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PREFACE

At present, in order to resolve problems of ecology and to save mineral
resources for future population generations, it is quite necessary to know
how to maintain nature arrangement in an efficient way.

It is possible to achieve a rational nature arrangement when analyzing
solutions to problems concerned with optimal control of distributed
systems and with optimization of modes in which main ground medium
processes are functioning (motion of liquids, generation of temperature
fields, mechanical deformation of multicomponent media). Such analysis
becomes even more difficult because of heterogeneity of the region that is
closest to the Earth surface, and thin inclusions/cracks in it exert their
essential influence onto a state and development of the mentioned
processes, especially in the cases of mining.

Many researchers, for instance, A.N. Tikhonov — A.A. Samarsky [121],
L. Luckner — W.M. Shestakow [65], Tien-Mo Shih, K.L. Johnson [47],
E. Sanchez-Palencia [94] and others stress that it is necessary to consider
how thin inclusions/cracks exert their influences onto development of these
processes, while such inclusions differ in characteristics from main media
to a considerable extent (moisture permeability, permeability to heat, bulk
density or shear strength may be mentioned).
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An influence exerted from thin interlayers onto examined processes is
taken into account sufficiently adequately by means of various constraints,
namely, by the conjugation conditions [4, 8, 10, 15, 17-20, 22-26, 38, 44,
47,52, 53, 68, 76, 77, 81, 83, 84, 90, 95, 96-100, 112-114, 117, 123].

The mathematical models include the (partial differential) equations that
describe states of components in multicomponent media and have
boundary (object-medium interaction) and initial conditions. And the
conjugation conditions, specified on median surfaces of thin inclusions and
based on the main laws of conservation, are added to them. Such an
approach generates the new mathematical problem classes, and a problem
solution makes it possible for first-type discontinuities to be present on
conjugation condition specification surfaces.

It should be noted that, in 1980s, the problem of construction of
computation algorithm with a higher-order accuracy was resolved in
general for elliptic, parabolic and hyperbolic equations and for elasticity
theory equation systems with boundary and initial conditions [see 16, 43,
54, 55, 71, 78, 79, 91, 92, 119, 124 and other ones]. However, the
correctness of these problem classes with conjugation conditions was not
investigated and the efficient algorithms, used to solve them numerically,
were also absent.

Some simple problems from the above-mentioned families were solved
analytically. From the mechanical point of view, the energy functionals
were obtained for deformed solids with inclusions of a low rigidity. When
the conjugation conditions were considered, the penalty method was used
by some authors. There are also the works, where an equation of a state is
extended to a solution discontinuity surface by means of the Dirac
function.

Unlike these works, the authors of the present monograph propose to use
the respective classes of the discontinuous functions in order to investigate
boundary-value and initial boundary-value problems with partial
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derivatives and conjugation conditions [18, 19, 21, 96—100, 112]. This
circumstance allows to create the classical energy functionals and weakly
stated problems specified on such function classes. The computation
algorithms with an enhanced problem discretization accuracy order are
developed for the mentioned group of problem classes with conjugation
conditions. This is done when proceeding from the application of the
finite-element method functions that allow discontinuity. As for a
discretization step order, the accuracy of such algorithms is not worse than
the accuracy of the similar ones and known for the respective problem
classes with smooth solutions.

The authors of the present monograph show the existence of a unique
generalized solutions for such problem classes, and a unique solution on a
subspace is demonstrated for the Neumann problem. Such unique solutions
continuously depend on the disturbances including the right-hand sides of
equations, conjugation conditions, boundary conditions. Therefore, it is
possible to prove the existence of the unique optimal controls as for the
J.L. Lions’ quadratic cost functionals.

The contents of the proposed authors’ monograph is given mainly in their
works [101-111].

It should also be noted that the basic fundamental results were obtained in
the theory of optimal control in the works by L.S. Pontryagin,
V.P. Boltyansky, R.V. Gamkrelidze, E.F. Mishchenko [85, 42], J. Warga
[126], A.A. Feldbaum [40], R. Bellman [5], N.N. Krasovski [51],
B.N. Pshenichnyi [87, 88], V.M. Tikhomirov [120] and by other authors.

States of objects (i.e. of systems with distributed parameters) are described
on the basis of the laws of conservation by the classical and non-classical
equations of mathematical physics in many technical applications and
when nature arrangement and ecology problems are investigated and
resolved. The works by F. Bensousanne [7], B.N. Bublik [11],
A.G. Butkovsky [12-14], F.P. Vasilyev [125], A.I. Egorov [29-31],
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YuM. Ermoliev [33-37], V.I. Ivanenko, V.S. Mel’nik [46], J.L. Lions
[56-64], S.I. Lyashko [67], K.A. Lurje [66], Yu.S. Osipov [80],
Yu.l. Samoylenko [14], A.M. Samoylenko [93], T.K. Sirazetdinov [118],
R.P. Fedorenko [39], V.A. Dykhta [27] and other works are devoted to
resolution of the problems concerned with control of systems with
distributed parameters.

Chapter 1 considers new problems concerned with optimal control of
distributed systems described by an elliptic equation with conjugation
conditions and by a quadratic cost functional. Computation schemes are
made up that have an increased order of problem discretization. This is
done for the case when a feasible control set % of feasible controls

coincides with a complete control Hilbert space %/.

Chapter 2 discusses optimal control of a conditionally correct system that
is described by the Neumann problem for an elliptic equation with
conjugation conditions. The aspects of how to create equivalent correct
problems and of how to find optimal controls for conditionally correct
systems on the basis of such problems are studied.

The problems of optimal control of one- and two-dimensional quartic
equations with conjugation conditions are dealt with, respectively, in
Chapters 3 and 4.

Motion of a liquid in an elastic medium and non-stationary heat diffusion
in multicomponent media are described by initial boundary-value problems
for parabolic-type equations with conjugation conditions. Chapter 5 is
devoted to optimal control of such systems.

The presence of a concentrated heat capacity on thin inclusions generates
classes of initial boundary-value problems for parabolic-type equations
with conjugation conditions that contain the first-order time derivative of a
solution [91]. Chapter 6 considers optimal control of such systems.
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Chapter 7 1s concerned with new problems of optimal control of distributed
systems described by initial boundary-value problems for a
pseudoparabolic equation with conjugation conditions and by a quadratic
cost functional.

The initial boundary-value problems for the pseudoparabolic equations
were previously considered [1-3, 6, 28, 69, 74, 75, 89, 116].

Chapter 8 studies optimal control of systems described by initial boundary-
value problems for hyperbolic equations with conjugation conditions.

The initial boundary-value problems for the pseudohyperbolic equations
were also previously considered [45, 48, 50, 70, 82, 115].

Chapter 9 deals with optimal control of systems described by initial
boundary-value problems for pseudohyperbolic equations with conjugation
conditions.

Chapter 10 discusses optimal control of stress-deformed states of solid
bodies that contain thin and not very rigid inclusions.

The authors want to express their gratitude to Mr. Naum Z. Shor, the
Scientific Editor, Academician of National Academy of Sciences of
Ukraine, for his valuable remarks, useful advises and attention paid to the
work. ”

The authors wish to express their gratitude to Mr. D.A. Kondrashov and
Mrs. L1 Riasnaia, who work at V.M. Glushkov Institute of Cybernetics of
National Academy of Sciences of Ukraine, for the translation of the
monograph manuscript into English and to Mrs. G.A. Sakhno and Mrs.
N.N. Siyanitsa, who also work at V.M. Glushkov Institute of Cybernetics,
for the preparation of the computer monograph version.
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The authors express their thanks to Mr. John Martindale, the Senior
Publisher, and to Ms. Angela Quilici for the fruitful cooperation during the
preparation of the book.

Ivan V. Sergienko and
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CONTROL OF SYSTEMS DESCRIBED BY
ELLIPTIC-TYPE PARTIAL-DIFFERENTIAL
EQUATIONS UNDER CONJUGATION
CONDITIONS

Chapter 1 considers new problems concerned with optimal control of
distributed systems. Such systems are described by an elliptic equation
with conjugation conditions and a quadratic cost functional. Computation
schemes are made up that have an increased order of problem
discretization. This is done for the case when a feasible control set %

coincides with a complete control Hilbert space %.

1.1 DISTRIBUTED CONTROL OF A SYSTEM
DESCRIBED BY THE DIRICHLET PROBLEM

Assume that the elliptic equation
S0
R e ey e (L1)
s Ox; ox

is specified in bounded, continuous and strictly Lipschitz domains
Q, and Q, € R"; in this case,

z k€& Zaoiif )

i,j=1 i=l
V@i,ij eRl, i, =l,_n, VxeQ=Q,UQ,, o, =const >0, (1.1)
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k,.j|Ql=kﬂ‘QleC(£—2,)ﬂC1(Ql), dloy S, eCQ), 1212

0<gp <g=g(x)< ¢ <; gy, g =const, |f|<oo.

The homogeneous boundary Dirichlet condition
y=0 (1.2)
is specified, in its turn, on a boundary I'=(0Q,UdQ,)\y (y=0Q,N
NoQ, = ).
On a section y of the domain Q=Q UQ, (Q,NQ,=97), the
conjugation conditions for an imperfect contact are

{Z =2 cos(v, x; )} =0 (1.3)

i,j=1 J
and

{Z ~Z-cos(v,x; )} rIyl, (1.4)

i,j=1
where 0<r=r(x)<r<wo, reC(y), n=const, [p]=0" ~¢~, ¢" =

={p}" = ¢(x) under x€dQ, Ny, ¢ ={p}” =¢(x) under x€dQ; Ny, v
is an ort of a normal to y and such normal is directed into the domain Q, .

Let there be a control Hilbert space % and mapping Be % (%; V"),
where V' is a space dual with respect to a state Hilbert space ¥ . Denote a
space of continuous linear mappings of a topologic space X into a
topologic space Y by £ (X;Y) [58]. Assume the following: % = L,(Q).

For every control ue %, determine a system state y= y(u) as a
generalized solution to the problem specified by the equation

_Z [ l.j(x);TyJ+q(x)y=f(x)+Bu, yev, (1.5)

ljl J

and by conditions (1.2)—(1.4).
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Specify the observation

Z(u)=Cy(u), (1.6)
where Ce % (V; ) and F is some Hilbert space. Assume the following:
Cy(u)=y(u), H=Vc LQ). (1.7)
Bring a value of the cost functional
2
J () =|Cyu) - zg“” + (N, 1)y (1.8)
in correspondence with every control u €% ; in this case, z, is some

g
known element of a space J, and

N e L(UU), (Nu,u)y = o> Vo=const>0, Vuew. (1.9)
Assume the following: felL, (Q), Bu=suel,(Q), fu=a(x)u; in
this case, 0 < ay< a(x)<ay <o, E(x)|QI cC(), [1=12 agaq=

=const, (Q,y)=(Q,y)y = J.(p\p dx. Then, a unique state y(u)eV =
Q

= {v|Ql eWy(Q)): [=1,2; V| = 0}, where W, (€;) is a set of the Sobolev
functions that are specified on the domain €;, corresponds to every

control u €% . The function y is specified, in its turn, on the domain
Q =0, UQ,, minimizes the energy functional [21]

D) = I{Zkya@--@iwv de+

Q \i,j=1

+ [rvPay-2(f,v)-2(u,v) (1.10)
Y
on ¥, and it is the unique solution in ¥ to the weakly stated problem: Find
an element ye V' that meets the equation

J (Zkua—?-wyv]dﬁ frivmiay =

Q \GJj=1 Y
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=(f,v)+(u,v), yeV, VveVl, (1.11)
where (f,v) = vadx.
Q

Therefore, there exists such an operator 4 acting from V into L, , that
y(w)=A"Nf +Bu), Yuel,, (1.12)
where L, = L,(Q).
It is easy to see that y(u;) # y(u,) under u; # u, since the bilinear form

is expressed by the left-hand side of equality (1.11) and such form is
coercive on V. The solution to linear boundary-value problem (1.5),

(1.2)—(1.4) is zero only when the right-hand side of equation (1.5) is zero.
Remark. When a state y(u) is determined as a solution to one of

equivalent problems (1.10) and (1.11) with respect to the coefficients &; in

equation (1.1), it is enough to follow ellipticity condition (1.1") and the
constraint k; € L,,(€2).

Take the aforesaid assumptions into consideration, and the cost
functional may be rewritten as

J@) =y -z, | +@u0), (1.13)

, Zg may be, in its turn, an arbitrary fixed element of
the Hilbert space L,(Q), and

J(u) = H (¥@) = y(0) +((0) - z, ) ”2 +(@u,u) =

2
= ni(u, 1)~ 2L(u) + |z, = y(0)| (1.14)
follows from expression (1.13); in this case, the bilinear form n(-,-) and
linear functional L(-) are expressed as

n(1,v) = (@) = $(0), y(¥) = (0)) + (@u, V),
L) = (24 = ¥(0), y(») = (0)) . (1.15)

The linearity of the functional L(v) follows from the fact that the
difference y(v)— y(0) is the unique solution j(v) to one of equivalent

where ||| = (v,v)/?
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problems (1.10) and (1.11). It is necessary to assume f =0 for them, and

the arbitrary element zelV must be additionally substituted for the
arbitrary function v in problem (1.11). Then:

F oty + oguy) = oy J(uy) + 0, 5(y) Vou,ap €R', Yy uyely. (1.16)

Pursuant to equality (1.16), it can also be stated that m(#,v) is the bilinear
form that is coercive on % and that it can be made symmetric by virtue of

the following: (au,v) = (\/—6_; u, Ja v) ,
m(u,u) = (y() - y(0), () - (0)) + (V7 uNa u)2 ag (w,u).
Let 7/ =3u') and "= y(u") be solutions from V to problem (1.11)

under f =0 and under a function u =u(x) that is equal, respectively, to
u' and u". Then, the inequality

/-

< “a (jv}l_j-}n, j-)r __j)ﬂ) <
u'|- “j;’ _)”;”HV , p=const>0,

1s derived that provides the continuity of the linear functional L(-) and
bilinear form 7(:,-) on %/ in this case,

) 1/2
2
- S
i=

and

a((p,w)=_f{z Vo +CI(PWde+_[[<P][\V]dY-

Q \iJj=1 %
On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 1.1. Let conditions (1.1) be met, and a system state is
determined as a solution to equivalent problems (1.10) and (1.11). Then,

there exists a unique element u of a convex set U that is closed in U, and

J(@) = inf J(v) (1.17)
vely
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takes place for u.
Definition 1.1. If an element u € 2%, meets condition (1.17), it is called

an optimal control.
If u € %, is the optimal control, then

Jw) <J((1-0)u+6v) Vvei, 0<(0,1),

or
J(u+9(v—u))—J(u)>O' (1.18)
5 >
Pass to the limit 6 — 0, and
lim J(wu+06(v—u))-J(u) 50.
6—0 0
Therefore,
(J'(u),v—u)20. (1.19)

Take expressions (1.14) and (1.18) into consideration, and inequality
(1.19) has the form

lim m(u+0(v—u),u+06(v—-u))—-2L(u+08(v—-u))—n(u,u)+2L(u) _
6—-0 0

_ pigg 044) +20 (v — ) + 6% (v — 1, v —u) = m(u,u) — 20L(v —u) _

00 0
=2{n(u,v—u)—L(v—u)}ZO, (1.20)
from which the inequality
n(u,v—u)= L(v—u), Vve i, (1.21)
is derived.

On the basis of expressions (1.15), the equality
n(u,v =)~ L(v —u) = (y(u) - ¥(0), y(v —u) - y(0)) +

+Hau,v—u)- (Zg = y(0), y(v—u) —y(O)) -
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=(y(u)—zg,y(v—u)—y(O))+(Eu,v—u) (1.22)
is obtained from condition (1.21), and the equality
n(u,v-—u)—L(v—u)= (y(u) —Zg, y(v) - y(u))+ (au,v—u)

follows from equality (1.22) when the linearity of problem (1.11) is taken
into account.
Then, inequality (1.21) has the form

(y@) =z, () - y(@)) + @u,vy=1) 20, Vv ey, (1.23)

and it is the necessary and sufficient condition under which u € %, is the
optimal control for the considered problem.

As for the control v e %, the conjugate state p(v)e V" is specified by
the equation

A p()=y(»)-z4; (1.24)

in this case, the operators 4 and Ae Q(V*;V’) (conjugate to A4) are
interrelated by the bilinear form

(A0, ¥) = (0, Ay) = a(o,y), oV, yeV, (1.25)

where

a(o,y) = I{Zk~-—%@+q¢w}m+ Ir[cpl[\v]dv- (1.26)

if
Sl ox; Ox; ;
Consider equation (1.24), obtain the equality

(4 p(w), y(v) = y()) = (y() = 24, y(v) = y(u)) =

=(p(w), A(y(v) - y())) = (p(u), Ay(v) — Ay(u)) = (p(u),v —u),
and it is stated that inequality (1.23) is equivalent to the inequality
(p(w)+au,v—u)=0, Vve ;.



8 CHAPTER 1

Therefore, the necessary and sufficient condition for the existence of the
optimal control u € % is the one under which the relations

Ay(u)=f+u, (1.27)
A'p@w) = y(w) -z, (1.28)
and
(p(w)+au,v—u)=0, Vvei, (1.29)
are met.

If the constraints are absent, i.e. when % = % , then the equality

p(u)+@u=0 (1.30)

follows from condition (1.29). Therefore, when the constraints are absent,
the control u(x) can be excluded from equality (1.27) by means of

equality (1.30). On the basis of equalities (1.27) and (1.28), the problem
Ay+pla=f,yeV, (1.31)

Ap-y=-z,, peV’, (1.32)

is derived, where ¥ = {VIQIE Wiy 1=1,2;v

r=0}, i.e. V*=V, and

the vector solution (y, p)T is found from this problem along with the
optimal control

u=-pla. (1.33)

If the vector solution (y, p)T to problem (1.31), (1.32) is smooth

enough on Q;, viz., y|§l,p|§l eC'(Q)NCHQ), =12, then the

differential problem of finding the vector-function (y, p)T, that satisfies
the relations

n P ay
=3 k== |+qy+pla=f, xeQUQ,, (1.34)
.j=16x,~ Ox

J
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"Zax( ]+qp—y=—zg,erIUQz, (1.35)

V=0, (1.36)
pl- =0, (1.37)
{Zk,j cos(vx)i|—0 xevy, (1.38)
i,j=1 j
{i ki — @ cos(v, x)} =r(y], xev, (1.39)
etV Ox
i,j=l1 J
[Z cos(vx)}—o xevy, (1.40)
i,j=1

and

{2 P cos(v, x, )} =pl, xey, (1.41)

i,j=1 J
corresponds to problem (1.31), (1.32).
Definition 1.2. A generalized (weak) solution to boundary-value

problem (1.34)—(1.41) is called a vector-function (y, p)T eH=
{v (vl,vz) eWz(Ql) i,/=12; vll——O} that satisfies the

following 1ntegra1 equation Vze H :

p 0z,
J'{Zkya +qyzl+pzl/a+zf’c,ja >, —2 4 qpz, — yzz}d

i,j=1 i,j=1

+[rlzdy+ [riplzdar= [(fz2-zgz)de. (142)
Q

Y Y
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Let u= (ul,uz)T and v= (vl,vz)T be arbitrary elements of the complete
) 2
] . 2
Hilbert space H with the norm ||v[,, = {Z‘;""“W} (Qi)} , where [V Wi
=

is the norm of the Sobolev space Wzl (©;). Specify the bilinear form
o, Ou Oy x>, Oup Ov
V) = k,—L =Ly N 222272
a(.v) I{Z Y ox ; ox, Z Y ox; ox;
Q UiJj=1 J ¢ i,j=1 J !

+q(ulv1 +u2v2)+u2 VI/E—MIVZ}dx+

+ [rlmIDnddy + [riullv)dy (1.43)
Y Y
on H
Let the constraint
oc1=(oco—8)u+q0———1—(i+1]>0 (1.44)
2 ay

be met, where ¢ is a sufficiently small positive real number and
p = const > 0 is the constant in the Friedrichs inequality

i3]

o Y

——) deujvzdx, YveV.
=\ Ox;
Q =l Q

1

Proceed from constraints (1.1") and (1.44), the Cauchy-Bunyakovsky
and Friedrichs inequalities and embedding theorems [55], and the
inequalities

a(v,v) > q, ||v]|§{ , Vve H, &, =const >0,
and
la(u,v)|<¢ "uuH ”vHH , Yu,ve H, ¢, =const >0,

are true for the bilinear form a(,-), i.e. this form is H-elliptic and
continuous [49] on H.
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Consider the Cauchy-Bunyakovsky inequality, and Vv e H

1) =| (v~ zgvp)ax

Q

<¢ nvnH , Cp =const,

i.e. the linear functional /(v)= .[ (fy1 —zgv,)dx is continuous on H.

Q
Use the Lax-Milgramm lemma [16], and it is concluded that the unique

solution (y, p)T to problem (1.42) exists in H. It is easy to see that p is the
unique solution to equation (1.32) when y is fixed.

Problem (1.42) can be solved approximately by means of the finite-
element method. For this purpose, divide each domain Q; into N, finite

elements Eij (J =1,_N,.,i =1,2) of the regular family [16]. Specify the
subspace H ,ﬁv cH (N =N;+N,) of the  vector-functions
7Y (x)= (lek (x), vﬁ\g(x))T . The components of V¥ (x) = (v{"k(x), v%(x))T
are continuous on €;,7=1,2, and they are the complete polynomials of
the power k that contain the variables xi, x,, ..., x, at every é}j , and
VkN lr= 0. Then, the linear algebraic equation system

AU =B (1.45)

follows from equation (1.42), and the solution U to system (1.45) exists
and such solution is unique. The vector U specifies the unique

approximate solution U, ,ﬁv eH ,ﬁv to problem (1.42) as the unique one to the
equation

a(Ud ) =1Vl ), wrien) . (1.46)
Let U =U(x) € H be the solution to problem (1.42). Then:
a(u-ul vl)=0, v e Hy.

Therefore,
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aIHU—U;V“Z <a(U-uf,u-ul)=

=a(U-U{ ,Uu-0+0-U} )=a(U-U} ,U-0), vOen},
and the inequality

Jo-ui], < &o-0l, a4

is thus derived since the bilinear form a(-,) is continuous on H.

Suppose that U e H ,\I,V is a complete interpolation polynomial for the

solution U at every El.j . Take the interpolation estimates [16] into account,

assume that every component U; and U, of the solution U on ; belongs

to the Sobolev space Wy *'(Q;), 1=1,2, and the estimate

HU ~uy ﬂH <chF, (1.48)
where 4 is a maximum diameter for all the finite elements Eij , ¢ =const,

follows from inequality (1.47).
Take estimate (1.48) into consideration, and the estimate

N N k
oty seslp-t st
2 2

) )
where ]|||W21 ={Z”'”W21(Q,~)} , takes place for the approximation
i=1

ul (x) =—ph (x)/a(x) of the control u = u(x).
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1.2 CONTROL UNDER CONJUGATION CONDITION.
THE DIRICHLET PROBLEM

Assume that elliptic equation (1.1), where the coefficients and right-hand
side meet conditions (1.1’), is specified in the bounded, continuous and

strictly Lipschitz domains Q, and Q, € R".
The homogeneous boundary Dirichlet condition

y=0, xeT, 2.1)

is specified, in its turn, on the boundary I of the domain Q.
For every control u e =L,(y), determine a state y= y(u) as a

generalized solution to the boundary-value problem specified by equation
(1.1), boundary condition (2.1) and the conjugation conditions

[¥]=0, xevy, (2.2)

and
-,
Z kij—cos(v,xi) =0+u, xXey, 2.3)
b Ox
i,j=1 J
where ® = ®(x) is some known function from Z,(y).
Since there exists a generalized solution y(u)eV = {V\Qi € Wzl (€)):

[v]]Y =0,v

= 0} to boundary-value problem (1.1), (2.1)—(2.3), then such

solution is reasonable on Q; and Q, . Specify the observation in the form
of expression (1.7), where C e & (V,;V), namely:

Cy(u)=y(u).

Bring a value of the cost functional

J(u) = j( () = 2g) dx + )y, (2.4)
Q
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in correspondence with every control u € % in this case, z, is a known

element from L,(Q); Afu=a(x)u, 0<ay <a(x)<a <o, (Q,¥)g=
= I(P\!/dy = (o, \V)[Q(y) .

Y

It can be shown [21] that a unique state y(u) € V corresponds to every

control ue? . The function y is specified on the domain Q;UQ,,
minimizes the energy functional

D) = j(zn: k‘.—?—v——gv—+qv2de—2§!ﬂdx+2J(co+u)vdy (2.5)

y
o\ %%

on V, and it is the unique solution in ¥ to the weakly stated problem: Find
an element y € V' that meets the integral equation

n
P v -
_“(Zkij ax, o, +qyv |dx =

Q \i,j=1

= J‘ﬁ/dx— Ia)vdy— Iuvdy, YveV. (2.6)
Q Y Y
The state y(u) # y(uy) is easily seen under u; # u,, and

ag(z,2) 2 Gz, g >0, VzeV, 2.6)

where the bilinear form ay(-,-) is generated by the left-hand side of
equality (2.6).
Take the assumptions as for the operator .4 into account, and

2
J(@) = | (v = 9(0) + (#(0) =z, )| + @),y =
= n(u,u) = 2L(w) +[z, - yO)| @.7)

follows from expression (2.4); in this case, the bilinear form =(-,-) and
linear functional L(-) are expressed as
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m(u,v) = (y() ~ y(0), y) = O) + @, V) ) »

L) = (24 = y(0), y() - (0)) . 2.8)

The linearity of the functional L(v) is easily seen from the fact that the
difference y(v) - y(0) is the unique solution y(v) to one of equivalent
problems (2.5) and (2.6). It is necessary to assume f =0 and w=0 for

them, and the arbitrary element z € /' must be additionally substituted for
the arbitrary function v in problem (2.6). Then, equality like (1.16) takes
place that allows to state the linearity of the functional L(v) and the

bilinearity of the form m(u,v). The form n(:,-) is coercive on L,(y), i.e.:
m(u,u) 2 ag(u, 1)1, y) -

Let y’=y(') and 7" =73 (") be solutions from V to problem (2.6)
under f=0and ®=0 and under a function u=u(x) that is equal,
respectively, to ' and " . Then, the inequality

"5}/ _5}"”[2/ < Ha(j}l _5}”,5)’_5)”) <

<t =l ) 17 =51y 2.9)

is derived, where p = const >0, the norm |, is specified in point 1.1 and

the bilinear form a(:,-) is specified, in its turn, by the expression

a(u,v)= J[iélky%%+quvjdx. (2.10)
Since the inequalities
Mo,00, <My >0 i=12 2.10)
are true Vv eV , then:
M,y <slvly » €3 =max{c, e} > 0. (2.11)

Take inequality (2.11) into account, and the inequality
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”5)'—5’””1,2@) ey ”“l_u””],z(y) (2.12)

follows from inequality (2.9), i.e. the trace of the function y(u) on vy is
continuously dependent upon u. The inequality

|<\n eyl —u"

also follows from inequality (2.9).

Inequalities (2.12) and (2.12') provide the continuity of the bilinear
form m(:,-) and linear functional L(-) on %.

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 2.1. Let conditions (1.1) be met, and a system state is
determined as a solution to equivalent problems (2.5) and (2.6). Then,
there exists a unique element u of a convex set Uy that is closed in U, and

relation like (1.17) takes place for u.

Iy - " (2.12")

Ly(v)

If u € U, 1s the optimal control, then
n(u,v—u)2 L(v-u), Vvei,. (2.13)
Proceed from expression (2.8), and it is easy to see that the equality
m(u,v—u)—-L(v-u)=
=(y(U) 2, y(v 1) = y(0)) + @u,v =), () (2.14)

is true. Take the linearity of problem (2.6) into account, consider equality
(2.14), and the inequality

(y@) 20, y0) = y@))+ @u, vy =),y 20, Vve By,  (2.15)
is obtained that is the necessary and sufficient condition under which
u € U, is the optimal control for the considered problem.

As for the control v e %, the conjugate state p(v) e V' s specified by
the relations

A p(v)=-y() +z,, (2.16)
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p=0, xeTl,
[p]=0, xey,

liaip 1=O, xey,
A*

and

where V" isa space conjugate to V, vV =V, and

* a ap
Ap=- k;i +qp,
P zax [ Y ox J 1p

J

z cos(v X;).

A5 0=l J

Further on, use the Green formula [58], and the equality
(4" @), y0) - y(0)) = = () = 25, y(v) - y(w)) =

51

llagl A

*

U@x
i,j=l1

(y(v)— y(w))doQ; +

(
J‘( Z k. o (V) J’(u)) +qp(y(v)- y(u))J dx =

17

(2.17)
(2.18)

(2.19)

(2.19")

2
~a(py)-5w) =Y [ 3 by X o 100, +

I=1 g, i,J=1

J-p[ > ( a(y(») ly(u)))+Q(J’(V)“Y(u))de:

- [po-wydy,
Y
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i.e.

(v@) =2, y0) = y@w)) = [pv-u)dy (2.20)
Y
is obtained. Take it and equality (2.14) into account, and the inequality

(p+c7u,v—u)L2(Y)ZO, Vve, (2.21)

is derived from inequality (2.15).
Therefore, if the constraints are absent, i.e. when % =%, then the
equality

pw)+au=0,xevy, (2.22)

follows from condition (2.21), and, to find the optimal control u(x), solve
the differential problem

‘Z ax[’f }rqy [ xeQUQy, (2.23)
i,j=1
_Za ( j"'qp“z -y, xe Q Uy, (2.24)
i,j=1 Xi
y=0,xel’, (2.25)
p=0,xel, (2.26)
[¥]1=0, xev, (2.27)
{Z —~cos(v x)}—a) pla, xevy, (2.28)
i,j=1 J
[p]=0, xey, (2.29)
[Z COS(V )}O, Xevy, (2.30)
i,j=1

and the optimal control is
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u=-pla, xey. (2.31)

Definition 2.1. A generalized (weak) solution to boundary-value
problem (2.23)-(2.30) is called a vector-function (y, p)T eH=
={r =01 v|g, €M (@) 11=1,2v]r =0, 0,i=1,2] that

satisfies the following integral equation Vz e H :

J{Zky-a-—-g—+qyzl + Zkya Z +qp22}dx—

i,j=1

i]‘y=

= j frydx + J'(zg— )zpdx — Imzldy+ j pzjady.  (232)
Q Q Y Y

Let u = (ul,uz)T and v=_,v, )T be arbitrary elements of the complete
Hilbert space H with the previously introduced norm |||| T Specify the

bilinear form a(:,-) and linear functional /() on H by the expressions

a(u,v) =
— C aul avl < auz 8v
= I Z— klj"a—x'—gx—+ Zklj a a +q(u1v1+u2v2)+u1v2 dx —
Q \,j=l1 J i JJ
- j”z v/ady,
Y
Iv)= J-ﬁ’ldx + ngVde - valdy. (2.33)
Q Q Y
If the constraint
_ max {012’03} 1
oy =0g —————5>0

200 2
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takes place, where ¢; and ¢, are the constants from inequalities (2.10")
and p and o are, respectively, the constants in the Friedrichs inequality
and inequality (2.6"), then:

a(v,v) 2 o ||v||i1 , Vve H,
and
|a(u,v)| <c ||u|‘H ]|v||H , Vu,ve H, ¢; =const>0;

i.e. the bilinear forma(.,-) is H-elliptic and continuous on H.
Consider the Cauchy-Bunyakovsky inequality, and Vve H

HOIE J'fvldx+ _[ngzdx- Imvldy <e4|v, > s =const,
Q Q %

1.e. the linear functional /(v) is continuous on H.
Use the Lax-Milgramm lemma, and it is concluded that the unique

solution (y, p)T to problem (2.32) exists in H. Problem (2.32) can be
solved approximately by means of the finite-element method. Specify the

T
subspace H, ,ﬁv c H of the vector-functions VkN (x)= (lek (x), vé\; (x)) . The

components i} (x), vg,;(x)lg eC(), i=12, of V¥ (x)=(v{}§(x),

T
v%c (x)) are the complete polynomials of the power £ that contain the

variables x;, X,, ..., X, at every finite element g/ of the regular family
[16], and VkN ’1‘ =0, [vf;f ]| =0, i=1,2. Then, the linear algebraic equation
Y

system like (1.45) is derived from equation (2.32). The solution to this
system exists and such solution is unique.

Take the interpolation estimates [16] into account, assume that every
component U; and U, of the solution U to problem (2.32) on €2, belongs
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to the Sobolev space W. k”(Q,) I=1,2, and estimate like (1.48) follows

from inequality like (1.47). Take this estimate and the embedding theorems
into consideration, and the estimate

”u uj, H <c1hk, ¢ = const,
Ly ()

takes place for the approximation u; (x) =— p,iv (x)/Zz" (x) of the control
u=u(x).

1.3 BOUNDARY CONTROL OF A CORRECT SYSTEM
DESCRIBED BY THE NEUMANN PROBLEM

Assume that elliptic equation (1.1), where the coefficients and right-hand
side meet conditions (1.1"), is specified in the bounded, continuous and

strictly Lipschitz domains €, and Q, € R".
The heterogeneous boundary Neumann condition

Z kU cos(v xX)=g (3.1

i,j=l J
is specified, in its turn, on the boundary I'; in this case, v is an ort of an
outer normal to I', g e L,(T).

On the section y of the domain Q, the conjugation conditions have the
form of expressions (1.3) and (1.4).
When ¢ =0, the equality

IfdQ+Ing=O (3.2)
Q r

is the necessary condition under which there exists the classical solution to
boundary-value problem (1.1), (3.1), (1.3), (1.4).
Assume the following: g, >0 (see point 1.1) and % = L,(I") . For every

control u € % , determine a state y = y(u) as a generalized solution to the
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boundary-value problem specified by equation (1.1), conjugation
conditions (1.3) and (1.4) and the boundary condition

o _
ov, =g+u. (3.3)

Since there exists a generalized solution y(u)eV={le.eW21(Qi):
1

i=12 } to boundary-value problem (1.1), (1.3), (1.4), (3.3), then such

solution is reasonable on I of Q, and ||y(u)| Ly <@

Specify the observation in the form of expression (1.6), where
C e 2(Ly(T); Ly(T)), namely:

Cy(u) = y(u), xel.
Bring a value of the cost functional

J(u) = I(y(u)—zg)zdl“+(ﬂu,u)w (3.4)
r

in correspondence with every control u €% ; in this case, z, is a known

element from Ly(I'); #u=a(x)u, 0<gy<a(x)<a; <o, (Q,¥)y =

= J.(pw dr.
r

It can be shown [21] that a unique state y(u) eV corresponds to every

control ue? . The function y is specified on the domain Q,UQ,,
minimizes the energy functional

oy v
D) = I{Zkija—.awvz} ax+ [P ay-
O \i,j=1 j Y v

2 jfvdx—zjgvdr—z juvdr (3.5)
Q T r
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on ¥, and it is the unique solution in V' to the weakly stated problem: Find
an element y € V' that meets the following integral equation VveV :

I[Z T +qu]dx+j[ D]y =

Q \LJj=1 Y

- J'fvdx+ jgvdmjuvdr. (3.6)
Q r r
The state y(uy) # y(u,) is easily seen under u; #u,.

Take the assumptions as for the operator .# into account, and
2 —
J@ = () - y@)+ (yO -2 )| +@w, =

= m(u, 1) - 2L(u) + |z y(O)"L - (3.7)

follows from expression (3.4); in this case, the bilinear form n(:,-) and
linear functional L(:) are expressed as

Tt(u, V) = (y(u) - y(O), y(v) - y(O))Lz(r) + (au’ v)Lz(T) >

L) =(zg = ¥(0), y(») - »(0)) (3.8)

()’
(@), = I@W dar’.

The linearity of the functional L(v) is easily seen since the difference
y(v)—y(0) is the unique solution y(v) to one of equivalent problems
(3.5) and (3.6). 1t is necessary to assume f =0 and g=0 for them, and
the arbitrary element zeV must be additionally substituted for the
arbitrary function v in problem (3.6). Then, equality like (1.16) takes place
that allows to state the linearity of the functional L(v) and the bilinearity of
the form m(u,v). The form =(,) 1is coercive on L,(I'), ie.

m(u,u) 2 ag(u,u) 1, (r)-
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Let ' =9') and 7"=3P(u") be solutions from V to problem (3.6)
under f=0 and g=0 and under a function u=u(x) that is equal,
respectively, to ' and »". Then, the inequality

”5}/ ___5}"”12; < La (jv)r _5}//’5‘)/ _j')n) <

<l -wl o 17~ iyer 3-9)

is derived, where ||v”V is the norm introduced in point 1.1 and the bilinear
form a(-,-) is specified by expression (1.26).
Since the inequalities

Il Loy S G ||v||W21 @) G>0 =12, (3.9)
are true VvelV [55], then:
“v"la(r) <c “vl > €3 =maxc;. (3.10)

i=1,2

Take inequality (3.10) into account, and the inequality
17 =3 L,oySealw’ =" (3.11)

follows from inequality (3.9), i.e. the function y(u) is continuously
dependent on u.

Inequality (3.11) provides the continuity of the linear functional L(:)
and bilinear form n(:,-) on %.

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 3.1. Let conditions (1.1°) be met, and a system state is
determined as a solution to equivalent problems (3.5) and (3.6). Then,

there exists a unique element u of a convex set U, that is closed in U, and
relation like (1.17) takes place for u.
If u € U, is the optimal control, then

n(u,v—u)ZL(v—u), Vve. (3.12)
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Proceed from expressions (3.8), and it is easy to see that the equality
(u,v—u)—L(v—u)=

=(y(w) - 24, y(r—u) - y(O))Lz(F) +@uyv-w,r — (313)

is true. Consider the linearity of problem (3.6), and the equality
m(u,v—u)—L(v—u)=

=(y) =24, Y0) -y @)
follows from equality (3.13). Then, inequality (3.12) has the form

(y@)-zg, y0) - y(w))

+ (CTu, V- u)Lz(r)

Lz(r)+(c_zu,v—u)L2(1~) >0, Vve, (3.14)

and it is the necessary and sufficient condition under which u € % is the
optimal control for the considered problem.

Since the solution y €V to equivalent problems (3.5) and (3.6) exists
and such solution is unique under arbitrary fixed f e L,(Q)
and geL,(I"), then there is the operator A:V — L,() specified by
relations (1.1), (1.3), (1.4) and (3.3) on the solutions vy

(y|Ql e CHQ)HNCHQ), l=1,2). Therefore, dy/dv, can be uniquely

calculated on 0Q; [58] for the solution y, where

Y N, , ,
v >k —00s(v,%,) (3.14)

i,j=1 J
and v is an ort of an outer normal to 0Q;, /=1,2.

As for the control v € %, the conjugate state p(v) e V' s specified by
the relations

Ap(») =0, xeQ, (3.15)
o

8VA*

=y(v)—z4, x€T, (3.16)
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{ P }:o, xey, (3.17)
ov .
A
and
+
{a” } = rp], xeT, (3.18)
v

where V' is a space conjugate to V, V'=V, and the operators

A" and

are specified, in their turn, by expressions (2.19"). Further

*

4
on, use the Green formula [58], and the equality

0=(4"pw), y(v) - y)) = Z

llaQ, V4t

I[Z ép 9(y(v) 'y(u))+qp(y(v)_y(u)) e

Q \iJj=1

=a(p,y(v)~y<u))— [(v@-2) (o) - ywy)ar =
r

——J-(y(u)—zg)(y(v)_y(u))dr+Jpa(y(lgv—y(u))dr+

r A
+ [rp1lye) - y@)]dy - [rplyv) - yelay +
Y Y
+(p, Ay )= y@)) == [(¥0) =2 ) (yW)-y W) dT + [py-uydr
r r

is obtained. Therefore:

(v@)=z2g, y0) -3 @), ) =v=w),0)- (3.19)

Take equalities (3.13) and (3.19) into account, and the inequality



Control of Systems Described by Elliptic-Type... 27

(p(u)+Zz'u,v—u)L2(r) >0 (3.20)

is derived from inequality (3.12).
Therefore, if the constraints are absent, i.e. when % =%, then the
equality
puy+au=0, xel', (3.21)
follows from condition (3.20).
To find the optimal control u(x), solve the differential problem

_z ax { tj J-{-qy f xGQIUQZ, (322)
op
—Z— ky—— |[+qp=0, xeQ UQ,, (3.23)
et Ox; Ox ;
i,j=1""1 J
% p
——=g-=, T, 3.24
o, §-7» X€ (3.24)
P__ r 3.25
av*_’y_zgaxea (’ )
A
{z ky; Q—cos(v,xi)}=0, X€evy, (3.26)
“~ ox ;
i,j=1 J
+
o
z k,j cos(v,x;)p =rly], xev, (3.27)
i,j=1 J
Z cos(v ) 1=0, xev, (3.28)
i,j=1
+
{Z k,j—cos(v x)} =r[p], xevy, (3.29)
i,j=1 J

and the optimal control is
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u=-pla,xel. (3.30)

Definition 3.1. A generalized (weak) solution to boundary-value
problem (3.22)-(3.29) is called a vector-function (y, p)TeH =

= { v=(v,v) v, \Ql ey (Q), i,1=1,2 } that satisfies the following
integral equation Vze H :

J{Zklj—a——g—+qyzl+z ’fa +qu }dx+

i, =1

+ [riylz1ay + [riplzldy + fpzl/adr—
¥ Y r

—Iyzz dr = Iledx+jgzl dr - [z,z,dr. (3.31)

r Q r r
Let u= (ul,uz)T and v = (vl,vz)T be arbitrary elements of the complete
Hilbert space H with the previously introduced norm “”H Specify the

bilinear form

n
6u1 aVl Guzav
,V) = o — k;: +qglupw +uyvy ) pdx +
alw.v) {Z Y ox; ox i; Uax Ox a(u -+ 2)}

+ [r(I I+ ) dy+ [(w/a-upy)dr — (3.32)
r

and linear functional

I(v) = j fo du+ I gv dT— [z v,dl (3.32))
r T

on H.

If the constraint
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o = min{oty,go} ~ €3 max (1/ay,1)> 0,

where a, is the ellipticity condition constant, ¢; =max(c;, ¢,) and ¢; is
the constant from the inequalities

”q)”[&(agi) < Ci ”gDNWZI(Ql) H I= 1:2 2 (333)

are met, then Yu € H the inequalities
a(u,u) 2 Jul}, and |a(u,v)| < cylul,, M, » 81, cq = const >0,

follow from expression (3.32), i.e. the bilinear form a(-,-) is coercive and
continuous on H.
It is easy to see the following:

|10)|=| [ de+ [on T = [zpv,dT < sl
Q r r
i.e. the linear functional /(v) is continuous on H.
Use the Lax-Milgramm lemma, and it is concluded that the unique
solution U = (u;,u, )T to problem (3.31) exists in A. Problem (3.31) can

be solved approximately by means of the finite-element method. Then,
linear algebraic equation system like (1.45) is derived from equation

(3.31). The solution U to this system exists and such solution is unique.
The vector U specifies the unique approximate solution U,ﬁv eH ,ﬁv to

problem (3.31) as the unique one to equation like (1.46), where the bilinear
form a(-,) and the linear functional /() are specified, in their turn,

respectively, by expressions (3.32) and (3.32'). In this case, H,ﬁv is the

, N N N\
space of the vector-functions V' (x) = (vlk (%), v (x)) . The components

—_ T
Wi, vl e €@, i=12, of VkN(x)=(v{Z(x), vﬁ(x)) are the
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complete polynomials of the power k£ that contain the variables
X, Xy, ..., X, at every finite element Eij of partitioning of the domain Q.

The control u = u(x) is specified on the boundary I" and such control is
equal to —p/a , where p is the trace of the function p= p(x)e H onT.
Therefore, the function u(x) has the extension —p/a@ to the domain
Q,UQ, . Then, the estimate

< C3 h2k

“u uk "Lz(r) g

can be written, where @ =—-pl' /@, & =max{c,}, ¢; =const >0, and h
1=1,2

is the largest diameter for all the finite elements El-j of the regular family.

1.4 DISTRIBUTED CONTROL OF A SYSTEM: A
COMPLICATED THIN INCLUSION CASE

Assume that the elliptic equation

‘Z (ky@)——}q(x)y f(x), (4.1)

z]l J

where the coefficients and right-hand side meet conditions (1.1'), is
specified in the bounded, continuous and strictly Lipschitz domains
Q and Q, € R".
The homogeneous boundary Dirichlet condition
y=0 4.2)
is specified, in its turn, on the boundary I =(0Q,UdoQ,)\y
(y=00,N0Q, = Q).
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On the section y of the domain Q=0Q,UQ, (Q,NQ,=9), the
conjugation conditions for an imperfect contact are

{Z 2 cos (v, )};

i,j=1 J

+R2{z —=cos(v,x; )} =[y]+d (4.3)
i,j=1
and

{ Z ky cos(v )} =, (4.4)
i,j=1
where R, R,, ®,6€C(y), R, R, 20, Ri+R, 2R, >0, R,=const, v is
an ort of a normal to y and such normal is directed into the domain €, .

Let there be the control Hilbert space % and mapping Be ¥ (“Zl; V’),

where V' is the space dual with respect to the state Hilbert space V.
Assume the following: % = L,(€2).

For every control u €%, determine a system state y as a generalized
solution to the boundary-value problem specified by the equation

‘Z ( ()= ]+q(x)y f(x)+Bu, yeV, (4.5)

,Jl

and by conditions (4.2)—(4.4).
Specify the observation

Z(u) = Cy(u), (4.6)
where Ce (V; ) and 5 is some Hilbert space. Assume the following:
Cy(u) = y(u), H=V < L,(Q). 4.7)

Bring a value of the cost functional

J(u)=| Cy(u) - z u +(AHu,u),, (4.8)
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in correspondence with every control u € % ; in this case, Z, 1s a known

element of the space #; and

N e L(UsU), (Nu,u), 2V l]u“f”, vo=const>0, Vue¥%. (4.9)

Assume the following: f € Ly,(Q), Bu=uecly(Q), HNu=a(x)u,
0<a,<a(x)<a <o, c_z(x)|Ql eC(Q)), 1=1,2, ay, a, =const, (9,y),, =

=(o,y)= I(pwdx. Then, a unique state, namely, a function y(u)eV =
Q

={v|91 eW, ():1=1,2; v|; =O} corresponds to every control u e,

delivers the minimum to the energy functional [21]

) T
®(v)= _’-(Ulya T de+deY'2(f,V)"

Q

~2(u,v)- 2J'R2C° y dy+2jcov+dy (4.10)

on V, and it is the unique solut1on in V to the weakly stated problem: Find
an element y =V that meets the equation

I[z i a——— +qu]dx+ J}Ey‘]l_[;]z dy =

1

[v dy - J’mv‘fdy, YweV. (411

= (fv)+(wv) + j
v
Therefore, there exists such an operator 4 actlng from V into L,, that

y(u)=A"N(f+Bu), Vuel,, (4.12)
where L, = 1,(Q2).
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It is easy to see that y(u,)# y(u,) under u, #u, (Bu, # Bu,) because
the operator 4 is linear, and the non-zero solution J corresponds to
problem (4.1)—(4.4) with the right-hand side f =u, —u; #0 under © =0,
and y(u,) = y()+ 5 .

Remark. When a state y(u) is determined as a solution to one of
equivalent problems (4.10) and (4.11) with respect to the coefficients k; in
equation (4.1), it is enough to follow ellipticity condition (1.1") and the
constraint k; € L, (€2) .

Take the aforesaid assumptions into consideration, and the cost
functional may be rewritten as

Tw) =|y@) -z, + @), (4.13)

12

where ||[v| = (v,1)"*, z, may be, in its turn, an arbitrary fixed element of

the Hilbert space L,(€2), and
2
J () = m(u,u) = 2L() +[ 2 - y(O) (4.14)

follows from expression (4.13); in this case, the bilinear form =n(-,-) and
linear functional L(-) are expressed as

(u,v) = () = (0), y(v) = ¥(0)) + (au, ),

L) =(zg = ¥(0), y(») - ¥(0)). (4.15)

The linearity of the functional L(-) is easily seen from the fact that the
difference y(v)— y(0) is the unique solution y(v) to one of equivalent
problems (4.10) and (4.11). It is necessary to assume f =0,
d=0and =0 for them, and the arbitrary element zeV’ must be

additionally substituted for the arbitrary function v in problem (4.11).
Then:

P (o +0yuy ) = o, () + 0, (), Vou, 00 € R',Vuy,u, € U. (4.16)
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Pursuant to equality (4.16), the linearity of the functional L(v) and the
bilinearity of the form 7n(u,v) are stated. The form =(-,-) is coercive on %,
ie.: m(u,u) = (y(u) - y(0), y() ~ y(0)) + (au,u) = ay(u,u).

Let ' =p') and 7" = y(u") be solutions from V to problem (4.11)
under f=0,8=0 and ®=0 and under a function # = u(x) that is equal,
respectively, to #'and " . Then, the inequality

“j'}l _ 5')"“2 < “5}1 _ 5"""12/ < La ()’;r _ j;": 5)‘/ _ 5‘}11) <

” ~1 ~n

| = const > 0, (4.16")

is derived that provides the continuity of the linear functional L(-) and
bilinear form 7(-,-) on % in this case,

, 12
M, = {Z“"n;f; (Qi)}

and

a(o,y) = Zkyé—a—+q(pw}dx+jj[{—(%[—“;]—dy.
oli,j=1 v 1 2

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 4.1. Let conditions (1.1)) be met, and a system state is
determined as a solution to equivalent problems (4.10) and (4.11). Then,
there exists a unique element u of a convex set U that is closed in U, and

J(u) = inf J(v) (4.17)
velly
takes place for u.

If u € U, is the optimal control, then

(J'(u), v—u)20. (4.18)
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Take expression (4.14) and the inequality
J(u+9(v—u))—J(u) 5
0
into consideration, and relation (4.18) takes the form
w(u,v—u)z L(v—u), Vveil. (4.19)
Proceed from expressions (4.15), and
n(u,v—u)—L(v—u)= (y(u) —z,y(V)— y(u)) +(au,v—u). (4.20)
Then, inequality (4.19) has the form
(y(u) —Zg, y(v) - y(u)) +(au,v-u)=0, Vvei, (4.21)

and it is the necessary and sufficient condition under which u € % is the

optimal control for the considered problem.
As for the control v e %, the conjugate state p(v) e V™ is specified by
the relations

Ap(v) = y(v) -z, (4.22)
p=0, xel, (4.23)
{ % }o,xey, (4.24)

ov .

4

and
+
op 1

= ) ’ 4.25

where V" is a space conjugate to ¥, V™ =V, and

. 9 op
Ap=- E k; +gp,
p Py ( i 3y j qp

i,j=1 X

Z —-—cos(v x;). (4.26)

Vu i,j=t
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Further on, use the Green formula [58], and the equality
(4" P00, ) = y(@)) = (y() ~ 24, ) - y()) =
=a(p,y)-y@))=(pw), A(y() - y))) = (p@),v—u) (427)

1s obtained, where
n
ou ov [u][v]
V)= ki, ——+ dx + |————dy . 4.28
a(u V) I(Z_ Y ax- 5X« un\] le +R2 Y ( )
Q l!.]_]' J : Y

Consider equality (4.27), and it is stated that inequality (4.21) is equivalent
to the inequality
(p(u) +au,v— u) 20, Vve,. (4.29)

Therefore, the necessary and sufficient condition for the existence of the
optimal control u € %, is the one under which the relations

Ay(u)= f +u, (4.30)
A p(u) = y(u)—z, (4.31)
and
(p(u)+5u,v—u) 20, Vve i, (4.32)
are met.
If the constraints are absent, i.e. when %; = % , then the equality
pu)+au=0 (4.33)

follows from condition (4.32). Therefore, when the constraints are absent,
the control u(x) can be excluded from equality (4.30) by means of equality
(4.33). On the basis of equalities (4.30) and (4.31), the problem

Ay+pla=f, yeV, (4.34)

A*p—yz—zg, peV®, (4.35)
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is derived, where V™" ={v|Ql eWy(Q)):1=1,2; v’I-:O}, and the vector

solution (y, p)" is found from this problem along with the optimal control

u=-pla.

(4.36)

If the vector solution (y,p)" to problem (4.34), (4.35) is smooth enough
on O, viz. Jg . rlg, e CY(Q)NC*(Q)), 1=1,2, then the differential

problem of finding the vector-function (y, p)", that satisfies the relations

S, _
—Z-—— k,-ja—i& +qy+pla=f, xeQ UQy,
, .

o1 O J

- 0 Op
—Z— k= |tqp—y=-24, xeQ UQ,,
i

w.:lax 5xj
y|r=0,
pll—=0,
- +
RAZL Ry DL _1h1es, xey,
ov 4 oV 4
.?z_}y
| OV
%P }=O,xey,
Ay

and

where

(4.37)

(4.38)

(4.39)
(4.40)

(4.41)

(4.42)

(4.43)

(4.44)
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Z cos(v )

i,j=1 J

corresponds to problem (4.34), (4.35).
Definition 4.1. A generalized (weak) solution to boundary-value

problem (4.37)—(4.44) is called a vector-function (y,p)'eH =
= {v =(v,v,)" viIQI eW (Q), i,l=12 v|r=0 } that satisfies the

following integral equation Vz e H :

p 0z,
J.{Zklla +qyz1+pzl/a+Z/’c,ja o —2 4 gpz, - yzz}dx+
i,j=1 i,j=1

[y1lz] [p]lz z
+le+R2dY R+ dY j'fZ1 Zg7y )dx+

RZ(D—S +
+ j R, [2,]dy jmzl dy. (4.45)
Y

Let u= (ul,uz)T and v= (vl,vz)T be arbitrary elements of the complete

12
Hilbert space H with the norm |[v[, = {Z”qul (Q)} . Specify the

bilinear form

n
Ouy Ov,
a(u,v) = Z ke ==L+ quyvy +uyvy [@ +
g'!{i,j:l ax ; Ox;

n
Ou, Ov
+Ek~—2—2+ UyVy — Uy Vo pdX +
j_lyaxjaxi quaVy — 12}
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[21[v;] [4y][v,]
+ Yj Km0t Yj R (4.46)

and linear functional

Ro,®—9d
I(v) = j( Pa—zgv )dx+ j' 202w )y - jmvfdy (4.47)
|+ Ry
Q Y Y
on H.
Let the constraint
0

be met, where p = const>0 is the constant in Friedrichs inequality

(o 2
J-Z [—J dezp Ivzdx, YveV.
Qi=l Ox; Q

Proceed from constraints (1.1') and (4.48), the Cauchy-Bunyakovsky
and Friedrichs inequalities and embedding theorems [55], and the
inequalities

a(v,v) 2 q, "v“il , VveH, oy =const>0,

and
|a(u,v)! <q ”u”H ”v“H , Vu,ve H, ¢/ =const>0,

are true for the bilinear form a(.,-), i.e. this form is H-elliptic and

continuous [49] on H.
Consider the Cauchy-Bunyakovsky inequality and embedding theorems,
and the following inequality is obtained Vve H :

(| < e, ||v"H , ¢y =const.
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Use the Lax-Milgramm lemma [16], and it is concluded that the unique
solution (y, p) to problem (4.45) exists in H.

Problem (4.45) can be solved approximately by means of the finite-
element method. For this purpose, divide the domains Q; into N, finite

elements El-j (J :f]\_f;, i=1,2) of the regular family [16]. Specify the

subspace H,ﬁv c H (N=N;+N,) of the vector-functions VkN (x). The

components VlNk’ vé\i’g_} e C(Q) (i=1,2) of VkN (x) are the complete
i

polynomials of the power k£ that contain the variables xj, x,, ..., x,, at

n

every &/, and vy | = 0. Then, the linear algebraic equation system

AU =B (4.49)
follows from equation (4.45), and the solution U to system (4.49) exists
and such solution is unique. The vector U specifies the unique

approximate solution U, ,ﬁv eH ,ﬁv to problem (4.45) as the unique one to the
equation

a(Uf ) =1(V), wr er)). (4.50)
Let U=U(x)e H be the solution to problem (4.45). Then:

a(U-Ul i)=0, vil e} .
Therefore,
aan-U,ﬁV”;sa(U—U,ﬁv,U—U,ﬁv)=a(U—U,§V,U—U+U—U,§V)=

=a(U—U,§V,U—U), vOeHY, (@.51)

and the inequality
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"U ~uy “H < ;—IIUU -0, (4.52)
is thus derived since the bilinear form a(;,-) is continuous on H.

Suppose that U e H ,ﬁv is a complete interpolation polynomial for the
solution U at every E,-j . Take the interpolation estimates [16] into account,

assume that every component U; and U, of the solution U on
belongs to the Sobolev space Wzk” () (I =1,2), and the estimate
”U—UkN ”H <chk, (4.53)

where % is a maximum diameter of all the finite elements &/, ¢ = const,

follows from inequality (4.52).
Take estimate (4.53) into consideration, and the estimate

N N k
o]y sl -l <t
2 2

) 12
where IHIW21 ={Z” '”51’21(91')} , takes place for the approximation
i=1

ul (x)=—p{ (x)/a(x) of the control u = u(x).

1.5 CONTROL UNDER CONJUGATION CONDITION: A
COMPLICATED THIN INCLUSION CASE

Assume that elliptic equation (4.1), where the coefficients and right-hand
side meet the conditions of point 1.1, is specified in the bounded,
continuous and strictly Lipschitz domains €; and Q, € R".

Homogeneous Dirichlet condition (4.2) is specified, in its turn, on the

boundary, and the conjugation conditions have the form of expressions
(4.3) and (4.4).
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For every control ue% =1L,(y), determine a system state as a

generalized solution to the boundary-value problem specified by equation
(4.1), condition (4.2) and the heterogeneous conjugation conditions

Rl{%} +R2{§/yA} ~[y]+8, xe7, (5.1)
and
v |
[6\/,4}—0)4_“’ xXey, 5.2)
where

Z k,J cos(v x;).
i,j=1
Specify the observation

Cy(w)y=y(u), xeQ.

