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PREFACE

At present, in order to resolve problems of ecology and to save mineral
resources for future population generations, it is quite necessary to know
how to maintain nature arrangement in an efficient way.

It is possible to achieve a rational nature arrangement when analyzing
solutions to problems concerned with optimal control of distributed
systems and with optimization of modes in which main ground medium
processes are functioning (motion of liquids, generation of temperature
fields, mechanical deformation of multicomponent media). Such analysis
becomes even more difficult because of heterogeneity of the region that is
closest to the Earth surface, and thin inclusions/cracks in it exert their
essential influence onto a state and development of the mentioned
processes, especially in the cases of mining.

Many researchers, for instance, A.N. Tikhonov - A.A. Samarsky [121],
L. Luckner - W.M. Shestakow [65], Tien-Mo Shih, K.L. Johnson [47],
E. Sanchez-Palencia [94] and others stress that it is necessary to consider
how thin inclusions/cracks exert their influences onto development of these
processes, while such inclusions differ in characteristics from main media
to a considerable extent (moisture permeability, permeability to heat, bulk
density or shear strength may be mentioned).
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An influence exerted from thin interlayers onto examined processes is
taken into account sufficiently adequately by means of various constraints,
namely, by the conjugation conditions [4, 8, 10, 15, 17-20, 22-26, 38, 44,
47, 52, 53, 68, 76, 77, 81, 83, 84, 90, 95, 96-100, 112-114, 117, 123].

The mathematical models include the (partial differential) equations that
describe states of components in multicomponent media and have
boundary (object-medium interaction) and initial conditions. And the
conjugation conditions, specified on median surfaces of thin inclusions and
based on the main laws of conservation, are added to them. Such an
approach generates the new mathematical problem classes, and a problem
solution makes it possible for first-type discontinuities to be present on
conjugation condition specification surfaces.

It should be noted that, in 1980s, the problem of construction of
computation algorithm with a higher-order accuracy was resolved in
general for elliptic, parabolic and hyperbolic equations and for elasticity
theory equation systems with boundary and initial conditions [see 16, 43,
54, 55, 71, 78, 79, 91, 92, 119, 124 and other ones]. However, the
correctness of these problem classes with conjugation conditions was not
investigated and the efficient algorithms, used to solve them numerically,
were also absent.

Some simple problems from the above-mentioned families were solved
analytically. From the mechanical point of view, the energy functionals
were obtained for deformed solids with inclusions of a low rigidity. When
the conjugation conditions were considered, the penalty method was used
by some authors. There are also the works, where an equation of a state is
extended to a solution discontinuity surface by means of the Dirac
function.

Unlike these works, the authors of the present monograph propose to use
the respective classes of the discontinuous functions in order to investigate
boundary-value and initial boundary-value problems with partial
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derivatives and conjugation conditions [18, 19, 21, 96-100, 112]. This
circumstance allows to create the classical energy functionals and weakly
stated problems specified on such function classes. The computation
algorithms with an enhanced problem discretization accuracy order are
developed for the mentioned group of problem classes with conjugation
conditions. This is done when proceeding from the application of the
finite-element method functions that allow discontinuity. As for a
discretization step order, the accuracy of such algorithms is not worse than
the accuracy of the similar ones and known for the respective problem
classes with smooth solutions.

The authors of the present monograph show the existence of a unique
generalized solutions for such problem classes, and a unique solution on a
subspace is demonstrated for the Neumann problem. Such unique solutions
continuously depend on the disturbances including the right-hand sides of
equations, conjugation conditions, boundary conditions. Therefore, it is
possible to prove the existence of the unique optimal controls as for the
J.L. Lions' quadratic cost functionals.

The contents of the proposed authors' monograph is given mainly in their
works [101-111].

It should also be noted that the basic fundamental results were obtained in
the theory of optimal control in the works by L.S. Pontryagin,
V.P. Boltyansky, R.V. Gamkrelidze, E.F. Mishchenko [85, 42], J. Warga
[126], A.A. Feldbaum [40], R. Bellman [5], N.N. Krasovski [51],
B.N. Pshenichnyi [87, 88], V.M. Tikhomirov [120] and by other authors.

States of objects (i.e. of systems with distributed parameters) are described
on the basis of the laws of conservation by the classical and non-classical
equations of mathematical physics in many technical applications and
when nature arrangement and ecology problems are investigated and
resolved. The works by F. Bensousanne [7], B.N. Bublik [11],
A.G. Butkovsky [12-14], F.P. Vasilyev [125], A.I. Egorov [29-31],
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Yu.M. Ermoliev [33-37], V.I. Ivanenko, V.S. Mel'nik [46], J.L. Lions
[56-64], S.I. Lyashko [67], K.A. Lurje [66], Yu.S. Osipov [80],
Yu.L Samoylenko [14], A.M. Samoylenko [93], T.K. Sirazetdinov [118],
R.P. Fedorenko [39], V.A. Dykhta [27] and other works are devoted to
resolution of the problems concerned with control of systems with
distributed parameters.

Chapter 1 considers new problems concerned with optimal control of
distributed systems described by an elliptic equation with conjugation
conditions and by a quadratic cost functional. Computation schemes are
made up that have an increased order of problem discretization. This is
done for the case when a feasible control set % of feasible controls
coincides with a complete control Hubert space W.

Chapter 2 discusses optimal control of a conditionally correct system that
is described by the Neumann problem for an elliptic equation with
conjugation conditions. The aspects of how to create equivalent correct
problems and of how to find optimal controls for conditionally correct
systems on the basis of such problems are studied.

The problems of optimal control of one- and two-dimensional quartic
equations with conjugation conditions are dealt with, respectively, in
Chapters 3 and 4.

Motion of a liquid in an elastic medium and non-stationary heat diffusion
in multicomponent media are described by initial boundary-value problems
for parabolic-type equations with conjugation conditions. Chapter 5 is
devoted to optimal control of such systems.

The presence of a concentrated heat capacity on thin inclusions generates
classes of initial boundary-value problems for parabolic-type equations
with conjugation conditions that contain the first-order time derivative of a
solution [91]. Chapter 6 considers optimal control of such systems.
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Chapter 7 is concerned with new problems of optimal control of distributed
systems described by initial boundary-value problems for a
pseudoparabolic equation with conjugation conditions and by a quadratic
cost functional.

The initial boundary-value problems for the pseudoparabolic equations
were previously considered [1-3, 6, 28, 69, 74, 75, 89, 116].

Chapter 8 studies optimal control of systems described by initial boundary-
value problems for hyperbolic equations with conjugation conditions.

The initial boundary-value problems for the pseudohyperbolic equations
were also previously considered [45, 48, 50, 70, 82, 115].

Chapter 9 deals with optimal control of systems described by initial
boundary-value problems for pseudohyperbolic equations with conjugation
conditions.

Chapter 10 discusses optimal control of stress-deformed states of solid
bodies that contain thin and not very rigid inclusions.

The authors want to express their gratitude to Mr. Naum Z. Shor, the
Scientific Editor, Academician of National Academy of Sciences of
Ukraine, for his valuable remarks, useful advises and attention paid to the
work.

The authors wish to express their gratitude to Mr. D.A. Kondrashov and
Mrs. I.I. Riasnaia, who work at V.M. Glushkov Institute of Cybernetics of
National Academy of Sciences of Ukraine, for the translation of the
monograph manuscript into English and to Mrs. G.A. Sakhno and Mrs.
N.N. Siyanitsa, who also work at V.M. Glushkov Institute of Cybernetics,
for the preparation of the computer monograph version.
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Publisher, and to Ms. Angela Quilici for the fruitful cooperation during the
preparation of the book.

Ivan V. Sergienko and
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CONTROL OF SYSTEMS DESCRIBED BY
ELLIPTIC-TYPE PARTIAL-DIFFERENTIAL

EQUATIONS UNDER CONJUGATION
CONDITIONS

Chapter 1 considers new problems concerned with optimal control of
distributed systems. Such systems are described by an elliptic equation
with conjugation conditions and a quadratic cost functional. Computation
schemes are made up that have an increased order of problem
discretization. This is done for the case when a feasible control set %
coincides with a complete control Hubert space W.

1.1 DISTRIBUTED CONTROL OF A SYSTEM
DESCRIBED BY THE DIRICHLET PROBLEM

Assume that the elliptic equation

is specified in bounded, continuous and strictly Lipschitz domains

Ω{ and Ω2 e Rn; in this case,

,. eRl, i,j =ui,\/xeQ = Ql{jQ2, ao= const>0, (1.1')
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kUU Ω, Ω, )' *ΙΩ/>Λν
y> #ο > #1=const, | / | <οο.

The homogeneous boundary Dirichlet condition

is specified, in its turn, on a boundary Γ = (3Ω1 υ3Ω2)\γ

(1.2)

= 5Ω,Π

On a section γ of the domain Ω = Ωχ U Ω2 (Ωχ Π Ω2 = 0 ) , the

conjugation conditions for an imperfect contact are

. dy
-cosO,^.) = 0 (1.3)

and

v 1 / ^y ^ U =r[y], (1.4)

where 0 < r = r(x) < η <oo, r e C(y), η = const, [φ] = φ + - φ , φ + =

= {φ}+ = φ(χ) under χ e 9Ω2 Π γ, φ" = {φ}" = φ(*) under χ e δΩ{ Π γ, ν

is an ort of a normal to γ and such normal is directed into the domain Ω 2 .

Let there be a control Hubert space °ίί and mapping 5 G ^ ( W ; F ' ) ,

where V is a space dual with respect to a state Hubert space V . Denote a
space of continuous linear mappings of a topologic space X into a
topologic space Υ by £ {X\ Y) [58]. Assume the following: W = Ζ,2(Ω).

For every control « e W , determine a system state y = >>(w) as a

generalized solution to the problem specified by the equation

(1.5)
. . Λ ^ ι κ ~Xf

and by conditions (1.2)-(l .4).
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Specify the observation
Z(u) = Cy(u)9 (1.6)

where Ce2? (V\3C) and 3C is some Hubert space. Assume the following:

Cy(u) = y(u), je = VczL2(Q). (1.7)
Bring a value of the cost functional

J{u) = \Cy{u)-zgf^{JYu,u)v (1.8)

in correspondence with every control ue°ll\ in this case, zg is some

known element of a space J^, and

Jf e£(%;%), (jVu9u)<yZv0\\u\\jy9 v o = const >05 VweW. (1.9)

Assume the following: / Ε Ζ 2 ( Ω ) , Bu = ue L2(O), Jfu = a(x)u\ in

this case, 0 < ao< a(x) <a{<co9 a(x)\Q e C(Q/)? / = 1,2; a0, ax =

= const, (φ, ψ) = (φ, ψ ) ^ = ίφψ dx. Then, a unique state y(u) e V =

Ω

= {ν|Ω eW^iQt): 1 = 1,2; ν | Γ = θ } , where ψ\{βι) is a set of the Sobolev

functions that are specified on the domain Ω/, corresponds to every

control u e °ll. The function y is specified, in its turn, on the domain

Ω = Qj U Ω 2 , minimizes the energy functional [21]

-)-2(M,V) (1.10)

r
on F, and it is the unique solution in V to the weakly stated problem: Find
an element y € Fthat meets the equation

J
Ω

dy dv

dxJ
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= ( / » + («,ν), yeV, VveF, (1.11)

where (/, v) = fvdx.

Ω

Therefore, there exists such an operator^ acting from Finto L2, that

y(u) = A~l(f + Bu), \/ueL2, (1.12)

where L2 = 1 ^ ( 0 ) .

It is easy to see that y(ux) Ψ y(u2) under ux Φ u2 since the bilinear form
is expressed by the left-hand side of equality (1.11) and such form is
coercive on V. The solution to linear boundary-value problem (1.5),
(1.2)—(1.4) is zero only when the right-hand side of equation (1.5) is zero.

Remark. When a state y(u) is determined as a solution to one of

equivalent problems (1.10) and (1.11) with respect to the coefficients ky in

equation (1.1), it is enough to follow ellipticity condition (1.Γ) and the
constraint ky e ^ ( Ω ) .

Take the aforesaid assumptions into consideration, and the cost
functional may be rewritten as

+(au,u)9 (1.13)

where ||v|| = (ν,ν)1'2, zg may be, in its turn, an arbitrary fixed element of

the Hubert space L2(Q), and

= π( ii, u) - 2L(u) + ||zg - ^(0)f (1.14)

follows from expression (1.13); in this case, the bilinear form π(·,·) and
linear functional L{·) are expressed as

π( II, ν) = (y(u) - y(0\ y(v) - y(0)) + (a u9 ν),

L(v) = (zg-y(p),y(y)-y(P)). (1.15)

The linearity of the functional L(y) follows from the fact that the
difference y(v) - y(0) is the unique solution y(v) to one of equivalent
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problems (1.10) and (1.11). It is necessary to assume / = 0 for them, and

the arbitrary element zeV must be additionally substituted for the

arbitrary function ν in problem (1.11). Then:

y(cLlul+a2U2) = aly(ul)+a2y(u2) Va1,a2ei?1, \/uuu2eL2. (1.16)

Pursuant to equality (1.16), it can also be stated that n(u,v) is the bilinear

form that is coercive on °ίί and that it can be made symmetric by virtue of

the following: (au,v) = l\/& u, να ν),

π( κ, u) = (y(u) - y(0)9 y(u) - y(OJ) + {yfs w, Vz? u)^a0 (w, u).

Let y' = y(u') and y" = y(u") be solutions from F t o problem (1.11)

under / = 0 and under a function u = u(x) that is equal, respectively, to

ur and u . Then, the inequality

\\y' - yf < \\y' - y'f <μα(?- y", y'-y")<

< μ \\u' - u"\\ • \\y' - y"\\y, μ = const > 0,

is derived that provides the continuity of the linear functional L(·) and
bilinear form π(·,·) on % in this case,

2

and

= Ι
Ω γ

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 1.1. Let conditions (1.1) be met, and a system state is
determined as a solution to equivalent problems (1.10) and (1.11). Then,
there exists a unique element u of a convex set % that is closed in °ll, and

J(u)= inf J(v) (1.17)
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takes place for u.
Definition 1.1. If an element ue% meets condition (1.17), it is called

an optimal control.
If u € °UQ is the optimal control, then

J(u)<J((l-e)u + Qv)\/ve%, θ 6 (0,1),

or
J(u + Q(v-u))-J(u)

θ
Pass to the limit θ -» 0, and

> 0 . (1.18)

θ->0 θ

Therefore,

(jr(u\v-u)>0. (1.19)

Take expressions (1.14) and (1.18) into consideration, and inequality
(1.19) has the form

n(u + θ(ν-u),u + θ(ν-u))-2L(u + θ(ν-u))-n(u 9 u) + 2L(u) _

θ

_ . n(u,u) + 2Q n(u,v-u) + Q n(v-u,v-u)-n(u,u)-2QL(v-u)_

θ->ο θ

= 2{n(u,v-u)-L(v-u)}>0, (1.20)

from which the inequality

n(u,v-u)>L(v-u), Vve%, (1.21)

is derived.

On the basis of expressions (1.15), the equality

+(au,v-u)-(zg-y(0\y(v-u)-y{0)) =
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= (y(u)-zg,y(v-u)-y(O)) + (au,v-u) (1.22)

is obtained from condition (1.21), and the equality

n(u9ν - u) - L(v -u) = ^y{u) - zg,y(v) - y(u)} + (au,v-u)

follows from equality (1.22) when the linearity of problem (1.11) is taken
into account.

Then, inequality (1.21) has the form

(y(u)-zg,y(v)-y(u)) + (au,v-u)>0, VVE%, (1.23)

and it is the necessary and sufficient condition under which ue% is the

optimal control for the considered problem.

As for the control V G W , the conjugate state p{v) eV is specified by

the equation

A*p(v) = y(v)-zg; (1.24)

in this case, the operators A and A e£(V \V) (conjugate to A) are

interrelated by the bilinear form

/ α(φ,ψ), (peF*, ψ eV , (1.25)

Consider equation (1.24), obtain the equality

(A*p(u), y(y) - y(u)) = (y(u) - zg, y(y) - y(u)) =

= (p(u), A(y(v) - y(u))) = (p(u), Ay(v) - Ay{u)) = (p(u\ ν - u),

and it is stated that inequality (1.23) is equivalent to the inequality

(p(u) + au,v-u)>0, \/ve%.
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Therefore, the necessary and sufficient condition for the existence of the

optimal control ue% is the one under which the relations

Ay(u) = f + u, (1.27)

A*p(u) = y(u)-zg (1.28)

and
(p(u) + au,v-u)>0, \/ve%, (1.29)

are met.
If the constraints are absent, i.e. when % = %l, then the equality

p(u) + au = 0 (1.30)

follows from condition (1.29). Therefore, when the constraints are absent,

the control u(x) can be excluded from equality (1.27) by means of

equality (1.30). On the basis of equalities (1.27) and (1.28), the problem

Ay + p/a=f,yeV, (1.31)

A*p-y = -zg, peV*, (1.32)

is derived, where V*= {ν|Ω e ̂ ( Ω / ) : / = 1,2; ν|Γ = θ}, i.e. V*= V, and

the vector solution (y,p) is found from this problem along with the

optimal control

u = -p/a. (1.33)

If the vector solution (y,p) to problem (1.31), (1.32) is smooth

enough on Ω/, viz., y\^ , p\^ e C 1 ( Q ; ) n C 2 ( Q i ) , 1 = 1,2, then the

differential problem of finding the vector-function (y,p) , that satisfies

the relations
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and

p\r=0,

= 0, xey,

' . . P H Q I ν ν ι > — Η ν I v c v
7/ V U U ^ V J A , ^ r — \ . y J ? A C / ,

= 0, xey,

=r[p], xey ,

(1.35)

(1.36)

(1.37)

(1.38)

(1.39)

(1.40)

(1.41)

corresponds to problem (1.31), (1.32).
Definition 1.2. A generalized (weak) solution to boundary-value

problem (1.34)—(1.41) is called a vector-function (y,p)T e Η =

= jv = (vl 9v2)T : vz· Ω e ^ ( Ω / ) , /',/ = 1,2; v | r = 0> that satisfies the

following integral equation Vz e Η:

ί
Ω

(1.42)

Ω
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Let u = (ul,u2) and ν = (vi,v2) be arbitrary elements of the complete

2

Hubert space //with the norm ( ν ^ = j Σ | ν | ^ ( Ω / ) > , where Mwi(Qi)

is the norm of the Sobolev space wliQi) . Specify the bilinear form

a(u,v)= \< > L·—L—1-+ > ^ ^ A

(1.43)
γ γ

on Η.
Let the constraint

- I f . l + l | > 0 (1.44)

be met, where ε is a sufficiently small positive real number and
μ = const > 0 is the constant in the Friedrichs inequality

jr)
Ω ι=1 V l J Ω

Proceed from constraints (1.Γ) and (1.44), the Cauchy-Bunyakovsky
and Friedrichs inequalities and embedding theorems [55], and the
inequalities

a(v, v) > ocj | | ν |^ , Vv G //, ά! = const > 0,

and

a(u,v)\ < q 1̂ 11̂  |v |^ , Vw,ν e //, cx = const > 0,

are true for the bilinear form tf(v)> i-e. this form is //-elliptic and

continuous [49] on //.
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Consider the Cauchy-Bunyakovsky inequality, and Vv e Η

JO "1 "g"
Ω

(fvx-zgv2)dx = const,

i.e. the linear functional /(v)= \(fvx -zgv2)dx is continuous on H.

Ω

Use the Lax-Milgramm lemma [16], and it is concluded that the unique

solution (y,p)T to problem (1.42) exists in H. It is easy to see that ρ is the

unique solution to equation (1.32) when y is fixed.

Problem (1.42) can be solved approximately by means of the finite-

element method. For this purpose, divide each domain Ω, into Nt finite

elements e/ (j = l9Ni9i = l92) of the regular family [16]. Specify the

subspace H^ α Η (Ν = Νγ+Ν2) of the vector-functions

rk

N(x) = (vJE(*), v^(x))T. The components of Vk

N(x) = (νβ(χ), v?k(x)f

are continuous on Ωζ, i = 1,2, and they are the complete polynomials of

the power k that contain the variables x1? x2,..., xn at every e/\ and

ν = 0. Then, the linear algebraic equation system
r

AU = B (1.45)

follows from equation (1.42), and the solution U to system (1.45) exists

and such solution is unique. The vector U specifies the unique

approximate solution U^ e H^ to problem (1.42) as the unique one to the

equation

α(υΐ,ν!·) = ΐ{ν»\ V^fff. (1.46)

Let U = U(x) e Η be the solution to problem (1.42). Then:

Therefore,
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and the inequality

(1.47)

is thus derived since the bilinear form a(·,·) is continuous on H.

Suppose that U e Hj* is a complete interpolation polynomial for the

solution U at every e/. Take the interpolation estimates [16] into account,

assume that every component Ux and U2 of the solution Uon Ω/ belongs

to the Sobolev space J^ + 1 (Q/), / = 1,2, and the estimate

<ch\ (1.48)

where h is a maximum diameter for all the finite elements e/, c = const,

follows from inequality (1.47).
Take estimate (1.48) into consideration, and the estimate

where | · |^ ι = Ί ^ | | · | ^ 1 / Ω Λ f > takes place for the approximation

uj^(x) = -p^(x)/a(x) of the control w = u(x).
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1.2 CONTROL UNDER CONJUGATION CONDITION.
THE DIRICHLET PROBLEM

Assume that elliptic equation (1.1), where the coefficients and right-hand

side meet conditions (1.1')> is specified in the bounded, continuous and

strictly Lipschitz domains Ωι and Q2eRn.

The homogeneous boundary Dirichlet condition

y = 0,xeT, (2.1)

is specified, in its turn, on the boundary Γ of the domain Ω.

For every control we^/ = Z2(y), determine a state y = y(u) as a
generalized solution to the boundary-value problem specified by equation
(1.1), boundary condition (2.1) and the conjugation conditions

b ] = 0, xey, (2.2)

and

x e y , (2.3)

where ω = ω (χ) is some known function from L2(y).

Since there exists a generalized solution y(u)eV = Ι ν Ω . eW^ifii):

[v]| =0,ν|Γ = θ | to boundary-value problem (1.1), (2.1)-(2.3), then such

solution is reasonable on Ωι and Ω 2 . Specify the observation in the form

of expression (1.7), where C e 2! {V\V), namely:

Bring a value of the cost functional

(2.4)

Ω
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in correspondence with every control M e t ; in this case, ze is a known
ο

element from L2(Ω); Jfu - a(x)u, 0 < a0 < a{x) <ax < oo, ( φ , ψ ) ^ =

It can be shown [21] that a unique state y(u) e V corresponds to every

control w e t , The function y is specified on the domain Qj U Ω 2 ,

minimizes the energy functional

(ν)= f
Ω

(2.5)

Ω

on Κ, and it is the unique solution in V to the weakly stated problem: Find
an element yeV that meets the integral equation

il
Ω

k
tJ dx: dx.

—+<zyv dx =

(2.6)= l/vdk- ων^/γ- \uvdy, VveF.

Ω γ γ

The state y{ux) * y(u2) is easily seen under ηχΦη2, and

ao(z,z)>aQ\\zfy, S0>0, VzeF, (2.6')

where the bilinear form a o (v) is generated by the left-hand side of

equality (2.6).
Take the assumptions as for the operator Jr into account, and

J(u) = I (y(u) - y(0)) + (y(0) - zg) f 4- (a u, u)Ll(γ) =

(2.7)

follows from expression (2.4); in this case, the bilinear form π ( ν ) and
linear functional L(·) are expressed as
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π( u, v) = (y(u) - y(0), y(v) - y(0)) + (a u,

L(v) = (zg-y(O),y(v)-y(O)). (2.8)

The linearity of the functional L(v) is easily seen from the fact that the
difference y(v) - y(0) is the unique solution y(v) to one of equivalent
problems (2.5) and (2.6). It is necessary to assume / = 0 and ω = 0 for
them, and the arbitrary element ζ e V must be additionally substituted for
the arbitrary function ν in problem (2.6). Then, equality like (1.16) takes
place that allows to state the linearity of the functional L(v) and the

bilinearity of the form n(u,v). The form π(ν) is coercive on L2(y), i.e.:

n(u,u)>ao(u,u)Ll(yy

Let y' = y(ur) and y" = y(u") be solutions from V to problem (2.6)

under / = 0 and ω = 0 and under a function u = u(x) that is equal,

respectively, to u' and u . Then, the inequality

is derived, where μ = const > 0, the norm | · | is specified in point 1.1 and

the bilinear form a ( v ) is specified, in its turn, by the expression

^ du ov

yky + quv ax. (2.10)

Since the inequalities

are true \/v eV, then:

Take inequality (2.11) into account, and the inequality
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follows from inequality (2.9), i.e. the trace of the function y{u) on γ is

continuously dependent upon u. The inequality

also follows from inequality (2.9).
Inequalities (2.12) and (2.12') provide the continuity of the bilinear

form π(ν) and linear functional Z(·) on °li.
On the basis of [58, Chapter 1, Theorem 1.1], the validity of the

following statement is proved.
Theorem 2.1. Let conditions (1.1) be met, and a system state is

determined as a solution to equivalent problems (2.5) and (2.6). Then,
there exists a unique element u of a convex set %d that is closed in % and
relation like (1.17) takes place for u.

If u e °l/d is the optimal control, then

n(u,v-u)>L(v-u\ \fve%. (2.13)

Proceed from expression (2.8), and it is easy to see that the equality

n(u,v - u) - L(v - u) =

= (y(u)-zg,y(v-u)-y(0)) + (au,v-u)L2(y) (2.14)

is true. Take the linearity of problem (2.6) into account, consider equality
(2.14), and the inequality

-zg,y(v)-y(u)) + (au,v-u)L2(y)>0, Vve%, (2.15)

is obtained that is the necessary and sufficient condition under which
ue°lld is the optimal control for the considered problem.

As for the control ν e °ll, the conjugate state p{v) e V is specified by

the relations

A*p(v) = -y(v) + zg, (2.16)
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and

p = 0, χ € Γ,

= 0, xey,

= 0, xey,Φ

where V is a space conjugate to V9 V = V 9 and

v1 9 f , φ ι
y —\ki i '-

J— \ + qp9

dp
—

dp
COS(V,Xj) .

.41
Further on? use the Green formula [58], and the equality

J

Ω

f

(2.17)

(2.18)

(2.19)

(2.19')

dx =

cos(v, xAddQi

+ J ,
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i.e.

(y(u)-zg9y(y)-y(u))= jp(v-u)dy (2.20)

γ

is obtained. Take it and equality (2.14) into account, and the inequality

:0, \/ve%, (2.21)

is derived from inequality (2.15).

Therefore, if the constraints are absent, i.e. when % = "H, then the

equality

p(u) + au = 0, xey, (2.22)

follows from condition (2.21), and, to find the optimal control u{x), solve

the differential problem

I

(2.23)

(2.24)

η

yLί ' « •

η
^ ι

7 = 0, x

p = 0,x

Γ v l —· 0

dy

^ • C 0 S ( V ' X / ) .

[p] = o, -

Φ
17 dxJ V '

e T

e T

v;e"

— u

re'

IT»

0 r £= ν
u, A t y ,

(2.25)

(2.26)

(2.27)

(2.29)

and the optimal control is



Control of Systems Described by Elliptic-Type... 19

u = -p/a, xey. (2.31)

Definition 2.1. A generalized (weak) solution to boundary-value

problem (2.23)-(2.30) is called a vector-function (y,p)T eH =

= {ν = ( ν 1 ? ν 2 ) τ : ν / | Ω / Ε ^ 2

1 ( Ω / ) ; ij = 1,2; v | r =0, [V /]|Y = 0, i = 1,2} that

satisfies the following integral equation Vz eH :

Ω ^ 4 • ,

ady. (2.32)

Ω Ω γ γ

Let w = (w1?w2)
T and ν = (vl 5v2)

T be arbitrary elements of the complete

Hubert space Η with the previously introduced norm | · | ^ . Specify the

bilinear form #(·,·) a n d linear functional /(·) on Η by the expressions

•j
9wi 9vi

cbc,· cbc.· ox:

-ju2vx/ady,

/(v) = 1/^!^:+ \zgv2dx- \(£>Vidy ,

Ω Ω γ

If the constraint

max
04=010 —

2fln

(2.33)
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takes place, where q and c2 are the constants from inequalities (2.10')

and μ and a 0 are, respectively, the constants in the Friedrichs inequality

and inequality (2.6'), then:

and

| β ( Μ , ν ) | < β 3 Η ^ | ν | ^ , Vu,veH9 c3 = const > 0 ;

i.e. the bilinear forma(·,·) is //-elliptic and continuous on H.

Consider the Cauchy-Bunyakovsky inequality, and Vv e Η

jfvidx-
Ω Ω γ

< c4 \\v\\H, c4 = const,

i.e. the linear functional /(ν) is continuous on H.

Use the Lax-Milgramm lemma, and it is concluded that the unique

solution (y,p)T to problem (2.32) exists in H. Problem (2.32) can be

solved approximately by means of the finite-element method. Specify the

subspace HJ^cz Η of the vector-functions V^(x) = (v^(x), v2k(x) J . The

components v^k (x), v2k (x) e C(Qi), / = 1,2, of V^ (x):

Ν \ Τ

νιΛχ)) a r e ^ e complete polynomials of the power k that contain the

variables jq, x2, ·.·, xn at every finite element e/ of the regular family

[16], and vFl = 0, [v^] = 0, / = 1,2. Then, the linear algebraic equation
ΙΓ γ

system like (1.45) is derived from equation (2.32). The solution to this
system exists and such solution is unique.

Take the interpolation estimates [16] into account, assume that every

component U\ and U2 of the solution [/to problem (2.32) on Ω/ belongs
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to the Sobolev space ^ + 1 ( Ω / ) , / = 1,2, and estimate like (1.48) follows

from inequality like (1.47). Take this estimate and the embedding theorems
into consideration, and the estimate

\\u - MJM < cxh
k, cx = const,

II Ιιζ,2(γ)

takes place for the approximation uk (χ)ζ=-ριζ (χ)/α (χ) of the control

u = u(x).

1.3 BOUNDARY CONTROL OF A CORRECT SYSTEM
DESCRIBED BY THE NEUMANN PROBLEM

Assume that elliptic equation (1.1), where the coefficients and right-hand

side meet conditions (1.1')» is specified in the bounded, continuous and

strictly Lipschitz domains Q{ and Ω2 e Rn.

The heterogeneous boundary Neumann condition

^A tLx dxj

is specified, in its turn, on the boundary Γ; in this case, ν is an ort of an
outer normal to Γ, g e L2(T).

On the section γ of the domain Ω, the conjugation conditions have the
form of expressions (1.3) and (1.4).

When q = 0, the equality

\ 0 (3.2)

Ω Γ

is the necessary condition under which there exists the classical solution to
boundary-value problem (1.1), (3.1), (1.3), (1.4).

Assume the following: q0 > 0 (see point 1.1) and °ll = L2(T). For every

control u Ε °ίί, determine a state y - y{u) as a generalized solution to the
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boundary-value problem specified by equation (1.1), conjugation
conditions (1.3) and (1.4) and the boundary condition

^ g + u. (3.3)
dvA

Since there exists a generalized solution y(u)eV = \vL· eW2(Qi):

i' = l,2 } to boundary-value problem (1.1), (1.3), (1.4), (3.3), then such

solution is reasonable on Γ of Ω, and ||.y(w)|L ™ < oo .

Specify the observation in the form of expression (1.6), where

CeSe(L2(T);L2(T)), namely:

Cy(u) Ξ y(u), χ e Γ.

Bring a value of the cost functional

r
in correspondence with every control w e t ; in this case, zg is a known

element from L2(Γ); Jf u = a(x)u, 0<a0< a(x) <ax < oo, (φ,ψ)^ =

= ίφψ dF.

r

It can be shown [21] that a unique state y(u) e V corresponds to every

control ue°ll. The function y is specified on the domain Ωχ U Ω 2 ,

minimizes the energy functional

Φ(ν)= J
Ω

-2 \ftdx-2 \gvdT-2 \uvdF (3.5)

Ω
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on V, and it is the unique solution in V to the weakly stated problem: Find
an element yeV that meets the following integral equation Vv e V :

f V ^ 7 <ty δ* \j r i r u

II / % \-qyv\dx+ \r[y\[v\dy-
J . ^ δχ7· 5χ7· J

Ω v,y=i ^ * y γ

= f>i/x+ jgvi/r+ Γιινέ/Γ. (3.6)
Ω Γ Γ

The state .y(wj) ^ ^(^2) is easily seen under Ui^u2-

Take the assumptions as for the operator Jf into account, and

u) = 1 (y(u) - y(0)) + (y(0) - zg) f ^ + {au,u)Ll{T) =

(3.7)

follows from expression (3.4); in this case, the bilinear form π(·,·) and

linear functional Z,(·) are expressed as

n(u9v) = (y(u)-y(0), y(v)-y{0))^{T) + (au9

L(v) = (zg - y(0)9 y(y) - tfO))^, (3.8)

Γ

The linearity of the functional L(y) is easily seen since the difference

y(v) - y(0) is the unique solution y(y) to one of equivalent problems

(3.5) and (3.6). It is necessary to assume / = 0 and g = 0 for them, and

the arbitrary element ζGV must be additionally substituted for the

arbitrary function ν in problem (3.6). Then, equality like (1.16) takes place

that allows to state the linearity of the functional L(v) and the bilinearity of

the form π(κ,ν). The form π(·,·) is coercive on Ζ^(Γ), i.e.:

n(u,u)>ao(u,u)L2(ry
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Let y' = y(ur) and y" = y{u") be solutions from V to problem (3.6)

under / = 0 and g = 0 and under a function u = u(x) that is equal,

respectively, to u' and u". Then, the inequality

?-?'\ξ,£μα(γ'-γ'9γ'-γ')£

(3.9)

is derived, where |v | F is the norm introduced in point 1.1 and the bilinear

form a(v) is specified by expression (1.26).

Since the inequalities

are true Vv e V [55], then:

H L 2 ( D - C 3 H v ' C 3 j

Take inequality (3.10) into account, and the inequality

\\y'-y"\\L2(r^c4\\w-u"\\L2(r) (3.11)

follows from inequality (3.9), i.e. the function y(u) is continuously

dependent on w.
Inequality (3.11) provides the continuity of the linear functional Z(·)

and bilinear form π(·,·) on ̂ .
On the basis of [58, Chapter 1, Theorem 1.1], the validity of the

following statement is proved.
Theorem 3.1. Let conditions (1.10 be met, and a system state is

determined as a solution to equivalent problems (3.5) and (3.6). Then,

there exists a unique element u of a convex set °ll^ that is closed in °ll, and

relation like (1.17) takes place for u.

If u e °11$ is the optimal control, then

n(u,v-u)>L{v-u\ \/ve%. (3.12)
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Proceed from expressions (3.8), and it is easy to see that the equality

n(u, ν - u) - L(v -u) =

(3.13)

is true. Consider the linearity of problem (3.6), and the equality
n(u, v-u)- L(v -u) =

= (y(u)-zg, y(v)-y(u))L) L +(au,vu

follows from equality (3.13). Then, inequality (3.12) has the form

0^ V v e % , (3.14)

and it is the necessary and sufficient condition under which ue% is the

optimal control for the considered problem.

Since the solution yeV to equivalent problems (3.5) and (3.6) exists

and such solution is unique under arbitrary fixed / e L 2 ( Q )

and geL2(r), then there is the operator A:V -> L2(Q) specified by

relations (1.1), (1.3), (1.4) and (3.3) on the solutions y

(y\Q e C 1 ( i i / ) n C 2 ( Q / ) , / = 1,2J. Therefore, dy/dvA can be uniquely

calculated on 5Ω/ [58] for the solution;;, where

,,) (3.14·)
dv A

and ν is an ort of an outer normal to θΩ/, / = 1,2.

As for the control ν e W , the conjugate state p(y) e F is specified by

the relations

A*p(v) = 0, xeQ, (3.15)

JE- = y(v)-zg9 xeT, (3.16)

A
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and

Φ
dv..

dp_

a v ,

= 0, xey,

= r[p], xey,

(3.17)

(3.18)

where V is a space conjugate to V, V = F, and the operators

A and are specified, in their turn, by expressions (2.19'). Further
dv *

A

on, use the Green formula [58], and the equality
2 .

A*

Ω

Φ d(y(v)-y(u))

. . .

dx =

= a (p, y(v) - y(u)) - \(y(u) - zg ) (y(v) - y(u)) dT =

Γ

- y(u)]dy - jr[p][y(v) - y(u)]dy +
γ

is obtained. Therefore:

(y(u)-zg9 y(v)-y(u))L^r)=(p,v-u)L2(r). (3.19)

Take equalities (3.13) and (3.19) into account, and the inequality
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: Ο (3.20)

is derived from inequality (3.12).

Therefore, if the constraints are absent, i.e. when % = °U, then the

equality
p(u) + au = 0, X G T , (3.21)

follows from condition (3.20).
To find the optimal control w(x), solve the differential problem

(3.22)

dp
dv *

A

a

dxj
= 0,

(3.23)

(3.24)

(3.25)

(3.26)

L'.y=i

= 0, xey,

(3.27)

(3.28)

(3.29)

and the optimal control is
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u = -p/a,xer. (3.30)

Definition 3.1. A generalized (weak) solution to boundary-value

problem (3.22)-(3.29) is called a vector-function (y,p) eH =

= I v = (v1?v2) : vi\nl

 e W2(Ω/), i91 = 1, 2 | that satisfies the following

integral equation \/zeH:

3 ζ 2 ,

4 + i m

zgz2dT. (3.31)
Γ Ω Γ Γ

Τ Τ

Let u = {ux,u2) and v = (vl5v2) be arbitrary elements of the complete

Hubert space Η with the previously introduced norm ||·|| . Specify the
bilinear form

Υ

and linear functional

/(v) = J > ! rfx + JgV! ^Γ - jzgv2 dT (3.32')
Ω r r

on//.

If the constraint
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aj =min{ao?9o}""c3 tfiax(l/ao,l)>O,

where α 0 is the ellipticity condition constant, c3 = max(c1? c2) and ct is

the constant from the inequalities

" " ι i -1 2 (3 33Ϊ

are met, then \/ueH the inequalities

a(u,u)>ax \u\H and |a(w,v)|< ^H/JHI// ' α1 ? c4 = const >0,

follow from expression (3.32), i.e. the bilinear form a(-9-) is coercive and

continuous on H.
It is easy to see the following:

\dx + ^gvxdY-ygv2dY ^c5|v|^;

Ω Γ Γ

i.e. the linear functional /(v) is continuous on H.

Use the Lax-Milgramm lemma, and it is concluded that the unique

solution U = («i, u2 )
T to problem (3.31) exists in H. Problem (3.31) can

be solved approximately by means of the finite-element method. Then,

linear algebraic equation system like (1.45) is derived from equation

(3.31). The solution [/to this system exists and such solution is unique.

The vector U specifies the unique approximate solution U^ e Hk to

problem (3.31) as the unique one to equation like (1.46), where the bilinear

form a(·,·) and the linear functional /(·) are specified, in their turn,

respectively, by expressions (3.32) and (3.32'). In this case, H^ is the

Ν IN Ν \ Τ

space of the vector-functions Vk (*) = (vfo(jt), v2k(x)\ . The components

ν,ΐ, . Ε C(Q,), 1=1,2, of F^(x) = (vg(x), 4(x)) are the
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complete polynomials of the power k that contain the variables

Χγ9 x2, .·., xn at every finite element e/ of partitioning of the domain Ω.

The control u = u(x) is specified on the boundary Γ and such control is

equal to -p/a , where ρ is the trace of the function ρ = p(x) eH on Γ.

Therefore, the function u(x) has the extension -p/a to the domain

Qj U Ω 2 . Then, the estimate

\J

can be written, where uk =-pk /a , ct = max {c/}, c3 = const > 0, and h
/=1,2

is the largest diameter for all the finite elements e/ of the regular family.

1.4 DISTRIBUTED CONTROL OF A SYSTEM: A

COMPLICATED THIN INCLUSION CASE

Assume that the elliptic equation

where the coefficients and right-hand side meet conditions (1.1'), is
specified in the bounded, continuous and strictly Lipschitz domains

Ωχ and Q2eRn .

The homogeneous boundary Dirichlet condition

^ = 0 (4.2)

is specified, in its turn, on the boundary Γ = (3Ω,υ<5Ω2)\γ
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On the section γ of the domain Ω = Ωχ U Ω2 (Ωχ f] Ω2 = 0 ) , the

conjugation conditions for an imperfect contact are

and

(4.3)

(4.4)

where i?l9 i?2, ω, δ e C(y), i?l5 R2 > 0, ^ +i?2 > Ro > 0, i?0 = const, ν is

an ort of a normal to γ and such normal is directed into the domain Ω2 .

Let there be the control Hubert space W and mapping Β^9β{^ίί\ F'),

where V is the space dual with respect to the state Hubert space V.
Assume the following: W = 12(Ω).

For every control w e t , determine a system state y as a generalized
solution to the boundary-value problem specified by the equation

and by conditions (4.2)-(4.4).
Specify the observation

Z(u) = Cy(u), (4.6)

where C e 2?(V; Jf) and 3€ is some Hubert space. Assume the following:

Cyiu) Ξ y(u\ f = F c Ζ2(Ω). (4.7)

Bring a value of the cost functional

(u) = \\Cy(u)-zg\\ +(Jru9u), (4.8)
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in correspondence with every control u e 11; in this case, ζ is a known
ο

element of the space 2€, and

Jf e ,u\ > v0 \\η\ζ, v0 = const > 0, \/u e W. (4.9)

Assume the following: / e L2(Q), Bu = ueL2(Q), Jfu— a(x)u,

0<aQ<a(x)<al<co9a(x)\^eC(QI)9 / = 1,2, a0, ax =const, (φ,

= (φ,ψ)= ίφψί&. Then, a unique state, namely, a function y(u)eV =
Ω

= Ι ν|Ω e R̂ 1 (^/): / = 1,2; v| r = 0> corresponds to every control M e t ,

delivers the minimum to the energy functional [21]

Φ(ν)= dx+[-^—dy-2(f,v)-

-2(«,v)-2 (4.10)

γ γ

on F, and it is the unique solution in Fto the weakly stated problem: Find
an element y = V that meets the equation

r
J

[y ν

uv)+ — ν lay- ων αγ,
i Z-

(4.11)
Μ 2

γ γ

Therefore, there exists such an operator 4̂ acting from V into L2, that

\/ueL2, (4.12)

where L2 =L2(Q).
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It is easy to see that y(ux)*y(u2) under ux *u2 (Bux *Bu2) because

the operator A is linear, and the non-zero solution y corresponds to

problem (4.1)-(4.4) with the right-hand side f = u2-ux^0 under ω = 0,

and y(u2) = y(ux) + y.

Remark. When a state y(u) is determined as a solution to one of

equivalent problems (4.10) and (4.11) with respect to the coefficients L· in

equation (4.1), it is enough to follow ellipticity condition (1.Γ) and the

constraint ky e Αχ>(Ω).

Take the aforesaid assumptions into consideration, and the cost
functional may be rewritten as

J(u) = \\y(u)-zg(+(au,u), (4.13)

where |v|| = (ν,ν)1'2, zg may be, in its turn, an arbitrary fixed element of

the Hubert space Σ2(Ω), and

J{u) = n(u, u) - 2L(u) + \\zg - y(O)f (4.14)

follows from expression (4.13); in this case, the bilinear form π(·,·) and

linear functional L(-) are expressed as

π(κ, ν) = (y(u) - y(0), y(y) - ^(0)) + (au, ν),

The linearity of the functional L(·) is easily seen from the fact that the

difference y(v) - y(0) is the unique solution y(v) to one of equivalent

problems (4.10) and (4.11). It is necessary to assume / = 0,

δ = 0 and ω = 0 for them, and the arbitrary element ζeV must be

additionally substituted for the arbitrary function ν in problem (4.11).

Then:

{ ) ), Va 1 ? a 2 eR\\/ux,u2 e°U. (4.16)
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Pursuant to equality (4.16), the linearity of the functional L(v) and the

bilinearity of the form n(u,v) are stated. The form π(·,·) is coercive on %

i.e.: π(ΐι,ΐι) = (y(u)-y(0),y(u)-y(0)) + (au9u) > ao(u,u).

Let yr = y(uf) and y" = y(u") be solutions from V to problem (4.11)

under / = 0, δ = 0 and ω = 0 and under a function u = u{x) that is equal,

respectively, to ur and u". Then, the inequality

II*1 - yf * \\yf - yfv *μα(?'- y\ yf - 7) <

<\s\u!-u!\\y'-y\ μ=^οη8ί>0, (4.16')

is derived that provides the continuity of the linear functional L(-) and

bilinear form π(·,·) on °ll\ in this case,

2

and

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 4.1. Let conditions (1.1) be met, and a system state is
determined as a solution to equivalent problems (4.10) and (4.11). Then,
there exists a unique element u of a convex set %$ that is closed in % and

J(u)= inf J(v) (4.17)

takes place for u.

If u e % is the optimal control, then

{J\u\ v-w>>0. (4.18)
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Take expression (4.14) and the inequality

u + Q(v-u))-J(u)

θ
> 0

into consideration, and relation (4.18) takes the form

n(u,v-u)>L{v-u\ Vve%.

Proceed from expressions (4.15), and

(4.19)

g ) au,v-u). (4.20)

Then, inequality (4.19) has the form

(y(u)-zg9y(v)-y(u)) + (au9v-u)>09 Vve%, (4.21)

and it is the necessary and sufficient condition under which WG1/5 is the

optimal control for the considered problem.

As for the control ν e °ll, the conjugate state p(v) e V* is specified by

the relations

(v) = y(v)-zg,

= 0, xeT,

φ = 0, xey,

and

dp

(4.22)

(4.23)

(4.24)

(4.25)

where V* is a space conjugate to V, V* = V, and

A.

,,,.). (4.26)



36 CHAPTER 1

Further on, use the Green formula [58], and the equality

(A*p(u),y(y) - y(u)} = (y(u) - zg,y(y) - y(u)) =

= a(p,y(v)-y(u)) = (p(u),A(y(v)-y(u))) = (p(u),v-u) (4.27)

is obtained, where

(4.28)

Consider equality (4.27), and it is stated that inequality (4.21) is equivalent
to the inequality

(p(u) + au,v-u)>0, VVG%. (4.29)

Therefore, the necessary and sufficient condition for the existence of the
optimal control wei/a is the one under which the relations

Ay(u) = f + u, (4.30)

A*p(u) = y(u)-zg (4.31)

and
(p(u) + au,v-u)>0, Vve%, (4.32)

are met.
If the constraints are absent, i.e. when % = %, then the equality

p(u) + au = 0 (4.33)

follows from condition (4.32). Therefore, when the constraints are absent,
the control u(x) can be excluded from equality (4.30) by means of equality
(4.33). On the basis of equalities (4.30) and (4.31), the problem

Ay + p/a=f, yeV, (4.34)

A*p-y = -zs, peV\ (4.35)
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is derived, where ^ * = ] ν | Ω

 G ^ 2 ( ^ / ) · 1 = 1,2; v | r = 0>, and the vector

solution (y, ρ)Ί is found from this problem along with the optimal control

u = -p/a . (4.36)

If the vector solution (y,p)T to problem (4.34), (4.35) is smooth enough

on Ω / ? viz. y\^ , ρ\^ € ^ ( Ω / ) Π ^ ( Ω / ) , / = 1,2, then the differential

problem of finding the vector-function (y,p)T, that satisfies the relations

(4.37)

and

«,y=i

uvA_

dp

^A\

= ω, xey,

= 0, xey,

dp [p]
Rl+R2

, xey,

(4.38)

(4.39)

(4.40)

(4.41)

(4.42)

(4.43)

(4.44)

where
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dy

Λ «,7=1 J

corresponds to problem (4.34), (4.35).
Definition 4.1· A generalized (weak) solution to boundary-value

problem (4.37)-(4.44) is called a vector-function (y,p)T eH =

= Jv = (v1?v2)
T : ν,|Ω/ e Wl{Clt\ ij = 1,2; v | r = 0 } that satisfies the

following integral equation Vz e Η :

η κ % + 9> ; z i +pz\/a + > kij-
£-—- + qpz>> - yz>> }dx +

(4.45)

\ΤLet u = (ul,u2) and ν = (vj,v2) be arbitrary elements of the complete

(2 2 Υ/2

Hubert space Η with the norm |v |L = s V |v|| \(O A . Specify the

bilinear form

Ω

Σ , du2 dv2
k

J
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!ι +Κ2

γ γ

and linear functional

/(ν)= ( / ν ^ - ζ ^ )αχ:+ — [v\]dy- Icovfdy (4.47)

Ω γ l 2 γ

on Η.

Let the constraint

Γι Ί
αχ = α ο μ + 2 # ο - — + 1 >0 (4.48)

\αο )
be met, where μ = const >0 is the constant in Friedrichs inequality

Ω*'=1 V l J Ω

Proceed from constraints (1.Γ) and (4.48), the Cauchy-Bunyakovsky
and Friedrichs inequalities and embedding theorems [55], and the
inequalities

a(y, v) > ocj |v |^, VveH, ocx = const > 0,

and

|fl(w,v)|<q|M|^|v|^, Vu9veH, q = const>0,

are true for the bilinear form tf(v)> i-e- this form is //-elliptic and

continuous [49] on H.
Consider the Cauchy-Bunyakovsky inequality and embedding theorems,

and the following inequality is obtained \/veH :

c2 |v | |^, c2= const.
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Use the Lax-Milgramm lemma [16], and it is concluded that the unique
solution (y,p) to problem (4.45) exists in 77.

Problem (4.45) can be solved approximately by means of the finite-

element method. For this purpose, divide the domains Ω, into Nt finite

elements e/ (j = l,Ni9 i = 1,2) of the regular family [16]. Specify the

subspace HJ* α Η (Ν = Νι+Ν2) of the vector-functions V^(x). The

Ν . Ν rN,
components vxk, vlk _ e C(QZ) (z' = l,2) of Vk (x) are the complete

polynomials of the power k that contain the variables x1? x2, ...? xn at

every eJ, and Vk r = 0. Then, the linear algebraic equation system

B (4.49)

follows from equation (4.45), and the solution U to system (4.49) exists

and such solution is unique. The vector U specifies the unique

approximate solution Up e H^ to problem (4.45) as the unique one to the

equation

e ^ . (4.50)

Let U = U(x) e Η be the solution to problem (4.45). Then:

Therefore,

II λΗ|2

,U-U), VUeH", (4.51)

and the inequality
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\U-Un <^-\\υ-ϋ\\ (4.52)

II 11// α ι II W

is thus derived since the bilinear form a(·,·) is continuous on H.

Suppose that U e Hk is a complete interpolation polynomial for the

solution [/at every e/. Take the interpolation estimates [16] into account,

assume that every component Ux and U2 of the solution U on Ω/
belongs to the Sobolev space ^ + 1 ( Ώ / ) (/ = 1,2), and the estimate

<ch\ (4.53)

where h is a maximum diameter of all the finite elements e/, c = const,

follows from inequality (4.52).
Take estimate (4.53) into consideration, and the estimate

2 2 γ
where INI ι =\ / W'WuArr^ \ r ·> takes place for the approximation

2 J 2 ^ *'

I J
2 J 2 ^ *'

I /=1
= -pfr r(x)/a(x) of the control u = u(x).

