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Foreward

Global climate change has become an urgent and important issue because of its

significant impact on our lives and the environment. In fact, to a great extent,

climate change is the bellwether of our environment and reflects our ability and

commitment to manage human activities in such a way as to support a sustainable

Earth environment for the benefit of present and future generations. A sustainable

future depends on our success in the race to develop far greater understanding of

climate change both natural and anthropogenic.

Changes in the north polar ice coverage, the number of wildfires, which is one

measure of the increasing frequency of severe weather events, and the ever growing

number of temperature records being broken annually attest to the fact that climate

change is real. Our understanding of climate change and its effects on the Earth and

its chain of life are directly dependent on our ability to observe all facets of Earth

systems, physical, chemical, and biological. Certainly in situ or Earth-based local

observations remain critical to understanding our planet, but only satellites can

provide complete coverage of the globe to allow scientists to monitor changes of the

Earth whether they occur in the tropics, over the oceans, within the continents, or in

the polar ice caps.

Satellite-based remote sensing measurements with their 24 � 7 large data

streams are critical for understanding the complicated global changes of the Earth

system of systems. The environmental satellites operated by the National Oceanic

and Atmospheric Administration (NOAA), National Aeronautics and Space

Administration (NASA), and our partner international space agencies have been

collecting information about the Earth’s atmosphere and environment for decades.

These satellite systems although relatively new and revolutionary in applications

to the Earth sciences have already led to enormous advances in our understanding

of the atmosphere, ocean, and land cover, as well as the significant improvement of

weather and climate forecasts in the past several decades. Satellite observations are

proving to be essential for global climate change study because they provide the

global, regional, and local context about how change in one area of the planet is

related to change in another region. This information helps scientists determine the
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cause and effect relationships to improve our ability to understand and model

the impacts.

This book presents recent advances in satellite-based remote sensing applications

related to the issue of climate change. Research results and applications on a range of

climate topics that touch upon key specialization areas such as atmospheric sciences,

hydrology, oceanography, phenology, and ecology are presented in a logical and

useful format for answering today’s urgent questions. This volume will be a valuable

reference for researchers and graduate students interested in recent findings derived

from remote sensing measurements that have been applied to the climate sciences.

The imaginative and intricate techniques presented herein are indicative of the

kind of investigation and scientific development that is urgently needed now and in

the future to develop our understanding of climate change. Greater understanding is

needed now to provide for more accurate forecasting that will lead to the prudent

use of our precious resources, allowing us to live in harmony with our environment.

I applaud the authors for their hard work in bringing together the most recent and

valuable of satellite-based climate science techniques and hope that careful study of

the material contained herein will inspire the next generation of climate scientists

and Earth observation developers. A sustainable future depends on it!

Administrator, National Oceanic and Atmospheric Conrad C. Lautenbacher Jr.,

Administration (NOAA), and Undersecretary VADM U.S. Navy (ret), PhD

of Commerce 2001–2008

August 2012

vi Foreward



Preface

Climate and other environmental changes are drawing unprecedented concern and

attention from national governments, international organizations, and local

communities. Global warming is leading to noticeable impacts on the environment,

ecosystems, and human livelihoods, all of which carry important implications for

sustainable economic and social development in the future. Satellite observations of

climate and environmental change have become an increasingly important tool in

recent years for helping to shape the response of international communities to this

critical global challenge.

This book includes 21 chapters which present the latest advances in satellite-based

remote sensing of the Earth’s environment ranging from applications and research in

climate, atmospheric science, hydrology, oceanography, geomorphology, ecology,

and fire studies. Introductory chapters also cover key technical aspects such as

instrumentation, calibration, data analysis, and GIS tools for decision-making.

We convey our thanks to all the authors who spent their valuable time to

contribute chapters to this book. We also wish to extend our appreciation to the

anonymous reviewers for their critical and constructive comments and suggestions.

The support from the Center for Satellite Applications and Research (STAR) of the

National Oceanic and Atmospheric Administration (NOAA) and Environmental

Science and Technology Center (ESTC) of George Mason University (GMU)

is gratefully acknowledged. Special recognition is given to Dr. Xianjun Hao,

Dr. Lilong Zhao, and Mr. Weijie Fu who helped us to edit this book.

We sincerely hope that the contents of this book provide the readers with a better

understanding of climate change monitoring from space and that this book will

serve the needs of scientists and graduate students who are interested in satellite

remote sensing and its applications.

John J. Qu

Alfred M. Powell, Jr.

Mannava V.K. Sivakumar
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Chapter 1

An Introduction to Satellite-Based Applications

and Research for Understanding Climate

Change

Alfred M. Powell Jr., John J. Qu, and Mannava V.K. Sivakumar

Abstract The use of satellite data in applications has changed as the environmental

community has become more sophisticated deriving products from the remotely

sensed measurements. This introduction summarizes the changes from the first

satellites where the images were used to improve cloud forecasts to the international

coordination groups that have formed to improve collaboration and data sharing of

satellite observations. This introduction also addresses some of the key challenges

associated with using satellite data for both weather and climate; the challenges

include calibration, derived products, trend uncertainty, and measurement quality.

A short discussion of subsequent future issues is briefly discussed as satellite mea-

surement calibration reaches maturity.

Keywords Satellite • Applications • Research • Calibration • Collaboration •

Climate • Trend • Uncertainty
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1.1 Introduction

Climate change is one ofmost important issues facing theworld today.With theArctic

polar ice extent at near record minimums and new temperature records being set in

many regions of the world, the need to understand how our planet is responding to

environmental change is critical for society. Although some progress was made

toward understanding the changes in weather, the understanding of changes in oceans

and land over time is still in a formative stage. A description of climate observations in

support of the Global Climate Observing System can be found in Thomas R. Karl’s

(ed) (1996) book: Long-Term Climate Monitoring by the Global Climate Observing
System.As better quality global observations of the Earth are collected from satellites,

the opportunity to gain insight into the dynamic processes driving our planet and the

long-term trends will improve. Even though there are thousands of surface

observations, rawinsondes, buoys, and other in situ measurements from ships and

aircraft, the observations are limited in global coverage, particularly over the oceans

and the polar caps. Measurements over the sparsely observed oceans and polar caps

are needed to understand how the various regions of our planet are connected. The

land regions where we live are impacted by changes in the oceans and the polar caps.

For example, if the polar caps continue to melt, sea level rise will affect islands and

coastlines – inundating some to such an extent that the inhabitantsmust live elsewhere.

Changes in temperature will affect precipitation, evaporation, and crop growth,

leading to economic impacts and potential disruptions in global food supply. It is

vital that a fundamental understanding of how our planet works be developed so

accurate predictions of environmental change can be provided. This will allow the

world’s decision makers to make tough choices relative to both global and regional

consequences. To garner an improved understanding about how our environment

functions, a comprehensive set of global observations are required. Satellites can

help provide those observations and eliminate the data sparse coverage in many

regions of the world like the oceans, deserts, and polar caps.

1.2 Satellites and Changes over Time

Satellite observations play a crucial role filling the gaps in the data sparse regions

and helping to understand the connections between different regions of the world.

The observations will provide information about how the Earth exchanges energy

between the tropics and the poles and how the heat exchange impacts global

atmospheric circulation patterns as well as the weather and climate trends around

the globe. Satellites are relatively new on the global monitoring scene with only

about 30 years of modern observations. Progress is being made in understanding the

spaceborne observations, how they relate to our collection of in situ observations,

and how they can be used to predict changes in our environment.

In the early years, the first satellites were successful if the imagery had sufficient

contrast and clarity to be used for cloud pattern analysis. One of the first

publications on satellite data applications was the Environmental Science Services

2 A.M. Powell Jr. et al.



Administration (ESSA) Technical Report, from the National Environmental Satel-
lite Center (NESC) on the Application of Meteorological Satellite Data in Analysis

and Forecasting (Anderson et al. 1969). In the introductory chapter, the wisdom of

the early satellite scientist pioneers was captured in the following quotes on page 1:

Since the advent of the operational ESSA weather satellites in 1966, routine use of satellite

cloud photographs has increased steadily. Meteorologists worldwide now depend on these

data to supplement conventional observations and rely completely on satellite cloud

observations where other data are not available. The problem of “sparse data” areas has

been greatly alleviated since weather satellites now provide analysts with a timely view of

the cloud conditions over all parts of the earth. Even so, the advantages of the satellite data

are not limited to isolated areas but also provide additional intelligence over areas where the

conventional observations are dense.

If the maximum value of these data is to be realized, correct interpretation of the cloud

photographs is essential. This technical report furnishes guidance in the interpretation of

satellite cloud photographs and presents the latest relationships as determined by research

and study in this field.

The ESSA Technical Report authors further comment:

Future research with improved satellite data will undoubtedly result in the determination of

new concepts and a better understanding of the relationships between the satellite data and the

dynamics of the atmosphere.

The pioneers of environmental satellite applications had a vision for the use of

satellite data and understood the value of training and educating others in the use of

the new satellite data. By training others, the value of the satellite data and its benefits

to society would be recognized. Twenty-five years after the Anderson publication,

similar issues of training and educating users as well as gaining an improved

understanding of the satellite measurements were identified by Stanley Kidder and

Thomas VonderHaar in their 1995 book entitled Satellite Meteorology: An Introduc-
tion (Kidder and Vonder Haar 1995). In the preface to their book, they write:

We place special emphasis on the physical understanding of measurements from space

because it is this understanding which will allow both the useful application of current

techniques and the development of future techniques. We also tend to emphasize operational

techniques over experimental techniques.We do this in the belief that most readers will not do

their own information or parameter retrievals from raw satellite data; they will use parameters

retrieved by others. Most often these parameters will be retrieved using operational, near real-

time methods. A thorough exploration of the operational techniques is therefore important.

Note the shift in approach from the first scientists who were involved in all aspects

of the satellite program and its development – a team of scientific jack-of-all-trades.

The early scientists helped in the instrument design, worked closely with the instru-

ment engineers, and performed their own data analysis which led to developing

“operational products” for the community of users. From their scientific analyses,

the scientists taught others how to use the information to monitor the Earth to make

better weather forecasts. As the use of satellites for monitoring the Earth becamemore

routine, a core group of scientific specialists was developed who also train users on

the benefits of the routine operational products. By 1995, the field of satellite meteo-

rology had grown dramatically, and the value of satellite data had proven its worth to

multiple communities eager to take advantage of the satellite measurements and the

information derived from them.

1 An Introduction to Satellite-Based Applications and Research. . . 3



1.3 International Satellite Collaboration and Coordination

The complexity of the world’s satellite systems and programs led to the develop-

ment of coordinating groups to better leverage satellite resources and share their

data. The Group on Earth Observations (GEO) was formed from a call to action by

the 2002 World Summit on Sustainable Development. The World Summit

recognized that international collaboration was critical for exploiting the growing

potential of Earth observations to support decision making in an increasingly

complex world. GEO is a voluntary partnership of governments and international

organizations. It provides a framework where partners can develop new strategies

and projects and coordinate their investments.

To improve efforts to apply satellite observations, GEO coordinates efforts to

build a Global Earth Observation System of Systems (GEOSS). GEOSS will

provide a broad range of societal benefits including reducing the loss of life and

property, improving human health, managing energy resources, adapting to climate

variability and change, improving water resource management and weather

forecasts, protecting coastal marine and marine ecosystems, supporting sustainable

agriculture, and monitoring and conserving biodiversity. GEOSS coordinates

numerous complex issues. This crosscutting approach avoids duplication,

encourages synergies between systems, and ensures substantial economic, societal,

and environmental benefits.

GEOSS provides decision-support tools to a wide variety of users. GEOSS is a

global and flexible network of content providers allowing decision makers to access

an extraordinary range of information at their desk. This “system of systems” links

together observing systems around the world. It promotes common technical

standards, so satellite data from the numerous instruments can be fused into

integrated data sets. The “GEOPortal” offers users a single Internet access point for

data, imagery, and analytical software packages. It connects users to existing

databases of observations, tools, and software. It provides reliable, up-to-date infor-

mation critical for the work of decision makers, planners, and emergency managers.

Users with limited or no access to the Internet will be able to use satellite information

available via the “GEONETCast” telecommunication satellite network where data is

broadcast to field systems with small portable antennas (information on GEO and

GEOSS is derived from http://www.earthobservations.org/about_geo.shtml).

Another key satellite group, the Committee on Earth Observation Satellites

(CEOS), was established in 1984. CEOS coordinates civil spaceborne Earth

observations. Members enhance international coordination and data exchange for

societal benefit and represent space agencies as well as national and international

organizations. Members participate in planning and related CEOS activities

through a variety of working groups; one is related to climate applications.

CEOS established a Working Group on Climate (WGClimate) to coordinate and

encourage collaborative climate monitoring activities between the world’s major

space agencies. The Working Group’s mandate is to facilitate the implementation

and exploitation of the Essential Climate Variable (ECV) time series through

coordination of CEOS member activities (information on CEOS is derived from

http://www.ceos.org).

4 A.M. Powell Jr. et al.
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Using the satellite observations and coordinating the satellite constellation is

fundamental tomanaging the Earth observations. However, the use of the observations

is impacted by the data formats and communications pathways and extends to various

user communities. The World Meteorological Organization (WMO) is a specialized

agency of the United Nations which helps facilitate international coordination. It

originated from the International Meteorological Organization (IMO), founded in

1873. The WMO was established in 1950. It became the specialized agency of the

United Nations (UN) in 1951 for meteorology (weather and climate), operational

hydrology, and related geophysical sciences. The WMO is the UN system’s authori-

tative voice on the state and behavior of the Earth’s atmosphere, its interactionwith the

oceans, the climate, and the distribution of water resources. WMO provides the

framework for international cooperation and collaboration.

As weather, climate, and the water cycle recognize no country boundaries,

global level international cooperation is essential for developing meteorological

and hydrological applications to reap the observational benefits. WMOmembership

consists of 189 member states and territories. WMO facilitates the free and unre-

stricted exchange of data and information. It also promotes products and services

relating to the safety and security of society, economic welfare, and the protection

of the environment. WMO contributes to policy formulation at national and inter-

national levels. For weather, climate, and water-related hazards, which account for

nearly 90% of all natural disasters, WMO’s programs provide information for

advance warnings that save lives and reduce property and environmental damage

(information on WMO is derived from www.wmo.int).

Studies show that every dollar invested in meteorological and hydrological

services produces an economic return many times greater. The world of satellite

observations has come a long way from the first observations taken nearly 50 years

ago.

Systems for the routine collection of data on the state of the climate system are

the bedrock for generating climate services. The requirements and standards for

observing systems and their component instruments for measuring the state of the

climate system are described fully in the relevant WMO manuals and in a range of

documents developed by the Global Climate Observing System (GCOS). The needs

for climate data are not the same across all applications. Climate change detection

and attribution need high-quality, homogeneous, long-term data. For this purpose,

the GCOS baseline systems, especially the GCOS Surface Network (GSN) and the

GCOS Upper-Air Network (GUAN), are the essential benchmarks for ensuring the

overall homogeneity of the global/regional databases. The GCOS Climate Moni-

toring Principles provide the “Gold Standard Rules” for planning, developing and

operating observing systems. WMO is now implementing the WMO Integrated

Global Observing System (WIGOS) as an all-encompassing approach to the

improvement and evolution of meteorological and related observing systems.

Given the change in emphasis of satellite programs, their coordination interna-

tionally, and the expanding satellite constellation coordination, it is no surprise that

the satellite research and applications community has changed substantially. This

book discusses selected analyses and research findings in application areas of

interest to the environmental satellite community and its users. The wide range of

1 An Introduction to Satellite-Based Applications and Research. . . 5

http://www.wmo.int


satellite products, the need for specialization in specific areas of endeavor, and the

expanding interest in new or improved satellite and model forecast capabilities

mean that today’s satellite scientists, product specialists, and the climate commu-

nity are collaborating more than any point in the past. Future expectations include a

greater and more rapid information exchange.

Partnerships similar to ones described in the various coordinating organizations

foster the continuation of the original principles listed in the two publications cited

earlier, for example, to train and educate others about the satellite measurements

and the products with the result being (a) the development of new satellite-based

concepts and (b) a better understanding of the dynamics of our planet as reflected in

the atmosphere, the oceans, on the land, and in space.

1.4 Modern Satellite Era

Twenty-five years after the first environmental satellites, the scientific roles

changed. Kidder and VonderHaar emphasized providing satellite-derived “opera-

tional products” to users over the research or experimental products. The commu-

nity of users had expanded greatly thanks to a plethora of satellite-based products

and services that provided capabilities which had become routinely used.

Today, approximately 45 years after the first ESSA satellites, one can see

animating loops of satellite images routinely on the television weather broadcasts.

Users can obtain specialized satellite-derived products that display the cloud

patterns, vegetation indices, sea surface temperatures, cloud track winds, snow

cover, precipitation, and over 450 other specialized satellite-based products that

help decision makers mitigate the impacts of the weather and climate on the

economy. Users can obtain these satellite products freely from the National Oceanic

and Atmospheric Administration (NOAA), National Environmental Satellite Data

and Information Service (NESDIS), and other international centers around the

globe. Near real-time updates about the status of instruments used by NOAA

operationally can be found at http://www.star.nesdis.noaa.gov/icvs/.

The modern satellite and environmental scientists are becoming specialists in

particular niche areas like winds, precipitation, vegetation, crop yields, drought

identification, satellite data assimilation into the forecast models, and satellite calibra-

tion. As the satellite capabilities advanced, ensuring the stability of the instruments

and tracking their individual calibration contributed to the higher-fidelity satellite

products developed by the mid-1990s. Today, the problem of satellite calibration

continues to evolve and has become more complex. It involves not only the United

States constellation of operational environmental satellites but the environmental

satellite data from our international partner’s satellites as well as the National Aero-

nautics and Space Administration’s (NASA) environmental research satellites. Satel-

lite calibration has grown into a specialized field where the calibration is no longer

ensuring the accuracy of individual satellite instruments but a calibrated constellation

of satellites and their instruments. To support our understanding of climate, instrument

stability and cross-satellite calibration have become essential components for

6 A.M. Powell Jr. et al.
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developing products capable of supporting climate services including monitoring

climate trends. Accurate calibration is required to meet the needs of today’s users,

and access to this more accurate data has expanded the user community to include

climate scientists. To support new requirements for more tailored products and

services, an international Global Space-based Inter-Calibration System (GSICS)

working group coordinates the activities of participating nations to improve the overall

calibration of all the satellites in the international constellation. The GSICS Working

Group was established in 2005 by the WMO and the Coordinating Group for Meteo-

rological Satellites (CGMS) for the purpose of monitoring, improving, and

harmonizing the quality of observations from operational weather and environmental

satellites of the Global Observing System (GOS). The goal is to provide consistent

accuracy among space-based observations worldwide for climate monitoring and

weather forecasting. (Information about the US GSICS Coordination Center and its

international role was derived from http://www.star.nesdis.noaa.gov/smcd/GCC/

index.php and http://gsics.wmo.int/).

1.5 Using Satellite Data to Understand Climate

With the intercalibrated satellite data as the global foundation data source, an

improved understanding of the environment can be derived from the information.

Understanding the movement of water in the Earth system is important for many

applications of satellite data. Passive microwave observations and the products

derived from them are routinely available and widely used in meteorological

analyses and forecasting applications requiring rainfall, total precipitable water

(TPW), and snowfall rate products, for example. These measurements and products

form the foundation for initializing satellite and climate models. Ferraro et al.

(2010) provides a summary of example applications within NOAA. However,

simply generating satellite-based products is not sufficient. For climate purposes,

the measurements must be stable and consistent across the period of the

observations. For snow and snow cover, Romanov (2011) shows how the tools

developed for monitoring global snow cover could be used to support agricultural

applications with specific application in Ukraine to assess crop yield impacts.

To address the needs of the climate community, improved calibration is the

essential stepping stone. Intercalibration techniques were the first step and com-

pared a reference satellite instrument with another satellite instrument. In Yang

et al. (2011), intercalibration was accomplished between the Defense Meteorologi-

cal Satellite Program Special Sensor Microwave Imagers (SSM/I) on F13 and F15

and the Tropical Rainfall Monitoring Mission (TRMM). The reduced biases for

total precipitable water (TPW) products were significant. Intersensor TPW biases

were reduced by 75% over the global ocean and 20% over the tropical ocean. In

addition, intersensor calibration reduced biases by 20.6, 15.7, and 6.5% for oceanic,

land, and global precipitation, respectively (Yang et al. 2011). The removal of

biases between measuring systems is extremely important for assessing accurate

climate trends and establishing measurement uncertainties.
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Global climate change signals as small as a few percent per decade critically

depend on accurately calibrated level 1B (L1B) data and the derived Fundamental

Climate Data Records (FCDRs). Detecting small climate changes over decades is

a major challenge and also impacts the retrieval of geophysical parameters from

satellite observations. Without dependable FCDRs and their derivative Thematic

Climate Data Records (TCDRs), the trends calculated from the measurements

will be questioned. Cao et al. (2008) analyzed the consistency of calibrated

reflectance from the operational L1B data between AVHRR on NOAA-16 and

NOAA-17 and between NOAA-16/AVHRR and Aqua/MODIS, based on the

recent Simultaneous Nadir Overpass (SNO) observation time series. The SNO

approach advanced the science of satellite calibration to a higher level of accuracy

and reliability and now includes the intercalibration between polar and geosta-

tionary measurements. Even so, the measurement uncertainty is still too high

relative to the trends being monitored. As a consequence, a more stable calibra-

tion source has been sought: the Moon. The Moon is thought to be a reliable and

stable calibration reference for studying climate change from satellites (Cao et al.

2009). However, having a quality FCDR does not guarantee the same or equiva-

lent quality TCDR or derived trend.

To calculate confident trends, Zou et al. (2009) developed a calibrated data set

based on the SNO approach for the Microwave Sounding Units (MSU) on NOAA

satellites 10 through 14 over the period from 1987 to 2006. This intercalibrated data

set reduced intersatellite biases by an order of magnitude compared to prelaunch

calibration and resulted in a well-merged time series for the MSU channels 2, 3, and

4, which represent the deep layer temperature of the mid-troposphere (T2), tropo-

pause (T3), and the lower stratosphere (T4). From Zou et al.’s (2009) data set, the

trend patterns revealed the tropical mid-troposphere warmed at a rate of 0.28

� 0.19 K per decade, while the Arctic atmosphere warmed two to three times faster

than the global average. Even with this improved trend calculation, there is appre-

ciable regional variability not demonstrated in this single number.

Liu and Weng (2009) also reported findings about the warming trend in the

troposphere and the cooling trend in the stratosphere. However, Liu and Weng’s

(2009) analysis presents evidence that the lower stratosphere has warmed slightly

since 1996 and the warming trend in the lower stratosphere may be related to a

possible recovery of stratospheric ozone concentration. This points out that even

with highly calibrated data, the debate over climate trends will likely change from

data quality to one of improving our understanding of the dynamic effects. In this

regard, Qin et al. (2012) analyzed MSU brightness temperatures to estimate the

global climate trend in the troposphere and stratosphere using a new adaptive and

temporally local data analysis method – Ensemble Empirical Mode Decomposition

(EEMD). Using EEMD, a nonstationary time series is decomposed into a sequence

of amplitude-frequency-modulated oscillatory components and a time-varying

trend. The data from the NOAA-15 satellite over the time period from October

26, 1998 to August 7, 2010 shows that most trends derived from microwave

channels are nonlinear in the Northern Hemisphere with a few channel exceptions.

Although the decadal trend variation of the global average brightness temperature is

no more than 0.2 K, the regional decadal trend variation could be different by plus

or minus 3 K in the high latitudes and over high terrain.
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While the calibration is improving for the core measurements, Cao et al. (2009)

pointed out there are still significant uncertainties in determining the long-term

climate trends using indices such as the Normalized Difference Vegetation Index

(NDVI). This is partly due to the lack of stability in measurements required for

climate change detection and partly due to the nonphysical derivation of the NDVI

from measured radiances. Using calibrated AVHRR (Advanced Very High Reso-

lution Radiometer) data from 1982 to 2007, complex trends in both the growing

season amplitude and seasonally integrated vegetation greenness in southwestern

North America can be observed. Zhang et al. (2010) show greenness measurements

from 1982 to 2007 with an increasing trend in grasslands but a decreasing trend in

shrublands. Also, vegetation growth appears to be a function of both the rainfall

amount and the dry season length. The average global temperature over the past

100 years increased 0.74�C according to the 2007 Intergovernmental Panel on

Climate Change Report. The period after 2000 was the warmest and includes the

two warmest years (2007 and 2010) since the 1880s. A warmer world is expected to

have tendencies toward higher temperature variability increasing the risk of sum-

mer droughts, which should affect larger areas, last longer, be more intense and

produce more devastating impacts on the environment and economy. Due to data

sparse ground observing stations, the assessment of agricultural impacts has been

performed using satellite data. Drought affects the largest number of people in the

world and has the largest economic impacts. The Vegetation Health Index has both

a temperature and moisture component to distinguish the effects of the dominant

variables (temperature and moisture/rainfall) for a particular region. Using the new

indices, drought intensity and the area covered appear to be increasing as the

temperature warms (Kogan et al. 2013). During the most recent decade, the global

drought analysis indicates that 17–35% of the world experienced droughts from

moderate to exceptional intensity, 7–15% severe to exceptional, and 2–6% the most

exceptional droughts, an increase over earlier periods. Two droughts, 2010 in

Russia and 2011 in the USA, stand out by their intensity, affected area, and

substantial economic consequences (Kogan et al. 2013).

Climate products will continue to evolve with time. They will incorporate a

greater variety of both satellite and in situ data. The combined use of the most

modern measurements to understand current trends while leveraging our knowl-

edge and understanding of the older in situ observations combined with modeled

physics to allow an improved assessment of past climate changes is the future trend.

An example of this type of project is the monthly reconstruction of precipitation

project (Smith et al. 2010) which covers 1900 until the present. This reconstruction

attempts to resolve interannual and longer time scales as well as spatial scales larger

than 5� over the entire globe using both direct and indirect correlations. A key

advantage for this type reconstruction is that it evaluates global precipitation

variations for periods much longer than the satellite period of record, which begins

in 1979 for routine use in NOAA operational models. In the future, the multisource

fusion of the in situ observations with remotely sensed measurements and detailed

model physics will allow the investigation of climate change to a level well beyond

today’s capability. However, the unfolding debate over whether the model physics is
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accurate will become the central scientific debate as the observations become more

reliable with lower uncertainties through better calibration. Since models have many

physical pathways with differing and complex physics, it will take a substantial

period of time to assess which model physics components should be used. As the

environmental research community successfully achieves their goals by improving

the satellite data and its applications, the climate trends will not only be a debate

about the observations but also the model-dependent physics used to facilitate

understanding the climate as well. The question of climate trends will shift in the

level of detail along with our understanding of the climate.

1.6 Book Overview

With the goal of adding an incremental improvement to our climate understanding,

the chapters in this text have been grouped into the following four areas:

1.6.1 Part I Overview of Satellite-Based Measurements
and Applications

This section addresses the vitally important calibration of satellite instruments and

their data since accurate calibration is the key to high-quality climate products and

services. With high-quality calibration, the data can be used to support climate

change studies and large-scale atmospheric trends and improve our understanding

of the forcings that drive the global atmospheric systems. As one looks to the future,

the development of new instruments and their potential value to society need to be

addressed. Calibration will be essential for using the satellite observations effectively.

1.6.2 Part II Atmospheric and Climate Applications

Precipitation and temperature are two very important measurements for under-

standing how our climate will change and how it will affect different regions.

Using the microwave and precipitation measurements, a set of papers addresses

global precipitation monitoring, the development of a historical precipitation

record, and suitable methods for developing atmospheric temperature climate

data records for better monitoring climate trends.
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1.6.3 Part III Hydrological and Cryospheric Applications

Themovement of water and variations in the ice caps are critical to understanding how

our planet is changing. Given the dramatic decline in the Northern Hemisphere ice

extent over the last decade, it is important to understand changes in the Arctic. With

global warming as a contributor to the declining ice extent, it may also impact the

intensity of hurricanes and the amount of tropical rainfall. Changes in the sea surface

temperatures influence the development of hurricanes and evaporation and precipita-

tion patterns around the globe. These important topics are covered in this section

recognizing their potential for significant impacts globally and on coastal communities.

1.6.4 Part IV Land Surface and Ecological Applications

With changes in global temperature and precipitation as key drivers, their impacts

are investigated using satellite data to develop products and analyses for monitoring

climate trends. The impacts of temperature and precipitation on vegetation growth,

health, and trends will be paramount. As temperatures increase, a global migration

of plants, animals, and sea creatures is expected. A relatively recent ecological

related development is the pioneering work to detect sentinel species migration and

change from satellites.

This suite of chapters discusses key topics and findings that those interested in

satellite remote sensing will find appealing. The chapters touch on the most

pressing problem areas for helping to make effective decisions about sustaining

our environment and mitigating the consequences of climate change.
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Chapter 2

Calibrating a System of Satellite Instruments

Changyong Cao, Ruiyue Chen, and Sirish Uprety

Abstract Satellite instrument calibration is the essential and fundamental process

to convert the Earth view sensor response in voltage and counts to radiance and

reflectance. Calibration accuracy directly affects the quality of the satellite Level 1b

data used for numerical weather prediction and climate change detection. There-

fore, ideally all calibration should be made traceable to the International System of

Units (SI). However, since each satellite instrument is calibrated separately with

different methodologies and at different times in history, there is often disagree-

ment between satellite measurements which could cause errors in both weather and

climate applications. This chapter provides an overview of the fundamentals of

satellite instrument calibration and reviews some of the challenges in establishing

consistent satellite measurements across a system of satellites. Examples are used to

demonstrate the progress made in inter-satellite calibration in recent years to

support climate change detection studies and to contribute to the Global Earth

Observation System of Systems (GEOSS).
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2.1 Introduction

Climate change detection and numerical weather prediction (NWP) critically depend

on accurate, reliable, and consistent radiance data from multiple sensors onboard a

constellation of satellites. The calibration consistency across international satellites is

further challenged in the implementation of GEOSS (Global Earth Observation

System of Systems). As a result, establishing on-orbit calibration links among

operational satellite radiometers is receiving increasing attention. According to the

CEOS (Committee on Earth Observation Satellites), which consists of the majority of

the space agencies worldwide, its member agencies are operating or planning about

240 satellites with Earth observation missions over the next 15 years, carrying over

385 different instruments (http://www.eohandbook.com). Unfortunately, not all sat-

ellite observations can be put into productive use because the data quality varies from

one instrument to another significantly and the measurements may not be consistent

even for satellites within the same agency due to different calibration methodologies

and techniques used. This chapter presents the fundamental issues in satellite instru-

ment calibration for climate applications and provides an overview of the current

status, challenges, and latest developments in the calibration of operational satellite

radiometers with specific examples.

For climate change detection, calibration accuracy and consistency are essen-

tial since the signal of climate change can be very small, such as 0.1 K per decade

in sea surface temperature. Given a satellite radiometer’s typical design life of

about 5 years, the detection of decadal climate change relies on observations from

a series of satellites. It is well known that despite the best effort in prelaunch and

postlaunch calibration, the same series of radiometers on different satellites, such

as the AVHRR (Advanced Very High Resolution Radiometer), HIRS (High

Resolution Infrared Radiation Sounder), and AMSU (Advanced Microwave

Sounding Unit)/MSU(Microwave Sounding Unit) on NOAA satellites, do not

necessarily produce consistent measurements. This leads to the inter-satellite

biases which have become major concerns in constructing time series for climate

change detection. Current satellite systems are significantly challenged to meet

these application requirements. Sensors and onboard calibration sources may

degrade in orbit; measurements may not be traceable to international standards;

long-term data sets must be stitched together from a series of overlapping satellite

observations; and orbital drift can introduce artifacts into long-term time series.

As demonstrated in the tropospheric temperature trend study using MSU channel

2 observations, the inter-satellite biases can become so critical that depending on

how the biases are treated may lead to different conclusions about the tropo-

spheric warming (e.g., compare results from Zou et al. 2006; Vinnikov and Grody

2003; Christy et al. 1998).

Clearly, satellite detection of the global climate change signals critically

depends on consistent and accurately calibrated Level 1b data or FCDRs (funda-

mental climate data records). Without dependable FCDRs, the derived TCDRs

(thematic climate data records) may produce false trends with questionable scien-

tific value. This has been increasingly recognized by more and more users of
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satellite data. The logical approach to achieve satellite measurement consistency is

to perform rigorous cross-calibration intercomparisons, which are needed to estab-

lish traceability.

As the technology of satellite observations of the Earth matured, user

requirements and expectations for satellite data have also evolved not only for

climate but also for weather applications. Although qualitative applications of

satellite data, such as generating cloud maps, have less stringent requirement for

calibration accuracy, most quantitative applications require accurately calibrated

satellite data, and this need has rapidly evolved in the last decade. For example, in

the early days of meteorological satellites, numerical weather prediction (NWP)

required retrieved quantities of vertical temperature, moisture, and water vapor

profiles from satellite data. In the past decade, NWP has witnessed the greatest

evolution of direct radiance assimilation from satellite measurements into numeri-

cal weather prediction models. As a result, resolving the observation versus model

differences, aka, the biases, becomes a prerequisite for direct radiance assimilation.

Satellite observations with unresolvable biases will be rejected by the NWPmodels.

Therefore, the importance of instrument calibration for satellite applications

cannot be overstated. Calibrated radiances are the fundamental building blocks for

all satellite products, including the radiances for data assimilation in NWP, reanaly-

sis, and fundamental climate data records for climate change detection. Calibration is

the centerpiece of data quality assurance in satellite data processing, distribution, and

archive and is part of the core competency of any satellite program.

2.2 Satellite Instrument Calibration Methodologies

Calibration is the process of quantitatively defining the sensor responses to known

and controlled signal inputs. These signals should ideally be traceable to established

reference standards. Traceability requires the establishment of an unbroken chain of

comparisons to stated references each with a stated uncertainty. It should be noted

for satellite sensors on-orbit, the calibration signals may become neither well

known nor controllable. Also, operationally, calibration is the process of converting

the Earth observation raw signals to physical quantities to generate SDR (sensor

data records) or Level 1b data.

Calibration is generally divided into three areas: radiometric, spectral, and

spatial calibration. Radiometric calibration focuses on the accuracy and traceability

of the radiometric quantity of the measurement. Spectral calibration ensures that the

spectral responses of the system are accurate at the operating conditions and

changes over time are well known. Spatial calibration ensures the geometric

distortion is well characterized by a number of metrics including the point spread

function or modulation transfer function. Spatial calibration also ensures the band-

to-band co-registration and geo-location/navigation for each pixel. The radiometric,

spectral, and spatial calibrations go hand in hand (Fig. 2.1). A problem in either the

spectral or spatial calibration introduces uncertainties in the radiometric calibration.
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Nevertheless, the word “calibration” often refers to radiometric calibration, unless

specified otherwise.

In radiometric calibration, a satellite instrument calibration system often uses

two relatively well-known calibration points, one is typically the space view, or SP0
in Fig. 2.2, and the other is an onboard calibration device or calibration point CP0.

This device is typically a blackbody for the infrared and microwave instruments,

while it is a solar diffuser or lamp for the solar bands. Other calibration systems are

also used for satellite radiometers, such as noise diodes for some microwave

radiometers as a calibration source. Assuming that the system has a linear response

to incoming radiance, this two-point calibration is sufficient to calibrate all

observations to sensor data records, or Level 1b data. For a nonlinear system, a

quadratic equation is typically used where the quadratic term is determined

prelaunch and additional uncertainties may be introduced.

While the deep space SP0 in the two-point calibration is believed to be stable, the

stability of neither a solar diffuser nor the blackbody for CP0 can be assumed. In

fact, the stability of this calibration point has become a critical issue in the on-orbit

Fig. 2.1 Three areas of

calibration: radiometric,

spectral, and spatial

Fig. 2.2 Basic concept of

radiometric calibration

common to most satellite

systems
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calibration of satellite instruments. For example, the blackbodies used for the

heritage infrared radiometers such as AVHRR (Advanced Very High Resolution

Radiometer) and HIRS (High Resolution Infrared Radiation Sounder) have an

emissivity on the order of 0.98, which makes the CP0 fluctuates with the ambient

temperature. Modern instruments such as infrared atmospheric sounders IASI

(Infrared Atmospheric Sounding Interferometer) and AIRS (Atmospheric Infrared

Sounder) use cavity blackbodies where the emissivity are high which makes the

calibration point more robust than those for the heritage instruments.

For spectral calibration, few broadband satellite instruments have onboard

spectral calibration devices, and therefore prelaunch measurements of instrument

spectral response are critical. Unfortunately, the prelaunch measurements of the

spectral response are often performed at ambient conditions and then extrapolated

to operating temperature based on the known behavior of spectral shift, which

introduces uncertainties. Spectral uncertainties often lead to spectrally induced

biases that are difficult to be separated from radiometric biases. This is especially

important for atmospheric sounding instruments where an error in the spectral

response often leads to the observation of a different atmospheric layer at a different

altitude. The advent of the hyperspectral systems significantly reduced the spectral

uncertainties which led to their use as a reference standard to calibrate broadband

instruments.

2.3 Challenges in Calibrating Heritage Satellite Instruments

for Climate Change Detection

It is recognized that heritage operational satellite instruments were designed for

traditional weather applications with no stringent requirement for calibration accu-

racy, which is reflected in the mission requirement documents. On the other hand,

there is a need to recalibrate the long-term data records for climate applications. An

important science question is what it would take to recalibrate the operational

instruments for climate studies. Unfortunately, there is no easy answer to this

simple question.

It is necessary to review the past calibration performance of the heritage

instruments in the context of the challenges in establishing calibration consistency

for climate change detection. Figure 2.3 shows the relative observation biases for

AVHRR channel 2 between successive NOAA satellites from 1984 to 2003.

Apparently, the discrepancies between satellite measurements can be very large

(a ratio of 1.85 equals to a difference of 85%). This is due to several factors: (a)

AVHRR has no onboard calibration and therefore relies on using prelaunch and

vicarious calibration, and (b) the instrument degradation was not well characterized

for some of the NOAA satellites over their history and therefore causes a trend in

the inter-satellite bias. Obviously, the operational data, which have a large
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uncertainty in the measurement accuracy and consistency, are not good enough for

climate change detection without recalibration and/or recharacterization.

Table 2.1 compares the current instrument performance specification, perfor-

mance achieved, and climate change detection requirements. For example, for

albedo, the stability requirement is 1% per decade, while the current estimate is

no better than 5%. For the IR bands of AVHRR, the requirement is 0.1 K per

decade, but a 0.5 K variation is found from orbital variation alone.

Therefore, although the calibration system presented earlier appears to be very

simple, to achieve very accurate and consistent calibration that meets the needs of

climate change detection, it is not so straightforward. There are many science

questions to be answered, which ultimately determines the reliability of the data.
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Fig. 2.3 AVHRR channel 2 inter-satellite biases between successive satellites showing large

discrepancies between satellites when not well calibrated

Table 2.1 Instrument performance specification, and climate requirements

Specification Performance achieved Climate requirements

AVHRR

VIS/NIR

�5% absolute �10% relative to MODIS 1% per decade for

albedo

AVHRR IR �0.5 K absolute per

mission

requirement

�0.5 K relative to IASI on MetOp �0.1 K per decade for

SST

HIRS Not well defined �0.2 K relative to IASI on MetOp �0.1 K per decade for

temperature trend

AMSU 1.5–2 K �0.2 K relative to each other

on different satellites

�0.1 K per decade for

temperature trend
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Here are some of the questions with respect to Fig. 2.2 in the context of climate

change detection: How well do we know about the calibration points? Is the CP0
point stable for the lifetime of the instrument? Do we have the same CP0 points

across satellites? How well do we know about the nonlinearity and on-orbit

behavior? Each question requires extensive studies, and the results would be very

significant.

First of all, the onboard calibration device (CP0), as one of the pivotal points in

this calibration system, is neither necessarily stable over its lifetime nor consistent

with other calibration points on other satellites. This creates inconsistencies

between satellites. In fact, the calibration point can fluctuate up and down during

its lifetime as shown in Fig. 2.2 (CP0–CP1 or CP2). Similarly, although the deep

space itself is stable, the instrument response to it may not be stable or could be

contaminated by stray light, lunar intrusion in the field of view, or the satellite bus

in case of sidelobe effects in the microwave instruments. This causes major

uncertainties in the calibration which affects all the data records produced. For

example, in the SP1-CP1 calibration curve in Fig. 2.2, the calibrated radiances

would be too low at high radiance values while too high at low radiance values.

Similarly, the SP2-CP2 calibration curve produces low-biased radiances at low

radiances and high-biased radiances at high radiances. As a result, all data produced

will have biases. If each satellite has its own bias, then a constellation of satellites

will have biases relative to each other and make the observations inconsistent,

which significantly limit our ability to detect climate change.

Many examples exist where the CP0 is not stable, such as the blackbody

calibration for the infrared channels of AVHRR, because the low emissivity of

the blackbody makes the blackbody radiances deviate from what a true blackbody

would emit. The lack of onboard calibration devices in the AVHRR solar bands

effectively makes CP0 nonexistent, and vicarious targets such as deserts have to be

used which also introduce uncertainties as discussed later.

For the reflective solar bands, there are significant calibration challenges.

Prelaunch calibration with an integrating sphere is mainly used for specification

compliance and postlaunch comparisons, because the instrument may degrade

during launch as well as over time in orbit. Although it is feasible to establish

prelaunch SI (International System of Units) traceability, this traceability can be

lost postlaunch. As a result, the on-orbit traceability relies on vicarious targets such

as the desert sites for systems without onboard calibration.

The reflectance of vicarious targets can have large variability both short term and

long term. In short term, the reflectance is affected by the presence of clouds, water

vapor, ozone, and other atmospheric effects. In long term, the desert target may drift

over time due to geomorphological processes or human activities. The Libyan target

used for AVHRR, for example, has experienced significant expansion of irrigation

farming which affects both the short- and long-term stability of the target. All

vicarious targets have bidirectional reflectance effects which change with season

and solar zenith/azimuth and view angles. The new generation of radiometers, such

as MODIS (Moderate Resolution Imaging Spectroradiometer) on NASA’s EOS

(Earth Observing System) and VIIRS (Visible Infrared Imager Radiometer Suite) on

2 Calibrating a System of Satellite Instruments 19



JPSS (Joint Polar Satellite Systems), has onboard solar diffusers with improved

calibration, but it is still desirable to verify their consistency relative to other satellites.

Calibration traceability issues often cause discrepancies between different

instruments. For example, since MODIS calibration uses a solar diffuser, while

AVHRR calibration is traceable to the Libyan Desert, a discrepancy is observed

when comparing AVHRR and MODIS solar bands. Multiple independent studies

suggest that a ~10% difference inmeasured reflectance values exists betweenMODIS

and AVHRR 0.63 um band, and this difference cannot be accounted for by the

differences in their spectral response functions (Cao et al. 2008a). This discrepancy

is also observed at vicarious sites such as the Dome C site in Antarctica (Fig. 2.4), and

it was found to be due to inaccurate characterization of the desert target in the early

1980s. Clearly on-orbit calibration traceability is causing uncertainties which will

undoubtedly affect time series analysis using both AVHRR and MODIS. Similar

issues exist when comparing data from international satellites for which not all

calibration information is readily available to the international research community.

For the infrared and microwave instruments calibrated with blackbody and space

view, prelaunch thermal vacuum tests are typically performed in the factory to

ensure that the instrument meets specifications, but more work needs to be done to

improve the calibration traceability. For example, in the case of AVHRR and HIRS

on NOAA satellites, the “NIST traceability” simply meant that the blackbody PRTs

(platinum resistance thermometers) are traceable to National Institute of Standards

and Technology (NIST) standards, while the radiometric traceability has not been

established. The postlaunch performance of the blackbodies for the legacy

radiometers is generally good enough for traditional weather applications with an

estimated accuracy of �0.5 K but may not be sufficiently accurate for climate

applications and today’s numerical weather predictions. On-orbit uncertainties are

mainly caused by a combination of stray light in the scan-cavity and blackbody

emissivity, especially in terminator orbits.

Nonlinearity is another major source of uncertainty which can introduce scene-

dependent biases. For the silicon detectors in the visible/near-infrared, the relationship

between incoming radiation and output counts is generally linear, the MCT (mercury

cadmium telluride) detectors in the infrared in photoconductive mode, as well as the

square law detectors in the microwave, are nonlinear between incoming radiation and

output counts. The nonlinearity of these systems is tested in a thermal vacuum

Fig. 2.4 Dome C time series comparisons between MODIS, MetOp/AVHRR, and SeaWiFS
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chamber prelaunch at different target and instrument temperatures, but it was found

that test artifacts often obscure the true nonlinearity of the system. Also, since there is

no readily available method for verifying the nonlinearity postlaunch, uncertainty

exists in using prelaunch determined nonlinearity in postlaunch calibration.

The new generation of instrument has significant improvements in both scan-cavity

and blackbody designs. The high-quality blackbodies in some cases are made directly

traceable to NIST radiometric standards. However, even with perfect traceability, it is

still desirable to verify the calibration between satellites. Otherwise, the links between

satellites are not known and may not be established.

2.4 Inter-satellite Instrument Calibration

Given the limited life span of a satellite for a typical mission, constructing a long-term

time series for climate change detection requires accurate and consistent data from a

series of satellites. It is well known that despite the best calibration efforts, biases and

inconsistencies still exist for the same series of radiometers on different satellites.

Unlike instrument noise which can be quantified precisely with on-orbit calibration

targets, biases are very difficult to characterize due to the lack of commonly traceable

on-orbit absolute calibration standards and the variable nature of biases both short

term and long term in response to the spacecraft and instrument thermal dynamics.

Several methods have been developed to address the inter-satellite calibration issue,

and each has its advantages and limitations.

The SNO (Simultaneous Nadir Overpass) method (Cao et al. 2004, 2005a) was

developed for quantifying inter-satellite biases initially for instrument performance

monitoring and has been used by scientists in constructing time series for climate

change detection. This method is relatively simple and robust and is based on the fact

that any pair of polar-orbiting satellites with different altitudes can regularly observe

the Earth at orbital intersections at nearly the same time and that these events are

predictable with orbital perturbation models such as SGP4. The frequency of occur-

rence is a function of the altitude difference between the two satellites (typically once

every 2–10 days). Observations from the two satellites at the SNOs can then be

collocated pixel by pixel and the biases between them quantified. The uncertainties in

the SNO analysis are further reduced in a SNO time series where the inter-satellite

biases at the SNOs are studied as a function of time.

Using the SNO method, an on-orbit calibration reference network can be

established. The network can keep track of the long-term time series of inter-satellite

biases at the SNOs, GEO (Geostationary)/LEO (Low Earth Orbiting) satellites, and

selected vicarious sites for all operational satellites. Even without an absolute scale,

this will tie the calibration of all the satellites together to provide traceability of

individual satellites to each other. It is difficult to know which radiometer produces

the absolutely correct radiance in this scenario, but truth is likely to emerge from the

long-termmeasurements by amultitude of satellites. In addition, airborne radiometers

can be used as checkpoints for the long-term time series to provide calibration links to
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the absolute standard.Also, further research onmoon calibrationmay allow us to use it

as an absolute calibration standard in the visible/near-infrared for the long-term time

series according to NIST (http://www.nist.gov/physlab/div844/grp06/lusi.cfm).

Applications of the SNO method to microwave instruments have shown very

promising results for climate change detection analysis. Several factors contributed

to this success. First, the inter-satellite biases for microwave instruments appear to

change little over the short term and slowly over the long term. Second, the

microwave channel center frequencies are made to be stable and well known,

which significantly reduces uncertainties related to spectral calibration. Third,

each microwave instrument has its own onboard blackbody calibration, which

keeps track of the instrument degradation independently. It is found that the SNO

method works very well for microwave instruments sensing the mid-troposphere to

upper stratosphere, where the uncertainty in the bias is much smaller than the

instrument noise. For example, studies have demonstrates the excellent agreement

on the order of 0.1 K for the 53.6 GHz channel of AMSU on NOAA-16 and -17

(Cao and Tobin 2008).

The application of the SNO method to the visible/near-infrared and infrared

radiometers has great potential. Studies have shown that the SNO method is very

effective in quantifying the inter-satellite biases for these channels. Since the biases

are short-term invariant for the visible/near-infrared instruments, they can be used

for intercalibrating the satellites for global data. The dry atmosphere and highly

reflective surface for a broad range of solar zenith angles at the SNO sites in the

polar regions are advantageous for calibrating these channels (Jaross et al. 1998;

Masonis and Warren 2001). However, since the SNO method only provides a

relative calibration between two satellites and none of the NOAA satellites has

onboard calibration for the visible/near-infrared channels, the SNO calibration

alone is not sufficient to produce a recalibrated long-term time series for these

channels. This method would be more useful if one satellite can be relied on as a

stable standard, such as in the intercalibration of MODIS and NOAA radiometers

(Cao et al. 2008a; Heidinger et al. 2002), but the difference in the spectral response

functions between them introduces uncertainties and makes the intercalibration

difficult. Therefore, this spectral bias must be resolved in intercomparisons such

as through hyperspectral analysis (Cao et al. 2010).

For infrared radiometers, studies have shown that the SNO method can quantify

inter-satellite biases with uncertainties smaller than the instrument noise (Cao and

Heidinger 2002). However, additional uncertainties exist when compared to that of

the microwave and visible instruments. First, the calibration accuracy may vary

over an orbit, as found for AVHRR (Wang and Cao 2008). Biases found at the

SNOs may not be the same in other parts of the orbit, and the bias may be orbital

and seasonal dependent. The inter-satellite bias can also depend on the scene

radiance (Shi et al. 2008). The calibration accuracy may also change long term in

response to a number of factors such as degradation and orbital drift. Second, for

infrared sounders, small differences in spectral response functions may mean that a

different layer of the atmosphere is observed, thus producing seasonal biases as the

atmosphere changes over time.
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An example of long-term SNO time series of HIRS is provided in Fig. 2.5 in the

form of radiance ratios to show the inter-satellite biases. Among the 19 infrared

channels of HIRS, channels 4 and 6 are shown here with a time span of 29 years.

There are several observations that can be made from this figure. First, the inter-

satellite biases for channel 4 vary much greater (as much as 6%) than those for

channel 6. In fact, without comparing the time series of these two channels, the bias

variability in channel 4 would lead us to believe that this may be due to major

performance differences at the HIRS instrument level. On the other hand, analysis

of channel 6 time series suggests that the inter-satellite biases are in fact small

(mostly within 1%) for this channel during the same time period. Further investi-

gation reveals that channel 6 is situated in a relatively flat spectral region of the

atmospheric profile, while channel 4 is on a steeper gradient of this profile and is

therefore more sensitive to spectral differences between satellites for this channel.

Therefore, the large biases for channel 4 are likely due to spectral issues related to

the spectral response functions, or spectrally induced biases (Cao et al. 2008b). This

means in order to develop consistent long-term time series from HIRS, the spectral
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Fig. 2.5 HIRS SNO long-term time series for selected CO2 channels (channels 4 and 6)
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differences and uncertainties have to be resolved in the recalibration. This type of

problem is significantly reduced with hyperspectral sounders such as AIRS and

IASI, which are both spectrally resolved and contributed to the excellent agreement

between them (Wang 2009, personal communications).

The second feature from Fig. 2.5 is that the largest bias occurred between

NOAA-14 and NOAA-15 HIRS which oscillates seasonally. This was further

investigated in a study (Cao et al. 2008b) which demonstrated that spectral uncer-

tainty in the HIRS on either NOAA-14 or NOAA-15 is likely the culprit, and a

spectral shift is necessary to reproduce this large bias based on studies with IASI

spectra. This also suggests that prelaunch characterization of spectral response

functions is critical for postlaunch instrument performance.

Finally, it is evident that for both channels 4 and 6, the inter-satellite biases

between HIRS on NOAA-18 and other satellites have large variability. This is due

to the fact that NOAA-18 HIRS has a loose lens problem which introduces large

noise for all long-wave channels. Apparently, instrument noise increases the uncer-

tainty in SNO time series analysis.

On the other hand, given the relatively low noise for most of the operational

instruments, in general, noise is not the major constraint in the inter-satellite analysis.

Studies have shown that the SNO method can resolve inter-satellite biases on the

order of 0.1 K in the sounding channels of the microwave and infrared instruments

and 1% in the visible/near-infrared imagers (Cao et al. 2005a, b, 2008a). In both

cases, the uncertainty is larger than the instrument noise levels.

The SNOmethod has its limitations. First, since the SNOs occur at many different

locations in the polar regions, the spectral characteristics of the SNO sites are not yet

well quantified and introduce uncertainties in the intercalibration of window channels.

Second, while the SNO method works well for the sounding channels in the micro-

wave and infrared, larger uncertainties are found for low-resolution surface channels

where surface inhomogeneity and pointing accuracy become the limiting factors (Cao

et al. 2005a, b, 2009; Zou et al. 2006). Third, for the infrared window channels (and

some infrared sounding channels), the temperature at the SNO (below 280 K) is

limited to a narrow range which does not cover the full range of the global surface

temperature. Fourth, for the infrared instruments, inter-satellite biases at the SNO

points may not be representative of the biases over an orbit due to orbital variations of

calibration accuracy in response to fluctuations in instrument temperature and stray

light in certain parts of the orbit (Cao et al. 2001, 2004; Trishchenko et al. 2002).

Finally, the SNO method is very sensitive to geo-location and sampling errors, for

example, the AVHRR 4 KM GAC (Global Area Coverage) data does not have an

optimal match with the MODIS 1KM data due to the sampling scheme used in

AVHRR, which introduces uncertainties in intercalibrating AVHRR and MODIS.

Significant progress has been made intercalibrating GOES and POES radiometers

in recent years under theWorldMeteorological Organization’s (WMO)Global Space-

based Inter-calibration System (GSICS) program, extending the existing work in this

area (Gunshor et al. 2004). Conceptually, since the GOES nadir is fixed at a given

location and the POES satellites pass the GOES nadir point regularly, it would seem to

be an ideal configuration for intercalibration. However, there are several challenges.
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First, the GOES radiometers have a lower calibration accuracy than their polar

counterparts. For example, the current GOES imager calibration accuracy is 1 K,

compared to 0.5 K for AVHRR. The large diurnal variation in the GOES instrument

temperature, on the order of nearly 30 K, presents a challenge in intercalibration with

POES radiometers, which has an orbital temperature variation of 2–3 K. Second,

although the GOES nadir has a fixed location on the Earth, it does not necessarily

observe the nadir at the time of POES overpass because it takes ~30 min for GOES to

perform a complete scan of the Earth. As a result, the simultaneity between POES and

GOES is typically around 15 min, compared to 30 s in the SNO method. The fast

scanning capability on future GOES-R/ABI will significantly improve the simultane-

ity which will reduce the uncertainties.

Earth targets such as the Libyan Desert, Antarctica, and deep convective clouds

have been used for vicarious calibration of visible/near-infrared channels. How-

ever, this strategy for inter-satellite calibration is affected by observation time

differences and uncertainties introduced by bidirectional reflectance factors of the

surface and the intervening atmosphere. Vicarious calibration can achieve inter-

sensor calibration with ~2% accuracy, but differences of 4–10% are not uncommon

(Green and Pavri 2002; Thome, 2006, personal communication). An extensive

inter-satellite calibration campaign using the Dome C site has been coordinated

under the CEOS/Working Group on Calibration/Validation (Cao et al. 2010) using

this approach.

It is possible to use the Moon for intercalibration of radiometers on different

satellites, as demonstrated in studies with MODIS, SeaWiFS and other instruments

(Barnes et al. 2004; Xiong et al. 2005). There are significant advantages with this

approach. The Moon has a stable reflectance (Kieffer 1997), and inter-satellite

calibration using the Moon is not affected by observation gaps between satellites if

the Moon is used as an absolute calibration standard. Consistency at the 1% level has

been demonstrated for intercalibration of the MODIS on Aqua and Terra using the

Moon. However, instrument design can impose a potential limitation to using the

Moon for calibration. For example, theAVHRR space clamp circuitrymakes the lunar

calibration approach difficult (Cao et al. 2009). Spacecraft maneuvers to view the

Moon are possible for some missions but may be impractical for other missions.

Currently, the Moon is only used for the calibration of the visible/near-infrared

channels. There are significant challenges to using the Moon for calibrating infrared

instruments, and the feasibility of lunar calibration for microwave instruments has yet

to be investigated.

Satellite mission overlap is essential to most intercalibration techniques. This

requires not only time overlap and consistency in local observation time but also

assurance of spectral continuity in channel selection between satellites. For exam-

ple, channel discontinuities were created when the HIRS channel 10 center

wavenumbers were changed over the course of the NOAA satellite series. The

small frequency change from MSU channel 2 to AMSU channel 5 also created

problems in climate change detection (Iacovazzi and Cao 2007). Such changes

should be avoided, if possible, in mission requirements.
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2.5 Future Developments

It is a significant challenge to calibrate the operational satellite instruments for climate

change detection. As a result, further developments in many areas are needed. First, in

order to establish consistency through inter-satellite calibration, uncertainties in the

SNO method should be further reduced with SNO site characterization using highly

accurate spectral, spatial, BRDF (bidirectional reflectance distribution function), and

elevation models. This will be especially helpful for the window or surface channels.

The reduced uncertainty will allow us to better quantify the inter-satellite biases and

small trends in the satellite measurements. Long-term observation of vicarious sites

such as the Dome C, Libyan Desert, and other sites with stable instruments will

provide independent site stability and calibration accuracy assessments. International

collaboration under the WMO/GSICS and CEOS facilitate data sharing and allow us

to intercalibrate radiometers globally to establish a calibration reference network and a

quasi on-orbit standard.

Further improvements in onboard calibrators, that is, blackbody in the infrared

and microwave, and multiple solar diffusers in the visible/near-infrared will reduce

calibration uncertainties and facilitate the establishment of on-orbit calibration

standard. For instruments with onboard calibration, not only the biases between

satellites but also the root cause of the biases should be investigated. This is because

bias correction without knowing the root cause can be unreliable. Once the root

cause is identified, this information can be used as feedback to the instrument

development process to improve the calibration of future models.

For the microwave instruments, further improvement in the prelaunch nonline-

arity and sidelobe characterization is highly desirable. Knowledge of nonlinearity is

critical for decadal climate change detection. Further improvements in instrument

noise would significantly reduce the uncertainties in the SNO analysis, since sample

size is relatively small at the SNOs for these instruments. Also, the possibility of

long-term nonlinearity change, spectral response, and frequency drift should be

investigated.

For infrared instruments, intercalibrations between sounders and imagers on the

same satellite are very valuable. Since both types of instrument are on the same

spacecraft and simultaneous Earth views are available globally, accurate intercali-

bration, both radiometrically and spectrally, is possible (Tobin et al. 2006; Wang

and Cao 2008). Recent analysis of MetOp data show that the HIRS has a more

stable calibration than that of AVHRR when both are compared to IASI on MetOp

IASI. This will help us use HIRS to calibrate AVHRR historical data since both are

on the same spacecraft. As more and more hyperspectral sounders become avail-

able, this type of inter-sensor calibration will become more valuable.

Uncertainties in the spectral response functions (SRF) have been a major issue

for optical instruments, including the prelaunch measurement uncertainties, SRF

differences between instruments, and SRF changes over time. The lack of stringent

requirement in the prelaunch testing, the inability to make identical SRFs, and the

lack of on-orbit spectral calibration devices are the root causes of these problems. It
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is recognized that while this issue is being resolved with hyperspectral systems, it

will remain to be an issue for broadband instruments, and new technologies are

desirable to introduce fundamental changes in these areas. One such technology on

the horizon is the quantum cascade laser (or tunable laser) calibration systems

which potentially will allow us to perform on-orbit spectral and radiometric cali-

bration. The use of such systems for vicarious calibration should also be explored in

the future.

2.6 Concluding Remarks

It is essential to establish the on-orbit calibration consistency among all Earth-

observing satellite radiometers for climate change detection, numerical weather

prediction, reanalysis, and implementation of GEOSS. This presents a significant

challenge to the current operational satellite radiometers in space, and therefore

rigorous calibration and intercalibration are needed. On-orbit calibration traceabil-

ity is required for all radiometers, which can be achieved by establishing the long-

term time series of inter-satellite calibration at the SNOs, GEO/LEO nadir points,

and selected vicarious sites for a constellation of operational satellites. This will tie

all satellite radiometers together to provide traceability of individual satellites to a

calibration reference network. The absolute accuracy can then be established

through absolute on-orbit radiometers such as those on the CLARREO (Climate

Absolute Radiance and Refractivity Observatory) and with the help of in situ and

aircraft campaigns. The system will help us diagnose radiance biases for reanalysis,

data assimilation, and time series analysis for climate change detection. It will also

bring together a world of radiometers to facilitate the implementation of GEOSS.
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Chapter 3

MODIS Instrument Characteristics,

Performance, and Data for Climate Studies

Vincent V. Salomonson and Xiaoxiong Xiong

Abstract The Moderate Resolution Imaging Spectroradiometer (MODIS) is an

instrument designed for comprehensive studies of land, ocean, and atmosphere pro-

cesses and trends. The first MODIS was launched on the NASA Terra spacecraft in

December 1999 into a sun-synchronous orbit with an equator crossing time at 10:30 a.

m. The secondMODISwas launched on the NASAAqua spacecraft inMay 2002 into

a sun-synchronous orbit with an equator crossing time at 1:30 p.m. This chapter

describes the procedures leading to carefully calibrated, characterized, and consistent

Level 1B observations that are subsequently being confidently used to produce higher-

level products contributing to studies of climate change. Illustrative results achieved to

date over the 10–12 years that MODIS has been operating are provided. With the

successful launch and operation of a very similar instrument called the Visible and

Infrared Imaging Radiometer Suite (VIIRS) on October 28, 2011 on the Suomi NPP

(National Polar-orbiting Partnership) satellite, there is a firm commitment to obtain

observations consistent with MODIS for the foreseeable future.
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3.1 Introduction

The Moderate Resolution Imaging Spectroradiometer (MODIS) is an instrument

designed for comprehensive studies of land, ocean, and atmosphere processes and

trends (Esaias 1986; Salomonson et al. 1989). It was launched on the Terra and

Aqua spacecrafts that represent key missions of the NASA Earth Observing System

(EOS) conceived originally as “System Z” in the 1970s and implemented progres-

sively through launch of several, coordinated missions formally starting from 1997

to the present (Salomonson et al. 2011; Parkinson et al. 2006; http://eospso.gsfc.

nasa.gov/eos_homepage/mission_profiles/index.php). The Terra spacecraft was

launched in December 1999 into a sun-synchronous orbit with equator crossing

time nominally at 10:30 a.m., and the first observations became available in

February 2000. The Aqua spacecraft was launched in May 2002 into a sun-

synchronous orbit with an equator crossing time nominally at 1:30 p.m., and the

first observations became available in June 2002.

This chapter will describe characteristics of the total MODIS effort with empha-

sis on aspects that relate to the use of the MODIS instrument and attendant data

products for studies of the climate of the Earth. The principal emphasis will be on

describing procedures and results that have so far (as of early 2012) led to the data

being calibrated and characterized so as to yield consistent Level 1B observations

that subsequently can be reliably and confidently used to produce climate-related

products. First, the characteristics of the MODIS instrument will be described along

with the extensive efforts to calibrate the instrument and characterize its perfor-

mance over more than a decade. In later sections, the availability of data products

will provided along with examples illustrating the present and future potential for

climate studies. Next, a brief description of the operational environmental follow-

on instrument similar to MODIS called the Visible Infrared Imager Radiometer

Suite (VIIRS) will be described. Lastly, concluding remarks describe some of the

challenges foreseen as data from MODIS and VIIRS are acquired, checked, and

studied for their integrity and continued use for climate studies.

3.2 MODIS Instrument Characterization and Performance

The MODIS instrument was developed with improvements over heritage sensors in

terms of its spectral, spatial, and temporal resolutions and with rigorous, stringent

calibration requirements. The heritage sensors include the Advanced Very High

Resolution Radiometer (AVHRR) and the High Resolution Infrared Radiation

Sounder (HIRS) that fly on National Oceanic and Atmospheric Administration

(NOAA) environmental satellites, the Landsat Thematic Mapper (TM), the Coastal

Zone Color Scanner (CZCS), and the Sea-viewing Wide Field-of-view Sensor

(SeaWiFS). Band selection for the MODIS instrument was guided by the bands

existing on all these sensors. The MODIS instrument, in particular, and in terms

related to global, daily coverage, complements and enhances observations from the

AVHRR (still operating) and the CZCS that dated back to 1978 and was followed
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by the very successful SeaWiFS instrument that begin operation in 1997 and ceased

operating in December 2010.

TheMODIS is a cross-track, “whisk broom” radiometer that provides observations

in 36 spectral bands (see Table 3.1 and Fig. 3.1) covering wavelengths from 0.41 to

14.4 μm and at three nadir spatial resolutions: 250 m, 500 m, and 1 km. Together

Terra and Aqua MODIS have produced more than 10 years of global data sets that

have significantly helped scientists worldwide to better understand the Earth as an

interacting system and the impacts on this system due to human-related activities.

The calibration performance requirements for the instrument (at a typical radi-

ance and within scan angles of �45�) are 5% radiance absolute accuracy and 2%

reflectance accuracy relative to the sun in the reflected solar radiation bands (RSB).

For the thermal infrared bands (TIR), the requirements are �1% radiance accuracy

for the majority of the bands, but �0.75% for band 20, �10% for band 21, and

�0.5% for bands 31 and 31. A more detailed description of the MODIS instrument

and on-orbit performance is provided by Xiong et al. (2009). Additionally the

location of the observations (“pixels”) on the Earth surface was required to be

150 m (rms) with a goal of 50 m (rms).

In order to maintain on-orbit calibration and data product quality expressed as

the requirements noted previously, MODIS was built with a very capable set of

onboard calibrators (OBCs), including a solar diffuser (SD), a solar diffuser stabil-

ity monitor (SDSM), a blackbody (BB), a deep space view (SV) port, and a

spectroradiometric calibration assembly (SRCA). These calibrators along with the

monitoring of selected ground-based target areas, plus deep space and the moon as

seen through the space view port, have been used to monitor and assess the

performance of the instrument since launch. These calibration devices are very

important and necessary because one cannot simply rely on the prelaunch instru-

ment characterization (which was extensive) due to on-orbit degradation or change

in the reflective optical surfaces, the emissive properties of instrument components,

and the change in the properties of detectors and the calibration sources themselves

(e.g., the solar diffuser), plus the possibility as seen prior to the launch of the Terra

and Aqua missions that changes that could occur in the registration of the bands and

included detectors relative to each other and spectral shifts in the bands on-orbit.

Figures 3.1 and 3.2 depict the various calibration devices.

Both instruments have been shown to be operationally stable over the 10 or more

years of operation (i.e., through to early 2012). The temperature variations of the

warm focal plane assemblies of both instruments have been no more than 3.5� in the
case of the Terra MODIS and 2� for the Aqua MODIS. The cold focal plane

assemblies have shown a small temperature increase in recent years of less than

0.1 K/year. The temperature of the blackbody is nominally set at 285 K and has

been relatively constant. The blackbody temperature of the Terra MODIS has only

changed 30 m-K over 12 years and the Aqua MODIS effectively zero degrees over

10 years.

There, however, have been significant changes in other components that had to

be accommodated. The visible spectral bands (VIS) have shown relatively large

changes in detector responses (or gains). The changes are different at the varying
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Table 3.1 Overall characteristics of the MODIS instrument on the NASA Earth Observing

System (EOS) Aqua and Terra spacecrafts

Orbit: 705 km, 10:30 a.m. descending node or 1:30 p.m. ascending node, sun-

synchronous, near-polar, circular

Scan rate: 20.3 rpm, cross track

Swath dimensions: 2,330 km (across track) by 10 km (along track at nadir)

Telescope: 17.78 cm diam. off-axis, afocal (collimated), with intermediate field stop

Size: 1.0 � 1.6 � 1.0 m

Weight: 250 kg

Power: 225 W (orbital average)

Data rate: 11 Mbps (peak daytime)

Quantization: 12 bits

Spatial resolution: 250 m (bands 1–2)

(at nadir): 500 m (bands 3–7), 1,000 m (bands 8–36)

Design life: 5 years

Primary use Band Bandwidtha Spectral radianceb Required SNRc

Land/cloud boundaries 1 620–670 21.8 128

2 841–876 24.7 201

Land/cloud properties 3 459–479 35.3 243

4 545–565 29.0 228

5 1,230–1,250 5.4 74

6 1,628–1,652 7.3 275

7 2,105–2,155 1.0 110

Ocean color phytoplankton

biogeochemistry

8 405–420 44.9 880

9 438–448 41.9 838

10 483–493 32.1 802

11 526–536 27.9 754

12 546–556 21.0 750

13 662–672 9.5 910

14 673–683 8.7 1,087

15 743–753 10.2 586

16 862–877 6.2 516

Atmospheric water vapor 17 890–920 10.0 167

18 931–941 3.6 57

19 915–965 15.0 250

Primary use Band Bandwidtha Spectral radianceb Required NEAT (K)d

Surface/cloud temperature 20 3.660–3.840 0.45 0.05

21 3.929–3.989 2.38 2.00

22 3.929–3.989 0.67 0.07

23 4.020–4.080 0.79 0.07

Atmospheric temperature 24 4.433–4.498 0.17 0.25

25 4.482–4.549 0.59 0.25

Cirrus clouds 26 1.360–1.390 6.00 150e

Water vapor 27 6.535–6.895 1.16 0.25

28 7.175–7.475 2.18 0.25

29 8.400–8.700 9.58 0.05

(continued)
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angle of incidence of the reflected solar radiation on the MODIS scanning mirror,

and, in the case of the Terra MODIS, it depends on which side of the mirror is

involved, i.e., mirror side 1 (ms1) or mirror side 2 (ms2). This difference occurred

due to a procedural anomaly that occurred during the prelaunch testing of the Terra

MODIS. No such difference has to be accounted for in the case of the Aqua

MODIS. Figure 3.3 depicts the changes in Terra MODIS detector responses. For

the near-infrared (NIR), the short-wave infrared (SWIR), and thermal infrared

emissive bands (TEB), the changes in detector responses have been generally small.

Table 3.1 (continued)

Primary use Band Bandwidtha Spectral radianceb Required NEAT (K)d

Ozone 30 9.580–9.880 3.69 0.25

Surface/cloud temperature 31 10.780–11.280 9.55 0.05

32 11.770–12.270 8.94 0.05

Cloud top altitude 33 13.185–13.485 4.52 0.25

34 13.485–13.785 3.76 0.25

35 13.785–14.085 3.11 0.25

36 14.085–14.385 2.08 0.35
aBands 1–19 nm; bands 20–36 μm
bW/m2-μm-sr
cSNR signal-to-noise ratio performance goal is 30–40%

NEΔT noise-equivalent temperature difference:g better than required
dSNR

Fig. 3.1 MODIS instrument cavity and its onboard calibrators: solar diffuser (SD), solar diffuser
stability monitor (SDSM), blackbody (BB), and spectroradiometric calibration assembly (SRCA).
Other key characteristics of the MODIS are illustrated in this figure
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Additionally, the solar diffuser (SD) showed some degradation that was particu-

larly significant at the shorter wavelengths (e.g., bands 3, 8, 9, and 10). Figure 3.4

shows the extent of the changes in the solar diffuser properties for both instruments.

These changes were observed by the solar diffuser stability monitor (SDSM). The

wavelengths of SDSM detectors (1–8) are as follows: 0.41, 0.47, 0.53, 0.55, 0.65,

0.75, 0.86, and 0.90 μm. The largest changes occurred at the shortest wavelengths

and become progressively smaller as the wavelengths become larger. In the case of

the Terra SD, the door covering the opening to the solar diffuse experienced

difficulties and was left open to insure that proper measurements could be provided.

Leaving the door caused much larger exposure of the solar diffuser to the sun and

thus greater degradation in wavelength response over time. In the case of the Aqua

SD, the SD/SDM calibration frequency has been gradually reduced at about 2,200

days into the mission to lengthen the lifetime of the SD door opening and closing

mechanism and is now done every 6 weeks as compared to weekly at the beginning

of the Aqua mission.