Bring a value of the cost functional

)= [(r()=2) e + (A )y (5:3)
Q
in correspondence with every control € % ; in this case, z, is a known

element from L,(Q), A4 u=a(x)u, O<ag<a(x)<a <o, a(x)e C(y),

ag,a = const, (P, )y =(P,¥)r,(y)-
It can be shown [21] that a unique state, namely, a function y(u)eV
corresponds to every control u € 2/ , minimizes the energy functional

2
() = I{Z o qVZde+J.%R—d'y—2(f,v)_
Y

o i, j=1 1

2J‘ 2("”“) 5 ]dy+2I((o+u)v+dy (5.4)
Y
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on ¥, and it is the unique solution in ¥ to the weakly stated problem: Find
an element y(u) eV that meets the equation

J[Z ya——+qv}d [,

i, j=1 2
2(c0+u) )

= (f,v)+ j []dy—_[(oo+u)v+dy, YweV. (5.5)

R,
The space V' is spemﬁed in point 1.4.

Take the assumptions as for the operator ./ into account, and expression
like (4.14) is obtained from expression (5.3), where the bilinear form n(.,-)
is expressed as

m(w,v) = (y() = ¥(0), y¥) = ¥(O)) + @, V),
and
(u,u) = ao(u,u)L2 o)

and the linear functional L(-) is specified by expression (4.15).

The linearity of the functional L(v) follows from the fact that the
difference y(v)-— y(0) is the unique solution y(v) to one of equivalent
problems (5.4) and (5.5). It is necessary to assume f=0,8=0 and ©=0
for them, and the arbitrary element z € V' must be additionally substituted
for the arbitrary function v. Then, equality like (4.16) takes place that
allows to state the bilinearity of the form n(.,-). This form is coercive on
U.

Let 7 =5') and "= ") be solutions from V to problem (5.5)
under f=0,3=0and ® =0 and under a function u =u(x) that is equal,
respectively, to «’ and «". Then:

”5')1 __5')"”2 < ”5-)/ _ 5')11”12/ < na (j}r _ j}”’jv)' _ j-')n) <

(u -_u”) "
Sp "-W[ ~- ¥"dy |+ yﬂ

~n
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v

2
<qu'- u””Lz(Y) [Z”j” -y
i=1

Therefore, the inequality

15" = 3" < eallw’ =’ 1, (5.6)
is derived that provides the continuity of the linear functional L(-) and
bilinear form 7(-,-) on .

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 5.1. Let conditions (1.1) be met, and a system state is
determined as a solution to equivalent problems (5.4) and (5.5). Then,
there exists a unique element u of a convex set Uy that is closed in ¥, and
relation like (4.17) takes place for u.

If u € ¥, is the optimal control, then the inequality

(J'(u),v-u)=0

N

istrue Vv e and itis transformed into

(y@) - 24, y0) = y(@)) + @,y —u) 1,y 20, Vv EUy.  (5.7)

As for the control v e %, the conjugate state p(v)eV is specified by
the relations

Ap(vy=y(») -z,
p=0, xeIl,

- +
O 0

R{-Z-L 4R {2\ =[p], xey, (5.8)
GVA* 8VA,,
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Op

*

A

in this case, the function is specified, in its turn, by one of

expressions (2.19").
Further on, use Green formula [58], and the equality

(4P, y0)=y)) = (y@) - 2, y) = y(w)) =

2
0
=a(p, y()-y()=). j Z & (V) yu ))cos(v,x,.)p(u)dag,+

I=1 0y 1,j=1

. I[p][y(v)—y(u)] iy = I[p Iy -yw]

YRR R +R,
o(ym-yw)|” _ [o6m)-ye)|" | _
PN
_ [Ry(v—u) Nt
—Jﬁz—[p]dv—yf(v u)p*dy (5.9)

is obtained, where

a(e,y) = I[Zk S0 aW+q(p\y}dx+ Ee(pl[\g dy. (5.10)
1

Yox, d
Q i’j”l

Take equality (5.9) into account, and it is stated that inequality (5.7) is
equivalent to the inequality

+ -—
j- R xR gy (v-u)dy=0, Yve,.
R +R)
¥
The necessary and sufficient condition for u €% to be the optimal

control is the one under which the relations

a(y,vy=4Lu,v), yeV, VveV, (5.11)
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a(p,v)=h(y,v), peV, VveV, (5.12)
and
+ -
| R TRP Gy | (vou)dy 20, Yver,,  (5.13)
Rl +R2
are met.

In this case, the bilinear form a(.,-) is specified by expression (5.10)
and the functionals /;(-,-) and /;(;,-) are expressed as

Ry(w+u)—0
L(u,v) = (f,v)+ J'J—(-——l—[v]dy- j(m+u)v+dy (5.14)
Ry +R,
Y Y
and
L(y,v)=(y—zg4,v). (5.15)
If the constraints are absent, i.e. when %, =% , then the equality
+ -
R tRop =0, xey, (5.16)
Ri+R,

follows from condition (5.13).
Therefore, when the constraints are absent, the control u(x) can be

excluded from expression (5.14) by means of equality (5.16), and problem

(5.11), (5.12) can be obtained, where /(u,v) =1 (#(p),v). The solution to
itis (y,p)" and the optimal control is
+ -
y=tp tRp (5.17)
(R +Ry)a

In this case: V" =V .
If the vector solution (y, p)" to problem (5.11), (5.12), (5.17) is smooth

enough on Q;, viz. 3y, plﬁlecl(ﬁ,)ﬂCz(Q,),l=1,2, then the

differential problem of finding the vector-function (y,p)", that satisfies
the relations
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= 0
- E — k,-j—ay +qy=f, xeQUQ,,
i,j=1 5xl- axj

‘Z o, [ ¥ o JJ"JP‘J’:‘Z@ xeQUQy,

i,j=1
)’]1‘20,
pll-:O,
| ol
Ri—¢ +R,—¢ =[y]+59, ,
1{6\/,1 2\, [¥]+8, xey
+ —_
Y\ Fp tRp (5.18)
aVA (R1+R2)a

+
o | __Ipl .
5VA* Rl + R2 ’ ’

corresponds to problem (5.11), (5.12), (5.17).
Definition 5.1. A generalized (weak) solution to boundary-value

problem (5.18) is called a vector-function (y, p)T e H= {v = (vl,vz)T:

vilQleWzl(Ql); i,1=1,2; V~r=0 } that satisfies the following integral

equation Vve H :

n
I{Zkya al+qyzl+z ——+qp22 yzz}dx+

Q li,j=l1
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1lz1+[pllz,] ,
J' R dy-f!(le—zgzz)dx+ (5.19)
R [co+——R1p +Rop J—S
2 R+ R))a
+j ( 1 2) d’Y J‘ Rlp Rzp zfdy
R1+R2 (R1+R2)a

y

Let u =(u,u,) and v=(v,v,)" be arbitrary elements of the complete
Hilbert space H. Specify the bilinear form

14
a(u,v) = { Z k. %% + Z k; 2”2 (';v + quyvy +quy v, —ug v, }dx+
o, ‘ i,J

+ | =L —~ v 1dy +
'[ Ri+Ry J (R +Ry)*a ildy
Rul + Ryu; |vi
+I( 2 22_)1dy (5.20)
(R1+R2)a

and linear functional

R20)—6

I(v)= j(fvl —ngz)dx+ jR
Q ¥

dy - Jovid 5.21
o ldr=oviar 2y

on H.
If the constraint

o =%‘ min{l, H}—

—6sup RiRy R} ' Ry Ry 250,
(R, +Ry)*@ (R + Ry)*a (Ri+Rya’ (R + Ry)a




Control of Systems Described by Elliptic-Type... 49

where c; is the constant from the embedding theorem, is met, then
Yu,v e H the inequalities

a(u,u) = oy ”u“i[ and |a(u,v)| < eq|u] , M,

follow from expression (5.20). It is easy to see that

fo)] < es|M, -
Use the Lax-Milgramm lemma, and it is concluded that the unique

solution U = (ul,uz)T to problem (5.19) exists in H. Problem (5.19) can be
solved approximately by means of the finite-element method. Therefore, it

is possible to derive the approximate solution U ,ﬁv eH ,?’ to problem (5.19)
for which estimate like (4.53) is true. The control u = u(x) is specified ony
Rip"+Ryp”
(Ri+Ry)a
the function p = p(x). Then, the estimate

and such control is equal to , where p* is the trace on yi of

\\u_ﬁﬁ“m <cght, (5.22)

. v _RpT+Rypl”
where ¢, = const > 0, can be written for 2, = ~1Lk 28k
(R +Ry)a

1.6 BOUNDARY CONTROL: THIRD BOUNDARY-VALUE
PROBLEM

Assume that elliptic equation (4.1), where the coefficients and right-hand
side meet the conditions of point 1.1, is specified in the domains

Q, and Q, € R". The conjugation conditions have the form of expressions
(4.3) and (4.4) and the third boundary condition
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Z cos(v x)=—oy+B, xel, 6.1
i,j=1 f

where o, B e R'and a.>0, is specified, in its turn, on the boundary I

For every control ue% =L,(I'), determine a system state as a

generalized solution to the boundary-value problem specified by equation
(4.1), conjugation conditions (4.3) and (4.4) and the boundary condition

Z ————cos(vx)——ocy+[3+u xel. (6.2)
9‘]'—'1 J
Specify the observation
Cy(u) = y(u).
Bring a value of the cost functional
2
W)= () =z, ) de+ (A w )y (6.3)
Q

in correspondence with every control u € % ; in this case, Zg is a known
element from L,(Q), fu=a(x)u,0<ay< a(x) <ag <o, a(x)eC(I),
ag,a = const, (9,)a=(Q,¥)y(r)-

It can be shown [21] that a unique state, namely, a function
yu)eV = { vlgi e W, (Q):i=1,2 } corresponds to every control

u = L,(I"), minimizes the energy functional
o) = I ki — qu dx +
[ljzl ’ 5

[V]
R1 Ry

Rz(l) 4

dy-2(f-2 j 7, DT
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+a J'vzdr _2p jvdr ~2 [uvdr +2 jm vty (6.4)
r r Y

on V, and it is the unique solution in ¥ to the weakly stated problem: Find
an element y(u) eV that meets the equation

J.[Zky . 2n +qu)dx+ I}Ey][R] dy+ IayvdF—
Y

Q \i,j=1 )

=(fv)+ j
Y

~O0y)dy - j ovtdy + j (B+updT, VveV. (6.5)

R, r

Take the assumptions as for the operator .4 into account, and expression
like (4.14) follows from representation (6.3), where the bilinear form 7n(.,-)
and linear functional L(-) are expressed as

n(u,v) = (y(u) = (0), y(v) = ¥(0)) + (@, v) 1, 1y
and
L) =(zg = ¥(0), y(») - ¥(0)).

The form m(,) is coercive on % ie. mn(u,u)ay(u,u)r, (),
VueL,(I).

Let 7'=3(') and 7" =j(u") be solutions from V to problem (6.5)
under f=0,8=0,0=0 and =0 and under a function u that is equal,
respectively, to #' and #". Then, the inequality

"5}: ~”"L o S Cl ”y y ”V < na (5}’ - }”)"’ 5}! _ 5—),,) <

<plu'- “"”1,2(1") 15"~ )~’"||1Q(r)
is obtained, i.e.
”u' - u”“Lz(r) s (66)

<plu’ -
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where

a \,j=1 J
[olly]
+ | === dy+o |eydr . 6.7
IR1+R2 Y j(pw (6.7)
Y

Inequalities (6.6) provide the continuity of the linear functional L(-) and
bilinear form 7(.,-) on %.

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 6.1. Let conditions (1.1) be met, and a system state is
determined as a solution to equivalent problems (6.4) and (6.5). Then,
there exists a unique element u of a convex closed set Uy U, and
relation like (4.17) takes place for u.

If uei, is the optimal control, then inequality like (4.19) is true

Vv € U, . Represent this inequality as
(y(u) —Zg, (V) - y(u)) +(au,v — u)bz(r) 20, Vve. (6.8)

As for the control v e %, the conjugate state p(v) eV is specified by
the relations

A'p(v) = y(v) -z,

- +

op op
R +R =[p], xev,
1{6\)A*} 2{5 A*} [p], xev

{ P }O,xey, (6.9)
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op

avA*

=—ap, xel.

Further on, use the Green formula [58], and the equality
(4P, yO)-y(w)=

= (y(w) - 24, y() = y(w)) = a(p, y(v) - y(w))=

ij
8y L=l

2 n
=Z [N y(”) 4G ))cos(v,x,~)1z>(u)daszz+
I=1

. I [P1[y(v) - y(w)] dv s
R +R,

+0 [p(y) =y()dT = [(v = w) p(w)dT (6.10)
r r

is obtained. Take it into account, and it is stated that inequality (6.8) is
equivalent to the inequality

[(p) + @) v-wydr =0, vvew,.
r

Therefore, the necessary and sufficient condition for the existence of the
optimal control u € %, is the one under which the relations

a(y,v)=Lu,v), yeV, Vvel, (6.11)
a(P=V)=lz(y,V)9 pEVa VVEV: (612)

and
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I(p(u)+5u)(v—u)df >0, Vve, (6.13)
r
are met, where the bilinear form a(.,-) is specified by expression (6.7) and

the functionals /;(-,-) and /,(-,) are

L(u,v)=(f,v)+ [v]dy Icov*dy+

2

+I(B+u)vdf‘, weUy, YveV, (6.14)
r

L(y,v)=(y=2z4,v).
If the constraints are absent, i.e. when % =% , then the equality
pw)+au=0, xel’, (6.15)

follows from condition (6.13). Therefore, when the constraints are absent,
the control u(x) can be excluded from equality (6.11) by means of
equality (6.15), and problem (6.11), (6.12) can be obtained, where

1,(u,v) =1, (u(p),v) . The solution to it is (y, p)" and the optimal control is
u=-pla, xel'. (6.16)
If the vector solution (y,p)" to problem (6.11), (6.12), (6.15) is smooth

enough on Q;, viz. ylﬁz’ p|ﬁleC1(§_21)ﬂC2(Q,), [=1,2, then the

differential problem of finding the vector-function (y,p)", that satisfies
the relations

—z [ JH}J’ fr xeQUQy,

l}l
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0 0
_Z_[ky pJ+qp y=- 5x€Q1UQZ’

J

jé =3
k;; ——cos(v, x, )=—ocy+[3—g, xel,
: ox; a

Zky—é—cos(vx)— ap, xel',

i,j=1 X
| |
R {— R =[y]+39, ,
I{BVA} + 2{5\’,4} [¥] xey
[§%1=m,xe% 6.17)
6p}
=0, xevy,
{aVA*
+
o | __Ip
oV R +R,’

corresponds to problem (6.11), (6.12), (6.15).
Definition 6.1. A generalized (weak) solution to problem (6.17) is

called a vector-function (y, p)Te H= {v =(v1,v2)T: \Z IQle Wzl (€Q));
i,l=1, 2} that satisfies the following integral equation Vz e H :

j{zkya Z ya 6 +qp22 yzz}dx+

Q i,j=1 i,j=1
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[(¥1[z1]+[pllz, _
24 dr dr =
R TR, y+ocI:‘-(yzl+pzz) +ijzl/a
Ry0-5
_ I(ﬁl—zgzz)dx+ .[Rf":Rz [z,]dy - jco dy.  (6.18)
Q Y Y

Let u=(u;,u,)" and v=(v,v,)" be arbitrary elements of the complete
Hilbert space H. Specify the bilinear form

a(u,v) = I Z 2“1 o +q2ulv, ulvz}dx+

’J =1

2
D by, )
+ | E——dy+a | ) upydl + |u,v/adl (6.19)
j R +R, IJZ‘ 1:“

and linear functional

I(v) = J-(fvl—zgvz)a'x+ J’i;’-i’;f[vl]dy— J'm vidy
Q Y Y

on H.

Let the constraint

04 = min —ﬁ+q0——1—, oc——l— >0
2 2 200

be met. Then, Vu € H the inequalities

a(u,u) 28, [ul}, and |a(u,v)| < cqlull,, M, » B ca=const >0, (6.20)

follow from expression (6.19).
The following is evident:
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1) | < e[, - 621)

Use the Lax-Milgramm lemma, and it is concluded that the unique
solution U = (u,,u,)" to problem (6.18) exists in H. If problem (6.18) is
solved by means of the finite-element method, then the estimate

Hu — il || <ch (6.22)

takes place for the approximation ﬁ%{ =— p,]cv / a of the optimal control u.

1.7 BOUNDARY CONTROL AND OBSERVATION: THIRD
BOUNDARY-VALUE PROBLEM

Assume that elliptic equation (4.1), where the coefficients and right-hand
side meet conditions of point 1.1, is specified in the domains <

and Q, € R". The conjugation conditions have the form of expressions

(4.3) and (4.4) and third boundary condition (6.1) is specified, in its turn,
on the boundary I'.

For every control ue¥=1L,(I'), determine a system state as a
generalized solution to problem (4.1), (4.3), (4.4), (6.2). Represent the
observation by expression like (4.6), where C EQ(LZ(F);LZ(F)) is

specified by the relation Cy(u) = y(u) under x € I' . Bring the value of the
cost functional

J() = J' (9(1) =24 )T + (A u)y, 7.1)
r

in correspondence with every control u € % ; in this case, z, is a known

g
element from L,(I"), Su=au, O<ag<a(x)<a<w, a(x)e C(I), ay,a; =

=const, (Q,Y)y = J.(P\V ar =((P’\|J)L2(I“)-
r
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It can be shown [21] that a unique state, namely, a function y(u)eV
corresponds to every control u € L,(I"), minimizes energy functional (6.4)
on ¥, and it is the unique solution in V' to weakly stated problem (6.5).

Take the assumptions as for the operator .4 into account, and
2

J(u) = n(u,u) —2L(u) + ”Zg -y (O)HLZ(F)

(7.2)

follows from expression (7.1); in this case, the bilinear form =(-,-) and
linear functional L(-) are expressed as

TI(M,V) = (y(u) - y(0)7 y(V) - y(o))Lz (I + (Eu’ v)L2 I
and

L) =(z =70y = 3(),_ 1.
The form n(-,-) is coercive on %, i.e.: m(u,u) = ao(u,u)Lz(r).

Let ' =p(u") and y" = p(u") be solutions from V to problem like (6.5)
under f=0,8=0,0=0and =0 and under a function u that is equal,
respectively, to ' and u". Then, inequalities like (6.6) are true and they
provide the continuity of the bilinear form 7n(-,-) and linear functional L(-)
on %

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 7.1. Let conditions (1.1)) be met, and a system state is

determined as a solution to equivalent problems (6.4) and (6.5). Then,
there exists a unique element u of a convex closed set Uy c ¥, and
relation like (4.17) takes place for u, where a cost functional is specified by
expression (7.1).

If ue, is the optimal control, then inequality like (4.19) is true.
Represent this inequality as

(y(u) —Zg, y(v) - y(u)) +(@u,v—u)r, )2 0, Vv e %, (7.3)

Ly(I)
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As for the control v e %, the conjugate state p(v) eV is specified by
the relations
Ap(») =0,

{ P =0, xevy,

Rl{'a‘v@"} +R2J P } =[p], xev, (7.4)

The equality
0= (A* p(w), y(v)— y(u)) =a (p,y(v) - y(w))-

B I(y(u) T Zg )(y(v) ~y(u))dl =

r

_ J'[p][y(V) -y
; R +R,

dy +ocJ‘p(y(v) —y(u))dT +
r

2 n a _
+Z '[ Zky——(z(-‘%l)—) cos(v,x;)pd o€y —

I=1 a0y i,j=1

~ (v -2, )(y») - yw)dr =
r
= (PO~ (@) - 2)(90) = y(@p) T (7.5
r
is obtained. The bilinear form a(-,-) is specified here by expression (6.7).

Take equality (7.5) into account, and the inequality



60 CHAPTER 1

f(p+a'u)(v-u)dr >0, Vve s, (7.6)
r
follows from inequality (7.3).

The necessary and sufficient condition for the existence of the optimal
control u € %, is the one under which relations like (6.11), (6.12) and (7.6)
are met, where the functional /;(u,v) has the form of expression (6.14),
and

L =(Y0)=2gY), - (7.7)

If the constraints are absent, i.e. when % =%, then equality (6.15)
follows from inequality (7.6). Therefore, when the constraints are absent,
the control #(x) can be excluded from equality (6.11) by means of equality
(6.15), and problem like (6.11), (6.12) can be solved, where [(u,v)=
=1 (u(p),v). The solution (y,p)" to it is found and the optimal control u
is found, in its turn, by formula (6.16).

If the vector solution (y,p)" to problem like (6.11), (6.12) is smooth
enough on Q,;, viz. ylﬁl , p‘ﬁleCl(f_Zl)ﬂCz(Qz), [=1,2, then the

differential problem of finding the vector-function (y,p)", that meets

relations (6.17), except the second and fourth ones, and that satisfies the
equalities

n
—Zi kij_ag' +qp=0, xe Q UQ,, (7.8)
~ Ox; Ox ;
i,j=1 J
and
n ap
Zkfj__cos("’xi):‘aP+Y(u)—Zg, xel, (7.9)
i,j=1 Ox;

corresponds to problem like (6.11), (6.12), where the functional 1,(y,v)
has the form of expression (7.7).

Definition 7.1. A generalized (weak) solution to a problem, specified by
equalities (6.17), except the second and fourth ones, and by constraints



Control of Systems Described by Elliptic-Type... 61

(7.8) and (7.9), is called a vector-function (y,p)" € H that satisfies the
following integral equation Vze H :

n
oy 0Oz p 0z,
I{Zkyaxja +qyzl+Zk,J{j o, —2 4 qpz, tdx +

Q (i,/=1 i,j=1
[Y]lz | +1prl|z
+I [1121]_”2[ 2 dy+'[a(yzl+pz2)dr+
Y r
+J‘pzl/c7df—-J'(y-—zg)zzdF=
r r
_ Rz(l)—s _ +
._é[ledx+j.R1+R2 [21] dy jmzl dy . (7.10)
Y

Let u = (u;,u,)" and v=(v,v,)" be arbitrary elements of the complete
Hilbert space H . Specify the bilinear form

a(u,V)= I{Z UZ 6”] avl +qZulvl}dx+

Q UiJ=1

2
PRAIA )
' dy+ jaZu,vldF+ quvl/a dr - IulvzdF (7.11)

; R +R, = :

and linear functional

I(v) = jfvldx+j

Y

R [Vl]dY‘

- J-co vi dy— [zv,dl (7.12)
Y r
on H. If the constraint
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] =(X—'l' ('}— +1]> 0
2 ay
is met, then Vu,ve H inequalities like (6.20) follow from expression

(7.11) and estimate like (6.21) is derived from expression (7.12).
Use the Lax-Milgramm lemma, and it is concluded that the unique

solution U = (u,,u,)" to problem (7.10) exists in H. If problem (7.10) is
solved by means of the finite-element method, then estimate like (6.22)

takes place for the approximation ﬁé\fc =— p,]{v / a of the optimal control u.



2

CONTROL OF A CONDITIONALLY CORRECT
SYSTEM DESCRIBED BY THE NEUMANN
PROBLEM FOR AN ELLIPTIC-TYPE EQUATION
UNDER CONJUGATION CONDITIONS

2.1 DISTRIBUTED CONTROL WITH OBSERVATION
THROUGHOUT A WHOLE DOMAIN

Assume that the elliptic equation

Lu——Z ((x) ]f(x) (LD

is specified in a domain Q that consists of two bounded convex domains,

namely, Q; and Q, € R"”, where R" is an n-dimensional real linear space.
The second-type boundary Neumann condition

Zk,j(x) cos(v x) = g(x) (1.2)

i,j=l1

is specified, in its turn, on a boundary I'=(0Q,UoQ,)y (y=0Q,N
NoQ, #<J); in this case, v is an outer normal to T,

ki@, = kil = kily € CQONC' @) f@g, = flg, € C@),

1 L —
IDkzjl < o, g(x)lmagfglmaglearna@,), i,j=Ln; 1=1,2,

|f|£cl<oo,
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D k(08 E 20 ) & Ve,
i=1

i,j=1
‘v’ii,ij eRl, i,jzi_,_n_, o =const >0 (1.2

and the conjugation conditions

[¥]=0 (1.3)
and
{i ky %cos(v, x,-):l =® (1.4)
i,j=1 J

are specified, also in their turn, on a section y of the domain Q; in this
case, 0eC(y), [@]=0"-07, ¢*={p}" =(x) under xey*, y"=
=y 8Q,, y =yNdQ,, v is a normal to y and such normal is directed

into the domain Q, .
Let y(x)eM ={v(x): v|(—21 eCl@Q)HNCAHQ), 1 =1,2, ‘Dzv‘<oo}

be a classical solution to boundary-value problem (1.1)—(1.4). It is easy to
see that a solution y +c is also classical to it for an arbitrary constant c.

The necessary condition for the existence of the classical solution y to
problem (1.1)—(1.4) is the one under which the equality

J'fdx+ Igdr:jmdy (1.5)
Q r Y

is met. Find this solution under the constraint

J.ydx:Q, (1.6)
Q
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where QO is some known real number. Assume the following: H =

={ v(x): lei € Wzl(Qi), i=1,2}, VQ={ veH: [v]=0, (v,1)=Q},

(o, y) = j(p\vdX-
Q
Let there be a control Hilbert space % and mapping Be ¥ (%, V"),

where V' is a space dual with respect to a state Hilbert space V. Assume
the following: % = L,(QY) .
For every control ue, determine system state y=y(u) as a

generalized solution to the boundary-value problem specified by the
equation

—z (ky( )—=— ] f(x)+Bu, yeV,, (1.7)
ij= 1 o)
and by conditions (1.2)—(1.4) and (1.6).
Specify the observation
Z(u)=Cy(u), (1.8)
where Ce® (V;H) and # is some Hilbert space. Assume the
following:

Cy()=y(u), #=VcLy(Q). (1.9)
Bring a value of the cost functional
J(w) =|Cy(w) - 2 || + (N1, 1)y (1.10)

in correspondence with every control u e in this case, z, is some

known element of 4 & € L(U;U), (Nu,u)y =V, ||u||f”, v =const >0
Yue.

Assume the following: feL,(Q), Bu=uel,(QQ), HNu=a(x)u,
0< ay < a(x) <a<w, c_z(x)]Ql e C(Q), [=1,2, ay, a =const,

(@O, ¥)y = I(p\pdx. A unique state, namely, a function y(u)eVj
Q
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corresponds to every control u €%, delivers the minimum to the energy
functional [21]

DO, (v) = a;(v,v)-2[(v) (1.11)
on ¥y, and it is the unique solution in ¥, to the weakly stated problem:

Find an element y €V, that meets the equation

a(y,v)=hL(v) Vvel,, (1.12)
7 N Ou Ov
where V) —{veH. [v]=0, (v,l)—O}, aj(u,v)= IZ k”é;—.—é}—.dx’
Qi,j=1 J
L(v) = j(f+u)vdx+ Igvdl"—_[covdy.
Q r ¥

The following statement is valid [21].
Lemma 1.1. Problems (1.11) and (1.12) are equivalent Vf € L,(Q),

Vo e Ly(y), Yue¥ and have a unique solution y = y(u) € Vy.
Remark 1.1. If a solution y €V, to problems (1.11) and (1.12) belongs

to a set M, then y is classical to boundary-value problem (1.7),
(1.2)—(1.4), (1.6) under the constraint

_[(f+u)dx+ J'gdr= Iosdy. (1.13)
Q r y

Remark 1.2. If a solution y to problems (1.11) and (1.12) exists, it is
not necessary to meet constraint (1.13).

Remark 1.3. If equality (1.5) takes place, then, to meet constraint
(1.13), it is necessary for a control u to satisfy the condition

judx=0. (1.14)
Q

Rewrite cost functional (1.10) as

() = (1)~ 2L(w) + |z - O (1.15)



Control of a Conditionally Correct System... 67

12

in this case, || =9 Ly = (@®)’" and the bilincar form n(-,-) and linear

functional L(-) are expressed as
n(u,v) = (y(@) - y(0), y(»)~ y(0) +(@u,v)
L(v) = (2, = (0), y(v) - ¥(0)). (1.16)
Let j'=J(u) and 3" = j(u") be solutions from ¥, to problem (1.12)
under f =0, g=0 and ©=0 and under a function » = u(x) that is equal,

respectively, to u' and u”. Then, take the ellipticity condition and
generalized Poincare inequality into account, and the inequality

5oy~ 7 <o |7 -5 <y (7~ 5.5 - 7) <

.

< ||u' —u"

|)7’ —)7”||V , Og=const>0,

5 12
is derived, where |||, = {Z”vuﬁ,l (Q.)} and |1 (@, 1 the norm of the
=1 2

Sobolev space Wzl Q).

On the basis of [58, Theorem 1.1, Chapter 1], the validity of the
following statement is proved.

Theorem 1.1. Let a system state be determined as a solution to
equivalent problems (1.11) and (1.12). Then, there exists a unique element
u of a convex set U that is closed in U, and

J(u) = inf J(v) (1.17)
vely

takes place for u.

Definition 1.1. If an element u € %, meets condition (1.17), it is called

an optimal control.
Let the equation

—zéi—[kyéxay—]-’- Iydx=f(x)+Q+u (1.18)

ij=1"" 717 a
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be specified on the domain Q instead of equation (1.7). Neumann condition
(1.2) and conjugation conditions (1.3)-(1.4) are specified, in their turn,
respectively, on the boundary I and section ¥.

If y is a classical solution to boundary-value problem (1.7), (1.2)-(1.4),
(1.6) (Problem 1), then it is easy to see that y is classical to problem (1.18),
(1.2)—(1.4) (Problem 1’). It can be shown [21] that a classical solution to
Problem 1’ is also classical to Problem 1 if constraint (1.13) is satisfied.

Let observation (1.8) be specified, where the operator C is given by
expression (1.9). Cost functional (1.10) is specified, in its turn, for every
control u€% . Then, a unique state, namely, a function y(u)e

eV = {v eH: [v]= O} , corresponds to every ue%, minimizes the
energy functional
dW) =ai(v,v)-2L(v) (1.19)
on ¥, and it is the unique solution in ¥V to the weakly stated problem: Find
an element y € V' that meets the equation
a(y,v)=lLw), Vvel, (1.20)
where ai(y,v)=a;(y,v)+(», DV, 1) and [(v)=L(v)+0O(W,1).
Lemma 1.2. Problems (1.19) and (1.20) are equivalent Vf € L,(Q),
Yu € ¥ and have a unique solution y(u)eV .
Remark 1.4. If a solution y €V to problems (1.19) and (1.20) belongs

to a set M , then y is classical to boundary-value Problem 1’, and it is also
classical to Problem 1 if constraint (1.13) is met.

Therefore, there exists such an operator 4 generated by problems (1.19),
(1.20) and acting from Vinto L, (<), that

y()=A"N(f+Q+Bu), Yuel,=L,(Q).
Let 7' =p(u') and " = (u") be solutions from ¥ to Problem 1’ under
f=0,g=0and ©=0 and under a function u=u(x) that is equal,

respectively, to «’ and u” .

Then, on the basis of the generalized Poincare inequality, the following
one, i.e.
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(—il “j")l _5}”"2 < (—xl "5—;! _5)11"12/ <a (5}1 _ 57”, 5}! _5)”) <
<|u'-u"||-|5 - 5", @; =const>0,

is derived that provides the continuity of the linear functional L(:) and
bilinear form 7t(-,-) of expressions (1.16) on 7.

On the basis of [58, Theorem 1.1, Chapter 1], the validity of the
following statement is proved.

Theorem 1.2. Let a system state be determined as a solution to
equivalent problems (1.19) and (1.20). Then, there exists a unique element
u of a convex set U, that is closed in U, and relation like (1.17) takes
place for u.

Remark 1.5. If equality (1.13) is satisfied, then problems (1.11) and
(1.19) are equivalent. Therefore, optimal controls coincide when states are
described by boundary-value Problems 1 and 1'.

Here is the problem of finding the control u € %, that satisfies relation
(1.17). 1t is optimization Problem 1 if a system state is a generalized
solution to boundary-value Problem 1, and it is optimization Problem 1’ if
a system state is a generalized solution to boundary-value Problem 1’.

Remark 1.6. If constraint (1.5) is met and %=

={ueL2(Q): udx:O}, then optimization Problems 1 and 1' are
Q

equivalent.
If ue, is the optimal control, then the following inequality is true

Vve:
(y(u)—zg, y(v)—y(u))+(21'u,v—u)20 . (1.21)

As for the control v e % , the conjugate state p(v) € v =V is specified
by the relations

Ap) = y(v) -z, xeQ Uy,
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P__0, xeT,
A*
[p]:O, [aip :|=O, xE’Y, (1.22)
A*
where
* 0 6p
s uz'=:15xt [kij ax J+ .[pdx,
n
aip* = Z k; %cos(v,xi). (1.23)
A iyl J
The equality

(4" P, ) = y@)) = () = 25, y(9) = y(@)) = &} (. () ~ y()) =

2 n
=y j Zky@%%@cos(v,xi) pu)doQy, +

I=1 60y i,J=1

+(p,v—u)=(p, v-u),
ie. (y(u) —zg,y(v) - y(u)) =(p, v—u) is obtained. Take it into account,
and the inequality
(p+au,v-u)20, Yveu, (1.24)
is derived from inequality (1.21).
To make the element u € %, the optimal control of a state described by

boundary-value Problem 1’, it is necessary and sufficient to meet inequality
(1.24) and the relations

ai(y,v)=L(u,v), yeV, Yverl, (1.25)
and

ai(p,v)=hL(y,v), peV, VveV, (1.26)



Control of a Conditionally Correct System... 71

where

L u,v) = (f +0, v)+ (u,v) + J'gvdr—jmvdy
Y

and
lz(y,V) = (y,V)—(Zg,V) .

If the constraints are absent, i.e. when %;=% , then the equality
p+rau=0 (1.27)

follows from condition (1.24). Therefore, when the constraints are absent,
the control # can be excluded from equality (1.25) by means of equality
(1.27). On the basis of equalities (1.25) and (1.26), the problem

Ay+pla=f, yeV, (1.28)
A p-y=-z,, peV’, (1.29)
is derived, and the vector solution (y, p)T is found from this problem

along with the optimal control u=-p/a of the system specified by
boundary-value Problem 1'.

If the vector solution (y, p)T to problem (1.28), (1.29) is smooth
enough on &, viz, g, plg e CY(Q)NC3(Q)), 1=1,2, then the

differential problem of finding the vector-function (y, p)T, that satisfies
the relations

_Z [’16 J+p/5+jydx=f+Q, xeQUQ,,
Q

,11

n
a J
-y — pdx—-y=-z,, xeQ,UQ,,
iélaxi(yax] ¢
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Z cos(Vx) g, xel,
i,j=1 J

Z cos(vx) 0, xel,
i,j=1 J
[¥]1=0, [p]=0, xe¥,

{Z ——cos(V, ; } {Z cos(v x):l-O xe€v,(1.30)
ox

i,j=1 ,J=1 J

corresponds to problem (1.28), (1.29).
Definition 1.2. A generalized (weak) solution to boundary-value

problem (1.30) is called a vector-function (y, p)T eH=
= {v = (vl,vz)T LV |Qj € W21 (Qj ), i,j=1,2; [v]= 0} that satisfies the
following integral equation Vz € H :

Op Oz
I{zk’fa ox, —Lypz/a +Zky—a£a—2—yzz}dx+

Q =1 i,j=1

+ J-ydx J-zldx+ Ipdx Izzdx =
Q Q Q

= [(f+0z -2, 2)dx+ [gndr - fozay.  @3D

Q r Y

Let u = (ul,uz)T and v= (vl,vz)T be arbitrary elements of the complete

12
Hilbert space H with the norm ”" " ={Z”||W21 (Q‘)} . Specify the bilinear
i=1

form
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a(u,v) = j{z Zkll , +u2vl/a ulvz}dx+zz: uydx Iv,dx

Q=1 ij=1 =1 o O

and linear functional

Iv) = I((f+Q)v] ~zgvy )dx+ Igvldl“—jmvldy
Q r
onH . '

Assume that the constraint o, = mm{ az l}u —%{i + 1} >0 is met,
o

where 1 is the constant in the generalized Poincare inequality. Take the
generalized Poincare inequality [21] and Cauchy-Bunyakovsky one into
account, and the relations

a(v,v) 2 a, Hv”i{ Vve H, o, =const >0,
and
la(u,v)| < ¢ ||u||H HVHH Yu,ve H, ¢, =const >0,

are true for the bilinear form a(-,-), i.e. this form is H-elliptic and
continuous [49] on H.

Consider the Cauchy-Bunyakovsky inequality and embedding theorems
[55], and the following inequality is obtained Vve H :

| 1(v) IS c) ||v||H , €y =const.

Use the Lax-Milgramm lemma [16], and it is concluded that the unique
solution (y, p) to problem (1.31) exists in H.
Problem (1.31) can be solved approximately by means of the finite-

element method. For this purpose, divide the domains Q, into A, finite
elements ef G =1,N,, ,N;, i=1,2) of the regular family [16]. Specify the
subspace HY v ©€H (N=N;+N,) of the vector-functions VkN (x). The
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components lekL_) , véﬂﬁ eC(Q) (i=12) of VkN (x) are the complete
; i
polynomials of the power £ that contain the variables x, x5, ..., x,, at

every Eij , and [VkN :l = 0. Then, the linear algebraic equation system

AU=B (1.32)

follows from equation (1.31), and the solution U to system (1.32) exists
and such solution is unique. The vector U specifies the unique

approximate solution U ,ﬁv eH ,ﬁv to problem (1.31) as the unique one to the
equation

a(Ul, i) =1(RY), vl e mf. (1.33)
Let U =U(x) € H be the solution to problem (1.31). Then:
a(U-Ul,v)=0, vil'en) .
Therefore,

aIHU—U}Q’“ZSa(U-U,{V, v-ul)=
=a(U-U},U-0), vUen}f,

and the inequality

N ~
"U ~U} “H <co|u-0],,» co=const, (1.34)

is thus derived since the bilinear form a(.,+) is continuous on H.
Suppose that U e H ,iv is a complete interpolation polynomial for the

solution U at every Eij . Take the interpolation estimates [16] into account,

assume that every component U; and U, of the solution U on ; belongs

to the Sobolev space Wzk +1(Q,) (I =1,2), and the estimate
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“U—U,ﬁv “H < ch*, (1.35)

where /4 is a maximum diameter of all the finite elements &/, ¢ = const,

follows from inequality (1.34).
Take estimate (1.35) into consideration, and the estimate

“u—u,ﬁv” Cy ”p—p,]cv“ <c hk, (1.35")

<
1= 1=
w, w,

5 12
where ””W21 Z{ZHH%(Q)} , takes place for the approximation
i=1

u}cv (x)=- p,ﬂv /E(x) of the control u=u(x) of a state described by

Problem 1’ and p}¥ = u}, is the second component of the vector U} .

Remark 1.7. If constraint (1.13) is met, then the first component of a
classical solution to problem (1.30) is a classical solution to boundary-
value Problem 1.

2.2  DISTRIBUTED CONTROL WITH OBSERVATION ON
A THIN INCLUSION

Assume that equation (1.1), where the coefficients and right-hand side
meet conditions (1.2'), is specified in the bounded, continuous and strictly
Lipschitz domains €; and Q,. Condition (1.2) is specified, in its turn, on
the boundary I' and the conjugation conditions have the form of
expressions (1.3) and (1.4).

For every control ue¥ =L,(Q), determine a system state as a
generalized solution to the boundary-value problem specified by equation
(1.7) and by conditions (1.2)—(1.4), where Bu=u and u € L,(€).

Equality (1.13) is the necessary condition under which there exists a
classical solution y = y(u) to boundary-value problem (1.7), (1.2)—(1.4)
(Problem 2). Find this solution under constraint (1.6).
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Bring a value of the cost functional

Jw)= (@) =z dy+ (Hu,u)y @1
Y

in correspondence with every control u € % = L,(€2); in this case, z, is a

known element from the space L,(y); fu=au, 0<agy<a(x)<
<a? <o, a(x)|Qie C(Q,), i=1,2; ay, a’ =const.

A unique state, namely, a function y(u)eV, corresponds to every
control u €% , minimizes energy functional (1.11) on ¥y, and it is the

unique solution in ¥}, to weakly stated problem (1.12). Lemma 1.1 and

Remarks 1.1 and 1.2 hold here.
Rewrite cost functional (2.1) as

J () = 1) ~2L(u) + g - y(O)”;(Y), @2)
where
Mo, 0= oy @ W10 = [owr,
Y
m(u,v) = (y(@)=y(0), Y = ¥(0)  ,, +(@u,v)
and

L) =(zg = y(0), y0) - 3(0) ..

Take the embedding theorems, ellipticity condition and generalized
Poincare inequality into account, and the inequality

%[5 -3, <8l =31, <

< al(jv)l _ 5}11, j")l _ 5)1!) < ”ur —u" 5)! _ J“')H"V ,

1.e.
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17 -3 |, oy, 0, =const>0,

1
< —_— ”ul _ uu
L ,0‘10‘2
is derived, where y' = j(u’) and 7" = y(u") are the generalized solutions
from ¥, to boundary-value Problem 2 under f=0, g=0 and ©=0 and

under a function u = u(x) that is equal, respectively, to »’ and u".

On the basis of the derived inequality and [58, Chapter 1, Theorem 1.1],
the validity of the following statement is proved.

Theorem 2.1. Let a system state be determined as a solution to
equivalent problems (1.11) and (1.12). Then, there exists a unique element

u of a convex set U that is closed in U = L,(QQ), and relation like (1.17)
takes place for u, where the cost functional J(u) is specified by expression
(2.1).

Let equation (1.18) be specified on Q instead of equation (1.7).
Neumann condition (1.2) and conjugation conditions (1.3) and (1.4) are
specified, in their turn, respectively, on I and y. Le., boundary-value
problem (1.18), (1.2)—(1.4) (Problem 2') is obtained.

Remark 2.1. Boundary-value Problems 1, 2 and 1, 2' coincide
pairwise. Optimization Problems do not coincide because their cost
functionals J(u) are different.

Consider optimization Problem 2': Find a control u € % c % = L,(Q)),

for which relation like (1.17) is satisfied, where the cost functional J(u) is
specified by expression (2.1), and a state y(u) is a generalized solution to
boundary-value Problem 2’.

If u e, is the optimal control for optimization Problem 2’, then the

following inequality is true:

(y@)-2g, y)-y@w))_

As for the control v € % , the conjugate state p(v) € vV =V is specified
by the relations

+@u,v-u)=0, Vve . (2.3)

Apw)=0, xeQUQ,,
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aip =0, xel,
A*
1%
[p]=0, { S } —y() +2,, x€7, 2.4)
A*

where the operators A and

are specified, in their turn, by

expressions (1.23).
The equality

0= (A*p(u), y(v) - y(u)) =ay(p, y(v)— y(u)) -

—(y() - 24, y() - y(w))

L

=~ (@) -z, y) - yW)), +(p,v-u),

Ly(v)

ie. (y(u) —Zg, y(V) - y(u))Lz(y) = (p, V- u) Vv e, is obtained. Take it

into account, and the inequality
(@u+p,v-u)20, Yve, (2.5)

is derived from inequality (2.3).
An element u € %, is an optimal control for optimization Problem 2’ if
and only if inequality (2.5) and the equalities

a(y,v)=L(u,v), yeV, ¥vel, (2.6)
and

ai(p,v)=hL(y,v), peV, VveV, 2.7)

are met; the bilinear form a(;,-) and functional /;(u,v) are specified in
point 2.1, and
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lZ(ysv) == j(zg —y)de .
Y
If the constraints are absent, i.e. when %; = % , then the equality

p+au=0 (2.8)

follows from condition (2.5). Therefore, when the constraints are absent,
the control u# can be excluded from equality (2.6) by means of equality

(2.8). Let the solution (y, p)T to problem (2.6), (2.7), where

L(u,y) =1 (u(p),y), be sufficiently smooth on Q; and Q,. Then, such
solution satisfies the relations

i j—l

—Z ( )+p/a+jydx f+0, xeQ UQ,,

—Z (”6xJ [pax=0, xeQ,UQ,,

ljl

Zkl! cos(vx) g, xel,
i,j=1

Z cos(vxl) 0, xel,
a.]_l ‘]

[¥1=0, [p]=0, xev,

{Z cos(vx)]—(n xXey,

L,J =1 ‘]

I:Z cos(v x)}— —~y+zg, XEY. 2.9

i,j=1 J
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Definition 2.1. A generalized (weak) solution to boundary-value

problem (2.9) is called a vector-function (y, p)T € H that satisfies the
following integral equation Vze H :

(S22 S 2l

Q Ui,j=1 %i
+J-ydx Izldx+ Ipdx jzzdx=

Q Q Q
=I(f+Q)zldx+ jgzldr— Imzldy+ I(y—zg)zzdy. (2.10)
Q r Y Y

Let u= (ul,uz)T and v= (vl,vz)T be arbitrary elements of the complete
Hilbert space H. Specify the bilinear form

a(u,v) = J{Z Zk’J Zu LV +u2vl/a}dx+

O =1 i, j=1
2

+z J'uldx J-vldx— u v dy
=1 o Q ¥

and linear functional

I(v) = j(f+Q)v1 dx + _[gv1 dr—fmvl dy— [z, dy
Q r Y Y
on H. If the constraint

2
min {20 rmn{ao 1}u L _d o, 2.11)

2 2 2ap 2 _
where p and ¢, are the positive constants, respectively, in the generalized
Poincare inequality and embedding theorem, is met, then the unique

solution (y, p)T to problem (2.10) exists in H. Problem (2.10) can be
solved by means of the finite-element method. Estimates like (1.35) and
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(1.35") are true, respectively, for its approximate solution U, ,iv eH ,ﬁv cH

and for the approximation u,ﬁv (x) of the control u.

2.3 DISTRIBUTED CONTROL WITH BOUNDARY
OBSERVATION

Assume that equation (1.1), where the coefficients and right-hand side
meet conditions (1.2"), is specified in the bounded, continuous and strictly
Lipschitz domains €; and €2,. The conjugation conditions have the form

of expressions (1.3) and (1.4) and the boundary condition has the form of
expression (1.2).

For every control ue ¥ =L1,(Q), determine a system state as a
generalized solution to the boundary-value problem specified by equation
(1.7) and by conditions (1.2)—(1.4). Equality (1.13) is the necessary
condition under which there exists a classical solution y to boundary-value

problem (1.7), (1.2)—(1.4) (Problem 3): Find a solution y that meets
constraint (1.6).

Bring a value of the cost functional

JW) = [(v) - 2,)dT + (Hu,u)y 3.1)
r

in correspondence with every control u € % = L,(€2); in this case, z, is a
known element from the space L,(I'), fu=au, O<ag,<a(x)<
<a) <o, @(X)|qeC(Q), i=12; a, a =const.

A unique state, namely, a function y(u)eV, corresponds to every
control u € %, delivers the minimum to energy functional (1.11) on V,,
and it is the unique solution in ¥, to weakly stated problem (1.12). Lemma
1.1 and Remarks 1.1 and 1.2 take place here.
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Rewrite cost functional (3.1) as

() = n(u,u) - 2L(u) + |z - y(O)";(r) , (3.2)
where
|lv”L2(r) = (v,v)gzz(r) » (9, W)LZ(I‘) = J-(P\I’ ar,
r
m(u,v) = (y()-y(0), y(v)- ¥(0)) L@ T@uy)
and

L) =(2g = ¥(0), y0) = O) .-

Take the embedding theorems, ellipticity condition and generalized
Poincare inequality into account, and the inequality

|5 -5, o, <85 -1, <

Sal(j}l_j}n,j}l_j}n) S"u'—u"

=~ ~rn
y =y Ve

1.€.

|5 - 3" , o, &, =const >0,

1
< — ”ul _ unl
is derived, where 7' =j(u') and y" = p(u'"") are the generalized solutions
from ¥, to boundary-value Problem 3 under /=0, g=0and ®=0 and

under a function u = u(x) that is equal, respectively, to ' and u".

On the basis of the derived inequality and [58, Chapter 1, Theorem 1.1],
the validity of the following statement is proved.

Theorem 3.1. Let a system state be determined as a solution to
equivalent problems (1.11) and (1.12). Then, there exists a unique element
u of a convex set Uy that is closed in U, and relation like (1.17) takes

place for u, where the cost functional J(u) is specified by expression (3.1).

Let equation (1.18) be specified on the domain Q instead of equation
(1.7). Neumann condition (1.2) and conjugation conditions (1.3) and (1.4)
are specified, in their turn, respectively, on I" and v. Le., boundary-value
problem (1.18), (1.2)—(1.4) (Problem 3') is obtained.
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Remark 3.1. Boundary-value Problem 3 coincides with Problems 1
and 2. Problem 3’ coincides with Problems 1’ and 2'. Optimization
Problems do not coincide because their cost functionals J(u) are different.

Consider optimization Problem 3': Find a control u € %y < % = L,(Q),
for which relation like (1.17) is satisfied and where the cost functional
J(u) is specified by expression (3.1). A state y = y(u) is a generalized
solution to boundary-value Problem 3’ and such solution is unique for one
of equivalent problems (1.19) and (1.20).

If u e is the optimal control for optimization Problem 3', then the
following inequality is true:

(y@) =24, y0)-y@))_

As for the control v € % , the conjugate state p(v) e V =V is specified
by the relations

+(@u,v-u)=0, Vve ;. (3.3)

A'p(v)=0, xe Q,UQ,,

% =—2,+y, x€l,
ov .
4
op
=0, =0, xevy, 34
[P] {&AJ Y G4

where the operators A4° and are specified, in their turn, by
A‘
expressions (1.23).
The equality

0=(4"p(w), y0) - y()) = ai (p, y(¥) = y(w)) -

~(y(@)~zg, y() - y())

()

=—(y@) -z y(M) - y@)), _ +(p,v-u),

Ly(T)
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ie. (y(u) —Zg, y(V) - y(u))LZ(r) = (p, V- u) Vv € U, is obtained. Take it

into account, and the inequality

(p+c7u,v—u)20, Vv e U, (3.5)

is derived from inequality (3.3).

To make the element u e, the optimal control for optimization
Problem 3', it is necessary and sufficient for inequality (3.5) and the
equalities

a(y,v)=h(u,v), yeV, VveVl, (3.6)
and
ai(p,V)=L(y,v), peV, VveV, 3.7

to be met; the bilinear form a[(:,-) and linear functional /;(-,") are specified
in point 2.1, and

L(y,v) == [(z, - y)vdT .
r
If the constraints are absent, i.e. when % =% , then the equality

p+au=0 (3.8)

follows from condition (3.5).
Therefore, when the constraints are absent, the control # can be
excluded from equality (3.6) by means of equality (3.8), and the following

may be written: /(u,y) =1 (u(p),y). If the solution (y, p)T to problem

(3.6), (3.7), where [(u,y)=1(u(p),y), is smooth enough on Q, and Q,,
then such solution satisfies the relations

"5 oy
_Za{kij j+p/c7+ Iydx=f+Q, xeQUQ,,
ij=1""1

6xj S
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— 0
za—&(kijajj Ipdx 0, xeQ,UQ,,

i,j=1

Z cos(vx) g, xel,

i,j=1 J

z cos(vx) =y—zg, x€l,

’.] '—1

[¥]=0, [p]=0, xey,

liz ——cos(v, x)}*m {Z cos(v x)} 0, xey. 3.9
Ox

L= 1 af_] J

Definition 3.1. A generalized (weak) solution to boundary-value

problem (3.9) is called a vector-function (y, p)T € H that satisfies the
following integral equation Vz e H :

6y 61 ap 622
I{Zk’fa o, +pzja +Zk’16x o, dx +

Q U,Jj=1 i,j=1

+Iydx J‘zldx+ Ipdx J.szx:
Q Q Q Q

= J.(f+Q)zldx+ jgzldF+
Q r

+j(y—zg)zzdr— o z,dy. (3.10)
Y
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Let u= (ul,uz)T and v= (vl,vz)T be arbitrary elements of the complete
Hilbert space H. Specify the bilinear form

a(u,v) = I{z Z y—é———+u2vl/a}dx+
Q

I=1 i,j=1

2
+Z U dx J- U Vz dl_'
=1 r

and linear functional

I(v) = I(f+Q)v1dx+Igv1dF— ov dy— [z,v,dT
Q r Y r
on H.

Let constraint like (2.11) be met. Then, the unique solution (y, p)T
problem (3.10) exists in H. Problem (3.10) can be solved by means of the
finite-element method. Estimates like (1.35) and (1.35") take place,

respectively, for the approximate solution U, ,iv eH ,ﬁv to problem like

(3.10) and for the approximation u,lcv (x) of the control .

24 CONTROL UNDER CONJUGATION CONDITION
WITH BOUNDARY OBSERVATION

Assume that equation (1.1), where the coefficients and right-hand side
meet conditions (1.2'), is specified in the domains Q, and ,. Neumann
condition (1.2), constraint (1.3) and the condition

[Zky cos(v, x)}—m+u Xey, 4.1)

i,j=1
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where o is a fixed function from L,(y) and the control is u € % = L,(y),
are specified, in their turn, on the boundary I'.

For every control ue %, determine a system state as a generalized
solution to the boundary-value problem specified by equation (1.1) and by
conditions (1.2), (1.3) and (4.1) (Problem 4). The equality

Ifdx+ Igdr=j(m+u)dy 4.2)
Q r y

is the necessary condition under which there exists a classical solution to
the latter problem. Find this solution under constraint (1.6).
Bring a value of the cost functional

2
J(u) = j( V@) =25 ) dT+(uu) ) (4.3)
r

in correspondence with every control u € % = L,(y); in this case, z, is a
known element from the space Ly(I'), fu=au, O<agy<a(x)<
<a; <o, ae€ly(y), ay, a =const.
A unique state, namely, a function y(u) €V, corresponds to every

control u € % , minimizes the functional

O(v) =as(v,v)=214(v) (4.4)
on ¥V, and it is the unique solution in V,, to the weakly stated problem:
Find a function y € ¥, that meets the equation

as(y,v) =l (v) Vvel,, 4.5)
where

o= [ S22

y
o i Ox; Ox;

1,(v) = J'fvdx+ jgvdr—j(mu)vdy. (4.6)
Q r Y
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Lemma 4.1. Problems (4.4) and (4.5) are equivalent Nf € L,(Q),
Vo e Ly(y), Yue¥and have a unique solution y V.
Rewrite cost functional (4.3) in the form of expression (3.2), where

TC( u, V) = (y(u)—y(O), y(V) - y(o))Lz(F) + (Zi u, V)LZ(Y)
and

L) =(z, = ¥(0), y(») - »(0))

Ly’

Take the embedding theorems, ellipticity condition and generalized
Poincare inequality into account, and the inequality

Sa (y-3"y-9")<

&y Il -y ||L2(I‘)
<q "u' - u””Lz(Y) nj’, - 57””1/ , O, Oy, ¢ =const >0,

i.e.

15 =5y < \/— [ =N, -

is derived, where 7' =3y(u') and " =p(u") are the generalized solutions
to boundary-value Problem 4 under /=0, g=0and ®=0 and under a
function u = u(x) that is equal, respectively, to u' and u" .

On the basis of the derived inequality and [58, Chapter 1, Theorem 1.1],
the validity of the following statement is proved.

Theorem 4.1. Let a system state y be determined as a solution to
equivalent problems (4.4) and (4.5). Then, there exists a unique element

u=u(x) of a convex set Uy that is closed in U, and relation like (1.17)
takes place for u=u(x), where the cost functional J(u) is specified by

expression (4.3).
Let the equation

—Zax[,, ] + [yae=r+0 @47

i,j=1
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be specified on Q instead of equation (1.1). Neumann condition (1.2) and
conjugation conditions (1.3) and (4.1) are specified, in their turn,
respectively, on I" and y. Le., boundary-value problem (4.7), (1.2), (1.3),
(4.1) (Problem 4') is obtained.

Consider optimization Problem 4': Find a control u € % c % = L,(y),

for which relation like (1.17) is satisfied and where the cost functional
J(u) is specified by expression (4.3). A state y = y(u) is a generalized
solution to boundary-value Problem 4', where the energy functional is

OW)=ay(v,v)-2 Iy(v), YveVr, (4.8)
and the weakly stated problem is to find a function y €V that meets the
following equation VzeV :

ay(y, z) =1(z); 4.8)

in this case:

az(y,v) = J.ikljg-ﬂdx+ Iydxjvdx,
Q

Q i,j=1 j 0% o
1, (v) = J.(f+Q)vdx+ jgvdr— j(m+u)vdy. (4.9)
Q r Y

If ue; is the optimal control for optimization Problem 4', then the
following inequality is true Vv e %;:

(y(u) —zg, YO) - y(@))  +(@u,v 1), ) 20. (4.10)

L(T)

As for the control v € % , the conjugate state p(v) € V' =V is specified
by relations like (3.4). The equality

0=(4'p(w), y) = (W) = &4 (P, y() = y) +

+(zg =y, y0) = y(W)) L@~
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=—(p9 v_u)LZ(Y) +(Zg—y7 )’(V)_J’(u))Lz(r),

le.
(v@) =z, y0)=y@), == (p,v=1)p,,
is obtained. Take it into account, and the inequality
(—p+5u,v—u)L2(Y)ZO, Vv e U, 4.11)

is derived from inequality (4.10).
An element u € %, is an optimal control for optimization Problem 4’ if

and only if inequality (4.11) and the equalities

ay(y,v)=hLu,v), yeV, VveVl, (4.12)
and

ay(p,vy=L(y,v), peV, VveVl, (4.13)
are met; in this case, the bilinear form a,(:,-) is specified by the first
formula of expressions (4.9) and the functionals /(-,-) and I,(.,) are

L (u,v) = J.(f+Q)vdx+ _[gvdr— I(co+u)vdy
Q r Y

and

Lpv) == [(zg = yv .

