pure random search. They are
used in two ways: (1) to develop stopping criteria, and (2) to develop techniques to approx-
imate the region of attraction for a local minimum point, which is defined as follows:

When the search for the local minimum started from a point within a certain region around the mini-
mum converges to the same minimum point, the region is called the region of attraction for that local
minimum.

The goal of many stochastic methods is to develop good approximations of the regions of
attraction for local minima so that the search for a local minimum is performed only once.

Usually, most of the stochastic algorithms use uniform distribution of sampling over the
set Sb. However, mechanisms for modifying the sampling distribution based on the infor-
mation obtained in previous iterations may be more appropriate. A stochastic approxi-
mation that is of the type used in sampling can be employed to determine a sampling
distribution that peaks in unexplored regions of attraction to discover new local minima.
Even though the stochastic methods do not offer an absolute guarantee of success, the prob-
ability that a point within a distance ε of x*G will be found approaches 1 as the sample size
increases.

Note that since some stochastic methods use random processes, such as simulated
annealing and genetic algorithms, an algorithm run at different times can generate differ-
ent design histories and local minima. Therefore, a particular problem needs to be run sev-
eral times before the solution is accepted as the global optimum.

18.3.1 Pure Random Search Method

Pure random search is the simplest stochastic method for global optimization, and most
other stochastic methods are variations of it. Though very inefficient, it is described here
to introduce a basis for those other methods. Pure random search consists only of a global
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phase: Evaluate f(x) at N sample points drawn from a random uniform distribution over
the set Sb. The smallest function value found is the candidate global minimum for f(x).

Pure random search is asymptotically guaranteed to converge, in a probabilistic sense,
to the global minimum point. It is quite inefficient because of the large number of function
evaluations required to provide such a guarantee. A simple extension of the method is
so-called single start. In this, a single local search is performed (if the problem is continu-
ous) starting from the best point in the sample set at the end of pure random search.

18.3.2 Multistart Method

The multistart method is one of several extensions of pure random search where a local
phase is added to the global phase to improve efficiency. In multistart, in contrast to single
start, each sample point is used as a starting point for the local minimization procedure.
The best local minimum point found is a candidate for the global minimum x*G. The method
is reliable, but it is not efficient since many sample points will lead to the same local mini-
mum. The algorithm consists of three simple steps:

Step 1. Take a random point x(0) from a uniform distribution over the set Sb.
Step 2. Start a local minimization procedure from x(0).
Step 3. Return to Step 1 unless a stopping criterion is satisfied.

Once the stopping criterion is satisfied, the local minimum with the smallest function
value is taken as the global minimum x*G. It can be seen that a particular local minimum
may be reached several times starting from different points. Strategies to eliminate this ineffi-
ciency in the algorithm have been developed and are discussed in the following sections.

Stopping Criterion

Several ideas for terminating an algorithm have been proposed; however, most of them
are not practical. Here we describe a criterion that has been used most often. Since the
starting points of the multistart method are uniformly distributed over Sb, a local mini-
mum has a fixed probability of being found in each trial. In a Bayesian approach, in which
the unknowns are themselves assumed to be random variables with a uniform prior distri-
bution, the following result can be proved: Given that M distinct local minima have been
found in L searches, the optimal Bayesian estimate of the unknown number of local minima
K is given by

K5 integer
MðL21Þ
L2M22

� �
provided L $ M1 3 ð18:7Þ

The multistart method can be stopped when M5K. It can be shown that this stopping
rule is appropriate for other methods as well.

18.3.3 Clustering Methods

Clustering methods remove the inefficiency of the multistart method by trying to use the
local search procedure only once for each local minimum point. To do this, random
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sample points are linked into groups to form clusters. Each cluster is considered to repre-
sent one region of attraction for a local minimum point. Each local minimum point has a
region of attraction such that a search initiated from any point in the region converges to
the same local minimum point. Four clustering methods have been used for development
of the regions of attraction: density clustering, single linkage, mode analysis, and vector
quantization multistart. They differ in the way in which these regions of attraction are con-
structed. A major disadvantage of all clustering methods is that their performance
depends heavily on the dimension of the problem, that is, the number of design variables.

Reduced Sample Points

Let AN be a set of random points drawn from a uniform distribution over the set Sb
(details of how to define AN are given later). In the clustering methods, a preprocessing of
the sample is performed to produce regions that are likely to contain local minima. This
can be done in two ways: reduction and concentration. In reduction, a set Aq of sample
points having cost function values smaller than or equal to some value fq is constructed:

Aq 5 xAANj fðxÞ # fq
� � ð18:8Þ

This is called an fq-level set of f(x), or simply the reduced set, and points x in the set Aq are
called the reduced sample points. The set Aq may be composed of a number of components
that are disjointed. Each component will contain at least one local minimum point.

Figure 18.2(a) is an example of a uniform sample in a set, and Figure 18.2(b) shows the
reduced sample points—the set Aq. The set consists of three components, each containing
one local minimum point. A component of Aq is called a cluster, which is taken as an
approximation of the region of attraction for a local minimum point. Note that depending
on the value of fq, a component may contain more than one local minimum point.
Furthermore, the local minimum points x* having function values higher than fq will not
belong to Aq and therefore may not be found.

In the second preprocessing procedure, called concentration, a few steepest-descent steps
are applied to every sample point. However, in this case, unlike in reduction, the trans-
formed points are not uniformly distributed. Usually, a uniform distribution is assumed in
clustering methods; therefore, the former method of transformation is preferred.

∗∗

(b)(a)

∗∗

∗∗

∗∗

∗∗

∗∗

FIGURE 18.2 An example of
random and reduced sample points.
(a) A random sample of points.
(b) Reduced sample points. The *
indicated a local minimum point.
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Individual Clustering Methods

Four clustering methods are available in the literature: density, single linkage, mode analy-
sis, and vector quantization multistart. In these methods it is assumed that

1. All local minima of f(x) lie in the interior of Sb.
2. Stationary points are isolated.
3. Local search is always that of descent.

The methods execute a basic algorithm a number of times. In every iteration, a set of AN

consisting of κN sample points from a uniform random distribution is used, where κ is an
integer containing the number of times the algorithm has been executed. That is, the sam-
ple size keeps on increasing with each execution of the algorithm.

Before clustering, the sample is reduced to produce the set Aq defined in Eq. (18.8). The
clustering algorithm is then applied to Aq. The iterations are continued until a stopping
criterion is satisfied. The stopping criterion used for multistart can be applied to all of the
clustering methods. In applying these rules, we have to assume that the way Aq changes
with different samples does not affect analysis. More important, we have to assume that
each local minimum with a function value smaller than fq is actually found.

DENSITY CLUSTERING In density clustering, clusters are identified based on the den-
sity of the reduced sample points defined in Eq. (18.8); hence the name “density cluster-
ing.” Regions of attraction are approximated by hyperspheres or ellipsoids with centers at
local minimum points. Reduced sample points are added to clusters based on their dis-
tance from the centers (also called the seed points)—that is, all points within a critical
radius of a center belong to the cluster. A cluster is started with a local minimum point as
a seed and then expanded in stages by increasing its critical radius. All points within the
new radius are added to the cluster and so on. At the end of a stage, the best unclustered
point is used in a local search procedure to find a local minimum point. If the local mini-
mum found is new, it is taken as the seed for a new cluster; otherwise that minimum point
is the seed for an already existing cluster that needs to be expanded. This is continued
until all of the reduced sample points are clustered.

SINGLE LINKAGE CLUSTERING In single linkage clustering, a better approximation to
the clusters is achieved by not enforcing a particular shape. Points are linked to others in
their proximity as opposed to being linked to the clusters’ centers or seeds. A point is
assigned to a cluster if it falls within a critical distance rκ from any point that already
belongs to that cluster.

MODE ANALYSIS CLUSTERING The density clustering and the single linkage clustering
methods use information at only two points at a time. In the mode analysis method, on
the other hand, clusters are formed using more information. Here the set Sb is partitioned
into nonoverlapping, small hypercubic cells that cover Sb entirely. The cell is said to be full
if it contains at least G reduced sample points; otherwise, it is empty.

VECTOR QUANTIZATION In the vector quantization method, the theories of lattices and vec-
tor quantization are used to form clusters. The basic idea is to cluster cells rather than sample
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points, as in mode analysis. Thus the entire space Sb is divided into a finite number of cells
and a code point is associated with each one. The code point is used to represent all of the
points in that cell during the clustering process. The point with the smallest function value
of a cell is the most suitable code point. Further, code points need not be sample points;
they can be generated independently. They may also be centroids of the cells. Identification
of a cluster is done using vector quantization of the reduced sample points. The aim is to
approximate the clusters in a more efficient way than with the previous three methods.

18.3.4 Controlled Random Search: Nelder-Mead Method

The basic idea of controlled random search (CRS), which is another variation of pure random
search, is to use the sample points in a way so as to move toward the global minimum point
(Price, 1987). The method does not use gradients of the cost function, and so continuity and
differentiability of the functions are not required. It uses the idea of a simplex, which is a
geometric figure formed by a set of n1 1 points in the n-dimensional space (recall that n is
the number of design variables). When the points are equidistant, the simplex is said to be
regular. In two dimensions, the simplex is just a triangle; in three dimensions, it is a tetrahe-
dron (see Figure 18.3), and so on. The method has global and local phases.

GLOBAL PHASE The notation used in the global phase of the algorithm that follows is
defined as

xW, fW5worst point and the corresponding cost function value (largest)
xL, f L 5 best point and the corresponding cost function value (smallest)

xC, f C 5 centroid of n points, and corresponding cost function value xC 5
1

n

Xn
k51

xðkÞ
 !

xP, f P 5 trial point and corresponding cost function value

(a) (b)

x(1) x(2)

xR

xC

x(3) = xW 

x(4) = xW 

x(3)

x(2)

x(1)

xR

xC

FIGURE 18.3 Reflection operations. (a) Two-dimensional Simplex. (b) Three-dimensional Simplex. The points
xW, xC, and xR lie on a straight line.
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Step 1. Generate N random points uniformly distributed over Sb. Evaluate the cost
function at the points.
Step 2. Find the worst point xW with the function value fW (largest) and the best point
xL with the function value fL (smallest).
Step 3. Let x(1)5 xL. Randomly choose n distinct points x(2), . . ., x(n11) from the
remaining N21 sample points. Determine the centroid xC of the points x(1), . . ., x(n).
Compute a new trial point xP5 2xC2 x(n11).
Step 4. If xP is feasible, evaluate fP, and go to Step 5. Otherwise, go to Step 3.
Step 5. If fP,fW, replace xW by xP and go to Step 6. Otherwise, go to Step 3.
Step 6. If a stopping criterion is satisfied, stop. Otherwise, go to Step 2.

As the algorithm proceeds, the current set of n points tends to cluster around the mini-
mum point. Note that the point x(n11) used in the calculation of the new trial point xP in
Step 3 is arbitrarily chosen. This point is called the vertex of the simplex. Once the global
phase has terminated, the local phase starts.

LOCAL PHASE The basic idea of the local phase is to compare cost function values at
the n1 1 vertices of the simplex and move this simplex gradually toward the minimum
point. The movement of the simplex is achieved using three operations, known as reflec-
tion, expansion, and contraction. The following additional notation is used in describing
these operations:

xS, fS5 second worst point and corresponding cost function value
xR, fR5 reflected point and corresponding cost function value
xE, fE5 expansion point and corresponding cost function value
xQ, fQ5 contraction point and corresponding cost function value

REFLECTION Let x(1), . . ., x(n11) be the n1 1 points that define the simplex and let the
worst point (xW) be the vertex with the largest cost function value. It can be expected that
the point xR obtained by reflecting xW in the opposite face of the simplex will have a smaller
cost function value. If this is the case, then a new simplex can be constructed by rejecting
the point xW from the simplex and including the new point xR. In Figure 18.3(b), the original
simplex is given by points x(1), x(2), x(3), and x(4)5 xW, and the new simplex is given by x(1),
x(2), x(3), and xR. The point xC is the centroid of the n points of the original simplex excluding
xW. It is seen that the direction of movement of the simplex is always away from the worst
point. Mathematically, the reflection point xR is given by

xR 5 ð11αRÞxC 2αRx
W; with 0 ,αR # 1 ð18:9Þ

EXPANSION If the reflection procedure produces a better point, one can generally
expect to reduce the function value further by moving along the direction xC to xR. An
expansion point xE along this direction is calculated(its use is explained later the local
phase algorithm):

xE 5 ð11αEÞxC 2αEx
W ; with αE. 1 ð18:10Þ
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CONTRACTION If the point obtained by reflection is not satisfactory, a contraction
point xQ along the direction xC to xR can be calculated (its use is explained later in the local
phase algorithm):

xQ 5 ð11αQÞxC 2αQx
W ; with 21,αQ, 0 ð18:11Þ

The local search algorithm given in the following uses the relations in Eqs. (18.9) through
(18.11) with αR5 1, αE5 3, and αQ521/2, respectively. The n1 1 best points of the ran-
dom sample of the global phase constitute a simplex in the n-dimensional space for this
algorithm. The algorithm does not use the gradient of the cost function f(x). Therefore, a
compatible local search procedure that also does not use gradients is needed. An algo-
rithm that is an adaptation of basic Nelder-Mead simplex algorithm (1965) for general con-
strained optimization problems may be used (this simplex method should not be confused
with the Simplex method of linear programming).

NELDER-MEAD SIMPLEX ALGORITHM Nelder-Mead is a direct search algorithm that
can be used to find local minimum point of a function. One of the better methods in the
direct search class, it can be implemented in several different ways (Lagarias et al., 1998;
Price et al., 2002; Singer and Singer, 2004). The method is also available in MATLAB as
function fminsearch, whose use was demonstrated in Chapter 7. The following steps rep-
resent one possible implementation:

Step 1. For the simplex formed of n1 1 points, let xW be the worst point and xC be the
centroid of the other n points. Let xS be the second worst point of the simplex with the
function value fS. Compute three trial points based on reflection, expansion, and
contraction as xR5 2xC2 xW, xE5 4xC23xW, and xQ5 (xC1 xW)/2.
Step 2. If xR is not in Sb, go to Step 4. Otherwise, evaluate the function value fR at xR. If
fR, fS, go to Step 3. Otherwise, go to Step 4.
Step 3. Expansion: If xE is not in Sb, accept x

R as the replacement point and go to Step 5.
Otherwise, calculate the function value fE at xE. If fE, fS, accept xE as the replacement
point and go to Step 5. Otherwise, accept xR as the replacement point and go to Step 5.
Step 4. If xQ is infeasible, then stop; no further improvement is possible. Otherwise
evaluate the function value fQ at xQ. If fQ , fS, then accept xQ as the replacement point
and go to Step 5. Otherwise, stop.
Step 5. Update the simplex by replacing xW with the replacement point. Return to Step 1.

The global and local phases of the method described in the foregoing are combined as
follows: Execute the global phase and generate a new trial point xP in Step 3. Let the N
sample points be sorted in descending order of their cost function values. If xP is feasible
and falls within the bottom n1 1 points of the sample, then execute the local phase start-
ing with those n1 1 points as a simplex. Continue execution of the two phases until the
global phase stops in Step 6.

The following features of the method should be noted. The local phase operates only on
the best n1 1 points in the database of sample points. Thus, it has minimal effect on the
performance of the global phase. In Step 2 of the composite algorithm, the local phase may
improve the best point in the database. Thus, it tends to speed up convergence because
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the global phase always uses the best point. However, this may reduce, to a small degree,
the global search capability. If desired, it is easy to counter this effect by requiring that the
global phase not include the best point in some iterations. In other words, in Step 3 of the
algorithm, choose all of the n1 1 distinct points x(1) to x(n11) randomly from the N sample
points.

Taking the sample size N5 10(n1 1) gives satisfactory results. In Step 1 of the com-
posite algorithm, if fW/f L, 11 ε (ε. 0 is a small number), then the global phase may be
terminated. Any other stopping criterion may also be used.

18.3.5 Acceptance-Rejection Methods

The acceptance-rejection (A-R) methods are modifications of the multistart algorithm to
improve its efficiency by using ideas from statistical mechanics. In the multistart method,
a local minimization is started from each randomly generated point. Thus, the number of
local minimizations is very large and many of them converge to the same local minimum
point. A strategy to improve this situation is to start the local minimization procedure
only when the randomly generated point has a smaller cost function value than that of the
local minimum that was previously obtained. This forces the algorithm to tunnel below
irrelevant local minima. This modification, however, has been shown to be inefficient. As
a result, the tunneling process has been pursued only by means of the deterministic algo-
rithms explained earlier.

The acceptance�rejection methods modify this tunneling procedure. The basic idea of
this is to sometimes start local minimization from a randomly generated point even if it
has a higher cost function value than that at a previously obtained local minimum. This is
called the acceptance phase, which involves calculation of certain probabilities. If the local
minimization procedure started from an accepted point produces a local minimum that
has a higher cost function value than a previously obtained minimum, then the new mini-
mum point is rejected (rejection phase). The procedure just described is sometimes called
random tunneling.

A possible formulation of the acceptance criterion to start the local minimization is sug-
gested by the statistical mechanics approach described in Chapter 15, simulated annealing.
The acceptance-rejection methods thus resemble the simulated annealing approach. The
local minimization is started from a point x only if it has the probability given by

pðxÞ5 exp
½fðxÞ2 f �1

2F

 !
ð18:12Þ

where f is an estimate of the upper bound of the global minimum, F is a target value for
the global minimum, and [h]1 5max(0, h).

The initial value of F is usually provided by the user, or it may be estimated using a
few random points. In this algorithm, unlike simulated annealing, the choice of schedule
for reduction of the target level does not prevent convergence. Nevertheless, the schedule
is critical for performance of the algorithm. f is adjusted at each iteration as the best
approximation to the global minimum value. At the start, it may be taken as the smallest
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cost function value among some randomly generated points, or it can be supplied by the
user if a better value is known.

18.3.6 Stochastic Integration

In stochastic integration, a suitable stochastic perturbation of the system of equations for
the trajectory methods (described in Section 18.2.3) is introduced in order to force the tra-
jectory to a global minimum point. This is achieved by monitoring the cost function value
along the trajectories. By changing some coefficients in the differential equations, we get
different solution processes starting from the same initial point. This idea is similar to sim-
ulated annealing, but here the differential equation parameter is decreased continuously.
We describe the stochastic integration global minimization method using the steepest-
descent trajectory.

In this, a stochastic perturbation is introduced in Eq. (18.5) in order to increase the
chance of the trajectory reaching the global minimum point. The resulting system of sto-
chastic differential equations is given as

dxðtÞ52rfðxÞdt1 εðtÞdwðtÞ; with xð0Þ5 xð0Þ ð18:13Þ
where w(t) is an n-dimensional standard Wiener process and ε(t) is a real function called
the noise coefficient. In actual implementation, a standard Gaussian distribution is usually
used instead of the Wiener process.

Let x(t) be the solution to Eq. (18.13) starting from x(0) with a constant noise coefficient
ε(t)5 ε0. Then, as is well known in the field of statistical mechanics, the probability density
function of x(t) approaches the limit density Zexp[22f(x)/ε20], as t-N, where Z is a nor-
malization constant. The limit density is independent of x(0) and peaks around the global
minima of f(x). The peaks become narrower with a smaller ε0; that is, ε0 is equivalent to
the target level F that decreases in the simulated annealing method. In this method, an
attempt is made to obtain the global minima by looking at the asymptotic (as t-N)
values of a numerically computed sample trajectory of Eq. (18.13), where the noise func-
tion ε(t) is continuous and suitably tends to zero as t-N. In other words, unlike simu-
lated annealing, the target level is lowered continuously. The computational effort in this
method can be reduced by observing that a correct numerical computation of the gradient
in Eq. (18.13) is not really needed since a stochastic term is added to it. An approximate
finite difference gradient may be used instead.

Computing a single trajectory of Eq. (18.13) by decreasing ε(t) (for t. 0) and following
the trajectory for a long time to obtain a global solution may not be very efficient.
Therefore, in actual implementation an alternative strategy can be used where several tra-
jectories are generated simultaneously. The cost function values along all of the trajectories
are monitored and compared with each other. A point corresponding to the smallest cost
function value on any of the trajectories at any trial is stored. If some trajectories are not
progressing satisfactorily, they may be discarded and new ones initiated. As with other
stochastic methods, the procedure is executed several times before accepting the best point
as the global optimum point.
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18.4 TWO LOCAL-GLOBAL STOCHASTIC METHODS

In this section, we describe two stochastic global optimization methods that have both
local and global phases. The algorithms have been designed to treat general constraints in
the problem explicitly. They can be viewed as a modification of the multistart procedure
but with the ability to learn as the search progresses.

18.4.1 Conceptual Local-Global Algorithm

As explained in the last section, most stochastic methods have local and global phases.
In this subsection, we describe a conceptual algorithm having both of these phases that
forms the basis for the two algorithms described in the next two sections.

Step 1. Generate a random point x(0) in the set Sb.
Step 2. Check some rejection criteria (discussed later) based on the proximity of x(0)

to one of the previous starting points, local minimum points, or rejected points. If a
rejection criterion is satisfied, add x(0) to the set of rejected points and go to Step 1.
Otherwise, execute the local phase by continuing with Step 3.
Step 3. Add x(0) to the set of starting points and find a local minimum x* in the feasible
set S for the problem.
Step 4. Check if x* is a new local minimum; if so, add it to the set of local minima,
otherwise add x(0) to the set of rejected points. Go to Step 1.

Steps 1 and 2 constitute the global phase and Steps 3 and 4 constitute the local phase of
the algorithm. The basic idea is to explore the entire feasible domain in a systematic way
for the global minimum.

Bearing in mind that generation and evaluation of a random point are much cheaper
than one local minimization, which may require many function and gradient evaluations,
more emphasis is placed on the algorithm’s global phase. The algorithm avoids searching
near any local minimum point and all of the points leading to it, thus increasing the chance
of finding a new local minimum in the unexplored region. To do this, several sets that con-
tain certain types of points are constructed. For example, a set is reserved for all of the local
minimum points found, and another contains all of the starting points for local searches.
The following sets, in addition to S and Sb defined earlier, are used in the two algorithms:

S*5 set of local minima
S05 set of starting points x(0)

Sr5 set of rejected points

A uniformly distributed random point generation scheme over Sb is used so that the
entire feasible domain is explored with a uniform probability of finding the global mini-
mum. In Step 1 of the algorithm, the point x(0) in Sb is accepted because finding a point in
S can be a difficult problem (Elwakeil and Arora, 1995). The use of a uniform distribution
enables the application of some well-known stopping rules.

The next two sections present the domain elimination and stochastic zooming methods.
In both, a random point is generated in Sb. Other constraints are ignored at this stage
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because a local minimization procedure that does not require a feasible starting point can
be used. Also, both methods require very little programming effort since the local phase
can use existing software. In the algorithms, a modified local phase is used instead of the
one given in Step 3: The local search is performed using many subsearches, each one con-
sisting of a few iterations (two or three). Certain criteria, explained in the following sec-
tions, are checked after each subsearch to determine if the next subsearch should be
started or the local phase should be terminated.

18.4.2 Domain Elimination Method

The basic idea of this algorithm is to systematically explore the entire feasible domain
for the problem to find the global minimum. To accomplish this, each local search is
attempted from a point that is likely to lead to a new local minimum point. Figure 18.4
shows a conceptual flow diagram for the major steps of the algorithm, which starts with

Initialize

Generate
random point x

Update record of
rejected points

Perform local minimization
to find x*

Is rejection
criterion satisfied?

Is x* new
minimum?

Is stopping
criterion satisfied?

Stop

Add x* to set
of local minima

Yes

No

Yes

No

Yes

No
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4

5

6
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FIGURE 18.4 Flow diagram for domain
elimination method.
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the selection of a random point from a uniform distribution over the set (block 2). The
point is rejected or accepted based on certain criteria (block 3); if the point is accepted,
then a search for a local minimum is initiated from there (block 5). If it is rejected, then it
is added to the set of rejected points (block 4) and a new random point is selected.

To accept or reject a random point, records for the following three types of points are
kept: previous starting points for local minimization, local minimum points, and rejected
points. A random point is rejected if it is within a critical distance of one of the foregoing
sets. The distance between the random point and the points in the sets can be calculated
in different ways; the infinity norm, being the simplest, is suggested. If the point is
accepted, a search is initiated for a new local minimum point. The local search process is
also monitored, and if the search is going toward a known local minimum point, it is ter-
minated. This is done by checking the closeness of the design points generated during the
local search to stored trajectories between previous starting points and the corresponding
local minimum points.

Thus, it is seen that the domain elimination method eliminates domains around the
known local minimum points and previously rejected points. At the beginning of the
search for a global minimum, most of the random points are accepted as starting points
for local minimization. However, near the tail end of the search process, fewer local mini-
mizations are performed.

The following counters are used in the algorithm given next:

c15number of elements in Sr, the set of rejected points
c25number of rejected points that were near Sr
c35number of elements in S0, the set of starting points
c45number of elements in S*, the set of local minimum points

Step 1. Initialize the sets S*, S0, and Sr. Select a value for the parameter M that specifies
the number of local search iterations to be performed to determine an intermediate
point xM for checking the rejection criteria. Set global iteration counter i5 0. Set four
counters c1, c2, c3, and c4 to 0; these are used to keep track of the number of elements in
various sets defined earlier.
Step 2. If one of the stopping criteria is met, then stop. Otherwise, generate a random
point xR drawn from a uniform distribution over Sb.
Step 3. If the current point xR is in or near S* or S0 (determined using a procedure to be
presented in Section 18.4.4), then add xR to Sr and set c15 c11 1; else, if it is in or near
Sr, set c25 c21 1; else, if xR is near a trajectory (a mapping S0-S*), add xR to Sr and set
c15 c11 1. If any of the four conditions is true, go to Step 2 (this avoids starting the
local phase, which has a low probability of finding a new minimum). Otherwise, add
xR to S0, and set x(0)5 xR and c35 c31 1.
Step 4. Execute the local minimization for M iterations to yield an intermediate point xM.
If xM is a local minimum point, then set x*5 xM and go to Step 6. Otherwise, continue.
Step 5. If the current point xM is in or near S0, then add xM to Sr and set c15 c11 1; else,
if xM is in or near Sr, set c25 c21 1; else, if xM is near a trajectory, add xM to Sr and set
c15 c11 1. If any of the three conditions is true, then store the trajectory from x(0) to xM

and go to Step 2. Otherwise, go to Step 4.
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Step 6. If x* is a new local minimum, then add it to S* and set c45 c41 1; otherwise,
increment the associated indicator of the number of times x* was found.
Step 7. Set i5 i1 1; if i is larger than a specified limit, then stop. Otherwise, go to Step 2.

Stopping Criteria

Several stopping criteria can be used, and two of them are discussed next. In Step 2 of
the algorithm, the procedure is stopped if any of the sets S0, S*, and Sr become full based
on prespecified limits on set sizes. The maximum size of a set is determined based on the
number of design variables and a confidence level parameter. Since the random points are
drawn from a uniform distribution, the number of points generated before stopping the
search is proportional to n. The size of set S* of local minimum points is usually much
smaller than the other two sets (since there can be only one minimum for each starting
point). In the numerical evaluation presented later, the sizes chosen for the current imple-
mentation are 10n for S* and 40n for S0 and Sr.

Another criterion is to stop the algorithm if the number of local minima found exceeds
the Bayesian estimate for the number of local minima, as was explained in Section 18.3.2,
or if a specified limit on iterations is exceeded.

18.4.3 Stochastic Zooming Method

This method is an extension of the zooming method described in Section 18.2.2. Recall
that as the target level for the cost function grows closer to the global optimum, it becomes
difficult to find a feasible point in the set S. Eventually, the modified problem needs to be
declared infeasible to stop the algorithm. To overcome this difficulty, the algorithm is
modified by adding a global phase to it to ensure that the set S is reasonably well searched
before declaring the modified problem to be infeasible and accepting the previous local
minimum as the global minimum.

The major difference between stochastic zooming and domain elimination is the addi-
tion of the zooming constraint of Eq. (18.4). Therefore, the domain elimination algorithm
can be used with some minor modification to keep track of the number of local searches
that did not terminate at a feasible minimum point. To do this, the number of iterations to
search for a local minimum in Steps 4 and 5 is monitored. If this number exceeds a speci-
fied limit, then the local search process is declared to have failed. The number of such fail-
ures is also monitored, and if it exceeds a specified limit, the algorithm is terminated and
the best local minimum is taken as the global minimum point for the problem. In addition
to this stopping criterion, if the cost function value reaches a target value F specified by
the user, (f(x)# F), the algorithm is terminated.

18.4.4 Operations Analysis of Methods

It is seen that the domain elimination and stochastic zooming methods differ primarily
in the inclusion of the constraint from Eq. (18.4) in the latter. This is an important differ-
ence, however, because it changes the behavior of the basic algorithm considerably. This
section presents an analysis of the operations and choice of design variable bounds used
in both methods. The analysis includes numerical requirements and performance with
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available implementation alternatives for the algorithms’ rejection criteria. The following
calculations are needed in the algorithms:

1. Distance between a point and a set of points
2. Approximation of the trajectory between a starting point and a local minimum
3. Distance between a point and a trajectory

Each can be accomplished with several different procedures. The operations count for
each option is necessary for choosing the most efficient procedure.

Checking the Proximity of a Point to a Set

After generating a random point, we need to determine if it will yield a new local mini-
mum. For this purpose, the random point xR is compared with the points in the three sets
S*, S0, and Sr. If it is within a certain critical distance Dcr from any point in these sets, it is
discarded and a new random point is generated. The same procedure is used for the inter-
mediate point xM (Step 4 of the algorithm). Two methods are presented for checking the
proximity of a point to a set.

Let xS be a point belonging to one of the sets mentioned previously and xM be either a
random point or an intermediate point. The first method is to construct a hypersphere of
either a constant or a variable radius around xS. The proposed point (xR or xM) is rejected
if it lies inside the hypersphere. This involves calculation of the distance between the two
points D5 jjxS2 xMjj, and the point is rejected if D#Dcr, where Dcr is specified as αjjxjj
with x5 xR or xM and 0.01#α# 0.20.

The second method is to construct a hyperprism around xS rather than a hypersphere.
If the proposed point lies inside the hyperprism, it is rejected. In this case, the distance
between the two points is not required. Each of the design variables is compared in turn
with the corresponding value for the prism’s center. If the difference is larger than the cor-
responding critical value, then the rest of the variables need not be compared and the
point is accepted. This can be represented by the following pseudocode (let Dcr(i)5αjxij be
a vector with xi5 (xR or xM)i):

for i = 1 to n do
if (xS − xM)i $ Dcr(i) then accept xM

end do
reject xM

Based on the operations count, it is seen that the second approach is less expensive.

Trajectory Approximation

The random points xR selected for starting a local search, as well as the intermediate
points xM during local minimization, are examined for proximity to each stored trajectory.
A trajectory is the design history from a starting point to the corresponding local mini-
mum point. There can be many trajectories meeting at one local minimum point. The
selected point is rejected if it is near any trajectory. This is done to prevent unnecessary
minimization steps that would otherwise lead to already known local minima. The
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trajectory can be approximated using several techniques. The simplest approximation is a
straight line connecting x(0) and the corresponding x*. Experiments have shown that actual
trajectories usually do not follow straight lines, especially at the beginning of the search
and for nonlinear problems. Other alternatives to approximate the trajectory include

1. Passing a least squares straight line through several points along the trajectory.
2. Passing straight line segments through selected points along the trajectory.
3. Passing a quadratic curve through three points.
4. Passing quadratic segments through groups of three points.
5. Constructing higher-order polynomial or spline approximations.

Several issues affect the choice of the technique to use: the number of points needed
(which have to be stored), the number of operations, and the accuracy of the approxima-
tion. Any technique other than straight line approximation requires more intermediate
points to be saved and more calculations. Therefore, use of a straight line approximation
is suggested.

Distance between a Point and a Trajectory

With the linear approximation of the trajectory, the decision of whether a point x lies
near the trajectory can be made in more than one way. The first procedure is to calculate
the internal angle x(0)2 x2 x* of the triangle formed by the three points. The point x is
rejected if the angle is larger than a threshold value. The second approach is to calculate
an offset distance by generating x as a projection of x on the line x(0)2 x*. If x lies outside
the line segment x(0)2 x*, then it is accepted; otherwise, the offset length x2 x is calcu-
lated. If it is larger than a critical value, then x is considered far from the trajectory.

Geometrical representation of the triangle method indicates construction of an ellipsoi-
dal body around the line segment x(0)2 x*. The offset method, on the other hand, can be
represented by a cylinder constructed with x(0)2 x* as its axis. A point x is considered
close to the trajectory if it lies inside the ellipsoidal body or the cylinder, respectively. The
offset method features a uniform critical distance from the linear trajectory, whereas with
the triangle method the distance is made smaller near the endpoints. In other words, the
critical offset distance in the triangle method is related to the trajectory’s length.

This makes physical sense because the trajectory’s length can be related to the size of the
region of attraction for the local minimum. The same effect can be achieved for the cylinder
method by requiring the critical offset to be proportional to the length of the line segment
x(0)2 x* (i.e., βjjx(0)2 x*jj for some β. 0). The proportional offset has the advantage of
accounting for the problem’s scale and thus maintains accuracy. Another advantage is that
large subdomains are eliminated from larger regions of attraction and vice versa.

A third approach is to construct a truncated cone with the larger base at x* and the
smaller base at x(0), thus allowing a better identification of close regions of attraction.
The cone can be constructed by requiring that the critical offset distance be proportional to
the distance jjx2 xð0Þjj. This option requires more calculations than the simple cylinder
method.

Based on the operations count, the triangle method is chosen for the implementation
that is described later since it uses fewer multiplications. The critical angle in the range
150� # θ# 175� has shown good performance (θ5 170� is used in the implementation).
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Design Variable Constraints

In local minimization algorithms, any simple bounds on the design variables can be
treated efficiently. Specification of appropriate bounds on the design variables is more
important in stochastic global optimization methods than in others. The further apart these
bounds are, the larger the number of random points generated in the set Sb. Consequently,
the number of local searches performed is increased, which reduces efficiency. For this
reason, the design variable bounds for a global optimization problem must be chosen carefully to
reflect the nature of the problem. A simple numerical experiment where the allowable
range for one of the design variables out of a total of 40 was doubled, showed that the
numerical effort to obtain the same global minimum point increased by 50 percent
(Elwakeil and Arora, 1996a). This clearly shows the importance of selecting appropriate
bounds on the design variables in global optimization.

18.5 NUMERICAL PERFORMANCE OF METHODS

Various concepts and aspects of global optimization methods have been described in this
chapter. Details of some of the algorithms have been presented to give a flavor of the com-
putations that are needed to solve a problem. It is seen that solving a global optimization
problem is a computational challenge, especially when a true global minimum is required.
The main reason is that even if the global minimum point has been reached during the search pro-
cess, it is not possible to recognize this fact. That is, there is no definite stopping criterion.
Therefore, the search process needs to be continued and the algorithm needs to be executed
repeatedly to ensure that the global minimum point has not been missed. In other words,
the entire feasible set needs to be thoroughly searched, implicitly or explicitly.

For practical applications, however, improved local minima or improved feasible
designs are acceptable. In this case, reasonably efficient and effective computational algo-
rithms are available or can be devised to achieve this objective. In addition, many algo-
rithms can be implemented on parallel processors to reduce the “wall clock” time needed for
practical applications.

In this section, we summarize features of the methods described earlier. The numerical
performance of some of them is described using a limited set of test problems to gain
insights into the type of computation they need and their behavior (Elwakeil and Arora,
1996a,b). Several structural design problems have also been devised and solved to study
that class of problems for global optimization.

18.5.1 Summary of Features of Methods

It is difficult to recommend a single global optimization method for all applications. Selection
depends on the characteristics of the problem and what is desired. For example, if all of the
local minima are desired, then tunneling or zooming is not suitable. If the problem has dis-
crete variables and the functions are not differentiable, a method that requires and uses gradi-
ents will not do. If an absolute guarantee of a global solution is desired, then certain methods
that do not guarantee this are not appropriate. It is suggested that the problem characteristics
and requirements be analyzed before selecting an algorithm for global optimization.
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We must be aware that no matter which algorithm is selected, the computational effort
to reach a solution point is substantial. Therefore, we must be willing and able to bear the
enormous cost of finding an estimate of a global solution to our problem. Table 18.1 sum-
marizes the following characteristics of various global optimization algorithms:

1. Classification of method: deterministic (D) or stochastic (S).
2. Ability of the method to solve discrete problems; it is desirable that the method be able

to do so.
3. Ability to treat general constraints explicitly; this is a desirable feature.
4. Ability to find all of the local minima; this depends on the desire of the user.
5. Use of local and global phases; methods using both are generally more reliable and

efficient.
6. Need for gradients; if a method definitely needs function gradients, its applicability is

limited to continuous problems.

18.5.2 Performance of Some Methods with Unconstrained Problems

For a first numerical performance study, the following four methods were implemented
(Elwakeil and Arora, 1996a): covering, acceptance-rejection (A-R), controlled random
search (CRS), and simulated annealing (SA). The numerical tests were performed on 29

TABLE 18.1 Characteristics of global optimization methods

Method

Can solve discrete

problems?

General

constraints?

Tries to find

all x*? Phases

Needs

gradients?

Covering (D) No No Yes G 1

Zooming (D) Yes1 Yes No L 1

Generalized descent (D) No No No G Yes

Tunneling (D) No Yes No L1G 1

Multistart (S) Yes1 Yes Yes L1G 1

Clustering (S) Yes1 Yes Yes L1G 1

Controlled random search (S) Yes No No L1G No

Acceptance-rejection (S) Yes1 Yes No G No

Stochastic integration (S) No No No G No

Genetic (S) Yes No No G No

Stochastic zooming (S) Yes1 Yes No L1G 1

Domain elimination (S) Yes1 Yes Yes L1G 1

Note: D: deterministic methods; S: stochastic methods; G: global phase; L: local phase.
1Depends on the local minimization procedure used.
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unconstrained problems available in the literature. These problems had one to six design
variables and only explicit bounds. Global solutions for the problems were known.

Based on the results, it was concluded that the covering methods were not practical
because of their inefficiency for problems with n . 2. They required very large computa-
tional effort. Also, it was difficult to generate a good estimate for the Lipschitz constant
that is needed in the algorithm. Both A-R and CRS methods performed better than simu-
lated annealing and the covering method. However, the fact that A-R does not include
any stopping criterion makes it undesirable for practical applications. It worked effi-
ciently on test problems because it was stopped upon finding the known global optimum
point.

The CRS method contains a stopping criterion and is more efficient compared with
other methods. An attempt to treat general constraints explicitly with it was not successful
because constraint violations could not be corrected with reasonable computational effort.

18.5.3 Performance of Stochastic Zooming and Domain Elimination Methods

In another study, the stochastic zooming method (ZOOM) and the domain elimination
(DE) method were also implemented (in addition to CRS and SA), and their performance
was evaluated using ten mathematical programming test problems (Elwakeil and Arora,
1996a). The test problems included were constrained as well as unconstrained. The reason
was that, even though most engineering application problems are constrained, it is benefi-
cial to test performance of the algorithms on unconstrained problems as well.

The CRS method could be used only for unconstrained problems. It is noted, however,
that the problems classified as unconstrained included simple bounds on the design vari-
ables. The sequential quadratic programming (SQP) method was used in all local searches
performed using ZOOM and DE. For ZOOM, the percent reduction required from one
local minimum to the next was set arbitrarily to 15 percent (i.e., γ5 0.85 in Eq. (18.4)) for
all of the test problems.

The ten test problems used in the study had the following characteristics:

• Four problems had no constraints.
• The number of design variables varied from 2 to 15.
• The total number of general constraints varied from 2 to 29.
• Two problems had equality constraints.
• All problems had 2 or more local minima.
• Two problems had 2 global minima and one had 4.
• One problem had a global minimum of 0.
• Four problems had negative global minimum values.

To compare the performance of different algorithms, each of the test problems was solved
five times and averages for the following evaluation criteria were recorded:

• Number of random starting points
• Number of local searches performed
• Number of iterations used during the local search
• Number of local minima found by the method
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• Cost function value of the best local minimum (the global minimum)
• Total number of calls for function evaluations
• CPU time used

Because a random point generator with a random seed was used, the performance of
the algorithms changed each time they were executed. The seed was automatically chosen
based on wall clock time. The results differed in the number of local minima found as
well as in the other evaluation criteria.

DE found the global solution to 9 out of 10 problems, whereas ZOOM found a global
minimum for 7 out of 10. In general, DE found more local minima than ZOOM did. This
is attributed to the latter requiring a reduction in the cost function value after each local
minimum was found. As noted earlier, ZOOM is designed to “tunnel” under some min-
ima with relatively close cost function values.

In terms of the number of function evaluations and CPU time, DE was cheaper than
ZOOM. This was because the latter performed more local iterations for a particular search
without finding a feasible solution. On the other hand, the number of iterations during a
local search performed in DE was smaller since it could find a solution in most cases.

The CPU time needed by CRS was considerably smaller than that for other methods,
even with a larger number of function evaluations. This was due to the use of a local
search procedure that did not require gradients or line search. However, the method is
applicable to only unconstrained problems.

Simulated annealing failed to locate the global minimum for six problems. For the suc-
cessful problems, the CPU time required was three to four times that for DE. The tests
also showed that there was a drastic increase in the computational effort it required as the
number of design variables increased. This implementation of SA was thus considered
inefficient and unreliable compared with those of both DE and ZOOM. It is noted that SA
may be more suitable for problems with discrete variables only.

18.5.4 Global Optimization of Structural Design Problems

The DE and ZOOM methods were used to find global solutions to structural design
problems by Elwakeil and Arora (1996b). In this section, we summarize and discuss the
results of that study, which used the following six structures:

• 10-bar cantilever truss
• 200-bar truss
• 1-bay, 2-story frame
• 2-bay, 6-story frame
• 10-member cantilever frame
• 200-member frame

These structures had been used previously to test various algorithms for local minimiza-
tion (Haug and Arora, 1979). A variety of constraints were imposed on the structures.
They included constraints and other requirements given in the Specification of the American
Institute of Steel Construction (AISC, 1989) and the Aluminum Association Specifications
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(AA, 1986), as well as displacement constraints and constraints on the natural frequency of
the structure.

Some of the structures were subjected to multiple loading cases. For all problems, the
weight of the structure was minimized. Using the six structures, 28 test problems were
devised by varying the cross-sectional shape of members to hollow circular tubes or
I-sections, and changing the material from steel to aluminum. The number of design vari-
ables varied from 4 to 116, the number of stress constraints varied from 10 to 600, the
number of deflection constraints varied from 8 to 675, and the number of local buckling
constraints for the members varied from 0 to 72. The total number of general inequality
constraints varied from 19 to 1276. These test problems can be considered to be large com-
pared with the ones used in the previous section.

Detailed results using DE and ZOOM can be found in Elwakeil (1995). Each problem
was solved five times with a different seed for the random number generator. The five
runs were then combined and all of the optimum solutions found were stored.

It was observed that all six structures tested possessed many local minima. ZOOM
found only one local minimum for all but two problems. For most of the problems, the
global minimum was found with the first random starting point. Therefore, other local
minima were not found since they had a higher cost function value. DE found many local
minima for all problems except for one, which turned out to be infeasible. The method did
not find all of the local minima in one run because of the imposed limit on the number of
random starting designs.

From the recorded CPU times, it was difficult to draw a general conclusion about the
relative efficiency of the two methods because for some problems one method was more
efficient and for the remaining the second method was more efficient. However, both can
be useful depending on the requirements. If only the global minimum is sought, then
ZOOM can be used. If all or most of the local minima are wanted, then DE should be
used. The zooming method can be used to determine lower-cost practical designs by
appropriately selecting the parameter γ in Eq. (18.4).

Some problems showed only a small difference between weights for the best and the
worst local minima. This indicates a flat feasible domain, perhaps with small variations in
the weight which results in multiple global minima. One of the problems was infeasible
because of an unreasonable requirement for the natural frequency to be no less than 22 Hz.
However, when the constraint was gradually relaxed, a solution was found at a value of
17 Hz.

It is clear that the designer’s experience with, and knowledge of, the problems to be
solved, as well as the design requirements, can affect the performance of global optimiza-
tion algorithms. For example, by setting a correct limit on the number of local minima
desired, the computational effort required by the domain elimination method can be
reduced substantially. For the zooming method, the computational effort is reduced if the
parameter γ in Eq. (18.4) is selected judiciously. In this regard, it may be possible to
develop a strategy to automatically adjust the value of γ dynamically during local searches
so as to avoid the infeasible problems that constitute a major computational effort in the
zooming method. A realistic value for F, the target value for the global minimum cost
function, would also improve the method’s efficiency.
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EXERCISES FOR CHAPTER 18*

Calculate a global minimum point for the following problems.

18.1 (See Branin and Hoo, 1972)

Minimize

fðxÞ5 422:1x21 1
1

3
x41

� �
x21 1 x1x2 1 ð241 4x22Þx22

subject to
23 # x1 # 3

22 # x2 # 2

18.2 (See Lucidi and Piccioni, 1989)

Minimize

fðxÞ5 π
n

10sin2ðπx1Þ1
Xn21
i51

ðxi 21Þ2ð11 10sin2ðπ xi11ÞÞ
� 	

1 ðxn 21Þ2
( )

subject to
210 # xi # 10; i5 1 to 5

18.3 (See Walster et al., 1984)

Minimize

fðxÞ5
X11
i51

ai 2 x1
b2i 2 bix2

b2i 1 bix3 1 x4

� �

subject to
22 # xi # 2; i5 1 to 4

where the coefficients (ai, bi) (i5 1 to 11) are given as follows: (0.1975, 4), (0.1947, 2), (0.1735, 1),

(0.16, 0.5), (0.0844, 0.25), (0.0627, 0.1667), (0.0456, 0.125), (0.0342, 0.1), (0.0323, 0.0833), (0.0235,

0.0714), (0.0246, 0.0625).

18.4 (See Evtushenko, 1974)

Minimize

fðxÞ52
X6
i51

1

6
sin2π xi 1

i

5

� �" #2

subject to
0 # xi # 1; i5 1 to 6

18.5 Minimize

fðxÞ5 2x1 1 3x2 2 x31 2 2x22

subject to
1

6
x1 1

1

2
x2 2 1:0 # 0

1

2
x1 1

1

5
x2 21:0 # 0

x1; x2 $ 0
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18.6 (See Hock and Schittkowski, 1981)

Minimize

fðxÞ5
X99
i51

f 2i ðxÞ

fiðxÞ52
i

100
1 exp 2

1

x1
ðui 2 x2Þx3

� �

ui 5 251
�
250lnð0:01iÞ	2=3; i5 1 to 99

subject to

0:1 # x1 # 100; 0:0 # x2 # 25:6; 0:0 # x3 # 5

18.7 (See Hock and Schittkowski, 1981)

Minimize
fðxÞ5 ðx21 2 x22Þ1 ðx22 2 x23Þ1 ðx23 2 x24Þ1 ðx24 2 x25Þ

subject to
x1 1 x22 1 x33 235 0

x1 2 x23 1 x4 215 0

x1x5 215 0

18.8 (See Hock and Schittkowski, 1981)

Minimize

fðxÞ5 275:1961 b1x1 1 b2x
3
1 2 b3x

4
1 1 b4x2 2 b5x1x2 1 b6x2x

2
1 1 b7x

4
1x2 2 b8x

2
2 1 c1x

3
2 2 c2x

4
2

1 28:106=ðx2 1 1Þ1 c3x
2
1x

2
2 1 c4x

3
1x

2
2 2 c5x

3
1x

3
2 2 c6x1x

2
2 1 c7x1x

3
2

1 2:8673 exp
x1x2
2000


 �
2 c8x

3
1x2

subject to
x1x2 2 700 $ 0

x2 2 x21=125 $ 0

ðx2 2 50Þ2 2 5ðx1 2 55Þ $ 0

0 # x1 # 75; 0 # x2 # 65

where the parameters (bi, ci) (i5 1 to 8) are given as

(3.8112E100, 3.4604E203), (2.0567E203, 1.3514E205),

(1.0345E205, 5.2375E206), (6.8306E100, 6.3000E208),

(3.0234E202, 7.0000E210), (1.2814E203, 3.4050E204),

(2.2660E207, 1.6638E206), (2.5645E201, 3.5256E205).

18.9 (See Hock and Schittkowski, 1981)

Minimize
fðxÞ5 x1x4ðx1 1 x2 1 x3Þ1 x3
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subject to
x1x2x3x4 2 25 $ 0

x21 1 x22 1 x23 1 x24 2 405 0

1 # xi # 5; i5 1 to 4

18.10 (See Hock and Schittkowski, 1981)

Minimize

fðxÞ5
X4
k50

2:3x3k11 2 ð1:0E24Þx33k11 1 1:7x3k12
�

1 ð1:0E24Þx23k12 1 2:2x3k13 1 ð1:5E24Þx23k13Þ
subject to

0 # x3j11 2 x3j22 1 7 # 13; j5 1 to 4

0 # x3j13 2 x3j22 1 7 # 14; j5 1 to 4

0 # x3j13 2 x3j 1 7 # 13; j5 1 to 4

x1 1 x2 1 x3 2 60 $ 0

x4 1 x5 1 x6 2 50 $ 0

x7 1 x8 1 x9 2 70 $ 0

x10 1 x11 1 x12 2 85 $ 0

x13 1 x14 1 x15 2 105 $ 0

and the bounds are (k5 1 to 4):

8.0# x1# 21.0

43.0# x2# 57.0

3.0# x3# 16.0

0.0# x3k11# 90.0

0.0# x3k12# 120.0

0.0# x3k13# 60.0

Find all of the local minimum points for the following problems and determine a global minimum point.

18.11 Exercise 18.1 18.12 Exercise 18.2 18.13 Exercise 18.3

18.14 Exercise 18.4 18.15 Exercise 18.5 18.16 Exercise 18.6

18.17 Exercise 18.7 18.18 Exercise 18.8 18.19 Exercise 18.9

18.20 Exercise 18.10
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C H A P T E R

19

Nature-Inspired Search Methods

Upon comp le t i on o f th i s chap te r, you wi l l be ab l e to

• Explain and use the differential evolution

algorithm

• Explain and use the ant colony optimization

algorithm

• Explain and use the particle swarm

optimization algorithm

In this chapter, optimization algorithms inspired by natural phenomena are described.
These fall into the general class of direct search methods described in Chapter 11. However,
in contrast to some direct search methods, they do not require the continuity or differen-
tiability of problem functions. The only requirement is that we be able to evaluate func-
tions at any point within the allowable ranges for the design variables. Nature-inspired
methods use stochastic ideas and random numbers in their calculations to search for the
optimum point. They tend to converge to a global minimum point for the function, but
there is no guarantee of convergence or global optimality of the final solution.

Nature-inspired approaches have been called stochastic programming, evolutionary
algorithms, genetic programming, swarm intelligence, and evolutionary computation.
They are also called nature-inspired metaheuristics methods, as they make no
assumptions about the optimization problem and can search very large spaces for
candidate solutions.

Nature-inspired algorithms can overcome some of the challenges that are due to multiple
objectives, mixed design variables, irregular/noisy problem functions, implicit problem
functions, expensive and/or unreliable function gradients, and uncertainty in the model and
the environment. For this reason, there has been considerable interest in their development
and in their application to a wide variety of practical problems. Several books on various
methods have been published; a few examples are Price et al. (2005), Qing (2009), Glover
and Kochenberger (2002), Corne et al. (1999), and Kennedy et al. (2001).
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There have also been conferences and workshops on various nature-inspired methods
such as the IEEE Congress on Evolutionary Computation, Soft Computing, GECCO
(Genetic and Evolutionary Computation Conference), PPSN (International Conference on
Parallel Problem Solving from Nature), ANTS (Ant Colony Optimization and Swarm
Intelligence), the Evolutionary Programming Conference, and others. Journals devoted to
research on nature-inspired methods include these: IEEE Transactions on Evolutionary
Computation, Applied Intelligence, Neural Network World, Artificial Intelligence Review, Applied
Soft Computing, Physics of Life Reviews, AI Communications, Evolutionary Computing, Journal
of Artificial Intelligence Research, Journal of Heuristics, and Artificial Life.

The methods usually start with a collection of design points called the population. Using
certain stochastic processes, they try to come up with a better design point for each genera-
tion (iteration of the algorithm). In Chapter 16, concepts and details of genetic algorithms
were presented. Those methods also fall into the nature-inspired class. Some of the termi-
nology and concepts used there are used here as well.

To give a flavor of nature-inspired methods, we will describe three methods in this
chapter that are relatively popular. (Other methods in this class are noted in Das and
Suganthan (2011).) Each one uses specific terminology from the corresponding biological
phenomenon or other natural phenomena that may be unfamiliar to engineers, so we will
describe such terminology wherever used.

The methods presented here treat the following optimization problem:

Minimize
fðxÞ for xAS ð19:1Þ

where S is the feasible set of designs and x is the n-dimensional design variable vector. If
the problem is unconstrained, the set S is the entire design space, and if it is constrained, S
is determined by the constraints. The methods presented in this chapter are generally used
for unconstrained problems.

Constrained optimization problems, however, can be addressed using the penalty func-
tion approach described in Chapter 11 or the exact penalty function defined in Chapter 12.
In the following presentation, the terms design vector, design point, and design are used
interchangeably. They all refer to the n-dimensional design variable vector x.