Most of the other MODIS components have been relatively stable and generally

meet requirements. For instance, most of the detectors (475 out of 490) continue to

meet sensor design signal-to-noise (SNR) requirements. The on-orbit spectral and

spatial performance (e.g., band shifts or spatial registration of bands to each other)

have largely remained quite stable and within specifications (0.1 km) over the

Fig. 3.2 Calibration and characterization components of the Aqua and Terra MODIS instruments

including the frequency for their application
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lifetime of the instruments up through 2011. An exception is the registration of the

cold focal plane bands relative to the warm focal plane bands for the Aqua MODIS

instrument by 0.2–0.35 km. That this aspect did not meet specifications was known

prior to launch, but approval to go back in and fix this problem was not approved

due to budgetary considerations. The offset has remained constant during the

operation of both instruments. In the vast majority of instances, this exception has

not created insurmountable problems in the research accomplished using the

MODIS data.

The calibration consistency of the MODIS instruments can also be validated

using carefully selected “ground-truth sites” that are uniform and stable in their

characteristics over time or for which there are good, independent data

corroborating the MODIS observations. One area that has been used is located on

the Antarctic Plateau and is called the Dome Concordia (“Dome C”) site at 75.102�

south and 12.395� east (see Wenny and Xiong 2008). Other sites include one in the

Libyan Desert and selected deep convective clouds (see Doelling et al. 2011). An

example is shown in Fig. 3.5 for surface temperature (band 31—see Table 3.1)

observed over the Dome C site. The mean difference between the Aqua and Terra

Fig. 3.3 Variation in detector response for the Terra MODIS (days since launch) for the angle of

incidence (AOI) relative to the solar diffuser (SD—AOI ¼ 50.2�) and when looking at the moon

(AOI ¼ 11.2�), showing the mirror side 1 (MS-1) example. Similar changes have occurred for the

Aqua MODIS
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Fig. 3.4 Illustrations of the degradation in the solar diffuser (SD) surface over the operation of the
Terra (a) and Aqua (b) MODIS instruments

Fig. 3.5 Relative bias trend between the Terra and AquaMODIS estimates of surface temperature

(band 31) using the Automatic Weather Station data at Dome C (For more in-depth discussion of

these results, see Wenny and Xiong (2008))
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MODIS is only 0.08 K over more than 2,000 days. This is well within the calibra-

tion uncertainty for band 31.

Similarly using the “Dome C” site in Antarctica, along with other sites (deep

convective clouds and the Libyan Desert), the trends in band 1 (0.620–0.670 μm)

reflectance are also shown to be quite stable (see Fig. 3.6, Doelling et al. 2011).

As noted previously, the geolocation of MODIS observations was specified to be

150 m (rms) with a goal of 50 m (rms). Overall, the geolocation of MODIS

observations has met the goal as illustrated in Fig. 3.7. An in-depth description of

how the geolocation results have been obtained is given in Wolfe (2006).

3.3 MODIS Data Products

Relative to the use of MODIS observations, both for research (including climate

research) and applications, the validity of the results fundamentally depends on the

integrity of the radiances and reflectances provided from MODIS. All the aspects

involved in the calibration and characterization of the MODIS in the previous

section have to be accounted for and provided in the “Level 1B” products. Because

of the many details involved, the processes are not described here, but they are fully

described by Xiong et al. (2005a, b, 2006). These processes led to the results

illustrated in Figs. 3.5 and 3.6 in the previous section.

In addition to the basic Level 1B products that serve as the basis for all

subsequent MODIS products, there are nominally approximately 40 Level 2 and

above products developed and maintained by the MODIS Science Team. A recent

list of those products along with web locations for getting more information on

these products follows below (see also http://modis.gsfc.nasa.gov/data/dataprod/

index.php). The main facility producing MODIS products is the MODIS Adaptive

Processing System (MODAPS) located at the NASA Goddard Space Flight Center.

The data products for the Level 1B and atmosphere products are stored and

distributed at the MODIS “Level 1 and Atmospheres Archive and Distribution

System” (LAADS) also located at the NASA Goddard Space Flight Center in

Maryland. The land products are stored and distributed at the Land Processes

Distributed Active Archive Center (LPDAAC) located at the U.S. Geological

Survey (USGS) Earth Resources Observation and Science (EROS) Center in

Fig. 3.6 Trends in the reflectance observed by the MODIS band 1 (0.620–0.670 μm) (see Doelling

et al. (2011))
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Sioux Falls, South Dakota. Cryosphere products are stored at the National Snow

and Ice Data Center (NSIDC) in Boulder, Colorado. The MODIS ocean products

are produced, archived, and distributed by the Ocean Color Data Processing System

(OCDPS) located at NASA/Goddard Space Flight Center. As a note when one starts

Fig. 3.7 Geolocation results for the Terra (a) and Aqua (b) MODIS as achieved in the “collection

5” (C5) reprocessing version
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retrieving specific products, one will find that the Terra MODIS products are

designated by “MOD,” and Aqua MODIS products are designated by “MYD.”

As of early 2012, there are in total several petabytes (1015 bytes) stored at the

locations noted.

MODIS Calibration Products
(see also: http://mcst.gsfc.nasa.gov/)

MOD 01 – Level-1A Radiance Counts

MOD 02 – Level-1B Calibrated Geolocated Radiances

MOD 03 – Geolocation Data Set

MODIS Atmosphere Products
(see also: http://modis-atmos.gsfc.nasa.gov/)

MOD 04 – Aerosol Product

MOD 05 – Total Precipitable Water (Water Vapor)

MOD 06 – Cloud Products

MOD 07 – Atmospheric Profiles

MOD 08 – Gridded Atmospheric Product

MOD 35 – Cloud Mask

MODIS Land Products
(see also: http://edcdaac.usgs.gov/dataproducts.asp and http://modis-land.gsfc.nasa.

gov/)

MOD 09 – Surface Reflectance

MOD 11 – Land Surface Temperature & Emissivity

MOD 12 – Land Cover/Land Cover Change

MOD 13 – Gridded Vegetation Indices (Max NDVI & Integrated MVI)

MOD 14 – Thermal Anomalies, Fires & Biomass Burning

MOD 15 – Leaf Area Index & FPAR

MOD 16 – Evapotranspiration

MOD 17 – Net Photosynthesis and Primary Productivity

MOD 43 – Surface Reflectance

MOD 44 – Vegetation Cover Conversion

MODIS Cryosphere Products
(see also: http://nsidc.org/daac/modis/index.html)

MOD 10 – Snow Cover

MOD 29 – Sea Ice Cover

MODIS Ocean Products
(Details about ocean products are best obtained by going to http://oceancolor.gsfc.

nasa.gov/)

Angstrom Exponent

Aerosol Optical Thickness

Chlorophyll a

Downwelling diffuse attenuation coefficient at 490 nm

Photosynthetically Available Radiation

Particulate Inorganic Carbon
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Particulate Organic Carbon

Remote Sensing Reflectance

Sea Surface Temperature (11 um daytime and nightime)

Sea Surface Temperature 4 um (nightime)

One essential aspect involved in the provision of the products from MODIS is the

updating of the data to reflect new knowledge about the performance of the instru-

ment and refinement of the algorithms as they are compared to ground truth and other

information that show what improvements should and can be made. To date (early

2012) several “collections” or versions of the Level-1, land, and atmosphere data

have been accomplished that have significantly improved the products. A “collection

6”/version 6 reprocessing is underway and will be largely completed in 2012. The

ocean products have been reprocessed even more often so as to allow compatible

observations with the SeaWiFS observations and Aqua MODIS observations in

particular. MODIS Terra observations have also been reprocessed repeatedly to

incorporate as much improvement as possible for use in biological oceanography

studies. As noted above, the status of reprocessing for all MODIS products can be

obtained by visiting the sites noted above in the products list.

A few examples of results using the MODIS data record with some key figures

are noted below.

The first example (Fig. 3.8) shows the global, mean distribution of aerosol

optical depth for 4 months derived from MODIS Aqua observations extending

from 2002 to the present (2012). This information can be seen along with other

MODIS atmosphere products at http://modis-atmos.gsfc.nasa.gov/products.html.

Another example from Hall et al. (2012) illustrates the use MODIS snow cover

data over several years to evaluate the variability in depletion curves over several

years on the Wind River Basin, Wyoming (see Fig. 3.9).

The third example comes from the processing of MODIS Aqua data for ocean

products. The examples shown in Fig. 3.10 illustrate the annual concentration of

chlorophyll-a concentration over the Aqua MODIS data record extending from

2002 to the present (2012). Several composites can be seen or obtained extending

from daily composites to a composite of the entire mission.

3.4 The MODIS Operational Follow-On Instrument: VIIRS

From the point of view of continuing MODIS-like observations for climate studies,

it is fortunate that the sensor called the Visible and Infrared Imaging Radiometer

Suite (VIIRS) was launched successfully on October 28, 2011, on the Suomi NPP

(National Polar-orbiting Partnership) satellite. The NPP mission is the first of the

NASA/NOAA Joint Polar Satellite System (JPSS). By virtue of the JPSS being an

“operational” system, there is a commitment to fly VIIRS on missions after NPP

and thus obtain observations consistent with MODIS for the foreseeable future.
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VIIRS is a derivative of the MODIS instruments on the Aqua and Terra missions

with a large fraction of the capabilities found on MODIS along with some

improvements in spatial resolution. A comparison of the MODIS and VIIRS is

provided in Fig. 3.11 and Table 3.2 below.

The swath width of the VIIRS is 3,000 km, thereby providing total global daily

coverage.

3.5 Summary and Concluding Remarks

In previous sections, it has been described that from launch to early 2012, the Aqua

and MODIS instruments have been carefully calibrated and characterized, and

adjustments made for instrument change over time. This has led to Level 1 and

higher-level products that have been and can continue to be used reliably for

research and applications including changes driven by climate change albeit the

period of record is just a little over a decade.

As noted at the beginning of this chapter, MODIS observations extend and

improve on observations provided by the AVHRR that begin in 1978. As of early

2012, that means some products (e.g., cloud cover, snow cover, normalized differ-

ence vegetation index (NDVI), sea surface temperature) derivable from both

AVHRR and MODIS span over 30 years. Similarly Ocean Color products derived

from the SeaWiFS starting in 1997, and now being extended by Aqua MODIS,

cover nearly 15 years and perhaps a longer record depending on the utility of the
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0.300000
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Fig. 3.8 Examples of Aqua MODIS monthly browse imagery: (a) mean aerosol optical depth for

January 2003; (b) same for January 2006; (c) same for January 2009; (d) same for January 2012

(See for details: http://modis-atmos.gsfc.nasa.gov/MYD08_M3/browse_c51.html)
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Fig. 3.9 Snow cover results from MODIS depletion of snow cover over several years. The curves

are derived from the MODIS cloud-gap-filled (CGP) 500 m resolution product derived from the

fractional snow cover product, MOD10A1, in the Wind River Range, Wyoming. Breaks are

evident in the plots in some years due to sporadic mission MODIS data. (a) Elevation greater

than or equal to 3,500 m; (b) Elevation from 3,000 to 3,500 m; (c) Elevation from 2,500 to 3,000 m

(Figure 2 in Hall et al. 2012)
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CZCS observations that begin in 1978. Success with the JPSS and the VIIRS offers

the considerable potential that even longer data records increasingly useful for

climate studies can be provided.

Fig. 3.10 MODIS Aqua annual composites of chlorophyll-a concentration: (a) 2002; (b) 2005; (c)

2008; (d) 2011. The details for the annual composites including the chlorophyll-a concentrations

color scale that goes with these images can be found at http://oceancolor.gsfc.nasa.gov/cgi/l3

Fig. 3.11 Overall

comparison of the MODIS

and VIIRS instruments.

VIIRS (top) and MODIS

(bottom). VIIRS mass power

and volume are 162 kg,

140 W, and 1.2 m3. For

MODIS, these are 230 kg,

147 W and 2.0 m3
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Table 3.2 Comparison of

MODIS and VIIRS bands and

spatial resolutions

MODIS VIIRS

Band # λ λ Band ID

1 620–670 600–680 I-1

2 841–876 845–885 I-2

3 459–479

4 545–565

5 1,230–1,250 1,230–1,250 M-8

6 1,628–1,652 1,580–1,670 M-10

1,580–1,610 I-3

7 2,105–2,155 2,225–2,275 M-11

8 405–420 402–422 M-1

9 438–448 436–454 M-2

10 483–493 478–498 M-3

11 526–536

12 546–556 545–565 M-4

13 662–672 662–682 M-5

14 673–683

15 743–753 739–754 M-6

16 862–877 846–885 M-7

17 890–920

18 931–941

19 915–965

20 3.660–3.840 3.610–3.790 M-12

3.550–3.930 I-4

21 3.929–3.989

22 3.940–4.001

23 4.020–4.080 3.973–4.128 M-13

24 4.433–4.498

25 4.482–4.549

26 1.360–1.390 M-9

27 6.535–6.895

28 7.175–7.475

29 8.400–8.700 8.400–8.700 M-14

30 9.580–9.880

31 10.780–11.280 10.253–11.263 M-15

10.050–12.400 I-5

32 11.770–12.270 11.538–12.488 M-16

33 13.185–13.485

34 13.485–13.785

35 13.785–14.085

36 14.085–14.385

MOD1S Bands l and 2 are 250 m at nadir

MOD1S Bands 3–7 are 500 m at nadir

MOD1S Bands 8–36 are 1,000 m at nadir

VIIRS Bands I-1 and I-2 are 371 m at nadir

VIIRS Band I-3 is 371 m at nadir

VIIRS Bands I-4 and I-5 are 371 m at nadir
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Along with the real potential for providing observations nominally useful for

climate studies, there, nevertheless, will be continuing challenges for the research

and applications communities to utilize these observations successfully. A few

examples are noted below.

The first set of challenges deals with updating with accommodating changes in

instrument performance or updating of product algorithms. There must be resources

not only to continue the calibration and instrument characterization of the

instruments, but also quality assurance activities should be provided to look for

anomalies or inconsistencies in the data. Additionally periodic reprocessing of the

data sets should be considered mandatory in order to assure research and

applications communities that “trends” seen in the data records are real (e.g., due

to climate change) and not a quirk in the data set for which corrections have not

been made properly.

The second set of challenges has to do with merging data sets and processing the

large amounts of data involved. To do optimally do climate studies covering as

many years as possible can involve fusing data records from the various instruments

(e.g., AVHRR, MODIS, VIIRS, SeaWiFS, on US satellites and similar instruments

on satellites operated by other countries and agencies) to provide quality data sets

spanning many years. Furthermore, techniques to analyze or sample the large data

volumes will have to be developed or improved so as to allow climate results from

these data to be acquired. This could involve utilizing improved computing and

storage technologies or approaches (e.g., “cloud” computing and storage) or selec-

tion of key indicator subsets of data such as “golden months” or other subsampling

approaches.

Albeit there are challenges ahead such as those just noted, the fundamental

nearly synoptic, global coverage by satellite instruments such as the MODIS

makes the investments to allow the confident use of the data seem well justified.

Given what has been accomplished to date, the promise for the future in obtaining

better understanding of the processes and trends in the many parameters comprising

the Earth-atmosphere system seems very exciting and real.
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Chapter 4

Evaluation of the Temperature Trend and

Climate Forcing in the Pre- and Post Periods

of Satellite Data Assimilation

Alfred M. Powell Jr. and Jianjun Xu

Abstract Based on multiple linear regression analysis, three temperature datasets

from two reanalyses and one set of satellite observations have been used to evaluate

the different responses in the winter [December–February (DJF)] period in the pre-

and post periods of satellite data assimilation as they relate to a selected set of

climate forcings: solar, the stratospheric quasi-biennial oscillation (QBO), El Niño

Southern Oscillation (ENSO), and stratospheric aerosol optical depth (AOD). The

two periods are defined as 1958–1978 when no satellite data was available to be

assimilated and the 1979–2002 period when satellite data was assimilated in the

operational forecast models. The multiple regression analysis shows that the solar

response of the DJF temperatures in the three datasets shows large-scale similarities

although there are differences over the southern middle-high latitudes and some

tropical areas. The stratospheric response showed the strongest DJF temperature

anomalies related to solar variability occurring over the Arctic, but its sign is

negative in 1979–2002 and positive in 1958–1978. The temperature features may

be partially explained by the impacts of the solar cycle, El Niño Southern Oscilla-

tion, stratospheric quasi-biennial oscillation, stratospheric aerosols, and other

factors. In contrast, the tropospheric response, with a dynamic wavelike structure,

occurs over the middle latitudes. The tropospheric differences between the two

periods are not clearly resolved and raise questions about the efficacy of the

observations and our ability to use the observations effectively.
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4.1 Introduction

Many previous studies have revealed that changes in the stratosphere and tropo-

sphere are directly or indirectly associated with solar variability attributed to the

decadal solar cycle (van Loon and Shea 1999; van Loon and Labitzke 2000;

Balachandran et al. 1999; Gleisner and Thejll 2003; Haigh et al. 2005; Crooks

and Gray 2005; Gray et al. 2005; Matthes et al. 2006; Kodera and Shibata 2006;

IPCC 2007; Rind et al. 2008; Meehl and Arblaster 2009; Meehl et al. 2009 and

many others). However, great uncertainty remains concerning the actual atmo-

spheric response and differing conclusions in the various studies (Fröhlich and

Lean 1998; Willson and Mordvinov 2003; Haigh 2003; Hood 2004; Keckhut et al.

2005; Scafetta and West 2005, 2006; Lean 2006) and other potential climate

forcings (Hansen et al. 2005). In addition to solar forcing, other factors such as

the QBO, El Nino Southern Oscillation, and stratospheric aerosol optical depth may

impact the temperature fields.

The observational uncertainties are associated with the different data sources

and other potential climate forcings. First, due to various combinations of

the observation record used to represent the solar variability (Willson and

Mordvinov 2003; Fröhlich and Lean 2004; Dewitte et al. 2005), there is disagree-

ment over the solar forcing results (Scafetta and West 2006; Lean 2006). Based on

the total solar irradiance (TSI) composite of the PMOD between solar cycles 21–23,

Lean (2006) pointed out the solar contribution to global warming would be negli-

gible. However, Scafetta and West (2006) relied on the ACRIM TSI composite

concluding that the Sun contributed at least 10–30% of the 0.40 � 0.04 K global

surface warming. Second, the different atmospheric datasets and techniques used to

compile and integrate the atmospheric data lead to results with different

characteristics that have been questioned. The main atmospheric datasets used

for current community studies include conventional surface and rawinsonde

observations along with rocketsonde data (Dunkerton et al. 1998), lidar data

(Keckhut et al. 2005), satellite data from the Stratospheric Sounding Unit (SSU)

and Microwave Sounding Unit (MSU) instruments (Scaife et al. 2000; Keckhut

et al. 2001; Hood 2004; Gray et al. 2009), and model assimilated datasets (ERA-40

and NCEP/NCAR reanalysis). We note that both assimilated datasets include the

SSU/MSU assimilated observations since November 1978. Also, we note that the

NCEP/NCAR reanalysis assimilated derived temperatures from the satellite data

(Kalnay et al. 1996), while the ERA-40 reanalysis assimilated the satellite-

measured radiance data directly (Uppala et al. 2005). These differences in approach

could affect trend analyses. The differences in the reanalysis model physics could

generate dynamic differences in the trends and anomaly comparisons (Mo et al.

1995). In addition to diverse data sources in the reanalyses, varying length data

source periods can contribute to even more differences. Previous studies have

employed a variety of data sources and observational periods (Pawson and Fiorino

1999; van Loon and Shea 2000; Labitzke et al. 2002; Haigh 2003; Keckhut et al.

2005; Crooks and Gray 2005; Xu and Powell 2010) that may have impacted their
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conclusions. This analysis possibly suffers from the same issues. As the science

becomes more complicated, it is difficult to understand the effects from a variety of

data sources combined with models which may have many physical interactions

contributing to a single outcome. Part of the purpose of this study is to resolve the

similarities and differences between two recognized reanalyses that use different

models and a direct satellite measurement to help resolve what is real and possibly

what is not in terms of climate forcing impacts.

In the present work, the multiple linear regression analysis results for the lower

stratospheric and the middle tropospheric temperature changes associated with the

solar variability, ENSO, QBO, and stratospheric aerosols are reported for the two

reanalyses datasets (NCEP/NCAR and ERA-40) for the two periods of 1979–2002

and 1958–1978. The satellite Microwave Sounding Unit (MSU) measurements are

only reported in the period of 1979–2002 when it was used in the operational

forecasting. The data and analysis techniques are described in the following section.

The linear trend of the temperature and their differences in the two periods are

offered in Sect. 4.3. Section 4.4 presents the multiple regression analyses for the

temperature and the impacts of the selected set of climate forcings. Section 4.5

gives the final summary.

4.2 Data and Methodology

To understand the temperature trends and the climate forcings, the data used in this

study include two reanalyses, one satellite retrieval dataset and climate forcing

indices including solar F10.7-cm radio flux, ENSO, QBO, and stratospheric aerosol

optical depth (AOD) data. A data period was chosen consistent with available data

from both the NCEP/NCAR and ERA-40 reanalyses (1958–2002). All datasets

except for the satellite-retrieved data spanned the two periods 1958–1978 and

1979–2002.

4.2.1 NCEP/NCAR Reanalysis

The monthly NCEP/NCAR reanalysis (Kalnay et al. 1996) with a 2.5� � 2.5� grid
resolution is used for the two periods of 1979–2002 and 1958–1978. It should be

noted that the reanalysis period of 1958–1978 has no satellite data. The Television

Infrared Observation Satellite (TIROS) Operational Vertical Sounder (TOVS) data,

the Microwave Sounding Unit (MSU), the High-Resolution Infrared Radiation

Sounder (HIRS), and the Stratospheric Sounding Unit (SSU) information were

not available before the end of 1978. The Special Sensor Microwave/Imager

(SSM/I) data was assimilated in this system from 1993. The reanalysis has 17

pressure levels that range from 10 hPa to the surface (1,000 hPa).
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4.2.2 ERA-40

The monthly ERA-40 reanalysis (Uppala et al. 2005) is employed for the same

periods as the NCEP/NCAR reanalysis datasets. The ERA-40 reanalysis data uses

the Integrated Forecasting System (IFS) developed jointly by ECMWF and Météo-

France. Derived temperatures from the satellite data (Kalnay et al. 1996) were

assimilated in the NCEP/NCAR reanalysis, while the satellite-measured radiances

were assimilated directly in the ERA-40 reanalysis. The reanalysis has 23 pressure

levels that range from 1 hPa to the surface (1,000 hPa).

4.2.3 MSU (Microwave Sounding Unit)

The MSU monthly temperature dataset between the end of 1978 and 2006 was

created using the brightness temperature measurements derived from channels

2 and 4 from the TIROS-N, NOAA-10, 11, 12, and 14 satellites (Zou et al. 2009).

The data were averaged over 2.5 � 2.5 latitude-longitude grids. To reduce the

biases in the intersatellite MSU instruments, NESDIS scientists (Zou et al. 2006,

2009) developed an intercalibration method based on the simultaneous nadir

overpass (SNO) matchups. Due to orbital geometry, the SNO matchups are con-

fined to the polar region where the brightness temperature range is slightly smaller

than the global range. Nevertheless, the resulting calibration coefficients are applied

globally to the entire life cycle of an MSU satellite.

Such intercalibration reduces intersatellite biases by an order of magnitude

compared to prelaunch calibration and, thus, results in a well-merged time series

for the MSU channels 2 and 4, which respectively represent the deep layer temper-

ature of the middle troposphere (~600 hPa) and lower stratosphere (~87 mb).

4.2.4 Climate Forcings: Solar, ENSO, QBO, and Stratospheric
Aerosols

The solar variability proxies used in this, and in most studies, are the solar radio

irradiance (the 10.7-cm radio flux). The solar radio irradiance spans the time period

from1947 to 2009 and can be found at http://www.ngdc.noaa.gov/stp/SOLAR.On the

basis of previous studies that have tested different proxies (Keckhut et al. 1995), the

10.7-cm solar flux, which closely tracks the temporal behavior of the UV changes on

daily, monthly, and 11-year time scales, is taken in our analysis to represent solar

variability. The NINO3.4 is the ENSO index averaged sea-surface temperature in the

equatorial Pacific (5�N–5�S, 170�W–120�W) provided by NOAA’s Climate Predic-

tion Center (CPC). QBO is the equatorial zonal wind at 30 hpa from Freie Universität

Berlin provided by Labitzke, and aerosol impacts are represented by the global

stratospheric aerosol optical depth (AOD) from NASA GISS climate model datasets

(Hansen et al. 2005) which is indicative of volcanic influences.
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4.2.5 Methodology

It is obvious that the two analysis periods have an important difference: the lack of

satellite data prior to November 1978 and the use of assimilated satellite data after

1978. The MSU-retrieved temperature data is available for the period of 1978

through 2006. Based on the whole publicly available data from ERA-40 for

1958–2002, two data periods in the present study were chosen: 1979–2002 and

1958–1978. All three datasets will be used in the 1979–2002 period; the two

reanalysis datasets used in the earlier period did not contain satellite data. The

winter season was defined as December through February in this study. A multiple

linear regression analysis was used in this study to ascertain the linear impacts for

the selected set of forcing parameters.

4.2.5.1 Multiple Linear Regression Analysis

For a limited selection of atmospheric variables (Y), a multiple linear regression

equation can be expressed as follows:

Y ¼ a0 þ a1 TRDþ a2 F10:7þ a3 ENSO þ a4 QBO þ a5 AODþ E (4.1)

where a0 is the long-term mean for a particular variable (in this case, temperature),

TRD is the linear trend, and F10.7 represents the solar forcing quantified by the

solar 10.7-cm radio flux. ENSO is the El Niño index, QBO is the equatorial zonal

wind at 30 hpa from the Free University of Berlin (K. Labitzke, 2009, private

communication), AOD is the global stratospheric aerosol optical depth, and E is

a residual error term. The coefficients a0, a1, a2, a3, a4, and a5 are determined by

least squares regression. Note that each forcing term index was normalized before

the calculation.

This global analysis will be completed in steps. First, a reference baseline will be

established by reviewing the trends in the global temperatures and the resulting

pattern. This baseline provides insight into the consistency of the datasets prior to

performing any additional analysis. Next a multiple regression analysis that

accounts for the selected forcing factors is performed.

4.3 Trend of Global Temperature

Before discussing the impacts of climate forcing on the temperature anomalies, it is

important to first review the preliminary features of the DJF temperature trends in

the two periods as a baseline. The trend was calculated by the term a1TRD in

Eq. (4.1).
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4.3.1 Stratosphere

Because the measurement from MSU channel 4 represents the lower stratosphere

layer temperature with peak at 87 hPa (Zou et al. 2009), the layer mean temperature

between 70 and 100 hPa was chosen to represent the lower stratospheric tempera-

ture in the NCEP/NCAR and the ERA-40 reanalyses.

In 1979–2002, the temperature tended to decrease over most of the global areas

except for the area north of 60�N latitude where warming consistently occurred

(Fig. 4.1a–c) in the three datasets. The basic pattern can be confirmed by visually

comparing the analyses with each other. The largest warming with a rate of

2.1–2.7 K/decade was identified over the high latitudes of the North American

continent. However, it is worth noting that the temperatures tended to increase over

the tropical eastern Pacific in the ERA-40 reanalysis, which is different from the

other two datasets.

The temperature trend in the 1958–1978 period (Fig. 4.1d, e) differs from its

counterparts in the 1979–2002 period in the two reanalyses. The largest warming is

observed south of 60�S, and the maximum rate was 1.5 K/decade. For the NCEP

reanalysis (Fig. 4.1d), the largest cooling rate of �1.8 K/decade was observed over

the high latitudes of the Eurasian continents. In contrast, the cooling rate is only

�0.9 K/decade over the same location in the ERA-40 reanalysis (Fig. 4.1e). Note

that a similar warming can be found over the tropical eastern Pacific in both

reanalyses. The basic temperature patterns are confirmed in the polar regions of

all three datasets and indicate the greatest positive change in the Arctic occurred

Fig. 4.1 Trend of December–February temperature (K/decade) in the lower stratosphere

(70–100 hPa) in the three datasets. Shaded areas indicate a positive trend of temperature.

For 1979–2002: (a) NCEP/NCAR reanalysis, (b) ERA-40 reanalysis, and (c) MSU Ch4 measure-

ment; For 1958–1978: (d) NCEP/NCAR reanalysis and (e) ERA-40 reanalysis in 1958–1978

(Adapted from Powell and Xu (2011), Figure 2)
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during 1979–2002. In addition, the two reanalyses are similar for the 1958–1978

period showing warming in the Antarctic – a reversal of the 1979–2002 pattern

where the Arctic showed warming.

Three of the four panels from the ERA-40 and NCEP-NCAR reanalyses indicate

an equatorial warming over the eastern Pacific and is a region to compare during the

analysis.

4.3.2 Troposphere

The retrieved temperature from the MSU channel 2 (ch2) represents the layer

temperature with a peak at 600 hPa (Zou et al. 2009); the mean temperature from

500 to 700 hPa is employed to represent the middle tropospheric temperature in the

NCEP/NCAR and the ERA-40 reanalyses.

Compared to the stratospheric analysis, the tropospheric temperatures tended to

increase in the two study periods. For the period of 1979–2002 (Fig. 4.2a–c), the main

warming areas are found over the Eurasian continents, western Pacific, North Ameri-

can continents, and the southern middle latitudes. The temperature over the tropical

Indian Ocean and Pacific Ocean decreased in the two reanalyses (Fig. 4.2a, b), but

clear evidence is found that the MSU ch2 temperature tended to increase over these

regions although its amplitude is small (Fig. 4.2c). In addition, the temperature over

the Antarctic shows a strong cooling trend in the NCEP/NCAR reanalysis, while the

temperature over some areas appears to have a warming trend in the ERA-40

reanalysis.

The main warming areas in 1958–1978 (Fig. 4.2d, e) appeared over most of the

southern hemisphere and the Arctic zone in the two reanalyses. The biggest

temperature trend difference between 1979–2002 and 1958–1978 occurred in the

northern middle-high latitudes, where the trend is dominated by negative values.

The largest warming is observed over the southern high latitudes, but the pattern

shows a significant difference in the NCEP and ERA-40 reanalyses. It is worth

noting that a negative trend can be found over the northern high latitudes of the

Eurasian continent, North Pacific Ocean, and west coast of the North American

continent in both periods.

Based on Table 4.1, the global mean temperature tended to increase in the

troposphere and decrease in the stratosphere between the two periods of 1958–1978

and 1979–2002. Both the stratospheric and tropospheric temperature trends in the two

periods are similar in the two reanalysis datasets and can also be confirmed in theMSU

measurements for 1979–2002 although there is a different temperature trend between

the two reanalyses and the MSU measurements over the Antarctic zone and tropical

eastern Pacific. However, the variability and temperature trend patterns also show

significant differences between the two periods in the temperature structure observed

over the tropical and middle-high latitudes. Overall, the analyses show sufficient

similarity to proceed with the multiple linear regression analyses to ascertain the

contributions from solar forcing, aerosols, QBO, and El Niño.
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4.4 Multiple Linear Regression Analysis

Generally, three methods are used to assess the impact of climate forcing changes

on the Earth: modeling, composite analysis, and statistical analysis. A previous

composite analysis likely indicates nonlinear relationships in the stratosphere and

troposphere (Powell and Xu 2010, 2011); however, for a complicated climate

system, the composite analysis cannot identify which sources are contributing to

the observed temperature anomaly (TA) signal. Fortunately, the multiple linear

regression methodology is a good way to identify the linear signal from potential

multiple sources (Haigh 2003). Although the regression methodology can typically

only address linear relationships, it is a step to improve our understanding of the

relative source contributions. In other words, the regression method will overcome

to some degree the limitations in the composite analysis. However, one must keep

in mind that the regression approach also cannot make attributions for cause and

effect but only points to possible areas for investigation.

Table 4.1 Trend of global

mean temperature for

December–February units:

K/decade

NCEP/NCAR ERA40 MSU

100–70 mb (1979–2002) �0.92 �0.16 �0.47

100–70 mb (1958–1978) �0.24 �0.18 n/a

700–500 mb (1979–2002) 0.015 0.064 0.090

700–500 mb (1958–1978) 0.021 0.044 n/a

Fig. 4.2 Same as Fig. 4.1 except for the middle troposphere (500–700 hPa) (Adapted from Powell

and Xu (2011), Figure 3)
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4.4.1 Solar Response

For the stratosphere, the multiple linear regression analysis of temperature with the

normalized 10.7-cm solar flux in 1979–2002 shows (Fig. 4.3a–c) a strong negative

regression coefficient (cooling) in the Arctic zone with positive values (warming) in

the tropical latitudes and a portion of the southern middle-high latitudes in the two

reanalyses and MSU ch4 measurements. In contrast, the regressed temperature

anomaly in 1958–1978 (Fig. 4.3d, e) has a large positive regression coefficient in

the Arctic zone and negative value in the tropical latitudes. The strongest correlations

occur over part of the Arctic zone and the Pacific. In these areas, the correlations

exceed the statistical significance test at the 95% level. The opposite sign of the

temperature response to solar variation in the two periods has been significantly

reproduced in most areas, especially for the strong signal in the Arctic zone.

For the troposphere, the regression analysis for 1979–2002 shows a similar

pattern in each of the three datasets except for the Antarctic zone (Fig. 4.4a–c).

Negative regression coefficients tend to occur over the high latitudes (50–80�N),
while positive values occur over the middle latitudes (20–50�N). The wavelike

pattern alternating between positive and negative anomalies appears over both

northern and southern middle latitudes. However, a large difference is found over

the Antarctic zone in the three datasets. The MSU and NCEP data show weak

positive anomalies, while the ERA-40 shows moderate negative anomalies over the

eastern hemisphere of the Antarctic polar region. In 1958–1978, the temperature

regression analysis corresponding with solar variability is similar to its counterpart

Fig. 4.3 Solar signal in the stratospheric (70–100 hpa) temperature anomalies (�C) from regres-

sion analysis of 1979–2002 (upper) and 1958–1978 (bottom): (a, d) NCEP/NCAR reanalysis,

(b, e) ERA-40 reanalysis, and (c) MSU ch4 measurement. The shaded areas indicate the statistical
significance at the 95% level (Adapted from Powell and Xu (2011), Figure 8)
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in 1979–2002 over most areas (Fig. 4.4a vs. d and Fig. 4.4b vs. e). However, there is

a significant wavelike pattern over the tropospheric northern middle latitudes.

To summarize, the regression analyses indicate the temperature responds to the

solar variation in the stratosphere and troposphere quite differently. The anomaly is

a reversal with the solar variation and can be identified over most areas in the two

periods. However, the regression analysis cannot significantly reproduce the oppo-

site solar signal in the troposphere; this result implies that solar variability is closely

related to lower stratospheric temperature, but it only partially explains the temper-

ature anomaly in the troposphere.

4.4.2 ENSO, QBO, and Stratospheric Aerosol Response

Given the solar forcing results, what other forcings could be responsible for the

temperature anomalies? To address this question, the remaining, limited set of

climate forcing terms in Eq. (4.1) were analyzed, and the ERA-40 dataset will

only be used in this section.

The regression for the temperature variability for the three additional separate

climate forcing terms (ENSO, QBO, and stratospheric aerosols) was completed.

The results in the stratosphere are shown in Fig. 4.5. First, there is a zonally

heterogeneous response to the ENSO forcing over the globe, and the pattern is

quite different in the two periods (Fig. 4.5a, b) except both show negative responses

observed in tropical eastern Pacific. In addition, an interesting result worth noting is

that the ENSO forcing is symmetrical about the equator over most of the tropical/

subtropical areas although the amplitude response is different in the two periods.

Fig. 4.4 Same as Fig. 4.3 except for the troposphere (500–700 hpa) (Adapted from Powell and Xu

(2011), Figure 9)
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The shaded areas indicate that the temperature response to ENSO exceeds the

statistical significance test at the 95% confidence level.

Second, the stronger signal response to the QBO forcing appeared over the

tropical and Arctic zones. However, the amplitudes are different in the two periods

(Fig. 4.5c, d). The result clearly reproduced the negative relationship between the

QBO forcing and stratospheric temperature over the Arctic (Holton and Tan 1980)

where the Arctic stratosphere is indeed warmer under easterly QBO conditions and

colder under westerly QBO conditions. Moreover, a remarkable zonal homoge-

neous positive anomaly exceeding the 95% significance test is observed in the

tropical areas, especially in the period of 1958–1978.

Third, the response to the stratospheric aerosols (Fig. 4.5e, f) has a similar

pattern in the two periods with positive contributions in the tropical and subtropical

areas. However, the response is significantly different over both polar regions in the

Fig. 4.5 Temperature response in the stratosphere (70–100 hpa) to the forcing in the two periods

of 1979–2002 and 1958–1978: (a, b) ENSO; (c, d) QBO; (e, f) stratospheric aerosol. The shaded
areas indicate the statistical significance at the 95% level
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two periods. The Arctic was completely dominated by negative trends, and the

Antarctic was partially dominated by positive trends in the period of 1978–2002,

while the opposite was generally true in the period of 1958–1977 with the Arctic

partially dominated by positive trends and the Antarctic completely dominated by

negative trends.

For the troposphere, a pronounced positive response to ENSO is observed over

the tropical eastern Pacific (Fig. 4.6a, b), which is opposite to its counterpart in the

stratosphere. This positive ENSO response in the tropical troposphere is present in

the two study periods, while the wavelike response occurs in both middle-high

latitudes. But the structure of the wavelike response shows a significant difference

in the two periods. It implies a different impact of the ENSO events on the

temperature variability over the middle-high latitudes in the two periods.

Compared to the stratosphere, the tropospheric response to QBO was signifi-

cantly reduced (Fig. 4.6c, d), especially in the tropical areas. The wavelike response

is again identified over the middle-high latitudes although the area exceeding the

statistical significance test at the 95% level is markedly compressed. In addition, the

different responses in the two periods are observed over both middle-high latitudes.

Finally, the tropospheric response to the stratospheric aerosols shows (Fig. 4.6e, f)

an opposing pattern to the one in the tropics (Fig. 4.5e, f). The stronger response

appears over both middle-high latitudes. The amplitude of the response in the period

of 1958–1977 is much higher than its counterpart in the period of 1978–2002. Note

that the significant negative contribution from stratospheric aerosols, which are

impacted via volcanic eruptions, was identified over most areas.

To summarize, the linear trend of the lower stratospheric temperature (Fig. 4.1)

and the strongest temperature anomalies occur repeatedly over the Arctic, but its

sign is positive in 1979–2002 and negative in 1958–1978. The opposite response to

solar cycle forcing (Fig. 4.3) is only observed over the northern middle-high

latitudes. The response to ENSO, QBO, and stratospheric aerosol forcing shows a

similar pattern over the tropical areas in the two periods (Fig. 4.5). A stronger

negative response to the ENSO forcing exists over the tropical eastern Pacific; this

indicates a negative contribution to the stratospheric warming constrained over the

same areas (Fig. 4.1b, d, e). The QBO forcing (Fig. 4.5c, d) always produces a

negative anomaly over the northern high latitudes and a positive anomaly over the

tropical areas in the two periods. In addition, stratospheric aerosols contribute

negatively to the opposing anomalies over both polar areas in the two periods

(Fig. 4.5e, f). In contrast, the tropospheric response to ENSO forcing shows an

opposite distribution to the stratosphere over the tropical eastern Pacific (Fig. 4.6a,

b). The wavelike pattern of temperature trend (Fig. 4.2) over the middle-high

latitudes is connected jointly by the ENSO, QBO, and stratospheric aerosol forcing

(Fig. 4.6). However, the wave structure shows significant differences in the two

periods. The QBO contribution to tropospheric temperature was reduced dramati-

cally (Fig. 4.6c, d), while stratospheric aerosols largely made a negative contribu-

tion to the temperature in the troposphere (Fig. 4.6e, f).
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However, it is worth noting that the solar response in the regression analysis is

not statistically significant in the Arctic region. The different temperature trends in

the two periods can be reasonably explained jointly by solar, ENSO, QBO, and

stratospheric aerosols.

4.5 Summary

Based on the multiple linear regressions for a selected set of forcing parameters

computed from two reanalysis (NCAR/NCEP and ERA40) datasets and one satellite-

retrieved temperature (MSU) dataset, the temperature responses to climate forcings

in winter (December–February) are compared between the pre- (1958–1978) and post

(1979–2002) periods of satellite data assimilation. The results show:

Fig. 4.6 Same as Fig. 4.5 except for the troposphere (500–700 hpa)
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1. The global mean temperature tended to increase in the troposphere and decrease

in stratosphere in the two periods of 1958–1978 and 1979–2002. However, the

change rate and patterns of the temperature trends show significant differences

between the two periods. A heterogeneous temperature structure is observed

over the tropical and middle-high latitudes. Both stratospheric and tropospheric

temperature trends in the two periods are similar in the two reanalysis datasets

and were also confirmed in the MSU measurements for 1979–2002 although

there are different temperature trend rates between the two reanalyses and the

MSU measurements over the Antarctic zone and tropical eastern Pacific.

2. During the two periods, common features were observed showing the most

sensitive areas of DJF TAs to solar forcing emerge over the Arctic, the northern

high and middle latitudes, and the tropical-subtropical eastern Pacific. The

patterns of DJF TAs associated with the solar forcing in the lower stratosphere

and the middle troposphere were similar in each of the three datasets; the

exception areas are located over the tropical oceans and most of the middle-high

latitudes in the southern hemisphere. The TA response in DJF to solar forcing has

a substantial spatial heterogeneity. The stratospheric TAs have more uniform

values, while the tropospheric TAs have a wavelike pattern alternating between

positive and negative values over both northern and southern middle latitudes.

3. Except for the possible impacts from the reanalysis datasets with and without the

satellite data assimilation, the different temperature responses in the two periods

can be reasonably explained by the solar, ENSO, QBO, and stratospheric aerosol

forcing.

This analysis reaffirms the core forcing parameters for atmospheric temperature

trends as solar, ENSO, QBO, and stratospheric aerosols. The analyses show many

similar features and trends of approximately the same magnitude. However, there

are many discrepancies that need to be explained. On the positive side, two

independent reanalyses using different models, assimilation processes, and data

ingest quality control demonstrate similar trends, regional changes, and anomalies.

This is good news for both the weather and climate communities that are trying to

converge on similar trends and improve the reliability of climate forcing estimates.

However, there are some clear discrepancies between the pre- and post satellite era

analyses. Coincidently, the inclusion of satellite data into the operational models

started in late 1978 and aligns with a potential climate shift identified in the

literature. This leaves open the question as to whether the reversal in the polar

regions may have been due to the addition of satellite data or possibly an actual

change in the climate near 1977–1978.

An updated set of global multi-satellite microwave measurements which

includes the use of satellite intercalibration techniques as a method for obtaining

improved temperature accuracy was used for comparison. This analysis shows that

the satellite microwave measurements during the 1979–2002 period are very

consistent with the reanalyses. It is acknowledged the satellite data is not a truly
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independent set of observations when compared to the reanalyses since it was also

assimilated in both the NCEP-NCAR and the ERA reanalyses. However, one of the

goals was to verify the consistency of this dataset with the reanalyses and to

compare the trends and anomalies against the improved calibration of this dataset.

The result affirms similar trends and anomalies. However, more work is required to

refine the trend amplitudes between the three datasets.
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Chapter 5

Development of the Global Multispectral

Imager Thermal Emissive FCDRs

Xianjun Hao and John J. Qu

Abstract Generation of high-quality Climate Data Records (CDRs) is critically

important for more reliable analysis of global climate change. Since each spaceborne

sensor has limited life cycle, integration of remote-sensing measurements from

different sensors is necessary. Differences in spectral response and spatial specifica-

tion of sensors from different missions, as well as variations in calibration and

retrieval algorithms, make it complicated to generate long-term consistent CDRs,

especially the Fundamental Climate Data Records (FCDRs), i.e., calibrated radiance

at top of atmosphere (TOA), which are essential for producing Thematic Climate

Data Records (TCDRs) with consistent algorithms. This chapter presents the band

mapping approach and results of FCDR generation for the thermal infrared bands of

AVHRR and MODIS. Band transfer equations among different versions of AVHRR

and MODIS are identified. Error bounds of band mapping are also analyzed statisti-

cally using global datasets.

Keywords Climate Data Record • Cross-sensor comparison • Consistency • Cali-

bration • Remote sensing

5.1 Introduction

Global climate change has become an urgent and important issue because of its

significant impacts and close relationship with human activities (NRC 2009). More

reliable and accurate assessment of global climate change is critical in understand-

ing the complicated changing of the Earth, especially severe weather impacts and

human activities. Long-term high-quality consistent Climate Data Records (CDRs)
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are essential for more reliable climate change detection and analysis (NSC 2004;

Cao et al. 2008; Hao and Qu 2008). Although satellite remote sensing has become

the primary approach for Earth observation, each spaceborne sensor has limited life

cycle; integration of remote-sensing measurements from multiple missions is

necessary for constructing consistent long-term Climate Data Records. Differences

in spectral responses and spatial specifications of sensors from different missions,

as well as variations in calibration and retrieval algorithms, make it challenging to

generate long-term consistent CDRs, especially the Fundamental Climate Data

Records (FCDRs), i.e., calibrated radiance at top of atmosphere (TOA), which

are fundamental for producing Thematic Climate Data Records (TCDRs) with

consistent algorithms.

As global temperature change has been the focus of climate change study, it is

important to integrate long-term remote-sensing measurements of thermal emissive

channels and construct thermal emissive Climate Data Records. Major milestone

for operational observation of surface temperature is the launch of the satellite

TIROS-N in 1978, with the Advanced Very High Resolution Radiometer

(AVHRR). From then on, AVHRR has become the primary sensor onboard the

NOAA polar-orbiting satellites. AVHRR is a radiometer with four to six channels

and daily global coverage at the spatial resolution of 1.1 km (AVHRR/1 had four

channels, AVHRR/2 had five channels, and the latest version of AVHRR, i.e.,

AVHRR/3, has six channels). AVHRR data have been collected and archived

continuously and have become of the most important datasets for global change

study. From 1999, the National Aeronautics and Space Administration (NASA)

launched EOS series of satellites for global observation. The Moderate Resolution

Imaging Spectroradiometer (MODIS) is a key instrument aboard the Terra and

Aqua satellites of NASA EOS mission. Terra MODIS and Aqua MODIS can cover

the entire Earth’s surface every 1–2 days, acquiring data in 36 spectral bands

ranging in wavelength from 0.4 to 14.4 μm (Salomonson et al. 2006). MODIS

provides the capability to improve our understanding of global dynamics and

processes occurring on the land, ocean, and atmosphere (Justice et al. 1998;

Salomonson et al. 2006). MODIS satellite data products have been widely used

for global and regional applications for environment monitoring, natural hazards

detection, weather forecasting, and climate change study (Salomonson et al. 2006).

AVHRR and MODIS have been the primary sensors for global surface tempera-

ture observation. In near future, the Visible Infrared Imager Radiometer Suite

(VIIRS) of the NPP/JPSS mission will be the next-generation operational sensor

replacing AVHRR and MODIS. Inter-sensor comparison and analysis has to be

conducted to construct Climate Data Records across multiple Earth observation

missions. Figure 5.1 illustrates the temporal coverage of AVHRR and MODIS.

Figure 5.2 illustrates the spectral response functions of the 11- and 12-μm channels

of AVHRR onboard some NOAA satellites and MODIS onboard the Aqua satellite.

For each band, although the central wavelengths are similar among different

AVHRR versions, differences in spectral response are significant. So, even data

products from different versions of AVHRR cannot be simply put together to

construct long-term CDRs. The bias and error bound of data products from these

sensors has to be identified. MODIS and VIIRS have spectral bands close to
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AVHRR bands. Similarly, because of the spectral difference between AVHRR

bands and the corresponding MODIS/VIIRS bands, measurements from these

sensors cannot be combined together straightforwardly. The impacts of sensor

specification difference have to be determined quantitatively. With FCDR, i.e.,

time series of consistent TOA radiance data, it is feasible to construct other CDRs

Fig. 5.1 Temporal coverages of AVHRR and MODIS

Fig. 5.2 Spectral response functions of AVHRR and MODIS 11- and 12-μm bands
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more reliably by applying similar algorithms for high-level data products, and it is

also possible to obtain error bounds of data among multiple sensors, which are

critical in climate change detection and analysis.

Sponsored by Northrop Grumman Space Technology (NGST), EastFIRE Labora-

tory at George Mason University has been working on cross-sensor comparison/

validation/calibration for NPP/NPOESS support since 2003. The hyper-spectral

measurements of the Atmospheric Infrared Sounder (AIRS) onboard NASA satellite

Aqua were used to simulate thermal emissive bands of MODIS and VIIRS. Band

mapping algorithms, as well as software toolkits and testing database, have been

developed for MODIS, AIRS comparison, and VIIRS proxy data generation study

(Hao et al. 2005a, b, 2007; Qu et al. 2005a, b, 2006a, b; Hao and Qu 2009a). The

capability and performance of these approaches have been validated by comparing

AIRS-simulated globalMODIS SDR and aggregatedMODIS SDR at AIRS footprints

(Hao et al. 2005a, b). The band mapping approaches can also be used for generating

global FCDRs (Hao and Qu 2008, 2009b). In this chapter, we focus on the thermal

emissive SDRs at the 11- and 12-μm channels, which are used for surface temperature

retrieval. Technical approaches are described in details, and quantitative relationships

between thermal emissive measurements of different sensors are investigated and

discussed toward the construction of thermal emissive FCDRs.

5.2 Data and Technical Methods

The AIRS (http://airs.jpl.nasa.gov) onboard NASA Aqua satellite is a hyper-

spectral sensor in the thermal infrared region. With 2,378 spectral channels,

AIRS has high spectral resolution and can provide more accurate information of

the atmosphere. AIRS measurements can be used as a bridge to evaluate the spectral

differences of various broadband sensors for different missions, such as AVHRR,

MODIS, and VIIRS. By convolving the spectral response functions of broadband

sensors with AIRS hyper-spectral measurements, proxy data for AVHRR, MODIS,

and VIIRS will be generated. Then, a global database can be generated including

proxy datasets and AIRS scene characteristics such as satellite zenith angle, satel-

lite azimuth angle, surface type, cloud fraction, etc. Based on analysis of the global

testing database, statistical relationship between different sensors, i.e., band transfer

equations, can be derived to convert consistent measurements for these sensors.

Details of band mapping approach for FCDR generation are illustrated in Fig. 5.3.

The main steps include:

1. Collection of AVHRR/MODIS/VIIRS sensor specification and global AIRS

measurements

• Collect the spectral response functions of AVHRR band 4 and band 5,

MODIS band 31 and band 32, and VIIRS band M15 and band M16.

• Collect global AIRS L1B measurements for selected 8 days during

2002–2008 and in different seasons: 09/06/2002, 01/25/2003, 01/26/2003,
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01/25/2008, 04/09/2008, 06/23/2008, 09/06/2008, and 11/20/2008. In total,

1920 AIRS granules are collected.

• For AIRS FOVs, collect scene characteristics, including surface type, solar

angles, view angles, cloud status, etc. These scene characteristics can be

determined using AIRS L1B measurements, AIRS level 2 retrieval data

products, and MODIS land cover data products.

2. Spectral mapping and proxy data generation

• Convolve the spectral response functions of AVHRR band 4 and band 5,

MODIS band 31 and band 32, and VIIRS band M15 and band M16, with

AIRS hyper-spectral thermal infrared measurements to generate global proxy

datasets for various versions of AVHRR, MODIS, and VIIRS.

• MODIS L1B radiance is defined in wavelength domain with unit Wm�2sr�1/

μm, while AIRS radiance data is defined in wavenumber domain with unit

mWm�2sr�1/cm�1; unit conversion and spectral response function should be

taken into account to simulate broadband radiance with AIRS. After unit

conversion, proxy measurements can be generated by convolving spectral

response functions of various sensors (AVHRR, MODIS, and VIIRS) over

AIRS hyper-spectral measurements.

3. Construction of global testing database

• Combine AIRS-simulated AVHRR/MODIS/VIIRS proxy datasets with AIRS

scene characteristics, including surface type, solar angles, view angles, cloud

status, etc., to construct a global testing database.

4. Regressive analysis to determine band transfer equations

• Select one sensor as template for FCDR.

• Using the testing database, discover the band transfer equations for

converting AVHRR/MODIS/VIIRS bands to the selected template sensor

through regressive analysis.

• Construct the database for coefficients in band transfer equations.

Save the coefficients for band transfer equations for various scene characteristics

in database for later use.

5. Producing global AVHRR FCDR data

• For historical AVHRR measurements, identify scene characteristics and

apply the corresponding band transfer equations to convert SDR of old

AVHRR versions to the template sensor.

• For MODIS measurements, identify scene characteristics and apply the band

transfer equations to get equivalent MODIS SDRs, which can be combined

into AVHRR FCDRs for expansion of temporal coverage.

• After NPP/JPSS lunch, VIIRS SDRs can also be used to expand the thermal

emissive FCDRs.
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5.3 Results and Analysis

5.3.1 Validation of Spectral Mapping

Since AIRS and MODIS are on the same satellite, i.e., NASA Aqua, it provides a

unique opportunity to evaluate the accuracy of spectral mapping by comparing

AIRS-simulated MODIS measurements and spatially aggregated MODIS

measurements at AIRS field of views (FOVs). Spatially, the AIRS-simulated

AVHRR and MODIS measurements are for AIRS footprints, not for the native

AVHRR and MODIS pixels. To evaluate the accuracy of spectral simulation,

MODIS L1B measurements at 1-km pixels were aggregated to collocated AIRS

footprints through spatial matchup. AIRS has a field of view of �49.5� in cross

track. Each AIRS scan line contains 90 IR footprints, with a spatial resolution of

13.5 km at nadir and 41 � 21.4 km at the scan extremes from nominal 705.3-km

orbit. MODIS has a field of view of�55� in cross track. Each scan MODIS line has

1,354 footprints, with a spatial resolution of 1 km at nadir. AIRS has a 1.1� circular
IFOV; thus, as demonstrated in Fig. 5.4a, for a given AIRS pixel, we can find the

MODIS pixels within the AIRS footprint by calculating the deviation of scan angle

between the AIRS pixel and the MODIS pixel; if the deviation is less than 0.55�,
then the MODIS pixel is inside the AIRS pixel. Figure 5.4b illustrated an example

of collocated AIRS and MODIS pixels. Average MODIS 1-km data to colocated

AIRS pixels will produce “truth” MODIS data at AIRS FOVs and can be used to

compare with simulated MODIS.

Based on the global MODIS and AIRS L1 data of the selected 8 days, i.e.,

135*90*240*8 ¼ 23,328,000 pixels, the difference between simulated MODIS

and aggregated MODIS radiance is quite small. For the 11-μm band, the bright-

ness temperature difference between simulated MODIS and aggregated MODIS

is �0.0039 K, with a standard deviation of 0.6031 K, as shown in Fig. 5.5a, b.

The brightness temperature difference is less than 1 K for 93.01% of the total

23,328,000 pixels (Table 5.1). And the related difference is less than 1%

for 99.15% of all the pixels (Table 5.2). For the 12-μm band, the brightness

temperature difference between simulated MODIS and aggregated MODIS is

�0.0535 K, with a standard deviation of 0.5461 K, as shown in Fig. 5.5c, d.

The brightness temperature difference is less than 1 K for 94.12% of the total

23,328,000 pixels (Table 5.1). And the related difference is less than 1% for

99.36% of all the pixels.

From these statistics of brightness temperature differences over global datasets

of the selected 8 days, the simulatedMODISwith AIRS hyper-spectral measurements

are quite close to the “true” MODIS measurements, i.e., aggregated MODIS

measurements at AIRS FOVs. So, it should be fine to use AIRS-simulated proxy

data to derive the relationships between different sensors.
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Fig. 5.4 AIRS-MODIS spatial matchup. (a) Angular relationship between AIRS pixels and

MODIS pixels. (b) An example of MODIS pixels aggregated to AIRS footprints
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Fig. 5.5 Comparison of AIRS-simulated MODIS and aggregated MODIS at AIRS footprints.

(a) Brightness temperature of MODIS band 31; (b) histogram of band 31 brightness temperature

difference between AIRS-simulated MODIS and aggregated MODIS; (c) brightness temperature

of MODIS band 32; (d) histogram of band 32 brightness temperature difference between AIRS-

simulated MODIS and aggregated MODIS

Table 5.1 Difference of

brightness temperature

between simulated MODIS

and aggregated MODIS

Band <1 K (%) <0.5 K (%) <0.25 K (%)

Band 31 93.01 80.57 59.66

Band 32 94.12 82.51 62.15

Table 5.2 Relative

difference of brightness

temperature between

simulated MODIS and

aggregated MODIS

Band <1% <0.5% <0.2%

Band 31 99.15% 95.70% 81.57%

Band 32 99.36% 96.42% 83.18%
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5.3.2 Band Transfer for FCDR Generation

Once the global testing database, including simulated proxy data for various version

of AVHRR and MODIS sensors, as well as scene characteristics is established,

statistical analysis is conducted to derive the relationships between similar bands

of different sensors.

Figure 5.6a–c illustrates the linear relationships between Aqua MODIS band 31

and band 4 of NOAA-16 AVHRR, NOAA-17 AVHRR, and NOAA-18 AVHRR,

respectively. Band transfer equations among these sensors at 11-μm band and

statistics are listed in Table 5.3. For all the selected sensor pairs, linear relationship

fits very well, with R2 higher than 0.999 and very small root-mean-square error

(RMSE), which are around MODIS sensor accuracy requirements.

Similarly, Fig. 5.7a–c illustrates the linear relationships between Aqua MODIS

band 32 and band 5 of NOAA-16 AVHRR, NOAA-17 AVHRR, and NOAA-18

AVHRR, respectively. Table 5.4 lists the band transfer equations and statistics of

the 12-μm band. For all the selected sensor pairs, linear relationship fits even better

than the 11-μm band, with R2 higher than 0.9999 and root-mean-square errors

(RMSE) at 0.0412223, 0.0262475, and 0.0373566 K, respectively. These errors

meet MODIS sensor accuracy requirements.

For VIIRS, Terra MODIS, and other version of AVHRR sensors, band transfer

equations can be determined similarly using the global testing database. More

accurate band transfer equations can be obtained if scene characteristics are taken

into account (Hao et al. 2005b). So, the band mapping approach is feasible for

construction of long-term thermal emissive FCDRs.

5.4 Conclusion and Discussions

In this chapter, technical approaches for thermal emissive FCDR generation with

AVHRR, MODIS, and VIIRS measurements are presented, and preliminary results

are demonstrated and analyzed based on a global testing database constructed with

global AIRS measurements of selected 8 days during year 2002 and 2008. The

performance of spectral mapping is investigated by comparing AIRS-simulated

MODIS and aggregated MODIS measurements. As the differences between AIRS-

simulated MODIS and aggregated MODIS measurements are quite small, it is

feasible to use AIRS-simulated proxy datasets for FCDR generation. Band transfer

equations are derived, and performances of band transfer models are analyzed

statistically. For all the selected sensor pairs, determinant coefficients of linear

band transfer equations are almost 1, and the root-mean-square errors are very

small, accurate enough for most applications.

Certainly, the presented approach relies on consistent calibration of selected

sensors. Calibration consistency and stability are critical for Climate Data Record

generation. Inter-sensor calibration based on comparison of measurements from

different sensors at collocated sites can help to improve the calibration consistency
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Fig. 5.6 Aqua MODIS band

31 and AVHRR band 4

(a) Aqua MODIS band 31 and

NOAA-16 AVHRR band 4.

(b) Aqua MODIS band 31 and

NOAA-17 AVHRR band 4.

(c) Aqua MODIS band 31 and

NOAA-18 AVHRR band 4
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Fig. 5.7 Aqua MODIS band

32 and AVHRR band 5

(a) Aqua MODIS band 32 and

NOAA-16 AVHRR band 5.

(b) Aqua MODIS band 32 and

NOAA-17 AVHRR band 5.

(c) Aqua MODIS band 32 and

NOAA-18 AVHRR band 5
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of different sensors (Cao and Heidinger 2002; Heidinger et al. 2002; Cao et al. 2008;

Wu et al. 2008, 2009; Xiong et al. 2008a, b; Qu et al. 2008).

Validation of band transfer equations will be conducted in near future by

collecting collocated measurements of multiple sensors. The presented approach

can also be applied to other sensors. In addition, more hyper-spectral sensors, such

as the Infrared Atmospheric Sounding Interferometer (IASI) and Cross-track Infra-

red Sounder (CrIS), can also be used for proxy data simulation and testing database

generation.

References

Cao C, Heidinger A (2002) Inter-comparison of the longwave infrared channels of Terra/MODIS

and NOAA-16/AVHRR using simultaneous nadir observations at orbit intersections. In:

Barnes W (ed) Earth observing systems VII, Proceedings of SPIE, vol 4814. SPIE, Seattle,

pp 306–316

Cao C, Xiong X, Wu A, Wu X (2008) Assessing the consistency of AVHRR and MODIS L1B

reflectance for generating fundamental climate data records. J Geophys Res 113:D09114

Hao X, Qu J (2008) Cross-sensor band mapping for developing consistent climate data record of

earth observation. Paper presented at SPIE Asia-Pacific remote sensing meeting, Noumea,

New Caledonia, 17–21 Nov 2008

Hao X, Qu J (2009a) Fast and highly accurate calculation of band averaged radiance. Int J Remote

Sens 30(5):1099–1108

Table 5.3 Band transfer equations for the 11-μm band

Sensor 1 Sensor 2 Band transfer equation (BT) R2
RMSE

(K)

MODIS

(Aqua)

AVHRR

(NOAA-16)

BT(1) ¼ BT(2) * 1.003073026292936

� 0.925449346110636

0.9999538 0.0222536

MODIS

(Aqua)

AVHRR

(NOAA-17)

BT(1) ¼ BT(2) * 1.003228599446248

� 1.107847591257153

0.9998638 0.0656645

MODIS

(Aqua)

AVHRR

(NOAA-18)

BT(1) ¼ BT(2) * 1.002887837732207

� 1.040012956166496

0.9998490 0.0728148

Table 5.4 Band transfer equations for the 12-μm band

Sensor 1 Sensor 2 Band transfer equation (BT) R2
RMSE

(K)

MODIS

(Aqua)

AVHRR

(NOAA-16)

BT(1) ¼ BT(2) * 1.011084932447852

� 2.662118959097069

0.9999126 0.0412223

MODIS

(Aqua)

AVHRR

(NOAA-17)

BT(1) ¼ BT(2) * 1.004010642806296

� 1.012331970324046

0.9999443 0.0262475

MODIS

(Aqua)

AVHRR

(NOAA-18)

BT(1) ¼ BT(2) * 1.010378918506728

� 2.490668604967525

0.9999208 0.0373566

5 Development of the Global Multispectral Imager Thermal Emissive FCDRs 79



Hao X, Qu J (2009b) Band mapping approach for fundamental climate data records (FCDRs)

generation. Paper presented at SPIE optical engineering and applications, San Diego, 2–6 Aug

2009

Hao X, Qu J, Bhoi S, Dasgupta S, Wang W, Xie Y, Wang L, Hauss B, Wang C (2005a)

Development and enhancement of calibration/validation toolkit for supporting NPOESS/NPP

missions. In: IGARSS 05 proceedings. 2005 I.E. international. Seoul, 25–29 July 2005, vol 1,

pp 113–116

Hao X, Qu J, Hauss B, Wang C, Privette JL (2005b) Establishing a proxy database for supporting

NPOESS/NPP VIIRS land product pre-launch testing. Paper presented at AGU annual

meeting, San Francisco, 5–9 Dec 2005

Hao X, Qu J, Hauss B, Wang C (2007) A high performance approach for brightness temperature

inversion. Int J Remote Sens 28(21):4733–4743

Heidinger A, Cao C, Sullivan J (2002) Using MODIS to calibrate AVHRR reflectance channels.

J Geophys Res 107(D23):4702

Justice C, Vermote E, Townshend J, Defries R, Roy D, Hall D, Salomonson V, Privette J, Riggs G,

Strahler A, Lucht W, Myneni R, Knyazikhin Y, Running S, Nemani R, Wan Z, Huete A, van

Leeuwen W, Wolfe R, Giglio L, Muller J, Lewis P, Barnsley M (1998) The moderate

resolution imaging spectroradiometer (MODIS): land remote sensing for global change

research. IEEE Trans Geosci Remote Sens 36(4):1228–1249

National Research Council (NRC) (2004) Climate data records for environmental satellite.

National Academies Press, Washington, D.C

National Research Council (NRC) (2009) Advice to the new administration and congress: actions

to make the our nation resilient to severe weather and climate change. Bull Am Meteorol Soc

90(1):102–108

Qu J, Hao X, Hauss B, Wang C, Xiong X, Privette JL (2005a) Toward cross-sensor calibration

between two radiometers. Paper presented at NPP science team meeting, Annapolis, Jan 2005

Qu J, Hao X, Hauss B, Wang C, Privette JL (2005b) A new approach for radiometric cross

calibration of satellite-borne radiometers. In: IGARSS 05 proceedings, 2005 I.E. international.

Seoul, 25–29 July 2005, vol 6, pp 4142–4145

Qu J, Hao X, Xiong X, Hauss B, Wang C (2006a) Supporting NPOESS/NPP pre-launch calibration

and verification with a cross-sensor mapping system. Paper presented at SPIE annual confer-

ence, San Diego, 13–17 Aug 2006

Qu J, Hao X, Xiong X, Privette JL (2006b) Cross-instrument calibration between MODIS and

AIRS. Paper presented at MODIS science team meeting, Baltimore, 4–6 Jan 2006

Qu J, Hao X, Xiong X, Mango S (2008) Integrating the cross-instrument calibration and validation

system for GEOSS support. Paper presented at SPIE Asia-Pacific remote sensing meeting,

Noumea, New Caledonia, 17–21 Nov 2008

Salomonson V, Barnes W, Masuoka EJ (2006) Introduction to MODIS and an overview of

associated activities. In: Qu J et al (eds) Earth science satellite remote sensing, vol I. Springer,

Berlin, pp 12–31

Wu A, Xiong X, Cao C (2008) Terra and Aqua MODIS inter-comparison of three reflective solar

bands using AVHRR onboard the NOAA-KLM satellites. Int J Remote Sens 29(7):1997–2010

Wu A, Xiong X, Cao C (2009) Tracking the calibration stability and consistency of the 3.7, 11.0

and 12.0 μm channels of the NOAA-KLM AVHRR with MODIS. Int J Remote Sens 30

(22):5901–5917

Xiong X, Chiang K, Wu A, Barnes W, Guenther B, Salomonson V (2008a) Multiyear on-orbit

calibration and performance of Terra MODIS thermal emissive bands. IEEE Trans Geosci

Remote Sens 46(6):1790–1803

Xiong X, Wu A, Cao C (2008b) On-orbit calibration and inter-comparison of Terra and Aqua

MODIS surface temperature spectral bands. Int J Remote Sens 29(17):5347–5359

80 X. Hao and J.J. Qu



Chapter 6

Global Precipitation Monitoring

Ralph Ferraro and Thomas Smith

Abstract Satellite observations play a vital role in the global monitoring of

precipitation because they fill in large data voids where conventional measurements

such as surface rain gauges and weather radars are primarily restricted to populated

land regions. Geostationary satellites, containing visible and infrared sensors,

provide the most continuous observations from space; they can infer surface

precipitation through relationships between cloud properties and precipitation

rate. Passive microwave sensors, which operate primarily on low Earth-orbiting

satellites, provide a more direct measurement of rainfall and global coverage;

however, they observe the Earth less frequently than the geostationary satellites.

This chapter summarizes the strengths and weaknesses of the various satellite

retrieval algorithms, then describes emerging blended precipitation products that

merge different satellite measurements to achieve the best possible rainfall product.

Examples of the utility of such data are also provided.

Keywords Satellite • Precipitation • Passive Microwave • Infrared

6.1 Introduction

The remote sensing of precipitation is a vital component to the integrated observing

of precipitation on the Earth. While weather radars and rain gauges are the primary

source of precipitation information, they are typically restricted to populated areas
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over land and can only extend out a short distance over oceans. Satellites, therefore,

provide crucial information to fill in these huge data voids, especially over

unpopulated regions and oceans. By integrating all available satellite information

with surface measurements in a “seamless” manner, the best possible global

precipitation climatology can be assembled. This chapter will begin by briefly

describing the various satellite precipitation retrieval methods, present the current

state of combined satellite and surface rainfall techniques, show some examples of

such datasets to depict global precipitation patterns, and conclude by describing the

anticipated advances over the upcoming decade.

6.2 Satellite Precipitation Retrieval Methods

A number of different methods are used to retrieve rainfall from satellites and are

summarized in Table 6.1. In general, the methods can be categorized into low Earth

orbiting (LEO) and geostationary Earth orbiting (GEO), as well as by their observ-

ing spectral ranges (visible, infrared, passive microwave, active microwave) or

“multispectral” (i.e., use of one or more of these individual spectrums). Some brief

background on the various retrieval techniques is described.

6.2.1 Visible and Infrared Methods

Visible (VIS) and infrared (IR) techniques were the first satellite methods to be

developed and are rather simple to apply (Lovejoy and Austin 1979). However,

these techniques typically show a relatively low degree of accuracy. On the other

hand, GEO weather satellite VIS and IR imagers uniquely provide the rapid

temporal update cycle (e.g., 30 min or less) needed to capture the growth and

decay of precipitating clouds.

A complete overview of the early work and physical premises of VIS and

thermal IR (10.5–12.5 μm) techniques is provided by Barrett and Martin (1981),

while Kidder and Vonder Haar (1995) present some of the more recent results. The

rainfall retrieval in these wavelengths is based on the fact that bright (optically

thick) clouds are positively correlated with regions of convective rainfall (Woodley

and Sancho 1971). On the other hand, clouds with cold tops in the IR imagery

produce more rainfall than those with warmer tops (Scofield 1987). However, the

correspondence between cold tops and visible bright spots is far from perfect and is

not always well correlated with surface rainfall (especially in stratiform rainfall

regimes).

Various approaches have been developed to stress particular aspects of the

sensing of cloud physics properties to settle differences between VIS and IR

retrievals and measured rainfall. The methods are sometimes classified as cloud

indexing (e.g., Arkin and Meisner 1987), bi-spectral schemes (e.g., Lovejoy and

Austin 1979), life history (e.g., Griffith et al. 1978), and cloud model-based (e.g.,

Adler and Negri 1988). More recently, multispectral (i.e., VIS and IR combined)
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has emerged which attempts to utilize the strengths of both wavelengths (e.g., Ba

and Gruber 2001).

To illustrate the spatial coverage and information content available from IR

satellite measurements, Fig. 6.1 gives a multi-satellite (i.e., numerous GEO and

LEO satellites) composite of IR imagery from 1500 UTC, 2 June 2010. This data is

freely available from the Naval Research Laboratory (NRL) in Monterey, CA, at

http://www.nrlmry.navy.mil/sat_products.html. If one looks closely at this IR com-

posite, the cloud patterns associated with midlatitude cyclones are quite evident by

the large, bright features that correspond to high-level clouds. On the other hand,

the tropical regions are dominated by cloud clusters corresponding to tropical

convective features that are associated with the Intertropical Convergence Zone

(ITCZ). The darker clouds are lower level clouds, typically associated with stratus

clouds which may or may not be associated with rainfall. A comparable VIS image

(not shown) would show other information but would be restricted to approximately

a 180� longitudinal zone where sunlight is reflecting off the cloud tops.

6.2.2 Passive Microwave Methods

Unlike VIS and IR signals, microwave (MW) energy can penetrate clouds, in

particular, cirrus clouds, and its signal has a strong interaction with precipitation-

size drops and ice particles. This direct impact on microwave measurements by

hydrometeors allows for the quantitative detection of precipitation properties in the

atmosphere as well as on the surface. It should be pointed out that passive MW

(PMW) means naturally emitted radiation from the Earth’s surface and atmosphere

Table 6.1 Summary of satellite methods for the retrieval of precipitation

Observation

spectrum

Satellite

type

Sensor

examples Strength Weakness

Visible (VIS) GEO GOES

Imager

Cloud type Cloud tops

LEO AVHRR Cloud evolution Indirect rain rate

Infrared (IR) GEO GOES

Imager

Cloud temperature Cirrus contamination

LEO AVHRR Cloud evolution Indirect rain rate

Passive microwave

(PMW)

LEO SSM/I Direct measure of rain,

especially over

ocean

Poor temporal

sampling

AMSR-E Coarse spatial

resolution

TMI Indirect rain rate (land)

Active microwave

(AMW)

LEO TRMM PR Direct measure of

vertical structure

of rain

Narrow swath width

CloudSat

CPR

Poor temporal

sampling

Rain rate sensitivity/

saturation
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that interacts with clouds and precipitation and is measured by a radiometer on

board a satellite.