If the constraints are absent, i.e. when %; =% , then the equality
-p+tau=0, xevy, (4.14)
follows from condition (4.11).
Therefore, when the constraints are absent and if the solution (y, p)" to

problem (4.12)~(4.14) is smooth enough on Q; (i=1,2), then the
boundary-value problem is obtained:

_Zax(’f ] [yac=r+0, xe@Uay,
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_Zax[lj ] Ipdx 0, er1UQZ,

Z cos(vx) g, xeIl,
i,j=1

Z cos(vx) =y—zq4, x€l,
a.]"l J

[¥]=0, [p]=0, x€ev,

[Z —cos(v x)}—co +pla, xey,

i,j=1 J

{Z cos(v x):|~0 xXEy. (4.15)

i,j=1
Definition 4.1. A generahzed (weak) solution to boundary-value

problem (4.15) is called a vector-function (y, p)T € H that satisfies the
following integral equation Vz e H :

1%; op O
TR

Q (5J=1
+jydx J-zldx+ J.pdx J‘zzdx= I(f+Q)zldx+
Q Q Q [¢) Q
+[gzdrs [(y-z,)mar- [(o+p/a)zday. @16
r r y

Let u= (ul,uz)T and v=(v,v,)" be arbitrary elements of the complete
Hilbert space H. Specify the bilinear form
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2
+Z Iu,dxjv,dx— v dl + quvl/ﬁ dy
I=1 0 Q r Y

and linear functional
I(v) = j(f+Q)v1 dx + j'gv1 dT - [zgv,dT = [0y, dy
Q r r ¥

on H.
If the constraint

2 2
min gg—,min{gq,l}u ——CL—EQ—>0, (4.16")
2 2 20 2

where p is the constant in the Poincare inequality and ¢; and ¢, are the

positive constants derived on the basis of the inequalities proved within the
framework of the embedding theorems, is met, then the unique solution

(», p)T to problem (4.16) exists in H. Estimate like (1.35) is true for its
approximate solution U, ,’;v eH ,ﬁv and the estimate
_.N <ok
”u uj, sz(y) <ch (4.17)

takes place for the approximation u,]cv (x) of the control u.

2.5 BOUNDARY CONTROL WITH OBSERVATION ON A
THIN INCLUSION

Assume that equation (1.1), where the coefficients and right-hand side
meet conditions (1.2"), is specified in the domains €; and Q,. The
condition
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> by 2 cos(v, %) =g +u .1)
ox

i,j=1 J
is specified, in its turn, on the boundary I" and the conjugation conditions
have the form of expressions (1.3) and (1.4) on y, where g is a fixed
function from L,(I") and the controlis u € % = L,(I').

For every control u €%, determine a system state as a generalized
solution to the boundary-value problem specified by equation (1.1) and by
constraints (1.3), (1.4) and (5.1) (Problem 5). The equality

jfdx+ jgdnjudr:jmdy (5.2)
Q r r y

is the necessary condition under which there exists a classical solution y to
Problem 5: Find this solution under constraint (1.6).
Bring a value of the cost functional

J(w) = j( () =z ) dy+ (A, u) (5.3)
Y

in correspondence with every control u € % ; in this case, z, is a known

g
element from the space L,(y), Au=au, O0<agyz<a(x)<a <,

ael,(I'); ag, a =const.

A unique state, namely, a function y(u)eV, corresponds to every
control u €% , delivers the minimum to functional (4.4) on ¥, and it is
the unique solution in ¥, to the weakly stated problem specified by
equation like (4.5), where

L(v) = J'fvdx+ j(g+u)vdr—jmvdy. (5.4)
Q T Y

Lemma 5.1. Problems like (4.4) and (4.5), where the bilinear form
a,(-+) is specified by the first formula of expressions (4.6) and the linear
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functional 1,() is specified by formula (5.4), are equivalent Nf € L,(),
VoeLy(y), Yue¥U and have a unique solution y(u) eV .
Rewrite cost functional (5.3) as

() = (1) = 2L(u) + |2 - y(0)||i2 o
where
n(u, V) = (y(u) —y(O), y(V) - Y(O))LZ(Y) + (E u, V)Lz(r)
and

L) = (zg = ¥(0), y0) - 3(0) -

Take the embedding theorems, ellipticity condition and generalized
Poincare inequality into account, and the inequality

a5~ oy <@l -l <@ (7= 55 - 5) <
< ”u’ B u""Lz(r) ”5" - 5’”"1/ , Oy, Oy, ¢y =const >0,

ie. [7- )7"||L2(Y)Sclnu’—u"”Lz(r) is derived, where 7 = (') and

V'=y").

On the basis of the derived inequality and [58, Chapter 1, Theorem 1.1],
the validity of the following statement is proved.

Theorem 5.1. If a system state y is determined as a solution to
equivalent problems (4.4) and (4.5) that correspond to boundary-value
Problem 5, then there exists a unique element u =u(x) of a convex set U,
that is closed in U, and relation like (1.17) takes place for u =u(x), where
the cost functional J(u) is specified by expression (5.3).

Let equation (4.7) be specified on Q instead of equation (1.1). Condition
(5.1) and constraints (1.3) and (1.4) are specified, in their turn,
respectively, on [' and y. Le., boundary-value problem (4.7), (1.3), (1.4),
(5.1) (Problem 5) is obtained.

Consider the following problem: Find a control u € %y c % = L,(I") for

which relation like (1.17) is satisfied and where the cost functional J(x) is
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specified by expression (5.3); a state y = y(u) is a generalized solution to

boundary-value Problem 5', where the energy functional and weakly stated
problem are given, respectively, by expression (4.8) and equality (4.8').
The form aj(-, -) is specified by expression (4.9) and the linear functional
is

1,(v) = I(f+Q)vdx+ j(g+u)vdr— ovdy .
Q r i
If u e, is the optimal control for optimization Problem 5', then the

following inequality is true Vv e %,:
(y(u) —Zg, Y(V) - y(u))Lz(Y) + (a u,v— u)LZ(I“) > 0. (5.5)

As for the control v € %, the conjugate state p(v) € vV =V is specified
by the relations

A p( =0, xeQUQ,,

op

P =0, xel,
A*
0,
[p]1=0, {avp }Zg—y, X €Y, (5.6)
A*

where the operators A" and

are specified, in their turn, by

*

A
expressions (1.23).
The equality

0=(4"p(u), y(v) = () =i (p. y(¥) = y(W) +

+(Zg - y(u), y(v)—y(u))Lz(Y) B

= (p9 v_u)Lz(r) +(Zg —y(u)’y(v)—y(u))Lz(y) >
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ie. (y(u) — 2, y(v) - y(u))L "= (p,v— “)Lz(r) is obtained. Take it into
2
account, and the inequality
(p+(7u,v—u)bz(r)20 (5.7

is derived from inequality (5.5).
To make the element ue?; an optimal control for optimization

Problem 5, it is necessary and sufficient to meet inequality (5.7) and
equalities like (4.12) and (4.13), where the bilinear form a,(-,-) is specified
by expression (4.9) and, besides this, the linear functionals are

L (uyv) = j(f+Q)vdx+ I(g+u)vdr—fmdy
Q r Y

and

lZ(yav) =- I(Zg - y)de
Y
If the constraints are absent, i.e. when %, =% , then the equality

p+au=0, xel, (5.8)
follows from condition (5.7).
Therefore, when the constraints are absent and if the solution (y, p)T to

problem (4.12), (4.13), (5.8) is smooth enough on Q; (i =1,2), then, take
equality (5.8) into account, and the boundary-value problem is obtained:

_Zax£l16 J J-ydx f+0, xeQUQ,,

'Zax(”a ) + [pax=0, xe UQ,,
Q

n

ijaycos(vx) g-pla, xeT,
ox ;

i,j=1 J
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Z cos(v )=0, xel, (5.9)

i,j=1

[¥1=0, [p]=0, xev,

{Z ki ——cos(v, x,)]—m xXevy,

i,j=l1 J

I:z cos(vx)}—z -y, X€Y.

,Jj=1 J

Definition S5.1. A generalized (weak) solution to boundary-value

problem (5.9) is called a vector function (y, p)T € H that satisfies the
following integral equation Vze H :

dy o o o
I{Zk”ax ayzcl .Zk’fax 22}

Q U=l
+jydx jzldx+ jpdszzdx= j(f+Q)zlclx+
Q Q Q Q Q
+[@-plDyndr- [ondy- [Gg-nnar. 610
T Y Y

Let u= (ul,uz)T and v= (vl,vz)T be arbitrary elements of the complete
Hilbert space H. Specify the bilinear form

2 n Our Bv
L

+i ulde.vldx+ Ju2V1/adr_.[ulv2dY
Q r Y

T
o)
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and linear functional
10)= [(f +Qwd+ [gwdT - [ov dy— [z, dy
Q r Y ¥

on H.
If constraint like (4.16') is met, then the unique solution (y, ' to
problem (5.10) exists in H. Estimate like (1.35) is true for its approximate

solution U, ,ﬁv e HY and the estimate

”u — u,ﬁV” <cht
Ly(T)

takes place for the approximation u,ﬁv (x) of the control u.



3

CONTROL OF A SYSTEM DESCRIBED BY A
ONE-DIMENSIONAL QUARTIC EQUATION
UNDER CONJUGATION CONDITIONS

3.1 DISTRIBUTED CONTROL WITH OBSERVATION
THROUGHOUT A WHOLE DOMAIN

Assume that the equation

d>( d*y

— | k—|=f(x 1.1

dxz[ deJ f) (L.1)
is specified in a domain Q=0Q,;UQ, (Q;=(0,8), Q,=(&,]), 0<E<I),
where k\g—zl - k(x)lg-zl e C\(Q)NCEQ), 0< ky< k(x) < K <o,

ko» k= const, f|o,eC(Q), 1=1,2, |f]<w.

The conditions

y=y'=0 (1.2)
are specified, in their turn, at the ends of a line segment [0, /].
At apoint x =&, the conjugation conditions are

y =y" =0 (1.3)
and

[ky"]=0, {ky" }i =afy']. (1.4)

Problem (1.1)-(1.4) describes deflections of a complicated rod that is
rigidly fixed at its ends and has a hinge of a final rigidity o >0, and such a
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hinge is absolutely rigidly supported at the point x=&; in this case,
y=y(x) is a deflection of a rod at a point with a coordinate x, [¢]=

=¢" =07, ¢ ={g}" =0(£20).

Let there be a control Hilbert space % and mapping Be %(%;V"),
where V' is a space dual with respect to a state Hilbert space V. Assume
the following: % = L,(Q2).

For every control u €%, determine a system state y as a generalized
solution to the boundary-value problem specified by the equation

2 2
%Z—(k%}=f(x)+3u, yeV, (1.5)

and by conditions (1.2)—(1.4).
Specify the observation

Z(u)=Cy(u), (1.6)
where C e Z(V;#) and # is some Hilbert space. Assume the following:
Cy(u) = y(u), H=Vc L(Q). (1.7)

Bring a value of the cost functional

J(w) = Cyiw) - zg"; + (S tty1)yy (1.8)

in correspondence with every control u € % ; in this case, z

. is a known

element of 7, and
Ne L(UU), (Nu,u)gy 2V ”u”fu , v, =const>0, Vue¥. (1.9)

Assume the following: f=L,(Q), Bu = u € L,(QQ), fu =a(x)u,
and, in this case, 0<ay<a(x)< aj<, a(¥)|geC(Qy), [=12,
ag, ay =const, (Q,y)q, =(Q,y) = J.(p\ydx. A unique state, namely, a

Q
fanction y(w) eV ={v: v|qeWF@), =12 WO)=V(0)=v()=
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=v'({)=0; y =y'= 0} corresponds to every control u e %, delivers the
minimum to the functional
Pv)=a(v,v)-2I(v) (1.10)

on V, and it is the unique solution in ¥ to the weakly stated problem: Find
an element y € V' that meets the equation

a(y,v)=1(v), YveV, (1.11)
)

I

where a(u,v) = Iku"v"dx+(x[u'][v’], I(v)= I( f+u)vdx.
0 0

Introduce the following denotation: ﬁé‘ :{v(x): vlgl eWZk(Q,),

[=1,2}. The estimates
Ia(u,v)l <¢q ”u”H ||v||H and |l(v) |S c "v"H (1.12)
are true for the bilinear form a(--): H 22 x H % — R' and linear functional

I(): H> > R'. In this case, |

2
2 2 )
Wy =Z||V||W22(Qi), where {2, is the
i=1

norm of the Sobolev space W22 (Q;), i.e. the bilinear form a(:,-) and linear

functional /(-) are continuous on a complete Hilbert space H f with the
norm |, . Hlustrate the H-ellipticity of the bilinear form a(.-) on the

subspace V < 17_[22. Take the Friedrichs inequality into account, and the
following inequality is derived:

{
a(v,v)zuj'(v')zdx, W= const > 0. (1.13)
0

Consider the line segment [a, f]. For an arbitrary element ve

€ W22 (o, B), that meets the conditions v(a) = v(B) =0 , the equality
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B B B
I (v’)2 dx = vv’lg - J' wdx = — I w'dx (1.14)
o o o

is obtained. On the basis of the e-, Cauchy-Bunyakovsky and Friedrichs
inequalities, the inequality

B B B

25 <o (0200 L [romn?
1 Iv dx_sJ.v dx+48 J-(v ) dx, VveV,
o [0 a
follows from equality (1.14), viz.:

B B s

79 Ivzdx < I(v”) dx, p, =const>0. (1.15)
o [0

Consider inequalities (1.13) and (1.15), and
a(v,v) >, ||v||12q , M3 =const>0. (1.16)

Use the Lax-Milgramm lemma [16], and it is concluded that problem
(1.11) has the unique solution Vf, ue L,(Q2) in V. It is easy to state the
equivalence of problems (1.10) and (1.11).

Therefore, there exists such an operator 4 acting from V into L,(€),
that

y(u) = AN f + Bu), Yue L,(Q). (1.17)
Rewrite the cost functional as
2
J(u) = (1) - 2L(u) +||zg - yO) ", (1.18)
where the bilinear form n(:,-) and linear functional L(:) are expressed as

n(u,v) = () - ¥(0), y(v) - y(0)) + (a@u,v)
and

L(v) = (2 = y(0), y(») ~ y(0)) (1.19)
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ol = (.02

l
in this case: (p,y) = J.(p\udx,
0
The form n(-,-) is coercive on %, i.e.:
() = (y() = $(0), y()— y(0)) +(@u,1) = ag(u, ).

Let 7' =p(u') and y" = y(u") be solutions from V to problem (1.11)
under f =0 and under a function u =u(x) that is equal, respectively, to
u'and u" . Then, the inequality

Cl ”5)/ - 5;//”2 < C1 ”5)1 _ 5')””2 <a (j'}l _ 5}"’ 5}1 _ j-')”) < "ul _ un 5}1 _ 5')11" ,

¢y =const>0,

is derived that provides the continuity of the linear functional L() and
bilinear form m(:,-) on %.

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 1.1. Let a system state be determined as a solution to
equivalent problems (1.10) and (1.11). Then, there exists a unique element
u of a convex set Uy that is closed in U, and

J(u) = inf J(v) (1.20)
vely
takes place for u.

Definition 1.1. If an element u € %, meets condition (1.20), it is called
an optimal control.

If u € U, 1s the optimal control, then the following inequality is true:

n(u,v—u)>L(v—-u), Vve,. (1.21)
Proceed from expressions (1.19), and the inequality

(y(@)-zg, y() = y() ) +(@u,v —u) 2 0, Vv e, (1.22)
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follows from inequality (1.21), and it is the necessary and sufficient
condition under which u €%, is the optimal control for the considered

problem.
As for the control v € % , the conjugate state is specified by the relations
A*p(V) :J’(V)—Zg, (123)
p=0, p'=0, x=0,1/, (1.24)
p =p =0 (1.25)
and
n " + !
[kp]=0, {kp} =OL[p], (1.26)

where V™ is a space conjugate to ¥, V" =V, and

Ap=(kp"). (1.27)

Further on, use the formula of integration by parts, and the equality

(4", y) = y)) = (30~ 2, y0) - y@)) = a (P, () - y(w)) =

=(p(w), Ay() - y(w))) = (p(w),v~u), (1.28)
where
l
a(u,v) = J-k u"v'dx +afu'|[V], (1.29)
0

is obtained. Take equality (1.28) into account, and it is stated that
inequality (1.22) is equivalent to the inequality

(p(w)+au,y—u)20, Vve. (1.30)

Therefore, the necessary condition for the existence of the optimal control
u € U, is the one under which the relations

Ay(uw)=f+u, (1.31)

A p(u) = y(u) - z, (1.32)
and
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(p(uw)+au,v-u)=0, Yve i, (1.33)
are met. If the constraints are absent, i.e. when %; =% , then the equality
p(w)+au=0 (1.34)

follows from condition (1.33). Therefore, when the constraints are absent,
the control u(x) can be excluded from equality (1.31) by means of equality
(1.34). On the basis of equalities (1.31) and (1.32), the problem

Ay+pla=f, yeV, (1.35)
Ap-y =-2Z4, DE v, (1.36)

is derived, and the vector solution (y, p)T is found from this problem
along with the optimal control

u=-p/a, (1.37)
where V= {v : v|Ql € WZZ(Q,), I=1,2; v(0)=v'(0)=v(D)=V'())=0;

v+=v_=0}.
If the vector solution (y, p)T to problem (1.35), (1.36) is smooth
enough on Q;, viz. y|§l, p|§l eC3(ﬁ,)ﬂC4(Q,), [=1,2, then the

differential problem of finding the vector-function (y, p)T, that satisfies
the relations

(ky")” +pla=f, xeQUQ,,

(kp") =y =-z4 xeQUQ,

y(0)=y'(0)=y()=y'()=0,

p(0)=p'(0)=p()=p'()=0, (1.37")
y'=y"=0, p"=p" =0,

[k]=0, {ky"}* =aly],
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[kp"]=0, {kp"}" =a[p],
corresponds to problem (1.35), (1.36).

Definition 1.2. A generalized (weak) solution to boundary-value
problem (1.37") is called a vector-function (y,p)' €H =
={v:(v,,v2)T: ViV, eV} that satisfies the following integral equation
VzeH:

!
I{ ky'z{+pz[/@+kp'zh — yz, }dx +
0

l

raly[d]+a [plz]= [(fa-zem)dr. (1.38)
0
Let u =(u1,uz)T and v =(v,v, )T be arbitrary elements of the complete

1/2
Hilbert space H with the norm |v||H {Z"V"Wz(g )} . Specify the

bilinear form
)

a(u,v) = I{k(u{’v{’+u'év§)+u2 v/a —ulvz}dx +
0

2
a > [4][v] (1.39)
i=1

and linear functional
!
I(v) = J‘ (fv1-2gvs)dx (1.40)
0

on H.
Let the costraint
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u3—1(1+ij>0 (1.41)
2 a

be met, where 13 = const > 0 is the constant in inequality (1.16).

Proceed from the Cauchy-Bunyakovsky and Friedrichs inequalities and
from [21]

b7|<@ Pl @ pil<e by, - (=12, (G4

and the inequalities

a(v,v) 2 q, ||v||12q , Vve H, @, =const>0,
la(u,v)| < ¢ ”u”H ||v||H , Yu,ve H, ¢, =const >0, (1.41")

are obtained for the bilinear form a(.,-), i.e. this form is H-elliptic and
continuous on H [49].
Consider also the Cauchy-Bunyakovsky inequality, and

| <My, » €2 =const>0.

Use the Lax-Milgramm lemma [16], and it is concluded that the unique
solution (y, p)" to problem (1.38) exists in H.

Problem (1.38) can be solved approximately by means of the finite-
element method. For this purpose, divide the line segments Q; into the

elementary ones, i.e. El.j > J =1,_N,-, i=1,2. Specify the subspace
H ,ﬁv c H (N=N;+ N,) of the vector-functions VkN (x) . The components
vf}i, vé\i g € Cl(ﬁi) (i=12) of VkN (x) are the complete polynomials of
the power k>3 that contain the variable x at every elementary line

segment El-j . Then, the linear algebraic equation system

AU=B (1.43)
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follows from equation (1.38), and the solution U to system (1.43) exists
and such solution is unique. The vector U specifies the unique

approximate solution U, ,ﬁv eH ,ﬁv to problem (1.38) as the unique one to the
equation

a(Ul, V) =1(vl), v e ). (1.44)
Let U =U(x) € H be the solution to problem (1.38). Then:
a(U-ul,v¥)=0, wr¥ e my. (1.45)
Therefore VU € H ,ﬁv , the inequality

a-vt] <aw-vfu-viysalu-vf] Ju-0,

is obtained, i.e.:

“U ~u¥ “H < %“U -0, (1.46)

Suppose that U e H ,iv is a complete interpolation polynomial for the

solution U to problem (1.38) at every Eij . Take the interpolation estimates
into account, assume that every component U; and U, of the solution U
on ; has the continuous limited (% +1)-th-order derivative, and the
estimate

HU—U,ﬁV H <ch* (1.47)
H
where h is a length of the largest finite element &’, follows from

inequality (1.46).
Take estimate (1.47) into consideration, and the estimate

N N k-1
et 2ot <k
W, W,
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5 1/2
where ““W22 ={Z”“§V 22(91_)} , takes place for the approximation
i=1

ul (x)=—p (x)/a(x) of the control u = u(x).

3.2 CONTROL UNDER CONJUGATION CONDITION

Assume that equation (1.1) is specified on intervals (0,&) and (§,/). The
boundary conditions

¥0)=0, y()=0, y'()=0 (2.1)
and

¥"(0)=0 (2.2)
are specified, in their turn, at the ends of the line segment [0,/]. At the
point x =&, the conjugation conditions are

[¥]=0,
[ky"]=0, {ky”}i=a[y’], [(ky")'}=—6y+r+u, (2.3)

where o, fp =const>0, u, re R'.
Specify the observation as

Cy(w)=y(u), xeQ. (2.4)

Bring a value of the cost functional
!

J(u) = j (90 =2 ) d + (w0 2.5)
0

in correspondence with every control u € % ; in this case, z, is a known

g
element from L,(Q), fu =au, ae Rl, a>0, (@, W)y =0V,

Vo,yeR', %=R'.
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A unique state, namely, a function y(u)eV corresponds to every
control u € 2 , minimizes the energy functional
D)= a(v,v)-2l(v) (2.6)
on ¥, and it is the unique solution in V to the weakly stated problem: Find
an element y(u) € V' that meets the equation

a(y,v)y=I(v), VveVl, 2.7)
where V = {v e B2 :v(0)=0, v(I)=v'()=0, [v]= 0},

1)
aly)= [lyVds +By@ v +aly V],
0

)
Iv) = J' fvdx +(r + ) v(E) . (2.8)
0

To establish the fact that the solution y(u) to equivalent problems (2.6)

and (2.7) exists and that this solution is unique Vu e R', some additional
investigations are needed. Consider the following expression Vy eV :

) ! !
I(y’)zdx =y |54y IM - f yy'de =-y(&)[y']- _fyy”dx :
0 0 0

Take the €-, Friedrichs and Cauchy-Bunyakovsky inequalities into account,
and the inequalities

B l_fyzdx <
0

O e —

(vYavse?@+ [T+
&

I !
2 1 mn2
+e, Iy dx+Ej(y) dx (2.9)
0 0
and

I I
2 2 1 I2 1 " 2
(u—sZ)ojy di <oy’ @)+ -[v] +on(y Ydr,  (@10)
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where €, € (0, u), are derived. The inequality

I
|IYI|12,Q < C[yz(i) +T + I(y")z dx}, vyeV, 2.11)

0

2 /2 !
where Hy"k’Q = {Z"y”I%VZk(Q,-)} , k=12, ”y"O’Q - jyzdx, follows
i=1 0

from inequalities (2.9) and (2.10).
Therefore, the validity of the following statement is proved.
Lemma 2.1. Inequality (2.11) takes place for an arbitrary function

erzz,o = {veﬁ% v(0)=v(])=0, [v]=0} .

Consider inequalities (1.42) and (2.11) and the Cauchy-Bunyakovsky
and Friedrichs ones, and it is easy to show that inequalities like (1.41") are
true under the fixed Vue R!, where a(-,-) and /() have the form of
expressions (2.8). Use the Lax-Milgramm lemma, and it is concluded that,

at every u € R!, the solution to equivalent problems (2.6) and (2.7) exists
and that such solution is unique.
Expression like (1.18) is obtained from expression (2.5). For expression
like (1.18), the bilinear form =n(.,') is
n(u,v) = (y(u) = ¥(0), y(v) - ¥(0)) + @uv (2.12)
that meets the inequality
m(u,u) 2 au’, (2.13)

and the linear functional L(-) is specified by expression (1.19).

Let 7'=7@') and 7" =3p(u") be solutions from V to problem (2.7)
under f =0 and =0 and under a value u that is equal, respectively, to
u' and u". Then:

& 5= 7l o <l - I, <a(7 =55 -5") =

= () (7~ 5" mg Scald =15~ 7],
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Therefore, the inequality |7 -5 clu’—u"| is derived that provides

Il” <
0,0
the continuity of the linear functional L(-) and bilinear form n(:,-) on %.

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 2.1. If a system state is determined as a solution to equivalent
problems (2.6) and (2.7), then there exists a unique element u of a convex

set Uy that is closed in U, and relation like (1.20) takes place for u, where
the cost functional J(u) is specified by expression (2.5).
If u € U, is the optimal control, then the following inequality is true:

(y(u)—-zg, y(v)—y(u))+c7u(v—u)20, Vv e. (2.14)

As for the control v e %, the conjugate state p(v) V" is specified by
the relations

Ap(v) = y(v) -z,
p0)=p()=p'())=0,

p"(0)=0, (2.15)
[p]=0,
" mx ’ my'
[kp1]=0, (k)" =alp], | (k') |=~Bp.
where V' =V and 4"p = (kp”)” :
Further on, use the formula of integration by parts, and the equality

(4'pG), y0) = y(@)) = (y0) = 25, y(¥) - y()) =
=a(p,y(v)- y))= p|,e (v-1),

(¥) - 2g, y(9) = y(@)) = p| ot (vV—10) (2.16)
is obtained. Take it into account, and it is stated that inequality (2.14) is
equivalent to the inequality
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Pl +au)(v—u)=0, Vve. (2.17)
(Pleeg +a) ;

The necessary and sufficient condition for u € % to be the optimal control
is the one under which inequality (2.17) and the relations

a(y,v)=L(u,v), yeV, VveV, (2.18)
and

a(p,v)=L(y,v), peV, Vvel, (2.19)
! I
are met, where /;(u,v) = vadx+(r+u)v(§) and ,(y,v) = I(y—zg)vdx.
0 0

If the constraints are absent, i.e. when % = % , then the equality
Plemg +au=0 (2.20)

follows from condition (2.17). Therefore, when the constraints are absent,
the control u can be excluded from equality (2.18) by means of equality

(2.20), and it is possible to obtain problem (2.18), (2.19), where [;(u,v) =

=4 (u(p),v). The solution to problem (2.18), (2.19) is (y,p)" and the
optimal control is

u=-pl./a. 2.21)

Let the vector solution (y,p)" to problem (2.18), (2.19), (2.21) be
smooth enough on Q;, /=1,2. Then, the differential problem of finding

the vector-function (y, p)”, that satisfies the relations

(k") = f(x), xe Uy,
(kp")” —y=-z4, xeQUQy,

y(0)=0, y())=0, y'(1)=0, y"(0)=0,
p(0)=0, p(1) =0, p'(1) =0, p"(0) =0, (2.22)
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[¥1=0, [ky"]=0, {ky"}* =a[y],
(67) |==By+r=pluce/a.
[p1=0, [kp"]=0, {kp"}F =a[p],

(') |=-p .

corresponds to problem (2.18), (2.19), (2.21).
Definition 2.1. A generalized (weak) solution to boundary-value
problem (2.22) is called a vector-function (y,p)'e H = {v=(v1,v2)T:

V,V, € V} that satisfies the following integral equation Vze H :

I
[tyat +kp'23 = 23} de + B y(®) 2 (B) -2 (&) +
0

+p| st 21®)/@ +a[y[2]+B p(E) 22 (8) +

l
va[p][z]= [(£71-2g72)dx . (2.23)
0

Let u=(u,u,)" and v=(»,v,)" be arbitrary elements of the complete
Hilbert space H with the norm ||, introduced in point 3.1. Specify the

bilinear form

) 2 2
a(u,v) = j{kZu;'v,-”—ulvz}dx+BZu,-(a)v,-(a)+
0 i=1 i=l1

2
vy [u]vi1+u @) v (€)@

i=1
and linear functional
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l
I(v)= I(fvl —zgvz)dx+rv1(§)
0

on H.

If the constraints 0 < 1/a@ < 2 and 2@, >1 are met, then, use the Lax-
Milgramm lemma, and it is concluded that the unique solution

U= (UI,UZ)T to problem (2,23) exists in H. Problem (2.23) can be solved
by means of the finite-element method. Estimate like (1.47) is true for its
approximate solution U, ,ﬁv eH ,iv . Then, the estimate

\u —ﬁ%{‘ <cy L ¢y =const>0,

takes place for the approximation ﬁﬁ =— p,ﬂv (&)/c_l of the control

u=-p&a.

3.3 BOUNDARY CONTROL UNDER A FIXED ROD END

Assume that equation (1.1) is specified in the domain Q= (0,&)U (&,/).
Boundary conditions (2.1) and the constraint

~ky"(0)=Q+u, Q,ucRk, (3.1)
are specified, in their turn, at the ends of the line segment [0,/]. At the point
x = &, the conjugation conditions are

[y1=0, [ky"]=0, {ky"}* =a[y],

[(07) |~y (3.2)

where a, = const>0.

Specify the observation in the form of expression (1.7). Bring a value of
the cost functional
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/
Jw = () -z) dx+au? (3.3)
0
in correspondence with every control u e % =R1; in this case, z
known element of L,(€2), a =const>0.
A unique state, namely, a function y(u)eV corresponds to every

control u €%, minimizes energy functional like (2.6) on ¥, and it is the
solution in ¥V to weakly stated problem like (2.7). The space V is specified
in point 3.2. In this case:

glsa

I
a(y,v) = fky"v'dz+ByEvE) +alylv],
0

I
Iv) = J' fvdx + (0 +u)v'(0). (.4)
0

Use inequality (2.11), and it is easy to show the validity of the following
statement.

Lemma 3.1. Variational problem like (2.6) and weakly stated problem
(2.7), that correspond to boundary-value problem (1.1), (2.1), (3.1), (3.2),
are equivalent and have a unique solution y €V . The bilinear form a(.,-)

and linear functional I(-) are specified by formulas (3.4).

Expression like (1.18) is obtained from expression (3.3), where the
bilinear form =(,-) and linear functional L() have the form of
expressions, respectively, (2.12) and (1.19). In this case, inequality (2.13)
is met for n(-,").

Let y' =3@') and 7" = y(u") be solutions from V to problem like (2.7)
that corresponds to boundary-value problem (1.1), (2.1), (3.1), (3.2) under
f=0and Q=0 and under u =u' and u =u". Then:

Ijv/_j/l”i[ Sa(j}l_j-}”’j)r_j}n) <

oy |7 - 3" (2),9 <0
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< Iu' - u”l

< cl|u'—u"| ”_)7,__)7”

- (3.5)

(&7 &)
i’

Therefore, the inequality |j'—3"|, o <c;|w' —u"|, ¢1,¢c, =const>0, is

x=0

derived that provides the continuity of the linear functional L(-) and
bilinear form n(:,-) on %.

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 3.1. Let a system state be determined as a solution to
equivalent problems (2.6) and (2.7), where the bilinear form a(-,-) and

linear functional I(-) have the form of expressions (3.4). Then, there exists
a unique element u of a convex set Uy that is closed in U, and relation like

(1.20) takes place for u, where the cost functional J(u) is specified by
expression (3.3).
If ue, is the optimal control, then inequality like (2.14) is true

Vve ;. As for the control ve¥, the conjugate state p(v)eV" is
specified by relations (2.15). The equality

(4°pw), y()=y(@))=(y@)-2g,y(¥) - y(w)) =

=a(p,y<v)—y(u))=% (v-u),
=()

X
viz.

):d—p (v—u) (3.6)
x=0

is obtained. Take it into account, and it is stated that inequality like (2.14)
corresponds to the optimal control for the problem of the present point and
that such inequality is equivalent to the inequality

(y@)—zg, y0) - y(@)

+Eu](v—u)20, VveU,. (3.7)
x=0

ap
dx| _




118 CHAPTER 3

Therefore, the necessary condition for the existence of the optimal
control u € %, is the one under which inequality (3.7) and the relations

a(y,v)=hL(u,v), yeV, VveVl, 3.8)
and
a(p,v)=hL(y,v), peV, YveV, (3.9)

are met. In this case, the bilinear form a(.,) is specified by the first
formula from expressions (2.8) and functionals /(.,-) and /,(-,-) are
expressed, respectively, as

I
1, (u,v) = j fydx+(Q+u)v'(0)
0

and

)
L(y,v)= I(y—zg)vdx .
0
If the constraints are absent, i.e. when %; = % , then the equality

ap
dx

+au=0

x=0

follows from condition (3.7). Therefore, when the constraints are absent,
the control # can be excluded from equality (3.8), and it is possible to

obtain problem (3.8), (3.9), where /(u,v) =/ (u(p'),v) The solution to
problem (3.8), (3.9) is (v, p)" and the optimal control is

/ 7 (3.10)
x=0

If the vector solution (y,p)" to problem (3.8), (3.9), (3.10) is smooth
enough on Q; (I/=1,2), then the differential problem of finding the

vector-function (y, p)", that satisfies the relations
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(ky”)" = f(x), xe QUQ,,
(kp") -y =-zg, xeQUQ,
WO =) =YD =0, ~ky'(©)=0-2

a,
dx x=0/

p0)=p()=p'()=0, p"(0)=0, G.11)

[¥1=0, [y"1=0, {ky"}* = o],
[(ky")’] =By, [p]=0, [kp"]=0,
{kp"}" =a[p], [(kp”)'} =-Bp,

corresponds to problem (3.8), (3.9), (3.10).

Definition 3.1. A generalized (weak) solution to boundary-value
problem (3.11) is called a vector-function (y,p)'e H=
={v=(vl,v2)T :vl,vzeV} that satisfies the following integral equation
VzeH:

l |
[ty z+kp"z = yza}dx +B (&) 2B +
0

+p'(0) 2 (0)/ @ +a[y'][z]]+B p(E) z2(8) +
!

+a[p][z5]= I(le—zgzz)dx+Qz{(0). (3.12)

0
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Let u=(u,u,)" and v=(v,,»,)" be arbitrary elements of the complete
Hilbert space H with the norm |, introduced in point 3.1. Specify the
bilinear form

I 2 2
a(u,v) = I{kzuf"’f'— U Vz}dx +BY w (B v, &)+
ol =t i=1

2

+a ) [4][vi]+us(0)v{ (0)/ @

i=1
and linear functional
!

Iv) = J'( i~ 2gv;)dx + Qi(0)

0

R | - .
on H. If the constraint o — 5 20—1_ >0, where &; and ¢, are, respectively,
a

the constants in inequalities (3.5) and the embedding theorems, is met, then
problem (3.12) has the unique solution in H. Problem (3.12) can be solved
by means of the finite-element method, and the approximate solution

U, ,ﬁv eH ,ﬁv to this problem is obtained on its basis. Estimate like (1.47) is

true for U e H ,ﬁv . Then, the estimate

'u—ﬁ%l Scohk_l, ¢y =const>0,
N __dpf
can be written for the approximation iy, = —d—k a of the control
* x=0
dj _
dx x=0
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3.4. BOUNDARY CONTROL UNDER AN ELASTIC ROD
END SUPPORT

Assume that equation (1.1) is specified on the domain Q = (0,£)U (&,1).
The boundary conditions

yn(o) =0, (kylr)'

+Bo ¥(0)=0, By =const>0,

x=0

y()=0, ky")=0+u, Q,uck', (4.1)
are specified, in their turn, at the ends of the line segment [0,/]. At the point
x=E& , the conjugation conditions are

[11=0, [ky"]=0, {ky"}* =a[y],

(o) | =8>, .2)

where o, B = const>0.

Specify the observation in the form of expression (1.7). Bring a value of
cost functional like (3.3) in correspondence with every control u € % = R';
in this case, z, is a known element of L,(Q), a = const>0.

A unique state, namely, a function y(u)eV corresponds to every
control u € % , delivers the minimum to energy functional like (2.6) on V',
and it is the solution in V" to weakly stated problem like (2.7); in this case,

Vz{veﬁzzz v(l) =0, [v]=0},

!
a(y,v)= 'f ky"v" dx+By(E)v(E) +Bo »(0)v(0) +a[ y'][v],
0

/

I(v)= j‘fvdx+(Q+u)v’(l). 4.3)
0
Lemma 4.1. The inequality
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l

||y||12,Q <c| y*(0) +y2(?é)+[y']2 + I(y”)2 dx (4.4)
0
is true for an arbitrary function y eV .

Proof. Suppose that y is an arbitrary element from V. Consider the
expression

) /
_.'(y’)2 dx=yy1e0 + vy 0 - fyy"dx =
0 0

l
=@ ]- 2O - [wdr ey @+ -] +
0 1

1

2
|y 4.5
. 15", (4.5)

, 1
+€; (y (O))2 + Z‘g;yz(o) +&; "y”(z),g +

from which the inequality

{
YO+ (1-030) () dx <o @ + [T +
0 °1

1 L 1y
+(1+E]y2(0>+83 o +(82€1 +zs§]“y oo

follows since the inequality ( y’(O))2 <q y’“lzQ is true [21]. Hence, it is

easy to obtain inequality (4.4) when proceeding from the generalized
Friedrichs inequality [21].

Lemma is proved.

Lemma 4.2. Variational problem like (2.6) and weakly stated problem
(2.7), where the bilinear form a(-,-) and linear functional I(-) have the
form of expressions (4.3), are equivalent and have a unique solution
y(u)eV.

The validity of Lemma 4.2 is stated according to inequality (4.4) and the
Lax-Milgramm lemma.
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Let ' =y(u') and y" = y(u"") be solutions from V to problem like (2.7)
that corresponds to boundary-value problem (1.1), (4.1), (4.2) under /=0
and @ =0. Then:

&5 - 5" <l - 7y <a(57 =35 - 57) <

d ~y ~t ? )l ~r ~n
— =)oy sl =I5 = 51

Therefore, the inequality |[|j' - 5)"”0’Q Sal-ul, §,c,c=

< |u' - u”|

=const>0, is derived that provides the continuity of the linear functional
L(-) and bilinear form n(.,-) on %

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 4.1. If a system state is determined as a solution to equivalent
problems (2.6) and (2.7), where the bilinear form a(.,") and linear

Sfunctional I(-) have the form of expressions (4.3), then there exists a
unique element u of a convex set Uy that is closed in U, and relation like

(1.20) takes place for u, where the cost functional J(u) is specified by
expression (3.3).
If ue, is the optimal control, then inequality like (2.14) is true

Vve. As for the control ve¥, the conjugate state p(v)eV* is
specified by the relations

A p() = y(v) -z,

p"(0)=0, (kp") *Bo 20 =0,

p(D=0, kp"(1)=0, (4.6)

[p1=0, [kp"]=0, {kp"}* =a[p'],
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(kp') |=-B>p.

The equality
(4 p@), y0) = y0)) = (3() - 24, () = y()) =

= a(p.(y(") - y()) = -Z{C’-l (v—u),
Viz.
(@)= ¥0)=y@) =L - @7
X =l

is obtained. Take it into account, and it is stated that inequality like (2.14),
that corresponds to the optimal control for the problem of the present point,
is equivalent to the inequality

ap
dx

Therefore, the necessary and sufficient condition for the existence of the
optimal control u e ?; is the one under which inequality like (4.8) and

relations like (3.8) and (3.9) are met, where the bilinear form a(-,) is

specified by expression (4.3) and the functionals /j(-,-) and /(") are
expressed, respectively, as

+5uj(v—u)20, Vv e Uy. (4.8)
x=[

)
1 (u,v) = J' fvde+(Q+u) V(D)
0

and

/
Luy)= .f(y—zg)vdx.
0

If the constraints are absent, i.e. when %; =% , then the equality
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ap
dx

+au=0

x=[
follows from condition (4.8).

Therefore, when the constraints are absent, the control u# can be
excluded from equality (3.8), and it is possible to obtain the problem like

(3.8), (3.9), where /;(u,v) =/ (u(p"),v). The solution to problem like (3.8),
3.9)is (v, p)T and the optimal control is

_dp / - (4.9)
x=[

u=

dx

Let the vector solution (y, p)T to problem like (3.8), (3.9), (4.9) be
smooth enough on Q; (I =1,2). Then, the differential problem of finding

the vector-function (y, p)T , that satisfies the relations

(k") = f(x), xeQ U,
(kp") -~y =-zg, xe Q Uy,

Y'()=0, (ky")| +Byy(0)=0,

x=0
/ a, (4.10)
x=/

[¥]=0, [ky"]=0, {ky"}" =a[y], [(ky”)'} =-By,

=0, ky(h=0-2

p(0)=0, (kp")| +Bop©)=0, p()=0, kp"(1)=0,

x=0

[)=0. [kp)=0. {2} =alp). | (k") =8>,

corresponds to problem like (3.8), (3.9), (4.9).
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Definition 4.1. A generalized (weak) solution to boundary-value
problem (4.10) is called a vector function (y, p)TeHz{v=(v1,v2)T:

v, v, €V} that satisfies the following integral equation Vze H :
lj{k V"2 +kp"zh — vz, }dx + By y(0)2(0) + B p(0) 2(0) +
g ¥(©)21E)+B pE) ) +aly[A]+a[p][z5]+
+p'() Z()/a = i[(le—zgzz)dx+Qz{(l). (4.11)

0
Let u= (ul,uz)T and v= (vl,vz)T be arbitrary elements of the complete
Hilbert space H with the norm |, . Specify the bilinear form

! 2 2
a(u,v) = I {k u}'v}’—ulvz}dx-i—ﬁoz 1;(0)v,(0) +
1

2 2
Y w@viE)+a) [4][v]+wBd)vi0)/a
i=1 i=1
and linear functional

!
hO)= [(f3=2gv2)dx+ QD)
0

on H.
o= 1 c12 .
If the constraint @ —5—5:>0, where ¢, is the constant from the
a

embedding theorem, is met, then problem (4.11) has the unique solution in
H. Problem (4.11) can be solved by means of the finite-element method,

and the approximate solution U} € H} to it is obtained. Estimate like

(1.47) is true for U, ,ﬁv eH ,ﬁv . Then, the estimate
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ju -y | < e (4.12)

N
N —d’i / a of the control
x=I

takes place for the approximation #; = iy

3.5 CONTROL UNDER CONJUGATION CONDITION
WITH OBSERVATION AT THEIR SPECIFICATION
POINT

Assume that equation (1.1) is specified in the domain Q= (0,€)U (&,]).
The boundary conditions

Y'(0)=0, (ky")

. +Boy(0)=0,

X=

y()=0, ky"(1)=0 G.1)

are specified, in their turn, at the ends of the line segment [0, /]. At the
point x =&, the conjugation conditions are conditions (2.3).
Specify the observation

Z(w)=Cy(w) = y(¥)|,_; -

Bring a value of the cost functional

2
J() = ( O e zg) +au (5.2)

in correspondence with every control u € % = R'; in this case, z, is some

real number, @ = const>0.
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A unique state, namely, a function y(u)eV corresponds to every

control u €% , minimizes functional like (2.6) on ¥, and it is the solution
in V to weakly stated problem like (2.7). The space V is specified in point
3.4. In this case:

!
a(y,1) = [ky"V'dr+By@vE)+BoyOMO)+a[y ][],
0

!
I(v) = J' Fydx +(r+u)v(E). (5.3)
0

Lemma 5.1. Variational problem like (2.6) and weakly stated problem
like (2.7), where the bilinear form a(-,") and linear functional I(:) have the

form of expressions (5.3), are equivalent and have a unique solution
y(u)eV.

The validity of Lemma 5.1 is stated according to the Lax-Milgramm
lemma.

Rewrite cost functional (5.2) as

2
J(u) = m(u,u)—2L(u) + (zg - y(O)IFF’) s
where

n(u,v) = (y(u) - y(0))

x=t (J’(V) = y(o))|x=g+5u v
and

L) =(zg = ()| szt (¥0) = 9(0))| =t -

Let 3 =p@’) and 7" =3u") be solutions from V to problem like
(2.7), where the bilinear form a(.,-) and the linear functional /(:) are

specified by formulas (5.3) under f =0 and »=0. Then:

|J~),__}~)n"§{ <

2
o|(7' = 7" aee| <@|F -7 <8
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Sa(}'—j/",j/'—j)")ﬂu'—u"l

(7 = 5" wet| <t =5 = 5], -

Therefore, the inequality '( 7 - j/")lxzél Sqlu'-u"|, ag, Ty, ¢ =

= const >0, is derived that provides the continuity of the functional L(-)
and bilinear form 7(-,-) on %

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 5.1. Let a system state be determined as a solution to
equivalent problems (2.6) and (2.7), where the bilinear form a(-,-) and

linear functional have the form of expressions (5.3). Then, there exists a
unique element u of a convex set U that is closed in U, and relation like

(1.20) takes place for u, where the functional J(u) is specified by
expression (5.2).
If u € %, is the optimal control, then the following inequality is true:

(y(u) —Zg )lx=£ (y(v) - y(u))h:é + Eu(v - u) 20,Vvei.

As for the control v e % , the conjugate state p(v)e V" is specified by
the relations

A p()=0,
p"0)=0, (kp"y +Bop(©)=0,

X=

p()=0, kp'()=0, (54)
[p1=0, [kp"}=0, {kp'}" =a[p'],
@Y |==Bper)-2.

The equality
0= (A*p(u),y(v) - y(u)) =a (p,y(v) - )’(“)) -
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- (v, ~2¢) GO)=y@),_, =

=~y ~ 2 ) VD) -y @) _, + P -1,
viz.
(v, ~ 2 ) OO) -y @), = POV -0)

is obtained.

Therefore:
(pE)+au)(v-u)=0, Vveu,. (5.5)
If the constraints are absent, i.e. when %; =% , then the equality

u=-p()/a (5.6)
follows from condition (5.5).

Therefore, the necessary and sufficient condition for the existence of the
optimal control u €?; is the one under which inequality (5.5) and the
relations

a(y,v)=h(uy), yeV, VveV, (5.7)
and

a(p’v)::lZ(y’v), pEVa VVEV’ (58)
are met. In this case, the bilinear form a(.,-) is specified by expression
(5.3) and the functionals /;(-,-) and /,(-,-) are expressed, respectively, as

!
L (u,y) = j fodx +(r +u)v(E)
0

and

LW = (] g —2¢ 1®).
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If the vector solution (y, p)T to problem like (5.6)—(5.8) is smooth
enough on Q; (I =1,2), then the differential problem of finding the vector

function (y, p)T, for which relations (1.1), (2.3), (5.1), (5.4) and (5.6),

where A" p =(kp”)” , ) eH={v=w,)" w,v eV}, are met,

corresponds to problem (5.6)—(5.8).

Definition S5.1. A generalized (weak) solution to boundary-value
problem (1.1), (2.3), (5.1), (5.4), (5.6) is called a vector-function
(v, p) € H that satisfies the following equation Vz € H :

l

[zt + ke p'23 Jae + By y(©)21(0) + Bo PO 2,(0) +
0

+B IO 2E)+B &) 2®) +ay|[A]+ a[p][z] =
l

= [fad+(r-p@/@) 2@ +(Y]sz -2 )2®.  69)
0

Let u= (ul,uz)T and v= (vl,vz)T be arbitrary elements of the complete
Hilbert space H. Specify the bilinear form

[ 2 2 2
a(uv)= [k Uy dv+Bo D OV O +BY wEW,(E) +
i=1 i=l1

0 i=l
2
+o ) []V] +wE)vi (E)/@-u(E)va(©)
i=1
and linear functional

l
10)= [fydeern@-zg2@
0

on H.
If the constraint
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1(1
B—E(E+1J>O

is met, then problem (5.9) has the unique solution in H. If problem (5.9) is
solved by means of the finite-element method, then estimate like (4.12)

takes place for the approximation ﬁ,ﬁv =— p,]cv &) / a of the optimal control

u=-p&)fa.



4

CONTROL OF A SYSTEM DESCRIBED BY A
TWO-DIMENSIONAL QUARTIC EQUATION
UNDER CONJUGATION CONDITIONS

4.1 DISTRIBUTED CONTROL WITH OBSERVATION
THROUGHOUT A WHOLE DOMAIN

Assume that the quartic equation

2 2 2 2 2 2
Ay—a D[6y+vay]+6 D(ay+vayj+

- ot 6x12 6x§ ox3 ax§ oxf
2 2
12— pa-vw 22 -, (1.1)
Ox0xy 0x10x,

is specified in a domain Q that consists of two rectangular domains
Q and Q, where Q; ={x: -0 < < x <0, 0< xp < b <o}, Q)=
={x:0< x <ay< ©, 0<x;<b}, x=(x,x); D=E 1 [12(1-v?)

(0<Dy<D<Dy; Dy, D, =const) is the cylindrical rigidity coefficient for
a thin plate of a thickness A=#h(x); Eand v (0<v<1/2) are,
respectively, the Young modulus and Poisson ratio that are different for the

domains Q;and Q,; g =g(x) is a transversal load value; y =y(x) is a

deflection of a middle plate surface at a point x [92].
The boundary conditions [78]

y=0 (1.2)
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and

0 1.3
X1 6)62 ( )

are specified on a boundary I'=(0Q,UdQ,)y (y=0Q,NQ, =)

y={x: x,=0, 0<x,<b}; in this case, n =cos(n,x), =

o* 02
Ay—-(1-v) (n%s—;;+ nlz—;))

=cos(n,x,) and = is an ort of an outer normal to I" (called simply an outer

normal to I'). On a section y of the domain Q =0, UQ,, the conjugation
conditions are [92]

[¥]1=0, (1.4)

[0,]=B» (1.5)
and

* Ay
[M,]=0, {M,}" =-a [a—xJ (1.6)
where
[@]=0"~¢~, ¢* ={o} =0 (020, x,),
2 2 2
0, --9p 9—;—)+va—f— 2% (1-vp2Y
Ox 1 axl ox 0 Ox ) Ox; 1 Ox 2

and

2 2
M,=-D §—§+v§—{— :
Ox{ Ox5

Conjugation conditions (1.4)—(1.6) describe a hinge joint of two thin plates
on y; 0<oap<a<a <o is the hinge rigidity coefficient;
0<Bp <P < PBy<oo is the rigidity coefficient for a support on 7;
o;, B; =const, i =0, 1.

Let there be a control Hilbert space % and mapping Be % (%, V'),
where V' is a space dual with respect to a state Hilbert space V. Assume
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the following: % = L,(Q). For every control u € %, determine a system

state y as a generalized solution to the boundary-value problem specified
by the equation

2 2 2 2 2 2
82D6;}+V8;}+62D6;}+v6;}+
le 6x1 6x2 0x2 6)(32 axl

2 2
2=2 pa-v2X — 44 Bu (1.7)
axlaxz 6x16x2
and by conditions (1.2)—(1.6).
Specify the observation
Z(u)=Cy(u), (1.8)
where Ce ¥ (V; ) and J is some Hilbert space. Assume the following:
Cy(u)=y(u), I =V L(Q). (1.9)
Bring a value of the cost functional
2
J(u) = HC y(u)— Zgu,;( + (N uu)y (1.10)
in correspondence with every control u €% ; in this case, z, is a known
element of a space L,(9), |||, = | (@) || and

N e L(U;U), (Nu,u)g 2V, "u";/, vg=const >0, Vue . (1.11)
Assume the following: g€ L,(Q), Bu=ue L,(Q), fu=a(x)u, 0<ay<

<a(x)<a<o, c_z(x)[Ql eC(), I1=1,2; &, a =const, (Q,y)y=

=(p,y)= I(P\vdx-
Q

A unique state, namely, a function y(u)eVz{v: "IQ, e W2(Q),

I=1,2; vlr =0, [v]|y = O} corresponds to every control u e ¥, delivers

the minimum to the functional
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o) =a(v,v)-21(v) (1.12)
on ¥, and it is the unique solution in ¥ to the weakly stated problem: Find
an element y €V that meets the equation

a(y,v)y=1Il(v), VveVl, (1.13)
where
0%y o&v 8%y v
a(y,v)= [IDAyAv—-(1-v + +
() Jj {y ( )[axf o2 Vo o2
2 2

2122 9 Ly IByvdy+Ioc DX gy, 1.13)

6x1 6x2 6x1 Ox 2 v y 6x1 6x1

I(v)= v”(q +u)vdx.
Q

Introduce the following denotation: 1715c ={v(x):v |Qle Wzk Q). 1= 1,2}.

The estimates
[a(u,v)[ <qg ”u”V ”v”V and Il(v)l <cy "vl]V (1.14)

are true for the bilinear form a(--): H5 x H? - R' and linear functional

) V2
2 .
lv”V = {Zluv”sz (Qi)} , where ”-”W22(Qi) is
i=

the norm of the Sobolev space W22 (©;), i.e. the bilinear form a(-,") and
linear functional /() are continuous [49] on the complete Hilbert space

I(): H2 > R'. In this case,

H? with the norm [, - Mustrate the V-ellipticity of the bilinear form a(:,")

on the subspace VCFI%. The following statement is proved for this

purpose.
Lemma 1.1. The inequality
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2
ov
Mg <cod [[Iavf as+ | [67] dy!, (1.15)
Q Y 1
) 12
12
Where ||v||k o= Z HZ (Dlllv) dxy , cy=const>0, is true for all the

I=1 @ lilsk

functions veV .
Proof. Since the equality

[l de=- j[gz]dy [fravi

takes place Vvel, then, consider the e- and Cauchy-Bunyakovsky
inequalities and embedding theorems [55], and the inequality

glVVIZ dx <g "v[]ﬁQ + 4% £ J' | Av|2 o+

2
1 ov )
+-Z].:l Y [ggjl d'y+81 o "vlll,Q

is obtained, where ¢, is the positive constant from the inequalities in the

embedding theorems and € and g, are the arbitrary constants. Use the

generalized Friedrichs inequality [21], and the validity of inequality (1.15)
follows from the obtained one. Lemma is proved.

Proceed from inequality (1.15), and the following can be written:

a(v,v) 2

Y (oY) . ot oy v Y
Z”D 2 E ] v 20—y dx >
) 6x1 5x2 6 6

X1 OXy
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2.2 2. \? 2. \?
S o“v N o“v N oy d
=% ’U O ox? Ox; Ox g
Q 1 2 1942

2
6v ’
otz Dyvo b o | 2| drz bl
Q y 1

and

in this case: ¢y =const>0, vy = min_ v=const>0, ¢y =Dy(l-vy),

xeQ Uy
vi= max_ v, v;<l/2,
xeQuUdy
Take the derived inequalities into account, and the inequality
av,v) 2 v (1.16)

is true. Hence, the V-ellipticity of the bilinear form a(-,-) on V is proved.
Use the Lax-Milgramm lemma [16], and it is concluded that there exists
the unique element y that meets equation (1.13) and implements the

minimum of functional (1.12) Vg, ue L,(Q) on V. Therefore, there is
such an operator 4 acting from Vinto L,(Q2), that

y(u)= A (q+Bu), YueL,(Q). (1.17)
Rewrite the cost functional as
@) =)~ 2L + |z - yO) (1.18)
where the bilinear form 7(-,-) and linear functional L(-) are expressed as
m(u,v) = (y() - y(0), y() - y(0))+(@u,v),
L) =(zg = ¥(0), y() - ¥(0)); (1.19)

1/2

in this case: (Q,y)= _‘. j@\p dx, ||(p|| =(¢,0)’“. The form =(-,") is coercive
Q

on %, 1i.e.:
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w(u,u) = (y(u) — y(0), y(u) — y(0)) + (@ u,u) 2 ay(u,u) .

Let y'=y(u") and y"” = (u") be solutions from ¥ to problem (1.13) under
g=0 and under a function u=u(x) that is equal respectively, to
u'and u" . Then, the inequality

aly -5 <aly-31y <a(y-5.5-5") <

<= w’]

7'~ 5", ¢ =const>0,

is derived that provides the continuity of the linear functional L(:) and
bilinear form 7(-,-) on %

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 1.1. Let a system state be determined as a solution to
equivalent problems (1.12) and (1.13). Then, there exists a unique element
u of a convex set U, that is closed in U, and

J(u)= inf J(v) (1.20)
Vel

takes place for u.
If u € ¥, is the optimal control, then the following inequality is true:

(u,v—u)2 L(v—-u), Vve,. (1.21)

Proceed from expressions (1.19), and the inequality
(y(@) =24, () - y@)) + (@ u,v—u) 20, Vv e, (1.22)

follows from inequality (1.21), and it is the necessary and sufficient
condition under which u € %; is the optimal control for the considered

problem.