19.1 DIFFERENTIAL EVOLUTION ALGORITHM

The differential evolution (DE) algorithm works with a population of designs. At each
iteration, called a generation, a new design is generated using some current designs and
random operations. If the new design is better than a preselected parent design, then it
replaces that design in the population; otherwise, the old design is retained and the pro-
cess is repeated. In this section, the steps of a basic DE algorithm are described. The mate-
rial is derived from a recent article by Das and Suganthan (2011).

Compared to genetic algorithms (GAs), DE algorithms are easier to implement on the
computer. Unlike GAs, they do not require binary number coding and encoding, as seen
later (although GAs have been implemented with real number coding as well). Therefore,
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they are quite popular for numerous practical applications (Das and Suganthan, 2011).
There are four steps in executing the basic DE algorithm:

Step 1. Generation of the initial population of designs.
Step 2. Mutation with difference of vectors to generate a so-called donor design vector.
Step 3. Crossover/recombination to generate a so-called trial design vector.
Step 4. Selection, that is, acceptance or rejection of the trial design vector using the
fitness function, which is usually the cost function.

These steps are described in the following subsections. The notation and terminology
listed in Table 19.1 are used.

19.1.1 Generation of an Initial Population

A first step in DE is to generate an initial population of Np design points; Np is usually
selected as a large number, say, between 5n and 10n. Each design point/vector is also
called a chromosome. Initial designs can be generated by any procedure that tries to cover
the entire design space in a uniformly distributed random manner. If some designs for the
system are known, they can be included in the initial population. One way to generate the
initial set of designs is to use the lower and upper limits on the design variables and

TABLE 19.1 Notation and terminology for the DE algorithm

Notation Terminology

Cr Crossover rate; an algorithm parameter

F Scale factor, usually in the interval [0.4, 1.0]; an algorithm parameter

k kth generation of the iterative process

kmax Limit on the number of generations

n Number of design variables

Np Number of design points in the population; population size

rij Random number uniformly distributed between 0 and 1 for the ith design and its jth
component

xj jth component of the design variable vector x

U(p,k) Trial design vector at the kth generation/iteration associated with the parent design p

V(p,k) Donor design vector at the kth generation/iteration associated with the parent design p

x(i,k) ith design point of the population at the kth generation/iteration

x(p,k) Parent design (also called the target design) of the population at the kth
generation/iteration

xL Vector containing the lower limits on the design variables

xU Vector containing the upper limits on the design variables
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uniformly distributed random numbers. For example, the ith member (design) of the pop-
ulation may be generated as follows:

xði;0Þj 5 xjL 1 rijðxjU 2 xjLÞ; j5 1 to n ð19:2Þ

where rij is a uniformly distributed random number between 0 and 1 that is generated for
each component of the design point. Each member of the population is a potential solu-
tion/optimum point.

19.1.2 Generation of a Donor Design

In this subsection, we describe the idea of a donor design and its generation. A donor
design is generated using mutation of a selected design with the difference of two other
distinct designs in the population. Biologically, mutation means a change in the gene (a
component of the design vector) characteristics of a chromosome (the complete design vec-
tor). The donor design point is created by changing a design point of the current popula-
tion. This change is accomplished by combining the design vector with the difference of
two other vectors of the population, all selected randomly. The design vector thus gener-
ated is called the donor design/vector. In the context of donor design, then, mutation
implies changing all components of a design vector.

To generate the donor design vector, we randomly select three distinct design points
from the current population in the generation k: xðr1;kÞ, xðr2;kÞ and xðr3;kÞ, where the superscripts
r1, r2, and r3 refer to three different designs. In addition, we select a fourth point x(p,k),
called the parent/target design point; its use in the crossover operation is explained later (the
superscript p refers to the parent design). We then form a difference vector using two design
points, say r2 and r3, as (x

ðr2;kÞ 2 xðr3;kÞ). This difference vector is scaled and added to the third
vector to form the donor design vector V(p,k):

Vðp;kÞ 5 xðr1;kÞ 1 F3 ðxðr2;kÞ 2 xðr3;kÞÞ ð19:3Þ
where F is a scale factor, typically selected between 0.4 and 1. Note that any procedure
can be used to randomly select the foregoing four members of the current population; one
example is the roulette wheel procedure described in Chapter 16.

19.1.3 Crossover Operation to Generate the Trial Design

A crossover operation is performed after generating the donor design through muta-
tion. In it, the donor design vector V(p,k) exchanges some of its components with the parent
design vector to form the trial design vector xj

(p,k). The crossover operation is described in
the following equation:

U
ðp;kÞ
j 5

V
ðp;kÞ
j ; if rpj # Cr or j5 jr

x
ðp;kÞ
j ; otherwise

; j5 1 to n

(
ð19:4Þ

where rpj is a uniformly distributed random number between 0 and 1 and jr is a randomly gener-
ated index between 1 and n that ensures thatU(p, k) receives at least one component fromV(p,k).
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The crossover operation in Eq. (19.4) says that when the random number rpj for each
component of the design vector does not exceed the Cr value, or if j5 jr, set the trial design
component Uj

(p,k) to the donor design component Vj
(p,k); otherwise, replace it with the par-

ent design component xj
(p,k). With this approach, the number of components inherited

from the donor design vector has a (nearly) binomial distribution. Therefore, this opera-
tion is called binomial crossover.

19.1.4 Acceptance/Rejection of the Trial Design

The next step of the algorithm is to check if the trial design U(p,k) is better than the par-
ent design x(p,k); if it is, it replaces the parent design in the population to keep the popula-
tion size constant (as a variation, both vectors may be retained sometimes increasing the
size of the population by one every time). Usually called the selection step, this is described
in the following equation:

xðp;k11Þ 5 Uðp;kÞ; if fðUðp;kÞÞ # fðxðp;kÞÞ
xðp;kÞ; otherwise

�
ð19:5Þ

Accordingly, if the cost function value for the trial design point does not exceed that for
the parent design, it replaces the parent design point in the next generation; otherwise, the
parent design is retained. Thus the population either gets better or remains the same in fit-
ness status, but it never deteriorates. Note that in Eq. (19.5) the parent design is replaced
by the trial design even if both yield the same value for the cost function. This allows the
design vectors to move over the flat fitness landscape.

19.1.5 DE Algorithm

The basic DE algorithm is quite straightforward to implement. It requires specification
of only three parameters: Np, F, and Cr. A flow diagram describing the basic steps of the
DE algorithm is shown in Figure 19.1.

The termination criteria for the algorithm are defined as follows:

1. A specified limit kmax on the number of generations is reached.
2. The best fitness/cost function value of the population does not change appreciably

for several generations.
3. A prespecified value for the cost function is reached.

Because of its simplicity, the DE algorithm has been quite popular in many application fields
since its inception in the mid-1990s. It was inspired by the Nelder-Mead (1965) direct search

Generate initial 
population

Generate 
donor design

Generate trial 
design

Selection

FIGURE 19.1 Main steps of the differential evolution algorithm.
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method, which also uses the difference of vectors, as described in Chapter 18. Numerous var-
iations on the algorithm have been studied and evaluated. It has been used to solve continu-
ous variable, mixed-discrete-continuous variable, and multi-objective optimization problems,
and it has also been evaluated against many other nature-inspired algorithms. A detailed
review is beyond the scope of the present text. An excellent recent survey paper by Das and
Suganthan (2011) and numerous references cited there should be consulted.

19.2 ANT COLONY OPTIMIZATION

Ant colony optimization (ACO), another nature-inspired approach, emulates the food-
searching behavior of ants. It was developed by Dorigo (1992) to search for an optimal
path for a problem represented by a graph based on the behavior of ants seeking the short-
est path between their colony and a food source. ACO falls into the metaheuristics and
swarm intelligence methods class. It can be viewed as a stochastic technique for solving
computational problems that can be reduced to finding optimal paths through graphs.

Ants are social insects that live in colonies. From the colony, they go out to search for
food and, surprisingly, find the shortest path from the colony to the food source. In this
section, the process that ants use is described and translated into a computational algo-
rithm for design optimization. The algorithm was developed originally for discrete vari-
able combinatorial optimization problems, although it has been applied to continuous
variable and other problems as well. Some of the material in this section is derived from
Blum (2005) and associated references.

ACO uses the following terminology:

Pheromone. The word is derived from the Greek words pherin (to transport) and
hormone (to stimulate). It refers to a secreted or excreted chemical factor that triggers a
social response in members of the same species. Pheromones are capable of acting
outside the body of the secreting individual in order to impact the behavior of the
receiving individual. This is also called a chemical messenger.
Pheromone Trail. Ants deposit pheromones wherever they go. This is called the
pheromone trail. Other ants can smell the pheromones and are likely to follow an
existing trail.
Pheromone Density. When ants travel on the same path again and again, they
continuously deposit pheromones on it. In this way the amount of pheromones
increases and is called the pheromone density. The ants are likely to follow paths
having higher pheromone densities.
Pheromone Evaporation. Pheromones have the property of evaporation over time.
Therefore, if a path is not being traveled by the ants, the pheromones evaporate and
the path disappears over time.

19.2.1 Ant Behavior

A first step in developing the ACO algorithm is to understand the behavior of ants,
which is described in this subsection. Initially ants move from their nest randomly to
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search for food. Upon finding it, they return to their colony following the path they took
to it while laying down pheromone trails. If other ants find such a path, they are likely to
follow it instead of moving randomly. The path is thus reinforced, since ants deposit more
pheromone on it. However, the pheromone evaporates over time; the longer the path, the
more time there is available for it to evaporate. For a shorter path, pheromone reinforce-
ment is quicker as more and more ants travel this route. Therefore, the pheromone density
is higher on shorter paths than on the longer ones. Pheromone provides a positive feed-
back mechanism for ants, so eventually all the ants follow the shortest path.

The basic idea of an ant colony algorithm is to emulate this behavior with “artificial
ants,” which means that we need to model the pheromone deposit, measure its density,
and model its evaporation. The following notation and terminology are used in this
section:

Q 5positive constant; an algorithm parameter
ρ 5pheromone evaporation rate, ρA(0, 1]; an algorithm parameter
Na5number of ants
τ i 5pheromone value for the ith path

A Simple Model/Algorithm

To transcribe the ants’ food-searching behavior into a computational algorithm, we con-
sider a simplified model consisting of two paths from the ant colony to the food source
and six ants, as shown in Figure 19.2(a). This is a highly idealized model, introduced to
explain the transcription of ant behavior into a computational algorithm. The model can
be represented in a graph G5 (N, L), where N consists of two nodes (nc, representing the
ant colony, and nf, representing the food source; in general a graph has many nodes as
seen later), and L consists of two links, L1 and L2, between nc and nf.

Colony 

Food

(a) (b) (c)

L1 L2

nc nc nc

nf nf nf

Colony Colony

Food Food

FIGURE 19.2 A simple set up showing shortest path finding capability of ants. (a) Movement of ants from
colony to food source. (b) Ants taking the shorter route have reached the food source. (c) Ants taking the longer
route have reached the food source while ants that took the shorter route are already returning to their colony.
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Let L1 have a length of d1, and L2 a length of d2, with d1.d2, implying that L2 is a shorter
path between nc and nf. Figure 19.2 is a graph that shows various stages of ant movement,
which are explained as follows:

(a) Six ants start from their colony in search for food. Randomly, three ants (shown as
solid circles) take the shorter route and three (shown as open circles) take the longer
route.

(b) The three ants that took the shorter route have reached their destination, while the
ants on the longer route are still traveling. Initially, the pheromone concentration is
the same for the two routes, as shown by the dashed lines.

(c) The ants that took the shorter route are on their return journey to the colony
while the ants taking the longer route are just arriving at their destination.
Pheromone concentration on the shorter route is higher, as shown by the heavier
dashed line.

The ants deposit pheromone while traveling on a route. The pheromone trails are mod-
eled by introducing an artificial pheromone value τi for each of the two routes, i5 1, 2 (ini-
tially both values may be set as one). Such a value indicates the strength of the pheromone
trail on the corresponding route.

Each ant behaves as follows: Starting from the node nc (i.e., the colony), the ant chooses
between route L1 and route L2 to reach nf with the probability

pi 5
τi

τ1 1 τ2
; i5 1; 2 ð19:6Þ

If τ2. τ1, the probability of choosing L2 is higher, and vice versa. The selection of a path
by an ant is based on some selection scheme that uses probabilities from Eq. (19.6) and a
random number, such as the roulette wheel selection procedure described in Chapter 16.
While returning from the node nf to the node nc, the ant uses the same route it chose to
reach nf. It deposits additional artificial pheromone on the route to increase its density
(this is also called pheromone reinforcement) as follows:

τi’τi 1
Q

di
ð19:7Þ

where the positive constant Q is a parameter of the model. Equation (19.7) models the
higher amount of artificial pheromone deposit for a shorter path and a smaller amount for
a longer path.

In the iterative process, all ants start from the node nc at the beginning of each iteration.
Each ant moves from that node nc to node nf depositing pheromone on the chosen route.
However, with time the pheromone is subject to evaporation. This evaporation process in
the artificial model is simulated as follows:

τi’ð12ρÞτi ð19:8Þ
where ρA(0, 1] is a parameter of the model that regulates evaporation. After reaching the
food source, the ants return to their colony, reinforcing the chosen path by depositing
more pheromone on it.
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19.2.2 ACO Algorithm for the Traveling Salesman Problem

The procedure described in the previous subsection to simulate the food-searching
behavior of ants cannot be used directly for combinatorial optimization problems. The rea-
son is that we assume the solution to the problem to be known and the pheromone values
to be associated with the solution, as in Eq. (19.7). In general this is not the case because
we are trying to find the optimum solution and the associated path with the minimum dis-
tance. Therefore, for combinatorial optimization problems, the pheromone values are asso-
ciated with the solution components. Solution components are the units from which the
entire solution to the problem can be constructed. This will become clearer later, when we
describe the ACO algorithm for combinatorial optimization problems.

In this subsection, we describe an ant colony algorithm for discrete variable, or traveling
salesperson (TS), problems. The TS problem is a classical combinatorial optimization problem.
In it a traveling salesperson is required to visit a specified number of cities (called a tour).
The goal is to visit a city only once while minimizing the total distance traveled. Many
practical problems can be modeled as TS problems; one example is the welding sequence
problem described and solved in Chapter 16.

The following assumptions are made in deriving the algorithm:

1. While a real ant can take a return path to the colony that is different from the original
path depending on the pheromone values, an artificial ant takes the return path that is
the same as the original path.

2. The artificial ant always finds a feasible solution and deposits pheromone only on its
way back to the nest.

3. While real ants evaluate a solution based on the length of the path from their nest to
the food source, artificial ants evaluate their solution based on a cost function value.

To describe the ACO algorithm for the TS problem, we consider a simple problem of
touring four cities by the traveling salesperson. The situation is depicted in Figure 19.3,
where the cities are represented as the nodes c1 through c4 of the graph, with distances
between the cities known. From each city, there are links to other cities; that is, the sales-
person can travel to any other city, but travel to the already visited cities (i.e.,

c1

c2

τ23τ13

τ24

τ34

τ14

τ12

c3

c4

c1

c2

τ23τ13

τ24

τ34

τ14

τ12

c3

c4

c1

c2

τ23τ13

τ24

τ34

τ14

τ12

c3

c4

(a) (b) (c)

FIGURE 19.3 Traveling salesperson problem for four cities. (a) Start of tour at c1; feasible links from the cur-
rent city are shown by dashed lines; current city is displayed with darker shading. (b) The link already traveled is
shown with a thicker line; city already visited is displayed with lighter shading. (c) A feasible solution is shown.
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backtracking) is not allowed. Thus, a feasible solution to the problem consists of a
sequence of cities visited on a tour—for example, c1c3c2c4c1. The distance traveled on a
tour is the cost function f(x), which depends on the links used.

The definition of the task for the artificial ant changes from “finding a path from the
nest to the food source” to “finding a feasible solution to the TS problem.”

The TS tour must start from a city that can be randomly selected. We will call it c1; the
remaining cities are numbered randomly. To complete a four-city tour, four links need to
be selected. The following notation and terminology are used in this subsection:

Qa5positive constant; an algorithm parameter
ρ 5pheromone evaporation rate, ρA(0, 1]; an algorithm parameter
n 5number of design variables; four for the example
Na 5number of artificial ants used in the algorithm
τ ij 5pheromone value for the link ij
xj 5 jth component of the design variable vector x; represents the link selected from

the jth city
xij 5 link between the ith city and the jth city; also represents the distance between them
Di 5 the list of integers corresponding to the cities that can be visited from the ith city

For the example in Figure 19.3, x12, x13 and x14 are the links from city c1 to cities c2, c3
and c4, respectively; D15 {2, 3, 4} for city c1, with the associated feasible links given as {x12,
x13, x14}. The design variable vector is given as x5 [x1 x2 x3 x4]

T. A feasible solution to the
problem is given as x5 [x12 x24 x43 x31]

T.
Now let us begin the tour. From each city, selection of the next city to visit by the artifi-

cial ant is based on certain probabilities. For the ACO algorithm, the probabilities are cal-
culated using the pheromone values τij for each of the links from the current city; initially
all τij can be selected as 1 for all links. Also, the number of artificial ants Na is selected as
reasonable depending on the number of design variables (say 5n to 10n). Individual ants
can start randomly from any city. Their task is to construct a feasible solution (i.e., a feasi-
ble tour) for the TS problem, one component at a time; that is, from each city visited, a
link to the next feasible city is determined in a sequence.

Each ant constructs a feasible solution (tour) for the problem, starting from a randomly
selected city and moving from one city to another one that has not been visited. At each
step, the traveled link is added to the solution under construction by a specific ant. In this
way the ACO algorithm constructs a solution one component at a time: For example, x1
and then x2, and so on. Different ants pursue feasible solutions concurrently, although dif-
ferent ants may find the same one. When no unvisited city is left for a specific ant, that ant
moves to the starting city to complete the tour. This solution process implies that an ant
has memory M to store already visited cities. Using this memory, we can construct an
index set Di of feasible cities to visit from the current city i.

The ACO algorithm constructs a feasible solution, one component (i.e., one design
variable) at a time.

Figure 19.3(a) shows the starting city for an artificial ant as c1; the starting city is identi-
fied by darker shading. The feasible links from the city are shown with dashed lines:
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D15 {2, 3, 4}, and the associated link list is {x12, x13, x14}. The probability of taking a feasi-
ble route from the ith city is calculated as

pij 5
τijP

kADi
ðτikÞ

; for all jADi ð19:9Þ

where Di is the list of feasible cities that can be visited from city i. For Figure 19.3(a), the
probabilities for the cities that can be visited from city c1 are calculated as

p1j 5
τ1j

τ12 1 τ13 1 τ14
; j5 2; 3; 4 ð19:10Þ

Once these probabilities are calculated, a selection process is used for the route and the
city to visit next. The roulette wheel selection process described in Chapter 16, or any other
procedure, can be used for this. That process requires calculation of a random number
between 0 and 1. Based on it, let the next city to visit be c2. Thus the link x12 is used here
and the design variable x1 is set as x12. This is shown by a darker line in Figure 19.3(b).
From c2, city c3 or c4 can be visited. This is shown by the dashed lines in Figure 19.3(b). The
cities that have already been visited are shown by lighter shading. Therefore, D25 {3, 4}
and the associated link list is {x23, x24}. The probabilities of visiting cities c3 and c4 from city
c2 are given as

p2j 5
τ2j

τ23 1 τ24
; j5 3; 4 ð19:11Þ

Using the foregoing procedure, the artificial ant completes the tour as follows:

c1-c2-c3-c4-c1 ð19:12Þ
This gives the design variable values as

x5 ½x12 x23 x34 x41�T ð19:13Þ
Using this design, the cost function f(x), which is the total distance traveled on this tour,
can be calculated.

Once all artificial ants have constructed their solution, pheromone evaporation (i.e., a
reduction in the pheromone density for each link) is performed as follows:

τij’ð12 ρÞτij for all i and j ð19:14Þ
Now the artificial ants start their return journey, depositing pheromone on the path that
was used to reach the destination. This is equivalent to increasing the pheromone level for
the links belonging to each ant’s solution. For the kth ant, pheromone deposit is performed
as follows:

τij’τij 1
Q

fðxðkÞÞ for all i; j belonging to kth ant0s solution ð19:15Þ

where Q is a positive constant and f(x(k)) is the cost function value for the kth ant’s solution
x(k). The process of pheromone deposit in Eq. (19.15) is repeated for the solution of each of
the Na ants. Note that a tour (solution) that has a smaller cost function value deposits a
larger pheromone value. Also, a link that is traveled in multiple solutions receives a pher-
omone deposit multiple times.
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The foregoing process represents one iteration of the ACO algorithm. It is repeated sev-
eral times until a stopping criterion is satisfied—that is, all ants follow the same route or
the limit on the number of iterations or on CPU time is reached.

19.2.3 ACO Algorithm for Design Optimization

Problem Definition

In this subsection, we discuss the ACO algorithm for the following unconstrained dis-
crete variable design optimization problem:

Minimize fðxÞ ð19:16Þ

xiADi; Di 5 ðdi1; di2; . . . ; diqiÞ; i5 1 to n ð19:17Þ

where Di is the set of discrete values and qi is the number of discrete values allowed for
the ith design variable. This type of design problem is encountered quite frequently in
practical applications, as was discussed in Chapter 15. For example, the thickness of mem-
bers must be selected from an available set, structural members must be selected from the
members available in the catalog, concrete reinforcing bars must be selected from the
available bars on the market, and so forth.

The problem described in Eqs. (19.16) and (19.17) is quite similar to the TS problem
described and discussed in the previous subsection. One major difference is that the set of
available values for a design variable is predefined, whereas for the TS problem it must be
determined once a city is reached (i.e., once a component of the design variable vector has
been determined). The procedure described in the previous subsection can be adapted to
solve this discrete variable optimization problem.

Example Problem

To describe the solution algorithm, we consider a simpler problem having three design
variables, with each variable having four allowable discrete values. Therefore, n5 3, and
qi5 4, i5 1 to 4 in Eqs. (19.16) and (19.17). The problem can be displayed in a multilayered
graph as shown in Figure 19.4. The graph shows the starting node 00 as the nest and the
destination node as the food source. The starting point is called Layer 0. Layer 1 represents
the allowable values for the design variable x1 in the set D1; each allowable value is repre-
sented as a node, such as node d12. There are links from the nest to each of these nodes.
Level 2 represents the allowable values for the design variable x2 as nodes. For example,
from d13 there are links to d21, d22, d23, and d24. Similarly, from d11 there are links to d21,
d22, d23, and d24, and so on.

The ACO algorithm proceeds as follows: An ant starts from the nest and chooses a link
to travel to a node at Layer 1 based on probabilities such as the link to node d13; that is,
design variable x1 is assigned the value d13 From this node, the probabilities are calculated
again for all links to the next layer on the graph, and the ant moves to, say, node d22. This
procedure is repeated for the next layer, and the ant moves to node d34. Since there are
no further layers, this ant has reached its destination. Its feasible solution is obtained as
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x5 (d13, d22, d34), with the cost function value as f(x). The route for this ant is shown by the
darker lines in Figure 19.4.

Once all the ants have found feasible solutions, pheromone evaporation is performed
for all of the links using Eq. (19.14) or one similar to it. Then each ant traces its path back
to the nest, depositing pheromone using Eq. (19.15) or one similar to it on each link that it
previously traveled. This is equivalent to updating (increasing) the pheromone values for
the links traveled by the ants. The entire process is then repeated until a stopping criterion
is satisfied.

Finding Feasible Solutions

The foregoing procedure can be generalized to the case of n design variables (an
n-layered graph), each having qi discrete values. The following notation is used:

τij
(rs)5pheromone value for the link from node rs to node ij; note that since the
procedure moves from one layer to the next, i5 r1 1 (e.g., τ34

(22) between nodes d22
and d34 in Figure 19.4). Thus, the superscript r represents the layer number (design
variable number), the superscript s represents the allowable value number for the
design variable number r, subscript i represents the next layer (next design variable),
and subscript j represents the allowable design variable number for the ith design
variable.
pij
(rs)5probability of selection of the link from node rs to node ij.

Node 00

Food source

d31 d32 d33

d23

d13

τ14
(00)

τ34
(22)

d12d11 d14

d24

d34

d22d21

Layer 0 Nest

Layer 3 (x3)

Layer 2 (x2)

Layer 1 (x1)

FIGURE 19.4 A multilayered graphical representation of a discrete variable problem with 3 design variables
each one having 4 allowable values; the links chosen by the ant are shown using the darker lines. (Note that all
possible links are not shown.)

72519.2 ANT COLONY OPTIMIZATION

III. ADVANCED AND MODERN TOPICS IN OPTIMUM DESIGN



To find a feasible solution for an artificial ant k, the following steps are suggested.

STEP 1. SELECTION OF AN INITIAL LINK Ant k starts from the nest (i.e., node 00 of
Layer 0). Calculate probabilities for the links from node 00 to all nodes for Layer 1 (design
variable x1) as follows:

pð00Þ1j 5
τð00Þ1jPq1
r51 τ

ð00Þ
1r

; j51 to q1 ð19:18Þ

Using these probabilities and a selection process, choose a link to a node at Layer 1 and go
to that node. Let this node be k1; the design variable x1 is thus assigned the value dkl.

STEP 2. SELECTION OF A LINK FROM LAYER R Let ant k be at node rs. Calculate proba-
bilities of the links from node rs to all nodes at the next layer:

pðrsÞij 5
τðrsÞijPqi
l51 τ

ðrsÞ
il

; j51 to qi ð19:19Þ

Note that i5 r1 1. Using these probabilities and a selection procedure, select a link to the
next layer and the corresponding node for ant k to travel. Repeat this step until the nth
layer is reached, at which point ant k has reached its destination and a feasible solution
has been obtained.

STEP 3. OBTAINING FEASIBLE SOLUTIONS FOR ALL ANTS Repeat Steps 1 and 2 for
each artificial ant to obtain all Na feasible solutions. Let the solutions and the correspond-
ing cost function values be represented as

xðkÞ; fðxðkÞÞ; k51 to Na ð19:20Þ

Pheromone Evaporation

Once all of the ants have reached their destination (all of them have found solutions),
pheromone evaporation (i.e., reduction in the pheromone level) is performed for all links
as follows:

τðrsÞij ’ð12 ρÞτðrsÞij for all r; s; i and j ð19:21Þ

Pheromone Deposit

After pheromone evaporation, the ants start their journey back to their nest, which
means that they will deposit pheromone on the return trail. This involves increasing the
pheromone density of the links that they have traveled. For the kth ant, the pheromone
deposit is performed as follows:

τðrsÞij ’τðrsÞij 1
Q

fðxðkÞÞ for all r; s; i; j belonging to kth ant0s solution ð19:22Þ

The operation in Eq. (19.22) is performed for all solutions obtained by the ants. It is seen
that the solutions that have a smaller cost function value receive more pheromone deposit.
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Also, the links that are traveled multiple times receive more reinforcement of pheromone.
A larger value of the pheromone for a link gives a larger probability value from
Eq. (19.18), which then favors it selection for travel by the artificial ants in subsequent
iterations of the ACO algorithm.

We see that the ACO algorithm is quite simple to implement, requiring specification of
only three parameters, Na, ρ, and Q. Na can be given a reasonable value of, say, 5n to 10n;
ρA(0, 1), a value of, say, 0.4 to 0.8; Q may be selected as a typical value for the cost func-
tion f(x).

19.3 PARTICLE SWARM OPTIMIZATION

Particle swarm optimization (PSO), another nature-inspired method, mimics the social
behavior of bird flocking or fish schooling. It falls into the metaheuristics and swarm intel-
ligence methods class. It is also a population-based stochastic optimization technique,
introduced by Kennedy and Eberhart in 1995. PSO shares many similarities with evolu-
tionary computation techniques such as GA and DE. Just like those approaches, PSO starts
with a randomly generated set of solutions called the initial population. An optimum solu-
tion is then searched by updating generations.

An attractive feature of PSO is that it has fewer algorithmic parameters to specify
compared to GAs. It does not use any of the GAs’ evolutionary operators such as cross-
over and mutation. Also, unlike GAs, the algorithm does not require binary number
encoding or decoding and thus is easier to implement on the computer. PSO has been
successfully applied to many classes of problems, such as mechanical and structural opti-
mization and multi-objective optimization, artificial neural network training, and fuzzy
system control.

In this section, we present the basic ideas of PSO and a simple particle swarm optimiza-
tion algorithm. Many variations on the method are available in the literature, and research
on the subject continues to develop better algorithms and expand the range of their appli-
cation (Kennedy et al., 2001).

19.3.1 Swarm Behavior and Terminology

The PSO computational algorithm tries to emulate the social behavior of a swarm of
animals, such as a flock of birds or a school of fish (moving in search for food). In a
swarm, an individual behaves according to its limited intelligence as well as to the intelli-
gence of the group. Each individual observes the behavior of its neighbors and adjusts its
own behavior accordingly. If an individual member discovers a good path to food, other
members follow this path no matter where they are situated in the swarm.

PSO uses the following terminology:

Particle. This term is used to identify an individual in the swarm (e.g., a bird in the
flock or a fish in the school). Agent is also used in some circles. Each particle has a
location in the swarm. In the optimization algorithm, each particle location represents
a design point that is a potential solution to the problem.
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Particle Position. This term refers to the coordinates of the particle. In the optimization
algorithm, it refers to a design point (a vector of design variables).
Particle Velocity. The term refers to the rate at which the particles are moving in space.
In the optimization algorithm, it refers to the design change.
Swarm Leader. This is the particle having the best position. For the optimization
algorithm, the term refers to a design point having the smallest value for the cost
function.

19.3.2 Particle Swarm Optimization Algorithm

The PSO translates the social behavior of the swarm described above into a computa-
tional algorithm. The notation shown in Table 19.2 is used in the subsequent step-by-step
algorithm.

Each particle in the swarm keeps track of its own current position and its best position
(solution) achieved during the running of the algorithm. This implies that each point
stores not only its current value but also its best value achieved thus far. The best position
for the ith particle (design point) is denoted xP

(i,k). Another “best” value that is tracked by
the particle swarm optimizer is the best position for the entire swarm, denoted xG

(k). The
PSO algorithm consists of changing, at each time step (iteration), the velocity of each parti-
cle toward its own best position as well as the swarm’s best position (also sometimes
referred to as accelerating the particle toward the best known position).

TABLE 19.2 Notation and terminology for the step-by-step algorithm

Notation Terminology

c1 Algorithm parameter (i.e., cognitive parameter); taken between 0 and 4, usually set to 2

c2 Algorithm parameter (i.e., social parameter); taken between 0 and 4, usually set to 2

r1, r2 Random numbers between 0 and 1

k Iteration counter

kmax Limit on the number of iterations

n Number of design variables

Np Number of particles (design points) in the swarm; swarm size (usually 5n to 10n)

xj jth component of the design variable vector x

v(i,k) Velocity of the ith particle (design point) of the swarm at the kth generation/iteration

x(i,k) Location of the ith particle (design point) of the swarm at the kth generation/iteration

xP
(i,k) Best position of the ith particle based on its travel history at the kth generation/iteration

xG
(k) Best solution for the swarm at the kth generation; considered the leader of the swarm

xL Vector containing lower limits on the design variables

xU Vector containing upper limits on the design variables
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The step-by-step PCO algorithm is stated as follows.

Step 0. Initialization. Select Np, c1, c2, and kmax as the maximum number of iterations.
Set the initial velocity of the particle v(i,0) to 0. Set the iteration counter at k5 1.
Step 1. Initial Generation. Using a random procedure, generate Np particles x

(i,0). The
procedure described in Eq. (19.2) can be used to generate these points within their
allowable ranges. Evaluate the cost function for each of these points f(x(i,0)). Determine
the best solution among all particles as xG

(k)—that is, a point having the smallest cost
function value.
Step 2. Calculate Velocities. Calculate the velocity of each particle as

vði;k11Þ 5 vði;kÞ 1 c1r1ðxði;kÞP 2 xði;kÞÞ1 c2r2ðxðkÞG 2 xði;kÞÞ; i5 1 to Np ð19:23Þ
Update the positions of the particles as

xði;k11Þ 5 xði;kÞ 1 vði;k11Þ; i5 1 to Np ð19:24Þ
Check and enforce bounds on the particle positions:

xL # xði;k11Þ # xU ð19:25Þ
Step 3. Update the Best Solution. Calculate the cost function at all new points f(x(i,k11)).
For each particle, perform the following check:

If fðxði;k11ÞÞ # fðxði;kÞP Þ; then xði;k11ÞP 5 xði;k11Þ;

otherwise xði;k11ÞP 5 xði;kÞP for each i5 1 to Np

ð19:26Þ

If fðxði;k11ÞP Þ # fðxGÞ; then xG 5 xði;k11ÞP ; i5 1 to Np ð19:27Þ
Step 4. Stopping Criterion. Check for convergence of the iterative process. If a stopping
criterion is satisfied (i.e., k5 kmax or if all of the particles have converged to the best
swarm solution), stop. Otherwise, set k5 k1 1 and go to Step 2.

EXERCISES FOR CHAPTER 19*

19.1 Implement the DE algorithm into a computer program. Solve the Example 16.1 of bolt

insertion sequence determination using your program. Compare performance of the DE

and GA algorithms.

19.2 Implement the ACO algorithm into a computer program. Solve the Example 16.1 of bolt

insertion sequence determination using your program. Compare performance of the ACO

and GA algorithms.

19.3 Implement the PSO algorithm into a computer program. Solve the Example 16.1 of bolt

insertion sequence determination using your program. Compare performance of the PSO

and GA algorithms.
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C H A P T E R

20

Additional Topics on Optimum
Design

Upon comp le t i on o f th i s chap te r, you wi l l be ab l e to :

• Understand and use the concept of a meta-

model for design optimization

• Understand and use the concept of design

of experiments for selection of sample

points

• Understand and use the robust design

approach for practical engineering problems

• Understand and use the reliability-based

design optimization approach

In this chapter, various optimization topics of practical interest are presented and dis-
cussed. These include generation of meta-models for practical design optimization pro-
blems, design of experiments for response surface generation, robust design, and
reliability-based design optimization, or design under uncertainty. These topics may not
be covered in an undergraduate course or in a first independent reading of the text.
Material for this chapter is derived from several sources, such as Park et al. (2006), Park
(2007), Beyer and Sandhoff (2007), and Choi et al. (2007).1

20.1 META-MODELS FOR DESIGN OPTIMIZATION

20.1.1 Meta-Model

Many practical applications require a detailed model of the system to accurately predict
system response to various inputs. These models can be quite large and complex, requir-
ing enormous calculation. Optimization of such systems is difficult, if not impossible,

1The original draft of this chapter was provided by G. J. Park. The contribution to this book is very much

appreciated.

731Introduction to Optimum Design © 2012 Elsevier Inc. All rights reserved.



because evaluation of cost and constraint functions requires large numbers of calculations.
In addition, calculation of the gradients of functions requires special procedures since the
cost and/or the constraint functions for such problems are implicit in terms of the design
variables. This calculation is also quite tedious and time-consuming.

It was seen in Chapters 10 through 14 that the functions and their derivatives need to
be repeatedly calculated in the optimization process. For a large analysis and design
model of the system, this calculation process is quite time-consuming. Therefore it is use-
ful to develop simplified functions for design optimization that have explicit forms in
terms of the design variables. The explicit function is a model of the model and is called a
meta-model. A meta-model can be generated by conducting experimental observations
and/or numerical simulations.

Suppose that we have a mathematical model of the form

f 5 fðxÞ ð20:1Þ
where f(x) does not have an explicit expression in terms of the design variables x. The
function f(x) can be approximated by a simplified explicit function (meta-model) using the
information at some sample points xi. To make the meta-model, f is evaluated at k points
as follows:

fi 5 fðxiÞ; i5 1 to k ð20:2Þ
The meta-model is constructed using the fi that may be obtained by experiments or

numerical simulations. Examples of meta-models are illustrated in Figure 20.1. Here, we
have one variable x and f(x) is the original model for which we may not have an explicit
expression in terms of x. Three points (x1, x2, x3) are selected and f is evaluated at these
points. f̂ jðxÞ; j5 1; 2; 3 are the three meta-models constructed using some method.

Once a meta-model has been developed, we can use it instead of the original model in
the optimization process. Generally, the meta-model has errors due to mathematical
approximations, experimental errors, or computational approximations. The error ε(x) in
the meta-model f̂ðxÞ is expressed as

εðxÞ5 fðxÞ2 f̂ðxÞ ð20:3Þ
Usually the meta-model is derived to minimize this error ε(x).

x1 x2 x3

f̂ 3(x)

f̂ 2(x)

f̂ 1(x)

f(x)
f (x)

x

FIGURE 20.1 Examples of meta-models.
Source: Adapted from Park, 2007.
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20.1.2 Response Surface Method

The Response Surface Method (RSM) is a representative method for generating meta-
models. The original model is evaluated at multiple sample points and the meta-model is
constructed usually as a linear or a quadratic function. The coefficients of the meta-model
function are determined by minimizing the error in Eq. (20.3). In other words, the
response surface of a model is approximated by an explicit polynomial function using the
least squares method to minimize the error in Eq. (20.3). An example of a response
surface meta-model is illustrated in Figure 20.2.

In statistics, the RSM has been utilized to generate various statistical data since the
1950s. In design, the approximated functions are used in the optimization process. The fol-
lowing aspects should be considered for optimization with RSM:

• Selection of the sample points to generate the response surface
• Generation of the response surface using the function value at the sample points

Quadratic Response Surface Generation

Several types of functions can be used to generate the response surface approximation,
such as linear, quadratic, cubic, and some other special functions. Here we demonstrate
the response surface generation using a quadratic function approximation. The approach
is to evaluate the function to be approximated at several sample points. Then we interpo-
late a quadratic function through them. The coefficients of the quadratic function are cal-
culated by minimizing the error between the original function and the approximated
function.

First, the sample design points are selected where the function is evaluated. In many
cases, the sample points are arbitrarily selected. Sometimes they are selected using a
method such as orthogonal arrays, explained in the next section. Let a design point be
represented as an n-vector x1, x2, . . ., xn. A quadratic approximation for the function f(x) in
terms of the design variables is defined as

f 5 a00 1 a10x1 1 a20x2 1 . . . 1 an0xn 1 a11x
2
1 1 . . . 1 annx

2
n

1 a12x1x2 1 . . . 1 an2 1;nxn21xn 1 ε
ð20:4Þ

x

f

y

FIGURE 20.2 Example of a response surface f(x, y) in
two variables. Source: Adapted from Park, 2007.
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where ε is the error in the approximation process, and aij; i, j5 0 to n are the unknown
coefficients.

Let k be the number of sample design points at which the function f(x) has been evalu-
ated. We shall use double subscripts for design variables to represent their values at the
sample points as

xij; i5 1 to k; j5 1 to n ð20:5Þ
where k5number of sample points; n5number of design variables.

Thus, xij represents value of the jth design variable for the ith sample point; i.e., that is,
the first subscript corresponds to the sample point number and the second one corre-
sponds to the design variable number. For example, x23 represents the value of the third
design variable for the second sample point. The sample point data can be represented in
a table where the columns represent the design variables and the rows represent the sam-
ple design points. This table format is used later in example problems.

The function value at the ith sample point is now written using Eq. (20.4) and the dou-
ble-subscripted variables of Eq. (20.5) as

fi 5 a00 1 a10xi1 1 a20xi2 1 . . . 1 an0xin 1 a11x
2
i1 1 . . . 1 annx

2
in

1 a12xi1xi2 1 . . . 1 an21;nxin21xin 1 ε
ð20:6Þ

In this equation, the only unknowns are the coefficients aij. Therefore, the linear and qua-
dratic terms in Eq. (20.6) can be treated in a similar manner.

We introduce the following simplifying notation to develop the response surface
methodology:

a00-d0; a10-d1; . . . ; a11-dn11; . . . ; an21;n-dl ð20:7Þ
x1-ξ1; . . . ; x

2
1-ξn11; . . . ; xn21xn-ξl ð20:8Þ

where l is the total number of linear and quadratic terms given as

l5
1

2
nðn1 1Þ1 n ð20:9Þ

Thus the function in Eq. (20.4) is written in terms of the new variables as

f 5 d0 1 d1ξ1 1 d2ξ2 1 . . . 1 dlξl 1 ε5 d0 1
Xl
i51

diξi 1 ε ð20:10Þ

The approximated function f̂ is defined by dropping the error ε in Eq. (20.10):

f̂ 5 d0 1
Xl
i51

diξi ð20:11Þ

To represent the value of the function in Eq. (20.11) at different sample points, we intro-
duce the double-subscript notation for the variables ξj:

ξij; i5 1 to k; j5 1 to l ð20:12Þ
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Thus ξij represents the value of the variable ξj at the ith sample point. For the ith sample
point, then, the function value in Eq. (20.11) is now written as

f̂ i 5 d0 1 d1ξi1 1 d2ξi2 1 . . . 1 dlξil 5 d0 1
Xl
j51

djξij; i5 1 to k ð20:13Þ

To determine the coefficients di in Eq. (20.13), an error function E is defined, which is
the sum of the square of the error εi at each sample point, as

E5
Xk
i51

ε2i 5
Xk
i51

ð fi 2 f̂ iÞ2 5
Xk
i51

fi 2 ðd0 1
Xl
j51

djξijÞ
2
4

3
5
2

ð20:14Þ

where fi is the ith observed value of f. The coefficients d0, d1, . . ., d1 are determined to mini-
mize E using the following optimality condition:

@E

@di
5 0; i5 0 to l ð20:15Þ

These conditions result in a linear system of equations for the unknowns di as (recall that
k is the number of sample points at which the function has been evaluated):

k
Xk
i51

ξi1
Xk
i51

ξi2 ?
Xk
i51

ξil

Xk
i51

ξi1
Xk
i51

ξ2i1
Xk
i51

ξi1ξi2 ?
Xk
i51

ξi1ξil

^ ^ ^ ^ ^Xk
i51

ξil
Xk
i51

ξilξi1
Xk
i51

ξilξi2
Xk
i51

ξ2il

2
666666666664

3
777777777775

d0
d1
^
dl

2
664

3
7755

Xk
i51

fi

Xk
i51

ξi1fi

^Xk
i51

ξilfi

2
666666666664

3
777777777775

ð20:16Þ

The coefficient vector d5 (d0, d1, . . . dl) is obtained by solving Eq. (20.16). This process is
exactly the same as the least squares method. The number of calculations depends on how
many terms are included in Eq. (20.4). If l5 n, only the linear terms in Eq. (20.4) are
included in the approximation. If l5 2n, the linear and the perfect square terms are
included. If l5 n(n1 1)/21 n, both the linear and quadratic terms are included. Generally,
when l is large more terms are considered and the cost of generating the meta-model
increases. Therefore, the designer should select l in accordance with desired accuracy and
computational cost. It is noted that the number of sample points k should be equal to or
greater than the number of unknown coefficients (l1 1). Otherwise, the matrix shown in
Eq. (20.16) is singular.

EXAMPLE 20.1 GENERATION OF QUADRATIC RESPONSE
SURFACE

Suppose f is a function of two design variables x1 and x2 as follows:

f 5 fðx1; x2Þ ðaÞ
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We have experimental values for f at nine sample points (k5 9), as shown in Table 20.1 (the

numbers in the columns x1 and x2 represent the xij values). Generate a response surface with all

of the linear and quadratic terms using the least squares method.

Solution
The quadratic approximation for the function f using Eqs. (20.4), (20.7), (20.8) and (20.11) is

given as

f̂ 5 a00 1 a10x1 1 a20x2 1 a11x
2
1 1 a22x

2
2 1 a12x1x2 5 d0 1 d1ξ1 1 d2ξ2 1 d3ξ3 1 d4ξ4 1 d5ξ5 ðbÞ

Using the design variable data given in Table 20.1, and Eqs. (20.8) and (20.12), we obtain the

values of ξij shown in Table 20.2.

Using the function data from Table 20.1 and the ξij data from Table 20.2 in Eq. (20.16), we obtain

the following system of linear equations:

9 11:25 0 59:4375 54 0
11:25 59:4375 0 187:734 67:5 0
0 0 54 0 0 67:5
59:4375 187:734 0 790:512 356:625 0
54 67:5 0 356:625 486 0
0 0 67:5 0 0 356:625

2
6666664

3
7777775

d0
d1
d2
d3
d4
d5

2
6666664

3
7777775
5

106:352
177:663
20:228
937:577
809:73

2546:46

2
6666664

3
7777775

ðcÞ

Solving Eq. (c), and substituting the values of di into Eq. (b), we obtain the quadratic function

representation for f(x) in terms of the variables ξi as

f̂ 5 0:4752 1:712ξ1 1 2:504ξ2 1 1:079ξ3 1 1:0594ξ4 2 2:006ξ5 ðdÞ
Substituting the definitions of ξi from Eq. (b) or Eq. (20.8) into Eq. (d), the response surface

model for the function f(x) is given as

f̂ 5 0:4752 1:712x1 1 2:504x2 1 1:079x21 1 1:0594x22 2 2:006x1x2 ðeÞ

TABLE 20.1 Nine sample design
points (k5 9) for Example 20.1

Sample point x1 x2 f

1 21.5 23 21.022

2 21.5 0 4.503

3 21.5 3 31.997

4 1.25 23 8.704

5 1.25 0 1.636

6 1.25 3 8.793

7 4 23 37.341

8 4 0 10.243

9 4 3 4.157
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20.1.3 Normalization of Variables

In numerical calculations, it is useful to normalize the variables of the response surface
generation problem. This results in the well-conditioned system of linear equations in
Eq. (20.16), thus avoiding numerical instability. Several normalization procedures can be
used. Here we demonstrate two procedures.

Normalization of Variables: Procedure 1

The following transformation of variables is defined such that the transformed variables
receive values between 21 and 1:

(20.17)

where max
m (ξmj) and

min
m (ξmj) represent the maximum and minimum values, respectively, in

the jth column of the ξmj table, as can be seen in Table 20.2. Thus, in terms of the normal-
ized variables wj, the approximated function in Eq. (20.11) is written as

f̂ 5 c0 1 c1w1 1 c2w2 1 . . . 1 clwl ð20:18Þ
where cj are the coefficients of the normalized variables wj. For the ith sample point, the
function value is written using Eq. (20.18) as

f̂ i 5 c0 1 c1wi1 1 c2wi2 1 . . . 1 clwil; i5 1 to k ð20:19Þ
where wij is the value of wj at the ith sample point.

TABLE 20.2 Values for variables ξij at nine sample
points (k5 9) for Example 20.1

Sample point ξ1 ξ2 ξ3 ξ4 ξ5

1 21.5 23 2.25 9 4.5

2 21.5 0 2.25 0 0

3 21.5 3 2.25 9 24.5

4 1.25 23 1.563 9 23.75

5 1.25 0 1.563 0 0

6 1.25 3 1.563 9 3.75

7 4 23 16 9 212

8 4 0 16 0 0

9 4 3 16 9 12

Maximum 4 3 16 9 12

Minimum 21.5 23 1.563 0 212
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In terms of the normalized variables, minimization of the error function in Eq. (20.14)
results in the linear system in Eq. (20.16), where ξij are replaced by wij and di are replaced
by ci. Example 20.2 illustrates development of the response surface using this normaliza-
tion procedure.

EXAMPLE 20.2 RESPONSE SURFACE USING THE
NORMALIZATION PROCEDURE 1

Re-solve the problem in Example 20.1 using the normalization procedure given in Eqs. (20.17)

and (20.18).

Solution
The quadratic approximation for the function f in terms of the normalized variables is given

as follows:

f̂ 5 a00 1 a10x1 1 a20x2 1 a11x
2
1 1 a22x

2
2 1 a12x1x2 5 c0 1 c1w1 1 c2w2 1 c3w3 1 c4w4 1 c5w5 ðaÞ

where wj are the normalized variables ξj. Using the data given in Table 20.2 for ξij and the
max
m ðξmjÞ values, the transformation of variables is defined using Eq. (20.17) as

w1 5
ξ1 2 ð42 1:5Þ=2

ð41 1:5Þ=2 5
x1 2 1:25

2:75
ðbÞ

w2 5
ξ2 2 ð32 3Þ=2

ð31 3Þ=2 5
x2
3

ðcÞ

w3 5
ξ3 2 ð161 1:5625Þ=2

ð162 1:5625Þ=2 5
x21 2 8:782

7:219
ðdÞ

w4 5
ξ4 2 ð91 0Þ=2

ð92 0Þ=2 5
x22 2 4:5

4:5
ðeÞ

w5 5
ξ5 2 ð122 12Þ=2

ð121 12Þ=2 5
x1x2
12

ðfÞ

Table 20.3 contains the normalized values wij obtained using Eqs. (b) through (f) for the ξij
data given in Table 20.2. For example, w53 is calculated using Eq. (d) as

w53 5
ξ53 2 8:782

7:219
5

1:5632 8:782

7:219
521 ðgÞ

Using the wij data given in Table 20.3 for the nine sample points (k5 9), and the function data

given in Table 20.1 in Eq. (20.16), we obtain the following linear system of equations:

9 0 0 22:715 3 0
0 6 0 5:715 0 0
0 0 6 0 0 1:875

22:715 5:715 0 8:457 20:905 0
3 0 0 20:905 9 0
0 0 1:875 0 0 2:477

2
6666664

3
7777775

c0
c1
c2
c3
c4
c5

2
6666664

3
7777775
5

106:352
16:263
20:076
0:500

73:588
245:538

2
6666664

3
7777775

ðhÞ
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It is seen that the coefficient matrix in Eq. (h) is diagonally dominant due to the normalization

process, whereas the coefficient matrix in Eq. (c) of Example 20.1 is not diagonally dominant.

Solving Eq. (h) for ci, and substituting these values into Eq. (20.18), we obtain the function repre-

sentation in terms of the normalized variables wi as

f̂ 5 12:5772 4:708w1 1 7:510w2 1 7:789w3 1 4:767w4 2 24:074w5 ðiÞ
Using the transformations given in Eqs. (b) to (f), the response surface model for the function

f(x) is given as

f̂ðxÞ5 12:5772 4:708
x1 2 1:25

2:75

� �
1 7:510

x2
3

� �
1 7:789

x21 2 8:782

7:219

� �
1 4:767

x22 2 4:5

4:5

� �

2 24:074
x1x2
12

� �
5 0:4752 1:712x1 1 2:504x2 1 1:079x21 1 1:0594x22 2 2:006x1x2

ðjÞ

This equation is the same as obtained earlier in Example 20.1.

Normalization of Variables: Procedure 2

Another procedure is to normalize the variables xi using the data of the sample points
in Eq. (20.17). In this way, the transformed variables receive values between 21 and 1.
Using these normalized variables, the normalized data wij can be calculated for use in
Eq. (20.16). The procedure is demonstrated in Example 20.3.

TABLE 20.3 Values for variables wij for Example 20.2
for nine sample points (k5 9)

Sample point w1 w2 w3 w4 w5

1 21 21 20.905 1 0.375

2 21 0 20.905 21 0

3 21 1 20.905 1 20.375

4 0 21 21 1 20.3125

5 0 0 21 21 0

6 0 1 21 1 0.3125

7 1 21 1 1 21

8 1 0 1 21 0

9 1 1 1 1 1
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EXAMPLE 20.3 RESPONSE SURFACE USING NORMALIZATION
PROCEDURE 2

Re-solve the problem in Example 20.1 using the normalization procedure given in Eqs. (20.17)

and (20.18).

Solution
The quadratic approximation for the function f(x) is given as

f̂ 5 d0 1 d1x1 1 d2x2 1 d3x
2
1 1 d4x

2
2 1 d5x1x2 ðaÞ

Using the data given in the first two columns of Table 20.2 (or the data given in Table 20.1 for

the variables x1 and x2) and the corresponding maximum and minimum values, the transforma-

tion of variables is defined using Eq. (20.17) as

w1 5
x1 2 ð421:5Þ=2
ð41 1:5Þ=2 5

x1 21:25

2:75
ðbÞ

w2 5
x2 2 ð323Þ=2
ð31 3Þ=2 5

x2
3

ðcÞ

Using these transformed variables, the quadratic approximation of Eq. (a) for the function f is

obtained as

f̂5 c0 1 c1w1 1 c2w2 1 c3w
2
1 1 c4w

2
2 1 c5w1w2 ðdÞ

Now we define the variables w3, w4, and w5 as follows:

w3 5w2
1 5

x1 2 1:25

2:75

� �2

ðeÞ

w4 5w2
2 5

x2
3

� �2
ðfÞ

w5 5w1w2 5
x1 2 1:25

2:75

� �
x2
3

� �
ðgÞ

Thus the quadratic approximation of Eq. (d) is given as

f̂ 5 c0 1 c1w1 1 c2w2 1 c3w3 1 c4w4 1 c5w5 ðhÞ
Using the design variable data given in Table 20.1, and the transformation Eqs (b) and (c), the

wij values are calculated as shown in Table 20.4. Using these values for wij in Eq. (20.16), we

obtain the following linear system of equations:

9 0 0 6 6 0
0 6 0 0 0 0
0 0 6 0 0 0
6 0 0 6 4 0
6 0 0 4 6 0
0 0 0 0 0 4

2
6666664

3
7777775

c0
c1
c2
c3
c4
c5

2
6666664

3
7777775
5

106:352
16:264
20:076
87:219
89:970

266:204

2
6666664

3
7777775

ðiÞ
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Again, we observe that the coefficient matrix in Eq. (i) is diagonally dominant. Solving Eq. (i)

for ci, and substituting them into Eq. (h), we obtain the function representation in terms of the

normalized variables wi as

f̂ 5 0:02141 2:711w1 2 0:01267w2 1 8:159w3 1 9:534w4 2 16:551w5 ðjÞ
Substituting w35w1

2, w45w2
2 and w55w1w2 into Eq. (j), we obtain

f̂ 5 0:02141 2:711w1 2 0:01267w2 1 8:159w2
1 1 9:534w2

2 2 16:551w1w2 ðkÞ
Now, substituting the transformation of variables given in Eqs. (b) and (c) into Eq. (k), we

obtain

f̂ðxÞ5 0:02141 2:711
x1 2 1:25

2:75

� �
2 0:01267

x2
3

� �
1 8:159

x1 2 1:25

2:75

� �2

1 9:534
x2
3

� �2
216:551

x1 2 1:25

2:75

� �
x2
3

� �
5 0:4752 1:712x1 1 2:504x2 1 1:079x1

2 1 1:0593x2
2 2 2:006x1x2

ðlÞ

Equation (l) is the same as Eq. (e), obtained in Example 20.1.