Most passive microwave radiometers launched to date operate in frequencies

ranging from 6 to 190 GHz. At different frequencies, microwave radiometers observe

different parts of the rain profile. Below 20 GHz, emission by precipitation-size drops

dominates, and ice particles above the rain layer are nearly transparent. Above

60 GHz, ice scattering dominates, and the radiometers cannot sense the raindrops

below the freezing layer. Both emission and scattering effects are important for

frequencies between 20 and 60 GHz. In general, emission by liquid drops raises

brightness temperature, while scattering by ice particles has the opposite effect.

Window channels (i.e., wavelengths which have very little contamination due to

atmospheric constituents like water vapor and oxygen) can measure down to the

Earth’s surface and are strongly influenced by surface properties (i.e., vegetation and

soil moisture). Other frequencies are sensitive to oxygen or water vapor/cloud droplet

absorption. These microwave properties set the foundation for the development of

rainfall estimation schemes.

There are two major categories in rainfall estimation using passive microwave

radiometry: emission-based method and scattering-based method. Emission-based

rainfall algorithms are mostly applicable over ocean because water surfaces are

relatively homogeneous and provide a cold background due to low emissivity. The

presence of raindrops allows for absorption and emission over the water surfaces and

results in a dramatic warming of the satellite measurements. Some of the earliest

emission techniques were developed with the Nimbus-5 and Nimbus-6 Electrically

ScanningMicrowave Radiometer (ESMR) (Wilheit et al. 1977). Significant advances

were made through the Special Sensor Microwave/Imager (SSM/I) series, first

launched in 1987 and followed by five more instruments which operated effectively

through much of 2009 (e.g., Olson 1989; Ferraro and Marks 1995; Smith et al. 1994).

Fig. 6.1 Multi-satellite (i.e., numerous GEO and LEO satellites) composite of IR imagery from

1500 UTC, 2 June 2010 (Courtesy of the Naval Research Laboratory (NRL) in Monterey, CA

(http://www.nrlmry.navy.mil/sat_products.html))
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The SSM/I has been replaced with the Special Sensor Microwave Imager Sounder

(SSMIS) which is in operation at the time of this writing. Today, the Goddard

profiling algorithm (GPROF), a sophisticated inversion algorithm based on cloud

resolving models and radiative transfer calculations (Kummerow et al. 1996, 2001),

is widely used on a variety of sensors such as the SSM/I, Tropical Rainfall Measuring

Mission (TRMM) Microwave Imager (TMI), and the Advanced Microwave Sound-

ing Radiometer-Earth Observing System (EOS) (AMSR-E) (Wilheit et al. 2003).

Due to the high and more varying emissivity of the land surface, the only reliable

means of detecting rainfall over land is by isolating depressed brightness

temperatures as a result of scattering by millimeter-sized ice particles that exist in

most rain clouds. Since the signal being captured is a result of ice particles instead

of raindrops, the scattering-based rainfall estimation is an indirect measure of

rainfall, as it relates the magnitude of the scattering near the freezing layer to

surface rainfall. The launch of the SSM/I in 1987 provided the first opportunity to

retrieve rain rate through scattering at higher frequency (85 GHz). Noteworthy

studies in this regard include Spencer et al. (1989), Grody (1991), and Ferraro and

Marks (1995). GPROF adopted this method over land as well (McCollum and

Ferraro 2003; Wang et al. 2009; Gopolan et al. 2010) and has been used for TMI

and AMSR-E.

Zhao and Weng (2002) took advantage of the highly scattering nature of 89 GHz

and in particular 150 GHz radiances from the AdvancedMicrowave Sounding Unit-B

(AMSU-B) and retrieved ice water path (IWP) using scattering parameters measured

at these two channels. The derived IWP is then converted into the surface rainfall rate

(RR) through an IWP and rainfall rate relationship developed from cloud model

results (Weng et al. 2003). This rain rate product is being operationally generated at

National Environmental Satellite, Data, and Information Service (NESDIS) of

National Oceanic and Atmospheric Administration (NOAA). This algorithm has

also been applied to Microwave Humidity Sounder (MHS) with some modification

since AMSU-B and MHS have very similar channels. Vila et al. (2007) added an

emission-based component to this rainfall algorithm to account for oceanic rain

systems that have little or no ice in them.

Figure 6.2 illustrates the use of passive MW measurements to retrieve rainfall.

Shown is the Naval Research Laboratory (NRL) passive MW composite, overlaid

on the global IR composite that was presented in Fig. 6.1. The various color shades

indicate the intensity of rainfall derived from the array of MW sensors used in this

composite (e.g., SSM/I, AMSU, TMI, and AMSR-E).

6.2.3 Active Microwave Methods

In contrast to passive microwave radiometers, active microwave sensors provide

their own source of microwave radiation and are able to determine fine-scale and

vertical distribution of rainfall. In orbit since 1997, the precipitation radar (PR) on
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the TRMM satellite is the first instrument designed to measure rain from space

(Kummerow et al. 1998; Iguchi et al. 2000). Although an excellent source of

rainfall information directly, its primary purpose is to be used in conjunction with

the more widely available satellites that contain only PMW sensors. With coinci-

dent TMI and PR data, significant advances have been made over the TRMM

mission life to improve the current state of passive MW retrievals through the

better understanding of precipitation and cloud microphysics (Hirose et al. 2009;

Gopolan et al. 2010; Wang et al. 2009).

Launched in April 2006, CloudSat is the first millimeter wavelength cloud radar

in space (Stephens et al. 2002). The Cloud Profiling Radar (CPR) aboard CloudSat

operates at 94 GHz as opposed to 13.8 GHz on PR; thus, it is sensitive to clouds and

light precipitation rates, including snowfall (e.g., Matrosov 2007; L’Ecuyer and

Stephens 2002; Liu 2008). CloudSat has recently been instrumental in advancing

the understanding of cold season precipitation and our ability to retrieve it from

PMW sensors.

6.3 Multisensor Global Rainfall Products

The sensors discussed so far each has their limitations which make them unsuitable

for use in certain situations. For example, PMW estimates over the ocean might be

more accurate than GEO-IR estimates, but the latter are better suited for studies of

the diurnal cycle due to the superior sampling obtained from a GEO satellite. On the

other hand, most GEO-IR sensors only cover a limited geographic domain, whereas

the LEO essentially covers the entire globe. By optimizing the strengths and

weaknesses of each data source and combining them with surface measurements

where they are deemed to be the most reliable, combined datasets can be superior to

estimates from individual sensors. This section will describe some of these

“merged” rainfall datasets and present some examples of their utility for global

climate monitoring.

Fig. 6.2 NRL passive MW composite, overlaid on the global IR composite that was presented in

Fig. 6.1. The various blue color shades indicate the intensity of rainfall derived from the array of

MW sensors used in this composite (e.g., SSM/I, AMSU, TMI, and AMSR-E)
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For a little historical perspective on this topic, several efforts to intercompare

and evaluate various types of precipitation algorithms using remotely sensed

information were carried out during the 1990s. The WetNet (Dodge and Goodman

1994) Precipitation Intercomparison Projects (PIP) evaluated multiple global and

near-global precipitation algorithms including merged satellite datasets (Barrett

et al. 1994; Kniveton et al. 1994; Smith et al. 1998; Adler et al. 2001). The Global

Precipitation Climatology Project (GPCP) similarly sponsored three Algorithm

Intercomparison Projects (AIP; Ebert et al. 1996) that compared precipitation

estimated from satellite observations against high-resolution observations from

rain gauges and radars over limited domains (Arkin and Xie 1994; Ebert and

Manton 1998). For the most part, these studies showed that PMW estimates were

more accurate than IR estimates on an instantaneous basis, but algorithms which

combine PMW and IR estimates were superior. However, these intercomparisons

did not show significant differences between individual algorithms of a common

type. It remains the case that several merged satellite products exist without a clear

consensus on which is superior, and it is common to see a range of similar datasets

used in the literature.

Perhaps the best known and widely used global precipitation climatology comes

from the Global Precipitation Climatology Project (GPCP; Huffman et al. 1997;

Adler et al. 2003). The GPCP was developed in the 1990s and during the pre-

TRMM era. It combines satellite precipitation from SSM/I with IR estimates (from

both geosynchronous and low orbit) and then anchors the estimates with a robust

surface rain gauge dataset which takes precedence over land. A similar product, the

Climate Prediction Center Merged Analysis of Precipitation (CMAP; Xie and

Arkin 1997), also emerged in the same time frame as GPCP and yields similar

results when looking at global-scale precipitation patterns on seasonal to interan-

nual time scales. The current version of the GPCP 2.5� monthly mean dataset is the

version two dataset (Adler et al. 2003) which improved on the first version with a

longer record and the addition of TOVS data for improved estimates at mid- and

higher latitudes. Both CMAP and GPCP have problems with high-latitude precipi-

tation due to the lack of reliable data: there are few gauges in these sparsely

populated regions, and available satellite-derived precipitation estimates are of

limited use over ice- or snow-covered surfaces.

Figure 6.3 shows the GPCP V2 global precipitation product for a 30-year period,

1979–2008. The figure shows the seasonal precipitation for December–January

(DJF) and June–August (JJA). The heaviest precipitation over land occurs during

the summer season, as evident by the shifts between hemispheres during winter to

summer. The tropical zones, namely, the ITCZ, exhibits the wettest precipitation on

the Earth, over both the land and ocean zones. Other seasonal features are evident

such as monsoonal regions (e.g., India and North America), midlatitude cyclone

storm tracks, and the shift of the ITCZ.

The GPCP dataset is also extremely useful for monitoring seasonal to interan-

nual changes in precipitation patterns. A good example of this is provided in

Fig. 6.4, which shows the tropical rainfall anomalies over the central Pacific

Ocean for the 30-year period (1979–2008). This region is typically where the
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largest changes in sea surface temperature (SST; not shown) occur during El Niño/

La Niña events. Most obvious in this figure are the large periods and areal coverage

of above/below normal rainfall associated with the SST changes with the El Niño/

La Niña phenomenon.

Although the monthly 2.5� products are most commonly used, higher-resolution

products also exist as part of the GPCP suite. A pentad (5-day mean) version of

GPCP combines similar satellite inputs as the monthly product with a different

gauge dataset (Xie et al. 2003). This experimental dataset is also produced on a 2.5�

resolution grid and starts in 1979. A 1-degree, daily version of the GPCP dataset is

also available which starts in 1996 and combines IR from geosynchronous and low

orbits with the GPCP version 2 monthly product and AIRS and TOVS estimates

(Huffman et al. 2001). GPCP also plans on adding a 3-hourly global product to its

version 3 set of products, expected sometime in 2011.
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Fig. 6.3 GPCP December, January, and February (top) and June, July, and August (bottom) 30-
year rainfall climatology (mm per month)
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Over the past decade, recent increases in the availability of PMW data (SSM/I,

TMI, AMSU, AMSR) have led to the emergence of several near-global, high-

resolution products which have been showing utility for near-real time use.
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Fig. 6.4 GPCP interannual rainfall anomalies (from the 1979 to 2008 base period) (mm per

month) for latitudinal band 5 S to 5 N over the tropical Pacific Ocean. The largest anomalies

(brightest green and red areas) are associated with El Niño (above normal rainfall) and La Niña

(below normal rainfall)
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Although not truly global, these products have found a wealth of users in the

weather forecasting, climate monitoring, and hydrological communities. Typically,

they cover the geographic domain of 60ºS to 60ºN, have 3-h temporal sampling, and

are at 0.25� spatial resolution. Commonly referred to as high-resolution precipita-

tion products (HRPPs), they use the high spatial and temporal resolution of IR data

to resolve deficiencies in resolution of the higher quality PMW data, although there

are substantial differences between the exact methodologies employed. The HRPPs

can be categorized into two broad types: adjustment-based techniques where IR

data is calibrated using PMW estimates (where the two are often then combined)

and motion-based techniques, where the IR data is used to interpolate between

successive PMW overpasses.

The Pilot Evaluation of High-Resolution Precipitation Products (PEHRPP;

Sapiano and Arkin 2009) was established to intercompare and validate these

datasets. PEHRPP included a number of high-resolution datasets: the TRMM

Multi-satellite Precipitation Analysis (TMPA; Huffman et al. 2007), the CPC

Morphing technique (CMORPH; Joyce et al. 2004), the Hydro-Estimator (Scofield

and Kuligowski 2003), the NRL-Blended technique (NRL-Blended; Turk and

Miller 2005), Precipitation Estimation from Remotely Sensed Information using

Artificial Neural Networks (PERSIANN; Hsu et al. 1997; Sorooshian et al. 2000),

and the Global Satellite Mapping of Precipitation (GSMaP) project (Aonashi et al.

2009). CMORPH is the only motion-based technique out of these six. Figure 6.5

presents an example of the CMORPH product.

6.4 Summary and Future

There are various techniques to retrieve rainfall from satellites, each with their own

set of attributes that are dictated by the particular needs for the information. For

short-term, high spatial resolution applications like flash flood forecasting, the IR

CMORPH Precipitation Estimates
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Fig. 6.5 CMORPH rainfall estimate (mm per day) for 2 June 2010
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methods are generally preferred. For global climate scales, the PMWmeasurements

are usually preferred. When IR and PMW are combined with surface rain gauges,

the best possible product can be generated and used for global-scale applications,

such as the GPCP and CMAP products. These products have proven to be of

tremendous value in gaining a better understanding of the global precipitation

patterns on seasonal to interannual time scales.

Many of the early methods were developed using sensors that were not neces-

sarily flown for rainfall retrieval but more for tracking cloud features and monitor-

ing atmospheric temperature and moisture. Current and near-term missions are now

being designed specifically for precipitation monitoring and improving our under-

standing of precipitating systems and utilize space-based radars, such as TRMM

and CloudSat.

On the horizon is the GPM (Global Precipitation Measurement) mission, which is

a joint US-Japan mission designed to extend TRMM’s observations of precipitation

to higher latitudes, with more frequent sampling (Smith et al. 2007). The GPM Core

satellite will carry a dual-frequency precipitation radar that will measure a broader

spectrum of precipitation types than its predecessor on TRMM (Iguchi et al. 2002).

GPM will also feature a “constellation” of PMW sensors that will utilize the GPM

Core to advance science improvements and that will achieve 3-hourly or less global

precipitation retrievals. Several prototype GPM-era products are already in existence

such at the CMORPH and TMPA products previously described.
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Chapter 7

Developing a Historical Precipitation Record

Thomas M. Smith

Abstract Knowing historical precipitation is important for climate monitoring and

for evaluating coupled climate models designed to simulate changes in precipitation

associated with climate change. Over land gauge-based analyses are sufficient to

determine large-scale variations over the twentieth century. Over oceans satellite-

based analyses can be used beginning 1979. However, there are few direct or remote

sensing observations of oceanic precipitation variations before 1979. For the pre-

satellite time, it is possible to use reconstructions based on the available data to

analyze some oceanic precipitation variations. Evaluations of the available data and

methods have shown that large-scale variations in twentieth-century oceanic precipi-

tation may be reconstructed. Reconstructions based on spatial covariance and histor-

ical gauge data represent seasonal to interannual variations. Reconstructions based on

correlations with sea-surface temperature (SST) and sea-level pressure (SLP) repre-

sent multi-decadal variations. Combining these two types of reconstructions yields a

merged reconstruction with the best features of both.

This review describes how the reconstructions are developed and discusses their

major features. The merged reconstruction indicates increasing precipitation with

increasing global temperature, consistent with theoretical estimates. However, the

reconstruction indicates that the change is not steady and has a shift associated with

the climate shift noted in Pacific SSTs in the 1970s.
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7.1 Introduction

Global precipitation can be monitored using a number of satellite-based estimates

combined with gauge estimates over land. As discussed in Ferraro et al.’s paper on

global precipitation in this book, satellite-based precipitation estimates began in

1979 using infrared instruments. Over time more satellite estimates from both

infrared and microwave instruments were developed. The Global Precipitation

Climatology Project (GPCP, Adler et al. 2003) adjusted these different estimates

to minimize satellite-to-satellite bias and merged them with gauge data to produce a

monthly product for climate analyses beginning 1979.

Climate variations have been documented over multi-decadal time scales (e.g., see

Trenberth et al. 2007). The available gauge-based analyses can describe large-scale

precipitation variations over most land regions beginning about 1900. However, most

of the Earth’s surface is covered by oceans, and evaluation of that component of the

global hydrologic cycle has required satellite sampling. For most of the twentieth

century, there is a large gap in the record for ocean regions. Filling the gap would

allow the historical response to climate change to be better understood and would

provide historical perspective to precipitation monitoring products. In addition,

climate models used to forecast precipitation changes with changing global

temperatures could be better validated and improved using oceanic precipitation

over the twentieth century. Therefore, attempts have been made to reconstruct

historical oceanic precipitation. This chapter briefly reviews those precipitation

reconstructions and discusses howwell historical oceanic variations can be evaluated.

7.2 Historical Reconstructions

A reconstruction uses the available historical data and globally complete statistics

describing those data to perform an analysis. For most global climate fields, satellite-

based data are critical for developing the reconstruction statistics. Since the mean-

annual cycle is defined by these modern base data, reconstructions are performed

on anomalies from the annual cycle. The annual cycle can be added back onto

the reconstruction anomaly later if desired. An example is the historical sea-surface

temperature (SST) anomaly reconstruction (Smith et al. 1996), based on covariance

maps produced using a satellite and in situ SST analysis. The covariance maps

were produced using empirical orthogonal function (EOF) analysis (e.g., see Davis

1976 for a detailed definition of EOF analysis). An EOF analysis (also called principal

component analysis) decomposes a time series of maps into a set of spatial fields or

modes, Ei(x), and associated time series, ai(t), for a set of modes i ¼ 1, 2, . . ., N. The
modes are only a function of space, x, while the time-seriesweights for themodes are a

function of only time, t. Each mode represents an orthogonal component of the full

field’s variance, and an approximation of the true field, F(x,t), can be reconstructed

from the weighted sum of the modes,
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Fðx; tÞ �
XN

i¼1

EiðxÞaiðtÞ (7.1)

As more modes are used in the approximation, it approaches the true field. The

modes are ordered such that the first mode explains the most variance, the second

explains the second most variance, etc. For an EOF-based reconstruction, the

spatial modes, Ei(x), may be computed from a satellite-based analysis of modern

data. The historical time-series weights are estimated from the available historical

data. Since historical data are typically sparse, statistical testing is done to ensure

that there is enough sampling to reliably sample the set of modes used, with poorly

sampled modes omitted from the analysis. The historical time-series weights are

computed to minimize the error of the reconstruction fit at locations where histori-

cal data are available. For each time, the best-fit weights are obtained by solving

XN

i¼1

ai
XK

x¼1

EiðxÞEjðxÞδðxÞAðxÞ
" #

¼
XK

x¼1

DðxÞEjðxÞδðxÞAðxÞ
� �

; j ¼ 1; 2; . . . ;N

(7.2)

where K is the number of spatial regions, the delta function δðxÞ ¼ 1 if data are

defined for region x and δðxÞ ¼ 0 otherwise, and A(x) is the relative area of region x.
The partly sampled data used for the reconstruction are represented by D(x).

The EOF method can reconstruct variations described by modes with large

enough scales to be sampled by the available historical data. Small-scale variations

are filtered out of the analysis. Variations not represented in the set of reconstruc-

tion modes will also be filtered out of the analysis. This filtering gives the analysis

spatially smooth features. The goal of a reconstruction is to represent large-scale

historical variations associated with climate. These reconstructions cannot repre-

sent fine-scale features, which require much more data to resolve.

TheEOFmethodwas used to reconstruct precipitation (Xie et al. 2001; Efthymiadis

et al. 2005). They used satellite-based data to definemodes and gauge data to compute

weights. Both studies found that oceanic precipitation variations associated with El

Niño/Southern Oscillation (ENSO) variations are best reconstructed. That is because

ENSO variations have very large scales over both land and sea, and they are usually

described by the first fewmodes. Such large-scale variations are easily sampled by the

available gauge sampling. Outside of the tropics, both analyses had less skill, with

lowest extratropical skill in mid-oceanic regions far from gauge sampling.

7.3 An Improved EOF-Based Reconstruction

In an attempt to improve on the ocean-area reconstructions noted above, data and

methods for precipitation reconstructions were reviewed and reevaluated (Smith

et al. 2008b). As part of this effort, several satellite-based analyses were evaluated
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for possible use as base data, including GPCP and CMAP (CPCMerged Analysis of

Precipitation, Xie and Arkin 1997). We found that both gave consistent

representations of interannual variations. However, the CMAP had a decreasing

multi-decadal tendency, opposite the tendency of GPCP and other satellite

estimates such as Wentz et al. (2007). That opposite CMAP tendency appears to

be caused by how satellite data are adjusted to reduce their satellite-to-satellite

biases. In CMAP large-scale tropical adjustments are performed against a few

island stations. Those few stations reasonably represent the interannual variations

that CMAP was developed to evaluate, but they may not be representative of multi-

decadal variations. By comparison, GPCP was developed for climate studies on a

range of time scales, including decadal. Therefore, the GPCP satellite-to-satellite

bias adjustments are made relative to a satellite standard and do not depend on

limited sampling.

Several gauge-based analyses were also evaluated for reconstructions. Gauge

analyses were available on different spatial grids, most either 2.5� or 5� spatially.
For these analyses, the 5� grid was chosen as the reconstruction grid so that all of

the gauge analyses may be used. Grid analyses also cover different periods, but the

longest analyses began in 1900. Historical gauge analyses evaluated include the

analyses from the Global Historical Climatology Network (GHCN, Vose et al.

1998) 1900–2008, the Global Precipitation Climatology Centre (GPCC, Rudolf

2005; Schneider et al. 2008) 1901–2007, and the Climate Research Unit (CRU,

Hulme et al. 1998) 1900–1998.

In an earlier study (Smith et al. 2010), GPCP base data were used to compute

EOF modes, which were then used with each of these gauge analyses to perform a

reconstruction. Over land those reconstructions are similar for most of the overlap

analysis period. Before about 1930 the EOF-based reconstruction using GHCN had

weaker variations. That is because the GHCN does not fill regions with missing

data, while the others each use some limited interpolation to fill missing stations.

To ensure that noise is filtered out of our EOF-based reconstruction, the relative

sampling of each mode is checked using the data in each historical month. Modes

that are not adequately sampled are not used in the reconstruction. Omitting modes

damps the reconstructed signal. Since the GHCN analysis tends to be sparser than

the others before about 1930, its signal is damped for that period.

These EOF-based reconstructions were found to consistently represent interan-

nual oceanic variations such as those associated with ENSO and the North Atlantic

Oscillation (NAO). In addition, the improved reconstructions retain more Northern

Hemisphere oceanic variance than earlier reconstructions. However, the oceanic

multi-decadal components of the EOF-based reconstructions are less consistent.

This suggests that the weaker multi-decadal signal requires more sampling, while

the stronger interannual climate modes can be resolved by available gauges. To

better resolve the multi-decadal signal, we developed an indirect method of

reconstructing precipitation, which is described below.

The EOF-filtered GPCP, called REOF(GPCP), has variations similar to the

gauge-based reconstructions in the overlap times (see Fig. 7.3). Without filtering,

the GPCP variance increases in time, because the newer satellites resolve more
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variations. This suggests that the modern gauge sampling is adequate to resolve

most variations spanned by the set of EOF modes used. Therefore, a blended EOF-

based reconstruction can be formed using REOF(GPCP) to update the historical

analysis. For the historical analysis, the EOF-based reconstruction from CRU gauge

data was used, gradually shifting from the historical analysis to REOF(GPCP) data

over 1979 to 1988. We call this reconstruction the REOF(blend).

7.4 An Improved CCA-Based Reconstruction

An indirect reconstruction method based on canonical correlation analysis (CCA)

was developed using analyses of SST and sea-level pressure (SLP). The CCA

(Barnett and Preisendorfer 1987) was adapted for reconstructing precipitation

(Smith et al. 2009a). The method, referred to as RCCA, is summarized here. The

RCCA specifies precipitation anomalies from SST and SLP anomalies, which are

both much better sampled over the oceans. Annual averages are specified using

annual predictors. For annual average anomalies, both SST and SLP are related to

large-scale precipitation variations. Our goal is to use the superior oceanic sampling

of the predictors to more reliably determine oceanic precipitation multi-decadal

variations. The RCCA of annual-average precipitation anomalies is computed

75�S–75�N over both land and ocean regions, although we are most concerned

with improving the oceanic multi-decadal signal. In polar latitudes, both predictor

data and satellite precipitation training data are not reliable enough for meaningful

reconstructions.

As with the EOF-based reconstruction, GPCP anomalies are used to form base

statistics. The predictors include a SST analysis (Smith et al. 2008a) and a SLP

analysis (Allan and Ansell 2006). These predictor analyses allow the reconstruction

to extend back to 1900. The SLP analysis is through 2004, with updates afterwards.

Because the SLP updates are computed differently from their historical analysis, the

update variance is larger than in the historical period. Therefore, the RCCA base

period used is 1979–2004 to keep that artificial variance change out of its statistics.

The predictor and GPCP anomalies are averaged annually before computing the

reconstruction statistics. The annual predictor fields are then used to reconstruct the

annual anomalies beginning 1900.

This indirect RCCA can resolve large-scale precipitation variations, including

multi-decadal variations. Reliability is shown by comparison over land regions

where there are independent data for validation. Gauge data are included in the

GPCP base data, so for 1979–2004 the validation is not independent. Outside that

period, no gauge data are used in the RCCA, so the gauges can be used for

independent validation before 1979. To avoid sampling differences, averages of

the annual RCCA and GHCN gauge analysis are computed over only regions with

gauge data (Fig. 7.1). The GPCP base data averaged over gauge regions are also

included for comparison. The strong correlation between the RCCA and the GHCN

in the independent period shows the ability of this method to resolve both
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interannual and multi-decadal averages. Testing showed that most of the RCCA

variance is derived from the SST predictor, including most of the land-area

variations. However, adding the SLP improves the skill and it is retained in the

analysis.

The RCCA was motivated by the need for better resolution multi-decadal

oceanic variations compared to the REOF(blend). Comparisons of these analyses

averaged over ocean areas show the differences (Fig. 7.2). Here the annual-spatial

averages are filtered using a weighted 7-year filter (see Smith et al. 2010). In

addition, the ensemble average of fourth Assessment Report (AR4) coupled models

is also shown through 1999, along with REOF(GPCP) since 1979. The AR4

coupled ocean–atmosphere models to help evaluate climate change from changes

caused by greenhouse gases and aerosols (Randall et al. 2007). Note that for the

Fig. 7.1 Annual and 75�S–75�N average precipitation anomalies from the RCCA, GHCN, and

GPCP. Averages omit data where GHCN is not available

Fig. 7.2 Ocean-area averaged precipitation anomalies from the blended EOF-based reconstruc-

tion, REOF(blend), the RCCA, the AR4 ensemble coupled models, and the EOF-filtered GPCP,

REOF(GPCP). All are low-pass filtered to emphasize multi-decadal variations
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satellite period, all of the reconstructions give similar multi-decadal variations and

indicate an increase in oceanic precipitation with time. The AR4 ensemble indicates

an increase with time over the twentieth century, which reflects the theoretical

response of precipitation to increased greenhouse gas and aerosol forcing. With a

warming troposphere, theory states that there will be more evaporation and higher

rainfall (e.g., Allan and Soden 2008). For the first half of the twentieth century, the

REOF(blend) shows an opposite tendency, suggesting that the gauge network may

not be adequate to specify the oceanic multi-decadal signal for much of the

twentieth century.

The RCCA indicates a general warming tendency throughout the period, but it is

not as steady as the AR4 ensemble model tendency. One major difference is the

influence of interannual variations in the RCCA. Interannual variations occur in the

individual AR4 models, but they are not phase locked and so are averaged out of

the ensemble. Another difference is the positive shift in the RCCA in the mid 1970s.

That shift is associated with a climate shift reflected in the Pacific SSTs (Trenberth

1990; Zhang et al. 1997). Evaluation of individual RCCA modes indicates that

the 1970s shift is mostly due to an ENSO-like mode which responds to the ENSO-

like shift in SSTs (Smith et al. 2009b). The AR4 models do not consistently resolve

the 1970s climate shift, although models are capable of demonstrating such shifts.

For example, a model was used to show that the 1970s shift is likely caused by a

combination of external forcing and internal Pacific multi-decadal variability,

which influenced the timing of the shift (Meehl et al. 2009).

7.5 Merged Reconstruction

Our analyses showed that the REOF(blend) is capable of describing seasonal to

interannual variations, but its representation of oceanic multi-decadal signals

appears to be less reliable. The RCCA yields accurate multi-decadal signals

where it can be validated with independent data, but since it is an analysis of annual

averages, its representation of interannual and shorter-period variations is damped.

The REOF(blend) and RCCA standard deviations have consistent differences over

the analysis period, with the REOF(blend) systematically higher (Fig. 7.3). There is

a slight negative trend in both standard deviations, but that is much less than the

interannual changes over the period. In addition, although the RCCA multi-decadal

representation of land variations is strong, the availability of local gauges makes the

REOF(blend) representation of land variations superior. In order to take advantage

of the best qualities of each analysis, we merged the REOF(blend) and the RCCA.

Details of the merging are given elsewhere (Smith et al. 2010) and outlined here.

To merge the analyses, both are first filtered using the same weighted 7-year

filter to separate a low- from a high-frequency component of each. In ocean areas,

the low-frequency component of the REOF(blend) was replaced with the low-

frequency component of the RCCA. In 5� areas that are partly ocean, the adjustment

is proportional to the fraction of ocean area. In areas that are all land, no adjustment
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is done. The adjustment is done monthly, with the annual adjustment linearly

interpolated to the month.

An indication of interannual variations associated with climate modes is given

by correlations against the Southern Oscillation Index (SOI, Trenberth 1984) and

the NAO index (Hurrell 1995). For the SOI, annual-average values are used, while

for the NAO December to March averages are used (Fig. 7.4). As expected, the SOI

correlation is strongest in the tropics, with extensions into the extra tropics into

areas influenced by the SOI. The NAO correlations are strongest in the Northern

Hemisphere, and its known influence on Europe and North America is reflected

(Hurrell et al. 2003). For both the oceanic analysis shows extensions of the

influence from land to adjacent oceanic regions. Thus, a more complete description

of the influence of the climate modes over the twentieth century is available using

the reconstruction.

Trends in the merged reconstruction (Fig. 7.5) indicate that the tropical oceans

account for most of the global trend. Land trends are much weaker than the oceanic

trends, and they also tend to be out of phase. The out-of-phase relationship may

reflect shifts of precipitation from land to ocean areas over the twentieth century.

A similar out-of-phase land-sea relationship was noted for ENSO events (Adler

et al. 2008). These results suggest that the multi-decadal relationships may share

features with the ENSO relationships.

7.6 Conclusions

This chapter shows that it is possible to reconstruct large-scale features of oceanic

precipitation variations beginning 1900. Reconstructions require accurate base data

such as analyses using satellite-based observations. The base data are needed to

form statistics that can be used with the limited historical data to reconstruct

Fig. 7.3 Global spatial standard deviation of the indicated analyses
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Fig. 7.4 Correlation of the merged reconstruction with the SOI and the NAO indices, 1900–2000.

Annual averages are used for the SOI correlation, and Dec–Mar averages are used for the NAO

Fig. 7.5 Trends of the merged reconstruction (1900–2008) averaged zonally over land, oceans,

and all areas
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climate-scale variations. These reconstructed fields are important for monitoring

climate and its changes over long periods and for helping to validate climate models

that simulate twentieth-century variations.

Improvements in reconstructions may be possible if satellite analyses can be

improved. In addition, as longer records with more satellite-based observations

become available, the base data may be able to support improved reconstruction

statistics. Additional improvements can be obtained by including new data sources

that may provide independent information. For example, an extended dynamic

atmospheric reanalysis was produced by assimilating measured surface fields

(Compo et al. 2006). In the future, we intend to examine precipitation from that

reanalysis as well as from other sources as the data become available. The merged

reconstruction discussed here is available to the public online at http://cics.umd.

edu/~tsmith/recpr/.
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Chapter 8

Atmospheric Temperature Climate Data

Records from Satellite Microwave Sounders

Cheng-Zhi Zou

Abstract This chapter reviews the simultaneous nadir overpass (SNO) method to

remove time-varying inter-satellite biases at the swath level for developing a well-

inter-calibrated Level-1c radiance fundamental climate data record (FCDR) from

the microwave sounding unit (MSU) and advanced MSU observations onboard

historical NOAA polar-orbiting satellite series. The SNO method has effectively

minimized scene temperature-dependent radiance biases and solar heating-related

instrument temperature variability in the radiances, resulting in global mean inter-

satellite biases of only 0.05–0.1 K. Twenty years of the SNO-calibrated Level-1c

radiances had been assimilated into the NCEP Climate Forecast System Reana-

lysis (CFSR) and NASA Modern Era Retrospective analysis for Research and

Applications (MERRA) reanalysis, yielding much consistent bias correction

patterns across different satellites compared to those using prelaunch-calibrated

radiances.

The SNO-calibrated radiances were further used to generate the NOAA Center

for Satellite Applications and Research (STAR) version of deep-layer atmospheric

temperature climate data record. The chapter reviews various residual bias correc-

tion algorithms for developing the STAR layer temperature time series, including

antenna pattern correction, limb adjustment, diurnal drift correction, geo-location-

dependent bias removal, and channel frequency difference between MSU and

AMSU. With these adjustments, well-merged atmospheric temperature time series

were generated for climate change monitoring and research.

Keywords Simultaneous nadir overpass • Inter-satellite calibration • Microwave

sounding unit • Residual bias correction • Atmospheric temperature climate data

record • Long-term atmospheric temperature trends
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8.1 Introduction

Accurate determination of the atmospheric temperature variability and trends is an

important component in global change monitoring and research. The global atmo-

spheric temperature trend is an important indicator of whether the Earth is warming

or cooling. Additionally, knowledge of the atmospheric temperature trends at both

global and regional scales is crucial for validating consistencies of the simulated

atmospheric and surface changes in climate model simulations. For instance, moist

adiabatic theory predicts that the tropical troposphere warms faster than the surface,

which has been seen in most climate model simulations (Santer et al. 2005).

However, such a relationship needs to be verified by observations. Observational

verifications of climate model simulations affect scientific views on the reliability

of climate model projections of future climate changes, which in turn are

foundations for making policy decisions on prevention, mitigation, and adaptation

strategies for global change.

Development of climate data record (CDR) is desirable for reliably detecting

atmospheric temperature trends. A CDR is defined as “a time series of measurements

of sufficient length, consistency, and continuity to determine climate variability and

change” (NRC 2004). In this regard, the long-term observations from the microwave

sounders including microwave sounding unit (MSU) and advanced microwave

sounding unit-A (AMSU-A) onboard NOAA, NASA, and MetOp-A polar-orbiting

satellites provide unique opportunities for an atmospheric temperature CDR devel-

opment. The MSU and AMSU-A are cross-scanning instruments which make res-

pectively 11 and 30 Earth observations during each scan. The MSU observations

covered the period from 1979 to 2006, with four channels to measure the temperature

profiles from the surface to the lower stratosphere. As its successor, the AMSU-A

is a 15-channel instrument making temperature profile observations from the surface

to the upper stratosphere. The AMSU-A observations cover the period from 1998

to the present and onward into the future. The MSU/AMSU instruments were

designed primarily for weather monitoring; however, because of their long-term

continuity, global coverage, insensitivity to cloud effects, and frequency stability,

their observations have been widely used for atmospheric temperature variability and

trend investigations (Spencer and Christy 1992a, b; Spencer et al. 2006; Trenberth

and Hurrell 1997; Hurrell and Trenberth 1997, 1998; Hurrell et al. 2000; Christy et al.

1998, 2000, 2003; Prabhakara and Iacovazzi 1999; Prabhakara et al. 2000; Wentz

and Schabel 1998; Mears et al. 2003; Mears and Wentz 2005, 2009a, b; Vinnikov

and Grody 2003; Grody et al. 2004; Vinnikov et al. 2006; Fu et al. 2004; Fu and

Johanson 2004, 2005; Johanson and Fu 2006; Zou et al. 2006, 2009; Zou and Wang

2010, 2011). The importance of the MSU/AMSU observations for climate change

detection and its related studies has been well reviewed in the US Climate Change

Science Program Synthesis and Assessment report (Karl et al. 2006) and the fourth

Intergovernmental Panel on Climate Change report (Solomon et al. 2007).
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Satellite-based CDRs are further segmented into fundamental CDRs (FCDRs),

which are calibrated and quality controlled sensor data that have been improved

over time, and thematic CDRs (TCDRs), which are geophysical variables derived

from the FCDRs (NRC 2004). For MSU/AMSU, the FCDR is the swath Level-1c

radiance data that are produced immediately after the instrument calibration. Since

FCDR is used for subsequent satellite retrievals and data assimilations in numerical

weather predictions and modeling reanalyses, its quality has a significant impact on

the accuracies of these subsequent applications. Consistent, high-quality FCDR

should have instrument calibration errors removed as much as possible.

Although fundamentally important, however, the FCDR is usually not directly

used for climate change analysis due to data irregularity in location and time and

also because of different interpretations of the radiance data from the retrieved

geophysical variables that are used to describe the climate change. As a result, a

TCDR is developed on top of the FCDR for the purpose of direct climate analysis

and trend calculations. A TCDR (thematic climate data record) is generally a

gridded dataset with fixed time interval that is easy to use. However, developing

TCDR requires more bias corrections and adjustments of different error sources

than applied for FCDR development. These include satellite sampling errors such

as those related to satellite drift. Retrieval algorithms are also needed for many

geophysical variables when there is a nonlinear relationship between the radiances

and the physical variables to be retrieved. These bias correction and retrieval

processes cause the TCDRs to have more error sources than the FCDRs.

Recently, significant progress has been made at NOAA/NESDIS in the develop-

ment of both the FCDR and atmospheric temperature TCDR from the MSU/AMSU

observations using the simultaneous nadir overpass (SNO) intercalibration meth-

odology (Zou et al. 2006, 2009; Zou and Wang 2010, 2011). The method largely

removed instrument calibration errors related to inaccurate calibration nonlinearity

and solar heating variability on the instrument and thus resulted in a consistent,

high-quality radiance FCDR. Such a feature in the FCDR has the advantage that it

prevents instrument calibration errors from transferring to the gridded analysis level

where they, if not corrected, could become mixed up with the diurnal drift errors.

This error coupling may cause difficulties in bias correction in the TCDR develop-

ment and ultimately cause uncertainties in the trend determination. In addition, with

biases removed, identical multi-satellite FCDRs can be an ideal candidate as an

anchor or reference dataset for bias corrections of other observations in reanalysis

data assimilation, which may help the climate reanalysis to be consistent with the

satellite observations as much as possible.

In this chapter, the SNO methodology for MSU/AMSU inter-satellite calibration

is reviewed, and the resulting FCDR performance in terms of inter-satellite bias

reduction is described. Impact of the inter-calibrated FCDR on the reanalysis bias

correction improvement is demonstrated. Bias correction approaches of various

error sources for MSU/AMSU atmospheric temperature TCDR are described.

Finally, updated 34-year atmospheric temperature trends derived from the SNO-

calibrated TCDR are provided.
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8.2 Methodology for Consistent MSU/AMSU FCDR

Development

The development ofMSU/AMSU Level-1c radiance FCDRmainly involves accurate

calibration of the satellite raw count data to remove instrument specific errors. This

requires an understanding of two fundamental processes: the calibration principles

and the origin of the calibration errors. The following subsections describe these two

processes, followed by an introduction of the SNO approaches for the removal of

calibration errors. The last subsection evaluates the performance of the SNO-

calibrated FCDR in modeling reanalysis applications.

8.2.1 MSU/AMSU Level-1c Calibration

The MSU and AMSU instruments use an onboard calibration method that includes

two calibration targets as its end point references: the cosmic space cold target and

an onboard blackbody warm target. Cold space has a temperature of 2.73 K, and the

warm target temperature is measured by the platinum resistance thermometers

(PRT) embedded in the blackbody target. In each scan cycle, the MSU/AMSU

looked at these targets as well as the Earth, and the signals in the form of electric

voltage were converted to digital counts through an analog-to-digital converter.

These digital counts were output as raw observations. The Level-1c calibration

equation, also known as the radiometer transfer function, for converting the raw

count observations to the radiances using the two calibration targets is written as

(Zou et al. 2006, 2009)

R ¼ RL � δRþ μZ; (8.1)

where R is the Earth scene radiance, RL ¼ Rc þ SðCe � CcÞ, representing the domi-

nant linear response and Z ¼ S2ðCe � CcÞðCe � CwÞ is a nonlinear response. C
represents the raw count data of the satellite observations, andS ¼ Rw � Rc=Cw � Cc

is the slope determined by the two calibration targets. The subscripts e, w, and c refer

to the Earth view, onboard blackbody warm target view, and cold space view,

respectively; δR represents a radiance offset; and μ is a nonlinear coefficient.

A schematic viewing of this calibration process is illustrated in Fig. 8.1.

Equation (8.1) is a modified version of the calibration algorithm originally

suggested by Mo (1995a), where δR was assumed to be zero and the nonlinear

coefficient μ was obtained from prelaunch chamber test datasets (Mo 1995b; Mo

et al. 2001). The prelaunch calibration was used to generate NOAA operational

Level-1c radiance products and is thus also referred to as the NOAA operational

calibration. The prelaunch calibration was conducted for each MSU/AMSU

instruments independently and thus left residual biases between satellites. In the

postlaunch calibration as described in this chapter, the offset δR was included in

110 C.-Z. Zou



Eq. (8.1) to allow for inter-satellite calibration, and the calibration coefficients, δR
and μ, were obtained using SNO matchups (Zou et al. 2006, 2009). There are other

detailed differences between the prelaunch and postlaunch calibration processes.

For example, the raw count values of the calibration targets in Eq. (8.1) were

averages over adjacent scan lines in prelaunch calibration (Mo 1995b; Mo et al.

2001). In postlaunch calibration, however, target count values of a single scan line

were used for radiance calculations of each footprint observation in that scan line.

The processing details described in this chapter are specifically applied to the SNO

postlaunch calibration.

In Eq. (8.1), the cold space radiance Rc is specified to be 9.6 � 10�5 mW (sr m2

cm�1)�1 for all scan lines of both the MSU and AMSU observations. This

corresponds to a brightness temperature of 4.78 K that includes the cold space

temperature of 2.73 K plus an increase of about 2 K owing to the antenna side-lobe

radiation. The algorithms described in Kidwell (1998) for MSU and in Goodrum

(2000) for AMSU-A are used to compute Rw. Once the offsets and the nonlinear

coefficient are known, radiance is computed through Eq. (8.1), and the brightness

temperature, Tb, is then computed using the Planck function.

The system parameters for MSU and AMSU are different; thus, the processing

details are slightly different for the two instruments. For instance, the MSU has 11

Earth views, one space view, and one warm target view in each scan line. There are

2 PRTs embedded on the blackbody target. In contrast, each scan line in the AMSU

observations contains 30 Earth views, two space views, and two warm target views.

The PRTs on each target ranges from 5 to 7, depending on instrument subunits.

For the MSU, the one space and blackbody views are used to calibrate the 11

Earth views in each scan line. However, the averages of the two space views or

blackbody views are used to calibrate the 30 Earth views for the AMSU-A instru-

ment. The warm target temperature is the average of the available good PRT

measurements for each instrument. Generally, there is a blackbody target for each

antenna system, but there are more than one antenna system for each instrument

unit. These differences between the MSU and AMSU-A units and antenna systems

are listed in Table 8.1.

Fig. 8.1 Schematic viewing

the calibration principle of the

MSU/AMSU instruments.

Symbols used in the plot are

defined in the main text
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8.2.2 Solar Heating-Related Instrument Temperature Variability

A major calibration error that needs to be removed from the radiance FCDR is the

instrument temperature variability induced by solar heating differences on the instru-

ment, which originates from seasonal solar angle changes relative to the satellite orbit

normal over a year and its yearly differences due to satellite orbital drifts. As an

example, Fig. 8.2 shows the warm target temperature time series for NOAA-10

through NOAA-15, which contains representative examples for both the MSU

(NOAA-10 through NOAA-14) and AMSU-A (NOAA-15) instruments. It is seen

that these warm target temperatures, which are at the ambient instrument tempera-

ture, all incurred large seasonal and interannual variability due to solar heating

variations of the instruments.

The instrument temperature variability as shown in Fig. 8.2 causes variations of

the spacecraft thermal emission, which are received as part of the signals in the

antenna side-lobe views of the Earth and the calibration targets. For instruments

having a perfectly linear radiometer transfer function, the instrument thermal

emission signals can be mostly removed by the linear calibration equation. In

reality, however, most instruments are slightly nonlinear. Inaccurate expressions

of the nonlinearities cause residual instrument temperature variability to manifest in

the radiance time series. Figure 8.3 shows the global ocean-mean inter-satellite

brightness temperature difference time series for MSU channel 2 onboard TIROS-N

through NOAA-14 based on the NOAA operational calibrated radiances. The time

series was generated by averaging seven near-nadir, limb-corrected radiances in

each scan line over the global ocean for each satellite. In the global difference time

series, dominate climate signals are canceled out by nearly identical observations

from two overlapping satellites so that only instrument calibration errors and

observation sampling errors such as those related to diurnal drift remain. Fortu-

nately, diurnal drift errors can be ignored in global ocean means for MSU channel

2 observations (Mears et al. 2003; Zou et al. 2009); thus, any errors in the inter-

satellite difference time series can be traced to the instrument calibration errors. As

shown in Fig. 8.3, NOAA operational calibration results in inter-satellite biases that

are a few tenths of a degree (Kelvin), and these biases change with time with their

variability highly correlated to the instrument warm target temperature variations

Table 8.1 Channel and scanning view numbers for each MSU and AMSU-A antenna systems

Instrument antenna systems MSU-1 MSU-2

AMSU-A

A1-1

AMSU-A

A1-2

AMSU-A

A2

Channels 1–2 3–4 6–7, 9–15 3–5, 8 1–2

Earth views per scan line 11 11 30 30 30

Blackbody and space views

per scan line

1 1 2 2 2

PRTs in each warm target 2 2 5 5 7

Note that the MSU has two antenna systems: 1 and 2. AMSU-A has two units, A1 and A2, where

A1 has two antenna systems, A1-1 and A1-2, and A2 has its own antenna system
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(e.g., Christy et al 2000; Zou et al. 2006). This indicates inaccurate nonlinearities in

the prelaunch calibration. Essentially, more accurate calibration offsets and

nonlinearities are required to reduce the time-varying inter-satellite biases for

development of more accurate MSU/AMSU FCDRs.

8.2.3 A SNO Technique for Inter-satellite Calibration
and FCDR Development

A SNO approach was developed at NOAA/NESDIS (Zou et al. 2006, 2009) to

remove the solar heating-induced instrument temperature variability and inter-satellite
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Fig. 8.2 Warm target temperature time series for the MSU instrument from NOAA-10 through

NOAA-14 and for AMSU-A instrument on NOAA-15. The temperature variability reflects solar

heating variations on the instrument
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Fig. 8.3 Global ocean-mean inter-satellite brightness temperature difference time series for MSU

channel 2 (53.74 GHz single sideband) onboard TIROS-N through NOAA-14 derived from the

NOAA operational calibrated radiances. The global ocean means are an average of seven near-

nadir, limb-corrected radiances in each scan line over the global ocean for each satellite
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biases in Level-1c radiances. The SNOmatchups, accumulated using Cao et al. (2004)

algorithm, contain simultaneous observations over the polar regions that are less than

2 min apart and within 111 km ground distance apart for the nadir pixels from any

NOAA satellite pairs. The SNO method leverages the SNO matchups to ensure they

do not contain sampling errors such as the diurnal drift errors. Therefore, the statistical

differences in the SNO matchups represent instrument calibration errors in the

satellite pairs.

Applying the calibration equation (8.1) to the SNO matchups between two

satellites, represented by k and j, a radiance error between them is derived as

(Zou et al. 2006)

ΔR ¼ ΔRL � ΔδRþ μk Zk � μj Zj þ E; (8.2)

where ΔRL ¼ RL;k � RL;j and ΔδR ¼ δRk � δRj. E is a residual term related to the

spatial and time differences between the satellites k and j and is ignored. In (8.2),

ΔRL , Zk, and Zj are a function of the measurements, while ΔδR , μk, and μj are
unknown coefficients. Regression methods were used to solve for these coefficients

from the SNOs in which the summation of ðΔRÞ2 is minimized. However, because

there is a high degree of colinearity between Zk and Zj for the SNOs, only ΔδR and

the difference between μk and μj, (μk � μj), can be determined from regressions

(Zou et al. 2006). By definition, the regression procedure resulted in zero mean

inter-satellite biases in the SNO matchups. In addition, scene temperature depen-

dency in biases between the two satellites was also significantly reduced with

appropriate regression solutions of (μk � μj). Figure 8.4 shows an example of the

brightness temperature differences in the SNO matchups between NOAA-10 and

NOAA-11 before and after the application of the SNO regression coefficients in the

calibration equation (8.1). It is clearly seen that the SNO regressions removed mean

inter-satellite biases in the satellite pairs and the scene temperature dependency in

the biases.

Based on these SNO regression characteristics, a sequential procedure was

developed to solve for coefficients for all NOAA satellites (Zou et al. 2006,

2009). In the sequential procedure, the calibration coefficient, ΔδR and μ, of an
arbitrarily selected reference satellite was assumed to be known first, and then

coefficients of all other satellites were determined sequentially (one by one) from

regressions of the SNO matchups between satellite pairs, starting from the satellite

closest to the reference satellite. NOAA-10 was arbitrarily selected as the reference

satellite for MSU instrument, and its offset was assumed to be zero. The sequential

procedure reduced the problem to the determination of the nonlinear coefficient,

μN10, of the reference satellite; since once μN10 is known, calibration coefficients of
all other satellites are solved from the SNOs. This reference satellite problem was

tied to the removal of the solar heating-related instrument temperature variability in

the Level-1c radiance data.

An end-to-end approach was developed to determine the root-level calibration

coefficient by minimizing instrument temperature signals in the end-level inter-satellite
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difference time series of the gridded temperature. In this approach, a series of sensitiv-

ity experiments were conducted in which μN10 changed in a reasonable range [e.g.,

0–12.5 (sr m2 cm�1) (mW)�1 for all MSU channels]. For each given μN10, a set of

calibration coefficients for all other satellites were obtained sequentially from

regressions of their SNO matchups. These calibration coefficients were then applied

globally to every observation footprint to obtain a Level-1c radiance dataset for each

satellite from Eq. (8.1). Next, a limb correction was applied to adjust different incident

angles of the off-nadir footprints to the nadir direction, and global ocean-mean

brightness temperatures were further obtained by averaging seven near-nadir, limb-

corrected radiances for each sensitivity experiment. Similar to Fig. 8.3, the ocean-mean

data are used here for evaluating inter-satellite radiance biases that are related to

instrument temperature variability.

The global ocean-mean inter-satellite bias variability, as measured by the mean

standard deviation (σm) of the inter-satellite difference time series for all satellite

pairs, is evaluated for all the sensitivity experiments. Figure 8.5 shows σm versus

μN10 for all the sensitivity experiments. The quantity σ is a measurement of

instrument calibration errors related to the instrument temperature signals in the

radiance datasets. Figure 8.3 showed an example of this quantity for a particular

satellite pair. The final calibration point for μN10 is selected when the mean

instrument calibration error is minimized.

The new calibration coefficients resulted in a FCDR with much smaller solar

heating-related calibration errors compared to the prelaunch calibration. Figure 8.6

shows a similar global ocean-mean inter-satellite brightness temperature difference

time series as in Fig. 8.3 except for the SNO-calibrated radiances. As seen, the

instrument temperature-related variability as observed in Fig. 8.3 for NOAA-10

through NOAA-14 is mostly removed, and their inter-satellite biases are signifi-

cantly reduced. Quantitatively, the inter-satellite biases and σm for the SNO

Fig. 8.4 Scatter plots showing effects of the SNO calibration on the error statistics and distribu-

tion of the MSU channel 2 brightness temperature difference between NOAA-10 and NOAA-11.

(a) SNO data between TL(N10) and δTL ¼ TL(N11) � TL(N10); (b) SNO data between Tb(N10)
and δTb ¼ Tb(N11) � Tb(N10), where TL represents linear calibrated brightness temperature and

Tb the SNO-calibrated brightness temperature (Plots from Zou et al. 2006)
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calibration are about 0.05 and 0.03 K, respectively, compared to 0.5 and 0.1 K in the

NOAA operational calibration in Fig. 8.3.

8.2.4 Data Assimilation of Radiance FCDR in Climate
Reanalysis

The SNO-calibrated FCDR is expected to have good impact on the climate re-

analysis development since the instrument calibration errors have been minimized.

As an effort to test the performance of the inter-satellite calibration for climate

reanalysis improvement, 20 years (1987–2006) of SNO-calibrated MSU Level-1c

radiances for channels 2, 3, and 4 onboard NOAA-10 through NOAA-14 were

assimilated into the new generation of NCEP Climate Forecast System Reanalysis

Fig. 8.5 Mean standard deviation (σm) of the inter-satellite different time series for all satellite

pairs versus μN10 in the sensitivity experiments for MSU channel 2. See Fig. 8.3 for a schematic

viewing of σ for a particular satellite pair. The μN10 value corresponding to the minimum of σm is

selected as the final calibration point

N6-NTN N7-N6 N8-N7 N9-N6 N10-N9 N11-N10 N12-N11 N14-N12 N14-N11

1980 1985 1990
Inter-satellite differences significantly reduced
compared to NOAA operational calibration
show in Figure 8.3

1995 2000

-2
-1

0
1

2

T
b 

D
iff

er
en

ce
s 

(K
)

Fig. 8.6 Similar to Fig. 8.3 but for SNO-calibrated MSU Level-1c data, where calibration

coefficients were obtained sequentially from SNO matchups with the requirement of minimizing

global ocean-mean inter-satellite Tb differences (σm) for all satellite pairs
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(CFSR) and NASA Modern Era Retrospective analysis for Research and

Applications (MERRA) reanalysis (Saha et al. 2010; Rienecker et al. 2011).

Since the CFSR and MERRA reanalysis cover the entire period of MSU

observations from 1978 to 2006, they actually assimilated two different MSU

Level-1c data: the NOAA operational calibrated for TIROS-N through NOAA-9

and the postlaunch SNO calibrated for NOAA-10 through NOAA-14. The fact that

radiances from these different calibration procedures were assimilated into the

same system serves as an ideal experiment for evaluating the impact and perfor-

mance of the SNO inter-satellite calibration effort. Figure 8.7 shows the total bias

correction patterns of MSU channel 2 in the CFSR for the eight satellites from

NOAA-6 through NOAA-14. The total bias correction is a global mean difference

between the satellite observations and a background short-term forecast field. This

quantity is an indicator of how well the observations agree with the model. These

biases can also be used to determine the comparability of two different satellites,

since differencing of the bias corrections of two satellites gives inter-satellite

difference information similar to the inter-satellite bias analysis shown in

Figs. 8.3 and 8.6.

As seen in Fig. 8.7, the bias corrections for NOAA-6 through NOAA-9 exhibit

obvious seasonal and interannual variability. As discussed earlier, this variability is

related to the solar heating-induced instrument temperature variations. In addition,

the bias correction values for NOAA-6 through NOAA-9 are different for different

satellites, indicating larger relative offsets between these satellites. This occurs

because each individual satellite was calibrated independently in prelaunch

calibrations. Similar bias correction patterns were also found for NOAA-10 through

NOAA-14 when operational calibrated radiances for these satellites were assimilated

into the ERA-Interim reanalysis (Dee and Uppala 2009). In contrast, no instrument

temperature variability is observed in bias corrections of the SNO-calibrated MSU

observations for NOAA-10 through NOAA-14. Moreover, the bias correction values

for NOAA-10 through NOAA-14 are nearly the same, resulting in more consistent

Fig. 8.7 Daily averaged global mean total bias correction (Kelvin) for MSU channel 2 onboard

satellites NOAA-6 to NOAA-14. The time series from 1979 to 1988 in four different colors (with

larger seasonal variability) are for NOAA-6 through NOAA-9, and the smoother time series from

1987 to 2007 in other four different colors are for NOAA-10 through NOAA-14 (Plot from Saha

et al. 2010)
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bias correction patterns for these satellites. Differencing of the bias corrections of two

satellites gives inter-satellite difference information. With a differencing of the bias

corrections for two SNO-calibrated satellites, one can see that the bias corrections are

consistent with Fig. 8.6 where inter-satellite biases are on the magnitude of

0.05–0.1 K for NOAA-10 through NOAA-14 (Zou et al. 2006). In summary, bias

correction pattern analyses indicate that the inter-calibrated MSU data have reached

their performance expectation in the reanalysis data assimilation.

One remaining problem in the inter-satellite calibration is that the absolute value

of the inter-calibrated MSU/AMSU brightness temperature has not been adjusted to

an absolute truth, although inter-satellite biases have been removed. This is part of

the reason for the relative biases between the climate reanalysis and inter-calibrated

MSU observations as shown in Fig. 8.7 after 1987. As described earlier, the

calibration offset of the reference satellite, δRN10 , was arbitrarily assumed to be

zero. This assumption does not affect the variability and trend analysis of the TCDR

products developed from the FCDR. However, it influences the relative biases

between the reanalysis and FCDR. This offset needs to be determined in FCDR

validation processes against certain reference observations. Plans for such a valida-

tion are being developed at NOAA/NESDIS as part of the effort of FCDR and

TCDR development. Once this is done, the bias removed, identical multi-satellite

MSU/AMSU FCDRs may be used as an anchor or reference dataset for bias

corrections of other observations in the reanalysis data assimilation. This is

expected to help the climate reanalysis to be more consistent with the satellite

observations.

8.3 Atmospheric Temperature TCDR from Merged MSU/

AMSU-A Data

Development of atmospheric temperature TCDR involves proper treatment of

errors from several different sources. These include, but are not limited to, antenna

pattern effect, incident angle effect, diurnal drift errors, short overlaps between

certain satellite pairs, Earth-location dependency in biases, residual biases left from

non-perfect instrument calibration, orbital decay, and frequency differences

between MSU and AMSU-A channels. Correction algorithms for these effects

have been developed by different investigators for TCDR development. In the

following, the algorithms implemented in the NOAA MSU/AMSU atmospheric

temperature TCDR are briefly described.

8.3.1 Antenna Pattern Correction

When the satellite antenna main beam looks at the Earth to make an observation,

the antenna side lobes receive a small amount of radiation from cold space, the
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spacecraft, and the Earth. The correction for this effect, the so-called antenna

pattern correction, results in brightness temperature differences of about 0.5–2 K.

Mo (1999) has developed a set of antenna pattern correction coefficients for the

AMSU-A instrument. For a specific channel, this correction adds a same constant

for a satellite. Thus, it does not affect the inter-satellite calibration results.

However, similar to the calibration offset, it influences the absolute values of the

brightness temperature and bias corrections in the reanalysis data assimilation.

This correction is currently set to be optional for implementation in the NOAA

MSU/AMSU FCDR and TCDR products, depending on needs for brightness

temperature validations against other observations.

8.3.2 Limb Adjustment

A limb correction adjusts different incident angles of the off-nadir footprints to the

nadir direction. This correction is necessary for use of the off-nadir footprints in the

time series to increase observation samples and reduce noise- and sampling-related

biases. Limb-correction algorithms and coefficients have been developed by

Goldberg et al. (2001) for both the MSU and AMSU satellites using statistical

methods. Zou et al. (2009) examined the impact of the limb correction on the MSU

time series and found robust trend results when different limb-corrected footprints

were included in the time series. Currently, the Goldberg et al. (2001) limb-

correction coefficients are used as part of the NOAA MSU/AMSU TCDR

processing system.

8.3.3 Diurnal Drift Correction

The diurnal drift errors are caused by satellite orbital drifts, which are measured by

the slow evolution in the local equator crossing time (LECT) as a sun-synchronous

satellite ages. The satellite orbital drifts result in a change of local observation time

that, if not corrected, may introduce a false climate trend by bringing the diurnal

trend into it. Its effect is particularly large for the land areas of the lower- and mid-

tropospheric temperature channels (e.g., MSU channel 2 and AMSU-A channel 5)

where diurnal amplitude is large. It is also important for stratospheric temperature

channels.

Two correction methods were developed by previous investigators: Christy

et al. (2000) corrected the diurnal drift effect using diurnal anomalies estimated

by accumulating the local MSU or AMSU-A observations from different scan

positions at different local times, and Mears et al. (2003) used diurnal anomaly

climatology generated from NCAR Community Climate Model (CCM) for the

correction. The two methods have caused larger trend differences in the MSU

observations (Mears and Wentz 2005). Currently, the diurnal anomalies developed
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by Mears et al. (2003) are used for the diurnal drift corrections in version 2.0 and

earlier versions of the NOAA MSU/AMSU temperature of mid-atmosphere (TMT)

product. This is a merged product from MSU channel 2 and AMSU-A channel 5

observations. To reduce uncertainties in the diurnal anomaly dataset, a scaling

factor to multiply the anomaly amplitude is introduced. An optimum scaling factor

is obtained by minimizing inter-satellite differences over land. Impact studies

showed that this correction generated a consistent TMT trend between the land and

oceans (Zou and Wang 2010), suggesting that the diurnal anomaly is reasonable.

Other products such as temperatures of the upper troposphere (TUT) and lower

stratosphere (TLS) do not include a diurnal drift correction since its effect can be

ignored for these channels (Zou et al. 2009).

8.3.4 Residual Inter-satellite Bias Correction

Although inter-satellite biases and the solar heating-induced temperature variability

signals in the radiances were mostly removed from the SNO Level-1c calibration,

small residual errors still exist in the gridded inter-satellite difference time series

(Fig. 8.6). These small residual biases need to be completely removed before

merging the satellite data for TCDR generation. Empirical correction algorithms

have been developed by different investigators to remove these biases (Christy et al.

2000). It was shown that using the Christy et al. (2000) approach on top the SNO

calibration yielded stable MSU trends (Zou and Wang 2010). In the Christy et al.

(2000) approach, a best fit empirical relationship between the brightness tempera-

ture correction term and the warm target temperature is obtained for the difference

time series as shown in Fig. 8.3 by solving multi-regression equations, and then the

best fit is removed from the unadjusted time series. The correction result on MSU

channel 2 for this method is shown in Fig. 8.8. As seen, after the residual bias

correction, global ocean-mean inter-satellite differences are nearly zero for all

overlaps with no obvious bias drift.

Currently, global ocean-mean residual biases are corrected using the Christy

et al. (2000) approach in the NOAA MSU/AMSU TCDR products.

8.3.5 Correction of the Earth-Location-Dependent Biases

Although SNO calibration minimized global mean inter-satellite biases and instru-

ment temperature signals in the Level-1c data, Earth-location-dependent inter-

satellite biases still exist for certain channels on certain satellites in the gridded

time series (Zou et al. 2009). This occurred because the nonlinearity of the

radiometer transfer function was assumed to be a quadratic type. It is possible

that higher-order nonlinearities exist for certain channels and these unresolved

nonlinearities in the calibration equation may cause inter-satellite biases to depend
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on the Earth location (Zou et al. 2009). In addition, unevenly sampled satellite

observations in different grid cells will cause sampling-related Earth-location-

dependent biases. To remove these biases, a grid-cell-dependent constant bias

correction was always applied as a final step before merging the satellite data.

This correction ensures that inter-satellite biases at all grid cells tend to zero so that

more reliable regional trends can be obtained from the merged time series.

8.3.6 Frequency Differences Between MSU and AMSU Channels

The MSU is a 4-channel instrument, while AMSU-A has 15 channels. The AMSU

channels 5, 7, and 9 are the equivalent channels for the MSU channel 2, 3, and 4, but

with slightly different channel frequencies. These frequency differences cause a

temperature difference on the order of 2–5 K between MSU and AMSU-A

observations since they observe different layers of the atmosphere. Depending on

atmospheric lapse rate climatology, these temperature differences also vary with

seasons, geographic locations, and channels (Iacovazzi et al. 2009; Zou and Wang

2011). To reduce these type of biases, yearly mean monthly bias statistics between

MSU and AMSU-A are derived for each of their equivalent channels and grid cells.

These biases are then subtracted from the monthly AMSU-A data, so that they

become MSU equivalent channel observations.

8.3.7 Well-Merged NOAA Version 2.0 MSU/AMSU Atmospheric
Temperature TCDR

With instrument calibration and bias correction approaches as described above,

version 2.0 of a climate-quality, 34-year (1979–present) MSU/AMSU atmospheric

temperature TCDR has been generated at NOAA/NESDIS. This is a global gridded

dataset with 2.5� latitude by 2.5� longitude grid resolution. Both monthly and

pentad data are available. The TCDR includes temperature mid-troposphere

(TMT, MSU channel 2 merged with AMSU-A channel 5), temperature tropopause

and stratosphere (TTS, MSU channel 3 merged with AMSU-A channel 7; also

N6-NTN

1980

-2

1985 1990 1995 2000

N7-N6 N8-N7 N9-N6 N10-N9 N11-N10 N12-N11 N14-N12 N14-N11
-1

0
1

2
T

b 
D

iff
er

en
ce

s 
(K

)

Fig. 8.8 Same as Fig. 8.6 but after residual bias correction was applied
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known as TUT abbreviated for temperature upper troposphere), and temperature

lower stratosphere (TLS, MSU channel 4 merged with AMSU-A channel 9).

Figure 8.9 shows global mean pentad anomaly time series for these variables for

all satellites used in the dataset (TIROS-N through NOAA-18 and MetOp-A). In the

plot, different colors represent different satellites. As seen, different satellites agree

with each other on a point-by-point basis during overlapping observations,

indicating high quality of intercalibration and merging in the time series.

From these time series, an updated temperature trend for different atmospheric

layers is obtained. The global mean 32-year trend from 1979 to 2010 for the TMT

and TLS is respectively 0.141 K/decade and �0.332 K/decade, and the 30-year

(1981–2010) trend for TTS is 0.048 K/decade.

8.4 Conclusion and Data Availability

A climate-quality MSU/AMSU radiance FCDR and atmospheric temperature

TCDR have been developed at NOAA/NESDIS using SNO calibration methodol-

ogy. The FCDR consists of SNO-calibrated Level-1c radiances for different MSU

and AMSU channels. Instrument calibration errors related to inaccurate calibration

nonlinearity and solar heating-induced instrument temperature variability have

been minimized in the FCDR. The TCDR includes TMT, TTS, and TLS from

Fig. 8.9 Monthly global mean anomaly time series for temperature mid-troposphere (TMT),
temperature tropopause and stratosphere (TTS), and temperature lower stratosphere (TLS) for

different satellites after all calibrations and bias corrections are done. Merged time series are

obtained by averaging available satellite observations at any data point
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merged MSU and AMSU observations. Many instrument calibration and sampling

errors have been removed or minimized in the TCDR. These FCDR and TCDR are

expected to benefit many climate change monitoring and research areas including

data assimilation of the FCDR in modeling reanalysis development, consistent

satellite retrievals from FCDR, use of TCDR in climate trend detection, and

validations of climate model simulations. Good impacts of the recalibrated MSU

FCDR on reanalysis bias corrections have already been achieved in the NCEP

CFSR and NASA MERRA reanalysis systems. It is expected that future reanalyses

will benefit more from assimilating the SNO-recalibrated AMSU-A data.

The FCDRs and TCDRs are publicly available from the NESDIS/STAR website

with the URL address: http://www.star.nesdis.noaa.gov/smcd/emb/mscat/mscatmain.

htm. At the time of this writing, the SNO-recalibrated radiance FCDRs for MSU

channels 2, 3, and 4 onboard TIROS-N through NOAA-14 and AMSU-A channels

4–14 onboard NOAA-15 through NOAA-18 and MetOp-A are available for

downloading through the website. In addition, global MSU-only TCDRs for TMT,

TTS, and TLS from 1979 to 2006 and mergedMSU/AMSU TCDRs from 1979 to the

present for these same variables are both available through the website. These are

gridded datasets with 2.5� latitude by 2.5� longitude resolution. Both monthly and

pentad data are provided for seamless climate change monitoring.
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Chapter 9

Monitoring Change in the Arctic

Jeffrey R. Key, Xuanji Wang, and Yinghui Liu

Abstract Modeling studies have shown that the Arctic is one of the most sensitive

regions on Earth to global climate change due primarily to the positive feedback

between surface temperature, surface albedo, and ice extent. Because in situ

measurements in this harsh environment are costly, satellites are a critical source

of information for monitoring and evaluating changes in the Arctic climate system.

Satellite data can be used to measure polar winds, clouds, sea ice, snow cover, and

glaciers. Applications of space-based imager and sounder data have shown that

over the last three decades, the Arctic has warmed and become cloudier in spring

and summer, but cooled and become less cloudy in winter. Arctic sea ice has

declined substantially and at a greater rate than that predicted by most climate

models. Snow cover has decreased in many areas, and vegetation growth has

increased at high latitudes. Satellite products have also been used to demonstrate

the complex feedbacks between clouds and sea ice, providing insight into the

possible future state of Arctic climate.

9.1 Introduction

The Arctic has become an area of considerable interest for studying the Earth’s

changing climate (e.g., ACIA 2005; Overland 2009). Satellite observations have

shown that Northern Hemisphere sea ice extent and thickness have been decreasing

beyond the expectation of natural climate variability (Rothrock et al. 1999; Vinnikov

et al. 1999; Parkinson et al. 1999; Cavalieri et al. 1999;Maslanik et al. 2007;Kwok and
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Untersteiner 2011; Comiso 2012) and that changes are also evident in other climate

parameters such as surface air temperature, atmospheric circulation, precipitation,

snowfall, biogeochemical cycling, and vegetation (Curry et al. 1996; Wallace et al.

1996; Rigor et al. 2000; Groves and Francis 2002; Chapman andWalsh 1993;Myneni

et al. 1997;Wang andKey 2003;Wang et al. 2012). A comprehensive review of recent

changes in the Arctic cryosphere (snow and ice) is available in AMAP (2011).

Numerous modeling studies have shown that the Arctic is one of the most

sensitive regions on Earth to global climate change due primarily to the positive

feedback between surface temperature, surface albedo, and ice extent, known as

the ice-albedo feedback (Manabe et al. 1992; Manabe and Stouffer 1994; Miller

and Russell 2000; Meehl and Washington 1990; Curry et al. 1996). This theory

of “polar amplification” has been confirmed by observational evidence, though

records of Arctic climate change are brief and geographically sparse. There are a

number of potential causes for Arctic climate change: changes in the large-scale

atmospheric circulation (e.g., Graversen et al. 2008; Overland 2009), the ice-albedo

feedback (Perovich et al. 2008), changes in greenhouse gas amounts and the

associated radiative forcing (Serreze et al. 2007; Graversen and Wang 2009) and

clouds (Liu et al. 2008; Kay and Gettelman 2009), and changes in ocean circulation

and the inflow of warm ocean water (Shimada 2006).

The Arctic, roughly defined here as the area poleward of 60� north latitude

(Fig. 9.1), has a complex climate system that is strongly influenced by both internal

processes and external forcings. Being one of the Earth’s “heat sinks” (the other is

the Antarctic), atmospheric and oceanic heat and moisture fluxes dominate large-

scale Arctic climate patterns. Interactions between the ocean, atmosphere, and

cryosphere not only control local processes such as the surface energy budget but

also feed back to the global climate system. Changes in Arctic climate can have a

profound impact on midlatitude weather.