As for the control v e %, the conjugate state p(v) e V" is specified by
the relations
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2 2 2 2 2 2
0 D(ap+vap)+a D{ap+vapJ+

oxt | ox? a? ) oxd | ax? ox?
2 2
2= pa-vy-22 = y(V)-zg, X€Q,
Ox10x, 0x10x,
p=0, xeTl,
o?p_ 2 3p
Ap—(1-v) ny —£4+n? =£ =0, xel, (1.23
[ 2 6x12 : 8x§ )
[p]=0, xev,
[0,]=Bp, xe7,
[M,]=0, {s,} =« P xey,
p p axl

where V" isa space conjugate to V, Vi=v.
To find a generalized solution p to problem (1.23), the generalized
problem means to find such p €V that meets the equation
a(p(u), z) =1 (y(w), z), VzeV, (1.24)
where

L(y(w), z) = ”(y(u)—zg)zdx.
Q

It is easy to state that the solution p eV to problem (1.24) exists and
that such solution is unique. Therefore, the necessary and sufficient
condition for the existence of the optimal control u € %, is the one under
which relations (1.13), (1.22) and (1.24) are met. Use the difference
y(v) - y(u) in equation (1.24) instead of z, consider equation (1.13), and
the equality

(y@) =24, y) - y(w)) =
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=a(p(w), y(v) - yw)) = (v —u, p(u))
is obtained, i.e.:
(y(u) -z, y(v)— y(u)) = (v —u, p(u)) , Vve . (1.25)
Take it into account, and the inequality
(pw)+au,v-u)20, Vvei, (1.26)

is derived from inequality (1.22).
If the constraints are absent, i.e. when % =%, then the equality

pw)+au=0, xeQ, (1.27)
follows from condition (1.26). Therefore, when the constraints are absent,
the control u(x) can be excluded from equality (1.7) by means of equality

(1.27). On the basis of equation (1.13) and relations (1.23), the problem of

finding the vector-function (y, p)T (y,peV), that satisfies the equality
system

a(y,v)+(pla,v)=(q,v), VveV, (1.28)
a(p,v)—(y,v)=—(z4,v), VveV, (1.29)

is derived, and the vector solution (y,p)" is found from this problem
along with the optimal control
u=-pla, xeQ. (1.30)

If the vector solution (y, p)T to problem (1.28), (1.29) is smooth
enough on &, viz. y|§—2], p'ﬁz e @) NCHQ), |D4y‘,
‘D4 p‘ <w, [=1,2, then the differential problem of finding the vector-
function (y, p)T , that satisfies the equations

Ay+pla=q, xeQ,
A*p—y=—zg, xeQ, (1.31)
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constraints (1.2)—(1.6) and all the equalities of system (1.23), except the

first one, corresponds to problem (1.28), (1.29); in this case, A=4.
Definition 1.1. A generalized (weak) solution to the obtained boundary-

value problem is called a vector-function (y, p)T eH=
={v=(vl,v2)T SV, V) eV}, that satisfies the following integral equation
VzeH:

2 2 2 2
ﬁ D | Ay Az + Aphzy —(1-v)| & fa 7;+a ga 4.
o 6x1 5x2 6x2 axl

d*p 8%z, *pd*z
f 7+ ‘;) 2 |+
axl sz 6x2 5x1

Ox0xy Ox10xy  Ox10x, Ox10x,

o fRIR1 ]

v
= ”(qzl -z, zz) dx . (1.32)
Q

2 2 2 2
+2(1—-v)( Oy 9z + p 05 D+pzl/c7—yzz}dx+

Let u=(uy,u, )T and v=(v,v, )T be arbitrary elements of the complete

) 1/2
Hilbert space H with the norm |v|,, ={Z||v||fV22(Q_)} . Specify the
1
i=1

bilinear forms

2 2, 52 2. A2
aO(uav)z IID{Z(AUIAVI—(I—V)(a U 0 Vi +a U 0 V1J+

) =) 6x12 6x§ 6x§_ 6x12
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%,  0%v 2 2 Ouy || ov
+2(1-v)| —L—L || dx+ d —L I =Lid
( )( Bx,x, B, JJ} Jﬁzum Y+ ocz 2%, || ox, Y
and
a(u,v) = ag(u,v) + _U(uz v1/@ —uvy )dx
Q
and linear functional

I(v)= H(qvl —ZgV) )dx
Q

on H.
The following can be easily shown Vu,ve H :

la(u,v)| < ¢ "u”H “V”H >

H(v)|<Lc, [|v||H (1.33)
Let the constraint

ay

4—%@+§J>o (1.34)

be met, where ¢ is the positive constant from inequality (1.16). Then:
a(u,u) = ¢, "u”i] , ¢o=const >0, (1.35)
i.e. the bilinear form a(:,-) and linear functional /(:) are continuous on H

and the form a(.,) is H-elliptic on H. Use the Lax-Milgramm lemma [16],

and it is concluded that (y, p)Te H is the unique solution to problem
(1.32).

Problem (1.32) can be solved approximately by means of the finite-
element method. For this purpose, divide every domain Q,and Q, into

rectangular finite elements that belong to the class %' on Q and Q,.
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Such elements are considered [16] for the scalar functions and polygon
domains Q. Then, use the estimate [16]

Vv eWyt(e) v-TI, e S chEm |y kel (1.36)

of an approximation error for a scalar function v at a finite element e, and it
is easy to show the validity of the following statement.
Theorem 1.2. Let the components y and p of the solution to problem

(1.32) on Q; belong to the space Wyt (€,;) (i=1,2; k>2). Then, the
estimate

—u|  <ert! 1.37
i T e .37
. . . N N\T
where h=maxh,, h, is a diameter of a finite element e, (y D ) €
e
e HY and HY ={vN: vNIQ,ePe, i=12; le =0, [VN:" =O}, takes
i T y
place for the approximation u®(x)=-p" (x)/ a(x) of the control
u=u(x).
Proof. The unique finite-element approximate solution U™ =
T
= ( y, p" ) to problem (1.32) is found from the equation
a(U™, ¥N)=1(v"), vr'e H".
If U=U(x)e H is the solution to problem (1.32), then:
a(U-U",¥")=0, vr'eH".
Therefore, the inequality
2 ~
a|u-UM|, <a(U-U",U-U")<eu-U"| Ju-0],.
viz.

“U—UN"H <a|u-9],. o =%?—=const >0, (1.38)
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is derived YU e H" . Take estimate (1.36) into account, and the estimate
HU ~uV “H <y b (1.39)

follows from inequality (1.38). Use estimate (1.39), and estimate (1.37) is
obtained. Theorem is proved.

4.2 CONTROL UNDER CONJUGATION CONDITION
WITH OBSERVATION THROUGHOUT A WHOLE
DOMAIN

Assume that equation (1.1) is specified on the domain Q2. On the boundary
I', the boundary conditions have the form of expressions (1.2) and (1.3)
and, on y, the conjugation conditions are specified, in their turn, by
equalities (1.4) and (1.6) and by the constraint
[Qy]=[3y+u, Xey, (2.1)
where u e Ly(y).
Specify the observation as

Cy(uw)=y(u), xeQ.

Bring a value of the cost functional
2
J(u) = I f (y(0)~ 2 ) dx + (Huyu)y, 2.2)
Q

in correspondence with every control u € % = L,(y); in this case, z, is a

known element from L,(Q2), Ju=au, aeC(y), 0<aq <a< a; < oo;

ay, a) = const, (¢, )y = f(P\v dy.
¥
According to the Lax-Milgramm lemma, a unique state, namely, a
function y(u)eV corresponds to every control u €%, minimizes the

functional
o) =a(v,v)-2I(v) 2.3)
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on V, and it is the unique solution in ¥ to the weakly stated problem: Find
an element y(u) eV that meets the equation

a(y,v)=I(v), VveVl, 2.4)
where the bilinear form a(:,-) has the form of expression (1.13’) and the
linear functional is

Iv) = J‘ J'qux- j'uvdy. 2.5)
Q Y
Expression (2.2) yields expression like (1.18), where the bilinear form
n(-,+) is expressed as

m(u,v) = (y(u) - ¥(0), y(v)- ¥(0)) + IZZ' uvdy (2.6)
Y
and
(u,u) 2 a, '[uzdy, (2.7)
¥

and the linear functional L(-) is specified by the second formula of
expressions (1.19).

Let ' =y(') and 7" = y(u") be solutions from V to problem (2.4)
under ¢ =0 and under a function u =u(x) that is equal, respectively, to
u'and u" . Then:

oy -5"asaly-51; sa(y' -5, - 5")=
== [w-w) (-7 ar sl ~ul ) 15 -5, -

Y

Therefore, the inequality ” y =y c||u’ —u c=const >0, is

”“la(v)’
derived that provides the continuity of the functional L(-) and bilinear form
ni(:,-) on .

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 2.1. If a system state is determined as a solution to equivalent
problems (2.3) and (2.4), then there exists a unique element u of a convex

'
loq =
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set Uy that is closed in U, and relation like (1.20) takes place for u, where

the cost functional J(u) is specified by expression (2.2).
Let u € %, be the optimal control. Then, the following inequality is true

Vvey:

(¥ —zg, ()= y()) + IEu(v—u)dy >0, Vve.  (2.8)
t4
As for the control ve %, the conjugate state p(v) eV =V is specified

as a generalized solution to the boundary-value problem specified, in its
turn, by system (1.23), and it is the solution to weakly stated problem
(1.24).

Therefore, the necessary and sufficient condition for the existence of the
optimal control u € %, is the one under which relations (2.4), (1.24) and

(2.8) are met. Use the difference y(v)— y(u) in equation (1.24) instead of
z. Then, the equality

(y@) =z y0) - y(@)) = = [0 ) p(w) dy
Y

is obtained on the basis of equation (2.4). Take the obtained equality into
account, and the inequality

.[(—p+c7u)(v—u)d720, Vve i, 2.9

Y
is derived from inequality (2.8).

If the constraints are absent, i.e. when %4 =%, then the equality
-p(w)+au=0, xevy, (2.10)

follows from condition (2.9). Therefore, when the constraints are absent
and equality (2.10) is used, conjugation condition (2.1) can be written as

[0,]=By+pla. xey, .11

and problem (2.4) is transformed into
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a(y,v)+ J.E_Ydy:(q,v), YveV. (2.12)
a
Y

Hence, the problem of finding the vector-function (y, p)T (y,peV), that
satisfies equalities (1.29) and (2.12), is derived, and the vector solution

(v, p)T is found from problem (1.29), (2.12) along with the optimal
control

u=pla, xey. (2.13)
Let the vector solution (y, p)T to problem (1.29), (2.12) be smooth enough
on Q;, I=1,2. Then, the equivalent differential problem of finding the

vector-function (y, p)T, that satisfies equalities (1.1)—(1.4), (1.6), (1.23)

and (2.11), corresponds to problem (1.29), (2.12).
Definition 2.1. A generalized (weak) solution to boundary-value
problem (1.1)—(1.4), (1.6), (1.23), (2.11) is called the vector-function

(, p)T € H that satisfies the following equation Vz e H :
oy %z 0%y &%z
D| AyAz; + ApAzy —(1-v +
-U{ [ YAz +apaz = )[axiz 8x% 6x§ 6x12

*p 6222 ?p 6222
2 o2t o2 |t
Oxi Ox; Ox) Ox

2 2 2 2
+2(1-v) Oy 0z + Op 0z —yzy rdx +
axlaxz 5x16x2 6x16x2 6x15x2

s {22 T

I gz —z zz dx (2.14)

in this case, the space H is spe01ﬁed in point 4.1.
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Let u = (uy,u, )T and v= (vl,vz)T be arbitrary elements of the complete
Hilbert space H. Specify the bilinear form

a(u,v) = ay(u,v) - H”Wzdx + qu v /ady (2.15)
Q Y
and linear functional

I(v)= _‘-(qvl - zgvz)dx
on H. ?

Let the constraints 2> —al— and 2¢; >1 be met, where c¢| is the
constant from inequality (1.16).0 Then, use the Lax-Milgramm lemma, and
it is concluded that the unique solution U = (U}, U;,_)T to problem (2.14)
exists in H. Problem (2.14) can be solved by means of the finite-element
method. Estimate like (1.39) is true for its approximate solution U NeHN .
Therefore, the estimate

“u - aN“bz(v) <¢ A ¢o =const >0, (2.16)

takes place for the approximation i = pN / a of the control u = p/a .

43 CONTROL UNDER CONJUGATION CONDITION
WITH OBSERVATION ON A SECTION vy

Assume that equation (1.1) is specified in the domain Q. On the boundary
I', the boundary conditions have the form of expressions (1.2) and (1.3)
and, on vy, the conjugation conditions are specified, in their turn, by
equalities (1.4), (1.6) and (2.1), where u € L,(y).
Specify the observation as
Cy(u)=y(u), xevy.
Bring a value of the cost functional
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2
J(u) = I(y(u)—zg) dy+ Ny ) 3.1)
¥
in correspondence with every control u €% = L,(y); in this case, z, is a

known element from L,(y) and the operator .4 is specified in point 4.2.
According to the lax-Milgramm lemma, a unique state, namely, a function
y(u) e V', corresponds to every control u € %, minimizes functional (2.3)

on V, and it is the unique solution to problem (2.4).
Rewrite cost functional (3.1) as

J () = () ~2L(u) +] 2 - y(O)”;(Y) , 3.2)
where
m(w,) = (y@) = 9(0), ) = )(0) oy + (@tv)
L) = (2= 7(0), )= 1)) . (3:3)

Let ' =7’y and " = y(u") be solutions from ¥ to problem (2.4)
under ¢ =0 and under a function that is equal, respectively, to #’ and #".

Then, proceed from the embedding theorems, and the following can be
written:

~t ~rn 2 o~ ~1n 2 ~r ~Ho~t ~rn
a3 -3, <aly'-3", <a(y'-5".5-5") =

=— [(w-w)(5 -5y e -l |
Y

5')'__5')an.

Therefore, the inequality |7 - 3" L) <clu' —u is derived that

"" L (v)
provides the continuity of the functional L(-) and bilinear form m(-,-) on %
On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.
Theorem 3.1. If a system state is determined as a solution to equivalent
problems (2.3) and (2.4), then there exists a unique element u of a convex
set Uy that is closed in ¥, and relation like (1.20) takes place for u, where

the cost functional J(u) is specified by expression (3.1).
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As for the control v e % , the conjugate state p(v) eV is specified as a

generalized solution to the boundary-value problem specified, in its turn,
by the following equality system:

2 2 2 2 2 2
62D65+va§+62Daf+va§+
6x 1 8x 1 6x2 ax 2 6X2 axl

2 2
2= pa-vw2P _¢, xeq,
6x16x2 6x16x2
p=0, xeT,
O’p, 2 9%p
Ap—-(1-v) ns == +n? =£ =0, xel,

P (2 o ox
[p]=0, x€v,

[Qp]=[3p+y—zg, xey, (3.4)

[M,]=o0, {M}[ga} e,

As for the considered problem, the optimality condition (1.21) for the
control u € % is

(v =20 y0)=3@)),
To find the generalized solution p to problem (3.4), the weakly stated
problem means to derive p € V' that meets equation like (1.24), where the
bilinear form a(.,-) is specified by expression (1.13"), and
By == [(y-z)vdy. (3.6)
y

It is easy to state that the solution p exists and it is unique in V.
Therefore, the necessary and sufficient condition for the existence of the

+(Eu,v—u)L2(y)ZO, Yved . (3.5)
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optimal control u € %, is the one under which the relations (2.4), (3.5) and
(1.24) are met; in this case, the bilinear form a(-,-) and functional /(y,v)

are specified, respectively, by expressions (1.13’) and (3.6).
Use the difference y(v)-— y(u) instead of z in equality like (1.24) that

corresponds to problem (3.4), consider equation (2.4), and the inequality

[(v@r-2e) ()= yw)dy = [pa)v-wdy, wwen, G
¥ 4
is obtained. Then, the inequality
j(p+a‘u)(v—u)dyzo, Vv e, (3.8)
¥
is derived from condition (3.5).
If the constraints are absent, i.e. when %45 =%, then the equality
p+au=0, xevy, 3.9)
follows from condition (3.8). Therefore, when the constraints are absent
and equality (3.9) is used, conjugation condition (2.1) can be written as

[0,]=By-p/a, xey, (3.10)
and problem (2.4) is transformed into
a(y.v) - [Edy=(q.v), WveV . (3.11)
a

Y
Hence, the problem of finding the vector-function (y, p)T (y,peV), that
satisfies equalities (3.11) and (1.24), where the functional /; is specified by
formula (3.6), is derived and the optimal control is
u=-pla, xevy. (3.12)
Let the vector solution (y, p)T be smooth enough on Q;, / =1,2. Then,

for problem (3.11), (1.24), where the functional /(,-) is specified by
expression (3.6), the corresponding equivalent differential problem
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consists in finding the vector-function (y, p)T that satisfies equalities

(1.1)—(1.4), (1.6) and (3.4) and condition (3.10).
For such differential problem, the generalized problem means to find
the vector-function U € H that meets the equality

a(U,z)=1(z), VzeH, (3.13)
where
a(U,z)=a0(U,Z)— -‘-Uzzl/adY'f' '[UIZZd'Y
Y Y
and

l(2)= qul dx + Izgzzdy.
Q Y

If the inequality B>%(—l—+1} is met, then problem (3.13) has the
ay

unique solution in H. Therefore, the estimate like (2.16) takes place for the

N

finite-element approximation %' =- pN /E of the optimal control

u=-pla.

44 CONTROL ON A SECTION y WITH OBSERVATION
ON A PART OF A BOUNDARY I

Assume that equation (1.1) is specified in the domain Q. Conjugation
conditions (1.4), (1.6) and (2.1) are specified, in their turn, on y and, on I',
the boundary conditions are

y=0,éy—=0,xefz, 4.1)
6x2
2
Ay—(l—v)-‘?{-:o, xely, (4.2)
axz

and
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2 2 2
_2p 0_§+V§% 22 1-yp2X 0, xer,, “3)
Ox 1 axl axl Ox ) ox 1 Ox )

where ['y = {x: x; =a,a,; x5 €[0,6]}, Ty ={x: x €[a}, a5 ]; x, =0,b}.
Specify observation like (1.8):

Z(u)= y(u), xel.
Specify the cost functional for the control u € % = L,(y) by the expression

2
Jw) = [(yw-z,) ar,+ [away, (4.4)
I Y
where z, is a known element of the space Ly(I'y), @ =a(x)e C(y),
O<ag<a<a <, ay, a =const.
The following statement is valid.
Lemma 4.1. A unique state, namely, a function y(u)eV =

={V:V‘Qle WZZ(QI), l=1,2, VII,,2 =0, g
2

=0, [v]|Y =0 corresponds
)

to every control u €U, delivers a minimum to functional (2.3) on V, and it
is a unique solution in V to weakly stated problem (2.4), where the bilinear
form a(-,") is specified by expression (1.13), and the linear functional is

I(v)=(q,v)— |uvdy. 4.5)
Y
Proof. Estimates (1.14) are true for the bilinear form a(:,):

H2xH? > R' and linear functional I(): H? - R!. Illustrate the V-

ellipticity of the bilinear form a(:,-) on the subspace V c H. 22 . In this case,

a(v,v)z Dy(1-v) ¥ ;,Q,O 2
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2

ov

> DO “’(1 - Vl) J‘.‘[Ex—z—) dx ZDO (1 - Vl) HZ "V” g,Q ’ (46)
Q

where  is the positive constant in the Friedrichs inequality, and
r

2 2. (52 2 0%y i
M0 = ‘!{LZ(@J +2(6x16x2J -

i=1
L

Take inequality (4.6) and the following one, i.e. [78]

Mo, < {||v|| T ¥ N } VveH2, ¢, =const>0, i=1,2,
into account, and the inequality
a(v,v) 2 ¢y ||v|| 3,9 , YveVl, 4.7)

is obtained. The V-ellipticity of the bilinear form a(-,-) on V is, therefore,
provided.

According to the Lax-Milgramm lemma, a unique state, namely, a
function y(u)eV corresponds to every control u €%, minimizes
functional (2.3) on ¥, and it is the unique solution on ¥ to problem like
(2.4), where the bilinear form a(:,) is specified by expression (1.13") and
linear functional /(:) has the form of expression (4.5). Lemma is proved.

Rewrite cost functional (4.4) as

I = (1) =2L@w) +| 2= O, .

where
n(u,v) = (y(@) = y(0), yO) = (O)) ry +(@u¥), )
and
L) = (2= 7(0), Y1) = 1(0))_ 1.

Let 7' =p(u') and 7" =ju") be solutions from V to problem like
(2.4) that corresponds to boundary-value problem (1.1), (1.4), (1.6), (2.1),
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(4.1)—(4.3) under ¢ =0 and under a function u that is equal, respectively,
to u' and ”. Then:

Al =31 ey Seally =51 sera(y =55~ 7)<

< "”’ - u”" Ly(Y) ”)7 - J"’"" Ly(Y) Sey “u’ - ””" Ly(Y) "5}' - 5’”" v:
Therefore, the inequality

15 =5y S sl =l

is derived that provides the continuity of the linear functional L(:) and
bilinear form n(-,’) on %.

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 4.1. Let a system state be determined as a generalized
solution to boundary-value problem (1.1), (1.4), (1.6), (2.1), (4.1)—(4.3).
Then, there exists a unique element u of a convex set U, that is closed in
U, and relation like (1.20) takes place for u, where the cost functional is
specified by expression (4.4).

For the considered problem, inequality (1.21) has the form

(y@) - 245 y(v) - y(u))bz(l_l) +@uy-u), 20, Vve¥. (48)

As for the control ve %, the conjugate state p(v) eV is specified as a

generalized solution to the boundary-value problem specified, in its turn,
by all the equalities of system (3.4), except the second, third and fifth ones,
and by the conditions

p=0’ ap =0) xerZa (4.9)
axZ
62p
Ap-(-v) 2L =0, xer, (4.10)
6x2
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2 2 2
- [iD(a—pwa p]+2—§—(1—v)D aaap ]cos(n,xl)=

oy | oxf 5}2 oxy X10X7
=y(v)~z,, xely, (4.11)
and
[QP:I=BP’ xey. (4.12)

The generalized solution p €V to this boundary-value problem exists, it is

unique and meets equation like (1.24), where the bilinear form a(:,) is
specified by expression (1.13"), and

W) =(y-zgv), - (4.13)

Use the difference y(v)— y(u) instead of z in equality like (1.24),
where the bilinear form a(:,-) and linear functional /;(-,-) are specified,
respectively, by expressions (1.13") and (4.13), and the equality

a(p.y) =y ()= (1) =2y =yW)),

is obtained. Take equation (2.4), where I(-) has the form of expression
(4.5), into account, and the following equality is derived:

y(u)—zg, y(v) — y(u) =—(v-u, pW)), .»- (4.14)
2(7)

Ly(I'y)
Use it, and inequality (4.8) has the form
(—p+h’u,v—u)L2(Y)20, Vve . (4.15)

If the constraints are absent, i.e. when % =%, then equality (2.10)

follows from condition (4.15). Therefore, when the constraints are absent
and equality (2.10) is used, then conjugation condition (2.1) can be written
as

[Qy]=[3y+p/c7, xey, (4.16)
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and problem (2.4) is transformed into equality like (2.12). The space V is
specified in point 4.4.

Hence, the problem of finding the vector-function (y, p)T (yv,pel),

that satisfies equalities (1.24) and (2.12), where the bilinear form a(:,-) and
linear functional /;(-,-) are specified, respectively, by expressions (1.13")

and (4.13) and the optimal control is specified, in its turn, by equality
(2.13), is derived.

Let the considered vector solution (y, p)T be smooth enough on
Q,,1=1,2. Then, the equivalent differential problem of finding the

vector-function (y, p)T, that satisfies equalities (1.1), (1.4), (1.6),

(4.1)-(4.3), (4.16), (4.9)—(4.11) and (4.12) and the equalities of system
(3.4), except the second, third and fifth ones, corresponds to the present
weakly stated problem.

Therefore, in the absence of the constraints (%; =% ), the following

problem is obtained: Find the vector-function (y, p)T (y,peV) that
satisfies the equality system

a(y,v)+(p/21',v)L2(Y) =(q,v), VveV, 4.17)

a(p,v) _(yaV)Lz(rl) = _(Zg’v)Lz(rl)’ Vve V> (418)

from which the vector solution (y, p)T is found and the optimal control is

u=pla, xey.
The bilinear form a(:,") is specified by expression (1.13’).
The equivalent problem of finding the vector-function
(v, p)T €eH= {v = (vl,vz)T D VY € V} , that satisfies the equality

a(U, z)=1(z), VzeH, (4.19)
where

T
U=@p,uy) , yy=y, up=p,
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a(U,z)=ay(U,z) + qu zi/ady- julzz dr,
Y Il
and
I(z) = ”qzldx— jzgz2 dry,
Q Iy

corresponds to problem (4.17), (4.18).

If the inequality min{p—1/2a,, ¢y —1/2¢cy} >0, where ¢, and c¢; are
the positive constants, respectively, from inequality (4.7) and the

embedding theorem [55], is met, then, by virtue of the Lax-Milgramm
lemma, problem (4.19) has the unique solution U € H . Therefore, estimate

like (2.16) takes place for the finite-element approximation i = pN / a of
the optimal control u = p/a .

4.5 CONTROL ONT; WITH OBSERVATION ON A
SECTION y: CASE 1

Assume that equation (1.1) is specified in the domain Q. Conditions
(1.4)—(1.6) are specified, in their turn, on y. On I', the boundary conditions
are conditions (4.1) and (4.2) and the specified constraint is

2 2 2
—{ 0 D(a——x+va—lj+2—?—D(l—v) Oy ]cos(n,x1)=

5)5 axlz axg 0xy Ox10x,
=u, xel}. (5.1)
Specify observation like (1.8) for the control u € % = L,(I';):
Z(u)=y(u), xevy. (5:2)
Specify the cost functional by the expression
2 -
J(u) = j(y(u)—zg) dy+ J-a uZdFI , (5.3)

Y I
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where z, is a known element of the space Ly(y), @ =a(x)e Ly(T'y),
O<apy<a(x)<a <o, ay, a =const.

The following statement is valid.

Lemma 5.1. A4 unique state, namely, a function y=y(u)eV
corresponds to every control ue¥U =L,(I'1), delivers a minimum to

functional (2.3) on V, and it is a unique solution in V to weakly stated
problem (2.4); in this case, the space V is specified in point 4.4, the
bilinear form a(-,') is specified by expression (1.13), and the linear
functional I(-) is
Iv)=(q,v)+ juvdFl .
I

The validity of Lemma 5.1 is stated according to the Lax-Milgramm
lemma.

Rewrite cost functional (5.3) as

J () = n(u,u) — 2L(u) + |z - y(O) (5.4)

2
Ly(y)’
where

Tl:( u, V) = (y(u) —y(O), y(V) - y(o))bz ) + (a u, V)Lz(rl)
and
L) =(zg = (0), y)-3(0)) .

Let 7' = y(u") and 7" = J(u"") be solutions from V' to problem (2.4) that
corresponds to boundary-value problem (1.1), (1.4)—(1.6), (4.1), (4.2),
(5.1) under ¢ =0 and under a function u that is equal, respectively, to
u' and «" . Then:

alli =317, Sl =3l <esa(57 - 35 - 5") <

< ey~ Ly(Ty) |5 - 5" Ly S ¢4 [ =o' Ly(Ty) I5 - J~)””V :
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Therefore, the inequality

|5‘}l _jv)ul
provides the continuity of the linear functional L(-) and bilinear form n(:,)
on .

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 5.1. Let a system state be determined as a generalized
solution to boundary-value problem (1.1), (1.4)—1.6), (4.1), (4.2), (5.1).
Then, there exists a unique element u of a convex set U, that is closed in

L 6 [’ ") L) is derived that

U and relation like (1.20) takes place for u, where the cost functional is
specified by expression (5.3).

For the considered optimal control problem, inequality (1.21) has the
form

(v@) =z, y0) - y@),_

As for the control ve %, the conjugate state p(v)eV is specified as a
generalized solution to the boundary-value problem specified, in its turn,
by the equalities of system (3.4), except the second and third ones, and by
the following constraints:

+(c"zu,v—u)L2(F1) 20, Vvei. (5.5)

p=0, 93:0, xel,,
6x2

2
Ap-(1-v) a—§=o, xely,
6x2

2 2 2
_%p afwaf 22 1-wpZP _o xer,. (56)
6x1 axl axz axz 5x18x2

For such boundary-value problem, the generalized problem means to find a
function p eV that meets the equation
a(p, z2)=1I(z), VzeV, 5.7

in this case, the bilinear form a(:,-) is specified by expression (1.13"), and
the linear functional is
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I(z)= I(—y+zg)zdy. (5.8)
Y
The generalized solution p eV to the considered problem, i.e. the one to
problem (5.7) exists and it is unique in V. Use the difference y(v)— y(u)
in equation (5.7) instead of z, and the equality
a(p,y)=y) =~ [(yw) -z, ) (y») - y@w)dy

Y
or

- [(¥0=2¢) v») - yw)ay = [P -war,
¥ I
is obtained. Use it, and inequality (5.5) has the form

(-pw)+au,v-u) >0, Vve ;.

Ly —
If the constraints are absent, 1.e. when %; =% , then:
-p(w)+au=0 xel}. (5.9)

Therefore, when the constraints are absent and equality (5.9) is used, then
boundary condition (5.1) can be written as

2 2 2
- iD Q——;i+v—a—;)— +2—a-D(l—v) Oy cos(n,x;) =
ox oxj ox; 0xy Ox10x

=pla, xel. (5.10)
Hence, in the absence of the constraints (% =% ), the following

problem is obtained: Find the vector-function (y, p)T (y,peV) that
satisfies the equality system

a(y,v) - J’pv/adr,=(q,v), YveV, (5.11)
I
a(p,v) + j yvdy = Izgvdy, eV, (5.12)

Y Y
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from which the vector solution (y, p)T is found along with the optimal
control
u=pla, xel.
The equivalent problem of finding the vector-function Ue H =

= {v = (vl,v2)T VL,V € V} , that satisfies equality like (4.19), where

U=@,u)', m=y, uy=p,
a(U,z)=ay(U,z)- .[”2 zy/@adry + Iulzzdy
B Y
and
1) =(g.2)+ [zg22d,

¥

corresponds to problem (5.11), (5.12).
If the inequality min{ﬁ—%, Co —C—O} >0, where ¢, and ¢; are the

4o
positive constants, respectively, from inequality (4.7) and the embedding
theorem [55], is met, then, by virtue of the Lax-Milgramm lemma, problem

like (4.19) has the unique solution (y, p)T € H . Therefore, the estimate
“u—uN“ Schk'l, c=const >0, (5.13)
LI

takes place for the finite-element approximation u = Y /E of the
optimal control u = p/a .

4.6 CONTROL ON I'; WITH OBSERVATION ON A
SECTION y: CASE 2

Assume that equation (1.1) is specified in the domain Q. Conditions
(1.4)—(1.6) are specified, in their turn, on y. On I', the boundary conditions
are conditions (4.1) and (4.3) and the specified constraint is



164 CHAPTER 4

o? y
D| Ay-(1-v)—5 |cos(n,x;)=u, xel. (6.1)
axz
Observation (5.2) is specified for the control u € % = L,(I';) . Specify the

cost functional by expression (5.3), where z, is a known element of the

g
space L,(y); a =a(x)e Ly(I';), O0<ay<a(x)<a <, ay, ay =const.

The following statement is valid.

Lemma 6.1. A unique state, namely, a function y=y(u)eV
corresponds to every control ueU =L,(I")), delivers a minimum to
Sfunctional (2.3) on V, and it is a unique solution in V to weakly stated
problem (2.4); in this case, the space V is specified in point 4.4, the
bilinear form a(-,") is specified by expression (1.13), and the linear
Sfunctional I(-) is

Iv) = (g,v) + .[ ug;cv—dfl : (6.2)
r; &

The validity of Lemma 6.1 is stated according to the Lax-Milgramm
lemma.

Let 7' =3(u') and 7" = y(u") be solutions from V to problem (2.4) that
corresponds to boundary-value problem (1.1), (1.4)-(1.6), (4.1), (4.3),
(6.1) under ¢ =0 and under a function u that is equal, respectively, to
u'and u” . Then:

q ”5;’_5;"|ﬁ,2(y) Sczl'j’—j’”|li Sc3a()~)'—-j)”,j;'—j;” <

o' -y")
axl

< el =y, o 157 =51 -
L (T1)

Therefore, the inequality
15 =71y < sl ="l

is derived that provides the continuity of the linear functional L(:) and
bilinear form 7(-,-) of representation (5.4) and cost functional (5.3) on %.
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On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 6.1. Let a system state be determined as a generalized
solution to boundary-value problem (1.1), (1.4)—1.6), (4.1), (4.3), (6.1).
Then, there exists a unique element u of a convex set Uy that is closed in

U, and relation like (1.20) takes place for u, where the cost functional is
specified by expression (3.3).

For the considered optimal control problem, inequality (1.21) has the
form of inequality (5.5). As for the control ve %, the conjugate state
p(v)eV is specified as a generalized solution to the boundary-value
problem specified, in its turn, by the equalities of system (3.4), except the
second and third ones, and by constraints (5.6).

For such boundary-value problem, the generalized problem means to
find a function p eV that meets equation (5.7), where the bilinear form

a(-,7) and linear functional are specified, respectively, by expressions
(1.13") and (5.8).

The generalized solution peV to the considered problem, i.c. to
problem (5.7) exists and it is unique in V. Use the difference y(v)— y(u)
in equation (5.7) instead of z, and the equality

a(p,y0) = y) == [(y@) -2 ) (0D - y(w) dy
Y
is obtained. Therefore:

5/
- [(6@-2) 60)-y@w)ay= fo-wLar. 63
1
¥ I
Use the obtained equality, and inequality (5.5) has the form
(—%—+Eu,v—u] 20, Vve,. (6.4)
A Ly(Ty)

If the constraints are absent, i.e. when %; =% , then the equality

~P L Gu=0, xer, (6.5)

6x1
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follows from condition (6.4). Therefore, when the constraints are absent
and equality (6.5) is used, then boundary condition (6.1) can be written as

2
D Ay—(l—v)a—zy— cos(mx)=~-P. xeT,. (6.6)
Hence, in the absence of the constraints (%, =% ), the following

problem is obtained: Find the vector-function (y, p)T (y,peV) that
satisfies the equality system

ay)- [2 22 ar, (g, Wve, (67)
r a oxy X1
1
a(p,v)+ jyvdy= jzgvdy, YveV, (6.8)
Y Y

from which the vector solution (y,p)" is found along with the optimal

control

u= é-aﬁ , xel.
a ox;
The equivalent problem of finding the vector-function U e H =

= {v = (vl,vz)T I V|,V € V} , that satisfies equality like (4.19), where
U =(u1,u2)T, =y, uy=p,
%% Zz"dfl + j.ulzz d'y

a(U, z) = ay(U, z) - J'
r Y

axl X1

and

12)=(a, )+ (7,207,
i
corresponds to problem (6.7), (6.8).
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!

If the inequality min {B—%, o _Eﬁ)—} >0, where ¢, and ¢, are the
do

positive constants, respectively, from inequalities (4.7) and the embedding
theorems [55], is met, then, by virtue of the Lax-Milgramm lemma,
problem like (4.19) has the unique solution (y, p)T € H. Therefore,
estimate (5.13) takes place for the finite-element approximation

N
i = 1o of the optimal control u = —1_;—62 .

a ox a ox

47 CONTROL ONI';y WITH OBSERVATION ON I’}

Assume that equation (1.1) is specified in the domain Q. Conditions
(1.4)—(1.6) are specified, in their turn, on the section y. On I, the boundary
conditions are conditions (4.1), (4.2) and (5.1).

Specify the observation

Z(u)=y(u), xeT’,
for the control u e % = L,(I')).

Specify the cost functional by the expression

2 _
J(u) = j (y()~zg) dry + I Zuldry, (7.1)
I I
where z, is a known element of the space L,(I'}), and the function

a =a(x) e L,(I'y) is specified, in its turn, in point 4.5.
According to Lemma 5.1, the unique state, namely, the function
y = y(u) corresponds to every control ue =L,(I'}), and it is the

generalized solution to problem (1.1), (1.4)—(1.6), (4.1), (4.2), (5.1).

Rewrite cost functional (7.1) as
2
J () = m(u,u) ~ 2L(u) + | 2, = y(0)|

, 7.2
L(T1) (7.2)
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where
w(,v) = (y() = y(0), yO) = ¥(O) iy +(@w:Y) 1))
and
L) =(2g = (0), y0) =) _ ..

Let ' =y(') and 3" = j(u") be solutions from ¥ to problem like (2.4)
that corresponds to boundary-value problem (1.1), (1.4)—(1.6), (4.1), (4.2),
(5.1) under ¢ =0 and under a function « that is equal, respectively, to u’
and u". Then:

~1 ~n 2 ~1 ~H 2 ~r ~n o~ ~rn
aly =3,y Sely =71, < a(3'-5"5-5")<

v

n

S”u'—u

17 =5y S sl =l 17 -5

Therefore, the inequality

=y el =l

is derived that provides the continuity of the functional L(-) and bilinear
form n(-,-) on %

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 7.1. Let a system state be determined as a generalized
solution to boundary-value problem (1.1), (1.4)—(1.6), (4.1), (4.2), (5.1).
Then, there exists a unique element u of a convex set Uy, that is closed in
%, and relation like (1.20) takes place for u, where the cost functional is
specified by expression (7.1).

For the considered optimal control problem, inequality (1.21) has the
form

(y@)=2g, yO) = y@)) 1+ (

As for the control ve %, the conjugate state p(v)eV is specified as a
generalized solution to the boundary-value problem specified, in its turn,
by the equalities of system (3.4), except the second, third and fifth ones, by
constraints (4.9), (4.10) and (4.12) and by the equality

L4

u —u

c_zu,v—u)Lz(rl) >0, Vve?%. (7.3)
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2 2 2
- —a—D 5_120 +v§—‘g + Z—Q—D(l—v) op cos(n,x)) =
6x1 axl axZ 5x2 axlaxz
=-y+zg, x€ly.
For such boundary-value problem, the generalized problem means to find a
function p e V' that meets equation like (5.7), where he bilinear form af(-,)
is specified by expression (1.13’), and the linear functional is
l(z)=—j(y—zg)zdr1. (7.4)
Iy
The solution p €V to this generalized problem exists and it is unique in V.
Use the difference y(v)— y(#) instead of z in equation like (5.7), and the
equality
a(p,y() - y@) =~ [(y@) -2z, )(y) - y@)dT,
I
is obtained. Use it , and inequality (7.3) has the form
(—p(u)+5u,v~u)L2(rl) 20, Vve. (7.5)

If the constraints are absent, i.e. when %, =% , equality (5.9) follows from

condition (7.5). Therefore, when the constraints are absent and equality
(5.9) is used, boundary condition (5.1) can be written in the form of
boundary condition (5.10).

Hence, in the absence of the constraints (%; =%), the following

problem is obtained: Find the vector-function (y, p)T (y,peV) that
satisfies the equality system

a(y,v) - j pv/@adl, =(q,v), YveV, (7.6)
I

a(p,v)+ vadrl= Izgvdl“l, eV, 1.7)
I I

from which the vector solution (y, p)T is found along with the optimal
control
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u=pla, xel.
The equivalent problem of finding the vector-function Ue H =

= {v =(v,v, )T V|,V € V} , that satisfies inequality like (4.19), where

U=(u],u2)T, =y, up=p,

a(U,z)=ay(U,z) - _‘-”2 zy/adr; + J.ulzz dr,
T r
and

I(z)=(q.2;)+ J.zgzz dl’y,

I
corresponds to problem (7.6), (7.7).
If the inequality c ——229——%0 >0, where ¢y and ¢ are the positive
4o

constants, respectively, from inequalities (4.7) and the embedding theorem
[58], is met, then, by virtue of the Lax-Milgramm lemma, problem like

(4.19) has the unique solution (y, p)T € H . Therefore, estimate like (5.13)

takes place for the finite-element approximation u = pN /cT of the
optimal control u = p/a .



S

CONTROL OF A SYSTEM DESCRIBED BY A
PARABOLIC EQUATION UNDER
CONJUGATION CONDITIONS

Introduce the following denotations: Q is a domain that consists of two
open, non-intersecting and strictly Lipschitz domains €; and Q, from an

n-dimensional real linear space R"; I'=(0Q;UdQ,)y (y= oQN
NoQ, # D) is a boundary of a domain Q, 8Q; is a boundary of a domain
Q;, i=12; Qr =Qx(0,T) is a complicated cylinder, I't =I'x(0,T) is
the lateral surface of a cylinder Qr Uyy, yr =yx(0,7T).

Let V' be some Hilbert space and assume that V' is a space dual with

respect to V. By analogy [58], introduce a space I?(0,7;V) of functions

t > f(¢t) that map an interval (0,7) into the space V' of measurable
functions, namely, of such ones that

r 12
[ firet; dt] <.
0

Also by analogy, specify the space I? (O,T;V'). Introduce a space
W(O,T):{ feI}0.T;V): df/dte*(0,T; V')} that is supplied with

the norm
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, V2
dt
VI

i
d

1Al o, [ flroly ar+ j

and becomes the Hilbert one.

5.1 DISTRIBUTED CONTROL

Assume that the parabolic equation

@=Zax[ ()ay]ﬂ’(xt) (1)

i,j=1
is specified in the domain Q7 , where

n
kUIQ _kjl’Q GC Ql)nc (Ql) z J ]‘n Z jgz aOZE;?a
i=l1

i,j=1
V&, R, VxeQ, ay=const>0; fIQlTe C(Qyr), [=1,2,
[fl<o, Qr=x(0.T). (1.1)

The third boundary condition

Z ——cos(v,x;)=-ay+p (1.2)

>j_1
is specified, in its turn, on the boundary I';, where o =o(x) >0’ >0,
o, e Ly(I), o = const.
On yr, the conjugation conditions are

[Z —cos(v,x; )} (1.3)

i, j=1 %
and
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{Z cos(v x; )}— r[y], (1.4)

J=1
where 0<r=r(x)<7<w, r=const, [p]=¢"—07; ¢ ={g} =¢(x,)
under (x,2) € Y7 =(8Q; Ny)x(0,T); ¢~ ={p} =¢(x,1) under (x,f)eyr=
=(0Q,Ny)x(0,T), v is an ort of a normal to y that is called simply a

normal to y and it is directed into the domain Q, .
The initial condition

y(x,0) = yo, (1.5)
where y, € H = 1,(€Q), is specified under z =0.
Let there be a control Hilbert space % and operator Be
e(u;?(0,137")).
For every control u € %, determine a system state y = y(u) = y(x,t;u)
as a generalized solution to the problem specified by the equation

6t Z > ( J+f+Bu (1.6)

ij
and by conditions (1.2)—(1.5). Wlthout loss of generality, assume Bu=u.
Specify the observation by the following expression:

Z(u)=Cy(u), CeZ(W(0,T); ). (1.7)
Specify the operator
N € L(U; UY; (Nu,u)g, 2V, “””3{ , Vo = const>0. (1.8)

Assume the following: Afu=au; in this case, a ‘Qle C(Q), 1=12
0<ay< a <a<o, ay, a;=const. The cost functional is
J(u) =|Cy(w) - z || + (A1t 1)y, (1.9)

where z, is a known element of the space .
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The optimal control problem is: Find such an element u € % that the
condition

J(u) = inf J(v) (1.10)
vety

is met, where %; is some convex closed subset in .

Definition 1.1. If an element u € %, meets condition (1.10), it is called
an optimal control.

The generalized problem corresponds to initial boundary-value problem
(1.6), (1.2)—~(1.5) and means to find a vector-function y(x,t;u)e
eW(0,T) that satisfies the following equations Vw(x)eV,=

={V: v|o, e M3 (@), i=1,2}:

I D O

Y r
= (f,w)+(Bu,w) + J'der (1.11)
r
and
[y 0mmwnyds = [yo(owx)dx; (1.12)
Q Q

in this case, (o,y)= I(p(x,t) y(x,1)dx, V={v (x.0): V|, € W, (%),
Q

i=1,2; Vte(0,T) }
Consider the existence and uniqueness of the solution to problem (1.11),

(1.12). Since Bu and f € I*(0,T;V"), then, without loss of generality,
assume the following: Bu=0.

The space ¥, is complete, separable and reflexive since W, (€;)
(i=1,2) is complete, separable [41, 55, p. 69] and reflexive [32], and
Vo< Ly,(QQ). Any element u(x)e W,,ﬂ(Qi) can be approximated by the
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functions u,(x) from C®(€;) within the norms of the space W ()
VQ. cQ; (i=1,2) [55,p. 69].

Choose [41, 54] an arbitrary fundamental system of linearly
independent functionswy(x), k=12,..., in ¥, and suppose that this

system is orthonormal in L,(Q) so that (wy,w;)= 62 (Sﬁ =1, 8§C =0
under [ #k; [, k=1,2,...). Under y, € L,(Q) [49]:

Yo =Z§i w;(x), (1.13)
i=1

where &; =(y,w;), i=12,....
Find the approximate solution to problem (1.11), (1.12) as

m
Ym0 =Y gim(OW,(x), (1.14)
i=1
where the functions g;,(¢) are chosen in such a way that the relations

(%’WJ)J““(W’WJ):U’WJ)J’ljﬁwjdf, j=Lm, (115

and

(Y (%00, w;) = o)), j=1im, (1.16)
where

ym7 .[Zk dx + Ir[ym][wj]dy+ j‘aymwjaT,
Ol,s=l1 y r

are met. Equalities (1.15) and (1.16) specify the Cauchy problem for the
system of m first-order linear ordinary differential equations as for g;,,(¢):

M, df;;" +K,g, =F,(1), (1.17)

ML g, (0)=Fy; (1.18)
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m

in this case: Mm={M,-;-"} , Mgl=(w,~,w-), Km={k,-;-n}m

i,j=1 J ij=1"

m
kit =a(wow,), B0 ={/"OF . f1©=(f,w)+ [Bwr,
r
0 " 0 "
Ea={f8),_, S5 =(om) Mp ={ ME}" | ME;=(w,w;).
It is easy to see that the problem solution y,(x,?) exists and that such
solution is unique. The following statement must be proved: y,, -y
under m — o, where y = y(x,t) is the solution to problem (1.11), (1.12).
Multiply equality (1.15) by g,,(#) and find the sum over j. Then:

(%aym)+a(ym’ym):(f,ym)+I:[Bymdr,

ie.:

1d
Sl +ameyn)=(F.3m)+ [y ar; (1.19)
r

in this case, || o] = (9,0)"* =] ¢ |?).

Take the ellipticity condition and generalized Friedrichs inequality [21]
into account, and the inequality

(Vs V) = O ||ym||12,, oy = const >0, (1.20)

5 1/2
is derived, where || 0 ||V = {Z” (P"inl(Q,-)} ’
i=1

Sobolev space W, (), | o I, =l @, ). Consider inequality (1.20), the

g- and Cauchy-Bunyakovsky inequalities and embedding theorems [55],
and the inequality

i1 1s the norm of the
I ”Wz (Qi)
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T T
lpulP @+ 201 [lally at <yl ©+2 [\(f, 3 )t +

0 '0
ﬂjﬁymdf
oir

+e,c] j”y,,,”V i+ j||g||L2 © (1.21)

dr <y, | ©+e juymuV e Infn dt +

. — a2 '
follows from equality (1.19); in this case, ”(p" L) = J(p dl’, ¢ = ?:;1)2( c,

and the constant ¢; is obtained from the inequality proved within the

embedding theorem applied for the domain ;. Proceed from equality
(1.16), and

(Ym(50), Ym(50)) = (Yo, Ym(-0)).
Proceed also from Cauchy-Bunyakovsky inequality, and the inequality

Lyl @ <ol Iyml0)

is derived, i.e.:

17l 0) < |36 (1.22)
Take it into account, and the inequality

T T T

2 2 2 2
Jlymlydt s | Iyoll + firiae+ fIBIE, o a
0 0 0

follows from inequality (1.21).
Therefore, the elements y,, are in some bounded subset of the space

L2(0,T ;7). Hence, there exists some subsequence { yx} that weakly
converges to the element z in I? 0,T3V) ( Yy > ZE I? 0,7 ;V)). Without
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loss of generality, assume that the whole sequence { ym} weakly converges

toz
Rewrite equality (1.15) as

s {012+
r

multiply its both sides by the function

o(H) e C' ([0,7]), ¢(T)=0, (1.22)
and find the integral from 0 to T of the result:

T
I{"(ym("t)’ (P,j('st))’*'a(ym('at)’ (Pj(',t)) } dt =
" T T

= [(.0,)de+ [ [Bo, drde+(y,.0,)(0); (1.23)

0 or
<p( )

— = w;(x).

By virtue of the aforesaid weak convergence, it is possible to pass in

equality (1.23) to the limit under m — o, and here is the equality
T T T

I{—(z,(p'j) +a(z,9,)dt = j(f,cpj)du ”B<pjdrdt+(z,<pj)(0) . (1.24)
0 0 or
Consider the assumptions as for {w j} and it can be seen that the matrix

in this case: @ ;(x,1) = @(H)w;(x), ¢;(x,1)=

M, 0 from condition (1.18) is diagonal (MOU ( w;, J) MOU =0 under
i#]J, i,j=1,m). The equality g,,(0)=(yo,w;)/(w;,w;) follows from
condition (1.18), i.e. g;, (0) (i =1,—m-) are the Fourier coefficients for the

function y,. By virtue of [49]:

Y (%:0) =D 2, (0)W;(x) yo(x) under m — 0.
i=1
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Therefore: z(x,0) = yo(x).
Equality (1.24) is true for the arbitrary function ¢ that meets conditions
(1.22"). Thus, the following may be assumed: ¢ €D((0,7)) [58]. Then, the

equality

T T T
_[{ (2w, )9’ +az, (p,)} _[(f 'y dt+j.[ﬁ(pjd1"dt
0 0 or
follows from equality (1.24). Hence:
T
f{f,l;(Z’Wa(z’wj)—(f,w,»)— _[Bwjdf} o(t)dt =0
0
ie. :
(%Z’Wj)“’( i) =(Fow; IBW dr. (1.25)

Take the space ¥, and assumptions as for the functions w; into account,

proceed from equality (1.25), and the following equality is true YweV:
d
(Ez,w)+a(z,w)=(f,w)+ J‘der. (1.26)
r

The forthcoming equality is derived from relation (1.16):

(Z('a 0)9W()) = (yO()a W()), Vwe VO . (127)

Therefore, the function z € I? (0,T;V) 1s the solution to problem (1.11),
(1.12) Vf € L*(0,T;7") and under Bu =0, i.e. to problem (1.26), (1.27).

Illustrate the uniqueness of the solution to problem (1.26), (1.27) by
contradiction. Let there exist two solutions: z'(x,?) and z"(x,t) €

el? (0,T;V). Then, on the basis of equality (1.26), the equality
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%uznz +a(z,7)=0 (1.28)

is obtained, where z =z'—-z" # 0.
Consider equality (1.27), and the contradiction

T
0<[z| 1)+ ot [|Z1 dt <0, g = comst >0, (1.29)
0

follows from equality (1.28).
Therefore, the validity of the following statement is proved.
Theorem 1.1. Initial boundary-value problem (1.1)—(1.5) has a unique

generalized solution y(x,t) e I? o, 137).

Proceed from equality (1.28) and contradiction (1.29), and it is easy to
see that y(u;)+# y(u,) under uj#u,, i.e. under Bu;#Bu,. Assume the
following: Bu=u.

Let 3 =7(«') and 7" =7 (u") be solutions from L*(0,T;¥) to problem
(1.11), (1.12) under f =0 and p=0 and under a function u =u(x,?) that
is equal, respectively, to #’'and 4" . Then:

> < -5 - 5 (1.30)

d ~r ~n2 ~r o~
L1y -+ ool -5 .

Therefore, the inequality

!

0o~ 1
=3, = - (1.31)

u”llexLZ

is obtained, where

T
2 2
lol? .., = flol? a. |
0

Rewrite expression (1.9) as

T

2

oll, =lol’ = foreras lol.,, = flolyar
Q 0

T
T () = 7, 10) — 2L(u) + ﬂ!zg - () d, (1.32)
0

where
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m(u,v) = (y(@) = y(0), y(v) = ¥(0)) ,, + (@1, v)y,,

L) =(zg = (0}, y(") = ¥(0) 5 (1.33)

T T
in this case, (z,v) = j(z,v)dt, (2,V)g = J-(z,v)dt, (z,v) = J‘ vdx .
Q

Inequality (1.31) provides the continuity of the linear functional L(:)
and bilinear form =n(-,-) on %.

On the basis of [58, Chapter 1, Theorem 1.1}, the validity of the
following statement is proved.

Theorem 1.2. Let a system state be determined as a solution to problem
(1.11), (1.12). Then, there exists a unique element u of a convex set U
that is closed in ¥, and

J(u) = inf J(v) (1.34)
vel

takes place for u.
A control u € %, is optimal if and only if the inequality
(J'(u), v—u) >0, Vve,
is true, i.e. under
(¥@) = 2zg, y0) = y(W))  +(Hu,y —u)y 20. (1.35)
As for the control v € % , the conjugate state is specified by the relations

232 (Ua )0 oo

Z cos(vx)- ap, (x,t)el'r,
i,j=1 J

{Z £ cos(v, x; )1 0, (x,0) €Y7, (1.36)

,J=1 ]
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n @? *
2 k5 cosvx) ¢ =rlp) (ur)evr,
i,j=l J
p(x,T)=0, xeQUQ,.
Substitute a time 7 —¢ for the time ¢, proceed from Theorem 1.1, and it
is concluded that boundary-value problem (1.36) has the unique

generalized solution p(v) e I? (0,T;V) as the unique one to the equality
system

_(%p(v),wj+a(p,w)=(y(v)—zg,w), VweVl,, (1.37)

(p,w)=0, t=T. (1.38)
Multiply the first equality of relations (1.36) (under v=u) in a scalar
way by y(v)— y(u) and find the integral from O to T of the result.
Consider the equality

T T
J'(_ dp(u) ,y(v)— y(u)]dt = J-(p(u)’%(y(v) — y(u))) dt  (1.39)
0

A
and obtain the equality
T T
[(v =2, y0) = ya) e = j@n(u),;‘f;(y(v)—y(u)))dt+
0 ; 0
+ J'a (p(), y(v) - y(u))dt (1.40)
0

Note, that when equality (1.39) is taken into account, equality (1.40) can be
derived from equality (1.37). Take equation (1.11) into consideration, and

the equality
T T
[(v@ =2, y) =yt = [(p(w),v-u)as (1.41)
0 0

is found from equality (1.40). Therefore, inequality (1.35) has the form
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I(p(u)+c7u,v-—u)dt20, Vve. (1.42)

Thus, the optimal control u € %; is specified by relations (1.11), (1.12),

(1.37), (1.38) and (1.42).
If the constraints are absent, i.e. when %, =% , then the equality

p(w)y+au=0
is obtained from inequality (1.42).
The control
u=-pla, (x,H)eQp, (1.43)

is found from the latter equality.
If the solution (y, p)" to problem (1.11), (1.12), (1.37), (1.38), (1.43) is

smooth enough on O, viz., ¥, p|ﬁzr e @ N> @©@pN

Nco! (Q7), I =1,2, then the differential problem of finding the vector-
function (y, p)", that satisfies equality (1.43) and the equalities

»y_ o, _
LN L, L s pla=of, ey,
o iélaxi( ) pla=f, (x,)eQr

- =i, 9t Q >
6t A 6x[lj J Yy Zg (x )G T

Z cos(v x)=-oy+B, (x,t)elr,
i,j=1 J

Z cos(vx)— ap, (xt)ely,
i,j=1
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[Z cos(v } 0, (x,t)eyr,

i,j=1

i,j=1

[Z cos(v X, )} 0, (x,2) €Y7, (1.44)

{Zky cos(v, x)} =r[yl, (x,0)evyr,
i,j=1

{Z cos(v x)} =r[pl, (x.0)evr,

i,j=1

y(x,0) = yo, p(x,T)=0, xeQUQ,,
corresponds to problem (1.11), (1.12), (1.37), (1.38), (1.43).

5.2 CONTROL UNDER CONJUGATION CONDITION
WITH OBSERVATION THROUGHOUT A WHOLE
DOMAIN

Assume that equation (1.1) is specified in the domain Q7. On the
boundary I'y, the boundary condition has the form of expression (1.2).

For every control ue % =L,(yr), determine a state y=y(u) as a

generalized solution to the boundary-value problem specified, in its turn,
by equation (1.1), boundary condition (1.2), initial condition (1.5) and the
conjugation conditions

[y]=0, (xat)GYTa (21)
and
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{z ki ——cos(v, x; )‘| =o+u, (x,t)eyr, (2.2)

i,j=1 J
where o = o(x,t) e Ly(yr).
Since there exists the generalized solution y(u) e W(0,T) to boundary-
value problem (1.1), (1.2), (1.5), (2.1), (2.2), then such solution is
reasonable on Q7 (/=1,2).

The generalized problem corresponds to initial boundary-value problem
(1.1), (1.2), (1.5), (2.1), (2.2) and means to find a function
y(x,t;u) e W(0,T) that satisfies the following equations Vw(x)eV, =

={vil, € M), i=1,2; [V]=0}:

ijdx+j'2k P 0 dx+faywdr=
I

Qi,j=l1
=(f,w)~ |owdy— [uwdy+ jswdr 2.3)
Y Y r
and
J' Y (x, Oyu)w(x) dx = j Po(X)w(x)dx ; Q2.4)

in this case, V = {v(x,t) A, €MAQ), i=1,2; [vV]=0, Vi e[0,T] } .

The following statement takes place.
Theorem 2.1. Initial boundary-value problem (1.1), (1.2), (1.5), (2.1),
(2.2) has a unique generalized solution y(x,t,u) € I? O,T3V) Yue¥.

The validity of Theorem 2.1 is stated by analogy with the proof of
Theorem 1.1.

Proceed from equations (2.3) and (2.4), and it is easy to see that
y(u) # y(uy) under wy=u, . If ' = j(u') and 7" =3 (u") are generalized

solutions from L2(O,T ;) to problem (2.3), (2.4) under =0, B=0
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and ® =0 and under a function u that is equal, respectively, to «' and u",
then the inequality

d

5= 5T + ooy - 515 <

< "u' - “"“L?_ ) "5” - 37"”1,2 1) <6 ”u' - u"”[Q D) "j), - 5)""[/

is derived, where ¢, is the constant in the inequality of the embedding

theorem [55].
Therefore, the inequality

15" =371y, Sl - 2.5)

¥l ymy
T

is obtained, where ol .., = j"(p“zbz s ol ., = j(pZdy and from
0

y
which the inequality

lj/’ -y" lexLz <¢ ||u' - u”||[/2(y)xL2 , (2.6)
where c¢; =const >0, follows that provides the continuity of the linear
functional L(:) and bilinear form =(,,-) on %. In this case, the linear
functional L(-) and bilinear form =(,,-) are specified by expressions

T
(1.33), where (@u,v)q, = j Iﬁuvdydt.
0 v
Specify the observation in the form of expression (1.7), where
Cy(u) = y(u). Bring a value of cost functional (1.9) in correspondence

with every control u €7 ; in this case, z

L2(0, T;V) and the cost functional is

o 1s a known element from

J () = Tj' j (yw)-z, )za'x dt + Tj j Fuldydt, 2.7
00 0y
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where 0<ay< @ <aj<o, ay,a;=const, d € L,(y).

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 2.2. If a system state is determined as a solution to problem
(2.3), (2.4), then there exists a unique element u of a convex set Uy that is

closed in U, and relation (1.34) takes place for u, where the cost functional
has the form of expression (2.7).

As for the control v e %, the conjugate state p(v) is specified by the
relations

_a_p_ii(k ap] y(v)—zg, (x,8)€Qr,

J
Zk,j cos(v,x;)=—ap, (x,t)ely,
. Ox ;

[ ]=0’ (xat)E'YT’ (28)

[Z ——cos(V,x; )] 0, (x,))eyr,

i,j=1 J
p(x,T)=0, xeQUQ,.

