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Preface

In the 21st century, the entire world is suffering from freshwater scarcity due
to the ever-increasing water demand in different sectors, worldwide population
growth and increasing pollution of vital freshwater resources. Therefore,
efficient planning and management of water resources is of utmost importance
to ensure sustainable development on the earth. Statistical analyses of
hydrologic time series play a central role in the planning and management of
water resources. In fact, statistical analyses of every hydrologic time series
must always be carried out for determining fundamental time series
characteristics, i.e. normality, homogeneity, stationarity, presence of trends
and shifts, periodicity, persistence and stochastic component. However, such
a practice is currently missing among the hydrologists and hydrogeologists.
As a result, hydrologic time series analysis has received less attention even in
the era of information technology, especially in developing countries. A
comprehensive review of literature by the authors revealed that the past studies
on time series analysis mostly focus on a specific time series characteristic
only and that the current application domain of time series is limited. Based
on the research experience of the authors, it was found that a suitable book
dealing with both theory and application of time series analysis techniques is
lacking, particularly in the field of water resources engineering. Therefore,
many hydrologists and hydrogeologists face difficulties in adopting time series
analysis as one of the tools for their research. Thus, there is a need to have a
book with a proper blend of theoretical and practical aspects of time series
analysis, and its use in the field of water resources engineering.

The present book is an attempt to fill the above gap by providing adequate
theoretical background as well as practical applications of various tools/
techniques for analyzing time series data. This book is divided into two parts:
Part I describes theoretical aspects of tools/techniques available for time series
analysis, and Part II presents applications of various time series tests through
selected case studies. Chapter 1 deals with an overview of water problems and
challenges, fundamentals of time series analysis, and the significance of time
series analysis in hydrology. Chapters 2 to 6 constitute Part I, which present



an overview of time series characteristics in hydrology/water resources
engineering, statistical measures for summarizing time series data and
evaluating system performance, methods for checking the normality of time
series data, theoretical details of 31 available statistical tests along with detailed
procedures for applying them to real-world time series data, theory and
methodology of stochastic modelling, and current status of time series analysis
in hydrological sciences. Chapters 7 to 12 constitute Part II, which demonstrate
the application of most time series tests through a case study in India (authors’
own work) and present a comparative evaluation of various time series tests
(also authors’ own work). In addition, four invited case studies are included as
Chapters 9, 10, 11 and 12 from India and abroad (USA, Canada and South
Africa). The contributors of the invited case studies were chosen based on
their proven knowledge in the specific area of their contribution and these
chapters were meticulously reviewed and edited by the authors. Thus, Chapters
9, 10, 11 and 12 have been revised at least twice.

This book will not only serve as a textbook for the students and teachers
of water resources engineering field but will also solve the purpose of reference
book to educate researchers/scientists about the theory and practice of time
series analyses in hydrological sciences. This book will be very useful to a
wide range of students, researchers, teachers and professionals such as
undergraduate and postgraduate students, teachers and researchers of civil,
environmental, agricultural and ecological engineering fields as well as to the
practising hydrologists and hydrogeologists.

Deepesh Machiwal
Madan Kumar Jha

vi Preface
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1
Introduction

1.1 Water Problems and Challenges: An Overview

Water is the most precious resource of the earth because no life is possible
without water. It is essential for the survival and livelihood of every human.
It also regulates ecosystems, grows our food and powers our industry. Hardly
any economic activity can be sustained without water. Undoubtedly, water
plays a vital role in our life. Different dimensions of water functions in society
and nature are (Falkenmark and Rockstrom, 2004): (i) water as life-support
and hence as a basic need and as a human and animal right; (ii) water as an
economic commodity in some uses; (iii) water as an integral part of ecosystem
(sustaining it and being sustained by it); (iv) water as a sacred resource; and
(v) water as an inevitable component of cultures and civilizations. Thus, water
is the key resource for the human/animal health, socio-economic development,
and the survival of earth’s ecosystems. On the other hand, natural ecosystems
also play a crucial role in the availability and quality of water through their
purifying and regulating services, thereby sustaining human development on
the earth. In other words, water has social, economic and environmental
values and is essential for sustainable development (Falkenmark and
Rockstrom, 2004; UNESCO, 2003, 2009). In contrast with many other vital
resources of the earth, there is no substitute for water in most activities and
processes where it is needed!

At present, about 10% of the world’s freshwater supplies are used for
maintaining health and sanitation, whereas agriculture accounts for about
70% and industries about 20% of the world’s freshwater supplies (Shiklomanov,
1997; Shiklomanov and Rodda, 2003). Food production is the most water-
intensive sector. It has been estimated that about one litre of liquid water gets
converted to water vapour to produce one calorie of food. Every person is
responsible for consuming 2000 to 5000 litres of water every day depending
on one’s diet and the method of food production, which is far more than 2 to
5 litres we drink every day (Rodriguez and Molden, 2007). A meat-based diet
requires much more water than a vegetarian diet; for example, we need about

DOI 10.1007/978-94-007-1861-6_1, © Capital Publishing Company 2012 
1D. Machiwel and M.K. Jha, Hydrologic Time Series Analysis,
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1000 litres of water to produce one kilogram of wheat, whereas we need about
5000 to 13,500 litres of water to produce one kilogram of meat. The demand
for water is gradually increasing with growing population as well as rapid
urbanization and industrialization in different parts of the world (Postel, 1998;
Shiklomanov and Rodda, 2003; UNESCO, 2003, 2009; Grafton and Hussey,
2011). As a result, water demand is surpassing the available freshwater resource.
On top of it, in future, more people will need more water not only for food and
sanitation but also for fibre, livestock and industrial crops (bio-energy).

Unfortunately, the excessive use and continued mismanagement of
freshwater resources for human development (to supply ever-increasing water
demands for food, feed, fibre and fuel) have led to water shortages, increasing
pollution of freshwater, loss of biodiversity, and degraded ecosystems across
the world (e.g., Postel, 1998; de Villiers, 2001; Steffen et al., 2002; UNESCO,
2003; UN Water, 2007; Vörösmarty et al., 2010; Grafton and Hussey, 2011).
As a result, freshwater scarcity has emerged as one of the most pressing
problems in the 21st century. According to Molden (2007), one in three people
at present face water shortages, around 1.2 billion people (almost one-fifth of
the world’s population) live in areas of ‘physical water scarcity’ (i.e., where
the available water resources cannot meet the demands of the population), and
500 million people are approaching this situation. Another 1.6 billion people
(almost one quarter of the world’s population) face ‘economic water scarcity’
(i.e., where countries lack the necessary infrastructure to harness water from
rivers and aquifers). Furthermore, about 2.5 billion people lack adequate
sanitation, and 884 million people are without access to safe water (UNICEF
and WHO, 2008). It has been estimated that half of the population of the
developing world is exposed to polluted sources of water that increase disease
incidence. Between 1991 and 2000, over 665,000 people died in 2557 natural
disasters, of which 90% were water-related disasters and a vast majority of
victims (97%) were from developing countries (IFRC, 2001).

If the present trend continues, based on the widely used Falkenmark
indicator for water scarcity, nearly 1.4 billion people will experience ‘chronic
water scarcity’ (i.e., water supply less than 1000 m3/capita/annum) within the
first 25 years of this century, mostly in semi-arid regions of Asia, North Africa
and Sub-Saharan Africa. Also, 1.8 billion people will be living in countries or
regions with ‘absolute water scarcity’ (i.e., water supply less than 500 m3/
capita/annum), and two thirds of the world’s population could be under ‘water
stress’ (i.e., water supply less than 1700 m3/capita/annum) conditions by 2025
(UN Water, 2007). Urban and industrial water use in the world is projected to
double by 2050. With increasing evidence of unsustainable water use in several
parts of the world, particularly in developing nations, India is under ‘water
stress’ conditions today and will face ‘chronic water scarcity’ by 2025. The
problem of water management in general and water shortages in particular
will worsen in many parts of the world due to global climate change. Higher
temperatures and changes in extreme weather conditions are projected to
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affect the availability and distribution of rainfall, snowmelt, river flows and
groundwater, and deteriorate water quality, which in turn can have severe
impacts on both urban and rural regions of the world (IPCC, 2007). Climate
change is considered as a major challenge to the efficient management of
natural resources and a barrier to the transition from poverty to prosperity
(UNDP, 2007). Thus, in the beginning of the 21st century, we are bound to
face the stark reality that the current patterns of water development and
consumption are not sustainable in several countries of the world. Therefore,
there is an urgent need for widespread realization that freshwater is a finite
and vulnerable resource, which must be used efficiently, equitably and in an
ecologically sound manner for present and future generations to ensure
sustainable development on the earth.

Inadequate water resource systems reflect failures in planning, management
and decision making not only in the water sector but also in other sectors of
society directly or indirectly dependent on water. It is the need of the hour for
scientists/engineers as well as for planners and decision makers to efficiently
plan, develop, operate and manage water resource systems so as to ensure
adequate, cost-effective, good-quality and sustainable supply of water for
humans and nature (Falkenmark and Rockstrom, 2004; Loucks and van Beek,
2005; Grafton and Hussey, 2011). The complex and deep interactions that
have existed between humans and water systems throughout the human history
need to be understood by modern scientists/engineers, planners and decision
makers (Postel and Richter, 2003). It is also essential to recognize that unlike
much basic economic theory, the goods and services provided by ecosystems
are not at all substitutable and ecosystems cannot easily be replaced by
technology (Kaufmann, 1995). At this point in human evolution, it is vital that
people understand the crucial link between human welfare and ecosystem
well-being (Arrow et al., 1995; UNESCO, 2003, 2009), and institutions must
be strengthened to support effective water governance (Walker, 2009). Natural
scientists and social scientists need to work together to better understand
human-environment interactions (IPCC, 2001) as well as to bridge the growing
knowledge gap between water management and ecology. More and more
research is needed to predict how potential ecosystem perturbations may
affect short- and long-term ecosystem functionality. Given the dynamic and
evolving nature of ecosystems, a major technical challenge is quantifying
how much the ability of ecosystems to meet human needs is changing over
time.

Today, one of the biggest challenges is how we can effectively balance
freshwater for human development and ecosystems welfare in achieving equity,
environmental sustainability, and economic efficiency in the face of looming
global climate change. Quantitative analysis using statistical and mathematical
modelling tools as well as modern information technologies such as remote
sensing, GIS, decision support system, expert system, etc. can support and
improve water resources planning and management (Loucks and van Beek,
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2005; Jha and Peiffer, 2006; Jha, 2010). The “think globally, act locally”
slogan of the late 1980s reminds us of our professional attitudes to and scientific
responsibilities for environment (nature) in general and freshwater resources
in particular, which must not be forgotten. Following holistic and
multidisciplinary approaches as well as using modern concepts and tools/
techniques, water scientists and engineers must make sincere and sustained
efforts to improve their understanding about hydrologic/hydrogeologic
processes and their linkage with our ecosystems; thereby improving both the
process and product. It is worth mentioning that the existing tools and
technologies, irrespective of their sophistication, will not eliminate the need
to reach conclusions and make decisions on the basis of incomplete and
uncertain data, and scientific knowledge (Loucks and van Beek, 2005). In
other words, the importance of professional judgement and that of research,
development and education in the planning and management of water resources
must not be undermined amidst increasing popularity and reliance on new/
emerging tools and technologies in the 21st century.