Monitoring the Arctic climate system requires accurate measurements of the

atmosphere, cryosphere, and ocean. This includes, but is not limited to, snow cover;

sea, lake, and land ice; cloud; atmospheric temperature and humidity structure; winds;

and sea surface temperature. Measurements of the following quantities are needed:

• Clouds: cover, thermodynamic phase, height, optical thickness, particle size

• Atmospheric temperature and humidity profiles

• Wind speed, direction, height

• Snow: extent (cover), snow water equivalent (SWE), depth

• Sea and lake ice: extent (cover), concentration, thickness, motion

• Surface temperature and albedo

These are not the only climate variables of interest, but they are the variables

that have significant impacts on climate, change on hourly to annual time scales,

and can be measured with sufficient accuracy from space. Other quantities for

which space-based remote sensing methods continue to be developed include

solid precipitation, permafrost characteristics, glaciers, ice sheets, and freshwater

ice. Table 9.1 lists the satellite sensors that can be used to estimate many of the

essential climate variables (ECVs) in the polar regions.
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The purpose of this chapter is to summarize satellite remote sensing methods and

applications for monitoring Arctic climate characteristics, including recent trends.

The emphasis will be on the physical climate system, though not all aspects of the

physical system can be examined here. Instead, methods and applications for

satellite remote sensing of the high latitudes will focus on winds, clouds, surface

temperature and albedo, and sea ice. Applications of satellite data sets to climate

change detection will also be described.

9.2 Winds

Satellite-derived wind fields are most valuable where few observations exist and

model analyses are less accurate as a result. Like the oceans at lower latitudes, the

polar regions suffer from a lack of observational data. World Meteorological

Organization (WMO) stations, which provide regular wind observations from

rawinsondes, are scattered across the coastal areas and the interior of Canada,

Alaska, Russia, and northern Europe. However, there is little or no coverage of

the Arctic Ocean, the interior of Greenland, the interior of Antarctica, and the

oceans surrounding Antarctica. With a gap in the observing systems over the polar

Fig. 9.1 The Arctic, with the March 2009 sea extent (Image by Matt Savoie, National Snow and

Ice Data Center, University of Colorado, Boulder, using SSM/I data overlaid onto the NASA Blue

Marble). The 60�N latitude circle is shown
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regions that cannot be filled by geostationary satellites because of poor viewing

geometry, polar-orbiting satellites are needed.

To estimate winds, clouds and water vapor features are tracked in sequential

images under the assumption that their movement represents the local airflow. It is

therefore necessary to track features over time in a sequence of images. Statistical

analyses of visible, infrared, and water vapor wind data sets from geostationary

satellites versus rawinsonde data have shown that the optimal processing intervals

are 5 min for visible imagery of 1 km resolution and 30 min for water vapor imagery

of 8 km resolution (Velden et al. 2000). How often can we obtain successive images

for wind vectors from a polar-orbiting satellite? The answer depends on the latitude

and the number of satellites. Figure 9.2a shows the frequency of time differences

between successive overpasses at a given latitude-longitude point during one 24-

h period with a single satellite (Terra). The points show only those overpasses

where the sensor, the Moderate Resolution Imaging Spectroradiometer (MODIS),

would view the Earth location at an angle of 50� or less. At larger scan angles, the

sensor would view the area near the pole on every overpass. At 60� latitude, there
are two overpasses separated by about 10 and 13 h. No useful wind information can

be obtained at this latitude with only one satellite. At 80� there are many views

separated by the orbital period of 100 min, but there is still a 13-h gap each day.

Although the 100-min temporal sampling is significantly longer than the optimal

processing intervals for geostationary satellites, in theory wind vectors can be

obtained during part of every day for the area poleward of approximately 70�

latitude. Figure 9.2b shows the coverage with two satellites: Terra and Aqua.

Temporal gaps of a few hours still exist at the lower latitudes of the polar regions,

but at the higher latitudes, the temporal coverage is very good. With additional

satellites, e.g., the NOAA operational weather satellites with the Advanced Very

High Resolution Radiometer (AVHRR), it would be possible to obtain successive

views of a given location within minutes of each other.

Fig. 9.2 Time differences between successive overpasses of the Terra satellite (a) as a function of

latitude over the course of a 24-h period at the prime meridian and for both Terra and Aqua (b).

Only overpasses with sensor view angles less than 50� are considered
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Cloud and water vapor tracking with MODIS data is based on the established

procedure used for the GOES, which is essentially that described in Merrill (1989),

Nieman et al. (1997), and Velden et al. (1997, 1998). Cloud features are tracked in

the infrared (IR) window band at 11 μm on MODIS and the Advanced Very High

Resolution Radiometer (AVHRR), and water vapor (WV) features are tracked in

the 6.7 μm band on MODIS. Even though AVHRR and MODIS have a visible

channel, it is not generally useful for winds in polar regions because of the long

winter darkness and low sun angles during the summer that make feature tracking

difficult. With monthly average cloud amounts over the Arctic and Antarctic

ranging from 50 to 90% and annual mean cloud coverage of about 70% over the

Arctic, potential cloud targets are numerous (Key et al. 2003).

The methodology employed for wind vector estimation requires three successive

images for wind retrievals. With geostationary satellites, the spatial coverage is

constant, but with a polar-orbiting satellite, the coverage from each successive orbit

changes, so wind retrievals can only be done for the area of overlap between

successive orbit triplets. This is illustrated for MODIS in Fig. 9.3. For each 200-

min time period (three successive orbits each separated by 100 min), wind vectors

can be obtained for the area of overlap.

Fig. 9.3 Three successive MODIS orbits over the Arctic (red, green, blue). The overlap of the

orbits (whitish-gray shade) is the area for which wind vectors can be estimated with each triplet of

orbits
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Wind vector heights are assigned by any one of three methods. The infrared

windowmethod assumes that the mean of the lowest (coldest) brightness temperature

values in the target sample is the temperature at the cloud top. This temperature is

compared to a numerical forecast of the vertical temperature profile to determine the

cloud height. The method is reasonably accurate for opaque clouds but inaccurate for

semitransparent clouds. The CO2 slicing method works well for both opaque and

semitransparent clouds. Cloudy and clear radiance differences in one or more carbon

dioxide bands (e.g., 13.3, 13.6, 13.9, or 14.2 μm on MODIS) and infrared window

bands are ratioed and compared to the theoretical ratio of the same quantities,

calculated for a range of cloud pressures. The cloud pressure that gives the best

match between the observed and theoretical ratios is chosen (Menzel et al. 1983; Frey

et al. 1999). The H2O-intercept method of height determination can be used as an

additional metric or in the absence of a CO2 band. This method examines the linear

relationship between clusters of clear and cloudy pixel values in water vapor-infrared

window brightness temperature space, predicated on the fact that radiances from a

single cloud deck for two spectral bands vary linearly with cloud fraction within a

pixel (Schmetz et al. 1993). The height of clear-sky water vapor wind vectors is

determined by comparing the water vapor brightness temperature to a collocated

model temperature profile, analogous to the IR window method for cloud features.

However, the brightness temperature of the feature being tracked corresponds more

to a layer than a level, as will the retrieved wind vector height (Rao et al. 2002).

An example of polar winds derived from MODIS over the course of a day is

shown in Fig. 9.4. Wind vectors are color-coded to represent their relative heights.

Fig. 9.4 Wind vectors over the Arctic on 7 June 2009, derived fromModerate Resolution Imaging

Spectroradiometer (MODIS) data. Colors indicate wind heights, from blue (low, near surface) to
red (high, 10 km)
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An attempt to improve the three-dimensional wind fields for climate reanalyses

was undertaken by Francis et al. (2005) using satellite-derived temperature profiles

from the TIROS Operational Vertical Sounder (TOVS). The TOVS Polar Path-

finder (TOVS Path-P) product (Francis and Schweiger 1999), specifically designed

for polar applications, was used to compute the thermal wind with a mass conser-

vation technique (Zou and Van Woert 2002; Francis et al. 2005). One drawback of

this approach is that the resultant wind field would be nearly geostrophic and would

not take into account any significant ageostrophic motions in the flow (Zou and Van

Woert 2001). The thermal wind product would therefore be less accurate in regions

of significant ageostrophic flow, such as in the entrance and exit regions of jet

streaks, and in strongly curved flows, as the geostrophic balance only occurs when

there is no curvature in the flow.

Nevertheless, an examination of the TOVS-derived thermal winds has proven

useful for Arctic climate studies. Trends and anomalies for the period 1979–2001

were calculated for both meridional and zonal winds at eight levels between the

surface and 300 hPa (Francis et al. 2005). It was found that zonal winds are more

westerly over Eurasia and the western Arctic Ocean, while westerlies have weak-

ened over northern Canada (Fig. 9.5). Combined with the corresponding pattern in

meridional winds, these results suggest that the polar vortex has, on average, shifted

toward Siberia. Changes in meridional winds are consistent with observed trends in

melt onset date and sea ice concentration in the marginal seas.

Because winds derived from polar-orbiting satellite imagers better capture the

ageostrophic component of the wind and because they have been shown to improve

weather forecasts (Key et al. 2003; Velden et al. 2005), they could also be used to

−2.0
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m s-1 dec-1
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U V

Total column (surface to 300 hpa)

Fig. 9.5 23-year trends (1979–2001) in zonal (left) and meridional (right) wind derived from

TOVS temperature profiles over the entire year for the entire column, surface to 300 hPa (Courtesy

of J. Francis)
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improve reanalysis wind fields. A 30-year data set of AVHRR polar winds was

created for climate studies and used in reanalyses (Dworak and Key 2009). An

analysis of this historical AVHRR wind product has shown that the AVHRR winds

were, on average, slower in regions of positive vorticity (troughs and cyclones) and

faster in regions of negative vorticity (ridges and anticyclones) than the European

Center for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA-40).

Furthermore, AVHRR is noticeably faster than ERA-40 in jet streaks, an indication

that AVHRR has stronger winds in jet streams overall. Therefore, the use of the

historical AVHRR wind product in future reanalyses should result in more accurate

wind fields (Fig. 9.5).

9.3 Clouds

Clouds affect Arctic climate primarily though the absorption, emission, and scat-

tering of radiation (Wang and Key 2003; Wang and Key 2005a, b). Cloud detection

and characterization play a crucial role in satellite retrievals of other climate

variables. However, the detection of clouds in the polar regions is arguably more

difficult than any place else on Earth. Clouds are often warmer than the surface due

to ubiquitous low-level temperature inversions. In addition to a low thermal con-

trast between clouds and the surface, clouds, snow, and ice have similar reflectances

in the visible portion of the spectrum (Key and Barry 1989). Nevertheless,

reasonably accurate cloud detection can be done with a variety of spectral and

temporal tests optimized for high-latitude conditions (Frey et al. 2008). Cloud

particle phase uses near-infrared reflectances (daytime) and infrared brightness

temperature differences to separate ice and liquid (“water”) clouds (Key and Intrieri

2000). Cloud optical depth and particle effective radius retrievals use absorbing and

nonabsorbing wavelengths, where the absorbing wavelength is more sensitive to

particle size and the nonabsorbing wavelength is more sensitive to optical depth.

Cloud temperature is calculated from the infrared window brightness temperature,

adjusted for surface emission if the cloud transmittance is greater than 1%. For

more algorithm details, see Key (2002).

There are two major satellite-derived, multi-decadal, polar-specific data sets that

can be used to monitor and study atmospheric characteristics in the polar regions:

the AVHRR Polar Pathfinder (APP) (Fowler et al. 2000; Meier et al. 1997) and the

TOVS Path-P products. Other global data sets such as the International Satellite

Cloud Climatology Project (ISCCP) cloud data set (Rossow et al. 1996) and

PATMOS-x can also be employed, but they are not optimized for polar studies,

and the uncertainties are generally higher than in the APP and TOVS Path-P

products. The APP data set was extended (hereinafter “APP-x”) to include the

retrievals of cloud fraction, cloud optical depth, cloud particle phase and size, cloud

top temperature and pressure, surface skin temperature, surface broadband albedo,

and radiative fluxes as well as cloud radiative effects (“cloud forcing”) (Wang and
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Key 2003). The consistency of the APP-x products from different satellites over the

period of 1982–1999 was investigated and found no observable bias by Wang and

Key (2003).

Figure 9.6 shows an annual cycle of the total cloud fraction (cloud amount)

based on the surface observations (Hahn 1995), the International Satellite Cloud

Climatology Project (ISCCP) D2 data set, the TOVS Path-P data set (Schweiger

et al. 1999), and the extended AVHRR Polar Pathfinder (APP-x) data set. The

surface-based climatology does not include clear-sky ice crystal precipitation.

These low-level ice crystal clouds occur in winter about 20–50% of the time and

are often thick enough to have a significant radiative effect (Curry and Ebert 1992;

Curry et al. 1996), which should be considered in satellite retrievals of other Arctic

climate parameters. The APP-x data show that, as expected, the Arctic is one of the

cloudiest regions on the Earth with annual mean cloud coverage of about 70%.

About 70% of the clouds are in solid phase (ice) in winter, and about the same

proportion of the clouds is in liquid phase in summer. Mixed-phase and multilayer

clouds are not identified as such in APP-x. In winter more ice clouds occur over the

Arctic landmasses than the Arctic Ocean, with the particle sizes as large as 30 μm.

Summertime clouds are predominantly liquid and equally distributed over the

landmass and ocean regions with the average particle size of 10 μm. In general,

visible cloud optical depth is about 5–6 for the Arctic overall. Optically thick clouds

occur in transition seasons for every region in the Arctic except the GIN seas where

thick clouds are in summer. The Arctic cloud top temperature basically follows the

surface temperature variation in space and time. Overall the cloud temperature is

lower than the surface temperature.

Cloud fraction has not changed significantly over the Arctic on an annual time

scale. However, APP-x shows that cloud cover has increased in spring and summer,

but decreased over the central Arctic Ocean in winter. Figure 9.7 shows the trends

in cloud particle phase, effective radius, and optical depth for four seasons and the

Fig. 9.6 Annual cycle of

cloud fraction from surface-

based observations (H95) and

satellite retrievals (ISCCP-

D2, TOVS Path-P, and APP-

x) for the Arctic region north

of 80�N over the period

1982–1991 (Wang and Key

2005a)
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Fig. 9.7 Time series and trends of cloud particle phase, effective radius, and optical depth in

winter (DJF), spring (MAM), summer (JJA), and autumn (SON) over the period of 1982–1999 for

the Arctic region north of 60�N from APP-x. Numbers in parentheses are the trend slope per year

(“S”) with its standard deviation and the F test confidence level (“P”). The first pair of S and P
denotes the cloud particle effective radius trend (solid line), the second pair is for the cloud optical
depth trend (dashed line), and the third pair represents the cloud particle phase trend (dotted line)
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annual mean for the Arctic Ocean and surrounding landmasses north of 60�N.
Cloud particle phase is indicated by two numbers: 0 for liquid phase, 1 for solid

phase (ice), and a number between 0 and 1 for averages over time and/or space.

A number less than 0.5 indicates that liquid-phase clouds dominate; a value greater

than 0.5 indicates that ice clouds dominate. The cloud particle effective radius

for liquid droplets is the ratio of the third to second moments of the drop size

distribution. In spring and summer clouds are increasingly in liquid phase. The

effective radius has decreased over the Arctic seas except North Pole and the GIN

Seas in spring. No significant trend in cloud optical depth was found in spring or

summer. On an annual time scale, cloud particle effective radius has been decreas-

ing mainly over the western part of the Arctic and Chukchi Sea. This agrees with

tropospheric warming trends.

The influence of changes in cloud cover on sea-ice extent and vice versa is an

important part of the Arctic climate feedback process, but has not been studied

extensively until recently. On the time scale of a single season, changes in cloud

amount may have a minimal influence on summer sea-ice melt, although there are

clearly interdependencies between trends in cloud cover, surface temperature, and

sea ice extent. Over the past few decades, more than 80% of the observed surface

warming in the western Arctic Ocean during autumn is attributable to decreasing

sea ice, and over 80% of the winter surface cooling in the central Arctic is a result of

changes in cloud cover. In spring, only about half of the surface warming is a result

of changes in cloud cover (Liu et al. 2009). Using satellite data, Liu et al. (2012)

found that a 1% decrease in sea ice concentration leads to a 0.36–0.47% increase in

cloud cover, and that 22–34% of the variance in cloud cover can be explained by

changes in sea ice.

9.4 Surface Temperature and Albedo

Surface air temperature has been recorded at land-based and drifting ice meteoro-

logical stations for decades, and a long time series over the Arctic Ocean is

available from Russian “North Pole” (NP) drifting stations, drifting ice buoys,

and coastal station observations (Martin et al. 1997; Martin and Munoz 1997).

While a valuable source of information, the in situ data do not provide spatial

details that can be obtained from satellite data.

With satellite data, surface temperature is calculated with a split-window infra-

red algorithm using 11 and 12 μm brightness temperatures, similar in form to the

traditional method used for sea surface temperatures (Key et al. 1997b). Over the

annual cycle, the Arctic surface temperature varies most for the landmasses and

least for the Arctic Ocean. Figure 9.8 shows the spatial distribution of the annual

mean surface temperature. Central Greenland has the lowest surface temperature,

as low as �30�C, and the Arctic Ocean and coastal areas are colder than the

landmasses.
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In situ measurements of surface broadband albedo are sparse, particularly over

the Arctic Ocean. Most studies report results for individual stations or as regional

results (cf. Serreze et al. 1998). Satellite data therefore plays an important role in

assessing the climatology of this parameter. Surface albedo retrieval uses visible

and near-infrared reflectances and employs corrections for anisotropic reflectance

and atmospheric effects. An anisotropic correction is performed for the top-of-

atmosphere (TOA) reflectance (clear sky only), which is then converted from

narrow band to broadband albedo. An atmospheric correction is then done to

obtain the surface albedo, and an adjustment is done to account for cloud

radiative effects in cloudy pixels (Key et al. 2001). Surface reflectance can be

specified as “inherent” albedo or “apparent” albedo. The inherent albedo is the

“true,” no-atmosphere, or “black-sky” albedo of the surface, which is indepen-

dent of the changes in the atmospheric conditions. The apparent albedo is what

would be measured by up- and down-looking radiometers and varies with the

atmospheric conditions.

Fig. 9.8 Spatial distribution of annual mean surface skin temperature (�C) averaged over the

period 1982–1999 on a local solar time of 14:00 (From Wang and Key 2005a)

140 J.R. Key et al.



There are two peaks in the annual cycle of the surface albedo for the Arctic

region north of 60�N: one in the early spring (about 60%) and the other in autumn

(about 35%). The relatively low wintertime albedo corresponds to the low-latitude

regions with less snow/ice coverage, because the dark, high-latitude areas are

excluded from the statistics. The autumn peak is due to freeze-up, but more open

water areas in autumn result in a lower albedo than in spring. Over the Arctic

Ocean, the spring maximum surface albedo is about 60%, but the autumn second

maximum albedo is only about 23%. The Arctic annual mean surface albedo has a

spatial distribution similar to surface temperature.

9.5 Radiative Fluxes and Cloud Forcing

Very few studies have been performed on the spatial and temporal distribution of

surface radiation in the Arctic. Serreze et al. (1998) studied a monthly climatology

of the global radiation (downwelling solar radiation) for the Arctic with

measurements from the drifting ice stations, but these in situ measurements do

not provide much information on spatial patterns. Can satellite data be used to

estimate surface radiation fields? The approach is to use satellite-derived cloud

and surface properties, with a radiative transfer model to calculate upwelling and

downwelling shortwave and longwave radiative fluxes. Radiative transfer models

tend to be too slow for use with satellite data on a pixel-by-pixel basis, so alterna-

tive methods are sought. One method that has been very successful is a neural-

network implementation of a two-stream radiative transfer model (Key and

Schweiger 1998), which is accurate and computationally efficient.

How well we can estimate the radiation budget from space depends on how well

we can estimate the quantities that directly affect it. Key et al. (1997a) investigated

uncertainties of satellite-derived surface and cloud properties and surface radiation

budget at the high latitudes and how they combine into an overall uncertainty in

radiative fluxes. They concluded that the accuracy in estimating radiation budgets

from satellite is appropriate for a wide range of process studies at monthly time

scales. They found that although improvements in retrievals are desirable, currently

available methods can provide surface net radiation estimate with uncertainties

similar to those of surface-based climatologies.

Clouds affect the climate system primarily through their impact on the surface and

TOA radiation budgets. Clouds attenuate sunlight causing a decrease in the

downwelling shortwave radiation at the surface during the daytime. Clouds also

emit infrared radiation to the surface, resulting in a greater downwelling longwave

flux than in clear conditions. Therefore, clouds have a cooling effect on the surface in

the shortwave, but a warming effect in terms of infrared radiation. Overall the effect

of clouds on the radiation budget depends on the balance between shortwave

and longwave budgets. The cloud radiative effect is also commonly called “cloud
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forcing.” Cloud forcing is calculated from net shortwave and longwave radiative

fluxes at the surface or TOA. It is defined as

CFλ;z ¼
ZAc

0

@Fλ;z

@a
da ¼ Fλ;zðAcÞ � Fλ;zð0Þ (9.1)

where Fλ,z is the net flux (W/m2) in shortwave or longwave radiation at the surface

or TOA, λ is the wavelength, z is the altitude above the surface, and Ac is the cloud

fraction in the scene. The net flux is equal to the downwelling minus upwelling

fluxes. The all-wave cloud forcing can be calculated by

CFz ¼ CFshortwave þ CFlongwave (9.2)

Figure 9.9 shows the annual cycle of the shortwave, longwave, and all-wave

cloud forcing at the surface. As discussed above, the shortwave cloud forcing is

always negative, while the longwave cloud forcing is always positive and follows

the annual cycle of cloud fraction. In the cold season (October–March), the all-

wave cloud forcing is positive, implying a warming effect of the clouds on the

surface. In the warm season (April–September), the all-wave cloud forcing is

negative, indicating a cooling effect of the clouds on the surface. On annual average

Fig. 9.9 Annual cycle of net all-wave cloud forcing for six Arctic regions averaged over the

period 1982–1999 on a local solar time of 14:00
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clouds have a warming effect over Greenland and the North Pole area (north of

80�N). In winter, clouds have a warming effect on the surface almost everywhere

over the Arctic region north of 60�N, but in summer the cloud warming effect only

holds for Greenland and the western part of the central Arctic region as a result of

the high surface albedo.

9.6 Sea Ice

The Arctic Ocean and surrounding seas occupy an area of about 14 million km2,

most of which are ice covered in late winter. The pack ice in the Arctic is a mixture

of young and old floes that are highly variable in thickness and extent. Sea ice is a

key component of the climate system for several reasons. It limits exchanges of heat

and moisture between the ocean and the atmosphere. The large difference in

reflectivity of ice and ocean results in more heat being absorbed by the ocean

instead of being reflected back into the atmosphere. When ice extent declines, this

ice-albedo feedback will amplify the effect of warming in high latitudes. The

interannual fluctuations and long-term trends in ice thickness and extent have

important effects not only on Arctic climate but also on global climate change

through complex feedbacks.

Visible/IR satellite sensors can provide information on ice extent, concentration,

motion, and melt, but coverage is limited due to frequent cloud cover.While AVHRR

provides a long time series for recent climate studies, MODIS, operating since 1999,

has more robust spectral information and higher spatial resolution. Dual-polarized,

multifrequency passive microwave radiometers are more commonly used for ice

studies than visible/IR imagers (Cavalieri et al. 1999; Drobot and Anderson 2001).

They provide near-complete daily coverage of the polar regions under all sky

conditions for characteristics such as concentration, extent, motion, and melt. These

time series extend back to late 1978 from the Nimbus-7 Scanning Multichannel

Microwave Radiometer (SMMR) through a series of Defense Meteorological Satel-

lite Program (DMSP) Special Sensor Microwave/Imager (SSM/I) sensors, providing

more than a quarter century record that can track interannual trends and variability.

For climate studies, however, caution must be exercised because the time series

combine data from several different satellites and sensors. Slight variations in

instrumentation and orbits necessitate inter-sensor calibration for a consistency.

The derived ice characteristics are generally accurate in areas where the emissivity

of sea ice is predictable and well defined (as in dry and relatively thick seasonal

and perennial ice), but the errors can be considerable in newly formed ice and in

areas of melt. Additionally, the spatial resolution of these products (10–25 km) is

such that detailed information on the ice cover, such as deformation, melt-pond

and lead formation, and ridging, cannot be obtained. Figure 9.10 shows the seasonal

cycle of Arctic sea ice extent from passive microwave sensors for recent years

with low ice extents.
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Newer passive microwave sensors, such as the Japanese Advanced Microwave

Scanning Radiometer (AMSR), provide higher spatial resolution data and addi-

tional channels. The newest passive microwave technology is the polarimetric

sensor, like the WindSat/Coriolis instrument. Synthetic aperture radar (SAR), an

active microwave technology, provides detailed images of the ice cover at spatial

resolutions as high as 30 m. The advent of SAR revolutionized the capabilities of

the operational centers, allowing much higher quality analysis including informa-

tion on lead location/orientation, ice type, and new ice formation. SAR instruments

on ERS-1/2, Radarsat, Envisat, and Advanced Land Observing Satellite (ALOS)

provide useful high-resolution information on deformation, leads, ridging, and new

ice production (Fig. 9.11).

Scatterometry provides information on a spatial scale similar to that of passive

microwave imagers but can provide better information on perennial ice cover as

well complementary information on other properties due to different sensitivities to

certain characteristics of the ice surface such as snow cover and melt. The ERS-1/

2 and NASA (NSCAT) scatterometers launched in the early and mid-1990s,

respectively, began the scientific application of routine scatterometer data to oper-

ational applications including sea ice. The SeaWinds instrument on the NASA

QuikScat and the Japanese Advanced Earth Observing Satellite (ADEOS) have

Fig. 9.10 Daily Arctic sea ice extent as of 26 September 2010, along with daily ice extents for

years with the previous four lowest minimum extents. The solid light blue line indicates 2010,

solid dark blue shows 2009, pink shows 2008, dashed green shows 2007, light green shows 2005,

and solid gray indicates average extent from 1979 to 2000. The gray area around the average line

shows the two standard deviation range of the data (Courtesy of the National Snow and Ice Data

Center)
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since provided routine polar Ku-band observations since 1999. MetOp-A, the first

in a series of three satellites, ensures continuity in the C-band time series of

advanced scatterometer (ASCAT) measurements for the next 15 years.

While ice extent is the most commonly examined sea ice variable, the most

important is ice thickness. In situ, ship, submarine, and EM observations of thickness

are limited spatially and temporally. Unfortunately, thickness is the most difficult ice

property to estimate from space. The NASA ICESat satellite has a laser altimeter,

though it recently failed, that can provide estimates of sea ice surface elevation. Laser

altimeters are subject to cloud contamination, limiting the geographic coverage of

useful surface data. Altimeters do not measure ice thickness directly, but rather they

measure the elevation at the top of the surface, including the overlying snow cover.

Accurate estimates of sea ice thickness therefore require some assumptions about

snow depth and the relationship between ice draft (the part of the ice below the water

level) to ice thickness. ICESat was designed primarily for ice sheet and glacier

detection, not sea ice, and was originally to have flown in parallel with CryoSat,

whose radar altimeter was optimized for sea ice. Unfortunately, CryoSat never

Fig. 9.11 Envisat ASAR and visible (MERIS) composite mosaic from 14 January 2006 (Courtesy

of Microsoft Vexcel UK, ESA PolarView Consortium)
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reached orbit. Although ICESat may not be sensitive enough to obtain precise ice

thickness estimates, it has made a significant step toward routine observation of ice

thickness from space, with reasonable basin-wide thickness distribution fields having

been produced during intervals of laser operation. CryoSat-2 is now operating well

and provides valuable information on sea ice thickness. The combination of laser and

radar altimeters can provide an estimate of snow depth on ice, because the radar

signal generally comes from the snow-ice interface and the laser signal comes from

the top of the snow cover.

Another approach to estimating ice thickness is to use satellite-derived cloud and

surface properties with a surface energy budget model to solve for ice thickness.

Wang et al. (2010) developed such a method (Fig. 9.12). It is currently being applied

to the relatively long time series of AVHRR data for studies of recent trends.
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Chapter 10

Assessing Hurricane Intensity Using Satellites

Mark DeMaria, John A. Knaff, and Raymond Zehr

Abstract Tropical cyclones spend most of their life cycle over the tropical and

subtropical oceans. Because of the lack of in situ data in these regions, satellite

observations are fundamental for tracking and estimating the intensity of these storms

for real-time forecasting and monitoring climate trends. This chapter reviews

methods for estimating tropical cyclone intensity from satellites, including those

based on visible, infrared, and microwave instruments. Satellite intensity estimates

are transitioning from subjective to objective methods, and new instruments on the

next generation of NOAA low-earth orbiting and geostationary satellites hold prom-

ise for continued improvement in satellite analysis of tropical cyclones.

10.1 Introduction

The large loss of life and unprecedented damage caused by US landfalling

hurricanes in the 2000s (Lili 2002; Isabel 2003, Charley, Frances, Ivan, Jeanne

2004; Dennis, Katrina, Wilma 2005; Ike 2008) raises the question of whether the

Atlantic hurricane climate is changing. This question has considerable societal and

economic implications for residents along the US gulf and east coasts and in other

coastal regions around the globe. Emanuel (2007) showed a high correlation

between decadal increases in Atlantic sea surface temperatures (SST) and an

integrated measure of Atlantic basin tropical cyclone activity called the power

dissipation index (PDI). This correlation suggests that the recent changes in hurri-

cane activity may have a connection with global warming.
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The question of whether the hurricane climate is changing is complicated by two

main factors, and recent observational and modeling studies have sometimes pro-

duced conflicting results (Knutson et al. 2010). First, tropical cyclone (TC) activity in

the Atlantic (and other regions as well) undergoes significant natural variability on

annual and multi-decadal time scales (Kossin et al. 2010). Second, the observing

systems for measuring TC activity have varied extensively in the last century

(Landsea et al. 2010). Before the mid-1940s, the primary source for TC information

was ship reports. Aircraft reconnaissance became available in the mid-1940s, low-

earth orbiting (LEO) satellites in the mid 1960s, and operational geostationary

satellites in the 1970s. In addition, the instrumentation from aircraft reconnaissance

has varied considerably, and this data was routinely available only for the Atlantic

and western North Pacific through 1987. After 1987, west Pacific TC reconnaissance

was discontinued. Thus, it is not always obvious whether long-term TC increases are

physical or are due to improvements in the ability to monitor them.

Because TCs spend most of their lifetime over the tropical and subtropical oceans

and the limited availability of in situ and aircraft observations, satellite data is

fundamentally important for the analysis and forecasting of TCs. In fact, just a few

years after the launch of the first meteorological satellite (TIROS-1) in 1960, methods

began to be developed to estimate TC intensity from satellite imagery (Hubert and

Timchalk 1969). These early attempts were not completely satisfactory, but about a

decade later the very successful Dvorakmethodwas developed (Dvorak 1975). In this

chapter, the use of satellite data for estimating TC intensity is described. Satellite data

also have many other TC applications, including position and structure analysis and

atmosphere and ocean numerical forecast model initialization, but these topics are

beyond the scope of this chapter. Accurate TC intensity estimation is important for

both short-term forecasting and for monitoring changes in global TC activity.

This chapter begins with a description of the Dvorak intensity estimation

technique, which is still a cornerstone of operational TC analysis around the

globe. The intensity of a TC is quantified as the maximum sustained surface wind

speed associated with the storm. Another indicator of TC intensity is the minimum

sea-level pressure near its center. Newer methods that make use of passive micro-

wave sensors are also presented. General methods for satellite wind estimation and

their application to TCs are also briefly described. This chapter concludes with a

summary of how forecasters combine TC information from many sources and a

look toward future satellite capabilities.

10.2 The Dvorak Tropical Cyclone Intensity Estimation

Method

The Dvorak technique estimates tropical cyclone intensity using satellite imagery.

It was one of the first innovative applications of meteorological satellite imagery,

and it is still widely used today at tropical cyclone forecast centers throughout the

world (Velden et al. 2006). The Dvorak technique was developed in the early 1970s

by Vernon Dvorak and his colleagues at NOAA NESDIS.
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10.2.1 Operational Dvorak Technique

The Dvorak technique (Dvorak 1984) primarily uses satellite observed cloud

patterns and infrared (IR) cloud top temperatures to estimate intensity, with inde-

pendent methods for visible and IR satellite imagery. It uses an intensity unit called

a T-number in increments of ½ ranging from T1 to T8. The Dvorak T-number

intensity scale is normalized according to typical observed daily changes in inten-

sity (one T-number per day). T2.5 is the minimal tropical storm intensity (18.0 m/s),

T4.0 is minimal hurricane intensity (33.4 m/s), T6.0 has a wind maximum of

59.1 m/s, and T8.0 approximates a record maximum intensity (87.4 m/s).

The cloud patterns in the Dvorak technique are divided into the four basic

patterns in Fig. 10.1 (curved band, shear, central dense overcast, and eye), with a

fifth sub-pattern called a banded eye. With weaker intensities, the analysis is usually

based on either the curved band pattern or the shear pattern. Using the curved band

analysis, the extent to which a spiral shaped band of deep convective clouds

surrounds the tropical cyclone center determines the intensity. The shear pattern

refers to the cloud pattern observed when broadscale vertical wind shear induces a

distinctly asymmetric cloud pattern with respect to the tropical cyclone low-level

circulation center. The degree of deep convective cloud displacement due to the

vertical shear decreases with intensification.

As a TC intensifies, the cloud pattern typically evolves into what is called a

central dense overcast (CDO), which describes the deep convective clouds that

surround the center. As intensification continues, an eye is observed within this

central dense overcast. The eye is the familiar cloud-free or cloud minimum area

FOUR PRIMARY PATTERNS
AND TYPICAL T-NO.’S

CURVED BAND

SHEAR

CDO

EYE
BANDING EYE

PRE-
STORM

0

TD TS HURRICANE

1 2 3 4 5 6 7 8

Fig. 10.1 The primary Dvorak cloud patterns in relation to T-number and tropical cyclone

intensity ranges
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associated with the lowest pressure at the tropical cyclone center. The eye is

surrounded by a circular area which has the strongest winds within very deep

clouds and heavy rain, known as the eyewall. The Dvorak technique analyzes

visible features and IR temperatures of the eye and the surrounding deep clouds

to assign the intensity. In general, the Dvorak tropical cyclone intensity increases as

the eye gets warmer and better defined, and the surrounding clouds get colder and

more symmetric. A continuous very cold circular ring of cloud tops generated by

the eyewall along with a warm eye temperature indicates an intense tropical

cyclone. Enhanced IR images of Dvorak intensities T2, T4, T6, and T8 are shown

in Fig. 10.2 with Hurricane Linda that was located in the eastern North Pacific in

September 1997.

An analysis of errors associated with Dvorak intensity estimates in comparison

with the “best track” values is shown in Fig. 10.3. The best track is determined by

the post-storm analysis of all available information, including aircraft intensity

estimates, and is considered ground truth. Figure 10.3 shows that the Dvorak

maximum wind estimates are normally accurate to within 5–10 kt but can some-

times be much larger. Knaff et al. (2010) performed a systematic analysis of the

errors and biases of the Dvorak intensities. The results show that some of these

biases are systematic and can be corrected, which would lead to further improve-

ment of the operational Dvorak method.

Fig. 10.2 Enhanced IR images of Hurricane Linda with Dvorak intensities T2, T4, T6, and T8.

Hurricane Linda was located in the eastern North Pacific, southwest of Mexico, during 9–17

September 1997
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10.2.2 Improved Objective Dvorak Approaches

Following Dvorak’s original work, research and development efforts have been

focused on replicating and refining the Dvorak approach with objective and

automated routines using the IR temperatures (Velden et al. 2006). Automated

Dvorak techniques give reliable results that are quickly updated as the latest IR

satellite image becomes available, and the tropical cyclone intensity data supple-

ment the general use of satellite data for analysis and forecasting.

Initial automated techniques were analogous to the operational Dvorak

technique’s enhanced IR (EIR) method (Dvorak 1984; Zehr 1989; Velden et al.

1998). The original goal of using computer-based objective methodology to

achieve the accuracy of the operational Dvorak technique was accomplished,

however, with important limitations. The automated routines could only be applied

to storms at greater than minimal hurricane intensity. Also, a user-located storm

center was needed. With continued research and development, the advanced objec-

tive Dvorak technique (AODT) emerged (Olander et al. 2004). The most recent

version of the objective algorithm progression is the advanced Dvorak technique

(ADT). Unlike the earlier techniques that attempt to mimic the operational tech-

nique, ADT is focused on revising and extending the method beyond the original

application and constraints. The ADT is fully automated for real-time analysis and
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continues to be improved (Olander and Velden 2007). Automated center finding

algorithms are also under development (Wimmers and Velden 2010).

10.3 Satellite Microwave Intensity Estimation Techniques

In parallel with applications of visible and IR imagery such as the Dvorak technique,

microwave observations from LEO satellites provided important observations of

tropical cyclones in the 1970s and 1980s (Kidder et al. 2000). Microwave data

have two main advantages over visible and IR images: (1) microwave radiation

penetrates clouds; (2) Microwave radiation is sensitive to a wide variety of geophys-

ical parameters, such as temperature, water vapor, cloud liquid water, cloud ice water,

rain, and surface wind speed.

Microwave sensors can be divided into the two basic categories of imagers and

sounders. Similar to IR and visible imagery, microwave imagery provides informa-

tion about atmospheric and cloud properties due to the interaction with the upwelling

radiation. Sounders measure microwave radiation in a range of frequencies centered

about an atmospheric absorption band to provide vertical profiles of atmospheric

moisture. TC intensity estimation techniques from microwave sounders have gener-

ally been more successful than those from microwave imagery. These are described

first, followed by attempts to utilize microwave imagery.

10.3.1 Microwave Sounder Applications

The first operational microwave soundings were obtained from the microwave

sounding unit (MSU) on TIROS-N, beginning in 1978, after successful demonstra-

tion on NIMBUS-5 earlier that decade. Shortly after this data became available,

techniques to estimate TC intensity began to emerge (e.g., Kidder et al. 1978). An

advantage of sounding methods compared to the Dvorak technique is that they have

a firmer physical foundation. The minimum surface pressure near the center of a

tropical cyclone is directly related to the vertical atmospheric temperature profile

above that point through the hydrostatic equation. The minimum sea-level pressure

has a strong relationship with the maximum surface wind through the horizontal

momentum equations. To a reasonable level of approximation, these equations are

diagnostic. For example, in the case of steady circular flow that occurs in strong

tropical cyclones above the boundary layer, the wind and pressure field are related

through the gradient wind equation.

A rather severe limitation of the early TC estimation techniques from the MSU

was the 150-km footprint size of the measurements. This is much larger than the

scale of the tropical cyclone eye, so the very warm temperatures in the eye cannot

be resolved. This situation improved considerably beginning in 1998, when the

advanced microwave sounding unit (AMSU) with its improved resolution began
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observing tropical cyclones. A comparison of the resolution of the MSU and AMSU

is shown in Fig. 10.4 for Typhoon Zeb in the western North Pacific. The horizontal

footprint of AMSU-A is about 50 km near nadir.

Observations and high-resolution modeling studies of tropical cyclones show

that the warm core is a maximum near the storm center and the scale of the warm

core increases with height due to the tendency for outward sloping eyewalls. Also,

the strongest warm anomaly relative to that outside of the storm is a maximum in

the middle and upper troposphere (e.g., Hawkins and Imbembo 1976; Stern and

Nolan 2012). Based on this observed structure, two approaches have been taken to

estimate TC intensity from AMSU. In the first approach, brightness temperatures

from AMSU channels that sense the upper troposphere are used directly to estimate

the warm core (Spencer and Braswell 2001; Brueske and Velden 2003). The

characteristics of the warm core are then related to the TC intensity. In the second

approach, temperature retrieval algorithms are applied using all of the AMSU-A

channels to provide a three-dimensional temperature structure. Using an upper

boundary condition from a large-scale analysis, the hydrostatic equation is

integrated downward to provide the pressure field at each vertical level. The

pressure gradient can then be calculated, and the wind field is determined from an

appropriate approximation of the horizontal momentum equations. This method

was applied by Demuth et al. (2004), assuming radially symmetric temperature and

wind fields relative to the storm center, so that the gradient wind equation could be

used. Figure 10.5 shows an example of the temperature anomaly and wind speed

estimated by this technique. This figure shows that this retrieval method can also be

used to provide information about the horizontal and vertical structure of a storm.
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Fig. 10.4 An illustration of the improvement in spatial resolution of the AMSU over the MSU for

Typhoon Zeb from the western North Pacific (From Kidder et al. 2000)
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Although the retrieved wind structure in Fig. 10.5 is qualitatively similar to a

tropical cyclone with cyclonic tangential winds decreasing with height and a larger

scale anticyclone at upper levels, the inner core is still not represented well. The

low-level radius of maximum wind is about 175 km, which is much too large, and

the retrieved maximum wind of about 60 kts is much lower than what was observed

for Hurricane Gert at this time. To help correct for the lack of resolution, a statistical

bias correction is applied to several parameters from the retrieved fields (Demuth

et al. 2006) to improve the accuracy of the method. A scale correction is also

applied to the AMSU retrieval method described by Brueske and Velden (2003).

That algorithm also makes use of the AMSU-B moisture channels, which have a

footprint size about 1/3 that of AMSU-A, to provide an eye-size estimate. The eye-

size information is used to help correct for the low resolution of the AMSU-A

channels. Both of the TC intensity estimation techniques described above have been

used operationally by the National Hurricane Center and the Joint Typhoon Warn-

ing Center for the past several years. The average accuracy of the AMSU methods

is not quite as good as the Dvorak method, especially for very small cyclones, but it

provides an independent estimate of intensity.

10.3.2 Microwave Imagery Applications

Microwave imagery has been available from LEO satellite systems for the past few

decades, including Special Sensor Microwave/Imager (SSMI), Special Sensor Micro-

wave Imager Sounder (SSMIS), Tropical Rainfall Measuring Mission (TRMM)

Fig. 10.5 Radial-height cross sections for Hurricane Gert on 16 Sept. 1999 of AMSU-retrieved

(a) temperature anomalies (8 �C), showing the warm core at a height of approximately 12 km, and

(b) gradient winds (kt), showing that the MSW occurs at approximately 175 km from the storm

center (From Demuth et al. 2004)
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Microwave Imager (TMI), and Advanced Microwave Scanning Radiometer-EOS

(AMSR-E). As described above, channels from the AMSU-B sounder can also be

used for imagery applications. The microwave imager instruments have much higher

spatial resolution than the sounder data and provide detailed information about cloud

and rain structure below the cloud top. Figure 10.6 shows an 85-GHz microwave

image from SSMI for Hurricane Celia in the eastern North Pacific and the

corresponding color-enhanced GOES IR (channel 4) image. The microwave imagery

shows more clearly the cloud organization below the cirrus canopy in the IR image.

Despite the usefulness of microwave imagery for qualitative interpretation of

tropical cyclone structure, a quantitative algorithm for intensity estimation with

sufficient accuracy has yet to be developed. Bankert and Tag (2002) described a

microwave imagery technique based on a nearest neighbor approach that could be

fully automated. However, the average errors were about twice as large as those

from the Dvorak technique. The use of microwave imagery for TC intensity

estimation remains an area of active research.

10.4 Other Wind Estimation Techniques

Wind estimates from satellites have application to many phenomena in addition to

tropical cyclones. Wind vectors can be estimated in the atmosphere by tracking

features in subsequent images from geostationary satellites. This technique can also

be applied at high latitudes with polar-orbiting imagery, since the temporal coverage

from those satellites is much higher there (Dworak and Key 2009). Development of

feature track wind algorithms began shortly after the availability of the first satellite

observations, and improvements continue to be made (e.g., Velden and Bekda 2009).

Surface winds over the ocean can also be estimated from scatterometers on LEO

satellites. These techniques are described in more detail in Chap. 8. The scatterometer

winds have proved to be very useful for tropical cyclone intensity and structure

analysis.

The AMSU retrieval technique described in Sect. 10.3 can be generalized to

provide three-dimensional estimates of the horizontal wind. For that application,

the gradient wind balance assumption is replaced by the more general nonlinear

balance equation (Bessho et al. 2006). The three-dimensional AMSU winds are

useful for TC structure analysis and are also being applied to other phenomena,

including the atmospheric response to the Gulf Stream (O’Neill et al. 2010).

The three wind estimate techniques (feature track winds, scatterometer winds,

and generalized AMSU retrievals) can all be used for tropical cyclone intensity

estimation. However, low-level feature track winds are usually not available near

the center of tropical cyclones due to the cirrus canopy. The scatterometer signal

can attenuate at very high wind speeds, and there are some complications due to

rain contamination and the footprint size. The generalized AMSUwinds also have a

limitation due to the instrument resolution. Thus, these techniques have application

to TC intensity estimation, but generally can provide a lower bound estimate, and

are used in combination with other information.
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Fig. 10.6 85 GHz (top) and GOES channel 4 IR (bottom) image of Hurricane Celia at 12 UTC on

23 June 2010
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10.5 Forecaster Applications

Hurricane forecasters and analysts assign intensity to tropical cyclones by using all

available information. In addition to the satellite data, aircraft observations provide

important intensity information, with more direct measurements of central pressure

and maximum wind. At times, surface and ship observations also provide critical

intensity data. Since the critical aircraft and surface data are not always available,

but more directly measure the intensity, they are also needed for validation and

refinement of the satellite intensity estimates.

Because each of the satellite TC intensity estimate techniques has their

limitations, they are usually used in combination. The methods that use geostation-

ary data have better temporal resolution and can be used to detect short-term trends.

The methods that use LEO data are compared to the geostationary-based estimates

when they are available, and forecasters make a subjective estimate of the TC

intensity. Methods are also being developed to objectively combine satellite-based

intensity estimates, using a satellite consensus (SATCON). These methods take

advantage of the strengths and weaknesses of each method to provide an optimal

TC intensity estimate (Herndon et al. 2010).

10.6 Future Outlook

The next decade should provide new opportunities for improving satellite-based

intensity estimates. The next-generation GOES satellite beginning with GOES-R

(expected launch date of late in 2015) will include an Advanced Baseline Imagery

(ABI). The ABI will include 16 channels, with improved spatial, temporal, and

radiometric resolution. The ABI has the potential to improve the existing Dvorak

technique and lead to new methods that make better use of the multispectral imagery.

The next-generation NOAA polar-orbiting satellite will include an Advanced

Technology Microwave Sounder (ATMS), which will have improved resolution

when compared to the AMSU. As described in Sect. 11.3, the horizontal resolution

of the AMSU is still coarse relative to the scale of the TC eye. The satellites will

also include a hyperspectral IR sounder, which can be used in combination with the

ATMS to provide more accurate temperature soundings. Although the IR sounding

capabilities are primarily limited to clear regions, it may be possible to get accurate

soundings in the eyes of storms with well-defined eyes. The ATMS and high

spectral resolution Cross-track Infrared Sounder (CrIS) are now available on the

recently launched Suomi National Polar-orbiting Partnerships (S-NPP), and pre-

liminary results show great potential for utilizing this new data to improve the

satellite estimates of tropical cyclone position, intensity, and structure.
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Chapter 11

Satellite-Based Ocean Surface Turbulent Fluxes

Long S. Chiu, Si Gao, and Chung-Lin Shie

Abstract Ocean surface turbulent fluxes of momentum, heat, and water vapor

respond to and determine the coupling between the atmosphere and the ocean and

are excellent indicators of air–sea interactions at most temporal and spatial scales.

These fluxes can be determined from bulk properties at the sea surface. By

combining satellite observations of bulk properties such as sea surface temperature,

wind, and humidity, estimates of these fluxes are available globally. The bulk

aerodynamic formulations of these fluxes are first reviewed. Satellite retrieval

techniques of these bulk properties and operational or semi-operational ocean

surface flux products such as the Hamburg Ocean Atmosphere Parameters and

Fluxes from Satellite Observations (HOAPS), the Japanese Oceanic Fluxes with the

Use of Remote Observations (J-OFURO), and the US NASA Goddard Space Flight

Center Satellite-Based Sea Surface Turbulent Fluxes (GSSTF), as well as merged

approach of the Objectively Analyzed Air–Sea Fluxes for the global ocean

(OAFlux) are described, and their error and uncertainties are briefly discussed.
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11.1 Introduction

The Earth’s climate is shaped by a myriad of interacting processes between

components of the Earth system – the atmosphere, hydrosphere, lithosphere, biosphere,

and anthrosphere. Among the interacting processes are the energy cycle, water cycle,

and other biogeochemical cycles. Covering 70% of the Earth’s surface and containing

96% of the global freshwater, the ocean is the major storage of water substances. The

radiant energy falling on the sea surface is mostly offset by the flux of longwave

radiation emanating from the sea surface and the fluxes of sensible heat and latent heat.

Oceanic evaporation is the dominant mass flux in the global water cycle. The conden-

sational heat release during the process of cloud formation is a major driving force for

atmospheric motions. With its huge storage and heat capacity, the ocean has a signifi-

cant role in shaping the climate of the Earth system and its variability.

Estimates of these air–sea fluxes have been based on marine surface

observations (Bunker 1976; Hastenrath 1980; Weare et al. 1981; Esbensen and

Reynolds 1981; Isemer and Hasse 1985, 1987; Hsiung 1985; Oberhuber 1988;

Cayan 1992; da Silva et al. 1994; Josey et al. 1998). A major limitation of these

estimates is the inadequate sampling. Historically, measurements are collected by

Ships of Opportunity. The advent of satellite observations provided global ocean

coverage, reducing the uncertainty in these air–sea flux measurements.

In Sect. 11.2, we discuss the transfer mechanisms occurring at the air–sea interface

and present the bulk formulae for estimating the flux transfers. Bulk parameters from

satellite observations are introduced in Sect. 11.3. Section 11.4 describes various

research or operational products that integrate the bulk parameters to produce surface

flux products. An assessment of these products is presented in Sect. 11.5. Finally,

Sect. 11.6 contains a summary and outlook for the use of these products in climate

research and operational applications.

11.2 Transfer at the Air–Sea Interface

The sea surface is the interface between the atmosphere and the ocean through

which the exchange of radiant energy, momentum, heat, and moisture occurs.

Atmospheric motion keeps the sea surface in motion, making the flux exchange

through a nonsteady material surface. The fluxes are defined relative to a predefined

fixed level above the average sea surface. The atmospheric boundary layer is

typically 1 km to a few km in height. The atmospheric boundary layer can be

divided into a constant flux sub-layer and a transition layer to the free atmosphere.

The constant flux sub-layer is typically 10–100 m thick or 10–20% of the boundary

layer height, in which the flux values do not deviate more than ~10% from their

mean. Right at the surface is the viscous sub-layer, typically <1 cm thick, in which

molecular processes dominate. Through the boundary layer, the surface

communicates with the free atmosphere by the transfer of buoyancy and momen-

tum through the constant flux sub-layer and by entrainment from above the
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transition layer (Lykossov 2001). A detail discussion of the atmospheric and

oceanic boundary layer is in Kraus and Businger (1994).

In bulk aerodynamic formulation, the turbulent transfer of momentum (or

surface stress, τ), sensible heat flux (SHF), and latent heat flux (LHF) at the air–sea
interface can be written as

τ ¼ ρCD ðU � UsÞj jðU � UsÞ (11.1a)

SHF ¼ ρCpCHðU � UsÞðTs � TaÞ (11.1b)

LHF ¼ ρLvCEðU � UsÞðQs � QaÞ (11.1c)

where ρ is air density; Cp the specific heat at constant pressure; Lυ the latent heat of
vaporization; CD, CH, and CE are, respectively, the bulk transfer coefficients for

momentum, sensible heat, and latent heat; U is the air velocity; and Us is ocean

surface current. Surface stress is a vector and has a magnitude of the square of the

wind difference |(U � Us)|
2 in the direction of (U � Us). |(U � Us)| is the absolute

value of the difference of surface wind and ocean surface current.

The surface windU is typically a few to tens of m s�1 andUs ~ cm s�1; hence, in

most cases the assumption (U � Us) � U is made.

With input parameters such as wind speed (U), the sea surface temperature (Ts),
the air potential temperature (Ta), the air specific humidity (Qa) at the reference

height, and the saturation specific humidity (Qs) which is determined by Ts through
the Clausius–Clapeyron relation, the fluxes can be calculated with the appropriate

transfer coefficients.

Based on similarity theory, the surface fluxes in Eqs. (11.1a, 11.1b, 11.1c) can

also be derived from scale analysis with scaling parameters for wind or friction

velocity (u*), temperature (θ*), and humidity (q*) defined as

τ ¼ ρu�2 (11.2a)

SHF ¼ �ρCpu
�θ� (11.2b)

LHF ¼ �ρLvu
�q� (11.2c)

For a given surface skin temperature θs (or SKT) and wind, temperature, and

humidity at a measurement or reference heights within the atmospheric surface

layer, the scaling parameters are solved through the roughness lengths z0 and

dimensionless gradients of wind, temperature, and humidity. The dimensionless

gradients of wind, potential temperature, and humidity are functions of the stability

parameter z/L, where z is the measurement height and L is the Monin–Obukhov

length, L ¼ �u*3/κ B0, where κ is the von Karman constant κ ~ 0.4 and B0 is

the buoyancy, B0 ¼ g w0ρ0, where g is the gravitational acceleration and w0 and ρ0

are the fluctuations of vertical velocity and density, and is defined as positive for

stable and negative for unstable boundary layers (see Garratt 1992; Chou et al.

2003). The transfer coefficients of momentum, heat, and moisture flux are therefore
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functions of the vertical gradient of wind speed, temperature, and moisture near the

surface and are affected by the stability of the surface air. The atmosphere is mostly

under near neutral or stable conditions, and most of the retrieval techniques use drag

coefficients under neutral conditions, in lack of atmospheric stability information.

The expressions of the coefficients for stable and unstable boundary layer can be

found elsewhere (Garratt 1992).

Similarity theory predicted that under lowwind conditions the transfer coefficients

of sensible and moisture increase with increasing wind speed, because the increased

roughness facilitates the transfer of heat and vapor (Liu et al. 1979). Field and

laboratory measurements suggested that the drag coefficient (CD) flattens or decreases

with highwind speed near 22–23m s�1 (Black et al. 2007) or at 33m s�1 (Powell et al.

2003; Donelan et al. 2004). Observations also suggest that the transfer coefficient for

water vapor, or the Dalton number, CE is constant with wind speed up to hurricane-

force winds of 33 m s�1 (Black et al. 2007).

11.3 Satellite Estimation of Input Parameters

11.3.1 Wind Stress

Winds are measured using active and passive microwave sensors. A scatterometer is

an active microwave sensor. It operates by sending a pulse of electromagnetic energy

and measures the backscatter signal from the sea surface at different azimuth angles.

The return signal is a function of the sea surface roughness, the azimuth angle relative

to the surface wind, and the earth’s incidence angle. Surface roughness is a response

of the ocean surface to wind forcing resulting in capillary wave generation. Weather

prediction model provides ancillary information about the wind direction to give both

the direction and the magnitude of the stress (Atlas et al. 2011). Scatterometers can

provide global near-surface (at 10-m height) wind speed and direction retrievals.

It should be emphasized that scatterometers measure surface roughness and hence are

measuring the stress (U� Us) and not the actual atmospheric wind. In the absence of

information about the atmospheric stability, the derived geophysical product is the

wind under neutral conditions (Liu et al. 2010).

Seasat is the first satellite mission for ocean monitoring. It carries the first

spaceborne scatterometer – the Seasat-A Scatterometer System (SASS) (Born

et al. 1981). Although the mission lasted for only 3 months, it collected a unique

set of synoptic data on ocean winds, waves, temperature, and topography and

served as a proof of concept to follow-on missions that include the Advanced

Microwave Instrument (AMI) on Earth Resource Satellite 1 and 2 (ERS-1 and

ERS-2), NASA Scatterometer (NSCAT) on Advanced Earth Observing Satellite

(ADEOS), SeaWinds on Quick Scatterometer (QuikSCAT), SeaWinds on

Advanced Earth Observing Satellite 2 (ADEOS-2), and Advanced Scatterometer

(ASCAT). These instruments provide almost all-weather wind speed and direction

information except in heavily raining conditions (Freilich and Dunbar 1999; Draper
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and Long 2004; Weissman et al. 2002) or proximity to coastal areas (~15 km for

QuikSCAT and 30 km for ASCAT). The data typically have in-swath spatial

resolution of 25 km, and some product for hurricane studies has ultrahigh resolution

of 2.5 km (Williams and Long 2008). Because of the narrow satellite swath and

orbit, temporal sampling is rather limited. Synthetic Aperture Radars (SARs) are

able to provide wave spectrum from kilometer to capillary wave scales, hence wind

field monitoring capability (Beal et al. 2005). Use of multiple scatterometers can

greatly improve the temporal sampling and directional measurements and help fill

in the data gaps in rainy conditions.

Passive microwave radiometers measure electromagnetic radiation from the ocean

surface at several frequencies and routinely provide global near-surface wind speed

estimates over rain-free ocean at a spatial resolution of roughly 25 km. Wind measur-

ing microwave sensors include the Scanning Multichannel Microwave Radiometer

(SMMR) onboard the NIMBUS-7 satellite, the Special Sensor Microwave Imager

(SSM/I) and the Special Sensor Microwave Imager/Sounder (SSMIS) onboard the

Defense Meteorological Satellite Program (DMSP), the Tropical Rainfall Measuring

Mission (TRMM) Microwave Imager (TMI), and the Advanced Microwave Scanning

Radiometer – Earth Observing System (AMSR-E). Retrieval algorithms of wind speed

include the traditional D-matrix (Lo 1983), regression (Goodberlet et al. 1989;

Goodberlet and Swift 1992), neural network (Krasnopolsky et al. 1995), and physical

approaches (Wentz et al. 1986). Resolution of the ambiguity in wind direction (Wentz

1992) requires polarization measurements at �45� in addition to the horizontal and

vertical polarizations (Dzura et al. 1992; Gasiewski and Kunkee 1993), or the use of

variational analysis methods (Atlas et al. 1991). These wind retrievals are quite

accurate under typical ocean conditions (Mears et al. 2001; Meissner et al. 2001),

and there are good agreements between passive radiometer winds and scatterometer

winds (Wentz et al. 2007).

11.3.2 Sea Surface Temperature

Skin sea surface temperature (SST), which is the temperature at the interface between

the ocean and the atmosphere, should be used to compute LHF and SHF (Curry et al.

2004). Skin (~10–20 μm) or subskin (~1–2 mm) SSTs determined from satellites

include estimates from infrared and passive microwave radiometry. Both types of

observations have their own strengths and weaknesses. Infrared SST measurements

have good spatial resolution (1–10 km), radiometric accuracy (0.2–0.8 K) (Donlon

et al. 2007), and long heritage (~30 years). However, they require atmospheric

correction and fail over cloudy situations, under which a lot of interesting meteoro-

logical phenomena occur, such as over a hurricane. Infrared instruments for deriving

SST include the Advanced Very High-Resolution Radiometer (AVHRR), the

Advanced Along-Track Scanning Radiometer (AATSR), the Geostationary Opera-

tional Environmental Satellite (GOES) Imager, and theModerate Resolution Imaging

Spectroradiometer (MODIS) (see Sun 2011). Passive microwave sensors can

measure SST through clouds with lower accuracy (0.5–1 K) and resolution
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(25–50 km). Passive microwave instruments for SST retrievals include SMMR, TMI,

and AMSR-E. SST observations have been greatly improved by combination of

multiple infrared and microwave sensors (Donlon et al. 2007).

11.3.3 Surface-Air Temperature and Humidity

Determining Ta and Qa from satellites is difficult and remains challenging.

Satellite sounders such as the Atmospheric Infrared Sounder (AIRS) and the

Advanced Microwave Sounding Unit (AMSU) provide profiles of air temperature

and humidity, but do not adequately resolve the boundary layer. Microwave sensor

channels are mostly sensitive to the total precipitable water (W) or water vapor

within a thin layer, typically 500 m, close to the sea surface (WB) (e.g., Liu 1986;

Schulz et al. 1993).

Climatologically, there is a strong relationship between the total columnar

precipitable water and the surface-air humidity (Liu 1986). This relationship is

based on the strong coupling and feedbacks between the surface and the atmosphere

above the boundary layer. However, for mesoscale systems, such as fronts and cold

air outbreaks, this relation is inadequate for describing the surface property using

columnar measurements. Application of the climatological relationship to SSM/I

data produced large spatial bias in LHF estimates (Esbensen et al. 1993; Schlussel

et al. 1995; Schulz et al. 1997). Schulz et al. (1993), Schlussel et al. (1995), and

Bentamy et al. (2003) improved Qa retrieval by establishing a relationship between

Qa and WB which is estimated from SSM/I. Chou et al. (1995) classified sounding

data observed during the First Global Atmospheric Research Program (GARP)

Global Experiment (FGGE) and found that the first two Empirical Orthogonal

Functions (EOFs) of the vertical moisture profile can explain most of the variance.

By solving two simultaneous equations involving the W and WB, Qa is estimated.

This technique incorporates additional information about the vertical structure of

the atmosphere that has not been considered in previous retrievals.

Early methods (e.g., Liu 1988; Kubota and Shikauchi 1995) determined Ta from
satellite observations by using a specified value of relative humidity (usually 80%)

with a known Qa via the Clausius–Clapeyron relationship. The spatial and temporal

variations of relative humidity are as yet relatively unexplored. Subsequent studies

by Jourdan and Gautier (1995) and Konda et al. (1996) used additional variables

such asW, SST, and wind speed to estimate Ta. More recent improvement ofQa and

Ta estimates involves the use of robust techniques such as artificial neural networks

(Jones et al. 1999; Roberts et al. 2010) and genetic algorithms (Singh et al. 2005,

2006), or from a combination of multisensor observations (Jackson et al. 2006,

2009; Jackson and Wick 2010).
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11.4 Satellite-Based Flux Data Sets

By employing the suite of input parameters, satellite-based turbulent fluxes can be

calculated using bulk parameters derived from satellite observations. Widely used

products include the Hamburg Ocean Atmosphere Parameters and Fluxes from

Satellite Data (HOAPS), the Japanese Ocean Flux Data Sets with Use of Remote

Sensing Observations (J-OFURO), and the Goddard Satellite-Based Surface Tur-

bulent Fluxes (GSSTF). These products are discussed below.

11.4.1 HOAPS

HOAPS is produced by University of Hamburg and Max Planck Institute for

Meteorology in Germany. The most recent version is version 3 (HOAPS-3,

Andersson et al. 2010). All variables are derived from SSM/I data except for

AVHRR Oceans Pathfinder SST product. A neural network algorithm is used to

derive U. Qa is obtained using the linear relationship of Bentamy et al. (2003). Qs is

computed from the AVHRR SST using the Magnus formula (Murray 1967) with a

constant salinity correction factor of 0.98. Ta is estimated from the SST with the

assumptions of 80% constant relative humidity and a constant surface-air tempera-

ture difference of 1 K. Latent and sensible heat fluxes are calculated using the

Coupled Ocean–Atmosphere Response Experiment (COARE) 2.6a bulk algorithm

(Fairall et al. 1996, 2003).

The HOAPS-3 data sets cover the time period from July 1987 to December 2005.

HOAPS-G pentad and monthly data sets with 0.5� resolution and HOAPS-C twice

daily data set with 1� resolution are available at the website (http://www.hoaps.

zmaw.de).

11.4.2 J-OFURO

J-OFURO is produced by the School of Marine Science and Technology at Tokai

University in Japan. The most recent version 2 of J-OFURO (J-OFURO2, Tomita

et al. 2010) determines U, Qa, and SST (Qs) from multisatellite and sensor

observations. U is obtained from a combination of microwave radiometers (SSM/I,

AMSR-E, and TMI) and scatterometers (ERS-1, ERS-2, and QuikSCAT). Qa is

derived from SSM/I measurements. SST is taken from the Merged satellite and in

situ data Global Daily SST (MGDSST) analysis provided by Japanese Meteorologi-

cal Agency (JMA). Ta is obtained from NCEP/DOE reanalysis. COARE 3.0 bulk

algorithm (Fairall et al. 2003) is used for the transfer coefficients to estimate LHF and

SHF.

The J-OFURO2 turbulent heat fluxes cover the time period from January 1988 to

December 2006. Daily and monthly means with 1� resolution are available at the

website (http://dtsv.scc.u-tokai.ac.jp/j-ofuro).
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11.4.3 GSSTF

GSSTF is produced by NASA’s Goddard Space Flight Center. The latest version 2c

or (GSSTF2c) was released in November 2011. In the prior version 2b (GSSTF2b),

Qa is derived from SSM/I V6 total columnar precipitable water and bottom-layer

precipitable water as described in Chou et al. (1995, 1997). U is obtained from

SSM/I V6 retrievals. Ta and SST are taken from NCEP/DOE reanalysis. Chou et al.

(2003) bulk algorithm is used to calculate turbulent flux. The GSSFT2b turbulent

fluxes cover the time period from July 1987 to December 2008. Daily and monthly

data sets with 1� resolution are available via the anonymous FTP (ftp://measures.

gsfc.nasa.gov/data/s4pa/GSSTF/) through the Goddard Earth Sciences Data and

Information Services Center (GES DISC). There are two sets of GSSTF2b data: sets

1 and 2 (Shie et al. 2010; Shie 2010). Set 1 was found to show a spurious increasing

global LHF, especially after 2000. Noting the large trends in set 1, set 2 is produced

by removing satellite products that have a relatively larger trend in LHF. The

satellites not included in set 2 are the DMSP F13 and F15 SSM/Is. Analyses of

LHF showed linear trends of 23.1 and 15% over the period 1987–2008, with the

surface sea–air humidity difference (Qs � Qa) accounting for 20 and 12.3%, for set

1 and set 2, respectively, and wind change contributing to 3.1% for both sets (Chiu

et al. 2012). Hilburn and Shie (2011) noted a drift in the Earth incidence angle

(EIA), and a correction algorithm which incorporates the satellites’ attitude has

been developed to account for the drift in EIA. The EIA is the angle between the

line of sight of the satellite sensor and the zenith at the Earth’s surface. This

correction has been applied to the SSM/I brightness temperature (Tb), and the latest
version, GSSTF2c (Shie et al. 2011; Shie 2011), is now available from the same

GES DISC anonymous FTP. The EIA corrected Tb’s in GSSTF2c has reduced the

trends, especially in the latent heat flux (Shie and Hilburn 2011; Shie 2011).

11.4.4 Combined Approach

Surface turbulent fluxes can also be derived from global model results that are

constrained by surface and rawinsonde observations and satellite measurements.

Such products are called reanalyses, which include NCEP’s older reanalysis

(NCEP/NCAR and NCEP/DOE) and the latest Climate Forecast System Reanal-

ysis (CFSR), ECMWF’s 40-year reanalysis (ERA-40) and interim reanalysis

(ERA–Interim), JMA’s Japanese 25-year ReAnalysis (JRA-25), and the most

recent NASA GMAO’s Modern Era Retrospective Analysis for Research and

Applications (MERRA).

The Woods Hole Oceanographic Institution produced the Objectively Analyzed

Air–Sea Fluxes (OAFlux) by combining bulk variables derived from satellites and

those from reanalysis (Yu et al. 2008). Satellite inputs include U from SSM/I,

AMSR-E, and QuikSCAT; SST from NOAA OI analysis by Reynolds et al. (2007);
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and 10-m Qa derived from SSM/I using Chou et al. (1995, 1997) technique which is

adjusted to the height of 2 m based on COARE 3.0 algorithm. All bulk variables are

also from NCEP/NCAR, NCEP/DOE, and ERA-40. The optimal fields of such

variables obtained by an advanced objective analysis approach (Yu and Weller

2007) are then employed to compute LHF and SHF using COARE 3.0 algorithm.

One-degree daily mean (1985 onward) and monthly mean (1958 onward) data are

available at their website (http://oaflux.whoi.edu/).

11.5 Error Estimates and Uncertainties

Figures 11.1, 11.2, and 11.3 show examples of the seasonal variations of the stress,

sensible heat, and latent heat flux estimates. These seasonal climatologies are

computed from GSSTF2b set 1. Comparisons of the climatology, nonseasonal

variations, and trends of HOAPS, J-OFURO, and GSSTF2 are described elsewhere

(Chiu et al. 2008, 2012).

Certainly there are biases and uncertainties in surface turbulent flux products. The

flux biases can be classified into sampling errors, errors in the input bulk variables, and

Fig. 11.1 Wind stress climatology for January, April, July, and October from GSSTF2b set 1

(1998–2008). Unit: N m�2
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Fig. 11.2 Same as Fig. 11.1 except for surface sensible heat flux. Units: W m�2

Fig. 11.3 Same as Fig. 11.1 except for surface latent heat flux. Units: W m�2
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the algorithm error (Zeng et al. 1998; Brunke et al. 2002, 2003). Brunke et al. (2011)

evaluate six reanalysis (MERRA, ERA-40, ERA–Interim,NCEP/NCAR,NCEP/DOE,

and CFSR), four satellite-based flux products (GSSTF2, GSSTF2b, J-OFURO2, and

HOAPS), and the merged product (OAFlux) by comparison with direct covariance

LHF and SHF and inertial-dissipation wind stress measurements from cruises over the

tropics and mid- and high latitudes. The biases range from �3.0 to 20.2 W m�2 for

LHF,�1.4 to 6.0Wm�2 for SHF, and�7.6 to 7.9 � 10�3 Nm�2 for wind stress. The

ranges of the biases are small for moderate wind speeds but diverge for strong wind

speeds (10–20 m s�1). The bulk variable-caused uncertainty dominates SHF and wind

stress biases ofmany products.MERRA is found to be the “best performing” among all

three reanalysis-based fluxes. Of the satellite-based products, GSSTF2b is among “best

performing” for LHF and SHF.

11.6 Summary and Outlook

Satellite-based ocean surface turbulent flux products have been improved in recent

years with better understanding of the mechanisms of air–sea exchange leading to

improved bulk flux algorithms. The improved algorithms are complemented by

more accurate satellite retrievals of input meteorological and oceanic variables.

Discrepancies among these products are mostly due to different input variables.

“Trends” in these products have been noted (Chiu et al. 2008) and can mostly be

attributed to satellite attitude and inter-satellite calibrations. More accurate satellite

attitude calculations (Hilburn and Shie 2011) and efforts to recalibrate all SSM/I

satellites, such as the development of the “fundamental climate data record” by

NOAA (Kummerow 2009), will lead to more homogeneous microwave data sets

that will be applicable for climate studies.

Accurate turbulent air–sea flux estimates are crucial for advancing our under-

standing of the dynamics of air–sea interactions at the mesoscale to global scale.

Assessment of the trends and variabilities will help quantify the relative role of the

atmosphere and ocean in global change. At the basin and regional scales, LHF has

shown to impact monsoons and hurricanes (Gautam et al. 2005; Gao and Chiu

2010), and the inclusion of LHF derived from the OAFlux merged products has a

significant impact on the prediction of typhoon intensity (Gao and Chiu 2012). The

major limitations of satellite-based flux products for tropical cyclone studies are

their relatively coarse spatial and temporal resolution or limited coverage. High-

resolution (0.25�) ocean surface turbulent flux data sets aimed at the regional to

hurricane scales have been or are being produced (Shie et al. 2009; Liu et al. 2011).