Problem (2.8) has the unique generalized solution p(v) € I2(0,T; V) as the
unique one to the following equality system:

I——wd +IZ kU dx+focpwdl" J- Y-z, wdx Ywel,,
a.]_ r
J' (%, T3 )w(x)dx =0. 2.9)
Q
Multiply the first equality of relations (2.8) (under v=u) in a scalar
way by the difference y(v)— y(u) and find the integral of the result over

Q; . Consider equality (1.39), and equality like (1.40) is obtained, where



188 CHAPTER 5

a(z,w) = IZ by —x—dx+ J'azwdr (2.10)
Qi,j=1 !
Proceed from equation (2.3), equality (1.39), and the equality
T

[(v@ =2, y) = y@) d j jp(u) (v-wdydr

0

is found from system (2.9).
Therefore, the control u € %, is optimal if and only if the inequality

T
”(—p(u)+au) v—-w)dydt 20, Vv e, @.11)
0y
takes place.
Thus, the optimal control u € %, is specified by relations (2.3), (2.4),

(2.9) and (2.11). If the constraints are absent, i.e. when 2 =%, then the
equality

-p(uw)y+au=0, (x,H)eyr,
is obtained from inequality (2.11).
The control

u=pla, (x,H)eyr, (2.12)
is found from the latter equality.
If the solution (y,p)" to problem (2.3), (2.4), (2.9), (2.11) is smooth

enough on §—2,T, viz. ¥, plﬁlr ecH? (QIT) N c0 Q) N

NC%(Qr), 1=1, 2, then the differential problem of finding the vector-
function (y, p)", that satisfies the relations

ay z ( J=f, (x,1) € Qy,

,JI
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—5;_ ax [ 1] ]_y=—zga (x:t)GQT,

Zk P ——cos(v,x;)=-ap, (x,)elr,
=] ox;

[¥1=0, [p]=0, (x,0) evr,

{Z ——cos(v, x)}—OHP/a (x.0)evr,

i,j=1 J

[Z cos(v X; )} 0, (x,0)eyr,

i, J=1 f

y(x,0)=y,, p(x,T)=0, xef—ll U§_22,

u =p/‘7’ (x,1) €Yr>
corresponds to problem (2.3), (2.4), (2.9), (2.11).

5.3 CONTROL UNDER CONJUGATION CONDITION

WITH BOUNDARY OBSERVATION

Assume that equation (1.1) is specified in the domain Q.

189

On the

boundary I';, the boundary condition has the form of expression (1.2). For

every control ue¥ =L,(yr), determine a state y(x) as a generalized

solution to the boundary-value problem specified, in its turn, by equation
(1.1), boundary condition (1.2), initial condition (1.5) and the conjugation

conditions
[¥1=0, (x,0)eyr,

3.1)
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and

.
Z kj——cos(v,x;) | =o+u, (x,)eyr, (3.2)
i,j=1 Ox;

where o = o(x,t) € Ly(yr).
The cost functional is

T T
J@w)= | I(y(u)—zg)zdl"dt+ | J'auzdydz. (3.3)
or 0y

The generalized problem corresponds to initial boundary-value problem
(1.1), (1.2), (1.5), (3.1), (3.2) and means to find a function
y(x,t;u) e W(0,T) that satisfies equations (2.3) and (2.4) Vw(x)eV,; in
this case, the spaces V of W(0,T) and V}, are specified in point 5.2.

By virtue of Theorem 2.1, initial boundary-value problem (1.1), (1.2),
(1.5), (3.1), (3.2) has the unique generalized solution y(x,t) e I? 0,T;7)
Yue.

Proceed from equations (2.3) and (2.4), and it is easy to see that
y(u)# y(uy) under uj#u,. Let 3 =3(u') and 3" =35 (u") be solutions
from LZ(O,T;V) to problem (2.3), (2.4) under f=0,f=0and ®=0 and
under a function u that is equal, respectively, to u'and «". Then, the

inequality (2.5) is true. Consider the embedding theorems [55], and the
inequality

7= 5" L(Tyxy <62 ') Ly(Y)xLy

is obtained from inequality (2.5). The obtained inequality provides the
continuity of the linear functional L(-) and bilinear form =n(,-) of
representation like (1.32) for cost functional (3.3) on %; in this case:

m(w,) = (y@) = 0), Y0 = YOy ryer, + @)1 e,
and

L) =(zg = 7O,y = Y(O)
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On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.
Theorem 3.1. Let a system state be determined as a solution to problem

(2.3), (2.4). Then, there exists a unique element u of a convex set U, that is

closed in U, and relation (1.34) takes place for u, where the cost functional
has the form of expression (3.3).
As for the control v € % , the conjugate state is specified by the relations

d < 0 op

_ — k. == :0’ ,t Q ,

o 6)0[”6)6) (1) &€
laj_l L J

Z ——cos(v x)=—op+y(v)-zg, (x,0)ely, (3.4)
i,j=l1 J

[p]:(), (x’t)eYT,

[Z ——oos(V,x; )jl 0, (x.t)eyr,

),]_1
p(x,T)=0, xeQUQ,.

Problem (3.4) has the unique generalized solution p(v) e I? (0,T;V) as the
unique one to the following equality system:

I—de IZ U@x o dx+ljocpwdf' 1:[y(v) z )wdF YweV,,

j P(x, T3 )w(x)dx =0 . (3.5)

Multiply the first equality of relations (3.4) (under v =u) in a scalar way
by the difference y(v)-— y(u) and find the integral of the result from 0 to

T. Consider equality (1.39) and obtain the equality

T T
0= j[p(u),g;(y(v)—y(u)))dm fa(ptw, yo) - y(wy)ar-
0 0
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T
- J‘J.(y(u) - Zg)(y(v) — y(U))dth . (36)
or

where the bilinear form a(:,-) is specified by expression (2.10).
Proceed from equation (2.3), and the equality

T T
0=—[[pyv-waydr- [ [(yw)-2,) (y») - yaw)dra,
0y or
1e.
T T
[ [(v@) -2 ) (v - y)drae = [ [p() v =wydyae
or 0y
follows from equality (3.6).
Therefore, inequality (1.35) has the form
T
”(—p(u)+au) v —u)dydt >0 (3.7)

0y
for the optimization problem considered in the present point.
Thus, the optimal control u € %, is specified by relations (2.3), (2.4),

(3.5) and (3.7). If the constraints are absent, i.e. % =%, then the
following equality is obtained from inequality (3.7):

u=pla, (x,t)eyr. (3.8)

If the solution (y,p)" to problem (2.3), (2.4), (3.5), (3.8) is smooth

enough on Qr, [=1,2, then the differential problem of finding the

vector-function (y, p)', that satisfies the equalities

_@_ i_a_[k %y ]:f, (x,t)GQT,

=
ox; ox

_Q_Il_ _?_(kéB—Jzo, (x,t)EQT,
i J
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Z cos(v x)=—-ay+B, (x,t)el’r,
i,j=1 J
Z cos(vx)——ocp+y Zg, (1) €l'y,
i,j=1 J

[y]=0, [p]=0> (x’t)EYTa

{Z ——cos(v, x, )}=m+p/6_l, (x.0)evr,
Ox;

i,j=1
Z cos(v x)|=0, (x,t)eyr,
’J_l ‘]
y(x,0) =y, p(x,T)=0, xeQUQ,,
corresponds to problem (2.3), (2.4), (3.5), (3.8).

54 CONTROL UNDER CONJUGATION CONDITION

WITH FINAL OBSERVATION

Assume that equation (1.1) is specified in the domain Q.

193

(3.9)

On the

boundary I'7, the boundary condition has the form of expression (1.2). For

every control u e =L,(yr), determine a state y(u) as a generalized

solution to the boundary-value problem specified, in its turn, by equation
(1.1), boundary condition (1.2), initial condition (1.5) and conjugation

conditions (3.1) and (3.2).
The cost functional is

T
Jw= Y6, Tsu) -z, ) dx+ [ [auavar,
Q Oy

4.1)
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where 0<ag <a <a; <®©; ay, a; =const, and it may be rewritten as

2
J () = (1) — 2L (1) + j (2g(¥) - y(x,T;0)) dx ;
Q
in this case,

T
m(,) = (¥ T50) = Y T30, ¥ Tw) = y( T30)) + [ [auvdyas
Oy
and

L) =(2,() = y(-T30), y(, T3v) = y(, T50) ).

The generalized problem corresponds to initial boundary-value problem
(1.1), (1.2), (1.5), (3.1), (3.2) and means to find a function y(x,t;u)e
e W(0,T) that satisfies equations (2.3) and (2.4) Vw(x) € V}; the spaces
W(0,T) and V¥, are specified in point 5.2.

Theorem 2.1 takes place. It is stated in point 5.3 that y(u;)# y(uy)

under u) #u,. If 5 =5(u') and 7" = (u") are solutions from L*(0,T;V)

to problem (2.3), (2.4) under f =0, 3 =0 and ® =0 and under a function u

that is equal, respectively, to »'and ", then inequality (2.5) is true.
Proceed from equation (2.3) and obtain the equality

T T
"5}!_5}""3‘2 (T)+ Ia (j!_j}ll’jjf_j}lr)dt = __J.J.(ul_u”)(j-)l_j}ll)d,y dt ,
0 Oy

where the bilinear form a(-,-) is specified by expression (2.10).
Consider inequality (2.5), the Cauchy-Bunyakovsky inequality and

embedding theorems, and the inequality
~ o 2 / " ~ ~n
|5 = 5" " () <|lu’ ~u ”Lz(y)xLz |7 -5 |IL2(y)xL2 <

2

<cou’ —u””Lz(y)le |5 -5 "“VxL2 <cpaw-v'| Ly(y)xIp

or
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"’II

|7~ i P
is derived that provides the continuity of the linear functional L(-) and
bilinear form =n(:,-) on %.

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 4.1. If a system state is determined as a solution to problem
(2.3), (2.4), then there exists a unique element u of convex set Uy that is

closed in U, and relation (1.34) takes place for u, where the cost functional
has the form of expression (4.1).

As for the control ve %, the conjugate state p(v) is specified by the
relations

N a[k op
Y ox

J O’ (x)t) GQT9

i,j=1

n
Zk o —cos(v,x;)=-ap, (x,t)elr,
i, j=1 Ox;

[ ]ZO’ (x’t)eYT: (42)

{Z —~ cos(v, x)} 0, (x,t)eyr,
ij=1 %

p(x,T;v) = y(x,T;v) — 2, xe Q UQ,.

Problem (4.2) has the unique generalized solution p(v)e I? (0,T;V) as the
unique one to the equality system

J.—wdx+ Iz i 2 a—dx+ J’ocpwdl“zo, Vwel,,
r

j P(x,T3v) w(x)dx = j (y(r.Tsv) — 25 ) wdx . (4.3)
Q
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Multiply the first equality of relations (4.2) (under v =u) in a scalar way
by the difference y(v)— y(u) and find the integral from O to T of the
result. Then, consider the equality

T T
Oj (— Py~ y(u))dt = Oj(p(u),% (o)~ y(u))) di -

B I(y(x’T;“)‘Zg)(J’(x’T;V)—y(x,T;u))dx
Q

and obtain the equality

T
0= j(p(u),g;(y(v)—y(u))]dr+a(p,y(v)—y<u>)—
0

~ (veeT5w) =2, ) (v, T5v) -y T3, (4.4)
Q
where the bilinear form a(,-) is specified by expression (2.10).
Proceed from equation (2.3), and the equality

T
0=- jjp(u)(v —u)dydt - I(y(x,T;u) - zg) (y(x,T;v)=y(x,T;u))dx
0y Q

follows from equality (4.4), i.e.:

T
J‘(y(x, Tiu) -z, ) (y(x, T;v)=y(x,T;u))dx = - .“.p(u)(v —u)dydt.
Q 0y
Then, inequality (1.35) has the form
T
”(—p+au) v—u)dydt>0 (4.5)

0y

for the optimization problem considered in the present point.
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Thus, the optimal control u € %, is specified by relations (2.3), (2.4),
(4.3) and (4.5). If the constraints are absent, i.e. when %%; =%, then

equality (3.8) is obtained from inequality (4.5). If the solution (y,p)" to
problem (2.3), (2.4), (3.8), (4.3) is smooth enough on §_2,T, /=12, then

the differential problem of finding the vector-function (y,p)", that
satisfies the equalities

éy_._ Z —a_l(kl]a%:—]:f’ (x,t)eQT,

Y ox

n
__ —‘?—(k. ap] 0, (x,)eQy,
J

Z cos(v x)=—ay+p, (x,)el'r,
i,j=1

Z cos(v x)=—-op, (x,t)el'r,
i,j=1

[y]=09 [p]=0’ ('x’t)EYTs

|:Z cos(v X; ):]—oo+p/a (x.0)eyr,

,J=1

{Z cos(v )}=0, (x,0)evr,

i,j=1 J

and
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¥(x,0) = yy, p(x,T)=y(x,T) -z, x€QUQ,,
corresponds to problem (2.3), (2.4), (3.8), (4.3).

55 CONTROL UNDER BOUNDARY CONDITION WITH
OBSERVATION UNDER CONJUGATION CONDITION

Assume that equation (1.1) is specified in the domain €. The boundary
condition

Zky cos(v,x;)=—ay+B+u (5.1)
i,j=l1 J

is specified, in its turn, on the boundary I'y, where u € L,(I'z). On yr,
the conjugation conditions are

[¥I=0,

[ z cos(v )}= ® (5.2)

i,j=1 J
and the initial condition is specified by equality (1.5).
For every control ue¥ =L,(I'y), determine a state y(x,t;u) as a

generalized solution to initial boundary-value problem (1.1), (1.5), (5.1),
(5.2). The cost functional is

J(u) = I I (vt - zg()) dydt+ J' Iauzdth (5.3)

0y

where 0<ay<a < a;<o, ay, a; = const, and it may be rewritten as

T
J () = () — 2L(u) + j I(zg(~)—y(-,t;0))2dydt;
0 v

in this case,
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T T
n(u,v) = J' J'( (@) - y(0))(y(») - ¥(0)) dydt + I jauvdrdt
0y or

and
T
L0)= [ [(z, = @) (v) - y©) dvar.
0y

The generalized problem corresponds to initial boundary-value problem
(1.1), (1.5), (5.1), (5.2) and means to find a function y(x,t;u)e W(0,T)

that satisfies the following equations Vw(x) € V:

[Lds+a(r,m =7+ [pwd T+ fuwdr - fowdy 6.4
0 r r Y

and
j Y(x, 0:0)w(x)dx = j Yo(X)W(x)dx ; (5.5)
Q Q

in this case, the spaces W(0,T) and V}, are specified in point 5.2 and the
bilinear form a(-,-) is specified, in its turn, by expression (2.10).

Theorem 5.1. Initial boundary-value problem (1.1), (1.5), (5.1), (5.2)
has a unique generalized solution y(x,t,u) € I? 0,T;V) Yue.

Proceed from equation (5.4) and the embedding theorems, and it is easy
to see that y(u;)# y(u,) under u;#u,. Let 7 =5 (u') and 3" = j(u") be

solutions from LZ(O,T ;V) to problem (5.4), (5.5) under f,®and =0
and under a function u that is equal, respectively, to #'and " Then, the
inequality

15" =5y, <t =" (5.6)

L(D)xIy
is obtained from equation (5.4). Consider the embedding theorems, and

<cfw'-u

|5~ ”“Lz (1)xLy "“Lz(UxLz



200 CHAPTER 5

is derived from inequality (5.6). The derived inequality provides the
continuity of the linear functional L(:) and bilinear form 7(.,-) on %

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 5.2. Let a system state be determined as a solution to problem
(5.4), (5.5). Then, there exists a unique element u of a convex set Uy that is
closed in U, and relation (1.34) takes place for u, where the cost functional
has the form of expression (5.3).

As for the control ve %, the conjugate state p(v) is specified by the
relations

8
. 6x[l] pj 0, (x,f)eQy,

at x
Z —cos(v x)=—op, (x,t)el'y,
i,j=1 f
[r1=0, (x,0)eyr, (5.7
|:Z —c0s(V, X; } y¥)-z,, (xt)eyr,
i,j=1 }

p(x,T)=0, xeQUQ,.

Problem (5.7) has the unique generalized solution p(v) e LZ(O,T;V) as the
unique one to the following equality system:

J'——wdx+ jz koo p ow dx+japwdr_—j(y(v) z)wdy, (5.8)
Qi,Jj=1 J' Y

Ip(x, T;v) w(x)dx =
Q
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Multiply the first equality of relations (5.7) (under v=u) in a scalar
way by the difference y(v)—- y(u) and take the integral from O to 7 of the

result. Consider equality (1.39) and obtain the equality

T T
0= j[p(u),%(y(v)_y(u)))m fa(p), yo) - y)dr-+
0 0

T
(v -2,)(y0) - yw) dyat, (5.9)
0y

where the bilinear form is specified by expression (2.10).
Proceed from equation (5.4), and the equality

T T
0= [ [pe) v-warde+ [ [(y)-z,)(y) - ya)dyar,
or

0y
ie.
T T
[ [(»@ -2 ) (v - ywp)dvde == [ [ptwy v - wydr
0y or
follows from equality (5.9). Then, inequality (1.35) has the form
Tj'j(—p(u)+au)(v—u)drzo, Vv e, (5.10)
or

for the optimization problem considered in the present point.
Thus, the optimal control u € % is specified by relations (5.4), (5.5),

(5.8) and (5.10). If the constraints are absent, i.e. when %; =%, then the
following equality is obtained from inequality (5.10):

u=pla, (x,t)elr. (5.11)
If the solution (y,p)" to problem (5.4), (5.5), (5.8), (5.11) is smooth
enough on Q7, [=1,2, then the differential problem of finding the
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vector-function (y, p)”, that satisfies the second and fourth equalities of

system (5.7), system (3.9), except its third, fourth, seventh and eighth
equalities, and the conditions

2 cos(v x)=-ay+B+pla, (x,0)elr,
i,j=1 J
and

{Z —cos(V, x,)}co (x.0)evr,

i,j=1 J

corresponds to problem (5.4), (5.5), (5.8), (5.11).
Remark. In Chapter 5 and in the nextcoming ones, the following is
assumed everywhere:

12
Ly(Dr) =3 v(x,t): (v,v)lL/j‘(D) <o ‘v’te[O T {J‘(v V)L;,_(D)dt] <ooy;

in this case, Dy = Dx(0,7).



6

CONTROL OF A SYSTEM DESCRIBED BY A
PARABOLIC EQUATION IN THE PRESENCE OF
CONCENTRATED HEAT CAPACITY

Introduce the following denotations: Q is a domain that consists of two
open, non-intersecting and strictly Lipschitz domains Q; and Q, from an

n-dimensional real linear space R", T'=(3Q,UdQ,)\y (yv=0;N
N0Q, # D) is a boundary of a domain Q, 8Q; is a boundary of a domain
Q;, i=12; Qr =Qx(0,T) is a complicated cylinder; I'r =I'x(0,T) is
the lateral surface of a cylinder Qr Uyr, yr =yx(0,T).

Let ¥ be some Hilbert space and assume that V' is a space dual with

respect to V. By analogy [58], introduce a space LZ(O,T ;) of functions

t — f(¢) that map an interval (0,7) into the space V of measurable
functions, namely, of such ones that

r 1/2
[ flrofp dt] <.
0

Also by analogy, specify the space LZ(O,T ;V'). Introduce a space
W(O,T)={ fe*(0,T;V): %ELZ(O,T; V’)} that is supplied with the

norm
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12
J o

1w o.ry (ﬂlf Ol dr+ J

and becomes the Hilbert one.

6.1 DISTRIBUTED CONTROL

Assume that the parabolic equation

@=Zax[ ()ay}rf(xt) (L1)

ot =

is specified in the domain Q; , where

kyls, =kilg, €C(@INC (), ij=Ln;

n n
Z kj€i&; 2 aozgiz’ VE,E eR', VxeQ, ag=const>0;
i7j=1 i=l

flo, €C(Qur), 1=1,2; |f| <, Qr=;x(0,T).

The third boundary condition

Zk,j cos(V,x;) =—o y+p (1.2)

i,j=1 xj
is specified, in its turn, on the boundary [I'r=I"x(0,7), where

0<a’<a=a(x), a, BeLy(I).
On yr, the conjugation conditions are [91, 21]

[¥]=0 (1.3)

and
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[qy]=c%, 0<Gy<c<cy, (1.4)
where ce Ly(v), [0]=¢"-¢7, ¢ ={0}" =0(x,t) under (x,7)ey7 =
= @R NYX(0,T), ¢ ={o} =(xr) under (x,1)evr =0 Ny)x
x(0,7), yr =vx(0,7),

and v is an ort of a normal to y that is called simply a normal to y and it is
directed into the domain Q, .
The initial condition

y(x,0)=yy(x), xe Q,UQ,, (1.5)
12

where y; € L,(Q), [yo] =0, ||y0||L2(Y) <o, ||v||L2(Y) = J‘vzdy , 18
Y
specified under ¢ =0.

Let there be a control Hilbert space % and operator Be
e9(%12(0,T5")).

For every control u e % , determine a system state y = y(u) = y(x,t; u)
as a generalized solution to the problem specified by the equation

Y _ i i[kij aiy ]+f+Bu (x,1) e Qr, (1.6)

ot ;5210%; J
and by conditions (1.2)—(1.5).
Specify the observation by the following expression:

Z(u)=Cy(), CeZ(W(,T); ). (1.7)
Specify the operator
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N € L(UU), (Nu,u)y 2V ||u||§/ , Vo =const>0. (1.8)
Assume the following: Afu=au; in this case, a |Qle C()),

[=1,2; O<ag<a<a <o, ay a =const. The cost functional is

J@w)=|Cyw)- zg]|; (S )y, (1.9)

where z, is a known element of the space J¢.

The optimal control problem is: Find such an element u € %, that the
condition

J(u)= inf J(v) (1.10)
vely

is met, where % is some convex closed subset in .
Definition 1.1. If an element u € %, meets condition (1.10), it is called

an optimal control.
The generalized problem corresponds to initial boundary-value problem
(1.6), (1.2)—(1.5) and means [21] to find a vector-function y(x,t;u) e

eW(0,T) that satisfies the following equations Vw(x)el,=
- {v(x) Mg, €M), =12, b= 0} :

I—wdxi—j Zk’J o, o, dx+Jc%wdy+

+ J'aywdr = (f,w) +(Bu,w) + jﬁwdr (1.11)
r r
and

J.y(x,O; u) wdx + Icy(x,O; u) wdy =
¥

= Iyo(x) wdx + Icyo(x) wdy; (1.12)
Q Y
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in this case, (@)= j(p(x,t)\p(x,t)dx, V={v(x,t): vlg, € W@,
Q

i=1,2,Vte[0,T], [v]=0 } Consider the existence and uniqueness of

the solution to problem (1.11), (1.12). Since Bu and f € L2(0,T;V"),
then, without loss of generality, assume the following: Bu=0.
The space ¥V}, is complete, separable and reflexive [41, 55, 32].

Choose [41, 54] an arbitrary fundamental system of linearly
independent functions w; (x), £k =1,2, ..., in V.

Remark. Functions w;,(x) may be chosen as eigenfunctions that
correspond to eigenvalues A, k =1,2, ..., of the spectral problem: Find
0, u} e {R‘ xVy, u ¢O}:a(u,w) =Ab(u,w), YweV,, (1.13)

where

n
Oou Ov
a(u,v) = I Z k,-ja—.é;dx+ J-ocuvdI“, b(u,v)= (u,v) +(cu,v)p,(y)-
Q iLJj=1 J r

The bilinear form b(-,) is symmetric and positively specified on the
complete Hilbert space V' obtained by way of completing the set V|, as for
the norm ||, = bY2(.,) . In this case: ¥V <V < L,(Q). Therefore, spectral
problem (1.13) has a countable spectrum and the eigenfunction system
{wj(x)} for it is complete both in V;; and Vp. Let this system be

orthonormal in ¥y so that b(w,w)=8 (8f=1, 8, =0 under
Lk=1,2,..). Asfor y, eVp [49]:

[o0]
Yo=Y &wi(x), (1.13")
i=1
where &; =b(y9,w;), i=12, ...
The approximate solution to problem (1.11), (1.12) is given as



208 CHAPTER 6

m
Ym0 = gim(Wi(x), (1.14)
i=1
where the functions g,,,(¢) are chosen in such a way that the relations

2 {5 o
(at s W; c Py w; . a(Ym>W;

=(f’Wf)+(B»Wj),Q(r)s j=Lm, (1.15)
and
(ym(~, 0), Wi)+(cym(" 0), wj)Lz(Y) B
= (70, w)+(ey0. w )L 1)’ , j=Lm, (1.16)
where

@ W = [onwendr, @Wi,e = [otnwtondr
Y r

and

(ym9‘ J‘ Zk 653;”‘ 8xj dx + Iaymwjdr
Q I,s=1 s r

are met.
Equalities (1.15) and (1.16) specify the Cauchy problem for the system
of m first-order linear ordinary differential equations as for g;,, (¢):

M, djfuc =F(t), te(0,T), (1.17)
Mg g,(0)=F"; (1.18)
in this case,
m
Mm={Ml;"} it Mm (l, ])+(cw,,wj)L() Km={kg'}i,j=1,
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km-a(w Wi ) Fn(t)= {fim(t)}zl’ fim(t):(f’wi)+(B9Wi)L ()’
Fy :{fo'?}’i » Sor = (oo W)+ (eyo,wi) > M {MOU}

Mgy =(wpw;) +(ewiows), s gn@={ 2O},

It is easy to see that the solution g,,(¥) to problem (1.15), (1.16) exists and
that such solution is unique. The following statement must be proved:
Yn, —>y under m — o, where y=y(x,t) is the solution to problem
(1.11), (1.12).

Multiply equality (1.15) by g;,(#) and find the sum over j for the

i,j= 1’

result. Then:

Ym Pm -
(a aym) ( ot ’ym)LZ(Y)+a(ym’ym)_(f’ym)+(B’ym)L2(T)’

ie.:

Vevnl, +a(verm)=

2dt" ’"" 2dt”
=(£,9m)+(Bs¥m) 1y 0y (1.19)

L (v)

in this case, o] = (0, )" =Jol).  [Veo, =(Veo Ve w)f()

= ”\/Z(puL : )(t) . Take the ellipticity condition and generalized Friedrichs
2 (Y
inequality [21] into account, and the inequality

12,, o = const > 0, (1.20)

a(ym,ym)Zal “yml

1/2
is derived, where |o, = {Z”(P”WI(Q )} ,

Sobolev space W; (Q;), lel, =lel, @ -

is the norm of the

z(Qi)
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Consider inequality (1.20), the e- and Cauchy-Bunyakovsky inequalities
and embedding theorems [55], and the inequality

T
2
yul* @+ Neyal . (0420, [l ae<
0

T T
<[yl @+ Ve, Nizm (0)+2 Oﬂ( oy dt+2 Oj rj B y,dl|dt <

T
2
<Lyl @+ Neya], ©@+2e jllymllidt+

+_- j||f|| dt+ 2, c| j||ym||th+ j||s||w) (1.21)

follows from equallty (1.19); in thls case, ¢; =maxc; and the constant ¢;
2

is obtained from the inequality proved in the embedding theorem applied
for the domain ;. Proceed from equality (1.16), and

(Ym0 I 0) + (€m0 yu(O) | =

=(Y0() Ym (500 + (¢ Yo () ¥ (- 0)) Lyy)”

Proceed also from the €- and Cauchy-Bunyakovsky inequalities, and the
inequality

lyul? @ +]Ve ym”;m ©0)< ¢, (” ol + Ve y"“;m) (1.22)

is derived. Take it into account, and the inequality

T T T
[oarse( b ek, e ot
0 0 0
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follows from inequality (1.21). Therefore, the elements y, are in some
bounded subset of the space LZ(O,T ; V). Hence, there exists a
subsequence {y,} that weakly converges to the element z in I? (0,T;V)

( Yy >zE€ I? 0,7, V)). Without loss of generality, assume that the whole

sequence {y,,} weakly converges to z.

Rewrite equality (1.15) as

d d
E(ym’wj)Jfg(cym’Wj)

=(/.w;)+(Bw;

multiply its both sides by the function

Ly T ms) =

iy 7=

o () e C'([0,T]), ¢(T)=0, (1.23)

and find the integral from O to T of the resulit:
T T
_f{—(ym(ut), (p',-(-,t))—(cymatp’,-)Lz(Y)+a(ym,<pj)}dt= [(r.0,)ar+
0 0
T

+j(ﬁ,cpj)Lz(r)dH(ym,<pj)(0)+(cym,<pj) ©);  (1.24)
0

Ly(v)
in this case, ¢ (x,) = () w,(x), @(58)=Lw (x)
b j 3 J > J > dt J .

By virtue of the aforesaid weak convergence, it is possible to pass in
equality (1.24) to the limit under m — oo, and the following equality is
obtained:

T

J‘{—(z’(p})—(cz’(p})la(v) +“(z’q’f)}dt ) :J.(f"Pj)d”

0
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T
+6|-(B,(pj)bz(r)dt+(z,(pj)(O)+(CZ,(pj)l/2(Y) 0). (1.25)
Consider the assumptions as for {w j} , and it can be seen that the matrix
Mg from condition (1.18) is identity (Mg; =1, Mg; =0 under i# j,
i,j=1,m). The equality g;,(0)=b(y,w;)/b(w;,w;) follows from
condition (1.18), i.e. g;,(0) (i= 1—,5) are the Fourier coefficients for the
function y,. By virtue of [49]:

m
Ym(%,0) = Z Zim (0 w;(x) =»yo(x) under m — .
i=1
Therefore: z(x,0) = yo(x).
Equality (1.25) is true for the arbitrary function ¢ that meets conditions
(1.23). Thus, the following can be assumed: @ € D((0,7)) [58]. Then, the

equality

T

—(z,wj)(p'—<cz,wj) (p’+a(z,wj)(p dt =
; Ir(v)

T T L
= (,)[(f’(pf)dH J(B’(PJ')LZ(F)dt’ J=Lm,
follows from equality (1.25). Hence:
ra d
J{E(z,wj)w;(cz,wj)w+a(z,wj)_

- (f,wj)—(B,wj)Lz(r)} o(f) dt =0,

dz dz
—,w; [+ c—,w; +a(z,wj)=
dt dt L)

i.e.
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=(f,wj)+([3,wj)L2(F). (1.26)

Take equality (1.26), the space V,, and assumptions as for the functions
w; into account, and it is stated that the equality

(@,WJ+(c£,w) +a(z,w) =

=(faw)+(ﬁ’w)l/l(r) (127)
is true Vw €V . The following equality is derived from relation (1.16):

(26,00, wO))+(e2(,0,w0) () =

Therefore, the function z € L2(O,T ; V) is the solution to problem (1.11),
(1.12) Vf e L2(0,T; V") and under Bu =0, i.e. to problem (1.27), (1.28).

Ilustrate the uniqueness of the solution to problem (1.27), (1.28) by
contradiction. Let there exist two solutions: z(x,r) and z,(x,f)e

el? (0,T;V). Then, on the basis of equality (1.27), the equality
i(f E)+il-(cz z), +2a(Z,Z)=0 (1.29)
dat* 7 dty T ’

is obtained, where z = z; — z,.
Consider equality (1.28), and the contradiction

T
0< (E,E)(T)+(c§,2)bz(y) (T)+ oy I”E“IZ, dt<0, ay=const>0,
0

follows from equality (1.29).
Therefore, the validity of the following statement is proved.
Theorem 1.1. Initial boundary-value problem (1.1)—(1.5) has a unique

generalized solution y(x,t) e LZ(O,T V).
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Let 7 =7(u') and 3" =5(u") be solutions from L*(0,7;V) to
problem (1.11), (1.12) under f=0 and PB=0 and under a function
u =u(x,t) thatis equal, respectively, to u'and «" . Then, the inequality

)+ 25( (7 =57 =5") o+

~II “’I

2dt(

+“0||5’"5’"||;7} <fu-u| |5 - 5|, (1.30)

is obtained for Bu = u . Therefore,

|5 -1

(1.30')

VXL2

where

T T
ol s, = [lol, e ol =lol = [o*x.00ax, ol = flol} ar-
Rewrite ful(l)ctional (1.9) as "’ ’
T () = 7w ) — 2L(u) + iﬂ\zg - y(O)“izdt , (1.31)
where ’
(u,v) = (y(@) - y(0), y(»)-y(0), +(@u,v),,, (1.32)

L) =(zg = ¥(0), y)~1(0) 5

in this case,

T
(2,V) 5 = (2,V)gy = j(z,v)dt, (z,v) = jzvdx.
0 Q

Inequality (1.30") provides the continuity of the linear functional L(-)
and bilinear form =(-,) on %

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.
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Theorem 1.2. Let a system state be determined as a solution to problem
(1.11), (1.12). Then, there exists a unique element u of a convex set U,

that is closed in U, and

J(u)= inf J(v) (1.33)
vely

takes place for u.

A control u €%, is optimal if and only if the following inequality is
true:

(y@) -zg, y0)- y(u))'” (N uv—u)y 20, Yvel. (1.34)

As for the control v e %, the conjugate state p(v) is specified by the
relations

_op_ Z [ ) axj]:y(v)—zg, (x,0)eQr,

1]1

Z cos(v )=—ap, (x,H)el’r,
1]‘1 ‘]

[p] = Oa (xst) € YT:

l:Z = cos(v,x )} th, (x0)eyr, (1.34)

i, j=k J
p(x,T)=0, xe Q UQ,.
Substitute a time T —¢ for the time ¢, proceed from Theorem 1.1, and it is
concluded that initial boundary-value problem (1.34') has the unique

generalized solution p(v) e ? (0,7 ;7) as the unique one to the following
equality system:

_(%p(v),w) Ic—wdy+jz ———-dx+
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+japwdr=(y(v)—zg,w), (1.35)
r

J'p(x,T;v) wdx + J'cp(x,T;v) wdy=0. (1.36)
Q

i
Choose the difference y(v)- y(u) instead of w in equality (1.35),

consider equation (1.11), and the equality
T

I(y(u)—zg,y(v)—y(u))dt =

0

T
- O[{(%p(u),y(v) - y(u>)+ Yj c%(y(v)—yw))dy] dr+

T
+ fa(p@), () - ywy) d =
0

T

== { (P Y0~y @)+ (@), y0) - 300) 5 ] +

T
d d
+ 14| P@), —(y(v) = y(u) )+(6p(u),-— y(v) = y(u) ) }dH
oI {( il ) 'l ) L)
T T
+ Ja (p(u),y(v) —-y(u)) dt= J‘(p(u), v—u)dt
0 0

is obtained, i.e.
T

T
[(v -2,y - y@)dt = [(ptu), v-u)ar.  (1.37)
0 0
Therefore, inequality (1.34) has the form

T
pw)+au,v—u)dt>0, Vve . (1.38)
0
0



Control of a System Described by a Parabolic Equation... 217

Thus, the optimal control u € %; is specified by relations (1.11), (1.12),
(1.35), (1.36) and (1.38).
If the constraints are absent, i.e. when %; =% , then the equality

pw)+au=0, (x,t)eQr,
is obtained from inequality (1.38). The optimal control
u=-pla, (x,t)eQr, (1.39)
is found from the latter equality. If the solution (y, p)T to problem (1.11),
(1.12), (1.35), (1.36), (1.39) is smooth enough on Q;r, viz., y Oy
P, © @) N Q)N N (Qyr), 1=1,2, then the differential

problem of finding the vector-function (y, p)T, that satisfies the equality

system
ay Zax(lj j‘*’l’/a [ (x)eQr,

i,j=1
0, p) . _
_—ét——ljzlax k’fax —y=-z4, (%1€,

Z cos(v x)=—ay+p, (x,0)el’;,
i,j=1 J

Z cos(vx)— oap, (xpel,,
i,j=1 J

[¥1=0, [p]=0, (x,)evr,

liz ——cos(Vv, x)}—c?; ) eyy, (1.40)

s.] _1 j
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[Z ———cos(vx)} %tg’ (xDeyr,

i,j=1 J

y(x,0)=y5, p(x,T)=0, xeQUQ,,
corresponds to problem (1.11), (1.12), (1.35), (1.36), (1.39), where the
control u =u(x,t) is found by formula (1.39).

6.2 CONTROL UNDER CONJUGATION CONDITION
WITH OBSERVATION THROUGHOUT A WHOLE
DOMAIN

Assume that equation (1.1) is specified in the domain Q,. On the
boundary I';, the boundary condition has the form of expression (1.2).
For every control ue % =L,(yr), determine a state y=y(u) as a

generalized solution to the initial boundary-value problem specified, in its
turn, by equation (1.1), boundary condition (1.2), initial condition (1.5) and
the conjugation conditions

1=0, (x.)evr, 2.1)

and

[z 2 costy, x)}c%w (50 €y 22)

i,j=1 ]

The generalized problem corresponds to initial boundary-value problem
(1.1), (1.2) (1.5), (2.1), (2.2) and means to find a function
y(x,t;u) e W(0,T) that satisfies the following equations Vw(x) e V},:

n
I%wdx+ J.c%wdy+ I Z_ kU%%dx+ IocywdF=
Q Y Q L,j=1 J r
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=(f,w)— [uwdy+ IdeI“ 2.3)
Y r
and

_[y(x,O; wwdx+ jcy(x, 0; u)wdy =
Q Y

= jyowdx+ jc yowdy . (2.4)
Q Y

The following statement takes place.

Theorem 2.1. Initial boundary-value problem (1.1), (1.2), (1.5), (2.1),
(2.2) has a unique generalized solution y(x,t;u)e W(0,T) Yue¥.

The validity of Theorem 2.1 is stated by analogy with the proof of
Theorem 1.1.

If 3 =y(u') and 3" = y(u") are solutions to problem (2.3), (2.4) under
f=0and B =0 and under a function u that is equal, respectively, to ' and
u', then the inequality

1d ~r  ~nli2 1d ~r o~ 2 ~r ]2
gzﬁﬂy -5 +55ﬂ\/;(y -y )‘ b +og |7 5, <
<l =l 15 =5l S ol =l 17 =57, @4

is derived, where ¢, is the constant obtained from the inequality of the

embedding theorem [55].
Therefore, here is the inequality

|7~ J7"||V><L2 <qfw —u""Lz(y)xLz ’ (2.5)
T

where ||(p||iz iy _ﬂl (p”i2 (@ and from which the inequality
0
l&’ —5}””L2><L2 =a ”u’ —u””Lz(Y)Xlz (2:6)

follows that provides the continuity of the linear functional L(-) and
bilinear form 7(-,-) on %. In this case, the linear functional L(:) and bilinear
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form n(,-) are specified by expressions (1.32), where (au,v)y =
T

= j j Guvdydt,
07

Specify the observation in the form of expression (1.7), where
C y(u) = y(u). Bring a value of cost functional (1.9) in correspondence

with every control u e ; in this case, z, is a known element from

I? (0,T; V) and the cost functional is

g

J() = 7:”( Y()~zg ) dxdi + TJ’ j auldydt, .7)
00 0y

where 0 <ay<a <a;<w©; ay, a; =const, a € L,(y).

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 2.2. If a system state is determined as a solution to problem
(2.3), (2.4), then there exists a unique element u of a convex set U, that is
closed in U, and relation (1.10) takes place for u, where the cost functional
has the form of expression (2.7).

As for the control v € % , the conjugate state p(v) is specified by system
(1.34"), for which the generalized problem is written by equality system
(1.35), (1.36). Choose the difference y(v)- y(u) instead of w in equality
(1.35), consider equation (2.3), and the equality

T T

(7= 24 ) = 90 )t == {[ £ p(u), y) = y(a) |di -
dt
0

0
T T
= [ [ (01~ y)dar+ fa(p,y)-yw)de -
0y 0

T

= —{ (p(), y(v) = y(w)) + (cp(u), y(v) - y (u))Lz(y) } L) +
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T
d d
+ 14| p(u),—(y(v) — y(u) )+(cp(u),-— y(v)—y(u) ) }dt+
J{( a ) 7 ) L)

T T
+ fa(pe, y) - yw) dt = [ fo-wpGw) dy
0 Oy

is obtained, i.e.

T T
[(v@-zg. 09 = y))dt == [(v-u, p@w), ., at.
0 0
Therefore, the necessary condition for the optimality of the control u is
T
”(—p(u)+au)(v—u)dydtzo, Vv € Uy 2.8)
0y

Thus, the optimal control u € %, is specified by relations (1.35), (1.36),

(2.3), (2.4) and (2.8). If the constraints are absent, i.e. when %; =%, then
the equality

-pu)+au=0, (x,t)eyr, (2.9)
is obtained from condition (2.8) and the optimal control
u=pla, (xt)eyr, (2.10)

is found from equality (2.9).
If the solution (y, p)T to problem (1.35), (1.36), (2.3), (2.4), (2.9) is

smooth enough on Q;, viz., y'ﬁlT , plﬁlT eCl’O(ﬁlr)ﬂ CZ’O(Q,T)ﬂ

NC® (), 1=1,2, then the equivalent differential problem of finding

the vector-function (y, p)T , that satisfies the system specified by equalities
(1.1), (1.2), (1.5), (2.1) and (1.34’) and by the constraint

ilgjg—cos(v,xi)}=c%ty-+p/a, x,0) ey, (2.11)

ij=1 J
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corresponds to problem (1.35), (1.36), (2.3), (2.4), (2.9), where the optimal
control is found by formula (2.10).

6.3 CONTROL UNDER CONJUGATION CONDITION
WITH BOUNDARY OBSERVATION

For every control ue =L,(yr), determine a state y(x,f;u) as a

generalized solution to the initial boundary-value problem specified by
equation (1.1), boundary condition (1.2), initial condition (1.5) and
conjugation conditions (2.1) and (2.2). The cost functional is

T T
J(u) = J' I(y(u)—zg)zdrdt+ I jauzdydt. 3.1)
or 0y
The generalized problem corresponds to initial boundary-value problem
(1.1, (1.2), (1.5), (2.1), (2.2) and means to find a function y(x,#;u)e

e W(0,T) that satisfies equations (2.3) and (2.4) Vw € V}; in this case, the
spaces W(0,T) and V|, are specified in point 6.1. Theorem 2.1 takes place.
Consider the embedding theorems, and the inequality

coly’ -5 Ly (DxLy <[y-¥ ”HVxLz : clnul_u”an(Y)XLz ’

1.e.

<clu' —u (3.2)

”j’, - J~’””LZ(I‘)xLZ ”“Lz(y)xl/z ’
T

2 2 2 2 .
where "(p“Lz(l_)xL2 = _ﬂl(p”lq(r)dt’ I(P“IQ(F) = I(p (x,)dT, ey =¢/cy, is
0 r
derived from inequality (2.5).
The derived inequality provides the continuity of the linear functional
L(") and bilinear form n(-,-) on % for the representation

J(u) =7n(u,u) - 2L(u) + "Zg -y (O)”i »(D)

(3.3)
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of cost functional (3.1), where
1) = (¥ = $0), Y= YO, ez, + @) 1y03c1,
and

L) =(zg = »(0), y()-y(0))

Ly(TyxLy’
in this case,

@ W)y (ynitz = j fowayar= j«p Wimds @V, =
0y

= I(¢,W)L2(r)df -

0

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 3.1. Let a system state be determined as a solution to problem
(2.3), (2.4). Then, there exists a unique element u of a convex set Uy that is
closed in U, and relation (1.10) takes place for u, where the cost functional
has the form of expression (3.1).

As for the control ve %, the conjugate state p(v) is specified by the
equalities

o < op
- - =0, (x,)eQ,,
ot ,j-’:lax[’faj (e

Z cos(vx)— oap+y-z,, (xt)ely,
a.]_l J
[p]=0, (x,0)evy,

{z —cos(V,x; } ~ c%, .t eyr, (34

i,j=1 J
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p(x,T)=0, xeQ,UQ,.

Problem (3.4) has the unique generalized solution p(v)e W(0,T) as the
unique one to the following equality system:

dj d c Op Oow
_I—€de— Icﬁwdy+§!i;1kyéx£ja:dx+ljapwdr=

d
Q Y
= J'(y—zg)wdr, YweV,, (3.5)
r
f p(x, T3y wdx + J'c p(x,T;)ywdy =0. (3.6)
Q Y

It is easy to state the existence of the unique solution p(v)eW(0,T) to
problem (3.5), (3.6).
Choose the difference y(v)-y(u) instead of w in equality (3.5),

consider equation (2.3), and the equality
T

!((y(”)_ Zg)’ (y() - J’(u)))bz(r) dt =
T

= (0,50~ @) (e P, Y0~ 30, | +
T

+ 0[{(p(m,;j’;(ﬂv)—y(u))j+(w(u»%(y(v)—y(u)))w)}dw

T T
+ fa(p@), y0) - yw)de == [ [v-wp(wdyds
0 0y

is obtained, i.e.
T

T
I(y(u) —Zg, y(v) - y(u))Lz(r) dt=- I(v - u,p(u))L2 ) de. ((3.7)
0 0
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Therefore, the necessary condition for the optimality of the control u is

T
jj(—p(u)+2iu)(v—u)dydt >0, Vve. (3.8)
0y
Thus, the optimal control u € % is specified by relations (2.3), (2.4), (3.5),
(3.6) and (3.8). If the constraints are absent, i.e. when ;=% , then
equality (2.9) is obtained from condition (3.8). The optimal control « in the
form of equality (2.10) is derived from equality (2.9).
If the solution (y, p)T to problem (2.3), (2.4), (3.5), (3.6), (2.9) is
smooth enough on Q;;, /=1,2, then the equivalent differential problem

of finding the vector-function (y, p)T, that satisfies the system specified

by equalities (1.1), (1.2), (1.5), (2.1), (2.11) and (3.4), corresponds to
problem (2.3), (2.4), (3.5), (3.6), (2.9), where the optimal control is found
by formula (2.10).

6.4 CONTROL UNDER CONJUGATION CONDITION
WITH FINAL OBSERVATION

For every control ue ¥ = L,(yr), determine a state y(u) as a generalized

solution to the initial boundary-value problem specified by equation (1.1),
boundary condition (1.2), initial condition (1.5) and conjugation conditions
(2.1) and (2.2).

The cost functional is

T
2
J(u) = J'( Y5, T3u) =24 (x)) dx + J' jauzdydt, (4.1)
Q Oy
where 0 <ay <@ <a; <®; ay, a =const, and it may be rewritten as

2
J () = (1)~ 2L(u) + I (240 = ¥(6.T;0)) dx;
Q
in this case,
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n(u,v) = (y(,Tsu) - y(, T;0), y(,T;v) - y(,T;0)) +

+T”auvdydt, (4.1
0y

L) = (2,0) = ¥ T50), (- T3v) = ¥(-T30)) -

The generalized problem corresponds to initial boundary-value problem
(1.1), (1.2), (1.5), (2.1), (2.2) and means to find a function y(x,t;u)e
eW(0,T) that satisfies equations (2.3) and (2.4) Vw(x)eV,. The
existence of the unique generalized solution to problem (1.1), (1.2), (1.5),
(2.1), (22) Vuew is provided by Theorem 2.1. If 3 =3y(u')
and 3" =3 (u") are solutions from W(0,T) to problem (2.3), (2.4) under

f=0 and B=0 and under a function u that is equal, respectively, to u’
and #", then inequality (2.5) is true. Proceed from inequality (2.4'),
consider equation (2.4) and derive the inequality

1771 (1) <2 - u"

Iy o 17 = 7Dy e,

<2¢llu’ - u

. 2
""l.z(y)xL2 75" yxiy < 200 o _u””lfz(ﬂxLz ’

i.e. the inequality

“y -y Il TM<e ||u —u S 4.2)

is thus obtained that provides the continuity of the linear functional L(:)
and bilinear form 7(-,-) on % In this case, the linear functional L(-) and
bilinear form 7(-,) are specified by expressions (4.1’). On the basis of [58,
Chapter 1, Theorem 1.1], the validity of the following statement is proved.

Theorem 4.1. If a system state is determined as a solution to problem
(2.3), (2.4), then there exists a unique element u of a convex set U, that is
closed in %, and relation (1.10) takes place for u, where the cost
functional has the form of expression (4.1).
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As for the control ve %, the conjugate state p(v) is specified by the

equality system
1%/ - 0 0
. Z ——(k,-j 6x_p} =0, (x,0)eQy,
J

-, P
k s(v,x,)=—ap, Hel,,
E,,axw(x) p, (x)ely

ij= J

[p]=0: (xat)GYTs (43)
{Z -—cos(v } —-c%, (xD)eyp,
L,j=1 %,

P T3)+8(x=x") e p(uT3) = y(9) =z, xeBUDy, x" ey,

where & is the Dirac delta-function. Problem (4.3) has the unique
generalized solution as the unique one to the following equality system:

—(%p(v),w) Ic—wdy+ j Zk’J P aw

x Bx

+Iocpwdl"=0, VweV,, te(0,T), (4.4)
r
J‘P(xaT;V)de+ J.cp(x,T;v)wdx =
Y

- j(y(v)—zg)wdx, t=T. (4.5)
Q

Choose the difference y(v)— y(u) instead of w in system (4.4), consider
equations (2.3) and (2.4), equality (4.5), and the equality
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T
~{ (P, )= @) + (e, y<v)—y<”>)L2<y>}|o *
T T
+I(p( ) (dy(v) dy;f))]dfﬁ(cp’%“dyd(f)) a
; 0 L (v)

jZk,,g—a—(y(v) »)dsx-+ o p(y(v) - y(w)) dT =

Q i,j=1 r

T
~(¥)-zg, ) =y@)(D) - [ [v-u)pludyde =0
0y
is obtained, i.e.

T
(@) =zg, YO) =y @)D == [(p@w),v-u),  dt.  (46)
0

Therefore, the necessary condition for the optimality of the control u is
(-p(w)+au, v—u)lfz(y)xL2 >0, Vvew. 4.7)

Thus, the optimal control u € %, is specified by relations (2.3), (2.4), (4.4),
(4.5) and (4.7). If the constraints are absent, i.e. when %, =%, then the
equality

-p+au=0, (x,t)eyr, (4.8)

is obtained from condition (4.7). If the solution (y, p)T to problem (2.3),
(2.4), (4.4), (4.5), (4.8) is smooth enough on Q;r, /=172, then the

equivalent differential problem of finding the vector-function (y, p)T , that
satisfies the system specified by equalities (1.1), (1.2), (1.5), (2.1), (2.11)
and (4.3), corresponds to problem (2.3), (2.4), (4.4), (4.5), (4.8), where the
optimal control is found by formula (2.10).
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6.5 CONTROL UNDER BOUNDARY CONDITION WITH
OBSERVATION UNDER CONJUGATION CONDITION

Assume that equation (1.1) is specified in the domain Q7. The boundary
condition

Z —cos(vx)——ocy+B+u (5.1

i,j=1
is specified, in its turn, on the boundary 'y, where ue L,(I'r). On yr,
the conjugation conditions are

[¥]1=0 (5.2)

and
cos(v X;) —c@/— (5.3)
>ty
i,j=1 J ot

and the initial condition is specified by equality (1.5).
For every control ue ¥ =L,(I'y), determine a state y(x,f;u) as a

generalized solution to initial boundary-value problem (1.1), (1.5),
(5.1)—(5.3). The cost functional is

T T
J(w) = J’ J’( Y(ts) =2 (1) dye + I ja W2dTdt , (5.4)
0 or
where 0 <ay <@ <a) <®; a;, a; =const, and it may be rewritten as

T
J () = () - 2L + [ [(z50:00 - y(-150)) dy
0y
in this case,

T T
n(u,v) = J' j (y() = y(0)) (y(v) - y(0)) dydt + j ja uvdTdt
0y or



230 CHAPTER 6

and

T
L) = [ [(ze = @) (3) - y@) dy .
0y
The generalized problem corresponds to initial boundary-value problem
(1.1), (1.5), (5.1)-(5.3) and means to find a vector-function
y(x,t;u) e W(0,T) that satisfies the following equations Vw(x) e V}:

I%wdx + Ic%wdy +a(y,w)=
Q Y

=/ W)+ B W), @) + W), (5.5)
and

Iy(x, 0;-ywdx + Icy(x, 0;ywdy = jyo(x)wdx+ J-cyowdy . (5.6)
Q Y Q Y

Theorem 5.1. Initial boundary-value problem (1.1), (1.5), (5.1)—(5.3)
has a unique generalized solution y(x,t,u)e W(0,T) Yue¥.

Let 7' =7(u') and 3" =3(u") be solutions from W (0,T) to problem
(5.5), (5.6) under f=0and p=0 and under a function u that is equal,
respectively, to #’ and #"’. Then, the inequality

7 -5"1 yxi, =G i —”””L;,,(r)xz,2 G.7)

is obtained from equation (5.5). Consider the embedding theorems, and the
inequality

<o |w (5.8)

Ij)’ - 5)””L2 (Y)xLy - u"“Q (MxLy

is derived from inequality (5.7).

The derived inequality provides the continuity of the linear functional
L(-) and bilinear form n(-,) on %

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.
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Theorem 5.2. Let a system state be determined as a solution to problem
(5.5), (5.6). Then, there exists a unique element u of a convex set Uy that is

closed in U, and relation (1.10) takes place for u, where the cost functional
has the form of expression (5.4).

As for the control v e %, the conjugate state p(v) is specified by the
equality system

dp ~ 0 op
PN gL =0, (xneQ,
o Uzax.{’faxj] (8 &Ly

Zk,j;cpcos(v )=—ap, (xtely,

[p]=0, (x’t)GYTa (59)

|:z COS(V :‘ %+y(v)_zg: (x’t)EYT’
J

aJ"‘l
p(x,T; ')=0, XE§]U§2.

Problem (5.9) has the unique generalized solution p(v)eW(0,7T) as the
unique one to the following equality system:

ji{;wdx j pwdy+a(p,w)——Yj'(y(v)—zg)wdy, (5.10)
J.p(x,T;v)wdx+ Icp(-,T;v)wdyzo. (5.11)
Q Y

Choose the difference y(v)— y(u) instead of w in equality (5.10), consider
equations (5.5) and (5.6), equality (5.11), and the equality
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T
—{ (P(), y() = (W) +(cp, y() - y(w)),, (y)} ’0 *

T T
d d
+ Oj (p(u), E(y(v)—y(u)))dw Oj (cp, E(y(v)—yw))]wdw

T T

+ [a(p.y0) = y@)dt = [(y(0) = 20 y0) - y(w)),
0 0

is obtained, or

T

- [~z 30D =yw)), = j((v u), p)), )
0

Therefore, the necessary condition for the optimality of the control u is
(—p+&u,v-—u)L2(r)xL2 >0 Vve. (5.12)

Thus, the optimal control u e is specified by relations (5.5), (5.6),

(5.10), (5.11) and (5.12). If the constraints are absent, i.e. when % =%,
then the equality

-p+au=0, (x,0)ely, (5.13)
is obtained from condition (5.12). If the solution (y, p)T to problem (5.5),

(5.6), (5.10), (5.11), (5.13) is smooth enough on Qr, /=12, then the

equivalent differential problem of finding the vector-function (y, p)T, that

satisfies the system specified by equalities (1.1), (1.5), (5.2), (5.3) and (5.9)
and by the constraint

z cos(vx)——ocy+[5+p/a (x, Helr, (5.14)
i,j=1 J
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corresponds to problem (5.5), (5.6), (5.10), (5.11), (5.13), where the
optimal control is found by the formula

u=pla, (x,t)ely. (5.15)

6.6 BOUNDARY CONTROL WITH FINAL OBSERVATION

Assume that equation (1.1) is specified in the domain Qz. On vy4, the

conjugation conditions are specified by constraints (1.3) and (1.4). The
initial condition has the form of expression (1.5), and the boundary
condition for concentrated heat capacity [91]

n
Zkijgcos(v,xi)=—ay—c0%+ﬁ+u, (x)elr, 6.1)

i,j=1 J

is specified on the boundary I'y, where the coefficient o =o(x) is
specified, in its turn, in point 6.1, 0<cy<cy=cy(x), c¢oeL,(),
u=u(x,t)eU=L,TI7r).

For every control u €% , determine a system state y = y(u) = y(x,t;u)

as a generalized solution to the initial boundary-value problem specified by

controls (1.1), (1.3)—(1.5) and (6.1). Specify the observation by the
expression

Zw)=Cy(u), Cy(u)=y(x,T;u), xeQUQ,. (6.2)
The cost functional is
5 T
J(u) = j( Y, Tsu)—zg(x)) d+ j IEuzdth, (6.3)
Q or

where 0 <ay<a <ay <®; a), a; =const, and it may be rewritten as

J () = (1) — 2L () + j (2 ()= y(x,T30)) e (63"
Q
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in this case,

T
1) = (¥ T3) = (- T50), (- T3 v) = y(, T; 0)) + j J'Zzu vdr dt
or
and

L) =(2() = (. T50), y(-T3v) = y(, T50)).
The generalized problem corresponds to initial boundary-value problem

(1.1), (1.3)-(1.5), (6.1) and means to find a vector-function
y(x,t;u) e W(0,T) that satisfies the following equations Vw(x) e Vj:

_[yde+Jz 'Jax 6xdx+ J-cofl—wdl"+
r

+e %wdy + [oywdT =(f,w)+ [pwar + fuowar (6.4)
y r r T
and

J' y(x,0;u)ywdx + Icy(x, O, u)ywdy + .[CO y(x,0;u)wdl =

Q Y r
- j o (X)wddx + jcyowdy+ j'coyowdr. (6.5)
Q Y r

The forthcoming statement takes place.

Theorem 6.1. Initial boundary-value problem (1.1), (1.3)—(1.5), (6.1)
has a unique generalized solution y(x,t,u) € I? 0,75V).

The validity of Theorem 6.1 is stated by analogy with the proof of
Theorem 1.1.

Remark. When Theorem 6.1 is proved, functions w;(x) may be chosen
as eigenfunctions that correspond to eigenvalues A;, j=1,2,.., of the
spectral problem: Find

0, u}e{Rleo, u¢0}: a(u,w)=Ab(u,w), YweV,,
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where

- Oou Ov
a(u,v)= J‘ Zkﬁaadx+ .[ocuvdF
Q i,j=1 j

and
b(u,v) = (u,v) + (cu, V), y) + (CO”’V)LZ(F) '

Let 7'=3(u') andj" = j(u") be solutions from I?(0,T;V) to problem
(6.4), (6.5) under f=0and B=0 and under a function u that is equal,

respectively, to ' and " . Then:
1d, . S~

L g5 - Ll e =55 -5), .+
2 dt 2 dt L)

1d A AUV A ~r 2
+EE CO(y -y ),y -y )Lz(r‘)"l'aO”y -y ”VS

S ””“Lz(r) I3 - 5’"”[,2(1") <Golu' - u””Lz(l“) 15 - 5’””1/ . (6.6

Find the integral of inequality (6.6) over the interval (0, 7), and the
inequality

~1 ~n ~r ~on 2 ~f ~n 2
|7 -5 @+Ne -7 @+ - @+
1516)) L)
>~ ~n 2 ' t " ~1 ~n

+0p "y -y ”VxL2 ) ”u —u ”lfz(F)XLZ ”y -y ”VXLZ (6.7)
is obtained from inequality (6.6). Since the inequality |5~ 3"|, L S

< %] u' -—u”||Lz(r)xL2 is true, then the one, i.e.
17 -3 L, M=<a oo’ =" Ly (TixL (6.8)

is derived from inequality (6.7).