1.5 CONTROL UNDER CONJUGATION CONDITION: A
COMPLICATED THIN INCLUSION CASE

Assume that elliptic equation (4.1), where the coefficients and right-hand
side meet the conditions of point 1.1, is specified in the bounded,

continuous and strictly Lipschitz domains Ω± and Ω2 e Rn .

Homogeneous Dirichlet condition (4.2) is specified, in its turn, on the
boundary, and the conjugation conditions have the form of expressions
(4.3) and (4.4).
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For every control ue°ll = L2(y), determine a system state as a
generalized solution to the boundary-value problem specified by equation
(4.1), condition (4.2) and the heterogeneous conjugation conditions

dv dv , xey

and

where

_dy_

dv A
xey,

(5.1)

(5.2)

dy dy

dv A

Specify the observation

Cy(u) = y(u), χ e Ω.

Bring a value of the cost functional

J(u) = (5.3)

Ω

in correspondence with every control u e %; in this case, zg is a known

element from Ζ,2(Ω), Jr u = a(x)u, 0<aQ< a(x) < ax < oo, a(x) e C(y),

a09ax = const, (φ,ψ)^=(φ,ψ)χ2 ( γ ) .

It can be shown [21] that a unique state, namely, a function y(u) e V

corresponds to every control M G ? / , minimizes the energy functional

dv dv

dXf

dx + ί [ν]2

Ri+R2

dy-2(f,v)-

-I- A+^2
+ 2 f + Μ ) ν + ί

J
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on V9 and it is the unique solution in V to the weakly stated problem: Find
an element y(u) e V that meets the equation

f

Ω

dy dv
dx + f 1LviM

= (/>) + f 2 (

ρ

ω + 7 [ν]</γ- f(ro + ii)v+rfy, VveF. (5.5)

γ γ

The space V is specified in point 1.4.

Take the assumptions as for the operator Ji into account, and expression

like (4.14) is obtained from expression (5.3), where the bilinear form π(·,·)

is expressed as

n(u9v) = (y(u) - y(0)9y(y) - y(0)) + (au, v)Ll{y)

and
n(u,u)>ao(u,u)L2(y)

and the linear functional Z(·) is specified by expression (4.15).

The linearity of the functional L(v) follows from the fact that the

difference y(v) - y(0) is the unique solution y(v) to one of equivalent

problems (5.4) and (5.5). It is necessary to assume / = 0, δ Ξ 0 and ω = 0

for them, and the arbitrary element ζ eV must be additionally substituted

for the arbitrary function v. Then, equality like (4.16) takes place that

allows to state the bilinearity of the form π(·,·) . This form is coercive on

m.
Let y' = y(u') and yfr=zy(u") be solutions from V to problem (5.5)

under / = 0, δ = 0 and ω = 0 and under a function u = u{x) that is equal,

respectively, to u' and u". Then:

R2(u'-u")r»,
+ \\u'-u".

γ

(y'~ y" r dy

J
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=l

Therefore, the inequality

\\y>-y»\\<C2\\u'-Uf'\\L2M (5.6)

is derived that provides the continuity of the linear functional Z(·) and

bilinear form π(·, ·) on °U.

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 5.1. Let conditions (1.1) be met, and a system state is

determined as a solution to equivalent problems (5.4) and (5.5). Then,

there exists a unique element u of a convex set %d that is closed in % and

relation like (4.17) takes place for u.

If M e % is the optimal control, then the inequality

{J\u\v-u)>0

is true and it is transformed into

As for the control

the relations

>0, \/ve%. (5.7)

, the conjugate state p(v) e V is specified by

=[pl (5.8)

= 0, xey;



Control of Systems Described by Elliptic-Type... 45

in this case, the function
dp .

dv *
A

is specified, in its turn, by one of

expressions (2.19') ·
Further on, use Green formula [58], and the equality

(A*p(u), y(v)- >;(")) = (y(u)-zg, y(v) -y(u)) =

=α(ρ,γ{ν)-γ(ύ))=Σ J £ ky d(y(y)"y{H)>> cos(v,xdp
Μ 3 Ω ί ; 1 J

np\[y\
d =

R
dy

J d{y(v)-y(u)y
dv. ρ -

'd(y(v)-y(u))\+

 +

dv.
dy =

is obtained, where

Ω W = 1

(5.9)

(5.10)

Take equality (5.9) into account, and it is stated that inequality (5.7) is
equivalent to the inequality

to be the optimalThe necessary and sufficient condition for u

control is the one under which the relations

a(y,v) = ll(u,v), yeV, VveF, (5.11)
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a(P,v) = l2(y,v), peV,\fveV, (5.12)

and

+au\(v-u)dy>0, Vve%, (5.13)

are met.
In this case, the bilinear form a(·,·) is specified by expression (5.10)

and the functionals /j(·,·) and /2(v) are expressed as

/,(ιι,ν) = (/,ν)+ |^2(ω + Μ ) δ [ ν μ γ _ Γ(ω + Μ ) ν + ί / γ ( 5

y y

and

/2(^v) = (^-z g ,v). (5.15)

If the constraints are absent, i.e. when % = W, then the equality

= o? x e y , (5.16)
i?2

follows from condition (5.13).

Therefore, when the constraints are absent, the control u(x) can be

excluded from expression (5.14) by means of equality (5.16), and problem

(5.11), (5.12) can be obtained, where l\(u,v) = ̂  (u(p),v). The solution to

it is (y,p)T and the optimal control is

Rxp
++R2p~

u = —^- ^—-, xey. (5.17)
(Rx+R2)a

In this case: F* = V .

If the vector solution (^? jp)T to problem (5.11), (5.12), (5.17) is smooth

enough on Ω / ? viz. y, p\^ e ^ ( Ω ^ Π ^ ί Ω ^ , 7 = 1,2, then the

differential problem of finding the vector-function (y,p)T, that satisfies

the relations
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dy

Ά) l^V

Rxp
++R2p~

Φ = 0,

(5.18)

corresponds to problem (5.11), (5.12), (5.17).
Definition 5.1. A generalized (weak) solution to boundary-value

problem (5.18) is called a vector-function (^,/?) T e/f=|v = (v1,v2)
T:

vi Ω Ζ

€^2(Ρ/) ' ΐ,/ = 1,2; ν Γ = 0 | that satisfies the following integral

equation Vv € Η :
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x+ (5.19)

Ω

— —[z\]dy~ ω + - ^ - ^— \z{dy.

J Rl+R2

 L 1 J Γ Jl ( i ? 1 + i ? 2 ) a lR,+R2
ϊ

Let u = (wl5w2)
Tand v = (v1?v2)

T be arbitrary elements of the complete

Hilbert space H. Specify the bilinear form

I
/ x f

Ω

2

JRl+R2

+ P R+* fdy (5.20)
Υ

and linear functional

Ω γ Χ

on/i.
If the constraint

=^-min{l, μ}-

(Rl+R2)
2a (Rx+R2)2a {Ri+R2)a (Rl+R2)a

\ ci
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where c3 is the constant from the embedding theorem, is met, then

Vw,v G Η the inequalities

a(u9u)>ax\u\H and |fl(M,v)|<c4|w||

follow from expression (5.20). It is easy to see that

Use the Lax-Milgramm lemma, and it is concluded that the unique
τ

solution U = (W|,w2) to problem (5.19) exists in H. Problem (5.19) can be

solved approximately by means of the finite-element method. Therefore, it

is possible to derive the approximate solution U^ e H^ to problem (5.19)

for which estimate like (4.53) is true. The control u = u(x) is specified on γ

and such control is equal to —— ^—, where p± is the trace on y± of
(R{+R2)a

the function ρ = p(x). Then, the estimate

\\u-ui\\ <c6h\ (5.22)
II l lL(y)

1 r\ ι -^ ^ ~N R]Pk +R?Pk

where c6 = const > 0, can be written for u1\i = —L£-i£ ά £ ί τ —

(R{+R2)a

1.6 BOUNDARY CONTROL: THIRD BOUNDARY-VALUE
PROBLEM

Assume that elliptic equation (4.1), where the coefficients and right-hand
side meet the conditions of point 1.1, is specified in the domains

Ωχ and Ω 2 e Rn . The conjugation conditions have the form of expressions

(4.3) and (4.4) and the third boundary condition
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xeT, (6.1)

where α, β e Rl and α > 0, is specified, in its turn, on the boundary Γ.

For every control ue^/ = L2(T)9 determine a system state as a
generalized solution to the boundary-value problem specified by equation
(4.1), conjugation conditions (4.3) and (4.4) and the boundary condition

J

r)

, xeT. (6.2)

Specify the observation

Bring a value of the cost functional

J(u)=\(y(u)-zgf (6.3)

Ω

in correspondence with every control M G W ; in this case, zg is a known

element from L2(Q), Jfu = a(x)u, 0 < a0 < a(x) < ax<oo3 a{x) e C(F),

ao,ax = const, (φ,ψ)^ = (φ,ψ)ΐ2 ( Γ) -

It can be shown [21] that a unique state, namely, a function

y{u) G V = Ι ν Ω. G ^ ( Ω , . ) : ζ =1,2 j corresponds to every control

u = Ζ2(Γ), minimizes the energy functional

Ω U,7=l
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+ α \v2dY - 2 β fv dY - 2 \uv dY +2 fω ν+Jy (6.4)

Γ Γ Γ γ

on V, and it is the unique solution in Fto the weakly stated problem: Find
an element y(u) e V that meets the equation

y][v] , r

ι 2 r

= ( / » + [R2(°~d[v]dy- fcovVy + ί(β + u)vdY, Vve V. (6.5)
γ Ι γ Γ

Take the assumptions as for the operator Jr into account, and expression

like (4.14) follows from representation (6.3), where the bilinear form π(·,·)

and linear functional L(·) are expressed as

7r(w, V) = (y(u) - y(0), y(v) - y(0)) + (au, ι

and

The form π(·,·) is coercive on % i.e.: π(μ9ύ)>

\/ueL2(Y).

Let j ; ' = y(ur) and .y" = ^(M") be solutions from V to problem (6.5)

under / = 0, δ = 0,ω = 0 and β = 0 and under a function u that is equal,

respectively, to u' and w". Then, the inequality

is obtained, i.e.
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where

=J
xj w^i

dx +

(6.7)

Inequalities (6.6) provide the continuity of the linear functional L(-) and

bilinear form π(·, ·) on °1ί.

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 6.1. Let conditions (1.1) be met, and a system state is
determined as a solution to equivalent problems (6.4) and (6.5). Then,
there exists a unique element u of a convex closed set °11$ c °ll, and
relation like (4.17) takes place for u.

If ue% is the optimal control, then inequality like (4.19) is true

Vv € % . Represent this inequality as

(6.8)

As for the control V G W , the conjugate state p(v) e V is specified by
the relations

dp

A*p(v) = y(v) - :

dp

dp
= 0, xey, (6.9)
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dp

Further on, use the Green formula [58], and the equality

(A*p(u), y(v)-y(u)) =

= (y(u) - zg,y(v) - y(u)) = a (p, y(v) - y(u))

^[p][y(y)-y(u)]

(6.10)

is obtained. Take it into account, and it is stated that inequality (6.8) is
equivalent to the inequality

\(p(u) + au)(v-u)dY>0, \/ve%.

Therefore, the necessary and sufficient condition for the existence of the
optimal control ue% is the one under which the relations

a(y,v) = lx(u,v), yeV, VveV, (6.11)

a(P,v) = l2(y,v), peV, VveV, (6.12)

and
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\(p(u) + au)(v- u)dY > 0, Vv e %, (6.13)

r
are met, where the bilinear form a(·,·) is specified by expression (6.7) and

the functionals /](·,·) and ^(v) are

(u,v) = (f,v)+ \ 2& [v]dy- Lv+dy +

γ γ

+ ί(β + ^)ν</Γ, M G % V V G F , (6.14)

If the constraints are absent, i.e. when % = °ll, then the equality

p(u) + au = 0, xeT, (6.15)

follows from condition (6.13). Therefore, when the constraints are absent,

the control u(x) can be excluded from equality (6.11) by means of

equality (6.15), and problem (6.11), (6.12) can be obtained, where

/j(w,v) = lx (u(p),v) . The solution to it is (y,p)T and the optimal control is

u = -p/ci, xeF. (6.16)

If the vector solution (y,p)T to problem (6.11), (6.12), (6.15) is smooth

enough on Qh viz. y\^ , p\^ e (^(Ω^ΓΚ^Ω/), / = 1,2, then the

differential problem of finding the vector-function (y,p)T, that satisfies

the relations

J)
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ox:

η

a

^xi)=~aP> xeT>

dvA

dp

dv *
A

dp

= <D, xey,

= 0, xey,

[p]

(6.17)

corresponds to problem (6.11), (6.12), (6.15).
Definition 6.1. A generalized (weak) solution to problem (6.17) is

Τ ( X 1

called a vector-function (y,p) e Η- <ν =(ν 1 ? ν 2 ) : νζ· Ω e ^

/,/ = 1,2} that satisfies the following integral equation VzeH :

f

J \
Ω
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d
γ * λ Γ Γ

= \(fZl-zgz2)dx+ {^^[Zl]dy- Lztdy. (6.18)

Let u = (w1?w2)
T a n d v = (v1?v2)

T be arbitrary elements of the complete
Hubert space H. Specify the bilinear form

l+i? J l > j (6.19)? J

and linear functional

/(ν) = \[fvi ~zgv2)dx+ I—- [v\]dy- Ιων^ί

Ω y J i ? 1 + i ? 2

on//.

Let the constraint

^ m i n

I
>0

[ 2 ^ 2 ' 2a0

be met. Then, \/ueH the inequalities

a(w,w) >a | |w | and α(Μ,ν)|<04||Μ||«|ν||«, a1?c4=const > 0, (6.20)

follow from expression (6.19).
The following is evident:
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\l(v)\<c5\\v\\H. (6.21)

Use the Lax-Milgramm lemma, and it is concluded that the unique

solution U = (uuu2)
T to problem (6.18) exists in H. If problem (6.18) is

solved by means of the finite-element method, then the estimate

<chK (6.22)

takes place for the approximation ϋ2& =-Pk /& of the optimal control u.

1.7 BOUNDARY CONTROL AND OBSERVATION: THIRD
BOUNDARY-VALUE PROBLEM

Assume that elliptic equation (4.1), where the coefficients and right-hand

side meet conditions of point 1.1, is specified in the domains Ω{

and Ω 2 e Rn . The conjugation conditions have the form of expressions
(4.3) and (4.4) and third boundary condition (6.1) is specified, in its turn,
on the boundary Γ.

For every control ue^ = L2(r), determine a system state as a

generalized solution to problem (4.1), (4.3), (4.4), (6.2). Represent the

observation by expression like (4.6), where C G ^ ( Z 2 ( r ) ; Z 2 ( r ) ) is

specified by the relation Cy(u) = y{u) under xeT . Bring the value of the

cost functional

Γ

in correspondence with every control u e % ; in this case, zg is a known

element from L2(T), Au=au, 0<a0 < a(x)<a^oo, a(x) e C(F), α^αχ -

=const, (φ, ψ ) ^ = | φ ψ dT = (φ, \\f)Ll ( Γ ) .
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It can be shown [21] that a unique state, namely, a function y(u) e V

corresponds to every control u e L2(T), minimizes energy functional (6.4)

on V, and it is the unique solution in V to weakly stated problem (6.5).
Take the assumptions as for the operator Jf into account, and

J{u) = n(u, u) - 2L(u) + \\zg - ^ ( 0 ) | ^ ( r ) (7.2)

follows from expression (7.1); in this case, the bilinear form π(·,·) and

linear functional L(-) are expressed as

n(u, v) = (y(u)- y(0% y(y) - ^(0))^ ( r ) + (au, v)L

and

The form π(·,·) is coercive on % i.e.: n{u,u)>a^{

Let y' = y{u') and y" = y(u") be solutions from Fto problem like (6.5)

under / = 0, δ = 0, ω = 0 and β = 0 and under a function u that is equal,

respectively, to u and u". Then, inequalities like (6.6) are true and they

provide the continuity of the bilinear form π(·,·) and linear functional L(-)

on W.
On the basis of [58, Chapter 1, Theorem 1.1], the validity of the

following statement is proved.
Theorem 7.1. Let conditions (1.1) be met, and a system state is

determined as a solution to equivalent problems (6.4) and (6.5). Then,
there exists a unique element u of a convex closed set 9/$ e °ll, and

relation like (4.17) takes place for u, where a cost functional is specified by
expression (7.1).

If ue% is the optimal control, then inequality like (4.19) is true.

Represent this inequality as

(y(u) -zg9 y(v)-y(u))L^r)+(au,v-u)Ll{T)> 0, Vv e %. (7.3)
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As for the control v e f , the conjugate state p(v)e V is specified by

the relations

dp
= 0, xey,

φ

dv
= [p], xsy,

= -ap + y(v)-z xeT.

The equality

0 = (A*p(u), y(v) - y(u)) = a {p,y(v) - y(u))

-l(y(u)-zg)(y(v)-y(u))dr =

(7.4)

/=i an,« J = I

,-W) - (J<II) - zg)(y(v) - y(u)))dr (7.5)

is obtained. The bilinear form a(·,·) is specified here by expression (6.7).

Take equality (7.5) into account, and the inequality
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ί ^ \/ve%, (7.6)
r

follows from inequality (7.3).
The necessary and sufficient condition for the existence of the optimal

control wei/5 is the one under which relations like (6.11), (6.12) and (7.6)

are met, where the functional l\(u,v) has the form of expression (6.14),

and

( ) (7.7)

If the constraints are absent, i.e. when %=%, then equality (6.15)

follows from inequality (7.6). Therefore, when the constraints are absent,
the control u(x) can be excluded from equality (6.11) by means of equality
(6.15), and problem like (6.11), (6.12) can be solved, where lx{u,v)-

= lx (u(p),v). The solution (y,p)T to it is found and the optimal control u

is found, in its turn, by formula (6.16).

If the vector solution (y,p)T to problem like (6.11), (6.12) is smooth

enough on Ω,, viz. y ^ , / ^ e C ^ Q ^ n C 2 ^ ) , / = 1,2, then the

differential problem of finding the vector-function (y,p)T, that meets
relations (6.17), except the second and fourth ones, and that satisfies the
equalities

and

y £ ^ , (7.9)

corresponds to problem like (6.11), (6.12), where the functional /2(j/,v)

has the form of expression (7.7).
Definition 7.1. A generalized (weak) solution to a problem, specified by

equalities (6.17), except the second and fourth ones, and by constraints
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(7.8) and (7.9), is called a vector-function (y,p)T e Η that satisfies the

following integral equation \/zeH :

C\ yh , dy dz* \h Ί dp dz2 ,

γ

 Λ 1 τ Λ 2

^ l u z t d y . (7.10)

Let u = (uvu2)
T and ν = (ν1? v2)

T be arbitrary elements of the complete

Hubert space Η. Specify the bilinear form

J
f

J ι

n 2 a

•

Ω

^ _ , - ( 7 ' Π )

γ K l + K l r /=i r r

and linear functional

Ω γ

J f J (7.12)
y

on Η. If the constraint
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is met, then \/U,VGH inequalities like (6.20) follow from expression
(7.11) and estimate like (6.21) is derived from expression (7.12).

Use the Lax-Milgramm lemma, and it is concluded that the unique

solution U = (uvu2)
T to problem (7.10) exists in H. If problem (7.10) is

solved by means of the finite-element method, then estimate like (6.22)

takes place for the approximation w2&
 = ~~Pk /& °f the optimal control u.



CONTROL OF A CONDITIONALLY CORRECT
SYSTEM DESCRIBED BY THE NEUMANN

PROBLEM FOR AN ELLIPTIC-TYPE EQUATION
UNDER CONJUGATION CONDITIONS

2.1 DISTRIBUTED CONTROL WITH OBSERVATION
THROUGHOUT A WHOLE DOMAIN

Assume that the elliptic equation

is specified in a domain Ω that consists of two bounded convex domains,

namely, Ω| and Q2

 e Rn > where Rn is an η-dimensional real linear space.

The second-type boundary Neumann condition

,xi) = g{x) (1.2)

is specified, in its turn, on a boundary Γ = (5Ωιυ9Ω2)\γ (y

f]dQ2 ^ 0 ) \ i*1 this case, ν is an outer normal to Γ,

D\j = 1,2,

< Ci < 00,
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Χ/ξ,·, ξ̂ · € i?1, ι, y = 1,η, α 0 = const > 0;

and the conjugation conditions

and

= co

(1.2')

(1.3)

(1.4)

are specified, also in their turn, on a section γ of the domain Ω; in this

case, COG C(y), [φ] = φ+ - φ", φ* = {φ}* = φ(χ) under χ e γ*, γ+ =

=γ Π 5Ω2, Υ~ = Υ Π dQx, ν is a normal to γ and such normal is directed

into the domain Ω 2 .

Let y(x)eM ={v(x): v^ €^(Ω/)ΠΟ 2 (Ω/), / = 1, 2, D2v <ool

be a classical solution to boundary-value problem (1.1)—(1.4). It is easy to
see that a solution y + c is also classical to it for an arbitrary constant c.

The necessary condition for the existence of the classical solution y to
problem (1.1)—(1.4) is the one under which the equality

[
Ω Γ γ

is met. Find this solution under the constraint

(1.5)

(1.6)

Ω
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where Q is some known real number. Assume the following: Η =

= { v(x): v\Qi e WiiQi), 1 = 1,2}, VQ={ veH: [v] = 0, (ν,1) = β } ,

(φ,ψ) = |φψώχ:.

Ω

Let there be a control Hubert space W and mapping Be2? {%l\ V1),

where V is a space dual with respect to a state Hubert space V. Assume

the following: <M = Ζ2(Ω) .

For every control weW, determine system state y = y{u) as a
generalized solution to the boundary-value problem specified by the
equation

and by conditions (1.2)—(1.4) and (1.6).
Specify the observation

Z(II) = C ^ ( I / ) , (1.8)

where Ce2? (V;Jf) and J^ is some Hubert space. Assume the

following:

Cy(u) = y(u), Je = VaL2(Q). (1.9)

Bring a value of the cost functional

J(u) = \Cy(u) - zgfx + {Au,u)m (1.10)

in correspondence with every control ueil/; in this case, zg is some

known element of 3€, Λ e <Z(1/;'W)9 (J\ru9u\ > v0 \uf , v0 = const > 0

Assume the following: / e L 2 ( Ω ) ? Bu=ueL2(Ω), Jfu = a(x)u,

0 < a0 < a(x) < αλ <οο, α(χ)|Ω / e C(Q/), / = 1, 2; a0, ax = const,

= Ι φ ψ ^ . A unique state, namely, a function ^(w)eFg

Ω
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corresponds to every control ue%, delivers the minimum to the energy
functional [21]

Φ1(ν) = α1(ν,ν)-2/1(ν) (1.11)

on VQ , and it is the unique solution in VQ to the weakly stated problem:

Find an element y^VQ that meets the equation

where V0={veH: [v] = 0, (ν,1) = θ}, ax{u,v) =

+ u)vdx+ \gvdY- |ωνί/γ.

Ω r γ

The following statement is valid [21].

Lemma 1.1. Problems (1.11) and (1.12) are equivalent \/feL2(Q),

Vco e Z<2(Y)> ^ U e ^ and have a unique solution y = y(u) e VQ .

Remark 1.1. If a solution yeVg to problems (1.11) and (1.12) belongs

to a set M , then y is classical to boundary-value problem (1.7),
(1.2)—(1.4), (1.6) under the constraint

(f + u)dx+ \gdT= Ldy. (1.13)

Ω Γ γ

Remark 1.2. If a solution >> to problems (1.11) and (1.12) exists, it is
not necessary to meet constraint (1.13).

Remark 1.3. If equality (1.5) takes place, then, to meet constraint
(1.13), it is necessary for a control u to satisfy the condition

judx = 0. (1.14)
Ω

Rewrite cost functional (1.10) as

J(u) = n(u9u)-2L(u) + \\zg -y(0)( ; (1.15)
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in this case, |φ| | = ||φ|| (Q, = (φ,φ)1'2 and the bilinear form π(·,·) and linear

functional !,(·) are expressed as

π(Μ,ν) = (y(u)-y(0), y(v)-y(0)) + (au,v)

Liv) = (zg-y(P),y(v)-y(p)). (1.16)

Let y' = y(u) and yn= y(u") be solutions from VQ to problem (1.12)

under / = 0, g = 0 and ω = 0 and under a function u = w(x) that is equal,

respectively, to u' and u". Then, take the ellipticity condition and

generalized Poincare inequality into account, and the inequality

So\\y'-yf <a0\\yf-yf <ax(y'-y\y'-

is derived, where ||v||K = Σ Η ^ Ω , )
 a n d ΙΗΙ̂ ίΩ,) i s t h e n o r m o f t h e

!«'-w*||-||j/'->q|̂ , a0=const>0,

2

V
1=1

Sobolev space W2 (Ω,·).

On the basis of [58, Theorem 1.1, Chapter 1], the validity of the
following statement is proved.

Theorem 1.1. Let a system state be determined as a solution to
equivalent problems (1.11) and (1.12). Then, there exists a unique element
u of a convex set °ίΙ$ that is closed in % and

J(u)= inf J(v) (1.17)

takes place for u.

Definition 1.1. If an element u e % meets condition (1.17), it is called

an optimal control.
Let the equation
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be specified on the domain Ω instead of equation (1.7). Neumann condition
(1.2) and conjugation conditions (1.3)—(1.4) are specified, in their turn,
respectively, on the boundary Γ and section γ.

Ify is a classical solution to boundary-value problem (1.7), (1.2)—(1.4),
(1.6) (Problem 1), then it is easy to see that;; is classical to problem (1.18),
(1.2)—(1.4) (Problem Γ). It can be shown [21] that a classical solution to
Problem Γ is also classical to Problem 1 if constraint (1.13) is satisfied.

Let observation (1.8) be specified, where the operator C is given by
expression (1.9). Cost functional (1.10) is specified, in its turn, for every
control ue%. Then, a unique state, namely, a function y(u)e

eV = {veH: [v] = 0}, corresponds to every w e t , minimizes the

energy functional

Φ(ν) = *ί(ν,ν)-2/ί(ν) (1.19)

on V9 and it is the unique solution in V to the weakly stated problem: Find
an element y e V that meets the equation

al(y,v) = l[(y), V V E K , (1.20)

where a[(y9v) = ax(y,v) + (y, l)(v, 1) and l[{v) = lx(v) + Q(v, 1) .

Lemma 1.2. Problems (1.19) and (1.20) are equivalent V/eZ 2 (Q),

Vw e °U and have a unique solution y(u) e V.

Remark 1.4. If a solution y e V to problems (1.19) and (1.20) belongs

to a set Μ, thcny is classical to boundary-value Problem Γ, and it is also
classical to Problem 1 if constraint (1.13) is met.

Therefore, there exists such an operator A generated by problems (1.19),
(1.20) and acting from Finto Ζ2(Ω), that

\/ueL2=L2(Q).

Let y' = y(u') and y" = y(u") be solutions from V to Problem Γ under

f = 0, g = 0 and ω = 0 and under a function u = u{x) that is equal,

respectively, to uf and u".

Then, on the basis of the generalized Poincare inequality, the following
one, i.e.
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y - ~yf < ax \\y' - y% ia(y'- y\ y' - y) <

<\u'-u"\-\\y'-y"\\, ax = const > 0 ,

is derived that provides the continuity of the linear functional L{) and
bilinear form π(ν) of expressions (1.16) on W.

On the basis of [58, Theorem 1.1, Chapter 1], the validity of the
following statement is proved.

Theorem 1.2. Let a system state be determined as a solution to

equivalent problems (1.19) and (1.20). Then, there exists a unique element

u of a convex set %$ that is closed in %, and relation like (1.17) takes

place for u.
Remark 1.5. If equality (1.13) is satisfied, then problems (1.11) and

(1.19) are equivalent. Therefore, optimal controls coincide when states are
described by boundary-value Problems 1 and Γ.

Here is the problem of finding the control uety/$ that satisfies relation

(1.17). It is optimization Problem 1 if a system state is a generalized

solution to boundary-value Problem 1, and it is optimization Problem Γ if

a system state is a generalized solution to boundary-value Problem Γ.

Remark 1.6. If constraint (1.5) is met and % =

= < W G Z 2 ( Q ) : |ttdk = o k then optimization Problems 1 and Γ are

Ω J
equivalent.

If u e °l/d is the optimal control, then the following inequality is true

Vv G %:

(y(u)-zg9 y(v)-y(u)) + {au9v-u)ZO . (1.21)

As for the control ν e %, the conjugate state p(v) eV = V is specified

by the relations
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Φ
dv .*

[p] = 0,

= 0,

Φ = 0, xey, (1.22)

where

Φ

^ 1,7=1

(1.23)

The equality

-ΣίΣΛ

- y(u)) = a[ (p, y(v) - y{uj) =

•cos(y9Xi)p(u

f U=i

i.e. i^(w)-zg,3;(v)->y(w)) = (j9? v-w) is obtained. Take it into account,

and the inequality

(p + au,v-u)>0, Vve%, (1.24)

is derived from inequality (1.21).

To make the element w e t 5 the optimal control of a state described by

boundary-value Problem 1', it is necessary and sufficient to meet inequality
(1.24) and the relations

*ίϋ>,ν) = /!(«,v), yeV,\/veV, (1.25)

and

(1.26)
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where

ΑΟ,ν) = (/ + £>, v) + (w,v)+
Γ

and

If the constraints are absent, i.e. when °Ud=°ii, then the equality

p + au = 0 (1.27)

follows from condition (1.24). Therefore, when the constraints are absent,
the control u can be excluded from equality (1.25) by means of equality
(1.27). On the basis of equalities (1.25) and (1.26), the problem

Ay + p/a=f, yeV, (1.28)

A*p-y=-zg9 peV\ (1.29)

is derived, and the vector solution (y,p) is found from this problem

along with the optimal control u = -p/a of the system specified by

boundary-value Problem Γ.
τ

If the vector solution (y,p) to problem (1.28), (1.29) is smooth

enough on Ω,, viz., y\^ , p\^ e C ^ f i ^ n C 2 ^ , ) , 1 = 1,2, then the

differential problem of finding the vector-function (y,p) , that satisfies

the relations

*J)

:-y = -zg, χ€Ω ι υΩ 2 ,

'.7=1 ' V J J Ω
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η

η

t,J=l

= (0,

>ΛΪ/ — 6 ' A d i ,

,xt) = 0, xeT,

= 0, xey,

Φ = 0, Λ€γ,(1.30)

corresponds to problem (1.28), (1.29).
Definition 1.2. A generalized (weak) solution to boundary-value

problem (1.30) is called a vector-function (y,p)T eH =

= j ν = (vj, v2 )
T : vf | Ω G W\ (Qj), /, j = 1,2; [v] = 0 J that satisfies the

following integral equation \/zeH:

^ , dy ΟΖΛ

l 7 l

dp oz2Loz2 ,L-yz2\dx +
ax ' 2

\ydx iz^x-l· \pdx \z2dx =

Ω Ω Ω Ω

(1.31)

Ω Γ γ

Let u = (ul,u2) and ν = (ν1 ?ν2) be arbitrary elements of the complete

Hubert space //with the norm |NL = i > ll-ILi/n N > . Specify the bilinear

form
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a(«,v)= j ^ ^ [
Ω [ /=1 / J=l XJ Xi J /=1 Q Ω

and linear functional

Q)vx - zgv2 )dx+ jg vxdT - Jco ν
Ω

o n / / .

Assume that the constraint ax =min^ — , 1>μ — \ l· l > > 0 is met,

[ 2 J 2 [a0 J
where μ is the constant in the generalized Poincare inequality. Take the
generalized Poincare inequality [21] and Cauchy-Bunyakovsky one into
account, and the relations

— ii n2 —

a(y, v) > a j ||v|L· Vv e H, ax= const > 0 ,
and

|a(w,v)| < cx 11̂ 11̂  Hvjl̂  Vu9veH, q = const > 0 ,

are true for the bilinear form a(v)> i-e. this form is //-elliptic and

continuous [49] on H.
Consider the Cauchy-Bunyakovsky inequality and embedding theorems

[55], and the following inequality is obtained Vv e Η :

| /(v) |< c2 \\v\\H, c2 = const.

Use the Lax-Milgramm lemma [16], and it is concluded that the unique
solution (y, p) to problem (1.31) exists in //.

Problem (1.31) can be solved approximately by means of the finite-

element method. For this purpose, divide the domains Ω, into Nt finite

elements e/ (j = l,Ni9 i = l92) of the regular family [16]. Specify the

subspace Η? α Η (Ν = ΝΧ+Ν2) of the vector-functions V^(x). The
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components
_ ,Ω

Ni_ e C^Q,) (/= 1,2) of Vj? (x) are the complete
Η

polynomials of the power k that contain the variables jq, x2> ··> x« a t

every e·*7, and F ^ = 0. Then, the linear algebraic equation system

AU = B (1.32)

follows from equation (1.31), and the solution U to system (1.32) exists

and such solution is unique. The vector U specifies the unique

approximate solution U^ e Η% to problem (1.31) as the unique one to the

equation

( ΐ η (η{<*Η?. (1.33)

Let U = U(x) e Η be the solution to problem (1.31). Then:
N

S*(TT TTN

a\U-Uk , J Vk
Therefore,

and the inequality

|[/-C/f| < c o | t / - C 7 | ^ , co = const, (1.34)

is thus derived since the bilinear form #(·,·) is continuous on H.

Suppose that JJ e Hk is a complete interpolation polynomial for the

solution [/at every e/. Take the interpolation estimates [16] into account,

assume that every component J7j and U2 of the solution U on Ω/ belongs

to the Sobolev space ^ + 1 ( Ω / ) (l = 1,2), and the estimate
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|f/-£/f| <chk, (1.35)

where h is a maximum diameter of all the finite elements e/\ c = const,

follows from inequality (1.34).
Take estimate (1.35) into consideration, and the estimate

L - w f | x<*c2\p-pU ,<c3h
k, (1.35')

VV2 rv2

Γ
where ||-|[ ĵ =\ Xjl'll^roΛ \ ·> takes place for the approximation2 J
uk(x)-~Pk /a(x) °f the control u = u(x) of a state described by

Problem Γ and ^ = w^ is the second component of the vector U^.

Remark 1.7. If constraint (1.13) is met, then the first component of a
classical solution to problem (1.30) is a classical solution to boundary-
value Problem 1.

2.2 DISTRIBUTED CONTROL WITH OBSERVATION ON
A THIN INCLUSION

Assume that equation (1.1), where the coefficients and right-hand side

meet conditions (1.2'), is specified in the bounded, continuous and strictly

Lipschitz domains Qj and Ω 2 . Condition (1.2) is specified, in its turn, on

the boundary Γ and the conjugation conditions have the form of
expressions (1.3) and (1.4).

For every control u^^U-I^iO)^ determine a system state as a

generalized solution to the boundary-value problem specified by equation

(1.7) and by conditions (1.2)—(1.4), where Bu=u and ueL2 (Ω).

Equality (1.13) is the necessary condition under which there exists a

classical solution y = y(u) to boundary-value problem (1.7), (1.2)—(1.4)

(Problem 2). Find this solution under constraint (1.6).
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Bring a value of the cost functional

2 u ) u (2.1)

γ

in correspondence with every control M6i/ = L2(O); in this case, zg is a

known element from the space L2(yy,

ο ο< a" < oo, α (χ) Ω . e C(Q,), i = 1,2; a0, a" = const.

A unique state, namely, a function y(u)eVQ corresponds to every

control we'?/, minimizes energy functional (1.11) on VQ, and it is the

unique solution in VQ to weakly stated problem (1.12). Lemma 1.1 and

Remarks 1.1 and 1.2 hold here.
Rewrite cost functional (2.1) as

J{u) = π( ii, u) - 2L(u) + ||zg - tfO)^ ( γ ) , (2.2)

where

and

Take the embedding theorems, ellipticity condition and generalized
Poincare inequality into account, and the inequality

i.e.
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<-j^=\\uf-u"l α ΐ 5 α 2 = const>0,

is derived, where y' = y(ur) and y" = y(u") are the generalized solutions

from VQ to boundary-value Problem 2 under / = 0, g· = 0 and ω = 0 and

under a function w = u(x) that is equal, respectively, to u' and w".

On the basis of the derived inequality and [58, Chapter 1, Theorem 1.1],
the validity of the following statement is proved.

Theorem 2.1. Let a system state be determined as a solution to
equivalent problems (1.11) and (LI 2). Then, there exists a unique element
u of a convex set % that is closed in °ll = Ζ2(Ω), and relation like (1.17)

takes place for u, where the cost functional J(u) is specified by expression
(2.1).

Let equation (1.18) be specified on Ω instead of equation (1.7).
Neumann condition (1.2) and conjugation conditions (1.3) and (1.4) are
specified, in their turn, respectively, on Γ and γ. I.e., boundary-value
problem (1.18), (1.2)-(1.4) (Problem 2') is obtained.

Remark 2.1. Boundary-value Problems 1, 2 and Γ, 2' coincide
pairwise. Optimization Problems do not coincide because their cost
functionals J(u) are different.

Consider optimization Problem 2': Find a control M G 1 / 5 C 1 / = L2(Q),

for which relation like (1.17) is satisfied, where the cost functional J(u) is
specified by expression (2.1), and a state y(u) is a generalized solution to
boundary-value Problem 2'.

If ue% is the optimal control for optimization Problem 2', then the

following inequality is true:

(y{u)-zg9 y(v)-y(u)) +(au9v-u)*0, \/ve%. (2.3)

As for the control ν e %, the conjugate state p{v) eV = V is specified

by the relations

A*p(v) = 0, x e Q U
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[ρ] = Ο,

Φ
δν *

= 0,

, xey, (2.4)

where the operators A* and are specified, in their turn, by

expressions (1.23).
The equality

0 = [jCp(u\ y(v) - y(uj} = a[ (p9 y(v) - y(uj) -

i.e. iy(u) - zg,y(v) - y(u)\ = (/?, ν - w) Vv e °Ud is obtained. Take it

)>0, Vve%, (2.5)

into account, and the inequality

is derived from inequality (2.3).

An element ue% is an optimal control for optimization Problem Τ if

and only if inequality (2.5) and the equalities

α ί ( * ν ) ^ ( w , v ) , yeV, VveF, (2.6)

and

, VveF, (2.7)

are met; the bilinear form a{(v) and functional /j(w,v) are specified in

point 2.1, and
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If the constraints are absent, i.e. when % = °ll , then the equality

p+au=0 (2.8)

follows from condition (2.5). Therefore, when the constraints are absent,
the control u can be excluded from equality (2.6) by means of equality

(2.8). Let the solution (y,p)T to problem (2.6), (2.7), where

I\(u9y) = li(u(p)9y)9 be sufficiently smooth on Ωγ and Ω 2 . Then, such

solution satisfies the relations

',7=1

= 0, xey,

= ω,

= -y + z xey. (2.9)
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Definition 2.1. A generalized (weak) solution to boundary-value

problem (2.9) is called a vector-function (y,p) eH that satisfies the

following integral equation \/zeH:

f
J

oy ΟΖΛ . \7 , φ 9ζ2

, . . _ dXj dXj

+ jydxjzxdx + jpdx jz
Ω Ω Ω Ω

-' + Q)z±dx+ \gz\dT- ωζ^γ+ ί^-ζ^ )ζ2ί/γ. (2.10)

Ω Γ γ γ
ι-ρ ηρ

Let u = (w1? u2) and v = (v1? v2) be arbitrary elements of the complete

Hubert space H. Specify the bilinear form

[/1

jujdx jvldx^julv2dy
/=1 Ω Ω γ

and linear functional

J dT -
Ω

on Η. If the constraint

minî S-, πύηί^, ΐ ΐμΐ- — ~^.>0 ? (2.11)
1 2 1 2 J μ / 2α0 2

where μ and c0 are the positive constants, respectively, in the generalized

Poincare inequality and embedding theorem, is met, then the unique

solution (y,p)T to problem (2.10) exists in H. Problem (2.10) can be

solved by means of the finite-element method. Estimates like (1.35) and
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(1.35') are true, respectively, for its approximate solution U^ e H^ a H

and for the approximation u^(x) of the control u.

23 DISTRIBUTED CONTROL WITH BOUNDARY
OBSERVATION

Assume that equation (1.1), where the coefficients and right-hand side
meet conditions (1.2'), is specified in the bounded, continuous and strictly
Lipschitz domains Qj and Ω 2 . The conjugation conditions have the form
of expressions (1.3) and (1.4) and the boundary condition has the form of
expression (1.2).

For every control weW = Ζ2(Ω), determine a system state as a
generalized solution to the boundary-value problem specified by equation
(1.7) and by conditions (1.2)—(1.4). Equality (1.13) is the necessary
condition under which there exists a classical solution y to boundary-value
problem (1.7), (1.2)—(1.4) (Problem 3): Find a solution y that meets
constraint (1.6).

Bring a value of the cost functional

J(u)= \Μΐ4)-ζ8ΥάΓ + (Λη,ύ)ν (3.1)

r

in correspondence with every control u e W = L2(Q); in this case, zg is a

known element from the space L2(T), Λη = αη, 0<α0<α(χ)<

<a1°<oo? a (x)L E C X Q ; ) , Z = 1 , 2 ; a09 a® = const.

A unique state, namely, a function y(u)eVQ corresponds to every

control we?/, delivers the minimum to energy functional (1.11) on VQ9

and it is the unique solution in VQ to weakly stated problem (1.12). Lemma

1.1 and Remarks 1.1 and 1.2 take place here.
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Rewrite cost functional (3.1) as

J(u) = n{u,u) -2L(u) + \\zg - jKO)|^( r ) , (3.2)

where

and

L(v) = (zg-y(0), y(v)~

Take the embedding theorems, ellipticity condition and generalized
Poincare inequality into account, and the inequality

<ax{y-yry'-y)<\\ur-u«\\\\y-y
i.e.

y\\

α1 ? α 2 = const > Ο,

is derived, where y = y(u') and y" = y(u") are the generalized solutions

from VQ to boundary-value Problem 3 under / = 0, g = 0 and ω = 0 and

under a function w = u(x) that is equal, respectively, to u' and w".

On the basis of the derived inequality and [58, Chapter 1, Theorem 1.1],
the validity of the following statement is proved.

Theorem 3.1. Let a system state be determined as a solution to

equivalent problems (1.11) and (1.12). Then, there exists a unique element

u of a convex set °Ud that is closed in % and relation like (LI 7) takes

place for u, where the cost functionalJ(u) is specified by expression (3.1).
Let equation (1.18) be specified on the domain Ω instead of equation

(1.7). Neumann condition (1.2) and conjugation conditions (1.3) and (1.4)
are specified, in their turn, respectively, on Γ and γ. I.e., boundary-value
problem (1.18), (1.2)-(1.4) (Problem 3') is obtained.
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Remark 3.1. Boundary-value Problem 3 coincides with Problems 1
and 2. Problem 3' coincides with Problems Γ and 2'. Optimization
Problems do not coincide because their cost functionals J(u) are different.

Consider optimization Problem 3': Find a control ue^cz^ = Ζ2(Ω),

for which relation like (1.17) is satisfied and where the cost functional
J(u) is specified by expression (3.1). A state y = y(u) is a generalized

solution to boundary-value Problem 3' and such solution is unique for one
of equivalent problems (1.19) and (1.20).

If u e % is the optimal control for optimization Problem 3', then the

following inequality is true:

-zg9y(v)-y(u))^+(au9v-u)*09 Vve%. (3.3)

As for the control ν e 9/, the conjugate state p(y) eV* =V is specified

by the relations

— ^ - = -z +J/, xeT,
dv * *

A

[p] = o, vP — c\ ~ ^ *, (3 4)

where the operators A* and are specified, in their turn, by

expressions (1.23).
The equality

0 = (A*p(u), y(v) - y(u)) = a[ (p, y(v) - y(u)) -

= -(y(u)-zg,y(v)-y(u)) +(p, v-u),
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i.e. [y{u)-zg,y{v)-y{u)^ =(p 5 v-w) V v e % is obtained. Take it

into account, and the inequality

(p + au,v-u)>09 \/ve%, (3.5)

is derived from inequality (3.3).

To make the element M G ^ the optimal control for optimization

Problem 3', it is necessary and sufficient for inequality (3.5) and the
equalities

*i(*v) = /!(«,v), yeV,\/veV, (3.6)

and

9v)9 peV,\/veV, (3.7)

to be met; the bilinear form a[(-,·) and linear functional ^(-,·) are specified

in point 2.1, and

Γ

If the constraints are absent, i.e. when % = °ll, then the equality

p+au=0 (3.8)

follows from condition (3.5).
Therefore, when the constraints are absent, the control u can be

excluded from equality (3.6) by means of equality (3.8), and the following

may be written: l\(u,y) = li(u(p),y). If the solution (y,p) to problem

(3.6), (3.7), where l\(u9y) = lx(u(p),y), is smooth enough on Qj and Ω 2 ,

then such solution satisfies the relations

Ω
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Λ
c o s ( v > **) = g> * e r>

xeT,

= 0, χ€γ. (3.9)

Definition 3.1. A generalized (weak) solution to boundary-value

problem (3.9) is called a vector-function (y,p) eH that satisfies the

following integral equation \/zeH:

Ω Uy=i J l

\ydx \z\ dx 4- Ι ρ dx \z2dx =

9z2 ,
—~>dx

d

Ω Ω Ω Ω

Ω

(3.10)
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Let u - (w1?w2)
T a n d ν = (vl 5v2)

T be arbitrary elements of the complete

Hubert space //. Specify the bilinear form

/ \ \ui dx iv/ dx- \ux v2 dY

Ω

and linear functional

'(v) = J(/ + 0V! dx + - Jco v2 Jy - jzgv2 dT
Ω

on//.

Let constraint like (2.11) be met. Then, the unique solution (y,p) to

problem (3.10) exists in //. Problem (3.10) can be solved by means of the

finite-element method. Estimates like (1.35) and (1.35') take place,

respectively, for the approximate solution uj* e H^ to problem like

(3.10) and for the approximation uj^(x) of the control u.

2.4 CONTROL UNDER CONJUGATION CONDITION
WITH BOUNDARY OBSERVATION

Assume that equation (1.1), where the coefficients and right-hand side

meet conditions (1.2'), is specified in the domains Ωχ and Ω 2 . Neumann

condition (1.2), constraint (1.3) and the condition

xey, (4.1)
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where ω is a fixed function from ^ ( Y ) a n ( ^ the control is w e t = L2(y),

are specified, in their turn, on the boundary Γ.
For every control u^°U, determine a system state as a generalized

solution to the boundary-value problem specified by equation (1.1) and by
conditions (1.2), (1.3) and (4.1) (Problem 4). The equality

f / dx + \g dT = f(o + u) dy (4.2)

Ω Γ γ

is the necessary condition under which there exists a classical solution to
the latter problem. Find this solution under constraint (1.6).

Bring a value of the cost functional

J(u) = j(y(u)-zgfdr + (^u,u)L2(y) (4.3)
r

in correspondence with every control u e °1ί = L2(y); in this case, zg is a

known element from the space L2(T), Λη = αη, 0<aQ<a(x)<

<a{<co, a e L2(y), a0, ax - const.

A unique state, namely, a function y(u)eVQ corresponds to every

control M G W , minimizes the functional

Φ(ν) = α4(ν,ν)-2/4(ν) (4.4)

on VQ , and it is the unique solution in VQ to the weakly stated problem:

Find a function y EVQ that meets the equation

0 4 (*v) = /4(v) V V G F O , (4.5)

where

Ω 1,7=1

/ (v)= \fidx+ \gvdr-\(<o + u)vdy. (4.6)
4

Ω
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Lemma 4.1. Problems (4.4) and (4.5) are equivalent V/eZ,2(Q),

V(o e L2(γ), V M G W and have a unique solution y EVQ.

Rewrite cost functional (4.3) in the form of expression (3.2), where

π(w, v) = (y(u) -y(0), y(v) - yiP))^(r)+(au9

and

Take the embedding theorems, ellipticity condition and generalized
Poincare inequality into account, and the inequality

^ - y't * aA (y' - y"> y' - y") ζ

| ΐ 2 ( γ )

i.e.

< q \u'-«1|ΐ2(γ)\y-y"\\v, aj, a 2 , q = const > 0,

is derived, where y' =y(u') a n d y" ~y{u") a r e the generalized solutions

to boundary-value Problem 4 under / = 0, g = 0 and ω = 0 and under a

function u = u(x) that is equal, respectively, to ur and u".

On the basis of the derived inequality and [58, Chapter 1, Theorem 1.1],
the validity of the following statement is proved.

Theorem 4.1. Let a system state y be determined as a solution to

equivalent problems (4.4) and (4.5). Then, there exists a unique element

u = u(x) of a convex set % that is closed in W, and relation like (LI 7)

takes place for u = u{x), where the cost functional J(u) is specified by

expression (4.3).
Let the equation
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be specified on Ω instead of equation (1.1). Neumann condition (1.2) and
conjugation conditions (1.3) and (4.1) are specified, in their turn,
respectively, on Γ and γ. I.e., boundary-value problem (4.7), (1.2), (1.3),
(4.1) (Problem 4') is obtained.

Consider optimization Problem 4': Find a control u e % c 91 = L2(y),

for which relation like (1.17) is satisfied and where the cost functional

J(u) is specified by expression (4.3). A state y = y{u) is a generalized

solution to boundary-value Problem 4', where the energy functional is

Φ(ν) = *ί(ν,ν)-2/;(ν), V V E F , (4.8)

and the weakly stated problem is to find a function yeV that meets the

following equation Vz e V :

a'A{y,z) = l'A{z)· (4.8')

in this case:

a4(y,v)= jfdkiJ-^^dx+ jydxjvdx,
Ω U=l J l Ω Ω

/;(v)= Uf + Q)vdx+ \gvdT- ί(ω + ιφ;6/γ. (4.9)

Ω Γ γ

If ue% is the optimal control for optimization Problem 4', then the

following inequality is true Vv e 9/d :

) 0 . (4.10)

As for the control ν e 91, the conjugate state p(v) eV = V is specified

by relations like (3.4). The equality

0 = I A p(u), y(v) - y{u) I = a4 yp, y(v) - y(u)) +



90 CHAPTER 2

(y(u)-zg,y(y)-y(u))

i.e.

is obtained. Take it into account, and the inequality

(-p + au,v-u)L2(y)>0, \/ve%, (4.11)

is derived from inequality (4.10).