1.2 What is Time Series?

The term time series is defined as “a sequence of values collected over time
on a particular variable” (Haan, 1977). A time series can consist of the values
of a variable observed at discrete times, averaged over a given time interval,
or recorded continuously with time. It may consist of only deterministic events,
only stochastic events, or a combination of deterministic and stochastic events.
Generally, a hydrologic time series is composed of a stochastic component
superimposed on a deterministic component (Haan, 1977; Shahin et al., 1993).
The deterministic component can be classified as a trend, a jump, a periodic
component, or a combination of these (Haan, 1977). The time intervals for
most hydrologic time series are hour, day, week, month, season or year. Data
in business, economics, engineering, environment, medicine, earth sciences,
hydrology, climatology, meteorology and other areas are often collected in the
form of time series. Some examples of the general time series are share prices
on successive days, company profits in successive years, and sales figures in
successive weeks/months/years; while the examples of hydrologic time series
are hourly/daily/monthly/annual temperature (air or water) readings,
precipitation in successive days/weeks/months/years, hourly/daily/monthly/
annual evaporation or evapotranspiration readings, hourly/daily/monthly/annual
soil moisture, hourly/daily/weekly/monthly/annual streamflow or river-stage
readings, hourly/daily/weekly/monthly/annual groundwater-level readings,
hourly/daily/weekly/monthly/annual tide-level readings, daily water
consumption in domestic, industrial or agricultural sectors, etc.

Furthermore, the realization of a process is the outcome of an experiment
in which the process is observed, and hence a single time series is known as
a realization (Shahin et al., 1993). The term ensemble denotes a collection of
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all possible realizations of a process, and it is used in the theory of stochastic
processes and time series analysis in lieu of the well-known statistical term
‘population’ (Haan, 1977; Shahin et al., 1993). The properties of a time series
can be obtained based on a single realization over a time interval or based on
several realizations at a given time. The properties based on a single realization
are known as time average properties, whereas those based on several
realizations at a particular time are known as ensemble properties (Haan,
1977). If the time average properties and the ensemble properties of a time
series are same, the series is said to be ergodic (Haan, 1977). Ergodicity is the
property by which each realization of a given process is a complete and
independent representative of all possible realizations of the process (Shahin
et al., 1993). Thus, the ergodicity allows the scientists/researchers to determine
the statistical properties of a process from a single realization.

1.3 Time Series Analysis

Time series analysis is the investigation of a temporally distributed sequence
of data or the synthesis of a model for prediction wherein time is an independent
variable. Sometimes, time is not actually used to predict the magnitude of a
random variable such as peak runoff rate, but the data are ordered by time.
The main intent of time series analysis is to detect and describe quantitatively
each of the generating processes underlying a given sequence of observations
(Shahin et al., 1993). Hydrologic time series are analyzed for several reasons.
The main reason as reported in the literature is to detect a trend due to another
random hydrologic variable. Secondly, time series may be analyzed to develop
and calibrate a model that would describe the time-dependent characteristics
of a hydrologic variable. Thirdly, time series models may be used to predict
future values of a time-dependent variable. Besides the time-dependent data
series, there are space-dependent data series of hydrologic systems, which are
known as ‘spatial data series’. Thus, in the spatial data series, the data are
location specific instead of depending on time as in the time series. The
examples of spatial data series are: the variability of groundwater levels over
a groundwater basin, spatial variation of aquifer or soil properties, spatial
variation of rainfall in a catchment/basin, and so on. Most of the time series
analysis methods can equally be applied to spatial data series (Shahin et al.,
1993). Therefore, spatial data series is sometimes referred to as time series.

There are four major steps involved in a time series analysis (McCuen,
2003): (i) detection, (ii) analysis, (iii) synthesis, and (iv) verification. In the
detection step, systematic components of the time series such as trends or
periodicity are identified. It is also necessary to decide in this step whether the
systematic effects are physically and statistically significant. In the analysis
step, the systematic components are analyzed to identify their characteristics
including magnitudes, form and their duration over which the effects exist. In
the synthesis step, information from the analysis step is accumulated to develop
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a time series model and to evaluate goodness-of-fit of the developed model.
Finally, in the verification step, the developed time series model is evaluated
using independent sets of data. For further details of the time series analysis,
the readers are referred to the specialized books on time series analysis such
as Yevjevich (1972), Salas et al. (1980), Bras and Rodriguez-Iturbe (1985),
Cryer (1986), and Clarke (1998).

1.4 Classification of Time Series

A time series can be classified in many ways according to different criteria.
Three widely used classifications of the time series are described below. The
details about the classification of hydrologic time series can be found in Salas
(1993).

1.4.1 Discrete or Continuous Time Series

Time series can be either continuous or discrete. A time series is called ‘discrete’
if the observations are recorded at different time instants or at different points
in space (Haan, 1977; Shahin et al., 1993). On the other hand, if the observations
are recorded continuously in time or space, then the series is known as a
‘continuous time series’. ‘Discrete time series’ is often derived from a
‘continuous time series’. Usually in hydrology, a time series is of the discrete
type. As a result, the case studies presented in this book are restricted to the
discrete time series. A continuous plot of a ‘discrete time series’ should not be
confused with a ‘continuous time series’.

1.4.2 Full or Partial Duration Series

A ‘full time series’ is the one which contains all the recorded observations
over time or space (Haan, 1977; Shahin et al., 1993). As the name suggests,
a ‘partial duration series’ contains only selected observations which are
extracted from the full time series. For instance, daily rainfall recorded at a
specific location over a given period of time constitutes a full time series of
rainfall. A time series of one-day maximum rainfall can be extracted from the
full rainfall time series by arranging the maximum rainfall occurring in a day
for each year in the order of occurrence. Note that the maximum rainfall time
series contains less information than the original full rainfall time series. That
is, a ‘partial duration series’ always contains less information than the ‘full
time series’. In addition, the observation points in a partial duration series
may not be equidistant.

1.4.3 Univariate or Multivariate

If only one variable is observed at each time, the time series is known as
‘univariate time series’. However, if two variables are observed at the same
time (simultaneously), the series is known as ‘bivariate time series’. If more
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than two variables are observed simultaneously at a time, the series is known
as a ‘multivariate time series’. This book deals with univariate time series
only.

1.5 Structure of Time Series

A time series is often adequately described as a function of four components:
trend, seasonality, dependent stochastic component and independent residual
component. In general, a time series can be mathematically expressed as
(Shahin et al., 1993):

xt = Tt + St + t + t (1)

where Tt = trend component, St = seasonality, t = dependent stochastic
component, and t = independent residual component.

In the time series analysis, it is assumed that the data (observations)
consist of a systematic pattern and random noise (error); the latter usually
makes the pattern difficult to be identified. The systematic pattern is represented
by the first two components of Eqn. (1), which are deterministic in nature,
whereas the stochastic component accounts for the random error. Generally,
the stochastic component contains a dependent part which may be represented
by an ARMA(p,q) model, where ‘p’ and ‘q’ are the orders of the autoregressive
and moving-average models, respectively, and an independent part that
can only be described by some sort of probability distribution function. When
p = 0, the ARMA(p,q) represents an MA(q) model, and when q = 0, it represents
an AR(p) model.

Thus, the process of hydrologic time series analysis should be viewed as
a process of identifying and separating the total variation in measured data
into above-mentioned four components. When a time series has been analyzed
and the components accurately characterized, each component can then be
modelled. Methods for identifying trends in time series are described in Chapter
4 and the methods for identifying stochastic component are described in
Chapter 5.

1.6 Salient Characteristics of Time Series

Most statistical analyses of hydrologic time series at the usual time scale
encountered in water resources studies are based on a set of fundamental
assumptions, which are: the series is homogenous, stationary, free from trends
and shifts, non-periodic with no persistence (Adeloye and Montaseri, 2002).
The term ‘homogeneity’ implies that the data in the series belong to one
population, and therefore have a time invariant mean. Non-homogeneity arises
due to changes in the method of data collection and/or the environment in
which it is done (Fernando and Jayawardena, 1994). On the other hand,
‘stationarity’ implies that the statistical parameters of the series computed
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from different samples do not change except due to sampling variations. A
time series is said to be strictly stationary if its statistical properties do not
vary with changes of time origin. A less strict type of stationarity, called weak
stationarity or second-order stationarity, is that in which the first- and second-
order moments depend only on time differences (Chen and Rao, 2002). In
nature, strictly stationary time series does not exist, and weakly stationary
time series is practically considered as stationary time series.

There are many ways by which changes in the hydro-meteorological
series can take place. A change can occur gradually (known as ‘trend’) or
abruptly (known as ‘step change’ or ‘jump’), or may take more complex form
(Shahin et al., 1993). A ‘trend’ is defined as “a unidirectional and gradual
change (falling or rising) in the mean value of a variable” (Shahin et al.,
1993). A time series is said to have trends, if there is a significant correlation
(positive or negative) between the observed values and time. Trends and shifts
in a hydrologic time series are usually introduced due to gradual natural or
human-induced changes in the hydrologic environment producing the time
series (Haan, 1977; Salas, 1993). Gradual or natural changes in hydrologic
variables could be caused by a global or regional climate change, which
would be a representative of changes occurring over the study area. Changes
in the observed variables that may not be able to be extrapolated over a study
area could be caused by a gradual urbanization of the area surrounding the
monitoring site, changes in the method of measurement at the monitoring site,
or by moving the monitoring site even a short distance away. ‘Step changes’
or ‘jumps’ in a time series usually result from catastrophic natural events such
as earthquakes, tsunami, cyclones, or large forest fires which quickly and
considerably alter the hydrologic regime of an area. The man-made changes
such as the closure of a new dam, the beginning or termination of groundwater
pumping, or other such developmental activities may also cause jumps in
some hydrologic time series (Haan, 1977). Jumps can be either positive or
negative. The ‘jump’ or ‘step change’ is usually noted in the overall record at
a monitoring site, but this information is not always presented with the site’s
data series. Thus, the variables that appear to have a trend may actually just
represent a change in climatological or hydrological conditions near the
monitoring site. Under such conditions, the affected climatological data should
be modified so that the values are better representative of the study area as a
whole (Hameed et al., 1997). A key element in this process is the ability to
demonstrate whether a change or trend is present in the climatological data
series and to quantify this trend, if it is present.

‘Periodicity’ is another characteristic of time series (natural hydrologic
time series), which represents a regular or oscillatory form of movement that
is recurring over a fixed interval of time (Shahin et al., 1993). It generally
occurs due to astronomic cycles such as earth’s rotation around the sun (Haan,
1977; Kite, 1989). Annual cycles are often apparent in rainfall,
evapotranspiration, streamflow, groundwater level, soil moisture and other
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types of hydrologic data (Haan, 1977). Weekly cycles may be present in the
water-use data of domestic, industrial, or agricultural sectors; many times the
water-use time series contain both annual and weekly periodicities (Haan,
1977). In order to identify and quantify the periodicity in a hydrologic or
climatologic time series, the time scale should be considered less than a year
(i.e., month or six-month). The periodicity effect is not discernible in an
annual time series, and hence half-annual or monthly time series normally
encountered in hydrology can be used for analyzing the periodicity.

Lastly, the phenomenon of ‘persistence’ is highly relevant to the hydrologic
time series, which means that the successive members of a time series are
linked in some dependent manner (Shahin et al., 1993). In other words,
‘persistence’ denotes the tendency for the magnitude of an event to be dependent
on the magnitude of previous event(s), i.e., a memory effect. For example, the
tendency for low streamflows to follow low streamflows and that for high
streamflows to follow high streamflows. Thus, ‘persistence’ can be considered
synonymous with autocorrelation (O’Connel, 1977). Hurst (1951, 1957) was
the first person to describe ‘persistence’ comprehensively in his studies on a
reservoir design across the Nile River. The phenomenon was defined in terms
of a parameter called “Hurst’s coefficient”, the average value of which is
approximately 0.73 for very large samples. However, its theoretical value for
an independent Gaussian process to which hydrologic series are assimilated
should be 0.5 (Capodaglio and Moisello, 1990). If the theoretical and the
observed values of Hurst’s coefficient do not correspond, it is known as
“Hurst’s phenomenon”. All the stochastic models that have been proposed to
represent hydrologic time series have attempted to include the persistence
phenomenon. However, with the time series records commonly available in
hydrology, it is virtually impossible to identify any long-term persistence in
the hydrologic time series (Capodaglio and Moisello, 1990). Chapter 4 deals
with various methods/tests used for identifying the above characteristics of a
time series.