The derived inequality provides the continuity of the linear functional
L(-) and bilinear form m(.,) on % for representation (6.3") of cost
functional (6.3). On the basis of [58, Chapter 1, Theorem 1.1], the validity
of the following statement is proved.
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Theorem 6.2. If a system state is determined as a solution to problem
(6.4), (6.5), then there exists a unique element u of a convex set U, that is

closed in U, and relation (1.10) takes place for u, where the cost functional
has the form of expression (6.3).
As for the control ve %, the conjugate state p(v) is specified by the

equality system
0 - 0 0
P z——(k,y pJ 0, (x,)eQy,

6xj

Z cos(v )=—ocp+c0@, (x,tely,
i,j=1 J o

[p]=0, (x,t) 7, (6.9)
{Z ——cos(v, x)} —C@, (x0)eyr,
ot
i,j=l J
p(x,T; ) +8(x~x)ep(x,T; ) +8(x=x")cg p(x,T; ) = y(v) -z,
xeQUQ,, xey, x"eT,

where 0 is the Dirac delta-function.
Problem (6.9) has the unique generalized solution as the unique one to
the following equality system:

—(‘gt’ wj I‘épwdy rc fj—wdl"+a(p,w) 0, (6.10)

Ip(x,T;v)wdx+ Icp(x, T;v)wdy+

Y
+jcop(x,T;v)wdr=J'(y(x,T;v)-zg)wdx. (6.11)
r Q

Choose the difference y(v)- y(u) instead of w in equality (6.10), consider
equations (6.4) and (6.5), equality (6.11), and the equality
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—(p@), y(») - y(w)) +(cp, y(v) = y()) 1, () +

T
+(eop, y0) =) )|+
T T
+ (p(u),%(y(v)-y(u))jm | (cp, %(y(v)—y(u))]bz( dt +
0 0 ¥)
T

T
d
+ CP,—y(V)—J/(u)) dt+ |a(p, y(v)— y(u))dt =
j( 1 ) Je )

T

=~(v@)=zg, Y0) = y@) (M + [(v -1, pW)),, p, dt =0
0
is obtained, 1.e.

(Y@ =zg, yO) = y@) (@) = (p@),y =) 1y TV E.
Therefore, the necessary condition for the optimality of the control # may
be written as follows:

(p(u)+c71,t,v—u)Lz(l_)xL2 >0 Vve. (6.12)

Thus, the optimal control u %, is specified by relations (6.4), (6.5),

(6.10), (6.11) and (6.12). If the constraints are absent, i.e. when¥ =%,
then the equality
ptau=0, (@xt)ely, (6.13)

is obtained from condition (6.12). If the solution (y, p)T to problem (6.4),
(6.5), (6.10)—(6.12) is smooth enough on Q;7, / =1,2, then the equivalent

differential problem of finding the vector-function (y, p)T, that satisfies

the system specified by equalities (1.1), (1.3)—(1.5) and (6.9) and by the
constraint
n

kl.jﬂcos(v,xi)=—ay—co -@w“ﬁ—l?/a, e
i,j=1 axf o
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corresponds to problem (6.4), (6.5), (6.10)—(6.12), where the equality
u=-pla, (x,t)ely,
specifies the optimal control u for the considered system.



7

CONTROL OF A SYSTEM DESCRIBED BY A
PSEUDOPARABOLIC EQUATION UNDER
CONJUGATION CONDITIONS

Let there be the following denotations: Q is a domain that consists of two
open, non-intersecting and strictly Lipschitz domains €; and Q, from an

n-dimensional real linear space R"; I'=(6Q,UdQ,)y (y=00Q;N
N0Q, # ) is a boundary of a domain Q, 0Q); is a boundary of a domain
Q;, i=1,2, Qr =Qx(0,T) is a complicated cylinder, I'; =T'x(0,T) is
the lateral surface of a cylinder Qp Uyy, yr =yx(0,T).

Let ¥ be some Hilbert space and assume that V' is a space dual with

respect to V. By analogy [58], introduce a space LZ(O,T ;V) of functions

t— f(¢) that map an interval (0,7) into the space V of measurable
functions, namely, of such ones that

T 1/2
[jnfn; dt] <w.
0

Also by analogy, specify the space I2(0,7;V"). Introduce a space

W(0,T) = {f: f,f‘g;- e LZ(O,T;V)}.
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7.1 DISTRIBUTED CONTROL

Assume that the pseudoparabolic equation [67]

_ &%y »_ o, o)
Zax['fa a}ra() ZGXi(kijax.]—f(x,t) (L.1)

i,j=1 J=1 J

is specified in the domain Qr, where

aya, = a|a,c COINC' @, kilg, =kils e C@INC @),

alo,€ CQ), flapeCQr), 1=1,2; |f]<w, 0<Fy<a<o,

%Zé? < Z a; &, < aoZa,,

i,j=l1

aIZg Zk,lé(‘;JSalzg,,Ver VELEER (L)

i,j=1
dg, 0o, Oy, OLg, O = const > 0.

The boundary condition

n 62
Z [aij aij(’;t +k; aay cos(v,x;)=—ay+f (1.2)

ij=1
is specified, in its turn, on the boundary I';, where a=oa(x)=
>a> 0; a, Be Ly(I); o= const; and v is an outer normal.

On vy, the conjugation conditions are
n 2
0
{Z{ a4 ;t+ky aay jcos(v,xi)}=0 (1.3)
i,j=1

and
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n 2 *
{Z( ,jaaya +k; ;y Jcos(vx)} =r[y], (1.4)

i,j=1 *
where 0<r=r(x)<r|<w;, ri=const, [pl=0"—07; o '={o} =0(x,?)
under (x, )ey7 =(8Q, NY)x(0, T); ¢ ={p} =¢(x, ) under (x,f) e
eyr =(6;Ny)x(0,T), v is a normal to y (an ort of a normal to y) and

such normal is directed into the domain €, .
The initial condition

¥(x,0)=yo(x), xeQ Uy, (1.5)

where y, eV = {v(x) : v|Qi € WZI(Q,-), i= 1,2} , 1s specified under # =0.
Let there be a control Hilbert space % and operator Be
e¥ (%; LZ(O, T, V')). For every control u €%, determine a system state

y = y(u)= y(x,t;u) as a generalized solution to the problem specified by
the equation

A(%J+K(y)=f+Bu, (1.6)

where

- 0 oz o 0 0z
A(z)=—'z_a; ayo— |+az K@)=- Za kya , (1.7
i,j=1 J i,j=l1
and by conditions (1.2)—(1.5). Further on, without loss of generality,
assume Bu=u and, for the sake of simplicity, use the denotation
y=y(x1).
Specify the observation by the following expression:
Z(u)=Cy(u), Ce2(W(0,T);)). (1.8)
Specify the operator
N e L(UU); (Nu,u)q, 2V ””“w’ v =const > 0. (1.9)
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Assume the following: Wfu=au; in this case, ?z'QleC(Ql),

[=1,2; O0<ay<a<a <o, a,,a =const.The cost functional is

J(u) =|Cyw) -z || (A, 1)qy, (1.10)

where z, is a known element of the space .

The optimal control problem is: Find such an element u € % that the
condition

J(u)= inf J(v) | (1.11)
Vel

is met, where % is some convex closed subset in .

The generalized problem corresponds to initial boundary-value problem
(1.6), (1.2)—(1.5) and means to find a function y(x,t;u)e W(0,T) that

satisfies the following equations Vw(x) eV = {v v |Ql, eWy (), i= 1,2} :

ao (¥ w) +a(y, w) =(f,w) + (u, w) + ﬁswdr, te(0,T), (1.12)

r
and
ap (y(,0;u), w()) = ag (7o (), w()) 5 (1.13)
in this case,
,_dy ' '
V=" a(,w) =Q l; yé—a—+ayw] dx,  (1.13)

a(y,w) = _[Zk,ja dx+j' [y ][w]dy+jaywdr, (1.13")
Y r

Wzl(Qi) is the space of the Sobolev functions that are specified on the
domain Q;, i=1,2, and, when the space W(0,T) is specified, then the
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space V is V={v(x,t):v|QieW21(Q,~), i=1,2 Vee[0,T]}, (9. y)=
= I@(x, Dw(x,1)dx.
Q

Consider the existence and uniqueness of the solution to problem (1.12),
(1.13). Since Bu and f e I*(0,7;7') and V' ={v(x,1): (v,v) <0,
Vte(0,T) } , then, without loss of generality, assume the following:
Bu=0.

The space ¥}, is complete, separable and reflexive [41, 49, 55]. Choose

an arbitrary fundamental system of linearly independent functions
wi(x), k=12, ..., in V. Let this system be orthonormal in Z,(€2) so that

(we,w)=8% (Of =1, 8, =0 under I#k; L,k=12,..). As for yye
e L,(Q) [49]:

Yo= &w(x), (1.14)
i=1

where &; =(yo,w;), i=1, 2, ....
Remark. Functions w;(x) may be chosen as eigenfunctions that
correspond to eigenvalues %;, j=1,2, ..., of the spectral problem: Find
(Au)e {Rl xVy, u # O} sag(u,w) = Mu,w), VweV,.
The approximate solution to problem (1.12), (1.13) is given as
m
Y%t = gim(wi(x), (1.15)

i=1
where the functions g;,,(¢) are chosen in such a way that the relations

ao(%)tﬂ,wj)+a(ym,wj)=(f,wj)+Ijﬁwj dl’y, j=1,m, (1.16)

and
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ao (30 w;()) =ao (y0()w;00), j=Lm, (1.17)

are met. Equalities (1.16) and (1.17) specify the Cauchy problem for the
system of m first-order linear ordinary differential equations as for g;,,(¢):

M, df;" +K,g, =F, (), (1.18)

Mg, (0)=Fy; (1.19)
in this case,

M,, ={Mg'}:=1, My =ag(ww), Ky ={ K71} e’
k' =a(w,wp), B0 ={f"Of , f©=(f,w)+ [BwaT,
r

0 m 0 _ 0" 0

Since the bilinear form ay(-,-) is V-elliptic on V;, then the symmetric

5 12
matrix M, is positively specified. In this case: Mv”V = {Z"v";,l @) } .
2 1
i=1

Therefore, the solution to Cauchy problem (1.18), (1.19) exists and such
solution is unique. The following statement must be proved: y, =y

under m — o0, where y = y(x,?) is the solution to problem (1.12), (1.13).
Multiply equality (1.16) by g;,,(#) and find the sum over j for the resuit.
Then:

(%m,ym}a(ym,ym) (f>m)+ jByde

ie.:
1 d

2dt O(ym’ym)+a(ymsym) (f ym)+jﬁymdr (120)

r
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Take conditions (1.1") and the generalized Friedrichs inequality [21]
into account, and the inequalities

aO(ym,ym)ZCO”ym”[2/ZCOHym”2 and a(ym,ym)zcluymllyz/ (121)

are derived, where ¢, =min{oy,dy}, ¢; = %ocl min(1, p), p is the positive

constant from the generalized Friedrichs inequality and | o] = (¢,0)"* =

1/2
- [ I(pz(x,t)de .
Q

Consider inequalities (1.21), the e- and Cauchy-Bunyakovsky
inequalities and embedding theorems [55], and the inequality

T T
Co“)’muz (T)+2C1 I‘|ymlli dt < ay (ym’ym)(0)+2 jl(faym)ldt+

T
+2Mﬁymdr

(1Y

dt < ch |yl (0)+2¢ j][ymnV dt +_ j|| fIPde+

12¢,¢, ﬂlym||y di+— j||ﬁ||L - (1.22)

follows from equality (1.20); in this case, "(P”iz(r):

= I(pz (x,t)dl', ¢, =max ¢; and the constant ¢; is obtained from the
I=1,2
r
inequality proved in the embedding theorem applied for the domain Q.
Proceed from equality (1.17), consider the first condition from

assumptions (1.1), boundedness of the functions a; and a on

Q;, [=1,2, and the Cauchy-Bunyakovsky inequality, and here is the
conclusion:
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o[yl ©) s ch

Yo ”V ”ym”V (O) ’
i.e.

|yl 0) < ?”J}OHV : (1.23)
0

Take inequality (1.23) into account, and the inequality

T T T
Jlymlly e | Lol + flriPa+ fllﬁlliz(r)dfj
0 0 0

follows from inequality (1.22).
Therefore, the elements y,, are in some bounded subset of the space

I? (0,T;V) . Hence, there exists a subsequence { yx} that weakly converges
to the element z e LZ(O, T;V). Without loss of generality, it is stated that

the whole sequence {y,,} weakly converges to z.
Rewrite equality (1.16) as

%ao(ym,wj)+a(ym,wj)=(f,wj)+ I[iwjdl", j=1m,

r
multiply its both sides by the function
o(t) e C'([0,T]), o(T)=0, (1.24)
and find the integral from O to 7 of the result:
T
_‘-{"ao (ym('5t)’(P'j('at)) + a(ym,q)j )}dt =
0
T T
= [(7.0;)de+ [ [Bo,;dr+ag(ym ;)@ (1.25)
0 or

in this case, @ ;(x,£) = o(O)w;(x), ¢';(x,0)= % w;(x).
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By virtue of the aforesaid weak convergence, it is possible to pass in
equality (1.25) to the limit under m — o, and the following equality is

obtained:
T T
J-{—ao (z,(P'j)+a(z,(pj)} dt = j(f,(pj) dt +
0 0

T
* f _[B(p,- dTdt+aq(2,0;)(0). (1.26)
or

Consider the assumptions as for {w j} , and it can be seen that the matrix

M? from condition (1.19) is diagonal (Mgi,:ao(wi,wi), M2 =0

mij
under i#j, i,j=1,_m). The equality g, (0) = ag (o, w;)/ag (W, w;)
follows from condition (1.19), ie. g;, (i =i,_r;1—) are the Fourier

coefficients for the function y,. By virtue of [49]:

m
Ym(x,0) = z Zim(O)w;(x) =yo(x) under m — 0.
i=1
Hence: z(x,0) = yo(x).
Equality (1.26) is true for the arbitrary function ¢ that meets conditions
(1.24). Thus, the following can be assumed: ¢ € D(0,T) [58]. Therefore,
the equality

T r r
[{=a0(zw,)0' +a(z.0,)} dt= [(f.0;)dt+ | [Bo; aTa
0 0 or

follows from equality (1.26). Hence:

T

J{%ao(z,wj)+a(z,wj)—(f,wj)— jﬁwj df}cp(t) dt=0,
‘ r

1.e.:
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ao(%,wj)m(z,wj):(f,wj)Jr jﬁwj dr, te(0,T). (1.26')
r

Take equality (1.26"), the space ¥}, and assumptions as for the functions
w; into account, and it is stated that the equality

ay (%,w)+a(z, w) = (f,w)+ f[ﬁwarr (1.27)

is true Vw eV, . The following equality is obtained from relation (1.17):
ag (2(;0),w()) = ag (1o (), w()), Ywe ;. (1.28)
Therefore, the function z L2(O, T,V) is the solution to problem (1.12),
(1.13) Vf € L*(0,T;7") and under Bu =0, i.e. to problem (1.27), (1.28).

Illustrate the uniqueness of the solution to problem (1.27), (1.28) by
contradiction. Let there exist two solutions: z(x,f) and z,(x,t)e

el? (0,T;V). Then, on the basis of equality (1.27), the equality
giao (z,2)+2a(z,2)=0 (1.29)

is obtained, where z = z; —z, #0.
Consider equality (1.28), and the contradiction

T
0<ay(Z,Z)(T)+0y _ﬂ] z Hf, dt<0, o, =const>0,
0

follows from equality (1.29).
Therefore, the validity of the following statement is proved.
Theorem 1.1. Initial boundary-value problem (1.1)—(1.5) has a unique

generalized solution y(x,t) e L2(O, V).
Proceed from equality (1.29), and it is easy to see that y(u)# y(uy)
under w;#u, (Buj#Buy). Let 7' =3(u') and 3"=3(u") be solutions
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from LZ(O,T;V) to problem (1.12), (1.13) under f=0 and B=0 and
under a function u = u(x,¢) that is equal, respectively, to #' and #". Then:

1d ~r o~ o~ ~ o~ ' ”
~Z a4y (7 -7 - 7"+ a7 -5 <[’ ~u . (1.30)

2dt
Therefore, the inequality

b}r_jv)n

~r o~ 1 ’ ” ,
=, < o =y, (1.30)

is obtained, where

T
2 2
Il z,= flol . |
0

Rewrite functional (1.10) as

T
2 2 2 2
ol =lol’ = [o*cen a, ol = floly -
Q 0

T
J () = () — 2L(w) + ﬂ] -y, (131)
0

where
n(u,v) = (y(u) - y(O), y(V) - y(O))” + (21- uav)“l[ ’ (1 32)

L) =(zg = ¥(0), ()= ¥(0) 5
in this case,

T
(2,V) e =(2,V)g = I(z,v) dt, (z,v)= J-zvdx.
0 Q
Inequality (1.30") provides the continuity of the linear functional L(-)
and bilinear form n(-,) on 7.
On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.
Theorem 1.2. Let a system state be determined as a solution to problem
(1.12), (1.13). Then, there exists a unique element u of a convex set U,
that is closed in U, and

J(u) = inf J(v) (1.33)
vely
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takes place for u.

The control u € %, is optimal if and only if the inequality

(J'(w), v—u) 20, Vve ¥, (1.33")
is true, i.e. under
(@) =2g, y0) = y(W))  +(H 1,y ~u)y 20. (1.34)
As for the control v e %, the conjugate state p(v) is specified by the
relations

n 2 6p

-Z,, (x,0)e Qr,

iélax(”ax atJ 61 lz [tja J y(v) Zg (x,0)eQr
n

P _
Z( y6x16t+k oy ]cos(vx)— op, (x,0)el’y,

i,j=l1 J
L;( yaizat”‘ ;ijjcos(v;c)} 0, (x,0)€vr, (1.35)
+
i 0° op +k. 6p cos(v,x;)t =r[pl, (x,0) ey
i =l % Ox 6t y 6 > > A )

p(x,T)=0, xeQUQ,.

Substitute a time 7— ¢ for the time ¢, proceed from Theorem 1.1, and it is
concluded that initial boundary-value problem (1.35) has the unique

generalized solution p(v) e I? (0,T;V) as the unique one to the following
equality system:

-a, (g;p(v), wj +a(p,w)= (y(v) - zg,w), VweV,, (1.36)

ay(p,w)=0, t=T. (1.37)
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Choose the difference y(v)— y(u) instead of w, consider equation
(1.12), the equality

T [ dp(w) ! d
[l (-f— Y0~ y(u))dt = [ (p(u),z(y(v) - y(u))) dr, (137)
0

S a

and the equality
T T
[(v@ =2, y0) - yw) e = [(pw),v—u)as (1.38)
0 0

is obtained from equality (1.36).
Therefore, inequality (1.34) has the form

T
j(p(u)+c7u,v—u) dt20, Vveu. (1.39)

0
Thus, the optimal control u € % is specified by relations (1.12), (1.13),

(1.36), (1.37) and (1.39).
If the constraints are absent, i.e. when % =% , then the equality

u=-pla, (x,H)eQr, (1.40)

is obtained from inequality (1.39).
If the solution (y, p)" to problem (1.12), (1.13), (1.36), (1.37), (1.40) is

smooth enough on O, viz, 3y, plg—le eCP@Q,HN > Q) N

NC® (), I=1,2, then the differential problem of finding the vector-
function (y, p)", that satisfies the equalities

y 2 ) vy Sof,
— . +qg—- —\ k.= |+ - , 1 o) ,
PCANET T M Zax,. s pla=f, (x0eQy

i,j=1
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n 2
9 a; P |_,%&_ 2 k;; P y=-z4, (x,0)€Qyr,
e~ Ox; Ox ;Ot ot “~ ox;\ 7 0Ox;
i,j=1 J =] J
n 2
2 (aij 6(1 ;t+klj :y ]cos(v x)=—ay+p, (x,p)elr,
i,j=1 J
k, 2. = el
Z; ’Ja 6t+ ”6 cos(v,x;)=-ap, (x,t)el'r,
9 _
{‘é( ay o at+k ) cos(v,x,) [=0, (x,0) e yr,
. +
o*
{l y= ( U ax Ja}t kl] aay Jcos(v?xi)} =r[y]: (xat)EYT>

n
ap op
k [ X441 :O: ,t »
bj( Yoo o jcos(vx,)} () evr

+

[ o’p +k; % ]cos(v,xi)} =rlpl, (0 evr,

’fa 61‘ Y ox
y(x,0) = yp(x), x€Q UDy,
and

p(x,T)=0, xeQUQ,,
corresponds to problem (1.12), (1.13), (1.36), (1.37), (1.40).
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7.2 CONTROL UNDER CONJUGATION CONDITION
WITH OBSERVATION THROUGHOUT A WHOLE
DOMAIN

Assume that equation (1.1) is specified in the domain Q7. On the
boundary I'y, the boundary condition has the form of expression (1.2).

For every control ue % =L,(yr), determine a state y=y(u) as a

generalized solution to the initial boundary-value problem specified, in its
turn, by equation (1.1), boundary condition (1.2), initial condition (1.5) and
the conjugation conditions

n 2
[.Z_(aij——ai;t+ky%JCOS(V’xi):I=m+u’ x,Heyr, 2.1
i,j=1 J J
where © = o(x,1) € Ly(¥r).

Since there exists the generalized solution y(u)e W(0,7) to initial
boundary-value problem (1.1), (1.2), (1.5), (2.1), then such solution is
reasonable on Q;; (I =1,2).

The generalized problem corresponds to initial boundary-value problem
(1.1), (1.2), (1.5), (2.1) and means to find a function y(x,t;u)e W(0,T)

that satisfies the following equations Vw(x)e V= {v: v[Q‘ € WZI(Q,-),
i=12; [v]=0}:
ao(%,w)+a(y,w)=(f,w)—ju)wdy— juwdy+

Y Y
+ J’der, Vie(0,T), 2.2)
r

and
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ag (y(50;1), w()) = ag (yo(), w()), t=0; (2.3)

in this case, V={v(x,t): W, €M@, i=12 V=0, ‘v’te(O,T)}, the
]

bilinear form a(-,-) is specified by formula (1.13"), and

a(q;,w)—jz a“’ de+_[oc(p\|;dr 2.3
r

The following statement takes place.
Theorem 2.1. Initial boundary-value problem (1.1), (1.2), (1.5), (2.1)
has a unique generalized solution y(x,t,u)e W(0,T) Yue.

The validity of Theorem 2.1 is stated by analogy with the proof of
Theorem 1.1.

Proceed from equations (2.2) and (2.3), and it is easy to see that
y(u)# y(uy) under wy=u,. If 3'=5(u') and 3" =3(u") are solutions
from W(0,T) to problem (2.2), (2.3) under f, B and ®=0 and under a
function u that is equal, respectively, to #"and «" , then the inequality

ld Io~n o~ o~ = W~ o~
Ezao(y—y,y—y)wco“y -y||,2,S

<l =l |5~ 0 S ol =l 7 - 7

is derived, from which the inequality

—a()(y yn o )

~n

U= ety 19 = 5y

follows. Therefore, the inequality

~r o~ ~1 ~n C ' "
|7~ ”szbz <|y'-7 "Vxla Sa—(())llu —u Hl,z(y)xLz ’ 24)
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where ||(|>||L2(Y)><L2 ,ﬂ|(P"L2(Y) ||(p||L2(Y) j‘(pzdy, is obtained that

Y
provides the contlnulty of the linear functional L(-) and bilinear form

7(,-) on 2. In this case, the linear functional L(-) and bilinear form 7(.,-)

T
are specified by expressions (1.32), where (Q,y), = J.((p,\u)dt,
0

T
(@) = j j'cpw dydt.
0y
Specify the observation in the form of expression (1.8), where
Cy(u) = y(u). Bring a Value of cost functional (1 10), now in the form

J(u) = I J' W)~z ) ddr+ j' Iauzdydt (2.5)

0y
in correspondence with every control u €% ; in this case, z, is a known
element from  I? (0,T;V), O<ag<a(x)<a; <w, ay, a; = const,

aeLy(y).

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 2.2. If a system state is determined as a solution to problem
(2.2), (2.3), then there exists a unique element u of a convex set Uy that is

closed in U, and relation (1.11) takes place for u, where the cost functional
has the form of expression (2.5).

As for the control v e %, the conjugate state p(v) is specified by the
relations

n
zax ’faxat - _aT ax ’Ja =y =zg (B0 €0y,
i, j=1 ij
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n
Z[ 'Jéx 6t Vox, }COS(V,XI')=“OCP, (x,p)ely,

i,j=l1 J
[p]:()a (xat)EYTa (26)
3 &p .,
+k V, i =0, ,t ,
LZ][ “ara e cos(V,x;) (0 eyr

p(x,T)=0, xe QUQ,.

Problem (2.6) has the unique generalized solution p(v) € ? (0,T;V) as
the unique one to equality system like (1.36), (1.37), where the bilinear
form ay(-,-) is written as expression (1.13') and a(-,-) is specified by
expression (2.3'). Assume that w= y(v)— y(u), consider equations (2.2)

and (2.3), and the equality
T

[(v@) -2, y0) - y@w)d j jp(u)(v u)dy de

0
is obtained from equality (1.36). Therefore, the control u € %, is optimal if
and only if the following inequality is true:

_[ j(—p(u)+au) v—u)dydt 20, Vv e U. @.7)

0y
Thus, the optimal control u € % is specified by relations (1.36), (1.37),
(2.2), (2.3) and (2.7), where the bilinear forms ag(:,7) and a(,,-) are
specified, in their turn, respectively, by expressions (1.13") and (2.3"). If the

constraints are absent, i.e. when %; =% , then the equality
-pwy+au=0, (x,t)eyr,

is obtained from condition (2.7). The optimal control
u=pla, (x,H)eyr, (2.8)
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is found from the obtained equality.
If the solution (y,p)" to problem (1.36), (1.37), (2.2), (2.3), (2.8) is

smooth enough on Q, viz., 3y, p|§—2]Te P @QrHNCc*©@rN

ﬂCO’l (7)., 1=1,2, then the differential problem of finding the vector-
function (y, p)", that satisfies the equalities

_Zax(”axat] “or izax[’f )f’(x’t)EQT’

o 0 op op S, Op
- ) —|ki— |-y=-z,, (x,t) e Qrp,
Z@x{”@x@t] “or ijzz:laxi(”axj y=zp (B0 E0

i,j=1

Zn:[ a; ™ 6t+k ¥ )cos(v,x,-)=— oy+B, (x,0)els,

i
i,j=1 ox

Z( ”6 at+ky:p]cos(v,xi)=—ap, (x,t)elr,

i,j=1

[y]=0, [p]=09 ()C,t)G’YT,

- 0* _
Lz [aij . gt ky aay cos(v,x;) |=o+pla, (x,t)eyr,

. ’p . o
Z(—aij axjat+k’fa Jcos(v,x,-) =0, (x,0)eyr,

y(x,O) =y0(X), p(x’T)=0’ xeﬁ] UQZ:

and

u=pla, (x,H)eyr,
corresponds to problem (1.36), (1.37), (2.2), (2.3), (2.8).
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7.3 CONTROL UNDER CONJUGATION CONDITION
WITH BOUNDARY OBSERVATION

Assume that equation (1.1) is specified in the domain Qj. On the
boundary I';, the boundary condition has the form of expression (1.2). For
every control ue ¥ =L,(yr), determine a system state y = y(u) as a
generalized solution to the initial boundary-value problem specified by
equation (1.1), boundary condition (1.2), initial condition (1.5) and the
conjugation conditions

(¥1=0, (x,0)evr, (3.1)
and

n 2
Z a; oy +k; Y cos(v,x;) |=o+u, (x,t)eyr, 3.2)
— Ox 0t ox;
i,j=1 J J
where o =o(x,t) e Ly(yr).

Specify the cost functional by the expression

J(u) = Tj j( yu)-z, )Za’I‘dt + Tj j au’dydt. (3.3)
or 0y

The generalized problem corresponds to initial boundary-value problem
(1.1), (1.2), (1.5), (3.1), (3.2) and means to find a function y(x,t;u)e
e W(0,T) that satisfies equations (2.2) and (2.3) Vw(x) € V},; the bilinear
forms ay(-,-) and a(,-) and spaces V (in W(0,T)) and ¥, are specified in
point 7.2.

According to Theorem 2.1, initial boundary-value problem (1.1), (1.2),
(1.5), (3.1), (3.2) has the unique generalized solution y(x,t;u)e W (0,T)
YueUu.

Proceed from equations (2.2) and (2.3), and it is easy to see that
y(u) # y(u,) under u#u,. Let 7' =p(u') and 3" = y(u") be solutions
from W(0,T) to problem (2.2), (2.3) under f,p and ®=0 and under a
function u that is equal, respectively, to ' and u". Then, consider the
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embedding theorems, and it is stated on the basis of inequality (2.4) that
the inequality
[~

is true that provides the continuity of the linear functional L(-) and bilinear
form m(-,-) (1.32) on % for the representation of cost functional (3.3) like
the representation of cost functional (1.31).

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 3.1. Let a system state be determined as a solution to problem
(2.2), (2.3). Then, there exists a unique element u of a convex set Uy that is
closed in U, and relation (1.11) is true for u, where the cost functional has
the form of expression (3.3).

As for the control v e %, the conjugate state p(v) is specified by the
equalities

o 0 o°p Gp
—a®_ =0, (x.0) € Q,
.Z@x[ljaxat at 4 ax by |70 (el

i,j=1 J
P . P cos(v,x;))=—ap+y(V)—z,, (x,t)ely,
G i i
by 6 0t 0x;
[p]=0, (x,0)evr, (3.4
& 82 op }
Z +k; cos(v,x;) |=0, (x,0)eyr,
dij i i

LFl( Ox;0t ox

p(x,T)=0, xeQUQ,.

Problem (3.4) has the unique generalized solution p(v)e W(0,T) as the
unique one to the following equality system:

—ay (%p(v),wJ +a(p,w)= 1j(y(v)— zg)wdF, vYweV,, (3.5)

ag(p,w)=0, Vwel,, t=T. (3.6)
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Choose the difference y(v)-— y(u) instead of w, consider equality (1.37')
and equation (2.2), and the equality

T T
- [ [pen—wayar= [ [(y00 -z, ) (») - y@wy)arar
0y or

is obtained from equality (3.5). Therefore, when applied to the considered
optimization problem, inequality (1.34) has the form

T
[[-praw-wayde=0, vew,. (3.7)
Oy
Thus, the optimal control u € %, is specified by relations (2.2), (2.3),
(3.5), (3.6) and (3.7), where the bilinear forms ay(,-) and a(,-) are

specified, in their turn, respectively, by expressions (1.13") and (2.3"). If the
constraints are absent, i.e. when %; = % , then the equality

-p+au=0, (x,H)eyr,
ie.
u=pla, (x,t)eyr, (3.8)
is obtained from condition (3.7).
If the solution (y,p)" to problem (2.2), (2.3), (3.5), (3.6), (3.8) is
smooth enough on Q;, /=1, 2, then the differential problem of finding

the vector-function (y, p)", that satisfies the equalities

_Zax[”axaz] ,-Z {’Ja ) J> (e,

i,j=1

[, Op )|
2 - 0, (5,)€Qp,
Zax,.(aaj ot Zax ‘Ja ()&

i,j=1
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n 2
Z( Iy ZY ik, ay]cos(v,xi)=—ocy+[3, (x,t)elp,

— v Ox ;0t P
i,j=1
Z” o
ij_,l[ lja at+klja jcos(v,x,-)=—ocp+y—z H (x,t)eFT,

[y]=0’ [p]:(), (x’t)GYTa

n 62 3
I:Z( Uax Ot kl] aay jcos(v,xi)}=0)+p/a, (xat)e'YT,

i,j=1

< &*p B
{Z[ U@x 6t+k 8p Jcos(v,x,-)}=0, (x,t)eyr,

i,j=1 Xj

and

¥(%,0)= yo(x), p(x,T)=0, xe QUQ,,
corresponds to problem (2.2), (2.3), (3.5), (3.6), (3.8).

74 CONTROL UNDER CONJUGATION CONDITION
WITH FINAL OBSERVATION

For every control u €% = L,(yy), determine a system state y = y(u) as a

generalized solution to the initial boundary-value problem specified by
equation (1.1), boundary condition (1.2), initial condition (1.5) and
conjugation conditions (3.1) and (3.2).

The cost functional is

T
J() = ag (Y, Tsu) - zg, y(x, Tyu) ~ 2 ) + ”auzdydt, 4.1)
0y
where 0<ap<a(x)<a; <o, ap,a =const, z, €V;, and it may be

rewritten as
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J () = m(uu) = 2L(u) + ag (2, () = Y. T50),25() = y(. T;0)), (4.1')

where

T
w(,v) = ag (Y T50) = Y(T30), y6T30) = T3 0)) + [ [auvayr
0y

and

L) = ay (24 () = y(-T30), y(T5v) = (- T50))..
The generalized problem corresponds to initial boundary-value problem
(1.1), (1.2), (1.5), (3.1), (3.2) and means to find a function y(x,t;u)e
e W(0,T) that satisfies equations (2.2) and (2.3) Vw(x) € V}; in this case,
the bilinear forms ag(-,-) and a(,-) are specified, respectively, by
expressions (1.13") and (2.3') and the space ¥ is specified, in its turn, in
point 7.2.

According to Theorem 2.1, there exists the unique generalized solution
to problem (1.1), (1.2), (1.5), (3.1), (3.2). It is stated in point 7.2 that
y(u) # y(uy) under wuy#u,. If 3'=3(')and y"=ju") are solutions
from W(0,T) to problem (2.2), (2.3), where the bilinear forms a,(:,) and
a(-,-) are specified by formulas (1.13") and (2.3’), under f =0, =0 and
® =0 and under a function u that is equal, respectively, to ' and »", then
the inequalities

1 A A A 2 - ~r o~
5‘10(}’ —yVLy -y )(T)+0c0”y =y ”12/xL2 =

'<' CO "u, -—u”“Lz('Y)XLZ I|j;l —5)” VXLZ > (4.2)

ul _ u”

— I~ ~nl12 ~ o~
(10 “y,_y”“VxLz S COI Lz(Y)XLZ “y'—y”“VXLZ

are true. Proceed from them, and the inequality

~) o~y ¢ ’ "
|5 -3 "VXLz Sa%"“ —u "Lz(Y)XLz (4.3)
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is obtained. Consider it, and the inequality

~1 ~n o~ ~n zcg 12 " 2
ag(¥' =55 =3 )(T)S‘a"“ =4, (i,

follows from inequality (4.2).
Then, the inequality

"5}, - 5}”||V (T) < Cb ”u, - u””l,z (V)xLy? C{) = const 4

is derived that provides the continuity of the linear functional L(-) and
bilinear form m(-,-) on .

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 4.1. If a system state is determined as a solution to problem
(2.2), where the bilinear forms ay(-,-) and a(-,") are specified,
respectively, by formulas (1.13) and (2.3’), then there exists a unique
element u of a convex set Uy that is closed in U, and relation (1.11) takes

place for u, where the cost functional has the form of expression (4.1).

As for the control v e %, the conjugate state p(v) is specified by the
relations

S 6p
O, )t Qa
i;ax(’faxatj Ot Zax ’]6 (x.0) €Ly

Z( Ui e J‘"“’s(“’xf)wp, (x0)elr,

i,j=1 J

[p]=0, (xat)e'YTa (44)

L *p op
+k [ 2441 :09 5t >
{Z[ iy ot i 5 cos(V, x;) (x,)eyr

ij=1 J
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p(x,T;v) = y(x,T;v)—z,, xe Q;UQ,.

g’
Problem (4.4) has the unique generalized solution p(v) e W(0,T) as the
unique one to the following system:

—-ay (Zld;p(v),wj+a(p,w)= 0, VweV,, 4.5)

ag(p(.T3v), w) = ag(y(r) ~ zg,w), Ywel. (4.6)
Choose the difference y(v)- y(u) instead of w, consider equation (2.2),
the equality

2 (dp(u)

~ , y(v) - y(u))dl‘ =

T
0

T
= Iao (p(u),g;(y(v) -y (”))) dt=ay(p.y(v) = y@))| g
0
and the equality
T

- _[ J' pu)(v - u)dydt - ay (p(w), y() - y@))| _, =0

0y

is obtained from equality (4.5). Consider also equality (4.6), and the
equality

T
a0 (y@) =z, )= y)) == [ [p@)v—w)dvds, Fve v, (4.7)
0y

is derived. Take it into account when applied to the considered
optimization problem, and inequality (1.33") has the form

T
Ij(—p(u) +au)(v—u)dydt 20, YveU,. (4.8)
0y
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Thus, the optimal control u € %, is specified by relations (2.2), (2.3),

(4.5), (4.6) and (4.8).
If the constraints are absent, i.e. when % =% , then the equality
-p+au=0, (x,t)eyr, 4.8")
is obtained from condition (4.8) along with the optimal control
u=pla, (x,H)eyy. (4.9

If the solution (y,p)" to problem (2.2), (2.3), (4.5), (4.6), (4.8 is
smooth enough on €, /=1, 2, then the differential problem, specified

by equalities (1.1), (1.2), (1.5), (3.1), (3.2) and (4.4), corresponds to
problem (2.2), (2.3), (4.5), (4.6), (4.8"), where the control « is found by
formula (4.9).

7.5 CONTROL UNDER BOUNDARY CONDITION WITH
FINAL OBSERVATION

For every control ue L,(I'y), determine a system state y = y(u) as a
generalized solution to the initial boundary-value problem specified by
equation (1.1), conjugation conditions (1.3) and (1.4), initial condition
(1.5) and the boundary condition

Z a; ——+kj— [cos(v,x))=—ay+PB+u, (x,5)el'r. (5.1)
= Ox 0t Ox

The cost functional is

T
J(u) = ag(y(x, T5u) = 24, y(x, Tsu) — 25 ) + ”auzdl"dt. (5.1
0T
The generalized problem corresponds to initial boundary-value problem

(1.1), (1.3)—(1.5), (5.1) and means to find a function y(x,t;u)e W (0,T)
that satisfies the following equations Vw(x) € ¥}:
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a (%,w}ra(y, W)= (f,w) + 1!de1"+ rjuwarr (5.2)
and

ay (y(,O,u), W()) =4y (yO()aw())a = Oa (53)
in this case, the spaces W(0,T) and ¥}, are specified in point 7.1 and the
bilinear forms ay(:,-) and a(,-) are specified, in their turn, respectively, by

expressions (1.13") and (1.13").
Theorem 5.1. Initial boundary-value problem (1.1), (1.3)—(1.5), (5.1)
has a unique solution y(x,t,u) Yue .

Proceed from equation (5.2), and it is easy to see that y(ul) # y(uz)
under uj#u,. If 3'=y(') and y"=yu") are solutions from W(0,7) to
problem (5.2), (5.3) under f, B and =0 and under a function that is
equal, respectively, to #' and u", then the inequality

1 d ~p ~n ~t ~n — ~) ~p 2 , " - .
EEaO(y —yL,y -y )+Otol|y -y IIV <cylu'—u “LQ(I‘)"y _ “V

is derived, from which the inequality

1 ~1 ~n o~ ~n - ~ o
290 (F =55 =7 )T+ | - 5 R

<colu'- u”||L2(F)xL2 |7 - V"VxLz
follows. Therefore, the inequality

”5" - jjﬂl y () =¢ ”“’ - u””LQ(r)xLz
is obtained that provides the continuity of the linear functional
L(v) = ag(25() = Y. T;0), (. T39) = y(- T50))

and bilinear form

T
m(,v) = g (YGT5) = Y(,T30), y(,T39) = y(T30)) + [ [auvalas
or
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on % for representation (4.1') of cost functional (5.1").

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 5.2. Let a system state be determined as a solution to problem
(3.2), (5.3). Then, there exists a unique element u of a convex set Uy that is
closed in ¥, and relation (1.11) is true for u, where the cost functional has
the form of expression (5.1').

As for the control v e %, the conjugate state p(v) is specified by the
equalities

- 0 8p ap
—a 2 =0, (x.5) € Q.
i%ax “I o ot at - ax b5, |70 oD E0r

Xj

Z( ya at+k ap JCOS(V,xi)z—ap’ (x,t)GFT,

Y ox
i,j=1

4y + kij cos(v,x;) | =0, (x,) e yr, (5.4)
= ox jé’t ox; |

+
i 6 P +ky ap COS(V,)C-) =7'[p], (X,t)E'YT,
% Ox;0t y Ox; l

i,j=1

p(x,T;v)=y(x,T;v)—z , xeQUQ,.

Problem (5.4) has the unique generalized solution as the unique one to the
following system:

—-a (g;p(v), wj +a(p,w)=0, Vwel,, (5.5

a, (p(~,T;v),w)=a0(y(v)—zg,w), YweV,. (5.6)
Choose the difference y(v)-— y(u) instead of w, consider equations (5.2)
and (5.3), and the equality
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T
~ay(p,y() - y@)(@) + [ [pv-uydrde=0
or
is obtained. Consider also equality (5.6), and the equality
T
ap (¥ =2,y - yw)| __ = [ [Py -warar
or

is derived. Therefore, when applied to the considered optimization
problem, inequality (1.33") has the form

T
[ [(rwy +au)o-wdra: >0, wve . 5.7)
or

Thus, the optimal control u € %; is specified by relations (5.2), (5.3),
(5.5), (5.6) and (5.7). If the constraints are absent, i.e. when %, =%, then
the equality

pw)y+au=0, (x,n)ely,
is obtained from inequality (5.7) along with the control
u=-pla, (x,t)ely. (5.8)

If the solution (y,p)" to problem (5.2), (5.3), (5.5), (5.6), (5.8) is

smooth enough on Q;r, I =1,2, then the differential problem, specified by

equalities (1.1), (1.3), (1.4), (1.5), (5.1) and (5.4), corresponds to problem
(5.2), (5.3), (5.5), (5.6), (5.8), where the optimal control u is found by
formula (5.8).

7.6 CONTROL UNDER BOUNDARY CONDITION WITH
OBSERVATION UNDER CONJUGATION CONDITION

For every control ue L,(I'y), determine a system state y=y(u) as a
generalized solution to the boundary-value problem specified by equation
(1.1), initial condition (1.5), boundary condition (5.1) and the conjugation
conditions
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[J’]=O, (x)t)GYTa (61)
and
n 2
Z a; oy +k; Y cos(v,x;) [=m, (x,t)eyr. (6.2)
“ Ox 0t ox;
i,j=1 J J
The cost functional is :
T T
2
J(u) = .f _[(y(u)—zg) dydt + J' Iﬁuzdl“dt. (6.3)
0y or

The generalized problem corresponds to initial boundary-value problem
(1.1), (1.5), (5.1), (6.1), (6.2) and means to find a function y(x,t;u)e

e W(0,T) that satisfies the following equations Vw(x) e V}:

ay (%,w]+a(y,w)=(f,w)+l:‘-deF+l:‘-uwdF 6.4)
and

ao (y(,05),w()) = ag (yo (), w()), t=0; (6.5)
in this case, the spaces W (0,7) and ¥, are specified in point 7.2 and the
bilinear forms a,(,-) and a(;,-) are specified, in their turn, respectively, by

expressions (1.13") and (2.3").
Theorem 6.1. Initial boundary-value problem (1.1), (1.5), (5.1), (6.1),
(6.2) has a unique generalized solution y(x,t;u)e W(0,T) Vue¥ .

Proceed from equation (6.4), and it is easy to see that y(uy) # y(u,)
under u;#u,. If 3'=3y(’) and y" =j(u") are solutions from W(0,T) to
problem (6.4), (6.5) under f, P and ®=0 and under a function u that is
equal, respectively, to u’ and ', then:

1 d ~1 ~no~t ~n - ~1 ~n ! n ~ ~n
EEGO(J} Y,y =y )+O{.0l|y m4 "VSCo"u -u I|L2(F)||y -y v

Therefore, the inequality

~ ~n ! n
15 =72y, S @l ="y 05,
is obtained that provides the continuity of the linear functional
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L(v) =(zg = ¥(0), (")~ y )y ia

and bilinear form

T
w(u,v) = (y(u) -y0),y(v)- y(O))Lz(y)xL2 + ”‘Euvdl"dt
or

for the representation
J () = m(,u) = 2L(u) +||zg - y(O)

of cost functional (6.3) on .

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 6.2. Let a system state be determined as a solution to problem
(6.4), (6.5). Then, there exists a unique element u of a convex set U, that is

2
Ly (y)xLy

closed in U, and relation (1.11) takes place for u, where the cost functional
has the form of expression (6.3).

As for the control ve %, the conjugate state p(v) is specified by the
equalities

n 2 n
Zi a; o°p _aa_p_z_a_ kl,jff_ =0, (x,0) € Qy,
= Ox; Ox ;Ot ot “ Ox; Ox;
i,j=1 J ij=1"1 J

n 2
Z [—al-j p +k; 2R—]cos(v, x)=—ap, (xt)ely,

g
=t 8xj8t 6xj
[p]:O, (x’t)e'YTa (66)
< &’p Op
—a.; + k. s(v,x;) |= -z, (x,t R
[Uzzl[ a;j oxat cos(v,x;) |=y(V)—zg, (X, 1) EYT

p(x,T;v)=0, xeQUQ,.

Problem (6.6) has the unique generalized solution as the unique one to the
following system:
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—ag (%p(V), Wj +a(p,w) =

=—(y(v)—zg,w) VWGVO, Z‘E(O,T), (6.7)

Lyy)’
ay (P, T;v),w())=0, Vwel,. (6.8)

Choose the difference y(v)-— y(u) instead of w, consider equations (6.4)
and (6.5), and the equality

T T

[ [P -uwdrdr=- [ [(yw —2,) (y) - yaw)dyar
or 0y

is obtained. Therefore, when applied to the considered optimization

problem, inequality (1.33") has the form

T
[[(-p+awyp-ward=o, wvew,. 6.9)
or

Thus, the optimal control u € %, is specified by relations (6.4), (6.5)

and (6.7)—(6.9). If the constraints are absent, i.e. when %, =%, then the
equality
-p+au=0, (x,t)elp,

is obtained from inequality (6.9) along with the control
u=pla, (x,0)elr. (6.10)

If the solution(y,p)’ to problem (6.4), (6.5), (6.7), (6.8), (6.10) is
smooth enough on Q;, I =1,2, then the differential problem, specified by

equalities (1.1), (1.5), (5.1), (6.1), (6.2) and (6.6), corresponds to problem
(6.4), (6.5), (6.7), (6.8) and (6.10), where the optimal control u is found by
formula (6.10).
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CONTROL OF A SYSTEM DESCRIBED BY A
HYPERBOLIC EQUATION UNDER
CONJUGATION CONDITIONS

Let there be the following denotations: Q is a domain that consists of two
open, non-intersecting and strictly Lipschitz domains ; and Q, from an
n-dimensional real linear space R"; T['=(3Q,Ud,)y (y=00N
N0Q, # ) is a boundary of a domain Q, 0Q; is a boundary of a domain
Q;, i=12; Qr =Qx(0,T) is a complicated cylinder; I'r =I'x(0,T) is
the lateral surface of a cylinder Qr Uyr, yr =yx(0,7T).

Consider such spaces ¥ and H that ¥ — H, and V is separable and dense
in H.

Identify H with a space dual with respect to it, denote by V' a space that
is dual with respect to ¥, and the following can be written: ¥V c HcV'.
By analogy [58], introduce a space LZ(O,T ;V)) of functions ¢ — f(¢) that
map an interval (0,7) into the space ¥ of measurable functions, namely, of
such ones that

T )
[ flroly dt] <o,
0
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8.1 DISTRIBUTED CONTROL

Assume that the hyperbolic equation

Z [ky(x)—]+ f(x,0) (1.1)
i,j= 1
is specified in the domain Qr, where

byls, =kils, sc@INC'@), 1j=1n

n n
D kyEE zag) £, VELE eR, VxeQ, ag=const>0;
ij=1 i=1

floy, €CQu), Qr = x(0,T), 1=1.2; |f[<e .
The third boundary condition
Zku cos(vx)——ocy+[3 (1.2)
i,j=1
is specified, in its turn, on the boundary I'y, where o =a(x) >0%>0;
a, Be L, ('), o =const, and v is a unit vector of an outer normal or

simply an outer normal to I'.
On yr, the conjugation conditions are

{Z cos(v X; )j! (1.3)

i,j=1
and

{Zky cos(vx)} =r[y], (1.4)

i,j=1
where 0<r=r(x)<r <o, f=const, [0]=0"-0¢7; 0" ={p}" =
=@(x,7) under (x,)eyr =02 NY)*(0,T); ¢~ = {9}  =0(x,¢) under



Control of a System Described by a Hyperbolic Equation... 275

(x,t) ey = (0 NY)x(0,T); v is an ort of a normal to y called simply a
normal to y and it is directed into the domain Q, .
The initial conditions

¥(x,0) = yo(x), xeQUQ,, (1.5)
and

@ =y](X), x€§1UQZ’ (16)

Ot l1=o

where y, €V}, and y; € H are specified under ¢ =0.
Let there be a control Hilbert space % and operator Be

€ Q(%;Lz (0,7;H )) For every control u €, determine a system state

y=y(u) = y(x,t; u) as a generalized solution to the problem specified by
the equation
2 n
9y _ 0 {k %

—\ k;,—— |+ f +Bu 1.7
ot o ox, ‘fax‘] / (L7

J
and by conditions (1.2)—(1.6). Further on, without loss of generality,
assume the following: Bu=u.

Specify the observation by the expression

Z(u)=Cy), Ce2(W(0,T); x), (1.8)
dv d*v
where w(,T)= {v € L2(0, T,V): e ;l—ﬁ— e I? (O,T; LZ(Q))}, V=

=0): v]o e M@, 1=1,2, e (0,T)] and W3 (@) is the space of

the Sobolev functions specified, in their turn, on the domain ;. Specify
the operator

N € B(U; U); (N u,u)q 2V ||u||$l , Vo =const >0, (1.9)
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Assume the following: A#u=awu; in this case, a |Qle Cc(Q)),
[=1,2; 0<ayg<a<a<w; ay a =const. The cost functional is

J(u) =

ICy(u)-z || +( N )y, (1.10)

where z, is a known element of the space .

g
The optimal control problem is to find such an element u € % that the
condition

J(u)= inf J(v) (1.11)
vely

is met, where % is some convex closed subset in %
Definition 1.1. If an element u € %; meets condition (1.11), it is called

an optimal control.
The generalized problem corresponds to initial boundary-value problem
(1.7), (1.2)—(1.6) and means to find a function y(x,t;u)e W (0,T) that

satisfies the following equations Vw(x) €V} ={v Y IQi € Wzl (Q),i= 1,2} :

—wdx+ I Z dx+ _[r[y][W]dY+
Y
+jaywdr=(f,w) + (Bu,w) +ﬁ3wdr, vie(0,T),  (112)
r
jy(x,o;-) w(x)dx = jyo(x) w(x)dx, t=0, (1.13)
and
j%(x,o;-) w(x)dx = j' 91(x) wx)dx, 1=0. (1.14)
Q

Q
Use the previous results [58, 41, 49, 55, 64, 21] and consider the
existence and uniqueness of the solution to problem (1.12)—(1.14). Since

Bu and felI?*(0,T;H) (H={v(x,t):veLz(Q),‘v’te(O,T)}), then,

without loss of generality, assume the following: Bu=0.
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The space V|, is complete, separable and reflexive [41, 49, 55], and
Vo< Ly,(Q). Choose an arbitrary fundamental system of linearly
independent functions wy (x), k=1,2, ..., in ¥},. For the sake of simplicity,

let this system be orthonormal in L,(Q) so that (wy,w;)= 85‘, , where

Sﬁ =1 and 62 =0 under k#1/.
Assume the following:

0
m =Z§imwp Yom —> Yo under m — oo,
and

m =Z§§mwi, Yim —> y1 under m —> o0,
i=1
Specify the approximate solution to problem (1.1)—(1.6) by the relations

V(B0 =D gim(O)Wi(), (1.15)
i=1
2 —
(6atyzm,WjJ+a(ym,wj)=(f,wj)+jﬁwjdr, j=Lm, (1.16)
r
(¥, w;O)) = (y0ow;), j=Lm, (1.17)
and

(%(-,0), w,~(-)j=(y1,w,~), j=Lm. (1.18)

It is easy to see that Cauchy problem (1.16)—(1.18) has the unique solution
for the system of m linear ordinary differential equations as for g;,(¢); in

this case,

a(v,z) = jz ,ngfz—dH j'r[v][z]dy+ jowzdr (1.19)
Q ij=1 Y r
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To obtain an a priori estimate of the function y,(x,¢), multiply, by
analogy [64], equality (1.16) by g',,(?) and find the sum over j for the
result. Then:

(y;’n("t):y;n('at))+a(ymay;n) = (f’y;n)+(’3’y;n)l,2(r)’
ie.

d ' ' ’
?d—t{"ym(’t)llz +a(ym’ym)}=2(f’ym)+2(B’ym)L2(r)'

Therefore,

t
GOl +a (0 yn ) =1l* @ +2 [(£C 0,y D) do+
0

t
42 (B 7)1y 4+ 2 (950, Y 0)) (1.20)
0
The inequality
ol -l
=20 = =0 (Ll =2 G0
20| -(50.200 )<ll| 220
follows from equality (1.18), 1.e.:
Y
= (,0)|< . 1.21
2,0 < (.21

Let w; (x), j=12, .., be eigenfunctions of the spectral problem that
means to find
(A, whe R'xVy: a(w,z) =Mw,z), Vzel,,
and they are such eigenfunctions that meet the condition (w;,w;) =6ij .
Then, it is easy to see the following:

a(yn(50), ¥, (-0)) < a(y9,0)- (1.22)
Introduce the denotation

2@ =P @O+l @, (1.23)
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2
where "(p"lz, = le(p”;’zl @) Consider relations (1.21)—(1.23), the Cauchy-
i=1

Bunyakovsky and generalized Friedrichs inequalities [21], and the
inequality
t

t
Zn(t) < ¢ {" il +a(re,30) + j” f(.,-c)”2d~5}+ 18IS, )+ jzm (v)dz
0 0
is obtained from equality (1.20). The inequalities

EARGE PN HOEES

FARCE PARGES (1.24)

where ¢ =const >0, follow from the latter inequality by virtue of the
Gronwall lemma [41, 64].

Hence, y,, and y,, are still in the bounded sets, respectively, in
LZ(O,T ; V) and LZ(O,T ; H). That is why such subsequence y, of the
sequence y,, can be chosen, that the convergences

yy =y in I*(0,T; V),

y., =z in I?(0,T; H) (1.25)

are weak. By virtue of [64], z = y'. It follows from expressions (1.25) that
yv(0) = »(0) is weak and, since y,(0)=y,, >y, In V,, then
y(0)=yp.

It remains to show that, when constructed in such a way, the function y
is the solution to problem (1.12)-(1.14).

Assume the following: ¢@eC'([0,7]) and @(T)=0. Introduce the
denotation ¢ ;(#)=¢(¢) ®;(x). Multiply equality (1.16) by the function @(?)
and find the integral from 0 to 7 of the result:
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?{—(y;n’q"j)J“a(ym,(Pj) }dt =

= [(r.0,)ar+ [(B0)),, .\t + (31mr0,) @)
0 0

Pass to the limit under m — o, and the following equality is obtained:
T T

5[{ - (y',wj)@'+a(y,wj)cp}dt= (;[(f,wj)(p dt +

+J‘(B,wj)L2(r)<p dt+(31,w;) 9(0). (1.26)
0
If pe D((O,T )) is used [58], then the equality

d? .
Ldey’Wj)”(%Wj)=(f,wj)+(ﬁ,wj)L2(r), j=12, ..,

is derived from equality (1.26).
Proceed from the obtained relations, and the equality

d2y . ~ ~ ~
EZ—,WH +a(y,w,,)=(f,wn)+(B,wn)L2(r) (1.27)

oo
follows that is true Vw, € UV, and, therefore, Yw eV, where ¥, is
n=1

the n-dimensional subspace of the space ¥}, and the functions of the set

{w, (x)}:.l=1 make up the basis of ¥}, . Hence, the equalities

2
(%,w}ua(y, w) =(f,w)+B, W),y YweVy, te(0,T), (1.28)
t

J'y'wdx= jylwdx, YweV,, t=0, (1.29)
Q Q
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and

Iywdx = Iyowdx, VweV,, t=0, (1.30)
Q Q
take place.

Thus, y(x,t) is the generalized solution to initial boundary-value
problem (1.1)—(1.6). Illustrate its uniqueness. Let y(x,z) be the
generalized solution to the problem. Assume the following in equality

(1.28): w= %}ti . Find the integral of equality (1.28) over 1 € (0,#) now, and
the equality

(1) = 2( jd +2( j ()dt+z2(0)  (1.31)
Ly(T)

+a(y.y), 22O =l +a(vex0)-

Transform the second addend in the right-hand side of equality (1.31).
Consider the embedding theorems and e-inequality, and the inequality

t t
ZJ(B’%)LZ(F)(T) de 2’ (B,y)L2(F)| lo =

<26 e} O+ IBIE

is derived. Use it, and the inequality

is obtained, where zz(t) =

@
d

O+[BI @+l

Ly(T) Ly(T)

T
o< ool g o
0

t
+a(y0,30) + ol oy *+ J'Zz(t)d‘t}, (1.32)
0
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2
where ¢} = const > 0, 2(¢) =”%’ (0 +| y”f/ , is obtained from equality

(1.31).
The inequality

P RO MIHOE

T
2 2 2 2
s¢ { _ﬂlf” dt +” B ”L2(F) +||yl” +a(y0,y0) +”y0”L2(r)} (1.33)
0
follows from inequality (1.32) by virtue of the Gronwall lemma.