An element ue% is an optimal control for optimization Problem 4' if

and only if inequality (4.11) and the equalities

fli(^v) = /!(«,v), yeV9 VveF, (4.12)

and

4 ( A v ) = /2(^v), peV, V V G F , (4.13)

are met; in this case, the bilinear form ^ ( v ) is specified by the first

formula of expressions (4.9) and the functionals ^(v) and /2(·,·) a r e

Ω

and

r
If the constraints are absent, i.e. when °lld = W, then the equality

t/ = 0, xey, (4.14)

follows from condition (4.11).
τ

Therefore, when the constraints are absent and if the solution (>>,/>) to

problem (4.12)-(4.14) is smooth enough on Ωι·(/ = 1,2), then the

boundary-value problem is obtained:
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/ν

Ω

Σ**—
ώ dxJ

= 0, [/?] = 0, xey,

= ω+ρ/α, xey,

= 0, χ€γ.
dp

(4.15)

Definition 4.1. A generalized (weak) solution to boundary-value

problem (4.15) is called a vector-function (y,p)T eH that satisfies the

following integral equation VzeH:

/,/=!
; 5χ·

Ι ρ dx \z2dx= I (/ + β)^ι dx +

Ω Ω Ω Ω Ω

g) fo /afody. (4.16)
Γ Γ γ

τ τ
Let u = (wj, w2) and ν = (vj, ν2) be arbitrary elements of the complete

Hilbert space H. Specify the bilinear form
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2

/=1 Ω Ω Γ γ

and linear functional

/(ν) = J(/ + 0vj Λ + Jg n </Γ - Jzgv2 </Γ - Jco η
Ω Γ Γ γ

on H.
If the constraint

{ , H , l L U ^ - ^ > 0 , (4.16')
1 2 1 2 J μ\ 2α0 2

where μ is the constant in the Poincare inequality and c'o and c0 are the
positive constants derived on the basis of the inequalities proved within the
framework of the embedding theorems, is met, then the unique solution

(y>p)T to problem (4.16) exists in H. Estimate like (1.35) is true for its

approximate solution U^ e H^ and the estimate

\u-u?\ <chk (4.17)
II * ΙΙζ^γ)

takes place for the approximation u£(x) of the control u.

2.5 BOUNDARY CONTROL WITH OBSERVATION ON A
THIN INCLUSION

Assume that equation (1.1), where the coefficients and right-hand side
meet conditions (1.2'), is specified in the domains Ω{ and Ω 2 . The
condition



Control of a Conditionally Correct System... 93

(5.1)

is specified, in its turn, on the boundary Γ and the conjugation conditions
have the form of expressions (1.3) and (1.4) on γ, where g is a fixed
function from L2(T) and the control is MGW = L2(T) .

For every control ue°ll, determine a system state as a generalized
solution to the boundary-value problem specified by equation (1.1) and by
constraints (1.3), (1.4) and (5.1) (Problem 5). The equality

\fdx+ jgdr+Ldr=[(ody (5.2)
Ω Γ Γ γ

is the necessary condition under which there exists a classical solution y to
Problem 5: Find this solution under constraint (1.6).

Bring a value of the cost functional

J(u)= j(y(u)-zgf dy + (Jfu, u)Ll{T) (5.3)

γ

in correspondence with every control w e t ; in this case, zg is a known

element from the space L2(y), Jfu = au, 0 < α 0 - α (χ) < a^ < oo,

a eL2 (Γ); a0, ax = const.

A unique state, namely, a function y(u)eVQ corresponds to every

control M G W , delivers the minimum to functional (4.4) on VQ, and it is

the unique solution in VQ to the weakly stated problem specified by

equation like (4.5), where

/4(v)= \fvdx+ l(g + u)vdr-j<Qvdy. (5.4)
Ω Γ γ

Lemma 5.1. Problems like (4.4) and (4.5), where the bilinear form

a4(y) is specified by the first formula of expressions (4.6) and the linear
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functional /4(·) is specified by formula (5.4), are equivalent \/f e L2(C1),

Vco G L2(j), V W G ^ awe/ Aave α unique solution y(u) e Fg.

Rewrite cost functional (5.3) as

where

and

Take the embedding theorems, ellipticity condition and generalized
Poincare inequality into account, and the inequality

ά21*' - ~y"t2 (γ) * *i \\y' - yfv *aA(y- y , y - y ) <

< c0\\uf-u\2{T)\y'-y\\y, ά ΐ 5 ά 2 , c0 = const > 0,

i.e. ||>^f - ^"IL2 (γ) - c i IIw' ~ W 1L 2 (Γ) i s d e r i v e d > w h e r e y = Ku') a n d

On the basis of the derived inequality and [58, Chapter 1, Theorem 1.1],
the validity of the following statement is proved.

Theorem 5.1. If a system state y is determined as a solution to

equivalent problems (4.4) and (4.5) that correspond to boundary-value

Problem 5, then there exists a unique element u - u(x) of a convex set %

that is closed in % and relation like (1.17) takes place for u = w(x), where

the cost functionalJ(u) is specified by expression (5.3).
Let equation (4.7) be specified on Ω instead of equation (1.1). Condition

(5.1) and constraints (1.3) and (1.4) are specified, in their turn,
respectively, on Γ and γ. I.e., boundary-value problem (4.7), (1.3), (1.4),
(5.1) (Problem 5 ) is obtained.

Consider the following problem: Find a control ue^ aW = L2(T) for

which relation like (1.17) is satisfied and where the cost functional J(u) is
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specified by expression (5.3); a state y - y(u) is a generalized solution to

boundary-value Problem 5', where the energy functional and weakly stated

problem are given, respectively, by expression (4.8) and equality (4.8').

The form α'4(·, ·) is specified by expression (4.9) and the linear functional

is

l\(y) = J(/ + Q)vdx + J(g + u)vdT - Jcow/γ.
Ω Γ γ

If MGW5 is the optimal control for optimization Problem 5', then the

following inequality is true \/ve°lid:

(y(u)-zg, y(v)-y(u))L2M + (au,v-u)L2(r)>0. (5.5)

As for the control veW, the conjugate state p(v) e F = V is specified

by the relations

Α*ρ(ν) = 0, ΧΕΩ1[]Ω2,

dp
= 0, xeT,

dvA>

[p] = o,
dp

dv *
A _

= zs-y, xey, (5.6)

where the operators A and are specified, in their turn, by
dv *

A

expressions (1.23).
The equality

0 = (A*P(U)9 y(v) - y{u)) = a\ (p9 y(v) - y(u)) +

+ (Zg-y(u),y(v)-y(u))L2M =
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i.e. (y(u)-z Q , v(v)-y(u)\ = (/?, v ~ w ) . ,„. is obtained. Take it into

account, and the inequality

(j9 + a W , v - w ) L 2 ( r ) > 0 (5.7)

is derived from inequality (5.5).

To make the element ue% an optimal control for optimization

Problem 5', it is necessary and sufficient to meet inequality (5.7) and

equalities like (4.12) and (4.13), where the bilinear form a'4(-,-) is specified

by expression (4.9) and, besides this, the linear functionals are

Ί(κ>ν)= j(f + Q)vdx+ J(g + w)v</r- JcovJy
Ω Γ γ

and

Υ

If the constraints are absent, i.e. when % = W, then the equality

= 0, X G T , (5.8)

follows from condition (5.7).

Therefore, when the constraints are absent and if the solution (y,p)T to

problem (4.12), (4.13), (5.8) is smooth enough on Ω, (i = 1,2), then, take

equality (5.8) into account, and the boundary-value problem is obtained:

i,j=\

i,y=l J



Control of a Conditionally Correct System... 97

η ~

Υ ^y-J-COS (V, *,)=(), X<=T,
rr1 ckj

(5.9)

dy_

dxj
= Γ·Λ V (= V

Definition 5.1. A generalized (weak) solution to boundary-value

problem (5.9) is called a vector function (y,p)T eH that satisfies the

following integral equation Vz € Η:

y* * ^ .

J jz2dx= j(f + Q)Zl dx

Ω Ω Ω Ω Ω

(5.10)

Τ Τ

Let u-{u^u2) and ν = (vl9v2) be arbitrary elements of the complete

Hubert space H. Specify the bilinear form
2 η

L·—L—L>dxU dXfa f
a(u,v) =

OL/=i/j=i "V

r n f f f f

'=i Ω Ω
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and linear functional

/(v) = J ( / + Q)vi Λ + Jg vj </Γ - Jco V! </γ - Jzgv2 Jy
Ω Γ γ γ

on//.

If constraint like (4.16') is met, then the unique solution (y,p)T to

problem (5.10) exists in H. Estimate like (1.35) is true for its approximate

solution u£ e HJ* and the estimate

\u-4\ <chk

II k \\L2{Y)
takes place for the approximation uj*(x) of the control u.



CONTROL OF A SYSTEM DESCRIBED BY A
ONE-DIMENSIONAL QUARTIC EQUATION

UNDER CONJUGATION CONDITIONS

3.1 DISTRIBUTED CONTROL WITH OBSERVATION
THROUGHOUT A WHOLE DOMAIN

Assume that the equation

_ 1r y \— /Yv\ (Λ 1\
2* κ 2" \~~ J { ' ν 1 · 1 /

is specified in a domain Ω =Ω{1)Ω2 (Ωχ=(0,ξ), Ω2=(ξ,/), 0 < ξ < / ) ,

where Α: ̂  = k(x) ^ e C!(Q/) Π C2(QZ), 0< Α:ο < λ:(χ) < ^ < οο,

Α:ο, k\ = const, / Q G C ( Q / ) ? / = 1,2, | / | < O O .

The conditions

^ = / = 0 (1.2)

are specified, in their turn, at the ends of a line segment [0, / ] .

At a point χ = ξ, the conjugation conditions are

y- = y+=0 (1.3)

and

(1.4)

Problem (1.1)—(1.4) describes deflections of a complicated rod that is
rigidly fixed at its ends and has a hinge of a final rigidity α >0, and such a
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hinge is absolutely rigidly supported at the point χ = ξ; in this case,

y - y(x) *s a deflection of a rod at a point with a coordinate χ, [φ] =

= φ + -φ-, φ±={φ}± =φ(ξ±0).

Let there be a control Hilbert space °ll and mapping Β e 2?(%; V),

where V is a space dual with respect to a state Hilbert space V. Assume

the following: ^ = Ζ2(Ω).

For every control M G W , determine a system state y as a generalized
solution to the boundary-value problem specified by the equation

4 ? * T T \ = f(x) + Bu9 yeV, (1.5)

and by conditions (1.2)—(1.4).
Specify the observation

Z(u) = Cy(u), (1.6)

where C e i?(F; Jif) and Jif is some Hilbert space. Assume the following:

(1.7)

Bring a value of the cost functional

J(u) = | |Q;( W )-z g | | 2 ^ + (Λη,η)ν (1.8)

in correspondence with every control ue%; in this case, z g is a known

element of J^ and

? v Q =const>0 ? Vwe^. (1.9)

Assume the following: f = L2(Q), Bu = u e

and, in this case, 0<a0< a(x)< ax < oo, α ( χ ) L e C(Q/), / = 1,2,

^ 0 , ^ = const, (φ,ψ)^ =(φ,ψ)= φψί/χ. A unique state, namely, a

Ω

function y(u) e V = {ν: ν Q/eFF2

2(Q/)> /= 1,2; v(0) = v'(0) = v(/) =
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= v'(/) = 0; y~=y+= 0j corresponds to every control w e t , delivers the

minimum to the functional

= Λ(ν,ν)-2/(ν) (1.10)

on V9 and it is the unique solution in V to the weakly stated problem: Find
an element y eV that meets the equation

*0>,v) = /(v), VveF, (1.11)

where a(u,v)= \ku"v"dx + a[u'][v']9 /(v)= Uf + u)vdx.

ο ο

Introduce the following denotation: H\ = | V ( X ) : ν | Ω / € Ϊ Γ / ( Ω / ) ,

/ = 1,2}. The estimates

|α(κ, v)| < q |n | |^ ||v|^ and | Z(v) |< c2 | |ν |^ (1.12)

are true for the bilinear form a(·,·): H^xH^-^R and linear functional
2

/(.): i/f - > * ! . In this case, \vfH =Y}vfwi{ςΐίγ where \\w}m is the
l

norm of the Sobolev space W^iQ), i.e. the bilinear form #(·,·) and linear

functional /(·) are continuous on a complete Hubert space H2 with the

norm | | · ! ^ . Illustrate the //-ellipticity of the bilinear form a ( v ) on the

subspace V c H2 . Take the Friedrichs inequality into account, and the

following inequality is derived:
/

α(ν,ν)>μ \(v')2dx, μ = const>0. (1.13)

ο
Consider the line segment [α, β]. For an arbitrary element ν e

e W2 (α, β), that meets the conditions ν(α) = ν(β) = 0 , the equality
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β β β

[{v'fdx = vvfa - \w"dx = - \vv"dx (1.14)
α α α

is obtained. On the basis of the ε-, Cauchy-Bunyakovsky and Friedrichs
inequalities, the inequality

β β , β

jv2dx < ε \v2dx + — ί(ν")2 dx, Vv e V,
»• 4ε

α α α
follows from equality (1.14), viz.:

β β

μ2 \v2dx < \(v"f dx, μ2 = const > 0. (1.15)

α α

Consider inequalities (1.13) and (1.15), and

α(ν,ν) > μ3 | ν | ^ , μ3 = const>0. (1.16)

Use the Lax-Milgramm lemma [16], and it is concluded that problem

(1.11) has the unique solution V/, u eL2(Q) in V. It is easy to state the

equivalence of problems (1.10) and (1.11).

Therefore, there exists such an operator A acting from V into 12(Ω),

that

y(u) = A~\f + Bu), VweZ2(Q). (1.17)

Rewrite the cost functional as

J(u) = n(u, u) - 2L(u) + \\zg - y(0)\\ \ (1.18)

where the bilinear form π(·,·) and linear functional L(-) are expressed as

π(Μ, ν) = (y(u) - y(0), y(v) - y(0)) + (au, v)

and

( ) (1.19)
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in this case: (φ,ψ) = ίφψί/χ, ||φ|| = (φ>φ) ·

ο
The form π(·,·) is coercive on % i.e.:

n(u9u) = (y(u)-y(0), y(u)-y(0)) + (au9u) > ao(u9u).

Let y' = y(u') and y" - y(u") be solutions from V to problem (1.11)

under / = 0 and under a function u = u{x) that is equal, respectively, to

w'and u". Then, the inequality

q |>>' - yf < cx \\y' - yfff <a(y'~ y% y' - ^ ) < ||ii' - u"\\ \\y' - y"\\,

cx = const > 0,

is derived that provides the continuity of the linear functional L(-) and

bilinear form π(·, ·) on °ll.

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 1.1. Let a system state be determined as a solution to
equivalent problems (1.10) and (1.11). Then, there exists a unique element
u of a convex set % that is closed in % and

J(u)= inf J(y) (1.20)

takes place for u.

Definition 1.1. If an element M G ^ meets condition (1.20), it is called

an optimal control.
If u e % is the optimal control, then the following inequality is true:

n(u,v-u)>L(v-u), \/ve%. (1.21)

Proceed from expressions (1.19), and the inequality

(y(u)-zg9 y(v)-y(uj) + (au,v-u)Z09 Vve%, (1.22)
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follows from inequality (1.21), and it is the necessary and sufficient

condition under which ι / e ^ is the optimal control for the considered

problem.
As for the control ν e %, the conjugate state is specified by the relations

A*p(v) = y(v)-zg9 (1.23)

p = 09 p' = 0, JC = 0 , / , (1.24)

p~ =p+ = 0 (1.25)

and

[kp"] = 0, {kp"}±=a[p'}, (1.26)

where F* is a space conjugate to F, V* =V, and

(1.27)

Further on, use the formula of integration by parts, and the equality

(A*p(u), y(v) - y(u)) = (y(u) - zg,y(v) - y(uj) = a (p,y(v) - y(u)) =

= (p(u), A(y(v) - y(u))) = (p(u), v-u), (1.28)

where

a(u,v)= jku'Vdx + a[u'][vf], (1.29)
ο

is obtained. Take equality (1.28) into account, and it is stated that
inequality (1.22) is equivalent to the inequality

Therefore, the necessary condition for the existence of the optimal control

u e °l/d is the one under which the relations

Ay(u) = f + u9 (l.3l)

A*p(u) = y(u) - zg (1.32)

and
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(p(u) + au,v-u)>0, Vve%, (1.33)

are met. If the constraints are absent, i.e. when % = ̂ 1, then the equality

p(u) + au = Q (1.34)

follows from condition (1.33). Therefore, when the constraints are absent,
the control u(x) can be excluded from equality (1.31) by means of equality
(1.34). On the basis of equalities (1.31) and (1.32), the problem

Ay + p/a=f, yeV, (1.35)

A*p-y = -zg9 peV*, (1.36)

is derived, and the vector solution (y,p) is found from this problem

along with the optimal control

u = -p/a, (1.37)

where V* = {ν: ν | Ω / € W% (Ω,), /= 1, 2; v(0)=v'(0) = v(/) = v'(/) = 0;

v+=v~=0}.

If the vector solution (y,p) to problem (1.35), (1.36) is smooth

enough on Ω,, viz. y\^ , p\^ e θ\Ω,)Γ\€4(Ω,), 1 = 1,2, then the

differential problem of finding the vector-function (y,p) , that satisfies

the relations

(ky')'+p/a=f, χε

(kp")"-y = -zg, Χ<Ξ

pV) = 0, (1.37)

y~=y+=0, p~=p+=0,

[ky"] = 0, Y
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[kp'] = 09 {kprY=a[p'],

corresponds to problem (1.35), (1.36).

Definition 1.2. A generalized (weak) solution to boundary-value

problem (1.37') is called a vector-function (y,p)T eH =

= |v = (v1,v2)
T : V 1 5 V 2 G F ) that satisfies the following integral equation

Vze//:

ι

j{ ky"z\ + pz{/a + kp"zf2 ~yz2}dx +

ο

] ^ ] = \{fZl-zgZl)dx. (1.38)
0

Let u =(uuu2)
T and v=(v1 ?v2)

T be arbitrary elements of the complete

ί 2 2 I 1 ' '
Hilbert space Η with the norm | |v |//=

 | Σ Ι Μ Ι ^ 2 ( Ω ) Γ · Specify the

bilinear form

/

a(u9v) =

ο

'ΣΚ1Μ < L 3 9 >
and linear functional

Kv)=)[fv1-zgv2)dx (1.40)
ο

on//.
Let the costraint
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•! >0 (1.41)
2 ^ aoj

be met, where μ 3 = const > 0 is the constant in inequality (1.16).

Proceed from the Cauchy-Bunyakovsky and Friedrichs inequalities and
from [21]

.+

vf
and the inequalities

a(v, v) > 64 llvl^, Vv e H, ocj = const > 0,

Ια^,ν^^^Ι^ΙΙ^ΙνΙ^, \/u,veH, c1=const>0, (1-4Γ)

are obtained for the bilinear form α(·,·)> i.e. this form is //-elliptic and

continuous on Η [49].
Consider also the Cauchy-Bunyakovsky inequality, and

| ^ , c2=const>0.

Use the Lax-Milgramm lemma [16], and it is concluded that the unique

solution (y,p)T to problem (1.38) exists in H.

Problem (1.38) can be solved approximately by means of the finite-

element method. For this purpose, divide the line segments Ω,· into the

elementary ones, i.e. e/, j = l9Ni9 i = 1,2. Specify the subspace

Hk α Η (Ν=Νγ+ N2) of the vector-functions V^ (x). The components

vik> V2k Ω7 ^ ^ ( Ω ; ) (ζ = 1,2) of ν^(χ) are the complete polynomials of

the power k>3 that contain the variable χ at every elementary line

segment e/ . Then, the linear algebraic equation system

AU = B (1.43)
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follows from equation (1.38), and the solution U to system (1.43) exists

and such solution is unique. The vector U specifies the unique

approximate solution U^ e H^ to problem (1.38) as the unique one to the

equation

{ i N ) { N ) N e H ? . (1.44)

(1.45)

Let U = U(x) e Η be the solution to problem (1.38). Then:

J*Therefore Vt7 € HJ*, the inequality

is obtained, i.e.:

ΝP-m (1.46)

Suppose that U e H^ is a complete interpolation polynomial for the

solution £/to problem (1.38) at every e/. Take the interpolation estimates

into account, assume that every component U\ and U2 of the solution U

on Ω/ has the continuous limited (k +1) -th-order derivative, and the

estimate

\\u-u
II

j*\ (1.47)

where h is a length of the largest finite element e/\ follows from

inequality (1.46).
Take estimate (1.47) into consideration, and the estimate

\\w}
<c2 P-Pk

N\\
- C 3

r i t — 1
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2
ιι2where \\\\ψ2 = ϊ 2 ] | | · & 2 ( Ω . Λ , takes place for the approximation

uj?(x) = -pl!(x)/a(x) of the control u = u(x).

3.2 CONTROL UNDER CONJUGATION CONDITION

Assume that equation (1.1) is specified on intervals (Ο,ξ) and (ξ,/). The

boundary conditions

y(0) = 0, y(/) = 0, /(/) = 0 (2.1)
and

/(0) = 0 (2.2)

are specified, in their turn, at the ends of the line segment [0,/]. At the

point χ = ξ, the conjugation conditions are

[% [ ( ) ] (2.3)
where α, β = const >0, u, reR1.

Specify the observation as

Cy(u) = y(u), Χ Ε Ω . (2.4)

Bring a value of the cost functional
/

J(u)= j(y(u)-zgf'dx + iJruriu (2.5)
ο

in correspondence with every control ue°l/\ in this case, zg is a known

element from L2(Q), Λη = αη, aeR1, a>0, (φ,ψ)^=φψ,



110 CHAPTER 3

A unique state, namely, a function y(u) e V corresponds to every

control M G W , minimizes the energy functional

# ( ν ) = 0(ν,ν)-2/(ν) (2.6)
on V, and it is the unique solution in Fto the weakly stated problem: Find
an element y(u) e V that meets the equation

*0>,v) = /(v), V V E F , (2.7)

where V = {v e H\ : v(0) = 0, v(/) = v'(/) = 0, [ν] = θ),

/

a(y, v) = jky'Vdx + β^(ξ) ν(ξ) + α [y ] [ν'],
ο

/
/(ν) = [fvdx + (r + κ) ν(ξ). (2.8)

ο
To establish the fact that the solution y(u) to equivalent problems (2.6)

and (2.7) exists and that this solution is unique \/ueRl, some additional
investigations are needed. Consider the following expression \/yeV:

ι ι ι
j(y'fdx = j , y | ξ 0"0+j, y | ̂ +0 - Jj;y& = -^(ξ) [y ] - J y y&.
0 0 0

Take the ε-, Friedrichs and Cauchy-Bunyakovsky inequalities into account,
and the inequalities

μ \y2dx < j(y'fdx
0

4ε2

ο ι ο
and

/

/ /
1 Γ, . , * , ( 2 9 )

(μ-ε2)|/ί/χ<ε1>;2(ξ) + -1-[/] 2 +^- \{y"f<L·, (2.10)
0 8 l 8 2 0
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where ε2 e (Ο, μ), are derived. The inequality

y\O+[yf + l(y"fdx [ V ^ F , (2.ii)

2 2

where
 Η Ω = ΣΙΗΙ^(Ω.) ' * = 1 · 2 · IWI0Q

 = F 2 ^ '
 follows

/=i 0

from inequalities (2.9) and (2.10).
Therefore, the validity of the following statement is proved.
Lemma 2.1. Inequality (2.11) takes place for an arbitrary function

Consider inequalities (1.42) and (2.11) and the Cauchy-Bunyakovsky
and Friedrichs ones, and it is easy to show that inequalities like (1.41') are

true under the fixed \/ueRl, where a(·,·) and /(·) have the form of

expressions (2.8). Use the Lax-Milgramm lemma, and it is concluded that,

at every u e Rl, the solution to equivalent problems (2.6) and (2.7) exists
and that such solution is unique.

Expression like (1.18) is obtained from expression (2.5). For expression
like (1.18), the bilinear form π(·,·) is

<u9v) = (y(u)-y(0)9y(v)-y(Q)) + auv (2.12)

that meets the inequality

n(u,u)>au2, (2.13)

and the linear functional L(-) is specified by expression (1.19).

Let y' = y(u') and y" = y(u") be solutions from V to problem (2.7)

under / = 0 and r = 0 and under a value u that is equal, respectively, to

u' and un. Then:

" ) ( ' % ξ Ϊ cx \u'-u"\\\y'-
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Therefore, the inequality |j}'-j/"|0Q <c|w'-w"| is derived that provides

the continuity of the linear functional Z(·) and bilinear form π(·,·) on W.

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 2.1. If a system state is determined as a solution to equivalent

problems (2.6) and (2.7), then there exists a unique element u of a convex

set ty/fi that is closed in % and relation like (1.20) takes place for u, where

the costfunctionalJ(u) is specified by expression (2.5).

If ue%d is the optimal control, then the following inequality is true:

(v-u)>0, \/ve%. (2.14)

As for the control ν e °l/ , the conjugate state p(v) e V* is specified by

the relations

p(0) = P{1) = p\l) = 0,

/>"(0) = 0, (2.15)

[kp'] = 0,

where V* = V and A*p =

Further on, use the formula of integration by parts, and the equality

*P(U), y(v) - γ(ηή = (y{u) - zg9y(y) - y(u)) =

= a (p> y(y) - y(M)) = ρ \ χ=ξ ( v - u) >

<(v-u) (2.16)

is obtained. Take it into account, and it is stated that inequality (2.14) is
equivalent to the inequality
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-ι/)£Ο, \/ve%. (2.17)

The necessary and sufficient condition for ue% to be the optimal control

is the one under which inequality (2.17) and the relations

aO/,v) = /!(«,v), yeV, VveF, (2.18)

and

a<J>,v) = l2(y,v)9 peV9VveV9 (2.19)
/ /

are met, where lx (w, v) = |/v<ix + (r + ^)ν(ξ) and l2 (y, v) = ί( >> - z g j ν dx.

ο ο
If the constraints are absent, i.e. when % = °ίί, then the equality

/?| χ =ξ+ακ = 0 (2.20)

follows from condition (2.17). Therefore, when the constraints are absent,
the control u can be excluded from equality (2.18) by means of equality
(2.20), and it is possible to obtain problem (2.18), (2.19), where l{(u,v) =

= l\(u(p)9v). The solution to problem (2.18), (2.19) is (y,p)T and the

optimal control is

u = -p x</a. (2.21)

Let the vector solution (y,p)T to problem (2.18), (2.19), (2.21) be

smooth enough on Ω/, / = 1,2. Then, the differential problem of finding

the vector-function (y,p)T

 9 that satisfies the relations

p(0) = 0, p{l) = 0, /?'(/) = 0, ^ ( 0 ) = 0, (2.22)
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= o, [*/] = ο, {*/}* = α[/],

corresponds to problem (2.18), (2.19), (2.21).

Definition 2.1. A generalized (weak) solution to boundary-value

problem (2.22) is called a vector-function (y,p)Te H= {v = (v1 ?v2)
T:

v1?v2 G V) that satisfies the following integral equation \fzeH:

+

g ) x . (2.23)

ο
Let u=(ul,u2)

T and v=(v1?v2)
T be arbitrary elements of the complete

Hubert space Η with the norm | · | ^ introduced in point 3.1. Specify the

bilinear form
lA 2 1 2

and linear functional
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on//.

If the constraints 0 < I/a < 2 β and 2aj > 1 are met, then, use the Lax-

Milgramm lemma, and it is concluded that the unique solution

U = (C/i,C/2)
T to problem (2,23) exists in //. Problem (2.23) can be solved

by means of the finite-element method. Estimate like (1.47) is true for its

approximate solution U^ eH^ . Then, the estimate

<coh
K ', c0 = const>0,

~N

u-u2k

takes place for the approximation u^ = - p£ (ζ)/α of the control

η = -ρ(ξ)/α.

3.3 BOUNDARY CONTROL UNDER A FIXED ROD END

Assume that equation (1.1) is specified in the domain Ω = (0,ξ)υ (ξ,0·

Boundary conditions (2.1) and the constraint

-ky"(p) = Q + u, Q,ueRl, (3.1)

are specified, in their turn, at the ends of the line segment [0,1]. At the point
χ = ξ, the conjugation conditions are

where α, β = const >0.

Specify the observation in the form of expression (1.7). Bring a value of
the cost functional
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J(u)= j(y(u)-zgfdx + au2 (3.3)
ο

in correspondence with every control ue% = Rl; in this case, zg is a

known element of /^(Ω), tf=const>0.

A unique state, namely, a function y(u) e V corresponds to every

control M G W 5 minimizes energy functional like (2.6) on V, and it is the
solution in Fto weakly stated problem like (2.7). The space Fis specified
in point 3.2. In this case:

/

a(y, v) = jky'Vdx + βΚξ) ν(ξ) + α[/][ν ' ] ,

ο

/(ν)= \fvdx + (Q + u)v'(0). (3.4)

ο

Use inequality (2.11), and it is easy to show the validity of the following
statement.

Lemma 3.1. Variational problem like (2.6) and weakly stated problem
(2.7), that correspond to boundary-value problem (1.1), (2.1), (3.1), (3.2),
are equivalent and have a unique solution y e V. The bilinear form #(·,·)
and linear functional /(·) are specified by formulas (3.4).

Expression like (1.18) is obtained from expression (3.3), where the
bilinear form π(·,·) and linear functional Z(·) have the form of
expressions, respectively, (2.12) and (1.19). In this case, inequality (2.13)
is met for π(·,·) ·

Let y' = y(u') and y" = y{u") be solutions from Vto problem like (2.7)
that corresponds to boundary-value problem (1.1), (2.1), (3.1), (3.2) under
/ = 0 and Q = 0 and under u = u1 and u - u". Then:

'-y",yf- y") *



C o n t r o l of a S y s t e m D e s c r i b e d b y a O n e - D i m e n s i o n a l . . . I l l

<\u'-u'
dx x=0

sc,u'-u"\\\y'-n (3.5)

Therefore, the inequality \\y' -y"\\0 Q^c2\u' -u"\, cx,c2= const > 0, is

derived that provides the continuity of the linear functional L() and

bilinear form π(ν) on W.

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 3.1. Let a system state be determined as a solution to

equivalent problems (2.6) and (2.7), where the bilinear form a(·,·) and

linear functional /(·) have the form of expressions (3.4). Then, there exists

a unique element u of a convex set % that is closed in % and relation like

(1.20) takes place for u, where the cost functional J(u) is specified by
expression (3.3).

If MGW5 is the optimal control, then inequality like (2.14) is true

V v e % . As for the control ve°U, the conjugate state p(v)eV* is

specified by relations (2.15). The equality

*P(U)9 y(v) - y(uj} = (y(u) -zg9y(v) - y(u)) =

dx
(v-u),

JC=O

VIZ.

dx
(y-u) (3.6)

JC=O

is obtained. Take it into account, and it is stated that inequality like (2.14)
corresponds to the optimal control for the problem of the present point and
that such inequality is equivalent to the inequality

+ au (v-w)>0, (3.7)
x=0
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Therefore, the necessary condition for the existence of the optimal

control u e % is the one under which inequality (3.7) and the relations

,̂ν) = Ix(u9v)9 yeV,\/veV, (3.8)

and

α(Ρ,ν) = I2(y9v), peV,\/veV, (3.9)

are met. In this case, the bilinear form #(·,·) is specified by the first

formula from expressions (2.8) and functionals /j(v) and ^ ( v ) are

expressed, respectively, as

/ι(κ,ν) =

ο
and

h(y>v)= }(y-zg)vdx-
ο

If the constraints are absent, i.e. when % = °U, then the equality

dp

follows from condition (3.7). Therefore, when the constraints are absent,

the control u can be excluded from equality (3.8), and it is possible to

obtain problem (3.8), (3.9), where /1(w,v) = /1(w(/?'),v) The solution to

problem (3.8), (3.9) is (y,p)T and the optimal control is

dp

dx

If the vector solution (y,p)1 to problem (3.8), (3.9), (3.10) is smooth

enough on Ω/ (/ = 1,2), then the differential problem of finding the

vector-function (y,p)T, that satisfies the relations

u = --
x=0/

a. (3.10)
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(kp·) ~y = -zg,xei

y(O)=y(l)=y'(l) = O, -ky\O) = Q-^- a,

p(O)=P(l)=p'(l) = O, p"(0) = 0, (3.11)

Μ = 0, [kyn] = 0, {hy»}* = a[y'],

{kpf=a[p%

corresponds to problem (3.8), (3.9), (3.10).

Definition 3.1. A generalized (weak) solution to boundary-value

problem (3.11) is called a vector-function (y,p)Te Η =

= | v = (v1,v2)
T :v1?v2 eV) that satisfies the following integral equation

Vz e Η:

ο

(0) zj (0)/ a + a[y][zj ] + β/?(ξ) ζ2(ξ)

(3.12)
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Let u = (uuu2)
T and v = (v1?v2)

T be arbitrary elements of the complete

Hubert space Η with the norm | | · | introduced in point 3.1. Specify the

bilinear form

a(fi,v)=

and linear functional

1 c
on H. If the constraint ocj r > 0 5 where a{ and cx are, respectively,

2 2a
the constants in inequalities (3.5) and the embedding theorems, is met, then
problem (3.12) has the unique solution in H. Problem (3.12) can be solved
by means of the finite-element method, and the approximate solution

to this problem is obtained on its basis. Estimate like (1.47) is

true for . Then, the estimate

>k-\<coh , c0 = const>0,

dvN

can be written for the approximation u^ = — ^ ~
dx

JC=O/

= _dp

dx a .
x=0l

a of the control
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3.4. BOUNDARY CONTROL UNDER AN ELASTIC ROD
END SUPPORT

Assume that equation (1.1) is specified on the domain Ω = (0,ξ)υ (ξ?/)·

The boundary conditions

/(0)=0, (*/)'
JC=O

= O, βο = const >0,

y(l) = 0, */(/) = g + n, Q,ueRl, (4.1)

are specified, in their turn, at the ends of the line segment [0,/]. At the point
χ=ξ, the conjugation conditions are

* =oc[/],

where α, β = const>0.

Specify the observation in the form of expression (1.7). Bring a value of

cost functional like (3.3) in correspondence with every control ue°ll = Rl\

in this case, zg is a known element of £2(Ω), a = const >0.

A unique state, namely, a function y(u)eV corresponds to every

control M G W , delivers the minimum to energy functional like (2.6) on V,

and it is the solution in V to weakly stated problem like (2.7); in this case,

a(y, v) = \ky" Vdx + β^(ξ) ν(ξ) +βο^(Ο) ν(0) + α

ο

/(ν)= J/v£fc + (e + «)v'(/). (4.3)
ο

Lemma 4.1. The inequality
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Ι,Ω <C

ο

(4.4)

is true for an arbitrary function y e V.

Proof Suppose that y is an arbitrary element from V. Consider the
expression

from which the inequality

\'{u)-\y/dx

Ο

1 r π 2

(4.5)

follows since the inequality (/(Ο)) ^ ^ ι | | ^ ' | 1 Ω is true [21]. Hence, it is

easy to obtain inequality (4.4) when proceeding from the generalized
Friedrichs inequality [21].

Lemma is proved.
Lemma 4.2. Variational problem like (2.6) and weakly stated problem

(2.7), where the bilinear form a(·,·) and linear functional /(·) have the
form of expressions (4.3), are equivalent and have a unique solution
y(u)eV.

The validity of Lemma 4.2 is stated according to inequality (4.4) and the
Lax-Milgramm lemma.
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Let y' = y{u') and y" = y(u") be solutions from Fto problem like (2.7)

that corresponds to boundary-value problem (1.1), (4.1), (4.2) under / = 0

and O = 0. Then:

* a iy -

<\u'-u'
d ,„, „„

dx
<c2u>-u»\\y'-y»\\H.

Therefore, the inequality ||5>'-\ | | 0 Ω < c3 u'-u"
= const >0 5 is derived that provides the continuity of the linear functional

L() and bilinear form π ( ν ) on %.

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 4.1. If a system state is determined as a solution to equivalent

problems (2.6) and (2.7), where the bilinear form a(·,·) and linear

functional /(·) have the form of expressions (4.3), then there exists a

unique element u of a convex set % that is closed in % and relation like

(1.20) takes place for u, where the cost functional J(u) is specified by
expression (3.3).

If WG%^ is the optimal control, then inequality like (2.14) is true

V V G ^ . As for the control v e W , the conjugate state p(v)eV

specified by the relations

is

βο/?(Ο) =
x=0

/?(/) = 0, kp"(l) = O, (4.6)

= α
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The equality

u\ y{v) - y(uj} = (y{u) -zg 9 y(v) - y(u)) =

(v-n) ,
*=/

VIZ.

- z g 9 y(v) - ^(M)) = - ^ (V-M) (4.7)

is obtained. Take it into account, and it is stated that inequality like (2.14)?

that corresponds to the optimal control for the problem of the present point,
is equivalent to the inequality

dp
~dx + au (4.8)

*=/
Therefore, the necessary and sufficient condition for the existence of the
optimal control ue% is the one under which inequality like (4.8) and
relations like (3.8) and (3.9) are met, where the bilinear form a(·,·) is
specified by expression (4.3) and the functionals /j(·,·) and ^ ( v ) are
expressed, respectively, as

h(u,v) =

and

/2(w,v)=

If the constraints are absent, i.e. when % = W, then the equality
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dp

dx x=l

follows from condition (4.8).
Therefore, when the constraints are absent, the control u can be

excluded from equality (3.8), and it is possible to obtain the problem like

(3.8), (3.9), where lx(u9v) = lx (u(p'),v). The solution to problem like (3.8),

(3.9) is (y,p)T and the optimal control is

dx a . (4.9)

Let the vector solution (y,p)T to problem like (3.8), (3.9), (4.9) be

smooth enough on Ω/ (/ = 1,2). Then, the differential problem of finding
τ

the vector-function (y,p) , that satisfies the relations

x=0
βο;ΚΟ) =

dx
a, (4.10)

= 0, [*/] = 0, {kyf=a[y%

P'(O) = O,

[p] = 0,[kp"] = 0,{kpf=a[p%

corresponds to problem like (3.8), (3.9), (4.9).
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Definition 4.1. A generalized (weak) solution to boundary-value

problem (4.10) is called a vector function (y,p) sH=[v=(vuv2) :

v1?v2 e V) that satisfies the following integral equation Vz e //:

( g ) (4.11)

ο

Let u = (w1?w2)
T a n d ν = (vl 5v2)

T be arbitrary elements of the complete

Hubert space //with the norm ||·|| . Specify the bilinear form

and linear functional

on//.

If the constraint αϊ — > 0, where cx is the constant from the
1 2 la l

embedding theorem, is met, then problem (4.11) has the unique solution in
//. Problem (4.11) can be solved by means of the finite-element method,

and the approximate solution U^ £//& to it is obtained. Estimate like

(1.47) is true for UJ* eHJ* . Then, the estimate
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u-ΰϊ

utakes place for the approximation uk =-
N

dx

(4.12)

a of the control

u = -
dp

dx a
x=ll

3.5 CONTROL UNDER CONJUGATION CONDITION
WITH OBSERVATION AT THEIR SPECIFICATION
POINT

Assume that equation (1.1) is specified in the domain Ω = (0,ξ)ϋ (ξ>

The boundary conditions

x=0

y(l) = 0, * / ( / ) = 0 (5.1)

are specified, in their turn, at the ends of the line segment [0, / ] . At the

point χ = ξ, the conjugation conditions are conditions (2.3).

Specify the observation

Bring a value of the cost functional

+ au (5.2)

in correspondence with every control u e % = R , in this case, zg is some

real number, a = const >0.
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A unique state, namely, a function y(u) e V corresponds to every
control M G I / , minimizes functional like (2.6) on V, and it is the solution
in Fto weakly stated problem like (2.7). The space Fis specified in point
3.4. In this case:

/(v)= \fvdx + (r + u)v(^). (5.3)

ο
Lemma 5.1. Variational problem like (2.6) and weakly stated problem

like (2.7), where the bilinear form a(·,·) and linear functional /(·) have the
form of expressions (5.3), are equivalent and have a unique solution
y(u)eV.

The validity of Lemma 5.1 is stated according to the Lax-Milgramm
lemma.

Rewrite cost functional (5.2) as

J(u) = n(u,u)~2L(u) + (z -y(0)\ ) ,

where

π(κ,ν) = (;ΚΐΟ-y(0)) |,=ξ (y(v)-y(0))\x< + auv

and

L(y) = (z g - ^ (0)) | χ = ξ (j;(v) - y(0))\x< .

Let j ; ' = y(u') and .y" = j^(wff) be solutions from V to problem like

(2.7), where the bilinear form a ( v ) and the linear functional /(·) are

specified by formulas (5.3) under / = 0 and r = 0. Then:
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Therefore, the inequality (.y'-.y")| ^ <c2\u'-u"\, oc0, a 1 ? q, c2 =

= const > 0, is derived that provides the continuity of the functional Z(·)

and bilinear form π(·, ·) on °ll.

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 5·1. Let a system state be determined as a solution to
equivalent problems (2.6) and (2.7), where the bilinear form <z(·,·) and
linear functional have the form of expressions (5.3). Then, there exists a
unique element u of a convex set % that is closed in % and relation like

(1.20) takes place for u, where the functional J(u) is specified by
expression (5.2).

If u e 9/$ is the optimal control, then the following inequality is true:

(y(u) - zg )| (>>(v) - y(u))\ + a u (v - u) > 0, Vv Ε %.
Λ— ζ ^

As for the control v e i / , the conjugate state p{v)eV is specified by

the relations

^V(v) = 0,

/7"(0) = 0, (kpn)
x=0

= 0, (5.4)

= a

The equality

0 = [A *p(u),y(v) - y(u)) = a (p, y(v) - y(u)) -
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viz.

(y(u)\x< - zg)(y(v) - y(u))\x< = Ρ(ξ)(ν - u)

is obtained.

Therefore:

(p(Q + au)(v-u)>0, \/ve%. (5.5)

If the constraints are absent, i.e. when % = W, then the equality

(5.6)

follows from condition (5.5).

Therefore, the necessary and sufficient condition for the existence of the

optimal control M G ^ is the one under which inequality (5.5) and the

relations

α(>;,ν) = /1(ΐι,ν), yeV, VveF, (5.7)

and
a(p,v) = l2(y,v), peV,VveV, (5.8)

are met. In this case, the bilinear form a(v) is specified by expression

(5.3) and the functionals ^(v) and ^(v) are expressed, respectively, as

/i(n,v)=
0

and
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If the vector solution (y,p) to problem like (5.6)-(5.8) is smooth

enough on Ω/ (/ = 1,2), then the differential problem of finding the vector

function (y,p)T, for which relations (1.1), (2.3), (5.1), (5.4) and (5.6),

where A* p = (kp*)", (y9p)T e Η = {v = (v1 ?v2)
T: v1?v2 e V), are met,

corresponds to problem (5.6)-(5.8).
Definition 5.1. A generalized (weak) solution to boundary-value

problem (1.1), (2.3), (5.1), (5.4), (5.6) is called a vector-function
(y,p) e Η that satisfies the following equation Vz eH:

( ) ( | ^ ^ ) (5.9)

ο

Let u = («!, w2)
T and ν = (vj, v 2 ) T be arbitrary elements of the complete

Hubert space H. Specify the bilinear form

/ 2 2 2

0(n, v) = J*2«M * + βοΣ^(Ο)ν, (0) + βΧ^(ξ)ν,(ξ) +
0 1=1 ί=1 i=\

2

1=1

and linear functional

on Η.
If the constraint
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is met, then problem (5.9) has the unique solution in H. If problem (5.9) is
solved by means of the finite-element method, then estimate like (4.12)

takes place for the approximation uk =—Pk (ζ)/β of the optimal control



CONTROL OF A SYSTEM DESCRIBED BY A
TWO-DIMENSIONAL QUARTIC EQUATION

UNDER CONJUGATION CONDITIONS

4.1 DISTRIBUTED CONTROL WITH OBSERVATION
THROUGHOUT A WHOLE DOMAIN

Assume that the quartic equation

+ v
dx

+ 2 — — D ( l - v ) - ^ - = q (1.1)

dx\dx2 dx\dx2

is specified in a domain Ω that consists of two rectangular domains

Ωι and Ω 2 , where Ω\ = {χ: -oo < αλ < χλ < 0, 0 < χ2 < b < οο}, Ω 2 =

= {χ:0 < χχ < α2 < οο, 0<x2<b}, x = (xhx2); D =E A3/l2(l-v2)

(0 < Do < D < Dx; D0,Di= const) is the cylindrical rigidity coefficient for

a thin plate of a thickness h = h(x); Ε and ν ( 0 < ν < 1 / 2 ) are,

respectively, the Young modulus and Poisson ratio that are different for the

domains Ωχ and Ω 2 ; q = #(JC) is a transversal load value; y = y(x) is a

deflection of a middle plate surface at a point χ [92].

The boundary conditions [78]

^ = 0 (1.2)
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and

:0 (1.3)
^ dxf d%

are specified on a boundary Τ={Χΐλ ϋ3Ω2)\γ (y=5Qj Π9Ω2

γ = { χ: χλ = 0, 0 < χ2 < b); in this case, n^ = cos^ ,^) 9 n2 =

= cos(w,%2)
 a n d n is an ort of an outer normal to Γ (called simply an outer

normal to Γ). On a section γ of the domain Ω = Ω] U Ω 2 , the conjugation

conditions are [92]

[y] = o, (1.4)

[Qy] = fiy (1-5)
and

( L 6 )

where

| = φ + -φ~, φ±={φ}± =φ(θ±Ο, χ2),

yf 2) d*2 axldx2

and

Conjugation conditions (1.4)—(1.6) describe a hinge joint of two thin plates

on γ; 0 < α 0 < α < a{ < oo is the hinge rigidity coefficient;

0 < Po < β < β] < oo is the rigidity coefficient for a support on γ;

α / ? β,· = const, z = 0,1.

Let there be a control Hubert space W and mapping Β e 2! (W; V),

where F' is a space dual with respect to a state Hubert space V. Assume
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the following: W = L2(O) . For every control M G W , determine a system
state j / a s a generalized solution to the boundary-value problem specified
by the equation

D\ —f + v—f + —5-2) —f + v—f +jD\ f + v f + 52) f + v f
cbcf I, etc? dxfj cbc| |̂ δχ| cbcf

(1.7)
9 ^ 0 X 2 0bCjCbC2

and by conditions (1.2)—(1.6).
Specify the observation

Z(u) = Cy(u), (1.8)

where Ce2? (V;3e) and Μ is some Hubert space. Assume the following:

(1.9)

Bring a value of the cost functional

J +(Jfu,u)ou (1.10)

in correspondence with every control « e W ; in this case, zg is a known

element of a space Ζ^Ω), |-||^ = |HL (mHHI a n c*

Λ Ε ^(^;W), (^w,w)^ >vo||w||^, v0 = const > 0, Vw Ε ^ . (1.11)

Assume the following: q Ε Ζ^Ω), Bu = ue Ζ2(Ω), Ĵ w = a(x)w, 0< a0 <

< a(x) < αϊ<oo, 5"(x)L e Ο(Ω/), / = 1, 2; a0 5 αϊ = const, (φ?ψ)φ/ =

= (φ,ψ)= Ιφψί/χ.

Ω

A unique state, namely, a function y(u)sV = \v: v o eWfiQi),

/ = 1, 2; vl =0, [v]| =0> corresponds to every control ue%, delivers

the minimum to the functional
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Φ(ν) = α(ν,ν)-2/(ν) (1.12)

on V, and it is the unique solution in V to the weakly stated problem: Find
an element y e V that meets the equation

a(y,v) = l(v), VveF, (1.13)

where

a(y,v)=
5 2 νΛ d2yd2v

• + — χ - — r 1 +
Ω

Λ 0 9

x dx2 dx2

+2(1-ν)
dzy d2v

dxxdx2 dxxdx2

>dx+ \$yvdy+ ία Hz
C/Xi

dy, (1.130

/(v)=

Ω

Introduce the following denotation: H2 = |V(JC) : ν |Ω /

The estimates

and

— ο — ο

(1-14)

1 and linear functionalare true for the bilinear form a(·,·): i 7 |

f 2 ]

/(·): Hj -> i?1. In this case, ||v||F = Σ Η Ι ^ ( α ( ) ' w h e r e H i s

the norm of the Sobolev space W2(Qi)9 i.e. the bilinear form a(v) and

linear functional /(·) are continuous [49] on the complete Hubert space

H2 with the norm | | · | . Illustrate the F-ellipticity of the bilinear form a(v)

on the subspace V c H2. The following statement is proved for this

purpose.
Lemma 1.1. The inequality
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(1.15)

where \\v\\k Ω = < jT \\2_J[ ) ^x\ ' c o = c o n s t >O,is true for all the

functions ν e V .
Proof Since the equality

Ω Q

takes place V v e F , then, consider the ε- and Cauchy-Bunyakovsky
inequalities and embedding theorems [55], and the inequality

Ω Ω

1 (Tdvi

4ε! J [obc! J

is obtained, where c'o is the positive constant from the inequalities in the

embedding theorems and ε and ε^ are the arbitrary constants. Use the

generalized Friedrichs inequality [21], and the validity of inequality (1.15)

follows from the obtained one. Lemma is proved.
Proceed from inequality (1.15), and the following can be written:

a(v,v)>

> \\D

Ω
Ux 2

2 dx>



138 CHAPTER 4

Ω
dx1.

and

s2 , 2 ^2^
d ν

Ί 2

dx

Ω γ

in this case: c'o = const > 0, v 0 = min_ ν = const > 0, co = Do (1 - Vj),

Vj = max_ v, Vj < 1/2.

Take the derived inequalities into account, and the inequality

(1.16)α(ν,ν)>α[\\νζ

is true. Hence, the F-ellipticity of the bilinear form a ( v ) on Fis proved.

Use the Lax-Milgramm lemma [16], and it is concluded that there exists

the unique element y that meets equation (1.13) and implements the

minimum of functional (1.12) V#, weZ2(Q) on V. Therefore, there is

such an operator A acting from Finto L2(Q), that

y(u) = A~l(q + Bu), VweZ2(Q). (1-17)

Rewrite the cost functional as

(1.18)

where the bilinear form π(·,·) and linear functional L(·) are expressed as

L(v) = (zg-y(0ly(v)-y(0)); (1.19)

in this case: (φ,ψ) = ίίφψώ:, ||φ|| = (φ,φ)1/2. The form π(·,·) is coercive

on % i.e.:
Ω
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π( ii, u) = (y(u) - y(0), y(u) - y(0)) + (a u, u) > a0(u, u) .

Let y' = y(u') and y" = y{u") be solutions from Fto problem (1.13) under

# = 0 and under a function u = u(x) that is equal respectively, to

w'and u". Then, the inequality

cx \y - yf < q 1 j;' - y"\\ 2

ν*α(?~ ?"> ?'" Ϊ") *

< \\uf - M̂ l | |^' - y"\\, q = const > 0,

is derived that provides the continuity of the linear functional Z(·) and
bilinear form π ( ν ) on %.

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 1.1. Let a system state be determined as a solution to
equivalent problems (LI 2) and (LI 3). Then, there exists a unique element
u of a convex set V^ that is closed in % and

J(u)= inf J(v) (1.20)

takes place for u.