1.7 Time Series Analysis vis-a-vis Hydrology

In early days, the application of statistics in hydrology was restricted to only
surface water problems, especially for analyzing the hydrologic extremes
such as floods and droughts. However, during the past three decades or so, the
application of statistics in hydrology has expanded considerably to encompass
the problems of both surface water and groundwater systems, including
atmospheric systems. With such a broad domain coupled with the rapid
advancement in computer and data management technologies, statistics has
emerged as a powerful tool for analyzing hydrologic problems. Particularly,
time series analysis has become a major tool in hydrology in the era of
information technology. Today, besides the basic statistical analysis of
hydrologic time series, the applications of time series analysis in hydrological
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sciences include development of mathematical models to generate synthetic
hydrologic data, to forecast hydrologic events, to identify trends and shifts in
hydrologic data, to fill in missing observations, and to extend short hydrologic
records (Salas, 1993). Certainly, time series analysis has become a vital tool
in hydrological sciences and its importance has dramatically enhanced in the
recent past due to ever-increasing interest in the scientific understanding of
climate change.

In epilogue, statistics is just one of the several tools available for application
in hydrological sciences. Like other tools and techniques of hydrology/water
resources engineering, statistical models and methods can serve as valuable
tools in the analysis and solution of several real-world water problems. It
should be noted that the usefulness of any tool or technique, and hence the
reliability of a hydrologic analysis/estimate depends squarely on the proficiency
and knowledge of the hydrologists/water resources engineers. Unfortunately,
the time and energy associated with the development of a model and the
complexity involved in modelling or analysis often so focus the modellers,
especially novice modellers, that they believe that the model is indeed a full
representation of reality/natural systems. However, in reality, no model whether
statistical or mathematical or some combination of the two can describe the
actual and complete hydrology of any natural system (Haan, 2002); it is
always simpler than the prototype/natural system. We should never forget that
a model is a simplified form of reality and that it is simply a tool to assist in
decision making, not a replacement for it! No models or techniques, no matter
how complex they are, can replace the vital role of hydrologists’ competency
and their in-depth knowledge of water systems in making efficient decisions
for solving water problems.
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PART I

Tools/Techniques for Time
Series Analysis



2
Statistical Characteristics of

Hydrologic Time Series

Any hydrologic time series can be appropriately analyzed when knowledge
about the basic statistical characteristics of the data series itself is first
considered. Many time series analysis procedures are based on the assumptions
that the time series possess certain characteristics which, in fact, are not true
(Adeloye and Montaseri, 2002; Helsel and Hirsch, 2002; Rao et al., 2003).
The results of such analyses based on false assumptions may provide incorrect
and unreliable interpretations, or unnecessarily inconclusive. Therefore, it is
essential to know about the common characteristics of hydrologic time series,
which can help in selecting appropriate data analysis procedures for a given
hydrologic time series.

One of the most important tasks while analyzing any time series is to
describe and summarize the time series data in forms, which easily convey
their important characteristics. If we want to know expected chloride
concentration in rainfall at a location or spatial variability of infiltration rate
or expected flood for 100-year recurrence period, then it is required to
understand summary statistics of the underlying hydrologic data series. Key
statistical characteristics often described include: a measure of the central
tendency of the data, a measure of spread or variability, a measure of the
symmetry of the data distribution, and perhaps estimates of extremes such as
some large or small percentile (Snedecor and Cochran, 1980; Upchurch and
Edmonds, 1991). This chapter discusses various methods for analyzing
hydrologic time series data. In this chapter, important statistical characteristics
of hydrologic time series are discussed, together with the salient measures for
evaluating the performance of water resources systems.

It is worth explaining the concept behind two basic terms of statistics
called ‘population’ and ‘sample’ in order to refresh the memory of the readers.
According to Helsel and Hirsch (2002), the data about which a statement or
summary is to be made are called ‘population’ or sometimes ‘target population’.
Examples of population might be major ion concentrations in all waters of an
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aquifer or stream reach, or all streamflows over some time at a particular site.
All such data are seldom available to us. It may be impossible both physically
and economically to collect all data of interest (all the groundwater in an
aquifer over the study period). Alternatively, a subset of the entire data called
‘sample’ is selected and measured in such a way that conclusions about the
sample may be extended to the entire population. Statistical characteristics
computed from the sample are only inferences or estimates about characteristics
of the entire population, such as location or central tendency, spread or
dispersion, skewness and kurtosis. Measures of location are usually the sample
mean and sample median. Measures of spread include the sample standard
deviation and sample interquartile range. Use of the term ‘sample’ before each
statistic explicitly demonstrates that they only estimate the population value,
the population mean or median, etc. As sample estimates are far more common
than the measures based on the entire population, the term ‘mean’ used in this
book should be interpreted as the ‘sample mean’, and similarly other statistics
should be interpreted.

2.1 Measures of Location

Out of six measures of location (mean, median, mode, geometric mean,
harmonic mean, and trimmed mean), the ‘mean’ and ‘median’ are two
commonly used measures of location.

2.1.1 Classical Measure: Arithmetic Mean

The arithmetic mean ( x̄ ) is calculated by summing up of all data values, xi
and dividing the sum by the sample size n:

x̄ = i

1

n

i

x
n

(1)

For data which are in one of n groups, Eqn. (1) can be rewritten to show
that the overall mean ( x̄ ) depends on the mean for each group, weighted by
the number of observations ni in each group (Shahin et al., 1993; Helsel and
Hirsch, 2002):

x̄ = i
i

1

n

i

nx
n (2)

where ix is the mean for ith group. The influence of any single observation x(j)
on the mean can be seen by placing all but that single observation in one
‘group’, or

x̄  = j j
( 1) 1nx xn n (3)
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or x̄  = j j j
1( )x x x n (4)

where x̄ (j) is the mean of all data values excluding x(j). Each observation’s
influence on the overall mean x̄  is the distance between the observation and
the mean excluding that observation. Hence, all observations do not have the
same influence on the mean. An extreme/outlier observation, either high or
low, has a much greater influence on the overall mean x̄  than does a more
‘typical’ observation, one closer to its x̄ (j).

The influence of extreme or outlier can also be illustrated by realizing that
the mean is the balance point of the entire data values, when each point is
arranged on a number line (Fig. 2.1). Data points far from the central location
apply a stronger downward force than those closer to the centre. If one data
point nearby the central location on number line is removed, the balance point
would only need a little adjustment to keep the whole dataset in balance. On
the contrary, if one outlier value very far from central location is removed, the
balance point would shift considerably (Fig. 2.2). This sensitivity to the
magnitudes of a small number of points in the dataset defines why the mean
is not a robust/resistant measure of location. It is not resistant to changes in
the presence of, or to changes in the magnitudes of, a few outlier observations.
When this strong influence of a small number of observations in a dataset is
desirable, the mean is an appropriate measure of central location. This usually
occurs when computing units of mass, such as the average precipitation from
a number of sites in a raingauge network. High rainfall amounts represented
by a raingauge would exert more influence (due to greater mass of rainfall) on
the final average rainfall amount than low rainfall amounts.

Fig. 2.1. Mean shown by triangle acting as a balance point of time
series data (Helsel and Hirsch, 2002).

Fig. 2.2. Shift of mean in the left direction after removal of outlier.

2.1.2 Robust Measure: Median

The median is the middle value of data series when the data are ranked in their
order of magnitude. It is 50th percentile (P50) of the dataset. For a data series
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with an odd number of observations, the median is the mid data point which
has an equal number of observations both above and below it. For a data
series with an even number of observations, it is the average of the two central
observations. In order to compute the median, first rank the observations from
the smallest (x1) observation to the largest (xn) observation and then use one
of the following equations depending on the number of observations (n):

P50 =
n 1
2

x
 when n is odd (5)

and P50 = /2 / 2 1
1 ( )
2 n nx x when n is even. (6)

Opposite to the mean, the median is highly resistant and slightly affected
by the magnitude of a single observation in a data series, being determined
solely by the relative order of observations. This robustness to the effect of a
change in value or presence of outlier observations is often a desirable property.

The median is always preferred over the mean in case a robust summary
statistics is desired that is not strongly influenced by a few extremely low or
high observations. One such example is the expected daily rainfall to occur
across a network of raingauge stations for a given day. Suppose one of the
raingauge stations recorded unusually higher daily rainfall than that recorded
by the other raingauge stations. Using the median, one raingauge station with
unusually high daily rainfall will not have a greater effect on the expected
daily rainfall than raingauge stations with low daily rainfalls. However, if the
mean is used then the expected daily rainfall may be pulled towards the
outlier, and be higher than daily rainfalls recorded by most of the raingauge
stations.

2.1.3 Additional Measures of Location

In addition to classical and robust measures of location, four additional measures
of location are ‘mode’, ‘geometric mean’, ‘harmonic mean’ and ‘trimmed
mean’, which are less frequently used. Mode is defined as the most frequently
observed value in a given data series. It is the value having the highest bar in
a histogram. The mode is more applicable for the grouped data, data which are
recorded only as falling into a finite number of categories, than for the
continuous data. Although it is very easy to obtain, it is a poor measure of
location for the continuous data because its value often depends on the arbitrary
grouping of the data (Helsel and Hirsch, 2002). The geometric mean (GM) is
often used to compute summary statistic for positively skewed datasets. It is
the mean of the logarithms, transformed back to their original units:

GM = i

1

lnexp
n

i

x
n (7)
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For the positively skewed data series, the GM is usually fairly close to the
median of the series. In fact, the GM is an unbiased estimate of the median
when the logarithms of the datasets are symmetric (Helsel and Hirsch, 2002).
This is because the median and mean logarithms are equal. When transformed
back to original units, the GM continues to be an estimate for the median, but
is not an estimate for the mean.

In mathematics, the harmonic mean (sometimes also called ‘sub-contrary
mean’) is one of several kinds of averages. Typically, it is appropriate for
situations when the average of rates is desired (Shahin et al., 1993). The
harmonic mean (HM) of positive real numbers of a time series, x1, x2, ..., xn > 0
is defined as:

HM =

1 2 i1

1 1 1 1...
n

n
i

n n

x x x x

(8)

The harmonic mean is related to the arithmetic and geometric means.
Equivalently, the harmonic mean is the reciprocal of the arithmetic mean of
reciprocals. For all positive datasets containing at least one pair of non-equal
values, the harmonic mean is always the least of the three means, while the
arithmetic mean is always the greatest of the three and the geometric mean is
always in between. Since the harmonic mean of a list of numbers tends
strongly toward the least elements of the list, it tends (compared to the arithmetic
mean) to mitigate the impact of large outliers and aggravate the impact of
small ones.

Moreover, compromises between the median and mean can be made by
trimming off several of the lowest and highest observations in the time series,
and then calculating the mean of remaining data. Unlike the mean, such an
estimate of location is not influenced by the most extreme (or abnormal) tails
of the sample. Nevertheless, unlike the median, it allows the magnitudes of
most data values to affect the location estimate (Helsel and Hirsch, 2002).
This estimate of location is known as ‘trimmed mean’ because it is computed
after trimming away a desirable percentage of the data. The most common
trimming is to remove 25% of the data on each tail—the resulting mean of the
central 50% of data is commonly called ‘trimmed mean’, but it is more
precisely 25 percent trimmed mean. A zero percent trimmed mean results in
the arithmetic mean itself, whereas trimming all but 1 or 2 mid data points
produces the median. Percentage of trimming should be explicitly stated when
‘trimmed mean’ is used. The trimmed mean is a robust estimator of location
because it is not strongly influenced by outliers, and works well for a wide
variety of distributional shapes such as normal, lognormal, etc. (Helsel and
Hirsch, 2002). It may be considered as a weighted mean, where data beyond
the cutoff ‘window’ are given a weight of zero, and those within the window
a weight of one (Fig. 2.3).
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Fig. 2.3. Window diagram for the trimmed mean (Helsel and Hirsch, 2002).