Hence, the unique generalized solution to problem (1.1)—(1.6) is zero
under f =0, B=0, yo=0 and y; =0. Therefore, the validity of the
following statement is proved.

Theorem 1.1. Problem (1.1)—(1.6)} has a unique generalized solution
y(x,t) e W(0,T).

It is easy to see that y(u;)# y(u,) under wu; #u, (Buy # Buy). Let
y' =y')and y"=pw") be solutions from W(0,7) to problem
(1.12)~(1.14) under f =0 and P =0 and under a function u =u(x,?) that
is equal, respectively, to #' and u''. Then, the inequality

| Lyxiy = cllw - Lol (1.34)

is obtained from inequality (1.33).
Rewrite cost functional (1.10) as

T
J(¥) = (v, v) = 2L(v) + ﬂ‘zg — ()| at, (1.35)
0

where
n(u,v) = (y(u) = y(0), y(¥)=3(0)), +@u,V)y,

L) =(z, = ¥(0), )= ¥(0) (1.36)
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T T
in this case, (z,v),= j(z,v)dt, (2,V)q = J'(z,v)dt, (z,v) = J.zvdx.
Q

Inequality (1.34) provides the continuity of the linear functional L(-) and
bilinear form n(-,-) on %.

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 1.2. Let a system state be determined as a solution to problem
(1.12)—(1.14). Then, there exists a unique element u of a convex set Uy
that is closed in U, and

J() = inf J(v) (1.37)

ve, 0

takes place for u.

A control u € %, is optimal if and only if the inequality

(J'(u), v—u) 20, Yve,
is true, 1.e.:
(v -z, y0)- y(u))x + (N u,v—u)y 20. (1.38)

As for the control ve %, the conjugate state p(v) is specified by the

relations

_6.2_3_ ; —?—(k op

Vo

) y(v)—zg, (x,8)€Qp,
J

i,j=1

Z P cos(v,x)=—ap, (x1)eTr,
i,j=1 J

i,j=1 J

[Z £ cos(v, x)} 0, (xHevr, (1.39)

-+

{Z cos(v X; )} =rlpl, (x0)evr,

i,j=1
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p(x,T;v) =0, %(x,T;v) =0, xeQUQ,.
By virtue of Theorem 1.1, problem (1.39) has the unique generalized

2
solution p(v) e LZ(O, V), fl%(t‘fl,idp_g"_) € LZ(O,T;H ) as the unique one
t

to the following equality system:

2
(%’W}G(P,WF(%@,W), YweV,, te(0,T),
t
dp
IEWdX:O, VWEV(), t:T, (140)
Q

Ipwdx=0, Vwel,, t=T.
Q
Use the difference y(v)— y(u) instead of w in the first equality of

system (1.40) under v =u, find the integral from O to T of the result, and
the equality

T 2 Y
I[d p(u) ’y(v) - y(u)]dt + Ia (P(u)’ y(V)" y(u)) dt =
0

2
0a?t

T
= [(v00- 25 ) - yw)) e (1.41)
0

is obtained. i
Under ¢,y e I2(0,T;V); ¢,y € I*(0,T;H), ¢",y" € [*(0,T;V"), the
equality [58]

T
[(or,w)ar = ('(D), WD)~ (9'(0), w(0)) -
0

T
~(@@W(D)+(9O, W () + [(o.y7)dr (1.42)
0
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is derived. Take it and equation (1.12) into account, and the equality

T T
[(y@ =2, y) = yw)at = [( ptw), - wy)ae
0 0

follows from equality (1.41).
Therefore, optimality condition (1.38) for the control ue? is
equivalent to the inequality

T
J-(p(u)+c_lu,v—u) dt=0, Yve. (1.43)

0
Thus, the optimal control u € %; is specified by relations (1.12)—(1.14),

(1.40) and (1.43). If the constraints are absent, i.e. when %; =% , then the
equality
pwy+au=0, (x,t)eQyr, (1.44)
follows from inequality (1.43). The control
u=-pla, (x,t)eQr, (1.45)
is found from equality (1.44).
If the solution (y, p)T to problem (1.12)-(1.14), (1.40), (1.44) is
— _ . 10,m
smooth enough on Qp, /=12, viz, y|51T , pl@lr e CP( Q)N

NC2%(©Q,r)NCY*(Q7), 1=1,2, then the differential problem of finding

the vector-function (y, p)T , that satisfies the equalities

azy L oy _

—= ) —| k= |+pla=f, (x,0)eQy,
ot l-,jz=1 axi{ ’Jaxj p/ f T
*p < a[ p

—_— —_— ki-—— —y=—Z , (x,t)EQT,
ot i;___]axi T ox, ¢
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Zk ——cos V,X; =—-ocy+[3, (x,0)ely,

i,j=1 o;
Z cos V, X; =—ocp, x)el;,
,J'_
Z cos(v x)|= z COS(V x) (=0, (x,0)evr,
,j =] J ’J' =]
+
n By
z kyj=—cos(v,x;) ¢ =r[yl, (x,0)evr,
Py Ox

{Z —— cos ( )} =r[pl, (Devr,

i,j=1 J

y(x:O) = y()(x)a p(X,T) = 0: X e ﬁ] UQZ,

0 -
%(x,0)=y1(x), 6_€(X’T)=O’ xeQ,UQ,,

and
u=-pla, (x,t)eQ;,

corresponds to problem (1.12)—(1.14), (1.40), (1.44).

8.2 CONTROL UNDER CONJUGATION CONDITION

Assume that equation (1.1) is specified in the domain Q7. On the
boundary I'y, the boundary condition has the form of expression (1.2).

For every control ue =L,(y), determine a state y=y(u) as a
generalized solution to the initial boundary-value problem specified, in its
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turn, by equation (1.1), boundary condition (1.2), initial conditions (1.5)
and (1.6) and the conjugation conditions

[¥]1=0, (x,0)eyr, 2.1
and

{Z cos V, X; }—awu, xDeyr, (2.2)

i,j=1
where o = o(x) € Ly(7).
Since there exists the generalized solution y(x,#;u) to initial boundary-
value problem (1.1), (1.2), (1.5), (1.6), (2.1), (2.2), then such solution is
reasonable on Q;, /=1,2. The generalized problem corresponds to initial

boundary-value problem (1.1), (1.2), (1.5), (1.6), (2.1), (2.2) and means to
find a function y(x, t; u) e W(0,T) that satisfies the following equalities

Vw(x) eV, = {v(x) g, €MQ), 1212 ], = o} :

——wdx+IZk @ awdx+j‘ ywdl =
Qi,j=1 r

=(f,w)- Imwdy - juwdy + J-deI“ ,
r

Y

J.y(x,O;u)w(x)dx = J.yo(x)w(x)dx , (2.3)
Q Q

J‘—dl (x,0,u)w(x)dx = Iyl(x)w(x)dx ;
dt

Q Q
in this case,

V={v(x): w2, 4 Q.), Vte[0,T], i=12;
= (%0 V], €Wy i)’_c'l?lﬂi";jt—leiEZQ( i) V1e[0,T], i=1,2

[v]|Y =0, Vt€[0,T] }

The forthcoming statement takes place.
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Theorem 2.1. Initial boundary-value problem (1.1), (1.2), (1.5), (1.6),
(2.1), (2.2) has a unique generalized solution y(x,t; u)e W(0,T) Yue .

The validity of Theorem 2.1 is stated by analogy with the proof of
Theorem 1.1.

Proceed from equalities (2.3), and it is easy to see on the basis of the

first one that y(u;) # y(u,) under u; #u, . If 3 = $(') and 7" = $(u") are
solutions in W(0,T) to problem (2.3) under f, ® and B=0 and under a
function # that is equal, respectively, to #' and u'”, then, assume
w= %( 7'— ") in the first equality of system (2.3), find the integral of its

first equality over T € (0,¢) now, and the equality

Ly(v)

t
22 (t) =2 j((u’ ~u"), g;( P'-7 ")) dt +z%(0) (2.4)
0
is obtained, where

200 |4 a0
Z(t)—“dt(y ¥y

2
+a(y-y" ¥'=3")®

and

”6
Q i,j=1

a(y,w)= _ka P ow dx+jaywdf.
r

Since the equality

Yod ) d
¢, —V =(o,y) ( qnv) (mdt (24
oj( i )y L?'(Y)‘ jd’ L)

takes place and the e- and Cauchy—Bunyakovsky inequalities and
embedding theorems are taken into account, then the inequality

Ez(t) <q ”u’ —u'

25)

2
" 12, is derived from equality (2.4).

d
h ~2 = |[— ~I_ ~on
where Z°(f) ”dt(y 7")

Therefore,
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207

+"y -7 ”V ()< |u' ~u “Lz(y)’ (2.6)
ie.

~r o~ 2 ' nl| 2

”y e "V(t)SCI ”u —u ”Lz(Y)’ 2.7)

The continuity of the linear functional L(-) and bilinear form n(:,") for cost

functional (1.35) follows from inequality (2.7); in this case, (z,v)y =
T

= I (z,v) Lz(v)dt' Specify the observation in the form of expression (1.8),
0

where Cy(u)= y(u). Bring a value of cost functional (1.10) in

correspondence with every control ue % ; in this case, z

g is a known
element from L (0, T-V)

J()= j [(ve) -z ) avar+ j [away a
0y
and
O<ay<asga <o, ay, a =const, ael,(y).
On the basis of [58, Chapter 1, Theorem 1.1}, the validity of the following
statement is proved.

Theorem 2.2. If a system state is determined as a solution to problem
(2.3), then there exists a unique element u of a convex set Uy that is closed
in U, and relation (1.37) takes place for u.

As for the control v e, the conjugate state p(v) is specified by the

relations
?p =~ D ap
7 2o | i
ot ij=1 X Xj

J=y(v)—zg, (x,0)eQy,

Z cos(vx)——ocp, (xt)el'r,
i,j=1
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[p] = O: (x,t) € YT,

ikfj—aﬁcos(v,xi) =0, (x,f) evr, (2.8)
i,j=1 8xj

p(x,T)=0, xefllUﬁz,
-g—l;(x,T)=0, XE§1U£_22.

Problem (2.8) has the unique generalized solution p(v) e L*(0,T;V) as
the unique one to equality system like (1.40), where

< ov oz
a(v,7) = IZ by o= d+ J'avzdr. 2.9)
Qi,Jj=1 J r

If the difference y(v)-— y(u) is used instead of w in the first equality of

system (1.40), where v=u and the bilinear form a(,") is specified by
expression (2.9), then equality (1.41) is present after taking the integral
from 0 to T of the result. Consider equality (1.42), the first equality of

system (2.3) and expression (2.9), and the equality
T T

[(v@ =2, 300 = y@)dt =~ [ [p@) -wpayar ~ @.10)
0 0y
is obtained from equality (1.41).
Therefore, the control u €%, is optimal if and only if the following
inequality is true:

T
H(—p(u)+au)(v—u)dydz >0, Vve. @.11)
0y
Thus, the optimal control u € % is specified by inequality (2.11) and

relations (2.3) and (1.40), where the bilinear form a(:,) is specified, in its
turn, by expression (2.9).



Control of a System Described by a Hyperbolic Equation... 291

8.3 CONTROL UNDER CONJUGATION CONDITION
WITH BOUNDARY OBSERVATION

Assume that equation (1.1) is specified in the domain Q. On the
boundary I'7, the boundary condition has the form of expression (1.2). For
every control u €% =L,(y), determine a state y(x,t;u) as a generalized

solution to initial boundary-value problem specified by equation (1.1),
boundary condition (1.2), initial conditions (1.5) and (1.6) and the
conjugation conditions

¥1=0, (x.0)evr, (3.1
and
Z cos vx =0+u, (x1)eyr, 3.2)
i,j=1 J
where © = o(x) € L, (y).
The cost functional is
J(u) = I j () -z ) dTdr+ I jauzdydz (3.3)
0y

The generalized problem corresponds to initial boundary-value problem
(1.1, (1.2), (1.5), (1.6), (3.1), (3.2) and means to find a function
y(x,t;u)e W(0,T) that satisfies equation system (2.3) Vw(x) eV, ; the
spaces W(0,T) and ¥}, are specified in point 8.2.

According to Theorem 2.1, initial boundary-value problem (1.1), (1.2),
(1.5), (1.6), (3.1), (3.2) has the unique generalized solution y(x,t;u)e
eW(0,T)YVue¥.

Proceed from the first equality of system (2.3), and it is easy to see that
y(u)# y(uy) under u; #u,. Let 7' =j(u') and 3" = j(u") be solutions
from W(0,T) to problem (2.3) under f, ® and =0 and under a function

u that is equal, respectively, to ' and u". Inequality (2.7) is true, from
which, by virtue of the embedding theorems, the inequality
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T

II2

yjj(i'—j")zdrdtSc{
or 0

is obtained that is the evidence of the fact that the linear functional L(-) and
bilinear form 7t(-,-) of the cost functional

J(u) = T-“-(y(u) —2Zg )Zdet + T_“Iiz"uzdydt =
or 0y

= m(u, 1) — 2L(u) + ﬂ’z ~y o) (.4)

L (1‘)
are continuous on 7% in this case, O<gy<a(x)<a; ayp a=
=const, a(x)e L,(y),
Tt(u,v) = (y(u) - y(0)9 )’(V) - y(o))Lz(F)le + (Eu: V)L2 (Y)xLp
and
L(v)=|z, - ¥(0), - y(0 .
() =(2g =3(0), y0)=5O),_

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.
Theorem 3.1. Let a system state be determined as a solution to problem

(2.3). Then, there exists a unique element u of a convex set U, that is

closed in U, and relation (1.37) takes place for u, where cost functional
has the form of expression (3.3).

As for the control ve %, the conjugate state p(v) is specified by the
relations

2 n
'a_zp‘_ 'i kyéﬁ :0, (x,t)GQT,
at ‘,j-__laxi axj
Z cos(v x)=-ap+y()-zg, (x,t)ely,

i,j=1
[p]=0, (xat)EYT’ (35)
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{ z cos(v x; )} 0, (x,0)eyr,

i,j=1 J

p(x,T)=O, xeg—!luﬁz»
—aa—’;—(x,T)=0, xeQUQ,.

Problem (3.5) has the unique generalized solution p(v) € L*(0,T;V) as
the unique one to the equality system

——wd + IZ dx+jocpwdl"—
r

= {y(v) -z, }wdl, YweV,, te(0,T), (3.6)
_[( g) 0
r

I—f—gwdx=0, Vwel,, t=T,

jpwdx=0, VweV,, t=T;
Q

in this case, the spaces ¥}, and V' are specified in point 8.2.

The following statement takes place.

Theorem 3.2. Initial boundary-value problem (3.5) has a unique
generalized solution.

Use the difference y(v)— y(u) instead of w in the first equality of

system (3.6), where v =u, find the integral from 0 to 7 of the result, and
the equality

2
j{d 220, y0)- y(u)jdH- fa (o), y) - yuy)di =
0
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T
= J‘ J‘ (¥ -z, ) (y() - y(w))dTar X))

is obtained, where the bilinear form a(-,-) is specified by expression (2.9).
Consider equality (1.42), the first equality of system (2.3) and
expression (2.9), and the equality

T T
j j( @)~z ) (y(v) - y(w))dTdt = ~ j J' () (v—u)dydt  (3.8)
or 0y
is derived from equality (3.7). Therefore, the control u € % is optimal if
and only if the following inequality is true:
(—p(u)+au,v—u)ljz(y)xb2 >0, Vve. (3.9)

Thus, the optimal control u € %; is specified by equalities (2.3) and

(3.6) and inequality (3.9). If the solution (y, p)T to problem (2.3), (3.6),
(3.9) is smooth enough on Q;r, then the problem of finding the vector-

function (y, p)T , that satisfies inequality (3.9) and the equalities

2 n
Q—g’-— ai(k'faayJ .0, (x,0)eQy,
A= AN

2 n

9p_ —a—(k,.jﬁp-]:o, (xH)eQ,,

o i,j=laxi O

Z cos vx =—ocy+[3, (et)ely,
i,j=l1 J

Zk ——cos V, X; ——ocp+y——z , (xt)ely,
i,j=1
[y]=05 [p]=0’ (x’t)e'YT’
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Li k;; %cos(v,x,-)] =0+u, (x,t)eyr,

j,j=1 J
n
{ Z kij —Qg—cos(v,x,-)} =0, (x,H) ey,
i,j=1 J

y(x,0) = yo(x), p(x,T)=0, xeQUQ,,

and
P _
%(x,O) = y,(%), -a—‘t’-(x,T) =0, xeQ,UQ,,
corresponds to problem (2.3), (3.6), (3.9).

84 CONTROL UNDER CONJUGATION CONDITION
WITH FINAL OBSERVATION

Assume that equation (1.1) is specified in the domain Q7. On the
boundary I'y, the boundary condition has the form of expression (1.2). For
every control u € % = L,(y), determine a state y(x,#;u) as a generalized

solution to the initial boundary-value problem specified by equation (1.1),
boundary condition (1.2), initial conditions (1.5) and (1.6) and conjugation
conditions (2.1) and (2.2).

8.4.1 Final Observation with Taking Sight on a State

The cost functional is

T
J() = J.(y(x,T;u)—zg(x))zdx+ J' J'auzdydt, (4.1)
Q 0y
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where 0 <ay<a <a; <®, a,, a; =const, and it may be rewritten as

J(u) = m(u,u) — 2L(u) + j (z(x)- y(x,T;O))2dx : (4.1
Q
in this case,

T
n(u,v) = (y(, T;u) - y( T;0), (-, T;v) = y(, T;0)) + I I&'uv dydt
0y
and
L) =(2,() = y(-T30), y(T:v) - y(-T;0)).

The generalized problem corresponds to initial boundary-value problem
(1.1), (1.2), (1.5), (1.6), (2.1), (2.2) and means to find a function
y(x,t;u) e W(0,T) that satisfies equality system (2.3) Vw €V ; the spaces
W(0,T) and V¥, are specified in point 8.2.

Theorem 2.1 takes place. It is stated in point 8.3 that y(u;)# y(uy)
under u; #u,. If ' =3(u') and 7" = p(u") are solutions from W(0,T) to
problem (2.3) under f, P and ® =0 and under a function « that is equal,

respectively, to #' and u", then inequality (2.6) is true. Consider the
generalized Friedrichs inequality [21], and the inequality

~7 ~n 2 ~f ~Ho~ ~n ’ " 2
uly' =31 @ <a(5 =35 =5") < co ' ~u"l

follows from inequality (2.6). Therefore, the linear functional L(-) and
bilinear form n(-,-) in representation (4.1’) of cost functional (4.1) are
continuous on 7.

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 4.1. If a system state is determined as a solution to problem
(1.1), (1.2), (1.5), (1.6), (2.1), (2.2), then there exists a unique element u of
a convex set Uy that is closed in U, and relation (1.37) takes place for u,

where the cost functional has the form of expression (4.1).
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As for the control ve %, the conjugate state p(v) is specified by the
equalities

2 n
af 2 k,.j—aﬁ =0, (x,0)eQy,
ot ij=16xi ﬁxj

Zkij%cos(v,xi) =—ap, (x,n)ely,

i,j=1 J
[p]~'=0, (x’t)EYT’
ik —aﬁcos(vx) =0, (x,H) e 4.2
i X ) 1= A EYT, (4.2)
i, j=1 ij

p(x,T;v)=0, xeQUQ,,
%(X,T;v)=y(x,T;v)—z , xeQUQ,.

The generalized solution to problem (4.2) is the solution to the equality
system

2
(i—f,w}+a(p,w)=0, YweV,, te(0,T),
t

(p(,T;v), w())=0, YweV,, =T,

where a(z,v) = I z kij %%dx-& Ioczvdl“.

Q it i

Use the difference y(v)— y(u) instead of w in the first equality of
system (4.3) under v = u, consider equality (1.42), and the equality



298 CHAPTER 8

T
(v650) =26, y0) = 3 @)D= [ [Py -wydyde =0
0y

is obtained, i.e. (y(-,t;u) — 2, y(v) - y(u)) (D) =(p),v- u)Lzme2 .
Therefore, the control u €% is optimal if and only if the following
inequality is true:

T
J' j (p(u) +au)(v—u)dydt 20, Vv e . 4.4)
0y
Thus, the optimal control u € %, is specified by relations (2.3), (4.3) and
(4.4).

8.4.2 Final Observation with Taking Sight on a System State
Changing Rate

The cost functional is

) T
J(u) = j(% (2, Tsu) —zg(x)) dx + j jauzdydt (4.5)
Q 0y

and it may be rewritten as

T () = 7(u ) — 2L(u) + j (2g(x) = y'(x. T;0)) i,
Q
where

T
1) = (56 T50) = Y T30), Y6 T3) =y T50) + [ [auvayar,
0y

L) = (2,() = Y T50), Y T30 = Y (T50)). (4.5)
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The generalized problem is specified in point 8.4.1 and corresponds to
initial boundary-value problem (1.1), (1.2), (1.5), (1.6), (2.1), (2.2).
Theorem 2.1 takes place. It is stated in point 8.3 that y(u;)# y(u,) under
upzu,. If 3y =3@w') and 3" =j(u") are solutions from W(0,7) to
problem (2.3) under f, B and ® =0 and under a function « that is equal,
respectively, to #' and u", then inequality (2.6) is true under ¢ =T .

~

The obtained inequality shows that the function dg);— is continuously

dependent on the control ue % Therefore, the linear functional L(:) and

bilinear form n(-,-) of cost functional (4.5) are continuous on %.

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 4.2. If a system state is determined as a generalized solution
to problem (1.1), (1.2), (1.5), (1.6), (2.1), (2.2), then there exists a unique

element u of a convex set U, that is closed in U, and relation (1.37) takes

place for u, where cost functional has the form of expression (4.5).
As for the control ve %, the conjugate state p(v) is specified by the
first four equalities of system (4.2) and by the conditions

d - =
p(x,T;v) =—c};y(x,T;v)—zg, xeQUQ,, (4.6)
and
£jg(x,T;v)=O, xeQUQ,. 4.7)

The present differential problem has the unique solution as the unique one
to the following equality system:

2
(%Zﬁ,w]+a(p,w)=0, vYwel,, te(0,T),
t

(pGTv),w()) = (% y(,T;v)— zg,w(-)), VYweV,y, t=T, (4.8)

(%—?—(-,T;v), w(-))zO, VweV,, t=T.
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Use the difference y(v)— y(u) instead of w in the first equality of system
(4.8) under v =u, and the equality

d_ o dm-yw)
_(Zy("t’”) 7 ]

T
()~ [ [y -wydydr =0
Oy

is obtained.
Therefore, the optimality condition for the control u € %%, is

T
”(-p+au)(v—u)dydtzo, Vv e . (4.9)
U
Thus, the optimal control u € %; is specified by the relations (2.3), (4.8)
and (4.9).

8.5 CONTROL UNDER BOUNDARY CONDITION WITH
OBSERVATION ON A THIN INCLUSION

For every control ue =L,(I'), determine a state y(x,tu) as a

generalized solution to the initial boundary-value problem specified by
equation (1.1), initial conditions (1.5) and (1.6), the conjugation conditions

[y]=0> (x:t)GYT’
and
Z cos(v x) =0, (xt)ey, 5.1
i,j=1 J
and the boundary condition
z cos(vx)-——ocy+B+u (x,f)el;. (5.1

’.]'_1 J
The cost functional is
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T T
2
J() = j j( )~z ) dydr + j _[Euzdl"dt, (5.2)
0y or
where 0 <ay <a <a; <®; ay,a; =const, and it may be rewritten as
T 2
J () = (e, 1) — 2L(w) + j j (zg = ¥.1,0)) dydr; (5.2)
0y

in this case,

T T
nw)= (1660 -¥660,066) - y(60),  de+ [ [auvaras
0 or
and

L) = (2 = (1500, ¥, 159) = ¥ (st ;O))Lz (xly’

The generalized problem corresponds to initial boundary-value problem
(1.1), (1.5), (1.6), (5.1), (5.1") and means to find a function y(x,t;u)e

€ W(0,T) that satisfies the following equality system VweV},:

dzy
[;‘;‘,WJ+a(yaW)—(f,W)— IQWdY+
Y
+_[der+J'uwdr, YweV,, te(0,T),
r r

(y(a O,U), W()) = (yO(), W()) > Vwe VO > (53)
(fé_}t}-(, 05 u)a W()) = (yl ()’ W()), Vwe VO ’

The forthcoming statement takes place.

Theorem 5.1. Initial boundary-value problem (1.1), (1.5), (1.6), (5.1),
(3.1 has a unique generalized solution y(x,t;u)e W(0,T) Vue¥.

Proceed from the first equality of system (5.3), and it is easy to see that
y(u)# y(uy) under u; #u,. Let 3 =j(u') and 3" = j(u") be solutions
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from W(0,7) to problem (5.3) under f,® and =0 and under a
function u that is equal, respectively, to ' andu” . The inequality

zz(t) < cllu’

\ 2
function yp linearly depends upon the control ue % ony.

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 5.2. If a system state is determined as a generalized solution
to problem (1.1), (1.5), (1.6), (5.1), (5.1), then there exists a unique
element u of a convex set Uy that is closed in U, and relation (1.37) takes

(5.4)

where z%(f)= +[7 - 37”"12,, is true and it shows that the

place for u, where the cost functional has the form of expression (5.2).
As for the control v e %, the conjugate state p(v) is specified by the
first three equalities of system (4.2) and by the conditions

{Z cos V, X; :| y(W)-z,, (x,0)€yr,
ax;

i,j=1
p(x,T)=0, xeQUQ,, (5.5)

%I-;—(x,T)=O, xeQUQ,.

The present initial boundary-value problem has the unique generalized
solution p(v)e W(0,T) as the unique one to the following equality system:

2
(%,w}—ka([),w):—(y(v)—zg,w) YweV,, te(0,T),

L)’

(p,w)=0, YweV,, t=T, (5.6)
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in this case, the spaces ¥, and W(0,T) are specified in point 8.2.

Use the difference y(v)— y(u) instead of w in the first equality of
system (5.6) under v=u, find the integral from 0 to T of the result,
consider equality (1.42) and system (5.3), and the equality

(P@).v=1) ryp, == (Y@ =24, () - y(w))

is obtained.
Therefore, the optimality condition for the control u € % is

Ly (Y)xIp

(-—p+Eu,v-—u)L2(r)XL220, Vve. 5.7)

Thus, the optimal control u € %, is specified by relations (5.3), (5.6)
and (5.7).

8.6 CONTROL UNDER BOUNDARY CONDITION WITH
FINAL OBSERVATION

For every control u e ¥ = L,(I'), determine a system state y(x,f;u) as a

generalized solution to initial boundary-value problem specified by
equalities (1.1), (1.5), (1.6), (5.1) and (5.1").

8.6.1 Taking Sight on a System State

The cost functional is

T
J() = I(y(x,T;u)—zg(x))zdx+ _[ _[auzdrdt 6.1)
Q or

and it may be represented by expression (4.1'); in this case,

T
w(u,v) = (¥ ) = y(T30), (- T3v) = y( T;0)) + j J'auvdrdt
or
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and
L) = (2,0) = ¥ T50), y(T3v) = y(-T50)).
The generalized problem corresponds to initial boundary-value problem
(1.1), (1.5), (1.6), (5.1), (5.1") and means to find a function y(x,t;u)e

€ W(0,T) that satisfies equality system (5.3) VweVj.
Proceed from the first equality of system (5.3), and the inequality

207

is obtained, i.e.

(6.2)

| 1512

2
Ly(I)

15 -5 (@) < - ~u'l - (6.3)

Therefore, the linear functional L(-) and bilinear form =n(-,-) of cost
functional (6.1) are continuous on .

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 6.1. If a system state is determined as a generalized solution
to problem (1.1), (1.5), (1.6), (5.1), (5.1, then there exists a unique
element u of a convex set Uy that is closed in U, and relation (1.37) is true
for u, where the cost functional has the form of expression (6.1).

As for the control v € % , the conjugate state p(v) is specified by system
(4.2). The generalized solution to problem (4.2) is the solution to equality
system (4.3).

Use the difference y(v)-— y(u) instead of w in the first equality of
system (4.3) under v =u, consider equality (1.42), and the equality

(vC10) =20,y = Y@@+ (p@).v=1), 1y, =
is obtained, i.e.
(V150 =250,y = Y@ ) (D) =~ (p),y =) 1,y IV E Uy

Therefore, the control u e is optimal if and only if the following
inequality is true:
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T
[[(-pay+@u)w-wdrat =0, vveu,. (6.4)
or

Thus, the optimal control u € %, is specified by relations (4.3), (5.3)
and (6.4).

8.6.2 Taking Sight on a System State Changing Rate
The cost functional is specified by the expression
d 2 !
J(u) = QI(E y(x,T;u)—zg(x)) dx + OI rjau?-drdz. (6.4

Inequality like (5.4) is true. Therefore, the inequality

“ ~n)

(D<e ”u - IILz(F)XLz

i~

is obtained that shows the continuous dependence of the function % on
the control u €%, and the continuity of the linear functional L(-) and
bilinear form 7(-,-) of cost functional (6.4") is thus provided on %

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 6.2. If a system state is determined as a generalized solution
to problem (1.1), (1.5), (1.6), (5.1), (5.1), then there exists a unique
element u of a convex set Uy that is closed in U, and relation (1.37) takes

place for u, where the cost functional has the form of expression (6.4)).

As for the control ve %, the conjugate state p(v) is specified as a
solution to the initial boundary-value problem specified, in its turn, by the
first four equalities of system (4.2) and conditions (4.6) and (4.7). The
generalized problem is written by equalities (4.8) and corresponds to such
initial boundary-value problem.
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Use the difference y(v)— y(u) instead of w in the first equality of

system (4.8) under v=u, and

d
_(—y('st;u)_zga

(T)+

dt t

d(y(v) - y(w)
d

T
+ -”.p(u)(v —u)dldt, Vve,.
0r
Therefore, the optimality condition for the control u € % is
T
I j (p(u) +au)(v—u)dTdt 20, Vv ey,
or

(6.5)

Thus, the optimal control u € %, is specified by relations (4.8), (5.3)

and (6.5).



9

CONTROL OF A SYSTEM DESCRIBED BY A
PSEUDOHYPERBOLIC EQUATION UNDER
CONJUGATION CONDITIONS

Let there be the following denotations: Q is a domain that consists of two
open, non-intersecting and strictly Lipschitz domains ; and Q, from an

n-dimensional real linear space R"; I'=(0Q UoQ,)/y (y=09N
N0Q, # D) is a boundary of a domain Q, 8Q); is a boundary of a domain
Q;, i=12; Qr =Qx(0,T) is a complicated cylinder; I'r =I'x (0,T) is
the lateral surface of a cylinder Q7 Uyr, yr =yx(0,T).

Consider such spaces ¥V and H that ¥V < H, and V' is separable and

dense in H. By analogy [58], introduce a space I? (0,T,V) of functions
t— f(¢t) that map an interval (0,T) into the space V' of measurable
functions, namely, of such ones that

r 1/2
[_[||f||;‘;dt] <.
0

9.1 DISTRIBUTED CONTROL

Assume that the pseudohyperbolic equation [67]

2 n 2
9y i[a,.j(x) oy Jm(@%—

o Ao, ox ;0
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‘Z ["u(x)—}b(x)y J(x,1) (1.1)

i,j= 1 X
is specified in the domain Qg , where

A 1
ay=au ky=ki ala,. ks eC@NC @),

al,,  €C(Q), 0<ay<a<a;<w, 0Sb<h <o, ap, @, by = const,

Z ;& ; _a02§,, Zkyg £ alz;, og,o=const >0, (1.1)
i,j=1 i=1 i,j=1 i=1

f‘QlTeC(QlT), 1=1,2, |f]<.
The third boundary condition

5Ly

o -ay+p (1.2)

is specified, in its turn, on the boundary I, where 0<al

. 0 .
=a(x) < oc?, oco,oa? = const; the functions B and —? are continuous and

foa=

bounded on (GQ,- \y) x(0,T), i =1,2. By analogy [67], the denotation
aLy 2 Gy
——+k; cos(v, x
ov ;1[ % Ox 6t 7 ox; | (v-%)

is used, and v is an outer ort of a normal (or simply an outer normal) to I".
On a section v, the conjugation conditions are

oy |_
[av]_o (1.3)

{%Ji} =[], (1.4)

and
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where 0 < r=r(x) <<, 5 =const, [p]=0"—¢7; ¢ ={p} =0(x,?)

under (x,2) €y7 =@ NY)*(0,T); ¢~ ={p} =o(x,r) under (x,7)e
eyr = (0Q;MNy)x(0,T); v is an ort of a normal to y called simply a
normal to y and such normal is directed into the domain Q,.

The initial conditions

y(x,0) = yo(x), xeQUQ,, (1.5)
and

P =y(x), xeQUQ,, (1.6)

t=0

where y, eV and y, € H, are specified under ¢ =0.
Let there be a control Hilbert space % and operator Be

GQ(@/;LZ (0,T;H )). For every control u €%, determine a system state

y= y(u) = y(x,t;u) as a generalized solution to the problem specified by
the equation

Oy, A2 Y,
%) +A(6tJ+K(y)+a5t +by=f+Bu (1.7)

and by conditions (1.2)—(1.6), and
- 0 % - 0 %
Ay) =~ —la,—=|, K@)=- |k, =L .
) Z_: Gx,-[a” 6x-j ) Z_: 6x-[ U@x}
i,j=l1 J i,j=1 ! J

Further on, without loss of generality, assume the following: Bu=u.
Specify the observation by the expression

Z(u)=Cy(u), CeZ(W(0,T);). (1.8)

Specify the operator
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N € (U U, (Nu, u)gy 2V ”u”fa , Vo=const>0, (1.9)

Assume the following: #u=au; in this case, a |Qle C(Q)), O<ap=

<a <a, dy,a;=const . The cost functional is

J@) =|Cy) =z, |, + (H )y, (1.10)

where z, is a known element of the space H#.

g
The optimal control problem is to find such an element ue % that the
condition

J(u) = inf J(v) (1.11)
velly

is met, where % is some convex closed subset in %
Definition 1.1. If an element u € %; meets condition (1.11), it is called

an optimal control.
The generalized problem corresponds to initial boundary-value problem
(1.7), (1.2)—(1.6) and means to find such a function y(x,tu)e W(0,T),

where
dv

wW(,T) = {veLZ(O,T;V): ”

12(0,T:V v _ 2007
[ (, ) ), "—#TEL (O,T,Lz(Q)) .

V= {v(x,t): v!QleWzl(Q,), =1 2; Vte(O,T)} and Wzl(Q,)is the space
of the Sobolev functions specified on the domain €;, that satisfies the
following equations Vw(x) eV, = {v: v |Ql,e Wzl(Q,»), i= 1,2}:

d’y dy )

—=, W |+ay| —,w |+a(y,w)=(f,w)+

(dt‘z J O(dt l(y ) (f )

+(Bu, w)+ jswdr, Vte(0,T), (1.12)
r
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ao(yaW)=a0(J’o,W), t=0, (113)
and

d
(i,wjz(yl,w), t=0: (1.14)

in this case,

(P, ¥)= Iw(x Dy(x,0)dx, ay(o,y)= I [ ﬂ%%w]cx'x
Q \i,j=1

and

op 0O
atow= | Sk, a“’ a;" +b<pw] dx+ [rlolyldy+ [ooydr.
Q\iJj=! Y r

Use the previous results [41, 55, 32, 64, 49, 21] and consider the existence
and uniqueness of the solution to problem (1.12)—(1.14). Since Bu and

fe}(0,T;H) (H={v(x,t):ve L(Q) Vte(0,T)}), then, without loss

of generality, assume the following: Bu =0.
The space V¥, is complete, separable and reflexive [41, 55, 32], and

Vo © Ly(€2). Choose an arbitrary fundamental system of linearly
independent functions wy(x), £k =1, 2, ..., in V,. For the sake of

simplicity, let this system be orthogonal in L,(Q), i.e.(w;,w;)=0 under
k+l, k,1=1,2,....
Assume the following:

m
= ZE_,?mwi, Yom —> Yo under m — o,
and

m
1
m 22§imwi’ Yim >N under m —> 0.
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Specify the approximate generalized solution to problem (1.1)—(1.6) by the
relations

m
Yn(5t)= Y gim(®w (%), (1.15)
i=1
& m W
atz ,Wj +ay —a-t—,wj +a1(ym,wj)=
=(fow;)+ [pwdr, j=Tm, (1.16)
r
ao(ym, wj)=a0(y0, wj), Jj=1Lm, t=0, (1.17)
and
(%tﬂ,wj)=(yl,wj), j=1m, t=0. (1.18)

It is easy to see that Cauchy problem (1.16)—(1.18) has the unique solution
for the system of m linear ordinary differential equations as for g;,,(?).
D

ot
multiply equality (1.16) by g;,,(#) and find the sum over j for the result.
Then:

E

To obtain an a priori estimate of the functions y, (x,¢) and

(V2 Y :0) + @0 (Vs V) + @1 (Vs V) = (5 )+ (Bo Vi )y
ie.

g;( GOl + @ (s )+ 20 (Vs ) =

= z(f’)’;n) +2(B>y;n)L2(r) .
Therefore,

t
”y;n ('st)nz +q (ym("t)a Vm (" t)) +2 IaO (y;n('sr)ay;n(" T))dt =
0
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t
= [l @+ @1 (3> 7) @+ 2 [(£ (D, 3 ) e+
0

t
+2J'(B,y,’n)la(r) dr. (1.19)
0
The inequality
2
S o] (70 Gre o)l Fec of
=0 = D), =2, 0) < =2, 0
Py ¢ 0) y1() o G 0) | <[] Py ¢, 0)
follows from equality (1.18), i.e.:
2 0] < . 120

Let w;(x), j=1, 2,..., be eigenfunctions of the spectral problem that
means to find {A,w}e R'xVy, w#0:ai(w,z)=Mw,z), VzeV,, and
they are such eigenfunctions that meet the condition (w,.,w j) =0 under

i#j, i,j=12, ... Then, it is easy to see the following:

aq (ym('ao)aym("o))sal (yO’yO)' (121)

Consider the expression

[ 50) 1, oy @7 = (B )y oy O -
0

~(Bs Vm )LQ@ 0)- _[(B’, Vm) LT (1.22)
0

The inequalities

ullymll,z, (0)<a;(¥0,¥0) »

1l ) O < oyl @S 1@y (9 ) O S a1 (30, 70), (123)
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2 1/2

where p, ¢, ¢ =const>0, [of, = {Z"(p";,zl (Qi)} , follow from
=1

inequality (1.21). Consider inequalities (1.20), (1.21) and (1.23), equality

(1.22), the e- and Cauchy-Bunyakovsky inequalitiecs and embedding
theorems, and the inequality

t
zu() < {“J’l”z +ay(y0,y0) + _ﬂlf(‘, T)usz +
0

t {
2 2
+ sup (B + B dt+ |z, (t)dt;,
o )|| [ OIII I, Oj m }

t

where  z,,(f) = Ily;n”z ) + ||y "12, )+ p J.“y;n ”12, dt, p=const>0, is
0

obtained from equality (1.19). The inequalities

alf O +yuli @ < e,

t
bl @+ Iyl de<e, (1.24)
0

Vm

I y;n||12,x 1, S c=const,
follow from the latter inequality by virtue of the Gronwall lemma [41, 64].
Hence, y,, and y,, remain in the bounded set 2 (0,T;V). That is why

such subsequence y, of the sequence y, can be chosen, that the
convergences

y oy in OV,
yi =z in I*(0,T;V) (1.25)

are weak. Without loss of generality, suppose that all the sequences
v, and y, converge in the sense of expressions (1.25). By virtue of [64],
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z=y'". It follows from expressions (1.25) that y,(0) > y(0) is weak and,
since y,(0)=yy, = yp in ¥y, then y(0)=y,. Consider inequalities
(1.24), and it is seen that y, are still in the bounded set LZ(O,T;V).
Therefore: z € I 0, T;V).

It remains to show that, when constructed in such a way, the function y
is the solution to problem (1.12)—(1.14).

Assume the following: o(f)eC' ([0,T]), ¢(T)=0. Introduce the
denotation ¢ ;(#) = ¢()w;(x). Multiply equality (1.16) by the function ¢(?)

and find the integral from O to T of the result:
T

I{'(y;n"P'j)”O(y;n"Pf)Ml(ym,cp,-)}dt=
0
T

T
- e ) (1)
0 0

Pass to the limit under m — oo, and the following equality is obtained:
T

.[{_(y”wj)‘pur"o(y"wf)@+a1(y,wj') q’} dt =
0
T T

=Oj(f,wj)q»dmOI(B,WJ.)LZ(F)WH(yl,wj)cp(O). (1.26)
If 9 e D((0,T)) is used [58], then the equality

dr*’

2
[d Y wj}+a0(%,wj)+al(y,wj)=(f,wj)+([3,wj)L2(1_) (1.27)

is derived from equality (1.26). Equality (1.27) is true Vw, € U ¥}, and,
n=1

therefore, Vw e V;, where V;, is the n-dimensional subspace of the space
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Vy, and the functions of the set {wi(x)}:'=1 make up the basis of V), .
Hence, the equalities

2
[f"'_;’_,w]+a0 (%,W)Jra](%w) =

dt
=(/>w)+ B W), ), Vt€(0,T), (1.28)
ag(y,w)=ag(ye,w), t=0, YweVl, (1.29)
and
(Q WJ=(y w), t=0 (1.30)
dt ’ 1> ’ ’
take place.

Thus, y(x,f) is the generalized solution to initial boundary-value
problem (1.1)—(1.6). Hlustrate its uniqueness. Assume the following in
4
dr
now, and the equality

t t
2 dy dy dy
H+2 —,— |dt=2 ,— |dTt+
z 0 an(dt dt) ’ J(f dz‘) K

equality (1.28): w= Find the integral of equality (1.28) over t e (0,¢)

+2 '(B,—j dr+22(0) (1.31)

dy

is derived, where z(f) = - a(»,y), z40)= ||y1”2 +ay (v, 0) -

Consider the ¢-, Cauchy-Bunyakovsky and Friedrichs inequalities and
embedding theorems, and the inequality
t 2
22(0) +(p—-2ecq) I @ () dri<

; dtl,
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t t 2 t
2 dy 1 2 2
s(_)ﬂlfll (T)dt+6ﬂ—£“ dt+—2;6[||ﬁllla(r)(t)dt+z (0),

where p —2ge¢, = const > 0, follows from equality (1.31).
Therefore,

-~ 4 2 2
()< o { ”f”[,zxLz |8 ||L2(F)><L2 *

il + & (vo, v0) + ]Ez(r)dt}, (132)
0
where 72(f) = @ ’ (t)+||y||2 )+ tﬂ@’_ ’ () dr.
dt 4 Jldtly
The inequality
P @+ s b+, <
=6 {"f ”inLz +”B"i2(1“)xl,2 il +a (J’OaJ’o)} (1.33)

follows from inequality (1.32) by virtue of the Gronwall lemma.

Hence, the unique generalized solution to problem (1.1)-(1.6) is zero
under =0, B=0, yy=0 and y,=0. Therefore, the validity of the
following statement is proved.

Theorem 1.1. Problem (1.1)—(1.6) has a unique generalized solution
y(x,t)e W(0,T).

It is easy to see that y(u)# y(u,) under wuy#u, (Bu;#Bu,). Let
y' =y@W') and y"=7yu") be solutions from W(0,T) to problem
(1.12)—(1.14) under f =0 and B=0 and under a function u =u(x,¢) that
is equal, respectively, to «’ and u". Then, the inequality

”5/—5;””L2><L2 sc ””"—u"”szL2 (1.34)

is obtained from inequality (1.33). Rewrite cost functional (1.10) as
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T
J0) =10 ~2L0)+ [Jlg - y o) d, (1.35)
0

where
n(u,v) =(y()~y(0), y()-(0)),, +(@u,v)y,

L) =(zg = 7(0), y()-¥(0)), ; (1.36)

T T
in this case, (z,),p = J'(z,v)dt, (2,V)y = I(z,v)dt, (z,v) = jzvdx .
0 0 Q

Inequality (1.34) provides the continuity of the linear functional L()
and bilinear form 7(-,-) on %

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 1.2. Let a system state be determined as a solution to problem

(1.12)—(1.14). Then, there exists a unique element u of a convex set Uy
that is closed in U, and

J() = inf J(v) (1.37)
veiy

takes place for u.
The control u € %, is optimal if and only if the inequality

(J'(u), v—u) 20, Vve,
is true, i.e.:
(y(u)—zg, y(v)—y(u))}f +(ANu,v—u)y =0. (1.38)

As for the control v e %, the conjugate state p(v) is specified by the
relations

azp (apj op
—L_ Al = |—aZ=+K(p)+bp= -z, (x,0)eQr,
or ot a@t (p)+bp=y() Zg (x,1) T
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n
Z(—aijax—gt ~ %Jcos(v,xl)— ap, (x,t)el'y,

|:JZ (— aij _a—x—g—t gj (V i ):| 0’ (x’t) €Y, (139)

{Z[ uaa §,+ky o Jcos(v,xi)} ~rpl, (D) evr,

i,j=1

p(x,T;v) =0, —aa—[:—(x,T;v)=O, xeQUQ,.

By virtue of Theorem 1.1, problem (1.39) has the unique generalized
solution p(v) € W(0,T) as the unique one to the equality system:

2
(%’W]"ao(%’wj*ﬂl (P,W)=(y—-zg,w), VweV,, te(0,T),

ay(p,w)=0, t=T, VYweVl,, (1.40)
(-dﬁ,W):O,tzT, VWEVo.
dt

Use the difference y(v)- y(u) instead of w in the first equality of

system (1.40) under v =u, find the integral from 0 to T of the result, and
the equality

2
J(" LW | vy y(u)jdt—
o dt

T

Ojao[‘jt’ ,y(v) - y(u))dm

T T
+a(py) = yw)de = [(y@) =2, y0) - yw)dr - (1.41)
0 0

is obtained.
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Consider the second addend in the left-hand side of equality (1.41):

T
.[ao (%’ y(v) —y(u))dt =ao (P, (V) ‘y(“))|§ B
0

T
- Iao ( p,g;(y(V) - y(u))jdz . (1.42)
0

Take equality (1.42) and equations (1.12)—(1.14) into account, and the
equality
T

T
I(y(u) ~2g, y(V) - y(u))dt = J(p(u),v —u)dt
0 0
is derived from equality (1.41).

Therefore, optimality condition (1.38) for the control ue?; is
equivalent to the inequality

T
J‘(p(u)+c—zu,v——u)dt20, Vv e . (1.43)
0

Thus, the optimal control u €% is specified by relations (1.12)—(1.14),

(1.40) and (1.43). If the constraints are absent, i.e. when % =% , then the
equality
pw)+au=0, (x,)eQr, (1.44)

follows from inequality (1.43).
If the solution (y, p)" to problem (1.12)—(1.14), (1.40), (1.44) is smooth
enough on Q,, I =1,2, then the differential problem of finding the vector-

function (y,p)", that satisfies conditions (1.2)-(1.6) and (1.39) and the
equality

Oy, 42 ¥ 7-
2 +A(6t]+K(y)+a Py tby+pla=f, (xt)eQr, (1.45)
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corresponds to problem (1.12)—(1.14), (1.40), (1.44), where the optimal
control is specified as

u=-pla, (xt)eQr. (1.46)

9.2 CONTROL UNDER CONJUGATION CONDITION
WITH OBSERVATION THROUGHOUT A WHOLE
DOMAIN

Assume that equation (1.1) is specified in the domain Q. On the
boundary I';, the boundary condition has the form of expression (1.2).
For every control u €% c Ly(yr), determine a system state y = y(u)

as a generalized solution to the initial boundary-value problem specified, in
its turn, by equation (1.1), boundary condition (1.2), initial conditions (1.5)
and (1.6) and the conjugation conditions

[¥]1=0, (x,))evy, @.D
and
[%VX] =o+u, (x,t)eyr, (2.2)

where o = 0 (x,t) € Ly(yr).

Since there exists the generalized solution y(x,#;u) to initial boundary-
value problem (1.1), (1.2), (1.5), (1.6), (2.1), (2.2), then such solution is
reasonable on Q;;, I =1,2. The generalized problem corresponds to initial
boundary-value problem and means to find a function y(x,t,u)e W(0,T)

that satisfies the following equalities Vw(x)e V= {v(x): VIQ‘ €
1
eWhH(Q), i=12; [v]},=0}:

2
Ed 4 wJ+a0 (%,wj+al(y,w) =

di’
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=(f,w)~ Icowdy— Iuwdy+ ijdl", t€(0,7),
¥ t4 r
ag(y,w) = ay (yo,w), t=0, (2.3)

dy
—,wl=(y,w), t=
(dz ) (71,)

in this case,

dv

Vz{v(x,t): leI, ” e Wy (),

(9]

2
d e L,(Q), Vt[0,T], I=1,2; [v],= OVte(OT)}

and

op 0
ay(o,y) = Z . a(P a‘V ]dx+ Ia(p\pdl“
Q\iJ=1 r

The following statement takes place.

Theorem 2.1. Initial boundary-value problem (1.1), (1.2), (1.5), (1.6),
(2.1), (2.2) has a unique generalized solution y(x,t,u) e W(0,T) Yue¥.

The validity of Theorem 2.1 is stated by analogy with the proof of
Theorem 1.1.

Proceed from equalities (2.3), and it is easy to see on the basis of the

first one that y(u;) # y(u,) under uy#u,. If 7' =j(') and 3" = j(u") are
solutions from W(0,T) to problem (2.3) under f, ® and f=0 and under
a function u that is equal, respectively, to u’' and #«", then, assume

w= g;( 7' —3") in the first equality of system (2.3), find the integral of its

first equality over 7€ (0, f) now, and the equality

z(t)+zj (d(y J) 405 - y")]

dt
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t
) J' ((u’ —u"), ‘—;’;( 7 - y")j dr +22(0) 2.4)
0

L ()

2
+a (7= 7' -7")@).

Consider the - and Cauchy-Bunyakovsky inequalities and embedding
theorems, and the inequality

t
zz(t) +q ﬂ
0

is obtained, where z*(z) =

d S~
E(y 7")

d S
E(y )’)

2 T
1 ! n 2 !
dvso 6[ -l A @A)

where ¢, = const > 0, follows from equality (2.4).
Take the obtained inequality into account, and the inequality

15"~ 5"yt Sl =4l e,

is derived from equality (2.4).
Therefore, the linear functional L(-) and bilinear form =(.,-) of cost
T
functional (1.35), where (z,v)q, = I(z, V)L, (y)dt are continuous on %. The
0
observation is specified here in the form of expression (1.8), where
Cy(u) = y(u), and the value of cost functional (1.10) corresponds to every

control u € %, where z, is a known element from I? o,7;7),

g

T T
J(Ww) = J.J.(y(u)—-zg)zdxdt+ jjﬁuzdydt,
0Q 0y
O<ayg<ac<a <o, ay, a =const, a €lL,(y).
On the basis of [58, Chapter 1, Theorem 1.1], the validity of the

following statement is proved.

Theorem 2.2. If a system state is determined as a generalized solution
to problem (1.1), (1.2), (1.5), (1.6), (2.1), (2.2), then there exists a unique
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element u of a convex set U, that is closed in U, and relation (1.37) takes
place for u.

As for the control ve %, the conjugate state p(v) is specified by the
relations

2
a—1’3—A[a—l”)—a-‘?f;’+1<(p)+bp=y(v)—zg, (x.0)eQyp,

or* ot
n 2
Z{ U;gt+k ;‘D)cos(v x)=-op, (x,)ely,
i,j=l1 J
[p]=0, (x,0)evr, (2.5)

[i( ’faxat+k ;p]""s(v’xi)}o» (x,0) €Y7,

i,j=1 J
p(x,T)=0, xeQUQ,,
'%P;"(X,T)=O, xeﬁ]Uﬁz.

Problem (2.5) has the unique generalized solution p(v) e I? (0,T;V) as the
unique one to equality system like (1.40), where

a(v,z)= J. Z k,j ﬁlzd)ﬁ IoazvdI‘. (2.6)

Q i,j=1 J Ox;
If the difference y(v)— y(u) is used instead of w in the first equality of
system (1.40), where v=u and the bilinear form a,(.;) is specified by
expression (2.6), then equality (1.41) is present after taking the integral

over te(0,7) of the result. Consider equality (1.42), the first equality of
system (2.3) and expression (2.6), and the equality
T

T
[(v@r -z, y) - y@)dt == [ [p@) v-wyayar @7
0 0y
is obtained from equality (1.41). Therefore, the control u € % is optimal if
and only if the following inequality is true:
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T
j I (=p(u)+a@u)(v—u)dydt 20, Vv e . (2.8)
Oy
Thus, the optimal control u €% is specified by inequality (2.8) and
relations (2.3) and (1.40), where the bilinear form (') is specified, in its
turn, by expression (2.6). If the constraints are absent, i.e. when % =%,
then the equality
u=pla, (x,t)eyr, (2.9
follows from inequality (2.8).
If the solution (y, p)" to problem (2.3), (1.40), (2.9) is smooth enough
on Qr, [=1,2, then the differential problem, specified by equalities (1.1),
(1.2), (1.5), (1.6), (2.1) and (2.5) and by the condition

n azy ay
Z ay——+k;—=— |cos(v,x;) |= 0+ p/a, (x,0)eyr, (2.9)
= Ox ;0t ox

corresponds to problem (2.3), (1.40), (2.9), where the optimal control u is
found by formula (2.9).

9.3 CONTROL UNDER CONJUGATION CONDITION
WITH BOUNDARY OBSERVATION

Assume that equation (1.1) is specified in the domain Qi . On the
boundary I'7, the boundary condition has the form of expression (1.2). For
every control u e =L,(yr), determine a system state y(x,f;u) as a

generalized solution to initial-boundary-value problem specified by
equation (1.1), boundary condition (1.2), initial conditions (1.5) and (1.6)
and conjugation conditions (2.1) and (2.2). The cost functional is

J(u) = Yj j (Y -z, )2dth + Tj jauzdy dr.
or 0y
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The generalized problem corresponds to initial boundary-value problem
(1.1), (1.2), (1.5), (1.6), (2.1), (2.2) and means to find a function
y(x,t;u) e W(0,T) that satisfies equation system (2.3) Vw(x)e V,; the
space W(0,T) is specified in point 9.1 and the spaces V and V; are
specified, in their turn, in point 9.2.

The following statement takes place.

Theorem 3.1. Initial boundary-value problem (1.1), (1.2), (1.5), (1.6),
(2.1), (2.2) has a unique generalized solution y(x,t,u)e W(0,T) Yue¥ .

The validity of Theorem 3.1 is stated by analogy with the proof of
Theorem 1.1.

Proceed from the first equality of system (2.3), and it is easy to see that
y(u) # y(uy) under u;#u,. Let 7' =y(u') and " = y(u") be solutions
from W(0,T) to problem (2.3) under f, ® and B =0 and under a function
u that is equal, respectively, to u'and u". Inequality (2.4") is true, from
which, by virtue of the embedding theorems, the inequality

T T

~r  ~\2 ' ' |2
jJ.(y -y ) dldt < ¢ J.”u -u I'Lz(v)dt
or 0

is obtained that is the evidence of the fact that the linear functional L()
and bilinear form 7(-,-) of the cost functional

J(u) = T”-(y(u) - 2z4 )zdth + T-{Iﬁuzdydt =
or 0y

T
= () - 2L(0) + [z, - y(O)”;(r)dt G.1)
0

are continuous; in this case, ag, @) =const, a(x)e Ly(y), 0<ay<
< E(X) < a5

n(us V) = (y(u) - Y(O)a y(") - y(o))L2 (TxLy + ( au’v)L2(‘y))<L2
and



Control of a System Described by a Pseudohyperbolic... 327

L) =(2g = 9(0), y0)=3O)

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 3.2. Let a system state be determined as a solution to problem
(2.3). Then, there exists a unique element u of a convex set U, that is
closed in U, and relation (1.37) takes place for u, where the cost functional
has the form of expression (3.1).

As for the control ve %, the conjugate state p(v) is specified by the
relations

32p 8pj ap
——— A= |-a=—+K(p)+bp =0, (x,t) e Qr,
% (Gt a (p)+bp=0, (x,0)eQr

n 2
Z[ Ip +k; aachos(vx)——ocp+y(v) Z,, (x,t)el’r,
X

i,j=1 l] ax Ot j
[p]1=0, (x,t)eyyr, (3.2)
n
{,,Zl[ “Iox 8t+k’f aap JCOS(V’xi)}O’ (1) €vr,

p(x,T)=0, xeg—!l U£—22,
%(x,T)=O, xeQUQ,.

Problem (3.2) has the unique generalized solution p(v)e W(0,T) as the

unique one to the equality system

d—zz—wdt ao(dp )+a1(p w) =

o dt ’

- J'(y(v) —z,)wdT, YweV,, te(0,T),
r

(%,w):O, VYwel,, t=T, (3.3)
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ag(p,w)=0, Ywel,, t=T,;

the space V is included into the specification of W(0,7) and specified, in
its turn, in point 9.2 along with the space V.

The following statement takes place.

Theorem 3.3. Initial boundary-value problem (3.2) has a unique
generalized solution.

Use the difference y(v)—y(u) instead of w in the first inequality of
system (3.3), where v =u, find the integral from 0 to T of the result, and
the equality

Ty 2
j(d p(“),yw)—y(u)]dt—

2
Odt

T

Ojao (%’f,y(w—y(u)]dw

T T
+ay(py0)-y@)dr = [ [(300-2,)(v0) - yw)drae  (3.4)
0 or

is obtained, where the bilinear form a,(:,") is specified by expression (2.6).
Consider equality (1.42) and system (2.3), and the equality

T T
[ [(v@)-2,) (v0) - yw)arar = - [ [ ptuv - wyayar
or 0y

is derived from equality (3.4). Therefore, the control u € %, is optimal if
and only if the following inequality is true:

T
[[pe+au)w-wdyar=o0, wew,. (3.5)
0y

Thus, the optimal control u €%, is specified by equalities (2.3) and
(3.3) and inequality (3.5). If the constraints are absent, i.e. when % =%,
then the equality

u=p/5, (x’t)GYT’ (36)
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follows from inequality (3.5). If the solution (y,p)" to problem (2.3),
(3.3), (3.6) is smooth enough on Q;7, I =1,2, then the differential problem

of finding the vector-function (y, p)", that satisfies equalities (1.1), (1.2),

(1.5), (1.6), (2.1), (2.9"), (3.2) and (3.6), corresponds to problem (2.3),
(3.3), (3.6).