If u e % is the optimal control, then the following inequality is true:

n(u,v-u)>L(v-u\ \/ve%. (1.21)

Proceed from expressions (1.19), and the inequality

( ) au,v-u)7>09 Vve%, (1.22)

follows from inequality (1.21), and it is the necessary and sufficient

condition under which u G ^ is the optimal control for the considered

problem.

As for the control ν e W, the conjugate state p(v)GF is specified by

the relations
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Ap-(l-v)\4^ + nf^-\ = 0, xeT, (1.23)

, x<

where F is a space conjugate to V, V = V.

To find a generalized solution ρ to problem (1.23), the generalized
problem means to find such peV that meets the equation

a(p(u)9z) = ll{y(u)9z)9 \/zeV, (1.24)

where

Ω

It is easy to state that the solution ρ e V to problem (1.24) exists and

that such solution is unique. Therefore, the necessary and sufficient

condition for the existence of the optimal control ue^ is the one under

which relations (1.13), (1.22) and (1.24) are met. Use the difference

y(v)-y(u) in equation (1.24) instead of z, consider equation (1.13), and

the equality

(y(u)-zg,y(v)-y(uj) =
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(u), y(y) - y(u)) = (v - u9 p(uj)

is obtained, i.e.:

(y(u)-zg, y(v)~y(u)) = (v-u, />(«)), VVE%. (1.25)

Take it into account, and the inequality

(p(u) + au,v-u)>0, Vve%, (1.26)

is derived from inequality (1.22).

If the constraints are absent, i.e. when %=%, then the equality

p(u) + au = 0, J G Q , (1.27)

follows from condition (1.26). Therefore, when the constraints are absent,

the control u(x) can be excluded from equality (1.7) by means of equality

(1.27). On the basis of equation (1.13) and relations (1.23), the problem of

finding the vector-function (y,p)T (y,peV), that satisfies the equality

system

(a,v) = (q,v)9 VveF, (1.28)

*Cp,v)-(j>,v) = -(zg,v), VveK, (1.29)
τ

is derived, and the vector solution (y,p) is found from this problem

along with the optimal control

u = - ρ / α , Χ Ξ Ω . (1.30)
If the vector solution (y,p)T to problem (1.28), (1.29) is smooth

3 / s~\ ^4.enough on Ω,, viz. yL , pL e C (Ω;) Π C4(Q/), D >
'L2/ '12/

Z)4/? < oo, / = 1,2, then the differential problem of finding the vector-

function (>>,/?) , that satisfies the equations

Ay + p\a =q, xeQ,

jCp-y^-Z ΧΕΩ, (1.31)
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constraints (1.2)—(1.6) and all the equalities of system (1.23), except the

first one, corresponds to problem (1.28), (1.29); in this case, A* = A.

Definition 1.1. A generalized (weak) solution to the obtained boundary-

value problem is called a vector-function (y,p)T eH =

=|v = (v1,v2)T: v1?v2 G F > , that satisfies the following integral equation

VzeH:

9 9 9

\ dx2 dx2

+

\ dx\ dx\ etc?

+2(1-v)
I

zx d2

P d2z2 X] ,_ I ,
— + — \ + pzl/a -yz2 \dx

x2 δχλδχ2 dx\dx2 Jj

•j^(yzi+pz2)dy+ J<* | ^
dx

dp_

dx

dz2

~dx~

(1.32)

Ω

Let u = (ul,u2)
T and ν = (vl 5v2)T be arbitrary elements of the complete

2

Hubert space Η with the norm ||v||w =<{ ^ | | ν | ^ 2 ( - Ο Λ [> . Specify the

bilinear forms

fl0(«,v)= JJD-

i=\

d u i d v i
τγτΥ + ΤΥ

dx\ dx2 dx2
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J y , Μ

and

a(w,v) = ao(w,v) + j J(w2

 v i/« ~ wiV2

Ω

and linear functional

Ω

on//.
The following can be easily shown Vw, ν e //:

\α(η,ν)\<φ\\Η\\ν\\Η,

| /(v) | < c2 llvl^. (1.33)
Let the constraint

c , ' - - [ l + — | > 0 (1.34)

be met, where c[ is the positive constant from inequality (1.16). Then:

a(u,u)>cQ\\u\\H, co = const > 0 , (1.35)

i.e. the bilinear form a ( v ) and linear functional /(·) are continuous on Η
and the form a(·,·) is //-elliptic on //. Use the Lax-Milgramm lemma [16],

and it is concluded that (y,p)T eH is the unique solution to problem

(1.32).

Problem (1.32) can be solved approximately by means of the finite-

element method. For this purpose, divide every domain Ω{ and Ω 2 into

rectangular finite elements that belong to the class Ή1 on Qx and Ω 2 .
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Such elements are considered [16] for the scalar functions and polygon

domains Ω. Then, use the estimate [16]

^ 1 v-Ukv\ <chk

e

+x-m\v , , (1.36)
K *m,e e I k+l,e v 7

\
*m,e

of an approximation error for a scalar function ν at a finite element e, and it
is easy to show the validity of the following statement.

Theorem 1.2. Let the components y and ρ of the solution to problem

(1.32) on Ω, belong to the space W^1 (Ω,·) (i = l,2; k> 2). Then, the

estimate

where h = maxhe, he is α diameter of a finite element e, (yN

9p
N) e

e \ '

eHNand HN ΛνΝ\ vN\Q.ePe, ι =1,2; v^| =0, [v^]| =ol, takes

place for the approximation uN(x)= -pN(x)/a(x) of the control

u = u(x).

Proof The unique finite-element approximate solution UN =

= ί yN, pN J to problem (1.32) is found from the equation

If U = U(χ) e Η is the solution to problem (1.32), then:

a(u-UN

9V
N) = 0, VVNeHN.

Therefore, the inequality

VIZ.
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is derived \/Ue HN. Take estimate (1.36) into account, and the estimate

U-UN\ <c3h
k~l (1.39)

follows from inequality (1.38). Use estimate (1.39), and estimate (1.37) is
obtained. Theorem is proved.

4.2 CONTROL UNDER CONJUGATION CONDITION
WITH OBSERVATION THROUGHOUT A WHOLE
DOMAIN

Assume that equation (1.1) is specified on the domain Ω. On the boundary

Γ, the boundary conditions have the form of expressions (1.2) and (1.3)

and, on γ, the conjugation conditions are specified, in their turn, by

equalities (1.4) and (1.6) and by the constraint

[Qy] = $y + u, xey, (2.1)

where ueL2(y).
Specify the observation as

Cy(u) = y(u), ΧΕΩ.

Bring a value of the cost functional

{(η)-ζ^άχ + (Λη,η)ν (2.2)

Ω

in correspondence with every control weW = Z2(y); in this case, zg is a

known element from L2{O), Λη = au, a e C(y), 0 < a0 < a < ax < oo;

a0, ax = const, (φ,ψ)^ = |φψ</γ .

Υ

According to the Lax-Milgramm lemma, a unique state, namely, a

function y(u)eV corresponds to every control weW, minimizes the

functional

Φ(ν) = α(ν,ν)-2/(ν) (2.3)
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on V, and it is the unique solution in V to the weakly stated problem: Find
an element y(u) e V that meets the equation

a(y,v) = l(v)9 VveF, (2.4)

where the bilinear form a(·,·) has the form of expression (1.13') and the
linear functional is

/(v)= jjqvdx- juvdy. (2.5)
Ω γ

Expression (2.2) yields expression like (1.18), where the bilinear form

π(ν) is expressed as

n(u,v) = (y(u)-y(0), y(y)-y(0)) + \auvdy (2.6)

Υ

and

n(u,u)>a0ju
2dy, (2.7)

Υ

and the linear functional Z(·) is specified by the second formula of
expressions (1.19).

Let y' = y(u') and y" = y(u") be solutions from V to problem (2.4)

under q = 0 and under a function u = u(x) that is equal, respectively, to

w'and w".Then:
ci\\~y'-y"\\In *ci 11̂ '-y"W\ My-r, y - r ) =

= -j(u'-u»)(y'-y")dy<c2\\u'-u»\\L2{y) \\y'-~yy'~y"\\v.

Therefore, the inequality ||i?r — i^"| | 0 Ω <c||w'-w"|L , ,, c = const>0, is

derived that provides the continuity of the functional L(-) and bilinear form

π( ν ) on m.
On the basis of [58, Chapter 1, Theorem 1.1], the validity of the

following statement is proved.
Theorem 2.1. If a system state is determined as a solution to equivalent

problems (2.3) and (2.4), then there exists a unique element u of a convex



Control of a System Described by a Two-Dimensional... 147

set % that is closed in % and relation like (1.20) takes place for uy where

the cost functionalJ(u) is specified by expression (2.2).

Let ue% be the optimal control. Then, the following inequality is true

Vv G %:

(y(u)-zg,y(y)-y(u))+ jau(v-u)dy>0, Vve%. (2.8)

y

As for the control ν e W, the conjugate state p(v) eV = V is specified
as a generalized solution to the boundary-value problem specified, in its
turn, by system (1.23), and it is the solution to weakly stated problem
(1.24).

Therefore, the necessary and sufficient condition for the existence of the

optimal control u e% is the one under which relations (2.4), (1.24) and

(2.8) are met. Use the difference y(v)-y(u) in equation (1.24) instead of

z. Then, the equality

γ

is obtained on the basis of equation (2.4). Take the obtained equality into
account, and the inequality

p + au)(v-u)dyZ09 Vve%, (2.9)

γ

is derived from inequality (2.8).

If the constraints are absent, i.e. when % =%, then the equality

-p(u) + au = 0, xey, (2.10)

follows from condition (2.9). Therefore, when the constraints are absent
and equality (2.10) is used, conjugation condition (2.1) can be written as

,xey9 (2.11)

and problem (2.4) is transformed into
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VveF.
a

(2.12)

Hence, the problem of finding the vector-function (y,p)T (y,p e V), that

satisfies equalities (1.29) and (2.12), is derived, and the vector solution

(y,p)T is found from problem (1.29), (2.12) along with the optimal

control

u = p/a, xey. (2.13)

Let the vector solution (y,p) to problem (1.29), (2.12) be smooth enough

on Ω/, / = 1, 2. Then, the equivalent differential problem of finding the

vector-function (y,p)T, that satisfies equalities (1.1)—(1.4), (1.6), (1.23)

and (2.11), corresponds to problem (1.29), (2.12).
Definition 2.1. A generalized (weak) solution to boundary-value

problem (1.1)—(1.4), (1.6), (1.23), (2.11) is called the vector-function

(y,p)T e Η that satisfies the following equation \/zeH:

d2yd\ d2yd\
— V i " v / | 2 Υ 2 2~

X\ oxo dxo dx\

χ

dl

P

dxf dx\ |

d2z2

dx\ dxf t

+2(1-v)

+pz2)dy + jpzja dy + Ja

(2.14)

Ω

in this case, the space His specified in point 4.1.
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Let u = (ui, u2 ) and ν = (vj, v2) be arbitrary elements of the complete

Hubert space H. Specify the bilinear form

a(u,v) = ao(w,v)- p|V2^c+ \u2vi/ady (2.15)

Ω γ

and linear functional

Ω

on Η.

Let the constraints 2 β > — a n d 2 q ' > l be met, where c[ is the

constant from inequality (1.16). Then, use the Lax-Milgramm lemma, and

it is concluded that the unique solution i/ = (i/l9 U2)
T to problem (2.14)

exists in H. Problem (2.14) can be solved by means of the finite-element

method. Estimate like (1.39) is true for its approximate solution UNe HN.

Therefore, the estimate

l <coh
k~\ c 0 = c o n s t > 0 , (2.16)

Ιιΐ2(γ)

takes place for the approximation uN = pN /a of the control u = p/a .

4.3 CONTROL UNDER CONJUGATION CONDITION
WITH OBSERVATION ON A SECTION γ

Assume that equation (1.1) is specified in the domain Ω. On the boundary

Γ, the boundary conditions have the form of expressions (1.2) and (1.3)

and, on γ, the conjugation conditions are specified, in their turn, by

equalities (1.4), (1.6) and (2.1), where u e L2(y).

Specify the observation as

Cy{u) = y{u\ xey.

Bring a value of the cost functional
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J(u)= ^γ(η)-ζ§)
2άγ + (Λη,η)^ω (3.1)

γ

in correspondence with every control u e % = L2(y) ; in this case, zg is a

known element from L2(y) and the operator Jf is specified in point 4.2.
According to the lax-Milgramm lemma, a unique state, namely, a function
y(u) e V, corresponds to every control weW, minimizes functional (2.3)
on V9 and it is the unique solution to problem (2.4).

Rewrite cost functional (3.1) as

J(u) = n(u9u) - 2L(u) + \\zg- * ( 0 ) | ^ ( γ ) , (3.2)

where

)9 y(y) - yiQ))^(γ) + (a u,v)^(γ),

(3.3)

Let y' = y(ur) and j ; " = J?(M") be solutions from V to problem (2.4)

under q = 0 and under a function that is equal, respectively, to u! and u".

Then, proceed from the embedding theorems, and the following can be

written:

1 * c\ \\y' - y"\\ I ^a(y'~ ~f, y - r)=

γ

Therefore, the inequality llv'-v'ilr , <c| |w'-w1L , , is derived that
' H J " ^ y ''^2(Υ) " I !^2(Y)

provides the continuity of the functional L(-) and bilinear form π ( ν ) on ^ί.
On the basis of [58, Chapter 1, Theorem 1.1], the validity of the

following statement is proved.
Theorem 3.1. If a system state is determined as a solution to equivalent

problems (2.3) and (2.4), then there exists a unique element u of a convex

set %β that is closed in % and relation like (1.20) takes place for u, where

the cost functionalJ(u) is specified by expression (3.1).
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As for the control ν e °U, the conjugate state p(v) e V is specified as a
generalized solution to the boundary-value problem specified, in its turn,
by the following equality system:

d2 Jd2

D\cbcf l l dxl

+ 2 = 0, xeQ,

p = 0, χ e Γ,

= 0, xey,

cbc-ι J
, xey.

(3.4)

As for the considered problem, the optimality condition (1.21) for the

control u e % is

>0, \/ve% . (3.5)

To find the generalized solution/? to problem (3.4), the weakly stated

problem means to derive peV that meets equation like (1.24), where the

bilinear form a(·,·) is specified by expression (1.13'), and

(3.6)

It is easy to state that the solution ρ exists and it is unique in V.
Therefore, the necessary and sufficient condition for the existence of the
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optimal control ue% is the one under which the relations (2.4), (3.5) and

(1.24) are met; in this case, the bilinear form a(·,·) and functional l\{y,v)

are specified, respectively, by expressions (1.13') and (3.6).

Use the difference y(v)- y(u) instead of ζ in equality like (1.24) that

corresponds to problem (3.4), consider equation (2.4), and the inequality

j(y(u)-zg)(y(y)-y(u))dy= jp(u)(v-u)dy, \/ve%, (3.7)
γ γ

is obtained. Then, the inequality

( + au){v-u)dy>0, VVE%, (3.8)

r
is derived from condition (3.5).

If the constraints are absent, i.e. when %=%, then the equality

p + au = 0, xey, (3.9)

follows from condition (3.8). Therefore, when the constraints are absent
and equality (3.9) is used, conjugation condition (2.1) can be written as

and problem (2.4) is transformed into

= (q9v), VveF. (3.11)
a

γ

Hence, the problem of finding the vector-function (y,p)T (y,p e V), that

satisfies equalities (3.11) and (1.24), where the functional lx is specified by

formula (3.6), is derived and the optimal control is

u = -p/a9 xey. (3.12)

Let the vector solution (y,p)T be smooth enough on Ω/, / = 1,2. Then,

for problem (3.11), (1.24), where the functional /](·,.) is specified by

expression (3.6), the corresponding equivalent differential problem
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consists in finding the vector-function (y,p) that satisfies equalities

(1.1)-(1.4), (1.6) and (3.4) and condition (3.10).
For such differential problem, the generalized problem means to find

the vector-function U eH that meets the equality

a([/,z) = /(z), Vzetf, (3.13)

where

,z)~ ju2zl/ady+
γ γ

and

jzgz2dy.
Ω γ

If the inequality β > — — + 1 is met, then problem (3.13) has the
2^ao )

unique solution in H. Therefore, the estimate like (2.16) takes place for the

finite-element approximation uN =-pN/a of the optimal control

u = -p/a.

A A CONTROL ON A SECTION γ WITH OBSERVATION
ON A PART OF A BOUNDARY Γ

Assume that equation (1.1) is specified in the domain Ω. Conjugation
conditions (1.4), (1.6) and (2.1) are specified, in their turn, on γ and, on Γ,
the boundary conditions are

^ = 0, | ^ = 0, Χ Ε Γ 2 , (4.1)

ox2

^ , xeTl9 (4.2)
ox2

and
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+ v^l-2±Cl-v)flJ^-ft χ6Γι, (4.3)
frf dx2) d*i dxxdx2

where Γι={χ:χι= aha2; x2 e [0,6]}, Γ 2 = {χ: ^ e [au a2]; x2 = 0,6}.

Specify observation like (1.8):

Z(u) = y(u)9 xeTx.

Specify the cost functional for the control u e °ll = L2(y) by the expression

J(u)= j(y(u)-zgfdrl+jau2dy9 (4.4)
Γι γ

where zg is a known element of the space ^ ( ^ ι Χ a=a(x)e C(y),

0 < a0 < a < ax < oo, a0, ax= const.

The following statement is valid.
Lemma 4.1. A unique state, namely, a function y(u)eV =

= <v:v
= 0? M| = 0 r corresponds

to every control ue°l/, delivers a minimum to functional (2.3) on V, and it
is a unique solution in Vto weakly stated problem (2.4), where the bilinear
form a(v) is specified by expression (1.13% and the linear functional is

(4.5)

Υ

Proof. Estimates (1.14) are true for the bilinear form a(v) :

H2xH2->Rx and linear functional /(·): H2^>Rl. Illustrate the V-

ellipticity of the bilinear form a(·,·) on the subspace V c i/f · I*1 *his case,
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| Λ Ο Ή ^ , (4.6)

where μ is the positive constant in the Friedrichs inequality, and

H2 =ff|yf
ΙΓΙΙ2,Ω,Ο J M Z J

Take inequality (4.6) and the following one, i.e. [78]

IHliA-c'{H2A,o + llvlo
into account, and the inequality

a(v,v)>c o |v | |* Q , VveF, (4.7)

is obtained. The F-ellipticity of the bilinear form a(v) on V is, therefore,
provided.

According to the Lax-Milgramm lemma, a unique state, namely, a
function y(u)eV corresponds to every control weW, minimizes
functional (2.3) on V9 and it is the unique solution on V to problem like
(2.4), where the bilinear form a(·,·) is specified by expression (1.13') and
linear functional /(·) has the form of expression (4.5). Lemma is proved.

Rewrite cost functional (4.4) as

where

π(«,ν) = (y(u)-y(0), y(v)-

and

Let yf = y(uf) and y" = y(u") be solutions from V to problem like

(2.4) that corresponds to boundary-value problem (1.1), (1.4), (1.6), (2.1),
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(4.1)-(4.3) under q = 0 and under a function u that is equal, respectively,

to u! and u". Then:

Therefore, the inequality

is derived that provides the continuity of the linear functional L(-) and

bilinear form π(·,·) on °li.
On the basis of [58, Chapter 1, Theorem 1.1], the validity of the

following statement is proved.

Theorem 4.1. Let a system state be determined as a generalized

solution to boundary-value problem (1.1), (1.4), (1.6), (2.1), (4.1) -(¥.3).

Then, there exists a unique element u of a convex set °U^ that is closed in

% and relation like (1.20) takes place for u, where the cost functional is

specified by expression (4.4).
For the considered problem, inequality (1.21) has the form

0, V v e % . (4.8)

As for the control ve % the conjugate state p(y) e V is specified as a
generalized solution to the boundary-value problem specified, in its turn,
by all the equalities of system (3.4), except the second, third and fifth ones,
and by the conditions

p = 0, — = 0, J t e r 2 , (4.9)

.(l-v)^? = 0, , e r l t (4.10)
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g (4.11)

and

The generalized solution ρ e V to this boundary-value problem exists, it is

unique and meets equation like (1.24), where the bilinear form a(·,·) is

specified by expression (1.13'), and

(4.13)

Use the difference y(v)-y(u) instead of ζ in equality like (1.24),

where the bilinear form a(·,·) and linear functional /i(v) are specified,

respectively, by expressions (1.13') and (4.13), and the equality

is obtained. Take equation (2.4), where /(·) has the form of expression
(4.5), into account, and the following equality is derived:

) ( ) w (4-14)

Use it, and inequality (4.8) has the form
(-p + au,v-u)L2(y)>0, \/ve%. (4.15)

If the constraints are absent, i.e. when % = ^ , then equality (2.10)

follows from condition (4.15). Therefore, when the constraints are absent
and equality (2.10) is used, then conjugation condition (2.1) can be written
as
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and problem (2.4) is transformed into equality like (2.12). The space Fis
specified in point 4.4.

Hence, the problem of finding the vector-function (y,p)T (y,p e V),

that satisfies equalities (1.24) and (2.12), where the bilinear form a(·,·) and

linear functional /i(·,·) a r e specified, respectively, by expressions (1.13')

and (4.13) and the optimal control is specified, in its turn, by equality

(2.13), is derived.

Let the considered vector solution (y,p) be smooth enough on

Ω/,/ = 1,2. Then, the equivalent differential problem of finding the

vector-function (y,p)T, that satisfies equalities (1.1), (1.4), (1.6),

(4.1)-(4.3), (4.16), (4.9)-(4.11) and (4.12) and the equalities of system
(3.4), except the second, third and fifth ones, corresponds to the present
weakly stated problem.

Therefore, in the absence of the constraints ( % = $ 0 , th e following

problem is obtained: Find the vector-function (y,p) (y,peV) that

satisfies the equality system

/) E F , (4.17)

v^Vv^, (4.18)

from which the vector solution (y,p) is found and the optimal control is

u = p/a, xey.

The bilinear form #(·,·) is specified by expression (1.13').

The equivalent problem of finding the vector-function

(y,p)T e Η = Ι ν = (vl 5v2)T : v1?v2 e v\, that satisfies the equality

fl(C/,z) = /(z), VzeH, (4.19)

where
τ

U = (ul9u2) , ux=y, u2=p,
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a(U,z) = ao(U,z) + jw2 z{/a dy -

γ Γ!

and

'00= \]qz\dx- jzgz2dTl9

Ω Γ!

corresponds to problem (4.17), (4.18).

If the inequality min{β - l/2a0, c0 - l/2c'Q} > 0, where c0 and c'o are

the positive constants, respectively, from inequality (4.7) and the
embedding theorem [55], is met, then, by virtue of the Lax-Milgramm
lemma, problem (4.19) has the unique solution U eH . Therefore, estimate

like (2.16) takes place for the finite-element approximation uN = pN fa of

the optimal control u = p/a .

4.5 CONTROL ON Tt WITH OBSERVATION ON A
SECTION γ: CASE 1

Assume that equation (1.1) is specified in the domain Ω. Conditions
(1.4)—(1.6) are specified, in their turn, on γ. On Γ, the boundary conditions
are conditions (4.1) and (4.2) and the specified constraint is

= u,xeTl. (5.1)

Specify observation like (1.8) for the control u e 11 = Z^(Fj):

Z(u)^y{u\ xey. (5.2)

Specify the cost functional by the expression

J(u)= l(y(u)-zgfdy+ \au2dTx, (5.3)
Γ,
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where zg is a known element of the space L2(y), a = a(x)e

0 < a§ < a(x) < a^ < oo? α0, β| = const.

The following statement is valid.
Lemma 5.1. A unique state, namely, a function y - y{u) e V

corresponds to every control ueW = /^(Ti), delivers a minimum to

functional (2.3) on V, and it is a unique solution in V to weakly stated

problem (2.4); in this case, the space V is specified in point 4.4, the

bilinear form a(v) is specified by expression (1.13% and the linear

functional /(·) is

The validity of Lemma 5.1 is stated according to the Lax-Milgramm
lemma.

Rewrite cost functional (5.3) as

J(u) = π(ΐι,ΐι) - 2Ι(ΐι) + \\zg - ^ ( 0 ) | ^ ( γ ) , (5.4)

where

π( 11, v) = (y(u)-y(0)9 y(v) - ^ ( 0 ) ) ^ ( γ ) + (a u,v)

and

Let y' = y(u') and y" = y(u") be solutions from V to problem (2.4) that

corresponds to boundary-value problem (1.1), (1.4)—(1.6), (4.1), (4.2),

(5.1) under q = 0 and under a function u that is equal, respectively, to

u' and u". Then:
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Therefore, the inequality IIy' - y"\ , <c5 \\ur - u"\\ ίΓ is derived that

provides the continuity of the linear functional Z(·) and bilinear form π(·,·)
on^/.

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 5.1. Let a system state be determined as a generalized

solution to boundary-value problem (1.1), (1.4)-(1.6), (4.1), (4.2), (5.1).

Then, there exists a unique element u of a convex set °ί/$ that is closed in

% and relation like (1.20) takes place for u, where the cost functional is

specified by expression (5.3).
For the considered optimal control problem, inequality (1.21) has the

form

( ) ( ) 0 9 \/ve%. (5.5)

As for the control ve% the conjugate state p(v)eV is specified as a
generalized solution to the boundary-value problem specified, in its turn,
by the equalities of system (3.4), except the second and third ones, and by
the following constraints:

| ^ = 0, xeT2,

= 0, xerl9

ox2

ox2

A ^ 0 , jc6r 1 . (5.6)
Z ) + v ^ 2 ( i v ) Z ) 0,jc6r1

dxx ydxf dx2) d*2 dxxdx2

For such boundary-value problem, the generalized problem means to find a
function peV that meets the equation

α ( Α ζ ) = /(ζ), VzeF; (5.7)

in this case, the bilinear form a(·,·) is specified by expression (1.13'), and
the linear functional is
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( g)dy. (5.8)

γ

The generalized solution ρ e V to the considered problem, i.e. the one to
problem (5.7) exists and it is unique in V. Use the difference y(v)-y(u)
in equation (5.7) instead of z, and the equality

«(p> y(y) - y(u)) = - ]{y(u) - z

g) {y(y) - y(u)) di

or

(u) - zg) (y(y) - y(u)) dy = jp(u)(v - u

Ί T\

is obtained. Use it, and inequality (5.5) has the form

If the constraints are absent, i.e. when % = W, then:

-p(u) + au = 0 xeF{. (5.9)
Therefore, when the constraints are absent and equality (5.9) is used, then
boundary condition (5.1) can be written as

\cos(n,x{) =
dx\dx2

= p/a, xeTx. (5.10)

Hence, in the absence of the constraints (%=W), the following

problem is obtained: Find the vector-function (y,p)T (y9peV) that
satisfies the equality system

φ,ν)- fpv/adr^fav), VVGF, (5.11)
Γι

a(p,v)+ \yvdy= \zgvdy, V V G F , (5.12)
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from which the vector solution (y,p)T is found along with the optimal

control

u = p/a, xeF^.

The equivalent problem of finding the vector-function UeH =

= |v = (vl 9v2)T : vl9v2 e V>, that satisfies equality like (4.19), where

U = (uuu2)
T, ux=y, u2=p,

a(U,z) = aQ(U,z)~ \u2zl/adTl + \uxz2dy

Γι γ

and

y

corresponds to problem (5.11), (5.12).

If the inequality min \ β — , c0 — > > 0, where c0 and C'Q are the
[2 2a0]

positive constants, respectively, from inequality (4.7) and the embedding
theorem [55], is met, then, by virtue of the Lax-Milgramm lemma, problem

τ
like (4.19) has the unique solution (y, p) e Η. Therefore, the estimate

\\u-uN\\ <chk"\ c = const>0, (5.13)
II l ! ^ ( r )

takes place for the finite-element approximation uN = pN/a of the

optimal control u = p/a .

4.6 CONTROL ON Γι WITH OBSERVATION ON A

SECTION γ: CASE 2

Assume that equation (1.1) is specified in the domain Ω. Conditions
(1.4)—(1.6) are specified, in their turn, on γ. On Γ, the boundary conditions
are conditions (4.1) and (4.3) and the specified constraint is
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D Uy-(l-v) (6.1)

Observation (5.2) is specified for the control ue^ = L2(Tl). Specify the

cost functional by expression (5.3), where zg is a known element of the

space L2(y); a = a(x) e L2(Γ^), 0 < a0 < a(x) < ax < oo, a0, ax = const.

The following statement is valid.
Lemma 6.1. A unique state, namely, a function y = y(u)eV

corresponds to every control ue/i/ = Σ2(Γγ), delivers a minimum to
functional (2.3) on Vt and it is a unique solution in V to weakly stated
problem (2.4); in this case, the space V is specified in point 4.4, the
bilinear form a(v) is specified by expression (1.13% and the linear
functional /(·) is

\ ^ (6.2)

The validity of Lemma 6.1 is stated according to the Lax-Milgramm
lemma.

Let y' = y(u') and y" = y(u") be solutions from Fto problem (2.4) that

corresponds to boundary-value problem (1.1), (1.4)—(1.6), (4.1), (4.3),

(6.1) under q = 0 and under a function u that is equal, respectively, to

u' and u". Then:

cAy'-y""2 - - "--•' -~-""2

<c3\\u'-u"

L2{y)<c2\\y'-~y"\\yic,a{y>-~y",~y'-~y")<

d(y'-y")

dx

Therefore, the inequality

\\y'-y"\L2(y)

is derived that provides the continuity of the linear functional L(·) and

bilinear form π ( ν ) of representation (5.4) and cost functional (5.3) on °ίί.
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On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 6.1. Let a system state be determined as a generalized

solution to boundary-value problem (1.1), (1.4)-(1.6), (4.1), (4.3), (6.1).

Then, there exists a unique element u of a convex set % that is closed in

% and relation like (1.20) takes place for u, where the cost functional is

specified by expression (5.3).
For the considered optimal control problem, inequality (1.21) has the

form of inequality (5.5). As for the control v e t , the conjugate state
p(v) e V is specified as a generalized solution to the boundary-value
problem specified, in its turn, by the equalities of system (3.4), except the
second and third ones, and by constraints (5.6).

For such boundary-value problem, the generalized problem means to

find a function peV that meets equation (5.7), where the bilinear form

a(v) and linear functional are specified, respectively, by expressions

(1.13') and (5.8).

The generalized solution peV to the considered problem, i.e. to

problem (5.7) exists and it is unique in V. Use the difference y(v)- y(u)

in equation (5.7) instead of z, and the equality

α(P> y(v) - y{u)) = - j(y(u) - zg) (y(v) - y(u)) dy

Ί

is obtained. Therefore:

-l(y(u)-zg)(y(v)-y(u))dy= jfy-u^dT^ (6.3)

Use the obtained equality, and inequality (5.5) has the form

\-$2- + au9v-u\ >0, Vve%. (6.4)

If the constraints are absent, i.e. when % = W, then the equality

& l9 (6.5)



166 CHAPTER 4

follows from condition (6.4). Therefore, when the constraints are absent
and equality (6.5) is used, then boundary condition (6.1) can be written as

y-(l-v)^)cos(n,xl) = ̂ , xeTx. (6.6)
dx2) a dxx

Hence, in the absence of the constraints ( ^ = W), the following

problem is obtained: Find the vector-function (y,p)T (y,p e V) that

satisfies the equality system

*(*v)- [LSJE-PLdT^q^ VVEF, (6.7)
r i

a(p,v)+ \yvdy= \zgvdy, VVGF, (6.8)

from which the vector solution (y,p) is found along with the optimal

control

a dxx'

The equivalent problem of finding the vector-function UeH =

= | ν = (v1 ?v2)
T : v1?v2 Ε ν\, that satisfies equality like (4.19), where

U = (Wi, W?) , U\ = V, Wo = /? ,

Lz2dy

and

/(ζ) = (ςτ,ζ1)+ jzgz2dy,

y

corresponds to problem (6.7), (6.8).
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If the inequality min \ β — , c0 — I > 0, where c0 and c'o are the
[2 2ao\

positive constants, respectively, from inequalities (4.7) and the embedding
theorems [55], is met, then, by virtue of the Lax-Milgramm lemma,

problem like (4.19) has the unique solution (y,p) eH. Therefore,

estimate (5.13) takes place for the finite-element approximation

ύ = ——— of the optimal control u = 3-^-·.
a dxi a dxi

4.7 CONTROL ON I\ WITH OBSERVATION ON Tt

Assume that equation (1.1) is specified in the domain Ω. Conditions
(1.4)—(1.6) are specified, in their turn, on the section γ. On Γ, the boundary
conditions are conditions (4.1), (4.2) and (5.1).

Specify the observation

for the control u e W = Z 2 ( r i ) ·

Specify the cost functional by the expression

J(u)= J(y(ii)-zg)
2i/r1+ jau2dTl9 (7.1)

Γι η

where zg is a known element of the space Ζ2(Γι)> a n c ^ ^ e function

a = a(x) e £2(^1) is specified, in its turn, in point 4.5.

According to Lemma 5.1, the unique state, namely, the function

y = y{u) corresponds to every control ue% = 12(Γ\), and it is the

generalized solution to problem (1.1), (1.4)-(1.6), (4.1), (4.2), (5.1).

Rewrite cost functional (7.1) as

^ ( , (7.2)
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where

π(κ,ν) = (y(u) - y(0), y(y) -yQ))^^ + (a u,v

and

Let yr = y(ur) and y" = y(u") be solutions from Fto problem like (2.4)

that corresponds to boundary-value problem (1.1), (1.4)—(1.6), (4.1), (42),

(5.1) under q = 0 and under a function u that is equal, respectively, to uf

and u". Then:

* Wu' - u\iTX) \y - y\iTX)

 ύ c* Ik - w1L2(ri) \y - Ά ν ·

Therefore, the inequality

is derived that provides the continuity of the functional Z(·) and bilinear

form π(ν) on W.
On the basis of [58, Chapter 1, Theorem 1.1], the validity of the

following statement is proved.
Theorem 7.1. Let a system state be determined as a generalized

solution to boundary-value problem (1.1), (1.4) -(1.6), (4.1), (4.2), (5.1).

Then, there exists a unique element u of a convex set % that is closed in

% and relation like (1.20) takes place for u, where the cost functional is

specified by expression (7.1).
For the considered optimal control problem, inequality (1.21) has the

form

( ) ( ) > 0 , \/ve%. (7.3)

As for the control v e t , the conjugate state p(v)eV is specified as a
generalized solution to the boundary-value problem specified, in its turn,
by the equalities of system (3.4), except the second, third and fifth ones, by
constraints (4.9), (4.10) and (4.12) and by the equality
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D + v ) + 2

dxl [dxf dx\) dx2

For such boundary-value problem, the generalized problem means to find a

function peV that meets equation like (5.7), where he bilinear form a(-,·)

is specified by expression (1.13'), and the linear functional is

/(z) = -J(^-zg)zi/r1. (7.4)
Γι

The solution ρ e V to this generalized problem exists and it is unique in V.

Use the difference y{y)-y{u) instead of ζ in equation like (5.7), and the

equality

Γι
is obtained. Use it, and inequality (7.3) has the form

0, V V E % . (7.5)

If the constraints are absent, i.e. when % = %, equality (5.9) follows from

condition (7.5). Therefore, when the constraints are absent and equality
(5.9) is used, boundary condition (5.1) can be written in the form of
boundary condition (5.10).

Hence, in the absence of the constraints ( % = W), the following

problem is obtained: Find the vector-function (y,p)T (y9peV) that

satisfies the equality system

<y,v)- \pvladTx=(q,v\ VveF, (7.6)

Γι

fl(p,v)+ \yvdTx = jzgvdTl9 VveF, (7.7)

from which the vector solution (y,p)T is found along with the optimal

control
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U = ρ Ια ,

The equivalent problem of finding the vector-function UeH =

= I v = (v\, v2 ) : V!, v2 e V \, that satisfies inequality like (4.19), where

U = (uuu2) ,u{=y, u2=p,

a(U,z) = ao(U,z)- \u2Zi/adTi+ ιη^άΓγ

Π Γ!
and

l(z) = (q,zl)+ jzgz2dr{,

Γι

corresponds to problem (7.6), (7.7).

If the inequality c0 ->0, where c0 and C'Q are the positive
2a0 2

constants, respectively, from inequalities (4.7) and the embedding theorem
[58], is met, then, by virtue of the Lax-Milgramm lemma, problem like

(4.19) has the unique solution (y,p)T e Η. Therefore, estimate like (5.13)

takes place for the finite-element approximation uN = pN /a of the

optimal control u = p/a .



CONTROL OF A SYSTEM DESCRIBED BY A
PARABOLIC EQUATION UNDER

CONJUGATION CONDITIONS

Introduce the following denotations: Ω is a domain that consists of two

open, non-intersecting and strictly Lipschitz domains Ωι and Ω2 from an

w-dimensional real linear space Rn; Γ = (dQi\JdQ2)\y (γ= flQjfl

Π5Ω2 Φ0) is a boundary of a domain Ω, 5ΩΖ· is a boundary of a domain

Ω/? / = 1,2; Ω Γ =Ωχ(0,Γ) is a complicated cylinder, Γ τ = Γχ(0,Γ) is

the lateral surface of a cylinder Ω Γ U JT > Ίτ = Υ x (0? Ό ·

Let V be some Hubert space and assume that V1 is a space dual with

respect to V. By analogy [58], introduce a space L2(0,T;F) of functions

t-^> f{t) that map an interval (0,7) into the space F of measurable

functions, namely, of such ones that

(Ί V/2

< oo .

/

Also by analogy, specify the space I?(0,T;V). Introduce a space

) = { / Ξ Ζ 2 ( 0 , Γ ; Π : df/dteL2(0J; Γ ) } that is supplied with

the norm
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1/1; dt

Λ/2

dt
V

and becomes the Hubert one.

5.1 DISTRIBUTED CONTROL

Assume that the parabolic equation

dy _ ν"
Λ7~ L·

d

dt
3L\.

is specified in the domain Ω Γ , where

νξ;,ξ7· e Rl, Vx € Ω, α 0 = const >0;

| / | < co, Ωιτ=Ω[Χ(0,Τ)

The third boundary condition

(1.1)

(1.1')

(1.2)

is specified, in its turn, on the boundary Γτ, where α = α(χ) > α° > Ο,

α, β e L2(T), α° = const.

On yT, the conjugation conditions are

= 0 (1.3)

and
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= r[y]9 (1.4)

where 0 < r = r(x) < rx < oo, TJ = const, [φ] = φ + - φ"; φ + ={φ}+ =φ(χ, ί)

under (x,f)ey£ =(5Ω2 Πγ)χ(Ο,Γ); φ"={φ}"=φ(Λ:,ί) under (x9t)ey^=

=(5Ω1Πγ)χ(05Γ)? ν is an ort of a normal to γ that is called simply a

normal to γ and it is directed into the domain Ω 2 .

The initial condition

y(x,0) = y0, (1.5)

where yQeH = Ζ^(Ω), is specified under t = 0.

Let there be a control Hubert space %L and operator Be

For every control M e t , determine a system state j ; = y(u) =

as a generalized solution to the problem specified by the equation

dt .r-'cbc, Jdx,
i,y=i ' V J

and by conditions (1.2)—(1.5). Without loss of generality, assume Bu = u.
Specify the observation by the following expression:

Specify the operator

Jf e £(%; °U)\ {Jfu,u)m >vo |w| |^, v o = const>0. (1.8)

Assume the following: Au-au\ in this case, α Ω / Ε 0 ( Ω / ) , / = 1,2;

0 < a0 < a < αχ <οο, α0, a.\ = const. The cost functional is

u)^, (1.9)

where z g is a known element of the space 3€.
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The optimal control problem is: Find such an element WGW that the
condition

J(u)= inf J(v) (1.10)

is met, where % is some convex closed subset in °ll.

Definition 1.1. If an element u e % meets condition (1.10), it is called

an optimal control.

The generalized problem corresponds to initial boundary-value problem

(1.6), (1.2)—(1.5) and means to find a vector-function y(x,t;u)e

eW(0,T) that satisfies the following equations Vw(x)eFo =

Cdy , f ν ^ , dy dw , r _ πΓ Ί r r ,_
|-£->vax+ I > A:̂ ·— dx+ \r[y][w]dy + \aywdT =
J dt J _ , dx .· dx: J J

Ω Ω hj=l J γ Γ

= ( / » + (£w,w)+ JpwJr (1.11)
r

and

J J
Ω Ω

in this case, (φ,ψ)= |φ(*,0 \\f(x,t)dx, F = | v(x,t) : v|Q G ^ ( ^ i ) »

Ω

Ϊ = 1 , 2 ; Vie(O,r) }.

Consider the existence and uniqueness of the solution to problem (1.11),

(1.12). Since Bu and / e Ι 2 (θ, Γ; F'), then, without loss of generality,

assume the following: Bu = 0.

The space Vo is complete, separable and reflexive since ^ ( ^ i )

(/=1,2) is complete, separable [41, 55, p. 69] and reflexive [32], and

. Any element u{x)sW^iili) can be approximated by the
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functions uk(x) from C 0 0 ^ · ) within the norms of the space H^(QJ

VQicQ,. (i = l,2) [55, p. 69].

Choose [41, 54] an arbitrary fundamental system of linearly
independent functions wk(x)9 k = 1,2,..., in Vo and suppose that this

system is orthonormal in L2(Q) so that (H%,-W/) = 6Ĵ  (δ* =1, 6^=0

under / * £; /, Λ = 1,2,...). Under ^ 0 e ^ ( Ω ) [49]:
00

Λ > = Σ * < **<*>· (L13)

1=1

where ξ,· =CVo>wi)> * =1,2,... .

Find the approximate solution to problem (1.11), (1.12) as
m

^ ( ^ 0 = Σ ^ < ί > ^ ( χ ) , (1.14)
ι=1

where the functions gim(t) are chosen in such a way that the relations

l ^ j ) ( j ) { j ) J / , 7 = 1 ^ ? ( 1 . 1 5 )
V ) r

and

where

are met. Equalities (1.15) and (1.16) specify the Cauchy problem for the
system of m first-order linear ordinary differential equations as for gim(t):

Mm^ + Kmgm=Fm(t), (1.17)

M°mgm(0) = F°; (1.18)
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in this case: M m ={ M j J 1 } ^ , Mj =(wi,wj), Km ={*$}"^

It is easy to see that the problem solution ym(x,t) exists and that such

solution is unique. The following statement must be proved: ym -> y

under m —» oo, where y = y(x, t) is the solution to problem (1.11), (1.12).

Multiply equality (1.15) by gjm(t) and find the sum over/ Then:

i.e.:

\jt\\ymf^a(ym,ym) = (f,ym)^^ymdT; (1.19)
r

in this case, | φ || = (φ,φ)1 / 2 = || φ | ( ί ) .

Take the ellipticity condition and generalized Friedrichs inequality [21]
into account, and the inequality

l b | | ' a l = c o n s t > °> ( L 2 0 )

ί 2 I
is derived, where | φ \y = Ι ] ζ | φ | ^ ι ( Ω ί ) \ , \[\\wι(Ω;) is the norm of the

Sobolev space w\ (Ω,), | φ | |F = | φ \y (t). Consider inequality (1.20), the

ε- and Cauchy-Bunyakovsky inequalities and embedding theorems [55],
and the inequality
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;mf(0) + 2j|(/,^

ο

τ τ

dt (1.21)

follows from equality (1.19); in this case, | | φ | , π = |φ2ί/Γ, c[ =maxc / ?

and the constant c\ is obtained from the inequality proved within the

embedding theorem applied for the domain Ω/. Proceed from equality

(1.16), and

Proceed also from Cauchy-Bunyakovsky inequality, and the inequality

\\ymf(O)<\\yol\\ym\\(O)
is derived, i.e.:

ΙΜ|(Ο)φο||·
Take it into account, and the inequality

rp { Τ Τ

(1-22)

ο ν ο ο

follows from inequality (1.21).

Therefore, the elements ym are in some bounded subset of the space

Ζ,2(0,Γ;Γ). Hence, there exists some subsequence | ^ χ | that weakly

converges to the element ζ in L2(0,T;F) (yx^ze Ζ,2(0,Γ;Κ)). Without
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loss of generality, assume that the whole sequence {ym} weakly converges

toz.
Rewrite equality (1.15) as

multiply its both sides by the function

φ{ί)Ε&([09Τ])9φ(Τ) = 0, (1.22')

and find the integral from 0 to Γ of the result:

ο

τ τ

A[$q>jdYdt + {ym,yj}(<d)\ (1.23)

or
in this case:

By virtue of the aforesaid weak convergence, it is possible to pass in
equality (1.23) to the limit under m -> oo, and here is the equality

τ τ τ

j{-(z^j) + a(z^j)}dt= |(/,φ</)Λ+ J J p 9 / r ^ + (z?9y)(O). (1.24)
ο ο or

Consider the assumptions as for iwj \, and it can be seen that the matrix

M°m from condition (1.18) is diagonal [M^ =(wi9Wj), Μ^=0 under

%Φ]9 ij = l,my The equality gim(O) = (yo,wi)/(wi9wi) follows from

condition (1.18), i.e. gim(0) (i = l,m) are the Fourier coefficients for the

function y0. By virtue of [49]:

m

ym(x>°) = X&m(0)w/(*) -+yo(x) under m^co.
( = 1
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Therefore: z(x,0) = yo(x).

Equality (1.24) is true for the arbitrary function φ that meets conditions

(1.22'). Thus, the following may be assumed: <peD((0,T)) [58]. Then, the

equality

ο ο or

follows from equality (1.24). Hence:

l^(z9wj) + a(z,wj)-(f9wj)- Jpw/Γ
0 Ι Γ J

i.e.

(1.25)

Take the space Vo and assumptions as for the functions Wj into account,

proceed from equality (1.25), and the following equality is true Vw e Vo :

^ j (1.26)

The forthcoming equality is derived from relation (1.16):

(z(,O),w(.)) = U(0 ? w(0), VweV0. (1.27)

Therefore, the function ζ e Ζ?(0,Γ;Κ) is the solution to problem (1.11),

(1.12) V/ e L2 (0,T;V) and under 5w = 0, i.e. to problem (1.26), (1.27).

Illustrate the uniqueness of the solution to problem (1.26), (1.27) by
contradiction. Let there exist two solutions: z\x,t) and z\x,t) e

Ε Ζ 2 ( 0 , Γ ; Γ ) . Then, on the basis of equality (1.26), the equality
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,z) = 0 (1.28)

is obtained, where ζ = ζ' ~ ζ" ψ 0.
Consider equality (1.27), and the contradiction

τ
0<|ζ | | 2 (Γ) + α 0 | | ζ | | 2 dt<0, a o = const >O, (1.29)

ο
follows from equality (1.28).

Therefore, the validity of the following statement is proved.
Theorem 1.1. Initial boundary-value problem (Ll)-(1.5) has a unique

generalized solution y(x, t) e I? (0, Γ; V).

Proceed from equality (1.28) and contradiction (1.29), and it is easy to

see that y(ui)^y(u2) under u^u2, i.e. under Bu^Bu2. Assume the

following: Bu = u.

Let y' = y(u') and y" = y(un) be solutions from I?(0,T;V) to problem

(1.11), (1.12) under / = 0 and β = 0 and under a function u = u(x,t) that

is equal, respectively, to u' and u". Then:

dt v v'
Therefore, the inequality

is obtained, where
τ

\\2

0 Ω 0

Rewrite expression (1.9) as
τ

J(u) = n(u,u)-2L(u)+ jj|zg-.y(O)| dt, (1.32)

ο
where
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π(κ, ν) = (y(u) - y(0), y(v) - γ(0))^ + (au, v ) v ,

L(y) = (z g - j;(0), y(v) - j<0))^; (1.33)

τ τ

in this case, (z,v)^ = j(z,v)dt9 (z9v)y = J(z,v)rfi, (z,v)= JzvJx.

ο ο Ω
Inequality (1.31) provides the continuity of the linear functional L(·)

and bilinear form π(·,·) on W.

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 1.2. Let a system state be determined as a solution to problem

(1.11), (1.12). Then, there exists a unique element u of a convex set %

that is closed in % and

J(u)= inf J(v) (1.34)

takes place for u.

A control ue% is optimal if and only if the inequality

'(u),v-u)>0, \/ve%,

is true, i.e. under

(j;(w)-zg,j;(v)-3;(W))^ + ( ^ , v - ^ > 0 . (1.35)

As for the control ν e ̂ , the conjugate state is specified by the relations

',7=1

= 0, (χ,0βγΓ, (1.36)
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~cos(v,x()l =r[p], (x,t)eyT,
J

p(x,T) = O,

Substitute a time Γ - ί for the time t, proceed from Theorem 1.1, and it
is concluded that boundary-value problem (1.36) has the unique

generalized solution p(v)eL (0,T;V) as the unique one to the equality

system

-{^p{v\w\a{p,w) = {y{v)^zg,w\ \/weVQ, (1.37)

0?,w) = 0, t = T. (1.38)

Multiply the first equality of relations (1.36) (under v = u) in a scalar

way by y(v) - y(u) and find the integral from 0 to Γ of the result.

Consider the equality

τ τ

\{-^,y{v)-y{u)\dt= \(p(u),jt(y(v)-y(u)))dt (1.39)

and obtain the equality

τ τ

ο (Λ ^
τ

+ \a(p{u\y(y)-y{u))dt. (1.40)
o

Note, that when equality (1.39) is taken into account, equality (1.40) can be
derived from equality (1.37). Take equation (1.11) into consideration, and
the equality

τ τ

l(y(u)-zg,y(v)-y(u))dt= \{p{u\v-u)dt (1.41)

0 0

is found from equality (1.40). Therefore, inequality (1.35) has the form
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τ

ο
Thus, the optimal control ue% is specified by relations (1.11), (1.12),

(1.37), (1.38) and (1.42).
If the constraints are absent, i.e. when % = °t/, then the equality

is obtained from inequality (1.42).

The control

u = -p/a, 0Μ)€=ΩΓ, (1.43)

is found from the latter equality.

If the solution {y,pf to problem (1.11), (1.12), (1.37), (1.38), (1.43) is

smooth enough on Ω / Γ , viz., y, p\^ e Ch°(Ωιτ) f] C2)0(Ωιτ) f]

nC°'1(Q/r), / = 1,2, then the differential problem of finding the vector-

function (y,p)T, that satisfies equality (1.43) and the equalities

Ι
η ρ,

kv fa c o s ^ v ' X i ) = ~ay + P' (•«» 0
X

' Λ ί ) = ~ α ^ ' (*, 0
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= 0, (x,/)eyr,

= 0, (x,t)eyT, (1.44)

,x,)l =r[p], (x,t)eyT,
J

y(x,0) = y0, p(x,T) = 0, xeC

corresponds to problem (1.11), (1.12), (1.37), (1.38), (1.43).

5.2 CONTROL UNDER CONJUGATION CONDITION
WITH OBSERVATION THROUGHOUT A WHOLE
DOMAIN

Assume that equation (1.1) is specified in the domain Ωτ. On the

boundary YT, the boundary condition has the form of expression (1.2).