2.2 Measures of Spread/Dispersion

It is very important to know the statistical dispersion or the variability of time
series data, which can be quantified by the measures of spread. Two widely
used measures of spread are described in subsequent sections.

2.2.1 Classical Measures

The ‘sample variance’ and ‘sample standard deviation’ (square root of sample
variance) are classical measures of spread (dispersion), which are the most
common measures of dispersion. Similar to the mean, the classical measures
of spread are strongly influenced by outlier values. The sample variance (s2)
and the sample standard deviation (s) for a time series x1, x2, …, xn are
mathematically expressed as follows:

s2 =
2

i

1 1

n

i

x x
n (9)

s =
2

1 1

n
i

i

x x
n  (10)

Both the classical measures (s and s2) of dispersion are computed using
the squares of deviations of data values from the mean of the time series, so
that magnitudes of the measures are even more influenced by outliers than
that for the mean. In presence of outliers in the time series, the classical
measures of dispersion become unstable and inflated. Under such condition,
the classical measures may indicate much greater spread than is indicated by
a majority of the hydrologic time series data.

2.2.2 Robust Measures

Robust measures of spreading about the mean include ‘range’, ‘interquartile
range’, ‘coefficient of variation’ and ‘median absolute deviation’. As the value
of the range, standard deviation and coefficient of variation increases, the
population variability also increases (Helsel and Hirsch, 2002). The interquartile
range (IQR) is the most commonly used resistant measure of spread that
measures the range of the central 50% of the data in a time series, and is not
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influenced at all by the 25% data on either tail. It is, therefore, the width of the
non-zero weight window for the trimmed mean of Fig. 2.3.

The IQR is computed by subtracting the 25th percentile values from the
75th percentile value. The 75th (upper quartile), 50th (median) and 25th (lower
quartile) percentiles split the entire time series data into four equal-sized
quarters. These three quartiles help in depicting graphical distribution of time
series data in the form of box and whisker plot (see Section 3.1.3 of Chapter
3 for details). The 75th percentile (P75), which is also called the ‘upper quartile’,
is a value which exceeds no more than 75% of the data and is exceeded by no
more than 25% of the data in a time series. The 25th percentile (P25) or ‘lower
quartile’ is a value which exceeds no more than 25% of the data and is
exceeded by no more than 75% of the data in a time series. Consider a time
series arranged in chronological order of magnitudes of data: xi, i = 1 to n. The
percentiles (Pj) are computed using the following formula (Helsel and Hirsch,
2002):

Pj = 1n jx (11)

where n is the sample size of xi, and j is the fraction of data less than or equal
to the percentile value (for the 25th, 50th and 75th percentiles, j = 0.25, 0.50 and
0.75, respectively).

The range is the length of the smallest interval which contains all the data
of time series. It is calculated by taking difference between the maximum and
minimum values of the time series. Since it only depends on two of the
observations, it is a poor and weak measure of dispersion except when the
sample size is large.

The coefficient of variation (CV) gives a normalized measure of spreading
about the mean, and is estimated as:

CV(%) = 100s
x (12)

The standard deviation of data series must always be understood in the
context of the mean of the data series. Thus, the CV being a dimensionless
number is advantageous over the standard deviation. Therefore, when
comparing between datasets with different units or widely different means,
one should use the coefficient of variation instead of the standard deviation.
On the contrary, consideration of the CV also has limitations in certain cases.
For example, when the mean of the data series is close to zero, the CV value
will approach infinity and hence it is sensitive to small changes in the mean.
Also, unlike the standard deviation, it cannot be used to construct confidence
intervals for the mean.

Hydrologic variables with larger CV values are more variable than those
with smaller values. Wilding (1985) suggested a classification scheme for
identifying the extent of variability for soil properties based on their CV
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values, where CV values of 0-15, 16-35 and >36 indicate little, moderate and
high variability, respectively. Typical ranges of CV values of salient soil
properties are reported in the literature (Jury, 1986; Jury et al., 1987; Beven
et al., 1993; Wollenhaupt et al., 1997).

One robust estimator of spread other than the IQR, being more resilient to
outliers in a dataset than the standard deviation, is the median absolute deviation
(MAD). In the standard deviation, the distances from the mean are squared, so
on an average, large deviations are weighted more heavily, and thus outliers
can heavily influence it. In the MAD, the magnitude of the distances of a
small number of outliers is irrelevant. The MAD is computed by first creating
a new difference time series by listing the absolute value of differences | d |
between each data value and median of a time series.

|di| = xi – P50 (13)

where P50 = median of the original time series.

Thereafter, the MAD is computed as the median of the absolute difference
time series as follows:

MAD = P50 |d | (14)

Quartile coefficient (qc) of dispersion is another descriptive statistic which
measures dispersion and is used to make comparison within and between
datasets. The test-statistic is computed using the first (P25) and third (P75)
quartiles for each data set. The quartile coefficient of dispersion (qc) is given
as:

qc = 75 25

75 25

P P
P P (15)

2.3 Measures of Skewness

Hydrologic time series data are usually skewed, which means that data in the
time series are not symmetric around the mean or median, with extreme
values extending out longer in one direction. The probability density function
for a lognormal distribution shown in Fig. 2.4 demonstrates this skewness in
the data. When extreme values extend the right tail of the distribution (as
shown in Fig. 2.4), the distribution of time series data is said to be skewed to
the right, or positively skewed. Whereas, when extreme values extend the left
tail of the distribution, the time series data are said to be skewed to the left, or
negatively skewed. For the skewed data values, the mean is not expected to be
equal to the median, but is pulled toward the tail of the distribution. Thus, for
the positively skewed data, the mean exceeds more than 50% of the data (Fig.
2.4). The standard deviation is also inflated by data in the tail. In hydrology,
all kinds (e.g., rainfall, streamflow, groundwater levels, etc.) of time series
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data often have positive skewness. Therefore, statistical properties including
only the mean and standard deviation or variance are not sufficient for the
studies related to water resources development and management. This is because
of the fact that the mean and standard deviation alone may not describe the
properties of the majority of the data values very well when the data are
skewed. Also, both the mean and the standard deviation are inflated by outlier
observations. Robust summary statistics, such as the median and other
percentile values have greater applicability to the skewed hydrologic data.
The skewed data are questionable regarding the applicability of hypothesis
(parametric) tests, which are based on the assumptions that the time series
data follow a normal distribution. These parametric tests may be of questionable
value when applied to hydrologic time series, as the time series are often
neither normal nor even symmetric (Helsel and Hirsch, 2002).

2.3.1 Classical Measure of Skewness

The ‘coefficient of skewness (g)’ is the most common measure of skewness.
It is defined as the adjusted third moment about the mean divided by the cube
of the standard deviation (s), and is mathematically expressed as follows:

g =
3

3
11 2

n
i

i

x xn
n n s

(16)

Fig. 2.4. Probability density function of a lognormal distribution.
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A positively skewed distribution of hydrologic time series with right
extended tail has a positive coefficient of skewness, whereas a time series
with negative-skewed distribution with left extended tail has a negative
coefficient of skewness. The presence of outliers has a significant influence
on the coefficient of skewness (g). For instance, an otherwise symmetric
distribution having one outlier will produce a large (and possibly misleading)
measure of skewness.

2.3.2 Robust Measure of Skewness

A robust measure of skewness is the ‘quartile skew coefficient (qs)’, which is
defined as the difference in distances of the upper and lower quartiles from the
median, divided by the IQR (Kenney and Keeping, 1954). Mathematically, it
is expressed as:

qs = 75 50 50 25

75 25

P P P P
P P (17)

Similar to the coefficient of skewness, a right-skewed distribution has a
positive quartile skew coefficient and a left-skewed distribution has a negative
quartile skew coefficient. Also, similar to the trimmed mean and IQR, the
quartile skew coefficient uses the central 50% of the data.

2.4 Additional Robust Measures

As an additional robust measure, percentile values other than three quartiles
may be used to produce a series of robust measures of location, spread and
skewness. For example, the 15% trimmed mean can be coupled with the range
between the 15th and 85th percentiles as a measure of spread, and a
corresponding measure of skewness to produce a consistent series of robust
statistics. The robust measure of skewness for 15% trimmed mean (qs15) is
mathematically expressed as:

qs15 =
85 50 50 15

85 15

P P P P
P P (18)

Geologists have used the 16th and 84th percentiles for many years to
compute a similar series of robust measures of the distributions of sediment
particles (Inman, 1952). However, the measures based on quartiles have become
generally standard, and additional measures should be clearly defined prior to
their use (Helsel and Hirsch, 2002). The median, IQR and quartile skew can
be easily summarized graphically using box and whisker plots (see Section
3.1.3 of Chapter 3), which are widely used by scientists and researchers.

2.5 Measures of Peakedness or Flatness

‘Kurtosis’ is a measure of peakedness or flatness of a data series distribution
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relative to the normal distribution. That is, datasets with high kurtosis tend to
have a distinct peak near the mean, decline rather rapidly, and have heavy
tails. For a time series data, x1, x2, …, xn, the formula for kurtosis can be
written as follows:

 =

4

1
41

n

i
i

x x

n s
(19)

The kurtosis for a standard normal distribution is three, and hence some
authors provide the following definition of kurtosis, which is often referred to
as ‘excess kurtosis’ (Shahin et al., 1993):
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A high kurtosis distribution has a sharper peak and longer, fatter tails,
while a low kurtosis distribution has a more rounded peak and shorter, thinner
tails. Distributions with a zero excess kurtosis are called ‘mesokurtic’ or
‘mesokurtotic’. On the other hand, distributions with a positive excess kurtosis
are called ‘leptokurtic’ or ‘leptokurtotic’. In terms of shape, a leptokurtic
distribution has a more acute peak around the mean (i.e., a lower probability
than a normally distributed variable of values near the mean) and fatter tails
(i.e., a higher probability than a normally distributed variable of extreme
values). A distribution with a negative excess kurtosis is called ‘platykurtic’ or
‘platykurtotic’. In terms of shape, a platykurtic distribution has a lower, wider
peak around the mean (i.e., a higher probability than a normally distributed
variable of values near the mean) and thinner tails (if viewed as the height of
the probability density—that is, a lower probability than a normally distributed
variable of extreme values).

Alternatively, peakedness of a data distribution may be described by
another measure known as ‘percentile coefficient of kurtosis’ (PCK). PCK is
mathematically expressed as follows (Shahin et al., 1993):

PCK =
75 25

90 10

1
2

P P
P P (21)

2.6 Statistical Measures for System Performance
Evaluation

Many theoretical and practical approaches have been proposed in the literature
for identifying and quantifying objectives and for considering multiple criteria/
objectives in water resources planning and management. Over the years, various
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tools have been designed to provide information which is of great importance
to the planning and decision-making in the field of water resources engineering.
The information used in decision-making process is generally derived from
the analyses of hydrologic time series. In the era of information technology,
time series modelling and/or simulation analysis (using numerical, empirical
and analytical models) is very frequently carried out. The time series modelling
may include stochastic models such as autoregressive (AR) models, moving
average (MA) models, autoregressive moving average (ARMA) models,
autoregressive integrated moving average (ARIMA) models, seasonal
autoregressive integrated moving average (SARIMA) models, etc. (Box and
Jenkins, 1976; Shahin et al., 1993; Hipel and McLeod, 1994). Performance of
individual time series models may be compared to decide the best model so as
to ensure appropriate simulation of the hydrologic time series. Water resources
planners and managers, coupled with other decision makers typically involved
in decision-making often face a challenge in selecting one out of many
alternatives, each characterized by different values provided by multiple
performance criteria.