20.2 DESIGN OF EXPERIMENTS FOR RESPONSE
SURFACE GENERATION

As noted in the preceding section, the first step of the RSM is selection of the sample
points. They can be selected arbitrarily or, if possible, based on designer’s intuition and
experience. Where intuition and experience cannot be used to select sample points, we can
use a selection method capable of covering the entire design range. The orthogonal arrays
method, which offers a good approach for this selection, is explained here.

TABLE 20.4 Values for the normalized variables
wij in Example 20.3 for nine sample points (k5 9)

Sample point w1 w2 w3 w4 w5

1 21 21 1 1 1

2 21 0 1 0 0

3 21 1 1 1 21

4 0 21 0 1 0

5 0 0 0 0 0

6 0 1 0 1 0

7 1 21 1 1 21

8 1 0 1 0 0

9 1 1 1 1 1
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An orthogonal array is represented by a two-dimensional matrix. There are a few meth-
ods to develop orthogonal arrays. We will use Taguchi’s (1987) approach and convention
to express them as

LNðL
n

i51

skii Þ ð20:20Þ
where N is the number of rows in the orthogonal array (the number of sample points; also
called the number of experiments), n is the number of design variable groups with a specific
level of values, si is the number of levels, and ki is the number of design variables with si
levels. Levels refers to the number of different values for a design variable or parameter.
For example, three levels for a design variable imply three different values for it for speci-
fication of sample points.

Table 20.5 shows the L18(2
137) orthogonal array having 18 rows, one design variable

with two levels, and seven design variables with three levels. Each level for a design

TABLE 20.5 The L18(2
137) orthogonal

array showing design variable levels for
generating sample points

Sample
point

Column

x1 x2 x3 x4 x5 x6 x7 x8

1 1 1 1 1 1 1 1 1

2 1 1 2 2 2 2 2 2

3 1 1 3 3 3 3 3 3

4 1 2 1 1 2 2 3 3

5 1 2 2 2 3 3 1 1

6 1 2 3 3 1 1 2 2

7 1 3 1 2 1 3 2 3

8 1 3 2 3 2 1 3 1

9 1 3 3 1 3 2 1 2

10 2 1 1 3 3 2 2 1

11 2 1 2 1 1 3 3 2

12 2 1 3 2 2 1 1 3

13 2 2 1 2 3 1 3 2

14 2 2 2 3 1 2 1 3

15 2 2 3 1 2 3 2 1

16 2 3 1 3 2 3 1 2

17 2 3 2 1 3 1 2 3

18 2 3 3 2 1 2 3 1
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variable actually refers to a numerical value for it. For example, in the table design vari-
able 1 has two levels, implying that two values for this variable are selected within its
acceptable range; levels are presented by the numbers 1 and 2 in column x1. Similarly,
design variables 2 through 8 have three levels; therefore, three values are selected for each
of these variables within their acceptable ranges. These are represented by the numbers 1,
2, and 3 in columns x2 through x8.

Once the number of levels is decided, each level is assigned a numerical value. Thus,
each row of the orthogonal array represents a design point (sample point) at which the
problem functions are evaluated. The numbers in each column of the orthogonal array
represent the design variable level used for each sample point.

The orthogonal array is named as such because the columns are orthogonal to each
other. If the integers 1 and 2 are replaced by the integers 21 and 1 in the column x1 in
Table 20.5, and integers 1, 2, and 3 are replaced by 21, 0, and 1 in columns x2 through x8,
the dot product of any two columns is 0 (i.e., they are orthogonal). There are no specific
rules to generate an orthogonal array. Various orthogonal arrays are being designed by
researchers. The designer can choose one from the database of orthogonal arrays that can
cover the number of design variables and their desired levels. The rule for choosing the
smallest orthogonal array is given in Taguchi (1987) and Park (2007). It should be remem-
bered that the number of rows is the number of sample points and must be equal to or
greater than the number of unknowns (l1 1) in the meta-model.

Suppose that we want to approximate a function f by RSM and we have four design
variables, each having three specified levels. The design variable values are shown in
Table 20.6, where xij represents the value of the ith design variable at the jth level. An
L9(3

4) orthogonal array, shown in Table 20.7, can be used for selection of sample points for
this example, having four design variables each having three levels. The integers in the
columns refer to the level number; the number of experiments (in this case 9) is the num-
ber of sample points. The integers 1, 2, and 3 refer to the design variable levels 1, 2, and 3,
respectively. These numbers can be normalized to be between 21 and 1 using a normaliza-
tion procedure such as the one in Eq. (20.17). Using that procedure, the integers 1, 2, and 3
are transformed to 21, 0, and 1 as shown in brackets in Table 20.7. Thus the three levels
for each design variable can be represented by the integers 21, 0, and 1.

When 21, 0, 1 are used as levels, all of the columns are orthogonal to each other, thus
the name orthogonal array. The right most column of Table 20.7 represents the value of

TABLE 20.6 Four design
variables, each having three levels

Design

variable

Level

1 2 3

x1 x11 x12 x13

x2 x21 x22 x23

x3 x31 x32 x33

x4 x41 x42 x43
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the function f for each sample point. We have all of the information in Table 20.7 needed
for response surface generation. Now the approximated function f̂ in Eq. (20.11) is defined
according to the process described in Section 20.1.2. It is noted that alternate methods for
selection of sample points can replace the orthogonal arrays method.

EXAMPLE 20.4 GENERATION OF A RESPONSE SURFACE
USING AN ORTHOGONAL ARRAY

Generate a response surface for a function with four design variables as follows:

f 5 fðx1; x2; x3; x4Þ ðaÞ

The sample points are selected using the orthogonal array L9(3
4) shown in Table 20.7. The levels

of the design variables and their numerical values are shown in Table 20.8. The value of function

f for each row of the orthogonal array is shown in Table 20.9 on page 760. Generate a quadratic

response surface without the cross-product terms.

Solution
From Table 20.9, the maximum and the minimum values for each variable are shown in

Table 20.10. Since the cross-product terms are ignored, n5 4 and l5 2n5 8. Thus, to approximate

the function we need at least nine sample points. The approximate function is represented as

f̂ 5 c0 1 c1w1 1 c2w2 1 c3w3 1 c4w4 1 c5w5 1 c6w6 1 c7w7 1 c8w8 ðbÞ

TABLE 20.7 The L9(3
4) orthogonal array

Experiment no./

Sample point

Design variables and levels
Function

valuex1 x2 x3 x4

1 1(21) 1(21) 1(21) 1(21) f1

2 1(21) 2(0) 2(0) 2(0) f2

3 1(21) 3(1) 3(1) 3(1) f3

4 2(0) 1(21) 2(0) 3(1) f4

5 2(0) 2(0) 3(1) 1(21) f5

6 2(0) 3(1) 1(21) 2(0) f6

7 3(1) 1(21) 3(1) 2(0) f7

8 3(1) 2(0) 1(21) 3(1) f8

9 3(1) 3(1) 2(0) 1(21) f9

Note: Integers 1, 2, and 3 refer to levels 1, 2, and 3 for design variables,
respectively. Also normalized integers 21, 0, and 1 refer to the three
levels 1, 2, and 3, respectively.
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Using Eq. (20.17) and the data given in Table 20.10, the normalized variables wi are defined as

w1 5
x1 2 0

1:5
; w2 5

x2 2 0

3
; w3 5

x3 2 ð23Þ
3

; w4 5
x4 2 2:4

1:2
ðcÞ

Using normalization procedure 2, illustrated in Example 20.3, Eq. (20.16) gives

9 0 0 0 0 6 6 6 6
0 6 0 0 0 0 0 0 0
0 0 6 0 0 0 0 0 0
0 0 0 6 0 0 0 0 0
0 0 0 0 6 0 0 0 0
6 0 0 0 0 6 4 4 4
6 0 0 0 0 4 6 4 4
6 0 0 0 0 4 4 6 4
6 0 0 0 0 4 4 4 6

2
6666666666664

3
7777777777775

c0
c1
c2
c3
c4
c5
c6
c7
c8

2
6666666666664

3
7777777777775
5

2245:538
221:6
232:216
155:52
289:584
2160:452
2140:477
2202:572
2166:86

2
6666666666664

3
7777777777775

ðdÞ

The solution for Eq. (d) is

c0 c1 c2 c3 c4 c5 c6 c7 c8
� �T

5 222:085 23:6 25:369 25:92 214:931 1:62 11:608 219:44 21:584
� �T ðeÞ

Using w55w1
2, w65w2

2, w75w3
2, and w85w4

2 in Eq. (b), the approximated function is

f̂ 5222:0852 3:6w1 2 5:369w2 1 25:92w3 2 14:931w4 1 1:62w5 1 11:608w6 2 19:44w7 2 1:584w8

5222:08523:6
x1 2 0

1:5

� �
2 5:369

x2 2 0

3

� �
1 25:92

x3 2 ð23Þ
3

� �
214:931

x4 2 2:4

1:2

� �

1 1:62
x1 2 0

1:5

� �2

1 11:608
x2 2 0

3

� �2

219:44
x3 2 ð23Þ

3

� �2

21:584
x4 2 2:4

1:2

� �2

527:9212 2:4x1 2 1:79x2 2 4:32x3 2 7:163x4 1 0:72x21 1 1:29x22 2 2:16x23 2 1:1x24

ðfÞ

We can use the results of the RSM in the optimization process. The cost and constraint func-

tions for the problem are also approximated and optimization is performed with the approxi-

mated functions. The following example demonstrates this process.

TABLE 20.8 Four design
variables, each having three levels

Design

variable

Level

1(21) 2(0) 3(1)

x1 21.5 0 1.5

x2 23.0 0 3.0

x3 26.0 23.0 0

x4 1.2 2.4 3.6
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EXAMPLE 20.5 OPTIMIZATION USING RSM

Solve the optimization problem in Example 13.7 by the Response Surface Method with all

quadratic terms included, and compare the solution with that in Example 13.7. There are nine

sample points using the orthogonal array L9(3
4), as shown in Table 20.11.

Solution
Using the process of RSM and the data in Table 20.11, the functions are approximated as

follows:

Cost function:

f̂ 5 c0 1 c1w1 1 c2w2 1 c3w3 1 c4w4 1 c5w5

5 126;0001 18;000w1 1 10;500w2 1 1;500w5

5 126;0001 18;000
b2 350

50

� �
1 10;500

d2 360

30

� �
1 1;500

b2 350

50

� �
d2 360

30

� �
5 bd

ðaÞ

TABLE 20.10 Data for normalization of variables for Example 20.4

x1(w1) x2(w2) x3(w3) x4(w4) x1
2(w5) x2

2(w6) x3
2(w7) x4

2(w8)

max 1.5 3 0 3.6 2.25 9 36 12.96

min 21.5 23 26 1.2 0 0 0 1.44

max1min
2 0 0 23 2.4 1.125 4.5 18 7.2

max2min
2 1.5 3 3 1.2 1.125 4.5 18 5.76

TABLE 20.9 Sample points using the L9(3
4) orthogonal array

and function values for Example 20.4

Experiment

no.

Design variables and levels
Function

valuex1 x2 x3 x4

1 21.5(21) 23(21) 26(21) 1.2(21) 231.901

2 21.5(21) 0(0) 23(0) 2.4(0) 216.865

3 21.5(21) 3(1) 0(1) 3.6(1) 220.661

4 0(0) 23(21) 23(0) 3.6(1) 221.622

5 0(0) 0(0) 0(1) 1.2(21) 22.258

6 0(0) 3(1) 26(21) 2.4(0) 261.206

7 1.5(1) 23(21) 0(1) 2.4(0) 20.608

8 1.5(1) 0(0) 26(21) 3.6(1) 285.939

9 1.5(1) 3(1) 23(0) 1.2(21) 24.479
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Bending stress constraint:

ĝ1 5 c10 1 c11w11 1 c12w12 1 c13w13 1 c14w14 1 c15w15

52 0:47102 0:0782w11 2 0:0907w12 1 0:0112w13 1 0:0113w14 1 0:0130w15

520:471020:0782
b2 350

50

� �
2 0:0907

d2 360

30

� �
1 0:0112

b2 350

50

� �2

1 0:0113
d2 360

30

� �2

1 0:0130
b2 350

50

� �
d2 360

30

� �
5 4:4332 0:00782b2 0:0151d1 4:483 1026b2 1 1:263 1025d2 1 8:673 1026bd

ðbÞ

Shear stress constraint:

ĝ2 5 c20 1 c21w21 1 c22w22 1 c23w23 1 c24w24 1 c25w25

520:10722 0:1308w21 2 0:0760w22 1 0:0187w23 1 0:0063w24 1 0:0109w25

520:10722 0:1308
b2 350

50

� �
2 0:0760

d2 360

30

� �
1 0:0187

b2 350

50

� �2

1 0:0063
d2 360

30

� �2

1 0:0109
b2 350

50

� �
d2 360

30

� �
5 4:462 0:0105b2 0:0101d1 7:483 1026b2 1 7:03 1026d2 1 7:273 1026bd

ðcÞ

Depth constraint:
ĝ3 5 c30 1 c31w31 1 c32w32 1 c33w33 1 c34w34 1 c35w35

5 23:42w31 1 0:3w32

523:42
b2 350

50

� �
1 0:3

d2 360

30

� �
520:02b1 0:01d

ðdÞ

The optimum design problem with functions approximated by RSM is now defined as

Cost function:

f 5 bd ðeÞ

Bending stress constraint:

ĝ1 5 4:4332 0:00782b20:0151d1 4:483 1026b2 1 1:263 1025d2 1 8:673 1026bd # 0 ðfÞ

Shear stress constraint:

ĝ2 5 4:462 0:0105b2 0:0101d1 7:483 1026b2 1 7:03 1026d2 1 7:273 1026bd # 0 ðgÞ

Depth constraint:

ĝ3 520:02b1 0:01d # 0 ðhÞ
Since the bound constraints on the design variables are linear functions, the functions in

Eq. (d) of Example 13.7 are directly utilized. Optimization is carried out with the approximated

functions in Eqs. (e) through (h) and the bound constraints. The optimum values from RSM are
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shown and compared with those of Example 13.7 in Table 20.12. The values in that table are

those from the approximated functions. The constraints are satisfied when the approximated

functions are used in the optimization process. However, they can be violated when the original

constraint functions are evaluated. We should be careful on this aspect when RSM is utilized in

the optimization process. The original functions given in Example 13.7 with the optimum solu-

tion from RSM in Table 20.12 are calculated as follows:

f̂ 5 1:1093 105; g1 520:076 ðsatisfiedÞ; g2 5 0:014 ðviolatedÞ; g3 527:143 ðsatisfiedÞ ðiÞ

When RSM gives a better objective function value compared to the true optimum as shown in

Eq. (i), the original constraints are usually violated. For the present example, the constraint viola-

tion is acceptable (1.4%). When the violations are larger, the optimization process with RSM

should be repeated by adding more sample points to get better approximate model, modification

of the design bounds, and so forth.

As shown in Table 20.12, when RSM is used, the number of calls for function evaluations is

the same as the number of sample points, and we do not need the information for the gradients

of the original functions. Therefore, RSM can be utilized when the gradient information for the

original functions is not available or is expensive to evaluate. The optimum point may not satisfy

the original constraints because it is obtained using the approximated functions.

When the ranges for the design variables are large, we may not be able to obtain a precise opti-

mum. In that case, more experiments are needed to obtain better approximations. Generally, there

is a limit on the number of design variables when using the Response Surface Method. While not

mathematically proved, the approximation deteriorates when the number of design variables is

larger than 10.

TABLE 20.11 Sample points and function values for Example 20.5

Sample

point b(w1) d(w2) Empty col. Empty col. Cost f Bending g1 Shear g2 Depth g3

1 300(�1) 330(�1) � � 99,000 20.2654 0.1364 20.45

2 300(�1) 360(0) � � 108,000 20.3827 0.0417 20.4

3 300(�1) 390(1) � � 117,000 20.4740 20.0385 20.35

4 350(0) 330(�1) � � 115,500 20.3703 20.0260 20.5286

5 350(0) 360(0) � � 126,000 20.4709 20.1071 20.4857

6 350(0) 390(1) � � 136,500 20.5492 20.1758 20.4429

7 400(1) 330(�1) � � 132,000 20.4490 20.1477 20.5875

8 400(1) 360(0) � � 144,000 20.5370 20.2188 20.55

9 400(1) 390(1) � � 156,000 20.6055 20.2788 20.5125
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20.3 DISCRETE DESIGN WITH ORTHOGONAL ARRAYS

In the previous section, orthogonal arrays were utilized to select sample points for gen-
erating response surfaces to be used in the optimization process. Orthogonal arrays can be
used directly for determination of design variables in the discrete design space, i.e., design
variables that must have discrete values. In this section, we discuss how to use orthogonal
arrays to determine a discrete design from the specified discrete values.

We consider the unconstrained optimization problem of minimizing f(x). The con-
strained problem can be treated using the penalty function approach, as was explained in
Chapter 11. To demonstrate the procedure, consider a problem having four design vari-
ables. Let the possible discrete values for the variables be as shown earlier in Table 20.6;
that is, we have four design variables, each having three levels (three discrete values). We
can use each combination of discrete design variable values and evaluate the cost function
there. Then we select the point with the smallest cost function value as the optimum point.
However, this full enumeration requires evaluation of the cost function at 34 design points.
Thus the process is usually quite expensive because, as the number of design variables
and/or the number of discrete values for each design variable increases, the enumeration
grows very rapidly.

It turns out that we can use an orthogonal array and the function value at the sample
points to obtain the discrete optimum point. This means that only a partial enumeration is
needed with the use of orthogonal arrays. For the case of four design variables, we can
use the L9(3

4) orthogonal array as shown earlier in Table 20.7. There the cost function is
evaluated at nine sample points. With this procedure, then, only nine combinations of
design variables are used in determining the discrete solution, compared with the full enu-
meration of 345 81 combinations.

For the purpose of demonstrating this procedure, let the numerical values of the cost
function for the nine sample points in Table 20.7 be given as shown in Table 20.13 (Park,
2007). The means of various combinations of these nine cost function values are used to
determine the discrete solution point. This process is accordingly called “analysis of
means” (ANOM). It is a statistical technique used in illustrating variations among groups
of data. It compares the mean of each group to the overall mean to detect statistically sig-
nificant differences. The approach has been applied commonly in quality control of pro-
ducts and processes.

TABLE 20.12 Optimum solution for Example 20.5

RSM solution Results of Example 13.7

Optimum point (474.1, 234.0) (335.4, 335.4)

Optimum area 1.1093 105 1.1253 105

Number of calls for function evaluations 9 6

Total number of constraint gradients evaluated 12
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The procedure for discrete variable design, developed by Taguchi (1987), uses the addi-
tive model for approximating the function. It is assumed that the function values beyond
what are available in the orthogonal array cannot be calculated because the calculation is
too tedious or expensive, or new experiments cannot be performed. Therefore, the values
need to be approximated somehow. The additive model assumes that the function values
can be approximated by adding to the mean of all function values the deviation from the
mean caused by setting a design variable to a particular level. These deviations can be
calculated as the means of different groups of the known cost function values. In the addi-
tive model, cross-product terms involving two or more design variables are not allowed.
More details on the additive model can be found in Taguchi (1987) and Phadke (1989).

First, the mean of the cost function for the nine values is calculated as

μ5
1

9

X9
i51

fi 5
1

9
ð201 501 301 251 451 301 451 651 70Þ5 42:2 ð20:21Þ

This mean is used to evaluate the effect of various design variables on the cost function.
To investigate the effect of the various levels (discrete values) of each design variable on
the cost function value, we calculate several cost function value means. To do this, we
define the following notation for various mean values:

μij 5mean of cost functions calculated using sample design points containing
the ith design variable and its jth level

ð20:22Þ

For example, μ13 is the mean of the cost function values calculated using sample points
containing design variable x1 and its level 3 numerical value x13. Referring to Tables 20.7
and 20.13, μ13 is calculated as

μ13 5
1

3
ð f7 1 f8 1 f9Þ ð20:23Þ

Therefore, the effect of level 3 of variable x1 on the cost function is (μ132μ). This is
called the deviation from the mean μ caused by setting design variable x1 to the level 3
value. In a similar manner, μ11 and μ12 are calculated using the data in Tables 20.7 and
20.13, as

μ11 5
1

3
ð f1 1 f2 1 f3Þ ð20:24Þ

μ12 5
1

3
ð f4 1 f5 1 f6Þ ð20:25Þ

The effects of levels 1 and 2 of design variable x1 on the cost function are (μ132μ),
(μ112μ), and (μ122μ), respectively. The deviations (μ112μ), (μ122μ), and (μ132μ) add

TABLE 20.13 Function value for each experiment (sample point)

Experiment number f1 f2 f3 f4 f5 f6 f7 f8 f9

Function value 20 50 30 25 45 30 45 65 70
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to 0; that is, for each design variable, the effects of all of its levels satisfy the following
equation:

ðμi1 2μÞ1 ðμi2 2μÞ1 ðμi3 2μÞ5
X3
j51

�ðμij 2μÞ	5 0 ð20:26Þ

This is a property of the additive model.
The means of various levels (discrete values) of design variables x2, x3, and x4 are calcu-

lated in a similar manner to that in Eqs. (20.23) through (20.25). Results derived using the
data given in Tables 20.7 and 20.13 are shown in Table 20.14, which is called a one-way
table. It can be verified that the one-way table satisfies the property of the additive model
of Eq. (20.26):

i5 1: ð33:32 42:2Þ1 ð33:32 42:2Þ1 ð602 42:2Þ5 0 ð20:27Þ
i5 2: ð302 42:2Þ1 ð53:32 42:2Þ1 ð43:32 42:2Þ5 0 ð20:28Þ
i5 3: ð38:32 42:2Þ1 ð48:32 42:2Þ1 ð402 42:2Þ5 0 ð20:29Þ
i5 4: ð452 42:2Þ1 ð41:62 42:2Þ1 ð402 42:2Þ5 0 ð20:30Þ

For each design variable, the level that gives the least value for the mean of f in the one-
way table is considered as its final value because of the additive model assumption.

For the cost function values shown in Table 20.13, the results from the calculations in
Table 20.14 are plotted in Figure 20.3. The figure shows, along the vertical axis, the means
of the cost functions for each design variable and its three levels. From the figure, we note
the level that gives the least value for the mean for each design variable. For x1, x11, or x12
gives the lowest mean; for x2, it is x21; for x3 it is x31; and for x4 it is x43. Therefore, the opti-
mum design variable values are x11x21x31x43 or x12x21x31x43.

The ANOM process is based on the additive model for the function f which has some
inherent errors. Therefore, a confirmation experiment is required with the optimum design
variable values, which were obtained with the above procedure to verify the final solution.
That is, the cost function is evaluated at the optimum levels of the design variables. The
result of this confirmation experiment is compared with the function values listed earlier
in Table 20.13, which are calculated for the cases in the orthogonal array in Table 20.7. If
we use the L9(3

4) orthogonal array, we have 10 cases from which the best solution can be
selected.

TABLE 20.14 Example of the one-way table for an orthogonal array

Design

variable

Level

1 2 3

x1 μ11 5
f1 1 f2 1 f3

3 5 33:3 μ12 5
f4 1 f5 1 f6

3 5 33:3 μ13 5
f7 1 f8 1 f9

3 5 60

x2 μ21 5
f1 1 f4 1 f 7

3 5 30 μ22 5
f2 1 f5 1 f8

3 5 53:3 μ23 5
f3 1 f6 1 f9

3 5 43:3

x3 μ31 5
f1 1 f6 1 f8

3 5 38:3 μ32 5
f2 1 f4 1 f9

3 5 48:3 μ33 5
f3 1 f5 1 f7

3 5 40

x4 μ41 5
f1 1 f5 1 f9

3 5 45 μ42 5
f2 1 f6 1 f 7

3 5 41:6 μ43 5
f3 1 f4 1 f8

3 5 40
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The ANOM method is illustrated for an unconstrained optimization problem in the
foregoing example. However, most optimization problems have constraints on design vari-
ables. To use the method for such problems, we adopt the penalty function approach to
convert the constrained problem to an unconstrained problem, and then use the foregoing
procedure. To transform the constrained problem to an unconstrained one, we define an
augmented function Φ(x) as

ΦðxÞ5 fðxÞ1PðhðxÞ; gðxÞ; RÞ ð20:31Þ
where P(h(x), g(x), R) is a penalty function that depends on the equality and inequality
constraint functions h(x) and g(x) and a penalty parameter R. 0.

The penalty function P(h(x), g(x), R) adds a penalty for violation of constraints to the
cost function. It can be defined in several different ways, for example, as in Eq. (11.60) and
Eq. (12.30). Using Eq. (12.30), we define the exact penalty function as

PðhðxÞ; gðxÞ; RÞ5RVðxÞ ð20:32Þ
where V(x) is the maximum constraint violation defined as

VðxÞ5max


0; hij j; i5 1 to p; gj; j5 1 to m

� ð20:33Þ
The confirmation experiment should be carried out for constrained problems as well.

The final solution is the best feasible solution among the cases of the orthogonal array and
the confirmation experiment.

EXAMPLE 20.6 DISCRETE DESIGN WITH AN ORTHOGONAL
ARRAY

Solve the optimization problem in Example 13.7 in a discrete space using the L9(3
4) orthogo-

nal array. Table 20.11 shows nine experimental results using the orthogonal array L9(3
4). Find

10

X11 X12 X13 X21 X22 X23 X31 X32 X33 X41 X43
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40

50
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70

80

μ FIGURE 20.3 Graphical represen-
tation of the one-way table of mean
values in Table 20.14. Source: Adapted
from Park, 2007.
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the best discrete design out of all of the cases, including the confirmation experiment, and com-

pare the results with those of Example 13.7. Let the penalty parameter R be 1,000,000.

Solution
For each row of the orthogonal array, the problem functions are evaluated that are shown in

Table 20.15 (since this example has only two design variables, columns 3 and 4 in the table are

empty). The one-way table using the data from Table 20.15 is shown in Table 20.16. For example,

μb1 is calculated as
235;3641 149;6671 117;000

3
5 167;344. From the one-way table, the levels that

have the minimum mean value are level 2 for b and level 3 for d. Thus, the solution is b5 350,

d5 390, and f5 136,500; all constraints are satisfied.

This solution is compared to all cases of the orthogonal array in Table 20.15. It is seen that the

fourth case in Table 20.15 gives a better solution. Therefore, the final solution is b5 350, d5 330,

and f5 115,500. We note that this solution is not as good as the one in Example 13.7. This is

because the current solution is obtained in a discrete design space while Example 13.7 solves the

problem in a continuous design space.

TABLE 20.15 Sample points and function values for Example 20.6

Experiment

no. b(w1) d(w2)
Empty

col.

Empty

col. Cost f
Maximum violation

of constraints P Φ

1 300(�1) 330(�1) � � 99,000 0.1364 136,364 235,364

2 300(�1) 360(0) � � 108,000 0.0417 41,667 149,667

3 300(�1) 390(1) � � 117,000 0 0 117,000

4 350(0) 330(�1) � � 115,500 0 0 115,500

5 350 (0) 360(0) � � 126,000 0 0 126,000

6 350 (0) 390(1) � � 136,500 0 0 136,500

7 400(1) 330(�1) � � 132,000 0 0 132,000

8 400(1) 360(0) � � 144,000 0 0 144,000

9 400(1) 390(1) � � 156,000 0 0 156,000

TABLE 20.16 One-way table for Example 20.6

Design
variable

Level

1 2 3

b μb15 167,344 μb25 126,000 μb35 144,000

d μd15 160,955 μd25 139,889 μd35 136,500
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20.4 ROBUST DESIGN APPROACH

What is a robust design?

Taguchi (1987), a pioneer of the robust design approach, defined robustness as follows:
“robustness is the state where the technology, product, or process performance is mini-
mally sensitive to factors causing variability (either in manufacturing or in the user’s envi-
ronment) and aging at the lowest unit manufacturing cost.” This concept of robustness has
been developed to improve product quality and reliability, and manufacturing processes
in industrial engineering. It can account for noise factors, such as environmental variation
during a product’s use, manufacturing variation, and product deterioration. It has also
been extended and applied to all kinds of design situations. This section presents an intro-
duction to the robust design approach. Detailed reviews of the approach have been pre-
sented by Park et al. (2006) and Beyer and Sandhoff (2007).

The design process always has some uncertainties in the design variables and/or the
problem parameters. The problem parameters are the ones that are considered constants
in the design process. Examples of problem parameters in structural design are external
forces, material properties, temperature, length of members, dimensions of parts, member
support conditions, and so forth. Uncertainties in the final design are introduced from tol-
erances on the design variables and noise in the problem parameters.

These uncertainties may be known or unknown, and the question is how to treat them
in the design process. Designers always want to have steady performance for their design
even though the uncertainties noted above exist. In other words, the performance of the
designed product should be robust (insensitive) with respect to the uncertainties. The
robust design approach attempts to accomplish this objective.

A robust design is relatively insensitive to variations in the problem-related parameters
and variables. The procedure to find designs that are insensitive to parameter variations is
called the robust design method.

When the robust design approach is related to the optimization process, it is called
robust design optimization. The optimization methods and the problem formulations dis-
cussed in Chapters 8 through 13 are called deterministic approaches; that is, uncertainties
of any parameters are not considered. In robust optimization, the effect of uncertainties in
the problem parameters is incorporated into the formulation of the problem using the
mean and variance of various data and functions.

Robustness is usually defined for the cost function, although robustness of the con-
straints can be considered as well. Two main approaches for robust design are presented
in this section: (1) robust optimization, which uses conventional optimization algorithms,
and (2) the Taguchi method.

20.4.1 Robust Optimization

Mean

Mean is defined as the simple average that is the sum of all values divided by the num-
ber of values. It is also called the average value or the expected value. The standard symbol
for the mean is μ. Let a function f be observed (evaluated) at l points as f1, f2, . . .,f1.
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The mean μf of these function values is the average calculated as the sum of all of the
observations divided by the number of observations:

μf 5

Pl
i51

fi

l
ð20:34Þ

Note that the mean can be positive, negative, or zero.

Variance

Another important statistical property is variance, which is defined as the average of the
squared difference from the mean (i.e., (fi2μf)

2), usually written as σ2. Squaring the differ-
ences makes them all positive numbers. It also makes the larger ones stand out. For the
above example of l observations of function f, σf

2 for the function values is calculated as

σ2
f 5

Pl
i51

ð fi 2μf Þ2

l
ð20:35Þ

Variance represents dispersion of the data from its mean value. When data are extracted
as samples from a large population, the degree of freedom becomes (l2 1). In that case, l
in Eq. (20.35) is replaced by (l2 1).

Standard Deviation

The standard deviation is defined as the square root of the variance; that is, σf. Thus, it
is also a measure of the variability or dispersion of the data from the average (mean or
expected value). Its standard symbol is σ. Standard deviation is a more meaningful mea-
sure of the dispersion of the data and is most commonly used as such. Along with the
mean, it gives us a standard way of knowing what is normal—that is, any data falling
within the standard deviation of the mean. A smaller standard deviation indicates that the
data points tend to be very close to the mean, whereas a larger standard deviation indi-
cates that the data are spread out over a larger band around it.

If X is a random variable with mean value μ, then it is expressed as

E½X�5μ ð20:36Þ
where the operator E[X] denotes the average or expected value of X. The standard devia-
tion of X is given as

σ5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½ðX2μÞ2�

q
ð20:37Þ

The standard deviation is the square root of the variance of X; that is, it is the square root
of the average value or expected value of (X2μ)2.

Probability Density Function

A continuous random variable X takes on various values x within the range 2N, x,N.
A random variable is usually expressed by an uppercase letter, while its particular value is denoted
by a lowercase letter. A mathematical function that describes the distribution of a continuous
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random variable is called the probability density function (PDF) and is designated as fX(x).
That is, it is a function that describes the relative likelihood (probability) for this random
variable to occur at a given point x. The probability density function is nonnegative every-
where, and its integral over the entire space is equal to one:

fXðxÞ $ 0 ð20:38Þ
ðN

2N

fXðxÞdx5 1 ð20:39Þ

Problem Definition

Since most engineering design problems do not usually involve equality constraints, we
consider the inequality-constrained optimization problem:

Minimize
fðxÞ ð20:40Þ

subject to

gjðxÞ # 0; j5 1 to m ð20:41Þ
Design variables are changed during the optimization process while any problem para-

meters are kept fixed. Since there can be uncertainties in the design variables and problem
parameters, the problem definition needs to be modified. The cost and constraint functions
in Eqs. (20.40) and (20.41) are redefined to include uncertainties:

fðx; yÞ-fðx1 zx; y1 zyÞ ð20:42Þ
gðx; yÞ-gðx1 zx; y1 zyÞ ð20:43Þ

where y5 (y1, y2, . . ., yr) is the problem parameter vector, and zx 5 ðzx1 ; zx2 ; . . . ; zxnÞ and
zy 5 ðzy1 ; zy2 ; . . . ; zyr Þ are uncertainties in the design variable vector and the problem
parameter vector, respectively.

The uncertainties can be interpreted as perturbations or noise in the variables and are
treated as random variables. In robust optimization, the optimization problem in
Eqs. (20.40) and (20.41) is changed to incorporate the perturbations as follows: Find an n-
vector x5 (x1, x2, . . ., xn) of design variables to

minimize a cost function

Fðx;y; zx; zyÞ5 Fð fðx1 zx; y1 zyÞÞ
5 Fð fðx1 1 zx1 ; x2 1 zx2 ; . . . ; xn 1 zxn ; y1 1 zy1 ; y2 1 zy2 ; . . . ; yr 1 zyr ÞÞ ð20:44Þ

subject to the m inequality constraints

Gjðx;y; zx; zyÞ5Gjðgjðx1 zx; y1 zyÞÞ
5Gjðgjðx1 1 zx1 ; x2 1 zx2 ; . . . ; xn 1 zxn ;

y1 1 zy1 ; y2 1 zy2 ; . . . ; yr 1 zyr ÞÞ # 0

ð20:45Þ
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where functions F and Gj are derived by considering noise in the functions f and gj,
respectively. Usually functions F and Gj are defined using the mean and variance of the
functions f and gj, respectively.

When the uncertainties in the variables are given by the probability density functions, the
mean μf and the variance σf

2 of f given in Eq. (20.42) are calculated (Phadke, 1989) as

μf 5E½fðx; yÞ�5
ð ð

. . .

ð
fðx1 zx; y1 zyÞ

3 u1ðzx1 Þ UUU unðzxnÞv1ðzy1 Þ UUU vrðzyrÞdzx1 UUU dzxndzy1 UUU dzyr
ð20:46Þ

σ2
f 5E½ð fðx; yÞ2μf Þ2�5

ð ð
. . .

ð
½fðx1 zx;y1 zyÞ2μf �2

3 u1ðzx1Þ UUU unðzxnÞv1ðzy1Þ UUU vrðzyr Þdzx1 UUU dzxndzy1 UUU dzyr
ð20:47Þ

where E[b] is the expected value of b and uiðzxi Þ and viðzyiÞ are the probability density func-
tions of the uncertainties zxi and zyi , respectively. In Eqs. (20.46) and (20.47), the uncertain-
ties are assumed to be statistically independent. If they follow the Gaussian (normal)
distribution, the probability density function uiðzxiÞ is given as

uiðzxi Þ5
1

σxi

ffiffiffiffiffiffi
2π

p exp
2ðxi 2μxi

Þ2
2σ2

xi

" #
ð20:48Þ

where μxi
and σxi are the mean and the standard deviation of the ith design variable xi.

The probability density function viðzyiÞ is defined in the same manner as Eq. (20.48).
The robust optimization problem in Eqs. (20.44) and (20.45) is defined using the mean

and the variance in Eqs. (20.46) and (20.47). Robust optimization tries to reduce the
dispersion of the cost function with respect to the uncertainties because the dispersion is
equivalent to the sensitivity. This implies that standard deviation of the cost function
should be minimized. Since the mean of the cost function should be simultaneously
minimized, this becomes a two-objective optimization problem. Using a weighted sum
method (refer to Section 17.4), the cost function of Eq. (20.44) for robust design optimiza-
tion is defined as

F5w1μf 1w2σf ð20:49Þ

where w1 and w2 are the weighting coefficients. If w1 is larger, minimization of the cost
function is emphasized more than obtaining a robust design and vice versa. If a different
method for multi-objective optimization is used, Eq. (20.49) is modified according to that
method.

The constraint in Eq. (20.45) should be defined so that the original constraint is satisfied
even though uncertainties exist. To sufficiently satisfy the constraint, the constraint in
Eq. (20.45) is defined as

Gj � μgj
1 kσ2

gj
# 0 ð20:50Þ
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where k . 0 is a user-defined constant depending on the design purpose and σ2
gj
denotes

the dispersion of data for the constraint gj. If the uncertainties are bounded by some upper
and lower limits, the worst case of gj can be considered as follows:

Gj 5μgj 1 kxj
Xn
i51

@gj
@xi


jzxi j1 kyj

Xr
i51

@gj
@yi


jzyi j ð20:51Þ

where jzxi j and jzyi j denote the maximum values of the uncertainty (tolerance) ranges, and
kxj . 0 and kyj . 0 are the user-defined constants. Equation (20.51) is obtained by writing a
linear Taylor expansion of Gj and using the absolute values for the quantities in the second
and third terms to obtain the worst case.

If we have distribution for the design variables, then we have distribution for the cost
function f as well, so we can calculate the mean of f by integration in Eq. (20.46). This cal-
culation, however, is quite costly. Therefore, the mean and the variance of the cost func-
tion are approximated as

μfDfðμx; μyÞ ð20:52Þ

σ2
fD

Xn
i51

@f

@xi

� �2

σ2
xi
1
Xr
i51

@f

@yi

� �2

σ2
yi

ð20:53Þ

where μx is a vector of means of the design variable vector x and μy is a vector of means
for the problem parameter vector y. These are calculated using their corresponding proba-
bility density functions. The mean and the variance for the constraint functions are defined
in a similar manner.

Equation (20.53) is derived using a Taylor series for f. The first-order Taylor series
expansion of the cost function f(x, y) at the points μx and μy is defined as follows:

fðx;yÞ D fðμx; μyÞ1
Xn
i51

@f

@xi

� �
ðxi 2μxi

Þ1
Xr
i51

@f

@yi

� �
ðyi 2μyi

Þ ð20:54Þ

If all random variables and parameters are statistically uncorrelated, the variance of the
cost function can be approximated as follows:

Var fðx;yÞ� �
5σ2

fDVar fðμx; μyÞ1
Xn
i51

@f

@xi

� �
ðxi 2μxi

Þ1
Xr
i51

@f

@yi

� �
ðyi 2μyi

Þ
" #

5Var fðμx; μyÞ
h i

1Var
Xn
i51

@f

@xi

� �
ðxi 2μxi

Þ
" #

1Var
Xr
i51

@f

@yi

� �
ðyi 2μyi

Þ
" #

5 01
Xn
i51

@f

@xi

� �2

Var xi½ �1
Xr
i51

@f

@yi

� �2

Var yi
� �

5
Xn
i51

@f

@xi

� �2

σ2
xi
1
Xr
i51

@f

@yi

� �2

σ2
yi

ð20:55Þ
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In robust optimization, first-order derivatives of the cost function f are included in the
variances; therefore, we need second-order derivatives of f in the optimization process if a
gradient-based method is used. The calculation of the second-order derivatives can be
quite expensive, especially for a large-scale problem. Therefore, other methods have been
used to avoid this calculation, such as the direct search methods discussed in Chapter 11
or the nature-inspired methods discussed in Chapter 19.

Equation (20.44) or (20.49) is called the robustness index. The robustness index can be
defined to have other forms. Also, Eq. (20.45) or (20.50) can be defined differently accord-
ing to the design purpose.

To transform an optimization problem into a robust optimization problem,
probability density functions of uncertainties must be known or assumed. The
robust optimization problem is then defined in terms of the mean and variance
of the cost and constraint functions.

EXAMPLE 20.7 ROBUST OPTIMIZATION

Solve a robust optimization problem formulated as

Minimize

f 5 x1x2 cosx1 1 x21 2
1

4
x22 2 ex2 ðaÞ

subject to the constraints

g1ðxÞ5 ðx1 2 1Þ2 1 x22 2 x1 2 6 # 0 ðbÞ

g2ðxÞ5 3
7x

2
1 2

1

10
x2 1 ðx2 2 1Þ2 2 5 # 0 ðcÞ

22:0 # x1 # 2:0; 22:0 # x2 # 2:0 ðdÞ
The design variables x1 and x2 have the normal distribution with σx1 5σx2 5 0:1. The maximum

tolerances jzx1 j5 jzx2 j5 0:3. Use Eqs. (20.49) and (20.51) with w15w25 0.5 and kx1 5 kx2 5 0:5. Use

(0.4, 0.4) for the initial design.

Solution
For this problem, the standard deviations for design variables x1 and x2 are given and the

uncertainties are bounded as 60.3. Using Eqs. (20.52) and (20.53), the mean μf and the standard

deviation σf of f are calculated as follows:

μf 5 x1x2 cosx1 1 x21 2
1

4
x22 2 ex2 ðeÞ

σf 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@f

@x1

� �2

σ2
x1
1

@f

@x2

� �2

σ2
x2

s

5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2x1x2 sinx1 1 x2 cosx1 1 2x1Þ2σ2

x1
1 ðx1 cosx1 2 0:5x2 2 ex2 Þ2σ2

x2

q ðfÞ
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Due to the approximation in Eq. (20.52), the expression for the mean of the cost function is

the same as that for the original cost function. A normalization process is used to define the cost

function in Eq. (20.49) because μf and σf have different orders of magnitude. Let μ*f and σ*f repre-
sent μf and σf at the initial point (0.4, 0.4), respectively. Therefore, from Eqs. (e) and (f), we have

μ�
f 5 ð0:4Þð0:4Þ cos 0:41 0:42 2 0:25ð0:42Þ2 e0:4 521:224 ðgÞ

σ�
f 5


fð20:4Þð0:4Þ sin 0:41 0:4 cos 0:41 ð2Þð0:4Þg2ð0:12Þ1 f0:4 cos 0:42 ð0:5Þð0:4Þ2 e0:4g2ð0:12Þ

q
5 0:172

ðhÞ

Thus the multi-objective function F5w1μf1w2σf is normalized as follows:

F5w1

μf

μ�
f

  1w2

σf

σ�
f

5 ð0:5Þ
x1x2 cosx1 1 x21 2

1

4
x22 2 ex2

21:224j j

1 ð0:5Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2x1x2 sinx1 1 x2 cosx1 1 2x1Þ2σ2

x1
1 ðx1 cosx1 2 0:5x2 2 ex2 Þ2σ2

x2

q
0:172

ðiÞ

The constraints considering robustness are given using Eq. (20.51):

G1 5μg1 1 kxj
X2
i51

@g1
@xi


jzxi j5 ðx1 2 1Þ2 1 x22 2 x1 2 61 ð0:5Þ 2ðx1 2 1Þ2 1

 ð0:3Þ1 2x2j j0:3
 � ðjÞ

G2 5μg2 1 kxj
X2
i51

@g2
@xi


jzxi j5 3

7
x1

2 2
1

10
x2 1 ðx2 21Þ2 2 5

1 ð0:5Þ 6

7
x1


ð0:3Þ1 2ðx2 2 1Þ2 1

10


ð0:3Þ

� � ðkÞ

Equations (i) through (k) are used in the optimization process. The optimization results are

shown in Table 20.17. We see that the deterministic optimum has a better μf while the robust

optimum shows a significantly reduced σf.

TABLE 20.17 Robust optimization solution
for Example 20.7

Initial

point

Deterministic

optimum

Robust

optimum

(x1, x2) (0.4,0.4) (20.303, 2.0) (0.265,20.593)

μf 21.224 28.875 20.722

σf 0.172 0.875 3.01E-06

f 21.224 28.875 20.722

g1 25.88 8.1E-04 25.373

g2 24.611 24.16 22.373
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20.4.2 The Taguchi method

The Taguchi method (1987) was developed for quality improvement of products and
processes. Initially, it was applied to process rather than product design, and it did not
use formal optimization methods. Also, robustness of only the cost function was consid-
ered. Recently, the method has been extended to product design problems as well. In this
section, the Taguchi method is explained from the viewpoint of robust design because
quality improvement can be considered equivalent to a robust design.

Taguchi introduced a quadratic loss function to represent robustness (insensitiveness) as

Lð fÞ5 kð f 2mf Þ2 ð20:56Þ
where L is the loss function, mf is the target value for the cost function f, and k. 0 is a con-
stant. As shown in Eq. (20.42), the cost function is a function of the design variables and
problem parameters. Generally, constraints are ignored in the Taguchi method and only
the robustness of the cost function is considered. The loss function means the loss
when the design does not meet the target value for the cost function due to uncertainty
(noise). The higher the loss, the farther away the solution from the target cost function
value. Thus, if the loss function is reduced, quality is enhanced. This is the objective of the
Taguchi method: Minimize the loss function in Eq. (20.56).

When we have various cases due to different noises, the expected value of the loss func-
tion in Eq. (20.56) is derived as follows:

E½Lð fÞ�5E½kðf2 22mff 1m2
f Þ�5 kE½f2 22mff 1m2

f �5 k E½f2�22mfE½f �1E½m2
f �

n o
ð20:57Þ

The variance of f is calculated using the following identity:

Var½f �5E½f2�2 ðE½f �Þ2; or E½f2�5Var½f �1 ðE½f �Þ2 5σ2
f 1μ2

f ð20:58Þ
Thus, substituting Eq. (20.58) into Eq. (20.57), the expected value of the loss function is
given from Eq. (20.57) as

E½Lð fÞ�5 kðσ2
f 1μ2

f 2 2mfμf 1m2
f Þ5 kðσ2

f 1 ðμf 2mf Þ2Þ � Q ð20:59Þ
where σf and μf are the standard deviation and the mean value of the cost function f,
respectively. It is noted that the loss function Q in Eq. (20.59) is similar to the cost function
of robust optimization in Eq. (20.49). This loss function is minimized to obtain a robust
design.

Sometimes, the loss function is modified by a scale factor. Suppose we have a scale
factor s5mf/μf, which can adjust the current mean μf to the target value mf for the cost
function. Since this factor scales σf and μf as

mf

μf
σf and

mf

μf
μf , a new loss function Qa is

obtained from Eq. (20.59):

Qa 5 k
mf

μf
σf

� �2

1 μf

mf

μf
2mf

� �2
 !

5 km2
f

σ2
f

μ2
f

ð20:60Þ

The new loss function is the predicted amount of the loss when the current design is chan-
ged to the target value. It is noted that σf and μf are calculated at the current design.
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To enhance the additive effect of the design variables, Eq. (20.60) is transformed (see
Taguchi, 1987; Phadke, 1989) into:

η5 10 log10
μ2
f

σ2
f

ð20:61Þ

This equation is obtained using Qa as log10(1/Qa), ignoring the constant km2
f and then mul-

tiplying the result by the factor 10. Use of a logarithm enhances the additive effect of the
design variables. Equation (20.61) is the ratio of the power of the signal μf to the power of
the noise σf. It is called the signal-to-noise (S/N) ratio.

The power of a signal refers to the property the designer wants to improve. In this case, the
designer wants to meet the target value mf. The power of noise is the amount of uncertainty
(variance). We try to find the design parameters so that the influence of the noise is mini-
mized; that is, we maximize the S/N ratio. This is equivalent to minimizing the loss function
in Eq. (20.60). In other words, maximizing S/N ratio η in Eq. (20.61) results in a robust design.

In the Taguchi method, we try to find values of the design parameters (variables)
that minimize the loss function or maximize the S/N ratio.

The response having f at the target value of mf is referred as “nominal-the-best”; a
response with a target value of 0 is referred as “smaller-the-better”; and a response with a
target value of infinity is referred as “larger-the-better.” These examples of S/N ratios are
summarized in Table 20.18, where c is the number of sample points (repetitions). For the
“smaller-the-better” case in the table, the S/N ratio is derived as follows.

Since the target value mf is zero for this case, the loss function in Eq. (20.56) is given as

Lð fÞ5 kf2 ð20:62Þ
The expected value of this loss function is

Q5E L f
� 	� �

5E kf2
� �

5 k
1

c

Xc
i51

f2i

 !
ð20:63Þ

where c is the total number of sample points (experiments) fi. Ignoring the factor k, taking
the logarithm of 1/Q, and multiplying it by a factor of 10, we get

η5210 log
1

c

Xc
i51

f2i

 !
ð20:64Þ

TABLE 20.18 Example requirements for
the S/N ratio

Characteristic S/N ratio

Nominal-the-best η5 10 log
μ2
f

σ2
f

Smaller-the-better η5210 log 1
c

Pc
i51

f2i

� �

Larger-the-better η5210 log 1
c

Pc
i51

1
f2
i

� �
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A similar procedure can be used to derive the S/N ratio for the third case of “larger-the-
better” in Table 20.18.

We need the mean and variance to calculate the loss function or the S/N ratio, and
repeated experiments (function evaluation) are required to calculate these quantities. The
S/N ratio is usually employed in process design. The loss function is usually directly used
in product design although the S/N ratio can also be used (i.e., the one shown in the sec-
ond row of Table 20.18).

In the Taguchi method, an orthogonal array is used for discrete design, as described in
the previous section. Suppose a cost function is to be minimized and there are four design
variables with three levels, as shown in Table 20.6. Then we can use the L9(3

4) orthogonal
array shown in Table 20.19. The S/N ratio for each row of the orthogonal array is calcu-
lated as shown in the rightmost column of the table. For each row (design point), the
experiments (function evaluations) are repeatedly carried out to calculate the S/N ratio.
Although the levels of design variables are fixed for each row, the response f can be differ-
ent because the unknown uncertainties (noises) are included in each design variable. The
following loss function is frequently used as well:

Q5
1

c

Xc
i51

f2i ð20:65Þ

For the problem of minimizing f, the S/N ratio in Table 20.19 is maximized or the loss
function in Eq. (20.65) is minimized.

TABLE 20.19 The L9(3
4) orthogonal array

Experiment
no.

Design variables and

levels
Signal-to-noise
ratiox1 x2 x3 x4

1 1 1 1 1 η1 5210 log 1
c

Pc
i51

f2i

� �

2 1 2 2 2 η2 5210 log 1
c

Pc
i51

f2i

� �

3 1 3 3 3 η3 5210 log 1
c

Pc
i51

f2i

� �

4 2 1 2 3 η4 5210 log 1
c

Pc
i51

f2i

� �

5 2 2 3 1 η5 5210 log 1
c

Pc
i51

f2i

� �

6 2 3 1 2 η6 5210 log 1
c

Pc
i51

f2i

� �

7 3 1 3 2 η7 5210 log 1
c

Pc
i51

f2i

� �

8 3 2 1 3 η8 5210 log 1
c

Pc
i51

f2i

� �

9 3 3 2 1 η9 5210 log 1
c

Pc
i51

f2i

� �
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When physical experiments are performed for each design point in the orthogonal
array, the results are different because the experiments automatically include noises.
Therefore, we can calculate the variance of function f using the experimental results. If we
conduct a numerical simulation for function evaluation instead of experiments, the same
results are always obtained for each row of the orthogonal array (each design point). Thus,
artificial noise needs to be introduced into the design variable values to obtain different
simulation results. The artificial noise is constructed by perturbing the design variables or
the problem parameters. The perturbation can be arbitrarily determined by the user.
Alternatively, an outer array is constructed for each row of the orthogonal array, such as
the one in Table 20.19.

The outer array is constructed as follows: First the noise levels (the values for the noise)
are defined. For each row in Table 20.19, each design variable value is then perturbed sys-
tematically by different noise levels to generate perturbed design points at which the func-
tion is evaluated. The concept and procedure of orthogonal arrays as described previously
is used here as well. For example, if three noise levels are selected for each of the four
design variables, then each design point (each row of the orthogonal array) will generate
nine perturbed points. These nine points define another table called the outer array. This
will become clearer in the example problems presented below. The original orthogonal
array of design points in Table 20.19 is called the inner array.

EXAMPLE 20.8 APPLICATION OF THE TAGUCHI METHOD

Solve a robust optimization problem formulated as

Minimize

f 5 x1x2cosx1 1 x21 2
1

4
x22 2 ex2 1 5 ðaÞ

Each design variable has the levels 21.0, 0.0, and 1.0, and the disturbance for each design vari-

able is given as 20.1# zi # 0.1. For the repetition of numerical experiments, use an outer array.