For every control ue^/-L2(yT), determine a state y = y(u) as a
generalized solution to the boundary-value problem specified, in its turn,
by equation (1.1), boundary condition (1.2), initial condition (1.5) and the
conjugation conditions

[y] = 0, (x,t)eyT, (2.1)

and
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, (x,t)eyT, (2.2)

where ω = ω(χ,ί) e

Since there exists the generalized solution y(u) e W(09 T) to boundary-

value problem (1.1), (1.2), (1.5), (2.1), (2.2), then such solution is

reasonable on Ω/Γ (/ = 1,2).

The generalized problem corresponds to initial boundary-value problem
(1.1), (1.2), (1.5), (2.1), (2.2) and means to find a function
y(x9t;u) e W(09T) that satisfies the following equations VVV(JC)GFO =

dt
Ω

= (/> w) ~ \®wdy - \uwdy + \$wdT (2.3)

γ

and

= jyo(x)w(x)dx ; (2.4)
Ω Ω

in this case, V = iv(jc,i): ν | Ω e Ψ^Ω^ i = 1,2; [v] = 0, V* e [Ο,Γ] J.

The following statement takes place.
Theorem 2.1. Initial boundary-value problem (1Λ), (1.2), (1.5), (2.1),

(2.2) has a unique generalized solution y(x,t,u) e L (0,T;V) Vuety/.

The validity of Theorem 2.1 is stated by analogy with the proof of
Theorem 1.1.

Proceed from equations (2.3) and (2.4), and it is easy to see that

y(u\) * y(ui) u n der Uy£u2 . If y' = y(u') and y" = y(urt) are generalized

solutions from L2(0,T;V) to problem (2.3), (2.4) under / = 0, β =
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and ω = 0 and under a function u that is equal, respectively, to uf and u",

then the inequality

? ~ * I I 2 ^

II " ^ ( Y ) 1 1 ^ * ' ^ 2 (Υ) 0 | 1

is derived, where c0 is the constant in the inequality of the embedding

theorem [55].
Therefore, the inequality

ΦΑ^^ (2-5)
Τ

is obtained, where | |φ| | Γ , w = ill φ II r , ^dt, | |φ | | Γ t . = \(p2dy and from
' Η ψ ΐΐΐ 2 (γ)χ^ J I | Y | I ^ 2 ( Y ) ' Ι | ψ | | ^ 2 ( γ ) }Ύ ϊ

which the inequality

||y'-.y"|L r £cAu'-u"\\r , w , (2.6)
II·7 * \\L2xL2 HI ' ^ ( Y ) ^ V 7

where cj = const > 0, follows that provides the continuity of the linear

functional L(-) and bilinear form π(·,·) on °U. In this case, the linear

functional Z(·) and bilinear form π ( ν ) are specified by expressions

τ

(1.33), where (au,v)m = | \auvdydt.
0 γ

Specify the observation in the form of expression (1.7), where
Cy(u) = y{u). Bring a value of cost functional (1.9) in correspondence

with every control M G W ; in this case, zg is a known element from

L (0,T;F) and the cost functional is
τ τ

J(u)= j$(y(u)-zg)
2dxdt+ j$au2dydt, (2.7)

ΟΩ Ογ
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where 0<a§< α ^#i<°°, αθ9α^ = const, a

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 2.2. If a system state is determined as a solution to problem
(2.3), (2.4), then there exists a unique element uofa convex set % that is

closed in % and relation (1.34) takes place for u, where the cost functional
has the form of expression (2.7).

As for the control ν e °ll, the conjugate state p(y) is specified by the
relations

2-ι V
dp

= 0, (x,t)eyT, (2.8)

= 0, (x,t)eyT,

p(x,T) = O, χ

Problem (2.8) has the unique generalized solution p(v) e L (0,T;V) as the

unique one to the following equality system:

Ω

Ω

τ Ω

p(x,T;.)w(x)dx=0. (2.9)

Multiply the first equality of relations (2.8) (under v = w) in a scalar
way by the difference y(y) - y(u) and find the integral of the result over

Ω Γ . Consider equality (1.39), and equality like (1.40) is obtained, where
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^ | ^ * + jazwdT. (2.10)
QiJ=\ XJ %i Γ

Proceed from equation (2.3), equality (1.39), and the equality

τ τ

0 0γ

is found from system (2.9).

Therefore, the control ue% is optimal if and only if the inequality

τ

\\(-p{u) + au)(v-u)dydt>0, V v e % , (2.11)

0γ

takes place.

Thus, the optimal control ue% is specified by relations (2.3), (2.4),

(2.9) and (2.11). If the constraints are absent, i.e. when % = W, then the

equality

-p(u) + au = 0, (x,t)eyT,
is obtained from inequality (2.11).

The control

u = p/a, (x,t)eyT, (2.12)

is found from the latter equality.

If the solution (y,p)T to problem (2.3), (2.4), (2.9), (2.11) is smooth

enough on Ω / Γ , viz. y, p\^ e Ch°(QlT) Π <?2'°(Ω/Γ) Π

nC O j l (Q/ r ), / = 1, 2, then the differential problem of finding the vector-

function (y,p)T, that satisfies the relations
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ο

> ο

= ω+ρ/α, (x,t)eyT,

k» φ

u = p/a, (x9t)eyT,

corresponds to problem (2.3), (2.4), (2.9), (2.11).

5.3 CONTROL UNDER CONJUGATION CONDITION
WITH BOUNDARY OBSERVATION

Assume that equation (1.1) is specified in the domain Ωτ. On the

boundary Γ Γ , the boundary condition has the form of expression (1.2). For

every control ue% = Z2(Yr)» determine a state y(u) as a generalized

solution to the boundary-value problem specified, in its turn, by equation

(1.1), boundary condition (1.2), initial condition (1.5) and the conjugation

conditions
= 0,(x,t)eyT, (3.1)
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and

η ~

(x,t)eyT, (3.2)

where ω = ω(χ,ί) e L2(JT) .
The cost functional is

τ τ
J(u)= fj(y(u)-zg)

2drdt+ jjau2dydt. (3.3)
0Γ 0 γ

The generalized problem corresponds to initial boundary-value problem
(1.1), (1.2), (1.5), (3.1), (3.2) and means to find a function
y(x9t;u)eW(09T) that satisfies equations (2.3) and (2.4) \/w(x)eVo; in

this case, the spaces Fof W(0,T) and VQ are specified in point 5.2.

By virtue of Theorem 2.1, initial boundary-value problem (1.1), (1.2),

(1.5), (3.1), (3.2) has the unique generalized solution y(x,t)eL2(0,T;V)

Proceed from equations (2.3) and (2.4), and it is easy to see that

y(u2) under ui^u2. Let y' = y(ur) and yff=:y(u") be solutions

from Z2(0,T;F) to problem (2.3), (2.4) under / = 0, β = 0 and ω = 0 and

under a function u that is equal, respectively, to uf and un. Then, the

inequality (2.5) is true. Consider the embedding theorems [55], and the

inequality

is obtained from inequality (2.5). The obtained inequality provides the

continuity of the linear functional Z(·) and bilinear form π(·,·) of

representation like (1.32) for cost functional (3.3) on °ll\ in this case:

and
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On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 3.1. Let a system state be determined as a solution to problem

(2.3), (2.4). Then, there exists a unique element u of a convex set % that is

closed in % and relation (1.34) takes place for uf where the cost functional

has the form of expression (3.3).
As for the control ν e °U, the conjugate state is specified by the relations

Λ η Λ ( Λ Λ
ΟΌ ν ^ Ο , Up Λ , . ^

at ττ*Λ οχ; οχ,

<J=1

ν)-ζ?, (χ,Ο-

= 0, (x,i)eyr,

= 0, (χ,Οεγτ·,

(3.4)

ρ(χ,Τ) = 0, ϊ€Ω

Problem (3.4) has the unique generalized solution p(v) e L2(0,T;V) as the

unique one to the following equality system:

Ω
at ox j

J

= J(Xv)-zg)wrfT,VweK0,
Γ

=0. (3.5)

Ω

Multiply the first equality of relations (3.4) (under ν = u ) in a scalar way
by the difference y(v) - y(u) and find the integral of the result from 0 to

Γ. Consider equality (1.39) and obtain the equality
τ τ

0= (p(u),jt(y(v)-y(u)))dt+ ja(p(u),y(v)- y{u))dt-
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τ

- \\{y{u)-zg)(y{v)-y{u))dTdt, (3.6)
or

where the bilinear form a ( v ) is specified by expression (2.10).

Proceed from equation (2.3), and the equality
τ τ

0 = "jjp(u)(y-u)dydt- \\{y{u)-zg)(y{v)-y{u))dTdt,

Ογ 0Γ

i.e.
τ τ

ΟΓ Ογ

follows from equality (3.6).
Therefore, inequality (1.35) has the form

τ

\\(-p(u) + au)(v-u)dydt>0 (3.7)

Ογ

for the optimization problem considered in the present point.

Thus, the optimal control ue% is specified by relations (2.3), (2.4),

(3.5) and (3.7). If the constraints are absent, i.e. /%/d=
cM9 then the

following equality is obtained from inequality (3.7):

u = p/a9 (x,t)eyT. (3.8)

If the solution (y,p)T to problem (2.3), (2.4), (3.5), (3.8) is smooth

enough on Ω / Γ , / = 1,2, then the differential problem of finding the

vector-function (y, ρ)Ί, that satisfies the equalities

|-If{**
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> C M ) e r r »

• • ι

• • 1.1,7=1

(x,t)eFT,

= 0, (x,t)eyT,

= ω+ρ/α, (x,t)eyT,

= 0, (x,t)eyT,

y(x,0) = y0, p(x,T) = 0,

corresponds to problem (2.3), (2.4), (3.5), (3.8).

(3.9)

5.4 CONTROL UNDER CONJUGATION CONDITION
WITH FINAL OBSERVATION

Assume that equation (1.1) is specified in the domain QT. On the
boundary Γτ, the boundary condition has the form of expression (1.2). For
every control ueii^I^iyj·), determine a state y(u) as a generalized
solution to the boundary-value problem specified, in its turn, by equation
(1.1), boundary condition (1.2), initial condition (1.5) and conjugation
conditions (3.1) and (3.2).

The cost functional is

2

J(u)= j(y(x,T;u)-zg) dx+ (4.1)

Ω 0 γ
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where 0 < α 0 < a < a^ < oo; <z0, a,\ - const, and it may be rewritten as

J(u) = n(u,u)-2L(u) + j(zg(x)-y(x9T;O)fdx ;
Ω

in this case,
τ

Ογ

and

The generalized problem corresponds to initial boundary-value problem

(1.1), (1.2), (1.5), (3.1), (3.2) and means to find a function y(x9t;u)e

eW(09T) that satisfies equations (2.3) and (2.4) \fw(x)e Vo; the spaces

W(0,T) and Vo are specified in point 5.2.

Theorem 2.1 takes place. It is stated in point 5.3 that y(ui)^ y(u2)

under ui*u2. If y' = y(u') and y" = y(u") are solutions from L2(0,T;F)

to problem (2.3), (2.4) under / = 0, β = 0 and ω = 0 and under a function u

that is equal, respectively, to w'and u", then inequality (2.5) is true.

Proceed from equation (2.3) and obtain the equality

0 Ογ

where the bilinear form «(·,·) is specified by expression (2.10).

Consider inequality (2.5), the Cauchy-Bunyakovsky inequality and
embedding theorems, and the inequality

\\y' - yf(T) < \\u' -u\{y)xL2 \\y' -

or



Control of a System Described by Parabolic Equation... 195

is derived that provides the continuity of the linear functional L(·) and

bilinear form π(·,·) on W.

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 4.1. If a system state is determined as a solution to problem

(2.3), (2.4), then there exists a unique element u of convex set % that is

closed in % and relation (L34) takes place for u, where the cost functional

has the form of expression (4.1).
As for the control ve% the conjugate state p(v) is specified by the

relations
~ η

dt ^xdx\ V

ΖΛτ^: (y,xt) = -ap, (x,t)er2

= 0, (x,t)eyT,

= 0, (x,t)eyT,

(4.2)

p(x,T;v) = y(x,T;v)-zg, xeQ

Problem (4.2) has the unique generalized solution p(v) € L2(0,T;V) as the

unique one to the equality system

Ω
dt

(4.3)

Ω Ω
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Multiply the first equality of relations (4.2) (under ν = u ) in a scalar way

by the difference y{v) - y{u) and find the integral from 0 to Γ of the

result. Then, consider the equality

(Λ ^ (Λ '

-j(y(xJ',u)-zg)(y(x,T;v)-y(x,T;u))dx
Ω

and obtain the equality

τ
0 = j i ρ(μ), j f {y{v) - y(u))\ dt + a (p9 y(y) -y(u))-

g ) ( ) , (4.4)

Ω

where the bilinear form fl(v) is specified by expression (2.10).

Proceed from equation (2.3), and the equality

0 γ Ω

follows from equality (4.4), i.e.:

τ
j(y(x, T;u)-zg) (y(x, T; v)-y(x, Γ; uj)d χ = - J jp(u)(v - u)dy dt.

Ω 0γ

Then, inequality (1.35) has the form
τ
\\(-p + au)(v-u)dydt>0 (4.5)

for the optimization problem considered in the present point.
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Thus, the optimal control ue°lld is specified by relations (2.3), (2.4),

(4.3) and (4.5). If the constraints are absent, i.e. when % = W, then

equality (3.8) is obtained from inequality (4.5). If the solution (y,p)T to

problem (2.3), (2.4), (3.8), (4.3) is smooth enough on Ω / Γ , / = 1,2, then

the differential problem of finding the vector-function (y,p)T, that

satisfies the equalities

"I- Z f kg) = 0· (*')«Or.
ft £ & ( J a j

Σ *«/ r^- cos(v, χ,·) = - a p, (x,t)eTT,

= 0, [p] = 0, (x,t)eyT,

= ω+ρ/α, (x,t)eyT,

= 0, (x,

and
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y(x,O) = yo, p(x,T) = y(x,T)-zg,

corresponds to problem (2.3), (2.4), (3.8), (4.3).

5.5 CONTROL UNDER BOUNDARY CONDITION WITH
OBSERVATION UNDER CONJUGATION CONDITION

Assume that equation (1.1) is specified in the domain Ω Γ . The boundary

condition

(5.1)

is specified, in its turn, on the boundary Γτ, where u e L2{YT) · Ο*1 Ίτ >
the conjugation conditions are

JJ=\
= ω (5.2)

and the initial condition is specified by equality (1.5).
For every control ue°U = Ζ2(ΓΓ), determine a state y(x9t;u) as a

generalized solution to initial boundary-value problem (1.1), (1.5), (5.1),
(5.2). The cost functional is

T 2 T

J(u)= \\{y(;t\u)-zg^) dydt+ jjau2dTdt9 (5.3)
Ογ 0Γ

where 0 < a0 < a < αλ <οο5 a0, a{ = const, and it may be rewritten as

τ

J(u) = n(u,u)-2L(u)+ J

0 γ

in this case,
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π(«,ν)= f \(y(u)-y(O))(y(v)-y(O))dydt+ \\auvdTdt

Ογ 0Γ

and
τ

Ογ

The generalized problem corresponds to initial boundary-value problem

(1.1), (1.5), (5.1), (5.2) and means to find a function y(x9t;u)eW(09T)

that satisfies the following equations VW(JC) e Vo :

J—wdx + a(y, w) = (/,w) + |βvw/Γ + ΓuwdT - Jωιν^/γ (5.4)

Ω r r γ

and

jy(x,O;u)w(x)dx = jyo(x)w(x)dx; (5.5)
Ω Ω

in this case, the spaces W(0,T) and VQ are specified in point 5.2 and the

bilinear form a(·,·) is specified, in its turn, by expression (2.10).

Theorem 5.1. Initial boundary-value problem (LI), (L5), (5.1), (5.2)

has a unique generalized solution y(x, t;u)eL (0,Γ; V) \/u e °ll.

Proceed from equation (5.4) and the embedding theorems, and it is easy

to see that y(ui)&y(u2) under ux*u2. Let j / ' = y{u') and y" = y{un) be

solutions from Z2(0,T;F) to problem (5.4), (5.5) under / , ω and β = 0

and under a function u that is equal, respectively, to w'and u" Then, the

inequality

W n h A ( 5 · 6 )
is obtained from equation (5.4). Consider the embedding theorems, and
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is derived from inequality (5.6). The derived inequality provides the
continuity of the linear functional Z(·) and bilinear form π(ν) on °ll.

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 5.2. Let a system state be determined as a solution to problem

(5.4), (5.5). Then, there exists a unique element u of a convex set % that is

closed in % and relation (1.34) takes place for u, where the cost functional

has the form of expression (5.3).
As for the control V G W , the conjugate state p(y) is specified by the

relations

,Xi) = -ap, (x,t)eFT,

= 0, (x,i)syT,

y(v)-zg, (x,t)eyT,

(5.7)

ρ(χ,Τ) = 0, χ€Ω

Problem (5.7) has the unique generalized solution p{v) € I?(0,T;V) as the
unique one to the following equality system:

"Jf , (5.8)

Ω

jp(x,T;v)w(x)dx=0.

Ω
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Multiply the first equality of relations (5.7) (under v = u) in a scalar

way by the difference y{v) - y(u) and take the integral from 0 to Γ of the

result. Consider equality (1.39) and obtain the equality

τ τ
0= jL(u),jt(y(v)-y(u))\dt+ \a(p(u)9y(v)- y(u))dt +

τ
+ jj(y(u)-zg)(y(v)-y(u))dydt, (5.9)

oy
where the bilinear form is specified by expression (2.10).

Proceed from equation (5.4), and the equality

τ τ

0= jjp(u) (v-u)dTdt + jj(y(u)-zg)(y(v)-y(u))dydt,
0Γ 0γ

i.e.

τ τ

0 γ 0Γ

follows from equality (5.9). Then, inequality (1.35) has the form
τ

ί \{-p(u) + au){v-u)dY>0, V V G % , (5.10)

or
for the optimization problem considered in the present point.

Thus, the optimal control ΗΕ% is specified by relations (5.4), (5.5),

(5.8) and (5.10). If the constraints are absent, i.e. when ^ ='?/, then the

following equality is obtained from inequality (5.10):

u = p/a9 (x9t)eTT. (5.11)

If the solution (y,pf to problem (5.4), (5.5), (5.8), (5.11) is smooth

enough on Ω/ Γ, 7 = 1,2, then the differential problem of finding the
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vector-function (y,p)T, that satisfies the second and fourth equalities of
system (5.7), system (3.9), except its third, fourth, seventh and eighth
equalities, and the conditions

a, (x,t)eTT,

and

= ω, (x,t)eyT,

corresponds to problem (5.4), (5.5), (5.8), (5.11).
Remark. In Chapter 5 and in the nextcoming ones, the following is

assumed everywhere:

L2(DT) = \v(x,t): (y,v)fi{D) <oo,Vie[0,r],

in this case, DT = Dx(0,T).

1/2

V0

<oo



CONTROL OF A SYSTEM DESCRIBED BY A
PARABOLIC EQUATION IN THE PRESENCE OF

CONCENTRATED HEAT CAPACITY

Introduce the following denotations: Ω is a domain that consists of two

open, non-intersecting and strictly Lipschitz domains Ω^ and Ω 2 from an

«-dimensional real linear space Rn, Γ = (ΘΩΧ U 3Ω2)\γ (γ = δΩι Π

Γ)3Ω2 Φ 0 ) is a boundary of a domain Ω, 9Ω; is a boundary of a domain

Ω/5 ι = 1,2; Ω Γ = Ωχ(0,Γ) is a complicated cylinder; Γ Γ = Γ χ ( 0 , Γ ) is

the lateral surface of a cylinder Ωτ U JT > Yr = Υ χ (0> T).

Let V be some Hubert space and assume that V is a space dual with

respect to V. By analogy [58], introduce a space L (0,T;V) of functions

i-> f{t) that map an interval (Ο,Γ) into the space V of measurable

functions, namely, of such ones that

2 - <oo.

Also by analogy, specify the space l}(0,T;V). Introduce a space

W(0,T) = \feL2(0,T;V): —eL2(0,T;V')\ that is supplied with the

norm
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W(0,T) \\midt-
V.0

dt
dt

ν

1/2

< 00

and becomes the Hubert one.

6.1 DISTRIBUTED CONTROL

Assume that the parabolic equation

f

is specified in the domain Ω 7*, where

(1.1)

- =kn\-
Ω/ Jl Ω/

ktj ξι %j > α 0 Σ ξ?' νξ/' ξ / e Λ 1 ' ν * e Ω ' α ο = c o n s t > °;
/=1

οο,

The third boundary condition

(1.2)

is specified, in its turn, on the boundary Γτ = Γ χ (Ο, Τ), where

Ο < α° < α = α(χ), α, β

(1.3)

On yT, the conjugation conditions are [91, 21]

and
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c^-, 0<c0<c<c0, (1.4)
ot

where ceL2(y), [φ] = φ + -φ~, φ+ = {ψ}+ =φ(*>0 under (x,t)ejj- =

= (θΩ2Πγ)χ(0,Γ), φ- = {φΓ=φ(χ,0 under (x,t)ejj =

χ(Ο,Γ), γΓ=γχ(Ο,Γ),
Π

and v is an ort of a normal to γ that is called simply a normal to γ and it is
directed into the domain Ω 2 .

The initial condition

where y0eL2(Q), [yo] = O, M L 2 ( Y ) <°°> H i 2 ( y ) = j Jv dy \ , is

specified under t = 0.

Let there be a control Hubert space Μ and operator Be

For every control MGW, determine a system state j ; = ^(w) = y(x,t\ u)

as a generalized solution to the problem specified by the equation

and by conditions (1.2)—(1.5).
Specify the observation by the following expression:

Z(u) = Cy(u), Ce£(W(0,T);Jt). (1.7)

Specify the operator
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rfe&(W;W), (rfu9u)v>v0\\u\\y9 v0=const>0. (1.8)

Assume the following: J\fu = au\ in this case, α Ω / θ 0 ( Ω / ) ,

/ = 1,2; 0 < a0 < a < ax < oo, a0, ax= const. The cost functional is

where zg is a known element of the space 3€.

The optimal control problem is: Find such an element w e % that the

condition

J(u)= inf J(y) (1.10)

is met, where % is some convex closed subset in °ll.

Definition 1.1· If an element ue% meets condition (1.10), it is called

an optimal control.
The generalized problem corresponds to initial boundary-value problem

(1.6), (1.2)—(1.5) and means [21] to find a vector-function y(x9t;u) e
ei¥(0,T) that satisfies the following equations Vw(x)eFo =

fdy J f V^ / dy dw J C dy ,\—wdx+ > L·— dx+ \c—wdy +
Jdt J .4^ iJ δχ,-δχ* J dt

Ω Ω «,y=l J l γ

Γ Γ

and

fy(x,0; u) wdx+ \cy(x,§\ u)wdy =

Ω γ

Ω γ
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in this case, (φ,ψ)= jy(x,t)\\f(x,t)dx, F = {v(x,i): ν | Ω . e ^(Ω,·),

Ω

i = l, 2, Vie[0,Γ], [ν] = 0 >. Consider the existence and uniqueness of

the solution to problem (1.11), (1.12). Since Bu and / eL2(0,T;V),

then, without loss of generality, assume the following: Bu = 0.

The space Vo is complete, separable and reflexive [41, 55, 32].

Choose [41, 54] an arbitrary fundamental system of linearly
independent functions wk(x)9 A: = 1,2,..., in Vo.

Remark. Functions wk(x) may be chosen as eigenfunctions that

correspond to eigenvalues Xk, k = 1,2,..., of the spectral problem: Find

{X,u}elRlxV0, u*o\:a(u,w) = Xb(u,w), \/weV0, (1.13)

where

^ d= J
J xi

The bilinear form £(·,·) is symmetric and positively specified on the

complete Hubert space VB obtained by way of completing the set Vo as for

the norm | · | = 2r 2 ( v ) · In this case: Vo c VB c L2(Q). Therefore, spectral

problem (1.13) has a countable spectrum and the eigenfunction system

|w y (x) | for it is complete both in Vo and VB. Let this system be

orthonormal in VB so that 6(w ,̂W/) = o[ (δ£=1, δ [ = 0 under

i=\

where ξ,· =b(yo,wi), i = 1, 2,....

The approximate solution to problem (1.11), (1.12) is given as
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im{t)wi{x), (1.14)

where the functions gim (t) are chosen in such a way that the relations

) ^

( y ) ( y ) L 2 ( r ) , y = i ^ , (1.15)

and

( j ) { j ) L 2 { y y J = Um, (1.16)

where

(Φ»ψ)ΐ2(γ) = |φ( Λ »
γ

and

Ω /,ί=1 ^ 5 Χ / Γ

are met.
Equalities (1.15) and (1.16) specify the Cauchy problem for the system

of m first-order linear ordinary differential equations as for gim (t):

^ , ί€(0,Γ), (1.17)

in this case,

^ + Kmgm
at

M^gm(0) = F0

m; (1.18)
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=

It is easy to see that the solution gm(t) to problem (1.15), (1.16) exists and

that such solution is unique. The following statement must be proved:

ym->y under m->oo, where y = y{x,t) is the solution to problem

(1.11), (1.12).
Multiply equality (1.15) by gjm(t) and find the sum overy for the

result. Then:

i.e.:

}_d κ Π2 . 1 d

(1.19)

1/2
in this case, | φ | = (φ, φ)1/2 = |φ|(ί), Ι ^ φ Ι = ί ^ φ , ^ φ

= νοφ (0 . Take the ellipticity condition and generalized Friedrichs
II Ιΐζ,2(γ)

inequality [21] into account, and the inequality

a{ym,ym)^v<\\ymtv> a 1 = const>0, (1.20)

2 γ
is derived, where | |φ| | κ = j Σ Ι Φ Ι ^ ( Ω , ) ' ΙΗΙ ί̂Ω,) i s t h e n o r m o f t h e

Sobolev space W}(Q{), | φ | = | |φ | (ί).
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Consider inequality (1.20), the ε- and Cauchy-Bunyakovsky inequalities
and embedding theorems [55], and the inequality

' ^ ( r )

T

(Ό+2α, \\ymfvdt<

"^(y)
j\(f,ym)\ dt + 2

L2(Y)
2ε

dt<

0 0 0

( L 2 1 )

follows from equality (1.19); in this case, c[ = max c/ and the constant ci
/=1,2

is obtained from the inequality proved in the embedding theorem applied

for the domain Ω/. Proceed from equality (1.16), and

L2(y)

Proceed also from the ε- and Cauchy-Bunyakovsky inequalities, and the
inequality

>^(r)

is derived. Take it into account, and the inequality

J|^| | 2

F^<c| | |vJ2

 +
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follows from inequality (1.21). Therefore, the elements ym are in some

bounded subset of the space L (Ο,Γ; V). Hence, there exists a

subsequence {y%} that weakly converges to the element ζ in L2(0,T;V)

ί y% -> ζ e i} (0, Τ; V) 1. Without loss of generality, assume that the whole

sequence {ym} weakly converges to z.

Rewrite equality (1.15) as

multiply its both sides by the function

V(t)eCl([0,T])9 φ(Γ) = 0, (1.23)

and find the integral from 0 to Γ of the result:

τ
A-(ym(;t), *W)-(cym,v'j

0

in this case, φ.(χ9ί) = φ(ί)ννΛχ)9 φ'Λχ9ή = -^-\νΛχ).

By virtue of the aforesaid weak convergence, it is possible to pass in
equality (1.24) to the limit under m-»oo, and the following equality is
obtained:
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Consider the assumptions as for ί\νλ, and it can be seen that the matrix

M™ from condition (1.18) is identity (MQU =1, M ^ = 0 under i*j,

i,y = l,m). The equality gim(0) = b(y09wi)/b(wi9wi) follows from

condition (1.18), i.e. gim(0) (z = l,/w) are the Fourier coefficients for the

function y0. By virtue of [49]:

m

ym(x90) = ]Tgim(0) wax) ->yQ(x) under m -> oo.
i=l

Therefore: z(x9O) = yQ(x).

Equality (1.25) is true for the arbitrary function φ that meets conditions

(1.23). Thus, the following can be assumed: φ e D((0,T)) [58]. Then, the

equality

0

τ

0 0

follows from equality (1.25). Hence:
τ

\dA J

i.e.
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(1.26)

Take equality (1.26), the space VQ and assumptions as for the functions

Wj into account, and it is stated that the equality

(dz Λ ( dz λ . ,
— ,w + \c—,w\ +a(z,w) =

\dt ) \ dt )

(1.27)

is true Vw e F o . The following equality is derived from relation (1.16):

(1-28)

Therefore, the function z e l (Ο,Γ; V) is the solution to problem (1.11),

(1.12) V/ € L2(0,T; F') and under Bu = 0, i.e. to problem (1.27), (1.28).

Illustrate the uniqueness of the solution to problem (1.27), (1.28) by
contradiction. Let there exist two solutions: Zj(x,i) and z2(x,t)e

e L2(0,T;V). Then, on the basis of equality (1.27), the equality

| | ( ο ζ , ζ ) ^ ( γ ) + 2α(ζ,ζ) = 0 (1.29)

is obtained, where ζ = ζγ-ζ2.

Consider equality (1.28), and the contradiction
τ

0<(z,z)(T) + (cz9z)h(y)(T) + a0j\\zfvdt<09 oc0 = const>O,
ο

follows from equality (1.29).
Therefore, the validity of the following statement is proved.
Theorem 1.1. Initial boundary-value problem (1.1)-(1.5) has a unique

generalized solution y(x, t) e Z?(0, Τ; V).
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Let y' = y(u') and y" = y(u") be solutions from L2(0,T;V) to

problem (1.11), (1.12) under / = 0 and β = 0 and under a function

u = u(x,t) that is equal, respectively, to «'and u". Then, the inequality

is obtained for Bu = u. Therefore,

where
τ τ

ο Ω ο
Rewrite functional (1.9) as

τ

J(u) = n(u9u)-2L(u)+ §\zg-y(0)f dt, (1.31)

ο
where

n(u,v) = (y(u)-y(0\ y(v)-y(0)) +{au,v) , (1.32)

in this case,

r

(ζ, ν ) ^ = (ζ, ν)^ = j(z, ν) Λ, (z, v) = §zv dx .

0 Ω

Inequality (1.30') provides the continuity of the linear functional

and bilinear form π(·,·) on W.

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.
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Theorem 1.2. Let a system state be determined as a solution to problem

(1.11), (1.12). Then, there exists a unique element u of a convex set 9/d

that is closed in °U, and

J(u) = inf J(v) (1.33)

takes place for u.

A control u e % is optimal if and only if the following inequality is

true:

(y(u)-
g9

. (1.34)

As for the control v e i / , the conjugate state p(v) is specified by the

relations

—-cos(v,xi) = -ap, (x,t)eTT,

= 0, (x,t)eyT,

dp_
v dx,

ij-l "J

=-c|, Μ (1.34')

Substitute a time Τ -t for the time t, proceed from Theorem 1.1, and it is
concluded that initial boundary-value problem (1.34') has the unique

generalized solution p(v) e I?(0,T;V) as the unique one to the following

equality system:

(d / x ^ t dp , f f , dp dw ,
- —p(v),w\- \c—wdy+ > L·— dx +

Ui ) J dt J . ^ lJ δχ,-δχ;
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= (y(v)-zg,w), (1.35)

\p(x,T;v) wdx+ \cp(x,T;v) wdy = 0. (1.36)

Ω γ

Choose the difference y(v) — y(u) instead of w in equality (1.35),

consider equation (1.11), and the equality
τ
j(y(u)-zg,y(v)-y(u))dt =

dt +

τ

ja(p(u),(y(v)-y(u)))dt =

(u), y(v)-y(u

J [p{u), jf (y(v) - y(u)^j + [c p(u), ̂  j

Γ Γ

+ ja(p(u),y(v)-y(u))dt = j(p(u), v-u)dt

is obtained, i.e.

τ
j(y(u)-zg,y(v)-y(u))dt= j(p(u), v-u)dt. (1.37)

0 0

Therefore, inequality (1.34) has the form
τ

(u) + au,v-u)dt>0, \/ve%. (1.38)
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Thus, the optimal control ue^ is specified by relations (1.11), (1.12),

(1.35), (1.36) and (1.38).
If the constraints are absent, i.e. when %=%, then the equality

is obtained from inequality (1.38). The optimal control

u = -p/a, (x,t)eQT, (1.39)

is found from the latter equality. If the solution (y,p) to problem (1.11),

(1.12), (1.35), (1.36), (1.39) is smooth enough on Ω / Γ , viz., ^ U / r ,

p\h e Clfi(QlT) Π C2>°(QlT)f) C°>l(QlT), / = 1,2, then the differential

problem of finding the vector-function (y,p)T, that satisfies the equality

system

, (x,t)eTT,

-^-cos(y,xi) = -ap, (x,t)eTT,

.«,7=1

= 0, (x,t)eyT,

—, (x,t)eyT,
at

(1.40)
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φ
dt'

y(x,O) = yo, p(x,T) = O, xeQ

corresponds to problem (1.11), (1.12), (1.35), (1.36), (1.39), where the
control u = u(x,t) is found by formula (1.39).

6.2 CONTROL UNDER CONJUGATION CONDITION
WITH OBSERVATION THROUGHOUT A WHOLE
DOMAIN

Assume that equation (1.1) is specified in the domain Ω Γ . On the

boundary Γτ, the boundary condition has the form of expression (1.2).

For every control u e 11 = L2(jx), determine a state y = y(u) as a
generalized solution to the initial boundary-value problem specified, in its
turn, by equation (1.1), boundary condition (1.2), initial condition (1.5) and
the conjugation conditions

[y] = 0, (x,t)eyT, (2.1)

and

3y

ot

3y . .

ot
(2.2)

The generalized problem corresponds to initial boundary-value problem
(1.1), (1.2) (1.5), (2.1), (2.2) and means to find a function
y(x,t;u) e W(0,T) that satisfies the following equations Vw(x) e Vo:

f—wdx+ [c— wdy+ \
idt J dt J

Ω γ Ω
J .4,

Ω '.7=1

i— dx+ \aywdT =
J dx: dxt J y

^ ' Γ
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\ (2.3)

γ Γ

and

Ω

ly(%,0; u)wdx+ \cy(x,O; u)

γ

= J yowdx + jc yowdy . (2.4)

Ω γ

The following statement takes place.
Theorem 2.1. Initial boundary-value problem (1.1), (1.2), (1.5), (2.1),

(2.2) has a unique generalized solution y(x, t\ u) e W(0, T) Vw G °U.

The validity of Theorem 2.1 is stated by analogy with the proof of
Theorem 1.1.

If y' = y(uf) and y" = y{u") are solutions to problem (2.3), (2.4) under

/ = 0 and β = 0 and under a function u that is equal, respectively, to u' and

w", then the inequality

-?1 (2.4·)

is derived, where c0 is the constant obtained from the inequality of the

embedding theorem [55].
Therefore, here is the inequality

| | i <cA\uf-u"\\T , w , (2.5)| | j )^ i T / T
IK J WXL2

τ

where II φ II r , , T = | | | φ | | Γ . Μ and from which the inequality
0

||^-^1L τ <cAu'-u\ , , T (2.6)
11^ -̂  " ^ 2 X ^ 2 l! "^2(Υ) Χ ^2

follows that provides the continuity of the linear functional Z(·) and
bilinear form π(·,·) on ^. In this case, the linear functional LQ) and bilinear
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form π(ν) are specified by expressions (1.32), where (aw,v)^ =
τ

= \\auvdydt.

ΟΥ

Specify the observation in the form of expression (1.7), where
Cy(u) = y(u). Bring a value of cost functional (1.9) in correspondence

with every control wei/; in this case, zg is a known element from

Ζ2(0,Γ; V) and the cost functional is

τ τ

j(u)= ί \(y(u)-zgfdxdt+ \\au2dydt, (2.7)

ΟΩ Ογ

where 0 < a0 < a < ax < oo; a0, ax = const, a e L2(y).

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 2.2. If a system state is determined as a solution to problem

(2.3), (2.4), then there exists a unique element u of a convex set %$ that is

closed in % and relation (1.10) takes place for u, where the cost functional

has the form of expression (2.7).

As for the control ν e °U , the conjugate state p(v) is specified by system
(1.34'), for which the generalized problem is written by equality system
(1.35), (1.36). Choose the difference y(v)-y(u) instead of w in equality
(1.35), consider equation (2.3), and the equality

τ τ, ν

I(y(u)-zg9y(v)-y(uj)dt = - jl— p(u), y(v)-y(u)}dt-
0 0

τ τ
-llc-£(y(v)-y(u))dydt+la(p(u),y(v)-y(u))dt =

Ογ Ο

= - { (P(u),y(v) - y(u)) + (cp(u),y(v) -
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ί (ρ(μ), 4 ΟΌΟ - )
A 2 (Y)

Ο

is obtained, i.e.

Ογ

τ

(u) - zg,y(v) - y(u))dt = - J(v - κ, /K"
0 0

Therefore, the necessary condition for the optimality of the control u is
τ

i + au)(v-u)dydt>0, \/ve%. (2.8)

Ογ

Thus, the optimal control ue% is specified by relations (1.35), (1.36),

(2.3), (2.4) and (2.8). If the constraints are absent, i.e. when %=9/9 then

the equality

-p(u) + au = 0, (x,t)eyT, (2.9)

is obtained from condition (2.8) and the optimal control

u = p/a, (x9t)eyT9 (2.10)

is found from equality (2.9).

If the solution (y,p)T to problem (1.35), (1.36), (2.3), (2.4), (2.9) is

smooth enough on Ω/ Γ, viz., y h ρ s € ^ ° ( Ω / Γ ) Π C2>°(QlT)f)
ιιτ

), / = 1, 2, then the equivalent differential problem of finding

the vector-function (y,p)T, that satisfies the system specified by equalities

(1.1), (1.2), (1.5), (2.1) and (1.34') and by the constraint

= c—+p/a, (x,t)eyT,
ot

(2.11)
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corresponds to problem (1.35), (1.36), (2.3), (2.4), (2.9), where the optimal
control is found by formula (2.10).

6.3 CONTROL UNDER CONJUGATION CONDITION
WITH BOUNDARY OBSERVATION

For every control ue% = L2(yT), determine a state y{x,t\u) as a

generalized solution to the initial boundary-value problem specified by

equation (1.1), boundary condition (1.2), initial condition (1.5) and

conjugation conditions (2.1) and (2.2). The cost functional is

τ τ

j(u)= f \(y(u)-zgfdTdt + f \au2dydt. (3.1)

0Γ 0 γ

The generalized problem corresponds to initial boundary-value problem
(1.1), (1.2), (1.5), (2.1), (2.2) and means to find a function y(x,t;u)e

G W(0,T) that satisfies equations (2.3) and (2.4) Vw e V0; in this case, the

spaces W(0,T) and V0 are specified in point 6.1. Theorem 2.1 takes place.

Consider the embedding theorems, and the inequality

i.e.

w h e r e IML2(r)xL2
0 Γ

derived from inequality (2.5).
The derived inequality provides the continuity of the linear functional

Z,(·) and bilinear form π(ν) on % for the representation

J(u) = π(«,u) -2L(u) + \\zg -y(O)fLiir) (3.3)
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of cost functional (3.1), where

and

in this case,

Ογ

ί«= ^Φ'ψ^σν
ο

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 3.1. Let a system state be determined as a solution to problem

(2.3), (2.4). Then, there exists a unique element u of a convex set %$ that is

closed in % and relation (1.10) takes place for u, where the cost functional

has the form of expression (3.1).
As for the control v e W , the conjugate state p(v) is specified by the

equalities

dt

ij=\

-^-cos(v,^) = -ap+y-zg, (x,t) eΓ>

= 0, (x,t)eyT,

dp . .
= - c—, (x,0eyr, (3.4)
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Problem (3.4) has the unique generalized solution p(v)eW(0,T) as the

unique one to the following equality system:

wdx \cwdy + \ V L·- \—wdx- \c—wdy + \ V L·— dx + \apwdT =
Jdt J dt r J .4-1 J dxf dxt J p

Ω γ Ω ί,7=1 J l Γ

(3.5)

(3.6)

Ω

It is easy to state the existence of the unique solution p(v)eW(0,T) to

problem (3.5), (3.6).
Choose the difference y(v)-y(u) instead of w in equality (3.5),

consider equation (2.3), and the equality
τ

ο
. τ

(«), y(v) - y(uj) + (c p(w), y(v) - y(u)
ο

dt ++ Η[ /?(«), — (y(v)-y(u))) + \cp(u),—(y(v)-y{u)) I I

0

J l · dt J Κ dt JL2(y)\
τ τ

+ ja(p(u\ y{y) - y(u))dt = -j^(v-u)p{u)dydt

0 Oy

is obtained, i.e.
τ τ

](y(u) -zg,y(v) -y(M))Li{T) dt = - J(v-u,p(u)) L 2 ( y ) dt. (3.7)

ο ο
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Therefore, the necessary condition for the optimality of the control u is
τ

\\(-p(u) + au)(v-u)dydt>0, \/ve%. (3.8)

Ογ

Thus, the optimal control ue% is specified by relations (2.3), (2.4), (3.5),

(3.6) and (3.8). If the constraints are absent, i.e. when °lld=
all, then

equality (2.9) is obtained from condition (3.8). The optimal control u in the
form of equality (2.10) is derived from equality (2.9).

If the solution (y,p)T to problem (2.3), (2.4), (3.5), (3.6), (2.9) is

smooth enough on Ω/ Γ, / = 1,2, then the equivalent differential problem
τ

of finding the vector-function (y,p) , that satisfies the system specified
by equalities (1.1), (1.2), (1.5), (2.1), (2.11) and (3.4), corresponds to
problem (2.3), (2.4), (3.5), (3.6), (2.9), where the optimal control is found
by formula (2.10).

6.4 CONTROL UNDER CONJUGATION CONDITION
WITH FINAL OBSERVATION

For every control ue°ll = L2(yT), determine a state y(u) as a generalized
solution to the initial boundary-value problem specified by equation (1.1),
boundary condition (1.2), initial condition (1.5) and conjugation conditions
(2.1) and (2.2).

The cost functional is

τ

J(u)= j(y(x,T;u)-zg(x)fdx + ^au2dydt, (4.1)
Ω Ογ

where 0 < a0 < a < ax < <x>; a 0 , ax = const, and it may be rewritten as

J(u) = n(u,u)-2L(u)+ j(zg(x)-y(x,T;0)fdx;
Ω

in this case,
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n(u,v) = (y(;T;u)-y(;T;O),y(;T;v)-y(;T;O)) +

τ

+ \\auvdydt, (4.1')

Ογ

L(v) = (zg(-)-y(;T;0),y(;T;v)-y(;T;0)).

The generalized problem corresponds to initial boundary-value problem
(1.1), (1.2), (1.5), (2.1), (2.2) and means to find a function y(x,t;u)e

eW(0,T) that satisfies equations (2.3) and (2.4) \/w(x)eV0. The

existence of the unique generalized solution to problem (1.1), (1.2), (1.5),

(2.1), (2.2) V w e t is provided by Theorem 2.1. If y' = y(u')

and y" = y(u") are solutions from W(0,T) to problem (2.3), (2.4) under

/ = 0 and β = 0 and under a function u that is equal, respectively, to uf

and u\ then inequality (2.5) is true. Proceed from inequality (2.4'),
consider equation (2.4) and derive the inequality

||v'-v12m<2||w'-w'1L , , T

< 2c0\\u' - u\iy)xL2 \\y' -y\xL2 < 2c,cx \u' -

i.e. the inequality

y'-y"\\ (T)<c2\\u'-u"\\ (4.2)

is thus obtained that provides the continuity of the linear functional

and bilinear form π(·,·) on W. In this case, the linear functional Z(·) and

bilinear form π(·,·) are specified by expressions (4.Γ). On the basis of [58,

Chapter 1, Theorem 1.1], the validity of the following statement is proved.

Theorem 4.1. If a system state is determined as a solution to problem

(2.3), (2.4), then there exists a unique element u of a convex set % that is

closed in °l/, and relation (1.10) takes place for u, where the cost
functional has the form of expression (4.1).
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As for the control V G 1 / , the conjugate state p(v) is specified by the
equality system

—cos(v,xi) = -ap, (x,t)erT,
• · ι

= 0, (x,t)eyT,

Φ

(4.3)

x* ey,

where δ is the Dirac delta-function. Problem (4.3) has the unique
generalized solution as the unique one to the following equality system:

dx

Ω *,y=i

0, VweFo, i e ( 0 , r ) ,

Ιρ(χ,Γ;ν)ννί/Λ:+ φ(χ,Γ;ν)>νίίχ: =

Ω γ

= j(y(v)-zg)wdx, t = T.

(4.4)

(4.5)

Ω

Choose the difference y(v) - y(u) instead of w in system (4.4), consider

equations (2.3) and (2.4), equality (4.5), and the equality
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) τ

+ »(n), r^JZ^rZATZ L/i+ cp^Z^LL^^yiL I j i +

J^ \ dt dt J) J{ dt dt

+
Ω 1,7=1 " J l

= -(y(u)-zg,y(v)-y(u))(T)-

Ογ

is obtained, i.e.
τ

(y(u)-zg,y(v)-y(u))(T) = -^(p(u\v-u)L2Mdt. (4.6)

0

Therefore, the necessary condition for the optimality of the control u is

>0, Vve%. (4.7)

Thus, the optimal control « e t 3 is specified by relations (2.3), (2.4), (4.4),

(4.5) and (4.7). If the constraints are absent, i.e. when W3 = W, then the

equality

-p + au = 0, (x,t)eyT, (4.8)

is obtained from condition (4.7). If the solution (y,p)T to problem (2.3),

(2.4), (4.4), (4.5), (4.8) is smooth enough on Ωιτ, 1 = 1,2, then the

equivalent differential problem of finding the vector-function (y,p) 9 that
satisfies the system specified by equalities (1.1), (1.2), (1.5), (2.1), (2.11)
and (4.3), corresponds to problem (2.3), (2.4), (4.4), (4.5), (4.8), where the
optimal control is found by formula (2.10).
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6.5 CONTROL UNDER BOUNDARY CONDITION WITH
OBSERVATION UNDER CONJUGATION CONDITION

Assume that equation (1.1) is specified in the domain Ω Γ . The boundary

condition
η ~

(5.1)

is specified, in its turn, on the boundary Γτ, where u e L2(TT). On yT,

the conjugation conditions are

[y] = 0 (5.2)

and

η
ι rt\) n\)

(5.3)

and the initial condition is specified by equality (1.5).

For every control u e% = L2(TT), determine a state y{xj\u) as a

generalized solution to initial boundary-value problem (1.1), (1.5),

(5.1)—(5.3). The cost functional is

τ τ

J(u)= jj(y(-9t;u)-zg(;t))2dydt+ jjau2dTdt9 (5.4)

Ογ 0Γ

where 0<α$<α <ai <co; αο, αι = c o n s t , and it may be rewritten as

τ

Ογ

in this case,

π(ΐι,ν)=

0 γ

τ

jjauvdTdt
ΟΓ
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and

τ

L(v)= H{zg-y(O))(y(v)-y(O))dydt.
Ογ

The generalized problem corresponds to initial boundary-value problem
(1.1), (1.5), (5.1)—(5.3) and means to find a vector-function
y(x,t;u) e W(0,T) that satisfies the following equations Vw(i) e Vo :

Cdy ι f dy , /\-^-wdx+ Xc-^-wdy+ a{y,w) =
J dt J dt

Ω γ

(5.5)

and

Ι^(Λ:,0;·)>νώ:+ cjy(;c,O;-)>v£/y = ly o (x)wJx+jc^o^^Y· (5-6)

Ω γ Ω γ

Theorem 5.1. Initial boundary-value problem (1.1), (1.5), (5.1)-(5.3)
has a unique generalized solution y(x, t\ u) e W(0, T) Vw e °l/ .

Let y' = y(u') and y" = y(u") be solutions from W(0,T) to problem

(5.5), (5.6) under / = 0 and β = 0 and under a function u that is equal,

respectively, to u' and u". Then, the inequality

L (5.7)
2 v '

L , < C i L w
VxL2 l"

is obtained from equation (5.5). Consider the embedding theorems, and the
inequality

W-y"\T ,Λ τ <*c2\u'-un\T ίΓΛ τ (5.8)

is derived from inequality (5.7).
The derived inequality provides the continuity of the linear functional

L() and bilinear form π(·,·) on W.

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.
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Theorem 5.2. Let a system state be determined as a solution to problem

(5.5), (5.6). Then, there exists a unique element u of a convex set % that is

closed in % and relation (1.10) takes place for u, where the cost functional

has the form of expression (5.4).
As for the control ν e °ίί, the conjugate state p(v) is specified by the

equality system

-*-y.^k-*-i-a i € !

ι,Μ

kij—cos(v,Xi) = - (x,t)e]

= 0,

Φ

(5.9)

p(x,T\ ·) = 0,

Problem (5.9) has the unique generalized solution p(v) e W(0,T) as the

unique one to the following equality system:

Ω

\p(x,T;v)wdx+ \cp(-9T;v)wdy = 0. (5.11)

Ω

Choose the difference y(v) - y(u) instead of w in equality (5.10), consider

equations (5.5) and (5.6), equality (5.11), and the equality
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τ

(Μ), y(y) - y(u)) + (cp, y(v) - y(u)). ( γ ) }

Τ ,

ο χ ο χ

τ τ
dt

0 0

is obtained, or
τ τ

- j{yw - w ( v ) - yw)L2(y)dt = J ( ( v " ^p^Kir)dt ·
0 0

Therefore, the necessary condition for the optimality of the control u is

(5.12)

Thus, the optimal control w e ^ is specified by relations (5.5), (5.6),

(5.10), (5.11) and (5.12). If the constraints are absent, i.e. when % = °il,

then the equality

-p + au = 0, (x,t)eTT, (5.13)

is obtained from condition (5.12). If the solution (y,p) to problem (5.5),

(5.6), (5.10), (5.11), (5.13) is smooth enough on Ωιτ, 7 = 1,2, then the

equivalent differential problem of finding the vector-function (y,p) , that
satisfies the system specified by equalities (1.1), (1.5), (5.2), (5.3) and (5.9)
and by the constraint

¥ pla, (x,t)eTT, (5.14)
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corresponds to problem (5.5), (5.6), (5.10), (5.11), (5.13), where the
optimal control is found by the formula

u = p/a, (x9t)eTT. (5.15)

6.6 BOUNDARY CONTROL WITH FINAL OBSERVATION

Assume that equation (1.1) is specified in the domain Ω Γ . On γ Γ , the
conjugation conditions are specified by constraints (1.3) and (1.4). The
initial condition has the form of expression (1.5), and the boundary
condition for concentrated heat capacity [91]

(*,f)eI>, (6.1)

is specified on the boundary Γ Γ , where the coefficient α = α(χ) is

specified, in its turn, in point 6.1, 0<CQ <C$ = CQ(X), C Q G Z 2 ( F ) ,

For every control u e W, determine a system state y = y(u) = y(x,t\u)
as a generalized solution to the initial boundary-value problem specified by
controls (1.1), (1.3)—(1.5) and (6.1). Specify the observation by the
expression

Z(u) = Cy(u), Cy(u) = y(x,T;u), J C G ^ U ^ . (6.2)

The cost functional is

τ
J(u)= j(y(xj;u)-zg(x)fdx+ jjau2dTdt, (6.3)

Ω 0Γ
where 0 < a0 < a < ax < oo; a0, ax= const , and it m a y b e rewritten as

J(u) = π(ΐι, u) - 2L(u) + j(zg (x) - y(x, T; 0)fdx; (6.3')

Ω
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in this case,

or
and

The generalized problem corresponds to initial boundary-value problem
(1.1), (1.3)—(1.5), (6.1) and means to find a vector-function
y(x,t;u) e W(0,T) that satisfies the following equations \/w(x) e Vo :

J dt Jdt J .4-1 'y cbcy cbcf J Λ
Ω Ω ij=l -̂  ' Γ

+ \c —wdy + Ja^wi/Γ = (/, w) + Γβινέ/Γ + \uwdT (6.4)

γ Γ Γ Γ

and

iy(jt,O;tt)wi£t+ \cy(x,0;u)wdy + \c0y(x,0;u)wdT =

Ω γ Γ

= p 0 W w ^ + |ςνο^Υ+ J^o^o^r · (6·5)
Ω γ Γ

The forthcoming statement takes place.
Theorem 6.1. Initial boundary-value problem (1.1), (1.3)-(L5), (6.1)

has a unique generalized solution y(x,t;u) e L (09T\V).