From these new data sets, improved understanding of the dynamics of air–sea

interactions at global to regional scales will emerge, and their impact on operational

applications and climate studies will soon be realized.
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Abbreviations

AATSR Advanced Along-Track Scanning Radiometer

ADEOS Advanced Earth Observing Satellite

ADEOS-2 Advanced Earth Observing Satellite 2

AIRS Atmospheric Infrared Sounder

AMSR-E Advanced Microwave Scanning Radiometer-Earth Observing System

AMSU Advanced Microwave Sounding Unit

ASCAT Advanced Scatterometer

AVHRR Advanced Very High Resolution Radiometer

CFSR Climate Forecast System Reanalysis

COARE Coupled Ocean–Atmosphere Response Experiment

DMSP Defense Meteorological Satellite Program

DOE Department of Energy

ECMWF European Centre for Medium-Range Weather Forecasts

EIA Earth incidence angle

ERA-40 European Centre for Medium-Range Weather Forecasts’ 40-year

reanalysis

ERS-1 Earth Resource Satellite 1

ERS-2 Earth Resource Satellite 2

FGGE First Global Atmospheric Research Program Global Experiment

GARP Global Atmospheric Research Experiment

GES DISC Goddard Earth Sciences Data and Information Services Center

GOES Geostationary Operational Environmental Satellite

GSSTF Goddard Space Flight Center Satellite-based Sea surface Turbulent

Fluxes

HOAPS Hamburg Ocean Atmosphere Parameters and fluxes from Satellite

observations

JMA Japanese Meteorological Agency

J-OFURO Japanese Oceanic Fluxes with the Use of Remote Observations

JRA-25 Japanese 25-year ReAnalysis

LHF Latent heat flux

MERRA Modern Era Retrospective Analysis for Research and Applications

MGDSST Merged satellite and in-situ data Global Daily SST

MODIS Moderate Resolution Imaging Spectroradiometer

NASA National Aeronautics and Space Administration

NCAR National Center for Atmospheric Research

NCEP National Centers for Environmental Prediction

NSCAT NASA Scatterometer

OAFlux Objectively Analyzed Air-sea Fluxes

QuikSCAT Quick Scatterometer

SAR Synthetic Aperture Radars

SASS Seasat-A Scatterometer System

SHF Sensible heat flux
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SMMR Scanning Multichannel Microwave Radiometer

SSM/I Special Sensor Microwave Imager

SSMIS Special Sensor Microwave Imager/Sounder

SST Sea surface temperature

TMI Tropical Rainfall Measuring Mission Microwave Imager

TRMM Tropical Rainfall Measuring Mission
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Chapter 12

Satellite-Monitored Snow Cover

in the Climate System

Li Xu

Abstract Snow cover plays an important role at climate system. Before the era of

“satellite meteorology,” traditional sources of snow observations were usually

obtained from ground-based meteorological networks, in which only the presence

or absence of snow along with snow depth is measured on a daily basis. Given the

scarcity of ground-based, in situ stations, it is difficult to adequately capture the

spatial variability of snow cover, particularly in remote, and difficult to access

regions such as polar region and Tibetan Plateau. The remote sensing from the

satellite provides an excellent method to monitor and observed global snow-cover

distribution and evolution. In this chapter, we reviewed the role of snow in climate

system, satellite snow observation and monitoring, snow–climate interaction, and

snow–atmosphere coupling strength.

12.1 The Role of Snow Cover in the Climate System

As a key component of the cryosphere, snow cover modifies the thermal

characteristics of land surfaces to modulate energy and moisture exchange with

the atmosphere above it (Cohen and Rind 1991). Because of their strong thermal

forcing to the lower atmosphere, snow-cover anomalies potentially play an impor-

tant role in climate fluctuations and predictability. For instance, observational

studies have even found a significant connection between snow anomalies over

the Eurasia and the remote Asian monsoon (Bamzai and Shukla 1999; Xu and Li

2010; Xu et al. 2009). Various GCM modeling studies (Bamzai and Marx 2000;
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Barnett et al. 1988; Dash et al. 2005; Dong and Valdes 1998; Vernekar et al. 1995)

have been conducted to support this snow–monsoon inverse relationship.

The direct impact of snow cover, known as the snow albedo effect, will dramatically

change the land surface energy budget and then influences air temperature, density,

pressure, etc. Walsh et al. (1982) demonstrated that the presence of snow cover is

associated with near-surface cooling of 5–10 K in the lower troposphere. The indirect

impact, also known as the snow hydrological effect, is a result of anomalous soil

moisture from snowmelt that will later impact the atmosphere through land–climate

interactions. However, very few studies have investigated this issue, partially due to the

complicated snowmelt and runoff processes and the unavailability of accurate snow

water content datasets.

Besides the direct and indirect snow effects, positive and negative snow–atmosphere

feedbacks will further amplify or ameliorate anomalies. The most important positive

feedback is the snow albedo feedback. Snow has the highest albedo in nature. This

causes the land surface to reflect more of the incoming solar radiation. With warmer

temperatures, the area of snow-cover decreases and land surfaces absorb an increasing

fraction of solar radiation. This increase of total absorbed solar radiation contributes to

continued and accelerated melting and warming. On the other hand, a colder climate

will keep more snow cover and sustain lower air temperatures (Wiscombe and Warren

1980). Another important but less known negative (self-regulating) feedback is the

snowfall-stability feedback, first suggested byWalland and Simmonds (1996).With the

sudden increase in snow cover after a snow storm, the air temperature in the lower

troposphere decreases and static stability of the atmosphere increases; this reduces the

probability of subsequent snowfall; reducing snowfall further results in decreasing snow

cover by snow sublimation and blowing snow event; decreasing snow cover at the land

surface increases the sensible heating to the atmosphere and decreases the static

stability, increasing the probability of snowstorms. This negative feedback keeps the

snow cover relatively stable over high latitudes in the winter.

12.2 Satellite Snow Monitoring

Accurate observations or monitoring of the snow cover across the globe has great

potential applications to weather, climate, and hydrology. Systematic measurements

of snow depth at meteorological observation stations have been collected for over a

century. At these stations, only the presence or absence of snow along with snow

depth is measured on a daily basis by a snow stick or stake. Due to the sparseness of

measuring stations, it is difficult to adequately capture the spatial variability of snow

cover on a global scale. Furthermore, most of these observations are limited to snow

depth, which is not suitable for snow modeling due to rapid gravity compaction.

In other words, density can vary greatly, making it difficult to estimate the mass of

water in the snow pack. Until the development of automatic stations like SNOTEL

(snow telemetry) in recent decades, accurate real-time measurement of snow water

equivalent (SWE) was not available. However, the point measurement at stations can
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only give a potentially representative status in the given locality. Also, the snow

extent or snow-cover fraction (SCF) cannot be measured easily in situ.

With developments in remote sensing, satellite-derived snow information has

become an important alternative data source. Weekly snow mapping of the Northern

Hemisphere using National Oceanographic and Atmospheric Administration

(NOAA) and National Environmental Satellite, Data, and Information Service

(NESDIS) data began in 1966 (Robinson et al. 1993). However, the coarse spatial

resolution (1� over Northern Hemisphere) in the NESDIS data cannot well represent

the patchy and shallow snow cover at middle latitudes. In recent decades, the NOAA

Interactive Multisensor Snow and Ice Mapping System (IMS) increased spatial

resolution of snow maps to 24 km (Ramsay 1998). Besides visible images, passive

microwave SSMR-SMM/I (Chang et al. 1987), and AMSR-E (Chang and Rango

2000) also provide snow water estimation over the globe at low resolution, although

the accuracy still cannot reach the requirements for many modeling applications.

With improvements in polar-orbiting satellites, the National Aeronautics and

Space Administration (NASA) Earth Observing System (EOS) Terra satellite was

launched on December 18, 1999, with a complement of five instruments, one of

which is Moderate-Resolution Imaging Spectroradiometer (MODIS). Besides the

comprehensive observations of cloud, ocean, and earth surface characteristics

available from the Terra MODIS, a snow-cover product has been available since

February 2000. With substantially improved spatial resolution (500 m globally),

high temporal frequency (daily), enhanced capability to separate snow and clouds

(Hall et al. 2001, 2002) due to more spectral bands (particularly in the shortwave

infrared), as well as a consistently applied, automated snow-mapping algorithm

(Riggs and Hall 2002), MODIS provides quantitative monitoring of global snow

extent, even in inaccessible regions such as the Tibetan Plateau (TP) and the

Himalayas. In particular, the single satellite platform provides excellent consis-

tency with MODIS snow data that are hard to obtain in previous satellite datasets.

The quality of MODIS snow data has been evaluated in several previous studies

(e.g., Hall et al. 2001; Klein and Barnett 2003). As determined by prototype

MODIS data, annually averaged, estimated error for Northern Hemisphere snow-

cover maps is approximately 8% in the absence of clouds (Hall et al. 2002). The

cloud mask, however, must be applied carefully, since there is a tendency to

overestimate cloud cover (Ackerman et al. 1998). In addition, confusion in

identifying cloud over snow has been observed in high-elevation regions, e.g., the

Sierra Nevada in California and Southern Alps of New Zealand (Hall et al. 2001).

This problem has been partially improved in the most recent MODIS data products

(Riggs and Hall 2002). Pu et al. (2007) evaluate the MODIS snow data over the

Tibetan Plateau, the third “polar” in the world, shown a practical good detection of

scatter patchy snow over these regions.

Figure 12.1 shows the MODIS-monitored Northern Hemisphere snow-cover

fraction (SCF, %) from January to December. Note that during winter there are

some blank areas in high-latitude region due to the polar night. From September to

February, snows accumulate in high-latitude polar regions and then gradually

extend to the south. The Tibetan Plateau, although located in the middle latitudes
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(roughly 25–45�N), begins to build up shallow snow cover in October due to its

high elevation. During the snow maximum (the end of February), more than half of

the North American continent and a large portion of Eurasia are covered by snow

(SCF larger than 90%). The transition zone of the snow line (edge) reaches

approximately 50�N. Tibet and the Rocky Mountains are two noteworthy snow

regions in the middle latitudes. From March to August, the snow cover gradually

depletes toward the North Pole due to the increase in solar energy. The moving of

the snow line is generally parallel with the latitude lines, except in mountainous

regions where there exists some patchy scattered snow at high elevations.

It is still difficult to obtain a complete, accurate global SWE dataset only based

on in situ observations, due to limited observational stations with SWE

measurements, as described earlier. Passive microwave remote sensing, such as

SSMR-SMM/I (Chang et al. 1987) and AMSR-E (Chang and Rango 2000), could

provide snow water estimation with relative larger errors. In the future, data

assimilation incorporated with land surface models has proved to provide the best

estimation of SWE by optimally merging observation and model information to

minimize potential errors (Pan et al. 2003; Rodell et al. 2004).

12.3 Snow–Climate Interaction

Observational studies have demonstrated that regional-scale snow-cover anomalies

are strongly linked with many large-scale general circulation anomalies, such as

summer monsoon onset and intensity (Bamzai and Shukla 1999), lagged changes in

Fig. 12.1 Shows The MODIS-monitored Northern Hemisphere snow-cover fraction (SCF, %)

from January to December. Note that during winter, there are some blank areas in high-latitude

region due to the polar night
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the northern annual mode (Thompson et al. 2000), typhoons over the western Pacific

(Xie et al. 2005), and the outbreak of cold waves at middle latitudes (Vavrus 2007).

Over 100 years ago,Blanford (1884) first suggested that the variability of continental

snow cover might exert a thermal forcing on the land surface and consequently

influence the Asian summer monsoon and its rainfall. Based on Blanford’s hypothesis,

Walker (1910) found a negative correlation between Himalayan snow depth at the end

of May and the amount of summer rainfall over India. Hahn and Shukla (1976) first

used modern observations to confirm an apparent relationship between the Eurasian

snow cover and the Indian monsoon rainfall based on NOAA/NESDIS snowmappings

derived from satellite visible imagery. There have beenmany empirical studies focused

on this relationship betweenwinter/spring snow cover and the Indian summermonsoon

rainfall (Bamzai and Shukla 1999; Dey and Kumar 1983; Dickson 1984; Hahn and

Shukla 1976; Kripalani and Kulkarni 1999; Parthasarathy and Yang 1995; Sankar-Rao

et al. 1996; Yang 1996).

In particular, the snow cover over the Tibetan Plateau (TP) is believed to exert

a significant influence on the summer rainfall over East Asia (EA). As EA is located

in the downstream region of the TP, the snow-cover anomalies over the TP could

exert a stronger thermal forcing on the East Asian Summer Monsoon (EASM).

Chen and Yan (1979, 1981) first found that positive snow depth anomalies over the

Tibetan Plateau in boreal winter–spring are accompanied by above normal

May–June rainfall in southern China. Other observational studies (Chen et al.

2000; Wu and Qian 2003), however, suggested a negative correlation between

Tibetan winter snow depth and subsequent summer precipitation over southern

China, but indicated a positive correlation over the Yangtze River Basin (YRB).

Chen and Wu (2000) obtained positive correlations over the Yangtze River region

but negative correlations in South China for JJA. It has also been found that the

correlation of rainfall with the Tibetan Plateau winter snow depth has a pronounced

change from July to August and the correlation for JJA rainfall differs from that for

May–June (Chen and Wu 2000). Although the snow-cover connection with EASM

is not very robust, snow cover is applied as one of four key predictors besides

ENSO, subtropical high, and blocking for short-range climate prediction at

National Climate Center of China (Xu and Li 2010; Zhao 1999).

Aside from the monsoon, other linkages between snow cover and atmospheric

circulation have been discovered by numerous observation studies. Studies show

that excessive summer–autumn snow coverage over Eurasia favors unusually cold

winters over Europe and the USA, due to forcing of the negative phase of Arctic

oscillation (Cohen and Entekhabi 1999). Subsequent studies confirmed the physical

mechanism of this relationship (Cohen and Saito 2003; Gong et al. 2002, 2004a;

Saito et al. 2001): early-season snow-cover anomalies trigger vertically propagating

planetary waves that quickly alter the stratospheric polar vortex. These observa-

tional linkages between snow cover and atmospheric circulation have motivated

efforts for seasonal climate forecasts based on snow anomalies.

In addition to being a climate predictor, snow cover also has profound ecological

and societal impact on the hydrosphere since snowpack strongly affects the
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underlying soil temperature and local river runoff. Groisman et al. (1994) found a

retreat of North American springtime snow associated with strong warming. The

extent of boreal snow during spring was significant lower during the 1990s than at

any time in the previous century (IPCC 2007). Barnett et al. (2005) concluded

future water supplies may be hindered in a warmer climate with less snowfall and

earlier melting. In the background of global warming, how the snow cover will

change is a challenging scientific question.

12.4 Numerical Simulations

Atmospheric general circulation models (AGCMs) coupled with various Land

Surface Models LSMs are popular tools for examining the snow–atmosphere

interaction studies, largely because the numerical model can be easy manipulated

via deliberate changes to physics processes or parameterizations in controlled

experiments. Numerical simulations also provide a method to explore the climate

system with some extreme snow situations that could not happen in nature.

Various AGCM modeling studies (Bamzai and Marx 2000; Barnett et al. 1988;

Dash et al. 2005; Dong and Valdes 1998; Vernekar et al. 1995) have been

conducted to support the snow–monsoon inverse relationship first suggested by

Blanford (1884). These studies indicate the AGCMs are able to reproduce an

inverse snow–monsoon relationship and snow-cover and snow-mass impact on

climate on a seasonal time scale. Ferranti and Molteni (1999) investigated the

effect of springtime snow conditions over Eurasia on the monsoon circulation by

using ensemble simulations. The results suggested Eurasian snow depth is probabi-

listically predictable and that it does influence the seasonal-mean monsoon inde-

pendently of the ENSO phase. As a result, proper observations and simulations of

the Eurasian snowfield can provide an additional and independent contribution to

monsoon prediction.

Several prior studies have attempted to quantify the snow role in the cold region

climate (Gong et al. 2004b; Vavrus 2007; Walsh et al. 1985; Watanabe and Nitta

1998). However, those earlier works have been limited in spatial and temporal

extent. Prescribed excessive or deficient snow over a specific region, such as

Eurasia and Siberia, has been investigated based on the observed fluctuation over

monthly to seasonal time scales.

Due to the limitation and imperfections of snow schemes in land surface models,

some simulation studies get conflicting results, even with the same model. For

example, Zhang and Tao (2001) created a conceptual model to explain the possible

mechanism on the impact of the inphase change of snow cover over the TP with the

EASM and summer rainfall over Yangtze River Basin. They further verified their

conclusion by model simulations with excessive/deficient snow depth in the winter.

However, with the same IAP-9L AGCM model and the updated snow data, Li and

Chen (2006) obtained an opposite result.
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12.5 Snow–Atmosphere Coupling Experiment

Xu (2011) designed a series numerical experiment to investigate the role of snow

cover as a source of predictability at seasonal time scales over the Northern Hemi-

sphere. A global climate model is used, consisting of the fully coupled land and

atmosphere components of the Community Climate System Model. Ensembles of

boreal spring–summer climate simulations are made with specified climatological sea

surface temperatures. Following the methodology of the Global Land–Atmosphere

Coupling Experiment (GLACE), a control ensemble is created with perturbed initial

atmospheric states and realistic land surface initialization. In the test cases, snow-

cover fraction and snow water equivalent are specified in all ensemble members

based on model-simulated snow information or realistic snow data from remote

sensing and an operational land surface analysis. The snow–atmosphere coupling

strength is quantified as in GLACE as the degree to which identically constrained

snow boundary conditions reduce the ensemble spread of key meteorological

variables like precipitation and near-surface air temperature. The snow albedo effect,

snow hydrological effect, or mixed effects are estimated by different experiments and

snow stages. Metrics of potential predictability and feedback are also investigated.

From spring to early summer, the snow-covered regions demonstrate significant

coupling to the atmosphere over large portions of the Northern Hemisphere

(Fig. 12.2). The local coupling between snow state and atmosphere is found to

have three distinct stages: the stable-snow period before snowmelt when interactions

are through radiative processes controlled by albedo, the period after snowmelt when

interactions are through the delayed hydrologic effect of soil moisture anomalies

resulting from snow anomalies, and the intervening period during snowmelt when

both radiative and hydrologic effects are important. The coupling strength is strongest

during the snowmelt period along the transient zone between snow-covered and

snow-free areas and migrates northward with the retreating snow line. The coupling

strength due to the hydrological effect (soil moisture impact) after snowmelt is

generally stronger than the coupling strength due to the albedo effect (radiative

impact) before snowmelt. The Tibetan Plateau is a special snow–atmosphere cou-

pling region due to its high incident solar radiation caused by its high altitude and

relatively low latitude.

Figure 12.3 shows the zonal mean over land of coupling strengths shown in

Fig. 12.2. At all latitudes, the coupling strength is strongest during snowmelt and

weakest before the snowmelt. The coupling strength generally increases with latitude

to a peak at roughly 50–65� but then decrease sharply north of 70�. There is a local
maximum of coupling strength at roughly 34� caused by the Tibetan Plateau. Before
snowmelt, the coupling strength is mainly due to the snow albedo effect as shortwave

radiation increases during spring. During the snowmelt period, the SWE and SCF

have peak variability. Both albedo and hydrological effects contribute to the coupling

strength during snowmelt. The hydrological effect after snowmelt has a stronger than

the snow albedo effect before melting. The potential predictably from accurate
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Fig. 12.2 The air temperature–snow coupling strength before, during, and after the snowmelt

stage as defined in the text (From Xu and Dirmeyer (2011))

Fig. 12.3 The top panel
shows the zonal mean

(land points only) of air

temperature coupling strength

at different snow stages

defined in the text. The

bottom panel demonstrates a

conceptual model of coupling

strength (solid line) as a
function of latitude. The right
axis is the incident solar
radiation (SW; long dashed
line), and the left axis
indicates the snow depth and

snow-cover fraction (short
dashed line) (Reproduced
from Xu and Dirmeyer

(2011))
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knowledge of snow distribution is highly correlated with the snow–atmosphere

coupling strength. Conceptual models are proposed to explain the mechanisms

behind the timing and spatial distribution of snow–atmosphere coupling.

12.6 Summary

In summary, snow cover is an integral component of the earth climate system.

Observational studies have demonstrated strong snow impacts and interaction with

local weather and climate through both radiative and hydrological effects. The

satellite remote sensing provides an excellent method to observe the snow cover,

both in visible and passive microwave. The numerical simulations provide a

“virtual lab” to study snow–climate interaction. Numerical experiments illustrated

some key aspects of snow–atmosphere coupling behavior even though these

couplings and interactions are difficult to investigate by only observation-based

studies. Inspired by GLACE, Xu (2011) expand the GLACE-type experimental

framework to reveal snow–atmosphere coupling strength and its potential applica-

tion to short-range climate prediction.
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Chapter 13

Evapotranspiration Estimates from Remote

Sensing for Irrigation Water Management

Timothy C. Martin, Richard G. Allen, Larry E. Brazil,

J. Philip Burkhalter, and Jason S. Polly

Abstract Climate change impacts and increasing demands on Morocco’s water

resources present serious challenges to irrigation districts and water managers. Mod-

ernization of irrigation practices and delivery systems can help conserve water by

improving efficiencies and water productivity. Satellite imagery from Landsat and

MODIS and the METRIC surface energy balance method were used to derive

objective estimates of crop evapotranspiration (ET) in three Moroccan irrigation

sectors. The METRIC analysis requires satellite imagery with thermal (surface tem-

perature) information, as well as high-quality weather data. The spatially distributed

ET estimate maps were combined with surface water supply records and weather data

and used as inputs to a water balance analysis to estimate the quantity of supplemental

groundwater used for irrigation. The results are useful as a pre-project, baseline

condition for investments in irrigationmethods and system improvements. The remote

sensing data analysis provides useful results for large irrigated areas that have little

information on crop consumptive use and irrigation efficiency and almost no informa-

tion on groundwater abstraction. A similar approach can be used to monitor and assess

the system during and after the irrigation improvement project is completed.
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13.1 Introduction

Global warming is expected to change not only atmospheric temperature but also

climatic variables such as humidity, precipitation, and net terrestrial solar radiation

(IPCC 2007). Also predicted are an intensified hydrological cycle and altered

evapotranspiration, with implications for irrigated crops, ecosystems services, and

feedback to the regional and global climate (Jung et al. 2010).

With increasing demands on limited water supplies, exacerbated by a changing

climate, understanding when, where, and how much water is consumptively used is

increasingly important. In many arid regions of the world, irrigated agriculture is

the dominant water user, and monitoring irrigation system performance and

improving efficiency of water use are integral to sustainable water management.

Physically based actual crop evapotranspiration (ET) from remote sensing can be

used to measure water use from all sources, including precipitation and irrigation

from both surface and groundwater. The actual ET is measured for each pixel of each

satellite image acquired during an irrigation season, yielding spatially and temporally

distributed maps of ET. These products can then be used in GIS processing with

spatial analyses to produce a range of statistics, reports, visualizations, and other

results for use by water resources planners, managers, and irrigators. In Morocco, for

example, groundwater policy and regulation are not well established, and reliable

data on the location and quantity of groundwater use are not available. Satellite-

derived ET maps, combined with surface water supply data, can be used to analyze

the efficiency of irrigation water supply from all sources and to estimate the contri-

bution of groundwater.

The spatial distribution and availability of water are critical for sustainable

development of modern societies and for maintaining and protecting natural

ecosystems. Sufficient water supplies are required for agricultural, municipal,

industrial, recreational, and other uses. Economic progress often depends on devel-

opment of water supply infrastructures that store and distribute surface waters and

exploit underground aquifers.

13.2 Objective and Approach

Morocco has invested heavily in water supply infrastructure and large-scale irriga-

tion systems to secure water for urban and agricultural demands; however, these

supply oriented measures were not coupled with policies and development aimed at

sustainable water management and conservation. Recently, the World Bank and

government of Morocco formulated the $115 M Oum Er Rbia Irrigated Agriculture

Modernization Project (MA Project) to help participating farmers increase produc-

tivity and, simultaneously, promote more sustainable use of irrigation water to

overcome current and future water deficits. This irrigation modernization program

seeks to conserve water by converting to more efficient irrigation technology and to

relieve unsustainable groundwater abstraction rates. The surface water resources of

the irrigation schemes are monitored and regulated by the government of Morocco;
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however, groundwater use is largely unregulated and abstraction rates generally are

not known. The World Bank program conserves water in part by converting fixed

rotation delivery to water on-demand systems and by helping farmers shift to higher

value crops. Two of the program’s success indicators are (1) improved “water

productivity,” defined as benefit or value per unit of water consumed by the

beneficiary farmers, and (2) reduced groundwater consumption for irrigation.

Riverside Technology, inc. (Riverside) was contracted by the World Bank to

process and analyze satellite imagery to estimate crop water use in selected sectors

of three large and economically important irrigation districts in the Oum Er Rbia

and Tensift river basins of Morocco. The Riverside team used surface energy

balance methodology to estimate and map actual evapotranspiration (ET) from

remote sensing data. The ET maps were the core foundation for additional analyses,

which estimated the water balance and groundwater use in pilot sector areas

selected for water efficiency improvements and for distributing a predictable (and

sustainable) allocation of surface water to farmers while limiting or reducing their

need for groundwater consumption. The results will also provide a baseline of water

use and water productivity for comparison with post-project conditions to assess the

impacts of the project intervention.

13.3 Climate and Water Availability in Morocco

Morocco’s water resources are unevenly distributed and unreliable, and under a

changing climate, the country’s water resources are predicted to become even more

scarce. The natural reductions of water supply are exacerbated by increasing demands

from Moroccan economic development and from an increasingly urban population.

Agricultural production and processing makes up 85% of Morocco’s water use and

employs 40% of the workforce. The national agriculture strategic plan recognizes the

importance of agriculture and the direct correlation between the amount and season-

ality of rainfall and the national GDP (Ministry of Agriculture Morocco 2008).

During drought years, rainfall in Morocco can be as little as one-third of the

“normal” amount. A pressing concern is how future demand for water will be met.

Groundwater pumping, already at 30% of total water use, is used for irrigation

expansion and to supplement surface irrigation water shortages (AquaStat Data-

base; FAO 2004), yet groundwater levels are falling rapidly in many regions.

Concerns about the future of Morocco’s water resources have been widely

recognized. Arnell (1999) predicted that Morocco would shift from a medium to

highly water-stressed country1 by 2025, with a 25–50% decrease in both maximum

monthly runoff and minimum annual runoff by 2050.

Water resources supply and management is one of Morocco’s most important

national issues and is the subject of recent policy and national action plans. The issue

1Water stress is defined by the ratio of withdrawals to renewable water resources with “medium”

stress in the range of 20–40% and “high” water stress when the ratio is over 40% (Arnell 1999).
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was recognized in Morocco’s Plan Maroc Vert (PMV), or Green Plan, the country’s

strategy to transform its agriculture sector.

As a whole, the Mediterranean is expected to be one of the world’s regions most

affected by future climate change, with increasing temperature and decreasing

availability of water resources (Hulme et al. 2000; Ragab and Prudhomme 2002;

Agoumi 2003; El Ghissassi 2005). Morocco has experienced frequent and lasting

drought over the past several decades, demonstrating its vulnerability to irrigation

water scarcity and threatening livelihoods of farmers and nomad families (e.g.,

Chaouki et al. 1995). Rainfall predictions in climate assessments and studies of the

highly diverse river basins in Morocco and the surrounding region are inconsistent,

but these studies consistently predict higher temperatures in the region. Born et al.

(2008a, b) studied present and future climate variability of northwestern Africa

using IPCC AR4 data and concluded that the region will continue to experience

drying and warming trends in the future. Driouech et al. (2010) compared more than

ten RCM outputs over Morocco, all of which showed a decrease in precipitation and

a change in occurrence and distribution of extreme events for the future

(2021–2050). Using the Weather Research and Forecast (WRF) model with IPCC

AR4 GCM output as forcing fields, Patricola and Cook (2010) simulated Morocco

and North Africa present (1981–2000) and future (2081–2100) climate variation.

Based on their results, they predicted little change in future precipitation and an

increase of 5�C in future temperature.

Recent decreases in precipitation have reduced water available for irrigation

across the country, particularly in the Oum Er Rbia basin. Half of Morocco’s large-

scale irrigation systems are in this basin, which produces much of the nation’s

crops. However, agricultural production is constrained by water rationing, as

irrigation agencies have distributed, on average, only 60% of the necessary water

over the last decade. Farmers have made up for this reduction in surface water by

using groundwater (Bennani et al. 2001), and as a result, water-table levels are

declining at an alarming rate in the Oum Er Rbia basin. Quantitative estimates of

the potential impacts of climate change on Morocco’s water resources suggest a

decline of 10–15% of the renewable surface water and groundwater by the year

2020 (Bennani et al. 2001).

13.4 Methodology for Estimating Evapotranspiration

13.4.1 Introduction to METRIC

Satellite data are ideally suited for deriving spatially continuous fields of ET using

energy balance techniques. Mapping EvapoTranspiration at high Resolution with

Internalized Calibration (METRIC™) is a satellite-based image-processing tool for

calculating ET as a residual of the energy balance at the earth’s surface. METRIC

can function as an operational model for producing maps of ET for regions smaller

than a few hundred kilometers in scale and at high resolution and typically uses

Landsat imagery having 30-m resolution in the short wave and 60–120-m resolution
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in the thermal band. It also is applied with MODIS satellite data, which have a

1,000-m resolution in the thermal band for larger areas where the courser resolution

is sufficient. METRIC is particularly relevant for the Morocco study area because

of the World Bank MA project’s need for monthly ET estimates of irrigation

schemes targeted for improvement and rehabilitation, the existence of a long-term

meteorological record at key sites, and an archive of quality Landsat data including

the essential thermal bands. The surface energy balance in METRIC has advantages

over conventional ET estimations based on crop coefficient curves or vegetation

indices, in that specific crop or vegetation types are not required, and the energy

balance can detect reduced ET under water shortages, saline soils, or other

constraints.

METRIC employs calibration principles and techniques used by the pioneering

model SEBAL (Surface Energy Balance Algorithms for Land), an important energy

balance model developed by Bastiaanssen et al. (1998). In particular, METRIC uses

a calibrated inverse-modeling approach at extreme conditions (Allen et al. 2007a),

which was pioneered in SEBAL for estimating the near-surface temperature gradi-

ent (dT) as an indexed function of radiometric surface temperature, thereby

eliminating the need for absolutely accurate aerodynamic surface temperature or

the need for air temperature measurements for estimating sensible heat flux at the

surface. METRIC employs internal calibration of the satellite-based energy balance

at two extreme conditions (dry and wet), using locally available weather data.

Professionals familiar with energy balance, aerodynamics, and basic radiation

physics design METRIC algorithms for applications. The primary inputs for the

model are shortwave and longwave (thermal) satellite images (e.g., Landsat and

MODIS), a digital elevation model, and ground-based weather data measured

within or near the area of interest. ET images developed from Landsat provide

means to quantify ET on a field basis in terms of both rate and spatial distribution.

The auto-calibration in METRIC for each image uses an alfalfa-based reference ET

(ETr) that is derived from hourly weather data. The internal calibration and the use

of the indexed temperature gradient reduce or eliminate the need for atmospheric

correction of Ts and reflectance (albedo) measurements using radiative transfer

models. The internal calibration also reduces impacts of biases in estimation of

aerodynamic stability correction and surface roughness (Allen et al. 2007a).

METRIC uses weather-based reference ET so that both calibration and extrapo-

lation of instantaneous ET to 24-h and longer periods compensate for regional

advection effects where ET can exceed daily net radiation.

13.4.2 METRIC Development History

The innovative component of SEBAL and METRIC is that the energy balance

modeling uses a dT that is indexed to radiometric surface temperature, which has

eliminated the need for absolute surface temperature calibration—a major impedi-

ment to operational satellite ET. The theoretical and computational basis of SEBAL
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is described in Bastiaanssen et al. (1998, 2005) and Bastiaanssen (2000). The basis

and principles for METRIC are described in Allen et al. (2005, 2007a). ET is

determined by applying an energy balance at the surface (Fig. 13.1), where energy

consumed by the ET process is calculated as a residual of the surface energy

equation:

LE ¼ Rn � G� H (13.1)

where LE is the latent energy consumed by ET, Rn is net radiation (sum of all

incoming and outgoing shortwave and longwave radiation at the surface), G is

sensible heat flux conducted into the ground, and H is sensible heat flux convected

to the air. Energy absorbed into the canopy and by photosynthesis is generally less

than a few percent and is ignored in Eq. 13.1. One advantage of energy balance over

vegetation-based methods is that actual ET rather than potential ET (based on

amount of vegetation) is computed to capture reductions in ET caused by stresses

due to disease, salinity, or shortage of soil moisture. A disadvantage of the energy

balance approach is that the computation of LE is only as accurate as the combined

estimates for Rn, G, and H following correction for biases. METRIC attempts to

overcome this disadvantage by focusing internal calibration not on LE, but on H to

absorb intermediate estimation errors and biases.

In both METRIC and SEBAL, the sensible heat flux H (W m�2) is estimated

from an aerodynamic function where:

H ¼ ρair Cp

dT

rah;1;2
(13.2)

Fig. 13.1 Energy balance relationships that yield ET (Morse et al. 2005). Rn is net radiation

(sum of all incoming and outgoing shortwave and longwave radiation at the surface), G is sensible

heat flux conducted into the ground, and H is sensible heat flux convected into the air. Rn is

computed from satellite-measured narrowband reflectances and surface temperature; G is

estimated from Rn, surface temperature, and a vegetation index; and H is estimated from surface

temperature ranges, surface roughness, and wind speed using buoyancy corrections
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where ρair is air density (kg m�3), Cp is specific heat of air at constant pressure

(J kg�1 K�1), and rah,1,2 is aerodynamic resistance (s m�1) between two near-

surface heights z1 and z2 (generally 0.1 and 2 m above the zero-plane displacement

height) computed as a function of estimated aerodynamic roughness of the particu-

lar pixel. In METRIC, the rah,1,2 calculation uses wind speed extrapolated from

some blending height above the ground surface (typically 100–200 m) and an

iterative stability correction scheme based on the Monin-Obhukov functions

(Allen et al. 1996). The dT parameter (K) represents the near-surface temperature

difference between z1 and z2. dT is used in Eq. 13.2 because of the difficulty in

estimating surface temperature (Ts) accurately from satellites due to uncertainty in

atmospheric attenuation or contamination, radiometric calibration of the sensor,

and unknown values for air temperature, Ta, above any particular surface in an

image, where Ta can vary by more than 5�C between cold and dry conditions.

Equation 13.2 is relatively unique to SEBAL and METRIC and contrasts with

classical approaches where H is estimated using Ts and Ta—factors with a great

deal of uncertainty that can cause large error in the estimate for H. Elevating dT
above the surface eliminates the need to estimate roughness length for sensible heat

transfer, zoh, the partitioning of LE between E and T, and the degree of vegetation

clumping. It is the blended dT that Bastiaanssen et al. (1998) found to be linearly

related to radiometric surface temperature, Ts.
dT is approximated as a relatively simple linear function of Ts as pioneered by

Bastiaanssen (1995):

dT ¼ aþ b Ts datum (13.3)

where a and b are empirically determined constants for a given satellite image and

Ts datum is surface temperature adjusted to a common elevation datum for each

image pixel using a digital elevation model and customized lapse rate. The near-

surface temperature gradient over the two calibration pixels (cold pixel and hot

pixel) is computed using the inverse of Eq. 13.2:

dT ¼ H rah
ρair Cp

(13.4)

where rah is computed for the roughness and stability conditions of the cold and hot

pixels.

13.4.3 Calibration via Reference Evapotranspiration

METRIC uses the standardized ASCE Penman-Monteith equation for the alfalfa

reference ETr (ASCE – EWRI 2005) to calibrate the energy balance functions. ETr
is typically 20–30% greater than grass reference ET (ETo). ETr is used to
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approximate the ET of the cold-pixel calibration condition because METRIC does

not require the specific crop type for computation by pixel, thus eliminating the

need for relatively costly crop classification exercises.

The calibration of the sensible heat process equations to ETr corrects the surface
energy balance for lingering systematic computational biases associated with

empirical functions used to estimate some components and uncertainties in other

estimates, as summarized by Allen et al. (2005). Included are atmospheric correc-

tion, albedo calculation, net radiation calculation, surface temperature from the

satellite thermal band, air temperature gradient function used in sensible heat flux

calculation, aerodynamic resistance including stability functions, soil heat flux

function, and wind speed field. This list of biases plagues essentially all surface

energy balance computations that use satellite imagery as the primary spatial

information resource. Most polar orbiting satellites orbit about 700 km above the

earth’s surface, yet the transport of vapor and sensible heat from land surfaces is

strongly impacted by aerodynamic processes including wind speed, turbulence, and

buoyancy, all of which are essentially invisible to satellites. In addition, precise

quantification of albedo, net radiation, and soil heat flux is uncertain and potentially

biased. Therefore, even though best efforts are made to estimate each of these

parameters as accurately and as unbiased as possible, some biases do occur, and

calibration to ETr helps to compensate for this by introducing a bias correction into

the calculation of H. The result is that biases inherent to Rn, G, and subcomponents

of H are largely canceled by the subtraction of a bias-canceling estimate for H. The
result is an ET map with values ranging between near zero and near ETr, for images

having a range of bare or nearly bare soil and full vegetation cover.

13.4.4 Calculation of Evapotranspiration

ET at the instant of the satellite image is calculated for each pixel by dividing LE
from Eq. 13.1 by latent heat of vaporization:

ETinst ¼ 3; 600
LE

λ ρw
(13.5)

where ETinst is instantaneous ET (mm h�1), 3,600 converts from seconds to hours,

ρw is the density of water [~1,000 kg m�3], and λ is the latent heat of vaporization
(J kg�1) representing the heat absorbed when a kilogram of water evaporates. The

reference ET fraction (ETrF) is calculated as the ratio of the computed instanta-

neous ET (ETinst) from each pixel to the reference ET (ETr) computed from weather

data:

ETrF ¼ ETinst
ETr

(13.6)
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where ETr is the estimated instantaneous rate (interpolated from hourly data)

(mm h�1) for the standardized 0.5 m tall alfalfa reference at the time of the

image. Generally, only one or two weather stations are required to estimate ETr
for a Landsat image that measures 180 � 180 km, as discussed below. ETrF is the

same as the well-known crop coefficient Kc when used with an alfalfa reference

basis and is used to extrapolate ET from the image time to 24-h or longer periods.

One should generally expect ETrF values to range from 0 to about 1.0 (Wright

1982; Jensen et al. 1990). At a completely dry pixel, ET¼ 0 and therefore ETrF¼ 0.

A pixel in a well-established field of alfalfa or corn can occasionally have an ET

slightly greater than ETr and, therefore an ETrF > 1, perhaps up to 1.1 if it has been

recently wetted by irrigation or precipitation. However, ETr generally represents an
upper bound on ET for large expanses of well-watered vegetation. In calculation of

ETrF, each pixel retains a unique value for ETinst that is derived from a common

value for ETr, which is derived from the representative weather station data.

Daily values of 24-h evapotranspiration (ET24) are generally much more useful

than the instantaneous ET that is derived from the satellite image. In the METRIC

process, ET24 is estimated by assuming that the instantaneous ETrF computed at

image time is the same as the average ETrF over the 24-h average. The consistency

of ETrF over a day has been demonstrated by various studies, including Romero

(2004), Colaizzi et al. (2006) and Allen et al. (2007a).

The assumption of constant ETrF during a day has been shown to be valid for

agricultural crops that have been developed to maximize photosynthesis and thus

stomatal conductance. The advantage of using ETrF is that it accounts for the

increase in ET24 that can occur under advective conditions, impacts of which are

represented well by the Penman-Monteith equation.

The ET24 (mm/day) is computed for each image pixel as

ET24 ¼ EFð Þ Rn24ð Þ (13.7)

or

ET24 ¼ Crad ETrFð Þ ETr24ð Þ (13.8)

where ETrF (or EF) is assumed equal to the ETrF (or EF) determined at the satellite

overpass time, ETr24 is the cumulative 24-h ETr for the day of the image, and Crad is

a correction term used in sloping terrain to correct for variation in 24-h vs. instan-

taneous energy availability.

After ET and ETrF have been determined using the energy balance and the

application of the single dT function, then, when interpolating between satellite

images, a full grid for ETr is used for the extrapolation over time to account for

both spatial and temporal variation in ETr. The ETr grid is generally made on a 3- or

5-km base using as many quality-controlled weather stations located within and in the

vicinity of the study area as are available. Depending on data availability and the

density of the weather stations, various gridding methods can be used, including

kriging, inverse distance, and splining.
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Monthly and seasonal evapotranspiration “maps” are derived from a series of

ETrF images by interpolating ETrF on a pixel-by-pixel basis between processed

images and multiplying, on a daily basis, by the ETr for each day. The interpolation
of ETrF between image dates is not unlike the construction of a seasonal Kc curve

(Allen et al. 1998), where interpolation is done between discrete values for Kc.

The METRIC approach assumes that the ET for the entire area of interest

changes in proportion to change in ETr at the weather station. This is a generally

valid assumption and is similar to the assumptions used in the conventional

application of Kc � ETr. This approach is effective in estimating ET for both

clear and cloudy days between the clear-sky satellite image dates. Tasumi et al.

(2005) showed that the ETrF was consistent between clear and cloudy days using

lysimeter measurements at Kimberly, Idaho. ETr is computed at a specific weather

station location and therefore may not represent the actual condition at each pixel.

However, because ETr is used only as an index of the relative change in weather,

specific information at each pixel is retained through the ETrF.
CumulativeET for any period, for example, month, season, or year is calculated as:

ETperiod ¼
Xn

i¼m

ETrFið Þ ETr24 ið Þ½ � (13.9)

where ETperiod is the cumulative ET for a period beginning on day m and ending on

day n, ETrFi is the interpolated ETrF for day i, and ETr24i is the 24-h ETr for day i.
Units for ETperiod will be in mm when ETr24 is in mm d�1. The interpolation

between values for ETrF is best made using a curvilinear interpolation function

(e.g., a spline function) to better fit the typical curvilinearity of crop coefficients

during a growing season (Wright 1982). Generally, one satellite image per month is

sufficient to construct an accurate ETrF curve to estimate seasonal ET (Allen et al.

2007a). During periods of rapid vegetation change, a more frequent image interval

may be desirable. Examples of splining ETrF to estimate daily and monthly ET are

given in Allen et al. (2007a) and Singh et al. (2008).

Moderately high-resolution satellites, such as Landsat, provide the opportunity to

view evapotranspiration on a field-by-field basis, which can be valuable for water

rights management, irrigation scheduling, and discrimination of ET among crop types

(Allen et al. 2007b). The disadvantage of high-resolution imagery is less frequent

image acquisition. In the case of Landsat, the return interval is 16 days. As a result,

monthly ET estimates are based on one or two satellite images per month; however,

for areas influenced by clouds, there may be 32 or more days between high-quality

images. This can be rectified by combining multiple Landsats (5 with 7) or by using

data fusion techniques, where a more frequent but more coarse system likeMODIS is

used as a carrier of information during periods without quality Landsat images (Gao

et al. 2006; Anderson et al. 2010).
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13.5 METRIC Applications for Morocco Water Management

13.5.1 Study Area

The World Bank and government of Morocco’s Oum Er Rbia Irrigated Agriculture

Modernization Project (MA Project) selected 12 irrigation pilot sectors in 3

ORMVA (Office Régional de Mise en Valeur Agricole) water management districts

in the Oum Er Rbia basin and in the adjacent Tensift river basin. Some of the pilot

sectors were selected for early project irrigation improvements or modernization;

others were selected as comparison sectors to assess project impacts (Driss).

Figure 13.2 shows the pilot sectors and ORMVA boundaries; Haouz and Tadla

are located near the base of the Atlas Mountains, while Doukkala is near the

Atlantic coast. These three ORMVAs contain 356,220 Ha of developed irrigated

agriculture (El Faiz et al. 2001).

13.5.2 Method

The Tadla, Doukkala, and Haouz water districts required a standard METRIC

application, described in Sect. 4, although surface temperature was calculated

Fig. 13.2 Overview of study area showing Morocco water districts (ORMVAs) Tadla, Doukkala,

and Haouz and pilot irrigation sectors
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using the traditional SEBAL approach (Bastiaanssen et al. 1998; Hong 2008)

because METRIC required calibration coefficients that are not available for

Morocco. These and other details of the study are fully described in the project

final report (Riverside Technology, Inc. 2010).

Morocco has a network of weather stations that provided meteorological data for

agriculture, water management, and other applications. Bi-hourly data from three of

these stations (Table 13.1) were acquired for this study and included the following

parameters: actual vapor pressure, solar radiation, wind speed and direction, rela-

tive humidity, air temperature and dew point, and computed reference ET (alfalfa).

The meteorological data required quality control, including some filling and error

correction, but overall were of good quality and adequate for this study.

A complete inventory of available Landsat 5 images and key meteorological

inputs was conducted for each of the three Morocco water districts. A total of 18

Landsat images were acquired and processed for the 2006–2007 study period; an

example Landsat image of the Doukkala district is shown in Fig. 13.3. Landsat 5

images are acquired every 16 days, whereas the lower resolution MODIS images

are acquired much more frequently. For most places on the earth, two MODIS

measurements per day are collected, one in the morning (Terra) and another in the

afternoon (Aqua). However, the view angle on some days can be as much as 57� off
nadir, reducing the clarity of image detail and mixing information among adjacent

pixels. Typically an image is collected every 4 days with each MODIS satellite

when the view angle is within � 20� of nadir, yielding high detail (up to 250 m in

the red and near infrared bands). For parts of the study region, the time periods

between cloud-free Landsat images were 32 or more days, requiring interpolation

of ETrF. Because of these excessive time gaps between useful Landsat images,

Allen and Trezza (2009) developed a data fusion method for extending the

METRIC-based ET record using MODIS as a transfer mechanism between Landsat

images. For this technique, ratios of ETrF were developed from the cloud-free

Landsat images (30-m ground resolution) to the underlying NDVI from MODIS

images (250-m resolution) acquired on, or about, the same day. The ratios were then

interpolated between Landsat images, and for every available MODIS date, ETrF
was estimated by multiplying MODIS NDVI by the interpolated ratios. The result

was a time-integrated ETrF that followed the evolution of NDVI as monitored by

MODIS, but retained much of the 30-m resolution of Landsat. This technique does

not account directly for evaporation from precipitation or irrigation occurring

between Landsat image dates; rather, it estimates evaporation for the image gap

period based on the wetting frequencies prior to and beyond the endpoint Landsat

image dates.

Table 13.1 Weather stations providing meteorological data for the three water districts

(ORMVAs)

ORMVA Weather station Elevation (m) Latitude (N) Longitude (W) Data quality

Tadla Oulad Gnaou 450 32.290 6.522 Good

Doukkala Khemis Zemamra 165 32.622 8.699 Good

Haouz Ounasda 430 32.117 7.350 Good
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As a result of applying the METRIC methodology, daily images of spatially

distributed fractions of the calculated reference ET value (ETrF) became available.

These maps (referred to as ETrF maps) were derived from the METRIC-processed

Landsat images interpolated daily via correlation with reference meteorological

data and cubic splining. Monthly and seasonal estimates of actual ET were

computed with GIS analysis by summation of the daily ET images.

13.5.3 ET Estimates

By applying the METRIC method and interpolation techniques and combining

MODIS and Landsat data, ET results for individual parcels were discerned nearer

to the original 30-m resolution of Landsat images than to the 250-m resolution of the

MODIS-based NDVI. This was accomplished by ratio of 30-m pixels for ETrF/NDVI,
allowing ETrFL/NDVIM ratios along field edges to retain much of their boundary

definition. As shown in Fig. 13.4, the edges of irrigation center pivot parcels remain

relatively clear and well defined. The derived ETrF for some interior pixels takes on

the blocky form of the 250-m MODIS NDVI pixels.

Monthly ET imageswere generated bymultiplying dailyETrF by the corresponding

daily alfalfa-based reference evapotranspiration (ETr) within a monthly cubic splining

Fig. 13.3 Landsat image of ORMVA Doukkala Pilot sectors
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interpolation procedure. ETr values represent the ET rate expected from a well-defined

surface of full-cover alfalfa and are computed using the point weather data from the

weather stations listed in Table 13.1. The resultingmonthly ETmaps provided the basis

for review and further analyses. For the ORMVA Tadla (Fig. 13.5), ET is shown in

mm/month for each 30-m pixel for the entire irrigated area and for the pilot irrigation

schemes targeted by the World Bank-funded irrigation improvement project.

Fig. 13.4 ETrF derived from Landsat (left) and ETrF for the same area derived from a MODIS

image (right) using the ETrFL/NDVIM ratio technique

Fig. 13.5 METRIC model results of monthly ET images for the ORMVA Tadla
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Using this monthly time series of spatially distributed ET, simple GIS analysis

produced statistics and charts for each of the three study areas. For example,

monthly mean ET by ORMVA (Fig. 13.6) shows Tadla with consistently higher

ET throughout the year, indicating higher quantity and more effective irrigation as

compared with Doukkala and Haouz. Also, the temporal distribution of ETact for
Tadla shows a later and more extended peak, sustained much later into the summer

than the other areas, which are known to have a more limited irrigation water

supply. For Doukkala, the primary growing season (indicated by peak ETact) is
relatively short, with 65–70% of the total annual ETact occurring during February

through May.

Annual ET maps for the period of study, Sept 2006–Aug 2007, are shown in

Fig. 13.7 for each of the three ORMVA study areas. An enlargement of the association

annour in the Tadla area is shown to illustrate the detail achieved for the ET maps.

Annual ET values greater than approximately 400mmare shown in the predominantly

irrigated areas. In the relatively well-watered Tadla ORMVA, the irrigated areas are

particularly pronounced with annual ET typically exceeding 800 mm.

13.6 Water Balance Analysis

13.6.1 Method

A simplified water balance analysis was conducted at the irrigation sector level for

each ORMVA on a monthly time step with surface and subsurface storage assumed

Fig. 13.6 Distribution of monthly ET for each ORMVA
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to be zero. The water balance was formulated as an estimate of the irrigation

supplied by groundwater resources:

GWabstract ¼ ETact � Peffect � SWirrig (13.10)

where GWabstract is the groundwater resources abstracted for irrigation and con-

sumed by crops; ETact is the actual evapotranspiration—the total crop

consumption—taken from the METRIC-derived actual ET maps; Peffect is the

effective precipitation that contributes to satisfying crop demands and computed

from gridded precipitation estimates based on weather station data analysis

described in Sect. 4 and validated with satellite-based grid data; and SWirrig is the

surface water irrigation deliveries per ORMVA records for each irrigated perimeter

(average size approximately 100 ha), with volumes converted to irrigation depth

based on adjusted irrigated sector areas calculated using GIS tools. In addition, a

groundwater indicator was derived for monitoring and assessing irrigation

performance:

GW Indicator ð%Þ ¼ ðGWabstract=ETactÞ � 100 (13.11)

Fig. 13.7 Annual ET (Sept. 2006–Aug. 2007) for all three ORMVAs with an enlargement of a

pilot irrigation sector in Tadla showing detail of Landsat and METRIC model results
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A secondary performance indicator known as depleted fraction (DF), taken from

Kselik et al. (2008) was computed as

DF ¼ ETact=ðPeffect þ SWirrigÞ (13.12)

A DF value less than 1.0 would indicate that groundwater resources are not

required to supplement the precipitation and surface water supplies to meet crop

demands.

In addition to assessing irrigation water management for the study period, these

water balance and performance indicators should provide water managers and

decision-makers with data for long-term monitoring as water management

improvement measures are implemented.

13.6.2 Water Balance Analysis Results

All input data required for the monthly water balance analysis were prepared as

GIS-compatible files. A water balance analysis tool was developed to aid in

computing and visualizing results in both tabular and graphical form. Table 13.2

shows ET summaries by pilot sectors for each corresponding ORMVA. Figure 13.8

displays the annual data in graphical form.

Water balance results (Table 13.2 and Fig. 13.8) display annual ETact, effective
precipitation, surface water irrigation, and groundwater abstraction. The average

annual ETact estimates for the Tadla sectors are more than 50% higher than for the

Haouz sectors and more than double those in the Doukkala sectors, based on a

weighted average over the total area of the investigated sectors within the

ORMVAs.

On an annual basis, the average unit volume of surface water available for the

investigated sectors in Tadla is 99% greater than the amount available for Haouz

and 78% greater than the amount available for Doukkala. This is consistent with,

and likely a contributor to, the lower ETact reported above for these two sectors.

In addition, based on the water balance analysis results, the contribution of ground-

water resources (as evident in the values of GWabstract and GW Indicator) is higher

for Tadla and Haouz than for the Doukkala sectors.

The weighted average annual GW Indicator is 30.5% for the sectors in Tadla,

36.7% for the sectors in Haouz, and�19.3% for the sectors in Doukkala. In terms of

DF, the weighted average annual value is 1.44 for the investigated sectors in Tadla,

1.63 for the sectors in Haouz, and 0.91 for the sectors in Doukkala. In Table 13.2,

performance indicators are shown for each of the pilot sectors. DF value less than

1.0 for sectors would indicate that groundwater resources are not required to

supplement the precipitation and surface supplies to meet crop demands.

Extensive analysis was conducted for each of the irrigation sectors, including

water balance analysis providing groundwater recharge estimates where consumptive
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Table 13.2 Water balance analysis results (Sept. 2006–Aug. 2007)

ORMVA Sector

Irrig.

area

(Ha)

ETact

(mm)

Peffect
(mm)

SWirrig

(mm)

GWabstract

(mm)

GW

indicator

(% of

ETact)

Depleted

fraction

Tadla AUEA Arraja 2,691 827 142 450 235 28.4 1.40

Tadla AUEA

Alittihad

1,745 990 142 515 333 33.6 1.51

Tadla AUEA

Alomrania

1,858 903 142 529 231 25.6 1.34

Tadla AUEA Annour 3,178 859 142 429 288 33.5 1.50

Haouz RD N1-2 4,350 642 111 219 313 48.7 1.95

Haouz Oulad Gaid 2,146 592 111 258 223 37.7 1.61

Haouz RD S1.3 3,716 453 111 243 99 21.9 1.28

Doukkala Nord-Gharbia 4,380 377 181 223 �27 �7.2 0.93

Doukkala Ouest 1-

Gharbia

2,698 447 181 242 23 5.2 1.05

Doukkala S6-Sidi Smail 1,303 449 181 176 92 20.4 1.26

Doukkala sidi Bennour

small

sectors

1,241 374 181 202 �10 �2.6 0.98

Doukkala Z3-Zem amra 2,858 320 181 415 �276 �86.4 0.54

ET Actual
Effective Precipitation
Surface Water Irrigation
Net Groundwater Abstraction

Annual Totals '06 - '07
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Fig. 13.8 Water balance analysis results (Sept. 2006–Aug. 2007) for the four Tadla sectors (left),
three Haouz sectors (middle), and five Doukkala sectors (right)
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use is lower than observed system inputs. Monthly results for a pilot sector, AUEA

Alomrania, are shown in Fig. 13.9 as a representative example of the detailed analysis

conducted for each of the sectors in the three ORMVAs. In this sector, there is a net

recharge for the months of November and January.

13.7 Summary and Conclusion

Global studies suggest that North Africa and the Mediterranean will be significantly

affected by future climate change with increases in temperature and likely

decreases in the availability of water resources. The remote sensing, GIS, and

modeling tools developed under this study provided objective estimates of actual

ET for important irrigated agriculture in Morocco. Combined with conventional

data on surface water deliveries, analysis of the ET results provide managers with

water balance and estimates of groundwater pumping, which are especially useful

for monitoring in regions with limited, reliable ground information. The monthly,

high-resolution ET maps provide spatial and temporal data for analysis and visuali-

zation of irrigation water use. The results are being used by the government of

Morocco and the World Bank as a baseline condition prior to implementation of the

irrigation system improvement project. A similar analysis is planned for mid- and

post-project conditions to assess the impacts of the project improvements and

interventions on irrigation water efficiency and conservation. Combined with

socioeconomic information, the results ultimately will be used to assess the impacts

of the project on poverty reduction in the targeted rural areas of Morocco.
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Fig. 13.9 Monthly water balance in sector AUEA Alomrania (Tadla) showing high rates of

groundwater use during May and June and very low use or recharge during September–March
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Application of METRIC for ET mapping at Landsat scale can be used to assess

the impacts of climate change on future water consumption. Rates and spatial

variation of ET are derived over large areas and at relatively fine resolution,

providing substantial input to other hourly or daily land surface process models

that can, in turn, be applied with climate projections. Because METRIC requires no

a priori knowledge of soil water content, the ET estimates from METRIC are

independent of biases or assumptions regarding vegetation physiology and phenol-

ogy. This allows derivation of vegetation-related parameters by inverting

components of the energy balance produced by METRIC with less bias and

independent of the process models.

A METRIC-produced image from Landsat or MODIS satellites can be sampled

using basic GIS analysis to provide numerous combinations of ET, vegetation

amount, relative water availability, and ambient air and surface temperature.

Analysis of these combinations can increase understanding of how various vegeta-

tion communities may behave under different levels of water, environmental, and

management stressors. METRIC and other satellite-based analyses also provide the

means to extend local studies and measurements of surface energy and CO2 fluxes

to much larger areas by confirming or bias-correcting model calibration and for

particular vegetation types.
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Chapter 14

Snow Cover

Peter Romanov

Abstract Satellites present an important component of the global snow observing

system. Routine monitoring of the snow cover properties from space started in late

1960s. In this chapter, an overview is provided of techniques developed and used to

identify snow cover in satellite images and to generate maps of snow cover

distribution. The reviewed techniques include an interactive approach where

snow maps are manually generated by human analysts through a visual examination

of satellite imagery and automated algorithms that utilize satellite observations in

multiple bands in the optical, infrared, and microwave spectral range. Satellite-

based retrievals of the extent and the spatial distribution of snow cover are accu-

rately and spatially detailed. Estimates of bulk snow pack properties such as the

snow depth and the snow water equivalent are less reliable since they are strongly

dependent on other snow pack features, particularly on the snow grain size and the

snow pack stratification.

Keywords Snow cover extent • Satellite sensors • Remote sensing • Optical

microwave

14.1 Introduction

Terrestrial snow has the largest geographic extent of the cryosphere components.

It covers nearly 50 million km2 of the Northern Hemisphere (NH) continent in

winter, affecting heavily populated mid-latitude regions as well as higher latitudes.

The extent of seasonal and perennial snow cover in the Southern Hemisphere is

smaller, up to about 1 million km2, but it still presents an important hydrological
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factor controlling water budget and affecting pastoral farming in many mountain

regions. The high sensitivity of snow to changes in temperature and precipitation

makes it a primary indicator of climate change.

For over three decades, satellites have been actively used for large-scale moni-

toring of snow cover from regional to global scales. Owing to frequent scene

revisits, wide-area coverage and high spatial resolution satellite observations can

effectively supplement ground-based measurements and provide near-real-time

spatially detailed information on the snow cover distribution. Different techniques

both automated and interactive have been developed and applied to infer informa-

tion on snow from satellite imagery. The developed snow mapping techniques

utilize satellite measurements in the visible, near-IR, infrared (IR) and in the

microwave spectral bands.

14.2 Interactive Snow Mapping Technique and Product

Since 1966 NOAA has been generating snow cover charts for the Northern Hemi-

sphere. Maps are drawn interactively by analysts who rely primarily on the optical

imagery from geostationary and polar-orbiting satellites (Ramsay 1998). Until 1997

snow maps were produced on a coarse grid with about 180 km cell size on a weekly

basis. In 1998 the temporal and spatial resolution of the maps was increased to daily

and 24 km, respectively, and in 2004 the spatial resolution of the product was

further improved to 4 km (Helfrich et al. 2007) (see an example of the daily chart in

Fig. 14.1). NOAA’s interactive snow cover charts are the longest satellite-derived

record of snow extent. This dataset has been used as the basis for many analyses of

snow cover variability and change on a hemispheric and continental basis (e.g.,

Robinson et al. 1993; Dery and Brown 2007). At NOAA, the National Weather

Service (NWS) interactive snow maps are used to initialize operational numerical

weather prediction (NWP) models (Ek et al. 2003).

From the climatological point of view, a drawback of the NOAA interactive

snow charts consists in the change of the temporal and, especially, of the spatial

resolution of the product which introduced inhomogeneity in the snow extent time

series. Although NOAA analysts are instructed to use a “50% coverage rule” when

deciding whether the grid cell is snow covered or snow free, they typically follow

an “aggressive” approach preferring commission errors in snow mapping to omis-

sion errors and therefore tend to overestimate the extent of a patchy and intermittent

snow cover. D. A. Robinson (2006, personal communication) has found that at

coarser spatial resolution, analysts map considerably more snow in the mountainous

areas in fall and spring. Due to the same reason, the snow extent in coarser

resolution maps may also be overestimated along the snow boundary.

Assessment of the Northern Hemisphere snow extent derived from the NOAA

interactive snow and ice charts has revealed an above average coverage in the

middle of 1970s and a substantial decline in the yearly average snow-covered area

during 1980s and beginning of 1990s. Later in the second half of 1990s, the snow
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extent recovered and remained close to its average values from late 1990s into the

beginning of the twenty-first century. Despite this recovery, the overall trend in the

satellite-derived snow extent since early 1970s remains negative. Figure 14.2

illustrates the differences in NH springtime snow cover for the period 1988–2004

relative to the period 1967–1987 derived from NOAA interactive snow cover

charts. While there are some areas where snow cover increased, overall the extent

of snow cover in spring has declined.

14.3 Snow Retrievals with Microwave Sensors Data

Since 1978 global observations of the snow cover have been performed using

microwave measurements from Nimbus-7 Scanning Multichannel Microwave

Radiometer (SMMR) and later, since 1987, with the Special Sensor Microwave

Imager (SSM/I) flown by the Defense Meteorological Satellite Program (DMSP)

Fig. 14.1 Example of the daily snow and ice cover map for the Northern Hemisphere generated

within NOAA interactive multisensor snow and ice mapping system (IMS). On the web at http://

www.natice.noaa.gov/ims/
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(e.g., Grody and Basist 1996). Snow cover products have been also generated

from the Advanced Microwave Sounding Unit (AMSU) onboard NOAA polar-

orbiting satellites (Kongoli et al. 2004) and from the Advanced Microwave Sounding

Radiometer (AMSR-E) onboard the Aqua satellite (Kelly et al. 2003). Most clouds are

transparent in the microwave which makes microwave snow remote sensing

techniques practically weather independent. Microwave-based techniques also attract

a lot of interest due to their ability (although rather limited) to provide information on

physical properties of the snow pack, particularly on its depth andwater equivalent. To

identify snow in satellite imagery, most algorithms utilize observations of upwelling

microwave radiance at two frequencies, typically 19 and 37 GHz. Algorithms to infer

Fig. 14.2 Differences in the distribution of Northern Hemisphere March–April average snow

cover between earlier (1967–1987) and later (1988–2004) portions of the satellite era (expressed in

% coverage). Negative values indicate greater extent in the earlier portion of the record. Extents

are derived from NOAA/NESDIS snow maps. Red curves show the 0 and 5�C isotherms averaged

for March and April 1967–2004, from the Climatic Research Unit (CRU) gridded land surface

temperature version 2 (CRUTEM2v) data (From IPCC 2007)
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snow depth (SD) or snow water equivalent (SWE) from observations in the micro-

wave usually assume a linear relationship between SD or SWE and the difference of

microwave brightness temperatures at 19 and 37 GHz. Figure 14.3 presents an

example of a global SWE map derived from observations of AMSR-E instrument

onboard Aqua. These maps have been generated at NASA daily since 2002 at the

spatial resolution of 25 km.

The most notable limitations of microwave observations consist in their rela-

tively coarse spatial resolution (currently 10–50 km) and in poor sensitivity to

shallow and melting snow (Walker and Goodison 1993). Cold rocks exhibit a

spectral response in the microwave similar to the one of snow (Grody and Basist

1996). As a result microwave algorithms tend to confuse cold rocks with snow

cover and thus overestimate snow in the mountains. Because of a tendency to miss

shallow and melting snow, microwave products typically underestimate the snow

extent in the beginning and in the end of the snow season. Armstrong and Brodzik

(2001) have found that the SSM/I and SMMR data-based algorithm maps consis-

tently have less snow over the Northern Hemisphere as compared to NOAA

interactive snow charts. The difference in the estimated snow-covered area ranges

from 2% in early spring to 25% in late fall. In the same time, anomalies in the yearly

average in the snow extent derived from SSM/I demonstrate a noticeable correla-

tion with NOAA interactive charts.

Snow depth and snow water equivalent estimates from observations in the

microwave are limited only to dry snow packs. The reported errors of the snow

water equivalent range within 5–45 mm over non-forested areas and increase by

5–10 mm over forests (e.g., Singh and Gan 2000; Pulliainen et al. 1999; Tait 1998).

This corresponds to 40–100% if the error is expressed as a percentage error of the

total SWE. Kelly et al. (2003) put the estimate of the accuracy of microwave snow

Fig. 14.3 Example of a global map of snow water equivalent (SWE) derived from observations of

AMSR-E onboard Aqua satellite. SWE retrievals are not reliable and therefore are not performed

over Antarctica and most of Greenland. AMSR-E SWE retrievals are available from National

Snow and Ice Data Center (NSIDC) at http://nsidc.org/
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depth retrievals at 50–70% for mostly forested locations. Much of uncertainty

associated with SWE and snow depth retrievals from satellite observations in the

microwave results from a strong dependence of the surface-emitted microwave

radiation on other physical properties of the snow pack: its depth, the snow grain

size, density, and stratification (Rosenfeld and Grody 2000). Uncertainty in the

forest cover properties and its effect on the upwelling radiation complicate micro-

wave snow depth and SWE retrievals even further. Currently the most accurate

estimates are obtained from region-specific empirical algorithms, where limiting

the geographic domain helps to reduce the variation of sensitive factors (e.g.,

Derksen et al. 2003).

As compared to passive microwave instruments, synthetic aperture radars (SAR)

provide much higher, up to several meters spatial resolution imagery. However,

current active microwave sensors operate at frequencies too low to derive informa-

tion on the snow depth or SWE. They can be effectively used only to distinguish

between dry and melting snow and thus can be applied to monitor seasonal snow

freeze/thaw processes (e.g., Koskinen et al. 1997).

14.4 Automated Snow Remote Sensing in Optical

Spectral Bands

As compared to satellite passive microwave measurements, observations in the

optical spectral range allow for more accurate mapping of snow cover at higher

spatial resolution. The reflectance of snow is high in the visible spectral band but

drops to very low values in the shortwave and in the middle infrared. This specific

spectral feature distinguishes snow from most other natural land surface cover types

and clouds and therefore is actively used in automated algorithms to identify snow

in satellite imagery.

Since 2000 NASA has produced snow cover maps from observations of the

Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Terra and

Aqua satellites. A suite of MODIS snow products includes global maps of snow

cover distribution generated at daily, 16-day, and monthly time steps at a spatial

resolution ranging from 500 m to 20 km (Hall et al. 2002). Several algorithms have

been developed and applied to identify and map snow cover from Advanced Very

High Resolution Radiometer (AVHRR) sensor onboard NOAA polar-orbiting

satellites (e.g., Simpson et al. 1998; Baum and Trepte 1999). In 2006, an automated

algorithm to identify snow cover in AVHRR imagery was implemented at NOAA

NESDIS. This technique is used to produce daily, global snow cover maps of snow

cover at 4 km spatial resolution (http://www.star.nesdis.noaa.gov/smcd/emb/snow/

HTML/snow.htm). Maps of snow cover distribution are also produced from a

number of other instruments onboard polar-orbiting satellites including, in particu-

lar, VEGETATION from the Système Pour l’Observation de la Terre, literally

translated as the “system for earth observation” (SPOT) and the Landsat Thematic

Mapper (e.g., Xiao et al. 2004; Dozier and Painter 2004).
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Clouds present the major problem for snow cover mapping from satellite

observations in the optical spectral range. Estimates of Simic et al. (2004) show

that in daily MODIS-based snow maps, clouds occupy about 40% of the area in the

middle and high latitudes. Inability to distinguish between snow-free and snow-

covered land beneath the clouds cause discontinuity both in the time series and in

the derived spatial distribution of snow cover and therefore reduce the value of

these products for model applications. Because of cloud gaps, optical snow maps do

not allow for accurate estimation of the continental or hemispherical snow extent on

a daily basis. Partial improvement in the map area coverage can be achieved with

geostationary satellites which provide multiple observations per day and hence

increase the chance to see the land surface clearly without cloud (Romanov and

Tarpley 2006; deWildt et al. 2007). With geostationary satellites, however, the map

coverage is only regional and is limited to the area within ~ 65�N and S.

Snow maps derived from satellite observations in the visible and infrared

generally demonstrate higher accuracy than corresponding microwave products.

MODIS snow maps were found to correspond to surface observations of snow

cover in 90–100% of cases over non-forested locations, deciduous forests, and in

80–90% over dense coniferous forests (Simic et al. 2004). Hall and Riggs (2007)

estimated the average rate of agreement between MODIS 500 m resolution snow

maps and in situ data equal to 93%. A slightly lower, 88%, agreement was reported

by Romanov et al. (2000) for snow maps derived from observations of Geostation-

ary Operational Environmental Satellite (GOES). All of the above estimates pertain

to North America; however, there is no reason to expect substantially different

accuracies of snow retrievals in Eurasia.

Continuous observations from AVHRR onboard different NOAA satellites have

been available since the late 1970s. The Canadian Center for Remote Sensing

(CCRS) has applied an automated technique to consistently reprocess historical

AVHRR data for the time period from 1982 to 2005 and to establish the snow cover

climatology over Canada at 1 km resolution (Khlopenkov and Trishchenko 2007).

Expanding these efforts to the whole globe would lead to the development of a

consistent long-term dataset suitable for snow climatology and climate change

studies.
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Chapter 15

Climate-Scale Oceanic Rainfall Based on Passive

Microwave Radiometry

Long S. Chiu, Si Gao, and Dong-Bin Shin

Abstract In the microwave regime, the relatively low and stable emissivity of the

sea surface serves as an excellent background over which brightly emitting

hydrometeors can be distinguished. Space/time oceanic rainfall has been estimated

from microwave radiometry using a simple radiative transfer model of an atmo-

spheric rain column, a rain rate distribution to account for sampling deficiencies,

and an empirical correction of the nonuniformly filled field of view of the micro-

wave sensor. The microwave emission-based brightness temperature histogram

(METH) technique has been applied to the Defense Meteorological Satellite Pro-

gram (DMSP) Special Sensor Microwave Imager (SSM/I) to produce over 25 years

of monthly oceanic rainfall. The METH technique is described and the retrieved

parameters are assessed. The inter-satellite calibration of microwave and DMSP

SSM/I sensors provided a climate-scale oceanic rainfall time series capable of

examining climate trends and variabilities.

Keywords Microwave radiometry • SSM/I • Oceanic rainfall • Rain frequency •

Mixed lognormal distribution • Inter-satellite calibration • Climate trend

15.1 Introduction

Accurate measurements of global rainfall are crucial for advancing our understand-

ing of the climate system such as the water and energy cycles. The lack of global

gauge networks, especially over the ocean, in mountainous terrains, or in remote
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areas, points to satellite observation as the only viable mean for global-scale rainfall

monitoring. Over the ocean, marine observations by ships and buoys have been the

major source of rainfall observations. Efforts to document and analyze these marine

observations have pointed to lack of standards of measurement, inadequate sam-

pling as major sources of uncertainty. Major efforts, such as the International

Comprehensive Ocean-Atmosphere Data Set (ICOADS), have been undertaken to

collect, document, and quality control these observations (Woodruff et al. 1987,

2011). The advent of satellite and sensor technology that began in the late 1960s

ushered in a new era of geophysical monitoring techniques for operational and

climate applications (Acker et al. 2002).

Early work of oceanic rainfall relies on visible and infrared observations of

cloud type and extent (see Barrett and Martin 1981; Acker et al. 2002; Chiu 2011).

During the Global Atmospheric Research Experiment (GARP) Atlantic Tropical

Experiment (GATE) conducted in 1974, Arkin (1979) found a tight relation

between the total areal rainfall as estimated from shipborne radar data taken and

the area of high clouds within the observation area. He developed a GOES Precipi-

tation Index (GPI). The GPI expresses the total space/time rainfall as the total areas

of high clouds (with cloud top temperature of<235 K) multiplied by a constant rain

rate of 3 mm/day. This technique has been extended to other geosynchronous

satellites and has proven to work well in the tropics if high non-raining cirrus

clouds are excluded (Chiu et al. 1993). This observation is consistent with the so-

called area-time integral in radar rainfall estimation and the threshold techniques in

estimating space/time rainfall (Lovejoy and Austin 1979; Inoue 1987; Chiu 1988;

Chiu and Kedem 1990). Follow-on development includes the partitioning of the

cloud areas into convective and stratiform rain, technique to discriminate non-

raining high cirrus, and their merging with microwave rainfall measurements to

improve the space/time sampling (Acker et al. 2002; Chiu 2011; Chokngamwong

and Chiu 2009; Huffman et al. 1997).