Solution
The orthogonal array L9(3

4) is used as the inner array for the problem. To generate the outer

array, three levels are selected for the disturbance zi in the ith design variable as 20.1, 0.0, and

0.1. Therefore, for each row of the inner array, nine perturbed design points are generated. The

inner array and the outer array for the first row of the inner array are shown in Table 20.20 (note

that since there are only two design variables, columns 3 an 4 are ignored in the orthogonal

array). The outer array is generated by systematically perturbing each design variable by three

levels of disturbance 20.1, 0.0, and 0.1. Therefore, we have nine cases for each row of the inner

array. In the outer array, we calculate μf and σf for each row of the inner array, as shown at the

top of Table 20.20.

The S/N ratio for the character “smaller-the-better” in Table 20.18 is used for this example

because the problem is to minimize f. For the first row of the inner array, the S/N ratio for the

“smaller-the-better” problem is calculated from the outer array as
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S=N ratio5210 log
1

c

Xc
i51

f2i

" #
5210 log

1

9
ð6:122 1 6:092 1?1 5:752 1 5:702Þ

� �
5215:45 ðbÞ

In this way, the S/N ratio for each row of the inner array is calculated. The results are shown

in Table 20.21. The one-way table described in the previous section is constructed using the data

in Table 20.21, as shown in Table 20.22. From this table, the levels (2, 3) for x yield a best solution

as x5 (0.0, 1.0) (since we are maximizing the S/N ratio, the levels corresponding to the largest

TABLE 20.20 The inner and outer arrays for the first row
of Example 20.8

Inner Array

Sample

point

Design variables and levels

x1 x2 Ignored Ignored

1 21.0 21.0 21.0 21.0

2 21.0 0.0 0.0 0.0

3 21.0 1.0 1.0 1.0

4 0.0 21.0 0.0 1.0

5 0.0 0.0 1.0 21.0

6 0.0 1.0 21.0 0.0

7 1.0 21.0 1.0 0.0

8 1.0 0.0 21.0 1.0

9 1.0 1.0 0.0 21.0

Outer Array for First Row of Inner Arrary

Experiment

no.

Design variables and levels

x1 x2 Ignored Ignored fðxÞ
1 21.1 21.1 21.1 21.1 6.12

2 21.1 21.0 21.0 21.0 6.09

3 21.1 20.9 20.9 20.9 6.05

4 21.0 21.1 21.0 20.9 5.96

5 21.0 21.0 20.9 21.1 5.92

6 21.0 20.9 21.1 21.0 5.88

7 20.9 21.1 20.9 21.0 5.79

8 20.9 21.0 21.1 20.9 5.75

9 20.9 20.9 21.0 21.1 5.70

S/N
ratio

215.45
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values for each design variable in the one-way table are selected). This solution is compared

with the best solution in the rows of the inner array. In Table 20.21, the solution that maximizes

the S/N ratio corresponds to the sixth row; this solution is the same as the one from the one-

way table. Therefore, the solution x5 (0.0, 1.0) is selected as the final solution.

EXAMPLE 20.9 APPLICATION OF THE TAGUCHI METHOD

Solve the constrained optimization problem of Example 20.7 using the Taguchi method. Each

design variable has three levels 21.0, 0.0, and 1.0, and the disturbance for each design variable is

given as 20.1# zi# 0.1. For repetition of numerical experiments, use an outer array.

Solution
The orthogonal array L9(3

4) is used as the inner array for the problem. To generate the outer

array, three levels are selected for the disturbance zi in the ith design variable as 20.1, 0.0, and 0.1.

TABLE 20.21 S/N ratios for Example 20.8

Sample
point

Design variables and levels

S/N ratiox1 x2 Ignored Ignored

1 21.0 21.0 21.0 21.0 215.45

2 21.0 0.0 0.0 0.0 213.99

3 21.0 1.0 1.0 1.0 28.03

4 0.0 21.0 0.0 1.0 212.84

5 0.0 0.0 1.0 21.0 212.05

6 0.0 1.0 21.0 0.0 26.22

7 1.0 21.0 1.0 0.0 213.73

8 1.0 0.0 21.0 1.0 213.99

9 1.0 1.0 0.0 21.0 211.05

TABLE 20.22 The one-way table for
Example 20.8

Design

variable

Level

1 2 3

x1 212.49 210.37 212.92

x2 214.01 213.34 28.43

Ignored 211.88 212.63 211.27

Ignored 212.85 211.31 211.62
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Therefore, for each row of the inner array, nine perturbed design points are generated. The inner

array and the outer array for the first row of the inner array are shown in Table 20.23 on the next

page (note that since there are only two design variables, columns 3 and 4 are ignored in the orthog-

onal array). The outer array is generated by systematically perturbing each design variable by three

levels of disturbance20.1, 0.0, and 0.1, so we have nine cases for each row of the inner array. In the

outer array, we calculate μf and σf for each row of the inner array as shown in Table 20.23.

To use the loss function in Eq. (20.59), we need a target; the target of this example is set as

2N. Thus, we cannot use the function in Eq. (20.59). The characteristic “smaller-the-better” in

Table 20.18 can be used for a minimization problem; however, the cost function should be posi-

tive to use this index. In this case a new index is defined. Since this is a constrained minimiza-

tion problem, the robustness index F is defined as

F5w1μf 1w2σf 1PðxÞ ðaÞ

where w1 and w2 are weighting factors, and P(x) is a penalty function as defined in Eq. (20.32).

That is, when constraints are violated, F is increased.

For each row of the inner array we calculate F using an outer array. The values of μf

and σf are calculated as shown in Table 20.23, and F is evaluated for each row of the inner
array. The results for each row of the inner array are shown in Table 20.24. In this prob-
lem, the factors are defined as w15w25 0.5 and the penalty parameter R5 100 for use in
Eq. (20.32). The one-way table described in the previous section is constructed using the
data in Table 20.24, as shown in Table 20.25. From this table, levels (2, 3) for x yield
the solution as x5 (0.0, 1.0) (since we are minimizing F, the levels corresponding to the
smallest values in the one-way table are selected). This solution is compared with the best
solution in the rows of the inner array in Table 20.24. The best solution corresponds to the
sixth row and it is the same as the one from the one-way table. Therefore, the solution x5
(0.0, 1.0) is selected as the final solution.

20.5 RELIABILITY-BASED DESIGN OPTIMIZATION—DESIGN
UNDER UNCERTAINTY

A reliable design is one that satisfies the design criteria even with some uncertainties in
the design variables or the problem parameters. Reliability is measured by the probability
of satisfying a design criterion. An optimization procedure that incorporates reliability
requirements in its calculations is called reliability-based design optimization (RBDO). In an
RBDO formulation of the problem, a reliability constraint is defined so that the probability
of violating the original constraint is less than a specified value. Therefore, reliability is
imposed on constraints in RBDO. This is in contrast to the robust design approach (dis-
cussed in the previous section), where robustness is imposed on the cost function.

This section presents an introduction to the topic of RBDO. It is noted that considerable
work has been done on this subject over the last 30 years. Consult Nikolaidis et al. (2005)
and Choi et al. (2007) for more detailed discussion on the subject.
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20.5.1 Review of Background Material for RBDO

The basic idea of RBDO is to transform the constraints of the optimization problem into
reliability-based constraints. This transformation process uses probability and statistics
concepts and procedures, some of which are reviewed in this section.

TABLE 20.23 The inner and outer arrays for the first
row of Example 20.9

Inner Array

Experiment

no.

Design variables and levels

x1 x2 Ignored Ignored

1 21.0 21.0 21.0 21.0

2 21.0 0.0 0.0 0.0

3 21.0 1.0 1.0 1.0

4 0.0 21.0 0.0 1.0

5 0.0 0.0 1.0 21.0

6 0.0 1.0 21.0 0.0

7 1.0 21.0 1.0 0.0

8 1.0 0.0 21.0 1.0

9 1.0 1.0 0.0 21.0

Outer Array for First Row of Inner Array

Experiment

no.

Design variables and levels

x1 x2 Ignored Ignored f(x)

1 21.1 21.1 21.1 21.1 1.12

2 21.1 21.0 21.0 21.0 1.09

3 21.1 20.9 20.9 20.9 1.05

4 21.0 21.1 21.0 20.9 0.96

5 21.0 21.0 20.9 21.1 0.92

6 21.0 20.9 21.1 21.0 0.88

7 20.9 21.1 20.9 21.0 0.79

8 20.9 21.0 21.1 20.9 0.75

9 20.9 20.9 21.0 21.1 0.70

μf 0.92

σf 0.15
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Probability Density Function

A continuous random variable X takes on various values x that are within the range
2N, x,N. A mathematical function that describes the distribution of a continuous ran-
dom variable is called the probability density function (PDF) and is designated fX(x). That is,
PDF is a function that describes the relative likelihood (probability) of this random vari-
able X occurring at a given point x.

Notation. A random variable is expressed by an uppercase letter, while its particular
value is denoted by a lowercase letter: for example, random variable X and its value x.

The probability density function (also called the probability distribution function or probabil-
ity mass function) of one variable is nonnegative everywhere and its integral over the entire

TABLE 20.24 Results of Example 20.9

Experiment

no.

Design variables and levels Constraints

x1 x2 Ignored Ignored g1 g2 μf σf F

1 21.0 21.0 21.0 21.0 0.00 20.47 0.92 0.15 0.53

2 21.0 0.0 0.0 0.0 21.00 23.57 0.00 0.22 0.11

3 21.0 1.0 1.0 1.0 0.00 24.67 22.51 0.38 21.06

4 0.0 21.0 0.0 1.0 24.00 20.90 20.61 0.09 20.26

5 0.0 0.0 1.0 21.0 25.00 24.00 21.00 0.09 20.46

6 0.0 1.0 21.0 0.0 24.00 25.10 22.97 0.29 21.34

7 1.0 21.0 1.0 0.0 26.00 20.47 20.15 0.21 0.03

8 1.0 0.0 21.0 1.0 27.00 23.57 0.00 0.18 0.09

9 1.0 1.0 0.0 21.0 26.00 24.67 21.44 0.28 20.58

TABLE 20.25 The one-way table for Example 20.9

Design variable

Level

1 2 3

x1 20.14 20.69 20.15

x2 0.10 20.09 20.99

Ignored 20.24 20.25 20.50

Ignored 20.17 20.40 20.41
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space is equal to one:

fXðxÞ $ 0;

ðN
2N

fXðxÞdx5 1 ð20:66Þ

The probability P that the random variable will fall within a particular region is given
by the integral of this variable’s probability density over the region. For example, the prob-
ability that X will lie within a differential interval dx between x and x1 dx is given as

P½x # X # x1 dx�5 fXðxÞdx ð20:67Þ
Thus the probability that X will fall between a and b, written as P[a#X# b], is given as
the integral of Eq. (20.67):

P½a # X # b�5
ðb
a

fXðxÞdx ð20:68Þ

The probability density function having a normal (Gaussian) distribution is shown in
Figure 20.4(a).

Cumulative Distribution Function

The cumulative distribution function (CDF) FX(x) describes the probability that a random
variable X with a given probability distribution will be found at a value less than or equal
to x. This function is given as

FXðxÞ5P½X # x�5
ðx

2N

fXðuÞdu ð20:69Þ

That is, for a given value x, FX(x) is the probability that the observed value of X is less
than or equal to x. If fX is continuous at x, then the probability density function is the
derivative of the cumulative distribution function:

fXðxÞ5
dFXðxÞ
dx

ð20:70Þ

The CDF also has the following properties:

lim
x-2N

FðxÞ5 0; lim
x-N

FðxÞ5 1 ð20:71Þ

The cumulative distribution function is illustrated in Figure 20.4(b). It shows that the
probability of X being less than or equal to xl is FX(xl). This is a point on the FX(x) versus x
curve in Figure 20.4(b) and it is the shaded area in Figure 20.4(a).

Probability of Failure

A reliability-based constraint for the jth inequality constraint Gj(X)$ 0 is defined as

Pf 5P½Gjðx1 zx; y1 zyÞ # 0� # Pj;0; j5 1; . . . ;m ð20:72Þ
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where in the preceding equation Pf is the probability of failure, P[b] denotes the probabil-
ity of b, x is the n-dimensional design variable vector, y is an r-dimensional vector of prob-
lem parameters, and zx and zy are the n-dimensional and r-dimensional vectors containing
uncertainties in the design variables and problem parameters, respectively. Pj,0 represents
the limit on the probability of failure for the jth constraint. If the probabilistic distributions
of uncertainties are known, the probability of failure in Eq. (20.72) is given as

Pf 5P½Gjðx1 zx;y1 zyÞ # 0�5
ð

Gjðx1zx;y1zyÞ # 0

dðzx; zyÞdzxdzy; j5 1; . . . ;m ð20:73Þ

where d(zx, zy) is the joint probability density function of the probabilistic variables zx and
zy and

dzxdzy 5 ðdzx1dzx2 . . . dzxnÞðdzy1dzy2 . . . dzyrÞ ð20:74Þ
Because the joint probability density function is a density function distributed by multiple
variables, it must be known for the random variables in order to calculate the probability
of failure.

(a)

(b)

fX (x)

FX (xl)

Fx(xl)

xl

x

fX (x)

xl

x

FIGURE 20.4 Graphic of (a) proba-
bility density function and (b) cumula-
tive distribution function.
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Expected Value

The expected value (or expectation, mean, or first moment) of a random variable is the
weighted average of all possible values that this variable can have. The weights used in
computing this average correspond to the probabilities in the case of a discrete random
variable, or the densities in the case of a continuous random variable. The expected value
is the integral of the random variable with respect to its probability measure. It is the sam-
ple mean as the sample size goes to infinity.

Let the random variable X take value xi with probability pi for i5 1 to k. X’s expected
value E(X) is then defined as

E½X�5
Xk
i51

xipi ð20:75Þ

Since all of the probabilities pi add to one (
Pk
i51

pi 5 1), the expected value can be viewed as

the weighted average of x0is, with p0is being the weights:

E X½ �5

Pk
i51

xipi

Pk
i51

pi

5
Xk
i51

xipi ð20:76Þ

If the probability distribution of X admits a probability density function fX(x), then the
expected value is computed as

E½X�5
ðN

2N

xfXðxÞdx ð20:77Þ

It is seen that this is the first moment of X; hence X is also called the first moment.
The expected value of G(X), a function of random variable X, with respect to the proba-

bility density function fX(x) is given as

E½GðXÞ�5
ðN

2N

gðxÞfXðxÞdx ð20:78Þ

The expected value of G(X)5Xm is called the mth moment of X and is given as

E½Xm�5
ðN

2N

xmfXðxÞdx ð20:79Þ

MEAN AND VARIANCE The mean and variance of the random variable X are the first
and second moments of X calculated as follows:

μX 5E½X�5
ðN

2N

xfXðxÞdx ð20:80Þ
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Var½X�5E½ðX2μXÞ2�5σ2
X

5

ðN
2N

ðx2μXÞ2fXðxÞdx5
ðN

2N

ðx2 22xμX 1μ2
XÞfXðxÞdx

5

ðN
2N

x2fXðxÞdx22μX

ðN
2N

xfXðxÞdx1μ2
X

ðN
2N

fXðxÞdx

5E½X2�2 2μ2
X 1μ2

X 5E½X2�2μ2
X

ð20:81Þ

STANDARD DEVIATION The standard deviation σX of X is given as

σX 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½X�

p
ð20:82Þ

COEFFICIENT OF VARIATION The coefficient of variation δX indicates the relative amount
of uncertainty, defined as the ratio of the standard deviation of X to the mean of X:

δX 5
σX

μX

ð20:83Þ

RELIABILITY INDEX The reliability index β is defined as the reciprocal of the coefficient
of variation δX; that is, it is the ratio of the mean of X to the standard deviation of X:

β5
μX

σX
ð20:84Þ

COVARIANCE If two random variables X and Y are correlated, the correlation is repre-
sented by the covariance σXY, calculated as follows:

σXY 5CovðX;YÞ5E½ðX2μXÞðY2μYÞ�5
ðN

2N

ðN
2N

ðx2μXÞðy2μYÞdðx; yÞdxdy ð20:85Þ

where d(x, y) is the joint probability density function of X and Y.

CORRELATION COEFFICIENT The correlation coefficient is a nondimensional measure of
the correlation, defined as

ρXY 5
σXY

σXσY
ð20:86Þ

GAUSSIAN (NORMAL) DISTRIBUTION The Gaussian (normal) distribution is used in
many engineering and science fields and is defined using the mean and standard devia-
tion of X as the probability density function:

fXðxÞ5
1

σX

ffiffiffiffiffiffi
2π

p exp 2
1

2

x2μX

σX

� �2
" #

; 2N, x,N ð20:87Þ
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It is represented as N(μX, σX). The Gaussian distribution can be normalized using a trans-
formation of variable X as

U5 ðX2μXÞ=σX ð20:88Þ
This yields the standard normal distribution N(0,1), and the corresponding probability
density function becomes

fUðuÞ5
1ffiffiffiffiffiffi
2π

p exp
2u2

2

� �
; 2N,u,N ð20:89Þ

Cumulative distribution with respect to u is then obtained as the cumulative distribu-
tion function (CDF) Φ(u):

ΦðuÞ5 FUðuÞ5
ðu

2N

1ffiffiffiffiffiffi
2π

p exp
2 ξ2

2

� �
dξ ð20:90Þ

Numerical values of Φ(u) can be found in statistics texts. Since the normal distribution in
Eq. (20.90) is symmetric with respect to x5 0,

Φð2uÞ5 12ΦðuÞ ð20:91Þ

INVERSE If the CDF is strictly increasing and continuous, then Φ21(p), pA[0,1] is the
unique number up such that Φ(up)5 p; that is, up5Φ21(p). Also,

up 5Φ21ðpÞ52Φ21ð12 pÞ ð20:92Þ
where up is the standard normalized variable, p is the corresponding cumulative probabil-
ity, and Φ21 is the inverse of the CDF.

20.5.2 Calculation of the Reliability Index

In this subsection, calculation of the reliability index that is used in the optimization
process is explained. Knowing the reliability index, the probability of failure can be calcu-
lated, or the index can be used directly in the optimization process.

Limit State Equation

In structural design, the limit state indicates the margin of safety between structural
resistance and the structural load. The limit state function (G( � )) and the probability of
failure (Pf) are defined as

GðXÞ5RðXÞ2 SðXÞ ð20:93Þ

Pf 5P½GðXÞ # 0� ð20:94Þ

where R is the structural resistance and S is the loading. G(X ), 0, G(X)5 0, and G(X). 0
indicate the failure region, the failure surface, and the safe region, respectively. They are
illustrated in Figure 20.5 (Choi et al., 2007).
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Using Eq. (20.93), the mean and standard deviation of G(X) are calculated as

μG 5μR 2μS ð20:95Þ

σG 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
R 1σ2

S 2 2ρRSσRσS

q
ð20:96Þ

where μR, μS, and ρRS are the mean of R, the mean of S, and the correlation coefficient
between R and S, respectively. The variance of G(X) is calculated as

Var½GðXÞ�5Var½RðXÞ2 SðXÞ�5Var½RðXÞ�1Var½SðXÞ�2 2Cov½RðXÞ;SðXÞ�
5σ2

R 1σ2
S 2 2σRS 5 σ2

R 1σ2
S 2 2ρRSσRσS

Var½GðXÞ�5σ2
G 5 σ2

R 1σ2
S 2 2ρRSσRσS

ð20:97Þ

Thus the standard deviation is given as in Eq. (20.96).
The reliability index for G is given using Eqs. (20.84), (20.95), and (20.96) as

β5
μG

σG
5

μR 2μSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
R 1σ2

S 2 2ρRSσRσS

q ð20:98Þ

Suppose that R and S are normally distributed; then the probability density function of the
limit state function is

fGðgÞ5
1

σG

ffiffiffiffiffiffi
2π

p exp 2
1

2

g2μG

σG

� �2
" #

ð20:99Þ

The probability of failure using Eq. (20.69) is given as

Pf 5P GðXÞ # 0½ �5
ð0

2N

fGðgÞdg5
ð0

2N

1

σG

ffiffiffiffiffiffi
2π

p exp 2
1

2

g2μG

σG

� �2
" #

dg ð20:100Þ

G < 0
Failure

G > 0
Safe region

G

fG (G)

βσG

μG

Pf

FIGURE 20.5 Probability density
function for the limit state G(X).
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After introducing the following normalizing transformation for the random variable G,
the probability of failure is obtained from Eq. (20.100) as

U5 ðG2μGÞ=σG ð20:101Þ

Pf 5

ð2β
2N

1ffiffiffiffiffiffi
2π

p exp 2
u2

2

� �
du ð20:102Þ

where β5μG=σG 5 ðμR 2μSÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðσ2

R 1 σ2
SÞ

q
, which is obtained by assuming that the correla-

tion coefficient in Eq. (20.98) is 0. Using the definition of cumulative distribution function
and its property in Eqs. (20.90) and (20.91), we get

Pf 5Φð2βÞ5 12ΦðβÞ ð20:103Þ

Linear Limit State Equation

If we suppose that a limit state equation is a linear combination of random variables Xi,
i5 1, . . .,n with normal distributions, the limit state function is given as follows:

G5 a0 1
Xn
i51

aiXi ð20:104Þ

Then, assuming a normal distribution for G, the mean and variance of G are calculated as

μG 5 a0 1
Xn
i51

aiμi ð20:105Þ

σ2
G 5

Xn
i51

Xn
j51

aiajCov½Xi;Xj�5
Xn
i51

Xn
j51

aiajρijσiσj ð20:106Þ

where the mean and variance of Xi are μi and σi, respectively. The probability of failure
for G is

Pf 5P G # 0½ �5Φ 2
μG

σG

� �
5Φð2βÞ ð20:107Þ

Nonlinear Limit State Equation

When the limit state equation is a nonlinear function of the random variable vector
X5 (X1, X2, . . ., Xn), it is linearized by the Taylor series around the mean μX5 (μ1, μ2, . . .,
μn) of X as

GðXÞ5GðμXÞ1
Xn
i51

@G

@Xi
μX
ðXi 2μiÞ

 ð20:108Þ
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The mean and variance of this linearized equation are

μG 5GðμXÞ ð20:109Þ

σG 5
Xn
i51

Xn
j51

@G

@Xi
μX

@G

@Xj μX

Cov Xi;Xj

� �
5
Xn
i51

Xn
j51

@G

@Xi μX

@G

@Xj μX
ρijσiσj





 ð20:110Þ

It is noted that @G=@Xi μX

 and @G=@Xj μX

 correspond to ai and aj in Eq. (20.106). Therefore,
the reliability index can be calculated using Eq. (20.98). This is called the mean value first-
order second-moment method (MVFOSM). MVFOSM has a drawback. Since the limit state
equation is linearized around the mean point, the value of the reliability index depends
on the equation’s form. When the form of the limit-equation is changed by a scale, the reli-
ability index is also changed. That is, the approach lacks the invariance of the reliability
index.

Advanced First-Order Second Moment Method

To overcome the lack of invariance, Hasofer and Lind (1974) proposed the advanced
first-order second-moment method (AFOSM). First, a random variable for the standard
normal distribution N(0, 1) is defined as

Ui 5
Xi 2μi

σi
; i5 1 to n ð20:111Þ

Substituting for Xi from Eq. (20.111), the limit state equation in Eq. (20.104) is transformed as

GðUÞ5 a0 1
Xn
i51

aiðμi 1 σiUiÞ ð20:112Þ

The mean value μG of G(U) in Eq. (20.112) is calculated as

μG 5E½GðUÞ�5E a0 1
Xn
i51

aiðμi 1 σiUiÞ
" #

5 a0 1
Xn
i51

E½aiðμi 1σiUiÞ�

5 a0 1
Xn
i51

aiE½μi 1σiUi�

5 a0 1
Xn
i51

aiðμi 1σiE½Ui�Þ

5 a0 1
Xn
i51

aiμi; since E½Ui�5 0 ð20:113Þ

Therefore, μG can be written with all Ui5 0 in Eq. (20.112) as

μG 5 a0 1
Xn
i51

aiμi 5 Gðall Ui 5 0Þ
  ð20:114Þ
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The variance of G(U) in Eq. (20.112) is derived as follows:

σ2
G 5Var½GðUÞ�5Var a0 1

Xn
i51

aiðμi 1 σiUiÞ
" #

5Var½a0�1Var
Xn
i51

aiμi

" #
1Var

Xn
i51

aiσiUi

" #

5 01 01
Xn
i51

a2i σ
2
iVar½Ui�

5
Xn
i51

a2i σ
2
i ; since Var½Ui�5 1 ð20:115Þ

Therefore, the standard deviation of G(U) is given as

σG 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i51

ðaiσiÞ2
s

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i51

@G

@Ui

� �2

vuut ð20:116Þ

So the reliability index β is given from Eq. (20.84) as

β5
μG

σG
5

Gðall Ui 5 0Þ
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i5 1

@G
@Ui

� �2s ð20:117Þ

For the two-variable case, Eq. (20.112) gives

GðUÞ5 a0 1 a1ðμ1 1σ1U1Þ1 a2ðμ2 1σ2U2Þ ð20:118Þ
This equation is plotted as a straight line G(U)5 0 in Figure 20.6, designated as line AB.
The shortest distance from the origin to this line is given as

a0 1 a1μ1 1 a2μ2

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða1σ1Þ2 1 ða2σ2Þ2

q ð20:119Þ

Failure

MPFPu*

G(U) = 0

P

A

B

U2

U1

β

O

FIGURE 20.6 Geometric representation of the
reliability index.
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Equation (20.119) is derived by first developing the equation for a line normal to the
line AB that also passes through the origin O. Then the coordinates of the point P are
determined as the intersection of lines AB and the line normal to it. Knowing the coordi-
nates of the point P, the distance OP can be calculated.

The formula for the shortest distance in Eq. (20.119) is the same as the reliability index
in Eq. (20.117). Thus, the geometric meaning of the reliability index is that it is the shortest
distance from the origin to the limit state equation. The point on the limit state surface
that is closest to the origin is called the most probable failure point (MPFP). In the litera-
ture, this has also been called the most probable point (MPP). The MPFP is denoted u* in
Figure 20.6.

In the X space, the coordinates of the MPFP using Eq. (20.111) are

x�i 5μi 1 u�i σi; i5 1; . . . ;n ð20:120Þ
where n is the number of design variables. A nonlinear limit state equation is linearized
around the MPFP x* as

GðXÞ �
Xn
i51

@G

@Xi


X5x�

ðXi 2 x�i Þ ð20:121Þ

where G(x*)5 0 is used.
Using Eqs. (20.109) and (20.110), the mean and variance of G(X)5 0 are

μG 5
Xn
i51

@G

@Xi


X5x�

ðμi 2 x�i Þ ð20:122Þ

σ2
G 5

Xn
i51

@G

@Xi


X5x�

� �2

σ2
i ð20:123Þ

By the chain rule, we get

@G

@Xi
5

@G

@Ui

@Ui

@Xi
5

1

σi

@G

@Ui
ð20:124Þ

Substituting Eq. (20.124) into Eqs. (20.122) and (20.123), and using Eq. (20.111), the mean
and variance become

μG 52
Xn
i51

@G

@Ui


u�
u�i ð20:125Þ

σ2
G 5

Xn
i51

@G

@Ui


u�

� �2

ð20:126Þ

where Ui is the normalized standard variable vector and ui* is the MPFP.

The linearized equation in Eq. (20.121) is in terms of the normalized variables and is
given as

GðUÞ5
Xn
i51

@G

@Ui


u�
ðUi 2 u�i Þ ð20:127Þ
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Therefore, if a nonlinear state equation is linearized around the MPFP, the lack of invari-
ance is avoided because the reliability index in Eq. (20.117) is expressed by the normalized
variable Ui (Hasofer and Lind, 1974).

In AFOSM, the MPFP is obtained from a nonlinear limit state equation and the limit
state equation is linearized around the MPFP. Because the MPFP is the closest point from
the origin to the limit state equation, it is obtained typically by solving the following opti-
mization problem:

Minimize

β5
ffiffiffiffiffiffiffiffiffiffi
UTU

p
; subject to GðUÞ5 0 ð20:128Þ

where β is the reliability index.

Using an iterative method (Hasofer and Lind, 1974), the iterative equation for solution
to the problem in Eq. (20.128) is given as

Uðk11Þ 5
GðkÞT

U UðkÞ 2GðUðkÞÞ
GðkÞT

U GðkÞ
U

GðkÞ
U ð20:129Þ

where GðkÞ
U 5 @G

@U at U5UðkÞ is an n-dimensional vector.
To derive the iterative Eq. (20.129), we proceed as follows: At the kth iteration, we want

to update the vector U(k) to U(k11), which is expressed as

Uðk11Þ 5UðkÞ 1ΔU ð20:130Þ
At U(k), we write linear the Taylor expansion of the constraint G(U(k11))5 0, as

GðUðkÞÞ1GðkÞT
U ΔU5 0 ð20:131Þ

The question now is how to determine ΔU. We define a minimization problem for ΔU
using the original problem defined in Eq. (20.128) as

Minimize
ðUðkÞ 1ΔUÞTðUðkÞ 1ΔUÞ subject to GðUðkÞÞ1GðkÞT

U ΔU5 0 ð20:132Þ
Note that the cost function in Eq. (20.128) has been replaced by its square, which does not
affect the solution to the problem. The problem defined in Eq. (20.132) can be solved by
writing the optimality conditions given in Chapter 4 for the equality-constrained problem.
For that, we define the Lagrangian function and differentiate it with respect to ΔU as

L5 ðUðkÞ 1ΔUÞTðUðkÞ 1ΔUÞ1λðGðUðkÞÞ1GðkÞT
U ΔUÞ ð20:133Þ

@L

@ðΔUÞ 5 2ðUðkÞ 1ΔUÞ1λðGðkÞ
U Þ5 0 ð20:134Þ

where λ is the Lagrange multiplier for the equality constraint. The equality constraint in
Eq. (20.131) and the optimality conditions in Eq. (20.134) provide just the right number of
equations to solve for λ and ΔU.
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There are a number of ways to solve for the Lagrange multiplier λ . One is to pre-multiply
Eq. (20.134) by GðkÞT

U , and solve for λ as

λ52
2

GðkÞT
U GðkÞ

U

GðkÞT
U ðUðkÞ 1ΔUÞ ð20:135Þ

Substituting for λ from Eq. (20.135) into Eq. (20.134) and taking the second term to the right
side, we get

2ðUðkÞ 1ΔUÞ5 2

GðkÞT
U GðkÞ

U

GðkÞT
U ðUðkÞ 1ΔUÞ

" #
ðGðkÞ

U Þ ð20:136Þ

Now, replacing the left side of Eq. (20.136) with Eq. (20.130), and substituting the equality
constraint from Eq. (20.132) into the right side of Eq. (20.136), we get

Uðk1 1Þ 5
fGðkÞT

U UðkÞ 2GðUðkÞÞg
GðkÞT

U GðkÞ
U

" #
GðkÞ

U ð20:137Þ

which is same as Eq. (20.129).
Once the MPFP is determined, the reliability index is obtained as

β5
ffiffiffiffiffiffiffiffiffiffiffiffiffi
u�Tu�

p
52

G�T
U u�ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G�T

U G�
U

q ð20:138Þ

In Eq. (20.138), the following vector α is a measure of the sensitivity of the reliability index
to each random variable:

α52
G�

Uffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G�T

U G�
U

q ð20:139Þ

MVFOSM and AFOSM are attributed to the first-order reliability method (FORM).
There are many other methods to calculate the reliability index. For details, the reader is
referred to Choi et al. (2007).

The preceding method is a mathematical way to calculate the probability of failure of a
constraint. Sampling methods are also utilized for this purpose and the most commonly
used method in this class is Monte Carlo simulation (MCS). In MCS, many trials are con-
ducted. If N trials are conducted for Gi, the probability of failure is approximately
given by

Pf 5
Nf

N
ð20:140Þ

where Nf is the number of trials for which Gi is violated out of the N trials conducted. For
a large-scale problem, the MCS method needs a large number of computations. Thus,
MCS is utilized only for small-scale problems or as a reference method for a new approach
to calculate the reliability index.
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EXAMPLE 20.10 CALCULATION OF THE RELIABILITY INDEX

Evaluate the reliability index β for the function g1(x) of Example 20.7. The initial design is

(20.8, 0.8) and σ15σ25 0.1.

Solution
The function G1(X) of Example 20.7 is given as follows:

G1ðXÞ5 2ðX1 2 1Þ2 2X2
2 1X1 1 6 $ 0 ðaÞ

Since the initial design is (20.8, 0.8), (μ1,μ2)5 (20.8, 0.8).

The iterative method is used for calculation of β. The termination criterion for the iterative

process is defined as

ε5
βðkÞ 2βðk11Þ

βðkÞ


 # 0:001 ðbÞ

Iteration 1 (k50) Using Eq. (20.111), u(0) is obtained at ðxð0Þ1 ; xð0Þ2 Þ5 ð20:8; 0:8Þ as follows:

uð0Þ1 5
xð0Þ1 2μ1

σ1
5 0; uð0Þ2 5

xð0Þ2 2μ2

σ2
5 0 ðcÞ

G1ðxð0ÞÞ5 1:32 ðdÞ
GU is calculated using Eq. (20.124) as

GU 5
@G

@Ui
5

@G

@Xi
σi ðeÞ

where

@G

@X1
522X1 1 3;

@G

@X2
522X2 ðfÞ

Therefore,

Gð0Þ
U 5

ð22xð0Þ1 1 3Þσ1

ð22xð0Þ2 Þσ2

" #
5

0:46
20:16

� �
ðgÞ

Using Eq. (20.129)

uð1Þ 5
Gð0ÞT

U uð0Þ 2Gðuð0ÞÞ
Gð0ÞT

U Gð0Þ
U

Gð0Þ
U 5

0:46 20:16
� � 0

0

� �
2 1:32

0:46 20:16
� � 0:46

20:16

� � 0:46
20:16

� �
5

22:560
0:891

� �
ðhÞ

From Eq. (20.138), the reliability index is

βð1Þ 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uð1ÞTuð1Þ

p
5 2:710 ðiÞ

Iteration 2 (k51)

xð1Þ1 5μ1 1σ1u
ð1Þ
1 5 ð20:8Þ1 ð0:1Þ ð22:560Þ521:0560

xð1Þ2 5μ2 1σ2u
ð1Þ
2 5 0:81 ð0:1Þ ð0:891Þ5 0:889

ðjÞ
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G1ðxð1ÞÞ520:0736 ðkÞ

Gð1Þ
U 5

ð22xð1Þ1 1 3Þσ1

ð22xð1Þ2 Þσ2

" #
5

0:511
20:178

� �
ðlÞ

uð2Þ 5
Gð1ÞT

U uð1Þ 2Gðuð1ÞÞ
Gð1ÞT

U Gð1Þ
U

Gð1Þ
U 5

0:5112 0:178
� � 22:560

0:891

� �
1 0:0736

0:5112 0:178
� � 0:511

20:178

� � 0:511
20:178

� �
5

22:431
0:846

� �
ðmÞ

βð2Þ 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uð2ÞTuð2Þ

p
5 2:575 ðnÞ

ε5
2:71022:575

2:710


5 0:05 $ 0:001 ðoÞ

The convergence criterion is not satisfied.

Iteration 3 (k52)

xð2Þ1 5μ1 1σ1u
ð2Þ
1 5 ð20:8Þ1 ð0:1Þð22:431Þ521:043

xð2Þ2 5μ2 1σ2u
ð2Þ
2 5 0:81 ð0:1Þð0:846Þ5 0:885

ðpÞ

G1ðxð2ÞÞ520:0001754 ðqÞ

Gð2Þ
U 5

ð22xð2Þ1 1 3Þσ2

ð22xð2Þ2 Þσ2

" #
5

0:509
20:177

� �
ðrÞ

uð3Þ 5
Gð2ÞT

U uð2Þ 2Gðuð2ÞÞ
Gð2ÞT

U Gð2Þ
U

Gð2Þ
U 5

0:5092 0:177
� � 22:431

0:846

� �
1 0:0001754

0:5092 0:177
� � 0:509

20:177

� � 0:509
20:177

� �
5

22:431
0:846

� �
ðsÞ

βð3Þ 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uð3ÞTuð3Þ

p
5 2:574 ðtÞ

ε5
2:57522:574

2:575


5 0:000128 # 0:001 ðuÞ

The convergence criterion is satisfied.

xð3Þ1 5μ1 1σ1u
ð3Þ
1 5 ð20:8Þ1 ð0:1Þð22:431Þ521:043

xð3Þ2 5μ2 1σ2u
ð3Þ
2 5 0:81 ð0:1Þð0:846Þ5 0:885

ðvÞ

Thus the location of MPFP is (21.043, 0.885). The reliability index is β5 2.574, and the reliabil-

ity is Φ(β)5 0.9947 from Eq. (20.90). The value of Φ(β) can be read from the table for the normal

distribution.
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20.5.3 Formulation of Reliability-Based Design Optimization

We now present the formulation for reliability-based design optimization (RBDO). The
design variable vector is X5 (X1, X2, . . ., Xn), and the cost function to be minimized is F
(X). The reliability constraints are defined as

Pf 5P GjðXÞ # 0
� �

5

ð
GjðXÞ# 0

fGðgjÞdgj 5Φ 2
μGj

σGj

 !
5Φð2βÞ # Pj;0; j5 1; . . . ;m ð20:141Þ

Each constraint in Eq. (20.141) is an inner optimization problem in itself. These are the
inner optimization problems in the outer reliability-based design optimization problem.
Therefore, we need the sensitivity information of the inner problem. This sensitivity is
called optimum sensitivity and is explained in detail in Choi et al. (2007) and Park (2007).

EXAMPLE 20.11 RELIABILITY-BASED DESIGN OPTIMIZATION

Perform RBDO with Example 20.7. The initial design is (20.8, 0.8) and σ15σ25 0.1. Compare

the solution with that of the one obtained in Example 20.7.

Solution
The optimization formulation for reliability-based design optimization is

Design variables:
X ðaÞ

Cost function:
Minimize FðXÞ ðbÞ

Constraints: βiðXÞ $ βi;target ði5 1; 2Þ ðcÞ

The target reliability index is set as βtarget5 3.0 (it is specified by the user). In solving this opti-

mization problem, the inner optimization problems are solved using the procedure described in

Example 20.10. The outer problem has inner optimization problems as constraints. Therefore,

their derivatives are needed in the outer problem. These are calculated by the sensitivity analysis

of the inner problems at their optimum points (Choi et al., 2007; Park, 2007).

The optimization results are shown in Table 20.26. The results of the deterministic optimiza-

tion approach are also shown. Since RBDO has some reliability margins on the constraints, the

optimum cost of RBDO is slightly higher than the cost of the deterministic approach.

TABLE 20.26 Optimum solutions for Example 20.11

Initial point Deterministic optimum RBDO solution

Design variables (x1, x2) (20.8, 0.8) (20.304, 2.0) (20.148, 2.0)

Objective function f 22.191 28.876 28.660

Constraints g1 21.320 20.003 20.534
g2 24.766 24.161 24.191
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A P P E N D I X

A

Vector and Matrix Algebra

Matrix and vector notation is compact and useful in describing many numerical meth-
ods and derivations. Matrix and vector algebra is a necessary tool in developing methods
for the optimum design of systems. The solution to linear optimization problems (linear
programming) involves an understanding of the solution process for a system of linear
equations. Therefore, it is important to understand operations of vector and matrix algebra
and to be comfortable with their notation. The subject is often referred to as linear algebra and
has been well developed. It has become a standard tool in almost all engineering and
scientific applications.

In this appendix, some fundamental properties of vectors and matrices are reviewed.
For more comprehensive treatment of the subject, several excellent textbooks are available
and should be consulted (Hohn, 1964; Franklin, 1968; Cooper and Steinberg, 1970; Stewart,
1973; Bell, 1975; Strang, 1976; Jennings, 1977; Deif, 1982; Gere and Weaver, 1983). In addi-
tion, most software libraries have subroutines for linear algebra operations which should
be directly utilized.

After reviewing the basic vector and matrix notations, special matrices, determinants,
and matrix rank, the solution to a simultaneous system of linear equations is discussed:
first an n3 n system and then a rectangular m3 n system. A section on linear indepen-
dence of vectors is also included. Finally, the eigenvalue problem encountered in many
fields of engineering is discussed. Such problems play a prominent role in convex pro-
gramming problems and sufficiency conditions for optimization.

A.1 DEFINITION OF MATRICES

A matrix is defined as a rectangular array of quantities that can be real numbers, complex num-
bers, or functions of several variables. The entries in the rectangular array are also called the
elements of the matrix. Since the solution to simultaneous linear equations is the most
common application of matrices, we use them to develop the notion of matrices.
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Consider this system of two simultaneous linear equations in three unknowns:

x1 1 2x2 1 3x3 5 6

2x1 1 6x2 22x3 5 3
ðA:1Þ

The symbols x1, x2, x3 represent the solution variables for the system of equations. Note that
the variables x1, x2, and x3 can be replaced by any other variables, say w1, w2, and w3, with-
out affecting the solution. Therefore, they are sometimes called dummy variables.

Since they are dummy variables, they can be omitted while writing the equations in a
matrix form. For example, Eqs. (A.1) can be written in a rectangular array as

1 2 3
21 6 22

6
3

����
��

ðA:2Þ

The entries to the left of the vertical line are coefficients of the variables x1, x2, and x3, and to
the right of the vertical line are the numbers on the right side of the equations. It is custom-
ary to enclose the array with square brackets as shown. Thus, we see that the system of
equations in Eqs. (A.1) can be represented by a matrix having two rows and four columns.

An array with m rows and n columns is called a matrix of order “m by n,” written as
(m, n) or as m3 n. To distinguish between matrices and scalars, we will boldface the vari-
ables that represent matrices. In addition, uppercase letters will be used to represent matri-
ces. For example, a general matrix A of order m3 n can be represented as

A5

a11 a12 . . . a1n
a21 a22 . . . a2n
^ ^ ^
am1 am2 . . . amn

2
664

3
775 ðA:3Þ

The coefficients aij are called elements of the matrix A; the subscripts i and j indicate
the row and column numbers for the element aij (e.g., a32 represents the element in the
third row and second column). Although the elements can be real numbers, complex num-
bers, or functions, we will not deal with complex matrices in the present text. We will
encounter matrices having elements as functions of several variables, for example, the
Hessian matrix of a function discussed in Chapter 4.

It is useful to employ a more compact notation for matrices. For example, a matrix A of
order m3 n with aij as its elements is written compactly as

A5 ½aij�ðm3nÞ ðA:4Þ
Often, the size of the matrix is not shown, and A is written as [aij]. If a matrix has the
same number of rows and columns, it is called a square matrix. In Eq. (A.3) or Eq. (A.4), if
m5 n, A is a square matrix. It is called a matrix of order n.

It is important to understand the matrix notation for a set of linear equations because we
will encounter such equations quite often in this text. For example, Eqs. (A.1) can be written as

x1 x2 x3 b
1 2 3

21 6 22
6
3

����
��

ðA:5Þ
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The array in Eq. (A.5) containing coefficients of the equations and the right-side para-
meters is called the augmented matrix.

Note that each column of the matrix is identified with a variable; the first column is associ-
ated with the variable x1 because it contains coefficients of x1 for all equations; the second
is associated with x2; the third, with x3; and the last column, with the right-side vector,
which we call b. This interpretation is important while solving linear equations (discussed
later) or linear programming problems (discussed in Chapter 8).

A.2 TYPES OF MATRICES AND THEIR OPERATIONS

A.2.1 Null Matrix

A matrix having all zero elements is called a null (zero) matrix, denoted by a boldfaced
zero, 0. Any zero matrix of proper order when premultiplied or postmultiplied by any
other matrix (or scalar) results in a zero matrix.

A.2.2 Vector

A matrix of order 13 n is called a row matrix, or simply a row vector. Similarly, a matrix
of order n3 1 is called a column matrix, or simply a column vector. A vector with n elements
is called an n-component vector, or simply an n-vector. In this text, all vectors are consid-
ered to be column vectors and denoted by a lowercase letter in boldface.

A.2.3 Addition of Matrices

If A and B are two matrices of the order m3 n, then their sum is also an m3 n matrix
defined as

Cðm3 nÞ 5A1B; cij 5 aij 1 bij for all i and j ðA:6Þ

Matrix addition satisfies the following properties

A1B5B1A ðcommutativeÞ ðA:7Þ
If A, B, and C are three matrices of the same order, then

A1 ðB1CÞ5 ðA1BÞ1C ðassociativeÞ ðA:8Þ
If A, B, and C are of same order, then

A1C5B1C implies A5B ðA:9Þ
where A5B implies that the matrices are equal. Two matrices A and B of order m3 n are
equal if aij5 bij for i5 1 to m and j5 1 to n.
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A.2.4 Multiplication of Matrices

Multiplication of a matrix A of order m3 n by a scalar k is defined as

kA5 ½kaij� ðm3 nÞ ðA:10Þ
The multiplication (product) AB of two matrices A and B is defined only if A and B are of
proper order. The number of columns of A must be equal to the number of rows of B for
the product AB to be defined. In that case, the matrices are said to be conformable for multi-
plication. If A is m3 n and B is r3 p, then the multiplication AB is defined only when
n5 r, and multiplication BA is defined only when m5 p. Multiplication of two matrices of
proper order results in a third matrix. If A and B are of order m3 n and n3 p respectively,
then

AB5C ðA:11Þ
where C is a matrix of order m3 p. Elements of the matrix C are determined by multiply-
ing the elements of a row of A with the elements of a column of B and adding all the
multiplications. Thus

a11 a12 . . . a1n
a21 a22 . . . a2n
^ ^ ^
am1 am2 . . . amn

2
664

3
775

b11 b12 . . . b1p
b21 b22 . . . b2p
^ ^ ^
bn1 bn2 . . . bnp

2
664

3
7755

c11 c12 . . . c1p
c21 c22 . . . c2p
^ ^ ^
cm1 cm2 . . . cmp

2
664

3
775 ðA:12Þ

where elements cij are calculated as

cij 5 ai1b1j 1 ai2b2j 1 . . . 1 ainbnj 5
Xn
k51

aikbkj ðA:13Þ

Note that if B is an n3 1 matrix (i.e., a vector), then C is an m3 1 matrix. We will
encounter this type of matrix multiplication quite often in this text; for example, a system
of linear equations is represented as Ax5b, where x contains the solution variables and b
the right-side parameters. Equation (A.1) can be written in this form.

In the product AB, the matrix A is said to be postmultiplied by B or B is said to be pre-
multiplied by A. Whereas the matrix addition satisfies the commutative law, matrix multi-
plication, in general, does not; that is, AB 6¼ BA. Also, even if AB is well defined, BA may
not be defined.

EXAMPLE A.1 MULTIPLICATION OF MATRICES

A5

2 3 1
6 3 2
4 2 0
0 3 5

2
664

3
775
ð433Þ

B5
2 21
1 0
3 22

2
4

3
5
ð332Þ

ðaÞ
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AB5

2 3 1
6 3 2
4 2 0
0 3 5

2
664

3
775

2 21
1 0
3 22

2
4

3
55

ð23213311133Þ ð223113302132Þ
ð63213311233Þ ð263113302232Þ
ð43212311033Þ ð243112302032Þ
ð03213311533Þ ð203113302532Þ

2
664

3
7755

10 24
21 210
10 24
18 210

2
664

3
775
ð432Þ

ðbÞ

Note that the product BA is not defined because the number of columns in B is not equal to

the number of rows in A.

EXAMPLE A.2 MULTIPLICATION OF MATRICES

A5
4 1

22 0
8 3

2
4

3
5 B5

23 8 6
8 3 21

� �
ðaÞ

AB5
4 1

22 0
8 3

2
4

3
5 23 8 6

8 3 21

� �
5

24 35 23
6 216 212
0 73 45

2
4

3
5 ðbÞ

BA5
23 8 6
8 3 21

� � 4 1
22 0
8 3

2
4

3
55

20 15
18 5

� �
ðcÞ

Note that for the products AB and BA to be matrices of the same order, A and B must be

square matrices.

Note also that even if matrices A, B, and C are properly defined, AB5AC does not
imply B5C. Also, AB5 0 does not imply either B5 0 or A5 0. The matrix multiplication,
however, satisfies two important laws: associative and distributive. Let matrices A, B, C,
D, and F be of proper dimension. Then

Associative law:

ðABÞC5A ðBCÞ ðA:14Þ
Distributive law:

B ðC1DÞ5BC1BD ðA:15Þ

ðC1DÞ F5CF1DF ðA:16Þ

ðA1BÞðC1DÞ5AC1AD1BC1BD ðA:17Þ
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A.2.5 Transpose of a Matrix

We can write rows of a matrix as columns and obtain another matrix. Such an operation
is called the transpose of a matrix. If A5 [aij] is an m3 n matrix, then its transpose, denoted
as AT, is an n3m matrix. It is obtained from A by changing its rows to columns (or col-
umns to rows). The first column of A is the first row of AT; the second column of A is the
second row of AT; and so on. Thus, if A5 [aij], then AT5 [aji]. The operation of transposing
a matrix is illustrated by the following 23 3 matrix:

A5
a11 a12 a13
a21 a22 a23

� �
; AT 5

a11 a21
a12 a22
a13 a23

2
4

3
5 ðA:18Þ

Some properties of the transpose are

1. ðATÞT 5A ðA:19Þ
2. ðA1BÞT 5AT 1BT ðA:20Þ
3. ðαAÞT 5αAT; α5 scalar ðA:21Þ
4. ðABÞT 5BTAT ðA:22Þ

A.2.6 Elementary Row�Column Operations

There are three simple but extremely useful operations for rows or columns of a matrix.
They are used in later discussions, so we state them here:

1. Interchange any two rows (columns).
2. Multiply any row (column) by a nonzero scalar.
3. Add to any row (column) a scalar multiple of another row (column).

A.2.7 Equivalence of Matrices

A matrix A is said to be equivalent to another matrix B, written as ABB, if A can be
transformed into B by means of one or more elementary row and/or column operations. If
only row (column) operations are used, we say A is row (column) equivalent to B.

A.2.8 Scalar Product—Dot Product of Vectors

A special case of matrix multiplication of particular interest is the multiplication of a
row vector by a column vector. If x and y are two n-component vectors, then

xTy5
Xn
j51

xjyj ðA:23Þ
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where

xT 5 ½x1 x2 . . . xn� and y5 ½y1 y2 . . . yn�T ðA:24Þ
The product in Eq. (A.23) is called the scalar or dot product of x and y. It is also denoted as
(x �y). Note that since the dot product of two vectors is a scalar, xTy5 yTx.

Associated with any vector x is a scalar called the norm or length of the vector,
defined as

ðxTxÞ1=2 5
Xn
i51

x2i

 !1=2
ðA:25Þ

Often the norm of x is designated as jjxjj.

A.2.9 Square Matrices

A matrix having the same number of rows and columns is called a square matrix; other-
wise, it is called a rectangular matrix. The elements aii, i5 1 to n are called the main diagonal
elements and others are called the off-diagonal elements. A square matrix having zero entries
at all off-diagonal locations is called a diagonal matrix. If all main diagonal elements of a
diagonal matrix are equal, it is called a scalar matrix.

A square matrix A is symmetric if AT5A and asymmetric or unsymmetric otherwise. It is
antisymmetric if AT52A. If all elements below the main diagonal of a square matrix are
zero (aij5 0 for i . j), it is an upper triangular matrix. Similarly, a lower triangular matrix has
all zero elements above the main diagonal (aij5 0 for i , j). A matrix that has all zero
entries except in a band around the main diagonal is a banded matrix.

A square matrix having unit elements on the main diagonal and zeros elsewhere is an
identity matrix. An identity matrix of order n is denoted as I(n). Identity matrices are useful
because their pre- or postmultiplication with another matrix does not change them. For
example, let A be any m3 n matrix; then

IðmÞA5A5AIðnÞ ðA:26Þ
A scalar matrix S(n) having diagonal elements as α can be written as

SðnÞ 5αIðnÞ ðA:27Þ
Note that premultiplying or postmultiplying any matrix by a scalar matrix of proper

order results in multiplying the original matrix by the scalar. This can be proved for any
m3 n matrix A as follows:

SðmÞA5αIðmÞA5αA5αðAIðnÞÞ5AðαIðnÞÞ5ASðnÞ ðA:28Þ

A.2.10 Partitioning of Matrices

It is often useful to divide vectors and matrices into a smaller group of elements. This
can be done by partitioning a matrix into smaller rectangular arrays, called submatrices,
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and a vector into subvectors. For example, consider a matrix A as

A5

2 1 26 4 3
2 3 8 21 23
1 26 2 3 8

23 0 5 22 7

2
664

3
775
ð435Þ

ðA:29Þ

A possible partitioning of A is

A5

2 1 26 4 3
2 3 8 21 23
1 26 2 3 8

23 0 5 22 7

2
664

3
775
ð435Þ

ðA:30Þ

Therefore, the submatrices of A are

A11 5
2 1 26
2 3 8

� �
ð233Þ

A12 5
4 3

21 23

� �
ð232Þ

ðA:31Þ

A21 5
1 26 2

23 0 5

� �
ð233Þ

A22 5
3 8

22 7

� �
ð232Þ

ðA:32Þ

where Aij are matrices of proper order. Thus, A can be written in terms of submatrices as

A5
A11 A12

A21 A22

� �
ðA:33Þ

Note that partitioning of vectors and matrices must be proper so that the operations of
addition or multiplication remain defined. To see how two partitioned matrices are multi-
plied, consider A an m3 n matrix and B an n3 p matrix. Let these be partitioned as

A5
A11 A12

A21 A22

� �
ðm3 nÞ

; B5
B11 B12

B21 B22

� �
ðn3 pÞ

ðA:34Þ

Then the product AB can be written as

AB5
A11 A12

A21 A22

� �
B11 B12

B21 B22

� �
5

ðA11B11 1A12B21Þ ðA11B12 1A12B22Þ
ðA21B11 1A22B21Þ ðA21B12 1A22B22Þ
� �

ðm3 pÞ
ðA:35Þ

Note that the partitioning of matrices A and B must be such that the matrix products
A11B11, A12B21, A11B12, A12B22, and so on, are proper. In addition, the pairs of matrices
A11B11 and A12B21, A11B12, and A12B22, and so on, must be of the same order.