The validity of Theorem 6.1 is stated by analogy with the proof of
Theorem 1.1.

Remark. When Theorem 6.1 is proved, functions Wj(x) maybe chosen

as eigenfunctions that correspond to eigenvalues λ^, 7=1,2,..., of the

spectral problem: Find

} w)9 VweF 0 ,
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where

and

b(u, v) = («, ν) + («ι, v 2 ( γ ) (

Let y' = y(u')mdy" = y(u") be solutions from L2(0,T;V) to problem

(6.4), (6.5) under / = 0 and β = 0 and under a function w that is equal,

respectively, to u' and u". Then:

\\u' - u\(r) w - Ϊ
Find the integral of inequality (6.6) over the interval (0, 7), and the
inequality

\\y' - yf (Ό+!>£ (y' - yif (Ό+\\^ (y' - ?)( (T)+
" M " "

-~-'^iL2^oll«'-«l2(r)xi2ll^-^1U (6·7>
is obtained from inequality (6.6). Since the inequality |.y'-".y"||FxZ/ ^

< —— |w' - u"\\r ~ is true, then the one, i.e.

is derived from inequality (6.7).
The derived inequality provides the continuity of the linear functional

L(·) and bilinear form π(·,·) on W for representation (6.3') of cost

functional (6.3). On the basis of [58, Chapter 1, Theorem 1.1], the validity

of the following statement is proved.
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Theorem 6.2. If a system state is determined as a solution to problem
(6.4), (6.5), then there exists a unique element u of a convex set %$ that is

closed in % and relation (1.10) takes place for u, where the cost functional
has the form of expression (6.3).

As for the control v e t , the conjugate state p(v) is specified by the
equality system

^ , (x,t)erT,
i,j=\

= 0, (x,t)eyT,

dt'

(6.9)

p(x,T; -) + b(x-x')cp(x,T·, ·) + δ(χ-χ")αορ(χ,Τ; -) = y(v)-zg,

j , χ'€γ, χ"eT,

where δ is the Dirac delta-function.
Problem (6.9) has the unique generalized solution as the unique one to

the following equality system:

\ ^ (p,w) = O, (6.10)T>w) \ c ^ y \co^dt ) J dt J dt
γ Γ

\p(x,T;v)wdx+ \cp(x,T;v)wdy

Ω

g) (6.11)

Γ Ω

Choose the difference y(v) - y(u) instead of w in equality (6.10), consider

equations (6.4) and (6.5), equality (6.11), and the equality
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-(/>(")» yiy) - y(u))+(Φ, J<V) - ^(w))L 2 ( Y )

+
0

τ ,
+

ι cf d / \
)-y(u)) \dt+\\cp, — (y(v)-y(u)) dt +

) l\ d t )L2(y)

+ ([ cop, — (y(v) - y(u)) dt+\a (p, y(v) - y(u)) dt =

= -(y(u)-zg9y(v)-y(u)){T)-

τ

0

is obtained, i.e.

(y(u)-zg,

Therefore, the necessary condition for the optimality of the control u may
be written as follows:

2>0 \/ve%. (6.12)

Thus, the optimal control ue% is specified by relations (6.4), (6.5),

(6.10), (6.11) and (6.12). If the constraints are absent, i.e. when% = W,

then the equality

au = 0, (x9t)eTT, (6.13)

is obtained from condition (6.12). If the solution (y,p) to problem (6.4),

(6.5), (6.10)—(6.12) is smooth enough on Ω/ Γ, / = 1,2, then the equivalent

differential problem of finding the vector-function (y,p)T, that satisfies

the system specified by equalities (1.1), (1.3)—(1.5) and (6.9) and by the

constraint
η

dy & ,_
—::1-cos(v,x/) = -ay-Co — + p-p/a, (x,^)eyr,

i,j=\
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corresponds to problem (6.4), (6.5), (6.10)-(6.12), where the equality
u = -p/a, (x,t)eTT,

specifies the optimal control u for the considered system.



CONTROL OF A SYSTEM DESCRIBED BY A
PSEUDOPARABOLIC EQUATION UNDER

CONJUGATION CONDITIONS

Let there be the following denotations: Ω is a domain that consists of two

open, non-intersecting and strictly Lipschitz domains Qj and Ω 2 from an

«-dimensional real linear space Rn; Γ=(δΩι[]δΩ2)\γ (γ=5ΩιΠ

Π5Ω2 Φ 0 ) is a boundary of a domain Ω, 3Ω, is a boundary of a domain

Ω,, i = 1,2, Ωτ = Ω χ (0, Γ) is a complicated cylinder, Γτ = Γ χ (0, Τ) is

the lateral surface of a cylinder Ωτ U JT ·> Ίτ - Υ χ (0? Τ).

Let F be some Hubert space and assume that V is a space dual with

respect to V. By analogy [58], introduce a space I?(0,T\V) of functions

i - > / ( 0 that map an interval (0,7) into the space F of measurable

functions, namely, of such ones that

V/2
\dt <οο.

VO

Also by analogy, specify the space i} (0,T;V). Introduce a space
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7.1 DISTRIBUTED CONTROL

Assume that the pseudoparabolic equation [67]
/ ^ λ

η ~

-Ύ —
rr1* dxi
«,7=1 '

lJ dxjdt

is specified in the domain Ωτ, where

Ω/

o, 0<a0<a<co,

ι,7=1 ϊ=1

α0, α 0 , αχ, α'ο, α\ = const > 0.

The boundary condition

ah :+V (1.2)

is specified, in its turn, on the boundary Γ^, where α = α(χ) >

> α° > 0; α, β 61 2 (Γ); α° = const; and v is an outer normal.

On yT, the conjugation conditions are

a
y +kn

lJ

dy

U=l
dXidt Jdx,-

cos(v,x() = 0 (1.3)

and
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.--.-,-..,, =r[y]9 (1.4)

where 0<r=r(x)<rl<co; r^const, [φ]=φ + -φ~; φ + Η

under (χ, t)ey^ = (9Ω2 Π γ) x (0, Τ); φ" = {φ}~ = φ (χ, i) under (x, t) e

e γ^ =(5Ω1Πγ)χ(0,Γ), ν is a normal to γ (an ort of a normal to γ) and

such normal is directed into the domain Ω 2 .

The initial condition

where y0 e Vo = |v(x): ν | Ω G wliQ), i = 1,2>, is specified under t = 0.

Let there be a control Hubert space °U and operator Be

e W^;Z 2 (0,r ;F')V For every control weW, determine a system state

y = y(u)= ^(^^;w) as a generalized solution to the problem specified by

the equation

(1.6)

where

A(z) = - > — Λ,, + az, K(z) = - > — (1.7)

and by conditions (1.2)—(1.5). Further on, without loss of generality,
assume Bu = u and, for the sake of simplicity, use the denotation
y = y(x,t).

Specify the observation by the following expression:

Z(u) = Cy(u\ Ce£(W(0,T);Jf). (1.8)

Specify the operator

Λ G £(%;%); (Λη,η)^ > v0 | n | ^ , v0 = const > 0. (1.9)
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Assume the following: Jiu = au\ in this case, α

/ = 1,2; 0 < α0 — # — &\ < °°> ô» ^l = c o n s t · The cost functional is

(1.10)

where zg is a known element of the space JK

The optimal control problem is: Find such an element ue.%1 that the
condition

J(w)=infJ(v) (1.11)

is met, where °lld is some convex closed subset in °ll.

The generalized problem corresponds to initial boundary-value problem

(1.6), (1.2)—(1.5) and means to find a function y(x,t;u)eW(0,T) that

satisfies the following equations Vw(x) e Vo = Iv: ν Ω .e w\{^i)9 * = 1>2|:

, ίΕ(Ο,Γ), (1.12)

and

in this case,

«o

' • * • -j
QW=1

dXj

(1.13)

dx, (1.13')

a(y,w)= i Y!*i/a ^ ~ ί & + ίΓ[>Ή^]ί/γ+ \aywdr, (1.13")
J .r^, d* ,· fix,· J J
Ω i,y=i

ψ\{Ω{) is the space of the Sobolev functions that are specified on the

domain Ω/ 5 i = l,29 and, when the space W(0,T) is specified, then the
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space V is r = {v(^,i):v|Qie^2

1(Q/), ι = 1,2; Vfe[O,r]}, (φ,ψ)=

Ω

Consider the existence and uniqueness of the solution to problem (1.12),

(1.13). Since Bu and / e L2(0,T; V) and V = { v(x9t): (v,v)<oo,

V i e ( 0 , r ) } , then, without loss of generality, assume the following:

The space Vo is complete, separable and reflexive [41, 49, 55]. Choose

an arbitrary fundamental system of linearly independent functions

wk(x), k = 1,2,..., in F<>. Let this system be orthonormal in L2(Q) so that

{wk>wl) = ^lk ( δ | =1, δ^ = 0 under l*k; /,/r = l,2,...). As for yoe

€ ^ ( Ω ) [49]:
00

Λ=Σξ/^(*)> (1.14)

where ξ, =(^0?^/)' z = l' 2, ....

Remark. Functions Wj(x) may be chosen as eigenfunctions that

correspond to eigenvalues λ ; , j = 1,2,..., of the spectral problem: Find

(X,u)e\Rl xF 0 , w^o|:ao(w,w) = X(w,w), VWGFQ.

The approximate solution to problem (1.12), (1.13) is given as

1=1

where the functions gim(t) are chosen in such a way that the relations

^ ^ r , y = l^i, (1.16)
r

and
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J = Ut, (1-17)

are met. Equalities (1.16) and (1.17) specify the Cauchy problem for the
system of m first-order linear ordinary differential equations as for gim(t):

Mm^ + Kmgm=Fm(t), (1.18)

M^gm(0) = F°; (1.19)

in this case,

i9j=\ J

\i=i,f$={yQ,wi),Ml-

Since the bilinear form a o (v) is F-elliptic on VQ, then the symmetric

matrix Mm is positively specified. In this case: \v\y = < /]^lwifnA

Ι ί=ΐ 2

Therefore, the solution to Cauchy problem (1.18), (1.19) exists and such

solution is unique. The following statement must be proved: ym —» y

under m -» oo, where y = y(x,t) is the solution to problem (1.12), (1.13).

Multiply equality (1.16) by gim(t) and find the sum overy for the result.

Then:

i.e.:

1 d
(1.20)
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Take conditions (1.Γ) and the generalized Friedrichs inequality [21]
into account, and the inequalities

0

\\ a n d a

are derived, where c0 = min{ao,ao}> c\ = ^ α ι m i n ( l> μ) > μ is the positive

constant from the generalized Friedrichs inequality and | φ | | = (φ,φ) 1 / 2 =

xl/2

νΩ j

Consider inequalities (1.21), the ε- and Cauchy-Bunyakovsky
inequalities and embedding theorems [55], and the inequality

τ

Τ 7

+21 | β y m dY dt < c'o\\yX (0) + 2ε J|^m| | ' dt + j - dt

o
τ

(1.22)

follows from equality (1.20); in this case,

= ίφ 2 (χ,0^Γ, q = m a x c / and the constant q is obtained from the

r
inequality proved in the embedding theorem applied for the domain Ω/.

Proceed from equality (1.17), consider the first condition from

assumptions (1.1'), boundedness of the functions ay and a on

Ω/, / = 1,2, and the Cauchy-Bunyakovsky inequality, and here is the

conclusion:
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i.e.:

(1.23)

Take inequality (1.23) into account, and the inequality

<c

follows from inequality (1.22).

Therefore, the elements ym are in some bounded subset of the space

L 2 (0,r;F). Hence, there exists a subsequence iy%\ that weakly converges

to the element ζ Ε I?(Q,T;V). Without loss of generality, it is stated that

the whole sequence [ym) weakly converges to z.

Rewrite equality (1.16) as

d_

dt

multiply its both sides by the function

<p(t)eCl([09T])9 φ(Γ) = Ο,

and find the integral from 0 to Γ of the result:

τ

(1.24)

ο

τ
(1.25)

in this case, cpy(x,0 =

or

κ), φ)(χ,ή
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By virtue of the aforesaid weak convergence, it is possible to pass in
equality (1.25) to the limit under m-»oo, and the following equality is
obtained:

τ τ

j ( j ) (1.26)

or

Consider the assumptions as for iwj?}, and it can be seen that the matrix

Μ η from condition (1.19) is diagonal (^/^—^(w^Wy), Μ ^ · = 0

under i*j9 i9j = l9m). The equality gim(0) = a0(y09wi)/a0(wi9wi)

follows from condition (1.19), i.e. gimli = l9m) are the Fourier

coefficients for the function y0. By virtue of [49]:

m

) under m

Hence: z(x,O) =

Equality (1.26) is true for the arbitrary function φ that meets conditions
(1.24). Thus, the following can be assumed: yeD(0,T) [58]. Therefore,
the equality

τ τ τ

ο ο or

follows from equality (1.26). Hence:
τ

\—αο(ζ9\νλ + α(ζ9ηλ-(/9ννλ- ίβνν; dT Ιφ(ί)Λ = 0,

r
i.e.:
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te(O,T). (1.26')

Take equality (1.26'), the space Vo and assumptions as for the functions

Wj into account, and it is stated that the equality

is true Vw e VQ . The following equality is obtained from relation (1.17):

ao(z(;O)M-)) = ao(yo(-),w(-)), \/weV0. (1.28)

Therefore, the function ζ e L (0,T;V) is the solution to problem (1.12),

(1.13) V/ € L2 (0, T; V) and under Bu = 0, i.e. to problem (1.27), (1.28).

Illustrate the uniqueness of the solution to problem (1.27), (1.28) by
contradiction. Let there exist two solutions: ζλ{χ,ί) and z 2 ( x , 0 e

eL2(0,T; V). Then, on the basis of equality (1.27), the equality

ao(z,z) + 2a(z,z) O (1.29)
at

is obtained, where ζ = zx - z2 ^ 0.

Consider equality (1.28), and the contradiction

τ

0 < a0 (z,z)(T) + α 0 Ι ζ |£ Λ < 0, α 0 = const > 0,

ο

follows from equality (1.29).
Therefore, the validity of the following statement is proved.
Theorem 1.1. Initial boundary-value problem (1.1)-(1.5) has a unique

generalized solution y(x,t)eL (0,T;V).

Proceed from equality (1.29), and it is easy to see that y(ux) Φ y(u2)

under u^u2 (Bui^Bu2). Let y=y(u') and y" = y{un) be solutions
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from Z2(0,T;F) to problem (1.12), (1.13) under / = 0 and β = 0 and

under a function u = u(x,t) that is equal, respectively, to uf and u". Then:

Therefore, the inequality
1

| ^ ' - ^ " | | <—||w'-i/|| (1.30')
O C Q

is obtained, where
τ τ

IML XL = ilML dt> \\ψ\\ι = | |Φ|| = | φ 2 ( ^ ? ο ^ χ

0 Ω

Rewrite functional (1.10) as

•/(n) = π(ΐι,ΐι)-2Ζ(ΐι)+ | z g ~ y(O)fdt, (1.31)

0

where

π(μ,ν) = (y(u) - ^(0), y(y) - γ(0))χ + (α ΐι,v)v , (1.32)

in this case,
τ

(z> v)j? = (^ v)^ = J(ζ, ν) Λ, (ζ, ν) = J ζ ν Jx.

0 Ω

Inequality (1.30') provides the continuity of the linear functional L(-)

and bilinear form π(·,·) on W.
On the basis of [58, Chapter 1, Theorem 1.1], the validity of the

following statement is proved.

Theorem 1.2. Let a system state be determined as a solution to problem

(1.12), (1.13). Then, there exists a unique element u of a convex set %$

that is closed in % and

J(u)= inf J(v) (1.33)



250 CHAPTER 7

takes place for u.

The control « e t j is optimal if and only if the inequality

{j'(u),v-u)>0, Vve%, (1.33')

is true, i.e. under

(γ(Η)-ζ8,γ(ν)-γ(ιι))^+(Λιι,ν-ιι)ν>0. (1.34)

As for the control ν e %, the conjugate state p(v) is specified by the

relations

5 ( d2

Σ ~av
ij=l

Σ - α ^ + ^ ί - cos(v'̂ = 0, (x,t)eyT, (1.35)

p(x,T) = 0,

Substitute a time Γ- ί for the time t, proceed from Theorem 1.1, and it is
concluded that initial boundary-value problem (1.35) has the unique

generalized solution p(v) e L (0, T; V) as the unique one to the following

equality system:

= T.

(1.36)

(1.37)
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Choose the difference y(v)-y(u) instead of w, consider equation

(1.12), the equality

rji rp

^ , ; K v ) - ; K * 0 j * = - ^ (1.37)
ο

and the equality

τ

j(y(u)-zg,y(v)-y(u))dt= J(/>(H),V-H)A (1.38)
0 0

is obtained from equality (1.36).
Therefore, inequality (1.34) has the form

τ

\(p(u) + au,v-u)dt>0, V V G % . (1.39)

ο
Thus, the optimal control ue°Ud is specified by relations (1.12), (1.13),

(1.36), (1.37) and (1.39).
If the constraints are absent, i.e. when % = W, then the equality

u = -p/a, (x,t)eQT, (1.40)

is obtained from inequality (1.39).

If the solution (y,p)T to problem (1.12), (1.13), (1.36), (1.37), (1.40) is

smooth enough on Ω / Γ , viz., y9 p\^ e C 1 > 0 (Q / r )D C2fi(QlT) f]

nC 0 > 1 (Q / r ) , / = 1,2, then the differential problem of finding the vector-

function (y,p)T, that satisfies the equalities
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a

ij=\

Σ ~aij-r~z:+kijT \
rr^A ox fit J ox,·

\

COS( V, X: = 0, (x,t)eyT,

η ί

= 0, (Λ,ί)€γΓ,

and

ρ(χ,Τ) = 0,

corresponds to problem (1.12), (1.13), (1.36), (1.37), (1.40).



Control of a System Described by a Pseudoparabolic... 253

7.2 CONTROL UNDER CONJUGATION CONDITION
WITH OBSERVATION THROUGHOUT A WHOLE
DOMAIN

Assume that equation (1.1) is specified in the domain Ω Γ . On the

boundary TT, the boundary condition has the form of expression (1.2).

For every control w e t = Z2(Yr)> determine a state y=y(u) as a
generalized solution to the initial boundary-value problem specified, in its
turn, by equation (1.1), boundary condition (1.2), initial condition (1.5) and
the conjugation conditions

= 0, (x9t)eyT9

where ω = ω(χ,ί)«=

+ L· -£- cos(ν, χ*) , (x,t)eyT, (2.1)

Since there exists the generalized solution y(u)eW(0,T) to initial

boundary-value problem (1.1), (1.2), (1.5), (2.1), then such solution is

reasonable on Ω / Γ (/ = 1,2).

The generalized problem corresponds to initial boundary-value problem
(1.1), (1.2), (1.5), (2.1) and means to find a function y(x,t;u)e W(0J)

that satisfies the following equations Vw(x)e Vo = j v:
Q

(2.2)

and
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a0(y(;O;u)M·)) = %(yo(-)M')), t = 0; (2.3)

in this case, V = lv(x,t): v|Q e f l^Q;), ι = 1,2; [v] = 0, \/te(O,T)\, the

bilinear form αο(-,-) is specified by formula (1.13'), and

Ι ? ίαφψ̂ Γ. (2.3')
. r ^ obey cbt.

The following statement takes place.
Theorem 2.1. Initial boundary-value problem (1.1), (1.2), (1.5), (2.1)

has a unique generalized solution y(x,t\ u) e W(0, T) \/u e °ίί.

The validity of Theorem 2.1 is stated by analogy with the proof of
Theorem 1.1.

Proceed from equations (2.2) and (2.3), and it is easy to see that

y{u\)^ y{ui) under u^u2* If y' = y(u') and ylf-y{un) are solutions

from W{0J) to problem (2.2), (2.3) under / , β and co = 0 and under a

function u that is equal, respectively, to w'and u", then the inequality

is derived, from which the inequality

\ % (yf - y\ y' - y") (Τ) + ά0 \\y' - yfVxLl

<co||w'-w1

follows. Therefore, the inequality
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τ
W h e r e Ηζ2(γ)χΙ2 = JlMlliy)*' ΙΜΙ^γ) = /φ^Υ* ί δ ° b t a i n e d t h a t

Ο γ

provides the continuity of the linear functional Z(·) and bilinear form

π(ν) on °U. In this case, the linear functional Z,(·) and bilinear form π(·,·)

τ

are specified by expressions (1.32), where (φ,ψ).^ = |(φ,
ο

τ

Ογ

Specify the observation in the form of expression (1.8), where
Cy{u) = y(u). Bring a value of cost functional (1.10), now in the form

τ τ

J(u) = J j(y(u)-zgfdxdt+ jjau2dydt (2.5)
0Ω Ογ

in correspondence with every control ue°ll\ in this case, zg is a known

element from L (0,Γ;F), 0 < a0 < a(x) < ax < oo, a0, ^ = const,

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 2.2. If a system state is determined as a solution to problem

(2.2), (2.3), then there exists a unique element u of a convex set %$ that is

closed in % and relation (1.11) takes place for u, where the cost functional
has the form of expression (2.5).

As for the control V G W , the conjugate state p(v) is specified by the

relations



256 CHAPTER 7

j & T l c o s ( v ' * < · ) = ~ a p

(2.6)

= 0, (x9t)eyT9

p(x,T) = O, χ € Ω

Problem (2.6) has the unique generalized solution p(v) e l}{0,T\V) as

the unique one to equality system like (1.36), (1.37), where the bilinear

form 0o(v) is written as expression (1.13') and tf(v) is specified by

expression (2.3'). Assume that w = y(v) - y(u), consider equations (2.2)

and (2.3), and the equality

τ τ

\(y(u)~ zg9y(y)- y(u))dt = - ^p(u)(y-u)dy dt

0 Ογ

is obtained from equality (1.36). Therefore, the control w e % is optimal if

and only if the following inequality is true:

>0, V v e % . (2.7)

Ογ

Thus, the optimal control u e % is specified by relations (1.36), (1.37),

(2.2), (2.3) and (2.7), where the bilinear forms a o (v) and a ( v ) are

specified, in their turn, respectively, by expressions (1.13') and (2.3'). If the

constraints are absent, i.e. when % = W, then the equality

-p(u) + au = 0, (x9t)eyT9

is obtained from condition (2.7). The optimal control

u=p/a9 (x9t)eyT9
(2.8)
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is found from the obtained equality.

If the solution (y,p)T to problem (1.36), (1.37), (2.2), (2.3), (2.8) is

smooth enough on Ω / Γ , viz., y9 p\^ e σ 1 ' 0 ( Ω / Γ ) Π θ 2 ' 0 ( Ω / Γ ) Π

), / = 1,2, then the differential problem of finding the vector-

function (y,p)T, that satisfies the equalities

n ( ri1

γ k,
dt fa ax, [ " dXj

7 /

M = 0, [p] = 0, (x,t)eyT,

dy /a, (x,t)eyT,

v f dP , dp)y -α,Ί—
£— + kil—

i—

.4 ,̂ udx,dt lJ dxA
',7=1 ν -̂  ] '

= 0,cos(v,x,·)
l

and

u = p/a, (x,t)eyT,

corresponds to problem (1.36), (1.37), (2.2), (2.3), (2.8).
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7.3 CONTROL UNDER CONJUGATION CONDITION
WITH BOUNDARY OBSERVATION

Assume that equation (1.1) is specified in the domain Ω Γ . On the

boundary Γ Γ , the boundary condition has the form of expression (1.2). For

every control weW = Z2(Yr)> determine a system state y = y(u) as a

generalized solution to the initial boundary-value problem specified by

equation (1.1), boundary condition (1.2), initial condition (1.5) and the

conjugation conditions

[>] = 0, (x,t)eyT, (3.1)

and

ji f ~2 ps \

——\-kj,·—— cos(v.x) = ω + Μ, χ, GYT. (3.2)

where ω = ω(χ,ί) e L2(JT) .

Specify the cost functional by the expression
τ τ

χ2

-zg
dTdt + J jau2dydt. (3,3)

ΟΓ Ογ

The generalized problem corresponds to initial boundary-value problem
(1.1), (1.2), (1.5), (3.1), (3.2) and means to find a function y(x,t;u)e

€ W(0,T) that satisfies equations (2.2) and (2.3) Vw(x) e Fo; the bilinear

forms iZo(v) and a(·,·) and spaces F(in W(0,T)) and Fo are specified in

point 7.2.
According to Theorem 2.1, initial boundary-value problem (1.1), (1.2),

(1.5), (3.1), (3.2) has the unique generalized solution y(x,t;u)eW(0,T)
V a s W .

Proceed from equations (2.2) and (2.3), and it is easy to see that
y(ui)*y(u2) under u^u2. Let y' = y(u') and y" = y(u") be solutions
from W(0,T) to problem (2.2), (2.3) under / , β and ω = 0 and under a

function u that is equal, respectively, to u' and u". Then, consider the



Control of a System Described by a Pseudoparabolic... 259

embedding theorems, and it is stated on the basis of inequality (2.4) that
the inequality

is true that provides the continuity of the linear functional Z(·) and bilinear

form π(ν) (1.32) on °U for the representation of cost functional (3.3) like

the representation of cost functional (1.31).
On the basis of [58, Chapter 1, Theorem 1.1], the validity of the

following statement is proved.
Theorem 3.1. Let a system state be determined as a solution to problem

(2.2), (2.3). Then, there exists a unique element u of a convex set %$ that is

closed in % and relation (1.11) is true for u, where the cost functional has
the form of expression (3.3).

As for the control V G 1 / , the conjugate state p(v) is specified by the

equalities

dp

ij=\

ΣΙ-ι-Ρ-
. . A oXjC
1,7=1V J

,^.) = -a/7 + Xv)-z g , (x,t)erT,

(3.4)

2

Ρ Ί dP /
J oxox,·

J J

= 0, (x9t)eyT,

Problem (3.4) has the unique generalized solution p{v) e W(0,T) as the

unique one to the following equality system:

V W G F 0 , (3.5)

), t = T. (3.6)
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Choose the difference y{y)-y(u) instead of w, consider equality (1.37')

and equation (2.2), and the equality

τ τ

-jjp(u)(v-u)dydt=jj(y(u)-zg)(y(v)-y(u))drdt
0 γ 0Γ

is obtained from equality (3.5). Therefore, when applied to the considered
optimization problem, inequality (1.34) has the form

τ

\[(-p + au)(v-u)dydt>0, Vve%. (3.7)

0γ

Thus, the optimal control M G ^ is specified by relations (2.2), (2.3),

(3.5), (3.6) and (3.7), where the bilinear forms ao(·,-) and a(·,·) are

specified, in their turn, respectively, by expressions (1.13') and (2.3'). If the

constraints are absent, i.e. when % = W, then the equality

-p + au = 0, (x9t)eyT,

i.e.

u = p/a, (x9t)eyT, (3.8)

is obtained from condition (3.7).

If the solution (y,p)T to problem (2.2), (2.3), (3.5), (3.6), (3.8) is

smooth enough on Ω/ Γ, / = 1, 2, then the differential problem of finding

the vector-function (y,p)T, that satisfies the equalities

- > — Λ , , — — +α — - > —
4 υδβ\ d ^d. . , , ν , , dt fr1. cbc, y cbc,

1,7=1 * V ν y 1,7=1 * ν ·/

ν A L _ίζ.1_Ω^Ρ_ ν A i t .Φ. Ι-ο ίχ/
*~mJi πχ· οχ nt ot ^"^ πχ· οχ ·

i,7 = i \ J J 1>J = 1
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and

i,j=l

+ ku T~\cos(v'
dxJJ

= ~ a y

~2

= 0, (x,t)eyT,

i,j=l

dp] ,
" ^ ^ COS(V, X:

ajc, l

JJ

= 0, (x9t)eyT9

corresponds to problem (2.2), (2.3), (3.5), (3.6), (3.8).

7.4 CONTROL UNDER CONJUGATION CONDITION
WITH FINAL OBSERVATION

For every control M G 1 / = L 2 ( J T ) , determine a system state y = y(w) as a
generalized solution to the initial boundary-value problem specified by
equation (1.1), boundary condition (1.2), initial condition (1.5) and
conjugation conditions (3.1) and (3.2).

The cost functional is

τ
J(u) = ao(y(x,T;u)-zg,y(x,T;u)-zg)+ ^au2dydt, (4.1)

0y

where 0 < a0 < a{x) < ax < oo, <z0, ax = const, zg e F o , and it may be

rewritten as
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J(u) = π(κ,κ)-2L{u) + a0(zg(-)- y(;T;O),zg(-)-y(-,T;O)), (4.1')

where
τ

n(u,v) = ao(y(;T;u)-y(;T;O),y(;T;v)-y(;T;O))+j^auvdydt

Or

and

L(v) = a0 (zg(·) - y(;T;0),y(-,T;v) - y(-,T;0)).

The generalized problem corresponds to initial boundary-value problem
(1.1), (1.2), (1.5), (3.1), (3.2) and means to find a function y(x9t;u)e

e W(0,T) that satisfies equations (2.2) and (2.3) VW(JC) € Vo; in this case,

the bilinear forms tfo(·,·)
 anc^ α(φ?0 a r e specified, respectively, by

expressions (1.13') and (2.3') and the space Vo is specified, in its turn, in

point 7.2.

According to Theorem 2.1, there exists the unique generalized solution

to problem (1.1), (1.2), (1.5), (3.1), (3.2). It is stated in point 7.2 that

y(ui)*y(u2) under ux*u2. If y' = y{u') and y" = y(u") are solutions

from W(0,T) to problem (2.2), (2.3), where the bilinear forms flo(v) and

a(v) are specified by formulas (1.13') and (2.3'), under / = 0, β = 0 and

ω = 0 and under a function u that is equal, respectively, to uf and u", then

the inequalities

(4.2)

^o \\y' -y"\t τ ^ 0 | |w '- t t " |L , , r \\y'-y"

are true. Proceed from them, and the inequality

OCQ
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is obtained. Consider it, and the inequality

follows from inequality (4.2).
Then, the inequality

\\y'-y"\\v(T)<c'0\\u'-u\(y)xL2, 4 = const,

is derived that provides the continuity of the linear functional L(·) and

bilinear form π(·,·) on W.

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 4.1. If a system state is determined as a solution to problem

(2.2), where the bilinear forms ^0(·,·) and tf(·,·) are specified,

respectively, by formulas (1.13) and (2.3% then there exists a unique

element u of a convex set % that is closed in % and relation (1.11) takes

place for u, where the cost functional has the form of expression (4.1).

As for the control v e t , the conjugate state p{y) is specified by the

relations

V d f # dPΘΡ) Φ V d f # dP 1 η c A o
\au—— - a — - > — L - i - =05 (χ, ) Ε Ω Τ )

. 4 1 dx, lJ δ χ β dt . 4 - etc, \ l J d x A K } T

η ί -2 r, \

uSl dxJdt dxj)

(4.4)

d2 dp)dp , dp) , ,
-a,·,· ί— + A:,-,· -^— cos( ν , χ,-)

" ^ ί »dxj)
= 0, (x,t)eyT,
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p(x,T;v) = y(x,T;v)-zg9 XGQ

Problem (4.4) has the unique generalized solution p(v) e W(0, T) as the
unique one to the following system:

-a0l—p(v)9w } + a(p9w) = 09 \/weVo, (4.5)

Ό· (4·6)
Choose the difference y{v) - y(u) instead of w, consider equation (2.2),

the equality

τ

d_

'dtο ^

and the equality

τ

(y(y)-y(u)) \dt-ao(p,y(v)-y(u))\{=J,,

- J jp(u)(v - u)dydt - a0 (p(u)9 y(v) - y(u))\ ̂  = 0
Ογ

is obtained from equality (4.5). Consider also equality (4.6), and the
equality

τ
ao(y(u)-zg, y(v)-y(u)) = -jjp(u)(v-u)dydt, \/ve%, (4.7)

Ογ

is derived. Take it into account when applied to the considered
optimization problem, and inequality (1.33') has the form

τ
\ \(-p(u) + au)(v-u)dydt>0, V V G % (4.8)

Ογ
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Thus, the optimal control u e % is specified by relations (2.2), (2.3),

(4.5), (4.6) and (4.8).
If the constraints are absent, i.e. when % = °ίί, then the equality

-p + au = 0, (x,t)eyT, (4.8')

is obtained from condition (4.8) along with the optimal control

u = p/a9 (x,t)eyT. (4.9)

If the solution (y,p)T to problem (2.2), (2.3), (4.5), (4.6), (4.8') is

smooth enough on Ω/ Γ, / = 1, 2, then the differential problem, specified

by equalities (1.1), (1.2), (1.5), (3.1), (3.2) and (4.4), corresponds to

problem (2.2), (2.3), (4.5), (4.6), (4.8'), where the control u is found by

formula (4.9).

7.5 CONTROL UNDER BOUNDARY CONDITION WITH
FINAL OBSERVATION

For every control ueL2(TT), determine a system state y = y(u) as a
generalized solution to the initial boundary-value problem specified by
equation (1.1), conjugation conditions (1.3) and (1.4), initial condition
(1.5) and the boundary condition

:-ot;; + p + w, (x,t)eTT. (5.1)

' OXJ J

The cost functional is
τ

or

The generalized problem corresponds to initial boundary-value problem

(1.1), (1.3)—(1.5), (5.1) and means to find a function y(x,t;u)eW(0,T)

that satisfies the following equations Vw(x) e VQ :
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a0 (γ>Α + <*(y, w) = (/, w) + Jp™/r + Jrow/Γ (5.2)
ν ί y Γ Γ

and

a0(^(·,Ο;ΐι),w(0) = a 0 U O , w 0 ) , ' = Ο; (5.3)

in this case, the spaces W(09T) and Vo are specified in point 7.1 and the

bilinear forms tfo(v) and «(·,·) are specified, in their turn, respectively, by

expressions (1.13') and (1.13").
Theorem 5.1. Initial boundary-value problem (1.1), (1.3)-(1.5), (5.1)

has a unique solution y(x,t;u) Vwe%f.
Proceed from equation (5.2), and it is easy to see that y(ux)^ y(u2)

under uy£u2. If yf = y(uf) and y" = y(u") are solutions from W(0,T) to

problem (5.2), (5.3) under/, β and ω = 0 and under a function that is

equal, respectively, to u' and u", then the inequality

2 7ta° ( * ' " 7 ? ~yt"
is derived, from which the inequality

\ao(y'-y",y'-y")(T)+ao\\y'-~y ~yf<fxL2

2(Γ)χ^'-^Ι

follows. Therefore, the inequality

\\ϊ'-ην{Τ)

is obtained that provides the continuity of the linear functional

and bilinear form

τ

7C(II, ν) = a0 (y(-J;u) - >;(-,Γ;0),Κ·,Γ; v) - >>(·,Γ;0)) + J J

or
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on °ίί for representation (4. Γ) of cost functional (5.Γ).
On the basis of [58, Chapter 1, Theorem 1.1], the validity of the

following statement is proved.

Theorem 5.2. Let a system state be determined as a solution to problem

(5.2), (5.3). Then, there exists a unique element u of a convex set °11$ that is

closed in % and relation (1.11) is true for u, where the cost functional has

the form of expression (5.Γ).

As for the control V G W , the conjugate state p(v) is specified by the

equalities

d2p H ^ - 2 . f - | % i H = o,(*,O€Qr,
dxjdt

#1

dt

JdxJdt

+ &,·,·- s,Xi) = -ap, {x,t)eTT,

-αι J
+ k Φ

lJ dx,\
cos(v,x.) = 0, (x,t)eyT, (5.4)

= r [ p l

p(x,T;v) = y(x,T;v)-zg, χ<=Ωι[)Ω2.

Problem (5.4) has the unique generalized solution as the unique one to the
following system:

-a0 — p(v),w \ + a(p,w) = 0, \/weVo, (5.5)
yat j

ao(p(;T;v),w) = ao(y(v)-z ,w), \/weV0. (5.6)

Choose the difference y(v)-y(u) instead of w, consider equations (5.2)

and (5.3), and the equality
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τ

-ao(p,y(v)-y(u))(T)+ jjp(v-u)dFdt = O

or
is obtained. Consider also equality (5.6), and the equality

τ
ao(y(u)-zg9y(v)-y(u))\^T= j jp(u)(v-u)dTdt

or
is derived. Therefore, when applied to the considered optimization
problem, inequality (1.33') has the form

τ
\\(p(u) + au){v-u)dYdt >0, Vve%. (5.7)

or
Thus, the optimal control ue% is specified by relations (5.2), (5.3),

(5.5), (5.6) and (5.7). If the constraints are absent, i.e. when °lld = ^ , then

the equality
p(u) + au = 0, (x,t)eTT,

is obtained from inequality (5.7) along with the control
u = -p/a, (x,t)eTT. (5.8)

If the solution (y,p)T to problem (5.2), (5.3), (5.5), (5.6), (5.8) is

smooth enough on Ω/Γ, / = 1,2, then the differential problem, specified by

equalities (1.1), (1.3), (1.4), (1.5), (5.1) and (5.4), corresponds to problem
(5.2), (5.3), (5.5), (5.6), (5.8), where the optimal control u is found by
formula (5.8).

7.6 CONTROL UNDER BOUNDARY CONDITION WITH
OBSERVATION UNDER CONJUGATION CONDITION

For every control ueL2(TT), determine a system state y=y(u) as a
generalized solution to the boundary-value problem specified by equation
(1.1), initial condition (1.5), boundary condition (5.1) and the conjugation
conditions
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[y] = 0, (x,t)eyT, (6.1)
and

*—· ' υ y dy
ί +kij-^^ cos(v>*/) =ω, (x,t)eyT. (6.2)

The cost functional is

τ τ

J(u)= jj(y(u)-zg) dydt+ ^au2dTdt. (6.3)

0 γ 0Γ

The generalized problem corresponds to initial boundary-value problem
(1.1), (1.5), (5.1), (6.1), (6.2) and means to find a function y(x,t;u)e
e W(0,T) that satisfies the following equations VW(JC) e Vo :

(dy \ f f
0 V d t ' J J J

and

αο(>
>(·,Ο;Μ),νν>(·)) = αο(>Ό(')?νν(0)? ^ = 0; (6.5)

in this case, the spaces W(0,T) and V0 are specified in point 7.2 and the

bilinear forms ao(·,-) and a(·,·) are specified, in their turn, respectively, by

expressions (1.13') and (2.3').
Theorem 6.1. Initial boundary-value problem (1.1), (1>5), (5.1), (6.1),

(6.2) has a unique generalized solution y(x,t;u)eW(0,T) Vuety/ .

Proceed from equation (6.4), and it is easy to see that y(ui)^y(u2)

under u^u2. If yf = y(u') and y" = y(u") are solutions from W(0,T) to

problem (6.4), (6.5) under / , β and ω = 0 and under a function u that is

equal, respectively, to w' and w", then:

1 d

2dt ' °" HF oil

Therefore, the inequality

is obtained that provides the continuity of the linear functional
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and bilinear form
τ

n(u,v) = (y(u)- y(0),y(v)- y(0))L2MxL2 + jjauvdTdt

or
for the representation

of cost functional (6.3) on °ll.
On the basis of [58, Chapter 1, Theorem 1.1], the validity of the

following statement is proved.
Theorem 6.2. Let a system state be determined as a solution to problem

(6.4), (6.5). Then, there exists a unique element u of a convex set %$ that is

closed in % and relation (1.11) takes place for uf where the cost functional

has the form of expression (6.3).

As for the control v e t , the conjugate state p(v) is specified by the

equalities

Φ V d
 (J Φ> k ^Φ V d
 (J Φ 1 η-a — - > — k^—^- =0,

a 4-; ac; y ac,

Σ Ο D * Q-aif——+L· —

η (

-α,

0, (jc,i)eyr, (6.6)

Φ ) / >Ί

:&--^- cos(v,^0

Problem (6.6) has the unique generalized solution as the unique one to the
following system:
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e(OJ), (6.7)

F 0 . (6.8)

Choose the difference y(v) - y(u) instead of w, consider equations (6.4)

and (6.5), and the equality

τ τ

ΟΓ Ογ

is obtained. Therefore, when applied to the considered optimization
problem, inequality (1.33') has the form

τ

\\(-p + au)fy-u)drdt>09 Vve%. (6.9)

or
Thus, the optimal control w e % is specified by relations (6.4), (6.5)

and (6.7)-(6.9). If the constraints are absent, i.e. when % = °ll, then the

equality

-p + au = 0, (x,t) e YT,

is obtained from inequality (6.9) along with the control

u = p/a, (x,t)eTT. (6.10)

If the solution(y,p)T to problem (6.4), (6.5), (6.7), (6.8), (6.10) is

smooth enough on Ω/ Γ, / = 1,2, then the differential problem, specified by

equalities (1.1), (1.5), (5.1), (6.1), (6.2) and (6.6), corresponds to problem
(6.4), (6.5), (6.7), (6.8) and (6.10), where the optimal control u is found by
formula (6.10).



8
CONTROL OF A SYSTEM DESCRIBED BY A

HYPERBOLIC EQUATION UNDER
CONJUGATION CONDITIONS

Let there be the following denotations: Ω is a domain that consists of two

open, non-intersecting and strictly Lipschitz domains Ω{ and Ω2 from an

«-dimensional real linear space Rn ; Γ = (ΘΩγ (J 3Ω2)\γ (γ = δΩ\ Π

ΠδΩ2 * 0 ) is a boundary of a domain Ω, dQt is a boundary of a domain

Ω,, i = 1,2; Ω Γ = Ω χ (0, Τ) is a complicated cylinder; Γ Γ = Γ χ (0, Τ) is

the lateral surface of a cylinder Ωτ U JT > Yr = Υ x (05 T
7).

Consider such spaces Vand //that F c //, and Fis separable and dense
in//.

Identify //with a space dual with respect to it, denote by V a space that
is dual with respect to V, and the following can be written: V c Η c V .

By analogy [58], introduce a space L2(0,T;V) of functions i - > / ( 0 that

map an interval (Ο,Γ) into the space V of measurable functions, namely, of

such ones that

<oo.
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8.1 DISTRIBUTED CONTROL

Assume that the hyperbolic equation

2

y
™1 ο

j
(1.1)

is specified in the domain Ω^, where

1 , ΥχβΩ, α ο = const >0;

»=ι
/\Ωιτ e C(QlT), Ω/ Γ = Ω, χ (Ο, Γ), / = 1,2; | / | < <χ> .

The third boundary condition

is specified, in its turn, on the boundary Γ Γ , where α = α ( χ ) > α ° > 0 ;

a, peZ, 2 (r), a 0 = const, and ν is a unit vector of an outer normal or

simply an outer normal to Γ.

On yT, the conjugation conditions are

η ~

• · 1',7=1

= 0 (1.3)

and

c o s ( v ' X i
(1.4)

where 0 < r = r(x) < rx < oo, ^ = const, [φ] = φ + - φ ~ ; φ + = {φ}+ =

= ψ(χ, t) under (χ, t) € γ\ = (θΩ2 Π γ) x (0, Γ); φ~ = {φ}~ = φ(χ, t) under
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(x,t) e yT = (9Qj f|y)x (Ο,Γ); ν is an ort of a normal to γ called simply a

normal to γ and it is directed into the domain Ω 2 .

The initial conditions

(1.5)

and

-ϊ- = yfa), χ 6 Ω ι υ Ω 2 ? (1-6)

where y0 e Vo and y\eH are specified under t = 0.

Let there be a control Hubert space W and operator Be

eg(y/;L2(0,T;H)\ For every control ue°U, determine a system state

y = y(w) = y{x, t; u) as a generalized solution to the problem specified by

the equation

and by conditions (1.2)—(1.6). Further on, without loss of generality,
assume the following: Bu = u.

Specify the observation by the expression

( ) (1.8)

where W(0,T)= veZ2(0,r ; V): $L, ^eL2(0,T; Ζ2(Ω)) , V =
[ dt dt Jdt dt

= iv(x,t): V ^ G ^ C Q / ) , / = l,2,ViG(0,r)}and ^(Ω/) is the space of

the Sobolev functions specified, in their turn, on the domain Ω/. Specify

the operator

>vo\\u\\2 , v0=const>0. (1.9)
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Assume the following: Jfu-=au\ in this case,

/ = 1,2; 0 < a0 < a < ax < oo; α0, ̂  = const. The cost functional is

{JVu,u\, (1.10)

where zg is a known element of the space 3€.

The optimal control problem is to find such an element W G 1 / that the
condition

J(u)= inf J(v) (1.11)

is met, where % is some convex closed subset in W.

Definition 1.1. If an element w e % meets condition (1.11), it is called

an optimal control.
The generalized problem corresponds to initial boundary-value problem

(1.7), (1.2)-(1.6) and means to find a function y(x,t\u)eW(0,T) that

satisfies the following equations \/w(x) eV0 = |v: ν | Ω e J^1 (Ω,·), / = 152>:

( ) (1.12)

r r

,O;·) w(x)dx = jyo(x) w(x)dx, t = 0, (1.13)

Ω Ω

and

ff—(χ,Ο;·) w(x)dx = \yx(x) w(x)dx, t = 0. (1.14)
1 dt Jdt

Ω Ω
Use the previous results [58, 41, 49, 55, 64, 21] and consider the

existence and uniqueness of the solution to problem (1.12)—(1.14). Since

Bu and / e Ι 2(0,Γ; # ) ( # = {v(jc,i): ν € Ζ2(Ω), Vi e (0,7)}), then,

without loss of generality, assume the following: Bu = 0.
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The space Vo is complete, separable and reflexive [41, 49, 55], and

VQ a L2(Ct). Choose an arbitrary fundamental system of linearly

independent functions wk(x), k = 1,2,..., in Vo. For the sake of simplicity,

let this system be orthonormal in Ζ^(Ω) so that (w ,̂W/) = 5[, where

δ{=1 and δ[ = 0 under k*L

Assume the following:
m

yom = X^Lw/> yom -> yo u n d e r m -> °°»

and

Λ « = Σ ^ ^ ^ ' y*>n -̂  Λ u n d e r m -* °° ·
1=1

Specify the approximate solution to problem (1.1)—(1.6) by the relations

(1.16)

and

j = ui. (1.18)
^ dt v ' " J X / )

It is easy to see that Cauchy problem (1.16)—(1.18) has the unique solution

for the system of m linear ordinary differential equations as for gim(i); in

this case,

a(y,z)= I /^kij dx+ \r[v][z]dy+ \OLvzdT, (1.19)
J ^^, dx i dx{ J J

Ω Ϊ J=l ^ l γ Γ
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To obtain an a priori estimate of the function ym(x,t), multiply, by

analogy [64], equality (1.16) by g'Jm(t) and find the sum overy for the

result. Then:

i.e.:

Therefore,

ο

;0), ym(-,0)). (1.20)

The inequality

dt v

follows from equality (1.18), i.e.:

dt

dt
(1.21)

Let Wj(x), 7 = 1,2,..., be eigenfunctions of the spectral problem that

means to find

{λ, w} e Rl χ Vo : a(w,z) = X(w,z), VzeV0,

and they are such eigenfunctions that meet the condition (wi9Wj) = 8j.

Then, it is easy to see the following:

*0Ί»(·>0), ym(;0))<>a(y09y0). (1.22)

Introduce the denotation
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2

where |q>|L = y ^ H L i / O . x · Consider relations (1.21)—(1.23), the Cauchy-
1=1

Bunyakovsky and generalized Friedrichs inequalities [21], and the
inequality

*c\ h i 2
 +«OO.:VO)+ fl/O.Olfa + | | β | | ( Γ ) +c jzm(x)dx

[ J0 J 0
is obtained from equality (1.20). The inequalities

(t)<c, (1.24)

where c = const > 0 , follow from the latter inequality by virtue of the

Gronwall lemma [41, 64].

Hence, ym and y'm are still in the bounded sets, respectively, in

Ζ2(0,Γ;Κ) and L2(0,T;H). That is why such subsequence yv of the

sequence ym can be chosen, that the convergences

yv->y in L2(0J;V),

y'v^> ζ in L2(0,T;H) (1.25)

are weak. By virtue of [64], ζ = y'. It follows from expressions (1.25) that

is weak and, since ^v(0) = yOv -> j ; 0 in F o , then

It remains to show that, when constructed in such a way, the function y

is the solution to problem (1.12)—(1.14).

Assume the following: φ e C1 ([Ο,Γ]) and φ(Γ)=0. Introduce the

denotation q>j(t)= <p(t)(Oj(x). Multiply equality (1.16) by the function φ(ί)

and find the integral from 0 to Γ of the result:
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0
Τ

0 0

Pass to the limit under m —> oo, and the following equality is obtained:
τ τ

0 0

τ

+ | ( β ? ^ ) ΐ 2 ( Γ ) φ ^ + (Λ,>ν7.)φ(0). (1.26)

ο

If φ G D((0,r)) is used [58], then the equality

is derived from equality (1.26).
Proceed from the obtained relations, and the equality

(1.27)

00

follows that is true \/wn e U VOn and, therefore, \/w e Vo, where VOn is

the «-dimensional subspace of the space Vo, and the functions of the set

{wi(x)}n

i=i make up the basis of VOn. Hence, the equalities

, \/wsV09te(09T)9 (1.28)

0 , i = 0, (1.29)Ω Ω
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and

\ywdx= \y0wdx9 VweV0, i = 0, (1.30)

Ω Ω

take place.
Thus, y(x,t) is the generalized solution to initial boundary-value

problem (1.1)—(1.6). Illustrate its uniqueness. Let y(x,t) be the

generalized solution to the problem. Assume the following in equality
dv

(1.28): w = —. Find the integral of equality (1.28) over τ e (0,0 now, and
dt

the equality

z\t) = 2 \\f,J-
dy]

(1.31)

h{T)

is obtained, where ζ it) =
dt

+ a(y,y), + <*(yo,yo).