94 CONTROL UNDER CONJUGATION CONDITION
WITH FINAL OBSERVATION

Assume that equation (1.1) is specified in the domain Qf. On the
boundary I'y, the boundary condition has the form of expression (1.2). For
every control u e =L,(yr), determine a system state y(x,t;u) as a

generalized solution to the initial boundary-value problem specified by
equation (1.1), boundary condition (1.2), initial conditions (1.5) and (1.6)
and conjugation conditions (2.1) and (2.2).

Let the cost functional be

T
2
J(u) = j(y(x,T;u)—zg) dx + ”auzdydt, (4.1)
Q 0y
where 0 <ay <@ <ay <®; ag,, a; =const, and it may be rewritten as
2
J (1) = m(u,u) — 2L (1) + j'(zg(x) — y(x,T;0)) dx;; (4.1)
Q

in this case,

T
n(u,v) = (Y. T0) - y( T30), y(T3v) = y(, T;0)) + j J.Euv dy dt
0y
and

L) =(2g() = y(.T50), y(-T3v) = y(,T;0)).
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The generalized problem corresponds to initial boundary-value problem
(1.1, (1.2), (1.5), (1.6), (2.1), (2.2) and means to find a function
y(x,t;u) e W(0,T) that satisfies equality system (3.2) Vw(x)e V; the
space W(0,T) is specified in point 9.1 and the spaces V and V|, are
specified, in their turn, in point 9.2.

Theorem 3.1 takes place. It is stated in point 9.3 that y(uy) # y(uy)
under u#u,. If 7' = (') and 3" = j(u") are solutions from W(0,T) to
problem (2.3) under /=0, B=0 and ® =0 and under a function « that is
equal, respectively, to ' and ", then inequality (2.4") is true. The
inequality

=~ ~no~r ~n 1 ! ”2
al(y =yV,Yy -y )(T)S—Z—i-:”u —Uu ”IJZ(Y)XIQ (42)

follows from inequality (2.4'). Consider the Friedrichs inequality, and the
inequality

|7 = 51Ty < collw’ =l s,

is obtained. Therefore, the linear functional L(:) and bilinear form =(-,-)

of cost functional (4.1) are continuous on .
On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.
Theorem 4.1. If s system state is determined as a generalized solution
to problem (1.1), (1.2), (1.5), (1.6), (2.1), (2.2), then there exists a unique
element u of a convex set Uy that is closed in U, and relation (1.37) takes

place for u.
As for the control ve %, the conjugate state p(v) is specified by th
relations ‘

62p (ap) Op
= —A| = |-a=—+K(p)+bp=0, (x,t) e Qr,
Y Y aat (p)+bp (x,7) T
" 62p ap
E - — k.2 C wx;)=—op, (Xt el s
ij=1( K &Cjéz y&“j ou) (eoelr



Control of a System Described by a Pseudohyperbolic... 331

[p]=0, (x.t)evr, 4.3)

n az
{ z {_al.j 5;;%; +hy %Jcos(v,xi)} =0, (x,)) ey,

i, j=1

%(X,T;v) =y(x,T;v) -z, xeQUQ,.

The generalized solution to problem (4.3) is the solution to the equality
system

el o)
—— wl—ay| —,w|+aq(p,w)=0, VwelV,, te(0,1),
(dtz ] 0 i I(P ) 0 (0, 7)
ag(p,w)=0,t=T, Vwel}, (4.4)
d,
('zlz"wj=(y(',T;v)—Zg,W), t=T, VWG VO

Use the difference y(v)— y(u), instead of w in the first equality of system

(4.4) under v =u, consider the relation
T T

a N o Ao
Jao( dt,y(V) y(u))dt Jao(p, dt(y(V) y(u)))dt,

and the equality
T

(Y- T50) =2, y0) = y@) - [ [pyv—wdyde =0
0y
is obtained, i.e.

(y(-,T;u) =25,y (V) - y(u)) =(p() ,v- u)bz(v)xlfz )

Therefore, the control ue?; is optimal if and only if the following
inequality is true:
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T
If(p(u)+5u)(v—u)dydt20, Vveu,. (4.5)
0y
Thus, the optimal control u €% is specified by relations (2.3), (4.4)
and (4.5). If the constraints are absent, i.e. when % = % , then the equality

u=-pla, (x,t)eyr, (4.6)
follows from inequality (4.5).
If the solution (y, p)" to problem (2.3), (4.4), (4.6) is smooth enough on

Q,r, 1=1,2, then the differential problem, specified by equalities (1.1),
(1.2), (1.5), (1.6), (2.1) and (4.3) and by the condition

n 2
[ Z (aij—a—y—+k--él—)cos(v,xi)} =w-p/a, (x,t)eyr,

if
= Ox jar Ox |

corresponds to problem (2.3), (4.4), (4.6), where the optimal control u is
found by formula (4.6).

9.5 CONTROL UNDER BOUNDARY CONDITION WITH
OBSERVATION ON A THIN INCLUSION

For every control ue =1,(I'y), determine a state y(x,f;u) as a
generalized solution to the initial boundary-value problem specified by
equation (1.1), initial conditions (1.5) and (1.6), conjugation conditions
(2.1) and (2.2) (under u =0) and the boundary condition

n 2
3 ay ZL vk, 2 |cos(v,x,) = —oy +B+u, (1) € Ty (5.1)
ol axjﬁt Ox

The cost functional is



Control of a System Described by a Pseudohyperbolic... 333

T T

2

J() = ”( ) -zg) dydt+ ”auzdrdt, (5.2)
0y or

where 0<ay<a<a <w; aya =const, aeL,(I'), and it may be

rewritten as

T
J () = m(u,u) — 2L(u) + j I(zg — ¥, 10)) dydt; (5.3)
0y
in this case,

T
m(u,v) = I(y(-,t;u) =¥(50), Y(EV) = y(50)), o dt
0
and

Lv) = ( zg = (- 150), Y(,1;v) - y(',t;O)) Ly

The generalized problem corresponds to initial boundary-value problem
(1.1), (1.5), (1.6), (2.1), (2.2) (under u=0), (5.1) and means to find a
function y(x,t;u)e W(0,T) that satisfies the following equality system

VW(}C)E V():
2
(%,w}+ao(%,w)+al(y,w)=

=(f,w)— I(owdy+ Iswdr+ Iuwdl“, te(0,T),
Y r r

ay(y,w) = ag (o, w), t =0, (5.4)

d
(%,w)=(yl,w), t=0.

The forthcoming statement takes place.
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Theorem 5.1. Initial boundary-value problem (1.1), (1.5), (1.6), (2.1),
(2.2) (under u=0), (5.1) has a wunique generalized solution
y(x,t;u) e W(0,T) Yue¥.

The validity of Theorem 5.1 is stated by analogy with the proof of
Theorem 1.1.

Proceed from the first equality of system (5.4), and it is easy to see that
y(uy) # y(uy) under wu;#u,. Let 7' =p(u') and y" = j(u") be solutions
from W(0,T) to problem (5.4) under f,® and B=0 and under a
function u that is equal, respectively, to #’and u". The equality

s 0) 45Ty

dt
' d
=2j((u'—u"), —(5'- ;")j dt+z2(0) (5.5)
0 di Ly(T)
is true, where z%(¢) = ( " ) +a (V-3 ¥ -3")@).

Since the inequality

T S S

dt

0

e —
- Ly(T)xIy

d ~1 ~n
0 —d_t(y ) VxLy

takes place and the ellipticity condition is taken into account, then the
inequality

d

< —-1—||u' - u""2 (5.6)

) e, e G,

where p—€¢y >0 and ¢, is the constant obtained from the inequalities of
the embedding theorems, follows from equality (5.5).
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Use inequality (5.6), consider the embedding theorems and Friedrichs
inequality, and the inequality

<alw =wly,
where 1, ¢; =const > 0, is obtained from equality (5.5).

Therefore, the linear functional L(-) and bilinear form n(.,-) of cost
functional (5.3) are continuous on

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the

following statement is proved.

Theorem 5.2. If a system state is determined as a solution to problem
(5.4), then there exists a unique element u of a convex set Uy that is closed

~r g2
w5 =51 e,

in U, and relation (1.37) takes place for u, where the cost functional has
the form of expression (5.2).

As for the control ve %, the conjugate state p(v) is specified by the
equality system

8%p 6p) op
9P _ 4P +K(p)+bp =0, (x,1) € Qrp,
2 [at oL+ K(p)+bp=0, (x,) =0y

n

Z[ y6x6t+k ;Cchos(vx)——ap, (x,0)ely,

i,j=1 j
[P]1=0, (x.0) €Y7, (5.7)
n a2 @)
LZI[ 45 at+k’fa Jcos(v,x,.)}y(v)—z,(x,t)eyT,

P(X,T)=0, xe$?21Uf-22,
%(X,T)=O, XEQIUﬁz.

Problem (5.7) has the unique generalized solution p(v) e W(0,T) as the
unique one for the following equality system:
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2
(%,w}—ao(%,w)+al(p,w)=

=—(y(V)—z ,w) , YweV,, te(0,T),
£ LM

ag(p,w)=0, VYweV,, t=T, (5.8)
(d—p,w)=0, Vwel,, t=T ;

dt
in this case, the spaces ¥, and W(0,T’) are specified in point 9.2.

Use the difference y(v)-— y(u), instead of w in the first equality of

system (5.8), where v =u, find the integral from 0 to 7 of the result, and
the equality
T

Tr 2
j(d p(v),y(v)—y(u)]dt— Iao (idlti,y(v)—J’(“))dt“F
0

2
Odt

T
s (P y() = y@)d ==(y@) =2,y ) =y @))
is obtained, from which the equality
Py =W)yymty = =(YW0) =2y =3 @)
follows. Therefore, the optimality condition for the control u € % is
(—p+c7u,v—u)L2(r)xL2 >0, Vvel. (5.9)

Thus, the optimal control u € %, is specified by relations (5.4), (5.8)
and (5.9). If the constraints are absent, i.e. when % =% , then the equality

-pw)+au=0, (x,)ely, (5.10)
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follows from inequality (5.9). If the solution (y,p)" to problem (5.4),
(5.8), (5.10) is smooth enough on Q,T, [=1, 2, then the differential

problem of finding the vector-function (y,p)’, that satisfies equalities
(1.1), (1.5), (1.6), (2.1), (2.2) (under u =0) and (5.7) and the condition
[, Py
a; ——+k;—— |cos(v,x;)=—ay+B+pla, (x,H)el,,
,21 o, |5 y+B+p[a, (xNely
corresponds to problem (5.4), (5.8), (5.10), where the optimal control is
u=p/a under (x,t)eTy.

9.6 CONTROL UNDER BOUNDARY CONDITION
WITH FINAL OBSERVATION

Assume that equation (1.1) is specified in the domain Qz. The initial
conditions have the form of expressions (1.5) and (1.6) under ¢=0,
conjugation conditions (2.1) and (2.2) (under u=0) are specified on the
section yr and initial condition (5.1), where the control is ue¥ =
=L,(I'7) is specified, in their turn, on I,

The cost functional is

T

2

J() = j( Y&, Tiu)—zg) dx + .[ jauzdrdt, 6.1)
Q or

where 0 <ay <a <a; <; a,, a; =const, and it may be rewritten as

2
J(u) =n(u,u)—-2L(u)+ j(zg (x)—y(x,T; 0) dx;
Q
where

T
‘n:(u,v) =(y(,T,u)—-y(,T,O), y(,T,V)—y(,T,O)) +I auvdl' dt
or
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and
L) =(2g = y(-T30), Y T59) = y(,T50)).

The generalized problem corresponds to initial boundary-value problem
(1.1), (1.5), (1.6), (2.1), (2.2) (under u=0), (5.1) and means to find a
function y(x,t;u)e W(0,T) that satisfies equality system (5.4)
Vw(x) eV, ; the space W(0,T) is specified in point 9.1 and the spaces
V and ¥V, are specified, in their turn, in point 9.2. Theorem 5.1 takes
place. Equality (5.5) is true, from which the inequality
a7 -5

dt

a (5= 5", 3 =5 ) D) +(n~ecp)

Ly(T)xLy
VXL2

is obtained, where 0 <g<p/cy; 1, ¢y =const>0.
Proceed from it and from the Friedrichs inequality, and the inequality

”37 "5’"”(T) <¢ ”“' _u”||L2(r)xL2
follows. Therefore, the linear functional L(-) and bilinear form n(.,-) of
cost functional (6.1) are continuous on %.
On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.
Theorem 6.1. If a system state is determined as a solution to problem
(5.4), then there exists a unique element u of a convex set Uy that is closed

in U, and relation (1.37) takes place for u, where the cost functional has
the form of expression (6.1).

As for the control ve %, the conjugate state p(v) is specified by
equality system

62p 5p ap = (=
— A4l = |-a=+K p +b O, X,t Q s

n 62 ap
+k cos(v, —ap, (x,0)el’7,
,Zl Yara e (v,x)=—ap, (x,f)ely
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[p]=0, (x,) ey, (6.2)

n azp @
|:Z[—ay5;;5;+ky5;; oos(v,xi) =O, (xat)GYT’

i,j=1

p(x,T;v)=0, xeQ, UQ,,

xE§1U£—22.

op
—(x,T;v)=y(x,T;v)-z,,
6t( )=¥( )—zZg

Problem (6.2) has the unique generalized solution p(v) e W(0,T) as the
unique one to the equality system

2
(id{g’w}—a"(%’ijl(p’w):(” Vwely, te(0,7),

ay(p,w)=0, YweV,, t=T, (6.3)

dp \_ . _p.
(E,w}—(y(x,T,v)—zg,w), VYweV,, t=T;

in this case, the spaces V|, and W(0,T) are specified in point 9.2.
Use the difference y(v)— y(u), instead of u in the first equality of

system (6.3), where v =u, find the integral from 0 to T of the result, and
the equality

T
(v 50~ 24, y0) = y@0) ) (D) + [Py =1, ot =0
0
is obtained that yields the equality

T
(v0r50) = 2, Y0) = y@) (D) = = [(2v =),y
0
Therefore, the control u € %, is optimal if and only if the following

inequality is true:
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T
I j(—p +au)(v-u)dTdt 20, Vv e, (6.4)
or
Thus, the optimal control u € % is specified by relations (5.4), (6.3) and

(6.4). If the constraints are absent, i.e. when %, =% , then the equality
u=pla, (x,H)el'y, (6.5)
is obtained from inequality (6.4).
If the solution (y, p)" to problem (5.4), (6.3), (6.5) is smooth enough on
ﬁlTa [ =1,2, then the differential problem, specified by equalities (1.1),
(1.5), (1.6), (2.1), (2.2) (under u=0), (5.1) (under u=p/a) and (6.2),

corresponds to problem (5.4), (6.3), (6.5), where the optimal control is
u=p/a under (x,t)ely.
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OPTIMAL CONTROL OF A DEFORMED
COMPLICATED SOLID BODY STATE

10.1 DISTRIBUTED CONTROL

Assume that the elastic equilibrium equation system [122]

3
_Z %IL:f;(x)’ i:fj_i, (11)
k=1 Pk
is specified in bounded, continuous and strictly Lipschitz domains
Q, and Q, eR®; in this case, x=(x, X3, 13); O =0y =0z =
3
=0, (xy) = Z Citim €1m 5 Oi and g, are elements, respectively, of
I,m=1

stress and deformation tensors, c;;, are elastic constants;

) — 1
l’k =1,3 s Byl T Oy = 8lm(y) = slm(x;y) == ayl + aym ’ y=
2 6xm ax,

=( V(%) yo(x), y3(x))T is a displacement vector, y;(x) is a projection of
this vector on an i-th axis of the Cartesian coordinate system and

f=(fi(x), /o(x), f3(x))T is a mass force vector.

Suppose that the elasticity coefficients have the features of symmetry
Citim = Cimik = Crimy (¥) and satisfy the condition [72]
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3

3
z Cikim Eik Epm = Ol Z s,-zk, o =const > 0. (1.1")
i,k,l,m=1 ik=1

The condition
y=0 (12)
is specified on a boundary I'=(8Q,UdQ,)Yy (y=0Q,N6Q, D) of a

domain Q and, on a section y=0Q;N86Q, of the domain Q, the
conjugation conditions for an imperfect contact are [21]

.]=0 (1.3)
and

[6.]=0, [ts]=0, {ts}i=r[ys]. (1.9

Conditions (1.3) and (1.4) illustrate the continuities for normal components
of displacement and stress vectors and for a stress vector component
tangent and show the proportionality of a stress vector component to
jumping of a displacement vector component tangent.

In this case, [p]=0"-¢~, ¢'={p}" =¢(x) under xedQ,Ny,

0" ={p} =¢(x) under x€dQ Ny, r=r(x), 0<r, reLy(y).

Let there be a control Hilbert space % and mapping Be Z(%;V"),
where V' is a space dual with respect to a state Hilbert space V. Assume
the following: % = L,(Q).

For every control u e , determine a system state y as a generalized
solution to the boundary-value problem specified by the equation

3 —
-Zic_fk-(—yl=ﬁ(x)+-3,.u, i=13, xeQ, (1.5)
paie
and by conditions (1.2)—(1.4), where Bu = (Blu,Bzu,B3u)T, ueL,(Q).
Specify the observation
Z(u)=Cyu), (1.6)
where C e £(V; ) and J is some Hilbert space. Assume the following:
Cyw)=yu), #=VcL,(Q). (1.7)
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Bring a value of the cost functional
2
Jw)=Cy)-z,| +(Huu)y (1.8)

in correspondence with every control ue®; in this case, z,=

T
= (Zgl’zgz’zg3) is a known element of the space J,

N e L(UU), (M,u)g 2V ”u"; , Vg=const>0, Vue¥ .(1.9)
Assume the following: fe L,(Q), Busue L,(Q), Hu=a(x)u,
O<ag<a(x)<a <o, L—ZIQIE C(), 1=1,2; ay, ay=const, (Q,y)y =
=(o,y) = dex-

Q

The forthcoming statement is true.
Theorem 1.1. A unique state, namely, a function y=y(u) €

corresponds to every control ue U, delivers a minimum to the energy
functional [21]
o) =a(v,v)-2I(v) (1.10)

on V, and it is a unique solution in V to the weakly stated problem: Find an
element y €V that meets the equation

a(y,v)=Il(u,v), VveVl, (1.11)
where

3
a= [ Y cumea@emadr+ [y,
Q ik,Jm=1 Y

Iv) = I(u,v) = (f,9) +(u,v). (1.11%)

Proof. Proceed from the Cauchy-Bunyakovsky inequalities and embedding
theorems [55], and the following inequalities are obtained Vv,zeV :

a2 exlpl [, and 03] <exl

Js (1.12)
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in this case,

5 12
Y|, = {Z"vu% (Qi)} , II”W?} @) is the norm of the Sobolev
i=1

space Wzl(Qi).
Consider inequality (1.1") and the Friedrichs [21] and Korn [16] ones,
and the inequality
a(v,v)Zoc()”v”Iz/, Yvel, (1.13)
is derived. Inequalities (1.12) provide the continuity [49] of the bilinear

form a(,): VxV —R' and linear functional /(-):¥ — R' on ¥V and
inequality (1.13) provides the V-ellipticity of the form a(:,-) on V.
Therefore, according to the Lax-Milgramm lemma [16] problem (1.11)
has the unique solution y=y(u) in V. The equivalence for problems
(1.10) and (1.11) is easily stated. Theorem is proved.
Take the aforesaid assumptions into account, and cost functional (1.8)
may be rewritten as

J@) =) - 2|+ @uu) = n(u,w) = 2L + |z - O, (1.19)

1/2

where |o| = (¢,9)"* and the bilinear form 7(-) and linear functional L(")

are specified by the expressions
n(u,v) = (y() = y(0), y(v) ~ y(0)) + (au,v) ,

L) = (zg = 3(0), y(v) = »(0)).. (1.15)
The form n(:,-) is coercive on % since
w(u,u) = ag(u,u). (1.15)

Let 7'=y(u') and 3" = y(u") be solutions from V to problem (1.11)
under f =0 and under a function u = u(x) that is equal, respectively, to
u' and 1" . Proceed from inequality (1.13), and the inequality

ol - <oy -7, <a(5 -5, 7-5)<

< 551, (1.16)

lu' -u"
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where o = const >0, follows from equation (1.11).

The derived inequality provides the continuity of the linear functional
L(:) and bilinear form 7(-,) on %.

On the basis of [58, Chapter 1, Theorem 1.1}, the validity of the
following statement is proved.

Theorem 1.2. Let a system state be determined as a solution to
equivalent problems (1.10) and (1.11). Then, there exists a unique element
u of a convex set Uy that is closed in U, and

J(u) = inf J(v) (1.17)
vely

takes place for u.
Definition 1.1. If an element u € %; meets condition (1.17), it is called

an optimal control.
The inequality
n(u,v—u)=L(v—-u), Vvei, (1.18)

is the necessary and sufficient condition for v e, to be the optimal
control.
As for the control v e %, the conjugate state p(v)eV* =V is specified

as the generalized solution to the problem specified, in its turn, by the
following equalities:

3

—Z 6G,~k(p)=yi(v)_zgi, i:fi xeQ,
= 6xk
p=0, XGF,
[Pn]=0’ xey, (1.19)

[6,(»]=0, [t,(p)]=0, {t,(p)} =rlp,], xe¥.

The generalized problem corresponds to boundary-value problem (1.19)
and means to find a function p eV that satisfies the equation
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a(p,2)=h(»,2), VzeV, (1.20)
where the bilinear form a(.,) is specified by expression (1.11'), and
ll(J’aZ) = (y,Z) - (Zgaz) .

Therefore, the necessary and sufficient condition for the existence of the
optimal control u € %, is the one under which the relations

a(y(u),z)=l(u,z), YzeVl, (1.21)
a (p(u),z) =1 (y(u),z), VzeV, (1.22)
and
(y(@) -2, y0) - y) )+ (@u,y-) 20, Vveuy,  (1.23)
are met.

Choose the difference y(v)— y(u) instead of z in equalities (1.21) and
(1.22), and the equality

(y() - 2, y0) = y(@)) = (v—u, p(w)), Vv e,
is obtained. Take it into account, and inequality (1.23) has the form
(p)+au,v-u)=0, Vve . (1.24)
Therefore, the necessary and sufficient condition for the existence of the
optimal control u € %; is the one under which the relations (1.21), (1.22)

and (1.24) are met.
If the constraints are absent, i.e. when %; = % , then the equality

p(w)+au=0 (1.25)

follows from condition (1.24). Therefore, when the constraints are absent,
the control u can be excluded from equality (1.21) by means of equality
(1.25). On the basis of equalities (1.21), (1.22) and (1.25), the problem is

obtained: Find a vector-function (y, p)T €eH= {v = (vl,vz,)T 1 vel,

i= 1,2} that satisfies the equality system
a(y,z) = l(—p/E,z), VzeV,
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a(PaZ)=ll(y,Z), VZEVa (126)

and the vector solution (y, p)T is found from this system along with the

optimal control
u=-pla, xeQ. (1.26")

If the vector solution (y, p)T to problem (1.26) is smooth enough on
Q,, viz, 3y, p|§l e C{Q)HNC3(©Q)), 1=1,2, then the differential

problem of finding the vector-function (y, p)", that satisfies the relations
3

_Z%(—‘y)-‘l‘pl/E:f;’ [ 1’_3’ XGQ,
P 6xk

3
_Zg%l{(p_)‘yi=“2gi, i=13, xeQ,
k=1 Ok

y=0, p=0, xeTl,
[v.]=[Ps]=0, xev, (1.27)
[0.(N]=[c.(»]=0, xev,

[+;()]=[1:(»]=0, {t; M} =rlysl, {t,(P)" =rlp,], x€¥,

corresponds to problem (1.26).
Definition 1.2. A generalized (weak) solution to boundary-value

problem (1.27) is called a vector-function U =(y, p)T € H that satisfies

the equation
alU,Z)Y=I(2), VZeH, (1.28)
where

U=(U,U,) s Z2=(2,2,)", U, Z eV, i=12;

a(U,Z)=ay(U,Z)+(pla,Z,)-(y.Z,).,

2 3
ay(U,Z)= I Z Z Ciklm Cik (Uj)glm (Zj)dx+

Q Jj=1 ikilm=1
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2
(U 25 ] dvs (1.29)

Let the constraint

ocou————%>0 (1.30)

be met, where o and p are the positive constants, respectively, from

inequality (1.1") and the Friedrichs one [21].
Proceed from the Cauchy-Bunyakovsky and Friedrichs inequalities and

embedding theorems [55], take constraints (1.1’) and (1.30) into account,
and the inequalities

a(Z,2)2%,|Z|;,, YZ<H, &, =const>0,
|a(U,2)|<e|U|, 2], » YU.ZeH, ¢ =const>0, (1.31)

are true for the bilinear form a(.): HxH — R', i.e. such form is H-
elliptic and continuous [49] on H, where

) 1/2
2
121 = { 2 IIZiIIW;(Q,.>} - (132)

i,j=1
Consider the Cauchy-Bunyakovsky inequality, and the inequality
(Z)| 2|2, ¢ =const, (1.33)

is obtained VZe H .

The following statement is valid.

Theorem 1.3. Let constraints (1.1°) and (1.30) be met. Then, there
exists a solution Ue H to problem (1.28).

The validity of Theorem 1.3 is stated on the basis of the Lax-Milgramm
lemma, when inequalities (1.31) and (1.33) are taken into account.
Problem (1.28) can be solved approximately by means of the finite-

element method. Divide the domains Q, into N, finite-elements
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E;f (J =1,_N,-, i=1,2) of the regular family [16]. Specify the subspace
H,ﬁv cH (N=N;+N,) of the vector-functions VkN (x). The
components v}y 5, € C(Q), 1=1,6, i=1,2, of ¥} (x) are the complete
polynomials of the power k that contain the variables x;,x, and x; at
every E,-j . Then, the linear algebraic equation system

AU =B (1.34)

follows from equation (1.28), and the solution U to system (1.34) exists
and such solution is unique. The vector U specifies the unique

approximate solution U, ,ﬁv eH ,ﬁv to problem (1.28) as the unique one to the
equation

a(Ulf, v )=1(iY), v en}. (1.35)
If U=U(x)e H are the solutions to problem (1.28), then:

a(U-uf, vl¥)=0, vi)en}.
The following relation is true:

&IHU—U,?/"H <a(U-U} . U-U Jea(U-U},U-0) VO H} .

Therefore,

UMl <Su-r
jo-o, = 2ol 020
where ®; and ¢ are the positive constants from respective inequalities
(1.31). Suppose that UeH ,ﬁv is a complete interpolation polynomial for

the solution U at every &/ .
Take the interpolation estimates [16] into account, assume that every
component U; (I =1,6) of the solution U on €; belongs to the Sobolev

space W5 (Q i) J =1,2, and the estimate

”U—U,ﬁv ﬂH <ch*, (1.37)
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where /4 is a maximum diameter of all the finite elements El-j , ¢ =const,
follows from inequality (1.36).
Take estimate (1.37) into account, and the estimate

”u—u,?,HV <c p-—p,?,”V <g K (1.38)

takes place for the approximation u,]cv (x)=- p,{v /E of the control
u=u(x).

10.2 DISTRIBUTED CONTROL WITH OBSERVATION
AND WITH TAKING SIGHT ON JUMPING OF A
DISPLACEMENT VECTOR COMPONENT TANGENT
AT A DOMAIN SECTION

Assume that elasticity theory equation system (1.5), where Bu=u, is
specified in the bounded, continuous and strictly Lipschitz domains
Q, and Q, eR> for every control u €% =L,(Q2). Boundary condition

(1.2) is specified on the boundary I' and constraints (1.3) and (1.4) are
specified, in their turn, on the section y. Specify the observation as follows:

Cy(u)=[y,(w)], xey.

Bring a value of the cost functional

J() = _.'([ys(i,l)]—zg)2 dy + (@u, ) @.1)
Y

in correspondence with every control u € % ; in this case, z, is a known

g
scalar function from L,(y), and the function a(x) is specified in point
10.1.

It is shown in point 10.1 that a unique state, namely, a function
y(u) € V corresponds to every control u € % , minimizes energy functional

(1.10) on V and meets equation (1.11), where the bilinear form
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a():VxV - R' and functional I(u,v) are specified by respective

expressions (1.11%).
Rewrite cost functional (2.1) as

J(u) = (o, u) ~2L(w) + |z [ yS(O)]“; o

in this case, the bilinear form =(,) and linear functional L(:) are
expressed as

n(w,v) = ([y ;)] ~[7,O], [ysM]-[r:)])

2.2)

Ly T @)

and

L) =(zg -[¥5(0)], [ys]-1r,(0)])

Lyv)’

where ((p,\p)bz(y) = j-(p\pdy.
Y
Inequality (1.15') is true for the bilinear form 7(.,), i.e. such form is
coercive on %/ Introduce the denotation y(v) = y(v)— y(0). Then:

2
[ (i +ogup) | = D o [7o(w)], You,ap € R', Yuy,uy € . (2.3)
i=1
Proceed from equality (2.3), and the linearity of the functional L(v) and
the bilinearity of the form m(u,v) are stated.
Let y'=y(') and 7" =3 ") be solutions from V to problem (1.11)
under f = 0 and under a function u =u(x) that is equal, respectively, to
u' and u" . Since the inequality

f(G5-50" - G-y Yars
<of (0e-50 Jav+ flGn-52) ar <

<7 -7l <ol - 55 . cb = const>0, 2.3)
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is true in accordance with the embedding theorems [55], then:

Lr- ~
;E;ll[yu—[yz] 2

~ o~y
l/z(Y)S”y =¥l <

~n o~ I II

1
<—a(y -7,
g
Therefore, the inequality

15211511 < L2

is obtained that provides the continuity of the linear functional L() and
bilinear form m(-,-) on %

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 2.1. Let a system state be determined as a solution to
problems (1.10) and (1.11). Then, there exists a unique element u of a

convex set Uy that is closed in ¥ and relation (1.17) takes place for u,
where the cost functional has the form of expression (2.1).

As for the control ve %, the conjugate state p(v) eV is specified a
generalized solution to the problem specified, in its turn, by the equalities

3
ZM=O, i=i,—3, xeQ,
k=1 8xk

p=0, xel,
[2.]=0, [0,(p)]=0, xev, (2.4)
[‘Cs(p)]=0, {rs(p)}i=r[ps]+[ys]—z , XEY.

The generalized problem corresponds to boundary-value problem (2.4) and
means to find a function p eV that satisfies the equation

a(p,2)=4(y,z), VzeV, (2.5)

where the bilinear form a(-,) is specified by expression (1.11"), and
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L(nD) == [([vs]-2¢)z:]ar. @.5)
t4
Therefore, the necessary and sufficient condition for the existence of the
optimal control u € %, is the one under which the relations

a (y(u),z) =l(u,z), Vzel, (2.6)
a (p(u),z) =1 (y(u),z), VzeV, 2.7)
and
([ ysW]-zg, [y, 0]-[ ys(u)])Lm +(au,y—u) 20, Vve Uy, (2.8)
are met.

Choose the difference y(v)— y(u) instead of z, obtain the equality
a(p), ) - y@) == [([7 @]z ) [ -[v, @] dv

v
from equality (2.7), and the equality

a(pu), y(v) = y()) = (v-u, p(u))
follows from equality (2.6). Therefore, the equality
[([ys@1-2) ([l @]dy == (pe,v-u)  @8)

y
is derived. Take it into account, and inequality (2.8) has the form

(—p(u)+au,v—u)20, Vvel. 2.9
If the constraints are absent, i.e. when %4 =%, then the equality
~p+au=0, xeQ, (2.10)

follows from inequality (2.9). Therefore, when the constraints are absent,
the control u can be excluded from equality (2.6) by means of equality
(2.10). On the basis of equalities (2.6), (2.7) and (2.10), the problem is

obtained: Find the vector-function (y, p)Te H= {v = (vl,vz)T v el

i=1, 2} that satisfies the equality system
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a(y,z)=Il(p/a,z), VzeV,
a(p,z)=ll(y,z), VZGV’ (211)
and the vector-solution (y, p)T is found from this system along with the

optimal control
u=pla, xeQ. (2.12)

If the vector solution (y, p)T to problem (2.11) is smooth enough on
Q;, viz., , p|§—21 eCl(Q)NCH,), =12, then the differential

problem of finding the vector-function (y, p)T, that satisfies system (2.4)

and equalities
3

_Zggl_k(_y)_ _pl/a=f;’ i:i,—-’ er’

Py’
y=0, xeTl,
[yn]::o’ [Gn(y)]'—‘oa X€Y,
[t:(]=0, {t, W} =r[ys], xev, 2.13)

corresponds to problem (2.11).
Definition 2.1. A generalized (weak) solution to boundary-value

problem (2.4), (2.13) is called a vector-function U =(y, p)T € H that
satisfies equation like (1.28), where

a(U,2)=ay(U,2) - (p/2,2))+ ([ ][ Z25]) )

0Z)=(f,2)+ (2, [255]) (2.13")

Ly’
Let the constraint

min{ocou—zll—, oop=1, %—%0}>0 (2.14)
0

be met, where oy, ¢y and n are the constants, respectively, from
inequalities (1.13) and (2.3’) and the Friedrichs one.
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Therefore, inequalities like (1.31) and (1.33) take place for the bilinear
form a(-,) and linear functional /() specified by respective expressions

(2.13"). The following statement is valid.
Theorem 2.2. Let constraint (2.14) be met. Then, there exists a solution
UeH to problem (1.28), where the bilinear form a(-,) and linear

functional I(-) are specified by respective expressions (2.13’).
Assume that the classical solution U on ; to problem (2.4), (2.13)

belongs to the Sobolev space W2k+l(Q,), /=1,2. Then, estimate like

(1.37) takes place for the approximate solution U, ,ﬁv eH ,ﬁv obtained by
means of the finite-element method. Therefore, estimate (1.38) takes place,

in its turn, for the approximation u,ﬁv (x)= p,](v / a of the control u = p/a .

10.3 DISTRIBUTED CONTROL WITH OBSERVATION
AND WITH TAKING SIGHT ON A NORMAL
DISPLACEMENT VECTOR COMPONENT AT
A THIN INCLUSION

Assume that equation system (1.5), where Bu=u, is specified in the
bounded, continuous and strictly Lipschitz domains €, and Q, € R® for
every control u € % = L,(QQ). Boundary condition (1.2) is specified on the
boundary I' and constraints (1.3) and (1.4) are specified, in their turn, on
the section y. Specify the observation as follows:
Cy(u) =y, (u), xevy.
Bring a value of the cost functional

2 —
J(u) = j(yn(u)—zg) dy +(au,u) (3.1)
Y
in correspondence with every control u € % ; in this case, z; is a known
scalar function from L,(y), and the function a(x) is specified in point
10.1.
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It is shown in point 10.1 that a unique state, namely, a function
y(u) e V corresponds to every control u € %, minimizes functional (1.10)

on ¥V and meets equation (1.11), where the bilinear form a(-,) and
functional /(-,) are specified by respective expressions (1.11").
Rewrite cost functional (3.1) as
2

J(u) =n(u,u) -2 L(u) + ”zg -V (O)”L2 (Y);

in this case, the bilinear form m(.-) and linear functional L(-) are
expressed as

7(,) = (¥ @) = 2(0), 74 ()= 74(0)),, ) +(@1v)

(3.2)

and
L) =(25=32(0) ¥, =3:(®), .

Inequality (1.15') is true for the bilinear form =(-,), i.e. such form is
coercive on % Let j'=yp(') and y"=3Ju") be solutions from V to
problem (1.11) under f =0 and under a function u =u(x) that is equal,
respectively, to ' and #” . Since the inequality

~p ~n 2 ~r ~u 2 !
_f(yn—yn) dy<c|y -5, (3.2
¥
is true in accordance with the embedding theorems, then:

1 ~1 ~n |12 ~ ~nl|2 1 ~1 ~no~r ~n
c—ollyn =l 515 =71y <o a(y-3",5-5")<
1
<__ I_ L4 ~!__ o0 .
<ol =il =51y
Therefore, the inequality

~n

~ \/2; ' "
%5 -7 Ly(v) S?(;‘”” ~u'|

is obtained that provides the continuity of the linear functional L(-) and
bilinear form n(-,-) on %.
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On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 3.1. Let a system state be determined as a solution to
equivalent problems (1.10) and (1.11). Then, there exists a unique element
u of a convex set U, that is closed in U, and relation (1.17) takes place
for u, where the cost functional has the form of expression (3.1).

As for the control v € % , the conjugate state p(v) eV is specified as a

generalized solution to the problem specified, in its turn, by the following
equalities:

3
S Pul) o ;273 xeq
k=1 6xk

p=0, xel,
[2,]=0, [0,(D)]=y,~2, x€7, (3.2")

+
[v(»]=0, {t(p)} =r[p,], xe¥.

The generalized problem corresponds to boundary-value problem (3.2")

and means to find a function p € V' that satisfies equation like (2.5), where

the bilinear form a(.,) is specified by expression (1.11'), and

h»2) == [(ya=zg)2ady. (33)
Y
Therefore, the necessary and sufficient condition for the existence of the
optimal control u €% is the one under which the inequality

(yn(u)—zg, yn(v)—yn(u))Lz(Y)+(c7u,v—u)20, Vve, (3.4)

and equalities like (2.6) and (2.7), where the bilinear form a(:,) and
functional /(-,) are specified by respective expressions (1.11") and /(-7 is

specified, in its turn, by expression (3.3), are met.
Choose the difference y(v)— y(u) instead of z, take expression (3.3)

into account, obtain the equality

a(p), y() = y@) == (4@ =2 ) (7, 0) = yu(@) dy

¥
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from equality (2.7), and the equality
a(p), y() = yw) = [0 - p@)dx
Q

follows from equality (2.6). Therefore, the equality

(V) =z ya0)=3u@)),  ==(pGy-u) ()

is derived. Take it into account, and inequality (3.4) has the form of
inequality (2.9). If the constraints are absent, i.c. when % =%, then

equality (2.10) follows from inequality (2.9). Therefore, when constraints
are absent, the control u can be excluded from equality (2.6) by means of
equality (2.10). On the basis of equalities (2.6), (2.7) and (2.10), the

problem is obtained: Find a vector-function (y, p)Te H= {v = (vl,vz)T :

v,eV, i=1,2 } that satisfies equality system (2.11), where
a(-,’) and I(,,-) are specified by expressions (1.11') and /() is
specified, in its turn, by expression (3.3). The vector solution (y, p)T to
this problem is obtained and the optimal control u is found by formula
(2.12). If the vector solution (y, p)T to problem (2.11) is smooth enough
on Q;, then the differential problem of finding the vector-function
(», p)T, that satisfies systems (2.13) and (3.2"), corresponds to problem

(2.11).
Definition 3.1. A generalized (weak) solution to boundary-value

problem (2.13), (3.2"”) is called a vector-function U =(y, p)T € H that
satisfies equation like (1.28), where

a(UsZ) = Clo(U,Z)—(p/E, Zl)+(yn ’ZZ")Lz(y) > (35')

UZ)=(f21)+(Zg:Zss )Lz(Y) .

Let the constraint
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min{aou—;l—, agp—1, ocb—co}>0 (3.6)
0

be met, where oy, o, ¢o(y, p)T and p are the constants, respectively,

from inequalities (1.1"), (1.13) and (3.2") and the Friedrichs one. Therefore,
inequalities like (1.31) and (1.33) take place for the bilinear form a(-,)) and

linear functional /(-). The following statement is valid.

Theorem 3.2. Let constraint (3.6) be met. Then, there exists a solution
UeH to problem (1.28), where the bilinear form a(.) and linear

functional () are specified by respective expressions (3.5).

Assume that the classical solution U on ; to problem (2.13), (3.2")
belongs to the Sobolev space WZk“(QZ), /=1,2. Then, estimate like
(1.37) takes place for the approximate solution U,QN eH ,ﬁv obtained by
means of the finite-element method. Therefore, estimate (1.38) takes place,
in its turn, for the approximation u,ICV (x)= p,ICV / a ofthe control u= p/a .

104 DISTRIBUTED CONTROL WITH OBSERVATION AT
A DOMAIN BOUNDARY PART

Assume that equation system (1.5), where Bu=u, is specified in the
bounded, continuous and strictly Lipschitz domains €; and Q, e R® for
every control u € % = L,(QQ). Conjugation conditions (1.3) and (1.4) are

specified, in their turn, on the section y of the domain Q and, on the
boundary T of the domain Q (T =(8Q; UdQ,)\y, y=00Q,N8Q,), the
boundary conditions are

y=0, xely, (4.1)
G, =81 xerz, (42)

and
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T,=g,, x€l,, (4.3)
where I'=T,UT,.
Specify the observation as
Cy(u)=y(x;u), xel,.
Bring a value of the cost functional

2 —
J@y= [|y@)-z,| dry+@u.u) (4.4)
¥
in correspondence with every control u € % ; in this case, z, is a known

element from L,(I",), and the function a(x) is specified in point 10.1.
Let the Friedrichs inequality

IZ( jdx>uj‘2dx p=const>0, (4.5)

Qi=l1

take  place Vve V= {v (vl,vz,v3) l eWZ(Ql) =12

v|r, =0, [v,,]|y=0}.

The following statement is valid.
Theorem 4.1. A unique state, namely, a function y=y(u)eV
corresponds to every comntrol ueU, delivers a minimum to energy

functional (1.10) on V and it is a unique solution in V to weakly stated
problem (1.11), where

a(,2)= [ Z CitimEit (V) Epm(2) dx+ {7 I [z ]dv,  46)

Qik,J,m=1

1w, = (£ + @)+ [ (g, +82v,)dTs
Iy
The validity of Theorem 4.1 is stated on the basis of the Lax-Milgramm
lemma.
Rewrite cost functional (4.4) as
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J () = (o, u) ~ 2L () + |z - y(O)“Z(rz) ,

where
(,v) = (y(@) = ¥(0), y() = (0)), ., + (@)
and
L) =(zg = y(0), y)=y(O),_ . ..

Inequality (1.15") is true for the form =(.,), i.e. such form is coercive on
U .

Let y'=p(') and 7" = y(u") be solutions from V to problem (1.11),
where a(,,-) and I(-,-) are specified by respective expressions (4.6), under
f=0and gy=g,=0 and under a function u=u(x) that is equal,
respectively, to »' and u" . Then, the inequality

~r ~nli2 ~1 ~p||2 ~r ~n o~ ~n
17 = 51,0, S ol =71y < cra (57 - 5,5 - 57) <

Scl Ilur___un )7,"5}”

V’

1.e.

|y,_5}/”“1,2(r2) < CZHu,_u””
is obtained that provides the continuity of the bilinear form =(.:) and

linear functional L(-) on %.

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 4.2. Let a system state be determined as a solution to
equivalent problems (1.10) and (1.11), where a(.,") and I(-,") have the
form of expressions (4.6) and the space V is specified in the present point.
Then, there exists a unique element u of a convex set Uy that is closed in
U, and relation (1.17) takes place for u, where the cost functional has the
form of expression (4.4).

As for the control v e %, the conjugate state p(v) eV is specified as a
generalized solution to the problem
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3
Zasik(p)zoa i=f§, xeQ,
o %
p=0, xely,
Ts(p):ys_zgsa xely,
Gn(p)zyn—zgn’ xerz,
[Px]=0, [o.(P)]=0, xev, 4.7

+
[xs(»]=0, {t(p)}" =r[p,], xev.
The generalized problem corresponds to boundary-value problem (4.7) and
means to find a function p eV that satisfies equation like (2.5), where the

bilinear form a(.,) is specified by expression (4.6), and
Therefore, the necessary and sufficient condition for the existence of the
optimal control u € %, is the one under which the inequality

(Y@ =24, y0) =y @) | +@uy-u)20, Vvet, (49)
and equalities like (2.6) and (2.7), where the bilinear form a(,) and
functional [(.) are specified by respective expressions (4.6) and the
functional /;(;,-) is specified, in its turn, by expression (4.8), are met.

Choose the difference y(v)— y(u) instead of z, take expression (4.8)
into account, obtain the equality

a(p(u), y(v) - y()) = (y(u) - zg, y(v) - y())

(4.8)

Ly(I'2)
from equality (2.7), and the equality
a(p(), y(v) - y()) = (p(u), v—u)
follows from equality (2.6). Therefore, the equality
(y) - zg, y) = yw)) . =(p(),v—u)

1(T2)

is derived. Take it into account, and inequality (4.9) has the form
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(p(u)+au,v-u)>0, Vve,. (4.10)
If the constraints are absent, i.e. when %; =% , then the equality
pw)+au=0 4.11)

follows from inequality (4.10). Proceed from equality system (2.6), (2.7),
where the bilinear form a(.,) and functional I(,-) are specified by

respective expressions (4.6) and the functional /(-,-) is specified, in its
turn, by expression (4.8), take the equality u =— p/a@ into account, and the
solution to this system, namely, the vector-function (y, p)T € H is found
and the optimal control is u =—p/a .

If such solution is smooth enough on ﬁ,, [ =1,2, then the differential

problem of finding the vector-function (y, p)T, that satisfies equality
system (1.3), (1.4), (4.1)—(4.3), (4.7) and the equation

S0y (), T3
-y Sy pja=f, i=13, xeQ, (4.12)
prie’
corresponds to the considered problem.
Definition 4.1. A generalized (weak) solution to boundary-value
problem (1.3), (1.4), (4.1)-(4.3), (4.7), (4.12) is called a vector-function

U=(y, p)T € H that satisfies equation (1.28), where
a(U,2) =a(U,2) +(p[3,2,)~ [yZ,dT,

I
0Z)=(f.2)- jzgzzafr2 . (4.13)
I
Let the constraint
min{ocou—i, oo —1, oc’()—coc()}>0 (4.14)
Qo

be met, where o, oy, ¢y, ¢y and p are the constants, respectively, from

inequalities (1.1"), (1.13) and (3.2"), the embedding theorems and
Friedrichs inequality.
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Therefore, inequalities like (1.31) and (1.33) take place for the bilinear
form a(-,’) and linear functional /(). The following statement is valid.

Theorem 4.3. Let constraint (4.14) be met. Then, there exists a solution
UeH to problem (1.28), where the bilinear form a(.) and linear

functional I(*) are specified by respective expressions (4.13).
Assume that the classical solution U on €; to problem (1.3), (1.4),

(4.1)—(4.3), (4.7), (4.12) belongs to the Sobolev space W2k+1(Q,), [=12.
Then estimate like (1.37) takes place for the approximate solution
U,ﬁv eH ,ﬁv c H obtained by means of the finite-element method.
Therefore, estimate (1.38) takes place, in its turn, for the approximation
ul (x)=—-p} /a of the control u=—p/a.

10.5 CONTROL AT A DOMAIN BOUNDARY PART WITH
TAKING SIGHT ON JUMPING OF A
DISPLACEMENT VECTOR COMPONENT
TANGENT AT A DOMAIN SECTION

Assume that elasticity theory equation system (1.1) is specified in the
bounded, continuous and strictly Lipschitz domains Q; and Q, € R? for
every control ue¥ =L,(I';). On the section y of the domain Q,

conjugation conditions (1.3) and (1.4) are specified and, on the boundary I
of Q, the boundary conditions are

y=0, xel},
c,=8 +u,, xel,,
T,=gotug, xel,, 5.1
where the sectors [';and I'y of T are specified, in their turn, in the previous

point.
Specify the observation as

O(u)=[y,w)], xey.
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Bring a value of the cost functional

Jw = (1 Y@ =zg) dy+@u,u) 1y (5.2)
¥
in correspondence with every control u € % ; in this case, z; is a known
element from L,(y), and the function a(x) 1is specified on
I'y, a(x)e L,(I',), 0<ay<a(x), ay=const.

The following statement is valid.

Theorem 5.1. A unique state, namely, a function y=yu)eV
corresponds to every control ue, delivers a minimum to energy
functional (1.10) on V, and it is a unique solution in V to weakly stated
problem (1.11); in this case, the space V is specified in point 10.4, the
bilinear form a(-;) is specified by the first formula of expressions (4.6),
and

Ku,v) = (f ) + @) 1y + j (g1vy +g2v;)dT . (5.3)
I
Rewrite cost functional (5.2) as

I = (o) ~2L0) + [z = [, @], .

where

n(u,v) = ([ys(u)] - [ys (O)]s [ys(v)] - [ys (O)])LZ(Y) + (Eu,v)bz I'y)

and

L) = (25 =[5 [7,0)]-1:0),,)-
Inequality (1.15') is true for the bilinear form =n(--), i.e. such form is
coercive on % Let ¥ =3y(')and 7" =yu") be solutions from V to
problem (1.11) under f =0 and g; = g, =0 and where a(-) and I(-,) are

specified, respectively, by the first formula of expressions (4.6) and by
expression (5 3) Then, the inequality

lQ(y) _I|~r ~n||V Il a(y yll ~ y )<
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cl ~ o~
< a};””’ - u"||L2(r2) ”y, ”"V

is obtained, where ¢, ¢ and ap=const>0 and from which the

“ [7:]-[5] Ly(y )—01||” u ”1,2(1"2)
follows that provides the continuity of the bilinear form 7(-,-) and linear
functional L(-) on %.

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 5.2. Let a system state be determined as a solution to
equivalent problems (1.10) and (1.11), where a(-,) is specified by the first

formula of expressions (4.6) and I(-,) has the form of expression (3.3).

inequality

(5.4)

Then, there exists a unique element u of a convex set U, that is closed in
U, and relation (1.17) takes place for u, where the cost functional has the
form of expression (5.2).

For every control v e %, the conjugate state p(v) eV is specified as a

generalized solution to the problem specified, in its turn, by the equalities
of system (2.4), except the second one, and by the constraints

p=0, xely,

6,=1,=0, xel'y. (5.4)
The generalized solution to the considered problem exists and such
solution is unique in V.
Therefore, the necessary and sufficient condition for the existence of the
optimal control u € %; is the one under which the relations

a(y(),z)=lu,z), VzeV, (5.5)

a(pu),z)=4(y(u),z), VzeV, (5.6)
and

(I s @] -2 [ys0-[r,]),  +
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+@uwy-u), )20, Ve, (5.7)

where a(,-), I(,-) and /(,©) are specified by the first formula of

expressions (4.6) and by expressions (5.3) and (2.5'), are met.
Choose the difference y(v)— y(u) instead of z, obtain the equality

a(p(w).y ()~ y) = ([, @]- 2.y W] - [ @]),_

from equality (5.6), and the equality
a (p(u)a y(V) - y(u)) = (p(u)a V- u)L2 (Ty)
follows from equality (5.5). Therefore, the equality

(lys@]-2g. [y, 0]-[s@]),  =(P@v-1), ) (59)

is derived. Take it into account, and inequality (5.7) has the form

(—p(u)+5u,v—u)L2(r2) >0, Vvel. (5.9)

If the constraints are absent, i.e. when % =%, then the equality

-p+au=0, xel',, (5.10)

follows from inequality (5.9).

Therefore, when the constraints are absent, the control u# can be
excluded from equality (5.5) by means of equality (5.10). On the basis of
equality (5.10), the problem is obtained: Find the vector-function

(y, p)Te H :{v = (vl,vz)T cv eV, i= 1,2} that satisfies the equality
system

a(y,z)=1(p/a,z), VzeV, (5.1D)

a(p,z)=L(y,z), VzeV, (5.12)

from which the vector solution (y, p)T is found along with the optimal
control
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u=pla, xel,.
If the vector solution (y, p)T to problem (5.11), (5.12) is smooth
enough on Q;, then the differential problem of finding the vector-function

(y, p)T , that satisfies equality system (2.4), except its second equality,
equalities (1.1), (1.3), (1.4) and (5.4’) and the constraints
y=0, xeTI,
Gn(y)=g1+pn/aa xerZ’ (5.13)
t,(V)=g,+p,/a, xeTl,,
corresponds to problem (5.11), (5.12).
Definition 5.1. A generalized (weak) solution to the boundary-value

problem, specified by equalities (1.1), (1.3), (1.4), (5.4"), (5.13) and (2.4),
except the second one of system (2.4), is called a vector function

U=(y, p)T € H that satisfies equation (1.28), where

a(U,2) = ayU,2)~(p/,2,) 1y + (751 Z25]) oy 5130

(Z)=(1,2,)+(Zg. [22])

L)
Let the constraint
’ Co Ci
oy —————>0 5.14
0" 2a, 2 (5.14)
be met, where o and ¢, are the constants, respectively, from inequalities

(1.13) and the embedding theorems and the constant c] is found from the

inequality
|01, ¢y et It

Therefore, inequalities like (1.31) and (1.33) take place for the bilinear
form a(:,”) and linear functional I(-). The following statement is valid.

Theorem 5.3. Let constraint (5.14) be met. Then, there exists a solution
UeH to problem (1.28), where the bilinear form a(.,) and linear

Sfunctional I(*) are specified by respective expressions (5.13’).
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Assume that the classical solution U on €, to the problem, specified by
equalities (1.1), (1.3), (1.4), (5.4"), (5.13) and (2.4), except the second
equality of system (2.4), belongs to the Sobolev space W2k +1(Ql), I=12.
Then, estimate like (1.37) takes place for the approximate solution

UYN e HY obtained by means of the finite-element method. Therefore, the
k k
estimate

N < ok "

”u ul ”za(m <ch (5.13")

takes place for the approximation u,ﬁ‘[ (x)= p,}cv / a of'the control u=p/a .

10.6 CONTROL AT A DOMAIN BOUNDARY PART WITH
TAKING SIGHT ON A NORMAL DISPLACEMENT
VECTOR COMPONENT AT A DOMAIN SECTION

Assume that elasticity theory equation system (1.1) is specified in
bounded, continuous and strictly Lipschitz domains ; and Q, € R® for
every control u €% =L,(I"5). Conjugation conditions (1.3) and (1.4) are

specified, in their turn, on the section y of the domain Q and, on its
boundary I', the boundary conditions have the form of expression (5.1).
Specify the observation as
Cy(u)=y,(u), xevy.
Bring a value of the cost functional

I = (3 -2¢) dy+ @)y 6.1)
Y

in correspondence with every control ue %, in this case, z, is a known

g
scalar function from L,(y), and the function a(x) is specified in the
previous point.

It is shown in point 10.5 that a unique state, namely, a function
y=y(u)eV corresponds to every control u €%, minimizes functional



370 CHAPTER 10

(1.10) on ¥ and meets equation (1.11), where the bilinear form a(-,) is
specified by the first formula of expressions (4.6) and the functional /(-,")
has the form of expression (5.3).
Represent cost functional (6.1) in the form of expression (3.2), where
7(19) = (5400 = ¥4(0), Y50V, (0) ) + @1V 150y
and
L) =(7g =70, 74 =3u(®),_ -

It is easy to see that the form =(-,-) is coercive on .

Let y'=y(u") and y" = y(u") be solutions from V to problem like (1.11)
under f =0 and g; =g, =0 and under a function » = u(x) that is equal,
respectively, to ' and u”. Proceed from the embedding theorem, and the
inequality

17 =72l < ol =l
is obtained that provides the continuity of the bilinear form =n(-,-) and
linear functional L(:) on %.

On the basis of [58, Chapter 1, Theorem 1.1], the validity of the
following statement is proved.

Theorem 6.1. Let a system state be determined as a solution to
equivalent problems like (1.10) and (1.11), where the bilinear form a(-,) is
specified by the first formula of expressions (4.6) and the functional I(-,")
is specified by expression (5.3). Then, there exists a unique element u of a
convex set U, that is closed in ¥ and relation (1.17) takes place for u,
where cost functional has the form of expression (6.1).

As for the control v € %, the conjugate state p(v) eV is specified as a
generalized solution to the problem specified, in its turn, by system (3.2"'),
except the second equation, and by constraints (5.4"). It is easy to state that
the generalized solution to this system exists and that such solution is
unique.

Therefore, the necessary and sufficient condition for the existence of the
optimal control u € %, is the one under which the inequality
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(v2 () =2, . )= 3u @)+
+(Eu,v—u)L2(F2) 20, Vve,, (6.2)
and equalities like (2.6) and (2.7), where the bilinear form a(.,’) is
specified by the first formula of expressions (4.6), the functional /() is
specified, in its turn, by expression (5.3) and /(-,-) has the form of
expression (3.3), are met.

Choose the difference y(v)— y(u) instead of z, take expression (3.3)
into account, obtain the equality

a(p(), ) - @) == [(72) =2 ) (a0 - 7, @) dy
Y
from equality (2.7), and the equality

a (p(u)n J’(V) - y(u)) = (p(u)a V- u)I/Z(FZ)
follows from equality (2.6). Therefore, the equality
—(yn(u) '—Zg9 yn(v)— yn(u))Lz(Y) = (p(u)’v—u)Lz(Fz)
is derived. Take it into account, and inequality (6.2) has the form
(—p(u)+2iu,v—u)L2(r2) >0, Vve,. (6.3)
If the constraints are absent, i.e. when %; =% , then the equality
-pu)+au=0, xel,, (6.4)
follows from inequality (6.3). Therefore, when the constraints are absent,
the control u can be excluded from condition (5.1) by means of equality
(6.4),1.e.
y=0, xelj,
C,=g1+p,/a, xel,, (6.5)
T, =8y+p/a, xels.
Definition 6.1. A generalized (weak) solution to boundary-value

problem, specified by equalities (1.1), (1.3), (1.4), (6.5) and (3.2"), except
the second one of system (3.2"), and by constraints (5.4'), is called a
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vector-function U = (y, p)T € H that satisfies equation (1.28), where
a(U,Z) = aO(U,Z) —(p/a’Zl)Lz(I“z) +(Yn :ZZn)LZ(Y) 5
WZ)=(f21)+(Zg: 220 )

The following statement is valid.

Theorem 6.2. Let the constraint be met that provides the H-ellipticity of
the bilinear form a(;) on H. Then, there exists a solution Ue H to
problem (1.28), where the bilinear form a(-) and linear functional I(-)
are specified by respective expressions (6.6).

Assume that the classical solution U on €; to the considered problem

. 6.6
L (v) (6.6)

belongs to the Sobolev space Wyt'(Q), /=1,2. Then, estimate like
(1.37) takes place for the approximate solution U,ﬁV eH ]?1 c H obtained
by means of the finite-element method. Therefore, estimate (5.13"') takes

place, in its turn, for the approximation u,]cv (x)= p,iv /E of the control
u=pla.
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