In statistics, there are many methods for summarizing time-series data
resulting from field observations or simulation analyses. The weighted
arithmetic mean and the geometric mean are two common methods of
summarizing multiple time series data (Loucks and van Beek, 2005). As
mentioned earlier, the overall mean itself usually provides little information
about a dynamic process. Multiple time series plots are normally difficult to
compare. Another approach to summarize and compare hydrologic time-series
data is the variance (Section 2.3.1). For example, let us consider annual rainfall
time series consisting of 200, 675, 475, 175, 780, 890, 945, 875, 400 and 300
mm rainfall for ten years. The mean of these values is 571.5 mm and the
variance can be calculated as:

Variance = ( )∑
=

−−
n

i
i nxx

1

2 )1/( (22)

=
2 2 2[ 200 571.5 675 571.5 ... 300 571.5 ]/10

= 289893.3mm

The plot of above rainfall data and their mean is shown in Fig. 2.5. The
mean and variance for the time series shown in Fig. 2.5, however, are the
same for its upside-down image, as shown in Fig. 2.6. They do not even
depend on the order of the time-series data. Consider these two sets of time
series again (Fig. 2.7), each having the same mean and variance. Assume that
any value equal to or less than the dashed line (just above 300 mm) is considered
unsatisfactory. This rainfall value is called a threshold value, dividing the
rainfall time series data into satisfactory and unsatisfactory values (Hashimoto
et al., 1982a, b). It is apparent from Fig. 2.7 that the impact of these two
rainfall time series may differ. The original time series shown in blue colour
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remained in an unsatisfactory condition for a shorter time than did the ‘rotated’
time series shown in red colour. However, its maximum extent of failure when
it failed was more than the rotated time series. These characteristics of
hydrologic time series can be captured by the measures/criteria namely
‘reliability’, ‘resilience’ and ‘vulnerability’ as suggested by Hashimoto et al.
(1982 a, b). These measures/criteria are described in subsequent sections.

 

Fig. 2.5. Plot of annual rainfall time series with a mean of 571.5 mm
and a variance of 89893.3 mm2.

Fig. 2.6. A plot of two different time series of annual rainfall having
the same mean and variance.
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2.6.1 Reliability

The ‘reliability’ of a system is defined as the number of data in a satisfactory
state divided by the total number of data in the time series. Assuming
satisfactory values in the hydrologic time series xn containing n values are
those equal to or greater than some threshold xT, the reliability of the system
can be expressed as:

Reliability (x) =[Number of time periods t when xt  xT]/n (23)

The reliability of the original time series shown in blue colour (Fig. 2.7)
is 0.7, which suggests that it failed three times in ten. The reliability of the
rotated time series shown in red colour (Fig. 2.7) is also 0.7, indicating three
times failure in ten. In general, a more reliable system is better than a less
reliable system, but it is not always true. The reliability measure does not tell
anything about how fast a system recovers and returns to a satisfactory value,
nor does it indicate how bad an unsatisfactory value might be if it occurs. It
may be fine that a system that fails relatively often, but by insignificant
amounts and for short durations, will be much preferable to the system whose
reliability is much higher but when a failure does occur, it is likely to be much
more severe. ‘Resilience’ and ‘vulnerability’ measures, which are discussed
below, can quantify these system characteristics.

2.6.2 Resilience

The ‘resilience’ of a system is defined as the probability that if a system is in
an unsatisfactory state, the next state will be satisfactory. In other words, it is
the probability of having a satisfactory value in time period t – 1, given an
unsatisfactory value in any time period t. It can be expressed as:

Resilience (x) =

Number of times a satisfactory value 
follows an unsatisfactory value

Number of times an unsatisfactory 
value occurred

(24)

Note that ‘resilience’ cannot be defined if no unsatisfactory values occur
in the time series. For the original time series shown in blue colour (Fig. 2.7),
the resilience is 2/2 = 1, again assuming the value of 300 mm or less is
considered a failure. We cannot judge the resilience of the blue time series on
the basis of the last failure in period 10 because we do not have an observation
in period 11. For the rotated time series shown in red colour (Fig. 2.7), the
resilience is 1/3 = 0.33.

2.6.3 Vulnerability

The term ‘vulnerability’ is a measure of the extent of the differences between
the threshold value and the unsatisfactory time series values. Obviously, this
is a probabilistic measure. Some use expected values, some use maximum
observed values, and others may assign a probability of exceedance to their
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vulnerability measures. Assuming an expected value measure of vulnerability
is to be used, vulnerability can be expressed as follows:

Vulnerability (x) =
T[Sum of positive values of ( )]

Number of times an unsatisfactory 
value occurred

tx x
(25)

The expected vulnerability of the original blue time series (Fig. 2.7) is
[(300 – 200) + (300 – 175)]/2 = 125. Similarly, the expected vulnerability of
the time series shown by the red line in Fig. 2.7 is [(300 – 248) + (300 – 193)
+ (300 – 263)]/3 = 65.33.

Fig. 2.7. Threshold value distinguishing values considered
satisfactory and unsatisfactory.

Thus, depending on whether a threshold value is considered a failure or
not in the above example, the ‘reliability’ and ‘resilience’ of original time
series (blue line) is equal or more than the rotated time series (red line).
However, the expected vulnerability of the original time series is more than
that of the rotated time series. It shows the typical tradeoffs researchers/
scientists or decision makers can identify using these three measures of system
performance. Note that the above-mentioned three measures of system
performance ‘reliability’, ‘resilience’ and ‘vulnerability’ (R-R-V) in a combined
form are used as a sustainability criterion for assessing the sustainability of
existing water resources systems (Loucks, 1997; Kay, 2000; Kjeldsen and
Rosbjerg, 2001). The interested readers are referred to Kjeldsen and Rosbjerg
(2004) for the application of ‘reliability’, ‘resilience’ and ‘vulnerability’ (R-R-
V) measures to real-world hydrologic time series and their comparative
evaluation. Recently, a cohesive approach for considering and expressing
various aspects of system resilience has been proposed by Wang and Blackmore
(2009) focussing on water resources systems.
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3
Methods for Testing Normality of

Hydrologic Time Series

Statistical methods are applied in all the phases of time series analysis from
collecting data to evaluating results in hydrologic studies. Advances in computer
technology has enabled most of the scientists/researchers to apply statistical
analyses effectively; however, some of the researchers do not check parametric
test assumptions, especially the normality assumption (Adeloye and Montaseri,
2002). Many methods of time series analysis depend on the basic assumption
that data were sampled from a normal distribution (Madansky, 1988; USEPA,
1996; Thode, 2002). This assumption is very crucial for the reliability of
results especially for parametric tests. These days many statistical software
packages are available, which include several tests for checking the normality
of time series data. However, the important point is to judge which test should
be used under what condition (USEPA, 1996).

In general, the normality assumption can be evaluated by graphical and
statistical methods (USEPA, 1996; Thode, 2002). The graphical methods
provide us with some information about the shape of the distribution, but do
not guarantee that the distribution is normal and do not test whether the
difference between the normal distribution and the sample distribution is
significant. On the other hand, numerical methods provide only quantitative
information. Major statistical methods to assess the assumption of normality
are (USEPA, 1996; Thode, 2002): Chi-square goodness-of-fit test, Kolmogorov-
Smirnov (KS) test, Lilliefors corrected Kolmogorov-Smirnov test, Anderson-
Darling test, Cramer-von Mises test, Shapiro-Wilk test, Jarque-Bera test, and
D’Agostino-Pearson omnibus test. It is worth mentioning that there is an
inherent problem with normality tests. Because of a small sample size, normality
tests have little power to reject the null hypothesis that the data come from a
normal distribution. Hence, small samples always pass normality tests.
However, with large samples, minor deviations from normality may be treated
as statistically significant, even though small deviations from a normal
distribution may not affect the results of a parametric test (GraphPad, 2007).
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Thus, the best way to decide whether time series data are normal or not is to
apply both graphical and statistical methods for examining normality.

This chapter presents an overview of commonly used graphical and
statistical methods for checking the normality of time series data. The step-
by-step procedures for applying these methods are also included in this chapter.
This chapter can serve as a guideline for the researchers and scientists as well
as for practising engineers in selecting an appropriate normality test for their
time series data.

3.1 Graphical Methods

Graphical methods provide detailed information about a hydrologic time series
that may not be apparent from statistical methods. Histograms, stem-and-leaf
plots, and normal probability plots are some of the graphical methods which
are useful for determining whether or not a given set of time series data follow
a normal distribution curve (USEPA, 1996). Both the histogram and stem-
and-leaf plot of a normal distribution are bell-shaped. The normal probability
plot of a time series having normal distribution follows a straight line. However,
for the non-normally distributed data, there are large deviations from the
straight line in the tail or middle of a normal probability plot. The subsequent
section deals with six graphical methods used for checking normality of time
series data.

3.1.1 Frequency Plots/Histogram

Two classical methods for summarizing hydrologic time series data are
‘frequency plot’ (Fig. 3.1) and ‘histogram’ (Fig. 3.2). The basic principles
used by both the histogram and the frequency plot to display the data are
almost same: dividing the data range into units/bins, counting the number of
data points within the units/bins, and displaying the data as the height or area
within a bar graph (Walpole and Myers, 1985). Besides similarity, both the
histogram and the frequency plot slightly differ from each other. The frequency
plot represents the relative density of the data points by the relative height of
the bars, while in a histogram, the area within the bar represents the relative
density of the data points. A more distinct difference between the two plots
can be seen by using unequal box sizes (USEPA, 1996). Structure/patterns of
the histogram and frequency plot reveal about the symmetry and variability of
the data. If the data are symmetric, then the structure of these plots will be
symmetric around a central point such as mean or median. The histogram and
frequency plots will generally indicate if the data are skewed and the direction
of the skewness (Dixon and Massey Jr., 1983). Step-by-step procedures for
generating a frequency plot and histogram are given below:

Step 1: Select suitable data intervals that cover the range of entire observations
of time series. The data intervals should be of equal widths, if possible.
A rule of thumb is to have between 7 to 11 intervals (USEPA, 1996).
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If necessary, specify an endpoint convention, i.e., what to do with
cases that fall on interval endpoints.

Step 2: Count the number of data points within each data interval. For a
frequency plot with equal interval sizes, the number of data points
represents the height of the boxes on the frequency plot.

Step 3: Decide the horizontal axis based on the data range of time series. The
vertical axis for a frequency plot is the number of data points, while
the vertical axis of the histogram is based on percentages.

Step 4: For a histogram, compute the percentage of data points within each
data interval by dividing the number of data points within each data
interval (Step 3) by the total number of time series data.

Step 5: When the data intervals are not of equal widths for a histogram,
select a common unit that corresponds to the X-axis. Compute the
number of common units in each interval and divide the percentage
of data points within each data interval (Step 4) by this number.

Step 6: Plot the data intervals using boxes, against the results of Step 5 for a
histogram or the intervals against the number of data points in a data
interval (Step 2) for a frequency plot.

Fig. 3.2. Example of a histogram.

Fig. 3.1. Example of a frequency plot.
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3.1.2 Stem-and-Leaf Plot

The ‘stem-and-leaf plot’ is useful to show both the data values themselves and
information about the distribution of the time series data. It is a useful method
for storing large datasets in a compact form while, at the same time, sorting
the data in ascending order (Walpole and Myers, 1985). A stem-and-leaf plot
(Fig. 3.3) is more useful in analyzing time series data than a histogram,
because it not only allows a visualization of the data distribution but also
enables the data to be reconstructed and lists the data points in the ascending
order (USEPA, 1996). However, the stem-and-leaf plot is one of the more
subjective visualization techniques as it requires the analyst to make some
random choices while deciding data interval on the stem. Therefore, some
practice or trial and error is necessary before a useful plot can be created by
this technique. As a result, the stem-and-leaf plot should only be used to
display the data distribution and their characteristics (USEPA, 1996).

Fig. 3.3. Example of a Stem-and-Leaf plot.