A.3 SOLVING n LINEAR EQUATIONS IN n UNKNOWNS

A.3.1 Linear Systems

Linear equations are encountered in numerous engineering and scientific applications.
Therefore, substantial work has been done to devise numerical solution procedures for
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them. It is important to understand the basic ideas and concepts related to linear equations
because we use them quite often in this text. In this section we will describe a basic proce-
dure, known as Gaussian elimination, for solving an n3 n (square) system of linear equations.
More general methods for solving a rectangular m3 n system are discussed in the next
section.

It turns out that the idea of determinants is closely related to solving a set of linear
equations, so first we discuss determinants and their properties. It also turns out that the
solution to a square system can be found by inverting the matrix associated with the sys-
tem, so we describe methods for inverting matrices.

Let us consider the following system of n equations in n unknowns:

Ax5b ðA:36Þ
where A is an n3 n matrix of specified constants, x is an n-vector of solution variables,
and b is an n-vector of specified constants known as the right-side vector. A is called the
coefficient matrix and when the vector b is added as the (n1 1)th column of A as [Ajb], the
result is called the augmented matrix for the given system of equations. If the right-side vec-
tor b is zero, Eq. (A.36) is called a homogeneous system; otherwise, it is called a nonhomoge-
neous system of equations.

The equation Ax5b can also be written in the following summation form:

Xn
j51

aijxj 5 bi; i5 1 to n ðA:37Þ

If each row of the matrix A is interpreted as an n-dimensional row vector, aðiÞ, the left side
of Eq. (A.37) can be interpreted as the dot product of two vectors:

ðaðiÞ � xÞ5 bi; i5 1 to n ðA:38Þ
If each column of A is interpreted as an n-dimensional column vector, a(i), the left side of
Eq. (A.36) can be interpreted as the summation of the scaled columns of the matrix A:

Xn
i51

aðiÞxi 5b ðA:39Þ

These interpretations can be useful in devising solution strategies for the system Ax5b
and in their implementation. For example, Eq. (A.39) shows that the solution variable xi is
simply a scale factor for the ith column of A; that is, variable xi is associated with the ith
column.

A.3.2 Determinants

To develop the solution strategies for the linear system Ax5b, we begin by introducing
the concept of determinants and studying their properties. The methods for calculating
determinants are intimately related to the procedures for solving linear equations, so we
will also discuss them.
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Every square matrix has a scalar associated with it, called the determinant, calculated
from its elements. To introduce the idea of determinants, we set n5 2 in Eq. (A.36) and
consider the following 23 2 system of simultaneous equations:

a11 a12
a21 a22

� �
x1
x2

� �
5

b1
b2

� �
ðA:40Þ

The number (a11a222 a21a12) calculated using elements of the coefficient matrix is called its
determinant. To see how this number arises, we will solve the system in Eq. (A.40) by the
elimination process.

Multiplying the first row by a22 and the second by a12 in Eq. (A.40), we get

a11a22 a12a22
a12a21 a12a22

� �
x1
x2

� �
5

a22b1
a12b2

� �
ðA:41Þ

Subtracting the second row from the first one in Eq. (A.41), we eliminate x2 from the first
equation and obtain

ða11a22 2 a12a21Þx1 5 a22b1 2 a12b2 ðA:42Þ
Now, repeating the foregoing process to eliminate x1 from the second row in Eq. (A.40)

by multiplying the first equation by a21 and the second by a11 and subtracting, we obtain

ða11a22 2 a12a21Þx2 5 a11b2 2 a21b1 ðA:43Þ
The coefficient of x1 and x2 in Eqs. (A.42) and (A.43) must be nonzero for a unique solution
to the linear system, that is, (a11a222 a12a21) 6¼ 0, and the values of x1 and x2 are calculated
as

x1 5
a22b1 2 a12b2
a11a22 2 a12a21

; x2 5
a11b2 2 a21b1
a11a22 2 a12a21

ðA:44Þ

The denominator (a11a222 a12a21) in Eqs. (A.44) is identified as the determinant of the
matrix A of Eq. (A.40). It is denoted by det(A), or jAj. Thus, for any 23 2 matrix A,

jAj5 a11a22 2 a12a21 ðA:45Þ
Using the definition of Eq. (A.45), we can rewrite Eq. (A.44) as

x1 5
B1j j
Aj j ; x2 5

B2j j
Aj j ðA:46Þ

where B1 is obtained by replacing the first column of A with the right side, and B2 is
obtained by replacing the second column of A with the right side:

B1 5
b1 a12
b2 a22

� �
; B2 5

a11 b1
a21 b2

� �
ðA:47Þ

Equation (A.46) is known as Cramer’s rule. According to this rule, we need to compute
only the three determinants—jAj, jB1j, and jB2j—to determine the solution to any 23 2
system of linear equations. If jAj5 0, there is no unique solution to Eq. (A.40). There may be an
infinite number of solutions or no solution at all. These cases are investigated in the next
section.

794 APPENDIX A. VECTOR AND MATRIX ALGEBRA



The preceding concept of a determinant can be generalized to n3 n matrices. For such a
system, there are n equations in Eq. (A.46) based on Cramer’s rule. For every square matrix
A of any order, we can associate a unique scalar, called the determinant of A. There are many
ways of calculating the determinant of a matrix. These procedures are closely related to
those used to solve the linear system of equations that we will discuss later in this section.

Properties of Determinants

The determinants have several properties that are useful in devising procedures for
their calculation. Therefore, these should be clearly understood.

1. The determinant of any square matrix A is also equal to the determinant of the
transpose of the matrix (i.e., jAj5 jATj).

2. If a square matrix A has two identical columns (or rows), then its determinant is zero
(i.e., jAj5 0).

3. If a new matrix is formed by interchanging any two columns (or rows) of a given
matrix A (elementary row�column operation 1), the determinant of the resulting
matrix is the negative of the determinant of the original matrix.

4. If a new matrix is formed by adding any multiple of one column (row) to a different
column (row) of a given matrix (elementary row�column operation 3), the
determinant of the resulting matrix is equal to the determinant of the original matrix.

5. If a square matrix B is identical to a matrix A, except some column (or row) is a scalar
multiple c of the corresponding column (or row) of A (elementary row�column
operation 2), then jBj5 cjAj.

6. If elements of a column (or row) of a square matrix A are zero, then jAj5 0.
7. If a square matrix A is lower or upper triangular, then the determinant of A is equal to

the product of the diagonal elements:

Aj j5 a11a22 U . . . U ann ðA:48Þ
8. If A and B are any two square matrices of the same order, then ABj j5 A Bjj .
9. Let jAijj denote the determinant of a matrix obtained by deleting the ith row and the

jth column of A (yielding a square matrix of order n21); the scalar jAijj is called the
minor of the element aij of matrix A.

10. The cofactor of aij is defined as

cofacðaijÞ5 ð21Þi1j Aij

�� �� ðA:49Þ
The determinant of A is calculated in terms of the cofactors as

Aj j5
Xn
j51

aij cofacðaijÞ; for any i ðA:50Þ

or

Aj j5
Xn
i51

aij cofacðaijÞ; for any j ðA:51Þ
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Note that the cofac(aij) is also a scalar obtained from the minor jAijj, but having a posi-
tive or negative sign determined by the indices i and j as (21)i1j. Equation (A.50) is called
the cofactor expansion for jAj by the ith row; Eq. (A.51) is called the cofactor expansion
for jAj by the jth column. Equations (A.50) and (A.51) can be used to prove Properties 2, 5,
6, and 7 directly.

It is important to note that it is difficult to use Eq. (A.50) or Eq. (A.51) to calculate the
determinant of A. These equations require calculation of the cofactors of the elements aij,
which are determinants in themselves. However, using the elementary row and column
operations, a square matrix can be converted to either lower or upper triangular form. The
determinant is then computed using Eq. (A.48). This is illustrated in an example later in
this section.

Singular Matrix

A matrix having a zero determinant is called a singular matrix; a matrix with a nonzero
determinant is called nonsingular. A nonhomogeneous n3n system of equations has a unique
solution if and only if the matrix of coefficients is nonsingular. These properties are dis-
cussed and used subsequently to develop methods for solving a system of linear
equations.

Leading Principal Minor

Every n3 n square matrix A has certain scalars associated with it, called the leading
principal minors. They are obtained as determinants of certain submatrices of A, and are
useful in determining the “form” of a matrix that is needed to check sufficiency conditions
for optimality as well as the convexity of functions, as discussed in Chapter 4. Therefore,
we examine leading principal minors here.

Let Mk, k5 1 to n be called the leading principal minors of A. Then each Mk is defined
as the determinant of the following submatrix:

Mk 5 Akkj j; k5 1 to n ðA:52Þ

where Akk is a k3 k submatrix of A obtained by deleting the last (n2 k) columns and the
corresponding rows. For example, M15 a11, M25determinant of a 23 2 matrix obtained
by deleting all rows and columns of A except the first two, and so on, are the leading prin-
cipal minors of the matrix A.

A.3.3 Gaussian Elimination Procedure

The elimination process described in Section A.3.1 for solving a 23 2 system of equa-
tions can be generalized to solve any n3 n system of equations. The entire process can be
organized and explained using matrix notation. The procedure, which can also be used to
calculate the determinant of any matrix, is known as Gaussian elimination. We will describe
it in detail in the following.

796 APPENDIX A. VECTOR AND MATRIX ALGEBRA



Using the three elementary row�column operations defined in Section A.2, the system
Ax5b of Eq. (A.36) can be transformed into the following form:

1 a12 a13 . . . a1n
0 1 a23 . . . a2n
^ ^ ^ ^
0 0 0 . . . 1

2
664

3
775

x1
x2
^
xn

2
664

3
7755

b1
b2
^

bn

2
664

3
775 ðA:53Þ

Or, in expanded form, Eq. (A.53) becomes

x1 1 a12x2 1 a13x3 1 . . . 1 a1nxn 5 b1

x2 1 a23x3 1 . . . 1 a2nxn 5 b2

x3 1 . . . 1 a3nxn 5 b3

^ ^

xn 5 bn

ðA:54Þ

Note that we use aij and bi to represent modified elements aij and bj of the original sys-
tem. From the nth equation of the system (A.54), we have xn 5 bn. If we substitute this
value into the (n21)th equation of (A.54), we can solve for xn21:

xn21 5 bn21 2 an21;nxn 5 bn21 2 an21;nbn ðA:55Þ
Equation (A.55) can now be substituted into the (n22)th equation of (A.54) and xn22

can be determined. Continuing in this manner, each of the unknowns can be solved in
reverse order: xn, xn21, xn22, . . ., x2, x1. The procedure of reducing a system of n equations
in n unknowns and then solving successively for xn, xn21, xn22, . . ., x2, x1 is called Gaussian
elimination or Gauss reduction. The latter part of the method (solving successively for xn,
xn21, xn22, . . ., x2, x1) is called backward substitution, or backward pass.

Elimination Procedure

The Gaussian elimination procedure uses elementary row�column operations to convert
the main diagonal elements of the given coefficient matrix to 1 and the elements below the
main diagonal to zero. To carry out these operations we use the following steps:

1. We start with the first row and the first column of the given matrix augmented with the
right side of the system of equations.

2. To make the diagonal element 1, the first row is divided by the diagonal element.
3. To convert the elements in the first column below the main diagonal to zero, we

multiply the first row by the element ai1 in the ith row (i5 2 to n). The resulting
elements of the first row are subtracted from the ith row. This makes the element ai1
zero in the ith row.

4. The operations in Step 3 are carried out for each row using the first row for elimination
each time.

5. Once all of the elements below the main diagonal are zero in the first column, the procedure
is repeated for the second column using the second row for elimination, and so on.
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The row used to obtain zero elements in a column is called the pivot row, and the col-
umn in which elimination is performed is called the pivot column. We will illustrate this
procedure in an example later.

The foregoing operations of converting elements below the main diagonal to zero can be
explained in another way. When we make the elements below the main diagonal in the first
column zero, we are eliminating the variable x1 from all of the equations except the first one
(x1 is associated with the first column). For this elimination step we use the first equation. In
general, when we reduce the elements below the main diagonal in the ith column to zero,
we use the ith row as the pivot row. Thus, we eliminate the ith variable from all equations
below the ith row. This explanation is quite straightforward once we realize that each col-
umn of the coefficient matrix has a variable associated with it, as noted before.

EXAMPLE A.3 SOLUTIONS TO EQUATIONS BY GAUSSIAN
ELIMINATION

Solve the following 33 3 system of equations:

x1 2 x2 1 x3 5 0

x1 2 x2 1 2x3 5 1

x1 1 x2 1 2x3 5 5

ðaÞ

Solution
We will illustrate the Gaussian elimination procedure in a step-by-step manner using the aug-

mented matrix idea. The augmented matrix for Eq. (a) is defined using the coefficients of the

variables in each equation and the right-side parameters:

B5

x1 x2 x3 b
1 21 1 0
1 21 2 1
1 1 2 5

2
4

3
5 ðbÞ

To convert the preceding system to the form of Eq. (A.53), we use the elementary row�column

operations as follows:

1. Add 21 3 row 1 to row 2 and 21 3 row 1 to row 3 (eliminating x1 from the second and

third equations; elementary row operation 3):

BB

x1 x2 x3 b
1 21 1 0
0 0 1 1
0 2 1 5

2
4

3
5

recall that symbol ‘‘B’’
means equivalence
between matrices

0
@

1
A ðcÞ

2. Since the element at location (2, 2) is zero, interchange rows 2 and 3 to bring a nonzero element

to that location (elementary row operation 1). Then dividing the new second row by 2 gives

BB

x1 x2 x3 b
1 21 1 0
0 1 0:5 2:5
0 0 1 1

2
4

3
5 ðdÞ
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3. Since the element at the location (3, 3) is one and all elements below the main diagonal are

zero, the foregoing matrix puts the system of Eqs. (a) into the form of Eq. (A.53):

1 21 1
0 1 0:5
0 0 1

2
4

3
5 x1

x2
x3

2
4

3
55

0
2:5
1

2
4

3
5 ðeÞ

Performing backward substitution, we obtain

x3 5 1ðfrom third rowÞ
x2 5 2:520:5x3 5 2ðfrom second rowÞ
x1 5 02x3 1 x2 5 1ðfrom first rowÞ

ðfÞ

Therefore, the solution to Eq. (a) is

x1 5 1; x2 5 2; x3 5 1 ðgÞ

The Gaussian elimination method can easily be transcribed into a general-purpose com-
puter program that can handle any given system of linear equations. However, certain
modifications must be made to the procedure because numerical calculations on a
machine with a finite number of digits introduce round-off errors. These errors can
become significantly large if certain precautions are not taken. The modifications primarily
involve a reordering of the rows or columns of the augmented matrix in such a way that
possible round-off effects tend to be minimized.

This reordering must be performed at each step of the elimination process so that the
diagonal element of the pivot row is the absolute largest among the elements of the
remaining matrix on the lower right side. This is known as the total pivoting procedure.
When only the rows are interchanged to bring the absolute largest element from a column
to the diagonal location, the procedure is known as partial pivoting. Note that many pro-
grams are available to solve a system of linear equations. Thus, before attempting to write
a program for Gaussian elimination, availability of existing programs should be explored.

EXAMPLE A.4 DETERMINANT OF A MATRIX BY GAUSSIAN
ELIMINATION

The Gaussian elimination procedure can also be used to calculate the determinant of a matrix.

We illustrate the procedure for the following 33 3 matrix:

A5
2 3 0
1 2 1
0 3 4

2
4

3
5 ðaÞ

Solution
Using the Gaussian elimination procedure, we make the elements below the main diagonal

zero, but this time the diagonal elements are not converted to unity. Once the matrix is converted

to that form, the determinant is obtained using Eq. (A.48).
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2 3 0

1 2 1

0 3 4

2
64

3
75B

2 3 0

0 0:5 1

0 3 4

2
64

3
75 ðelimination in the first columnÞ

B

2 3 0

0 0:5 1

0 0 22

2
64

3
75 ðelimination in the second columnÞ

ðbÞ

The preceding system is in the upper-triangular form, and jAj is given simply by multiplication

of all the diagonal elements:

Aj j5 ð2Þ ð0:5Þ ð22Þ522 ðcÞ

A.3.4 Inverse of a Matrix: Gauss-Jordan Elimination

If the multiplication of two square matrices results in an identity matrix, they are called
the inverse of each other. Let A and B be two square matrices of order n. Then B is called
the inverse of A if

AB5BA5 IðnÞ ðA:56Þ
The inverse of A is usually denoted A21. We will later describe methods to calculate the
inverse of a matrix.

Not every square matrix may have an inverse. A matrix having no inverse is called a
singular matrix. If the coefficient matrix of an n3 n system of equations has an inverse,
then the system can be solved for the unknown variables. Consider the n3 n system of
equations Ax5b, where A is the coefficient matrix and b is the right-side vector.
Premultiplying both sides of the equation by A21, we get

A21Ax5A21b ðA:57Þ
Since A21A5 I, the equation reduces to

x5A21b ðA:58Þ
Thus, if we know the inverse of matrix A, the preceding equation can be used to solve for
the unknown vector x.

Inverse by Cofactors

There are a couple of ways to calculate the inverse of a nonsingular matrix. The first is
based on use of the cofactors of A and its determinant. If B is the inverse of A, its elements
are given as (called inverse using cofactors)

bji 5
cofacðaijÞ

Aj j ; i5 1 to n; j5 1 to n ðA:59Þ
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Note that indices on the left side of the equation are ji and on the right side they are ij.
Thus, the cofactors of the row of matrix A generate the corresponding column of the
inverse matrix B.

The procedure just described is reasonable for smaller matrices up to, say, 33 3. For
larger matrices, it becomes cumbersome and inefficient.

Inverse by Gaussian Elimination

A clue to the second procedure for calculating the inverse is provided by Eq. (A.56). In that
equation, elements of B can be considered as unknowns for the system of linear equations

AB5 I ðA:60Þ
Thus, the system can be solved using the Gaussian elimination procedure to obtain the
inverse of A. We illustrate the procedure with an example.

EXAMPLE A.5 INVERSE OF A MATRIX BY COFACTORS
AND GAUSS-JORDAN REDUCTION

Compute the inverse of the following 33 3 matrix:

A5
1 3 0
1 2 0
0 3 1

2
4

3
5 ðaÞ

Solution
Inverse by cofactors Let B be a 33 3 matrix that is the inverse of matrix A. In order to use

the cofactors approach given in Eq. (A.59), we first calculate the determinant of A as jAj521.

Using Eq. (A.49), the cofactors of the first row of A are

cofacða11Þ5 ð21Þ111 2 0
3 1

����
����5 2 ðbÞ

cofacða12Þ5 ð21Þ112 1 0
0 1

����
����521 ðcÞ

cofacða13Þ5 ð21Þ113 1 2
0 3

����
����5 3 ðdÞ

Similarly, the cofactors of the second and third rows are

23; 1; 23; 0; 0; 21 ðeÞ
Thus, Eq. (A.59) gives the inverse of A as

B5
22 3 0
1 21 0

23 3 1

2
4

3
5 ðfÞ
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Inverse by Gaussian elimination We will first demonstrate the Gaussian elimination proce-

dure before presenting the Gauss-Jordan procedure. Since B is the inverse of A, AB5 I. Or,

writing this in the expanded form,

1 3 0
1 2 0
0 3 1

2
4

3
5 b11 b12 b13

b21 b22 b23
b31 b32 b33

2
4

3
55

1 0 0
0 1 0
0 0 1

2
4

3
5 ðgÞ

where bij are the elements of A. The foregoing equation can be considered a system of simulta-

neous equations having three different right-side vectors. We can solve for each unknown col-

umn on the left side corresponding to each right-side vector by using the Gaussian elimination

procedure. For example, considering the first column of B only, we obtain

1 3 0
1 2 0
0 3 1

2
4

3
5 b11

b21
b31

2
4

3
55

1
0
0

2
4
3
5 ðhÞ

Using the elimination procedure in the augmented matrix form, we obtain

1 3 0 1

1 2 0 0

0 3 1 0

2
64

3
75B

1 3 0 1

0 21 0 21

0 3 1 0

2
64

3
75 ðelimination in the first columnÞ

B

1 3 0 1

0 1 0 1

0 0 1 23

2
64

3
75 ðelimination in the second columnÞ

ðiÞ

Using back substitution, we obtain the first column of B as b31523, b215 1, b11522. Similarly,

we find b125 3, b22521, b325 3, b135 0, b235 0, and b335 1. Therefore, the inverse of A is

given as

B5
22 3 0
1 21 0

23 3 1

2
4

3
5 ðjÞ

Inverse by Gauss-Jordan elimination We can organize the procedure for calculating the inverse

of a matrix slightly differently. The augmented matrix can be defined with all three columns of the

right side. The Gaussian elimination process can be carried out below as well as above the main

diagonal. With this procedure, the left 33 3 matrix is converted to an identity matrix; the right 33 3

matrix then contains the inverse of the matrix. When elimination is performed below as well as

above the main diagonal, the procedure is called Gauss-Jordan elimination. The process proceeds as

follows for calculating the inverse ofA:

1 3 0 1 0 0

1 2 0 0 1 0

0 3 1 0 0 1

2
64

3
75 ðaugmented martrixÞ
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B

1 3 0 1 0 0

0 21 0 21 1 0

0 3 1 0 0 1

2
64

3
75 ðelimination in the first columnÞ

B

1 0 0 22 3 0

0 1 0 1 21 0

0 0 1 23 3 1

2
64

3
75 ðelimination in the second columnÞ

ðkÞ

There is no need to perform elimination on the third column since a13 5 a23 5 0 and a33 5 1.

We observe from the above matrix that the last three columns give precisely the matrix B, which

is the inverse of A.

The Gauss-Jordan procedure for computing the inverse of a 33 3 matrix can be generalized to

any nonsingular n3 n matrix. It can also be coded systematically into a general-purpose com-

puter program to compute the inverse of a matrix.

A.4 SOLUTION TO m LINEAR EQUATIONS
IN n UNKNOWNS

In the last section, the concept of determinants was used to ascertain the existence of a
unique solution for any n3 n system of equations. There are many instances in engineer-
ing applications where the number of equations is not equal to the number of variables—
that is, rectangular systems. In a system of m equations in n unknowns (m 6¼ n), the matrix
of coefficients is not square. Therefore, no determinant can be associated with it. Thus, to
treat such systems, a more general concept than determinants is needed. We introduce
such a concept in this section.

A.4.1 Rank of a Matrix

The general concept needed to develop the solution procedure for a general m3 n sys-
tem of equations is known as the rank of the matrix, defined as the order of the largest nonsin-
gular square submatrix of the given matrix. Using the idea of rank of a matrix, we can
develop a general theory for the solution of a system of linear equations.

Let r be the rank of an m3 n matrix A. Then r satisfies the following conditions:

1. For m, n, r # m, n (if r5m, the matrix is said to have full row rank).
2. For n,m, r # n,m (if r5 n, the matrix is said to have full column rank).
3. For n5m, r # n (if r5 n, the square matrix is called nonsingular).

To determine the rank of a matrix, we need to check the determinants of all of the sub-
matrices. This is a cumbersome and time-consuming process. However, it turns out that
the Gauss-Jordan elimination process can be used to solve the linear system as well as
determine the rank of the matrix.
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Using the Gauss-Jordan elimination procedure, we can transform any m3 n matrix A
into the following equivalent form (for m, n):

AB
IðrÞ 0ðr3 n2 rÞ
0ðm2 r3 rÞ 0ðm2 r3n2 rÞ
� �

ðA:61Þ

where I(r) is the r3 r identity matrix. Then r is the matrix’s rank, where r satisfies one of
the preceding three conditions. Note that the identity matrix I(r) is unique for any given
matrix.

EXAMPLE A.6 RANK DETERMINATION BY ELEMENTARY
OPERATIONS

Determine rank of the following matrix:

A5
2 6 2 4

22 24 2 2
1 2 21 21

2
4

3
5 ðaÞ

Solution
The elementary operations lead to the following matrices:

AB
1 3 1

22 24 2
1 2 21

2
2

21

2
4

3
5 ðobtained by multiplying row 1 by 1

2 in Eq: ðaÞÞ ðbÞ

AB
1 3 1
0 2 4
0 21 22

2
6

23

2
4

3
5 obtained by adding 2 times row 1 to row 2

and21 times row 1 to row 3 in Eq: ðbÞ
� �

ðcÞ

AB
1 0 0
0 2 4
0 21 22

0
6

23

2
4

3
5 obtained by adding23 times column 1 to column 2;

21 times column 1 to column 3;
22 times column 1 to column 4 in Eq: ðcÞ

0
@

1
A ðdÞ

AB
1 0 0 0
0 1 2 3
0 0 0 0

2
4

3
5 obtained by multiplying row 2 by 1

2
and adding it to row 3 in Eq: ðdÞ

� �
ðeÞ

AB
1 0 0 0
0 1 0 0
0 0 0 0

2
4

3
5 obtained by adding22 times column 2 to column 3

and23 times column 2 to column 4 in Eq: ðeÞ
� �

ðfÞ

The matrix in Eq. (e) is in the form of Eq. (A.61). The rank of A is 2, since a 23 2 identity matrix

is obtained at the upper left corner.

A.4.2 General Solution of m3n Linear Equations

Let us now consider solving a system of m simultaneous equations in n unknowns. The
existence of a solution for such a system depends on the rank of the system’s coefficient
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matrix and the augmented matrix. Let the system be represented as

Ax5b ðA:62Þ
where A is an m3 n matrix, b is an m-vector, and x is an n-vector of the unknowns. Note that
m may be larger than n; that is, there may be more equations than unknowns. In that case,
either the system is inconsistent (has no solution) or some of the equations are redundant and
may be deleted. The solution process described in the following can treat these cases.

Note that if an equation is multiplied by a constant, the solution to the system is
unchanged. If c times one equation is added to another, the solution to the resulting sys-
tem is the same as for the original system. Also, if two columns of the coefficient matrix
are interchanged (for example, columns i and j), the resulting set of equations is equivalent
to the original system; however, the solution variables xi and xj are interchanged in the
vector x as follows:

x5 ½x1 x2 . . . xi21 xj
k

xi11 . . . xj21 xi
k

xj11 . . . xn�T ðA:63Þ
This indicates that each column of the coefficient matrix has a variable associated with it, as also
noted earlier, for example, xi and xj for the ith and the jth columns, respectively.

Using the elementary row�column operations, it is always possible to convert a system
of m equations in n unknowns in Eq. (A.62) into an equivalent system of the form shown
in the Eq. (A.64). In the equation, a bar over each element indicates its new value, obtained
by performing row�column operations on the augmented matrix of the original system.
The value of the subscript r in Eq. (A.64) is the rank of the coefficient matrix.

1 a12 a13 a14 ? a1r ? a1n
0 1 a23 a24 ? a2r ? a2n
0 0 1 a34 ? a3r ? a3n
: : : 1 : :
: : : : : :
: : : : : :
0 0 0 0 ? 1 ? arn
0 0 0 0 ? 0 ? 0
: : : : : :
: : : : : :
: : : : : ? :
0 0 0 0 ? 0 0

2
6666666666666666664

3
7777777777777777775

x1
x2
x3
:
:
:

:
:
:

xn

2
6666666666666666664

3
7777777777777777775

5

b1
b2
b3
:
:
:

br
br1 1

:
:
:

bm

2
6666666666666666664

3
7777777777777777775

ðA:64Þ

Note that if br11 5 br12 5 . . . 5 bm 5 0 in Eq. (A.64), then the last (m2 r) equations become

0x1 1 0x2 1?1 0xn 5 0 ðA:65Þ
These rows can be eliminated from further consideration. However, if any of the last

(m2 r) components of vector b is not 0, then at least one of the last (m2 r) equations is
inconsistent and the system has no solution. Note also that the rank of the coefficient matrix
equals the rank of the augmented matrix if and only if bi 5 0; i5 ðr1 1Þ to m. Thus, a sys-
tem of m equations in n unknowns is consistent (i.e., possesses solutions) if and only if the rank of
the coefficient matrix equals the rank of the augmented matrix.
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If elementary operations are performed below as well as above the main diagonal to
eliminate off-diagonal elements (Gauss-Jordan elimination procedure), an equivalent sys-
tem of the following form is obtained:

IðrÞ Qðr3n2rÞ
0ðm2r3rÞ 0ðm2r3n2rÞ

� �
xðrÞ
xðn2rÞ

� �
5

qðr11Þ
pðm2r31Þ

� �
ðA:66Þ

Here I(r) is an r3 r identity matrix, and x(r) and x(n2r) are the r-component and (n2 r)-com-
ponent subvectors of vector x.

Note that, depending on the values of r, n, and m, the equation can have several differ-
ent forms. For example, if r5 n, the matrices Q(r3n2r), 0(m2r3n2r), and the vector x(n2r) dis-
appear; similarly, if r5m, matrices 0(m2r3r), 0(m2r3n2r), and the vector p(m2r31) disappear.
The system of equations (A.62) is consistent only if vector p5 0 in Eq. (A.66). It must be
remembered that for every interchange of columns necessary to produce Eq. (A.66), the correspond-
ing components of x must be interchanged.

When the system is consistent, the first line of Eq. (A.66) gives

IðrÞxðrÞ 1Qxðn2rÞ 5q ðA:67Þ
or

xðrÞ 5q2Qxðn2rÞ ðA:68Þ
Equation (A.68) gives r components of x in terms of the remaining (n2 r) components.

If the system is consistent, Eq. (A.68) represents the general solution to the system of equa-
tions Ax5b. The last (n2 r) components of x can be assigned arbitrary values; any assign-
ment to xr11, . . ., xn yields a solution. Thus, the system of equations has infinitely many
solutions. If r5 n, the solution is unique. Equation (A.66) is known as the canonical repre-
sentation of the system of equations Ax5b. This form representation is very useful in solv-
ing the linear programming problems given in Chapter 8.

The following examples illustrate the Gauss-Jordan elimination procedure.

EXAMPLE A.7 GENERAL SOLUTION BY GAUSS-JORDAN
REDUCTION

Find a general solution to the set of equations

x1 1 x2 1 x3 1 5x4 5 6

x1 1 x2 22x3 2 x4 5 0

x1 1 x2 2 x3 1 x4 5 2

ðaÞ

Solution
The augmented matrix for the set of equations is given as

AB

x1 x2 x3 x4 b
1 1 1 5 6
1 1 22 21 0
1 1 21 1 2

2
4

3
5 and x5

x1
x2
x3
x4

2
664

3
775 ðbÞ
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The following elimination steps are used to transform the system into canonical form:

1. Subtracting row 1 from rows 2 and 3, we convert elements below the main diagonal in the

first column (a21 and a31) to 0; that is, we eliminate x1 from equations 2 and 3, and obtain

AB

x1 x2 x3 x4 b
1 1 1 5 6
0 0 23 26 26
0 0 22 24 24

2
4

3
5 ðcÞ

2. Now, since a22 is zero we cannot proceed any further with the elimination process. We

must interchange rows and/or columns to bring a nonzero element to location a22. We can

interchange either column 3 or column 4 with column 2 to bring a nonzero element into

position a22. (Note that the last column can never be interchanged with any other column; it

is the right side of the system Ax5b, so it does not correspond to a variable.) Interchanging

column 2 with column 3 (elementary column operation 1), we obtain

AB

x1 x3 x2 x4 b
1 1 1 5 6
0 23 0 26 26
0 22 0 24 24

2
4

3
5 and x5

x1
x3
x2
x4

2
664

3
775 ðdÞ

Note that the positions of the variables x2 and x3 are also interchanged in the vector x.

3. Now, dividing row 2 by 23, multiplying it by 2, and adding to row 3 gives

AB

x1 x3 x2 x4 b
1 1 1 5 6
0 1 0 2 2
0 0 0 0 0

2
4

3
5 ðeÞ

Thus elements below the main diagonal in Eq. (e) are zero and the Gaussian elimination

process is complete.

4. To put the equations in the canonical form of Eq. (A.66), we need to perform elimination above

the main diagonal also (Gauss-Jordan elimination). Subtracting row 2 from row 1, we obtain

AB

x1 x3 x2 x4 b
1 0 1 3 4
0 1 0 2 2
0 0 0 0 0

2
4

3
5 ðfÞ

Note that the third row in both Eq. (e) and Eq. (f) has all zeros. This implies that the third

equation in Eq. (a) is linearly dependent on the others. Since the right side of this equation is

also zero in Eq. (f), the linear system in Eq. (a) is consistent. The rank of the coefficient matrix

and the augmented matrix is 2.

5. Using the matrix of Eq. (f), the given system of equations is transformed into the canonical

form of Eq. (A.66) as follows:

1 0 1 3
0 1 0 2
0 0 0 0

2
4

3
5

x1
x3
x2
x4

2
664

3
7755

4
2
0

2
4
3
5 ðgÞ
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or

Ið2Þ Qð232Þ
0ð132Þ 0ð132Þ

� � x1
x3
x2
x4

2
664

3
7755

qð231Þ
pð131Þ

� �
ðhÞ

where

Q5
1 3
0 2

� �
; q5

4
2

� �
; p5 0

xðrÞ 5 ðx1; x3Þ; xðn2rÞ 5 ðx2; x4Þ
ðiÞ

6. Since p5 0, the given system of equations is consistent (i.e., it has solutions). Its general

solution, in the form of Eq. (A.68), is

x1
x3

� �
5

4
2

� �
2

1 3
0 2

� �
x2
x4

� �
ðjÞ

Or, in the expanded notation, the general solution is

x1 5 42 x2 2 3x4

x3 5 22 2x4
ðkÞ

7. It can be seen that the general solution to Eq. (k) gives x1 and x3 in terms of x2 and x4; that is,

x2 and x4 are independent variables and x1 and x3 are dependent on them. The system has infinite

solutions because any specification for x2 and x4 gives a solution.

Basic Solutions

In the preceding general solution in Eq. (k), we see that x2 and x4 can be given arbitrary
values and that the corresponding x1 and x3 can be calculated. Therefore the system has an
infinite number of solutions. A particular solution of much interest in linear programming
(LP) is obtained by setting x(n2r)5 0 in the general solution of Eq. (A.68). Such a solution
is called the basic solution for the linear equations Ax5b. For the present example, a basic
solution is x15 4, x25 0, x35 2, and x45 0, which is obtained from Eq. (k) by setting
x25 x45 0.

Note that although Eq. (k) gives an infinite number of solutions to the system of
equations, the number of basic solutions is finite. For example, another basic solution
can be obtained by setting x25 x35 0 and solving for x1 and x4. It can be verified that
this basic solution is x15 1, x25 0, x35 0, and x45 1. The fact that the number of basic
solutions is finite is very important for the linear programming problems discussed in
Chapter 8. The reason is that the optimum solution for an LP problem is one of the basic
solutions.
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EXAMPLE A.8 GAUSS-JORDAN REDUCTION PROCESS
IN TABULAR FORM

Find a general solution to the following set of equations using a tabular form of the Gauss-

Jordan elimination process:

2x1 1 2x2 23x3 1 x4 521

2x1 1 x2 1 x3 22x4 5 2

x1 2 x2 1 2x3 1 x4 5 3

x1 1 3x2 22x3 2 x4 5 1

ðaÞ

Solution
The iterations of the Gauss-Jordan reduction process for the linear system are explained in

Table A.1. Three iterations are needed to reduce the given system to the canonical form of

Eq. (A.66). Note that at the second step, the element a33 is zero so it cannot be used as a pivot ele-

ment. Therefore, we use element a34 as the pivot element and perform elimination in the x4 col-

umn. This effectively means that we interchange column x3 with column x4 (similar to what was

done in Example A.7).

Rewriting the results from the third step of Table A.1 in the form of Eq. (A.66), we get

x1 x2 x4 x3
1 0 0 1
0 1 0 21
0 0 1 0
0 0 0 0

2
664

3
775

x1
x2
x4
x3

2
664

3
7755

2
0
1
0

2
664
3
775 ðbÞ

Since the last equation essentially gives 05 0, the given system of equations is consistent (i.e., it

has solutions). Also, since the rank of the coefficient matrix is 3, which is less than the number of

equations, there are an infinite number of solutions for the linear system.

From Eq. (b), the general solution is given as

x1 5 22 x3

x2 5 01 x3

x4 5 1

ðcÞ

A basic solution is obtained by setting x3 to zero as x15 2, x25 0, x35 0, and x45 1.

To summarize the results of this section, we note that

1. The m3 n system of equations (A.62) is consistent if the rank of the coefficient matrix is
the same as the rank of the augmented matrix. A consistent system implies that it has a
solution.

2. If the number of equations is less than the number of variables (m,n) and the system
is consistent, having a rank less than or equal to m (r # m), then it has infinitely many
solutions.

3. If m5 n5 r, then the system in Eq. (A.62) has a unique solution.
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A.5 CONCEPTS RELATED TO A SET OF VECTORS

In several applications, we come across a set of vectors. It is useful to discuss some con-
cepts related to these sets, such as the linear independence of vectors and vector spaces. In
this section, we briefly discuss these concepts and describe a procedure for checking the
linear independence of a set of vectors.

A.5.1 Linear Independence of a Set of Vectors

Consider a set of k vectors, each of dimension n:

A5 að1Þ; að2Þ; . . . ; aðkÞ
� � ðA:69Þ

where a superscript (i) represents the ith vector. A linear combination of vectors in the set A
is another vector obtained by scaling each vector in A and adding all the resulting vectors.
That is, if b is a linear combination of a vector in A, it is defined as

TABLE A.1 General solution for the linear system of equations in Example A.8
by Gauss-Jordan elimination

Step x1 x2 x3 x4 b

Initial

21 2 23 1 21 Divide row 1 by 21 and use it to perform elimination in column x1, e.g.,
multiply new row 1 by 2 and subtract it from row 2, etc.

2 1 1 22 2

1 21 2 1 3

1 3 22 21 1

1 22 3 21 1

First
iteration

0 5 25 0 0 Divide row 2 by 5 and perform elimination in column x2

0 1 21 2 2

0 5 25 0 0

1 0 1 21 1

Second
iteration

0 1 21 0 0

0 0 0 2 2 Divide row 3 by 2 and perform elimination in column x4

0 0 0 0 0

1 0 1 0 2 Canonical form with columns x1, x2, and x4 containing the identity matrix

Third
iteration

0 1 21 0 0

0 0 0 1 1

0 0 0 0 0
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b5 x1a
ð1Þ 1 x2a

ð2Þ 1 . . . 1 xka
ðkÞ 5

Xk
i51

xia
ðiÞ ðA:70Þ

where x1, x2, . . ., xk are some scalars. The preceding equation can be written compactly in
matrix form as

b5Ax ðA:71Þ
where x is a k-component vector and A is an n3 k matrix with vectors a(i) as its columns.

To determine whether the set of vectors is linearly independent or dependent, we set the
linear combination of Eq. (A.70) to zero:

x1a
ð1Þ 1 x2a

ð2Þ 1 . . . 1 xka
ðkÞ 5 0; or Ax5 0 ðA:72Þ

This gives a homogeneous system of equations with xi as unknowns. There are n equations
in k unknowns. Note that x5 0 satisfies Eq. (A.72).

If x5 0 is the only solution, then the set of vectors is linearly independent. In this case, rank r of
the matrix A must be equal to k (the number of vectors in the set). If there exists a set of scalars xi
not all zero that satisfies Eq. (A.72), then the given set A of vectors a(l), a(2), . . ., a(k) is said to be
linearly dependent. In this case rank r of A is less than k.

If a set of vectors is linearly dependent, then one or more vectors are parallel to each other,
or there is at least one vector that can be expressed as a linear combination of the rest.
That is, at least one of the scalars x1, x2, . . ., xk is nonzero. If we assume xj to be nonzero,
then Eq. (A.72) can be written as follows:

2xja
ðjÞ5x1a

ð1Þ1x2a
ð2Þ1 . . .1xj21a

ðj21Þ1xj11a
ðj11Þ1 . . .1xka

ðkÞ5
Xk
i51

xia
ðiÞ; i 6¼ j ðA:73Þ

Or, since xj 6¼ 0, we can divide both sides by it to obtain

aðjÞ 52
Xk
i51

ðxi=xjÞ aðiÞ; i 6¼ j ðA:74Þ

In Eq. (A.74) we have expressed a(j) as a linear combination of the vectors a(1), a(2), . . ., a(j21),
a(j11), . . ., a(k). In general, we see that if a set of vectors is linearly dependent, then at least one
of them can be expressed as a linear combination of the rest.

EXAMPLE A.9 CHECK FOR LINEAR INDEPENDENCE OF VECTORS

Check the linear independence of the following set of vectors:

(i) að1Þ 5

2
5
2

21

2
664

3
775; að2Þ 5

3
2
1
0

2
664
3
775; að3Þ 5

8
9
4

21

2
664

3
775
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(ii) að1Þ 5

2
6
2

22

2
664

3
775; að2Þ 5

4
3
2
0

2
664
3
775; að3Þ 5

6
9
4
1

2
664
3
775

Solution
To check for linear independence, we form the linear combination of Eq. (A.70) and set it to zero

as in Eq. (A.72). The resulting homogeneous system of equations is solved for the scalars xi. If all of

the scalars are zero, then the given set of vectors is linearly independent; otherwise, it is dependent.

The vectors in set (i) are linearly dependent, since x15 1, x25 2, and x3521 give the linear

combination of Eq. (A.72) a zero value; that is,

að1Þ 1 2að2Þ 2 að3Þ 5 0 ðaÞ
It may also be checked that the rank of the following matrix, whose columns are the given vec-

tors, is only 2; thus the set of vectors is linearly dependent:

A5

2 3 8
5 2 9
2 1 4

21 0 21

2
664

3
775 ðbÞ

For set (ii), let us form a linear combination of the given vectors and set it to zero:

x1a
ð1Þ 1 x2a

ð2Þ 1 x3a
ð3Þ 5 0 ðcÞ

This is a vector equation that gives the following system when written in the expanded form:

2x1 1 4x2 1 6x3 5 0 ðdÞ
6x1 1 3x2 1 9x3 5 0 ðeÞ
2x1 1 2x2 1 4x3 5 0 ðfÞ

22x1 1 x3 5 0 ðgÞ
We solve the preceding system of equations by the elimination process.

From Eq. (g), we find x35 2x1. Equations (d) through (f) then become

14x1 1 4x2 5 0 ðhÞ
24x1 1 3x2 5 0 ðiÞ
10x1 1 2x2 5 0 ðjÞ

From Eq. (j), we find x2525x1. Substituting this result into Eqs. (h) and (i) gives

14x1 1 4 ð25x1Þ526x1 5 0 ðkÞ
24x1 1 3 ð25x1Þ5 9x1 5 0 ðlÞ

Equations (k) and (l) imply that x15 0; therefore, x2525x15 0, x35 2x15 0. Thus the only

solution to Eq. (c) is the trivial one, x15 x25 x35 0. The vectors a(1), a(2), and a(3) are therefore lin-

early independent.
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Equation (A.72) may be considered a set of n simultaneous equations in k unknowns.
To see this, define the k vectors as

að1Þ 5

a11
a21
a31
:
:
:
an1

2
666666664

3
777777775
; að2Þ 5

a12
a22
a32
:
:
:
an2

2
666666664

3
777777775

. . . ; aðkÞ 5

a1k
a2k
a3k
:
:
:
ank

2
666666664

3
777777775
; x5

x1
x2
:
:
:
xk

2
6666664

3
7777775

ðA:75Þ

Also, let A(n3k)5 [a(1), a(2), . . ., a(k)]; that is, A is a matrix with an ith column that is the ith
vector a(i). Then Eq. (A.72) can be written as

Ax5 0 ðA:76Þ
The results of Section A.4 show that there is a unique solution to Eq. (A.76) if and only

if the rank r of A is equal to k (r5 k,n), the number of columns of A. In that case, the
unique solution is x5 0. Therefore, the vectors a(l), a(2), . . ., a(k) are linearly independent if and
only if the rank of the matrix A is k (the number of vectors in the set).

Note that if k.n, then the rank of A cannot exceed n. Therefore, a(1), a(2), . . ., a(k) will
always be linearly dependent if k.n. The maximum number of linearly dependent n-compo-
nent vectors is thus n. Any set of (n1 1) vectors is always linearly dependent.

Given any set of n linearly independent (n-component) vectors, a(1), a(2), . . ., a(n), any
other (n-component) vector b can be expressed as a unique linear combination of these
vectors. The problem is to choose a set of scalars x1, x2, . . ., xn such that

x1a
ð1Þ 1 x2a

ð2Þ 1 . . . 1 xna
ðnÞ 5b; or Ax5b ðA:77Þ

We wish to show that a solution exists for Eq. (A.77) and that it is unique. Note that a(1),
a(2), . . ., a(n) are linearly independent. Therefore, the rank of the coefficient matrix A is n,
and the rank of the augmented matrix [A, b] is also n. It cannot be (n1 1) because the matrix
has only n rows. Thus, Eq. (A.77) always possesses a solution for any given A. Moreover, A
is nonsingular; hence, the solution is unique.

In summary, we state the following points for a k set of vectors, each having n components:

1. If k.n, the set of vectors is always linearly dependent—for example, three vectors each
having two components. In other words, the number of linearly independent vectors is
always less than or equal to n (e.g., for two-component vectors, there are at most two
linearly independent vectors).

2. If there are n linearly independent vectors, each of dimension n, then any other n-
component vector can be expressed as a unique linear combination of them. For
example, given two linearly independent vectors a(1)5 (1, 0) and a(2)5 (0, 1) of
dimension 2, any other vector, such as b5 (b1, b2), can be expressed as a unique linear
combination of a(1) and a(2).

3. The linear independence of the given set of vectors can be determined in two ways:
a. Form the matrixA of dimension n3 kwhose columns are the given vectors. Then, if rank

r is equal to k (r5 k), the given set is linearly independent; otherwise, it is dependent.
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b. Set the linear combination of the given vectors to zero, asAx5 0. If x5 0 is the only
solution to the resulting system, then the set is independent; otherwise, it is dependent.

A.5.2 Vector Spaces

Before giving a definition for vector space, let us define closure under addition and sca-
lar multiplication:

Closure under addition. A set of vectors is said to be closed under addition if the sum
of any two vectors in the set is also in the set.
Closure under scalar multiplication. A set of vectors is said to be closed under scalar
multiplication if the product of any vector in the set by a scalar gives a vector in the set.
Vector space. A nonempty set S of elements (vectors) x, y, z,. . . is called a vector space
if the two algebraic operations on them (vector addition and multiplication by a real
scalar) satisfy the following properties:

1. Closure under addition: if xAS and yAS, then x1 yAS.
2. Commutative in addition: x1 y5 y1 x.
3. Associative in addition: (x1 y)1 z5 x1 (y1 z).
4. Identity for addition: There exists a zero vector 0 in the set S such that x1 05 x for all x.
5. Inverse for addition: There exists a2 x in the set S such that x1 (2x)5 0 for all x.
6. Closure under scalar multiplication: For real scalars α, β,. . ., if x A S, then αxAS.
7. Distributive: (α1β)x5αx1βx.
8. Distributive: α(x1 y)5αx1αy.
9. Associative in scalar multiplication: (αβ)x5α(βx).

10. Identity in scalar multiplication: 1x5 x.

In Section A.5.1, it was noted that the maximum number of linearly independent vec-
tors in the set of all n-component vectors is n. Thus, for every subset of this set, there exists
some maximum number of linearly independent vectors. In particular, every vector space
has a maximum number of linearly independent vectors. This number is called the dimen-
sion of the vector space. If a vector space has dimension k, then any set of k linearly indepen-
dent vectors in the vector space is called a basis for the vector space. Any other vector in
the vector space can be expressed as a unique linear combination of the given set of basis
vectors.

EXAMPLE A.10 CHECK FOR VECTOR SPACE

Check if the set of vectors S5 {(x1, x2, x3) j x15 0} is a vector space.

Solution
To see this, consider any two vectors in S as

x5
0
a
b

2
4
3
5 and y5

0
c
d

2
4
3
5 ðaÞ
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where scalars a, b, c, and d are completely arbitrary. Then

x1y5
0

a1 c
b1 d

2
4

3
5 ðbÞ

Therefore, x1 y is in the set S. Also, for any scalar α,

αx5
0
αa
αb

2
4

3
5 ðcÞ

Therefore, αx is in the set S, and so S is closed under addition and scalar multiplication. All

other properties for the definition of a vector space can be easily proved. To show the property

(2), we have

x1y5
0

a1 c
b1 d

2
4

3
55

0
c1 a
d1 b

2
4

3
55

0
c
d

2
4
3
51

0
a
b

2
4
3
55 y1 x ðdÞ

“Associative in addition” is shown as

ðx1yÞ1 z5
0

a1 c
b1 d

2
4

3
51

0
e
f

2
4
3
55

0
a1 c1 e
b1 d1 f

2
4

3
55

0
a
b

2
4
3
51

0
c1 e
d1 f

2
4

3
55 x1 ðy1 zÞ ðeÞ

For identity in addition, we have a zero vector in the set S as

05
0
0
0

2
4
3
5 ðfÞ

such that

x1 05
0

a1 0
b1 0

2
4

3
55

0
a
b

2
4
3
55 x ðgÞ

The inverse in addition exists if we define2x as

2x52
0
a
b

2
4
3
55

0
2a
2b

2
4

3
5 ðhÞ

such that

x1 ð2xÞ5
0

a1 ð2aÞ
b1 ð2bÞ

2
4

3
55

0
0
0

2
4
3
55 0 ðiÞ

In a similar way, properties (7) through (10) can easily be shown. Therefore, the set S is a vec-

tor space. Note that the set V5 {(x1, x2, x3)jx15 1} is not a vector space.
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Let us now determine the dimension of S. Note that if A is a matrix whose columns are vec-

tors in S, it has three rows, with the first row containing only zeros. Thus, the rank of A must be

less than or equal to 2, and the dimension of S is either 1 or 2. To show that it is in fact 2, we

need only find two linearly independent vectors. The following are three such sets of two line-

arly independent vectors from the set S:

(i) að1Þ 5
0
1
0

2
4
3
5; að2Þ 5

0
0
1

2
4
3
5 ðjÞ

(ii) að3Þ 5
0
2
1

2
4
3
5; að4Þ 5

0
0
1

2
4
3
5 ðkÞ

(iii) að5Þ 5
0
1
1

2
4
3
5; að6Þ 5

0
1

21

2
4

3
5 ðlÞ

Each of these three sets is a basis for S. Any vector in S can be expressed as a linear combina-

tion of each one. If x5 (0, c, d) is any element of S, then

(i) x5 cað1Þ 1 dað2Þ

0
c
d

2
4
3
55 c

0
1
0

2
4
3
51 d

0
0
1

2
4
3
5 ðmÞ

(ii) x5
c

2
að3Þ 1 c2

d

2

� �
að4Þ

0
c
d

2
4
3
55

c

2

0
2
1

2
4
3
51 c2

d

2

� � 0
0
1

2
4
3
5 ðnÞ

(iii) x5
c1 d

2

� �
að5Þ 1

c2 d

2

� �
að6Þ

0
c
d

2
4
3
55

c1 d

2

0
1
1

2
4
3
51

c2 d

2

0
1

21

2
4

3
5 ðoÞ

A.6 EIGENVALUES AND EIGENVECTORS

Given an n3 n matrix A, any nonzero vector x satisfying

Ax5λx ðA:78Þ
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where λ is a scale factor, is called an eigenvector (proper or characteristic vector). The scalar
λ is called the eigenvalue (proper or characteristic value). Since x 6¼ 0, from Eq. (A.78) we
see that λ is given as the roots of the characteristic equation

A2λIj j5 0 ðA:79Þ
Equation (A.79) gives an nth degree polynomial in λ. The roots of this polynomial are

the required eigenvalues. After the eigenvalues have been determined, the eigenvectors
can be determined from Eq. (A.78).

The coefficient matrix A may be symmetric or asymmetric. For many applications, A is a
symmetric matrix, so we consider this case in the text. Two properties of eigenvalues and
eigenvectors are as follows:

1. Eigenvalues and eigenvectors of a real symmetric matrix are real. They may be
complex for real nonsymmetric matrices.

2. Eigenvectors corresponding to distinct eigenvalues of real symmetric matrices are
orthogonal to each other (that is, their dot product vanishes).

EXAMPLE A.11 CALCULATION OF EIGENVALUES
AND EIGENVECTORS

Find the eigenvalues and eigenvectors of the matrix

A5
2 1
1 2

� �
ðaÞ

Solution
The eigenvalue problem is defined as

2 1
1 2

� �
x1
x2

� �
5λ x1

x2

� �
ðbÞ

The characteristic polynomial is given by jA2λIj5 0:

22λ 1
1 22λ

����
����5 0 ðcÞ

or

λ2 2 4 λ1 35 0 ðdÞ
The roots of this polynomial are

λ1 5 3; λ2 5 1 ðeÞ
Therefore, the eigenvalues are 3 and 1.