Transform the second addend in the right-hand side of equality (1.31).

Consider the embedding theorems and ε-inequality, and the inequality

f
0

£ ] (τ)</τ<2

2ε
is derived. Use it, and the inequality

(1.32)
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where c'o = const > 0, z2(t) = i i s obtained from equality

(1.31).
The inequality

I / I 2 ( O + I M I K ( O ^IF

follows from inequality (1.32) by virtue of the Gronwall lemma.

Hence, the unique generalized solution to problem (1.1)—(1.6) is zero

under / = 0, β = 0, y0 = 0 and yx = 0. Therefore, the validity of the

following statement is proved.
Theorem 1.1. Problem (1.1)-(1.6) has a unique generalized solution

y(x,t)eW(0,T).

It is easy to see that y(ui)^y{u2) under ux *u2 (Bux *Bu2). Let

yf = y(uf) and y" = y{u") be solutions from Ψφ,Τ) to problem

(1.12)—(1.14) under / = 0 and β = 0 and under a function u - u(x,t) that

is equal, respectively, to uf and u". Then, the inequality

y-yt^^cU'-wi^ (i.34)

is obtained from inequality (1.33).
Rewrite cost functional (1.10) as

τ
J ( V ) = TI(V,V)-2Z(V)+ §\zg-y(0)\\2dt, (1.35)

ο
where

7i(w, v) = (y(u) - y(0), y(v) - ^(0))^ + (a u, v)^,

(y) = (zg-y(0), y{v)-y{0))^ (1.36)
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in this case, (z,v)^ = J(z,v)</f, (z,v)^ = J(z,v)rff, (z,v)= jzvdx.

ο ο Ω

Inequality (1.34) provides the continuity of the linear functional L(-) and

bilinear form π(·,·) on °U.
On the basis of [58, Chapter 1, Theorem 1.1], the validity of the

following statement is proved.

Theorem 1.2. Let a system state be determined as a solution to problem

(1.12)-(1.14). Then, there exists a unique element u of a convex set °ίί^

that is closed in % and

·/(!/)= inf J{y) (1.37)

takes place for u.

A control u e % is optimal if and only if the inequality

is true, i.e.:

(y(u)-zg9 y{y)-y{u))^ + {Au,v-u)u>0. (1.38)

As for the control v e 1 / , the conjugate state p(v) is specified by the

relations

η ^.

V t fy-cr&iv χΛ—α.ΐ> (xfteT
Λ—md J W v

= 0, (x,t)eyT, (1.39)
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p(x,T;v) = O, ^-(x,T;v) = O, χeQ
ot

By virtue of Theorem 1.1, problem (1.39) has the unique generalized

solution p{v) e Ζ,2(0,Γ;Κ), ^ l f P^ G L2(0,T;H) as the unique one
dt dr

to the following equality system:

-f ,wya(j>,w) = (y-zg9w)9 VWGF0? te(0,T)9

F 0 , t = T9 (1.40)

Ω

Ω

Use the difference y(v) - y{u) instead of w in the first equality of
system (1.40) under ν = u, find the integral from 0 to Γ of the result, and
the equality

J ( g ) (1.41)
ο

is obtained.

Under (p,\|/eZ,2(0,r;F); φ',ψ'ΞΖ,2(0,Γ;#), φ" ? ψ'ΈΖ 2 (0 ? Γ;Π ? the
equality [58]

(1-42)
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is derived. Take it and equation (1.12) into account, and the equality
τ τ
\(y(u)-zg,y(v)-y(u))dt= j(p(uUv-u))dt

0 0

follows from equality (1.41).

Therefore, optimality condition (1.38) for the control w e % is

equivalent to the inequality

( )t>0, \/ve%. (1.43)
ο

Thus, the optimal control u e % is specified by relations (1.12)—(1.14),

(1.40) and (1.43). If the constraints are absent, i.e. when °i/d = ^l, then the

equality

(χ,ί)€ΩΓ, (1.44)

follows from inequality (1.43). The control

u = -p/a9 (x9t)eQT, (1.45)

is found from equality (1.44).

If the solution (y,p)T to problem (1.12H1.14), (1.40), (1.44) is

smooth enough on Ω/Γ, / = 1,2, viz., y\^ , p\^ eCl)0(QlT)f]

nC2'°(Q/ r)nC°'2(Q/ r), / = 1,2, then the differential problem of finding

the vector-function (y,p)T, that satisfies the equalities

dt i J = l ~~ι

d2i

a2
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and
u = -p/a, (Χ,Ϊ)ΕΩΤ,

corresponds to problem (1.12)-(1.14), (1.40), (1.44).

8.2 CONTROL UNDER CONJUGATION CONDITION

Assume that equation (1.1) is specified in the domain Ω^. On the

boundary TT, the boundary condition has the form of expression (1.2).

For every control uetW = L2(y), determine a state y = y(u) as a

generalized solution to the initial boundary-value problem specified, in its
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turn, by equation (1.1), boundary condition (1.2), initial conditions (1.5)
and (1.6) and the conjugation conditions

[>] = 0, (x9t)eyT, (2.1)
and

, (x9t)eyT9
(2.2)

where ω = ω(χ) e L2(y).

Since there exists the generalized solution y(x, t\ u) to initial boundary-

value problem (1.1), (1.2), (1.5), (1.6), (2.1), (2.2), then such solution is

reasonable on Ω/^, / = 1,2. The generalized problem corresponds to initial

boundary-value problem (1.1), (1.2), (1.5), (1.6), (2.1), (2.2) and means to
find a function y(x91\ u)eW(09T) that satisfies the following equalities

\/w(x) ( = {v(x):v|Q. eW}^), i=l,2; [ν]|γ=θ}:

ί
Ω

•<Py

dt2
+ [ Σ % Λ T~dx+ \aywdr =

* rr1. J dxj dx, J
Oi,7=l J ' Γ

= (/ ,w)- ίω>νί/γ- \uwdy+ \
γ γ Γ

jy(x,O;u)w(x)dx = jyo(x)w(x)dx, (2.3)

Ω Ω

J—(x90;u)w(x)dx =

Ω Ω

in this case,

V = \v(x,t):
dv

' dt
Vie[O,r], i = l,2;

[v]|y=0,Vi€[0,r]

The forthcoming statement takes place.
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Theorem 2.1. Initial boundary-value problem (1.1), (1.2), (1.5), (1.6),
(2.1), (2.2) has a unique generalized solution y(x,t; u) e W(0,T) Vw € °U.

The validity of Theorem 2.1 is stated by analogy with the proof of
Theorem 1.1.

Proceed from equalities (2.3), and it is easy to see on the basis of the

first one that y(ui)^y(u2) under ux Φ u2. If y' = y(ur) and y" = y(u") are

solutions in W(09T) to problem (2.3) under / , ω and β = 0 and under a

function u that is equal, respectively, to uf and w", then, assume

w = — (yr- y") in the first equality of system (2.3), find the integral of its
dt

first equality over τ e (0, t) now, and the equality

z2(0) (2.4)

is obtained, where

z\t) = + a(y'-y"

and

= J ^ kij γ-T~

Since the equality

(Ι φ , —
0

J l dt
ψ

Ω »,y=i

= (φ,ψ)
t 'cfd '

— φ , ψ

° o J U / <
(τ)άτ (2.4')

takes place and the ε- and Cauchy-Bunyakovsky inequalities and
embedding theorems are taken into account, then the inequality

z2(0^q||w'-w"|^ y (2.5)

2

+ 1where z2(t) =

Therefore,
dt

" i ^ ' " y"\\ ν *s ^ e r i y e ( ^ fr°m equality (2.4).
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d , „, „,
τ, \s -s J " I K « ' I I I / ν ~' 111 " l l / . ^ i v \ 7 K^'^J

i.e.

The continuity of the linear functional Z,(·) and bilinear form π(·,·) for cost
functional (1.35) follows from inequality (2.7); in this case, (z,v)^ =

τ

= |(ζ,ν)^(γ)έ/ί. Specify the observation in the form of expression (1.8),
ο

where Cy(u) = y(u). Bring a value of cost functional (1.10) in

correspondence with every control ue°l/; in this case, zg is a known

element from L2 (θ, Τ; V),

τ τ

J(u)= \\(y(u)-zg) dxdt+ \\au2dy dt

0Ω 0 γ

and

0 < a0 < a < ax < oo? a0, a\ = const, α e L2(y) .

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the following
statement is proved.

Theorem 2.2. If a system state is determined as a solution to problem

(2.3), then there exists a unique element u of a convex set % that is closed

in % and relation (1.37) takes place for u.
As for the control V G W , the conjugate state p(y) is specified by the

relations

^i) = -ap, (x,t)eTT,
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= 0, (x,t)eyT,

= 0, (x,t)eyT, (2.8)

dt

Problem (2.8) has the unique generalized solution p(v) e Ι? (θ,Γ;Γ) as

the unique one to equality system like (1.40), where

α(ν,ζ)= | Σ ^ -dx+ \avzdT. (2.9)

If the difference y(v) - y(u) is used instead of w in the first equality of

system (1.40), where v = u and the bilinear form tf(v) is specified by
expression (2.9), then equality (1.41) is present after taking the integral
from 0 to Γ of the result. Consider equality (1.42), the first equality of
system (2.3) and expression (2.9), and the equality

p(u) (v-u)dydt (2.10)

0 0γ

is obtained from equality (1.41).

Therefore, the control u e % is optimal if and only if the following

inequality is true:

-p(u) + au)(v-u)dydt>0, (2.11)

0 γ

Thus, the optimal control ue% is specified by inequality (2.11) and

relations (2.3) and (1.40), where the bilinear form a(·,·) is specified, in its
turn, by expression (2.9).
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8.3 CONTROL UNDER CONJUGATION CONDITION
WITH BOUNDARY OBSERVATION

Assume that equation (1.1) is specified in the domain Ω Γ . On the

boundary Γ Γ , the boundary condition has the form of expression (1.2). For

every control ue°U = £2(7), determine a state y(x,t;u) as a generalized

solution to initial boundary-value problem specified by equation (1.1),

boundary condition (1.2), initial conditions (1.5) and (1.6) and the

conjugation conditions

[y] = 0, (x,t)eyT, (3.1)

and
η ~

1—cos(v,^·) =co+w, (x,t)eyT, (3.2)

where ω = ω(χ) e L2(y).

The cost functional is
τ τ

J(u)= \tiy(u)-zgfdrdt+\\au2dydt. (3.3)
0Γ 0 γ

The generalized problem corresponds to initial boundary-value problem
(1.1), (1.2), (1.5), (1.6), (3.1), (3.2) and means to find a function
y(x,t;u)eW(0,T) that satisfies equation system (2.3) Vw(x)eF0; the

spaces W(0,T) and VQ are specified in point 8.2.

According to Theorem 2.1, initial boundary-value problem (1.1), (1.2),
(1.5), (1.6), (3.1), (3.2) has the unique generalized solution y{x,t\u)e

Proceed from the first equality of system (2.3), and it is easy to see that

)*y(u2) under ux*u2. Let y' = y(uf) and y" = y{u") be solutions

from W(09T) to problem (2.3) under / , ω and β = 0 and under a function

u that is equal, respectively, to v! and u". Inequality (2.7) is true, from
which, by virtue of the embedding theorems, the inequality
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\\{y'-~y"fdYdt<c[\\u'-u"fL2{i)dt
or ο

is obtained that is the evidence of the fact that the linear functional Z(·) and
bilinear form π(·,·) of the cost functional

τ τ

j(u)= jj(y(u)-zgfdTdt+ ^au2dydt =
ΟΓ Ογ

Τ

= n(u,u) - 2L(u) + j]|zg - y(0)(LArdt (3.4)
ο

a r e c o n t i n u o u s o n % i n t h i s c a s e , 0 < a0 < a ( x ) < ax; a0, ax-

= const, a(x)eL2(y),

n(u,v) = (y(u)-y(0), y(y)-.y(O))L

and

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 3.1. Let a system state be determined as a solution to problem

(2.3). Then, there exists a unique element u of a convex set %$ that is

closed in % and relation (1.37) takes place for u, where cost functional

has the form of expression (3.3).
As for the control v e t , the conjugate state p(v) is specified by the

relations

>;(v)-zg, (x,t)eTT,

[p] = 0, (x,t)eyT, (3.5)
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= 0, (x,t)eyT,

Problem (3.5) has the unique generalized solution p(v) e I? (0,T;V) as

the unique one to the equality system

Ω

) /e(0,r), (3.6)

Ω

|

Ω

, t~T\

in this case, the spaces Fo and V are specified in point 8.2.

The following statement takes place.
Theorem 3·2. Initial boundary-value problem (3.5) has a unique

generalized solution.
Use the difference ;/(v) - y(u) instead of w in the first equality of

system (3.6), where ν = u, find the integral from 0 to Γ of the result, and
the equality

<J2P(U)

dt2 '
)-y(u) \dt+ ^a(p(u),y(v)-y(u))dt =

) η
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τ

= \\{
τ

\{y(u)-zg)(y{v)-y{u))dTdt (3.7)

or
is obtained, where the bilinear form <z(v) is specified by expression (2.9).

Consider equality (1.42), the first equality of system (2.3) and
expression (2.9), and the equality

τ τ

jj(y(u)-zg)(y(v)-y(u))drdt = -jjp(u)(v--u)dydt (3.8)
0Γ 0 γ

is derived from equality (3.7). Therefore, the control M G % is optimal if

and only if the following inequality is true:

( - ρ Μ + Ϊ Μ , ν - Μ ^ ^ >0, V V E % . (3.9)

Thus, the optimal control ue% is specified by equalities (2.3) and

(3.6) and inequality (3.9). If the solution (y,p)T to problem (2.3), (3.6),

(3.9) is smooth enough on Ω / Γ , then the problem of finding the vector-

function (y,p) , that satisfies inequality (3.9) and the equalities

, (x,t)eVT,

[y] = 0, [p] = 0, ( ΐ ,Οεγ Γ ,
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ω + u, (x,t)eyT,

= 0, (x,i)eyT,

and

" dtKt '
corresponds to problem (2.3), (3.6), (3.9).

8.4 CONTROL UNDER CONJUGATION CONDITION

W I T H FINAL OBSERVATION

Assume that equation (1.1) is specified in the domain Ω^. On the

boundary Γ Γ , the boundary condition has the form of expression (1.2). For

every control u e % = L2(y), determine a state y(x,t;u) as a generalized

solution to the initial boundary-value problem specified by equation (1.1),

boundary condition (1.2), initial conditions (1.5) and (1.6) and conjugation

conditions (2.1) and (2.2).

8.4.1 Final Observation with Taking Sight on a State

The cost functional is
τ

J(u)= j(y(x,T;u)-zg(x)fdx+ (4.1)

Ω 0 γ
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where 0 < α0 ^ # - a\ < °°> αο> αΐ = c o n s t , and it may be rewritten as

J(u) = n(u9u) -2L(u) + j(zg(x) -y(x9T;0)fdx ; (4.1')

Ω

in this case,
r
jjauvdydt
Ογ

and

The generalized problem corresponds to initial boundary-value problem
(1.1), (1.2), (1.5), (1.6), (2.1), (2.2) and means to find a function
y(x,t\u) e W(09T) that satisfies equality system (2.3) Vw e V0 ; the spaces

W(09T) and V0 are specified in point 8.2.

Theorem 2.1 takes place. It is stated in point 8.3 that y(ui)* y(u2)

under ηχΦη2. If j)' = y(u') and y" = y(u") a r e solutions from W(0,T) to

problem (2.3) under / , β and ω = 0 and under a function u that is equal,

respectively, to u1 and u\ then inequality (2.6) is true. Consider the
generalized Friedrichs inequality [21], and the inequality

follows from inequality (2.6). Therefore, the linear functional Z(·) and
bilinear form π(·,·) in representation (4.Γ) of cost functional (4.1) are
continuous on °ll.

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 4.1. If a system state is determined as a solution to problem

(1.1), (1.2), (1.5), (1.6), (2.1)f (2.2), then there exists a unique element uof

a convex set %$ that is closed in % and relation (1.37) takes place for u,

where the cost functional has the form of expression (4.1).
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As for the control v e t , the conjugate state p{v) is specified by the
equalities

'J=i
= 0, (x,t)eyT,

= 0, (x,t)eyT, (4.2)

dp ρ

—{x,T;v) = y{x,T;v)-zg, xeC

The generalized solution to problem (4.2) is the solution to the equality
system

-,w \ + a(p,w) = Q,

(4.3)

= 0, \/weV0, t = T,

where a(z,v)= /&,·,· i&+ αζνί/Γ.

Ω «.7=1 ·/ ' r

Use the difference y(v) - y(u) instead of w in the first equality of

system (4.3) under ν = u, consider equality (1.42), and the equality
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(y(;t;u)-zg,y(v)-y(u))(T)-jjp(u)(v-u)dydt = O
Ογ

is obtained, i.e. (y(-,t;u)-z y(v)-y(u))(T) = (p(u),v-u) , Λ .

Therefore, the control ue% is optimal if and only if the following
inequality is true:

τ
\\(p(u) + au)(v-u)dydt>0, Vve%. (4.4)

Ογ

Thus, the optimal control u e % is specified by relations (2.3), (4.3) and
(4.4).

8.4.2 Final Observation with Taking Sight on a System State
Changing Rate

The cost functional is

J(u)= f — y{xJ\u)-zJx) }dx+ \[au2dydt (4.5)
JI dt ) ^

Ω Ο γ

and it may be rewritten as

J(u) = n(u, u) - 2L(u) + j(zg(x) - y'(x,T;0)fdx,
Ω

where
τ

π(Μ,ν) = (/(.,Γ;ι/)~/(.,Γ;0),/(,Γ;ν)-/(.,Γ;0))+ jjauvdydt,
Ογ

(4.50
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The generalized problem is specified in point 8.4.1 and corresponds to
initial boundary-value problem (1.1), (1.2), (1.5), (1.6), (2.1), (2.2).
Theorem 2.1 takes place. It is stated in point 8.3 that y(u{) Φ y{u2) under

ux*u2. If y' = y(u') and y" = y(u") are solutions from W(0,T) to

problem (2.3) under / , β and ω = 0 and under a function u that is equal,

respectively, to u' and u", then inequality (2.6) is true under t = Τ.

The obtained inequality shows that the function — is continuously
dt

dependent on the control ue °l/. Therefore, the linear functional L(·) and

bilinear form π(ν) of cost functional (4.5) are continuous on W.
On the basis of [58, Chapter 1, Theorem 1.1], the validity of the

following statement is proved.
Theorem 4.2. If a system state is determined as a generalized solution

to problem (1.1), (1.2), (1.5), (1.6), (2.1), (2.2), then there exists a unique
element u of a convex set °1/$ that is closed in % and relation (1.37) takes
place for u, where cost functional has the form of expression (4.5).

As for the control v e t , the conjugate state p(v) is specified by the
first four equalities of system (4.2) and by the conditions

d_

dt
and

p{xj\v)=—y{xj\v)-zg9 χζΩιυΩ2, (4.6)

^ ( χ , ; ) 0, ^ ! υ 2 . ( 4 . 7 )
a t

The present differential problem has the unique solution as the unique one
to the following equality system:

2 \ + a(p,w) = 0,VweV0, te(0,T),
)

, t = T, (4.8)

t = T.
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Use the difference y(v) - y{u) instead of w in the first equality of system

(4.8) under ν = u, and the equality

is obtained.
Therefore, the optimality condition for the control u e % is

τ
\\(-p + au)(v-u)dydt>0, \/ve%.

Thus, the optimal control M G % is specified by the relations (2.3), (4.8)

and (4.9).

(4.9)

8.5 CONTROL UNDER BOUNDARY CONDITION WITH
OBSERVATION ON A THIN INCLUSION

For every control neW = L2(T), determine a state y{x,t\u) as a
generalized solution to the initial boundary-value problem specified by
equation (1.1), initial conditions (1.5) and (1.6), the conjugation conditions

and

and the boundary condition
η ~

= co, (x,t)eyT, (5.1)

, (x,t)erT. (5.1')

The cost functional is
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1 1

J(u)=jj(y(u)-zgfdydt + jjau2dTdt, (5.2)
Ο γ ΟΓ

where Ο < <20 < a < a^ < oo; a o ? ^i = const, and it may be rewritten as

τ
J(u) = n(u,u)-2L(u)+ J f(zg->>(·,*; 0)) dydt; (5.2')

Ογ

in this case,

τ τ

n(u,v)= (v(-,£;w)- ν(·,£;0), ν(·,ί;ν)- ν(·5^;0))Γ , ^dt+ \auvdYdt

0 ΟΓ

and
Z(v) =

The generalized problem corresponds to initial boundary-value problem

(1.1), (1.5), (1.6), (5.1), (5.1') and means to find a function y(x,t;u)e

e W(0,T) that satisfies the following equality system Vw € Vo:

2

dt1
a(y,w) = (f,w)-

γ

+ ίβννβ?Γ+ pwrfF, \/weV0, te(0,T),

Γ Γ

ί^(·,0;«), '
The forthcoming statement takes place.
Theorem 5.1. Initial boundary-value problem (1.1), (1.5), (1.6), (5.1),

(5.1) has a unique generalized solution y(x, t; u) e W(0, T)\/ue%.

Proceed from the first equality of system (5.3), and it is easy to see that

()y(u2) under u{^u2. Let y' = y(u') and y" = y(u") be solutions
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from W(0,T) to problem (5.3) under / , ω and β = 0 and under a

function u that is equal, respectively, to u' andw". The inequality

(5.4)z\t)<cx\\u'-ufLt{Ty

where ζ (/) = t r u e

function y linearly depends upon the control ue% on γ.

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 5.2. If a system state is determined as a generalized solution
to problem (1.1), (1.5), (1-6), (5.1)y (5.1% then there exists a unique
element u of a convex set °11$ that is closed in % and relation (1.37) takes

place for u, where the cost functional has the form of expression (5.2).
As for the control v e t , the conjugate state p(v) is specified by the

first three equalities of system (4.2) and by the conditions

ΙΑΗ

-z (x,t)eyT,

ρ(χ,Τ) = 0, (5.5)

The present initial boundary-value problem has the unique generalized
solutionp(v)e W(0,T) as the unique one to the following equality system:

, te(0,T),

(p,w) = 0, t = T, (5.6)

^ , J = 0, \/weV0, t = T;
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in this case, the spaces Vo and W(0,T) are specified in point 8.2.

Use the difference y(v) - y{u) instead of w in the first equality of

system (5.6) under v = u, find the integral from 0 to Γ of the result,

consider equality (1.42) and system (5.3), and the equality

is obtained.
Therefore, the optimality condition for the control u e °ll is

2>0, Vveife. (5.7)

Thus, the optimal control u e % is specified by relations (5.3), (5.6)

and (5.7).

8.6 CONTROL UNDER BOUNDARY CONDITION WITH
FINAL OBSERVATION

For every control weW = ^ ( Γ ) , determine a system state y(x,t;u) as a

generalized solution to initial boundary-value problem specified by

equalities (1.1), (1.5), (1.6), (5.1) and (5.1').

8.6.1 Taking Sight on a System State

The cost functional is

τ
J(u) = \(y(x,T;u)-zg(x)fdx+ \\au2dYdt (6.1)

Ω 0Γ

and it may be represented by expression (4.Γ); in this case,
τ

or



304 CHAPTER 8

and

L(v) = (zg(-)-y(;T;0), y(-,T;v)-y(-,

The generalized problem corresponds to initial boundary-value problem

(1.1), (1.5), (1.6), (5.1), (5.1') and means to find a function y(x9t;u)e

e W(0,T) that satisfies equality system (5.3) Vw e V0 .

Proceed from the first equality of system (5.3), and the inequality

Ί, \' ' J IK S II V V ' ' 111 Mr /i-\ V ' '

is obtained, i.e.

| |^-7||2(O^q|k-wi2 ( r ). (6.3)

Therefore, the linear functional L(·) and bilinear form π(·,·) of cost
functional (6.1) are continuous on W.

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 6.1. If a system state is determined as a generalized solution
to problem (1.1), (1.5), (1.6), (5.1), (5.1% then there exists a unique
element u of a convex set % that is closed in % and relation (1.37) is true

for u, where the cost functional has the form of expression (6.1).
As for the control ν e %, the conjugate state p(v) is specified by system

(4.2). The generalized solution to problem (4.2) is the solution to equality
system (4.3).

Use the difference y{v) - y(u) instead of w in the first equality of

system (4.3) under ν = u, consider equality (1.42), and the equality

is obtained, i.e.

^u)-zg(^y(v)-y(u))(T) = -(p(u),v-u)L2(r)xL2yve%.

Therefore, the control ue°l/d is optimal if and only if the following

inequality is true:
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) 0 , \fve%. (6.4)

or

Thus, the optimal control ue% is specified by relations (4.3), (5.3)

and (6.4).

8.6.2 Taking Sight on a System State Changing Rate

The cost functional is specified by the expression

J(u)= j(jy(x9T;u)-zg(x)\ dx+ IJau2dFdt. (6.4')
Ω^ ' 0Γ

Inequality like (5.4) is true. Therefore, the inequality

dry y

is obtained that shows the continuous dependence of the function — on
P dt

the control ue°l/, and the continuity of the linear functional L(-) and

bilinear form π(·,·) of cost functional (6.4') is thus provided on %.
On the basis of [58, Chapter 1, Theorem 1.1], the validity of the

following statement is proved.
Theorem 6.2. If a system state is determined as a generalized solution

to problem (1.1), (1.5), (1.6), (5.1), (5.1% then there exists a unique
element u of a convex set 9/$ that is closed in % and relation (1.37) takes
place for u, where the cost functional has the form of expression (6.4%

As for the control v e t , the conjugate state p(v) is specified as a
solution to the initial boundary-value problem specified, in its turn, by the
first four equalities of system (4.2) and conditions (4.6) and (4.7). The
generalized problem is written by equalities (4.8) and corresponds to such
initial boundary-value problem.
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Use the difference y{v) - y(u) instead of w in the first equality of

system (4.8) under ν = u, and

1

• ί Γ/>(Η)( ν - u)dTdt, \/ve%.
J J

τ
+

or

Therefore, the optimality condition for the control u e % is

τ
\\(p(u) + au)(v-u)drdt^09 \/ve%. (6.5)

or
Thus, the optimal control ue%d is specified by relations (4.8), (5.3)

and (6.5).



CONTROL OF A SYSTEM DESCRIBED BY A
PSEUDOHYPERBOLIC EQUATION UNDER

CONJUGATION CONDITIONS

Let there be the following denotations: Ω is a domain that consists of two

open, non-intersecting and strictly Lipschitz domains Ω] and Ω 2 from an

^-dimensional real linear space Rn; Γ = ((5Ω! ϋ δ Ω 2 ) / γ ( γ = δ Ω 1 Π

Π9Ω2 Ψ OS) is a boundary of a domain Ω, dQt is a boundary of a domain

Ω/? ι = 1,2; Ωτ = Ωχ(0,Γ) is a complicated cylinder; Γτ = Γ χ (Ο,Γ) is

the lateral surface of a cylinder Ωτ U JT > Ίτ == Υ χ (0,7") ·

Consider such spaces V and Η that F c i f , and F is separable and

dense in //. By analogy [58], introduce a space L2(0,T;V) of functions

i - > / ( 0 that map an interval (Ο,Γ) into the space F of measurable

functions, namely, of such ones that

<OO.

9.1 DISTRIBUTED CONTROL

Assume that the pseudohyperbolic equation [67]

dt -Σ£ dxjdt
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is specified in the domain QT, where

fl € C(QZ), Ο < a'o < a < ax < oo,

η η

(1.1)

ο, «Q, ax, }\ = const,

α -̂ξ,· >αο£ξ?, ^ Λ ^ ^ α , ^ ξ ? , αο,α1= const >0, (1.1')

The third boundary condition

oo.

(1.2)

is specified, in its turn, on the boundary ΓΓ, where 0 < a < a =

= a(x)<aj, α ,αχ = const; the functions β and — are continuous and
dt

bounded on (3ΩΖ \ γ) χ (Ο,Γ), / = 1,2. By analogy [67], the denotation

dxjdt Jdxj)

is used, and ν is an outer ort of a normal (or simply an outer normal) to Γ.
On a section yT, the conjugation conditions are

= 0

and

(1.3)

(1.4)
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where 0 < r = r(x) < rx < oo, rx = const, [φ] = φ + - φ ~ ; φ + ={φ}+ = (p(x,t)

under (JC, t)ey^= (δΩ2 Π γ) χ (0, Γ); φ" = {φ}" = φ θ , t) under (x, t) e
Ε1τ = (^Ω1Πγ)χ(0?Γ); ν is an ort of a normal to γ called simply a

normal to γ and such normal is directed into the domain Ω 2 .

The initial conditions

y(x,O) = yo(x)9 xeQjUQi, (1.5)

and

&/=0

(1.6)

where y0 e V and yxeH, are specified under t = 0.

Let there be a control Hubert space °ll and operator 2?e

Ε&(%;Ι?(0,Τ;Η)\. For every control we9/, determine a system state

j ; = y(u) = j/(x,i;w) as a generalized solution to the problem specified by

the equation

*Z (2f) & f + Bu (1.7)
tf \dt) dt

and by conditions (1.2)—(1.6), and

—[κ —
tj-i dx' { lJ dxJ

Further on, without loss of generality, assume the following: Bu = u.
Specify the observation by the expression

Z(u) = Cy(u), Ce<e(W(0,T);je). (1.8)

Specify the operator
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Λe 2(<Μ;<Μ)·9 {Jfu, u)m > ν 0\\uf̂ , v o = const > 0 . (1.9)

Assume the following: ^fw = ^w; in this case, α\Ω e C(Q/), 0 < a 0 <

< α < 5i, 5"o > **i = c o n s t . The cost functional is

J(u) = \Cy{u)-z^+{Au,u)^ (1.10)

where zg is a known element of the space 3€.

The optimal control problem is to find such an element ue °U that the
condition

J(u)= inf J(y) (1.11)

is met, where % is some convex closed subset in ^/.

Definition 1.1. If an element ue% meets condition (1.11), it is called

an optimal control.
The generalized problem corresponds to initial boundary-value problem

(1.7), (1.2)—(1.6) and means to find such a function y(x9t;u)e W(0,T),
where

W{0,T) = \veL2(0,T;V): y
dt dt2

V=\v(x,t): vL eWUQA l = l,2;\/t e(O,T)\ and wUteAis the space
I IL2/ j

of the Sobolev functions specified on the domain Ω/, that satisfies the

following equations Vw(i) e Vo = | ν : ν | Ω .e W^iQ), / = 1,2>:

'd2y ) fdy '

dtz

\Vte(P,T), (1.12)
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and

(1.13)

(1.14)

in this case,

(φ,ψ) = Jq>(*,t)ψ(%,1)dx, a0(φ,ψ) = J
Ω Ω

- ^ + tfφψ

and

«ι(φ»ψ) =

Use the previous results [41, 55, 32, 64, 49, 21] and consider the existence

and uniqueness of the solution to problem (1.12)—(1.14). Since Bu and

/ G L 2 ( 0 , T ; H ) (H = {v(x,t):veL2(Ω) Vf Ε(0,Γ)}), then, without loss

of generality, assume the following: Bu = 0.

The space Vo is complete, separable and reflexive [41, 55, 32], and

Ρο<ζΖ,2(Ω). Choose an arbitrary fundamental system of linearly

independent functions wk(x), A: =1, 2, ..., in Vo. For the sake of

simplicity, let this system be orthogonal in Σ2(Ω), i.e.(w^,W/) = 0 under

k*l9 *,/ = l,2,....

Assume the following:

and

u n d e r oo
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Specify the approximate generalized solution to problem (1.1)—(1.6) by the
relations

m

»(0»*(*), (1-15)

j=ui, (1.16)

j)> j=l>m, t = 0, (1.17)

and

It is easy to see that Cauchy problem (1.16)—(1.18) has the unique solution
for the system ofm linear ordinary differential equations as for gim(t).

To obtain an a priori estimate of the functions ym(x,t) and - ^ L ,

multiply equality (1.16) by g'im(f) and find the sum over j for the result.

Then:

i.e.:

jt(\\y'm(;tf + al(ymtym)) + 2a0(ymty

=2(ftym)+2(fi,ym)L2ir).

Therefore,



Control of a System Described by a Pseudohyperbolic... 313

(1.19)

The inequality

dt
follows from equality (1.18), i.e.:

dt dt

dt
(1.20)

Let Wj(x), 7 = 1, 2,..., be eigenfunctions of the spectral problem that

means to find {X,w}eRlxV0, w*0:ax(w,z) = λ(χν,ζ), VzeVo, and

they are such eigenfunctions that meet the condition (wi9wA = 0 under

i Φ 7, Ϊ, 7 = 1,2,.... Then, it is easy to see the following:

(1-21)

Consider the expression
t

( L 2 2 )

The inequalities

(0) < c0 | | j O T | ^ (0) < cx ax (ymtym)(0) < cx ax {yo,yo), (1.23)
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[2 2

where μ, c0, cx = const >0, | |φ||κ = ί ^ Κ ^ Ω , · ) \ , follow from

inequality (1.21). Consider inequalities (1.20), (1.21) and (1.23), equality
(1.22), the ε- and Cauchy-Bunyakovsky inequalities and embedding
theorems, and the inequality

z m ( t ) < q h f + a i ( y 0 > y 0 ) + | / ( · 2

Ι ο

t

where zm (t) = \\y'm f (t) + \\ym fv (t) + μ j\\y'm fv dx, μ = const > 0, is
0

obtained from equality (1.19). The inequalities

(1.24)

follow from the latter inequality by virtue of the Gronwall lemma [41, 64].

Hence, ym and y'm remain in the bounded set L (0,T;F). That is why

such subsequence yv of the sequence ym can be chosen, that the

convergences

yv-*y i n I 2 ( 0 , r ; F ) ,

y'm^z inL 2 (0,r;F) (1.25)

are weak. Without loss of generality, suppose that all the sequences

ym and y'm converge in the sense of expressions (1.25). By virtue of [64],
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ζ = ;/ .It follows from expressions (1.25) that yv(0) -> y(0) is weak and,

since yv(0) = yQV —> yQ in F o , then y(0) = y0. Consider inequalities

(1.24), and it is seen that y'm are still in the bounded set L2(0,T;V).

Therefore: zeL2(0,T;V).
It remains to show that, when constructed in such a way, the function y

is the solution to problem (1.12)—(1.14).

Assume the following: <p(t)eCl([0,T])9 φ(Γ) = Ο. Introduce the

denotation (py(0 = (p(t)wj(x). Multiply equality (1.16) by the function φ(ί)

and find the integral from 0 to Γ of the result:

0

τ τ

0 0

Pass to the limit under m-^co, and the following equality is obtained:

ο
τ τ

= j(f9Wj)q>dt+ l(V,Wj)L2(rf>dt + (yhWj)<p(0). (1.26)

ο ο

If φ G D((0,T)) is used [58], then the equality

00

is derived from equality (1.26). Equality (1.27) is true \/wn e U VOn and,

therefore, \/w e F o , where FOw is the η-dimensional subspace of the space
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VQ9 and the functions of the set

Hence, the equalities

U 2 '
dy
—

and

" make up the basis of

(1.28)

(1.29)

(1.30)

take place.
Thus, y(x,t) is the generalized solution to initial boundary-value

problem (1.1)—(1.6). Illustrate its uniqueness. Assume the following in

equality (1.28): w = — . Find the integral of equality (1.28) over τ e (0,0
dt

now, and the equality

0

+ 2 J β' —
*V dtJL2{T)

2

(1.31)

is derived, where z{t) =
dt

Consider the ε-, Cauchy-Bunyakovsky and Friedrichs inequalities and
embedding theorems, and the inequality

2

(τ) άτ<
dy

dt
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where μ - 2ε c0 = const > 0, follows from equality (1.31).

Therefore,

+ΡΊ (1.32)

where z2{t) =
dy

dt

The inequality

(O+bCW-
dt

(τ) dx.

\\yf • sup
τε(Ο,Γ)

(1.33)

follows from inequality (1.32) by virtue of the Gronwall lemma.

Hence, the unique generalized solution to problem (1.1)—(1.6) is zero

under / = 0, β = 0, yx = 0 and y0 = 0. Therefore, the validity of the

following statement is proved.
Theorem 1.1. Problem (L1)-(L6) has a unique generalized solution

y(x,t)eW(0,T).

It is easy to see that yiu^^yfa) under u^u2 {Buy^Bu{). Let

y' = y(u') and y" = y(u") be solutions from W(0,T) to problem

(1.12)—(1.14) under / = 0 and β = 0 and under a function u = u(x,t) that

is equal, respectively, to u' and u". Then, the inequality

-"•' -y" (1.34)

is obtained from inequality (1.33). Rewrite cost functional (1.10) as
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J(v) = π(ν,ν) -2Ι(ν)+ §\zg -y(O)(dt, (1.35)

ο
where

L(v) = (zg-y(O), y{v)-y(O))^ (1.36)

τ τ
in this case, (z,v)#> = (z,v)<#, (ζ,ν)^ = (ζ,ν)ώ, (z,v) = \zvdx .

ο ο Ω
Inequality (1.34) provides the continuity of the linear functional L(-)

and bilinear form π(·, ·) on W.

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 1.2. Let a system state be determined as a solution to problem

(1.12)-(L14). Then, there exists a unique element u of a convex set °11$

that is closed in % and

J(u)= inf J(y) (1.37)

takes place for u.

The control u e % is optimal if and only if the inequality

is true, i.e.:

( ) , ν - ΐ / ) ν ^ 0 . (1.38)

As for the control v e t , the conjugate state p{v) is specified by the

relations

-zg, (x,t)eQT,
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£λ & ^ & J

Σ ί d2p _ φ ] , .
- a l 7 — — +£.·.·-£- cos(v,x)

{ «dxp 'axj) '">
L'j=iv

= 0, (x,t)eyT, (1.39)

ot
By virtue of Theorem 1.1, problem (1.39) has the unique generalized
solution p{v) e W(09T) as the unique one to the equality system:

,w^ + ax(p,w) = {y-zg,w), \/weV0, te(0,T),

φ
dt

= T,

,w\ = O,t = T,\/weVo.

(1.40)

Use the difference ^(v) - y(u) instead of w in the first equality of

system (1.40) under ν = u, find the integral from 0 to Γ of the result, and

the equality

d2p(u)

dt2

\ 1

,y(v)~y{u) \dt- L·I -f ,y(v) -y(u) )dt +
J o

τ
\al(p,y{v)-y(u))dt= j(y(u)- zg,y(v)- y(u))dt (1.41)

is obtained.
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Consider the second addend in the left-hand side of equality (1.41):
τ

o

it. (1.42)

Take equality (1.42) and equations (1.12)—(1.14) into account, and the
equality

τ τ

\(y(u) - zg>y(v) - y(M))dt = j(p(u)9v- u)dt

0 0

is derived from equality (1.41).

Therefore, optimality condition (1.38) for the control M G ^ is

equivalent to the inequality
τ

\(p(u) + au,v-u)dt>0, \/ve%. (1.43)

ο
Thus, the optimal control ue% is specified by relations (1.12)—(1.14),

(1.40) and (1.43). If the constraints are absent, i.e. when % = °U, then the

equality

/?(w) + aw = 0, (x,t)eQT, (1-44)

follows from inequality (1.43).

If the solution (y,p)T to problem (1.12)-(1.14), (1.40), (1.44) is smooth

enough on Ω/ Γ, / = 1,2, then the differential problem of finding the vector-

function (y,p)T, that satisfies conditions (1.2)—(1.6) and (1.39) and the

equality

= / , (x, f)eQ r , (1.45)
dt1 Kdt) "' dt
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corresponds to problem (1.12)—(1.14), (1.40), (1.44), where the optimal
control is specified as

u = -p/a, (x,t)eQT. (1.46)

9.2 CONTROL UNDER CONJUGATION CONDITION
WITH OBSERVATION THROUGHOUT A WHOLE
DOMAIN

Assume that equation (1.1) is specified in the domain Ω Γ . On the

boundary Γ Γ , the boundary condition has the form of expression (1.2).

For every control u e °t/ a Z^(Yr) > determine a system state y = y(u)
as a generalized solution to the initial boundary-value problem specified, in
its turn, by equation (1.1), boundary condition (1.2), initial conditions (1.5)
and (1.6) and the conjugation conditions

[y] = 0, (x,t)eyT, (2.1)

and

= co + w, (x,t)eyT, (2.2)

where ω = ω(χ,ί) e L2(yT).

Since there exists the generalized solution y(x,t;u) to initial boundary-

value problem (1.1), (1.2), (1.5), (1.6), (2.1), (2.2), then such solution is

reasonable on Ω / Γ , / = 1,2. The generalized problem corresponds to initial

boundary-value problem and means to find a function y(x,t;u) e W(0,T)

that satisfies the following equalities Vw(x) G VO = (v(x): v|Q e

/ = 1 , 2 ; [ ν ] | γ = θ } :
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= (/»w) - [comfy - fw wdy + fowdT, t e (0, T),

(2.3)

in this case,

= \v(x,t): ν
dv

dt

Λ 2
Vie[0,r], / = l,2; [v]L=0 V* e (Ο,Γ)

and

"i dx

The following statement takes place.
Theorem 2.1. Initial boundary-value problem (LI), (1.2), (1.5), (1.6),

(2.1), (2.2) has a unique generalized solution y(x,t\u) e W(0,T) \/ue°U.

The validity of Theorem 2.1 is stated by analogy with the proof of
Theorem 1.1.

Proceed from equalities (2.3), and it is easy to see on the basis of the

first one that y{ux) * y(u2) under ux*u2. If yf = y(uf) and y" = y(un) are

solutions from W(0,T) to problem (2.3) under / , ω and β = 0 and under

a function u that is equal, respectively, to ur and u\ then, assume

w = — (yf - y") in the first equality of system (2.3), find the integral of its

first equality over re(0, t) now, and the equality

ao\ dt dt
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(2.4)

L2(y)

is obtained, where z2(t) =

Consider the ε- and Cauchy-Bunyakovsky inequalities and embedding
theorems, and the inequality

2 - Τ

ο
MY)'

dt, (2.4')

where q = const > 0, follows from equality (2.4).

Take the obtained inequality into account, and the inequality

is derived from equality (2.4).
Therefore, the linear functional L(·) and bilinear form π(ν) of cost

τ
functional (1.35), where (ζ,ν)^ = [(ζ,νΙ^^Α, are continuous on °ll. The

ο
observation is specified here in the form of expression (1.8), where
Cy(u) = y(u), and the value of cost functional (1.10) corresponds to every

control M G W , where zg is a known element from I?(0,T;V),

τ τ

J(u) = jj(y(u)-zg) dxdt+ jjau2dydt,
0Ω 0 γ

0 < a0 < a < ax < oo, a0, ax = const, a e ί^(γ).

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 2.2. If a system state is determined as a generalized solution
to problem (1.1), (1.2), (1.5), (1.6), (2.1), (2.2), then there exists a unique
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element u of a convex set °ΙΙ$ that is closed in % and relation (1.37) takes

place for u.
As for the control ν e °ll, the conjugate state p(v) is specified by the

relations

ij=\

[p] = 09 (x,t)eyT,

ι Ί dp I , .
- + % - £ 1 - COS(V,X7J

(2.5)

lij-l

= 0, (x,t)eyT,

ρ(χ,Τ) = 0,

^(x,T) 0, xeQ
ot

Problem (2.5) has the unique generalized solution p(v) e I?(0,T;V) as the

unique one to equality system like (1.40), where

-^dx+ LzvdT.
χ: οχ,·

J l Γ

(2.6)

Ω 1,7=1

If the difference ^(v) - y(u) is used instead of w in the first equality of
system (1.40), where v = u and the bilinear form ^ ( y ) is specified by
expression (2.6), then equality (1.41) is present after taking the integral
over te(0,T) of the result. Consider equality (1.42), the first equality of
system (2.3) and expression (2.6), and the equality

τ τ

l(y(u)-zg,y(v)-y(u))dt = -^p(u)(v-u)dydt (2.7)

0 0γ

is obtained from equality (1.41). Therefore, the control u e % is optimal if

and only if the following inequality is true:
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J \(-p(u) + au)(v-u)dydt>0, Vve%. (2.8)
Ογ

Thus, the optimal control ue% is specified by inequality (2.8) and

relations (2.3) and (1.40), where the bilinear form tfi(y) is specified, in its

turn, by expression (2.6). If the constraints are absent, i.e. when ^ = °ll,

then the equality

u = p/a, (x,t)eyT, (2.9)
follows from inequality (2.8).

If the solution (y,p)T to problem (2.3), (1.40), (2.9) is smooth enough

on Ω/Γ, / = 1,2, then the differential problem, specified by equalities (1.1),

(1.2), (1.5), (1.6), (2.1) and (2.5) and by the condition

d y Ί dy )
•s ι Ιζ _ -s I cos(ν, χ* /ά, (x,t)eyT, (2.9')

corresponds to problem (2.3), (1.40), (2.9), where the optimal control u is
found by formula (2.9).

9.3 CONTROL UNDER CONJUGATION CONDITION
WITH BOUNDARY OBSERVATION

Assume that equation (1.1) is specified in the domain Ωτ. On the

boundary Γ Γ , the boundary condition has the form of expression (1.2). For

every control W G ^ = Z 2 ( Y ^ ) , determine a system state y{x,t\u) as a

generalized solution to initial-boundary-value problem specified by

equation (1.1), boundary condition (1.2), initial conditions (1.5) and (1.6)

and conjugation conditions (2.1) and (2.2). The cost functional is

τ τ

J(u)= jj(y(u)-zgfdrdt+ jjau2dydt.
0Γ 0 γ
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The generalized problem corresponds to initial boundary-value problem
(1.1), (1.2), (1.5), (1.6), (2.1), (2.2) and means to find a function
y(x,t;u)e W(0,T) that satisfies equation system (2.3) VW(X)G VO; the

space W(0,T) is specified in point 9.1 and the spaces V and Vo are

specified, in their turn, in point 9.2.
The following statement takes place.
Theorem 3.1. Initial boundary-value problem (1.1), (1.2), (1.5), (1.6),

(2.1), (2.2) has a unique generalized solution y(x,t;u) e W(0,T) Vw € ̂  .
The validity of Theorem 3.1 is stated by analogy with the proof of

Theorem 1.1.
Proceed from the first equality of system (2.3), and it is easy to see that

y(u\)^y(ui) under u{*u2. Let yf = y(u') and y" = y(u") be solutions

from W(0,T) to problem (2.3) under / , ω and β = 0 and under a function

u that is equal, respectively, to w'and u". Inequality (2.4f) is true, from

which, by virtue of the embedding theorems, the inequality

τ τ

\\{y'-~ffdTdt<c\ \\w-wfLi{i)dt
0Γ 0

is obtained that is the evidence of the fact that the linear functional

and bilinear form TC(·,·) of the cost functional
τ τ

J( W )=JJ(;
or

= n(u,u)·

5; in this

-2L{u)

case,

,) dTdt+ jja
Ογ

Τ

+ | | z g ~ ^ ( O ) |

0

α0, ^ = const,

Loin

a (x) G Lare continuous; in this case, a0, ax = const, a(x)eL2(y), 0<a0<

<a(x)<a{;

π(κ,v) = (y(u) - y(0\ y(v) - ;

and
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On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 3.2. Let a system state be determined as a solution to problem

(2.3), Then, there exists a unique element u of a convex set %$ that is

closed in % and relation (1.37) takes place for u, where the cost functional

has the form of expression (3.1).
As for the control V G W , the conjugate state p(v) is specified by the

relations

= 0, (x,t)eQT,

ι-ζ (x,t)eTT,

dtl

y i a &P

= 0, (x,t)eyT, (3.2)

η ( a 2 -, Λ

= 0, (x,t)eyT,

p(x,T) = 0, λ

dt

Problem (3.2) has the unique generalized solution p(y)eW(0,T) as the

unique one to the equality system

Ω

= \(y(v)-zg)wdT, VWGF0, ί€(0,Γ),

Γ

(3.3)



328 CHAPTER 9

ao(p,w) = O, VWGF 0 , t = T;

the space Fis included into the specification of W(0,T) and specified, in

its turn, in point 9.2 along with the space Vo.

The following statement takes place.
Theorem 3·3. Initial boundary-value problem (3.2) has a unique

generalized solution.
Use the difference y(v) - y(u) instead of w in the first inequality of

system (3.3), where ν = u, find the integral from 0 to Γ of the result, and

the equality

. d t ) ο ^ Λ }

τ τ

+ \ai(p,y(v)-y(u))dt= \\(y(u)-zg)(y(v)-y(u))dra (3.4)

ο or

is obtained, where the bilinear form #ι(γ) is specified by expression (2.6).

Consider equality (1.42) and system (2.3), and the equality

τ τ

(u) - zg) (y(v) - y{u))dYdt = - \\p{u){v - u)dydt

ΟΓ Ογ

is derived from equality (3.4). Therefore, the control ue^ is optimal if
and only if the following inequality is true:

τ
( ) 0 , Vve%. (3.5)

Ογ

Thus, the optimal control ue% is specified by equalities (2.3) and

(3.3) and inequality (3.5). If the constraints are absent, i.e. when % - W,

then the equality

u = p/a, (x,t)eyT, (3.6)
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follows from inequality (3.5). If the solution (y,p)T to problem (2.3),

(3.3), (3.6) is smooth enough on Ω/ Γ, / = 1,2, then the differential problem

of finding the vector-function (y,p)T, that satisfies equalities (1.1), (1.2),

(1.5), (1.6), (2.1), (2.9'), (3.2) and (3.6), corresponds to problem (2.3),
(3.3), (3.6).

9.4 CONTROL UNDER CONJUGATION CONDITION
WITH FINAL OBSERVATION

Assume that equation (1.1) is specified in the domain Ω Γ . On the

boundary Γτ, the boundary condition has the form of expression (1.2). For

every control neW = L2(yT), determine a system state y(x,t;u) as a

generalized solution to the initial boundary-value problem specified by

equation (1.1), boundary condition (1.2), initial conditions (1.5) and (1.6)

and conjugation conditions (2.1) and (2.2).

Let the cost functional be

2 T

J(u)= \{y(xj\u)-zg) dx + jjau2dydt, (4.1)
Ω Ο γ

where 0 < a0 < a < ax < oo; a0, ax = const, and it may be rewritten as

J(u) = π(«,u) -2L(u) + $(zg(x)-y(x,T;0)fdx ; (4.1')

Ω

in this case,
τ

jfeuvdydt
Oy

and
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The generalized problem corresponds to initial boundary-value problem
(1.1), (1.2), (1.5), (1.6), (2.1), (2.2) and means to find a function
y(x9t;u)eW(09T) that satisfies equality system (3.2) \/w(x)e V0; the

space W(09T) is specified in point 9.1 and the spaces V and F0 are

specified, in their turn, in point 9.2.