Microwave remote sensing of rain is especially suited over the ocean. In the

microwave regime, the emissivity of the sea surface decreases with temperature;

hence, the sea surface acts as a fairly constant dark background against which

highly emissive raining hydrometeors can be distinguished. Since the first launch of

the Electrically Scanning Microwave Radiometer onboard NASA’s NIMBUS 5

satellite (Wilheit et al. 1977), our understanding on the use of microwave in rainfall

estimation has greatly improved. This is propelled by a long record of the Special

Sensor Microwave Imager (SSM/I) data taken on board the Defense Meteorological

Satellite Program (DMSP) satellites and a focused international effect of the

Tropical Rainfall Measuring Mission (TRMM, Kummerow et al. 2000).

While satellite observations provide snapshots of the raining conditions, the revisit

time tends to be long compared to the timescale of rain cells. These small-scale rain

events are likely to be under-sampled, thus leading to a bias in the estimation of

space/time rainfall. This chapter describes a technique to estimate space/time oceanic

rainfall frommicrowave radiometry that takes account of the interactions between the

microwave radiation and the falling hydrometeors and the characteristics of the rain

fields. The microwave emission-based brightness temperature histogram technique,

226 L.S. Chiu et al.



or (METH), is based on the use of histogram of brightness temperature over the time

period, providing a characterization of the non-raining portion of the observations

(Wilheit et al. 1991; Chiu et al. 2010). The technique is robust and is suited for

examining rainfall estimates across different satellite platforms and sensors. Inter-

sensor and inter-satellite calibrations are crucial for establishing multi-platform

multi-sensor rainfall record for climate studies.

In Sect. 15.2, the model structure and the underlying theory is briefly described.

Section 15.3 examines the product output parameters. Section 15.4 describes

examples of the technique to climate studies, and Section 15.5 discusses future

work and potential improvements to improving this product.

15.2 Background

SSM/I is a seven-channel, four-frequency (19.35, 22.235, 37, and 85.5 GHz) conically

scanning microwave radiometer (Hollinger et al. 1990). The Special Sensor Micro-

wave Imager/Sounder (SSMIS) is a 24-channel microwave radiometer and sounder

with frequencies range from19 to 183GHz (Kunkee et al. 2008). It combines an SSM/I

with a microwave sounder that provide temperature and moisture profile information.

They are flown on board DMSP satellites. Description of the SSM/I and SSMIS

sensors and their operations can be obtained from the National Snow and Ice Data

Center (NSIDC)’s web site (http://nsidc.org/data/docs/daac/f8_platform.gd.html).

Given an atmospheric profile, the observed microwave radiation from a satellite

can be calculated via radiative transfer. This is the forward problem. The inverse (or

retrieval) problem is to estimate parameters of the atmospheric column from the

observed radiance.

15.2.1 Atmospheric Model

The atmospheric model consists of a cloud layer on top of a rain column over the

ocean surface (see Fig. 15.1 from Wilheit et al. 1977). A surface relative humidity

(RH) of 80% is assumed which increases linearly to saturation (100%) at the freezing

level (FL) (Wilheit et al. 1977, 1991). The FL is the height of the zero degree

isotherm. A non-precipitating cloud layer with a density of 0.5 g/m3 and 0.5 km in

thickness is present near the freezing level. Underneath the FL is a rain column

consisting of rain drops that follow a Marshall Palmer (M-P) distribution (Marshall

and Palmer 1948).

With the assumption of the humidity and M-P rain drop distribution, the FL

specifies the moisture condition of the rain column. A brightness temperature T,
defined as twice the brightness temperature of the vertically polarized 19 GHz

minus the 22 GHz (T ¼ 2Tb 19V � Tb 22V), is used. This combination channel
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minimizes the effect of water vapor on the rain signal. Figure 15.2 (from Wilheit

et al. 1977) shows the T–R relation for an earth incidence angle of 53� for various
FL values. The T–R relation can be empirically approximated as

TðR; FLÞ ¼ T0 þ ð285 K� T0Þð1� e�R=RCÞ � 3:5R1=2 (15.1)

where RC ¼ 25=FL1:2

Here T is the combination channel brightness temperature, R the rain rate in mm/h,

T0 the brightness temperature in non-raining conditions, and FL is the freezing level

height, in km. The second term of the equation on the right represents the emission

from the rain column, and the third term represents scattering effects. It can be seen

that this is a double value problem, i.e., given a value of T, there are two solutions of
R that satisfy this relation. With the resolution of the SSM/I, the high rain rate

solutions are rarely observed.

FREEZING LEVEL

1/2 km 100% RELATIVE
HUMIDITY

NON-PRECIPITATING
CLOUD 0.5 g/m3

MARSHALL PALMER
RAIN DROPS

ADJUSTED FOR DENSITY

OCEAN SURFACE

LAPSE RATE
6.5°C/km

80% RELATIVE
HUMIDITY

Fig. 15.1 Schematic showing the atmospheric model used in radiative transfer computations of

the brightness temperature in the Wilheit et al. (1977) model
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Fig. 15.2 Brightness

temperature of the

combination channel as

a function of the rain rate

(R, x-axis, in mm/h) at

different freezing level

heights (in km) (FromWilheit

et al. 1977)

228 L.S. Chiu et al.



15.2.2 Statistical Rain Field Model

The rainfall model used is a mixed distribution model, consisting of a no rain

probability of (1� p) at zero rain rate and a lognormal distribution for the rainy part

(rain rate > 0 mm/day) as follows (Kedem et al. 1990):

GðxÞ ¼ ð1� pÞHðxÞ þ pFðxÞ (15.2)

where p is the rain probability (or frequency), x is rain rate, and H(x) is the

Heaviside step function

HðxÞ ¼ 0; if x<0

1; if x � 0

�

And F(x) is a Lognormal Distribution with parameters of μ and σ,

FðxÞdx ¼ 1

σ
ffiffiffiffiffi
2π

p exp
�ðln x� μÞ2

2σ2

" #
dx

x
(15.3)

The expected value of the mean of the mixed distribution is

EðxÞ ¼ p� expðμþ σ2=2Þ (15.4)

Other statistical models have also been used to describe the rainy portion of the

distribution (Kedem and Chiu 1987a; Kedem et al. 1990). The lognormal

distributions have often been used to describe geophysical parameters which

show skew distributions. Based on a simple model, Kedem and Chiu (1987a)

argued that the lognormal distribution is not unreasonable for rain rate distributions.

15.2.3 Beamfilling Correction

One of the disadvantages of the use of passive remote sensors is the coarse

resolution of the sensor field of view (FOV) compared to the spatial scale of rain

clouds. The beamfilling error refers to a bias associated with the nonuniformly filled

FOV coupled with a nonlinear relation between the observed and the estimated

parameter, i.e., T–R relation (Eq. 15.1) (Short and North 1990). Chiu et al. (1990)

examined radar rainfall observed at the GATE and derived an approximate formula

for the beamfilling correction (BFC). The beamfilling bias depends on nonlinearity

of T–R relation and rain rate variance within field of view

RE � ½R� ¼ T00

2T0 ðR� ½R�Þ2
h i

(15.5)
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where RE is the estimated rain rate, [R] is the true rain rate within the FOV, and T0

and T00 are slope and curvature of T–R relation (Eq. 15.1), and [x] represents area
averaging. The first term on the right-hand side (T00/2T0) depends only on the

atmospheric and radiative transfer model, the sensor response, and the orbital

parameters of the satellite. The second part, [(R � [R])2], depends solely on the

structure of the rain field. It is the coupling of these effects that comprise the

beamfilling effect. Since the slope of the T–R relation is positive and the curvature

negative, and the rain rate variance is always positive, the right-hand side of (15.5)

is negative, i.e., a negative bias is incurred.

Ha and North (1995) examined different theoretical rain rate distributions and

concluded that a climatological correction for the beamfilling error is appropriate.

From theoretical considerations, Wang (1997) proposed a FL-dependent BFC. Cho

et al. (2004) examined data collected by the TRMM Precipitation Radar and

showed that both the gamma and lognormal distributions provide good fits to the

observed data. However, the gamma (lognormal) distribution tends to better fit the

observed distribution for wet (dry) conditions.

Kummerow (1998) provide a methodology to examine the BFC structure and

Kummerow et al. (2004) showed the sensitivity of the slant path and rain rate

inhomogeneity within the FOV on the BFC based on TRMM data. Methods to

correct for the BFC have been investigated (Kubota et al. 2009; Lafont and

Guillemet 2004).

15.3 Data Product

15.3.1 Data Processing

The processing of the data begins with the computation of the brightness tempera-

ture (Tb) histograms and the determination of the FL using the top one percentile of

the vertically polarized Tb at 22 GHz (Tb 22V) and vertically polarized Tb (Tb 19V).

This choice is an attempt to exclude non-raining pixel in the FL calculations. The

method of moments is used. The mean of the combination channel (T ¼ 2Tb 19V �
Tb 22V) of the non-raining pixels and the first, second, and third moments of the T
histogram are calculated. These moments of the T histogram are matched iteratively

to the parameters of a mixed lognormal distribution via the T–R relation. The output

parameters are RE, T0, σ0, p, μ, σ, and FL, where RE is the estimated rain rate, T0
and σ0 the mean and variance of the non-raining portion of the Tb histogram, p the

rain fraction, and μ and σ are the estimated mean and variance of the logarithm of

the rain rate. After the computation of the RE, a BFC is applied to get the BFC

corrected rain rate (see Wilheit et al. 1991).

The METH technique has been applied to all SSM/I data on the DMSP satellites

(F8, F10, F11, F13, F14, F15) and SSMIS on board F17 satellites. The data are

available via the Global Precipitation Climatology Project-Polar Satellite Precipi-

tation Data Center (GPCP-PSPDC) website (http://gpcp-pspdc.gmu.edu/).
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Figure 15.3 shows the mean equatorial passing time of the DMSP satellites,

together with other spaceborne microwave radiometers – the wind sensing

scatterometers QuikScat and WindSat and the Advanced Microwave Scanning

Radiometer onboard NASA’s EOS Aqua satellite (AMSR-E). These sensors are

designed to have local satellite overpass times around early morning and evening

(6 a.m. and 6 p.m.). However, there are substantial drifts in the orbital parameters

during the satellite life.

Two types of products, 2.5 � 2.5� monthly and 5 �5� monthly products, are

available. The 5 � 5� products are produced by first computing the histograms for

the morning (a.m.) and afternoon (p.m.) satellite passes separately, and the monthly

mean is an average of the a.m. and p.m. rain rates. The 2.5� product is derived from
combining all a.m. and p.m. satellite passes to form a monthly histogram, before

computing the monthly average. The original monthly time series were processed

using SSM/I version 4 (V4) Tb data provided by Remote Sensing Systems (RSS)

(website: http://www.ssmi.com/).

A trend in the T0 data was found in the version 4 products which may be related

to differences in the orbital parameters of satellites (Chokngamwong and Chiu

2006). Trends in other oceanic water cycle products, in particular, surface latent

heat fluxes, were also noted for satellite products that are mostly based on SSM/I

(Chiu et al. 2008). Further analyses of the trends in the latent heat fluxes show that

the trend in the NASA Goddard Satellite-based Sea Surface Turbulent Fluxes

(GSSTF) product is associated with an increase in the wind speed and an increase

in the sea-air humidity difference. These trends can be traced back to the brightness

temperature data of the SSM/I (Chiu et al. 2012; Chap. 11, this book).

Fig. 15.3 Equatorial passing times of the DMSP satellites and other microwave sensor platforms.

Solid lines represent ascending nodes, and dotted lines (for F8 and WindSat) represent descending

nodes (From http://www.ssmi.com/support/crossing_times.html)
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An improved version that removes the wind trend (version 6, V6) was made

available by RSS in 2006. All data have been reprocessed using the V6 data.

A comparison of the version 4 and version 6 products showed a reduced linear

trend in the rain rate data (Chiu and Chokngamwong 2010). These products

are labeled V4 and V6, respectively, corresponding to the RSS versions. In the

following, we will restrict our discussion on the V6 2.5� product.

15.3.2 Sampling

The sampling errors associated with these products are examined using a simple

error model and different satellite combinations of the monthly products. In general

the error structure follows a power law of the form ERR ¼ aR � b, where ERR is

the sampling error, R the rain rate, and a and b are empirical constants. The value of

b is between 0.25 and 0.33, while the constant a is determined by the particular

sensor (Chang and Chiu 1999, 2001). Analyses also show that large errors are

observed for grid boxes with insufficient sample. This threshold is approximately

2,500, compared to typical averages of 4,000–4,500 for the 2.5� boxes. These grid
boxes are flagged in the output files.

15.3.3 Product Evaluation

Analyses of the early records have been presented elsewhere (Chang et al. 1993;

Chiu and Chang 1994). Figure 15.4 shows the time series of the domain

(65�N–65�S, ocean) average rain rates. Linear regression analyses show no signifi-

cant trend.

15.3.3.1 Rainfall Rate (R) (Unconditional)

Equation 15.4 shows that the total (unconditional) rainfall rate is the product of the

rain frequency (p) multiplied by the conditional rain rate (mean rain rate for the

lognormal distribution). Figure 15.5 shows the annual and monthly average rainfall

rates. Major features, such as that over the maritime continent, Intertropical Con-

vergence Zone (ITCZ) in the Pacific and the Atlantic, the South Pacific and South

Atlantic Convergence Zones (SPCZ, SACZ), and the storm tracks in the western

oceans, are quite distinct. Seasonally, the Pacific ITCZ is strongest in the boreal

summer to early fall (JJAS). During the JJA season, the SPCZ is extremely weak.

It intensifies and acquires its maximum strength in January. The intensification of

the Pacific ITCZ is accompanied by the decay of the SPCZ, and in March there is a

separation of the SPCZ and the ITCZ as the SPCZ is attached to the southern branch

of the double ITCZ. The double ITCZ is clearly present during the months of March
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and April in the Pacific, while there is only a slight hint in the Atlantic, probably due

to the low product resolution (2.5�). It should be pointed out that during the warm

phase of El Nino years, the two rainbands merge to form a huge rainband, and the

double ITCZ disappears. The existence of a double ITCZ in the eastern Pacific has

been suggested to be related to the existence of a cold tongue (low sea surface

temperature), while the central and western portion is due to cold advection by the

easterlies (Zhang 2001). While the existence of a double Atlantic ITCZ has been

demonstrated by surface wind convergence derived from scatterometer data (Liu

and Xie 2002), detail structure and intensity of these features pose challenges to the

modeling community (Lin 2007).

The storm tracks intensify during June and fully develop during July and August.

The rather wide band of rainfall in the western part of the north Pacific and north

Atlantic oceans indicate the variability of the typhoon (hurricane) tracks. The high

rain rates located off the western coast of India, in the Bay of Bengal, and off the

eastern coast of China coincide with the monsoon on set in June. The heavy rain in

the Bay of Bengal persists into August.

15.3.3.2 Conditional Rain Rate (rcond)

The conditional rain rate (rcond), or the rain rate in rainy conditions, is computed

using the formula rcond ¼ exp (μ + ½ σ2) (see Eq. 15.4) and shown in Fig. 15.6. The
pattern of conditional rain rate follows that of total rainfall. The high conditional

rain rates around Antarctic may be due to the inclusion of pixels that contain sea ice

but was not detected in the algorithm.

Fig. 15.4 Time series of the domain average rain rate. Grid boxes with insufficient samples are

excluded in the compilation
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Fig. 15.5 Annual and monthly average rainfall rates from all SSM/I sensors
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Fig. 15.5 (continued)

Fig. 15.6 Map of annual average conditional rain rates in mm day�1
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15.3.3.3 Freezing Level Height (FL)

Chiu and Chang (2000) compared the SSM/I METH freezing height (FL) with

results from general circulation models (GCMs). While there is a small bias

between the FL and the freezing level derived from GCMs in the tropics, there

are rather large discrepancies in the mid-latitudes. There is a relative weak but

significant diurnal variation of the FL as computed from the DMSP morning and

afternoon passes (Chang et al. 1995). As pointed out earlier, FL is a columnar

moisture index. The retrieved quantity is a “rain volume”, i.e., a product of the rain

column height and the rain rate. Hence, errors in the FL will impact the rain rate

inversely. Figure 15.7 indicated the annual average FL.

15.3.3.4 Rain Frequency (p)

An early climatology of the METH SSM/I rain frequency (p) showed maxima

peaks that follows the thermal equator and at latitudes 45–50� in both hemispheres

(Chiu and Chang 1994). Figure 15.8 shows that the equatorial and high latitude

(~50�) maxima are about 50% and there are subtropical minima (~20� latitude) of
about 30%.

Quantitative rainfall measurements were not included in the ship observations

collected in ICOADS. However, meteorological observations of precipitation were

Fig. 15.7 Map of annual average freezing level height (FL) in km
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coded and recorded. Analyses of meteorological observations in ICOADS show

zonal bands of high rain frequency near the equator and at latitudes of 50–60�

latitudes in both hemispheres (Petty 1995). This zonal pattern is consistent with the

pattern derived from the limited GTS and marine observations (Dai 2001). Most

satellite algorithms were able to correctly estimate the high rain frequency near the

equator (Petty 1997) and for the Atlantic from TRMM precipitation radar data

(Short 2003). However, the high rain frequency at the high latitudes is usually

underestimated (Petty 1997). Ellis et al. (2009) compare rain frequency derived

from the CloudSat radar for the period 2006–2007 and found that the CloudSat rain

frequency is quite consistent with that derived from ICOADS data. While the zonal

patterns are similar, the magnitudes are quite different. This is attributed to the

different fields of view of the observations. The CloudSat radar has a resolution of

about 1 km whereas that for the TRMM radar is 4–5 km. The FOV of the SSM/I

Fig. 15.8 Seasonal average (middle panels) and annual rain frequency (bottom panel). The zonal
annual and seasonal average rain frequency appears in the top panel
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sensor is about 40–50 km. For ship observations, the field of view varies with the

weather condition and can be as large as tens of kilometers for a clear day down to a

few kilometers under misty or hazy conditions to less than a few 100 m in severe

weather conditions. The probability of observing rain increases as the FOV

increases. For GATE rainfall, the rain frequency increases from around 10% at a

resolution of 4 km to 40% at a resolution of 40 km (Kedem and Chiu 1987b).

15.4 Applications

15.4.1 GPCP Merging

This product serves as input to GPCP rain maps (Huffman et al. 1997). This data set

and derived products (Adler et al. 2003; Huffman et al. 2001; Xie et al. 2003) have

been utilized rather extensively in climate and weather analyses.

15.4.2 Climate “Trend” and Variations

Trends in the data set have been examined. A trend is dependent on the length of the

time record. The version 6 data showed a smaller trend than the version 4 data.

Overall, the trends are consistent with the GPCP estimates and are generally lower

than the other estimates (Chiu and Chokngamwong 2010). No significant trend in

global oceanic rainfall is observed. The only significant trend in zonal mean is

observed at the tropical Pacific between 0 and 10ºN. Figure 15.9 shows the linear

trend pattern of global rainfall. The monthly rainfall data have been deseasonalized,

i.e., monthly climatology removed.

An empirical orthogonal function (EOF) analysis was performed on the nonsea-

sonal time series. Only the first two EOFs are judged to be significant and distinct

according to the criteria of North et al. (1982) (see also Chiu et al. 2008).

Figure 15.10 shows the first two EOF patterns (with variance explained) and the

associated time series (principal component, or PCs). A Southern Oscillation Index

(SOI), scaled to match the time series, is also included in the figure. The first PC

shows a correlation coefficient of 0.8, significant at the 95% level, while the

contemporaneous correlation with the second PC (at �0.11) is insignificant. The

major mode of nonseasonal rainfall variations is associated with the El Nino

Southern Oscillation (ENSO) phenomena. This rather robust result is well

established (Chang et al. 1993; Kafatos et al. 2001).

The second mode (EOF2) is similar to the first mode (EOF1). This pattern is

characterized by an equatorial dipole. The overall wedge pattern is hinged in the

central Pacific instead of the maritime continents as demonstrated in EOF1. There

are recognitions of an ENSO pattern that has its origin in the central Pacific. This is

termed the ENSO Modoki (Weng et al. 2007). Others have coined the canonical
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ENSO as the eastern Pacific ENSO (EP ENSO) and central Pacific ENSO

(CP ENSO) (Yeh et al. 2011). PC2 shows a significant correlation of 0.55 with an

ENSO Modoki index (EMI, available at: http://www.jamstec.go.jp/frcgc/research/

d1/iod/modoki_home.html).

15.4.3 TRMM Applications

A passive microwave imager was launched as part of TRMM instrument package.

The TRMM Microwave Imager (TMI) has similar channels as the SSM/I, with an

additional channel of 10 GHz. Early analysis of the METH rain rate demonstrated

that microwave rainfall estimates can produce climate signals such as the El Nino/

Southern Oscillation (Chang et al. 1993; Kafatos et al. 2001). The METH algorithm

has been applied to TMI data (Chang et al. 1999; Kummerow et al. 2000). The

strength of this product is its robustness and, when properly calibrated, is capable of

detecting climate-scale signals.

15.4.4 TRMM Boost

The robustness of this technique is demonstrated when the TRMM satellite is

boosted from an original altitude of 350 km to a higher altitude of 402 km in

August 2001 to save fuel and prolong satellite and mission life. The change in the

satellite altitude changes the TMI’s earth’s incidence angle and the atmospheric

paths and introduces discontinuities in the retrieved radar rainfall and reflectivity

(Shimizu et al. 2009; Short and Nakamura 2010). We perform a quick fix by
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Fig. 15.9 Map of distribution of linear trends (mm day�1 decade�1) of oceanic rain rates. The

linear trends are computed from linear regression analysis of the nonseasonal (with climatology

removed) data
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Fig. 15.10 First (top panel) and second (middle panel) EOF pattern of nonseasonal rainfall,

explaining 6.9 and 4.4% of the nonseasonal variance, respectively. The lower panel shows the

associated time series (PC1 and PC2). A scaled Southern Oscillation Index (SOI) is included for

comparison. The correlations between SOI and PC1 and PC2 are 0.8 (significant at the 95%) and

�0.11 (not significant), respectively. PC2 leads variations in SOI (correlation at 0.4) by 6 months.

The correlation between PC2 and an index of the ENSOModoki (or ENSO central Pacific) index is

0.55, significant at the 95%



adjusting the difference in the Tb for the pre- and post-boost Tbs in the TMI channel

data (Shin and Chiu 2008) and by properly adjusting the T–R relation in the

algorithm by changing the earth incidence angle and redoing the radiative transfer

calculations (Chiu et al. 2010). During the transition period, another satellite, the

DMSP F13, is in stable operations. We use the METH product derived from the F13

as a calibration point and compare the differences for the pre- and post-boost

periods. The adjustment effectively eliminates the discontinuity introduced by the

TRMM boost.

15.5 Summary and Discussions

In this chapter, we discuss the theoretical bases of the METH technique, describe

the processing of the METH products, present the climatology of these parameters,

and discuss their relevance to climate studies. The uniqueness of this technique is

the determination of the background brightness temperature for the non-raining

portion and fitting the brightness temperature histogram to a mixed lognormal rain

rate distribution via a T–R relation derived from an atmospheric radiative transfer

model. The so-called beamfilling error is corrected using empirical data.

We briefly examine the characteristics of the rain rate parameters including the

unconditional rain rate, conditional rain rate, freezing level, and rain frequency.

These parameters are consistent with more recent and detail estimates, such as the

rain frequency computed from the CloudSat radar. Application to other microwave

sensors is rather straightforward and has been applied to TMI rather successfully.

The strength of this technique is well demonstrated in mitigating the discontinuity

of the TMI data record by simply changing the T–R relation in the algorithm.

We found no significant trend in the global (domain) average rainfall; however,

significant linear trends are detected in the equatorial belt 0–10ºN. Whether this

pattern is due to an intensification of the Hadley circulation or a shift of the rain

belts has yet to be determined. Two distinct modes of nonseasonal variations are

detected from an empirical orthogonal function analysis. The first mode is the well-

recognized ENSO mode, the associated time series of which show a correlation of

0.8 with a Southern Oscillation Index. The second mode is recognized as the ENSO

Modoki mode (or the central Pacific ENSO mode) and shows a correlation of 0.55

with an index of the ENSO Modoki. The ENSO Modoki mode leads the ENSO

mode by roughly 6 months.

This algorithm has been in operation for over 20 years and has served as an

important input to the Global Precipitation Climatology Project rain maps. With

improved understanding of the precipitation processes and the information col-

lected during major international missions, some of the crude physics and model

assumptions need to be revisited and improved so that uncertainties of climate-scale

rainfall can be better quantified and the data better utilized.
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Abbreviations

AMSR-E Advanced Microwave Scanning Radiometer-Earth Observing System

BFC Beamfilling correction

DMSP Defense Meteorological Satellite Program

EMI El Nino Southern Oscillation Modoki Index

ENSO El Nino Southern Oscillation

EOF Empirical Orthogonal Function

FOV Field of view

GARP Global Atmospheric Research Experiment

GATE GARP Atlantic Tropical Experiment

GCM General circulation model

GOES Geostationary Operational Environmental Satellite

GPCP Global Precipitation Climatology Project

GPI Geostationary Operational Environmental Satellite Precipitation Index

GSSTF Goddard Space Flight Center Satellite-based Sea surface Turbulent

ICOADS International Comprehensive Ocean-Atmosphere Data Set

ITCZ Intertropical Convergence Zone

METH Microwave emission-based brightness temperature histogram

NASA National Aeronautics and Space Administration

NSIDC National Snow and Ice Data Center

PC Principal component

PSPDC Polar Satellite Precipitation Data Center

RSS Remote Sensing Systems

SACZ South Atlantic Convergence Zone

SOI Southern Oscillation Index

SPCZ South Pacific Convergence Zone

SSM/I Special sensor microwave imager

SSMIS Special Sensor Microwave Imager/Sounder

TMI Tropical Rainfall Measuring Mission Microwave Imager

TRMM Tropical Rainfall Measuring Mission
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Chapter 16

Integrating Landsat with MODIS Products

for Vegetation Monitoring

Feng Gao

Abstract Satellite imagery provides a valuable data source for monitoring vegetation

from space. In order to monitor vegetation dynamic and changes, high spatial resolu-

tion satellite imagery with frequent acquisition is required. However, current satellite

systems cannot satisfy these requirements due to either technical or fiscal difficulties.

In recent years, studies have been focused on integrating high spatial resolution

Landsat and high temporal resolution MODIS data for vegetation monitoring. This

chapter describes three categories of approach to integrate two data sources. The first

category approach adopts MODIS algorithms for Landsat data processing. The second

category approach blends Landsat and MODIS data through a data fusion approach.

The third category approach normalizes Landsat data using standard MODIS data

products. This chapter presents examples and recent applications on the integration of

Landsat and MODIS data. Their advantages and limitations are discussed.

16.1 Introduction

The Landsat satellites have been providing earth observation data continuously

since early 1970s and form a cornerstone for medium spatial resolution remote

sensing. Landsat is the sole medium resolution satellite that provides continuous

global coverage in nearly four decades. Though the failure of the scan-line corrector

(SLC) mechanism on Landsat 7 in 2003 and the decommisioned Landsat 5 in 2012

have threatened this continuity, Landsat data are still the most widely used medium

resolution remote sensing data especially after Landsat data become freely avail-

able from the US Geological Survey (USGS) Earth Resources Observation and

Science (EROS) Center since October 2008 (www1).
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Landsat has been widely used in agriculture, geology, forestry, regional

planning, education, mapping, and global change research (Townshend et al.

1991; Loveland and Shaw 1996). For example, the US Department of Agriculture

(USDA) National Agricultural Statistics Service (NASS) uses Landsat and other

medium resolution data to generate annual crop data layer (CDL) for each state in

the United States (www2). The USGS EROS produced the National Land Cover

Data (NLCD) on 2001 and 2006 based on Landsat TM and ETM+ data (www3).

More recently, many time series data analysis approaches have been developed and

applied to Landsat image stack for detecting surface changes such as mapping

forest disturbance and regrowth in past four decades (Masek et al. 2008; Huang

et al. 2009; Kennedy et al. 2010). Projects funded by different countries/agencies

are using Landsat data to map land cover and land use changes at continental or

global scale. More global Landsat data products and applications can be expected in

upcoming years (Gong et al. 2013).

The Moderate-Resolution Imaging Spectroradiometer (MODIS) is a key instru-

ment launched into Earth orbit by NASA on board the Terra satellite in 1999 and

then onboard the Aqua satellite in 2002. MODIS instrument provides 36 spectral

bands ranging from visible, near-infrared bands to thermal infrared bands in

different spatial resolutions (red and near-infrared bands at 250 m, 5 spectral

bands at 500 m, and 29 other bands at 1 km). Table 16.1 lists the similar bandwidths

for Landsat and MODIS. Each Landsat band has a corresponding MODIS band

except that MODIS bandwidths are narrower.

MODIS is designed to provide measurements in global dynamics for land,

ocean, and atmosphere (Justice et al. 2002). MODIS data are well calibrated, and

data products have been validated with independent field measurements (www4).

MODIS products provide extensive quality assessment (QA) data layers to flag data

quality associated with input data and algorithm. MODIS data products have been

used in many applications and help to improve our understanding on climate

changes, vegetation dynamics, weather forecasting, etc.

In general, Landsat data provide sufficient spatial details (30 m for TM/ETM+) for

monitoring land surface and changes (Townshend and Justice 2002; Loveland et al.

2008; Gutman et al. 2008; Goward et al. 2008). However, the 16-day revisit cycle has

limited its use for studying global biophysical processes, which evolve rapidly during

the growing season. Meanwhile, MODIS sensors aboard the NASA EOS Terra and

Aqua satellites provide daily global observations which are valuable for capturing

rapid surface changes. However, the spatial resolutions of 250–1,000 m may not be

Table 16.1 Corresponding bandwidths of Landsat TM/ETM+ and MODIS

Landsat TM/ETM+ TERRA/AQU MODIS

B1: 0.45–0.52 B3: 0.459–0.479

B2: 0.53–0.61 B4: 0.545–0.565

B3: 0.63–0.69 B1: 0.620–0.670

B4: 0.78–0.90 B2: 0.841–0.876

B5: 1.55–1.75 B6: 1.628–1.652

B7: 2.08–2.35 B7: 2.105–2.155
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good enough for heterogeneous areas. A feasible and less expensive approach is to

integrate Landsat and MODIS data for applications.

There are varieties of approaches to integrate Landsat and MODIS data. In this

chapter, we limit our discussions on several selected examples and focus on three

categories of integration. The first category focuses on the algorithm integration and

tries to create consistent MODIS data product for Landsat using similar algorithm

such as the Landsat Ecosystem Disturbance Adaptive Processing System

(LEDAPS). The second category focuses on the data fusion approach and attempts

to integrate high temporal information from MODIS with high spatial information

from Landsat such as the Spatial and Temporal Adaptive Reflectance Fusion Model

(STARFM). The third category focuses on producing consistent data products using

MODIS data products as references.

16.2 Algorithm Integration

In order to integrate Landsat and MODIS data product, an intuitive idea is to use

MODIS algorithm for Landsat and produces similar data products at Landsat spatial

resolution. A first step of this effort is to produce surface reflectance using MODIS

algorithm. The surface reflectance product strives to remove atmospheric effects

(scattering and absorption) and is the basis for many high-level products and

quantitative applications. The LEDAPS is a NASA project to map disturbance,

regrowth, and permanent forest conversion across the continent (Masek et al. 2006).

It processes Landsat imagery to surface reflectance, using atmospheric correction

routines developed for the Terra MODIS instrument (Vermote et al. 2002).

The LEDAPS first calibrates Landsat data in digital number to the top-of-

atmosphere (TOA) reflectance using calibration coefficients provided in the

metadata file. TOA reflectance is then atmospherically corrected using the 6S

radiative transfer code (Vermote et al. 1997) similar to the MODIS surface reflec-

tance product. Atmosphere correction procedure needs ancillary information on

ozone and water vapor, etc. Ozone concentrations are derived from Total Ozone

Mapping Spectrometer (TOMS) data aboard the Nimbus-7, Meteor-3, and Earth

Probe platforms. Column water vapor uses data from the NCEP reanalysis data. The

ozone and water vapor data are downloaded and organized into daily ancillary data

for LEDAPS processing. Digital topography and NCEP surface pressure data are

used to adjust Rayleigh scattering to local conditions (Masek et al. 2006).

Similar to the atmospheric correction scheme in the MODIS surface reflectance

product, LEDAPS retrieves aerosol optical thickness (AOT) from Landsat imagery

using the dark and dense vegetation concept (Kaufman et al. 1997). Aerosol optical

depth is retrieved at 1-km coarse spatial resolution first and then interpolated

spatially between the dark targets. The 6S radiative transfer algorithm uses the

interpolated AOT, ozone, atmospheric pressure, and water vapor to retrieve surface

reflectance.
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Figure 16.1 shows the true color composites of Landsat ETM+ reflectance

produced from the LEDAPS system for a DC scene (WRS-2 path 15 and row 33)

acquired on September 6, 2002. The TOA reflectance image looks hazier and

brighter than surface reflectance.

Comparison of surface reflectance between Landsat and MODIS shows general

good agreements. In Fig. 16.2, surface reflectance from Landsat in Fig. 16.1 are first

aggregated to MODIS resolution (500 m) and then compared to MODIS surface

reflectance. The scattering plot shows a general 1-to-1 relationship. Some disagree-

ments may be caused by the geolocation mismatch and bandwidth differences.

A stand-alone LEDPAS software package extracted from the NASA LEDAPS

system has been released to public for scientific uses. It is freely available from the

NASAGSFC LEDAPSWeb site (www5). The LEDAPS system has been adopted by

Fig. 16.1 True color composites of a Landsat-7 ETM+ scene (WRS-2 path 15 and row 33

acquired on September 6, 2002) show that the surface reflectance (b) removes atmosphere effect

from TOA reflectance (a)
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Fig. 16.2 Scattering plot of surface reflectance for red (a) and NIR (b) between MODIS and

Landsat (in Fig. 16.1). Scale factor for reflectance is 0.0001
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the USGS EROS to produce the next generation Landsat data product. The Global

Land Survey Facility at the University of Maryland used LEDAPS approach and

produced global Landsat surface reflectance from Global Land Survey (GLS) data.

The extensive comparisons of surface reflectance between Landsat and MODIS show

general good agreements with overall discrepancies (root-mean-squared deviation

(RMSD)) between 1.0 and 2.5% reflectance for Landsat-7 ETM+ and between 1.6

and 3.2% reflectance for Landsat-5 TM (Feng et al. 2012, under review). The Web-

enabled Landsat Data (WELD) project, a joint effort between South Dakota State

University and the USGS EROS, uses same atmosphere correction approach (6S) but

different ancillary data from MODIS atmosphere data products to generate 30-m

composites of Landsat mosaics at weekly, monthly, seasonal, and annual periods for

the conterminous United States (CONUS) and Alaska (Roy et al. 2010; www6).

Surface reflectance is the basis for generating high-level biophysical products

such as Leaf Area Index (LAI). Using Landsat surface reflectance, NASA AMES

has prototyped Landsat LAI product by adopting MODIS LAI algorithm (Ganguly

et al. 2012).

16.3 Data Fusion Approach

The data fusion solution integrates the spatial resolution of Landsat with the

temporal frequency of coarse-resolution MODIS sensor and thus produces fused

data products for applications that require high resolution in both time and space

(Gao et al. 2006; Hansen et al. 2008).

Traditional image fusion methods such as intensity-hue-saturation (IHS) trans-

formation, principal component substitution (PCS), and wavelet decomposition

focus on producing new multispectral images that combine high-resolution pan-

chromatic data with multispectral observations acquired simultaneously at coarser

resolution. They are useful for generating pan-sharpened images. However, they are

not effective in fusing spatial resolution and temporal coverage when input data

sources are acquired from different dates which may be affected by large

geolocation errors, high ratio of coarse-to-fine resolution, and land surface changes.

16.3.1 STARFM Approach

The Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) was

developed to combine high spatial Landsat and high temporal MODIS data (Gao

et al. 2006). This approach requires input data pairs to be consistent. Observations

from different platforms first need to be calibrated and atmospherically corrected to

surface reflectance so that they are comparable spatially and temporally. Landsat

data are calibrated and atmospherically corrected using the LEDAPS approach.

Although MODIS and Landsat surface reflectance data are very consistent.
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However, due to the differences in the acquisition time, bandwidth, and geolocation

errors, bidirectional effect and small biases are expected. For a homogenous “pure”

pixel at the coarser MODIS resolution, surface reflectance measured by Landsat

data may be expressed as

Lðx; y; tkÞ ¼ Mðx; y; tkÞ þ εk (16.1)

where (x, y) is a given pixel location for both Landsat (L) and MODIS (M) images,

tk is acquisition date for both MODIS and Landsat data, and εk represents the

difference between the observed MODIS and Landsat surface reflectance (caused

by differing bandwidth and solar geometry).

Supposing land cover type and system errors at pixel (x, y) do not change

between prediction dates t0 and tk, we will have ε0 ¼ εk, and thus

Lðx; y; t0Þ ¼ Lðx; y; tkÞ þ ðMðx; y; t0Þ �Mðx; y; tkÞÞ (16.2)

However, this ideal situation cannot often be satisfied from MODIS and Landsat

observations. In most cases, the MODIS observation is not a homogeneous pixel

and may include mixed land cover types when considered at Landsat spatial

resolution. To consider mixed pixels in the prediction, we introduce additional

information from neighboring pixels and use spectrally similar pixels in the predic-

tion. The predicted surface reflectance for the central pixel at date t0 is then

computed with a weighting function:

Lðw=2;w=2; t0Þ ¼
Xw

x¼1

Xw

y¼1

Xn

k¼1

Wijk � ðLðx; y; tkÞ þ ðMðx; y; t0Þ �Mðx; y; tkÞÞÞ (16.3)

where w is the searching window size and (w/2, w/2) is the central pixel of this

moving window. To ensure the correct information from neighboring pixels is used,

only spectrally similar (i.e., from the same spectral class) and cloud-free pixels

from Landsat surface reflectance within the moving window are used to compute

reflectance.

The weighting function Wijk determines how much each neighboring pixel

contributes to the estimated reflectance of the central pixel. It is determined by

three measures based on (1) spectral difference between MODIS and ETM+ data at

a given location, (2) temporal difference between input and the predicted MODIS

data, and (3) geographic distance between the central pixel and the candidate pixel.

These measures ensure that “pure” neighbor pixels get higher weights in the

prediction.

The STARFM approach was tested for simulated data and real satellite

observations (Gao et al. 2006). Figure 16.3 shows a simulation test for changing

reflectance and linear objects. Linear objects such as roads and small rivers are

normally visible in fine-resolution Landsat imagery but are not obvious in coarse-

resolution MODIS imagery. Figure 16.3a–c represent simulated Landsat-like
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images with background changing from 0.1 (Fig. 16.3a) to 0.2 (Fig. 16.3b) and then

0.4 (Fig. 16.3c). The simulated water body (circle) has a constant reflectance of

0.05. The simulated road (over background) and bridge (over water) have a constant

reflectance of 0.5. The MODIS-like data (Fig. 16.3d–f) are aggregated from the

Landsat-like data. Roads (over background) are still visible in Fig. 16.3d, e, but not

in Fig. 16.3f due to the smaller contrast of roads and background in (Fig. 16.3c).

Figure 16.3g is a predicted version of Fig. 16.3b using fine-resolution images

(Fig. 16.3a, c) and coarse-resolution imageries (Fig. 16.3d–f). Figure 16.3h shows

the absolute difference between prediction (Fig. 16.3g) and truth (Fig. 16.3b). In this

test, constant reflectance, changing reflectance, and the bridge are predicted per-

fectly. Roads (segment outside circle) are predicted but not perfect value.

Fig. 16.3 A simulation test for changing reflectance and linear objects. The MODIS-like resolu-

tion data (d–f) are aggregated from the Landsat-like data (a–c), respectively. Imagery (g) is

predicted from fine-resolution imageries (a) and (c) and coarse-resolution imageries (d–f). Imag-

ery (h) is the absolute difference between prediction (g) and truth (b). In this test, the STARFM

algorithm predicts constant reflectance, changing reflectance, and linear segment (within circle)
well. Linear segments outside circle are predicted but not perfect value
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Figure 16.4 shows the STARFM predicted Landsat surface reflectance on 6/4

and 7/4 in 2001 for the BOREAS Southern Study Area using same-day MODIS

images and ETM+/MODIS image pairs on 5/24 and 7/11 in 2001. In this example,

Landsat observations are not available on 6/4 (t2) and 7/4 (t3). This process may also

be thought of as using daily MODIS information to make a “time correction” to

infrequent Landsat data. The predicted images (bottom row) capture rapid seasonal

changes from MODIS data while retaining the Landsat spatial details. Clear land

and water boundaries can be predicted. Linear objects such as roads can be

observed in the predicted images.

Initial validation studies show that both mean differences and absolute

differences of surface reflectance between predictions (i.e., synthesized Landsat-

resolution data) and real Landsat observations are small. STARFM can preserve the

high spatial resolution of Landsat and high temporal resolution of MODIS if “pure”

coarse-resolution neighbor pixels can be found within the moving window. For

complex mixtures of different land cover types, performance degrades somewhat,

and the adjustment of algorithm parameters may be needed to improve prediction.

Fig. 16.4 Predicted Landsat surface reflectance (bottom row) from daily MODIS reflectance

imagery (top row) and Landsat/MODIS imagery pairs (in blue rectangles) on the BOREAS

Southern Study Area (54�N, 104�W). In this example, Landsat observations were not available

on 6/4 (t2) and 7/4 (t3) in 2001 – the Landsat-resolution images at t2 and t3 are entirely

synthesized from the simultaneous MODIS data and bracketing Landsat images using the

STARFM algorithm
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The original STARFM code has been released for public use since 2006. The

STARFM and derived approaches have been tested and used for fusing Landsat and

MODIS reflectance (Gao et al. 2006; Hilker et al. 2009a). Several ongoing

researches are expanding STARFM approach to different biophysical parameters

and use it for sensors other than Landsat and MODIS.

16.3.2 The Enhanced STARFM Approach

In order to better handle heterogeneous pixels even if no “pure” neighbor pixel

exists, an enhanced STARFM approach was recently developed based on a pixel

unmixing theory (Zhu et al. 2010). An additional assumption in the enhanced

STARFM is that the percentages of land types contained in the mixed coarse-

resolution pixel remain the same during the prediction period. Therefore, the

reflectance of a mixed MODIS pixel can be described as the linear mixture of

Landsat pixels for two input pairs with the same percentages of land cover types.

The ESTARFM approach introduces a conversion coefficient into the prediction.

The conversion coefficient indicates the ratio of the change of reflectance for the

end-member to the change of reflectance for a mixed coarse-resolution pixel from

input pairs. When the end-members are taken as fine-resolution pixels within a

mixed coarse-resolution pixel, the conversion coefficient can be computed by

linearly regressing the reflectance changes of fine-resolution pixels of the same

end-member and coarse-resolution pixel. Taking into consideration the spectral

similar pixels, the final prediction for the center pixel (w/2, w/2) in the moving

window with end-member i can be revised to

Lðw=2;w=2; t0Þ ¼
Xw

x¼1

Xw

y¼1

Xn

k¼1

WijkðLiðx; y; tkÞ þ viðx; yÞ � ðMðx; y; t0Þ �Mðx; y; tkÞÞÞ (16.4)

where vi(x, y) is the conversion coefficient for the ith end-member in the mixed

pixel (x, y). It can be computed based on two acquisition pairs (tm and tn):

νiðx; yÞ ¼ Liðx; y; tnÞ � Liðx; y; tmÞ
Mðx; y; tnÞ �Mðx; y; tmÞ (16.5)

Results from simulated data and real satellite data show that the enhanced

STARFM can improve the accuracy of prediction, especially for complex heteroge-

neous landscapes, and preserve spatial details for small patches. In a homogeneous

area, the prediction of ESTARFM is slightly better than STARFM with the average

absolute difference of 0.0106 (vs. 0.0129) for the NIR band. In a complex mixed area,

the prediction accuracy of ESTARFM is improved significantlywhen compared to the

original STARFM (0.0135 vs. 0.0194) for NIR band (Zhu et al. 2010).
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16.3.2.1 STAARCH for Mapping Reflectance Change

Hilker et al. (2009b) developed a new data fusion model STAARCH for detecting

reflectance changes associated with land cover change and disturbance. STAARCH

produces both a spatial change mask from two Landsat images as well as an image

sequence from the MODIS time series which describes the temporal evolution of

disturbance events. The algorithm includes functionality for the prediction of

surface reflectance based on an extended version of STARFM. The STAARCH

approach constrains the optimal image pair to be used in the STARFM prediction.

Hilker et al. (2009b) applied the STAARCH approach over a 185 � 185 km area

in southern Alberta, Canada. Results show that STAARCH predictions agreed well

with field-based observations (93% for spatial accuracy of the disturbed area).

Temporal changes in the landscape were correctly predicted for 87–89% of

instances for the total disturbed area (Hilker et al. 2009b). The change sequence

derived from STAARCHwas used to fuse Landsat images for each available date of

MODIS imagery. The fused results were improved when compared to existing

Landsat observations.

STAARCH requires a minimum of two image pairs to develop the change mask

required as input to the algorithm. It focuses on detecting changes at Landsat scale

from the MODIS time series. ESTARFM also requires two image pairs but focuses

more on improving predictions for the mixed pixels.

16.3.3 Products Normalization

Remote sensing data products from different instruments may not consistent due

to many factors such as the differences in spectral bandwidth, spectral response

function, spatial resolution, and processing approach (Roy et al. 2008). Even

using same algorithm, Landsat and MODIS data products may be different. The

normalization approach produces a consistent data product using MODIS data

products as references. Gao et al. (2010) developed a generalized reference-based

approach to build a MODIS-consistent data set from multiple Landsat-like

sensors. The generalized reference-based empirical approach was tested for

converting medium resolution data product from digital number (DN) to a stan-

dard surface reflectance product. The globally available, consistent MODIS

surface reflectance products were used as the reference. As opposed to a physi-

cally based atmosphere correction approach (e.g., LEDAPS), this empirical

approach is a relative correction, and therefore, the corrected surface reflectance

is a kind of “MODIS-like” surface reflectance. It provides a way to standardize

satellite data from different medium resolution sensors to one standard and thus

allow continuous time-series analysis and land cover change detection. This

approach builds on a long history of regression-based image normalization

procedures from the remote sensing literature (Schott et al. 1988; Du et al.

2001; Olthof et al. 2005) and provides a practical “operational” framework for

merging information from multiple sensors.
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The basis of this approach is that homogeneous pixels of the same land cover

type have the same surface reflectance regardless of patch size and that the seasonal

and bidirectional reflectance changes of those pixels should also be the same for

different patch sizes given each land cover type does not split into two or more

types (1-to-n) during a short period. The relationship of each land cover type

between acquisition date and target date remain approximately same for different

resolution images. Therefore, the relationships built on the MODIS data and the

aggregated medium resolution data can be applied to medium resolution data to

produce surface reflectance at a target date (e.g., MODIS acquisition date).

Differing from traditional empirical approaches that need to measure surface

reflectance on the ground, this approach takes ground “truth” from MODIS data.

The high-quality MODIS data represent one of the most accurate data records we

achieved today and are thus an appropriate data source to use as a reference data set.

The approach uses the cluster-based pure homogeneous pixels as samples; this

allows the approach to be generalized and deal with various seasonal changes from

different surface types and can be extended to other biophysical parameters.

Figure 16.5 shows the Landsat surface reflectances derived from the physical-

based LEDAPS approach (Fig. 16.5c) and the reference-based normalized approach

(Fig. 16.5b). They are very similar in surface reflectance composition from near-

infrared, red and green bands.

The normalization approach can be used to normalize satellite images from

different acquisition dates to a close and clear MODIS acquisition date. Figure 16.6

illustrates the processing result over Chesapeake Bay. In the test, 14 Landsat Global

Land Survey (GLS)-2000 data were used. Although the GLS-2000 Landsat scenes

have been selected from growing seasons, the differences are inevitable due to the

different acquisition dates. Figure 16.7a is the mosaic of Landsat surface reflectance

produced by the LEDAPS system. The differences of seasonality are obvious on

this map. However, those differences have been reduced in the mosaic map of the

normalized Landsat images by using MODIS surface reflectance as a correction

reference. The remaining differences in water body are due to the lack of samples

from MODIS NBAR product.

Fig. 16.5 MODIS surface reflectance (a) and Landsat ETM + surface reflectance derived from

the reference-based approach (b) and LEDAPS physical approach (c) for Washington DC area

(Landsat WRS-2 path 15 and row 33). Black areas represent clouds, cloud shadows, and missing

or poor quality data
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Similar normalization approach can be applied for retrieving biophysical

parameters. In Fig. 16.7, MODIS Leaf Area Index (LAI) 8-day composite product

(MOD15A2, Myneni et al. 2002) from June 2–9, 2002, was used as a reference to

retrieve LAI from Landsat data (WRS-2 path 26 and row 31). The LAI from

Fig. 16.6 Fourteen GLS-2000 Landsat scenes acquired from different dates are normalized to the

MODIS-like surface reflectance by using MODIS Nadir BRDF-adjusted reflectance (September

21–October 6, 2000) as a reference. The normalized surface reflectance (b) reduced the seasonal

variations in the original surface reflectance mosaic (a)

Fig. 16.7 Leaf Area Index (LAI) retrieved from Landsat (June 7, 2002) (b) using referenced-

based approach shows consistent values to the MODIS LAI product (June 2–9, 2002) (a) during

same period. Black represents the missing or low quality value
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Landsat and MODIS are consistent in the test. The accuracy of normalization

approach depends on the data qualities of Landsat surface reflectance and

MODIS data products. Well-distributed high-quality samples across the full range

of data product values can help to reduce the variability.

The MODIS data products are the appropriate data sources for use as a reference

for Landsat since (1) MODIS has similar bandwidth to medium resolution data

sources, (2) MODIS provides daily global coverage data, (3) MODIS products have

been validated in transparent validation exercises and provide comprehensive pixel

level quality control flags, and (4) MODIS products are freely available online and

easy to access. Other consistent coarse-resolution data sources can also be used as

reference. When MODIS data products are utilized as references, the results will be

limited to the MODIS era.

Different from other data fusion approaches such as the STARFM and the

STAARCH, the normalization approach only requires one target MODIS data

and thus simpler and faster. However, it assumes that land cover types do not

change and split to 1-to-n relation between medium spatial resolution sensor and

target MODIS acquisition date. Ideally, the medium spatial resolution data and

MODIS data should be acquired from the same season in similar phenology stage.
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Chapter 17

Satellite Applications for Detecting

Vegetation Phenology

Min Li and John J. Qu

Abstract Vegetation phenology describing the seasonal cycle of plants is currently

one of the main concerns in the study of climate change and carbon balance

estimation in ecosystems. Satellite-derived information has been demonstrated to

be an important source for detecting vegetation phenology. A variety of methods

have been developed to generate phenological metrics from satellite measurements

varying from empirically, simple threshold of vegetation index to automated,

elaborate logistic model. Each method provides certain advantages and paves the

way for the success of satellite-derived vegetation phenology. The vegetation

phenology derived from satellite measurements has been utilized for tracking

vegetation dynamics, invasive species, and land use changes as well as assessing

crop conditions, drought severity, and wildfire risk. Satellite sensors have their

specific characteristics of temporal and spatial resolution, spatial coverage, and data

quality and archive history. Each satellite takes advantages of its respective

strengths to provide certain phenological applications. Despite the insights gained

form satellite observations of vegetation phenology, the scale problem brings a big

challenge for comparing satellite-derived vegetation phenology and ground

records. In the future, more detailed information of ground records together with

phenophases of individual species could be integrated to reflect the canopy phenol-

ogy and compared with the satellite-derived phenology. The well-validated vege-

tation phenology from satellite measurements will contribute to the improvement in

ecosystem process models.
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17.1 Introduction

Phenology, first introduced in 1853 by the Belgian botanist CharlesMorren, is derived

from the Greek words phainos, meaning “to appear, to come into view,” and logos,

meaning “to study” (Haggerty and Mazer 2008). The study of phenology ranges from

the leafing, maturating, and defoliating times of plants to the molting, mating, and

migration times of animals. Since this chapter focuses on the plant phenological

events, the animal phenological events are not within the scope. The plant phenologi-

cal events can be observed and measured at multiple levels, varying from individual

and population to community and biome. Information from each of these levels

provides fundamental knowledge about ecological interactions and process in nature.

Conventional phenological studies are carried out by biologists and ecologists through

botanical inventories. Such conventional approaches, which often include manual

sampling, can track fine details of the phenology process; however, they are time-

consuming and costly. A landscape-based approach using remote sensing techniques

provides an efficient way to observe phenology at large scales, which can complement

the site intensive information provided by conventional approaches. Plant phenology

observed from satellites at landscape scales is called vegetation phenology, also

referred as land surface phenology (Reed et al. 2009).

The vegetation phenology at landscape scales which is comparable with climate

model-derived data (Botta et al. 2000) is an important signal of climate change and

global environment variation. Global climate warming may advance the biological

spring and delay the arrival of biological winter. The earlier presence of green land

cover and the delay in leaf fall of deciduous canopies in turn alter the seasonal

climate through the effects of biogeochemical process and physical properties

(Peñuelas et al. 2009). Accurate assessment of phenological events, therefore,

becomes increasingly vital for investigating vegetation–climate interactions.

Satellite-derived information has been demonstrated to be an important source for

detecting vegetation phenology. The advantages in high temporal frequency and large

spatial scales make satellite data increasingly prevalent in determining leaf onset and

offset dates (Botta et al. 2000; Kang et al. 2003; Zhang et al. 2003), developing

phenological models (DeBeurs and Henebry 2005; Kim andWang 2005; Stöckli et al.

2008; White et al. 1997; Zhang et al. 2004; Zhou et al. 2003), and quantifying effects

of phenological changes on local, regional, and global scale (Myneni et al. 1997;

Peckham et al. 2008; Schwartz et al. 2006; White et al. 1999, 2002). This chapter

outlines the methods used to develop phenological metrics from satellite

measurements and the applications of satellite-derived vegetation phenology.

17.2 Method

Vegetation phenology derived from satellite measurements is distinct from the

individual plants or species phenology. The large view of satellite sensors captures

the canopy reflectance over the pixel size which ranges from high resolution as 30 by

30 m to coarse resolution as 8 by 8 km. The pixel-sized canopy reflectance is an
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aggregation of heterogeneous vegetation. This aggregated information stands for the

overall development stage of various plants, species within a pixel. It is important for

investigating biogeochemical process, such as water, energy exchange, and carbon

fluxes between biosphere and atmosphere.

Validation is a significant challenge for the study of satellite-derived vegetation

phenology. First of all, the reflectance reached to satellite sensors can be

contaminated by soil background signal and atmospheric influences. The contami-

nation must be discussed or identified during validation. Secondly, scaling from

field observations to satellite image requires multiple simultaneously collected data

at intensive field observation sites. Finally, the key phenological metrics that are

often derived from satellite measurements refer to the onset of greenness and

dormancy and length of the growing season. Although the meaning of these metrics

in many ecosystems is clear, there are many environments in which the precise

interpretation is needed, such as mixed forests, evergreen forests, and dry lands.

17.2.1 Physical Principles for Deriving Phenology from
Satellite Measurements

Remote sensing techniques, which can capture canopy reflectance, allow vegetation

photosynthetic capacity to be assessed. Reflected red energy decreases with plant

development due to chlorophyll absorption within actively photosynthetic leaves.

Reflected near infrared (NIR), on the other hand, will increase with plant develop-

ment through scattering processes (reflection and transmission) in healthy, turgid

leaves (Huete et al. 1999). However, the red and NIR radiation reflected from a

plant canopy to a satellite sensor can be contaminated by the effects of atmospheric

particles through absorption and scattering and soil background. A simple measure

of reflected energy is not able to quantify plant biophysical parameters from

satellite measurements. Many spectral combinations or transformations, referred

as Vegetation Indices (VI), are utilized to circumvent the problems of solar irradi-

ance, atmospheric aerosols, and canopy background. These VIs are designed to

enhance spectral reflectance and emissive characteristics of vegetation that are

related to phenological development.

Most of the studies have used satellite-derived VIs to exploit the seasonal

changes in the spectral signature of vegetation photosynthetic activity. Normalized

Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), and Leaf

Area Index (LAI) are the most widely used indices in satellite monitoring of

vegetation phenology (Ahl et al. 2006; Peckham et al. 2008; Reed et al. 1994;

White et al. 1997; Zhang et al. 2004). The NDVI, computed from NIR reflectance

and red reflectance Eq. 17.1, has been related to several biophysical parameters

including the fraction of photosynthetically active radiation (fPAR) (Huete et al.

1997), chlorophyll density (Tucker et al. 2001), percent canopy cover (Yoder and

Waring 1994), and productivity (Prince et al. 1995). The EVI Eq .17.2 is developed

to optimize the vegetation signal with improved sensitivity in high biomass regions

(Huete et al. 2002) and to reduce the canopy background signal and atmosphere
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influences by utilizing the more atmosphere-sensitive blue band to correct the red

band for aerosol influences (Kaufman and Tanre 1992). The EVI has been found to

perform well in heavy aerosol, biomass burning conditions (Miura et al. 1998).

NDVI ¼ NIR� Red

NIRþ Red
(17.1)

EVI ¼ G
NIR� Red

NIRþ C1Red� C2Blueþ L
(17.2)

where L (¼1) is the coefficient for canopy background adjustment, C1 (¼6) and

C2 (¼7.5) are aerosol resistance coefficients, and G (¼2.5) is a gain factor (Huete

et al. 2002).

LAI is broadly defined as the amount of leaf area (m2) or the number of

equivalent layers in a canopy per unit ground area (m2) (Knyazikhin et al. 1999).

The LAI is a state parameter needed by large-scale ecosystem models describing

the exchange flux of water vapor and CO2 across the global biosphere–atmosphere

interface (McWilliam et al. 1993). The LAI product derived from the Moderate

Resolution Imaging Spectroradiometer (MODIS) reflectance monitors seasonal

variation in LAI at 1-km nadir resolution every 8 days. MODIS LAI provides a

more physically meaningful threshold for defining phenology events (such as onset

of greenness) than other vegetation indices (Kang et al. 2003).

Many validation efforts have beenmade to demonstrate the capability and accuracy

of deriving vegetation phenology from satellite measurements. Schwartz et al. (2002)

compared three satellite-derived start-of-season measures and matched the results to

field data collected at the Harvard forest in Massachusetts. They concluded that each

method does a modestly accurate job of tracking the general pattern of surface

phenology. Ahl et al. (2006) compared field measurements of springtime forest

canopy phenology onset and maturity with estimates calculated from the MODIS-

derived vegetation products in northern Wisconsin forest. Their results showed that

MODIS products captured the general phenological development of the canopy

although they overestimated the leaf area during the over story leaf out period and

predicted onset of greenness and maturity earlier than that from field observations.

17.2.2 Approaches for Deriving Phenology from
Satellite Measurements

Many satellite phenology detection approaches have been addressed since early

90s (Table 17.1). The threshold for NDVI has been applied for phenological

classification of terrestrial vegetation (Lloyd 1990), modeling seasonal variation

of vegetation (Fischer 1994), and detecting characteristic of vegetation phenology

(Markon et al. 1995). They assume that a single threshold is applicable across land

covers. However, variation in background reflectance of different vegetation types

makes this a tenuous assumption. Therefore, it is not possible to establish a single,

meaningful threshold that signifies the onset (or end) of vegetative activity for the
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wide variety of cover types that occur in the continental United States. Reed et al.

(1994) developed an automated, quantitative approach to derive phenological

measures from multitemporal Advanced Very High Resolution Radiometer

(AVHRR) NDVI observations. To identify the onset of the growing seasons, an

auto-regressive moving average of previous smoothed nine NDVI biweekly com-

posite values was compared to the smoothed NDVI value. Selecting the moving

average time interval (the number of NDVI composite periods used to calculate the

moving average) is a critical issue; a large time interval may miss natural vegetation

changes, while a small interval may result in extremely noisy NDVI curves. White

et al. (1997) provided a methodology which determined the start and the end of

growing season by the threshold of the normalized NDVI ratio. Instead of original

NDVI values, they normalized the NDVI to 0–1 by its maximum and minimum

value. A new smoothed NDVI ratio curve was developed based on the method of

Reed et al. (1994), and then the NDVI ratio threshold of 0.5 was used to identify

growing season length. Moulin et al. (1997) used time derivative of NDVI to detect

three transition dates of vegetation cycle: beginning, maximum, and end. The time

derivative before beginning date should be zero and after beginning date should be

positive; the end date was calculated similarly to the beginning date. The algorithm

is sensitive of the weight of the derivative term. If the weight is too large, the

detection may be confused by short-term signal variations due to residual noise

(e.g., soil color, directional effects). If the weight is too small, the algorithm may

fail for pixels, which remain partly green during the year. Duchemin et al. (1999)

revealed that the temporal variation of NDVI during budburst and senescence was

nearly linear. A line segment model was used to fit the effect of budburst and

senescence. The method was sensitive to a change in the rate of NDVI variation,

resulting, for instance, from a spring frost during budburst or from a severe drought

in summer accelerating the senescence. Zhang et al. (2003) identified phenological

transition dates based on the curvature-change rate of a logistic model for time

series of MODIS vegetation indices. This method has been applied in many

researches (Ahl et al. 2006; Peckham et al. 2008; Zhang et al. 2004) because it is

able to handle multiple growth cycles and is not tied to a specific calendar period

(e.g., January to December). The challenge for this method is to identify a single

sustained increase (growth) and decrease (senescence) period before the MODIS

measurements could be fit to the logistic model.

Li et al. (2010b) modified Zhang et al. (2003)’s approach by using the Fourier

series to decompose the periodic vegetation indices instead of the moving average

window Eq. 17.3.

y ¼ aþ b cosðωxÞ þ c sinðωxÞ (17.3)

where a, b, and c are fitting parameters; ω is the angular frequency which is equal to

2� π=T; and T is period time of the growth cycle. For instance, the T for the single

growth cycle is the number of data samples for 1 year. For multiple growth cycle,

T equals to the number of data samples divided by the number of cycles for 1 year.

The other parameters are solved by least square fitting. Local maximum and

minimum points of the simulated data divided original data into a series of

sustained increasing and decreasing trends (Fig. 17.1). Using Fourier series to
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identify the single growth or senescence period are independent of the data set

temporal resolution and no empirical parameters settings. Based on the single

growth or senescence period, the logistic model provided by Zhang et al. (2003)

(Eq. 17.4) is used to identify phenological metrics, by determining the curvature of

the fitted logistic models. The first point with largest curvature in increasing period

corresponds to the greenup onset, and the second point with largest curvature in

decreasing period corresponds to the dormancy onset (Fig. 17.2).

yðtÞ ¼ c

1þ eaþbt
þ d (17.4)
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Fig. 17.1 Smoothed data by Fourier series. Original MODIS data are shown in blue points and
simulated data in black solid line. The red star marks are local maximum and local minimum

Fig. 17.2 Onset date detection. The solid line is fitted logistic model and the dashed line is the

curvature of the NDVI time series. The green point indicates the greenup onset (left figure) and the
dormancy onset (right figure)
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17.3 Applications

The vegetation phenology derived from satellite-based sensors with a variety of

spatial and temporal resolutions has been utilized for tracking vegetation dynamics,

invasive species, and land cover changes as well as assessing crop conditions,

drought severity, andwildfire risk. Since phenological events are sensitive to climate

variation, satellite-derived phenology data also represent a powerful tool for

detecting the response of terrestrial ecosystems to climate change at multiple scales.

Satellite sensors have their own characteristics of temporal and spatial resolution,

spatial coverage, and data quality and archive history. Each satellite takes

advantages of its respective strengths to provide certain phenological applications.

17.3.1 Landsat-Derived Vegetation Phenology

For monitoring vegetation phenology at regional scale, the Landsat data offers three

primary advantages. First, with more than 30 years of data archive, it provides the

longest-running time series of systematically collected remote sensing data. Second,

the 30-m spatial resolution facilitates landscape characterization. Third, the free-of-

charge data through the USGeological Survey (USGS) make it possible to acquire by

all researchers.

Landsat data have been translated into useful phenological behavior both on the

methods and applications. A “temporal profile” model (Badhwar 1984a, b) that

simulates phenological dynamics as a quadratic rise and exponential decay has been

utilized to extract features to classify the agriculture crops. Goetz and Prince (1996)

have used the species-specific foliar phenology to estimate the amount of incident

photosynthetically active radiation (PAR) and further to estimate the net primary

production (NPP) in boreal forest stands. Fisher et al. (2006) have provided an

approach to bridge the in situ, plot-level phenological measurements and satellite-

derived phenological metrics through Landsat data and quantified the accuracy

by comparing the half-maximum leaf onset and offset. Although Landsat’s 16-day

repeat cycle does not provide readily available data for the rapidly changing pheno-

logical stages, application of Landsat data paved the way for remote sensing-based

phenology, and the development of new methodologies can potentially overcome the

shortcomings of Landsat series.

17.3.2 AVHRR-Derived Vegetation Phenology

Current research using satellite sensors with a more frequent repeat cycle dominates

the study of remote sensing phenology. The AVHRR provides data globally with

daily repeat cycle since the 1980s. A variety of AVHRR collections are available

for phenology study. AVHRR vegetation index data are available in a consistently

270 M. Li and J.J. Qu



processed database at 8-km resampling grid twice monthly from 1982 covering the

globe and at 1-km resolution with biweekly intervals since 1989 covering the

conterminous United States.

The high temporal resolution, moderate spatial resolution, and relatively long-

term continuity make this sensor well suited for examining and monitoring pheno-

logical events for entire ecosystems on regional as well as on global scale. AVHRR-

derived vegetation phenology has widely been used in research areas of vegetation

activity, climate change, land use, and disaster. Vegetation phenology derived from

AVHRR provides unique opportunities for monitoring vegetation activity trends at

large scales. Myneni et al. (1997) have presented an increase in plant growth

associated with a lengthening of the active growing season from the 1981 to 1991

for the north hemisphere, based on AVHRR Pathinder NDVI data set and the

Global Inventory Monitoring and Modeling Studies (GIMMS) AVHRR NDVI

data set. They have estimated an advance in the active growing season of 8 � 3

days, a prolongation of the declining phase at 4 � 2 days, and therefore, a longer

active growing season of 12 � 4 days over the 1980s. Zhou et al. (2001) have

investigated the AVHRR-derived northern hemisphere vegetation activity and the

land surface temperature records for the period from 1981 to 1999. Their results

show a persistent increase in growing season NDVI over broad contiguous forests

and woodlands for Europe, a larger increase in growing season NDVI magnitude

and a longer active growing season for Eurasia and North America, and NDVI

decreases due to temperature-induced drought in boreal zones.

In addition to the trend over long periods captured by AVHRR-derived vegeta-

tion phenology, interannual anomalies of phenological dynamics also contain

meaningful information on the response of vegetation to climate change. Asner

et al. (2000) has revealed that the seasonal NDVI amplitude provided by AVHRR

measurements increased throughout Amazon forest during EI Niño periods when

rainfall was anomalously low. Based on vegetation phenology data set created from

Pathfinder NDVI, European spring phenology has been shown to correlate particu-

larly well with anomalies in winter temperature and winter North Atlantic Oscilla-

tion Index for 20 years from 1982 to 2001 (Stöckli and Vidale 2004).

The phenological changes and attributes have been used as an indicator of land

use changes and land use classification. Reed (2006) shows that changes in agricul-

tural practices result in a trend toward long duration of season in Saskatchewan,

Canada, based on 8-km AVHRR data set. Wessels et al. (2009) have used AVHRR-

derived phenology data in a fully supervised decision-tree classification based on

the new biome map of South Africa to identify the phenological attributes that

distinguish between the different biomes.

Furthermore, extensive research has shown the important contribution of vegeta-

tion phenology to the monitoring of environmental disaster. Peckham et al. (2008)

demonstrates that fire has a significant effect on the phenological dates of the Canadian

boreal forest derived from AVHRR–NDVI. They state that the most recently burned

areas have later greenup dates. Brown et al. (2008) has integrated the 1-km AVHRR-

derived phenological metrics, with climate-based drought index data and other bio-

physical information into a vegetation drought response model (VegDRI) to generate

higher resolution drought monitoring information in near real time.
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17.3.3 MODIS-Derived Vegetation Phenology

The newer generation of sensor MODIS was launched in December 1999.

Improved geometry, radiometry, and overall data quality of MODIS, combined

with its free-of-charge data policy, provide readily available high-quality data for

phenology studies. MODIS onboard NASA’s Terra and Aqua satellites collect daily

reflectance data at spatial resolution of 250 m, 500 m, and 1 km globally. One of the

standard MODIS land products is the Land Cover Dynamics product (MOD12Q2),

distributed from the Land Processes Distributed Active Archive Center, which

includes several phenology metrics at 1-km spatial resolution (Zhang et al. 2003).

The MODIS-derived phenology can be used in the similar research areas of

AVHRR-derived phenology, such as trends of vegetation dynamics, response to

climate change, land cover change, and disaster monitoring (Ahl et al. 2006; Kang

et al. 2003; Kim and Wang 2005; Peckham et al. 2008; Zhang et al. 2004).

Besides these research areas, the higher spatial and temporal resolution has

enabled MODIS-derived vegetation phenology to develop a stronger understanding

of how environmental conditions affect phenological patterns among regional and

broad scales. Li et al. (2010a) have quantified the effects of latitude, elevation, and

ecoregions on MODIS-derived vegetation phenology in Deciduous Broadleaf

Forest (DBF) over continental USA during 2000–2008. Figure 17.3 shows an

obvious phenological pattern dependent on latitude. The rate of change for greenup

onset and dormancy onset is about 2 days per degree latitude. They also have
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pointed out that the variation of greenness onset is not only dependent on latitude

but also associated with elevation and ecoregions. When the elevation is higher than

1 km, mountain area tends to green up latter than other ecoregions.

17.3.4 Applications of Other Sensors

The SPOT Vegetation optical instrument launched in March 1998 operates in four

spectral bands: blue, red, NIR, and shortwave infrared (SWIR). Delbarta et al. (2005)

have provided an accurate and precise determination of the dates of greenness onset

based on the Normalized Difference Water Index (NDWI) which generated from

SPOT Vegetation NIR and SWIR bands. Their detection algorithm relies on the fact

that NDWI first decreases with snowmelt and then increases during the vegetation

greening. The Medium Resolution Image Spectrometer Instrument (MERIS) is one

of the sensors on Environmental Satellite (ENVISAT) which was launched by the

European Space Agency (ESA) in 2002. Although MERIS was primarily dedicated

to ocean color, its band configuration broadens its application to vegetation monitor-

ing (Dente et al. 2008). The MERIS collect global data every 3 days in 15 wavebands

at 300-m spatial resolution. The Terrestrial Chlorophyll Index (MTCI), one of the

MERIS products, has enabled researchers to provide temporally continuous pheno-

logical variables at a much finer spatial resolution more accurately and precisely

(Lankester et al. 2010). The SeaWiFS carried on SeaStar spacecraft was launched in

1997. The sensor records information in eight optical bands with 1.1-km spatial

resolution for Local Area Coverage (LAC) and 4.5-km resolution for Global Area

Coverage (GAC). Verstraete et al. (2008) have described a method to define the start,

end, and length of growing season based on the statistical analysis of time series of

the biogeophysical quantity known as the fraction of absorbed photosythetically

active radiation (FAPAR) derived from SeaWiFS data for various biomes.

17.4 Summary

Satellite measurements have gained the insights about phenological behavior both on

the methods and applications. The method for satellite-derived vegetation phenology

has been developed from empirically, simple threshold of vegetation index to

automated, elaborate logistic model. Some methods are carried on specific satellite

data or specific land cover types, while some methods are independent of data set and

can be utilized on different land cover types. Each method provides certain

advantages and helps lay the way open for the success of satellite-derived vegetation

phenology. A variety of satellite sensors have been used to detect vegetation phenol-

ogy varying from instruments designed for land application purpose such as Landsat,

AVHRR, MODIS, and SPOT Vegetation to instruments not for land application such

as MERIS and SeaWiFS. The application of satellite-derived vegetation phenology
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varies among sensors due to their specific advantages. The majority of studies have

taken advantages of the moderate spatial resolution and long-term continuity of

AVHRR data to investigate the influence of climate change and disaster on terrestrial

ecosystems. More recent and much better calibrated sensor MODIS has additional

spectral bands besides maintain the visible and near-infrared wavelengths which are

important for phenological studies. The EVI based on multiple MOIDS bands has

been successfully used to assess environmental effects on phenological patterns.