The eigenvectors are determined from Eq. (A.78). For λ15 3, Eq. (A.78) is

ð22 3Þ 1
1 ð22 3Þ

� �
x1
x2

� �
5

0
0

� �
ðfÞ
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or x15 x2. Therefore, a solution to the above equation is (1, 1). After normalization (dividing by

its length), the first eigenvector becomes

xð1Þ 5
1ffiffiffi
2

p 1
1

� �
ðgÞ

For λ25 1, Eq. (A.78) is

ð22 1Þ 1
1 ð22 1Þ

� �
x1
x2

� �
5

0
0

� �
ðhÞ

or x152x2. Therefore, a solution to the above equation is (1,21). After normalization, the second

eigenvector is

xð2Þ 5
1ffiffiffi
2

p 1
2 1

� �
ðiÞ

It may be verified that x(l) � x(2) is zero; that is, x(l) and x(2) are orthogonal to each other.

*A.7 NORM AND CONDITION NUMBER OF A MATRIX

A.7.1 Norm of Vectors and Matrices

Every n-dimensional vector x has a scalar-valued function associated with it, denoted as
jjxjj. It is called a norm of x if it satisfies the following three conditions:

1. jjxjj. 0 for x 6¼ 0, and jjxjj5 0 only when x5 0.
2. jjx1 yjj# jjxjj1 jjyjj (triangle inequality).
3. jjaxjj5 jaj jjxjj where a is a scalar.

The ordinary length of a vector for n# 3 satisfies the foregoing three conditions. The
concept of norm is therefore a generalization of the ordinary length of a vector in one-,
two-, or three-dimensional Euclidean space. For example, it can be verified that the
Euclidean distance in the n-dimensional space

:x:5
ffiffiffiffiffiffiffiffi
xTx

p
5

ffiffiffiffiffiffiffiffiffi
x � xp ðA:80Þ

satisfies the three norm conditions and hence is a norm.
Every n3 n matrix A has a scalar function associated with it called its norm. It is denoted

jjAjj and is calculated as

:A:5 max
x 6¼0

:Ax:
:x:

ðA:81Þ

Note that since Ax is a vector, Eq. (A.81) says that the norm of A is determined by the vec-
tor x that maximizes the ratio jjAxjj/jjxjj.
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The three conditions of the norm can be verified easily for Eq. (A.81) as follows:

1. jjAjj.0 unless it is a null matrix in which case it is zero.
2. jjA1Bjj# jjAjj1 jjBjj.
3. jjaAjj5 jaj jjAjj where a is a scalar.

Other vector norms can also be defined. For example, the summation norm and the max-
norm (called the “N-norm”) are defined as

:x:5
Xn
i51

xij j; or :x:5 max
1#i#n

xij j ðA:82Þ

They also satisfy the three conditions of the norm of the vector x.
If λ21 is the largest eigenvalue of ATA, then it can be shown, using Eq. (A.81), that the

norm of A is also defined as

:A:5λ1. 0 ðA:83Þ
Similarly, if λ2n is the smallest eigenvalue of ATA, then the norm of A21 is defined as

:A21:5λn. 0 ðA:84Þ

A.7.2 Condition Number of a Matrix

The condition number is another scalar associated with an n3 n matrix. It is useful
when solving a linear system of equations Ax5b. Often there is uncertainty in elements
of the coefficient matrix A or the right side of vector b. The question, then, is how the solu-
tion vector x changes for small perturbations in A and b. The answer to this question is in
the condition number of the matrix A.

It can be shown that the condition number of an n3 n matrix A, denoted cond(A), is
given as

condðAÞ5λ1=λn $ 0 ðA:85Þ
where λ1

2 and λn
2 are the largest and the smallest eigenvalues of ATA.

It turns out that a larger condition number indicates that the solution x is very sensitive
to variations in the elements of A and b. That is, small changes in A and b give large
changes in x. A very large condition number for the matrix A indicates that it is nearly sin-
gular. The corresponding system of equations Ax5b is called ill-conditioned.

EXERCISES FOR APPENDIX A

Evaluate the following determinants.

A.1 2 1 3
1 2 1
3 1 5

������
������
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A.2 0 2 3 2
0 4 5 4
1 22 22 1
3 21 2 1

��������

��������
A.3 0 0 0 22

0 0 5 3
0 1 21 1
2 3 23 2

��������

��������
For the following determinants, calculate the values of the scalar λ for which the determinants vanish.

A.4 22λ 1 0
1 32λ 0
0 3 22λ

������
������

A.5 22λ 2 0
1 22λ 0
0 0 22λ

������
������

Determine the rank of the following matrices.

A.6 3 0 1 3
2 0 3 2
0 2 28 1

22 21 2 21

2
664

3
775

A.7 1 2 2 2 4
1 6 3 0 3
2 2 3 3 2
1 3 2 5 1

2
664

3
775

A.8 1 2 3 4
0 0 0 1
3 2 3 0
2 3 1 4
2 0 6 0
1 2 1 4

2
6666664

3
7777775

Obtain the solutions to the following equations using the Gaussian elimination procedure.

A.9 2x11 2x21 x35 5

x12 2x21 2x35 1

x21 2x35 3

A.10 x22 x35 0

x11 x21 x35 3

x12 3x25 22

A.11 2x11 x21 x35 7

4x22 5x35 27

x12 2x21 4x35 9
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A.12 2x11 x22 3x31 x45 1

x11 2x21 5x32 x45 7

2 x11 x21 x31 4x45 5

2x12 3x21 2x32 5x45 24

A.13 3x11 x21 x35 8

2x12 x22 x35 23

x11 2x22 x35 2

A.14 x11 x22 x35 2

2x12 x21 x35 4

2x11 2x21 3x35 3

A.15 2x11 x22 x35 22

2 2x11 x21 2x35 6

x11 x21 x35 6

A.16 2x11 2x21 3x35 4

2x12 x22 2x35 21

x12 3x21 4x35 2

A.17 x11 x21 x31 x45 2

2x11 x22 x31 x45 2

2x11 2x21 3x31 x45 1

3x11 2x22 2x32 x45 8

A.18 x11 x21 x31 x45 21

2x12 x21 x32 2x45 8

3x11 2x21 2x31 2x45 4

2 x12 x21 2x32 x45 22

Check if the following systems of equations are consistent. If they are, calculate their general solutions.

A.19 3x11 x21 5x31 2x45 2

2x12 2x21 4x35 2

2x11 2x21 3x31 2x45 1

x11 3x21 x31 2x45 0

A.20 x11 x21 x31 x45 10

2x11 x22 x31 x45 2

2x12 3x21 2x32 2x45 26

A.21 x21 2x31 x45 22

x12 2x22 x32 x45 1

x12 2x22 3x31 x45 1

A.22 x11 x21 x31 x45 0

2x11 x22 2x32 x45 6

3x11 2x21 x31 2x45 2

A.23 x11 x21 x31 3x42 x55 5

2x12 x21 x32 x41 3x55 4

2x11 2x22 x31 3x42 2x55 1

A.24 2x12 x21 x31 x42 x55 2

2x11 x22 x32 x41 x55 21

4x11 2x21 3x31 2x42 x55 20
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A.25 3x11 3x21 2x31 x45 19

2x12 x21 x31 x42 x55 2

4x11 2x21 3x31 2x42 x55 20

A.26 x11 x21 2x42 x55 5

x11 x21 x31 3x42 x55 5

2x12 x21 x32 x41 3x55 4

2x11 2x22 x31 3x42 2x55 1

A.27 x21 2x31 x41 3x51 2x65 9

2x11 5x21 2x31 x41 2x51 x75 10

5x12 3x21 8x31 6x41 3x52 2x85 17

2x12 x21 x41 5x52 2x85 5

Check the linear independence of the following set of vectors.

A.28
að1Þ 5

3
2
1

2
4
3
5; að2Þ 5

23
24
1

2
4

3
5; að3Þ 5

2
3
0

2
4
3
5; að4Þ 5

4
0
1

2
4
3
5

A.29

að1Þ 5

1
2
3
4
5

2
66664

3
77775; að2Þ 5

22
1
0
1

21

2
66664

3
77775; að3Þ 5

4
0

23
2
1

2
66664

3
77775

Find eigenvalues for the following matrices.

A.30 1 2
2 5

� �

A.31 2 2
2 4

� �

A.32 1 1 0
1 4 0
0 0 5

2
4

3
5

A.33 1 0 0
0 0 1
0 1 2

2
4

3
5

A.34 0 0 0
0 1 1
0 1 5

2
4

3
5
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A P P E N D I X

B

Sample Computer Programs

This appendix contains some computer programs based on the algorithms for numeri-
cal methods of unconstrained optimization given in Chapters 10 and 11. The objective is to
educate the student on how to transform a step-by-step numerical algorithm into a pro-
gram. Note that the programs we discuss are not claimed to be the most efficient. The key
idea is to highlight the essential numerical aspects of the algorithms in a simple and
straightforward way. A beginner in the numerical techniques of optimization is expected
to experiment with these programs to get a feel for various methods by solving some
numerical examples. For this reason, a black box approach is discouraged.

B.1 EQUAL INTERVAL SEARCH

As discussed in Chapter 10, equal interval search is the simplest method of one-dimen-
sional minimization. A computer program based on it is shown in Figure B.l. It is assumed
that the one-dimensional function is unimodal and continuous and that it has a negative
slope in the interval of interest. The initial step length (δ) and line search accuracy (ε)
must be specified in the main program.

The subroutine EQUAL is called from the main program to perform line search. The three
major tasks to be accomplished in it are (1) to establish the initial step length δ such that
f(0). f(δ); (2) to establish the initial interval of uncertainty, (αl,αu); and (3) to reduce the
interval of uncertainty such that (αu2αl)# ε.

The subroutine EQUAL calls the subroutine FUNCT to determine the value of the one-
dimensional function at various trial steps. FUNCT is supplied by the user. To illustrate,
f(α)5 224α1 eα is chosen as the one-dimensional minimization function. The figure’s pro-
gram listing is self-explanatory. In the EQUAL subroutine, the following notation is used:

AL5 lower limit on α, αl

AU5upper limit on α, αu

FL5 function value at αl, f(αl)
FU5 function value at αu, f(αu)
AA5 intermediate point αa

FA5 function value at αa, f(αa)
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C     MAIN PROGRAM FOR EQUAL INTERVAL SEARCH

      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

      DELTA  = 5.0D-2 
      EPSLON = 1.0D-3 
      NCOUNT = 0 
      F      = 0.0D0
      ALFA   = 0.0D0
C 
C     TO PERFORM LINE SEARCH CALL SUBROUTINE EQUAL
C 
      CALL EQUAL(ALFA,DELTA,EPSLON,F,NCOUNT)
      WRITE(*,10) ' MINIMUM =', ALFA
      WRITE(*,10) ' MINIMUM FUNCTION VALUE =', F 
      WRITE(*,*) 'NO. OF FUNCTION EVALUATIONS =', NCOUNT
10    FORMAT(A,1PE14.5)

      STOP
      END

      SUBROUTINE EQUAL(ALFA,DELTA,EPSLON,F,NCOUNT)
C     -------------------------------------------------------
C     THIS SUBROUTINE IMPLEMENTS EQUAL INTERVAL SEARCH
C     ALFA   = OPTIMUN VALUE ON RETURN
C     DELTA  = INITIAL STEP LENGTH
C     EPSLON = CONVERGENCE PARAMETER
C     F      = OPTIMUM VALUE OF THE FUNCTION ON RETURN
C     NCOUNT = NUMBER OF FUNCTION EVALUATIONS ON RETURN
C     -------------------------------------------------------

      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
C 
C     ESTABLISH INITIAL DELTA
C 
      AL = 0.0D0
      CALL FUNCT(AL,FL,NCOUNT)
10    CONTINUE
      AA = DELTA
      CALL FUNCT(AA,FA,NCOUNT)
      IF (FA .GT. FL) THEN
         DELTA = DELTA * 0.1D0
         GO TO 10
      END IF

FIGURE B.1 Program for Equal Interval Search.
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         AA = AU
         FL = FA

         FA = FU
         GO TO 20

      END IF
C 
C     REFINE THE INTERVAL OF UNCERTAINTY FURTHER 

C 
30    CONTINUE

      IF ((AU - AL) .LE. EPSLON) GO TO 50
      DELTA = DELTA * 0.1D0
      AA = AL

      FA = FL
40    CONTINUE

      AU = AA + DELTA
      CALL FUNCT(AU,FU,NCOUNT)
      IF (FA .GT. FU) THEN

         AL = AA
         AA = AU

         FL = FA
         FA = FU
         GO TO 40

      END IF 
      GO TO 30

C 
C     MINIMUM IS FOUND
C  

50    ALFA = (AU + AL) * 0.5D0
      CALL FUNCT(ALFA,F,NCOUNT)

 
      RETURN
      END

C 
C     ESTABLISH INITIAL INTERVAL OF UNCERTAINTY
C 
20    CONTINUE  
      AU = AA + DELTA  
      CALL FUNCT(AU,FU,NCOUNT)
      IF (FA .GT. FU) THEN
         AL = AA

FIGURE B.1 (Continued)
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B.2 GOLDEN SECTION SEARCH

Golden section search is considered one of the more efficient methods, requiring only
function values. The subroutine GOLD, shown in Figure B.2, implements the golden section
search algorithm given in Chapter 10, and is called from the main program shown in
Figure B.1; the call to EQUAL is replaced by a call to GOLD.

The initial step length and initial interval of uncertainty are established in GOLD, as in
EQUAL. The interval of uncertainty is reduced further to satisfy line search accuracy by
implementing Step 3 of the algorithm given in Chapter 10. The subroutine FUNCT is used to
evaluate the function value at a trial step.

The following notation is used in the subroutine GOLD:

AA5αa

AB5αb

AL5αl

AU5αu

FA5 f(αa)
FB5 f(αb)
FL5 f(αl)
FU5 f(αu)
GR5 golden ratio ð

ffiffiffi

5
p

1 1Þ=2.

      SUBROUTINE FUNCT(AL,F,NCOUNT)

C     -------------------------------------------------------
C     CALCULATES THE FUNCTION VALUE

C     AL     = VALUE OF ALPHA, INPUT
C     F      = FUNCTION VALUE ON RETURN
C     NCOUNT = NUMBER OF CALLS FOR FUNCTION EVALUATION

C     -------------------------------------------------------

      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

      NCOUNT = NCOUNT + 1 

c      F = 1.0D0 - 3.0D0 * AL + DEXP(2.0D0 * AL)
       F = 18.5D0*AL**2-85.0D0*AL-13.5D0

      RETURN
      END

FIGURE B.1 (Continued)
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      SUBROUTINE GOLD(ALFA,DELTA,EPSLON,F,NCOUNT)
C     -------------------------------------------------------
C     THIS SUBROUTINE IMPLEMENTS GOLDEN SECTION SEARCH
C     ALFA   = OPTIMUM VALUE OF ALPHA ON RETURN
C     DELTA  = INITIAL STEP LENGTH
C     EPSLON = CONVERGENCE PARAMETER
C     F      = OPTIMUM VALUE OF THE FUNCTION ON RETURN
C     NCOUNT = NUMBER OF FUNCTION EVALUATIONS ON RETURN
C     -------------------------------------------------------

      IMPLICIT DOUBLE PRECISION(A-H,O-Z) 

      GR = 0.5D0 * SQRT(5.0D0) + 0.5D0
C 
C     ESTABLISH INITIAL DELTA
C 
      AL = 0.0D0
      CALL FUNCT(AL,FL,NCOUNT)
10    CONTINUE
      AA = DELTA
      CALL FUNCT(AA,FA,NCOUNT)
      IF (FA .GT. FL) THEN 
         DELTA = DELTA * 0.1D0
         GO TO 10
      END IF
C 
C     ESTABLISH INITIAL INTERVAL OF UNCERTAINTY
C 
      J = 0 
20    CONTINUE 
      J = J + 1 
      AU = AA + DELTA * (GR ** J)
      CALL FUNCT(AU,FU,NCOUNT)
      IF (FA .GT. FU) THEN
         AL = AA
         AA = AU
         FL = FA
         FA = FU
         GO TO 20
      END IF
C 
C     REFINE THE INTERVAL OF UNCERTAINTY FURTHER
C 
      AB = AL + (AU - AL) / GR
      CALL FUNCT(AB,FB,NCOUNT)
30    CONTINUE

FIGURE B.2 Subroutine GOLD for Golden Section Search.
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      FU = FB
      AB = AA
      FB = FA
      AA = AL + (AU - AL) * (1.0D0 - 1.0D0 / GR)
      CALL FUNCT(AA,FA,NCOUNT)
      GO TO 30
C 
C     FA IS GREATER THAN FB (STEP 5)
C 
50    AL = AA
      FL = FA
      AA = AB
      FA = FB
      AB = AL + (AU - AL) / GR
      CALL FUNCT(AB,FB,NCOUNT)
      GO TO 30
C 
C     FA IS EQUAL TO FB (STEP 6)
C 
60    AL = AA
      FL = FA
      AU = AB
      FU = FB
      AA = AL + (1.0D0 - 1.0D0 / GR) * (AU - AL)
      CALL FUNCT(AA,FA,NCOUNT)
      AB = AL + (AU - AL) / GR
      CALL FUNCT(AB,FB,NCOUNT) 
      GO TO 30
C 
C     MINIMUM IS FOUND
C 

      IF ((AU - AL) .LE. EPSLON) GO TO 80
C 
C     IMPLEMENT STEPS 4, 5 OR 6 OF THE ALGORITHM
C 
      IF (FA - FB) 40, 60, 50
C 
C     FA IS LESS THAN FB (STEP 4)

40    AU = AB

80    ALFA = (AU + AL) * 0.5D0
      CALL FUNCT(ALFA,F,NCOUNT)

      RETURN
      END

FIGURE B.2 (Continued)
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B.3 STEEPEST-DESCENT METHOD

The steepest-descent method is the simplest of the gradient-based methods for uncon-
strained optimization. A computer program for it is shown in Figure B.3. The basic steps
in the algorithm, which the main program essentially follows, are (1) to evaluate the gradi-
ent of the cost function at the current point; (2) to evaluate an optimum step size along the
negative gradient direction; and (3) to update the design, check the convergence criterion,
and, if necessary, repeat the preceding steps.

The arrays declared in the main program must have the dimensions of the design vari-
able vector. Also, the initial data and starting point are user-provided. The cost function
and its gradient must be provided in FUNCT and GRAD, respectively. Line search is per-
formed in the subroutine GOLDM by golden section search for a multivariate problem. For
example, fðxÞ5 x21 1 2x22 1 2x23 1 2x1x2 1 2x2x3 is chosen as the cost function.

B.4 MODIFIED NEWTON’S METHOD

The modified Newton’s Method evaluates the gradient as well as the Hessian for the
function and thus has a quadratic rate of convergence. Note that, even though this method
has a superior rate of convergence, it may fail to converge because of the singularity or
indefiniteness of the Hessian matrix of the cost function. A modified Newton’s program is
shown in Figure B.4. The cost function, the gradient vector and the Hessian matrix are cal-
culated in the subroutines FUNCT, GRAD, and HASN, respectively. As an example,
fðxÞ5 x21 1 2x22 1 2x23 1 2x1x2 1 2x2x3 is chosen as the cost function.

The Newton direction is obtained by solving a system of linear equations in the subrou-
tine SYSEQ. It is likely that the Newton direction may not be one of descent, in which case
the line search will fail to evaluate an appropriate step size. The iterative loop is stopped
in this case and an appropriate message is printed. The main program for the modified
Newton’s method and related subroutines is shown in Figure B.4.
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C     THE MAIN PROGRAM FOR STEEPEST-DESCENT METHOD
C     ---------------------------------------------------------
C     DELTA  = INITIAL STEP LENGTH FOR LINE SEARCH
C     EPSLON = LINE SEARCH ACCURACY
C     EPSL   = STOPPING CRITERION FOR STEEPEST-DESCENT METHOD
C     NCOUNT = NO. OF FUNCTION EVALUATIONS
C     NDV    = NO. OF DESIGN VARIABLES
C     NOC    = NO. OF CYCLES OF THE METHOD
C     X      = DESIGN VARIABLE VECTOR
C     D      = DIRECTION VECTOR
C     G      = GRADIENT VECTOR
C     WK     = WORK ARRAY USED FOR TEMPORARY STORAGE
C     ---------------------------------------------------------

      IMPLICIT DOUBLE PRECISION (A-H, O-Z)
      DIMENSION X(4), D(4), G(4), WK(4)
C 
C     DEFINE INITIAL DATA
C 
      DELTA  = 5.0D-2 
      EPSLON = 1.0D-4 
      EPSL   = 5.0D-3 
      NCOUNT = 0 
      NDV    = 3 
      NOC    = 100
C 
C     STARTING VALUES OF THE DESIGN VARIABLES
C 
      X(1)=2.0D0
      X(2)=4.0D0
      X(3)=10.0D0

      CALL GRAD(X,G,NDV)
      WRITE(*,10)
10    FORMAT(' NO.     COST FUNCT      STEP SIZE',
     &       '   NORM OF GRAD  ')
      DO 20 K = 1, NOC
         CALL SCALE (G,D,-1.0D0,NDV)
         CALL GOLDM(X,D,WK,ALFA,DELTA,EPSLON,F,NCOUNT,NDV)
         CALL SCALE(D,D,ALFA,NDV)
         CALL PRINT(K,X,ALFA,G,F,NDV)
         CALL ADD(X,D,X,NDV)
         CALL GRAD(X,G,NDV)
         IF(TNORM(G,NDV) .LE. EPSL) GO TO 30
20    CONTINUE

FIGURE B.3 Computer program for steepest-descent method.
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      CALL FUNCT(X,F,NCOUNT,NDV)
      WRITE(*,50)' THE OPTIMUM COST FUNCTION VALUE IS :', F 
50    FORMAT(A, F13.6)
      WRITE(*,*)'TOTAL NO. OF FUNCTION EVALUATIONS ARE', NCOUNT

      STOP
      END

      SUBROUTINE GRAD(X,G,NDV)
C 
C     CALCULATES THE GRADIENT OF F(X) IN VECTOR G 
C 
      IMPLICIT DOUBLE PRECISION (A-H, O-Z)
      DIMENSION X(NDV),G(NDV)

      G(1) = 2.0D0 * X(1) + 2.0D0 * X(2)
      G(2) = 2.0D0 * X(1) + 4.0D0 * X(2) + 2.0D0 * X(3)
      G(3) = 2.0D0 * X(2) + 4.0D0 * X(3)

      RETURN
      END

      SUBROUTINE SCALE(A,X,S,M)
C 
C     MULTIPLIES VECTOR A(M) BY SCALAR S AND STORES IN X(M)
C 
      IMPLICIT DOUBLE PRECISION (A-H, O-Z)
      DIMENSION A(M),X(M)

      WRITE(*,*)
      WRITE(*,*)' LIMIT ON NO. OF CYCLES HAS EXCEEDED'
      WRITE(*,*)' THE CURRENT DESIGN VARIABLES ARE:'
      WRITE(*,*) X 
      CALL EXIT

30    WRITE(*,*)
      WRITE(*,*) 'THE OPTIMAL DESIGN VARIABLES ARE:'
      WRITE(*,40) X
40    FORMAT (3F15.6)

FIGURE B.3 (Continued)
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      RETURN
      END

      SUBROUTINE ADD(A,X,C,M)
C     
C     ADDS VECT0RS A(M) AND X(M) AND STORES IN C(M)
C 
      IMPLICIT DOUBLE PRECISION (A-H, O-Z)
      DIMENSION A(M), X(M), C(M)

      DO 10 I = 1, M 
         C(I) = A(I) + X(I)
10    CONTINUE

      RETURN 
      END

      DO 10 I = 1, M 
         X(I) = S * A(I)
10    CONTINUE

      RETURN
      END

      REAL*8 FUNCTION TNORM(X,N)
C 
C     CALCULATES NORM OF VECTOR X(N)
C 
      IMPLICIT DOUBLE PRECISION (A-H, O-Z)
      DIMENSION X(N) 

      SUM = 0.0D0
      DO 10 I = 1, N 
         SUM = SUM + X(I) * X(I)
10    CONTINUE
      TNORM = DSQRT(SUM)

FIGURE B.3 (Continued)
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      SUBROUTINE UPDATE (XN,X,D,AL,NDV)
C 
C     UPDATES THE DESIGN VARIABLE VECTOR
C 
      IMPLICIT DOUBLE PRECISION (A-H, O-Z)
      DIMENSION XN(NDV), X(NDV), D(NDV)

      DO 10 I = 1, NDV
         XN(I) = X(I) + AL * D(I)
10    CONTINUE 

      RETURN
      END

      SUBROUTINE PRINT(I,X,ALFA,G,F,M)
C 
C     PRINTS THE OUTPUT
C 
      IMPLICIT DOUBLE PRECISION (A-H, O-Z)
      DIMENSION X(M),G(M)

      WRITE(*,10) I, F, ALFA, TNORM(G,M)
10    FORMAT(I4, 3F15.6)

      RETURN
      END

      SUBROUTINE FUNCT(X,F,NCOUNT,NDV)
C 
C     CALCULATES THE FUNCTION VALUE
C 
      IMPLICIT DOUBLE PRECISION (A-H, O-Z)
      DIMENSION X(NDV)

      NCOUNT = NCOUNT + 1 
      F = X(1) ** 2 + 2.D0 * (X(2) **2) + 2.D0 * (X(3) ** 2)
     &    + 2.0D0 * X(1) * X(2) + 2.D0 * X(2) * X(3)

      RETURN
      END

FIGURE B.3 (Continued)
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      CALL UPDATE(XN,X,D,AU,NDV)
      CALL FUNCT(XN,FU,NCOUNT,NDV)
      IF (FA .GT. FU) THEN
         AL = AA

      SUBROUTINE GOLDM(X,D,XN,ALFA,DELTA,EPSLON,F,NCOUNT,NDV)
C     --------------------------------------------------------
C     IMPLEMENTS GOLDEN SECTION SEARCH FOR MULTIVARIATE PROBLEMS
C     X      = CURRENT DESIGN POINT
C     D      = DIRECTION VECTOR
C     XN     = CURRENT DESIGN + TRIAL STEP * SEARCH DIRECTION 
C     ALFA   = OPTIMUM VALUE OF ALPHA ON RETURN
C     DELTA  = INITIAL STEP LENGTH
C     EPSLON = CONVERGENCE PARAMETER               
C     F      = OPTIMUM VALUE OF THE FUNCTION        
C     NCOUNT = NUMBER OF FUNCTION EVALUATIONS ON RETURN
C     --------------------------------------------------------

      IMPLICIT DOUBLE PRECISION (A-H, O-Z)
      DIMENSION X(NDV), D(NDV), XN(NDV)

      GR = 0.5D0 * DSQRT(5.0D0) + 0.5D0
      DELTA1 = DELTA
C 
C     ESTABLISH INITIAL DELTA
C 
      AL = 0.0D0
      CALL UPDATE(XN,X,D,AL,NDV)
      CALL FUNCT(XN,FL,NCOUNT,NDV)
      F = FL
10    CONTINUE 
      AA = DELTA1
      CALL UPDATE(XN,X,D,AA,NDV)
      CALL FUNCT(XN,FA,NCOUNT,NDV)
      IF (FA .GT. FL) THEN
         DELTA1 = DELTA1 * 0.1D0
         GO TO 10
      END IF
C 
C     ESTABLISH INITIAL INTERVAL OF UNCERTAINTY
C 
      J = 0 
20    CONTINUE
      J = J + 1 
      AU = AA + DELTA1 * (GR ** J)

FIGURE B.3 (Continued)
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         AA = AU
         FL = FA
         FA = FU

         GO TO 20
      END IF

C 
C     REFINE THE INTERVAL OF UNCERTAINTY FURTHER
C 

      AB = AL + (AU - AL) / GR
      CALL UPDATE(XN,X,D,AB,NDV)

      CALL FUNCT(XN,FB,NCOUNT,NDV)
30    CONTINUE
      IF((AU-AL) .LE. EPSLON) GO TO 80

C 
C     IMPLEMENT STEPS 4 ,5 OR 6 OF THE ALGORITHM

C 
      IF (FA-FB) 40, 60, 50
C 

C     FA IS LESS THAN FB (STEP 4)
C 

40    AU = AB
      FU = FB
      AB = AA

      FB = FA
      AA = AL + (1.0D0 - 1.0D0 / GR) * (AU - AL)

      CALL UPDATE(XN,X,D,AA,NDV)
      CALL FUNCT(XN,FA,NCOUNT,NDV)
      GO TO 30

C 
C     FA IS GREATER THAN FB (STEP 5)

C 
50    AL = AA
      FL = FA

      AA = AB
      FA = FB

      AB = AL + (AU - AL) / GR
      CALL UPDATE(XN,X,D,AB,NDV)
      CALL FUNCT(XN,FB,NCOUNT,NDV)

      GO TO 30
C 

C     FA IS EQUAL TO FB (STEP 6)
C 

FIGURE B.3 (Continued)
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C
C     MINIMUM IS FOUND
C
80    ALFA = (AU + AL) * 0.5D0

      RETURN
      END

      FU = FB
      AA = AL + (1.0D0 - 1.0D0 / GR) * (AU - AL)
      CALL UPDATE(XN,X,D,AA,NDV)

      CALL FUNCT(XN,FA,NCOUNT,NDV)
      AB = AL + (AU - AL) / GR

      CALL UPDATE(XN,X,D,AB,NDV)
      CALL FUNCT(XN,FB,NCOUNT,NDV)
      GO TO 30

60    AL = AA

      FL = FA
      AU = AB

FIGURE B.3 (Continued)

C     THE MAIN PROGRAM FOR MODIFIED NEWTON'S METHOD
C     ----------------------------------------------------------
C     DELTA  = INITIAL STEP LENGTH FOR LINE SEARCH
C     EPSLON = LINE SEARCH ACCURACY
C     EPSL   = STOPPING CRITERION FOR MODIFIED NEWTON'S METHOD
C     NCOUNT = NO. OF FUNCTION EVALUATIONS
C     NDV    = NO. OF DESIGN VARIABLES
C     NOC    = NO. OF CYCLES OF THE METHOD
C     X      = DESIGN VARIABLE VECTOR
C     D      = DIRECTION VECTOR
C     G      = GRADIENT VECTOR
C     H      = HESSIAN MATRIX
C     WK     = WORK ARRAY USED FOR TEMPORARY STORAGE
C     -----------------------------------------------------------

      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
      DIMENSION X(3), D(3), G(3), H(3,3), WK(3)
C 
C     DEFINE INITIAL DATA

FIGURE B.4 A program for Newton’s method.
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30    WRITE(*,*)
      WRITE(*,*) 'THE OPTIMAL DESIGN VARIABLES ARE  :'
      WRITE(*,40) X 
40    FORMAT(4X,3F15.6)
      CALL FUNCT(X,F,NCOUNT,NDV)
      WRITE(*,50) ' OPTIMUM COST FUNCTION VALUE IS    :', F 
50    FORMAT(A, F13.6)
      WRITE(*,*) 'NO. OF FUNCTION EVALUATIONS ARE   :   ', NCOUNT

CALL EXIT

         CALL GRAD(X,G,NDV)
         IF(TNORM(G,NDV) .LE. EPSL) GO TO 30
20    CONTINUE

      WRITE(*,*)
      WRITE(*,*)' LIMIT ON NO. OF CYCLES HAS EXCEEDED'
      WRITE(*,*)' THE CURRENT DESIGN VARIABLES ARE:'
      WRITE(*,*) X 
      CALL EXIT

         CALL ADD(X,D,X,NDV)

C 
      DELTA  = 5.0D-2 
      EPSLON = 1.0D-4 
      EPSL   = 5.0D-3 
      NCOUNT = 0 
      NDV    = 3 
      NOC    = 100
C 
C     STARTING VALUES OF THE DESIGN VARIABLES
C 
      X(1) = 2.0D0
      X(2) = 4.0D0
      X(3) = 10.0D0

      CALL GRAD(X,G,NDV)
      WRITE(*,10) 
10    FORMAT(' NO.      COST FUNCT     STEP SIZE',
     &       '   NORM OF GRAD  ')
      DO 20 K = 1, NOC
         CALL HASN(X,H,NDV)
         CALL SCALE (G,D,-1.0D0,NDV)
         CALL SYSEQ(H,NDV,D)
         IF (DOT(G,D,NDV) .GE. 1.0E-8) GO TO 60
         CALL GOLDM(X,D,WK,ALFA,DELTA,EPSLON,F,NCOUNT,NDV)
         CALL SCALE(D,D,ALFA,NDV)
         CALL PRINT(K,X,ALFA,G,F,NDV)

FIGURE B.4 (Continued)
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      RETURN
      END

      SUBROUTINE SYSEQ(A,N,B)
C 

      SUBROUTINE HASN(X,H,N)
C 
C     CALCULATES THE HESSIAN MATRIX H AT X 
C 
      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
      DIMENSION X(N),H(N,N)

      H(1,1) = 2.0D0
      H(2,2) = 4.0D0
      H(3,3) = 4.0D0
      H(1,2) = 2.0D0
      H(1,3) = 0.0D0
      H(2,3) = 2.0D0
      H(2,1) = H(1,2)
      H(3,1) = H(1,3)
      H(3,2) = H(2,3)

60    WRITE(*,*)
      WRITE(*,*)' DESCENT DIRECTION CANNOT BE FOUND'
      WRITE(*,*)' THE CURRENT DESIGN VARIABLES ARE:'
      WRITE(*,40) X 

      STOP
      END

      DOUBLE PRECISION FUNCTION DOT(X,Y,N)
C 
C     CALCULATES DOT PRODUCT OF VECTORS X AND Y 
C 
      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
      DIMENSION X(N),Y(N)

      SUM = 0.0D0
      DO 10 I = 1, N 
      SUM = SUM + X(I) * Y(I)
10    CONTINUE
      DOT = SUM

      RETURN
      END

FIGURE B.4 (Continued)

838 APPENDIX B. SAMPLE COMPUTER PROGRAMS



      DO 120 I = MM, N 
         IF(A(I,M)) 90, 120, 90
90       DO 100 J = I, N 
            A(I,J) = A(I,J) - A(I,M) * A(M,J)
            A(J,I) = A(I,J)
100      CONTINUE        
         B(I) = B(I) - A(I,M) * B(M)
120   CONTINUE
      GO TO 50
C 
C     BACK SUBSTITUTION
C     
130   M = M - 1 
      IF(M .EQ. 0) GO TO 150
      MM = M + 1 
      DO 140 J = MM, N 
         B(M) = B(M) - A(M,J) * B(J)
140   CONTINUE
      GO TO 130

150   RETURN
      END

C     SOLVES AN N X N SYMMETRIC SYSTEM OF LINEAR EQUATIONS
      AX = B 

C     A IS THE COEFFICIENT MATRIX; B IS THE RIGHT HAND SIDE; 
C     THESE ARE INPUT

C     B CONTAINS SOLUTION ON RETURN
C 
      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
      DIMENSION A(N,N), B(N)
C 
C     REDUCTION OF EQUATIONS
C 
      M = 0 
50    M = M + 1 
      MM = M + 1 
      B(M) = B(M) / A(M,M)
      IF (M - N) 70, 130, 70
70    DO 80 J = MM, N 
         A(M,J) = A(M,J) / A(M,M)
80    CONTINUE
C 
C     SUBSTITUTION INTO REMAINING EQUATIONS
C 

FIGURE B.4 (Continued)
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Answers to Selected Exercises

Chapter 3 Graphical Optimization
3.1 x*5 (2, 2), f*5 2. 3.2 x*5 (0, 4), F*5 8. 3.3 x*5 (8, 10), f*5 38. 3.4 x*5 (4, 3.333, 2),

F*5 11.33. 3.5 x*5 (10, 10), F*5 400. 3.6 x*5 (0, 0), f*5 0. 3.7 x*5 (0, 0), f*5 0. 3.8 x*5

(2, 3), f*5222. 3.9 x*5 (22.5, 1.58), f*523.95. 3.10 x*5 (20.5, 0.167), f*520.5. 3.11 Global

minimum: x*5 (0.71, 0.71), f*523.04; Global maximum: x*5 (20.71, 20.71), f*5 4.04.

3.12 Global minimum: x*5 (2.17, 1.83), f*528.33; No local maxima. 3.13 Global minimum:

x*5 (2.59, 22.02), f*5 15.3; Local minimum: x*5 (23.73, 3.09), f*5 37.88; Global maximum: x*5

(23.63, 23.18), f*5 453.2; Local maximum: x*5 (1.51, 3.27), f*5 244.53. 3.14 Global minimum:

x*5 (2.0), f*524; Local minimum: x*5 (0, 0), f*5 0; Local minimum: x*5 (0, 2), f*522; Local

minimum: x*5 (1.39, 1.54), f*5 0; Global maximum: x*5 (0.82, 0.75), f*5 2.21. 3.15 Global

minimum: x*5 (7, 5), f*5 10; Global maximum: x*5 (0, 0), f*5 128; Local maximum: x*5 (12, 0),

f*5 80. 3.16 Global minimum: x*5 (2, 1), f*5225; Global maximum: x*5 (22.31, 0.33),

f*5 24.97. 3.17 Global minimum: x*5 (2.59, 22.01), f*5 15.25; Local minimum: x*5 (23.73,

3.09), f*5 37.87; No local maxima. 3.18 Global minimum: x*5 (4, 4), f*5 0; Global maximum:

x*5 (0, 10), f*5 52; Local maximum: x*5 (0, 0), f*5 32; Local maximum: x*5 (5, 0), f*5 17.

3.19 No local minima; Global maximum: x*5 (28, 18), f*5 8. 3.20 Global minimum: x*5 (3, 2),

f*5 1; Global maximum: x*5 (0, 5), f*5 25; Local maximum: x*5 (0, 0), f*5 20. 3.21 b*5 24.66 cm,

d*5 49.32 cm, f*5 1216 cm3. 3.22 Ro*5 20 cm, Ri*5 19.84 cm, f*5 79.1 kg. 3.23 R*5 53.6 mm,

t*5 5.0 mm, f*5 66 kg. 3.24 Ro*5 56 mm, Ri*5 51 mm, f*5 66 kg. 3.25 w*5 93 mm, t*5 5 mm,

f*5 70 kg. 3.26 Infinite optimum points, f*5 0.812 kg. 3.27 A*5 5000, h*5 14, f*5 $13.4

million. 3.28 R*D1.0 m, t*5 0.0167 m, f*D8070 kg. 3.29 A1*5 6.1 cm2, A2*5 2.0 cm2,

f*5 5.39 kg. 3.31 t*5 8.45, f*5 1.913 105. 3.32 R*5 7.8 m,H*5 15.6 m, f*5 $1.753 106.

3.33 Infinite optimum points; one point: R*5 0.4 m, t*5 1.593 1023 m, f*5 15.7 kg. 3.34 For

l5 0.5 m, To5 10 kN�m, Tmax5 20 kN�m, x1*5 103 mm, x2*5 0.955, f*5 2.9 kg. 3.35 For l5 0.5,

To5 10 kN�m, Tmax5 20 kN�m, do*5 103 mm, di*5 98.36 mm, f*5 2.9 kg. 3.36 R*5 50.3 mm,

t*5 2.35 mm, f*5 2.9 kg. 3.37 R*5 20 cm, H*5 7.2 cm, f*529000 cm3. 3.38 R*5 0.5 cm,

N*5 2550, f*528000 (l5 10). 3.39 R*5 33.7 mm, t*5 5.0 mm, f*5 41 kg. 3.40 R*5 21.5 mm,

t*5 5.0 mm, f*5 26 kg. 3.41 R*5 27, t*5 5 mm, f*5 33 kg. 3.42 Ro*5 36 mm, Ri*5 31 mm,

f*5 41 kg. 3.43 Ro*5 24.0 mm, Ri*5 19.0 mm, f*5 26 kg. 3.44 Ro*5 29.5 mm, Ri*5 24.5 mm,

f*5 33 kg. 3.45 D*5 8.0 cm, H*5 8.0 cm, f*5 301.6 cm2. 3.46 A1*5 413.68 mm, A2*5 163.7 mm,

f*5 5.7 kg. 3.47 Infinite optimum points; one point: R*5 20 mm, t*5 3.3 mm, f*5 8.1 kg.

3.48 A*5 390 mm2, h*5 500 mm, f*5 5.5 kg. 3.49 A*5 410 mm2, s*5 1500 mm, f*5 8 kg.

3.50 A1*5 300 mm2, A2*5 50 mm2, f*5 7 kg. 3.51 R*5 130 cm, t*5 2.86 cm, f*5 57,000 kg.

3.52 do*5 41.56 cm, di*5 40.19 cm, f*5 680 kg. 3.53 do*5 1310 mm, t*5 14.2 mm, f*5 92,500 N.

3.54 H*5 50.0 cm, D*5 3.42 cm, f*5 6.6 kg.
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Chapter 4 Optimum Design Concepts: Optimality Conditions
4.2 cosx5 1.04420.15175x20.35355x2 at x5π/4. 4.3 cosx5 1.132720.34243x20.25x2

at x5π/3. 4.4 sinx5 20.021991 1.12783x20.25x2 at x5 π
6. 4.5 sinx5 0.066341

1.2625x20.35355x2 at x5 π
4. 4.6 ex5 11 x1 0.5x2 at x5 0. 4.7 ex5 7.38927.389x1 3.6945x2

at x5 2. 4.8 f(x)5 41x1
2242x1240x1x21 20x21 10x221 15; f(1.2, 0.8)5 7.64, f(1.2, 0.8)5 8.136,

Error5 f2 f 5 0.496. 4.9 Indefinite. 4.10 Indefinite. 4.11 Indefinite. 4.12 Positive

definite. 4.13 Indefinite. 4.14 Indefinite. 4.15 Positive definite. 4.16 Indefinite.

4.17 Indefinite. 4.18 Positive definite. 4.19 Positive definite. 4.20 Indefinite. 4.22 x5

(0, 0) 2 local minimum, f5 7. 4.23 x*5 (0, 0) 2 inflection point. 4.24 x*15 (23.332, 0.0395) 2

local maximum, f5 18.58; x*25 (20.398, 0.5404) 2 inflection point. 4.25 x*15 (4, 8) 2 inflection

point; x*25 (24, 28) 2 inflection point. 4.26 x*5 (2n1 1)π, n5 0, 61, 62, ... local minima,

f*521; x*5 2nπ, n5 0, 61, 62, . . . local maxima, f*5 1. 4.27 x*5 (0, 0) 2 local minimum,

f*5 0. 4.28 x*5 0 2 local minimum, f*5 0; x*5 2 2 local maximum, f*5 0.541. 4.29 x*5

(3.684, 0.7368) 2 local minimum, f*5 11.0521. 4.30 x*5 (1, 1) 2 local minimum, f*5 1.

4.31 x*5 2 2=7; 2 6=7
� � � local minimum, f*52 24=7. 4.32 x*15 (241.7643, 0.03099542) � local

minimum, U*5 483,528.6; x*25 (2241.7643, 20.03099542) � local maximum. 4.43 x*5 (13/6,

11/6), v*521/6, f*5225/3. 4.44 x*5 (13/6, 11/6), v*5 1/6, F*5225/3. 4.45 x*5

(32/13,24/13), v*526/13, f*5 9/13. 4.46 x*5 (20.4, 2.6/3), v*5 7.2, f*5 27.2. 4.47 x*5

(1.717, 20.811, 1.547), v1*520.943, v2*5 0.453, f*5 2.132. 4.48 x*15 (1.5088, 3.272), v*5217.1503,

f*5 244.528; x*25 (2.5945, 22.0198), v*521.4390, f*5 15.291; x*35 (23.630, 23.1754),

v*5223.2885, f*5 453.154; x*45 (23.7322, 3.0879), v*522.122, f*5 37.877. 4.49 x*5 (2, 2),

v*522, f*5 2. 4.50 (i) No, (ii) Solution of equalities, x*5 (3, 1), f*5 4. 4.51 x*5 (11/6, 13/6),

v*52 23/6, f*521/3. 4.52 x*5 (11/6, 13/6), v*5 23/6, F*521/3. 4.54 x*15 (0, 0), F*528;

x*15 (11/6, 13/6), F*521/3. 4.55 x*5 (0, 0), f*528. 4.56 x*15 (48/23, 40/23), F*52192/13;

x*25 (13/6, 11/6), u*5 1/6, F*5225/3. 4.57 x*5 (3, 1), v*522, u*5 2, f*5 4. 4.58 x*5 (3, 1),

v*522, u*5 2, f*5 4. 4.59 x*5 (3, 1), u1*5 2, u2*5 2, f*5 4. 4.60 x*5 (6, 6), u*5 (0, 4, 0),

f*5 4. 4.61 x*15 (0.816, 0.75), u*5 (0, 0, 0, 0), f*5 2.214; x*25 (0.816, 0), u*5 (0, 0, 0, 3),

f*5 1.0887; x*35 (0, 0.75), u*5 (0, 0, 2, 0), f *5 1.125; x*45 (1.5073, 1.2317), u*5 (0, 0.9632, 0, 0),

f*5 0.251; x*55 (1.0339, 1.655), u*5 (1.2067, 0, 0, 0), f*5 0.4496; x*65 (0, 0), u*5

(0, 0, 2, 3), f*5 0; x*75 (2, 0), u*5 (0, 2, 0, 7), f*524; x*85 (0, 2), u*5 (5/3, 0, 11/3, 0), f*522;

x*95 (1.386, 1.538), u*5 (0.633, 0.626, 0, 0), f*520.007388. 4.62 x*5 (48/23, 40/23), u*5 0,

f*5 2 192/23. 4.63 x*5 (2.5, 1.5), u*5 1, f*5 1.5. 4.64 x*5 (6.3, 1.733), u*5 (0, 0.8, 0, 0),

f*5256.901. 4.65 x*5 (1, 1), u*5 0, f*5 0. 4.66 x*5 (1, 1), u*5 (0, 0), f*5 0. 4.67 x*5 (2, 1),

u*5 (0, 2), f*5 1. 4.68 x*15 (2.5945, 2.0198), u1*5 1.439, f*5 15.291; x*25 (23.63, 3.1754),

u1*5 23.2885, f*5 453.154; x*35 (1.5088, 23.2720), u1*5 17.1503, f*5 244.53; x*45 (23.7322,

23.0879), u1*5 2.1222, f*5 37.877. 4.69 x*5 (3.25, 0.75), v*521.25, u*5 0.75, f*5 5.125.

4.70 x*15 4=
ffiffiffi
3

p
; 1=3

� �
, u*5 0, f*5224.3; x*25 24=

ffiffiffi
3

p
; 1=3

� �
, u*5 0, f *5 24.967; x*35 (0, 3), u*5 16,

f*5221; x*45 (2, 1), u*5 4, f*5225. 4.71 x*5 2 2=7; 2 6=7
� �

, u*5 0, f*52 24=7. 4.72 x*5 4,

y*5 6, u*5 (0, 0, 0, 0), f*5 0. 4.74 Three local maxima: x*5 0, y*5 0, u*5 (0, 0, 218, 212),

F*5 52; x*5 6, y*5 0, u*5 (0, 24, 0, 212), F*5 40; x*5 0, y*5 12, u*5 (212, 0, 24, 0), F*5 52;

One stationary point: x*5 5, y*5 7, u*5 (22, 0, 0, 0), F*5 2.

4.79 D*5 7.98 cm, H*5 8 cm, u*5 (0.5, 0, 0, 0.063, 0), f*5 300.6 cm2. 4.80 R*5 7.8716863 1022,

t*5 1.5743373 1023, u*5 (0, 3.0563 1024, 0.3038, 0, 0), f*5 30.56 kg. 4.81 Ro*5 7.9502043 1022,

Ri*5 7.7927743 1022, u*5 (0, 3.0563 1024, 0.3055, 0, 0), f*5 30.56 kg. 4.82 x1*5 60.50634,
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x2*5 1.008439, u1*5 19,918, u2*5 23,186, u*35u*45 0, f5 23,186.4. 4.83 h*5 14 m, A*5 5000 m2,

u1*5 5.93 1024, u2*5 6.83 1024, u*35u*45 u*55 0, f*5 $13.4 million. 4.84 A*5 20,000, B*5 10,000,

u1*5 35, u*35 27 (or, u1*5 8, u2*5 108), f*5 2 $1,240,000. 4.85 R*5 20 cm, H*5 7.161973 cm,

u1*5 10, u*35 450, f*529000 cm3. 4.86 R*5 0.5 cm, N5 2546.5, u1*5 16,000, u2*5 4,

f528000 cm2. 4.87W*5 70.7107 m, D*5 141.4214 m, u*35 1.41421, u*45 0, f*5 $28,284.28.

4.88 A*5 70 kg, B5 76 kg, u1*5 0.4, u*45 16, f*5 2 $1308. 4.89 B*5 0,M*5 2.5 kg, u1*5 0.5,

u*35 1.5, f*5 $2.5. 4.90 x1*5 316.667, x2*5 483.33, u1*5 2/3, u2*5 10/3, f*52 $1283.333.

4.91 r*5 4.57078 cm, h*5 9.14156 cm, v1*520.364365, u1*5 43.7562, f*5 328.17 cm2.

4.92 b*5 10 m, h*5 18 m, u1*5 0.04267, u2*5 0.00658, f*5 0.545185. 4.94 D*5 5.758823 m,

H*5 5.758823 m, n1*52277.834, f*5 $62,512.75. 4.96 P1*5 30.4, P2*5 29.6, u1*5 59.8, f*5

$1789.68. 4.134 (i) π# x# 2π (ii) π
2 # x # 3π=2. 4.135 Convex everywhere. 4.136Not

convex. 4.137 S5 xjx1 $ 2 5=3; x1 1 11=12
� �2

24x22 2 9=16 $ 0
n o

. 4.138Not convex.

4.139 Convex everywhere. 4.140 Convex if C$ 0. 4.141 Fails convexity check. 4.142 Fails

convexity check. 4.143 Fails convexity check. 4.144 Fails convexity check. 4.145 Fails

convexity check. 4.146 Fails convexity check. 4.147 Convex. 4.148 Fails convexity

check. 4.149 Convex. 4.150 Convex. 4.151 18.43� # θ# 71.57�. 4.152 θ$ 71.57�.
4.153No solution. 4.154 θ# 18.43�.

Chapter 5 More on Optimum Design Concepts: Optimality Conditions
5.4 x1*5 2.1667, x2*5 1.8333, v*520.1667; isolated minimum. 5.9 (1.5088, 3.2720), v*5217.15;

not a minimum point; (2.5945, 22.0198), v*521.439; isolated local minimum; (23.6300,

23.1754), v*5223.288; not a minimum point; (23.7322, 3.0879), v*522.122; isolated local

minimum. 5.20 (0.816, 0.75), u*5 (0, 0, 0, 0); not a minimum point; (0.816, 0), u*5 (0, 0, 0, 3); not

a minimum point; (0, 0.75), u*5 (0, 0, 2, 0); not a minimum point; (1.5073, 1.2317), u*5 (0, 0.9632,

0, 0); not a minimum point; (1.0339, 1.6550), u*5 (1.2067, 0, 0, 0); not a minimum point; (0, 0), u*5

(0, 0, 2, 3); isolated local minimum; (2, 0), u*5 (2, 0, 0, 7); isolated local minimum; (0, 2), u*5

(1.667, 0, 3.667, 0); isolated local minimum; (1.386, 1.538), u*5 (0.633, 0.626, 0, 0); isolated local

minimum. 5.21 (2.0870, 1.7391), u*5 0; isolated global minimum. 5.22 x*5 (2.5, 1.5), u*5 1,

f*5 1.5. 5.23 x*5 (6.3, 1.733), u*5 (0, 0.8, 0, 0), f*5256.901. 5.24 x*5 (1, 1), u*5 0, f*5 0.

5.25 x*5 (1, 1), u*5 (0, 0), f*5 0. 5.26 x*5 (2, 1), u*5 (0, 2), f*5 1. 5.27 (2.5945, 2.0198),

u*5 1.4390; isolated local minimum; (23.6300, 3.1754), u*5 23.288; not a minimum; (1.5088,

23.2720), u*5 17.150; not a minimum; (23.7322, 23.0879), u*5 2.122; isolated local

minimum. 5.28 (3.25, 0.75), u*5 0.75, n*521.25; isolated global minimum. 5.29 (2.3094, 0.3333),

u*5 0; not a minimum; (22.3094, 0.3333), u*5 0; not a minimum; (0, 3), u*5 16; not a minimum;

(2, 1), u*5 4; isolated local minimum. 5.30 (20.2857, 20.8571), u*5 0; isolated local

minimum. 5.38 Ro*5 20 cm, Ri*5 19.84 cm, f*5 79.1 kg, u*5 (3.563 1023, 0, 5.29, 0, 0, 0).

5.39Multiple optima between (31.83, 1.0) and (25.23, 1.26)mm, f*5 45.9 kg. 5.40 R*5 1.0077 m,

t*5 0.0168 m, f *5 8182.8 kg, u*5 (0.0417, 0.00408, 0, 0, 0). 5.41 R*5 0.0787 m, t*5 0.00157 m,

f*5 30.56 kg. 5.42 Ro*5 0.0795 m, Ri*5 0.0779 m, f*5 30.56 kg. 5.43 H*5 8 cm, D*5 7.98 cm,

f*5 300.6 cm2. 5.44 A*5 5000 m2, h*5 14 m, f*5 $13.4 million. 5.45 x1*5 102.98 mm,

x2*5 0.9546, f*5 2.9 kg, u*5 (4.5683 1023, 0, 3.3323 1028, 0, 0, 0, 0). 5.46 do*5 103 mm,

di*5 98.36 mm, f*5 2.9 kg, u*5 (4.6573 1023, 0, 3.2813 1028, 0, 0, 0, 0). 5.47 R*5 50.3 mm,

t*5 2.34 mm, f*5 2.9 kg, u*5 (4.6433 1023, 0, 3.2403 1028, 0, 0, 0, 0). 5.48 H*5 50 cm,

D*5 3.42 cm, f*5 6.6 kg, u*5 (0, 9.683 1025, 0, 4.683 1022, 0, 0). 5.50 Not a convex
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programming problem; D*5 10 m, H*5 10 m, f*5 60,000πm3; Δf52800πm3. 5.51 Convex;

A1*5 2.9373 1024 m2, A2*5 6.5563 1025 m2, f*5 7.0 kg. 5.52 h*5 14 m, A*5 5000 m2,

u1*5 5.93 1024, u2*5 6.83 1024, u*35 u*45u*55 0, f*5 $13.4 million. 5.53 R*5 20, H*5 7.16,

u1*5 10, u*35 450, f*529000 cm3. 5.54 R*5 0.5 cm, N*5 2546.5, u1*5 16,022, u2*5 4,

f*5 8000 cm2. 5.55W*5 70.7107, D*5 141.4214, u*35 1.41421, u*45 0, f *5 $28,284.28.