In the stem-and-leaf plot, each data point is partitioned in two parts: the
stem of the data point and the leaf. The leading digit of the numerical value of
the data point becomes the stem while the trailing digits become the leaf in the
order that corresponds to the order of magnitude from left to right. The stem
is displayed on the vertical axis and the data points make up the leaves on the
horizontal axis. The stem can be changed by increasing or decreasing the
digits that are used, dividing the groupings of one stem (i.e., all numbers
which start with the numeral 4 can be divided into smaller groupings), or
multiplying the data by a constant factor (i.e., multiply the data by 10 or 100).
Figure 3.3 presents a stem-and-leaf plot for a 38-year monthly rainfall time
series with 9 and 438 mm as minimum and maximum rainfall amounts of
monthly rainfall. Digits on the left side of vertical bar indicate stem with
interval of 50 mm while digits on the right side of the bar represent leaves.
Thus, the top-most leaves of Fig. 3.3 contain rainfall data below 50 mm while
the second row of leaves contains rainfall data between 50 and 100 mm. In
similar manner, the last row of leaves contain rainfall data less than 450 mm.

A stem-and-leaf plot roughly displays the data distribution and, hence,
helps identifying the underlying probability distribution. For example, the



36 Tools/Techniques for Time Series Analysis

stem-and-leaf plot of normally distributed data should be close to bell shaped.
Also, the data distribution displayed by the stem-and-leaf plot may be used to
assess skewness or symmetry of the data. The top half of the stem-and-leaf
plot should be a mirror image of the bottom half of the stem-and-leaf plot for
symmetric data distribution. The data that are skewed to the left will have the
higher data density in the top half of the plot and less data density over the
bottom half of the plot. Consider a hydrologic time series X1, X2, ..., Xn with
n data points. To develop a stem-and-leaf plot, following steps are used:

Step 1: Arrange n data points of time series in order of increasing magnitude
from the smallest to the highest. The ordered data are generally labelled
(from smallest to largest) as X(1), X(2), ..., X(n).

Step 2: Decide either one or more of the leading digits to be the stem values.
As an example, for the value 236, 2 could be used as the stem value
as it is the leading digit.

Step 3: List the stem values from smallest to largest at the left (along a
vertical axis). Enter the leaf (the remaining digits) values in order
from lowest to highest to the right of the stem. Using the value 236
as an example, if 2 is the stem then 36 will be the leaf.

3.1.3 Box and Whisker Plot

A ‘box and whisker plot’ or simply ‘box plot’ is a schematic diagram (Fig.
3.4) used for visualizing important statistical quantities (such as quartiles) of
the time series data. Box plots are useful in situations where it is not necessary
or feasible to depict all the details of a time series distribution. The box and
whisker plot consists of a central box with a square or a line in the box and
two lines extending out from each end of the box called whiskers. The square
or line within the box represents the median (USEPA, 1996; USEPA, 2006).

Fig. 3.4. Example of a Box and Whisker plot.

The bottom and top horizontal lines in the box in a ‘box and whisker plot’
indicate the 25th and 75th percentile, respectively, of the statistics computed
from the observed data. The length of the central box indicates the spread of
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the bulk of the data (central 50%), while the length of the whiskers shows the
extent of the rest of the data (USEPA, 2006). The box plot divides the entire
data into four sections, each section containing 25% of the data. The whisker
extends to the most extreme data value within 1.5 times the interquartile range
of the data and indicates how tails of the distribution are stretched. The width
of the box has no specific meaning; the plot can be made quite narrow without
affecting its visual impact. The values beyond the ends of the whiskers are
unusually small or large data points, which are called outliers and are displayed
by a ‘ ’ on the plot. A ‘box and whisker plot’ can be used to evaluate the
symmetry of the data (USEPA, 2006). If the data distribution is symmetrical,
the box is divided in two equal halves by the median, length of both the upper
and the lower whiskers will be the same and the number of extreme data
points will be distributed equally on either end of the plot. Since the ‘box and
whisker plot’ cannot be made so easily manually, STATISTICA software may
be used for creating this plot. The following steps are used for generating a
box and whisker plot:

Step 1: Choose the vertical scale of the plot based on the maximum and
minimum values of the time series data. Select a width for the box
plot keeping in mind that the width has no particular meaning and is
only a visualization tool. If the width is labelled as W, the horizontal
scale of the plot ranges from – ½W to + ½W.

Step 2: Compute the upper quartile [Q(0.75) or the 75th percentile] and the
lower quartile [Q(0.25) or the 25th percentile] based on time series
data. Compute the sample mean and median (Xm) for the time series
data. Then, compute the interquartile range (IQR) where IQR = Q(0.75)
– Q(0.25).

Step 3: Draw a box through four points [–½W, Q(0.75)], [–½W, Q(0.25)], [½W,
Q(0.25)] and [½W, Q(0.75)]. Draw a line from [½W, Q(0.5)] to [–½W,
Q(0.5)] and mark point (0, Xm) with (+). The line or point (0, Xm)
indicates median of the data.

Step 4: Compute the upper end of the top whisker by finding the largest data
value X less than Q(0.75) + 1.5 × [Q(0.75) – Q(0.25)]. Draw a vertical line
from [0, Q(0.75)] to (0, Xm). Compute the lower end of the bottom
whisker by finding the smallest data value Y greater than Q(0.25) – 1.5
× [Q(0.75) – Q(0.25)]. Draw a vertical line from [0, Q(0.25)] to (0, Y).

Step 5: For all points X  > X (outliers and extremes), place an asterisk ( ) at
the point (0, X  ). For all points Y  < Y (outliers and extremes), place
an asterisk ( ) at the point (0, Y ).

3.1.4 Ranked Data Plot

A ‘ranked data plot’ is a useful graphical method that is easy to construct and
interpret, and does not depend upon any assumptions about a model for the
time series data. It is not subjective as the user does not have to make any
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choice regarding the data to construct a ranked data plot (such as unit/bins for
a histogram or frequency plot). Additionally, a ranked data plot displays every
data point of a time series instead of summary of the data (USEPA, 2006).

A ‘ranked data plot’ is a plot of the data arranged in ascending order at
evenly spaced intervals (Fig. 3.5). This plot is very similar to the ‘quantile
plot’ dealt in Section 3.1.5. Both the ‘ranked data plot’ and the ‘quantile plot’
can be used to determine the density of the data points and to check whether
the data are skewed (USEPA, 2006). However, a ranked data plot is quite
easier to generate than a quantile plot. It should be noted that a quantile plot
contains information on the quartiles of the data, while a ‘ranked data plot’
contains information on the data themselves.

Fig. 3.5. Example of a ranked data plot.

Ranked data plots can be used to determine the density of the data values,
i.e., if all the data values are close to the centre of the data with relatively few
values in the tails or if there is a large amount of values in one tail with the rest
evenly distributed (USEPA, 2006). The density of the data points is displayed
by the slope of the line. Generally, a large amount of data values has a flat
slope, i.e., the graph rises slowly and a small amount of data values has a large
slope, i.e., the graph rises quickly. Thus, the user can decide whether the data
points are either evenly distributed or lie in large clusters of points. It can be
seen from Fig. 3.5 that the graph rises slowly up to a point where the slope
increases and the graph rises relatively quickly. This means that there is a
large amount of small values of the data points and relatively few large values
of the data points.

Moreover, a ‘ranked data plot’ can be used to determine whether the time
series data are skewed or symmetric (USEPA, 2006). A ‘ranked data plot’ of
the right-skewed data extends more sharply at the top resulting in a convex
shape of the graph, whereas a ‘ranked data plot’ of the left-skewed data
increases sharply near the bottom resulting in a concave shape of the graph.
However, if the data are symmetric, the top portion of the graph will stretch
to upper right corner and similarly, the bottom portion of the graph stretches



Methods for Testing Normality of Hydrologic Time Series 39

to lower left, creating an S-shape. Figure 3.5, as an example, shows a ‘ranked
data plot’ of the right-skewed time series data.

Ranked data plots can be created as follows: consider a hydrologic time
series X1, X2, ..., Xn with n data points. Arrange the time series data in ascending
order and let X(i), for i = 1 to n, be the data listed in order from smallest to
largest such that X(1) is the smallest, X(2) is the second smallest, and X(n) is the
largest data point. Then, plot the ordered X(i) values at equally spaced intervals
along the horizontal axis to generate a ranked data plot. The entire procedure
can be executed easily using MS-Excel software.

3.1.5 Quantile Plot

A ‘quantile plot’ is a graph of the quantiles of the data (Fig. 3.6). It is very
similar to the ‘ranked data plot’ and makes no assumptions about a model for
the data. It is not subjective and displays every data point of a time series
instead of a summary of the data. The basic quantile plot is visually identical
to a ranked data plot except for its horizontal axis, which varies from 0.0 to
1.0, with each point plotted according to the fraction of the points it exceeds
(Walpole and Myers, 1985; USEPA, 1996). This allows the addition of vertical
lines indicating the quartiles or, many other quantiles of interest. Quantile
plots can be generated as follows: consider a hydrologic time series X1, X2, ...,
Xn with n data points. Arrange the time series data in ascending order and let
X(i), for i = 1 to n, be the data listed in order from smallest to largest such that
X(1) is the smallest, X(2) is the second smallest, and X(n) is the largest data
point. For each i, compute the fraction Fi = (i – 0.5)/n. The ‘quantile plot’ is
a plot of the pairs [Fi, X(i)], with straight lines connecting consecutive points.

Fig. 3.6. Example of a quantile plot.

A ‘quantile plot’ can be used to evaluate the quantile information such as
the median, quartiles, and interquartile range of the data points. Also, it can be
used to know the density of the data points, i.e., are all the data points close
to the centre with relatively few values in the tails or are there a large amount
of data points in one tail with the rest evenly distributed? The density of the



40 Tools/Techniques for Time Series Analysis

data points is displayed by the slope of the graph or line. Similar to the
‘ranked data plot’, a large amount of data points result in a flat slope, i.e., the
graph rises slowly, while a small amount of data points result in a large slope,
i.e., the graph rises quickly. A ‘quantile plot’ can also be used to check skewness
or symmetry of the data points. A ‘quantile plot’ of the right-skewed data is
steeper at the top right than at the bottom left, as shown in Fig. 3.6. A quantile
plot of the left-skewed data increases sharply near the bottom left of the
graph. If the data are symmetric about the centre point (mean or median), the
top portion of the graph will stretch to the upper right corner in the same way
the bottom portion of the graph stretches to the lower left, creating an S-shape
similar to the ranked data plot.

3.1.6 Normal Probability Plot

There are two types of quantile-quantile plots (q-q plots). One is an empirical
quantile-quantile plot, which involves plotting the quantiles of two hydrologic
time series against each other. The other type of a quantile-quantile plot
involves plotting the quantiles of a time series against the quantiles of a
particular probability distribution. This is a technique to determine if the time
series data were generated by the theoretical distribution (USEPA, 2006). The
most common of these plots for hydrologic time series data is the ‘normal
probability plot’, which is also known as a ‘normal q-q plot’. However, the
discussion about the ‘normal probability plot’ holds good for other q-q plots
as well. Being a graphical method, the normal probability plot is a visual
technique to roughly determine how well the time series data is modelled by
a normal distribution (Dixon and Massey Jr., 1983).

A ‘normal probability plot’ is the plot of the quantiles of a hydrologic
dataset against the quantiles of the standard normal distribution using normal
probability graph paper (Fig. 3.7). This can be accomplished by plotting the
sample quantiles against standard normal quantiles, or by plotting the sample

Fig. 3.7. Normal probability plot.
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quantiles on a normal probability paper. If the graph is approximately linear
(i.e., correlation coefficient is reasonably high excluding outliers), it indicates
that the data are normally distributed and a formal statistical method of
normality test should be used to confirm the result. On the other hand, if the
graph of a ‘normal probability plot’ is not linear, the departures from linearity
provide important information about how the data distribution deviates from
a standard normal distribution.