However, the coarse scale of AVHRR and MODIS measurements render ground

validations difficult. The 30-m Landsat spatial resolution offers an appropriate scale

to bridge the ground-based observations and satellite-derived phenological metrics.

Other sensors although was not primarily designed for vegetation applications, its

multiple optical bands have broadened their application to vegetation phenology,

such as MERIS and SeaWiFS.

Despite the achievement obtained from satellite observations of vegetation

seasonal cycle, efforts to validate the accuracy of satellite-derived vegetation

phenology have had a low success rate. It is a big challenge to compare the two

sources (satellite and ground) of phenological data more effectively. Partially, this

is a scale problem. The satellite-derived vegetation phenology is based on pixel

level, while the ground records usually measure phenology at individual species

level. How to integrate the species-level phenology to pixel level is key issue

in validating satellite-derived vegetation phenology. In the further, more detailed

information of ground records should be collected, such as the area of field plots,

the composition, and the structure in vegetation community. The information

together with phenophases of individual species could be integrated to reflect the

canopy phenology and compared the results with satellite-derived phenology.

There is also a strong need to investigate the relationship between growing season

length and the concentration of atmospheric carbon dioxide. Increased knowledge

about the net ecosystem exchange of carbon dioxide between forest and atmosphere

would lead to regulate seasonal and interannual fluctuations of carbon uptake.
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Chapter 18

Monitoring a Sentinel Species from Satellites:

Detecting Emiliania huxleyi in 25 Years

of AVHRR Imagery

Stephanie Schollaert Uz, Christopher W. Brown, Andrew K. Heidinger,

Tim J. Smyth, and Raghu Murtugudde

Abstract Blooms of the coccolithophore Emiliania huxleyi were detected around

the world from 1982 through 2006 using Advanced Very High Resolution Radio-

meter (AVHRR) remote sensing reflectances. The annually averaged surface area

of these blooms has decreased over the past 25 years in regions where E. huxleyi
blooms are most prevalent – the Bering Sea, the North Atlantic south of Iceland, the

Norwegian and Barents Sea, and the Patagonian Shelf. Though less sensitive than

satellite ocean color sensors, AVHRR offers the longest continuous global dataset

of visible reflectances and has been used previously to identify regional E. huxleyi
blooms. This declining long-term trend in bloom surface area was correlated to warm

sea-surface temperature anomalies. The trend was weakly correlated to increased

mixed-layer depths. There were mixed results when comparing bloom surface area to

climate indices. Previous studies associated individual E. huxleyi blooms to warmer

temperatures and increased stratification. This apparently contrary result may indi-

cate that the dynamics of large-scale changes are different from those of individual,

local blooms. The decreased extent of blooms could also mean that E. huxleyi
respond to additional factors over the long term, such as ocean chemistry.
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18.1 Introduction

Marine phytoplankton are ideal indicators of environmental change. These micro-

scopic algae form the base of the oceanic food web and respond rapidly to changes in

their environment. Individuals of most phytoplankton species are short-lived and

react quickly to varying ambient conditions caused by both short-term weather and

long-term climate (Hays et al. 2005). As the cells essentially function as an

integrated, nonlinear sensor of environmental conditions, they may be more sensitive

to change than mechanical sensors measuring only one environmental variable. Also,

because phytoplankton are not commercially important, any observed changes can be

attributed to changes in the environment and not to harvesting.

Excluding physiological change and adaptation, the response by phytoplankton

and other organisms to environmental changes can be manifested by alterations in

both their spatial distribution pattern and their phenology, i.e., the timing of events

in seasonal life cycle (Hughes 2000). Recent studies have begun to explore the

observed variability in marine phytoplankton phenology and its effect on higher

trophic levels (Platt and Sathyendranath 2008; Platt et al. 2009, 2010; Vargas et al.

2009; Sapiano et al. 2012). An examination of the spatial distribution pattern was

conducted for the cosmopolitan species Emiliania huxleyi (Fig. 18.1), an important

member of the phytoplankton group that generates calcareous plates called

coccoliths, for which they are known as coccolithophorids.

Coccolithophorids are an abundant and widely distributed type of marine phyto-

plankton and play an important role in the oceanic carbon and sulfur cycles through

their production of CaCO3 coccoliths and dimethyl sulfide (DMS), the dominant

precursor for cloud condensation nuclei in the maritime atmosphere. As one of the

principal producers of DMS among phytoplankton, coccolithophorids act as a

significant biogenic source of sulfur to the atmosphere and may influence regional

albedo via increased cloud formation. Coccolithophorids generate as much as two-

thirds of open ocean calcification through their generation of calcareous coccoliths,

and E. huxleyi is considered to be the largest current producer of calcite (Westbroek

et al. 1989, 1993).

Blooms of E. huxleyi profoundly affect the biogeochemical and optical

properties of the waters they occupy. For example, generation and export of their

calcareous coccoliths alter the equilibrium of the regional ocean carbonate system

and the sea-air flux of carbon dioxide. The influence of E. huxleyi blooms also

cascades to upper trophic levels of the food chain, including fish and marine

mammals (Napp and Hunt 2001; Tynan et al. 2001). As a consequence,

documenting the seasonal to decadal variability of these blooms is important to

assess climate variability and environmental conditions and to better understand

their potential impact on the carbon cycle and regional ecosystems.

Several environmental conditions appear to be favorable to E. huxleyi bloom
development, including increased stratification of the upper ocean (Tyrrell and

Merico 2004). Smyth et al. (2004) found a strong correlation between bloom pre-

sence with warm sea-surface temperatures and reduced salinities in the Barents Sea.
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In the subarctic North Atlantic, Raitsos et al. (2006) noted that coccolithophore

abundance could be explained by increased stratification. There are predictions for

warming and large-scale freshening by increased precipitation and river outflow in

the subpolar seas (Delworth and Dixon 2000). Understanding whether and how

E. huxleyi blooms respond to changes in these and other environmental conditions

is critical to our understanding of their ecology and effect on the subpolar ecosystem.

Furthermore, although the response by E. huxleyi to ocean acidification is not yet

clear (Riebesell et al. 2008; Iglesias-Rodriguez et al. 2008), the uptake of atmospheric

CO2 by the upper ocean is generally expected to adversely impact calcifying taxa,

such as E. huxleyi (Doney et al. 2009).

Blooms of E. huxleyi occupying the surface layer are identifiable in visible

satellite observations due to their high ocean volume reflectance caused principally

by the presence of detached coccoliths (Holligan et al. 1983). The blooms and their

associated high concentrations of calcite have been identified in ocean color

imagery from the Coastal Zone Color Scanner (CZCS) (Brown and Yoder 1994),

Sea-viewing Wide Field-of-view Sensor (SeaWiFS) (Iglesias-Rodriguez et al.

2002), and Moderate Resolution Imaging Spectroradiometer (MODIS) (Balch

et al. 2005). Though a general description of the distribution of E. huxleyi blooms

was gleaned from the proof-of-concept CZCS mission that extended from 1978 to

1986, a more complete understanding of their spatial and temporal variability

awaited the launch of the dedicated SeaWiFS in 1997. Satellite ocean color data,

however, provide a limited time series to document E. huxleyi blooms. Although

not as sensitive as these ocean color sensors, Advanced Very High Resolution

Radiometer (AVHRR) imagery can also be used to detect E. huxleyi blooms and

extend the time series of their distribution back to the early 1980s.

The areal extent of E. huxleyi blooms is documented in a 25-year time series

from AVHRR in four regions around the world where E. huxleyi are prevalent and

Fig. 18.1 Scanning electron

photomicrograph of the

coccolithophorid Emiliania
huxleyi. The diameter of the

cell is approximately 12 μm
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have been observed in situ, using a satellite method similar to that employed by

another study (Smyth et al. 2004). We examine these results in relation to physical

processes and climatic indices.

18.2 Methods

Blooms of E. huxleyi were identified in global AVHRR and SeaWiFS imagery as

described in the following sections.

18.2.1 AVHRR Imagery

Daily global, 1/4o resolution remote sensing reflectances (Rrs), derived from

Rayleigh-corrected radiances of the AVHRR visible and near-infrared channels,

were acquired from the Clouds from AVHRR Extended (CLAVR-X) Project

(Heidinger et al. 2002). Input radiances from the different AVHRR platforms had

been intercalibrated to ensure a reliable and comparable time series of Rrs. CLAVR-X

was developed specifically to separate the cloud and sea-surface signals. To separate

the effect of atmospheric contamination, Rrs was estimated using a method for

detecting E. huxleyi blooms developed by Smyth et al. (2004):

Rrs ¼ ðR1� R2Þ=ðexpðð�0:057=2Þ � p1Þ

where R1 and R2 are Rayleigh-corrected channel 1 (0.580–0.680 μm) and channel 2

(0.725–1.1 μm) reflectances and pl is the optical path length, a function of the

satellite and solar zenith angle. The factor of �0.057 is the calculated value of the

Rayleigh optical depth in channel 1 for a pl of unity and a standard atmosphere.

18.2.2 SeaWiFS Imagery

SeaWiFS Global Area Coverage Level 1a data were acquired from the SeaWiFS

Project and Distributed Active Archive Center, processed to Level 2 radiances

while retaining the coccolith-flagged pixels normally masked during standard

processing, and spatially binned to 9-km resolution. SeaWiFS classification of

pixels into E. huxleyi bloom and non-bloom was based on 8-day mean normalized

water-leaving radiances using the supervised, multispectral classification scheme of

Iglesias-Rodriguez et al. (2002). The spectral signature of E. huxleyi blooms was

empirically ascertained to distinguish them from other oceanic conditions and has

been well validated.
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18.2.3 Detecting E. huxleyi Blooms

E. huxleyi blooms were classified in AVHRR daily imagery by applying an Rrs

threshold tuned to the well-validated SeaWiFS maps. Whenever two AVHRR

sensors were flying, daily composites were created incorporating both sensors.

A threshold of 1.0 was established for Rrs so the spatial extent of E. huxleyi from
AVHRR was similar to maps derived from SeaWiFS for blooms in the Barents Sea

(Smyth et al. 2004) and North Atlantic Ocean south of Iceland (Raitsos et al. 2006),

where in situ samples had confirmed E. huxleyi presence at high numbers. For each

AVHRR scene, pixels of Rrs > 1.0 were assigned a value of 1; pixels of Rrs < 1.0

were assigned 0. AnRrs threshold of 1.5 was applied for pixels with solar zenith angles

between 50o and 70o after observing several false-positive results correlated to high

solar zenith angles. Weekly composite AVHRR E. huxleyi maps were created by

summing these binary data over 8 days for each pixel, such that pixel values could

range from 0 (E. huxleyi absent) to 8 (E. huxleyi always present), then dividing by the
number of valid observations in the weekly composite to estimate the percentage of

time a pixel possessed E. huxleyi during the period. Fractions were averaged over the
entire region for a final value ranging between 0 (no E. huxleyi in the region) and 1

(a bloom covered the whole region for the 8-day period). Only pixels with a minimum

of 25% valid data, or 2 days out of eight, were included in the final area average.

Repeating our analyses with more stringent cloud and aerosol screening criteria

yielded nearly identical patterns, albeit fewer data, suggesting that this E. huxleyi
classification method is not biased by nearby clouds.

In order to minimize false-positives in both AVHRR and SeaWiFS data, we

excluded imagery collected during winter months (i.e., October–March in the

Northern Hemisphere, vice versa in the Southern) when materials such as diatom

frustules are resuspended by high winds and spectrally mimic E. huxleyi blooms

(Broerse et al. 2003). We applied a bathymetric threshold (depth >150 m) between

45ºS and 45ºN to avoid the incorrect classification of shallow carbonate shelves as

coccolithophore blooms.

The number of times E. huxleyi blooms were identified in a pixel of both AVHRR

and SeaWiFS (� 1 week) was summed as was the number of times either AVHRR or

SeaWiFS detected a bloom when the other did not. From this map, four open ocean

and coastal regions were selected where E. huxleyi was frequently present and the

matchups of blooms derived from both sensors were most consistent as well as being

locations where blooms had been sampled during cruises (Fig. 18.2): the Bering Sea

west of Alaska, the North Atlantic south of Iceland, the North and Norwegian Seas,

and the Patagonian Shelf east of Argentina. Over 216 coincident weeks, the correla-

tion between AVHRR and SeaWiFS E. huxleyi detection was significant: r ¼ 0.46

(Bering Sea), r ¼ 0.63 (south of Iceland), r ¼ 0.39 (North and Norwegian Seas), and

r ¼ 0.30 (Patagonian Shelf). Although the Black Sea had an abundance of blooms

consistently identified by both sensors, it was excluded because the focus of this study

was on open ocean systems.

The areal extent of blooms in each region was estimated by averaging bloom

pixels. After integrating over each year, the maximum bloom area was normalized
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over the 25-year period. The seasonal cycle in the coverage of E. huxleyi was
calculated by averaging coincident periods for all years and performing a 5-week

running box car filter. Anomalies were not found useful for this analysis due to the

annual variability in bloom onset; therefore, this analysis focused on the original time

series and annual cumulative values.

18.2.4 Geophysical Data and Climate Indices

The areal extent of E. huxleyi blooms were compared to sea-surface temperature

(SST) and mixed-layer depth. Optimally interpolated weekly and monthly

1� resolution SST (NOAA OI.v2) were created from in situ and satellite-derived

Fig. 18.2 AVHRR (top panel) and SeaWiFS (bottom) E. huxleyi composites for June 10–17,

1998.White pixels indicate E. huxleyi bloom; blue pixels, no bloom; gray pixels are missing data;

the four regions we highlight in this study are outlined in red

282 S. Schollaert Uz et al.



SST (Reynolds and Smith 1994). Mixed-layer depths were acquired from Simple

Ocean Data Assimilation Reanalysis (SODA) Version 2.0.2 (Carton and Giese

2008). This blended ocean product combines the advantages of ground-truth

observations with the uniformly mapped regularity of numerical simulation.

The annual bloom extent was also compared to several climate indices which

have been linked to ecosystem changes: El Niño Southern Oscillation (ENSO)

(Wolter and Timlin 1998), Pacific Decadal Oscillation (PDO) (Trenberth and

Hurrell 1994), and North Atlantic Oscillation (NAO) (Hurrell 1995). The trend

toward more positive NAO values over the past 30 years coincides with changes in

marine and terrestrial ecosystems (Hurrell and Deser 2009). Over short time scales,

warm PDO eras have been linked to enhanced coastal ocean productivity near

Alaska and inhibited productivity to the south, with the opposite patterns during

cold eras (Mantua et al. 1997).

18.3 Results and Discussion

18.3.1 Extent of E. huxleyi Blooms

The timing of E. huxleyi blooms detected in AVHRR showed good correspondence

to those identified in SeaWiFS (Fig. 18.3). Some discrepancies in magnitudes

were evident, but were expected due to differences in sensor sensitivity and

image coverage between the two satellites. During 10 years of overlapping data,

the Bering Sea had the greatest fraction of bloom coverage, followed by the

Norwegian Sea and the area south of Iceland. Our AVHRR bloom detection method

did not match SeaWiFS as well on the Patagonian Shelf; there was some disparity in

magnitudes, and many times SeaWiFS detected a bloom but AVHRR did not.

In general, using AVHRR, E. huxleyi blooms were detected more frequently in

Bering and Norwegian Seas. Using SeaWiFS, blooms were detected more fre-

quently in the Patagonian Shelf and south of Iceland.

For the entire AVHRR series (Fig. 18.4), some years show greater bloom

coverage over a week or two, while some smaller fractional bloom areas are

maintained over several weeks. Normalized annual cumulative bloom coverage

values account for this effect. E. huxleyi blooms in all regions achieved their annual

cumulative maxima around 1992 and 1996 (Fig. 18.4). Since then, annual values

clearly show a trend toward less bloom area. Blooms in all regions increased

slightly in 2006 after decreasing over the last decade. A linear fit to the annual

values shows a marked decrease in all regions; this trend is highly statistically

significant for the Northern Hemisphere regions and to 94% confidence for the

Patagonian Shelf (Table 18.1). E. huxleyi blooms were identified in the Bering Sea

in 1997 with the advent of SeaWiFS ocean color, although they had been present

prior to that as evidenced in AVHRR as well as in situ data collected during field

studies in the early 1990s (Merico et al. 2003). The Patagonian Shelf had the

smallest area covered by E. huxleyi blooms which were drastically reduced since

2000, suggesting a possible regime shift. For all regions, there was no evidence for

any poleward shift by the species.

18 Monitoring a Sentinel Species from Satellites: Detecting Emiliania huxleyi. . . 283



Bering Sea Iceland

Norwegian Sea

 F
ra

ct
io

n 
of

 a
re

a 
w

ith
 E

m
ili

an
ia

 h
ux

le
i p

re
se

nt

Patagonian Shelf

0.5

0.4

0.3

0.2

0.1

0.0

0.5

0.4

0.3

0.2

0.1

0.0
1998 2000 2002 2004 2006 2008

1998 2000 2002 2004 2006 2008

1998 2000 2002 2004 2006 2008

1998 2000 2002 2004 2006 2008

0.5 0.12

0.10

0.06

0.04

0.02

0.00

0.08
0.4

0.3

0.2

0.1

0.0

Fig. 18.3 Fraction of area covered by E. huxleyi blooms each week detected by AVHRR (blue)
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Fig. 18.4 Fraction of area covered by E. huxleyi blooms from 1982 to 2006 in the four regions.

Weekly bloom episodes are plotted as lines as in Fig. 18.3; diamonds (◊) show integrated annual

amounts normalized by the maximum for the time series. Regression lines for the annual values are
superimposed with slopes, standard errors, correlation coefficients, and probabilities itemized in

Table 18.1
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18.3.2 Relationship to Environmental Variables and
Climatic Indices

Sea-surface temperatures during bloom events were highly variable between the

regions. The Bering Sea had the coolest temperatures, generally less than 10�C,
without any correspondence to the fraction of area covered by E. huxleyi blooms.

The Patagonian Shelf was the warmest, ranging from 10 to18�C. The regions south
of Iceland and in the Norwegian Seas ranged from 5�C to 12 and 16�C, respectively.
Annual E. huxleyi fractions were anti-correlated to sea-surface temperature

anomalies (Table 18.2). Other studies have found a correlation between warm

temperature anomalies and bloom episodes (Smyth et al. 2004; Raitsos et al.

2006), so we interpret our opposite result to indicate that the warming trend is not

driving the long-term decrease in E. huxleyi bloom extent.

Correlations with mixed-layer depths confirm the importance of stratification to

bloom development (Table 18.2): shallower mixed layers corresponded to a higher

fraction of area covered by bloom, albeit weakly. The highest correlation was for the

Patagonian Shelf with mixed layers shallower than 20 m; the most variability was

seen off Alaska where mixed layer depths ranging 10–50 m showed variable bloom

coverage, while less than 20 m corresponded to the greatest areas of bloom. For the

North Atlantic, typical bloom size increased for shallower mixed layers, while some

atypical blooms were associated with mixed layers deeper than 100 m.

Comparison with the three climate indices examined did not produce a signifi-

cant relationship. ENSO had a large warm peak in 1997, following the maximum

bloom area; the warm ENSO peak in 2006 corresponded to a slightly increased

Table 18.1 The trend in annual cumulative amounts during 1982–2006 as shown in Fig. 18.4

Region β1 se (β1) rxy p

Bering Sea �0.013 0.0036 �0.61 0.001

Iceland �0.017 0.0046 �0.62 0.0009

Norwegian Sea �0.019 0.0046 �0.64 0.0009

Patagonian Shelf �0.008 0.0039 �0.39 0.054

Draper and Smith (1981)

β1 is the slope of the regression line, se is the standard error of β1, rxy is the autocorrelation

coefficient, and p is the probability where p < 0.05 is considered statistically significant

Table 18.2 The cross correlations between the annual cumulative fraction of area covered by

E. huxleyi bloom with SST and MLD anomalies, as well as ENSO, PDO, and NAO climate indices

Region SST rxy MLD rxy ENSO rxy PDO rxy NAO rxy

Bering Sea �0.35 �0.21 0.20 0.22 0.33

Iceland �0.64 �0.11 0.26 0.25 0.38

Norwegian Sea �0.59 �0.48 0.23 0.22 0.35

Patagonian Shelf �0.50 �0.59 0.07 �0.21 0.32
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bloom area in all regions, but there was generally no consistent relationship

between the ENSO indices and the fraction of area covered by E. huxleyi. The
monthly and annual PDO indices were also not significantly correlated to E. huxleyi
blooms over the 25-year time series, although it is worth noting that the summer-

time PDO had a higher correlation for all regions (0.2–0.3) compared to wintertime

PDO (0.05–0.06). Although the NAOwintertime index was correlated with a 2-year

lag in bloom fractional area between 0.3 and 0.4 for all regions, they were not

statistically significant.

The lack of significant correlations between bloom fractional area and the

relevant environmental variables and climatic indices examined above suggest

that a nonlinear combination of these or others factors, such as changing ocean

chemistry, are responsible for the decreasing trend in the surface area of E. huxleyi
blooms documented in the four regions of our study. For example, recent studies

suggest that decreasing alkalinity in ocean surface layers could lead to changes in

coccolith size, shell thickness, species distribution, calcification rate, and carbon

fixation (Barcelos e Ramos et al. 2010; Charalampopoulou et al. 2010) which could

conceivably decrease the calcite concentration within blooms and impair our ability

to detect them in AVHRR imagery. Further study, especially with in situ data, is

required to ascertain the factors responsible for this decreasing trend in the

E. huxleyi bloom surface area.

18.4 Conclusion

The well-established ocean color satellite measurements of E. huxleyi blooms

around the world were extended back to 1982 by identifying them in AVHRR

imagery. The observed trend over 25 years toward decreasing bloom areal extent in

the four regions examined at the same time that temperatures have been rising

suggests that the hypothesized relationship between E. huxleyi bloom events and

warming temperatures does not hold over the long term. Other than the weak

relationship between bloom fractional area and mixed layer depth, the paucity of

robust correlations with physical variables and climate indices suggest a nonlinear

combination of those or other factors are responsible for the decreasing trend in the

surface area of E. huxleyi blooms documented here. Other possible factors, such as

ocean acidification or salinity anomalies, need to be studied further.
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Chapter 19

Land Surface Temperature (LST) Retrieval

from GOES Satellite Observations

Donglian Sun and Yunyue Yu

Abstract This chapter includes recent advances on the retrieval of land surface

temperature (LST) from satellite observations. Special attention has been paid to

the LST retrieval from GOES satellites. Detailed introduction is given about the

literature review, the existing problems and challenges, and the advantages of

geostationary satellites and GOES instruments. Algorithm theoretical basis (both

physical and mathematical) has been provided. The simulation test and error

analysis are enclosed. The chapter gives a complete coverage on the LST retrieval

from GOES observations, including the physical problem, mathematical descrip-

tion of the theoretical basis, forward model simulations, and algorithm coefficient

derivation, validation against ground observations, and error estimate and analysis.

Keywords Land surface temperature (LST) • GOES • LST product • Validation

19.1 Introduction

Surface skin temperature, which is the temperature at the interface between the land

surface and atmosphere, is an important climate parameter due to its control of the

upward terrestrial radiation, and hence, the surface sensible heat and latent heat flux

exchange with the atmosphere. The importance of land surface processes for

climate and weather modeling has increasingly been recognized. Many general

circulation and climate models are now coupled with land surface schemes. For

example, the community climate model (CCM) is coupled with the biosphere-

atmosphere transfer scheme (BATS); the National Environmental Prediction
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Center (NCEP) mesoscale Eta model is coupled with Oregon State University

(OSU) land surface scheme and with the simple biosphere (SIB) scheme. The

inclusion of detailed land surface schemes into the general circulation models

(GCMs) and numerical weather prediction (NWP) models is motivated by the

realization that the surface plays an important role, in regulating the exchange of

heat, momentum, and energy between the Earth’s surface and the atmosphere. Skin

temperature is a key parameter for land surface process parameterization. At

present, information on surface skin temperature is available only from few field

experiments, such as the First International Satellite Land Surface Climatology

Project (ISLSCP) Field Experiment (FIFE) (Sellers et al. 1992), Boreal Ecosystem-

Atmosphere Study (BOREAS) Experiment (Sellers et al. 1995, 1997), the Atmo-

spheric Radiation Measurement Program (ARM) Experiment (http://www.arm.

gov), the MONSOON experiment (Kustas and Goodrich 1994), the Oklahoma

Mesonet Network (http://okmesonet.ocs.ou.edu), the CASES experiment (http://

www.mmm.ucar.edu/cases), and many more shorter field observations. Till now,

surface shelter temperature was used as proxy to skin surface temperature, even

though; these are known to differ. Observations from satellites have been proven to

be useful for inferring surface skin temperature. However, not all satellites have the

necessary capabilities to derive surface temperature at high accuracy; some do not

have sufficient number of channels to derive surface emissivity, while others do not

observe the Earth’s surface frequently enough to represent the diurnal cycle.

Deriving accurate land surface temperature (LST) from satellites is both attrac-

tive and challenging. It is attractive because LST is a highly variable quantity in

both space and time. Satellites provide efficient and practical means of capturing

this variability. It is challenging because the land surface is very heterogeneous,

LST is generally not homogeneous within one pixel, and land surface emissivities

may be quite different from unity and spectrally variable (Lyon 1965; Nerry et al.

1990).

There are three main sources of error in the determination of LST from satellites.

First, the satellite instruments have sensor noise and calibration errors that transfer

into errors in brightness temperature. Next, algorithms may have errors in the

determination of the atmospheric effect, and lack of knowledge of spectral

emissivities of the land surface. The third source of error is the evaluation process

itself. Ground observations are limited in scope and measurements are taken

at a point, while satellites measure a pixel average. For example, for GOES, it is

a 4 km � 4 km area, and it is well known that land surface temperature is not

homogeneous on such scale.

While surface temperature retrievals from satellites utilize atmospheric windows

(where absorption is minimum), the influence of atmospheric absorption and

emission is not negligible. Water vapor is the major absorbing gas in the window

channels; it varies with season and latitude.

The effect of surface emissivity is twofold. Since the land surface emissivity is

generally less than one, part of the atmospheric downward radiation is reflected by

the surface and has to be accounted for (Lorenz 1986). The emitted radiation by the

surface is modified in each channel, yielding different values for the brightness

temperature.
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19.1.1 Literature Review

19.1.1.1 Importance of Skin Temperature

Land surface temperature (LST), a key indicator of the Earth’s surface energy

budget, plays an important role in land surface processes on regional as well as on

global scales. It combines the surface-atmosphere interactions and energy fluxes

between the atmosphere and the ground (Mannstein 1987). It is of fundamental

importance to the net radiation budget at the Earth’s surface and to monitoring the

state of crops and vegetation (Norman and Becker 1995; Li and Becker 1993;

Sellers et al. 1998). Therefore, it is required for a wide variety of climate, hydro-

logical, ecological, and biogeochemical studies (Camillo 1991; Schmugge and

Becker 1991; Running 1991; Zhang et al. 1995; Running et al. 1994).

Skin temperatures at the Earth’s surface are important for the study of global

warming (Knox 1999; Jin and Dickerson 2002). Typically, global temperature change

is assessed by in situ surface air temperature (SAT) measurements at 2 m height at

weather stations. However, weather stations are usually located in relatively densely

populated regions where anthropogenic impacts may affect measurements, and thus

the temperature record may not be representative of global change. Moreover, station

observations are sparse and unevenly distributed, and suffer from differences in

elevation and time of observation (Peterson 2003). The use of satellite-derived data

could contribute to a large-area consistent measurement (Gallo et al. 1999). Satellite

LST can also be assimilated into climate, mesoscale atmospheric, and land surface

models to estimate sensible heat flux and latent heat flux. It can also be applied for

analyzing climate change due to its rich archive from being routinely produced from

imagery data of geostationary and polar-orbiting satellites.

A long-term data set of satellite-derived land surface temperature can be used as

an index of greenhouse effect and climate change. For example, accurate Arctic

snow and ice surface temperature is needed to improve estimates of the heat budget

in the polar region and our understanding of its link to the global climate change

(Yu et al. 1995). Canopy temperature may be used to estimate evapotranspiration

and sensible heat flux (Vining and Blad 1992), to evaluate water requirements of

wheat (Jackson et al. 1977), and sensible and latent heat fluxes (Kimura and

Shimiru 1994). Satellite-measured surface temperature may be used to improve

models and methods for evaluating land surface energy balance (Diak and Whipple

1993; Crago et al. 1995). Furthermore, atmospheric general circulation model

(GCM) simulations indicate that stronger summer monsoons are associated with

higher land temperatures (Meehl 1994).

19.1.1.2 LST Derivation from Satellites Under Clear Conditions

The first effort to retrieve LST from satellites was made by Price (1984), by

adopting the AVHRR sea surface temperature (SST) split-window algorithm over
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agricultural land. After a careful analysis of the relevant error sources, he showed

that the split-window method for SST could be adopted with an accuracy of 3�C.
Since most land surface emissivities are not close to unity, Becker (1987) pointed

out that if emissivities in the two split-window channels are assumed to be 1, the

errorΔT in LST by the SST split-windowmethod is significant and is of the order of

ΔT ¼ 50
ð1� εÞ

ε
� 300

ε1 � ε2ð Þ
ε

ε ¼ ε1 þ ε2ð Þ
2

(19.1)

Becker and Li (1990) extended the split-window method for SST to LST and

accounted for land surface emissivity. Again, surface temperature is expressed as a

linear combination of the brightness temperature in the two split-window channels,

in a form similar to SST, but with coefficients varying with spectral emissivites.

They show that more accurate LST can be retrieved with this local split-window

method, once the surface emissivities are known with sufficient accuracy. This

approach, the so-called local split-window LST algorithm, has been widely used.

As yet, information on surface emissivities is lacking. In some algorithms (Vidal

1991; Ulivieri et al. 1992), the land surface emissivity correction term derived by

Becker (1987) is added to the SST split-window equation, to obtain a split-window

equation for LST.

The coefficients of the above LST split-window algorithms depend on spectral

emissivities but not on atmospheric conditions. The corrections for atmospheric

effects are limited to the use of the differential absorption of water vapor continuum

inside the atmospheric window 10.5–12.5 μm. Prata (1993) introduced a split-

window algorithm with coefficients that not only depend on surface emissivity

but also on atmospheric transmittance. Sobrino et al. (1994) also developed an LST

split-window algorithm with coefficients that vary with both surface emissivity and

atmospheric transmittance. However, it is difficult to obtain information on atmo-

spheric transmittance.

Since water vapor is the major absorbing gas in the split-window channels,

Becker and Li (1995) introduced a new split-window algorithm with coefficients

depending on surface emissivity and the atmospheric water vapor content. Francois

and Ottle (1996) introduced another LST split-window algorithm with coefficients

being quadratic functions of the water vapor content and tabulated for different

emissivity values. Coll and Caselles (1997) developed an LST algorithm with

nonlinear brightness temperature difference term, with coefficients of emissivity

correction terms changing with atmospheric transmittance and water vapor content.

The problem with these algorithms is that the error of precipitable water itself may

become another source for LST retrieval error. Although precipitable water can be

estimated from satellites (Jedlovec 1989; Kleespies and McMillin 1990), errors are

unavoidable.
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The algorithms discussed above are physically based, starting from a theoretical

description of the important radiative transfer processes at the surface and in the

atmosphere and ending in a regression relation with coefficients that are adjustable,

or at least, changing with surface and atmospheric parameters. All of these split-

window approaches utilize the 11- and 12-μm window channels and assume

constant surface emissivities.

Bates and Smith (1985) included the 3.9-μm channel of GOES-5 in SST retrieval

from the split-window channels, and were able to reduce the SST retrieval error.

May (1993) introduced three-channel nighttime SST algorithm to retrieve SST

from the NOAA/AVHRR imager during nighttime and demonstrated improved

accuracy relative to the split-window algorithm. The transmittance of radiant

energy from the surface through the atmosphere is greater for AVHRR channel 3

(3.75 μm) than for channels 4 and 5. This fact results in less atmospheric attenuation

effects in channel 3 data, providing a more accurate SST retrieval when all the three

thermal channels are used. However, this channel has not been used to retrieve LST

and as yet no three-channel LST algorithm has been developed. Channel 3 can be

used only at night because this wavelength contains reflected solar energy during

the daytime, unless a correction to the solar contamination is adopted. Brown et al.

(1996) investigated the possibility of correcting the solar contamination existing in

the MID-IR channels during daytime for the bands of MODIS (Moderate-resolution

Imaging Spectroradiometer). These studies are in progress and results are being

evaluated.

Most studies on LST have focused on the use of polar-orbiting satellite systems,

such as EOS/MODIS and NOAA/AVHRR. The temporal measurement frequency

of the polar-orbiting satellite instruments is approximately two times per day. This

sparse temporal sampling is inadequate to capture the LST diurnal cycle. Moreover,

the NOAA satellites are not strictly sun-synchronous, implying that a drift in time

of measurement may exist at a given location (Gutman 1992; Gleason et al. 2002).

Less work has been done with geostationary satellites. Prata (1999) investigated

LST retrieval from the Japanese Geostationary Meteorological Satellite 5 (GMS-5)

using a split-window LST algorithm. However, the GMS have only two window

channels available for LST retrieval. Faysash and Smith (1999, 2000) proposed a

simultaneous retrieval of LST and surface emissivity using MODTRAN; however,

radiative transfer models (RTM) are very time consuming, and therefore, not well

suited for large data sets and operational use. Several studies of LST retrieval from

METEOSAT of the European Meteorological Satellite Programme (EUMETSAT)

have been performed (Morcrette 1991; Olesen et al. 1995; Hay and Lennon 1999;

Cresswell et al. 1999; Schadlich et al. 2001; Gottsche and Olesen 2001; Dash et al.

2002). They deal with modeling the brightness temperature ofMETEOSAT, studying

ground height effects on LST, estimating air temperature from LST, and applications

of LST in disease studies. Recently, a four-channel LST algorithm has been devel-

oped by Sun and Pinker (2007) for the METEOSAT second-generation imager

SEVIRI.
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19.1.2 LST Derivation from Satellites Under Cloudy Conditions

All of the algorithms described above are limited to clear sky conditions, while in

reality, most of the sky is covered with clouds. Clouds affect surface temperature by

reflecting solar radiation and by emitting longwave radiation.

Most LST retrievals under cloudy conditions use microwave observations since

microwave channels have better transparency for clouds (McFarland et al. 1990;

Chahine and Suskind 1991; Givri 1997; Plokhenko 1997; Weng and Grody 1998;

Basist et al. 1998; Peterson et al. 2000; Williams et al. 2000; Aires et al. 2001; Dash

et al. 2002). McFarland et al. (1990) derived surface temperature over crops, moist

soils, and dry soils areas in the Central Plains of the United States from the DMSP

Special Sensor Microwave/Imager (SSM/I) data. A regression analysis of all of the

SSM/I channels and air temperatures (representing the surface temperatures

assumed) showed a correlation with a root mean square error of 3 K. It was also

determined that snow-surface temperature retrieval is very difficult, because snow

emissivity varies with depth, density, and grain size.

Weng et al. (1998) developed a physical algorithm to retrieve land surface

temperature from the microwave imager (SSM/I). However, as indicated by

Ulaby et al. (1986) while satellite microwave radiometers have provided informa-

tion about atmospheric and oceanic parameters for several years, they have not

provided information on land parameters. The spatial resolution of the satellite

microwave measurements (about 50 km) is more compatible with the dimensions

associated with the spatial variation of oceanic parameters, and the mechanisms

responsible for microwave emission from land surfaces are not well understood.

Because of the much higher variations of the land surface emissivities in the

microwave range and the dependence of microwave brightness temperature on

surface roughness and structures (Eyre and Woolf 1988), it is not possible to

retrieve global land surface temperature at accuracy of 1–2 K by microwave

techniques alone. Since the visible and infrared data have no direct information

on the surface temperature under overcast conditions, it is difficult to derive LST

under such conditions from the imager data.

19.1.3 Ill-Posed Problem

Since surface emissivities change spectrally, the total number of unknowns

(N emissivity values plus LST, N + 1) is always larger than the number (N band

observations) of radiative transfer equations to be solved regardless how many

thermal channels a sensor has. This is a typical ill-posed problem. A number of

alternative methods have been proposed to simultaneously retrieve LST and band

emissivity such as the temperature and emissivity separation method of Kealy and

Hook (1993) as applied to the thermal infrared bands from TIMS (Thermal Infrared

Multispectral Scanner) and ASTER (Advanced Spaceborne Thermal Emission
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Reflectance Radiometer). This method utilizes six thermal bands from TIMS and

five thermal bands from ASTER, focusing on emissivity retrieval. The MODIS

team (Wan et al. 1996) proposes a day/night algorithm that uses day and night

measurements in N MODIS bands with 2N observations. The unknown parameters

include N band emissivities, daytime surface temperature, nighttime surface tem-

perature, and four atmospheric parameters (air temperature and water vapor content

at two times). The total number of unknowns N + 7 needs to be smaller than or

equal to the 2N observations, (N + 7) � 2N, which requires N � 7. Seven MODIS

thermal bands (12.91, 12.25, 11.98, 8.6, 4.70, 4.11, and 3.74) are used to solve a 14-

equation set. The problem of this approach is that the pixel during nighttime may

not be the same as during daytime, and seven infrared window bands are required to

solve the equations. The alternative approach is to use Lookup Tables (LUT)

generated from radiative transfer model simulations. This will introduce errors

due to interpolation. Liang (2001) proposed an optimized algorithm for separating

land surface temperature and emissivity from MODIS and Advanced Spaceborne

Thermal Emission and Reflection Radiometer (ASTER). This method also needs

five (ASTER) and six (MODIS) thermal window bands, and emphasize emissivity

retrieval. Ma et al. (2002) proposed a physical algorithm for MODIS to retrieve

LST and surface emissivity simultaneously. This algorithm uses nine channels and

is computationally intensive.

19.1.4 Validation Issues

The evaluation of LST retrievals from satellites has been difficult since satellites

measure skin temperature while global scale ground observations are from shelters.

The difficulty in obtaining ground truth has been addressed by Prata (1994) and

others. Weng and Grody (1998) tried to use shelter temperature in the early morning

(when the difference between surface skin temperature and shelter temperature is

the lowest) to validate LST retrieval from satellite SSM/I data.

Sugita and Brutsaert (1993) compared the land surface temperature derived from

the AVHRR and TOVS instruments on NOAA-9 and NOAA-10, the TM

instruments on Landsat-5, and VISSR instrument aboard GOES-7 with ground

truth from the First ISLSCP Filed Experiment (FIFE) (Sellers et al. 1992). For

clear condition, the root mean square differences from TOVS, TM, and VISSR data

are about 1–2 K; for AVHRR, it is of the order of 2–3 K. Prince et al. (1998)

compared surface temperature retrieved from the AVHRR with the BOREAS,

HAPEX-Sahel (Hydrological and Atmospheric Pilot Experiment in the Sahel),

and FIFE and showed RMS error of 3.5 K.

Existing approaches show that root mean square accuracy of 1–3 K can be

reached from the current operational and research satellite-borne visible/infrared

radiometers. While accuracy of 3 K is of marginal use, accuracy of 1 K or less is

desired for many applications. A main objective of this study is to develop new

algorithms to improve the accuracy of LST estimation from satellites.
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Due to the lack of ground observations, all relevant sources of information on

surface skin temperature, directly, including the skin temperature observation from

the Atmospheric Radiation Measurement (ARM) and Mesonet networks, and

indirectly, such as the surface upwelling and downwelling longwave radiation,

and even soil temperature observations, had been used in the evaluations of

retrieved LSTs from GOES by Sun and Pinker (2003, 2004, 2006 a, b, 2007) and

Yu et al. (2009a, b, c).

19.2 LST Retrieval from Geostationary Satellites

Most surface temperature retrievals from satellites are based on polar orbiters.

Surface temperature, especially land surface temperature, has a strong diurnal

cycle, which cannot be captured at the temporal resolution (approximately two

views per day) of such satellites. Geostationary satellites with high temporal

resolution, on the other hand, provide good diurnal coverage, making them attrac-

tive for deriving information on the diurnal LST cycle and diurnal temperature

range (DTR) (Sun et al. 2006), which is an important climate change index (Karl

et al. 1993).

Satellite retrievals of LST have been conducted for over 40 years from a variety

of polar-orbiting and geostationary satellites. For producing an LST climate data

record from those programs, consistency of the LST products from different

satellite mission is of importance. The GOES-Imager LST algorithm should have

a good historical heritage for consistency among other satellite products.

The GOES imager is a multichannel instrument designed to sense emitted and

reflected energy from sampled areas of the Earth. The multielement spectral

channels simultaneously sweep east–west and west–east along a north to south

path using a two-axis mirror scan system.

Accuracy of the satellite LST measurement is limited by the atmospheric

correction, the complexity of surface emission characteristics, and sensor perfor-

mance. Among those, variation of surface emissivity is the biggest difficulty in the

satellite LST measurement.

Currently, surface emissivity variation is still the biggest impediment in satellite

LST retrieval. The remote sensing community has been working for years to obtain

a time series of accurate global land surface emissivity maps (e.g., Borbas et al.

2008). The GOES-Imager LST algorithm should potentially benefit from such

improvement of emissivity measurement.

19.2.1 GOES Instrument Characteristics

The Geostationary Operational Environmental Satellite (GOES) system, operated by

the United States National Environmental Satellite, Data, and Information Service
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(NESDIS), supports weather forecasting, severe storm, tracking, and meteorology

research. Spacecraft and ground systemwork together to provide a continuous stream

of environmental data. The National Weather Service (NWS) uses the GOES system

for its United States operational weather forecasting and monitoring, and scientific

researchers use the data to better understand land, atmosphere, ocean, and climate.

The GOES system uses geosynchronous satellites which—since the launch in

1974—have been a basic element of US weather monitoring and forecasting.

Designed to operate in geostationary orbit, 35,790 km (22,240 statute miles)

above the Earth, thereby remaining stationary with respect to a point on the ground,

the advanced GOES I–M spacecraft continuously view the continental United

States, observing environments of the Pacific and Atlantic Oceans, Central, South

America, and southern Canada. The three-axis, body-stabilized spacecraft design

enables the sensors to “stare” at the Earth and thus more frequently image clouds,

monitor Earth’s surface temperature and water vapor fields, and sound the atmo-

sphere for its vertical thermal and vapor structures. Before being launched, GOES

satellites are designated by letters (-A, -B, -C. . .). Once a GOES satellite is

launched successfully, it is redesignated with a number (-1, -2, -3. . .). So, GOES-
A to GOES-F became GOES-1 to GOES-6. Because GOES-G was a launch failure,

it never received a number. Since then, GOES-H to GOES-N became GOES-7 to

GOES-13.

In this chapter, we mainly focus our efforts to derive the LST products from the

imager of the GOES satellites currently available for operational use:

• GOES-12 is designated GOES-South, currently located at 75�W over the

Amazon River.

• GOES-13 is designated GOES-East, currently located at 105�W. It provides

most of the U.S. weather information.

• GOES 14 was placed in orbit on 7 July 2009, underwent Post-Launch Testing

until December 2009 and then was placed in on-orbit storage.

The GOES imager is a multichannel instrument designed to sense emitted and

reflected energy from sampled areas of the Earth. The multielement spectral

channels simultaneously sweep east–west and west–east along a north to south

path using a two-axis mirror scan system.

The GOES imager before GOES-12 had five channels centered at 0.67, 3.9, 6.7,

11, and 12 μm, respectively. The 3.9-, 11-, and 12-μm channels are infrared

windows with little water vapor absorption, while the 6.7-μm band is a water

vapor band that can be used to detect atmospheric water vapor in the upper

troposphere. The 0.67 μm is a visible band that can be used to detect clouds during

daytime.

The transmittance of the four thermal channels of GOES 8-11 vs. surface skin

temperature distribution is shown in Fig. 19.1a. The transmittance at the 6.7-μm
water vapor band is almost zero for skin temperature above 240 K. The surface

radiation is almost totally absorbed by water vapor, so this band can be used to

detect atmospheric water vapor distribution, but not for retrieving surface skin
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temperature. The transmittances of the 11- and 12-μm channels decrease signifi-

cantly at high temperature (285–305 K); most values are below 0.8. This is why

most existing split-window algorithms that use the 11- and 12-μm channels get

larger errors at the warmer temperature range of 285–305 K. The transmittance for

MIR channel 3.9 μm is more stable, with less sensitivity to the surface skin

temperature most values being above 0.8. Therefore, the MIR 3.9-μm channel is

a more appropriate window channel for retrieving LST than IR 11- and 12-μm
channels. Moreover, temperature deficit between skin temperature Ts and bright-

ness temperature Tb, (Ts � Tb) as shown in Fig. 19.1b, increases quickly at water

vapor channel 6.7 μm, and it can be as large as 60 K. Temperature deficit is

relatively stable at window channels, it increases with water vapor at IR channels,

but it almost doesn’t change with water vapor amount at MIR channel. Therefore, it

is best to use the MIR 3.9-μm channel combined with the split-window 11- and 12-μ
m channels during nighttime, when the MIR channel does not contain solar energy

reflected by surface.

The imagers on board the GOES M (12)-Q series, including the current opera-

tional GOES-13, don’t have the 12-μm channel (Fig. 19.2), so it would not be

possible to use the brightness temperature difference in the 11- and 12-μm channels

to correct for atmospheric effects. Attempts have been made to use ancillary data
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Fig. 19.1 The transmittance (a) and temperature deficits (Ts � Tb) (b) for the four infrared

channels of the GOES 8–11
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such as the total precipitable water and the characteristics of the middle-infrared

channel of 3.9 μm to correct for atmospheric effects.

The land surface temperature can be produced for each cloud-free land pixel

observed by the GOES sensor. The spectral characters of GOES-12 through 15

imager are listed in Table 19.1.

19.3 Theoretical Description

The GOES-LST algorithm development is based on a scientific research conducted

by Sun and Pinker (2004) and Yu et al. (2008, 2009a, b, c). Theoretical details of the

research are provided in this section.
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19.3.1 Physical Description

Under clear sky conditions, the outgoing spectral radiance at the top of the atmo-

sphere can be represented as

Rðλ; μÞ ¼ ε0ðλ; μÞB λ; Tsð Þ τ0ðλ; μÞ þ Raðλ; μÞ þ Rs λ; μ; μ0; φ0ð Þ
þ Rd λ; μ; μ0; φ0ð Þ þ Rrðλ; μÞ ð19:2Þ

where ε0 is the surface spectral emissivity, B is the Planck function, τ0 is the

transmittance from the Earth’s surface to the top of atmosphere, Ra is the thermal

path radiance, Rs is the path radiance resulting from scattering of solar radiation, Rd

is the solar diffuse radiance, and Rr is the atmospheric thermal radiation reflected by

the surface. Ts is the skin temperature, λ is the wavelength, μ ¼ cos(θ), and μ0 ¼
cos (ψ), where θ is the satellite zenith angle, ψ is the solar zenith angle, and φ0 is the

azimuth angle.

The wavelength λ is actually the wavelength center of a narrow interval because

there is no way to measure the exact monochromatic signal as a continuous function

of wavelength by satellite sensors. For the far-IR bands, solar contributions can be

negligible, so the outgoing infrared spectral radiance at the top of atmosphere can

be represented by

Rðλ; μÞ ¼ ε0ðλ; μÞB λ; Tsð Þ τ0ðλ; μÞ þ Raðλ; μÞ (19.3)

The purpose of the LST algorithm is to retrieve the land surface skin temperature

Ts from the satellite sensor measured radiance R(λ, μ). Physically, in this problem,

the surface temperature is basically coupled with two other factors: surface emis-

sivity and the atmospheric absorptions. Developing an LST algorithm means to find

a solution of decoupling the emissivity and the atmospheric absorption effects from

satellite received radiance.

As shown from Fig. 19.3, in order to retrieve surface information from satellite

observations, we need to select window channels with no or less atmospheric

absorption. Some bands, such as 3–4, 8–9, and 10–12 μm, are some typical

atmospheric windows.

Table 19.1 Spectral characters of GOES-12 through GOES-15 imager

Channels Central wavelength (μm) Resolution (km)

1 (visible) 0.65 1

2 (infrared) 3.9 4

3 (infrared) 6.48 4

4 (infrared) 10.7 4

6 (infrared) 13.3 8 (GOES-12/13)

4 (GOES-14/15)

Shaded channels are used for LST retrieval
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Harris and Mason (1992) found that for a given change in surface temperature

ΔT0, the resulting changes in brightness temperatures in the two wavebands has the

following relationship:

ΔT2
ΔT1

¼ ε2
ε1

τ2ð0; p0Þ
τ1ð0; p0Þ (19.4)

where ε is the surface emissivity, τ is the atmospheric transmittance, and subscripts

1 and 2 refer to the index of the two channels. The absorbing gases can be divided

into water vapor and other gases as follows:

τλ 0; p0ð Þ ¼ exp �kwλUw 0; p0ð Þð Þ exp �koλUo 0; p0ð Þð Þ (19.5)

where kWλ and koλ are the band-averaged absorption coefficients for water vapor

and other gases, respectively;Uw (0, p0) andUo (0, p0) are the total column contents

of water vapor and other gases, respectively. Apply this to Eq. 19.4, yields

ΔT2
ΔT1

¼ ε2
ε1

exp kw1 � kw2ð ÞUw 0; p0ð Þð Þ exp ðko1 � ko2ð ÞUo 0; p0ð Þð Þ (19.6)

Assuming the magnitude (kw1 � kw2) and Uw (0, p0) is small, and it is reasonable to

take the first-order expansion. AsUw (0, p0) is the total column water or precipitable

water W, we get

ΔT2
ΔT1

� ε2
ε1

ð1þ KW þ const:Þ (19.7)
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Namely, the surface emissivity and atmospheric total column water vapor cause

the brightness temperature change and therefore, cause LST retrieval error.

19.3.2 Mathematical Description of the LST Algorithm

An analytic solution to Eq. 19.1 is not easy, because the integration of the terms

requires good knowledge of the atmospheric profiles which is not available in real

time. In addition, land surface emissivity is coupled with the surface temperature in

the equation, so the number of unknowns is always larger than the number of

equations and this is the so-called ill-posed problem, even multiple channels of

information are available. In the past 35 years, many approaches, by using the two

split-window (SW) channels (11.0 and 12.0 μm) to the solution, have been

suggested (e.g., McMillin 1975; Walton et al. 1998) and widely used for producing

the LST product (e.g., Prata 1993, 1994; Wan 1999; Caselles et al. 1997), as listed

in Table 19.2.

Most split-window algorithms explicitly use land surface emissivity values,

while Sun and Pinker (2003, 2004) and Sikorsky et al. (2002) proposed emissivity

information indirectly incorporated through the use of different coefficient sets

determined by different land surface types. The latter approach must be tolerant to

within-class emissivity variability and assume the land cover maps can be updated

frequently; however, most available land cover products can only be available

annually from EOS/MODIS and NOAA/AVHRR or seasonally from NPOESS/

VIIRS, meanwhile emissivity maps that accommodate within-class variability (Yu

et al. 2005) can be available more frequently from MODIS product. We expect that

other emissivity map developments will be significantly improved by the launch of

GOES-R in 2014.

Since the operational GOES-LST retrieval will be from current GOES sensors,

including GOES-12 and GOES-13, there will be no 12.0-μm channel. Therefore,

split-window channels cannot be used to correct atmospheric effect. Due to the lack

of split-window channels for the imager of GOES M (12)-Q series, Sun and Pinker

(2004) proposed a dual-window algorithm by using the characteristics of the mid-

infrared channel (3.9 μm) with less atmospheric (water vapor) absorption

(Fig. 19.1), and one-channel (11 μm) plus water vapor correction algorithm.

19.3.2.1 GOES Split-Window Algorithm

For far-IR bands, terms Rd, Rs, and Rr in Eq. 19.1 are negligible. Therefore, only the

first two terms on the right side are important. The first term represents the surface

contribution term, and it is the gray-body radiance emitted by the Earth’s surface.

The second term is the atmospheric contribution term, referred to as path thermal

radiance in Eq. 19.5, and is the vertically integrated effect of emission from every
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atmospheric layer modulated by the transmittance of the air above that emitting

layer:

Lðλ; μÞ ¼ ε0ðλ; μÞB λ; Tsð Þτ0ðλ; μÞ þ
Z1

τ0

B λ; Tp
� �

dτðλ; μ; pÞ (19.8)

where Tp is the air temperature at vertical layer p and p is the pressure of the vertical
emitting layer.

For a specific land surface type with surface emissivity close to unity, the

radiance error introduced by the atmosphere ΔL can be represented as

ΔL ¼ B λ; Tsð Þ � Lðλ; μÞ ¼B λ; Tsð Þ � B λ; Tsð Þ τ0ðλ; μÞ �
Z1

τ0

B λ; Tp
� �

dτðλ; μ; pÞ

¼
Z1

τ0

B λ; Tsð Þdτðλ; μ; pÞ �
Z1

τ0

B λ; Tp
� �

dτðλ; μ; pÞ

¼
Z1

τ0

ðB λ; Tsð Þ � B λ; Tp
� �Þ dτðλ; μ; pÞ

(19.9)

From the Planck function, we find

ΔL ¼ B λ; Tsð Þ � Lðλ; μÞ ¼ B λ; Tsð Þ � B λ; Tλð Þ � @B

@T

����
Ts

Ts � Tλð Þ (19.10)

where Tλ is brightness temperature at wavelength λ.
For an optically thin gas, the following approximations can be made:

dτ ¼ d exp �kλlð Þf g � d 1� kλlð Þ ¼ �kλdl (19.11a)

where kλ is the absorption coefficient and l is the optical path length:

dl ¼ ρdz � ρ0 expð�z=HÞdz (19.11b)

ρ is the density of the absorption gas, ρ0 is the density at 0 km, H is the atmospheric

scale height, and z is the height. If we assume that the Planck function is adequately

represented by a first-order Taylor series expansion in each window channel, then

B λ; Tsð Þ � B λ; Tp
� � � @B

@T

����
Ts

Ts � Tp
� �

(19.12)
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Substituting Eqs. 19.10, 19.11a, 19.11b, and 19.12 into Eq. 19.9, we obtain

Ts � Tλ ¼ Kλ

Zl0

0

Ts � Tp
� �

dl (19.13a)

Here, l0 is the optical depth from the Earth’s surface to top of the atmosphere:

l0 ¼
Z1

0

ρdz �
Z1

0

ρ0 expð�z=HÞdz (19.13b)

If two close spectral channels are selected to give equal values of Tp, such as the
split-window channels 11 and 12 μm, we will have two equations with different

absorption coefficient kλ to solve simultaneously:

Ts � T11
Ts � T12

¼ k11
k12

or Ts � T11 ¼ k11
k12 � k11

� �
T11 � T12ð Þ (19.14)

Here, T11 and T12 are brightness temperature of 11- and 12-μm channel; k11 and
k12 are the absorption coefficients of 11- and 12-μm channel. This equation is

frequently used as a basis for split-window SST algorithms (McClain et al. 1985).

In our case, Eq. 19.14 can be used for any surface type, land or water, as long as the

surface emissivities in the split-window channels are close to unity.

Sun and Pinker (2003) introduced a split-window algorithm by using surface

type information instead of traditional surface emissivity:

TsðiÞ ¼ a0ðiÞ þ a1ðiÞT11 þ a2ðiÞ T11 � T12ð Þ þ a3ðiÞ T11 � T12ð Þ2 þ a4ðiÞðsec θ � 1Þ
(19.15)

where i is the surface type index, θ is the satellite-viewing angle, T11 and T12 are the
brightness temperatures at 10.8 and 12.0 mm channels, a0–a4 are coefficients, and
Ts is the derived skin temperature.

19.3.2.2 Some Other Traditional Split-Window-Type LST Algorithms

For GOES 8-11, we can use split-window algorithms. Since several split-window

LST algorithms have been developed in the past, we compared our algorithms with

these split-window-type algorithms in our previous publications (Sun and Pinker

2004; Pinker et al. 2009). In Sect. 4.3 about simulation analysis, some comparison

will be made for these split-window-type algorithms and their modified forms with

additional path correction term.
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19.3.2.3 Triple-Window LST Algorithm

Starting from the radiative transfer equation, the radiance measured by channel i of

a satellite sensor can be written as

Bi Tið Þ ¼ εiBi Tsð Þ þ ρi Ri
#� �
τi þ Ri

" (19.16)

where Bi is the Planck function weighted for channel i; Ti is the brightness tempera-

ture measured at satellite level in the channel i; τi is the atmospheric transmittance for

channel i; Ri# is the hemispheric downward atmospheric radiance for the waveband

of channel i; ρi is the channel bidirectional reflectivity of the surface; ρiRi
# is referred

to termRr in Eq. 19.2; and Ri
" is the upward radiance emitted by the atmosphere in the

waveband of channel i; it corresponds to the thermal path radiance term Ra in

Eq. 19.2. Equation 19.16 is a simplification of Eq. 19.2, considering channel values

instead of spectral values and accounting for part of the atmospheric downward

radiation reflected by the surface. For simplicity, we assume Lambertian reflection

ρi ¼ (1 � εi) and define brightness temperature at surface level Ti*:

Bi Ti
�ð Þ ¼ εiBi Tsð Þ þ 1� εið ÞRi

# (19.17)

McMillin (1975) used the mean value theorem to define the mean radiative

temperature of the atmosphere in the upward direction Ta":

Bi Ta
"� � ¼ Ri

"

1� τi
(19.18a)

We can introduce a similar mean radiative temperature of the atmosphere in the

downward direction according to McMillin (1975) approach:

Bi Ta
#� � ¼ Ri

#

1� τi
(19.18b)

By inserting Eqs. 19.17, 19.18a, and 19.18b into Eq. 19.16,

Bi Tið Þ ¼ τi Bi Ti
�ð Þ þ 1� τið ÞBi T

"
a

� �
(19.19)

Linearizing the Planck function in (19.19) around Ti yields

@B

@T
jTiL Tið Þ ¼ τi

@B

@T
jTi Ti� � Ti þ L Tið Þð Þ

þ 1� τið Þ @B
@T

jTi Ta
" � Ti þ L Tið Þ� �

(19.20a)
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with L Tið Þ ¼ Bi Tið Þ= @B
@T

jTi (19.20b)

The Planck function can be well approximated using a simple power function

(Price 1989):

Bi Tið Þ � αi T
ni (19.21)

Parameters αi and ni are constants obtained by a least-square regression fitting. In

order to have the best approximation of the Planck function, we divide the temper-

ature range into two parts, (a) less than 285 K, and (b) more than 285 K. The

parameter ni is given in Table 19.3 for each case.

The power law approximation is very useful for analyses involving the Planck

function, with this approximation:

L Tið Þ ¼ Bi Tið Þ= @B
@T

jTi �
αiTi

ni

αiniTi
ni�1

¼ Ti
ni

(19.22)

Inserting Eqs. 19.21 and 19.22 into Eqs. 19.20a and 19.20b, the atmospheric

correction for brightness temperature can be written as

Ti
� � Ti ¼ 1� τi

τi
Ti � Ta

"� �
(19.23)

We linearize Planck function in (19.17) around Ti* and obtain the emissivity

correction:

Ts � Ti
� ¼ 1� εið Þ

εi

Ti
�

ni
þ ni � 1ð Þ

ni
1� τið Þ Ti� � 1� τið ÞTa#

	 

(19.24)

Inserting (19.23) into (19.24), we get

Ts ¼ C1iTi � C2iTa
" � C3iTa

#

where

C1i ¼ 1

τi
1þ 1� εið Þ

niεi
þ 1� εið Þ 1� τið Þ ni � 1ð Þ

niεi

	 


C2i ¼ 1� τið Þ
τi

1þ 1� εið Þ
niεi

þ 1� εið Þ 1� τið Þ ni � 1ð Þ
niεi

	 


C3i ¼ 1� εið Þ
εi

1� τið Þ

(19.25)
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Suppose that surface emissivity and the atmospheric transmittance are known,

and ni is a constant that depends on the spectral channel. Now we have the three

unknown parameters: Ts, Ta
", and Ta

#, and we can use the information of the three

channels to obtain the surface temperature. In order to take advantage of all the

available information, we choose three channels to solve the equations. Assuming

the channel indexes are i1, i2, and i3, we get

Ts ¼C1i1Ti1 � C2i1Ta
" � C3i1Ta

#

Ts ¼C1i2Ti2 � C2i2Ta
" � C3i2Ta

#

Ts ¼C1i3Ti3 � C2i3Ta
" � C3i3Ta

#

Ta
" ¼ C3i3 � C3i2ð Þ C1i3Ti3 � C1i2Ti2ð Þ � C3i2 � C3i1ð Þ C1i2Ti2 � C1i1Ti1ð Þ

C2i3 � C2i2ð Þ C3i3 � C3i2ð Þ � C3i2 � C3i1ð Þ C2i2 � C2i1ð Þ
Ts ¼C1iTi � C2iTa

" � C3iTa
#

(19.26)

For standard MODTRAN atmospheric profiles, we can calculate their atmo-

spheric transmittance, as shown in Table 19.4.

In the event that the atmospheric transmittance is not available, we can use

regression methods to find the appropriate coefficients for each term in Eqs. 19.25

and 19.26.

Ts can then be written as

Ts ¼ a0 þ a1Ti1 þ a2Ti2 þ a3Ti3 þ a4
1�εi1ð Þ
εi1

Ti1 þ a5
1�εi2ð Þ
εi2

Ti2 þ a6
1�εi3ð Þ
εi3

Ti3

Cji ¼ a0ðjÞ þ a1ðjÞ 1�εið Þ
εi

; j ¼ i1; i2; i3

(19.27)

Table 19.3 Parameter ni for approximate Planck function (power function) for GOES window

channels

Channel (μm) ni (Ti < 285 K) ni (Ti > 285 K)

3.9 13.88 12.90

10.8 4.99 4.57

12.0 4.51 4.15

Table 19.4 Atmospheric transmittance for standard atmosphere profiles

Atmosphere Precipitable water (g/cm-2) τ10.8 τ12

US standard 1.13 0.8552 0.8014

Tropical 3.32 0.5574 0.4159

Midlatitude summer 2.36 0.6915 0.5786

Midlatitude winter 0.69 0.8993 0.8646

Subarctic summer 1.65 0.7847 0.7011

Subarctic winter 0.33 0.9336 0.9147
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19.3.2.4 LST Algorithms for GOES M (12)-Q Series

In the absence of the 12-μm channel for the GOES M (12)-Q series, we proposed

two candidate approaches:

• Dual-window algorithm combining 3.9- and 11.0-μm channels

• One-channel algorithm using total precipitable water (TPW)

Dual-Window Algorithm

The path thermal radiance in radiative transfer Eq. 19.2 is the vertically integrated

effect of emission from every atmospheric layer modulated by the transmittance of

the air above that emitting layer. It can be represented in spectral form as

Raðλ; μÞ ¼
Z1

τ0

B λ; Tp
� �

dτðλ; μ; pÞ (19.28)

where B, λ, and μ are as given in Eq. 19.3, Tp is the air temperature (K) at vertical
layer p, p is the pressure of the vertical emitting layer (mb). Therefore, for the

thermal infrared channel like 11.0 μm, the outgoing infrared spectral radiance at the

top of atmosphere can be represented in spectral form as

Rðλ; μÞ ¼ ε0ðλ; μÞB λ; Tsð Þ τ0ðλ; μÞ þ
Z1

τ0

B λ; Tp
� �

dτðλ; μ; pÞ (19.29)

However, for the middle-infrared (MIR) 3.9-μm channel, during nighttime, the

MIR radiance can be represented as the one in Eq. 19.29. But during daytime, the

solar radiation reflected by the Earth’s surface needs to be accounted for, and

therefore, the outgoing infrared spectral radiance at the top of atmosphere is

represented as

Rðλ; μÞ ¼ ε0ðλ; μÞB λ; Tsð Þ τ0ðλ; μÞ þ
Z1

τ0

Bðλ; TpÞdτðλ; μ; pÞ

þ Esolar
d0

2

d2
cos θs ρb θs; θð Þτ0ðλ; μÞ (19.30)

where d0 is the Earth-sun distance, Esolar is the solar constant, d is the Earth-sun

distance, θs is solar zenith angle, and ρb is the bidirectional reflectivity of the

surface. During nighttime, the outgoing infrared spectral radiance at the top of

atmosphere in both of the 11- and 3.9-μm channels can be represented by Eq. 19.28.

19 Land Surface Temperature (LST) Retrieval from GOES Satellite Observations 309



For a specific land surface type with surface emissivity close to unity, based on

Eq. 19.28, the radiance error introduced by the atmosphere,ΔR, can be represented as

ΔR ¼B λ;Tsð Þ � Rðλ; μÞ ¼ B λ; Tsð Þ � B λ; Tsð Þ τ0ðλ; μÞ �
Z1

τ0

B λ; Tp
� �

dτðλ; μ; pÞ

¼
Z1

τ0

B λ; Tsð Þdτðλ; μ; pÞ �
Z1

τ0

B λ; Tp
� �

dτðλ; μ; pÞ

¼
Z1

τ0

B λ; Tsð Þ � B λ; Tp
� �� �

dτðλ; μ; pÞ ð19:31Þ

In the atmospheric window regions, the absorption is weak, so that

τ ¼ e�k
λ
u � 1� kλu (19.32)

where kλ is the absorption coefficients at wavelength λ and u is absorption gas

optical path (mainly water vapor in window channel). Under this assumption,

Eq. 19.31 can be rewritten as

us ¼
Z 1

0

ρ ds ¼
Z1

0

ρ sec θ dz (19.33)

us is the total optical depth from the surface to the top of atmosphere. From the

Planck function, we get

ΔR ¼ B λ; Tsð Þ � Rðλ; μÞ ¼ B λ; Tsð Þ � B λ; Tλð Þ � @B

@T

����
Ts

Ts � Tλð Þ (19.34)

From (19.33) and (19.34), it follows that

Ts � Tλ ¼ kλ

Zus

0

Ts � Tp
� �

dl (19.35)

Using the two window channels 11.0 and 3.9 μm (night), two such equations

with different absorption coefficient kλ can be solved simultaneously to yield

Ts � T11 ¼ k11
k3:9 � k11

� �
T11 � T3:9ð Þ (19.36)
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Equation 19.35 is derived based on the assumption that surface emissivity is close

to unity, and therefore it can be applied to any surface type, land as well as water, as

long as the assumption is valid. However, the surface emissivities for some land

surface types are not close to unity, in particular, in the 3.9-μm channel. As shown in

Fig. 19.4, the relationship between the deficit of surface skin temperature and

brightness temperature at 11 μm (Ts � T11) and brightness temperature difference

(T11 � T3.9) is unlinear, so we propose to add an unlinear term (T11 � T3.9)
2.

Moreover, we need to add some emissivity correction term. If the satellite-

viewing correction term (secθ � 1) proposed by McClain et al. (1985) is added

to the LST retrieval equation, during nighttime, we can get

LST ¼ a0 þ a1 T11 þ a2 T11 � T3:9ð Þ þ a3 T11 � T3:9ð Þ2 þ a4ð1� εÞ
þ a5 ðsec θ � 1Þ (19.37)

However, during daytime, as shown in Fig. 19.5, the brightness temperature

deficits (T11 � T3.9) have large negative values. During daytime, the brightness

temperature in the middle-infrared channel contains the solar radiation reflected by

the Earth’s surface, which makes T3.9 increase. To reduce the solar signal contami-

nation in the brightness temperature, the solar contribution should be subtracted

from the observed middle-infrared signal:

T
0
3:9 ¼ T3:9 � f�1 Esolar

d0
2

d2
cos θs ρb θs; θð Þτ0ðλ; μÞ

� �
(19.38)

As the solar constant E solar and sun-Earth distance d are constant, for a specific
surface type, the bidirectional effect depends on the solar zenith angle θs and the

satellite-viewing angle θ. From Eq. 19.32, the surface transmittance τ0 can be

approximated as

τ0ðλ; μÞ � 1� kλus (19.39)

us is the atmospheric total optical path,

us ¼
Z 1

0

ρ ds ¼
Z1

0

ρ sec θ dz (19.40)

ρ is density of the atmospheric absorption gas, s is the geometry path, and z is the
height. Therefore, the solar correction term in Eq. 19.38 is a function of atmospheric

total optical path us, satellite zenith angle θ, and solar zenith angle θs, given as

T
0
3:9 ¼ T3:9 � f�1 Esolar

d0
2

d2
cos θs ρb θs; θð Þ τ0ðλ; μÞ

� �

� T3:9 � c0 þ c1 ρb θs; θð Þus cos θsð Þ ð19:41Þ

19 Land Surface Temperature (LST) Retrieval from GOES Satellite Observations 311



The coefficients in (19.41) may depend on surface type or emissivity, since the

surface bidirectional reflectivity is related to it. In the window channels, the major

absorbing gas is the water vapor, but neglect of absorption from CH4 and N2O in the

GOES 3.9-μm channel can contribute to additional errors. Estimating atmospheric

CH4 and N2O amounts is difficult. To allow for the effect of all absorbers in this

channel, we propose to use the brightness temperature T3.9 to replace ρb θs; θð Þ us in
(19.41), by modifying the coefficients in this equation as follows:

T
0
3:9 � T3:9 � c0

0ðlÞ þ c
0
1ðlÞT3:9 cos θs

� �
(19.42)
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During daytime, T3.9 in Eq. 19.37 should be replaced by T
0
3.9, therefore, we have

LST ¼ a0 þ a1T11 þ a2 T11 � T3:9ð Þ þ a3 T11 � T3:9ð Þ2 þ a4 T3:9 cos θs
þ a5ð1� εÞ þ a6ðsec θ � 1Þ (19.43)

One-Channel Algorithm

In the atmospheric window channels, the water vapor absorption is weak.

Therefore,

τi ¼ exp �kiw sec θð Þ � 1� kiw sec θ (19.44)

where i denotes the channel index, ki is the absorption coefficient at channel i, θ is

the satellite viewing angle, and w is the column water vapor. Hence,

dτi � �ki sec θ dw (19.45)

The measured radiance in the thermal window region can be expressed with

respect to channel value from the radiative transfer equation (RTE) as

Ri ¼ εiBi Tsð Þτi þ
Zτ

0

Bi Tp
� �

dτ

� εiBi Tsð Þ 1� kiW sec θð Þ þ ki sec θ

ZW

0

Bi Tp
� �

dw ð19:46Þ

where Bi is the Planck function weighted for channel i, Ti is the brightness

temperature (K), measured at the satellite level in channel i, Ts is the surface skin

temperature (K), εi and τi are the surface emissivity and atmospheric transmittance

in channel i, Tp is the air temperature (K) at vertical layer p, p is the pressure of the
vertical emitting layer (mb), and W represents the total precipitable water (TPW)

(cm). Equation 19.46 is a simplification of Eq. 19.2, considering channel values

instead of spectral values. Defining an atmospheric mean Planck radiance

Bi Tað Þ ¼

RW

0

BðTpÞdw
RW

0

dw

(19.47)

Ta is the atmospheric mean temperature. Inserting Eq. 19.47 into Eq. 19.46 will

yield
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Ri � εiBi Tsð Þð1� kiW sec θÞ þ ki sec θW Bi Tað Þ (19.48)

The Planck function can be expanded into a Taylor series about the brightness

temperature Ti in the form of

Ri ¼ Bi Tið Þ ¼ DB

DT
Tij
B Tiið Þ
DB
DT Tij

¼ DB

DT
Tij L Tið Þ

Bi Tsð Þ � Bi Tið Þ þ DB

DT
Ti Ts � Tð Þj ¼ DB

DT
Tij Ts � Ti þ L Tið Þð Þ

Bi Tað Þ � Bi Tið Þ þ DB

DT
Ti Ta � Tið Þj ¼ DB

DT
Tij Ta � Ti þ L Tið Þð Þ ð19:49Þ

Inserting Eq. 19.49 into Eq. 19.48 will linearize the RTE with respect to

temperature:

L Tið Þ � εi 1� kiw sec θð Þ Ts � Ti þ L Tið Þð Þ þ kiw sec θ Ta � Ti þ L Tið Þð Þ (19.50)

Several approximations have been proposed for L (Ti). Sun and Pinker (2003)

use

L Tið Þ � Ti=ni (19.51)

By inserting Eq. 19.51 into Eq. 19.50,

Ci1Ti � εiTsð Þ ¼ Ta � εiTs � Ci2Tið Þ kiW sec θ (19.52a)

where

Ci1 ¼ 1þ ni � 1ð Þεi
ni

; Ci2 ¼ ni � 1ð Þ 1� εið Þ
ni

(19.52b)

Let i represent the 11.0-μm channel. For most land surfaces and the ocean, the

emissivity at 11.0 μm is essentially unity.