5.56 r*5 4.57078 cm, h*5 9.14156 cm, v1*520.364365, u1*5 43.7562, f*5 328.17 cm2.

5.57 b*5 10 m, h*5 18 m, u1*5 0.04267, u2*5 0.00658, f*5 0.545185. 5.58 D*5 5.758823 m,

H*5 5.758823 m, v1*52277.834, f*5 $62,512.75. 5.59 P1*5 30.4, P2*5 29.6, u1*5 59.8, f*5

$1789.68. 5.60 Ro*5 20 cm, Ri*5 19.84 cm, f*5 79.1 kg. 5.61Multiple optima between (31.83, 1.0)

and (25.23, 1.26)mm, f*5 45.9 kg. 5.62 R*5 0.0787 m, t*5 0.00157 m, u*5 (0, 3.0563 1024, 0.3038,

0, 0), f*5 30.56 kg. 5.63 Ro*5 0.0795 m, Ri*5 0.0779 m, u*5 (0, 3.0563 1024, 0.3055, 0, 0),

f*5 30.56 kg. 5.64 D*5 7.98 cm, H*5 8 cm, u*5 (0.5, 0, 0, 0.063, 0), f*5 300.6 cm2. 5.65

R*5 1.0077 m, t*5 0.0168 m, f*5 8182.8 kg, u*5 (0.0417, 0.00408, 0, 0, 0, 0). 5.66 x1*5 102.98 mm,

x2*5 0.9546, f*5 2.9 kg, u*5 (4.5683 1023, 0, 3.3323 1028, 0, 0, 0). 5.67 do*5 103 mm, di*5 98.36 mm,

f*5 2.9 kg, u*5 (4.6573 1023, 0, 3.2813 1028, 0, 0, 0, 0). 5.68 R*5 50.3 mm, t*5 2.34, f*5 2.9 kg,

u*5 (4.6433 1023, 0, 3.2403 1028, 0, 0, 0, 0). 5.69 R*5 33.7 mm, t*5 5.0 mm, f*5 41.6 kg, u*5 (0,

2.7793 1024, 0, 0, 0, 5.54, 0). 5.70 R*5 21.3 mm, t*5 5.0 mm, f*5 26.0 kg, u*5 (0, 1.7393 1024, 0, 0,

0, 3.491, 0). 5.71 R*5 27.0 mm, t*5 5.0 mm, f*5 33.0 kg, u*5 (0, 2.1653 1024, 0, 0, 0, 4.439, 0).

5.72 A1*5 413.68 mm2, A2*5 163.7 mm2, f*5 5.7 kg, u*5 (0, 1.6243 1022, 0, 6.4253 1023, 0).

5.73Multiple solutions R*5 20.0 mm, t*5 3.3 mm, f*5 8.1 kg, u*5 (0.0326, 0, 0, 0, 0, 0, 0).

5.74 A*5 390 mm2, h*5 500 mm, f*5 5.5 kg, u*5 (2.2163 1022, 0, 0, 0, 0, 0, 1.673 1023).

5.75 A*5 415 mm2, s*5 1480 mm, f*5 8.1 kg, u1*5 0.0325, all others are zero. 5.76 A1*5 300 mm2,

A2*5 50 mm2, f*5 7.04 kg, u*5 (0.0473, 0, 0, 0, 0, 0, 0, 0). 5.77 R*5 130 cm, t*5 2.86 cm,

f*5 57,000 kg, u*5 (28170, 0, 294, 0, 0, 0, 0, 0). 5.78 do*5 41.6 cm, di*5 40.2 cm, f*5 680 kg, u*5

(0, 0, 35.7, 6.1, 0,...). 5.79 do*5 1310 mm, t*5 14.2 mm, f*5 92,500 N, u*5 (0, 508, 462, 0, ...).

5.80H*5 50.0 cm,D*5 3.42 cm, f*5 6.6 kg, u*5 (0, 9.683 1025, 0, 4.683 1022, 0, 0).

Chapter 6 Optimum Design with Excel Solver
6.1 x*5 (241.8, 0.0310), f*5 483,528.61. 6.2 x*5 (4.15, 0.362), f*521616.2. 6.3 x*5 (3.73, 0.341),

f*521526.6. 6.4 x*5 (1.216, 1.462), f*5 0.0752. 6.5 x*5 (0.246, 0.0257, 0.1808, 0.205),

f*5 0.01578. 6.6 x*5 (2, 4), f*5 10. 6.7 x*5 (3.67, 0.667), f*5 6.33. 6.8 x*5 (0, 1.67, 2.33),

f*5 4.33. 6.9 x*5 (1.34, 0.441, 0, 3.24), f*5 9.73. 6.10 x*5 (0.654, 0.0756, 0.315), f*5 9.73.

6.11 x*5 (0, 25), f*5 150. 6.12 x*5 (103.0, 98.3), f*5 2.90. 6.13 x*5 (294, 65.8), f*5 7.04.

6.14 x*5 (2.84, 129.0), f*5 562. 6.15 x*5 (50, 3.42), f*5 6.61. 6.16 x*5 (0.0705, 0.444, 10.16),

f*5 0.0268. 6.17 x*5 (0.05, 0.282), f*5 0.0155. 6.18 x*5 (0.0601, 0.334, 8.74), f*5 0.0130.

6.19 x*5 (2.5, 0.3, 0.045, 0.013), f*5 2.067. 6.20 x*5 (2.11, 0.403, 0.0156, 0.0115), f*5 0.921.

6.21 x*5 (0.4503, 0.0675), f*5 2.87. 6.22 x*5 (13.7, 5, 0.335, 0.23), f*5 21.6, select W14x22.

6.23 x*5 (11.9, 4.85, 0.322, 0.269), f*5 20.9, select W12x22. 6.24 x*5 (8.083, 5.46, 0.539, 0.331),

f*5 27.9, select W8x28. 6.25 x*5 (9.73, 4.59, 0.516, 0.398), f*5 27.9, select W10x30. 6.26 x*5

(16.4, 16, 1.663, 0.970), f*5 224, select W14x233. 6.27 x*5 (14.7, 12.8, 1.441, 0.876), f*5 160.4,

select W12x170. 6.28 x*5 (17.7, 11.7, 1.376, 1.108), f*5 165.6, select W18x175. 6.29 x*5 (13.7,

8.44, 0.335, 0.966), f*5 62.0, select W14x68. 6.30 x*5 (13.2, 8.28, 0.333, 0.926), f*5 58.0, select

W14x61. 6.31 x*5 (16.4, 16, 0.944, 0.23), f*5 113.9, select W14x145. 6.32 x*5 (19.69, 11.7, 1.254,

0. 3), f*5 117.2, select W18x143. 6.33 x*5 (21.5, 6.13, 0.335, 0.23), f*5 30.2, select W21x44.
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6.34 x*5 (27.8, 17.44, 0.566, 0.1944), f*5 84.7, select W18x143. 6.35 x*5 (16.4, 15.46, 1.023, 0.23),

f*5 118.6, select W14x145. 6.36 x*5 (25.5, 5, 1.56, 0.548), f*5 94.5, select W21x111. 6.37 x*5 (25.5,

12.79, 0.699, 0.23), f*5 79.5, select W21x111. 6.38 x*5 (25.5, 7.71, 0.360, 0.23), f*5 38.2, select

W21x57. 6.39 x*5 (0.3, 0.0032, 0.01874), f*5 33030.7. 6.40 x*5 (0.3, 0.0032, 0.01874),

f*5 33030.7. 6.41 x*5 (0.3, 0.00619, 0.01173), f*5 46614.

Chapter 7 Optimum Design with MATLAB
7.1 For l5 0.5 m, To5 10 kN�m, Tmax5 20 kN�m, x1*5 103 mm, x2*5 0.955, f*5 2.9 kg. 7.2 For

l5 0.5, To5 10 kN�m, Tmax5 20 kN�m, do*5 103 mm, di*5 98.36 mm, f*5 2.9 kg. 7.3 R*5 50.3 mm,

t*5 2.35 mm, f*5 2.9 kg. 7.4 A1*5 300 mm2, A2*5 50 mm2, f*5 7 kg. 7.5 R*5 130 cm, t*5 2.86 cm,

f*5 57,000 kg. 7.6 do*5 41.56 cm, di*5 40.19 cm, f*5 680 kg. 7.7 do*5 1310 mm, t*5 14.2 mm,

f*5 92,500 N. 7.8 H*5 50.0 cm, D*5 3.42 cm, f*5 6.6 kg. 7.9 b*5 0.5 in, h*5 0.28107 in,

f*5 0.140536 in2; Active constraints: fundamental vibration frequency and lower limit on b.

7.10 b*5 50.4437 cm, h*5 15.0 cm, t1*5 1.0 cm, t2*5 0.5218 cm, f*5 16,307.2 cm3; Active constraints:

axial stress, shear stress, upper limit on t1 and upper limit on h. 7.11 A1*5 1.4187 in2,

A2*5 2.0458 in2, A*35 2.9271 in2, x1*524.6716 in, x2*5 8.9181 in, x*35 4.6716 in, f*5 75.3782 in3; Active

stress constraints: member 1—loading condition 3, member 2—loading condition 1, member 3—

loading conditions 1 and 3. 7.12 For φ5
ffiffiffi
2

p
: x1*5 2.4138, x2*5 3.4138, x*35 3.4141, f*5 1.28773 1027;

For φ5 21/3: x1*5 2.2606, x2*5 2.8481, x*35 2.8472, f*5 8.033 1027.

Chapter 8 Linear Programming Methods for Optimum Design
8.21 (0, 4, 23, 25); (2, 0, 3, 1); (1, 2, 0, 22); 5=3; 2=3; 2; 0

� �
. 8.22 (0, 0, 23, 25); (0, 1, 0, 23); (0,

2.5, 4.5, 0); (23, 0, 0, 211); (2.5, 0, 25.5, 0); 9=8; 11=8; 0; 0
� �

. 8.23 Decompose x2 into two

variables; (0, 0, 0, 12, 23); (0, 0, 23, 0, 6); (0, 0, 21, 8, 0); (0, 3, 0, 0, 6); (0, 1, 0, 8, 0); (4, 0, 0, 0, 1);

(3, 0, 0, 3, 0); (4.8, 0, 0.6, 0, 0); (4.8, 20.6, 0, 0, 0). 8.24 0; 2 8=3; 2 1=3
� �

; (2, 0, 3); (0.2, 22.4,

0). 8.25 (0, 0, 9, 2, 3); (0, 9, 0, 20, 215); (0, 21, 10, 0, 5); (0, 1.5, 7.5, 5, 0); (4.5, 0, 0, 22.5, 16.5);

(2, 0, 5, 0, 9); (21, 0, 11, 3, 0); (4, 1, 0, 0, 13); 15=7; 33=7; 0; 65=7; 0
� �

; (22.5, 22.25, 16.25, 0, 0).

8.26 (0, 4, 23, 27); (4, 0, 1, 1); (3, 1, 0, 21); (3.5, 0.5, 0.5, 0). 8.27 Decompose x2 into two variables;

15 basic solutions; basic feasible solutions are (0, 4, 0, 0, 7, 0); 0; 5=3; 0; 7=3; 0; 0
� �

; (2, 0, 0, 0, 1, 0);

5=3; 0; 0; 2=3; 0; 0
� �

; 7=3; 0; 2=3; 0; 0; 0
� �

. 8.28 Ten basic solutions; basic feasible solutions are

(2.5, 0, 0, 0, 4.5); (1.6, 1.8, 0, 0, 0). 8.29 (0, 0, 4, 22); (0, 4, 0, 6); (0, 1, 3, 0); (22, 0, 0, 24); (2, 0, 8, 0);

(21.2, 1.6, 0, 0). 8.30 (0, 0, 0, 22); (0, 2, 22, 0); (0, 0, 0, 22); (2, 0, 2, 0); (0, 0, 0, 22); (1, 1, 0, 0).

8.31 (0, 0, 10, 18); (0, 5, 0, 8); (0, 9, 28, 0); (210, 0, 0, 48); (6, 0, 16, 0); (2, 6, 0, 0). 8.32 x*5

10=3; 2
� �

; f*52 13=3. 8.33 Infinite solutions between x*5 (0, 3) and x*5 (2, 0); f*5 6.

8.34 x*5 (2, 4); z*5 10. 8.35 x*5 (6, 0); z*5 12. 8.36 x*5 (3.667, 1.667); z*5 15. 8.37 x*5 (0, 5);

f*525. 8.38 x*5 (2, 0); f*5 2 2. 8.39 x*5 (2, 0); z*5 4. 8.40 x*5 (2.4, 0.8); z*5 3.2. 8.41 x*5

(0, 3); z*5 3. 8.42 x*5 (0, 4); z*5 22/3. 8.43 x*5 (0, 0); z*5 0. 8.44 x*5 (0, 3); z*5 3.

8.45 x*5 (0, 14); f*5 256. 8.46 x*5 (0, 2); f*5 22. 8.47 x*5 (0, 14); z*5 42. 8.48 x*5 (0, 0);

z*5 0. 8.49 x*5 (33, 0, 0); z*5 66. 8.50 x*5 (0, 2.5); z*5 5. 8.51 x*5 (2, 1); f*5 25. 8.52 x*5

(2, 1); z*5 31. 8.53 x*5 (7, 0, 0); z*5 70. 8.55 x*5 (2, 4); z*5 10. 8.56 Unbounded. 8.57 x*5

(3.5, 0.5); z*5 5.5. 8.58 x*5 (1.667, 0.667); z*5 4.333. 8.60 x*5 (0, 1.667, 2.333); f*5 4.333.

8.61 x*5 (1.125, 1.375); f*5 36. 8.62 x*5 (2, 0); f*5 40. 8.63 x*5 (1.3357, 0.4406, 0, 3.2392);

z*5 9.7329. 8.64 x*5 (0.6541, 0.0756, 0.3151); f*5 9.7329. 8.65 x*5 (0, 25); z*5 150.

8.66 x*5 2=3; 5=3
� �

; z*5 16=3. 8.67 x*5 7=3;
�

2 2=3Þ; z*52 1=3. 8.68 x*5 (1, 1); f*5 5.

8.69 x*5 (2, 2); f*5 10. 8.70 x*5 (4.8, 20.6); z*5 3.6. 8.71 x*5 (0, 2); f*5 4. 8.72 x*5 (0, 5); z*5 40.
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8.73 Infeasible problem. 8.74 Infinite solutions; f*5 0. 8.75 x*5 (0, 5/3, 7/3); f*5 2 13/3.

8.76 x*5 (0, 9); f*5 4.5. 8.77 A*5 20,000, B*5 10,000, Profit5 $4,600,000 (Irregular

optimum point). 8.78 A*5 70, B*5 76, Profit5 $1308. 8.79 Bread5 0, Milk5 2.5 kg; Cost5

$2.5. 8.80 Bottles of wine5 316.67, Bottles of whiskey5 483.33; Profit5 $1283.3. 8.81 Shortening

produced5 149,499.5 kg, Salad oil produced5 50,000 kg, Margarine produced5 10,000 kg; Profit5

$19,499.2. 8.82 A*5 10, B*5 0, C*5 20; Capacity5 477,000. 8.83 x1*5 0, x2*5 0, x*35 200, x*45 100;

f*5 786. 8.84 f*5 1,333,679 ton. 8.85 x*5 (0, 800, 0, 500, 1500, 0); f*5 7500; x*5 (0, 0, 4500, 4000,

3000, 0); f*5 7500; x*5 (0, 8, 0, 5, 15, 0), f*5 7500. 8.86 Irregular optimum point; Lagrange

multipliers are not unique: 20, 420, 0, 0. (a) No effect (b) Cost decreases by 200,000 (Profit increases

by 200,000). 8.87 1. No effect; 2. Out of range, re-solve the problem; A*5 70, B*5 110; Profit5

$1580; 3. Profit reduces by $4; 4. Out of range, re-solve the problem; A*5 41.667, B*5 110;

Profit5 $1213.33. 8.88 y15 0.25, y25 1.25, y35 0, y45 0. 8.89 Unbounded. 8.90 y15 0, y25 2.5,

y3521.5. 8.91 y15 0, y2 5 5=3; y3 527=3. 8.92 y15 4, y2521. 8.93 y1 525=3;

y2 52 2=3. 8.94 y15 2, y2526. 8.95 y15 0, y25 5. 8.96 y15 0.654, y2520.076, y35 0.315.

8.97 y1521.336, y2520.441, y35 0, y4523.239. 8.98 y15 0, y25 0, y35 0, y45 6.

8.99 y1521.556, y25 0.556. 8.100 y15 0, y2 5 5=3; y3 527=3. 8.101 y1520.5, y2522.5.

8.102 y1 521=3; y2 5 0; y3 5 5=3. 8.103 y15 0.2, y25 0.4. 8.104 y15 0, y25 0, y35 0,

y4522/3. 8.105 y15 2, y25 0. 8.106 Infeasible problem. 8.107 y15 3, y25 0. 8.110 For

b15 10: 28#Δ1# 8; for b25 6: 22.667#Δ2# 8; for b35 2: 24#Δ3#N; for

b45 6: 2N#Δ4# 8. 8.111 Unbounded problem. 8.112 For b15 5: 20.5#Δ1#N; for

b25 4: 21#Δ2# 0.333; for b35 3: 21#Δ3# 1. 8.113 For b15 5: 22#Δ1#N; for

b25 4: 22#Δ2# 2; for b35 1: 22#Δ3# 1. 8.114 For b1525: 2N#Δ1# 4; for b2522:

28#Δ2# 4.5. 8.115 b15 1: 25#Δ1# 7; for b25 4: 24#Δ2#N. 8.116 For b1523:

24.5#Δ1# 5.5; for b25 5: 23#Δ2#N. 8.117 For b15 3: 2N#Δ1# 3; for

b2528: 2N#Δ2# 4. 8.118 For b15 8: 28#Δ1#N; for b25 3: 214.307#Δ2# 4.032;

for b35 15: 220.16#Δ3# 101.867. 8.119 For b15 2: 23.9178#Δ1# 1.1533; for b25 5:

20.692#Δ2# 39.579; for b3524.5: 2N#Δ3# 7.542; for b45 1.5: 22.0367#Δ4# 0.334. 8.120

For b15 90: 215#Δ1#N; for b25 80: 230#Δ2#N; for b35 15: 2N#Δ3# 10; for b45 25:

210#Δ4# 5. 8.121 For b15 3: 21.2#Δ1# 15; for b25 18: 215#Δ2# 12. 8.122 For b15 5:

24#Δ1#N; for b25 4: 27#Δ2# 2; for b35 3: 21#Δ3#N. 8.123 For b15 0: 22#Δ1# 2; for

b25 2: 2 2#Δ2#N. 8.124 For b15 0: 26#Δ1# 3; for b25 2: 2N#Δ2# 2; for b35 6:

23#Δ3#N. 8.125 For b15 12: 23#Δ1#N; for b25 3: 2N#Δ2# 1. 8.126 For b15 10:

28#Δ1# 8; for b25 6: 22.667#Δ2# 8; for b35 2: 24#Δ3#N; for b45 6: 2N#Δ4# 8.

8.127 For b15 20: 2 12#Δ1#N; for b25 6: 2N#Δ2# 9. 8.128 Infeasible problem. 8.129 For

b15 0: 22#Δ1# 2; for b25 2: 22#Δ2#N. 8.132 For c1521: 21#Δc1# 1.667; for

c2522: 2N#Δc2# 1. 8.133 Unbounded problem. 8.134 For c15 1: 2N#Δc1# 3; for c25 4:

23#Δc2#N. 8.135 For c15 1: 2N#Δc1# 7; for c25 4: 23.5#Δc2#N. 8.136 For c15 9:

25#Δc1#N; for c25 2: 29.286#Δc2# 2.5; for c35 3: 213#Δc3#N. 8.137 For c15 5:

2 2#Δc1#N; for c25 4: 22#Δc2# 2; for c352 1: 0#Δc3# 2; for c45 1: 0#Δc4#N.

8.138 For c15210: 28#Δc1# 16; for c25218: 2N#Δc2# 8. 8.139 For c15 20: 212#Δc1#N;

for c2526: 29#Δc2#N. 8.140 For c15 2: 23.918#Δc1# 1.153; for c25 5: 20.692#Δc2
# 39.579; for c3524.5: 2N#Δc3# 7.542; for c45 1.5: 23.573#Δc4# 0.334. 8.141 c15 8:

28#Δc1#N; for c2523: 24.032#Δc2# 14.307; for c35 15: 0#Δc3# 101.8667;
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for c45215: 0#Δc4#N. 8.142 For c15 10: 2N#Δc1# 20; for c25 6: 24# c2#N. 8.143 For

c1522: 2N#Δc1# 2.8; for c25 4: 25#Δc2#N. 8.144 For c15 1: 2N#Δc1# 7; for c25 4:

2N#Δc2# 0; for c3 524: 2N#Δc3# 0. 8.145 For c15 3: 21#Δc1#N; for c25 2:

25#Δc2# 1. 8.146 For c15 3: 25#Δc1# 1; for c25 2: 20.5#Δc2#N. 8.147 For c15 1:

20.3333#Δc1# 0.5; for c25 2: 2N#Δc2# 0; for c352 2: 21#Δc3# 0. 8.148 For c15 1:

21.667#Δc1# 1; for c25 2: 21#Δc2#N. 8.149 For c15 3: 2N#Δc1# 3; for c25 8:

24#Δc2# 0; for c3528: 2N#Δc3# 0. 8.150 Infeasible problem. 8.151 For c15 3:

0#Δc1#N; for c2523: 0#Δc2# 6. 8.154 20,000 # b1 # 30,000; 5000 # b2 # 10,000; 20,000 #

b3 # N; 10,000 # b4 # N. For c15 2180: 220 # Δc1 # 105; for c25 2 100: 2140 # Δc2 #

10. 8.155 For c15210: 2N#Δc1# 0.4; for c2528: 20.3333#Δc2# 8. 8.156 1. Δf5 0.5;

2. Δf5 0.5 (Bread5 0, Milk5 3, f*5 3); 3. Δf5 0. 8.157 1. Δf5 33.33 (Wine bottles5 250,

Whiskey bottles5 500, Profit5 1250); 2. Δf5 63.33. 3. Δf5 83.33 (Wine bottles5 400, Whiskey

bottles5 400, Profit5 1200). 8.158 1. Re-solve; 2. Δf5 0; 3. No change. 8.159 1. Cost

function increases by $52.40; 2. No change; 3. Cost function increases by $11.25, x1*5 0, x2*5 30,

x*35 200, x*45 70. 8.160 1. Δf5 0; 2. No change; 3. Δf5 1800 (A*5 6, B*5 0, C*5 22,

f*52475,200). 8.161 1. Δf5 0; 2. Δf5 2,485.65; 3. Δf5 0; 4. Δf5 14,033.59; 5. Δ
f52162,232.3. 8.162 1. Δf5 0; 2. Δf5 400; 3. Δf52375. 8.163 1. x1*5 0, x2*5 3, f*5212;

2. y1 5 4=5, y25 0; 3. 215#Δ1# 3, 26#Δ2#N; 4. f*5214.4, b15 18.

Chapter 9 More on Linear Programming Methods for Optimum Design
9.1 y*15 1/4, y*25 5/4, y*35 0, y*45 0, f*d5 10. 9.2 Dual problem is infeasible. 9.3 y1*5 0, y2*

5 2.5, y*35 1.5, f*d5 5.5. 9.4 y1*5 0, y2*5 1.6667, y*35 2.3333, f *d5 4.3333. 9.5 y1*5 1.4, y2*5 0.2,

f*d526.6. 9.6 y1*5 1.6667, y2*5 0.6667, f*d524.3333. 9.7 y1*5 2, y2*5 6, f*d5236. 9.8 y1*5 0,

y2*5 5, f*d5240. 9.9 y1*5 0.65411, y2*5 0.075612, y3*5 0.315122, f*d5 9.732867. 9.10 y1*5 1.33566,

y2*5 0.44056, y*35 0, y*45 3.2392, f*d529.732867. 9.11 y1*5 0, y2*5 0, y3*5 0, y4*5 6, fd*5 150.

9.12 y1*5 14/9, y2*5 5/9, fd*5 16/3. 9.13 y1*5 0, y2*5 5/3, y3*5 7/3 , fd*5 21/3. 9.14 y1*5 0.5,

y2*5 2.5, fd*5 25. 9.15 y1*5 1/3, y2*5 0, y3*5 5/3, fd*5 10. 9.16 y1*5 0.2, y2*5 0.4, fd*5 3.6.

9.17 y1*5 0, y2*5 0, y3*5 0, y4*5 2/3, fd*5 24. 9.18 y1*5 2, y2*5 0, fd*5 40. 9.19 Unbounded dual

problem. 9.20 y1*5 0, y2*5 3, fd*5 0. 9.21 y1*5 5/3, y2*5 2/3, fd*5 213/3. 9.22 y1*5 0,

y2*5 2.5, fd*5 45.

Chapter 10 Numerical Methods for Unconstrained Optimum Design
10.2 Yes. 10.3No. 10.4 Yes. 10.5No. 10.6No. 10.7No. 10.8No. 10.9 Yes. 10.10No.

10.11No. 10.12No. 10.13No. 10.14No. 10.16 α*5 1.42850, f*5 7.71429. 10.17 α*5 1.42758,

f*5 7.71429. 10.18 α*5 1.38629, f*5 0.454823. 10.19 d is descent direction; slope5 2 4048;

α*5 0.15872. 10.20 α*5 0. 10.21 f(α)5 4.1α225α26.5. 10.22 f(α)5 52α22 52α1 13.

10.23 f(α)5 6.887473 109α423.61117443 108α31 5.8094443 106α2227844α1 41. 10.24 f(α)5
8α228α1 2. 10.25 f(α)5 18.5α2285α213.5. 10.26 f(α)5 288α2296α1 8. 10.27 f(α)5 24α22

24α1 6. 10.28 f(α)5 137α22110α1 25. 10.29 f(α)5 8α228α. 10.30 f(α)5 16α2216α1 4.

10.31 α*5 0.61. 10.32 α*5 0.5. 10.33 α*5 3.35E-03. 10.34 α*5 0.5. 10.35 α*5 2.2973.

10.36 α*5 0.16665. 10.37 α*5 0.5. 10.38 α*5 0.40145. 10.39 α*5 0.5. 10.40 α*5 0.5.

10.41 α*5 0.6097. 10.42 α*5 0.5. 10.43 α*5 3.45492E-03. 10.44 α*5 0.5. 10.45 α*5 2.2974.

10.46 α*5 0.1667. 10.47 α*5 0.5. 10.48 α*5 0.4016. 10.49 α*5 0.5. 10.50 α*5 0.5. 10.52 x(2)5

(5/2, 3/2). 10.53 x(2)5 (0.1231, 0.0775). 10.54 x(2)5 (0.222, 0.0778). 10.55 x(2)5 (0.0230, 0.0688).
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10.56 x(2)5 (0.0490, 0.0280). 10.57 x(2)5 (0.259, 20.225, 0.145). 10.58 x(2)5 (4.2680, 0.2244).

10.59 x(2)5 (3.8415, 0.48087). 10.60 x(2)5 (21.590, 2.592). 10.61 x(2)5 (2.93529, 0.33976, 1.42879,

2.29679). 10.62 (10.52) x*5 (3.996096, 1.997073), f*527.99999; (10.53) x*5 (0.071659, 0.023233),

f*520.073633; (10.54) x*5 (0.071844, 20.000147), f*520.035801; (10.55) x*5 (0.000011, 0.023273),

f*520.011626; (10.56) x*5 (0.040028, 0.02501), f*520.0525; (10.57) x*5 (0.006044, 20.005348, 0.002467),

f*5 0.000015; (10.58) x*5 (4.1453, 0.361605), f*521616.183529; (10.59) x*5 (3.733563, 0.341142),

f*521526.556493; (10.60) x*5 (0.9087422, 0.8256927), f*5 0.008348, 1000 iterations; (10.61) x*5 (0.13189,

0.013188, 0.070738, 0.072022), f*5 0.000409, 1000 iterations. 10.63 x*5 (0.000023, 0.000023, 0.000045),

f1*5 0, 1 iteration; x*5 (0.002353, 0.0, 0.000007), f2*5 0.000006, 99 iterations; x*5 (0.000003, 0.0, 0.023598),

f*35 0.000056, 135 iterations. 10.64 Exact gradients are: 1. rf5 (119.2, 258.0), 2. rf5 (2202, 100),

3. rf5 (6, 16, 16). 10.65 u5 c=2v, v5Lagrange multiplier for the equality constraints.

10.67 x(2)5 (4.2). 10.68 x(2)5 (0.07175, 0.02318). 10.69 x(2)5 (0.072, 0.0). 10.70 x(2)5 (0.0,

0.0233). 10.71 x(2)5 (0.040, 0.025). 10.72 x(2)5 (0.257, 20.229, 0.143). 10.73 x(2)5 (4.3682,

0.1742). 10.74 x(2)5 (3.7365, 0.2865). 10.75 x(2)5 (21.592, 2.592). 10.76 x(2)5 (3.1134, 0.32224, 1.34991,

2.12286).

Chapter 11 More on Numerical Methods for Unconstrained Optimum Design
11.1 α*5 1.42857, f*5 7.71429. 11.2 a*5 10=7, f*5 7.71429, one iteration. 11.4 1. a*5 13=4

2. α5 1.81386 or 4.68614. 11.10 x(1)5 (4, 2). 11.11 x(1)5 (0.071598, 0.023251). 11.12

x(1)5 (0.071604, 0.0). 11.13 x(1)5 (0.0, 0.0232515). 11.14 x(1)5 (0.04, 0.025). 11.15 x(1)5 (0, 0, 0).

11.16 x(1)5 (22.7068, 0.88168). 11.17 x(1)5 (3.771567, 0.335589). 11.18 x(1)5 (4.99913,

24.99085). 11.19 x(1)5 (21.26859, 20.75973, 0.73141, 0.39833). 11.22 x(2)5 (4, 2). 11.23 x(2)5

(0.0716, 0.02325). 11.24 x(2)5 (0.0716, 0.0). 11.25 x(2)5 (0.0, 0.02325). 11.26 x(2)5 (0.04,

0.025). 11.27DFP: x(2)5 (0.2571, 20.2286, 0.1428); BFGS: x(2)5 (0.2571, 20.2286, 0.1429).

11.28DFP: x(2)5 (4.37045, 0.173575); BFGS: x(2)5 (4.37046, 0.173574). 11.29 x(2)5 (3.73707,

0.28550). 11.30 x(2)5 (21.9103, 21.9078). 11.31 DFP: x(2)5 (3.11339, 0.32226, 1.34991, 2.12286);

BFGS: x(2)5 (3.11339, 0.32224, 1.34991, 2.12286). 11.44 x15 3.7754 mm, x25 2.2835 mm.

11.45 x15 2.2213 mm, x25 1.8978 mm. 11.46 x*5 0.619084. 11.47 x*5 9.424753.

11.48 x*5 1.570807. 11.49 x*5 1.496045. 11.50 x*5 (3.667328, 0.739571). 11.51 x*5 (4.000142,

7.999771).

Chapter 12 Numerical Methods for Constrained Optimum Design
12.29 x*5 5=2; 5=2

� �
, u*5 1, f*5 0.5. 12.30 x*5 (1, 1), u*5 0, f*5 0. 12.31 x*5

4=5; 3=5
� �

; u*5 2=5; f *5 1=5. 12.32 x*5 (2, 1), u*5 0, f*523. 12.33 x*5 (1, 2), u*5 0,

f*521. 12.34 x*5 13=6; 11=6
� �

; v*52 1=6; f *52 25=3. 12.35 x*5 (3, 1), v1*522,

v2*522, f*5 2. 12.36 x*5 48=23; 40=23
� �

; u*5 0; f *52 192=23. 12.37 x*5 5=2; 3=2
� �

;

u*5 1; f *52 9=2. 12.38 x*5 63=10; 26=15
� �

, u1*5 0, u2*5 4=5; f *52 3547=50.

12.39 x*5 (2, 1), u1*5 0, u2*5 2, f*521. 12.40 x*5 (0.241507, 0.184076, 0.574317); u*

5 (0, 0, 0, 0), v1*520.7599, f*5 0.3799.

Chapter 14 Design Optimization Applications with Implicit Functions
14.1 For l5 500 mm, do*5 102.985 mm, do*/di*5 0.954614, f*5 2.900453 kg; Active constraints:

shear stress and critical torque. 14.2 For l5 500 mm, do*5 102.974 mm, di*5 98.2999 mm,

f*5 2.90017 kg; Active constraints: shear stress and critical torque. 14.3 For l5 500 mm,

R*5 50.3202 mm, t*5 2.33723 mm, f*5 2.90044 kg; Active constraints: shear stress and critical
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torque. 14.5 R*5 129.184 cm, t*5 2.83921 cm, f*5 56,380.61 kg; Active constraints: combined

stress and diameter/thickness ratio. 14.6 do*5 41.5442 cm, di*5 40.1821 cm, f*5 681.957 kg;

Active constraints: deflection and diameter/thickness ratio. 14.7 do*5 1308.36 mm,

t*5 14.2213 mm, f *5 92,510.7 N; Active constraints: diameter/thickness ratio and deflection.

14.8 H*5 50 cm, D*5 3.4228 cm, f*5 6.603738 kg; Active constraints: buckling load and

minimum height. 14.9 b*5 0.5 in, h*5 0.28107 in, f*5 0.140536 in2; Active constraints:

fundamental vibration frequency and lower limit on b. 14.10 b*5 50.4437 cm, h*5 15.0 cm,

t1*5 1.0 cm, t2*5 0.5218 cm, f*5 16,307.2 cm3; Active constraints: axial stress, shear stress, upper

limit on t1 and upper limit on h. 14.11 A1*5 1.4187 in2, A2*5 2.0458 in2, A*35 2.9271 in2,

x1*524.6716 in, x2*5 8.9181 in, x*35 4.6716 in, f *5 75.3782 in3; Active stress constraints: member

1—loading condition 3, member 2—loading condition 1, member 3—loading conditions 1 and

3. 14.12 For φ5
ffiffiffi
2

p
: x1*5 2.4138, x2*5 3.4138, x*35 3.4141, f*5 1.28773 1027; For φ5 21/3:

x1*5 2.2606, x2*5 2.8481, x*35 2.8472, f*5 8.033 1027. 14.13 do* at base5 48.6727 cm, do* at

top5 16.7117 cm, t*5 0.797914 cm, f*5 623.611 kg. 14.14 do* at base5 1419 mm, do* at

top5 956.5 mm, t*5 15.42 mm, f*5 90,894 kg. 14.15 Outer dimension at base5 42.6407 cm,

outer dimension at top5 14.6403 cm, t*5 0.699028 cm, f*5 609.396 kg. 14.16 Outer

dimension at base5 1243.2 mm, outer dimension at top5 837.97 mm, t*5 13.513 mm,

f*5 88,822.2 kg. 14.17 ua5 25: f15 1.07301E-06, f25 1.83359E�02, f35 24.9977; ua5 35:

f15 6.88503E-07, f25 1.55413E�02, f35 37.8253. 14.18 ua5 25: f15 2.31697E-06, f25 2.74712E�02,

f35 7.54602; ua5 35: f15 2.31097E�06, f25 2.72567E�02, f35 7.48359. 14.19 ua5 25:

f15 1.11707E�06, f25 1.52134E�02, f35 19.815, f45 3.3052E-02; ua5 3.5: f15 6.90972E-07,

f25 1.36872E�02, f35 31.479, f45 2.3974E�02. 14.20 f15 1.12618E�06, f25 1.798E�02,

f35 33.5871, f45 0.10. 14.21 f15 2.34615E�06, f25 2.60131E�02, f35 10.6663, f45 0.10.

14.22 f15 1.15097E-06, f25 1.56229E�02, f35 28.7509, f45 3.2547E�02. 14.23 f15 8.53536E�07,

f25 1.68835E�02, f35 31.7081, f45 0.10. 14.24 f15 2.32229E-06, f25 2.73706E�02,

f35 7.48085, f45 0.10. 14.25 f15 8.65157E�07, f25 1.4556E�02, f35 25.9761,

f45 2.9336E�02. 14.26 f15 8.27815E�07, f25 1.65336E�02, f35 28.2732, f45 0.10.

14.27 f15 2.313E�06, f25 2.723E�02, f35 6.86705, f45 0.10. 14.28 f15 8.39032E�07, f25 1.43298E-2,

f35 25.5695, f45 2.9073E�02. 14.29 k*5 2084.08, c*5 300 (upper limit), f*5 1.64153.

Chapter 18 Global Optimization Concepts and Methods for Optimum Design
18.1 Six local minima, two global minima: (0.0898, 20.7126), (20.0898, 0.7126),

f*G521.0316258. 18.2 10n local minima; global minimum: xi*5 1, f*G5 0. 18.3 Many local

minima; global minimum: x*5 (0.195, 20.179, 0.130, 0.130), f *G5 3.130193 1024. 18.4 Many

local minima; two global minima: x*5 (0.05, 0.85, 0.65, 0.45, 0.25, 0.05), x*5 (0.55, 0.35, 0.15, 0.95,

0.75, 0.55), f*G521. 18.5 Local minima: x*5 (0, 0), f*5 0; x*5 (0, 2), f*522; x*5 (1.38, 1.54),

f*520.04; Global minimum: x*5 (2, 0), f *524.

Appendix B Vector and Matrix Algebra
A.1 jAj5 1. A.2 jAj5 14. A.3 jAj5220. A.4 λ1 5 ð52

ffiffiffi
5

p
Þ=2, λ25 2, λ3 5 ð52

ffiffiffi
5

p
Þ=2.

A.5 λ1 5 ð22
ffiffiffi
2

p
Þ, λ25 2, λ3 5 ð21

ffiffiffi
2

p
Þ. A.6 r5 4. A.7 r5 4. A.8 r5 4. A.9 x15 1, x25 1,

x35 1. A.10 x15 1, x25 1, x35 1. A.11 x15 1, x25 2, x35 3. A.12 x15 1, x25 1, x35 1, x45 1.

A.13 x15 1, x25 2, x35 3. A.14 x15 2, x25 1, x35 1. A.15 x15 1, x25 2, x35 3. A.16 x15 1,

x25 1, x35 1. A.17 x15 2, x25 1, x35 1, x4522. A.18 x15 6, x25215, x3521, x45 9.

A.19 x15 (327x32 2x4)/4, x25 (211 x322x4)/4. A.20 x15 (42 x3), x25 2, x45 4.
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A.21 x15 (2324x4), x25 (222 3x4), x35 x4. A.22 x152 x4, x25 (21 x4), x35 (222 x4).

A.27 x15 41 (2x228x32 5x41 2x5)/3; x65 (92 x222x32 x423x5)/2; x75 142

(13x21 14x31 8x41 4x5)/3; x85 (91 x2216x3 27x41 19x5)/6. A.28 Linearly dependent.

A.29 Linearly independent. A.30 λ1 5 ð322
ffiffiffi
2

p
Þ, λ2 5 ð312

ffiffiffi
2

p
Þ. A.31 λ1 5 ð32

ffiffiffi
5

p
Þ,

λ2 5 ð31
ffiffiffi
5

p
Þ. A.32 λ1 5 ð52

ffiffiffiffiffi
13

p
Þ=2 , λ2 5 ð51

ffiffiffiffiffi
13

p
Þ=2, λ35 5. A.33 λ1 5 ð12

ffiffiffi
2

p
Þ, λ25 1,

λ3 5 ð11
ffiffiffi
2

p
Þ. A.34 λ15 0, λ2 5 ð32

ffiffiffi
5

p
Þ, λ3 5 ð31

ffiffiffi
5

p
Þ.
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Index

A
Acceptance criterion, 697
Acceptance�rejection (A-R)

method, 697�698
Acceptance/rejection of trial

design, 717
ACO. See Ant Colony Optimization
Adaptive numerical method for

discrete variable
optimization, 636�641

continuous variable
optimization, 636�637

discrete variable optimization,
637�641

Advanced first-order second
moment method, 777�781

Agent, 727
Algebra, vector and matrix. See

Vector and matrix algebra
Algorithm, for traveling salesman

problem, 721�724
Algorithm does not converge, 217
Algorithms

attributes of good optimization,
588

conceptual local-global, 699�700
constrained problems, 417
constraint correction, 638
convergence of, 417
CSD, 526�527
Phase I, 337
Phase II, 339�345
robust, 587
selection of, 587
Simplex, 384�385

Algorithms, concepts related to
numerical. See Numerical
algorithms

Algorithms, SLP. See Sequential
Linear Programming
algorithms

Algorithms for step size
determination, ideas,
418�421

alternate equal interval search,
425

analytical method to compute
step size, 419�421

definition of one-dimensional
minimization subproblem,
419

equal interval search, 423�424
example—analytical step size

determination, 420
example—minimization of

function by golden section
search, 429

golden section search, 425�430
numerical methods and compute

step size, 421�430
Alternate equal interval

search, 425
Alternate quadratic interpolation,

447�448
American Association of State

Highway and Transportation
Officials (AASHTO),
231�232

Analyses
engineering, 4
operations, 702�705

Analysis, postoptimality. See
Postoptimality analysis

Analysis of means (ANOM), 749
Analytical method, 419�421
Ant behavior, 718�720

simple model/algorithm,
719�720

Ant Colony Optimization (ACO),
718�727

algorithm for design
optimization, 724�727

algorithm for traveling salesman
problem, 721�724

behavior, 718�720
Application to different

engineering fields, 52
example problem, 724�725
feasible solutions, finding, 725
pheromone deposit, 726�727
pheromone evaporation, 726
problem definition, 724

Array operation, 276
Artificial cost function, 336, 383
Artificial variables, 334�347,

382�383
cost function, 336
definition of Phase I problem,

336�337
degenerate basic feasible

solution, 345�347
example—feasible problem, 342
example—implications of

degenerate feasible solution,
346

example—unbounded problem,
344

example—use of artificial
variables, 344

example—use of artificial
variables for equality
constraints, 342

example—use of artificial
variables for $ type
constraints, 339

Phase I algorithm, 337
Phase II algorithm, 339�345
use for equality constraints, 342

Ascents, alternation of descents,
687

Asymmetric three-bar structure,
594�598

Augmented Lagrangian methods,
479�481

B
Basic feasible solution, degenerate,

346
BBM. See Branch and bound

method
Beam, design of rectangular,

174�187
Beam design problem, graphical

solution for, 82�94
Binary variable defined, 619
Binomial crossover, 717
Bound-constrained optimization,

549�553
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Bound-constrained optimization
(Continued)

optimality conditions, 549�550
projection methods, 550�552
step size calculation, 552�553

Bounded objective function
method, 675�676

Brackets
design of two-bar, 30�36
design of wall, 171�174

Branch and bound method (BBM),
623�628

basic, 623�624
example—BBM with local

minimizations, 626
example—BBM with only

discrete values allowed, 624
for general MV-OPT, 627�628
with local minimization,

625�627
British versus SI units. See U.S.�

British versus SI units
Broyden-Fletcher-Goldfarb-Shanno

(BFGS) method, 470�472

C
Cabinet design, 37�40
Calculation of basic solution,

314�320
basic solutions to Ax5 b,

317�320
pivot step, 316�317
tableau, 314�316

Calculus concepts, 103�115
example—calculation of gradient

vector, 105
example—evaluation of gradient

and Hessian of function, 106
example—linear Taylor’s

expansion of function, 109
example—Taylor’s expansion of

a function of one variable,
108

example—Taylor’s expansion of
a function of two variables,
108

gradient vector, 103�105
Hessian matrix, 105�106
necessary and sufficient

conditions, 115�116
quadratic forms and definite

matrices, 109�115
Taylor’s expansion, 106�109

Can design, 25�26

Canonical form/general solution of
Ax5b, 308�309

Changing constraint limits, effect
of, 153�156

Chromosome, 645, 715�716
Clustering methods, 691�694
Coefficient matrix, changes in,

361�375
Coefficient of variation, 773
Coefficients, ranging cost, 359�361
Coil springs, design of, 43�46
Column design
for minimum mass, 286�290
minimum weight tubular, 40�42

Column matrix, 787�820
Columns, graphical solutions for

minimum weight tubular,
80�81

Column vector, 787�820
Compression members, optimum

design of, 243�250, 244t
discussion, 250
example—elastic buckling

solution, 249
example—inelastic buckling

solution, 247
formulation of problem, 243�247
formulation of problem, for

elastic buckling, 249�250
formulation of problem, for

inelastic buckling, 247�248
Compromise solution, 665
Computer programs, sample, 823
equal interval search, 823�826
golden section search, 826�828
modified Newton’s method, 829
steepest descent method, 829

Concepts, optimum design. See also
Optimum design concepts

duality in NLP, 201�212
exercises, 178�180
necessary conditions, for

equality-constrained
problem, 130�137

necessary conditions, for general
constrained problem,
137�153

Concepts, solution. See Solution
concepts

Concepts and methods, multi-
objective optimum design.
See Multi-objective optimum
design concepts and
methods

Conditions
descent, 416
second-ordered, 194�199
transformation of KKT, 403�404

Conditions, alternate form of KKT
necessary, 189�192

example—alternate form of KKT
conditions, 190

example—check for KKT
necessary conditions, 191

Conditions, concepts relating to
optimality, 116�117

Conjugate gradient method,
434�436, 484

example—use of conjugate
gradient algorithm, 435�436

Constrained design, numerical
methods for, 491�574

algorithms and constrained
problems, 492�495

basic concepts and ideas, 492�499
constrained quasi-Newton

methods, 573
constraint normalization, 496�498
constraint status at design point,

495�496
convergence of algorithms,

498�499
CSD method, 525�531
descent function, 498
example—constraint

normalization and status
at point, 497

inexact step size determination,
s, 0035

linearization of constrained
problem, 541

miscellaneous numerical
optimization methods,
564�569

potential constraint strategy,
534�537

QP problem, 513�514
QP subproblem, 514�520
SLP algorithm, 506�513

Constrained optimum design
problems, 281�282

example—constrained
minimization problem using
fmincon, 281

example—constrained optimum
point, 138

example—cylindrical tank
design, 127
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example—equality constrained
problem, 140

example—fmincon in
Optimization Toolbox, 281

example—inequality constrained
problem, 140

example—infeasible problem,
139

example—Lagrange multipliers
and their geometrical
meaning, 131

example—solution of KKT
necessary conditions, 145,
146, 150

example—use of Lagrange
multipliers, 136

example—use of necessary
conditions, 140

inequality constraints, 137�139
KKT, 139�152
necessary conditions, 137�153
necessary conditions: equality

constraints, 137�153
Constrained optimization, second-

order conditions for,
194�199

example—check for sufficient
conditions, 197

solution of KKT necessary
conditions using
Excel, 222

solution of KKT necessary
conditions using MATLAB,
149

Constrained optimum design,
numerical methods for,
533�574

bound-constrained optimization,
549�553

inexact step size calculation,
537�549

potential constraints trategy,
534�537

QP subproblem, 514�520
quasi-Newton Hessian

approximation, 557�558
search direction calculation,

514�520
SQP, 513�514, 553�563
step size calculation subproblem,

520�525
Constrained problems, concepts

related to algorithms for,
492�495

Constrained problems,
linearization of, 499�506

example—definition of linearized
subproblem, 500�506

example—linearization of
rectangular beam design
problem, 504

Constrained quasi-Newton
methods. See also Sequential
quadratic programming

descent functions, 563
deviation of QP subproblem,

554�557
example—use of constrained

quasi-Newton method, 560
observations on, 561�563
quasi-Newton Hessian

approximation, 557�558
Constrained steepest-descent (CSD)

method, 513, 525�527
algorithm, 526�527
algorithm, with inexact step size,

542�549
descent function, 538�542
example—calculation of descent

function, 540
example—golden section search,

429
example—use of CSD algorithm,

542
step size determination,

444�450
Constrained variable metric (CVM).