Furthermore, if the graph of a ‘normal probability plot’ is non-linear, it
may be used to evaluate the degree of symmetry (or asymmetry) displayed by
the data (Dixon and Massey Jr., 1983; USEPA, 2006). Shape of the graph is
convex for the right-skewed data, whereas shape of the graph is concave for
the left-skewed data. If the data points in the upper tail of the graph fall above
and the data points in the lower tail of the graph fall below the quartile line,
the data are too slender to be well modelled by a normal distribution, i.e.,
there are fewer data points in the tails of the dataset than what is expected
from a standard normal distribution. In contrast, if the data points in the upper
tail of the graph fall below and the data points in the lower tail of the graph
fall above the quartile line, the tails of the data points are too heavy to be well
modelled using a standard normal distribution, i.e., there are more data points
in the tails of the data than what is expected from a standard normal distribution.
A normal probability plot can also be used to identify expected outliers/
extremes in the datasets. A data point or a few data points much larger or
much smaller than the remaining data points will cause the other data points
to be compressed into the middle of the graph, thereby destroying the resolution.

Considering a hydrologic time series X1, X2, ..., Xn with n data points, the
following is the step-by-step procedure to develop a normal probability plot:

Step 1: Compute the absolute frequency, AFi for each data point. The absolute
frequency is the number of times each data point occurs in the time
series. For distinct data points, the absolute frequency is 1. For non-
distinct data points, count the number of times a data point occurs.
For example, consider the data 2, 3, 4, 4. The absolute frequency of
data point 2 is 1 and that of data point 3 is 1. Similarly, the absolute
frequency of data point 4 is 2 as 4 appears 2 times in the dataset.

Step 2: Compute the cumulative frequencies, CFi. The cumulative frequency
is the number of data points that are less than or equal to Xi, i.e., CFi

= j
1

i

j
AF . For the data given in Step 2, the cumulative frequency for

data point 2 is 1, the cumulative frequency for data point 3 is 2 (1+1),
and the cumulative frequency for data point 4 is 4 (1+1+2).

Step 3: Finally, compute =100
( 1)

i
i

CFY
n

and plot the pairs (Yi, Xi) on a normal

probability paper as illustrated in Fig. 3.7. As mentioned above, if the
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graph of these pairs approximately forms a straight line, the data are
probably normally distributed. Otherwise, the data distribution may
not be normal.

3.2 Statistical Methods

Decision making about the normality of time series data based on graphical
methods alone is subjective. For extremely non-normal data, it is easy to
make such decision. However, such a decision is not straightforward in many
cases. Therefore, statistical methods are usually necessary to test the assumption
of normality. The statistical methods commonly used for checking normality
of the time series are described in subsequent sections. Of the total eleven
statistical tests discussed ahead, the Kolmogorov-Smirnov, Anderson-Darling
and Cramér-von Mises tests for normality are based on the empirical distribution
function (EDF) and are often referred to as EDF tests (Stephens, 1986).

3.2.1 Chi-Square Test

The ‘chi-square test’ is used to test if a sample of data came from a population
with a specific distribution (Snedecor and Cochran, 1980). An attractive feature
of the chi-square goodness-of-fit test is that it can be applied to any univariate
distribution for which you can calculate the cumulative distribution function.
The chi-square goodness-of-fit test is applied to the binned data (i.e., data put
into classes). This is actually not a restriction because for the non-binned data,
a histogram or frequency table can be calculated before using the chi-square
test. However, the value of the chi-square test statistic is dependent on how
the data is binned (Snedecor and Cochran, 1980). Another disadvantage of
this test is that it requires a sufficient sample size so that the chi-square
approximation is valid.

For using the ‘chi-square test’, the time series data are divided into k bins
and the test-statistic is defined as follows (Snedecor and Cochran, 1980):

2 = 2
i i i

1
( )

k

i
O E E (1)

where Oi = observed frequency for the bin i and Ei = expected frequency for
the bin i. The expected frequency is calculated as

Ei = N{F(YU) – F(YL)} (2)

where F = cumulative distribution function for the distribution being tested,
YU = upper limit for class i, YL = lower limit for class i and N = size of the
sample.

The test-statistic approximately follows a chi-square distribution with
(k – c) degrees of freedom, where k is the number of non-empty cells and c is
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the number of estimated parameters (including location, scale and shape
parameters) for the distribution plus 1. For example, for a 3-parameter Weibull
distribution, c = 4. Therefore, the hypothesis that the data are from a population
with the specified distribution is rejected, if 2 2

( , ) ,k c where 2
( , )k c is

the critical test-statistic value with k – c degrees of freedom and a significance
level of .

As mentioned above, the ‘chi-square test’ is sensitive to the choice of
bins. There is no optimal choice for the bin width because the optimal bin
width depends on the distribution (Snedecor and Cochran, 1980). It should be
noted that the ‘chi-square test’ is an alternative to the Anderson-Darling and
Kolmogorov-Smirnov tests. The ‘chi-square test’ can be applied to discrete
distributions such as binomial and Poisson distributions, but the application of
Kolmogorov-Smirnov and Anderson-Darling tests are restricted to continuous
distributions only. For the chi-square approximation to be valid, the expected
frequency should be at least 5 (Snedecor and Cochran, 1980). Generally, this
test is not valid for small samples, and if some of the counts are less than 5,
it may be necessary to combine some bins in the tails.

3.2.2 Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov (K-S) test is an empirical distribution function
(EDF) test in which the theoretical cumulative distribution function of the test
distribution is compared with the EDF of the time series data (Conover, 1980;
Armitage and Colton, 1998a). The K-S test was first proposed by Kolmogorov
and then modified by Smirnov. This test finds difference between cumulative
distribution of the time series data and the expected cumulative normal
distribution, and computes its P-value for the largest discrepancy. The test-
statistic is defined as (Massey Jr., 1967):

D = supx|Fn(x) – F(x, μ, s)| (3)

where F(x, , s) is theoretical cumulative distribution function of the normal
distribution function and Fn(x) is the empirical distribution function of the
data.

Large values of D indicate presence of non-normality in the time series.
The table of critical values D (n) of the distribution of D for various sample
sizes (n) and significance levels ( ) is given in Massey Jr. (1967). If the
population parameters (i.e.,  and s) are known, the original K-S test can be
used. However, if they are not known, they can be replaced by sample estimates
(Massey Jr., 1967; Conover, 1980).

It is worth to mention that the K-S test is strongly criticized by the
researchers due to ambiguous results (Steinskog et al., 2007). Particularly,
conclusions based on the results of not rejecting normality could be very
misleading. D’Agostino (1986) emphasized that the K-S test should not be
applied if population parameters have to be estimated (a usual case).
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3.2.3 Lilliefors Test

The ‘Lilliefors test’ was named after Hubert Lilliefors, a professor of statistics
at the George Washington University and is an adaptation of the ‘Kolmogorov-
Smirnov test’ (Lilliefors, 1967, 1969). The ‘Lilliefors test’ compares the
cumulative distribution of data to the expected cumulative normal distribution.
The ‘Lilliefors test’ is different from the ‘K-S test’ as unknown population
parameters are estimated, while the test-statistic is the same. The critical
values of the two tests are different, which results in different decisions (Mendes
and Pala, 2003). The ‘Lilliefors test’ is more powerful than the ‘chi-square
test’ for large sample sizes and is recommended by the US Environmental
Protection Agency (USEPA, 1996).

The ‘Lilliefors test’ is used to test the null hypothesis that the data come
from a normally distributed population. The mean and variance of the normally
distributed population are estimated. The procedures for applying the test are
as follows:

Step 1: Estimate the population mean and variance of the time series data.
Step 2: Find the maximum discrepancy between the empirical distribution

function and the cumulative distribution function (CDF) of the normal
distribution with the estimated mean and estimated variance. The
test-statistics for the ‘Lilliefors test’ is similar to that for the ‘K-S test’
shown in Eqn. (3).

Step 3: Finally, the null hypothesis should be rejected if the maximum
discrepancy is large enough to be statistically significant, which is
the criteria for testing the null hypothesis by ‘K-S test’. In ‘Lilliefors
test’, since the population parameters and CDF are estimated based
on sample data, the hypothesized CDF moves closer to the data
themselves. As a result, the computed maximum discrepancy becomes
smaller than it would have been if the null hypothesis had singled out
just one normal distribution. Thus, probability distribution of the
‘Lilliefors test’, assuming the null hypothesis is true, is stochastically
smaller than that for the Kolmogorov-Smirnov test. This is the
Lilliefors correction to ‘K-S test’. To date, tables for this distribution
have been prepared by Monte Carlo methods only (Lilliefors, 1967,
1969).

3.2.4 Anderson-Darling Test

The Anderson-Darling test is used to test if a sample of data came from a
population with a normal distribution. It is a modification of the Kolmogorov-
Smirnov (K-S), which gives more weight to tails compared to the K-S test
(Stephens, 1974). The K-S test is distribution-free in the sense that the critical
values do not depend on the normal distribution. However, in the Anderson-
Darling test, the critical values are dependent on a given distribution, which
makes it a more sensitive test; though the disadvantage is that critical values
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need to be calculated for each distribution. The Anderson-Darling test is an
alternative to the chi-square and Kolmogorov-Smirnov tests. It makes use of
the fact that in case of a hypothesized underlying distribution, and assuming
the data does arise from this distribution, the data can be transformed to a
uniform distribution. Thereafter, the transformed sample data can be tested for
uniformity (Shapiro, 1980).

The test-statistic (A) for the Anderson-Darling test to evaluate, if the data
(Y1<Y2<…<Yn) comes from a distribution with cumulative distribution function
(CDF) F, is given as (Stephens, 1986):

A2 = –n – S (4)

where  k n+1–k
1

2 1 ln ( ) ln (1 ( ))
n

k

kS F Y F Y
n

(5)

Note that the time series data need to be arranged in decreasing order (i.e.,
Y1<Y2<…<Yn) before computing the test-statistic, A. The value of A thus
computed is compared with the corresponding critical value of the theoretical
distribution. This test is a one-sided test and the hypothesis that the distribution
is normal is rejected if the value of A is greater than the critical value.

Despite excellent theoretical properties of the Anderson-Darling test, it
has a serious flaw when applied to real-world time series data. The Anderson-
Darling test is severely affected by ties in the data because of poor precision
(Stephens, 1986). When a significant number of ties exist in a dataset, the
Anderson-Darling test will often reject the data as non-normal, irrespective of
how well the data fit the normal distribution.

3.2.5 Cramér-von-Mises Test

The Cramér-von-Mises test is an alternative to the Kolmogorov-Smirnov test
and the Anderson-Darling test. Let x1, x2, …, xn be the observed values of a
hydrologic time series in increasing order. The Cramér-von-Mises statistic is
computed as (Stephens, 1986):

W2 =
2

i
1

2 1 1( )
2 12

n

i

iF x n n (6)

where F(x) = distribution function of x and n = sample size of the time series.
If the value of the test-statistic is larger than the corresponding critical value,
the hypothesis that the data come from the distribution F is rejected.

3.2.6 Shapiro-Wilk Test

The Shapiro-Wilk (S-W) test is one of the most powerful and omnibus normality
test (Shapiro, 1980; Gilbert, 1987; USEPA, 2006). This test is similar to
computing a correlation between the quantiles of the standard normal
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distribution and the ordered data points of a hydrologic time series. If the
normal probability plot is approximately linear (i.e., the data follow a normal
probability distribution), the test-statistic value will be relatively high. In
contrast, if the normal probability plot is nonlinear, the test-statistic value will
be relatively low. The S-W test has been recommended by the US
Environmental Protection Agency (USEPA, 2006) as well as in many statistical
texts (Gilbert, 1987) for testing normality in the environmental time series. In
recent years, the S-W test has become the preferred test of normality due to its
good power properties as compared to a wide range of alternative tests (Mendes
and Pala, 2003).

The test-statistic (W) of the S-W test examines whether a random sample,
x1, x2, ..., xn of a hydrologic variable comes from (specifically) a normal
distribution. This test-statistic is given as follows (Shapiro and Wilk, 1965):

W =

2

i (i)
1

2
i

1

n

i
n

i

a x

x x
(7)

where x(i) = ordered (increasing ordered) sample values and ia  = constants
generated from the means, variances and covariances of the order statistics of
a sample of size n from a normal distribution (Pearson and Hartley, 1972).