Theorem 3.1 takes place. It is stated in point 9.3 that y{ux)*y{u2)

under 1*1*1*2. If y' = y(u') a n ( * y" = y(u") a r e solutions from W(0,T) to

problem (2.3) under / = 0, β = 0 and ω = 0 and under a function u that is

equal, respectively, to u' and u", then inequality (2.4') is true. The

inequality

ax{y'-~y\ ~γ'-~/){Τ)<^η'-η^{Ί)^ (4.2)

follows from inequality (2.4'). Consider the Friedrichs inequality, and the
inequality

\\~y'-y\\(T)<co\\u>-u%2{y)xL2

is obtained. Therefore, the linear functional Z(·) and bilinear form π(·,·)

of cost functional (4.1) are continuous on W.
On the basis of [58, Chapter 1, Theorem 1.1], the validity of the

following statement is proved.
Theorem 4.1. If s system state is determined as a generalized solution

to problem (LI), (1-2), (1.5), (1.6), (2.1), (2.2), then there exists a unique

element u of a convex set % that is closed in % and relation (1.37) takes

place for u.

As for the control ve % the conjugate state p(v) is specified by the
relations

$"41Η + Α Γ ω + *-* Μ**.
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= 0, (x,t)eyT, (4.3)

= 0, (x,t)eyT,

p(x,T;v) = 0,

The generalized solution to problem (4.3) is the solution to the equality
system

Vo, tz(0,T),
\ai )

ao(p,w) = O,t = T,VweVo, (4.4)

rp t \ \ . rp

Use the difference y(v) - y(u), instead of w in the first equality of system

(4.4) under ν = u, consider the relation

ο ο
and the equality

τ

(y(.J;u)-zg,y(v)-y(u))-jjp(u)(v-u)dydt =

is obtained, i.e.

Therefore, the control ue% is optimal if and only if the following

inequality is true:
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τ
f i(p(u) + au)(v-u)dydt>0, \/ve%. (4.5)

Ογ

Thus, the optimal control u e % is specified by relations (2.3), (4.4)

and (4.5). If the constraints are absent, i.e. when °l/d = °l/, then the equality

u = -p/a, (x,t)eyT, (4.6)

follows from inequality (4.5).

If the solution (y,p)T to problem (2.3), (4.4), (4.6) is smooth enough on

Ω/ Γ, / = 1,2, then the differential problem, specified by equalities (1.1),

(1.2), (1.5), (1.6), (2.1) and (4.3) and by the condition

= ω-ρ/α, (x,t)eyT,+ ka - ^ cos(v, xf)

corresponds to problem (2.3), (4.4), (4.6), where the optimal control u is
found by formula (4.6).

9.5 CONTROL UNDER BOUNDARY CONDITION WITH
OBSERVATION ON A THIN INCLUSION

For every control MG^/ = L 2 ( r r ) , determine a state y{x,t\u) as a
generalized solution to the initial boundary-value problem specified by
equation (1.1), initial conditions (1.5) and (1.6), conjugation conditions
(2.1) and (2.2) (under u = 0) and the boundary condition

n (

Σ aV
j oxrl

The cost functional is
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1 1

·/(*) = jj(y(u)-zgfdydt+ jjau2dTdt9 (5.2)
Ογ 0Γ

where 0 < a0 < a < ax < oo; ao,ai= const, a e L2(T), and it may be

rewritten as

τ

J(u) = n(u, u) - 2L(u) + jj(zg - y^t\O)fdydt; (5.3)
Ογ

in this case,

and

The generalized problem corresponds to initial boundary-value problem
(1.1), (1.5), (1.6), (2.1), (2.2) (under w = 0), (5.1) and means to find a
function y(x,t;u)e W(09T) that satisfies the following equality system

d y I (uy ι . / \

', te(09T),

γ Γ Γ

<*o(y,w) = ao (yo>w).' = o, (5.4)

The forthcoming statement takes place.
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Theorem 5.1. Initial boundary-value problem (1.1), (1.5), (1.6), (2.1),
(2.2) (under u = 0), (5.1) has a unique generalized solution
y(x,t;u)eW(0,T) V«eW.

The validity of Theorem 5.1 is stated by analogy with the proof of
Theorem 1.1.

Proceed from the first equality of system (5.4), and it is easy to see that

y{u\)*y(u2) under u^u2. Let y" = y(u') and y" = y{u") be solutions

from W(0,T) to problem (5.4) under / , ω and β = 0 and under a

function u that is equal, respectively, to u' and u". The equality

d{y'-7) d(y'-~fY
dt dt

= 2 if(u'-u"), z2(0)

is true, where ζ (t) =
d(y'-y")

dt

Since the inequal

<J_
4ε

ity

τ

0

Ik

(d(y'-y) d(y

Η dt ' <

-«f +ec0
nL2(r)xL2

 υ

*

d ,„

\dt<

(5.5)

takes place and the ellipticity condition is taken into account, then the
inequality

2

(μ-εο0)
d(y'-y")

dt
Fxl2

—
4ε

(5.6)

where μ - ε c0 > 0 and CQ is the constant obtained from the inequalities of

the embedding theorems, follows from equality (5.5).
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Use inequality (5.6), consider the embedding theorems and Friedrichs
inequality, and the inequality

where μ1? q = const > 0, is obtained from equality (5.5).

Therefore, the linear functional £(·) and bilinear form π(·,·) of cost

functional (5.3) are continuous on ^.
On the basis of [58, Chapter 1, Theorem 1.1], the validity of the

following statement is proved.
Theorem 5.2· If a system state is determined as a solution to problem

(5.4), then there exists a unique element u of a convex set °11$ that is closed

in % and relation (1.37) takes place for uf where the cost functional has
the form of expression (5.2).

As for the control V G W , the conjugate state p(v) is specified by the
equality system

η

Σ ^;+kyir \™s(v,xi) = -ap, (x,t)eTT,
jdt J ox:

= 0, (x,t)eyT,

7 - ^ - COS(V,X·)

(5.7)

-z„ (x,t)eyT,

p(x,T) = 0,

^(x,T) 0,xeQ
ot

Problem (5.7) has the unique generalized solution p(v) e W(Q,T) as the

unique one for the following equality system:
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= -(;y(v)-z ,w)
V g ^ 2 (Υ)

ao(p,w) = O9 V W G F 0 , ί = Γ, (5.8)

i f^ > w ] = O, VweF0, ί = Γ ;

in this case, the spaces Fo and W(O,T) are specified in point 9.2.

Use the difference y(v) - y(u), instead of w in the first equality of
system (5.8), where ν = u , find the integral from 0 to Γ of the result, and
the equality

ί ^-4^, JOO-}>(«) U- L(^,J(V)-J(M)]^+

Γ

+ ]al(p,y(v)-y(u))dt = -(y(u)-zg,y(v)-y(u

ο

is obtained, from which the equality

(p,v-u)L2(r)xL2 =-(y(u)-zg,y(v)-y(uj)i

f o l l o w s . T h e r e f o r e , t h e o p t i m a l i t y c o n d i t i o n for t h e c o n t r o l M G ^ i s

> 0 , V V E % . ( 5 . 9 )

Thus, the optimal control MG1/5 is specified by relations (5.4), (5.8)

and (5.9). If the constraints are absent, i.e. when % = ^ , then the equality

-p(u) + au = 0, (jc,i) e TT, (5.10)
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follows from inequality (5.9). If the solution (y,p)T to problem (5.4),

(5.8), (5.10) is smooth enough on Ω/ Γ, / = 1, 2, then the differential

problem of finding the vector-function (y,p)T, that satisfies equalities

(1.1), (1.5), (1.6), (2.1), (2.2) (under u = 0) and (5.7) and the condition
n ( r)2 rh Λ

Σ auTTZ+kyTr \™s(v,xi) = -ay + $+p/a, (x , f )e r r ,rri\ J δχβ J dx,-

corresponds to problem (5.4), (5.8), (5.10), where the optimal control is
u = p/a under (x,t)eTT.

9.6 CONTROL UNDER BOUNDARY CONDITION
WITH FINAL OBSERVATION

Assume that equation (1.1) is specified in the domain Ωτ. The initial

conditions have the form of expressions (1.5) and (1.6) under t = 0,

conjugation conditions (2.1) and (2.2) (under w = 0) are specified on the

section yT and initial condition (5.1), where the control is ue^ =

= L2(TT) is specified, in their turn, on Γτ.

The cost functional is
τ

J(u)= ](y(x,T;u)-zg) dx+ j^au2dTdt, (6.1)

Ω 0Γ

where 0 < a0 < a < ax < oo; a0, ax = const, and it may be rewritten as

J(u) = n(u,u)-2L(u)+ \(zg(x)-y(xJ\0) dx;

Ω

where

τ

n(u,v) = (y(;T;u)-y(;T;O), y(-J;v)-y(-,T;0)) +[\auvdTdt

or
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and

L(v) = (zg - y(-J;O), y(-,T;v) -y(-,

The generalized problem corresponds to initial boundary-value problem
(1.1), (1.5), (1.6), (2.1), (2.2) (under w = 0), (5.1) and means to find a
function y(x,t;u)e W(0,T) that satisfies equality system (5.4)

Vw(x)eF0; the space W(0,T) is specified in point 9.1 and the spaces

V and VQ are specified, in their turn, in point 9.2. Theorem 5.1 takes

place. Equality (5.5) is true, from which the inequality

dt T/ τ

is obtained, where 0 < ε < μ/co; μ, c0 = const > 0.

Proceed from it and from the Friedrichs inequality, and the inequality

follows. Therefore, the linear functional L(·) and bilinear form π(·,·) of

cost functional (6.1) are continuous on °ll.
On the basis of [58, Chapter 1, Theorem 1.1], the validity of the

following statement is proved.
Theorem 6.1. If a system state is determined as a solution to problem

(5.4), then there exists a unique element u of a convex set %d that is closed

in %, and relation (1.37) takes place for u, where the cost functional has
the form of expression (6.1).

As for the control v e 1 / , the conjugate state p(v) is specified by
equality system

UP A\ Φ Ι Φ 7^/ Λ 7 Λ / Χ ^
—%--A\ — \-a — + K(p) + bp = y), (x,t)eQT,
dt2 \dt) dt

, (x,f)erT,
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= 0, (x,t)eyT, (6.2)

= 0, (x,t)eyT,Ι

Problem (6.2) has the unique generalized solution p(v) e W(0, T) as the

unique one to the equality system

(6.3)

in this case, the spaces Vo and ΡΓ(Ο5Γ) are specified in point 9.2.

Use the difference y(y) - y(u), instead of u in the first equality of

system (6.3), where ν = u, find the integral from 0 to Γ of the result, and
the equality

τ

is obtained that yields the equality

Therefore, the control u e % is optimal if and only if the following

inequality is true:
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τ
\\(-p + au)(v-u)drdtZ0, Vve%. (6.4)

or
Thus, the optimal control u e % is specified by relations (5.4), (6.3) and

(6.4). If the constraints are absent, i.e. when % = °l/, then the equality

u=p/a, (x9t)sTT9 (6.5)

is obtained from inequality (6.4).

If the solution (y,p)T to problem (5.4), (6.3), (6.5) is smooth enough on

Ω/Γ,/ = 1,2, then the differential problem, specified by equalities (1.1),

(1.5), (1.6), (2.1), (2.2) (under w=0), (5.1) (under u = p/a) and (6.2),

corresponds to problem (5.4), (6.3), (6.5), where the optimal control is

u = p/a under (x,t) e Γτ .



10
OPTIMAL CONTROL OF A DEFORMED

COMPLICATED SOLID BODY STATE

10.1 DISTRIBUTED CONTROL

Assume that the elastic equilibrium equation system [122]

-Σ
is specified in bounded, continuous and strictly Lipschitz domains

Ωι and Ω 2 e i?3 ; in this case, χ = (jtj, x2, x 3 ); σ ·̂ = σ# = σ#Ο>) =

3

= σ ^ ( χ ; χ ) = Τ ] cikimsim '·> Gik a n ( ^ 8/w a r e elements, respectively, of
/,m=l

stress and deformation tensors, ci]um are elastic constants;

9 — 5 5 ntl — Im — /

Τ

= ( ) ; i (43 ; 2(43 ; 3W) is a displacement vector, ^ ( x ) is a projection of

this vector on an z'-th axis of the Cartesian coordinate system and

f = (fi(x)9f2(x)9f2(x)) is a mass force vector.
Suppose that the elasticity coefficients have the features of symmetry

cikim = cimik = ckimi(x) a n d s a t i s f Y t h e condition [72]
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3 3
ciklm ε/£ ^lm ~ α Ο / , ε/λ:> α Ο = c o n s t > Ο . (1·1')

i,/fe,/,w=i α=ι

The condition
^ = 0 (1.2)

is specified on a boundary Γ = {δΩχ U θΩ2)\γ ( γ = δΩχ Π 9Ω2 Φ0) of a

domain Ω and, on a section γ = δΩ\ Π δΩ2 of the domain Ω, the

conjugation conditions for an imperfect contact are [21]

and

[σΒ] = 0, [τ,] = 0, {τ,Ϋ^φ,]. (1.4)
Conditions (1.3) and (1.4) illustrate the continuities for normal components
of displacement and stress vectors and for a stress vector component
tangent and show the proportionality of a stress vector component to
jumping of a displacement vector component tangent.

In this case, [φ] = φ + - φ~, φ + = {φ}+ = φ(χ) under χ e <9Ω2 Π Υ,

φ" = {φ}" = φ(χ) under χ e ΘΩ{ Π γ, r = r(x), 0 < r, r e L2(y).

Let there be a control Hilbert space W and mapping 5ei?(W;F f ) ?

where V is a space dual with respect to a state Hilbert space V. Assume

the following: W = Ζ2(Ω).

For every control ue°ll, determine a system state y as a generalized
solution to the boundary-value problem specified by the equation

^ Ω , (1.5)

and by conditions (1.2)—(1.4), where Bu = (Blu,B2u,B3u)T, u e Ζ^(Ω).

Specify the observation
Z(u) = Cy(u)9 (1.6)

where C e ^ ( F ; Jf) and Jif is some Hilbert space. Assume the following:

(1.7)
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Bring a value of the cost functional

^(«) = |Cj;(i/)-zg|^+(^w,ii)v (1.8)

in correspondence with every control w e t ; in this case, zg =

/ \T

= I z , z g , ζ I is a known element of the space 3€,

^ ei£(W;W), (^?w)^>v0| |w|^? v0=const>0, W e ^ . ( 1 . 9 )

Assume the following: / e Ζ2(Ω), Bu = ue Ζ2(Ω),

5 / = 1, 2; ^ o ^

= (φ,ψ) =

Ω

The forthcoming statement is true.
Theorem 1.1. A unique state, namely, a function y = y(u) e

e F={ v: v^eWiiQtl / = 1,2; v = (vl5v2,v3)
T, ν|Γ=0, [νπ]|γ=θ},

corresponds to every control ue°ll, delivers a minimum to the energy
functional [21]

Φ(ν) = α(ν,ν)-2/(ν) (1.10)

on V, and it is a unique solution in V to the weakly stated problem: Find an
element y e V that meets the equation

a(y,v) = l(u,v), VveV, (1.11)

where

Φ,ν)= J X cMmeik(y)slm(v)dx+ jr[ys][vs]dy,
Ω i,k,l,m=l γ

/(V) = /(M,V) = (/,V) + (W,V). (l.H')

Proof. Proceed from the Cauchy-Bunyakovsky inequalities and embedding
theorems [55], and the following inequalities are obtained \/v,z e V:

| a (v ,z^c jvyz l , and |/(v)| <c2|v| |F; (1.12)
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in this case, ||v|L = -I V llvlLi^ Λ > , |HLi,o , is the norm of the Sobolev

space ^ ( Ω , ) .

Consider inequality (1.Γ) and the Friedrichs [21] and Korn [16] ones,
and the inequality

α(ν,ν)>α' 0 | | ν | 2 , VveV, (1.13)

is derived. Inequalities (1.12) provide the continuity [49] of the bilinear

form a{',-)\ VxV->Rl and linear functional l(-):V-^Rl on V and

inequality (1.13) provides the F-ellipticity of the form <?(·,·) on V.

Therefore, according to the Lax-Milgramm lemma [16] problem (1.11)

has the unique solution y - y{u) in V. The equivalence for problems

(1.10) and (1.11) is easily stated. Theorem is proved.
Take the aforesaid assumptions into account, and cost functional (1.8)

may be rewritten as

J(u) = \\y(u)-zgf +(au9u) = n(u9u)-2L(u) + \\zg-y(0)f9 (1.14)

where Ι φ ^ ί φ , φ ) 1 ' 2 and the bilinear form π(γ) and linear functional Z,(·)

are specified by the expressions

n(u9 v) = (y(u) - y(0ly(v) - y(OJ) + (aw, ν) ,

) (1.15)

The form π(·,·) is coercive on W since

n(u9u)*a0(u9u). (1.15')

Let y' = y(u') and y" = y{u") be solutions from V to problem (1.11)

under / = 0 and under a function u = u(x) that is equal, respectively, to

uf and u". Proceed from inequality (1.13), and the inequality

a'o \\y' - yf * a'o \\y' - y\ <a{y'- y', y' - y") *

<\\u'.u"\\.\\y'.y"\\ (1.16)
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where a'o = const > 0, follows from equation (1.11).

The derived inequality provides the continuity of the linear functional
Z(·) and bilinear form π(·,·) on %.

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 1.2. Let a system state be determined as a solution to
equivalent problems (1.10) and (1.11). Then, there exists a unique element
u of a convex set % that is closed in °l/, and

J(u)= inf J(v) (1.17)

takes place for u.
Definition 1.1. If an element ue% meets condition (1.17), it is called

an optimal control.
The inequality

n(u,v-u)>L(v-u), \/ve%, (1.18)

is the necessary and sufficient condition for w e % to be the optimal

control.

As for the control ν e °ll, the conjugate state p(y) e V* = V is specified
as the generalized solution to the problem specified, in its turn, by the
following equalities:

3

ρ - 0, χ e Γ,

[ρη] = 0, xey, (1.19)

itfw(/?)l = 0, [^e(p)l = 0, \τΛρ)}~ = rip.], xey.

The generalized problem corresponds to boundary-value problem (1.19)
and means to find a function peV that satisfies the equation
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a(j>9z) = lx(y9z)9 VzeV, (1.20)

where the bilinear form #(·,·) is specified by expression (1.1 Γ), and

Therefore, the necessary and sufficient condition for the existence of the

optimal control u e % is the one under which the relations

a(y(u)9z) = l(u9z)9 VzeF, (1.21)

( ) ( ) 9 V z e F , (1.22)

and

[y{u)-zg9y{v)-y{u)) + (au9v-u)*Q9 Vve%, (1.23)

are met.

Choose the difference y(v)-y(u) instead of ζ in equalities (1.21) and

(1.22), and the equality

(y(u)-zg9y(y)-y(u)) = (v-u9p(u))9 Vve%,

is obtained. Take it into account, and inequality (1.23) has the form
(p(u) + au9v-u)>09 Vve%. (1.24)

Therefore, the necessary and sufficient condition for the existence of the

optimal control u e % is the one under which the relations (1.21), (1.22)

and (1.24) are met.

If the constraints are absent, i.e. when % = "11, then the equality

p(u) + au = 0 (1.25)

follows from condition (1.24). Therefore, when the constraints are absent,
the control u can be excluded from equality (1.21) by means of equality
(1.25). On the basis of equalities (1.21), (1.22) and (1.25), the problem is

τ { τ
obtained: Find a vector-function (y,p) e / / = jv = (vl 5v2 ?) : v f eF,

i = 1,2} that satisfies the equality system

a(y9z) = l(-p/a9z)9 VzeF,
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) = /1(j;,z), V Z G F , (1.26)

and the vector solution (y,p)T is found from this system along with the

optimal control
u = -p/a, ΧΕΩ. (1.26')

If the vector solution (y,p)T to problem (1.26) is smooth enough on

Ωζ, viz., y9 ρ β G C 1 ^ / ) Π C2(Q/), / = 1,2, then the differential

problem of finding the vector-function (y9p)T, that satisfies the relations

^ Si' I -

k=\

x € Y , (1.27)

0, xey,

Κ ω ] = KQO] = 0, {^(j;)}1 = r[ys], [τ,ίρ)}* = r[ps], xey,
corresponds to problem (1.26).

Definition 1.2. A generalized (weak) solution to boundary-value

problem (1.27) is called a vector-function U = {y,pY eH that satisfies

the equation
a(U,Z) = l(Z),VZeH, (1.28)

where

= {Ul,U2)
T, Z = (ZhZ2)

T, υ(,Ζ^ν, 1=1,2;

) + (p/a,Zl)-(y,Z2),

Ω 7=1 i,kj,m=\
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/(

Let the constraint

^ - - ^ > 0 (1.30)
2a0 2

be met, where a 0 and μ are the positive constants, respectively, from

inequality (1.Γ) and the Friedrichs one [21].
Proceed from the Cauchy-Bunyakovsky and Friedrichs inequalities and

embedding theorems [55], take constraints (1.Γ) and (1.30) into account,
and the inequalities

a{Z,Z)>ax\zfH, VZeH, ax= const>0,

y ^ , VU,ZeH, q = const > 0 , (1.31)

are true for the bilinear form a(y): HxH-» Rl, i.e. such form is H-

elliptic and continuous [49] on H, where

2

Consider the Cauchy-Bunyakovsky inequality, and the inequality

| / ( Z ) | ^ c 2 | Z | ^ , c2= const, (1.33)

is obtained VZ e i/ .

The following statement is valid.
Theorem 1.3. Let constraints (LI) and (1.30) be met. Then, there

exists a solution Ue Η to problem (1.28).

The validity of Theorem 1.3 is stated on the basis of the Lax-Milgramm
lemma, when inequalities (1.31) and (1.33) are taken into account.

Problem (1.28) can be solved approximately by means of the finite-

element method. Divide the domains Ω, into Ni finite-elements
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e/ (j = \,Nh i = l,2) of the regular family [16]. Specify the subspace

HJ?c:H (N = Nl+N2) of the vector-functions V^(x). The

components vf[ Q. e C(Qt), I = 1,6, / = 1,2, of V^(x) are the complete

polynomials of the power k that contain the variables x\,x2 and x3 at

every e/. Then, the linear algebraic equation system

AU = B (1.34)

follows from equation (1.28), and the solution U to system (1.34) exists

and such solution is unique. The vector U specifies the unique

approximate solution U^ e H^ to problem (1.28) as the unique one to the

equation

If U = U(x) e Η are the solutions to problem (1.28), then:

a(u-ul,
The following relation is true:

φυ?\\
ιι ιι/y

Therefore,

where ocx and q are the positive constants from respective inequalities

(1.31). Suppose that U e H^ is a complete interpolation polynomial for

the solution U at every e/.

Take the interpolation estimates [16] into account, assume that every

component JJ\ (I = 1,6) of the solution U on Ω^ belongs to the Sobolev

space W2+l(&j)9 j = 1,2, and the estimate

||c/-C/f| <ch\ (1.37)
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where h is a maximum diameter of all the finite elements e/ , c = const,

follows from inequality (1.36).
Take estimate (1.37) into account, and the estimate

(1.38)

takes place for the approximation u^(x) = -p^/a of the control

u = u(x).

10.2 DISTRIBUTED CONTROL WITH OBSERVATION
AND WITH TAKING SIGHT ON JUMPING OF A
DISPLACEMENT VECTOR COMPONENT TANGENT
AT A DOMAIN SECTION

Assume that elasticity theory equation system (1.5), where Bu = u, is
specified in the bounded, continuous and strictly Lipschitz domains

Ω2 and Ω 2 Ξ / ? 3 for every control weW = L2(Q). Boundary condition
(1.2) is specified on the boundary Γ and constraints (1.3) and (1.4) are
specified, in their turn, on the section γ. Specify the observation as follows:

Cy(u) = [ys(u)], xey.

Bring a value of the cost functional

([hgfdy + (au,u) (2.1)
γ

in correspondence with every control u e W ; in this case, zg is a known

scalar function from L2(y), and the function a(x) is specified in point

10.1.
It is shown in point 10.1 that a unique state, namely, a function

y{u) e V corresponds to every control M G W , minimizes energy functional
(1.10) on V and meets equation (1.11), where the bilinear form
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<z(y): VxV->Rl and functional l(u,v) are specified by respective

expressions (1.1Γ)·
Rewrite cost functional (2.1) as

J(u) = n(u,u) - 2 Z ( I I ) + \\zg - b , ( 0 ) | | ^ ( y ) ; (2.2)

in this case, the bilinear form π(·,·) and linear functional Z(·) are

expressed as

n(u,v) = ([ys(u)]-[ys(0)], b » ] - ^ ^ ) ] ) ^ +(au,v)

and

L(v) = (zg-[ys(0)]> b,(v)]-b

where (φ,ψ)ζ 2 ( γ )=

Υ

Inequality (1.15') is true for the bilinear form π(γ)> i.e. such form is

coercive on °ll. Introduce the denotation y(v) = y(v) - y(0). Then:
2

a2eRl

9 \/uuu2 eW. (2.3)

Proceed from equality (2.3), and the linearity of the functional Z(v) and

the bilinearity of the form π(ι/,ν) are stated.

Let yr = y(u') and y" = y(u") be solutions from Γ to problem (1.11)

under / = 0 and under a function u - u(x) that is equal, respectively, to

u' and u". Since the inequality

<2

y's - y ' £ * c'o\\y'-y"t > CO = const>o, (2.3')
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is true in accordance with the embedding theorems [55], then:

Therefore, the inequality

is obtained that provides the continuity of the linear functional L(·) and

bilinear form π(·,·) on W.

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 2.1. Let a system state be determined as a solution to
problems (1.10) and (1.11). Then, there exists a unique element u of a
convex set %$ that is closed in % and relation (LI7) takes place for u,

where the cost functional has the form of expression (2.1).

As for the control ve%f, the conjugate state p(v) e V is specified a

generalized solution to the problem specified, in its turn, by the equalities

Μ dXk
p = 0,

[pn] = 0, [ση(ρ)] = 0, xey, (2.4)

f [ y s ] - z g , xey.

The generalized problem corresponds to boundary-value problem (2.4) and
means to find a function peV that satisfies the equation

a{p,z) = lx{y,z), VzzV, (2.5)

where the bilinear form a(·,·) is specified by expression (1.11'), and
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( b ] ^ ) h ] (2.50
γ

Therefore, the necessary and sufficient condition for the existence of the

optimal control ue% is the one under which the relations

a(y(u)9z) = I(u9z)9 VzeV, (2.6)

)9z)9 VzeV, (2.7)

and

( b ] b l b M ) Hau9v-u)>09 \/ve%, (2.8)

are met.
Choose the difference y(v) - y(u) instead of z, obtain the equality

4/>(")>^)-j^

γ

from equality (2.7), and the equality

Λ (/>(«)> J> (v) - J>(w)) = (v - II, p(w))

follows from equality (2.6). Therefore, the equality

J(b,(w)]-^)([^(v)]-b,H)t/y = -(^)?v-W) (2.8')

Υ

is derived. Take it into account, and inequality (2.8) has the form

(-/?(w) + aw,v-w)>0, V V G % . (2.9)

If the constraints are absent, i.e. when % = Q/9 then the equality

0, ΧΕΩ, (2.10)

follows from inequality (2.9). Therefore, when the constraints are absent,
the control u can be excluded from equality (2.6) by means of equality
(2.10). On the basis of equalities (2.6), (2.7) and (2.10), the problem is

obtained: Find the vector-function (y9p) eH= ]V = (v1,v2) : vt e V,

i = 1,2} that satisfies the equality system
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a,z), VzeV,

),\/z<EV, (2.11)

and the vector-solution (y9p) is found from this system along with the

optimal control
u = p/a, ΧΕΩ. (2.12)

If the vector solution (y,p) to problem (2.11) is smooth enough on

Ω/, viz., y, ρ\^ eC^Q^flC^Q,), 7 = 1,2, then the differential

Τ

problem of finding the vector-function (y,p) , that satisfies system (2.4)

and equalities

k=\ K

y = 0, χ

xey, (2.13)

corresponds to problem (2.11).
Definition 2.1. A generalized (weak) solution to boundary-value

problem (2.4), (2.13) is called a vector-function U = (y,p) eH that

satisfies equation like (1.28), where

( ) (g[])L2(yy (2.13')

Let the constraint

η ώ ι ί α ο μ - - , α ο μ - 1 , ^ " ^ } > 0 (2.14)
[ a0 2 2J

be met, where αό, c'o and μ are the constants, respectively, from

inequalities (1.13) and (2.3') and the Friedrichs one.
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Therefore, inequalities like (1.31) and (1.33) take place for the bilinear
form tf(y) and linear functional /(·) specified by respective expressions

(2.13'). The following statement is valid.
Theorem 2.2. Let constraint (2.14) be met. Then, there exists a solution

UeH to problem (1.28), where the bilinear form a(y) and linear

functional /(·) are specified by respective expressions (2.13%

Assume that the classical solution U on Ω/ to problem (2.4), (2.13)

belongs to the Sobolev space fF2

+1(C2/), / = 1,2. Then, estimate like

(1.37) takes place for the approximate solution U^ ^Hk obtained by

means of the finite-element method. Therefore, estimate (1.38) takes place,

in its turn, for the approximation uj^(x) = p^ /a of the control u = p/a .

10.3 DISTRIBUTED CONTROL WITH OBSERVATION
AND WITH TAKING SIGHT ON A NORMAL
DISPLACEMENT VECTOR COMPONENT AT
A THIN INCLUSION

Assume that equation system (1.5), where Bu = u, is specified in the

bounded, continuous and strictly Lipschitz domains Q^ and Ω 2 e R for

every control ue% = 12(Ω). Boundary condition (1.2) is specified on the

boundary Γ and constraints (1.3) and (1.4) are specified, in their turn, on

the section γ. Specify the observation as follows:

Cy(u) = yn(u\ xey.

Bring a value of the cost functional

J(u)= \(yn(u)-zgfdy + (au9u) (3.1)

Υ

in correspondence with every control ue°ll\ in this case, zg is a known

scalar function from L2(y), and the function a{x) is specified in point

10.1.
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It is shown in point 10.1 that a unique state, namely, a function

y(u) e V corresponds to every control w e t , minimizes functional (1.10)

on V and meets equation (1.11), where the bilinear form a(y) and

functional /(·,·) are specified by respective expressions (1.1 Γ).

Rewrite cost functional (3.1) as

J(u) = n(u,u)-2L(u) + \\zg -Λ(0) |^ ( γ ) ; (3.2)

in this case, the bilinear form π(·,·) and linear functional Z(·) are

expressed as

n(u9v) = (yn(u)-yn(0), yn(v)-yn(0))^(γ) +(au9v)

and

Inequality (1.15') is true for the bilinear form π(·,·), i.e. such form is

coercive on W. Let yf = y(u') and y" = y(u") be solutions from V to

problem (1.11) under / = 0 and under a function u = u(x) that is equal,

respectively, to uf and u". Since the inequality

{ f \ \ % (3.2')
Υ

is true in accordance with the embedding theorems, then:

Φ' -yt<±a(y'-y\y'-f)<U -ΚΐΦ -yt

α 0

Therefore, the inequality

\u -u
"II

ctb

is obtained that provides the continuity of the linear functional !,(·) and

bilinear form π(·,·) on ^ .



Optimal Control of a Deformed Complicated... 357

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 3.1. Let a system state be determined as a solution to
equivalent problems (1.10) and (1.11). Then, there exists a unique element
u of a convex set % that is closed in °ll, and relation (LI 7) takes place

for u, where the cost functional has the form of expression (3.1).
As for the control ν e °ll, the conjugate state p(v) e V is specified as a

generalized solution to the problem specified, in its turn, by the following
equalities:

x e y , (3.2")

xey.

The generalized problem corresponds to boundary-value problem (3.2")
and means to find a function peV that satisfies equation like (2.5), where

the bilinear form a(y) is specified by expression (1.1 Γ), and

ll(y,z) = -j(yn-zg)zndy. (3.3)

γ

Therefore, the necessary and sufficient condition for the existence of the

optimal control u e % is the one under which the inequality

ii)^O, Vve%, (3.4)) +(2ftt,vii)^O, Vve%

and equalities like (2.6) and (2.7), where the bilinear form a(·,·) and

functional /(·,·) are specified by respective expressions (1.1 Γ) and ^(y) is

specified, in its turn, by expression (3.3), are met.

Choose the difference y{v)-y(u) instead of z, take expression (3.3)

into account, obtain the equality
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from equality (2.7), and the equality

a{p(u\y(v)-y(u))= yy-u)p(u)dx

Ω

follows from equality (2.6). Therefore, the equality

) (3.5)

is derived. Take it into account, and inequality (3.4) has the form of

inequality (2.9). If the constraints are absent, i.e. when % = ̂ , then

equality (2.10) follows from inequality (2.9). Therefore, when constraints
are absent, the control u can be excluded from equality (2.6) by means of
equality (2.10). On the basis of equalities (2.6), (2.7) and (2.10), the

problem is obtained: Find a vector-function (y,p)TeH = |v = (v1,v2)
T :

Vj e V, i = l , 2 | that satisfies equality system (2.11), where

a(v) and /(·,·) are specified by expressions (1.11') and /j(v) is

specified, in its turn, by expression (3.3). The vector solution (y,p) to

this problem is obtained and the optimal control u is found by formula

(2.12). If the vector solution (y,p)T to problem (2.11) is smooth enough

on Ω/, then the differential problem of finding the vector-function
τ

(y,p) , that satisfies systems (2.13) and (3.2"), corresponds to problem

(2.11).
Definition 3.1. A generalized (weak) solution to boundary-value

problem (2.13), (3.2") is called a vector-function U = (y,p)T <=H that

satisfies equation like (1.28), where

(3.5')

Let the constraint
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, αομ-1, a'0-c0\>0 (3.6)

I ao J
be met, where a 0 , a'o, co(y,p)T and μ are the constants, respectively,

from inequalities (1.1'), (1.13) and (3.2') and the Friedrichs one. Therefore,
inequalities like (1.31) and (1.33) take place for the bilinear form a(y) and
linear functional /(·). The following statement is valid.

Theorem 3.2. Let constraint (3.6) be met. Then, there exists a solution
UeH to problem (1.28), where the bilinear form #(·,·) and linear

functional /(·) are specified by respective expressions (3.5%

Assume that the classical solution U on Ω/ to problem (2.13), (3.2")

belongs to the Sobolev space ϊΓ2*
+1(Ω/)> / = 1,2. Then, estimate like

(1.37) takes place for the approximate solution Up eHj^ obtained by

means of the finite-element method. Therefore, estimate (1.38) takes place,

in its turn, for the approximation u^(x) = ρ£ /a of the control u = p/a .

10.4 DISTRIBUTED CONTROL WITH OBSERVATION AT
A DOMAIN BOUNDARY PART

Assume that equation system (1.5), where Bu = u9 is specified in the

bounded, continuous and strictly Lipschitz domains Qj and Ω 2 e i?3 for

every control */€/2/ = Ζ2(Ω). Conjugation conditions (1.3) and (1.4) are

specified, in their turn, on the section γ of the domain Ω and, on the

boundary Γ of the domain Ω (Γ = (δΩι U 3Ω2) \ γ, γ = 8ΩΧ Π 5Ω 2 ) , the

boundary conditions are

y = 0, xeTl9 (4.1)

<yn=gi, xeT2, (4.2)

and
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Ts=g2, * e T 2 , (4.3)

where Γ = Fj U Γ 2 .

Specify the observation as

Cy(u) = y(x;u), xeT2.

Bring a value of the cost functional

J{u)= j\y(u)-zg\
2dT2 + (au,u) (4.4)

r2

in correspondence with every control u e W; in this case, zg is a known

element from ^2(^2) > a n ^ the function a(x) is specified in point 10.1.

Let the Friedrichs inequality

Σ ( ] ^ ^ ^ Ρ ^ μ = οοη8ΐ>0, (4.5)

take place Vv e V = {ν = (v1,v2,v3)
T : ν, | Ω / e Ψ2

ι(Ω{), I = 1,2;

v|r,=0, Κ]|γ=θ}.
The following statement is valid.
Theorem 4.1. A unique state, namely, a function y = y{u) e V

corresponds to every control w e t , delivers a minimum to energy
functional (L10) on V and it is a unique solution in V to weakly stated
problem (1.11), where

CMn£ik (v) s/m 0 ) dx + \ r [vs ] [zs ] dJ > ( 4 · 6 )

r2

The validity of Theorem 4.1 is stated on the basis of the Lax-Milgramm
lemma.

Rewrite cost functional (4.4) as
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J(u) = n(u9u) - 2L(u) + \\zg -

where

π(κ, v) = (y(u)-y(p), y(v)-J>(0))W2) + (au9v)

and

Inequality (1.15') is true for the form π(·,·), i.e. such form is coercive on

Let y' = y(u') and y" = γ(μ") be solutions from V to problem (1.11),

where a(·,·) and /(·,·) are specified by respective expressions (4.6), under

/ = 0 and gi = g2 = 0 and under a function w = u(x) that is equal,

respectively, to v! and w". Then, the inequality

scl¥-u"\\\\y-y

i.e.

is obtained that provides the continuity of the bilinear form π(·,·) and

linear functional L(·) on °U.

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 4.2. Let a system state be determined as a solution to

equivalent problems (1.10) and (1.11), where tf(v) and /(·,·) have the

form of expressions (4.6) and the space V is specified in the present point.

Then, there exists a unique element u of a convex set %$ that is closed in

W, and relation (1.17) takes place for u, where the cost functional has the
form of expression (4.4).

As for the control ν e %ί , the conjugate state p(v) e V is specified as a

generalized solution to the problem
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[pn] = 0, [σΗ(ρ)] = 0, xey, (4.7)

xey.

The generalized problem corresponds to boundary-value problem (4.7) and

means to find a function ρ e V that satisfies equation like (2.5), where the

bilinear form a(·,·) is specified by expression (4.6), and

Therefore, the necessary and sufficient condition for the existence of the

optimal control ue% is the one under which the inequality

(y(u)-zg,y(v)-y(u))L^r^+(au,v-u)>09 Vve%, (4.9)

and equalities like (2.6) and (2.7), where the bilinear form a(y) and

functional /(·,·) are specified by respective expressions (4.6) and the

functional ^(v) is specified, in its turn, by expression (4.8), are met.

Choose the difference y(v)-y(u) instead of z, take expression (4.8)

into account, obtain the equality

«(pO*),y(v) - y(u)) = (yfa) - zg9 y(v) - y(u))L2(Ti)

from equality (2.7), and the equality

<* (p(uX y(y) - y(u)) = (P<M\ V~U)

follows from equality (2.6). Therefore, the equality

(y(u)-zg9 y(v)-y(u)) =(p(u\v-u)

is derived. Take it into account, and inequality (4.9) has the form
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(u) + au,v-u)>0, Vve%. (4.10)

If the constraints are absent, i.e. when % = W, then the equality

p(u) + au = 0 (4.11)

follows from inequality (4.10). Proceed from equality system (2.6), (2.7),
where the bilinear form a(y) and functional /(·,·) are specified by

respective expressions (4.6) and the functional /·[(·,·) is specified, in its

turn, by expression (4.8), take the equality u = -p/a into account, and the

solution to this system, namely, the vector-function (y,p)T eH is found

and the optimal control is u = -pia .

If such solution is smooth enough on Ω,, / = 1,2, then the differential

problem of finding the vector-function (y,p) , that satisfies equality

system (1.3), (1.4), (4.1)-(4.3), (4.7) and the equation

toiM ΰ (4.12)

corresponds to the considered problem.
Definition 4.1. A generalized (weak) solution to boundary-value

problem (1.3), (1.4), (4.1)-(4.3), (4.7), (4.12) is called a vector-function

U = (y,p)T e Η that satisfies equation (1.28), where

- jyZ2dT2,

r2

~ jzgZ2dT2. (4.13)

r2

Let the constraint

ηιΐη]αομ , α ο μ - 1 , α ' 0 - ο 0 ^ 1 > 0 (4.14)

be met, where α 0 , αό, c0, C'Q and μ are the constants, respectively, from

inequalities (1.Γ), (1.13) and (3.2'), the embedding theorems and
Friedrichs inequality.
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Therefore, inequalities like (1.31) and (1.33) take place for the bilinear
form a(y) and linear functional /(·). The following statement is valid.

Theorem 4.3. Let constraint (4.14) be met. Then, there exists a solution

U G Η to problem (1.28), where the bilinear form a(y) and linear

functional /(·) are specified by respective expressions (4.13).

Assume that the classical solution U on Ω/ to problem (1.3), (1.4),

(4.1H4.3), (4.7), (4.12) belongs to the Sobolev space ^ + 1 ( Ω Ζ ) , / = 1,2 .

Then estimate like (1.37) takes place for the approximate solution

Uk e Hfr c Η obtained by means of the finite-element method.

Therefore, estimate (1.38) takes place, in its turn, for the approximation
ukix)= ~Pk fa °f the control u = -p/a .

10.5 CONTROL AT A DOMAIN BOUNDARY PART WITH
TAKING SIGHT ON JUMPING OF A
DISPLACEMENT VECTOR COMPONENT
TANGENT AT A DOMAIN SECTION

Assume that elasticity theory equation system (1.1) is specified in the

bounded, continuous and strictly Lipschitz domains Ωχ and Ω 2 e i?3 for

every control ue% = 12(Γ2). On the section γ of the domain Ω,

conjugation conditions (1.3) and (1.4) are specified and, on the boundary Γ

of Ω , the boundary conditions are

^ = 0, xeTu

> * Ξ Γ 2 , (5.1)

where the sectors Γ γ and Γ2 of Γ are specified, in their turn, in the previous

point.
Specify the observation as

(u) = [ys(u)]9 xey.
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Bring a value of the cost functional

Au)= lilysiu^-ZgfdyHZuriwrj (5.2)
γ

in correspondence with every control w e t ; in this case, zg is a known

element from L2(y), and the function a(x) is specified on

Γ2? a(x) e L2(Y2\ 0<a0< a(x\ a0 = const.
The following statement is valid.
Theorem 5.1. A unique state, namely, a function y = y(u)eV

corresponds to every control ue°U, delivers a minimum to energy
functional (1.10) on V, and it is a unique solution in V to weakly stated
problem (1.11); in this case, the space V is specified in point 10A, the
bilinear form <z(y) is specified by the first formula of expressions (4.6),
and

/(W?v) = (/,v) + (w ? v) L 2 ( r 2 ) + \(gxvn+g2vs)dT2 . (5.3)

r2

Rewrite cost functional (5.2) as

J(u) = n{u,u) -2L(u) + \\zg - ^

where

and

Inequality (1.15') is true for the bilinear form π(γ)> i.e. such form is

coercive on ^ Let y' = y{u') and yn = y(un) be solutions from V to

problem (1.11) under / = 0 andgi = g2 =0 and where #(y) and /(·,·) are

specified, respectively, by the first formula of expressions (4.6) and by

expression (5.3). Then, the inequality
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is obtained, where c'o, c{ and oc'0 = const >0 and from which the

inequality

follows that provides the continuity of the bilinear form π(·,·) and linear

functional /,(·) on °ll.

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 5.2. Let a system state be determined as a solution to

equivalent problems (1.10) and (1.11), where a(y) is specified by the first

formula of expressions (4.6) and /(·,·) has the form of expression (5.3).

Then, there exists a unique element u of a convex set °lld that is closed in

% and relation (1.17) takes place for u, where the cost functional has the

form of expression (5.2).

For every control ν e W, the conjugate state p{v) e V is specified as a
generalized solution to the problem specified, in its turn, by the equalities
of system (2.4), except the second one, and by the constraints

σ η = τ 5 = Ο , x e i y (5.4')

The generalized solution to the considered problem exists and such
solution is unique in V.

Therefore, the necessary and sufficient condition for the existence of the
optimal control M G ^ is the one under which the relations

V z e F , (5.5)

, V Z G F , (5.6)

and
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%, (5.7)

where #(·,·)> /(v) and /i(v) are specified by the first formula of

expressions (4.6) and by expressions (5.3) and (2.5'), are met.
Choose the difference y(v) - y(u) instead of z, obtain the equality

a{p{u\y{v)-y{u)) = -{[ys{u)]^zg\ys{v)]-[y

from equality (5.6), and the equality

* (P(U), yiy) - y(u)) =

follows from equality (5.5). Therefore, the equality

p(u),v-u)L2(r2) (5.8)

is derived. Take it into account, and inequality (5.7) has the form

V G % . (5.9)

If the constraints are absent, i.e. when % = ^ , then the equality

-/? + aw = 0, Χ Ε Γ 2 , (5.10)

follows from inequality (5.9).
Therefore, when the constraints are absent, the control u can be

excluded from equality (5.5) by means of equality (5.10). On the basis of
equality (5.10), the problem is obtained: Find the vector-function

(y, ρ)Ί e Η -1 v = (vj, v2 )
T : vt-e V, i = 1,2 j that satisfies the equality

system

a(y9z) = l(p/a9z), VzeV, (5.11)

a(p,z) = ll(y,z), VzeF, (5.12)

from which the vector solution (y,p)T is found along with the optimal

control
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u = ρ/α , xe Γ2.

If the vector solution (y,p)T to problem (5.11), (5.12) is smooth

enough on Ω/, then the differential problem of finding the vector-function

(y,p) , that satisfies equality system (2.4), except its second equality,

equalities (1.1), (1.3), (1.4) and (5.4') and the constraints

*a, xeT2, (5.13)

corresponds to problem (5.11), (5.12).
Definition 5.1. A generalized (weak) solution to the boundary-value

problem, specified by equalities (1.1), (1.3), (1.4), (5.4'), (5.13) and (2.4),
except the second one of system (2.4), is called a vector function

U = (y, ρ)τ e Η that satisfies equation (1.28), where

[ ] [ ] ) L 2 ( y y (5.13')

= (f,zl)+(zg,[z2s])) L 2 ( y )

Let the constraint

4>0 (5.14)
2

be met, where a'o and c0 are the constants, respectively, from inequalities

(1.13) and the embedding theorems and the constant c{ is found from the

inequality

Therefore, inequalities like (1.31) and (1.33) take place for the bilinear

form a(y) and linear functional /(·). The following statement is valid.

Theorem 5.3. Let constraint (5.14) be met. Then, there exists a solution
UeH to problem (1.28), where the bilinear form «(·,·) and linear

functional /(·) are specified by respective expressions (5.13%
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Assume that the classical solution U on Ω/ to the problem, specified by

equalities (1.1), (1.3), (1.4), (5.4'), (5.13) and (2.4), except the second

equality of system (2.4), belongs to the Sobolev space ί^ + 1 (Ω/), / = 1,2 .

Then, estimate like (1.37) takes place for the approximate solution

Uk e H^ obtained by means of the finite-element method. Therefore, the

estimate

u-uF\\ <chk (5.13")

takes place for the approximation uj^(x) - p^ /a of the control u = p/a .

10.6 CONTROL AT A DOMAIN BOUNDARY PART WITH
TAKING SIGHT ON A NORMAL DISPLACEMENT
VECTOR COMPONENT AT A DOMAIN SECTION

Assume that elasticity theory equation system (1.1) is specified in

bounded, continuous and strictly Lipschitz domains Ω{ and Ω2 e i?3 for

every control ueW = L2(r2). Conjugation conditions (1.3) and (1.4) are

specified, in their turn, on the section γ of the domain Ω and, on its
boundary Γ, the boundary conditions have the form of expression (5.1).

Specify the observation as

Cy(u) = yn(u), xey.

Bring a value of the cost functional

J(u)= j(yn(u)-zgfdy + iautu)^^ (6.1)

γ

in correspondence with every control MGI/; in this case, zg is a known

scalar function from L2(y), and the function a(x) is specified in the

previous point.
It is shown in point 10.5 that a unique state, namely, a function

y - y(u) G V corresponds to every control WGW, minimizes functional
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(1.10) on V and meets equation (1.11), where the bilinear form a ( v ) is

specified by the first formula of expressions (4.6) and the functional /(·,·)

has the form of expression (5.3).
Represent cost functional (6.1) in the form of expression (3.2), where

n(u,v) = (yn(u)-yn(0)9 yn(y)-3

and

L(v) = (zg-yn(0), yn(

It is easy to see that the form π(·,·) is coercive on 9/.

Let y' = y(uf) and y" = y{u") be solutions from Fto problem like (1.11)

under / = 0 and gx = g2 = 0 and under a function u = u(x) that is equal,

respectively, to u' and u". Proceed from the embedding theorem, and the

inequality

is obtained that provides the continuity of the bilinear form π(·,·) and

linear functional £(·) on W.

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 6.1. Let a system state be determined as a solution to

equivalent problems like (L10) and (1.11), where the bilinear form «(·,·) is

specified by the first formula of expressions (4.6) and the functional /(·,·)

is specified by expression (5.3). Then, there exists a unique element u of a

convex set °l/d that is closed in % and relation (1.17) takes place for u,

where cost functional has the form of expression (6.1).
As for the control ν e °ίί, the conjugate state p{v) e V is specified as a

generalized solution to the problem specified, in its turn, by system (3.2"),
except the second equation, and by constraints (5.4'). It is easy to state that
the generalized solution to this system exists and that such solution is
unique.

Therefore, the necessary and sufficient condition for the existence of the
optimal control M € % is the one under which the inequality
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0,Vve%, (6.2)

and equalities like (2.6) and (2.7), where the bilinear form a(·,·) is

specified by the first formula of expressions (4.6), the functional /(·,·) is

specified, in its turn, by expression (5.3) and ^(v) has the form of

expression (3.3), are met.

Choose the difference y{v)-y{u) instead of z, take expression (3.3)

into account, obtain the equality

α (p(u), y(v) - y(uj) = - J( yn (u) - zg) (yn (v) - yn (u)) dy

γ

from equality (2.7), and the equality

0 CP(W), y(v) - y(u)) = (p(u% ν - w)

follows from equality (2.6). Therefore, the equality

is derived. Take it into account, and inequality (6.2) has the form

(-p(u) + au,v-u)L2(T2)>0, Vve%. (6.3)

If the constraints are absent, i.e. when °Ud - °M, then the equality

-p(u) + au = 0, ΐ £ Γ 2 , (6.4)

follows from inequality (6.3). Therefore, when the constraints are absent,
the control u can be excluded from condition (5.1) by means of equality
(6.4), i.e.:

j/ = 0, xeTu

a> * Ξ Γ 2 , (6.5)

Definition 6.1. A generalized (weak) solution to boundary-value
problem, specified by equalities (1.1), (1.3), (1.4), (6.5) and (3.2"), except
the second one of system (3.2"), and by constraints (5.4'), is called a
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vector-function U = (y,p)T e Η that satisfies equation (1.28), where

( g ) i 2 ( y ) (6.6)

The following statement is valid.
Theorem 6.2. Let the constraint be met that provides the H-ellipticity of

the bilinear form a(y) on H. Then, there exists a solution U eH to

problem (1.28), where the bilinear form tf(y) and linear functional /(·)

are specified by respective expressions (6.6).

Assume that the classical solution U on Ω/ to the considered problem

belongs to the Sobolev space ^ + 1 ( Ω / ) , / = 1,2. Then, estimate like

(1.37) takes place for the approximate solution U^ ^Hy. a H obtained

by means of the finite-element method. Therefore, estimate (5.13") takes

place, in its turn, for the approximation u^ {x)~ p^ /a of the control

u = p/a .
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