In order to reduce the number of unknown variables, we assume that the

atmospheric mean temperature Ta is proportional to the surface temperature Ts:

Ta � awTs (19.53)

It needs to be stated that assumption (19.53) may introduce errors if the surface

emissivity at 11.0-μm channel is not close to unity. A solution for Ts can be obtained
as follows:

Ts � Ti
aw � 1ð ÞkiW sec θ þ 1½ 	 ¼

T11
cW sec θ þ 1

(19.54)
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If we adopt emissivity correction to this equation, then

LST ¼ c1 þ c2T11 þ c3W sec θ þ c4 1� ε11ð Þ (19.55)

19.4 Forward Simulations and Regression Coefficients

19.4.1 Forward Simulations

In order to derive regression coefficients in our algorithms and test and compare

algorithm accuracy, forward simulations using radiative transfer model, such as the

MODerate-resolution atmospheric TRANsmission (MODTRAN), are performed to

generate a comprehensive simulation dataset.

The MODTRAN atmospheric radiative transfer model (Berk et al. 2000) has

been widely used in satellite remote sensing studies for about three decades. It is a

moderate spectral resolution model, up to cm-1 in frequency. The radiative transfer

simulation procedure is illustrated in Fig. 19.5.

In order to account for the wide range of different atmospheric and surface

conditions, a large number of simulations for each season need to be performed

with variations in:

• Geometry of the problem (solar zenith angle, viewing, and azimuth angles).

• Atmospheric conditions (profiles of ozone, water vapor, aerosols).

• Surface conditions (spectral characteristics of the surface).

• Characteristics of the instrument (spectral response of the satellite sensors); the

GOES spectral response functions can be obtained from the NOAA/NESDIS

(http://www.oso.noaa.gov/goes/goes-calibration/goes-imager-srfs.htm).

To make the simulations applicable to all possible conditions, the atmospheric

(height, temperature, and relative humidity) profiles with the matched surface

height, pressure, temperature, and relative humidity from the Global NCEP Reanal-

ysis (NRA) climatology (long-term mean) are used as the input.

In order to represent the variability in solar geometry, the solar zenith angel

(SZA) are calculated according to the latitude, longitude, Julian day, GMT time;

thus, the values at global coverage may vary from 0� to 180�.
To consider the effects of satellite zenith angles, simulations were performed for

five zenith angle bins as satellite viewing zenith angle (VZA: 0, 2, 4, 6, 8), which is

equal to satellite zenith angle (SZA: 0, 12.8, 26.38, 41.75, 62.44).

In order tomake theGOES forward simulations applicable to different sensors with

different spectral response functions (SRF), we performed simulations to a wide

spectral range from 3 to 14 μm with 10 cm-1 resolution. Therefore, the input surface

reflectance/emissivity was not for a specific channel, but was for full spectra.We used
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spectral IR emissivitywith full spectra for IGBP types, including the 17MODIS IGBP

types plus one surface type (Tundra). The total 18 IGBP types are shown in Fig. 19.6.

The full spectra from 0.2 and 15 um at high spectral resolution (0.02 um) for

these 18 IGBP surface types were modified and immigrated from the latest

MODTRAN and MOSART emissivity database.

We have completed this simulation database for testing and evaluation of LST

algorithms. A total of 144 (cols) � 73 (rows) � 5 (satellite zenith angles) � 4

(seasons) simulation datasets were generated from the simulation process. The

simulated datasets cover a wide range of spectrum from 3 to 14 μm, with 10 cm-

1 spectral resolution which can be used to simulate satellite sensor received

radiances in different infrared channels.

The narrowband outgoing radiances at the TOA are obtained by convoluting the

spectral radiances with the response function of the specific instrument.

I μ0; μ;φð Þ ¼
Zλ2

λ1

LðλÞIλ μ0; μ;φð Þdλ (19.56)

The radiance is then converted to reflectance. We first determined the mean

channel radiance by integrating over the sensor spectral response function (SRF).

For example, the current GOES-13 spectral response functions fromNOAA/NESDIS

Fig. 19.6 The 18 IGBP surface types used to match the full spectra of surface reflectance for

forward GOES simulations
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(http://www.oso.noaa.gov/goes/goes-calibration/goes-imager-srfs.htm) are shown in

Fig. 19.7. The channel radiances were then converted into corresponding brightness

temperatures.

Absorption due to carbon dioxide (CO2), water vapor (H2O), and other gases are

evident in the high-spectral resolution Earth-emitted spectrum.

19.4.2 Coefficients Derivation

Upon simulating the top-of-atmosphere radiances, we then conducted regression

analyses and coefficients derivation for the algorithm development. The regression

procedure and coefficients derivation process is illustrated in Fig. 19.8.

We first perform convolution to calculate the mean channel radiance by integrating

over the sensor spectral response function (SRF). The channel radiances are then

converted into corresponding brightness temperatures using the Planck function.

Fig. 19.7 The four GOES-13 imager infrared band spectral response functions superimposed over

the calculated high-res Earth-emitted US Standard Atmosphere spectrum
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19.4.3 Simulation Analyses

One season (summer) has been tested for nine previously published split-window-type

algorithms and their modified (with zenith angle correction term) forms, totally 18 SW

algorithms and two proposed algorithms for GOES M (12)-Q.

For each of the tested algorithms, we calculated the bias and standard deviation

of the regressions. Due to the high water vapor amount during summer, the LST

retrieval errors are usually larger than in other seasons. As shown in Fig. 19.9, it is

found that the largest errors always appear at warm surface temperature above

280 K, and viewing zenith angle larger than 4� or satellite zenith angle greater than
41.75�, and the following algorithms gave better performance than other split-

window algorithms:

The modified Becker and Li (1990) algorithm, which was a local split-window

algorithm, and later modified by Wan and Dozier (1996) to make the coefficients

varying with different conditions as the generalized split-window algorithm. The

maximum standard deviation is only 0.75 K for this algorithm.

The modified Vidal 1991 algorithm (Vidal 1991; Yu et al. 2008). The maximum

standard deviation is less than 1.0 K for this algorithm.

The modified Sobrino 1993 algorithm (Sobrino et al. 1993; Yu et al. 2008). The

maximum standard deviation is only 0.75 K for this algorithm.

The modified Sobrino 1994 algorithm (Sobrino 1994; Yu et al. 2008). The

maximum standard deviation is less than 1.0 K for this algorithm.

Meanwhile, it is found that the modified Sobrino et al. (1993) algorithm with

nonlinear term gave better performance than the modified Sobrino (1994) algorithm

without nonlinear term.

Nevertheless, Yu et al. (2008) found that the modified Ulivieri-1985 algorithm

showed the least sensitivity to the emissivity variation, so they suggest this algo-

rithm as the baseline GOES-R LST algorithm (Yu et al. 2010).

Input (looping)
Parameters

Algorithms

Algorithms

Sensor Spectral
Response Fcns.
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BrightnessTemperature

Calculation Temperature
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Fig. 19.8 Procedure of the algorithm regression analyses
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Fig. 19.9 The standard deviation errors of LST retrieval from the forward GOES simulations for

the nine inherited SW algorithms and their modified forms
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To have a closer look at error distributions, we produced errors vs. viewing

angles and skin temperature distributions of the regression fits for the two proposed

GOES M (12)-Q algorithms in Figs. 19.10, 19.11, 19.12, and 19.13 for daytime and

nighttime results, respectively. Figure 19.9 shows the standard deviation error is

usually larger during daytime than those during nighttime. Compared to split-

window-type algorithms as shown in Fig. 19.9, we can see both dual-window

(3.9 + 11 μm) algorithm and one-channel (T11 + TPW) algorithms show worse

performance than the split-window-type algorithms (Fig. 19.9). Meanwhile,

Fig. 19.10 shows that the bias errors from dual-window algorithm are smaller

than those from one-channel algorithm. If we stratify LST retrieval according to

water vapor intervals of 2.0 g/cm2, then both standard deviation and bias errors

show improvements than those without water vapor stratification. But one-channel

algorithm still shows worse performance than dual-window algorithm. Both dual-

window and one-channel algorithms still show worse performance than split-

window-type algorithms.

Compared to the daytime algorithm performance, the standard deviation and

bias errors of the nighttime are usually better than that during daytime for each

algorithm. This is because there is no or less solar contamination and less water

vapor during nighttime.

Fig. 19.10 The standard deviation errors of LST retrieval from the GOES-13 simulations for the

two proposed GOES M (12)-Q algorithms for daytime (left) and nighttime (right)
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Fig. 19.11 Bias errors (K) of the regression analysis for daytime (left) and nighttime (right)

Fig. 19.12 Standard deviation (STD) with water vapor bins are given for daytime (left) and

nighttime (right)
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19.5 Tests and Applications with Real GOES Observations

19.5.1 Diurnal Temperature Range Derivation and Studies

Diurnal temperature range (DTR) is an important index of climate change (Karl

et al. 1984) and is susceptible to urban effects (IPCC 2001). As stressed by

Braganza et al. (2004), mean surface temperature alone is not as useful an indicator

of climate change as the change in daily maximum and minimum temperatures.

Trends in mean surface temperature are due to changes in either maximum or

minimum temperature, or relative changes in both. The recently reported surface

warming over land is associated with relatively larger increase in daily minimum

temperature rather than in maximum temperature (Karl et al. 1993; Easterling et al.

1996). Most information on DTR came from station observations of surface air

temperature (SAT) or from numerical model simulations. Station observations are

sparse, unevenly distributed, and suffer from differences in elevation, time of

observation, and nonstandard sitting (Peterson 2003). The use of satellite-based

estimates of DTR can provide consistent information over large areas (Gallo and

Owen 1999). The high temporal resolution of geostationary satellites like GOES

Fig. 19.13 Bias errors of the regression analysis with water vapor bins are given for daytime (left)
and nighttime (right)
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make them very attractive for derivation of DTR. Recently, Sun et al. (2007)

applied the split-window algorithm developed by Sun and Pinker in 2003 to

GOES-8 observations. For the first time, a satellite view of continuous spatial

distribution of DTR over the continental United States was shown (Fig. 19.14).

The 5-year average DTRs for the four mid-seasons show geographical differences,

with western and central USA being systematically higher than those of the eastern

USA or the northwestern coast (Fig. 19.14). Over the western USA, DTR is larger

in spring and summer than fall and winter. Over the eastern part, DTR is larger in

spring and fall than in summer and winter (dividing line between west and east is

about 100� W). As shown in Fig. 19.15, which illustrates the 5-year average

meridional mean DTR in July for the following selected LC/LU types: cropland,

forest, grassland, and urban. There exists distinct difference in DTR between the

west and east for each surface type, the DTRs being much larger over the west than

over the east. In general, the DTR of urban area is usually smaller than those of

other surface types.

A remarkable resemblance between high vegetation (Fig. 19.16) and low DTR

can be seen for all four mid-season months. Evapotranspiration from vegetation

contributes significantly to the decrease in DTR during summer in the eastern

United States (Durre and Wallace 2001). Moreover, the smaller DTR areas over

the eastern United States are found to have higher sulfate aerosol emissions than the

western USA (Chin et al. 2000). Sulfate aerosols scatter solar radiation back to

space and tend to cool the surface during daytime and may result in a decreased

DTR (Stone and Weaver 2003).

Fig. 19.14 Spatial distribution of DTR derived from the GOES-8 observations for different

months as averaged from 1996 to 2000 (a) January, (b) April, (c) July, and (d) October
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Fig. 19.15 Meridional mean DTR derived from GOES-8 for cropland, forests, grassland, and

urban surfaces for a 5-year average July

a

c d

bJanuary

July
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Fig. 19.16 Spatial distribution of NDVI derived from AVHRR observations for different months

as averaged from 1996 to 2000 (a) January, (b) April, (c) July, and (d) October
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Further analysis shows that the effects of water vapor radiative forcing may be

another important factor for the decrease in DTR in summer over the southeastern

United States (Sun et al. 2006). As shown in Fig. 19.17, water vapor amount is

higher over the eastern USA than in the western part; it is highest over the

southeastern part during summer.

19.5.2 Comparison of Dual-Window and Split-Window
Algorithms

It is appropriate here to examine whether the LST retrieved from the dual-window

(3.9 + 11 μm) algorithm is comparable to LST derived from the split-window

channels (viz., two far-infrared channels, 11 + 12 μm) that has never been com-

pared before, for ensuring the applicability of the dual-window algorithm in the

future. For each of the two algorithms, we calculated the bias, standard deviation

(STD), and root mean square (RMS) errors in the satellite LST retrieval as

evaluated against the in situ observations (Fig. 19.18).

The scatter plots shown in Fig. 19.18 indicate that both algorithms perform well,

since they have fairly good correlation with the ground observations, though the

scatter distribution of the dual-window (3.9 + 11 μm) algorithm is worse than the

split-window (11 + 12 μm) algorithm, bringing about the STD error of 2.53 K from

50°N

50°N

40°N

30°N

120°W 110°W 100°W 90°W 80°W 70°W 120°W 110°W 100°W 90°W 80°W 70°W

30°N

40°N

4 8 12 16 20 24 28 32 36 40 44 (mm) 4 8 12 16 20 24 28 32 36 40 44 (mm)

a b

c d

Fig. 19.17 Spatial distribution of water vapor amount during: (a) winter, (b) spring, (c) summer,

and (d) fall as available from the ETA model
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the dual-window algorithm, as compared to 1.83 K from the split-window

algorithm.

However, in general, all of accuracy comparisons show that using the dual-

window to derive LST is fairly feasible, though its total accuracy is slightly worse

than those from the split-window algorithm. These results show that the lack of

split-window channels on the GOES M-Q series may degrade the performance of

GOES-LST retrieval.
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19.5.3 Precision and Accuracy Estimates

Table 19.5 shows the evaluation results of the GOES-12 LST from the dual-window

algorithm with emissivity approach against the SURFRAD observations at the six

stations. The accuracy (ACC) represents the mean bias (difference) error between

GOES-LST and SURFRAD observations. The precision (PREC) represents the

standard deviation error between GOES-LST and SURFRAD observations.

N indicates the total sample numbers. The station ID (STAID) is:

STAID ¼ 1, Bondville, IL

STAID ¼ 2, Fort Peck, MT

STAID ¼ 3, Goodwin Creek, MS

STAID ¼ 4, Table Mountain, CO

STAID ¼ 5, Desert Rock, NV

STAID ¼ 6, Penn State, PA

Shown in Table 19.5 are the accuracy (ACC) and precision (PREC) values for

the four seasons, respectively. It is worth of noting that the seasonal precision

values are still around 2.5 K. But the seasonal accuracy patterns vary from site to

site. It is unsure whether such distinct seasonal patterns might be related to the

different surface covers and regional climates. All these statistical features will be

further studied in the future.

19.5.4 Error Sources

19.5.4.1 Large Viewing Angle

The GOES sensor view geometry may have significant impact on the variation of

atmospheric absorption due to the radiative transfer path length increase from nadir to

the edge of the scan. Considering that altitude of GOES satellite is about 36,000 km

and the Earth radius is about 6,700 km, the relationship between the satellite zenith

angle (θ) and the satellite viewing angle (θv) is (Sun and Pinker 2004)

Table 19.5 Accuracy/precision estimations of four seasons from GOES-12 LST retrieval

Site

January April July October

N ACC PREC N ACC PREC N ACC PREC N ACC PREC

1 164 �1.64 1.46 120 �1.83 1.93 151 �2.18 1.49 121 �0.32 1.75

2 188 �1.27 2.28 71 �2.88 1.54 146 �2.94 1.48 74 �0.38 2.57

3 208 �1.13 1.64 183 �1.53 1.89 104 �2.89 1.43 163 0.12 1.81

4 206 �0.53 2.15 145 �0.02 2.28 209 0.11 1.95 192 �1.01 1.85

5 182 �1.33 2.00 127 �1.42 2.49 167 �1.41 2.08 135 �0.13 2.65

6 133 �1.68 2.34 99 �1.46 2.23 169 �1.08 2.30 133 1.56 2.65
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sin θ ¼ Satellite Altitudeþ Earth Radius

Earth Radius
sin θv

� 6:37 sin θv ð19:57Þ

Therefore, the maximum satellite viewing angle (about 8.7�) corresponds to

74.48� of view zenith angle. Such a large view zenith angle may have great impact

on LST retrieval since, for instance, when the zenith angle is increased from 0� to
60�, the atmospheric path length is doubled. As shown in Figs. 19.9, 19.10, 19.11,

19.12, and 19.13, we can see the algorithm error distributions with satellite zenith

angle indicate, for the moist atmospheric conditions, the errors become significantly

worse when the viewing zenith angle is larger than 6 or satellite zenith angle (SZA)

is larger than 42�. For dry atmospheric conditions, the LST errors are less sensitive

to viewing geometry.

Two other important error sources in LST retrieval are the surface emissivity

uncertainty and the atmospheric water vapor absorption.

19.5.4.2 Water Vapor Uncertainty

Figure 19.20 shows total column water vapor vs. LST distribution. As can be seen,

most water vapor is concentrated at the warmer temperature range of 280–305 K and

can vary from 0.25 to 7 cmdue to increased evaporation fromwarmer surfaces, except

for rocks, sand, and desert areas. This is why bigger errors occurred at temperature

above 280 K, especially bias error, show significant underestimate at warmer temper-

ature. Furthermore, for the LST larger than 280 K with moist atmospheric conditions,

such water vapor sensitivity increases when the satellite zenith angle increases.

This is because the atmosphere is getting moister when the total column water
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vapor along the view path increases with the increase of satellite zenith angle. For the

lower LST cases (LST less than 280 K) with dry atmospheric conditions, the STD and

bias errors are not significantly sensitive to the view zenith angle.

Stratifying our regressions by water vapor regime, we assume that water vapor

content can be well estimated as a priori. In practice, water vapor information is

usually available from satellite soundings, in situ radiosondes and/or operational

numerical weather prediction model forecasts. Nevertheless, two errors may occur.

First, the water vapor value may be mismeasured due to a variety of error sources.

Second, due to spatial resolution differences between the GOES observations and

water vapor data, both “dry” and “moist” atmospheric conditions may occur within

the unit spatial area over which the water vapor was estimated.

19.5.4.3 Emissivity Uncertainty

An emissivity error can cause errors in the simulated brightness temperature and

therefore an LST retrieval error. As shown in Fig. 19.21, the brightness temperature

error increases with the increase in the emissivity error and is larger in the split-

window channels at 11.0 and 12.0 μm and smaller in the middle-infrared (MIR)

3.9 μm band. The brightness temperature error due to emissivity error in Fig. 19.10

is the average of all global data points over the entire temperature range. For a

specific temperature, the error may be larger. As shown in Fig. 19.21, emissivity

variations are fairly small in the thermal IR bands (11.0 and 12.0 mm) but

somewhat larger in the MIR band (3.9 mm); however, an emissivity error causes

a smaller brightness temperature error in the MIR band than in the thermal IR bands

(Fig. 19.22). This is another reason for us to introduce the dual-window algorithm.

Analytically, the maximum LST uncertainty Ts due to the emissivity uncertainty

can be described as

δTs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δT1

2 þ δT2
2

p
(19.58)

Fig. 19.21 Spectral variation in surface emissivity for different surface types (From MOSART)

19 Land Surface Temperature (LST) Retrieval from GOES Satellite Observations 329



where T1 and T2 represent the 3.9 and 11 μm band uncertainties resulting from the

uncertainties of the mean emissivity (ε) and emissivity difference (Δε), respec-
tively. Using the Sobrino et al. (1994) split-window algorithm as an example, these

two components are

δT1 ¼ A3 � A4

ε2

� �
δε and δT2 ¼ A4

ε
δðΔεÞ (19.59)

Therefore, the maximum LST uncertainty is

δTs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A3 � A4

ε2

� �
δε

� �2

þ A4

ε
δðΔεÞ

� �2
s

(19.60)

Considering that ε ¼ ε11 þ ε12ð Þ=2 and Δε ¼ ε11 � ε12ð Þ , and assuming the

emissivity uncertainties in each band are the same, i.e., δε ¼ δε11 ¼ δε12 , the
maximum uncertainty of the emissivity difference is δðΔεÞ ¼ δε11j j þ δε12j j ¼ 2δε.
Thus, the LST uncertainty, Ts, due to the emissivity uncertainty can be calculated

using the above equation.

From the above equations, we can see, in order to reduce the LST algorithm

sensitivity to the emissivity error, the emissivity difference should not be included

in the algorithm formulation.

19.6 Summary and Discussion

In recent years, LST products have been successfully generated from polar-orbiting

instruments, such as MODIS and ASTER. The polar-orbiting system has the

advantage of global coverage. Surface temperature, especially land surface temper-

ature, has a strong diurnal cycle, which cannot be captured by the temporal
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resolution (approximately two views per day) of polar-orbiting satellites. Geosta-

tionary satellites with high temporal resolution provide good diurnal coverage,

making them attractive for deriving information on the diurnal LST cycle and

diurnal temperature range (DTR), which is an important climate change index. In

this chapter, special attention has been paid to LST retrieval from geostationary

GOES satellites. Algorithm theoretical basis (both physical and mathematical)

has been provided. LST product is generated from current GOES satellites from

our proposed dual-window algorithm.
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Chapter 20

Remote Sensing of Leaf, Canopy, and Vegetation

Water Contents for Satellite Environmental

Data Records

E. Raymond Hunt Jr., Susan L. Ustin, and David Riaño

Abstract The absorption features of liquid water in plant leaves are readily

detectable, and the amount of leaf water content may be determined by spectros-

copy. Spectral reflectances at about 1240 and 1650 nm are the basis of numerous

remote-sensing indices that could be used to estimate liquid water content of leaves

and canopies. Two applications of remotely sensed water content are estimation of

fuel moisture content for wildfire potential and estimation of vegetation water

content for improving retrievals of soil moisture content from microwave sensors.

The temporal record of MODIS, SPOT Vegetation, and AVHRR/3 sensors and the

future record from VIIRS will create a global environmental data record of canopy

water content for climate change studies.
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20.1 Introduction

The long time series of Normalized Difference Vegetation Index (NDVI) acquired

from the Advanced Very High Resolution Radiometer (AVHRR), the Moderate

Resolution Imaging Spectroradiometer (MODIS), and the System Pour l’Observation

de la Terre (SPOT) Vegetation sensors enabled the development of environmental

data records for the study of climatic change (NRC 2004; Tucker et al. 2005). Liquid

water has absorption features at near-infrared and shortwave-infrared wavelengths

(Curcio and Petty 1951; Palmer and Williams 1974) which are readily identified in

leaf spectral reflectance (Gates et al. 1965; Tucker 1980). MODIS, SPOT Vegetation,

and AVHRR/3 data cover a relatively short time period for climate data records; with

the recently launched Visible Infrared Imaging Radiometer Suite (VIIRS), global

measurements will continue into the foreseeable future. Standardized data products

of canopy water content could be the start of a satellite environmental data record that

would provide important information for assessing global climatic change.

Landsat Thematic Mapper, MODIS, AVHRR/3, SPOT Vegetation, and other

sensors have bands at about 1650-nm wavelength, which is at a local absorption

minimum for liquid water (Fig. 20.1). Because the water absorption coefficient at

this wavelength is relatively small, differences in the amount of leaf water are

detectable by changes in leaf reflectance (Olsen 1967; Tucker 1980; Hunt and Rock

1989). Imaging spectrometers have many more bands and potentially have better

algorithms for the retrieval of water content (Ustin et al. 1998, 2004, 2012).

One of the large uncertainties about future climatic change is about changes in

precipitation frequency and amount (Christensen et al. 2007; Allan and Soden 2008).

Drought will cause changes in leaf water content for many vegetation types, so

remotely sensed data products are important for assessing the impact and helping

to mitigate the effects of climatic change on vegetation. Furthermore, climate change

is expected to increase the potential for wildfire (Liu et al. 2010); thus, a water content

data product may help manage efforts for disaster prevention and recovery. The

objective of this chapter is to review remote sensing for the retrieval of water content

in vegetation canopies for remotely sensed data products and to show how these data

products could be used for various applications.

20.2 Quantifying the Amount of Water in Vegetation

Different quantities and methods are used to measure the amount of water in foliage

(Table 20.1). The basic measurements are leaf fresh and dry weights; the difference

is the amount of water in a leaf. However, these basic data have little value because

of variation in leaf size, dry weight, and morphology. Plant physiological responses

to drought and water stress usually depend on relative water content (RWC) and

water potential (Ψ), which are defined in thermodynamics by reference to the

maximum amount of water a plant cell may hold (Nobel 2009). Cells with the

maximum amount of water (i.e., RWC ¼ 100%) also have the maximum turgor
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potential (i.e., full turgor), which offsets the cellular osmotic potential so that Ψ is

0 MPa (Nobel 2009). Leaf wilting is a visible sign of water stress, which occurs

when the turgor pressure is 0 MPa andΨ is equal to the osmotic potential. RWC and

Ψ for leaves are approximately the RWC and Ψ of the leaf mesophyll cells and are

unrelated to leaf area (Alf), fresh weight (Wf), or dry weight (Wd). For a given leaf,

there is a one-to-one relationship between RWC and Ψ known as a “pressure-

volume curve,” which is determined by measurement (Lenz et al. 2006; Nobel

2009).

Fig. 20.1 Absorption coefficients for water from 700- to 2,500-nm wavelength. The y-axis scales

are different for panels (a) near-infrared, (b) shortwave-infrared 1, and (c) shortwave-infrared 2.

The coefficients are from the PROSPECT model (Jacquemoud and Baret 1990; Féret et al. 2008)

Table 20.1 Quantities to express vegetation biophysical parameters

Term

Abbreviation or

symbol Formula Units

Weight: fresh, dry, and

at full turgora
Wf, Wd, and Wt,

respectively

Measured kg

Area: ground and leaf Ag & Alf, respectively Measured m2

Leaf Area Index LAI Alf/Ag Dimensionless

Leaf dry matter contentb Cm Wd/Alf kg m�2

Leaf water potentiala Ψ Measured MJ m�3 ¼ MPa

Relative water contenta RWC (Wf � Wd)/

(Wt � Wd)

Dimensionless

Leaf water contentc LWC (or Cw) (Wf � Wd)/Alf kg m�2

Canopy water contentc CWC LWC � LAI kg m�2

Vegetation water content VWC CWC+ stem water

content

kg m�2

Fuel moisture content FMC LWC/Cm Dimensionless
aBy definition, leaves at full turgor have Ψ ¼ 0 MPa and RWC ¼ 100%
bCm is also known as the leaf mass to area ratio (LMA) and 1/Cm is known as the specific leaf area

(SLA)
cLWC and CWC are also known as the leaf and canopy equivalent water thickness (EWT),

respectively (volume/area, 1 mm ¼ 1 kg m�2)
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The Beer-Lambert law states that the amount of radiation either absorbed by or

transmitted through a homogeneous substance depends on the path length through

that substance. Leaves are not homogeneous; however, the effective path length of

water in a leaf, called the equivalent water thickness (EWT), may be calculated

from leaf transmittances using the Beer-Lambert law (Gausman et al. 1970). Leaf

water content (LWC, Table 20.1) is a slightly more accurate term compared to

EWT, because water volume is determined by the difference of leaf fresh and dry

weights, and the density of water has a small dependency on temperature. Leaf Area

Index (LAI) of x may be thought of as a stack of x leaves (Miller et al. 1992); LWC

multiplied by LAI is the canopy water content (CWC, Table 20.1). Reflectance

parallels transmittance through leaves (Gates et al. 1965), so leaf and canopy

reflectances may be used to estimate LWC and CWC.

There are two terms (Table 20.1) that are often used interchangeably with LWC

and CWC; these are the vegetation water content (VWC) and fuel moisture content

(FMC). Except for grass species and very small plants, there is usually more liquid

water in stems compared to leaves, and there is some water in flowers and fruits.

Active and passive remote sensing at microwave wavelengths is sensitive to all of

the water in plants (Jackson et al. 2004; Entekhabi et al. 2010). VWC is a term

which better describes the total amount of water in vegetation aboveground,

approximately equal to the sum of LWC and stem water content (Table 20.1).

Leaves from different species, or from the same species but under different

growth conditions, have different leaf thicknesses and LWC (Abrams and Kubiske

1990). Leaf dry matter content (Cm, Table 20.1) is the leaf dry weight per leaf area

and may vary up to 100-fold for different species (Poorter et al. 2009). FMC is the

ratio of LWC/Cm and is used to estimate the potential for wildfire ignition and

spread (Burgan 1988; Chuvieco et al. 2002, 2010; Yebra et al. 2008). Canopy FMC

is equal to leaf FMC because LAI cancels out from the numerator and denominator.

FMC and RWC are both expressed as percentages; occasionally, studies will

measure FMC or LWC/Wf but report the data as RWC.

20.3 Multi-temporal NDVI and Drought Stress

NDVI (Rouse et al. 1974; Tucker 1979) distinguishes vegetation and soils based on

the high reflectance of foliage at near-infrared wavelengths and the low reflectance

of foliage at red wavelengths. The low reflectance of red light by vegetation is

caused by a very large chlorophyll absorption coefficient; so changes in red

reflectance are small for large changes of chlorophyll content. Therefore, NDVI

cannot be used to estimate foliar chlorophyll concentration under most conditions

(Lichtenthaler et al. 1996). Depending on the plant species, dehydration may

increase leaf reflectance at visible and red-edge wavelengths (Fig. 20.2), due to

some chlorophyll degradation (Carter 1991, 1993; Govender et al. 2009). However,

many different stresses also affect leaf chlorophyll content (Carter 1993), so if a

decrease in chlorophyll content is detected by remote sensing, the cause of the stress

cannot be determined.
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Many vegetation types respond to changes in the season by growth of new leaves

and senescence of old leaves. Different vegetation types have different seasonality

defined by either temperature or precipitation (Tucker et al. 1985). By analysis of

multi-temporal NDVI, phenological events such as the start of spring may be

determined (Schwarz et al. 2002). As a response to stress, many vegetation types

lose some or all of their leaves, so differences in NDVI compared to the annual

maximum and minimum NDVI become powerful indicators of vegetation stress

(Kogan et al. 2003; Brown et al. 2008). Changes in LAI will proportionately affect

CWC (Table 20.1), so annual changes in remotely sensed CWC should be similar to

the annual changes in NDVI or other red/near-infrared index.

If changes in remotely sensed CWC simply mirrored changes in NDVI, there

would be no use for CWC data products. From the previous section, single

measurements of LWC and CWC values cannot indicate physiological measures

of stress (RWC or Ψ). However, reductions in LWC and CWC occur with drought

stress before changes in LAI, so a high frequency of CWC observations may yield

more reliable estimates of drought stress than NDVI. Quantifying physiological

water stress accurately over time would then become an important environmental

data record.

Fig. 20.2 Spectral reflectances for fresh and dehydrated leaves of corn (Zea mays). Along the top
are the wavelength positions of the Moderate Resolution Imaging Spectroradiometer (MODIS)
land/cloud/aerosol bands (250 and 500-m pixels) and along the bottom are the wavelength

positions of the Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) bands.

MODIS ocean color and water vapor bands (1,000-m pixels) are not shown
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20.4 Spectroscopic Retrieval of Leaf and Canopy Liquid

Water Contents

Olsen (1967) published the first spectral measurements of leaves drying in the

laboratory, and the data look similar to Fig. 20.2. Typically, dehydration initially

increases near-infrared reflectance, indicating changes in the cellular structure of a

leaf (Aldakheel and Danson 1997). Relative to the near-infrared wavelengths

(Fig. 20.1a), leaf dehydration causes increased reflectance at longer near-infrared

and shortwave-infrared wavelengths (Fig. 20.2). The largest percent changes in

reflectance occur at wavelengths around 1495 and 1950 nm; however, water vapor

strongly absorbs near these wavelengths, making the atmosphere opaque to solar

radiation (Green et al. 2006). Thus, the 1495- and 1950-nm liquid water absorption

features can be used only to estimate LWC under an artificial light source.

At wavelengths greater than 2000 nm, there are strong biochemical absorption

features from lignin and cellulose (Daughtry and Hunt 2008), so the reflectance

spectrum of dehydrated leaves becomes more complex. Therefore, the three regions

that have potential for routinely monitoring changes in LWC and CWC are the local

absorption maxima around 970 and 1240 nm (Fig. 20.1a) and the local absorption

minimum around 1650 nm (Fig. 20.1b). Below, spectroscopic retrieval of LWC and

CWC are discussed. In the next section, remote-sensing indices using these three

regions are described.

Allen et al. (1969) showed that LWC could be estimated by comparing the leaf

reflectance spectrum with the expected spectrum determined from different equiva-

lent thicknesses of pure liquid water; however, calculators or personal computers were

not available so the comparisons were qualitative. If the reflectances from leaves and

canopies are assumed to follow the Beer-Lambert law (Downing et al. 1993; Gao and

Goetz 1990, 1995; Roberts et al. 1998, and Sims and Gamon 2003), then:

�lnðRλÞ ¼ αλl (20.1)

where Rλ is the reflectance at wavelength λ, ln is the natural logarithm operation, αλ
is the absorption coefficient at wavelength λ, and l is the optical path length of liquid
water. The path length l, that is, the LWC or CWC, is determined from the slope of a

linear regression between ln(Rλ) and αλ over some wavelength region. The regres-

sion intercept is supposed to account for fixed effects from errors in the assumptions

(Roberts et al. 2004; Sims and Gamon 2003). Gao and Goetz (1990, 1995) use

predicted CWC to estimate the amount of water vapor for atmospheric correction of

imaging spectrometer data (Gao et al. 2009).

Gao and Goetz (1995) showed that the retrieved CWC at 1,000 nm was greater

than the retrieved CWC at 1600 nm. Using the two spectra in Fig. 20.2, regressions

of ln(Rλ) versus αλ around 970, 1240, and 1650 nm were made according to

Eq. 20.1. The measured LWC for the fresh leaf and dehydrated leaf were 0.14

and 0.04 kg m�2, respectively. The retrieved LWC for the fresh leaf were 0.70,

0.59, and 0.45 kg m�2 for 970, 1240, and 1650 nm, respectively, whereas the

retrieved LWC for the dehydrated leaf were 0.24, 0.19, and 0.16 kg m�2,
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respectively. There were highly significant linear relationships between measured

and retrieved LWC and CWC for the three wavelength regions (Hunt et al. 2011a).

Larger values of retrieved parameters are regularly observed in the analytical

procedures of near-infrared spectroscopy, which are attributed to multiple scatter-

ing (Zhang et al. 2011).

Because it is difficult to account for multiple scattering without additional terms

in Eq. 20.1, the retrieved values of LWC and CWC probably should not be used,

except when the actual values of LWC or CWC are not relevant, such as with

atmospheric correction (Gao et al. 2009) or water-spectrum removal (Gao and

Goetz 1994, 1995; Schlerf et al. 2010; Ramoelo et al. 2011; Wang et al. 2011a).

Alternative methods for retrieving LWC or CWC with spectroscopy may be

insensitive to multiple scattering within a leaf and other confounding factors (Asner

and Martin 2008; Zhang et al. 2011). Li et al. (2008) used a genetic algorithm-

partial least squares regression and obtained very low root mean square errors

(RMSE), but the results did not scale between leaves and canopies. Cheng et al.

(2011b) used wavelet transforms to obtain similar results. While the recent research

is promising for the spectroscopic retrieval of LWC and CWC, the results are not

yet applicable for imaging spectroscopy.

20.5 Remotely Sensed Foliar Water Indices

Initially, vegetation indices such as NDVI were utilized because satellite multispec-

tral imagery was acquired as digitized radiances (digital numbers), whereas ground

data were usually measured reflectances. Jackson et al. (1983) wrote that an ideal

vegetation index should be sensitive to vegetation amount and insensitive to the

following: (1) soil background, (2) surface topography, (3) atmospheric effects, and

(4) solar zenith angle. Furthermore, an ideal vegetation index should be insensitive

to the bidirectional reflectance distribution functions of vegetation and soils (Huete

et al. 2002). Today, satellite imagery is frequently corrected for atmospheric effects

and solar-target-sensor geometry to obtain apparent land-surface reflectance (Gao

et al. 2009). Even with apparent land-surface reflectances, however, vegetation

indices are still a practical method for monitoring vegetation because (1) atmo-

spheric corrections usually assume a standard atmosphere and (2) surface topogra-

phy and soil background create variation in the apparent reflectances.

Hardisky et al. (1983) proposed that a normalized difference index using

Landsat Thematic Mapper (TM) bands 4 and 5 was related to the amount of

water in vegetation (Fig. 20.2). Kimes et al. (1981) studied this index but found

TM band 3 and TM band 5 reflectances were very highly correlated (r ¼ 0.97), so

there was no added benefit for using TM band 5 to monitor agronomic variables.

Hardisky et al. (1983) called NDVI simply the Vegetation Index and called the

normalized difference of TM bands 4 and 5 the Infrared Index. Hunt and Rock

(1989) and Ji et al. (2011) recommended that the Infrared Index be called instead

the Normalized Difference Infrared Index (NDII, Table 20.2) parallel to the univer-

sally accepted NDVI. Hunt et al. (1987) and Hunt and Rock (1989) developed and
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tested a Leaf Water Stress Index (LWSI, Table 20.2), which was derived from the

Beer-Lambert law to be equal to leaf RWC. However, Hunt and Rock (1989) and

Cohen (1991a, b) showed that LWSI was not practical, because of the requirements

to measure reflectances of fully turgid and dry leaves. Furthermore, Hunt and Rock

(1989) showed there is a log-linear relationship between the Moisture Stress Index

(MSI, Table 20.2) with LWC for different species from crops to desert succulents.

Because there is a one-to-one relationship between a ratio index and the cor-

responding normalized difference index, there is a strong relationship between

NDII and CWC (Yilmaz et al. 2008a, b).

NDII is also an important index for the remote sensing of snow cover and

flooded areas. NDII time series in the northern latitudes show both snow and

vegetation dynamics, so estimating the start of spring for phenological studies

may be difficult (Xiao et al. 2002b; Delbart et al. 2005, 2006). Xiao et al. (2002a)

used NDII to detect flooded rice paddy fields in China.

The design for MODIS defined a band 5 located at 1240 nm (Fig. 20.2), thus Gao

(1996) defined the Normalized Difference Water Index (NDWI; Table 20.2). Similar

to other NIR wavelengths, radiation at MODIS band 5 is highly scattered by leaf

cellular structure and multiple leaves, so the two bands of NDWI sample the same

amount of canopy (Gao 1996). Furthermore, NDWI does not saturate at low LAI as

does NDVI or NDII. Zarco-Tejada et al. (2003) recommended the Simple Ratio

Water Index (SRWI, Table 20.2) which also uses the apparent reflectance at 1240 nm.

The water absorption feature at 970 nm is interesting for remote sensing because

reflectances at this wavelength may be measured using low-cost silicon detectors.

Peñuelas et al. (1993, 1997) designed the Water Index (WI, Table 20.2) and com-

pared it to FMC andmeasures of plant water stress. To date, WI can only bemeasured

over larger areas with airborne or satellite imaging spectrometers. There are no current

or planned satellite multispectral sensors with a 970-nm band for calculating WI.

The variety of foliar water indices based on the wavelengths of 970, 1240, and

1650 nm indicates there may not be a single index that outperforms the others for

estimating CWC under all conditions. This situation should be expected simply

from the history of red-NIR indices, such as NDVI and the simple ratio of R850/R680.

One of the first alternative red-NIR indices was the Soil-Adjusted Vegetation Index

(SAVI, Huete 1988), which corrected for numerical offsets between the red and

NIR bands at low LAI. Using the method of Huete (1988), Cecatto et al. (2002a, b)

developed the Global Vegetation Moisture Index (GVMI, Table 20.2) to adjust the

NIR and SWIR reflectances so zero vegetation would have zero GVMI (also see

Dasgupta and Qu 2009).

New paradigms may be needed for development of effective vegetation water

indices. The Maximum Difference Water Index uses maximum reflectance and

minimum reflectance between 1500 and 1750 nm to estimate the depth of this water

absorption feature (Eitel et al. 2006), which were assumed to be at 1500 and

1650 nm in Table 20.2. Khanna et al. (2007) created the Shortwave Angle Slope

Index (SASI, Table 20.2), which is calculated from the angle between the three

points: (850 nm, R850), (1650 nm, R1650), and (2200 nm, R2200). Ghulam et al.

(2008) created a statistical approach based on a scatter plot of R850 versus R1650

called the Vegetation Water Stress Index (VWSI, Table 20.2). A trapezoid is
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created to surround the data in order to determine the amount of water stress of one

pixel compared to the other pixels in the scatter plot (Ghulam et al. 2008). Another

line of research is the development of multiband indices, such as the ratio of WI/

NDVI (Peñuelas et al. 1997), and the ratio of MSI with the Normalized Multiband

Drought Index (Wang and Qu 2007).

The Soil Moisture Experiments 2004 and 2005 were conducted in Southeastern

Arizona and Central Iowa, respectively, to test microwave radiometer retrievals of

soil moisture. During these experiments, extensive data for CWC were measured

and related to Landsat NDII (Yilmaz et al. 2008a, b) and MODIS and AVIRIS data

(Cheng et al. 2006, 2008). A single linear relationship was found between NDII and

CWC (Fig. 20.3); RMSE of the regression equation was 0.091 kg m�2 (Hunt et al.

2011b). Féret et al. (2011) surveyed a large number of leaves from different species

and obtained a median LWC equal to 0.11 kg m�2. The RMSE from Fig. 20.3 is

83% of the median LWC value from Féret et al. (2011), so NDII can estimate LAI

to an accuracy of�0.83 for a land-cover type with known LWC. Asner et al. (2004)

used NASA Earth-Observing-1 Hyperion data to show there was a significant

reduction in CWC during an imposed drought from rainfall exclusion in an Amazon

forest. However, Asner et al. (2004) also showed that LAI decreased, so the amount

of CWC decrease attributed to either water stress or LAI is not known.

The individual data sets are not significantly different from the overall regression

equation. Comparison of the RMSE in Fig. 20.3 to the median LWC value (Féret

et al. 2011) indicates that there may be a limit to the accuracy of CWC achievable

from foliar water indices. Therefore, in the next three sections, we discuss three

applications for remotely sensed CWC in order to determine the accuracy

requirements for a CWC data product.

20.6 Estimation of Vegetation Water Content for Soil

Moisture Retrievals

VWC is one of the important parameters required for the retrieval of soil moisture

content using microwave sensors (Jackson et al. 2004; Entekhabi et al. 2010). VWC

may be estimated directly from the microwave data, but having independent data of

VWC from AVHRR/3, MODIS, or VIIRS would help to improve accuracy of the

retrieved soil moisture content. The central problem is that VWC is not estimated

directly from vegetation moisture indices such as NDII, because of the amount of

water in plant stems and other organs (Fig. 20.3).

Two of the Soil Moisture Experiments, 2002 and 2005, were conducted in

central Iowa, USA, where 70% of the area are agricultural fields planted in either

corn or soybean (Alan K. Stern, personal communication). Because stems support

the leaves, biophysical allometric relationships should exist between the amount of

water in stems and the amount of water in the foliage (Yilmaz et al. 2008b). Unlike

the relationship between NDII and CWC (Fig. 20.3), corn and soybeans have very

different relationships between NDII and VWC, because proportionally more stem

mass is required to support the larger leaves of corn (Fig. 20.4a).
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WindSat is a multifrequency polarimetric passive microwave spaceborne radi-

ometer built by the US Naval Research Laboratory for measuring wind speed and

direction over the oceans. Li et al. (2010) developed a biophysically based algo-

rithm for estimating VWC and soil moisture content for WindSat. Hunt et al.

(2011b) upscaled the NDII-VWC relationship using MODIS to the 50-km diameter

WindSat footprint for the 2003–2005 growing seasons. The estimated VWC from

MODIS and WindSat were linearly related, but the WindSat VWC was about twice

the MODIS VWC (Fig. 20.4b). The lowest frequency on Windsat was 6.9 GHz

(C-band), which had strong radio frequency interference, so the lowest frequency

used for the WindSat retrievals was 10.7 GHz (Li et al. 2004). Much lower

frequencies, such as 1.26–1.41 GHz (L-band), are considerably more sensitive to

soil and vegetation water content and thus are being used for the Soil Moisture

Active Passive (SMAP) mission (Entekhabi et al. 2010). The merger of the optical

and microwave domains for remote sensing of liquid water in vegetation and soil

will enable new and better methodologies for the study of water stress and drought.

20.7 Detection of Water Stress

Plant water stress is a general term that encompasses different phenomena at

different temporal scales, from short-term leaf wilting to long-term drought

(Jones 2007; Passioura 2007). Low water content in the soil causes plants to close

Fig. 20.3 Relationship between canopy water content (CWC) and the Normalized Difference

Infrared Index (NDII) from different data sets (Hunt et al. 2011b). The Soil Moisture Experiment

2004 (SMEX04) was conducted in Arizona, USA, and Sonora, Mexico (Yilmaz et al. 2008a), and

the Soil Moisture Experiment 2005 (SMEX05) was conducted in central Iowa (Yilmaz et al. 2008b).

Grassland data sets were kindly provided by (Ceccato et al. 2002b) and (Davidson et al. 2006)
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their stomata (Jones 2007; Passioura 2007; Waring and Landsberg 2011), which

decreases latent heat loss and increases canopy temperatures detectable in the thermal

infrared (Anderson et al. 2003; Kustas and Anderson 2009). Some species avoid

Fig. 20.4 (a) Landsat Thematic Mapper NDII and VWC for corn and soybeans during the Soil

Moisture Experiments (SMEX) 2002 and 2005 in Ames, Iowa (Yilmaz et al. 2008b). (b) A

comparison between VWC estimated from MODIS and WindSat (circular footprint of 25-km

radius) for agricultural areas in central Iowa 2003–2005 (Hunt et al. 2011b)
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drought by losing leaves and going dormant, which is detectable usingNDVI and other

red/near-infrared vegetation indices (see Sect. 20.3). However, plants that tolerate

drought will continue to lose water at a slow rate through the leaf cuticle. Therefore,

can repeated estimates of LWC or CWC be used to detect plant water stress?

Lenz et al. (2006) determined the pressure-volume curves for different species of

trees from different ecosystems in Australia. When the turgor potential was 0 MPa,

the mean RWC was 85.7 and 76.9% for species from high- and low-rainfall areas,

respectively (Lenz et al. 2006). Using the median LWC value from Féret et al.

(2011) of 0.11 kg m�2, the LWC difference required to detect water stress is about

0.016–0.025 kg m�2 for repeated measurements on a single leaf. Because of

multiplicative effect of LAI, the difference in CWC between stressed and non-

stressed plants is larger, which leads to a somewhat ironic result that it may be

easier to detect water stress from satellites than it would be in a laboratory.

There have been several studies examining the effect of water stress on leaf and

canopy reflectances, but the data reported were either LWC, FMC, or LWC/Wf

(Table 20.1), all of which cannot be related unambiguously to the amount of plant

water stress. Early studies suggested that water stress could not be detected using

reflectances at about 1650-nm wavelength (Jackson et al. 1986; Bowman 1989;

Hunt and Rock 1989; Pierce et al. 1990; Riggs and Running 1991, but see Collier

1989). Later studies used more spectral channels and found significant correlations

between Ψ (or measures of soil water content) and vegetation water indices

(Serrano et al. 2000; Fensholt and Sandholt 2003; Stimson et al. 2005; Elsayed

et al. 2011). Rodrı́guez-Pérez et al. (2007) found that vegetation water indices could

not be used to detect stress in grape vineyards, but spectroscopic methods were

significant.

During the night, plants draw water from the soil and reach the highest Ψ just

before dawn. During the day, water loss from the foliage lowers Ψ. In 2010, Cheng
et al. (2011a) used MODIS/ASTER Airborne Simulator (MASTER) morning and

afternoon flights over almond and pistachio orchards in the southern San Joaquin

Valley, California. Changes in NDII were related to the small changes in CWC

(mean difference ¼ 0.021 kg m�2) between the morning and afternoon MASTER

overflights, and the RMSE of an NDII-LWC regression was 0.035 kg m�2. Several

areas in the orchards had LWC differences greater than 0.04 kg m�2 (Cheng et al.

2011b). Therefore, it is possible that water stress may be detected with remote

sensing if the LAI of the canopy is sufficiently large. From the numerous studies

above, however, detection of water stress using foliar water indices may be

problematic for routine applications.

20.8 Estimating Fuel Moisture Content

Another major application for monitoring CWC is to estimate FMC, because it is

directly correlated with risk of wildfire. Field crews regularly sample FMC in order

to estimate fire danger ratings, which are assumed to be representative over large
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areas (Burgan 1988). Burgan (1988) used AVHRR-NDVI data to estimate the

spatial extent of vegetation dryness (Burgan and Hartford 1993; Hardy and Burgan

1999). The estimated FMC data are used in fire potential models that include

weather, topography, vegetation type, and other variables (Keane et al. 2001,

2010; Dennison et al. 2008; Rollins et al. 2004; Rollins 2009; Chuvieco et al.

2010). However, NDVI is only indirectly correlated to FMC, so remotely sensed

CWC has the potential to be more accurate for estimating wildfire risk.

FMC depends on the accurate estimation of both CWC and dry matter (Cm).

Because there is a large variation in Cm among different habitats, from thin mesic

leaves to thick succulent leaves in xeric habitats, Cm is hard to predict. Further,

differences in leaf thickness, dry weight, and morphology cause large variation in

FMC for leaves at full turgor. LWC or CWC are linearly related to FMC when

vegetation types with similar Cm are considered (Chuvieco et al. 2002, 2003;

Zarco-Tejada et al. 2003; Maki et al. 2004; Dennison et al. 2005; Roberts et al.

2006; Dasgupta et al. 2007; Verbesselt et al. 2007). According to Shipley and Vu

(2002), differences in Cm among species accounts for 95% of total intraspecies

variation. The use of a constant Cm throughout the year could be considered, but

an overall decrease is expected during the drought season (Garnier et al. 2001).

Remote sensing Cm directly is difficult because absorption features associated

with dry matter are obscured by liquid water in the leaves (Fourty and Baret 1997).

With imaging spectrometers that have very high signal to noise, Cm could be

estimated at about 1722-nm wavelength, because Cm has an average absorption

coefficient somewhat greater than that of liquid water. On the other hand, there is

much more water than dry matter so that the 1722-nm absorption feature is not

plainly visible in green-leaf reflectance spectra. To uncover the spectrum of dry

matter, effects of liquid water “may be removed” by fitting the absorption

coefficients of water (Fig. 20.1) to the foliar reflectance spectrum (Gao and Goetz

1994, 1995; Schlerf et al. 2010; Ramoelo et al. 2011; Wang et al. 2011a). The

residuals between the foliar reflectance spectrum and the fitted equation show the

absorption features associated with dry matter, particularly at the 1,722-nm wave-

length (Gao and Goetz 1994, 1995; Wang et al. 2011a). The depth of the residual

absorption feature is directly related to Cm (Wang et al. 2011a).

Even for fresh green leaves, Cm subtly influences the foliar reflectance spectrum,

so that narrow-band indices are useful for estimating FMC (Wang et al. 2011b, c;

Romero et al. 2012). Wang et al. (2011b, c) developed the Normalized Dry Matter

Index (NDMI) based on the absorption at 1722-nm wavelength. Because FMC is

the ratio of LWC/Cm (Table 20.1), Wang et al. (2011b) hypothesized that the ratio

of a foliar water index and the NDMI should be related to FMC. The results are

promising (Fig. 20.5), but use of this index will require imaging spectrometers,

which probably will not be available for routine monitoring of FMC for another

decade.

FMC changes dramatically over a growing season, so data need to be acquired

much more frequently than may be possible with imaging spectrometers. Daily

weather sensors such as MODIS and VIIRS, however, do not have narrow bands

useful for the detection of dry matter. As discussed in the next section, inversion of
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radiative transfer models may be the only reliable method to estimate both LWC

and Cm with MODIS or VIIRS (Riaño et al. 2005; Hao and Qu 2007; Yebra et al.

2008).

20.9 Robust Inversion Algorithms for Canopy Water Content

The interaction between the incoming radiative energy from the sun and the

vegetation canopy and its soil background can be modeled to obtain canopy

reflectance (Jacquemoud et al. 2009). Input parameters to the models include

LWC, Cm, leaf chlorophyll content, and variables to characterize the canopy

structure such as LAI, leaf angle distribution, and sun-target-sensor angles

(Jacquemoud et al. 2009). Model inversion starts with canopy reflectances to

estimate the input parameters that would result in the same canopy reflectances

(Jacquemoud et al. 2000; Zarco-Tejada et al. 2003). Other data sources may be used

to narrow down the possible range of solutions for the inversion, for example, land-

cover type or LAI (Riaño et al. 2005; Trombetti et al. 2008; Yebra and Chuvieco

2009a, b).

There are several different algorithms that can be used to invert radiative transfer

models. A drawback is that the model inversions are computationally very expen-

sive (Fang and Liang 2003), so inversions require optimization techniques to allow

the calculation of CWC and other parameters for large data sets. For example,

lookup tables can speed the inversion process (Champagne et al. 2003; Yebra et al.

2008). Using the PROSAIL model to train an artificial neural network for the

inversion, Trombetti et al. (2008) estimated CWC for the continental USA from

Fig. 20.5 Leaf fuel moisture content (kg H2O/kg dry matter) predicted by narrow-band indices.

(a) NDII and (b) NDWI are based on the water absorption features at 1650 and 1240 nm,

respectively (Table 20.2). NDMI is the Normalized Dry Matter Index [¼ (R1650 � R1722)/

(R1650 + R1722), Wang et al. (2011b, c)]. The leaf data were from Acer rubrum, Quercus alba,
and Zea mays
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MODIS, which were put in relation to rainfall and temperature patterns on each

eco-region (Fig. 20.6).

20.10 Conclusions

While more research needs to be done to develop and validate inversion algorithms

for CWC, it must be realized that much more effort over a longer time period was

expended for environmental data records based on NDVI (Tucker et al. 2005).

NDVI data collection began in 1982, so the data record can be used to distinguish

the contributions of local and global drivers for changing vegetation dynamics

(Neigh et al. 2008). The availability of global imagery with shortwave-infrared

bands began in 1998 with SPOT Vegetation and AVHRR/3. These sensors have one

band in the shortwave infrared, so NDII could be used as a start for a CWC data

product. Given the relationships among NDII, CWC, and VWC, NDII could be

quickly assimilated into microwave data products for soil moisture.

On the other hand, MODIS and VIIRS have multiple bands at wavelengths at

which liquid water absorbs solar radiation, so CWC data products are not limited to

NDII or NDWI. Inversions of radiative transfer models have potentially the highest

accuracies for retrieval of most vegetation parameters, which are required for

applications detecting water stress and monitoring FMC (Riaño et al. 2005).

CWC data products are nearing maturity in part by using the synergy between

Fig. 20.6 Monthly changes in CWC during 2005 for natural vegetated areas in the USA. Each

month is depicted by a single image composite after areas covered by snow, clouds, water, and

agricultural land-cover types were masked out (Trombetti et al. 2008)
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imaging spectrometers and polar-orbiting environmental satellites for algorithm

development (Cheng et al. 2008). As the NASA Terra and Aqua missions are

nearing their end, retrieval algorithms are being developed mindful of the

capabilities of VIIRS. Most of all, the development of CWC data products had a

major advantage by following the examples set during the development and testing

of the standard MODIS data products and NDVI environmental data records.
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Chapter 21

Recent Advances and Challenges of Monitoring

Climate Change from Space

John J. Qu, Alfred M. Powell Jr., and Mannava V.K. Sivakumar

Abstract Extreme weather and climate events have over the years impacted

human society and have currently become a more complex challenge with the

changing climate. Many more climate change consequences have been recognized

due to various environmental and social stresses in the last few decades. One way to

assess the impacts of observed climate change is by viewing the Earth from space.

Monitoring climate change from space is one of the most important and challenging

responsibilities. Satellite remote sensing measurements can make the task of moni-

toring the entire Earth relatively easy with low costs; thus, environment and

weather satellite measurements provide the ability to observe and predict the

Earth’s environment and weather while improving the accuracy. Satellite obser-

vations make a significant contribution to the Essential Climate Variables (ECVs)

and their associated data sets and products of the Global Climate Observing System

(GCOS) which was established to ensure that all users have access to the climate

observations, data records, and information which they require to address pressing

climate-related concerns. Generating climate data records with multi-mission and

multi-instrument measurements is difficult and complex because of the spectral

spatial, temporal, and angular coverage issues. Cross-sensor calibration and
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validation play a pivotal role relative to understanding the climate and its trends—

an important issue. The applications of satellite data for climate change are

summarized based on the 20 chapters in this book, and recent advances of climate

change monitoring from space are discussed. Monitoring climate change from

space presents major challenges that will be briefly summarized. The era of

collecting satellite images from space is rapidly being replaced by the era of

“Satellite Climatology” as the time series of satellite measurements has reached

over 30 years of extended applications and use.

21.1 Introduction

Monitoring climate change from space is one of most important and challenging

responsibilities. Satellite remote sensing measurements can make the task of moni-

toring the entire Earth relatively easy with low costs. Satellite measurements

provide the ability to observe and predict the Earth’s environment and weather

more reliably. Accurate, reliable, and consistent measurements frommultiple satellite

sensors are critical for weather prediction and climate change studies. However, each

satellite instrument has different spectral, spatial, and temporal specifications

and is usually calibrated separately with different methodologies. There is often

bias between different satellite measurements which will impact trend assessments

and induce errors if not corrected. Satellite observations make a significant contri-

bution to the Essential Climate Variables (ECVs) and their associated data sets and

products of the Global Climate Observing System (GCOS) which was established

to ensure that all users have access to the climate observations, data records,

and information which they require to address pressing climate-related concerns.

The recent advances and challenges of monitoring climate change with multi-

instrument measurements from space will be discussed. The state of the art of

collecting satellite images from space is rapidly being replaced by the era of “Satellite

Climatology” as the time series of satellite measurements has reached over 30 years

of extended applications and use. A discussion of recent satellite application

advances from the previous 20 chapters will be summarized.

21.2 Summary of This Book

The summary of the previous 20 chapters includes different climate zones including

the tropical, middle-latitude, high-latitude, and Arctic climates. This book was

organized in four sections: (1) overview of satellite-based measurements and

applications, (2) atmospheric and climate applications, (3) hydrological and

cryospheric applications, and (4) land surface and ecological applications. Because

the long-term climate monitoring system from space is very complex, only a small but

important subset of satellite progress was presented. In Chap. 1, an introduction to

satellite-based applications and research for understanding climate change is given by

the book editors (Powell et al. 2013). The background information highlights the early
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efforts and major objectives of satellite monitoring and applications. As the use of

satellites advanced, the objectives for their use changed from tracking cloud patterns

to specialized products like snow cover, precipitation, and vegetation indices. As

satellitemonitoring progressed, it became evident that new challenges associatedwith

using satellite data for long-term monitoring of climate change require better

approaches for calibration, derived products, trend uncertainty, and measurement

quality. As the global satellite constellation continues to expand and our knowledge

basematures, future satellite measurement issueswill center on calibration techniques

as the foundation for all the derived products and services. To monitor climate change

effectively requires a stable and consistent baseline from which to judge the change

with significantly reduced uncertainties.

In Chap. 2, Drs. Cao et al. (2013) present the fundamental issues in satellite

instrument calibration and provide an overview of the current status, challenges,

and latest developments in inter-satellite calibration.

MODIS is a key instrument of the NASA Earth Observing System (EOS) with

36 spectral bands covering wavelengths from 0.41 to 14.4 μm and three nadir

spatial resolutions: 250 m, 500 m, and 1 km. Terra and Aqua MODIS have

produced more than 10 years of global data sets that have significantly helped

scientists to better understand the Earth system. In Chap. 3, Drs. Salomonson and

Xiong (2013) discuss the MODIS instrument characterization and performance.

Potential applications of MODIS data products for climate studies are illustrated,

and the follow-on instrument, VIIRS, is briefly introduced.

In Chap. 4, Drs. Powell and Xu (2013) compare the temperature responses to

climate forcings in winter (December–February) between the pre- (1958–1978) and

post- (1979–2002) periods of satellite data assimilation using multiple linear regres-

sion analysis for the lower stratospheric and the middle tropospheric temperature

changes associated with key climate forcings: solar variability, ENSO, QBO, and

stratospheric aerosols for the two periods based on three temperature data sets. The

analysis reaffirms the core forcing parameters for atmospheric temperature trends,

such as solar radiation, ENSO, QBO, and stratospheric aerosols, and demonstrates

similar features and trends of approximately the same magnitude. The discrepancies

between the pre- and post-satellite era analyses are also discussed.

Long-term high-quality consistent fundamental climate data records (FCDRs)

are critical in understanding the complicated changes of the Earth system. Although

there have been many satellite instruments available for Earth observation, the

integration of remote sensing measurements from different sensors is necessary for

constructing consistent long-term climate data records. In Chap. 5, Drs. Hao and Qu

(2013) introduce the band mapping approach for FCDR generation and demonstrate

results for the thermal infrared bands of AVHRR and MODIS. Quantitative

relationships between thermal emissive measurements of different sensors are

investigated towards the construction of thermal emissive FCDRs.

In Chap. 6, Drs. Ferraro and Smith (2013) discuss various satellite precipitation

retrieval methods and applications of global precipitation data sets. Various precip-

itation retrieval algorithms are reviewed, and the strengths and weaknesses of these

algorithms are discussed. In addition, the emerging techniques and products using

integrated multiple satellite measurements for the best possible historical precipita-

tion estimation are presented.
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Global historical precipitation record is very important for climate change studies

and climate model evaluations. In Chap. 7, Dr. Smith (2013) reviews approaches for

reconstructing the historical precipitation record, and demonstrates the feasibility of

reconstructing large-scale features of oceanic precipitation variations from 1900.

Possible improvements in the long-term reconstruction using data assimilation and

integration of longer satellite-based observations are discussed.

In Chap. 8, Dr. Zou (2013) reviews the simultaneous nadir overpass (SNO) method

for developing a fundamental climate data record (FCDR) from the Microwave

Sounding Unit (MSU) and the Advanced MSU observations onboard NOAA polar

orbiting satellite series. Various residual bias correction algorithms, including antenna

pattern corrections, limb adjustments, diurnal drift corrections, geolocation-dependent

bias removal, and channel frequency differences, are discussed. The effects of an

improved inter-calibrated FCDR on the reanalysis bias correction are demonstrated.

The atmospheric temperature TCDR and applications are also described.

Arctic change is of considerable interest for climate change studies, and satellite

remote sensing measurements are critical for monitoring and evaluating changes in

the Arctic. Dr. Key (2013) discusses satellite-based approaches for monitoring

Arctic climate characteristics in Chap. 9. Methods and applications for retrieving

physical variables of the Arctic climate system, such as winds, clouds, surface

temperature and albedo, and sea ice, are summarized. Applications of satellite

remote sensing data products for climate change detection are discussed.

Considerable societal and economic importance can be associated with reliably

monitoring the intensity of tropical cyclones and investigating the impacts of global

climate change on hurricane tracks and characteristics. In Chap. 10, Drs. DeMaria

et al. (2013) review methods for estimating tropical cyclone intensity with satellite

remote sensing techniques, including visible, infrared, and microwave instruments.

Integrated solutions for TC forecasting and monitoring based on multiple

instruments are suggested. Possible improvements in the next generation of

satellites for TC monitoring are also discussed.

A changing climate impacts human lives. The impacts are derived from process

interactions between the Earth system components: the atmosphere, hydrosphere,

lithosphere, biosphere, and anthrosphere. In Chap. 11, Drs. Chiu and Gao addressed

the satellite-based ocean surface turbulent flux, which is one of the important

parameters for monitoring and predicting global climate change. The ocean processes

interact with the Earth’s key cycles: the energy cycle, water cycle, and other biogeo-

chemical cycles. The authors discuss the transfer mechanisms occurring at the air-sea

interface, present the bulk formulae for estimating the flux transfers and introduce the

bulk parameters from satellite observations, describe various research or operational

products that integrate the bulk parameters to produce surface flux products, and

present an assessment of these products. The use of these products in climate research

and operational applications is also discussed in Chap. 11 (Chiu and Gao 2013).

Snow cover is an important indicator of global climate change and plays a key

role in the climate system. Satellite remote sensing provides an excellent method to

observe the snow cover, both in visible and passive microwave regions of the

spectrum. In Chap. 12, Dr. Li Xu introduces satellite-based applications of snow

cover. The role of snow in the climate system, satellite snow observations and
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monitoring, snow-climate interaction, and snow-atmosphere coupling strength was

reviewed in this chapter (Xu 2013).

Evapotranspiration is a crucial variable for understanding the impact of the

climate on vegetation health and is an important indicator for monitoring global

and regional climate changes. It is directly associated with energy and water cycles

and has critical impacts on irrigated crops, ecosystem services, and water resource

management. In Chap. 13, Drs. Martin, Allen, and Brazil estimate evapotranspiration

with satellite remote sensing for irrigation water management. MODIS and Landsat

data products and the METRIC surface energy method were used to estimate crop

evapotranspiration in three Moroccan irrigation sectors. They found that the satellite

remote sensing data analysis delivered useful results for large irrigated areas with

little information on crop consumptive use and irrigation efficiency, and almost no

information on groundwater abstraction (Martin et al. 2013).

Satellite measurements are an important component of the global snow observ-

ing system. In Chap. 14, Dr. Romanov presents an overview of the satellite-based

applications of snow cover. The reviewed techniques include an interactive

approach where snow maps are manually generated by human analysts through a

visual examination of satellite imagery. The most recent fully automated algorithms

that utilize satellite observations in multiple bands in the optical, infrared, and

microwave spectral range are discussed. The author concluded that satellite-based

retrievals of the snow extent and the spatial distribution of snow cover are accu-

rately and spatially detailed (Romanov 2013).

Accurate measurements of global rainfall are crucial for better understanding the

water and energy cycles of the climate system. The lack of global gauge networks,

especially over the ocean, in mountainous terrains, or in remote areas, points to

satellite observation as the only viable method for global scale rainfall monitoring.

In Chap. 15, Drs. Chiu, Gao, and Shi discuss the recent advances of climate-scale

oceanic rainfall based on passive microwave radiometry. The authors describe the

model structure and the underlying theory, examine the product output parameters,

and discuss example techniques related to climate studies, future work, and poten-

tial product improvements.

Vegetation monitoring is crucial for understanding the sustainability of our

planet and represents an important approach to monitor climate change. Satellite

remote sensing measurements provide a valuable data source for monitoring vege-

tation from space. In Chap. 16, Dr. Gao discusses recent studies using integrated

high spatial resolution Landsat and high temporal resolution MODIS data for

vegetation monitoring. Dr. Gao describes three categories of approach to integrate

the two satellite data sources. The data fusion approach synthesizes Landsat and

MODIS data to produce the fused data products with high spatial and temporal

resolution. Each approach has its advantages and limitations. These approaches can

be applied to other similar sensors. Their advantages and limitations are also

discussed (Gao 2013).

Vegetation phenology describing the seasonal cycle of plants is currently one of

the main concerns in the study of climate change and carbon balance estimation in

ecosystems. Monitoring phenology from space is another recent advance in

satellite-based applications. Satellite-derived information has been demonstrated
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to be an important source for detecting vegetation phenology. In Chap. 17, Drs. Li

and Qu show that satellite-derived information has demonstrated the value of

vegetation phenology observations from space. The advances and challenges and

future applications are discussed. The well-validated vegetation phenology from

satellite measurements will contribute to the improvement in ecosystem process

models (Li and Qu 2013).

Marine phytoplankton is another ideal indicator of environment and climate

change. In Chap. 18, Uz et al. (2013) describe monitoring a sentinel species from

satellites, i.e., detecting Emiliania huxleyi using 25 years of AVHRR data products.

They found that AVHRR offers the longest continuous global data set of visible

reflectance which can be used to identify regional E. huxleyi blooms. The declining

long-term trend in bloom surface area was correlated to warm sea-surface tempera-

ture anomalies. The trend was weakly correlated to increased mixed layer depths.

They analyzed the well-established ocean color satellite measurements of E.
huxleyi blooms around the world via a data set extension back to 1982 by

identifying them in AVHRR imagery. The authors concluded the hypothesized

relationship between E. huxleyi bloom events and warming temperatures does not

hold over the long term.

In Chap. 19, Drs. Sun and Yu give an overview of the recent advances on the

retrieval of land surface temperature (LST) from satellite observations. Special

attention has been paid to the LST retrieval from GOES satellites. A detailed

introduction is given about the literature review, the existing problems and

challenges, and the advantages of geostationary satellites and the GOES instrument.

Special attention was paid to the LST retrieval from geostationary GOES satellites.

Algorithm theoretical basis (both physical and mathematical) has been provided.

LST product is going to be generated from current GOES satellites from their

proposed dual window algorithm (Sun and Yu 2013).

Remote sensing of leaf, canopy, and vegetation water content for satellite

environmental data records (EDRs) is discussed by Dr. Hunt in Chap. 20. Those

EDRs can be used to generate CDRs. The temporal record of multiple instruments,

such as MODIS, SPOT Vegetation, and AVHRR/3 sensors, and the future record

from VIIRS will create a global environmental data record of canopy water content

for climate change studies (Hunt et al. 2013). Measurement continuity with multi-

mission and multisensor measurements is also discussed this chapter.

21.3 Challenges of Monitoring Climate Change from Space

One of the most challenging and critical issues facing climatologists during the next

century is related to the operation of a long-term climate monitoring system capable

of delivering continuous and reliable data and information (Karl 1996). The opera-

tion of environmental data services is an important and challenging responsibility.

The growing needs for environmental data are coupled with opportunities for more

effective environmental information services, for a few new types of satellite

364 J.J. Qu et al.

http://dx.doi.org/10.1007/978-94-007-5872-8_17
http://dx.doi.org/10.1007/978-94-007-5872-8_18
http://dx.doi.org/10.1007/978-94-007-5872-8_19
http://dx.doi.org/10.1007/978-94-007-5872-8_20


observations. Better information services will result in improvements in prediction

capabilities and in the products offered by advances in technology (both hardware

and software). Research will bring new insights via an improved understanding and

use of the data (National Research Council, 2003). There are many challenges

related to generating climate data records (CDRs) from international multi-mission

and multi-satellite measurements. First, because each satellite instrument has dif-

ferent spectral, spatial, angular, and temporal measurements, cross-sensor calibra-

tion and validation has become a critical issue. Second, because there are many

satellites in space, international collaboration is needed. Third, satellites provide the

best spatial and temporal coverage; even so, satellite measurements should be

combined with in situ observations and model simulations to monitor and forecast

climate changes. Fourth, in situ ground measurements are essential for monitoring

climate change. Integrating satellite, in situ measurements, model simulation, GIS,

and decision support system (DSS) is the future direction of the Global Earth

Observing System (GEOS) and the GCOS that will span the era of “Satellite

Climatology.”
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Peñuelas, J., 342, 343

Pinker, R.T., 293, 296, 299, 302, 305,

314, 323

Platt, C.M.R., 303

Powell, A., 361

Prata, A.J., 292, 293, 295, 303

Price, J.C., 291, 303

Prince, K., 295

Prince, S.D., 270

Pu, Z., 185

Q

QBO. See Quasi-biennial oscillation (QBO)

Qin, Z., 8

Quasi-biennial oscillation (QBO), 50–53, 55,

58–62, 361

Qu, J.J., 342, 361, 364

R

Raitsos, D.E., 279

Reconstruction, 9, 96–104, 362

Reed, B.C., 267, 268, 271

Regression, 51, 53, 55–61, 114, 115, 169, 232,

239, 284, 285, 293, 294, 307, 308,

315–322, 329, 340, 341, 344, 347

Retrieval methods, 82–86, 157, 158, 361

Reynolds, R.W., 172

Riggs, G.A., 223

Robinson, D.A., 218

Rock, B.N., 341–343
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