See Sequential quadratic
programming

Constraint correction (CC),
algorithm for, 638

Constraint limits, effect of
changing, 155

Constraint normalization, 496�498
Constraints, 300

linear, 23
notation for, 8�9

Constraints, formulation of, 22�25
equality and inequality

constraints, 23
feasibility design, 23
implicit constraints, 23�25
linear and nonlinear constraints,

23
Constraint status at design point,

495�496
Constraint strategy, potential,

534�537, 587

example—determination of
potential constraint set, 534

example—search direction and
potential constraint strategy,
536

Constraint tangent hyperplane, 194
Continuous variable optimization,

608�609, 636�637
Contours

plotting of function, 75�77
plotting of objective

function, 74
Control, optimal, 6
Control effort problem, minimum,

608�609
Controlled random search (CRS),

694�697
Control of systems by nonlinear

programming. See Nonlinear
programming, control of
systems by

Control problems
minimum time, 609�610
prototype optimal, 598�602

Conventional versus optimum
design, 4�5

Convergence of algorithms, 417
Convergence ratio, 482
Convex functions, 162�164
Convex programming problem,

164�170
Convex sets, 160�161
Correction algorithm, constraint,

638
Correlation coefficient, 773
Cost

algorithm for constraint
correction at constant, 638

algorithm for constraint
correction at specified
increase in, 638

constraint correction with
minimum increase in, 638

Cost coefficients, ranging, 359�361
Cost function, 300
Cost function, artificial, 336
Cost function scaling, effect on

Lagrange multipliers,
156�157

Covariance, 773
Covering methods, 684�685
Criterion, acceptance, 697
Criterion method, weighted global,

673�674
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Criterion space and design space,
660�662

Crossover operation to generate
trial design, 716�717

CRS. See Controlled random search
CSD, 527�531, 572

constrained quasi-Newton
methods, 573

CSD method, 530�531
linearization of constrained

problem, 528�529
QP subproblem, 529
SLP algorithm, 529

CSD method. See Constrained
steepest-descent method

Cumulative distribution function,
770

Curve fitting, quadratic, 444�447
Cylindrical tank design, minimum

cost, 42�43

D
Davidon-Fletcher-Powell (DFP)

method, 467�469
DE. See Domain elimination (DE)
DE algorithm, 717�718

notation and terminology for,
715t

Definite matrices, quadratic forms
and, 109�115

Definitions, standard LP, 300�302
Degenerate basic feasible solution,

345�347
Derivative-based methods, 214
Derivative-free methods, 215
Derivatives of functions, 12�13

first partial derivatives, 12
partial derivatives, of vector

functions, 13
second partial derivatives, 13

Descent, methods of generalized,
686�688

Descent algorithm, 432�434
Descent condition, 417, 538�542
Descent direction, 415�417

descent step, 415�417
orthogonality of steepest,

454�455
rate of convergence, 417

Descent function, 498,
520�522, 563

example, 522
Descent method, steepest, 431�434,

451�455, 482�483

example—verification of
properties of gradient
vector, 453

properties of gradient vector,
451�454

Descents and ascents, alternation
of, 687

Descent search, steepest, 829
Descent step, 415�417
Design, 714
of cabinet, 37�40
of can, 25�26
of column, 286�290
of flywheel, 290�298
of insulated spherical tank,

26�28
of minimum cost cylindrical

tank, 42�43
of minimum weight tubular

column, 40�42
multiple optimum, 77
of rectangular beam, 547
of two-bar bracket, 30�36
of wall bracket, 171�178

Design, GA for optimum. See
Genetic algorithms (GA) for
optimum design

Design, global optimization
concepts and methods for.
See Global optimization
concepts and methods

Design, introduction to, 1�16
basic terminology and notation,

6�13
conventional versus optimum

design process, 4�5
design process, 2�4
engineering design versus

engineering analysis, 4
optimum design versus optimal

control, 6
Design, linear programming

methods for. See Linear
programming methods for
optimum design

Design, mathematical model for
optimum. See Mathematical
model for optimum design

Design, numerical methods for
constrained. See Constrained
design, numerical methods
for

Design, numerical methods for
constrained optimum. See

Constrained optimum
design, numerical methods
for

Design, numerical methods for
unconstrained optimum. See
Unconstrained optimum
design, numerical methods
for

Design concepts, optimum. See
Optimum design concepts

Design concepts and methods,
discrete variable. See
Discrete variable optimum
design concepts and
methods

Design concepts and methods,
multi-objective. See Multi-
objective optimum design
concepts and methods

Design examples, engineering,
171�178

Design examples with MATLAB,
optimum, 284�298

Design of experiments for response
surface generation, 741�748

example—generation of a
response surface using an
orthogonal array, 744

example—optimization using
RSM, 746

Design optimization
applications with implicit

functions, 576�582
practical applications with

implicit functions, 575�618
Design optimization, issues in

practical. See Practical design
optimization, issues in

Design optimization applications
with implicit functions

adaptive numerical method for
discrete variable
optimization, 636�641

general-purpose software,
589�590

gradient evaluation for implicit
functions, 582�587

issues in practical design
optimization, 587�588

multiple performance
requirements, 592�598

optimal control of systems by
nonlinear programming,
598�612
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optimum design of three-bar
structure, 592�598

optimum design of two-member
frame, 590�591

out-of plane loads, 590�591
practical design optimization

problems, 576�582
Design point, 714

constraint status at, 578�582
Design problem formulation,

optimum, 17�64
design of cabinet, 37�40
design of can, 25�26
design of coil springs, 43�46
design of two-bar bracket,

30�36
general mathematical model for

optimum design, 50�64
insulated spherical tank design,

26�28
minimum cost cylindrical tank

design, 42�43
minimum weight design of

symmetric three-bar truss,
46�50

minimum weight tubular column
design, 40�42

problem formulation process,
18�25

saw mill operation, 28�30
Design problems

classification of mixed variable
optimum, 621�622

graphical solutions for rectanglar
beam, 82�94

with multiple solutions, 77�78
sufficiency check for rectangular

beam, 199�201
Design problems, constrained

optimum. See Constrained
optimum design problems

Design problems, unconstrained
optimum, 116�129

Design process, 2�4
Design representation, 645�646
Design space, 660�662
Design variables, scaling of,

456�459
example—effect of scaling of

design variables, 456
Design vector, 714
Desirable direction, 415
Determination, search direction,

431�436

Deterministic methods, 684�689
covering methods, 684�685
methods of generalized descent,

686�688
tunneling method, 688�689
zooming method, 685�686

Diagonal matrix, 791�821
Differential evolution algorithm,

714�718
A-R of trial design, 717
crossover operation to generate

trial design, 716�717
DE algorithm, 717�718
generation of donor design, 716
generation of initial population,

715�716
Digital human modeling, 614�617
Direct Hessian updating,

470�472
Directions

descent, 415�417
desirable, 415�417
method of feasibility, 564�565
orthogonality of steepest descent,

454�455
Direct search methods, 214�215,

412, 485�489, 713
Hooke-Jeeves method, 486�489
univariate search, 485�486

Discrete design with orthogonal
arrays, 749�753

example—discrete design with
an orthogonal array, 752

Discrete variable optimization,
609�610, 636�641

Discrete variable optimum design
concepts and methods,
619�642

adaptive numerical method for,
607�608

basic concepts and definitions,
620�623

BBM, 623�628
dynamic rounding-off method,

632�633
IP, 628�629
methods for linked discrete

variables, 633�635
neighborhood search method,

633
SA, 630�632
selection of methods, 635
sequential linearization methods,

629

Domain elimination (DE), 707�708
method, 700�702

Dominance, efficiency and, 664�665
Duality in nonlinear programming,

201�212
local duality, equality constraints

case, 201�206
local duality, inequality

constraints case, 206�212
Dynamic rounding-off method,

632�633

E
Efficiency and dominance, 664�665
Eigenvalues and eigenvectors,

816�818
example—calculation of

eigenvalues and
eigenvectors, 816�818

Eigenvectors, eigenvalues and,
816�818

Elements, off-diagonal, 791�821
Elimination, Gauss-Jordan,

800�803
Elimination domain, 700�702
Engine, optimization, 667
Engineering applications of

unconstrained methods,
472�477

Engineering design examples,
171�178

design of rectangular beam,
174�187

design of wall bracket,
171�174

Engineering design optimization
using Excel Solver, 231�238

data and information collection,
233�234

definition of design variables, 234
formulation of constraints,

234�235
identification of criterion to be

optimized, 234
project/problem statement,

231�233
solution, 238
Solver dialog box, 237�238
spreadsheet layout, 235�237

Engineering design versus
engineering analysis, 4

Equal interval search, 423�424,
823�826

alternate, 425
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Equality-constrained problem,
necessary conditions,
130�137

Lagrange multipliers, 131�135
Lagrange multiplier theorem,

135�137
Equality constraints case, local

duality, 201�206
Equations

general solution of m3 n linear,
792�803

solution of m linear, 804�809
Errors, minimization of,

602�608
Evaluation, gradient, 575�576
Excel Solver, 218�223

for LP problems, 225�227
for NLP, optimum design of

springs, 227�231
roots of a set of nonlinear

equations, 222�223
roots of a nonlinear equation,

219�221
for unconstrained optimization

problems, 224
Excel Solver, optimum design of

plate girders using. See also
Plate girders, optimum
design using Excel Solver

data and information collection,
233�234

identification/definition of
design variables, 234

identification of constraints,
234�235

identification of criterion to be
optimized, 234

project/problem statement,
231�233

solution, 235�237
Solver dialog box, 237�238
spreadsheet layout, 235�237

Excel Solver, optimum design with,
213�274. See also Optimum
design, with Excel Solver

for LP problems, 225�227
for NLP, optimum design of

springs, 227�231
numerical methods for optimum

design, 213�218
optimum design of compression

members, 243�250
optimum design of members for

flexure, 250�263

optimum design of plate girders
using excel solver, 231�238

optimum design of
telecommunication poles,
263�273

optimum design of tension
members, 238�243

for unconstrained optimization
problems, 224

Excel worksheet, 222�223
Expansion, Taylor’s. See Taylor’s

expansion
Expected value, 772�774
Expressions, variables and,

275�276

F
Feasible directions, method of,

564�565
Feasible points, finding, 216
Feasible region, identification

of, 73
Feasible solution, degenerate basic,

345�347
Feasible solutions, finding,

725�726
initial link, selection, 726
link from layer R, 726
solution for all ants, 726

Filters, Pareto-set, 670
First-order reliability method

(FORM), 781
Fitness functions, Pareto, 669
Fitting, quadratic curve, 444�447
Flywheel design for minimum

mass, 290�298
data and information collection,

290�292
definition of design variables,

292
formulation of constraints, 292
optimization criterion, 292
project/problem statement, 290

Formulation, design problem. See
Design problem formulation

Formulation process, problem. See
Problem formulation process

Formulations, comparison of three,
611�612

Function contours
plotting, 75�77
plotting of objective, 74

Functions
artificial cost, 336

descent, 498, 520�522
normalization of objective, 667
Pareto fitness, 669
plotting, 72�73
utility, 665�666

Functions, convex, 162�164
Functions, implicit, designing

practical applications with,
575�618

Functions, implicit, gradient
evaluation for, 582�587

example—gradient evaluation
for two-member
frame, 583

Functions of single variables,
optimality conditions for,
117�122

G
GA. See Genetic algorithms
Gaussian (normal) distribution,

773�774
Gaussian elimination procedure,

796�800
Gauss-Jordan elimination, 800�803
Gene, defined, 645
General concepts, gradient-based

methods. See Gradient-based
search methods

General constrained problem,
necessary conditions,
137�153

KKT necessary conditions,
139�152

role of inequalities, 137�139
summary of KKT solution

approach, 152�153
General iterative algorithm, 413�415
Generalized descent, methods of,

686�688
Generalized reduced gradient

(GRG) method, 567�569
General-purpose software, use of,

589�590
integration of application into,

589�590
Generation, 644, 714
Generation of donor design, 716
Generation of initial population,

715�716
Genetic algorithms (GA),

fundamentals of, 646�651
amount of crossover and

mutation, 649
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crossover, 648
elitist strategy, 670
immigration, 651
leader of population, 650
multi-objective, 667�671
multiple runs for problem, 651
mutation, 648�649
niche techniques, 671
number of crossovers and

mutations, 649
Pareto fitness function, 669
Pareto-set filter, 670
ranking, 669
reproduction procedure,

647�648
stopping criteria, 650
tournament selection, 670�671
VEGA, 668�669

Genetic algorithms (GA), for
optimum design, 643�656

applications, 653�655
basic concepts and definitions,

644�646
fundamentals of, 646�651

Genetic algorithms (GA), for
sequencing-type problems,
651�653

example—bolt insertion
sequence determination, 652

Global and local minima,
definitions of, 96�103

Global criterion method, weighted,
673�674

Global optimality, 159�170
convex functions, 162�164
convex programming problem,

164�168
convex sets, 160�161
example—checking for convexity

of function, 163, 164
example—checking for convexity

of problem, 166, 167, 168,
169

example—checking for convexity
of sets, 161

sufficient conditions for convex
programming problems,
169�170

transformation of constraint,
168�169

Global optimization concepts and
methods, 681�712

basic concepts of solution
methods, 682�684

deterministic methods, 684�689
numerical performance of

methods, 705�712
stochastic methods, 689�698
two local-global stochastic

methods, 699�705
Global optimization, of structural

design problems, 708�712
Goal programming, 676�677
Golden section search, 425�430,

523, 826�828
Golf methods, 688
Good optimization algorithm,

attributes of, 588
Gradient-based and direct search

methods, 411�412
nature-inspired search methods,

412
Gradient-based search methods,

411�412
basic concepts, 413
general algorithm, 415
general iterative algorithm,

413�415
Gradient evaluation for implicit

functions, 582�587
Gradient evaluation requires

special procedures,
575�576

Gradient method, conjugate,
434�436

Gradient projection method,
566�567

Gradient vectors, 103�105
properties of, 451�454

Graphical optimization, 65�94
design problem with multiple

solutions, 77�78
graphical solution for beam

design problem, 82�94
graphical solution for minimum-

weight tubular column,
80�81

graphical solution process,
65�71

infeasible problem, 79�80
problem with unbounded

solution, 79
use of Mathematica for graphical

optimization, 71�74
use of MATLAB for graphical

optimization, 75�77
Graphical optimization, use of

Mathematica for, 71�74

identification and shading of
infeasible region for
inequality, 73

identification of feasible region,
73�74

identification of optimum
solution, 74

plotting functions, 72�73
plotting of objective function

contours, 74
Graphical optimization, use of

MATLAB for, 75�77
editing graphs, 77
plotting of function contours, 75�77

Graphical solution, for beam
design problem, 82�94

Graphical solution, for minimum-
weight tubular column, 80�81

Graphical solution procedure,
step-by-step, 67�71

coordination of system set-up, 67
identification of feasible region

for inequality, 67�68
identification of optimum

solution, 69�71
inequality constraint boundary

plot, 67
plotting objective function

contours, 68�69
Graphical solution process, 65�71

profit maximization problem,
65�66

Graphs, editing, 77

H
Hessian approximation, quasi-

Newton, 557�558
Hessian matrix, 105�106
Hessian updating

direct, 470�472
inverse, 467�469

Hooke-Jeeves method, 486�489
algorithm, 486�489
exploratory search, 486
pattern search, 486

Hyperplane, constraint tangent, 194

I
Identity matrix, 791�821
Implicit functions, design

applications with, 575�618
adaptive numerical method for

discrete variable
optimization, 636�641
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Implicit functions, design
applications with (Continued)

formulation of practical design
optimization problems,
576�582

general-purpose software,
589�590

gradient evaluation for implicit
functions, 582�587

issues in practical design
optimization, 587�588

multiple performance
requirements, 592�598

optimal control of systems by
NLP, 598�612

optimum design of three-bar
structure, 592�598

optimum design of two-member
frame, 590�591

out-of-plane loads, 590�591
Implicit functions, design practical

applications with, 575�618
Implicit functions, gradient

evaluation for, 582�587
example—gradient evaluation

for two-member frame, 583
Improving feasible direction,

564�565
Inaccurate line search, 448�449
Inequality, identification and

hatching of infeasible region
for, 73

Inequality constraints case, local
duality, 206�212

Inexact step-size calculation. See
Step-size calculation, inexact

Infeasible problem, 79�80
Infeasible region, identification and

shading of, 73
Insulated spherical tank design,

26�28
Integer programming (IP), 628�629
Integer variable, 619
Integration, stochastic, 698
Interpolation, alternate quadratic,

447�448
Interpolation, polynomial,

444�448
quadratic curve fitting, 444�447

Interval-reducing methods, 422�423
Interval search

alternate equal, 425
equal, 423�424, 823�826

Inverse Hessian updating, 467�469

IP. See Integer programming
Irregular points, 192�194
example—check for KKT

conditions at irregular
points, 192

K
Karush-Kuhn-Tucker (KKT), 189
conditions, transformation of,

404�405
conditions for LP problem,

400�402
optimality conditions, 400
solution, 400�402

necessary conditions, 139�152
necessary conditions, alternate

form of, 189�192
example—alternate form of
KKT conditions, 190

example—check for KKT
necessary conditions, 191

necessary conditions for QP
problem, 403�404

solution approach, 152�153

L
Lagrange multipliers, 131�135
effect of cost function scaling on,

156�157
physical meaning of, 153�159

constraint variation sensitivity
result, 159

effect of changing constraint
limit, 153�156

example—effect of scaling
constraint, 158

example—effect of scaling cost
function, 157

example—Lagrange
multipliers, 157, 158

example—optimum cost
function, 155

example—variations of
constraint limits, 155

scaling cost function on
Lagrange multipliers, 157

Lagrange multiplier theorem,
135�137

Lagrangian methods, augmented,
479�481

Length of vectors. See Norm/length
of vectors

Lexicographic method, 674�675
Limit state equation, 774�776

Linear constraints, 23
Linear convergence, 482
Linear equations, general solution

of m3 n, 804�809
Linear equations in n unknowns,

solving n, 792�803
determinants, 793�796
example—determinant of matrix

by Gaussian
elimination, 799

example—Gauss-Jordan
reduction, 801

example—Gauss-Jordan
reduction process in tabular
form, 809

example—general solution by
Gauss-Jordan reduction, 806

example—inverse of matrix by
cofactors, 801

example—rank determination by
elementary operation, 804

example—solution of
equations by Gaussian
elimination, 798

Gaussian elimination procedure,
796�800

Gauss-Jordan elimination, 806
general solution of m3n linear

equations, 804�809
inverse of matrix, 800�803
linear systems, 792�793
rank of matrix, 803�804

Linear functions, 300
constraints, 300
cost function, 300

Linearization methods, sequential,
629

Linearization of constrained
problems, 499�506

example—definition of linearized
subproblem, 501

example—linearization of
rectangular beam design
problem, 504

Linear limit state equation, 776
Linear programming (LP), duality

in, 387�399
alternate treatment of equality

constraints, 391�392
determination of primal solution

from dual solution, 392�395
dual LP program, 388�389
dual variables as Lagrange

multipliers, 398�399
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example—dual of LP program,
389

example—dual of LP with
equality and $ type
constraints, 390

example—primal and dual
solutions, 394

example—recovery of primal
formulation from dual
formulation, 391

example—use of final primal
tableau to recover dual
solutions, 398

standard primal LP, 387�388
treatment of equality constraints,

389�390
use of dual tableau to recover

primal solution, 395�398
Linear programming methods, for

optimum design, 299�376,
377�410

artificial variables, 334�347
basic concepts related to LP

problems, 305�314
calculation of basic solution,

318�320
definition of standard LP

problem, 300�305
duality in LP, 387�399
example—structure of tableau,

318
KKT conditions for LP problem,

400�402
linear functions, 300
postoptimality analysis,

348�375
QP problem, 402�409
two-phase Simplex method,

334�347
Linear programming problem,

standard, 66, 300�305
example—conversion to standard

LP form, 304
linear constraints, 23
unrestricted variables, 303

Linear programming problems,
concepts related to, 299,
305�314

example—characterization of
solution for LP problems, 311

example—determination of basic
solutions, 311

example—profit maximization
problem, 306

LP terminology, 310�313
optimum solutions to LP

problems, 313�314
Linear programs (LPs), 299
Linear systems, 792�793
Line search, 522�525
Linked discrete variable, 619
Linked discrete variables, methods

for, 633�635
Loads, out-of-plane, 590�591
Local duality, equality constraints

case, 201�206
Local duality, inequality

constraints case, 206�212
Local-global algorithm, conceptual,

699�705
Local minima, definition, 96�103
Lower triangle matrix, 791�821

M
Marquardt modification, 465�466
Mass

column design for minimum, 286
flywheel design for minimum,

290�298
Mathematica, use of, for graphical

optimization. See Graphical
optimization, use of
Mathematica for

Mathematical model for optimum
design, 50�64

active/inactive/violated
constraints, 53�54

application to different
engineering fields, 52

discrete integer design variables,
54

feasibility set, 53
important observations about

standard model, 52�53
maximization problem treatment,

51
optimization problems, types of,

55�64
standard design optimization

model, 50�51
treatment of greater than type

constraints, 51�52
MATLAB, optimum design

examples with, 284�298
column design for minimum

mass, 286�290
flywheel design for minimum

mass, 290�298

location of maximum shear
stress, 284�285

two spherical bodies in contact,
284�285

MATLAB, optimum design with,
275�298

constrained optimum design
problems, 281�282

Optimization Toolbox, 275�277
unconstrained optimum design

problems, 278�280
MATLAB, use of for graphical

optimization, 75�77
editing graphs, 77
plotting of function contours,

75�77
Matrices, 785�787

addition of, 787
column, 790
condition numbers of, 819�822
definition of, 785�787
diagonal, 791�821
equivalence of, 790
identity, 791�821
inverse of, 800�803
lower triangle, 791�821
multiplication of, 788�789
null, 787
partitioning of, 791�792
quadratic forms and definite,

109�110
rank of, 803�804
row, 790
scalar, 790�791
square, 791
transpose of, 790
upper triangle, 791�821
vector, 787

Matrices, norms and condition
numbers of, 818�822

condition number of matrix,
819�822

norm of vectors and matrices,
818�819

Matrices, types of, 787�792
addition of matrices, 790
elementary row—column

operations, 790
multiplication of matrices, 788�789
partitioning of matrices, 791�792
scalar product�dot product of

vectors, 790�791
square matrices, 791
vectors, 787
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Matrix, changes in coefficient,
361�375

Matrix, Hessian, 105�106
Matrix algebra, vector and, 785

concepts related to set of vectors,
810�816

definition of matrices, 785�787
eigenvalues and eigenvectors,

816�818
norm and condition number of

matrix, 818�822
solution of m linear equations in

n unknowns, 792�803
types of matrices and their

operations, 787�792
Matrix operation, 276
Mechanical and structural design

problems, 614
Members for flexure, optimum

design of. See Optimum
design of members for
flexure

Meta-Model, 731�732
normalization of variables,

737�739
RSM, 733

Method of feasible directions,
564�565

Methods See also individual method
entries

alternate Simplex, 385�386
A-R, 707
augmented Lagrangian,

479�481
BFGS, 469
bounded objective function,

675�676
clustering, 691�694
conjugate gradient, 434�437
constrained quasi-Newton, 573
constrained steepest descent,

525�527
covering, 684�685
deterministic, 684�689
DFP, 467�469
domain elimination, 700�702
dynamic rounding-off, 632�633
of generalized descent,

686�688
golf, 687
gradient projection, 566�567
GRG method, 567�569
interval reducing, 423
lexicographic, 674�675

linear programming, 299�410
modified Newton’s, 829
multiplier, 479�481
multistart, 691
neighborhood search, 633
operations analysis of, 702�705
performance, 706�707
performance of stochastic

zooming, 707�708
scalarization, 666
sequential linearization, 629
Simplex, 321�334
stochastic zooming, 702
tunneling, 688�689
two-phase Simplex, 334�347
unconstrained, 472�481
vector, 666
weighted global criterion,

673�674
weighted min-max, 672�673
weighted sum, 671�672
zooming, 685�686

Methods, for linked discrete
variables, 633�635

Methods, miscellaneous numerical
optimization, 564�569

gradient projection method,
566�567

GRG method, 567�569
method of feasibility directions,

564�565
Methods, multi-objective optimum

design concepts and. See
Multi-objective optimum
design concepts and
methods

Methods, Newton’s. See Newton’s
methods

Methods, numerical performance
of, 705�712

DE methods, 707�708
global optimization of structural

design problems, 708�712
performance of methods using

unconstrained problems,
706�707

stochastic zooming method,
707�708

summary, 705�706
Methods, for optimum design,

global concepts and,
681�712

Methods, quasi-Newton. See Quasi-
Newton methods

Methods, sequential quadratic
programming (SQP). See also
Sequential quadratic
programming

observations on constrained,
561�563

Methods, two local-global
stochastic. See Stochastic
methods, local-global

Methods, unconstrained
optimization. See
Unconstrained optimization
methods

Minima, definitions of global and
local, 96�103

example—constrained minimum,
100

example—constrained problem,
99

example—existence of a global
minimum, 102

example—use of the definition of
maximum point, 101

example—using Weierstrass
theorem, 102

existence of minimum, 102�103
Minimization techniques,

sequential unconstrained,
479

Minimum, existence of, 102�103
Minimum control effort problem,

608�609
Minimum mass
column design for, 286�290
flywheel design for, 290�298

Minimum-weight tubular column,
graphical solution for, 80�81

Min-max method, weighted,
672�673

Mixed variable optimum design
problems (MV-OPT), 620

classification of, 621�622
definition of, 620

Modifications, Marquardt,
465�466

Monte Carlo simulation
(MCS), 781

Motion, optimal control of system,
611�612

Multi-objective optimum design
concepts and methods,
657�680

bounded objective function
method, 675�676
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criterion space and design space,
660�662

example—single-objective
optimization problem, 658

example—two-objective
optimization problem, 659

generation of Pareto optimal set,
666�667

goal programming, 676�677
lexicographic method,

674�675
multi-objective GA, 667�671
normalization of objective

functions, 667
optimization engine, 667
preferences and utility functions,

665�666
problem definition, 657�659
scalarization methods, 666
selection of methods, 677�679
solution concepts, 662�665
terminology and basic concepts,

660�667
vector methods, 666
weighted global criterion

method, 673�674
weightedmin-maxmethod,

672�673
weighted sum method,

671�672
Multi-objective GA, 667�671

elitist strategy, 670
niche techniques, 671
Pareto fitness function, 669
Pareto-set filter, 670
ranking, 669
tournament selection, 670�671
VEGA, 668�669

Multiple optimum designs, 77
Multiple performance

requirements, 592�598
asymmetric three-bar structure,

594�598
comparison of solutions, 598
symmetric three-bar structure,

592�594
Multiple solutions, design problem

with, 77�78
Multiplier methods, 479�481
Multipliers, physical meaning of

Lagrange. See Lagrange
multipliers, physical
meaning of

Multistart method, 691

N
Nature-inspired search methods,

215, 412, 713�730
Ant Colony Optimization,

718�727
differential evolution algorithm,

714�718
Particle Swarm Optimization,

727�729
Necessary conditions, for equality-

constrained problem,
130�137

Lagrange multipliers, 131�135
Lagrange multiplier theorem,

135�137
Necessary conditions, for general

constrained problem,
137�153

Karush-Kuhn-Tucker necessary
conditions, 139�152

role of inequalities, 137�139
summary of KKT solution

approach, 152�153
Neighborhood search method, 633
Newton’s methods. See also Quasi-

Newton methods
classical, 460
example—conjugate gradient

and modified Newton’s
methods, 465

example—use of modified
Newton’s method, 462, 463

Marquardt modification, 465�466
modified, 461�465, 829

Niche techniques, 671
Nonlinear equations, solution of,

475�477
Nonlinear limit state equation,

776�777
Nonlinear programming (NLP), 411
Nonlinear programming, control of

systems by, 598�612
comparison of three

formulations, 611�612
minimization of errors in state

variables, 602�608
minimum control effort problem,

608�609
minimum time control problem,

609�610
optimal control of system

motion, 611�612
prototype optimal control

problem, 598�602

Nonlinear programming, duality
in. See Duality in nonlinear
programming

Nonquadratic case, 483
Normalization, constraint, 496�498
Normalization of variables,

737�739
example—response surface using

normalization procedure,
740

example—response surface using
the normalization procedure,
738

procedure, 737�741
Norm/length of vectors, 10�11
Notation

basic terminology and, 6�13
for constraints, 8�9
summation, 9�10

Null matrix, 787
Numerical algorithms, 415�417

convergence, 417
descent direction and descent

step, 415�417
example—checking for descent

condition, 417
general algorithm, 415

Numerical methods, to compute
step size, 421�430

alternate equal-interval search, 425
equal-interval search, 423�424
general concepts, 421�423
golden section search, 425�430

Numerical methods, for
constrained design. See
Constrained design,
numerical methods for

Numerical methods for constrained
optimum design. See
Constrained optimum
design, numerical methods
for

Numerical methods for optimum
design, 213�218

search methods, classification of,
214�215

simple scaling of variables,
217�218

solution process, 215�217
Numerical methods for

unconstrained optimum
design. See Unconstrained
optimum design, numerical
methods for
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Numerical optimization methods,
564�569

gradient projection method,
566�567

GRG method, 567�569
method of feasibility directions,

564�565
Numerical performance of

methods. See Methods,
numerical performance of

O
Objective function contours,

plotting of, 74
Objective functions, normalization

of, 667
Off-diagonal elements, 791�821
Operations analysis of methods,

702�705
Optimal control, versus optimum

design, 6
Optimal control of system motion,

611�612
Optimal control problem,

prototype, 598�602
Optimality, global. See Global

optimality
Optimality, Pareto, 663�664
Optimality conditions

for bound constrained
optimization, 549�550

concepts relating to, 116�117
for functions of single variables,

117�122
Optimality, weak Pareto, 664
Optimal set, generation of Pareto.

See Pareto optimal set,
generation of

Optimization
continuous variable, 636�637
discrete variable, 637�641
engines, 667

Optimization, bound constrained,
549�553

Optimization, graphical. See
Graphical optimization

Optimization, issues in practical
design, 587�588

attributes of good optimization
algorithm, 588

potential constraint
strategy, 587

robustness, 587
selection of algorithm, 587

Optimization, practical applications
of, 575�618

Optimization, practical applications
of, 575�618

discrete variable optimum
design, 636�641

formulation of practical design
optimization problems,
576�582

general-purpose software, use of,
589�590

gradient evaluation for
implicit functions,
582�587

issues in practical design
optimization, 587�588

multiple performance
requirements, 592�598

optimal control of systems by
NLP, 598�612

optimum design of three-bar
structure, 592�598

optimum design of two-member
frame, 590�591

out-of-plane loads, 590�591
structural optimization problems,

alternative formulations for,
612�613

time-dependent problems,
alternative formulations for,
613�617

Optimization, second-order
conditions for constrained.
See Constrained
optimization, second-order
conditions for

Optimization, use of Mathematica
for graphical. See Graphical
optimization, use of
Mathematica for

Optimization, use of MATLAB for
graphical. See Graphical
optimization, use of
MATLAB for

Optimization algorithm, attributes
of good. See Good
optimization algorithm,
attributes of

Optimization algorithms, by
nature-inspired search
methods, 713�730

Optimization methods,
miscellaneous numerical,
564�569

gradient projection method,
566�567

GRG method, 567�569
method of feasibility directions,

564�565
Optimization methods,

unconstrained, 477�481
augmented Lagrangian,

479�481
multiplier, 479�481
sequential unconstrained

minimization techniques,
478�479

Optimization problems, practical
design. See Practical design
problems, formulation of

Optimization problems, types of,
55�64

Optimization Toolbox, 275�277
array operation, 276
matrix operation, 276
scalar operation, 276
variables and expressions,

275�276
Optimum design, 731�784
conventional versus, 4�5
design of experiments for

response surface generation,
741�748

discrete design with orthogonal
arrays, 749�753

example� application of Taguchi
method, 764, 766

example� calculation of
reliability index, 782

example—discrete design with
an orthogonal array, 752

example—generation of a
response surface using an
orthogonal array, 744

example—generation of
quadratic response surface,
735

example—optimization using
RSM, 746

example�reliability-based design
optimization, 784

example—response surface using
normalization procedure,
738�739, 740�741

example� robust optimization,
759

general mathematical model for,
50�64
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meta-models for design
optimization, 731�741

RBDO, design under uncertainty,
767�784

robust design approach,
754�766

Optimum design, discrete variable.
See Discrete variable
optimum design concepts
and methods

Optimum design, GA for. See
Genetic algorithms (GA) for
optimum design

Optimum design, global concepts
and methods for, 681�712

basic concepts of solution
methods, 682�684

deterministic methods, 684�689
numerical performance of

methods, 705�712
stochastic methods, 689�698
two local-global stochastic

methods, 699�705
Optimum design, LP methods for.

See Linear programming
methods, for optimum
design

Optimum design, mathematical
model for. See Mathematical
model for optimum design

Optimum design, numerical
methods for constrained.
See also Constrained design,
numerical methods for

approximate step-size
determination, 572

bound-constrained optimization,
549�553

examples—constraint
normalization and status at
point, 497

inexact step size calculation,
537�549

linearization of constrained
problem, 499�506

miscellaneous numerical
optimization methods,
564�569

plate girders optimum design
using Excel Solver, 231�238

potential constraints strategy,
534�537, 587

QP problem, 402�409
QP subproblem, 514�520

quasi-Newton Hessian
approximation, 557�558

search direction calculation,
514�520

SQP, 513�514, 553�563
sequential quadratic

programming methods,
553�563

SLP algorithm, 506�513
step-size calculation subproblem,

520�525
Optimum design, numerical

methods for unconstrained.
See Unconstrained optimum
design, numerical methods
for

Optimum design, with Excel
Solver, 213�274

example—design of a shape for
inelastic LTB, 259

example—design of a shape for
elastic LTB, 261

example—design of noncompact
shape, 262

example—elastic buckling
solution, 249

example—inelastic buckling
solution, 247

example—optimum design of
pole, 268

example—optimum design with
the local buckling constraint,
270

example—optimum design with
the tip rotation constraint,
269

example—selection of W10
shape, 241

example—selection of W8 shape,
242

Excel Solver for LP problems,
225�227

Excel Solver for NLP, optimum
design of springs, 227�231

Excel Solver for unconstrained
optimization problems, 224

numerical methods for optimum
design, 213�218

optimum design of compression
members, 243�250

optimum design of members for
flexure, 250�263

optimum design of plate girders
using Excel Solver, 231�238

optimum design of
telecommunication poles,
263�273

optimum design of tension
members, 238�243

Optimum design concepts, 95�212
alternate form of KKT necessary

conditions, 189�192
basic calculus concepts, 103�115
constrained optimum design

problems, 281�282
engineering design examples,

171�178
exercises, 208�212
global optimality, 159�170
irregular points, 192�194
necessary conditions, for

equality-constrained
problem, 130�137

necessary conditions, for general
unconstrained problem,
137�153

physical meaning of Lagrange
multipliers, 153�159

postoptimality analysis, 153�159
second-order conditions for

constrained optimization,
194�199

sufficiency check for rectangular
beam design problem,
199�201

unconstrained optimum design
problems, 278�280

Optimum design concepts and
methods, discrete variable.
See Discrete variable
optimum design concepts
and methods

Optimum design concepts and
methods, multi-objective.
See Multi-objective optimum
design concepts and
methods

Optimum design examples with
MATLAB. See MATLAB,
optimum design examples
with

Optimum design of compression
members, 243�250, 244t

discussion, 250
example—elastic buckling

solution, 249
example—inelastic buckling

solution, 247
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Optimum design of compression
members (Continued)

formulation of problem, 243�247
formulation of problem, for

elastic buckling, 249�250
formulation of problem, for

inelastic buckling, 247�248
Optimum design of members for

flexure, 250�263
data and information collection,

250�254
definition of design variables,

258
deflection requirement, 258�262
example—design of a compact

shape for elastic LTB, 261
example—design of a compact

shape for inelastic LTB, 259
example—design of noncompact

shape, 262
formulation of constraints,

258�262
moment strength requirement,

254�255
nominal bending strength of

compact shapes, 255�256
nominal bending strength of

noncompact shapes,
256�257

optimization criterion, 258
project/problem description, 250
shear strength requirement,

257�258
Optimum design of plate girders

using Excel Solver. See Plate
girders, optimum design
using Excel Solver

Optimum design of
telecommunication poles. See
Telecommunication poles,
optimum design of

Optimum design of tension
members. See Tension
members, optimum design of

Optimum design of three-bar
structure. See Three-bar
structure, optimum design of

Optimum design of two-member
frame. See Two-member
frame, optimum design of

Optimum design problem
formulation, 17�64

design of cabinet, 37�40
design of can, 25�26

design of coil springs, 43�46
design of two-bar bracket, 30�36
general mathematical model for

optimum design, 50�64
insulated spherical tank design,

26�28
minimum cost cylindrical tank

design, 42�43
minimum weight design of

symmetric three-bar truss,
46�50

minimum weight tubular column
design, 40�42

problem formulation process,
18�25

saw mill operation, 28�30
Optimum design problems,

constrained. See Constrained
optimum design problems

Optimum design problems,
unconstrained. See
Unconstrained optimum
design problems

Optimum designs, multiple, 77
Optimum design versus optimal

control, 6
Optimum design with MATLAB.

See MATLAB, optimum
design with

Optimum solution, identification
of, 74

Optimum solutions to LP
problems, 313�314

Order of convergence, 482
Out-of-plane loads, 590�591

P
Parameters, ranging right side,

354�358
Pareto fitness function, 669
Pareto optimality, 663�664
weak, 664

Pareto optimal set, generation of,
666�667

Pareto-set filter, 670
Particle position, 728
Particle Swarm Optimization

(PSO), 727�729
algorithm, 728�729
behavior and terminology, 727�728

Particle velocity, 728
Performance of methods using

unconstrained problems,
706�707

Performance requirements,
multiple, 592�598

Phase I algorithm, 337
Phase II algorithm, 339�345
Phase I problem, definition of,

336�337
Pheromone deposit, 726�727
Pheromone evaporation, 726
Physical programming, 665�666
Pivot step, 316�317
Plate girders, optimum design

using Excel Solver, 231�238
data and information collection,

233�234
definition of design variables,

234
formulation of constraints,

234�235
optimization criterion, 234
project/problem description,

231�233
Solver Parameters dialog box,

237�238
spreadsheet layout, 235�237

Plotting
of function contours, 75�77
functions, 72�73
of objective function contours, 74

Points
constraint status at design,

495�496
sets and, 6�8
utopia, 665

Points, irregular, 192�194
example—check for KKT

conditions at irregular
points, 192

Polynomial interpolation,
444�448

alternate quadratic interpolation,
447�448

quadratic curve fitting, 444�447
Postoptimality analysis, 153�159,

348�375
changes in coefficient matrix,

361�375
changes in resource limits,

348�349
constraint variation sensitivity

result, 159
effect of scaling constraint on

Lagrange multiplier, 158
effect of scaling cost function on

Lagrange multipliers, 157
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example—5 and $ type
constraints, 352

example—# type constraints,
350, 360

example—effect of scaling
constraint, 158

example—effect of scaling cost
function, 156�157

example—equality and $ type
constraints, 357, 361

example—Lagrange multipliers,
156�157, 158

example—optimum cost
function, 155

example—ranges for cost
coefficients, 360, 361

example—ranges for resource
limits, 356, 357

example—recovery of Lagrange
multipliers for $ type
constraint, 352

example—variations of
constraint limits, 155

ranging cost coefficients,
359�361

ranging right-side parameters,
354�358

recovery of Lagrange multipliers
for $ type constraints, 352

Potential constraint strategy, 587
Practical applications, design

optimization, 575�618
alternative formulations for time-

dependent problems,
613�617

Practical design optimization,
issues in, 587�588

attributes of good optimization
algorithm, 588

potential constraint strategy, 587
robustness, 587
selection of algorithm, 587

Practical design problems,
formulation of, 576�582

example of practical design
optimization problem,
577�582

example—design of two-member
frame, 612�613

general guidelines, 576�577
Preferences and utility functions,

665�666
Probability density function (PDF),

769�770

Probability of failure, 770�771
Problem formulation, optimum

design. See Optimum design
problem formulation

Problem formulation process,
18�25

data and information collection,
19�20

definition of design variables,
20�21

formulation of constraints,
22�25

optimization criterion, 21�22
project/problem description, 18

Problems. See also Subproblems
classification of mixed variable

optimum design problems,
621�622

concepts related to algorithms
for constrained problems,
492�495

definition of Phase I, 336�337
example of practical design,

577�582
formulation of spring design, 46
graphical solutions for beam

design, 82�94
infeasible, 79�80
integer programming, 40
linear programming, 66,

299, 377
minimum control effort,

608�609
minimum time control, 609�610
MV-OPT, 620
optimum solutions to LP

problems, 313�314
profit maximization, 65�66
prototype optimal control,

598�602
solution to constrained problems,

477�481
sufficiency check for rectangular

beam design, 199�201
with unbounded solutions, 79

Problems, concepts related to linear
programming. See Linear
programming problems,
concepts related to

Problems, constrained optimum
design. See Constrained
optimum design problems

Problems, convex programming,
164�170

Problems, definition of standard
linear programming. See
Linear programming
problem, standard

Problems, formulation of practical
design optimization. See
Practical design problems,
formulation of

Problems, GA for sequencing-type.
See Genetic algorithms (GA),
for sequencing-type
problems

Problems, global optimization of
structural design. See Global
optimization, of structural
design problems

Problems, linearization of
constrained. See Linearization
of constrained problems

Problems, performance of methods
using unconstrained. See
Performance of methods
using unconstrained problems

Problems, QP. See Quadratic
programming (QP) problems

Problems, time-dependent. See
Time-dependent problems

Problems, unconstrained design.
See also Unconstrained
optimum design problems

concepts relating to optimality
conditions, 116�117

example—adding constant to
function, 124

example—cylindrical tank
design, 127

example—effects of scaling, 124
example—local minima for

function of two variables,
125, 129

example—local minimum points
using necessary conditions,
119, 120, 121

example—minimum cost
spherical tank using
necessary conditions, 122

example—multivariable
unconstrained minimization,
279

example—numerical solution of
necessary conditions, 128

example—single-variable
unconstrained minimization,
278
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Problems, unconstrained design
(Continued)

example—using necessary
conditions, 119, 127

example—using optimality
conditions, 125, 129

optimality conditions for
functions of several
variables, 122�129

optimality conditions for
functions of single variables,
117�122

Procedures, Gaussian elimination,
796�800

Procedures, gradient evaluation
requires special, 575�576

Process, design, 2�4
Process, problem formulation. See

Problem formulation process
Profit maximization problem,

65�66
Programming

duality in linear, 387�399
goal of, 676�677
physical, 665�666

Programming, control of systems
by nonlinear. See Nonlinear
programming, control of
systems by

Programming problems
convex, 164�170
linear, 56, 299, 305�314

Programs, sample computer, 823
equal interval search, 823�826
golden section search, 826�828
modified Newton’s method, 829
steepest-descent search, 829

Projection method, gradient,
566�567

Prototype optimal control problem,
598�602

Pure random search, 690�691

Q
QP. See Quadratic programming

problems
Quadratic convergence, 482
Quadratic curve fitting, 444�447
Quadratic forms and definite

matrices, 109�115
example—calculations for gradient

of quadratic form, 114
example—calculations for Hessian

of quadratic form, 114

example—determination of form
of matrix, 112, 113

example—matrix of quadratic
form, 110

Quadratic function, 482�483
Quadratic interpolation, alternate,

447�448
Quadratic programming (QP)

problems, 402�409, 514�520
definition of, 402�403, 514�518
derivation of, 554�557
example—solution to QP

subproblem, 519
example—definition of QP

subproblem, 515
example—solution of QP

problem, 406
KKT necessary conditions for,

403�404
Simplex method for solving,

405�409
solution to, 518�520, 569�573
transformation of KKT

conditions, 404�405
Quasi-Newton Hessian

approximation, 557�558
Quasi-Newton methods, 466�472,

484�485
BFGS method, 470�472
DFP method, 467�469
direct Hessian updating,

470�472
example—application of BFGS

method, 471
example—application of DFP

method, 468
inverse Hessian updating,

467�469
observations on constrained,

561�563
Quasi-Newton methods,

constrained. See Sequential
quadratic programming

R
Random search, pure, 690�691
Ranging cost coefficients, 359�361
Ranging right-side parameters,

354�358
Rate of convergence, 417
Rate of convergence of algorithms,

481�485
conjugate gradient method, 484
definitions, 481�482

Newton’s method, 483
quasi-Newton methods, 484�485
steepest-descent method,

482�483
Rectangular beam, design of,

174�187
Rectangular beam design problem,

sufficiency check for,
199�201

Recursive quadratic programming
(RQP), 554. See also
Sequential quadratic
programming

Reducing methods, interval, 422�423
Regions
identification and shading of

infeasible, 73
Reliability-based design

optimization (RBDO), under
uncertainty, 767�784

calculation of reliability index,
774�781

example� calculation of
reliability index, 782

example—reliability-based
design optimization, 784

review of background material
for, 768�774

Reliability index, 773
Representation, design, 645�646
Reproduction, defined, 647�648
Requirements, multiple

performance, 592�598
Response surface method (RSM),

733
example—generation of

quadratic response surface,
735

quadratic response surface
generation, 733�735

Right-side parameters, ranging,
354�358

Robust algorithms, 587
Robust design approach, 754�766
Taguchi method, 761�766

Robust optimization, 754�760
example—robust optimization,

759
mean, 754�755
PDF, 755�756
problem definition,

756�759
standard deviation, 755
variance, 755
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Role of inequalities, 137�139
Roots of a set of nonlinear

equations, 222�223
Excel worksheet, 222�223
solution to KKT cases with

Solver, 223
Solver Parameters dialog box,

223
Roots of nonlinear equation,

219�221
Solver Parameters dialog box,

220�221
Rounding-off method, dynamic,

632�633
Row matrix, vector, 787�820

S
SA. See Simulated annealing
Saw mill operation, 28�30
Scalarization methods, 666
Scalar matrix, 791�821
Scalar operation, 276
Scaling of design variables,

456�459
example—effect of scaling of

design variables, 456
Search direction calculation,

514�520
definition of QP subproblem,

514�518
example—definition of QP

subproblem, 515
example—solution to QP

subproblem, 519
solution to QP subproblem,

518�520
Search direction determination,

431�436, 459�466
Searches

alternate equal interval, 425
equal interval, 423�424, 823�826
golden section, 425�430,

826�828
inexact line, 448�449
line search, 522�525
pure random, 690�691
steepest descent, 829

Search method, neighborhood, 633
Search methods, classification of,

214�215
derivative-based, 214
derivative-free, 215
direct search, 214�215
nature-inspired, 215

Second-order conditions for
constrained optimization,
194�199

Second-order information, 194
Sequencing-type problems, GA for,

651�653
Sequential linearization methods,

629
Sequential linear programming

(SLP) algorithm, 506�513
algorithm observations, 512�513
example—sequential linear

programming
algorithm, 509

example—use of sequential
linear programming, 510

move limits in, 506�508
SLP algorithm, 508�512

Sequential quadratic programming
(SQP), 513�514, 553�563,
707

algorithm, 558�561
derivation of QP subproblem,

554�557
descent functions, 563
example—solving spring design

problem using SQP method,
560

example—use of SQP method,
558

observations on, 561�563
option, 590�591
quasi-Newton Hessian

approximation, 557�558
Sequential unconstrained

minimization techniques,
478�479

Set, generation of Pareto optimal,
666�667

Sets, convex, 160�161
Sets and points, 6�8
Simple scaling of variables,

217�218
Simplex algorithms, 384�385
Simplex in two-dimensional space,

321
Simplex method

alternate, 385�386
artificial cost function, 382�383
canonical form/general solution

of Ax5b, 308�309
example—Big-M method for

equality and $ type
constraints, 386

example—identification of
unbounded problem with
Simplex method, 333

example—LP problem with
multiple solutions, 331

example—pivot step, 316
example—solution by Simplex

method, 328
example—solution of profit

maximization problem, 329
general solution to Ax5b,

377�379
interchange of basic and

nonbasic variables, 316
pivot step, 316, 384
Simplex algorithms, 384�385
steps of, 322
tableau, 378�379
two-phase, 334�347

Simplex method, derivation of,
377�385

selection of basic variable,
381�382

selection of nonbasic variable,
379�381

Simplex method, for solving QP
problem, 405�409

Simulated annealing (SA), 630�632,
706�707, 708

Single variables, optimality
conditions for functions of,
117�122

SI units versus U.S.�British, 13
SLP. See Sequential linear

programming algorithm
Software, general-purpose,

589�590
integration of application into,

589�590
selection of, 589

Solution concepts, 622�623, 662�665
compromise solution, 665
efficiency and dominance,

664�665
Pareto optimality, 663�664
utopia point, 665
weak Pareto optimality, 664

Solution methods, basic concepts,
682�684

Solution process, 215�217
algorithm does not

converge, 217
feasible point cannot be

obtained, 216
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Solution process (Continued)
finding, feasible points, 216

Solutions
degenerate basic feasible, 346
identification of optimum, 74
multiple, with design problems,

77
unbounded, 79

Solution to KKT cases with Solver,
223

Solver output, 221
Solver Parameters dialog box,

220�221, 223
Spaces

criterion, 660�662
design, 660�662
Simplex in two-dimensional, 321
vector, 814�816

Special procedures, required by
gradient evaluation,
575�576

Spherical tank design, insulated,
26�28

Spring design problem
formulation of, 46

Spring design problem, solving
with SQP method, 560

Springs, design of coil, 43�46
SQP. See Sequential quadratic

programming
SQP algorithm, 558�561
Square matrices, 791
Standard deviation, 773
Standard linear programming

(SLP) problem, 300�305
Standard model, 52�53
State variables, minimization of

errors in, 602�608
discussion of results, 607�608
effect of problem normalization,

605�607
formulation for numerical

solution, 602�604
numerical results, 604�605

Steepest-descent directions,
orthogonality of, 454�455

Steepest-descent method, 431�434,
451�455, 482�483

example—use of steepest-descent
algorithm, 432, 433

example—verification of properties
of gradient vector, 453

properties of gradient vector,
451�454

Steepest-descent method,
constrained. See Constrained
steepest-descent method

Steepest-descent search, 829
Steps
descent, 415�417
pivot, 316

Step-size calculation
for bound-constrained algorithm

calculation, 552�553
Step-size calculation, inexact,

537�549
basic concept, 537�538
CSD algorithm with inexact step

size, 542�549
descent condition, 538�542
example—effect of penalty

parameter R on CSD
algorithm, 546

example—effect of γ on
performance of CSD
algorithm, 545

example—minimum area design
of rectangular beam, 547

example—step size in
constrained steepest-descent
method, 540

example—use of CSD algorithm,
542

Step-size calculation subproblem,
520�525

descent function, 520�522
line search, 522�525

Step-size determination, 418�421,
421�430

analytical method, 419�421
definition of, 418�419
example—analytical step size

determination, 420
example—alternate quadratic

interpolation, 446
example—one-dimensional

minimization, 446
inexact line search, 448�449
numerical methods, 421�430
polynomial interpolation, 444�448

Step-size determination,
approximate, 572

basic idea, 537�538
CSD algorithm with inexact step

size, 542�549
descent condition, 417
example—calculations for step

size, 540

example—constrained steepest-
descent method, 540

example—effect of γ on
performance of CSD
algorithm, 545

example—minimum area design
of rectangular beam,
174�187

example—use of constrained
steepest-descent algorithm,
542

Step-size determination, ideas and
algorithms for, 418�421

alternate equal interval search,
425

analytical method to compare
step size, 419�421

definition of one-dimensional
minimization subproblem,
419

equal interval search, 423�424
example—analytical step size

determination, 420
example—minimization of

function by golden section
search, 429

golden section search, 425�430
numerical methods and compute

step size, 421�430
Stochastic integration, 698
Stochastic methods, 689�698
A-R methods, 697�698
clustering methods, 691�694
CRS method, 694�697
multistart method, 691
pure random search, 690�691
stochastic integration, 698

Stochastic methods, local-global,
699�705

conceptual local-global
algorithm, 699�700

domain elimination method,
700�702

operations analysis of methods,
702�705

Stochastic zooming method, 702
performance of, 707�708

Strategy, potential constraint. See
Constraint strategy, potential

Structural design problems,
optimization of, 708�712

Structural optimization problems,
alternative formulations for,
612�613
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Structures
asymmetric three-bar, 594�598
symmetric three-bar, 592�594

Structures, optimum design of
three-bar. See Three-bar
structure, optimum design of

Subproblems, QP, 514�520
definition of, 514�518
examples—definition of QP

subproblem, 514�518
example—solution of QP

subproblem, 519
solving, 518�520

Summation notation, superscripts/
subscripts and, 9�10

Superlinear convergence, 482
Swarm leader, 728
Symmetric three-bar structure,

592�594
Symmetric three-bar truss,

minimum-weight design of,
46�50

System motion, optimal control of,
611�612

Systems, linear, 792�793
Systems, optimal control, 598�612

T
Tableau, defined, 378�379
Taguchi method, 761�766

example—application of Taguchi
method, 764, 766

Tangent hyperplane, constraint, 194
Tank design

cylindrical, 42�43
insulated spherical, 26�28

Taylor’s expansion, 106�109
Techniques

niche, 671
sequential unconstrained

minimization, 478�479
Telecommunication poles,

optimum design of, 263�273
data and information collection,

263�267
definition of design variables, 267
example—optimum design of

pole, 268
example—optimum design with

the local buckling constraint,
270

example—optimum design
with the tip rotation
constraint, 269

formulation of constraints,
268�273

optimization criterion, 268
Tension members, optimum design

of, 238�243
formulation of constraints,

239�242
optimization criterion, 239

Terminology, LP, 310�313
Terminology and notations, basic,

6�13
functions, 11
norm/length of vectors, 10�11
notation for constraints, 8�9
sets and points, 6�8
superscripts/subscripts and

summation notation, 9�10
U.S.�British versus SI units, 13

Three-bar structure, asymmetric,
594�598

Three-bar structure, optimum
design of, 592�598

asymmetric three-bar structure,
594�598

comparison of solutions, 598
symmetric three-bar structure,

592�594
Three-bar truss, symmetric

minimum-weight design of,
46�50

Time control problem, minimum,
609�610

Time-dependent problems,
alternative formulations for,
613�617

digital human modeling,
614�617

mechanical and structural design
problems, 614

Toolbox, Optimization. See
Optimization Toolbox

Triangle matrix
lower, 791�821
upper, 791�821

Truss, minimum-weight design of
symmetric three-bar, 46�50

Tubular column, minimum-weight,
graphical solution for, 80�81

Tubular column, minimum-weight,
design of, 40�42

Tunneling method, 688�689
Two-bar bracket, design of, 30�36

example—optimum design of
two-bar bracket, 30�36

Two-dimensional space, Simplex
in, 321

Two-member frame, optimum
design of, 590�591

alternate formulation for,
612�613

Two-phase Simplex method,
334�347

U
Unbounded solution, 79
Uncertainty, RBDO design under.

See Reliability-based design
optimization under
uncertainty

Unconstrained methods,
engineering applications of,
472�477

example—minimization of total
potential energy of two-bar
truss, 474

example—roots of nonlinear
equations, 476

example—unconstrained
minimization, 476

minimization of total potential
energy, 473�475

solutions to nonlinear equations,
475�477

Unconstrained minimization
techniques, sequential,
478�479

Unconstrained optimality
conditions, 116�130

Unconstrained optimization
methods, 477�481

augmented Lagrangian methods,
479�481

multiplier methods, 479�481
sequential unconstrained

minimization techniques,
478�479

Unconstrained optimum design,
numerical methods for,
411�490

concepts related to numerical
algorithms, 411�415

conjugate gradient method,
434�436

descent direction and
convergence of algorithms,
415�417

direct search methods,
485�489
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Unconstrained optimum design,
numerical methods for
(Continued)

engineering applications of
unconstrained methods,
472�477

gradient-based methods, 412�415
ideas and algorithms for step-size

determination, 418�421
nature-inspired search methods,

412
Newton’s method, 459�466
quasi-Newton methods, 466�472
rate of convergence of

algorithms, 481�485
scaling of design variables,

456�459
search direction determination,

431�436, 459�472
solution to constrained problems,

477�481
steepest-descent method,

431�434, 451�455, 482�483
step-size determination, 418�430
unconstrained optimization

methods, 477�481
Unconstrained optimum design

problems, 278�280
Unconstrained problems,

performance of methods
using, 706�707

Unimodal functions, 421�422
Unknowns, solution to m linear

equations in n, 803�809
Unrestricted variables, 303
Upper triangle matrix, 791�821
U.S.�British versus SI units, 13
Utility functions, preferences and,

665�666
Utopia point, 665

V
Variable optimization, continuous,

636�637
Variable optimization, discrete,

637�641
Variable optimum design, discrete,

619�642
Variables
binary, 619
discrete, 619
and expressions, 275�276
integer, 619
linked discrete, 619
methods for linked discrete,

633�635
unrestricted, 303

Variables, artificial. See Artificial
variables

Variables, minimization of errors in
state. See State variables,
minimization of errors in

Variables, optimality conditions
for functions of single. See
Single variables,
optimality conditions for
functions of

Variables, scaling of design. See
Design variables, scaling of

Vector, gradient, 103�105
Vector and matrix algebra,

785�822
concepts related to set of vectors,

810�816
definition of matrices, 785�787
eigenvalues and eigenvectors,

816�818
norm and condition number of

matrix, 818�822
solution of n linear equations in

n unknowns, 792�803

solution to m linear equations
in n unknowns, 803�809

type of matrices and their
operations, 787�792

Vector evaluated genetic algorithm
(VEGA), 668�669

Vector methods, 666
Vectors, 787
column, 787�820
norm/length of, 10�11
properties of gradient,

451�454
row, 787�820

Vectors, set of, 810�816
example—checking for linear

independence of
vectors, 811

example—checking for vector
spaces, 814

linear independence of set of
vectors, 810�814

Vector spaces, 814�816

W
Wall bracket, design of,

171�174
Weak Pareto optimality, 664
Weighted global criterion method,

673�674
Weighted min-max method,

672�673
Weighted sum method,

671�672

Z
Zooming methods, 685�686
performances of stochastic,

707�708
stochastic, 702
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