Small values of the test-statistic, W indicate departure from normality.
Percentage points for the W, obtained by Monte Carlo simulations, are given
in Pearson and Hartley (1972). Since the computation of W is not much easier,
available statistical packages such as GraphPad Prism, Dataplot, DataQUEST
or STATISTICA can be used for analyzing the time series data by using
Shapiro-Wilk test.

3.2.7 Probability Plot Correlation Coefficient

Probability plot correlation coefficient (PPCC) test is considered as an extension
of the Shapiro-Wilk test. It is also known as ‘Filliben’s test-statistic’ (Filliben,
1975). It measures the linearity of the data on a normal probability paper. Like
the S-W test, if the normal probability plot is approximately linear (i.e., the
hydrologic data follow a normal distribution curve), the correlation coefficient
value will be relatively high (USEPA, 1992). On the other hand, if the normal
probability plot contains several data points deviating from linearity (i.e., the
data do not follow a normal distribution curve), the correlation coefficient will
be relatively low. Although the Filliben’s test-statistic is easier to compute
than the test-statistic of the S-W test, it is still difficult to compute by hand.
Therefore, statistical software like DataQUEST can be used to calculate the
Filliben’s test-statistic.
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3.2.8 Coefficient of Variation

The coefficient of variation (CV), a well-known term in statistics, can be used
to quickly decide whether or not the time series data follow a normal distribution
curve by comparing the value of sample CV with 1. However, checking
normality based on the CV is somewhat a weak approach. This method is
valid only for some hydrologic and environmental applications if the data
represent a non-negative characteristic such as rainfall amount or pollutant
concentration (USEPA, 1992). If the value of CV is greater than 1, the data
should not be modelled with a normal distribution curve. However, the opposite
statement is not correct, i.e., we cannot conclude that the data can be modelled
with a normal distribution curve if the CV is less than 1 (USEPA, 1992). The
CV test is generally recommended to be used along with other statistical tests
or when the graphical representation of data indicates extreme departures
from normality.

3.2.9 Range Tests

The range tests are based on the fact that almost entire area of a normal
distribution curve lies within ±5 standard deviations from the mean. There are
two types of range tests: Studentized range test, and Geary’s test. Both of
these tests use a ratio of an estimate of the sample range to the sample
standard deviation (Madansky, 1988; USEPA, 1996). A brief description about
these range tests is provided below.

3.2.9.1 Studentized Range Test

The Studentized range test uses the ratio of range of a sample to the sample
standard deviation. Tables of critical values for sample sizes up to 1000 are
available for checking whether the absolute value of this ratio is significantly
large (Madansky, 1988). The Studentized range test does not perform well if
the data points are not symmetric or if the tails of the data points are heavier
than that for the normal distribution. Also, this test may be sensitive to outlier
or extreme data points. Unfortunately, lognormally distributed data, which are
quite common in hydrological and environmental applications, have these
characteristics. If the data appear to be lognormally distributed, this test should
not be used (USEPA, 2006). In most cases, the Studentized range test performs
the same as the Shapiro-Wilk test but is much easier to apply.

3.2.9.2 Geary’s Test

Test-statistic of the Geary’s test is defined as the ratio of mean deviation of a
sample to the sample standard deviation. This ratio indicates whether time
series data follows a standard normal distribution or deviates from the normal
distribution (Madansky, 1988). This test is not as strong as the Shapiro-Wilk
test or the Studentized range test. However, since the Geary’s test-statistic is
based on the normal probability distribution, critical values for all possible
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sample sizes are available. For a random sample x1, x2, ... xn, assuming that it
follows normal distribution, the Geary’s test-statistic (U) is defined as follows
(Walpole and Myers, 1985):

U = 1

2

1

2

( )

n

i
i

n

i
i

x x n

x x n
(8)

It should be noted that the denominator of Eqn. (8) is a reasonable estimator
of standard deviation whether the distribution is normal or non-normal. The
numerator is a good estimator of standard deviation if the distribution is
normal, but may overestimate or underestimate standard deviation when there
are departures from the normality. Thus, the values of U differing considerably
from 1.0 indicate that the hypothesis of normality should be rejected (Walpole
and Myers, 1985).

3.2.10 Jarque Bera Test

Jarque and Bera (1980) proposed a normality test using classical skewness
and kurtosis coefficients. The Jarque-Bera (JB) test is a goodness-of-fit measure
of departure from normality, based on the sample kurtosis and skewness. The
test-statistic JB is defined as (Jarque and Bera, 1987):

JB =
2

2 3
6 4

kn s (9)

where n = number of observations, s = sample skewness and k = sample
kurtosis.

The major disadvantage of the Jarque-Bera test is that asymptotic
convergence of the test-statistic is very slow. Therefore, decisions for testing
normality based on the quantile function of the chi-square distribution can
lead to serious errors (Bowman and Shenton, 1975; Jarque and Bera, 1987;
Lehmann, 1999).

3.2.11 D’Agostino Pearson Omnibus Test

The D’Agostino Pearson (DAP) Omnibus test first analyzes time series data
to determine skewness (to quantify the asymmetry of the data distribution)
and kurtosis (to quantify the shape of the data distribution). Thereafter, it
calculates how far each of the two values differs from the value expected with
a normal distribution, and computes a single P-value from the sum of the
squares of these discrepancies (D’Agostino, 1986). This test is a combination
of the D’Agostino skewness test and Anscombe-Glynn kurtosis test. The test-
statistic (K2) of the DAP Omnibus test is expressed as (D’Agostino et al.,
1990):
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K2 = 2 2
1 2Z b Z b (10)

where 2
1( )Z b  and 2

2( )Z b are the standard normal deviates equivalent to
transformations of 1b  (skewness) and 2b  (kurtosis) (Armitage and Colton,
1998b). The test-statistic (K2) has approximately a chi-square distribution
with 2 degrees of freedom under the assumption that two summands [i.e.,

2
1( )Z b and 2

2( )]Z b are independent and the population is normally
distributed. The assumption of independence cannot be held up for small and
moderate sample sizes. Thus, the fact that K2 is chi-distributed under the null
hypothesis does not hold true for the most common sample sizes. Test-statistics
of the DAP test is not easy to compute manually, and therefore, statistical
software may be used.
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4
Methods for Time Series Analysis

Natural time series, including hydrologic, climatic and environmental time
series, which satisfy the assumptions of homogeneity, randomness, non-
periodic, non-persistence and stationarity, seem to be the exception rather
than the rule (Rao et al., 2003). In fact, for all water resources studies involving
the use of hydrologic time series data, preliminary statistical analyses must
always be carried out to confirm whether the hydrologic time series possess
all the required assumptions/characteristics (Adeloye and Montaseri, 2002).
Nevertheless, most time series analysis is performed using standard methods
after relaxing the required conditions one way or another in the hope that the
departure from these assumptions is not large enough to affect the analysis
results (Rao et al., 2003). A comprehensive survey of the past studies on the
hydrologic time series analysis (Machiwal and Jha, 2006) revealed that no
studies considered all the aspects of time series analysis. Major work is reported
dealing with only linear trend analysis, and the homogeneity, stationarity,
periodicity, and persistence, which are equally important characteristics of the
hydrologic time series, have been ignored. In most past studies on time series
analysis, only regression and/or Kendall’s rank correlation tests are applied
for trend detection. Esterby (1996) and Hess et al. (2001) presented an overview
of selected trend tests. Thus, very limited studies are reported to date concerning
a detailed analysis of homogeneity, stationarity, periodicity and persistence in
the hydrologic time series.

In the literature, several statistical tests/methods are available to determine
a particular characteristic of the time series. It has been seen that choosing a
specific statistical test for a particular characteristic of the time series is
dependent on the knowledge of data analyst or researcher rather than on the
assumptions/requirements of the test. Use of one or two statistical tests for
time series analysis is quite common for easy decision making. However,
Machiwal and Jha (2008) recommended that an adequate number of statistical
tests must be applied for detecting a particular time series characteristic and
the results should be analyzed critically to arrive at a reliable decision. Based
on the extensive literature search, it was found that a single reference/source
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does not exist where detailed and easy-to-understand scientific information
about all the available statistical methods can be found. This chapter fulfils
this gap by presenting in-depth information about various statistical tests
available for the time series analysis. A total of 28 statistical tests/methods are
presented in this chapter, of which eight tests are for checking homogeneity,
three tests for checking stationarity, fifteen tests for detecting presence or
absence of trend, one test for checking periodicity, and one test for checking
persistence in the hydrologic time series.

4.1 Methods for Checking Homogeneity

Homogeneity or consistency implies that all the collected hydrologic time
series data belong to the same statistical population having a time invariant
mean. Therefore, the tests to check the homogeneity or consistency of data
series are based on evaluating the significance of changes in the mean value.
The features of three homogeneity tests namely, the von Neumann test,
Cumulative Deviations, and the Bayesian test are discussed in Buishand (1982)
and Jayawardena and Lau (1990).

Buishand (1982, 1984) presents a detailed methodology for the above-
mentioned three homogeneity tests, which can serve as major guidelines about
these tests. Kanji (2001) in his excellent collection of 100 statistical tests, has
reported various homogeneity tests for multiple comparisons (e.g., Tukey,
Link-Wallace, Dunnett, Bartlett, and Hartley tests). However, it has drawbacks
that the objectives of the tests are not clear and that original references are
lacking. On the other hand, some researchers (e.g., Radziejewski et al., 2002)
have considered a few homogeneity tests for trend detection. Such studies
may create confusion about the general perceptions of homogeneity and trend
for the researchers with no access to good literature in this line. It should be
noted here that the homogeneity tests for multiple comparisons (e.g., Bartlett,
Dunnett, Link-Wallace, Hartley, and Tukey tests) have not gained a wide
popularity in hydrology and climatology. In the hydrologic time series analysis,
multiple comparison tests are still contemporary, while these tests are
considered as classical in geotechnical studies (e.g., Phoon et al., 2003).
Detailed procedures for applying the homogeneity tests are described ahead.

4.1.1 The von Neumann Test

The von Neumann ratio (N) is the most widely used test for testing a time
series for the absence or presence of homogeneity. It is closely related to the
first-order serial correlation coefficient (WMO, 1966) and can be defined as
follows:

N =
1

2 2
t t 1 t

t 1 t 1

n n

x x x x  (1)
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where xt =hydrologic variable constituting the sequence in time, n = total
number of hydrologic records, and x = average of xt.

Under the null hypothesis of constant mean, i.e., homogenous time series,
the expected value of the von Neumann ratio is 2. However, it tends to be < 2
for the non-homogenous time series. The values of von Neumann ratio for
normally distributed samples can be found in Owen (1962).

4.1.2 Cumulative Deviations Test

Tests for homogeneity are based on the adjusted partial sums or cumulative
deviations from the mean, which are expressed as (Buishand, 1982):

*
kS  = t

t 1
,

k

x x k = 1, 2, ......, n (2)

Rescaled adjusted partial sums ( **
kS ) are obtained by dividing *

k’sS  by
the sample standard deviation (Dx).

**
kS  = *

k x ,S D k = 1, 2, ......, n (3)

with D2
x =

2
t

t 1

1 n

x x
n  (4)

The values of **
kS ’s are not dependent on the unit of the hydrologic

variable, and hence homogeneity tests are based on the rescaled adjusted
partial sums.

Sensitivity to the departures from homogeneity is defined by the following
statistic:

Q = **
k0

Max
k n

S (5)

High values of Q are an indication for non-homogeneity in the time
series. Another statistic which can be used for testing homogeneity is the
range (R). It is defined as:

R = ** **
k k00

Max Min
k nk n

S S (6)

Critical values of Q for some specified values of n are given by Buishand
(1982), which are based on the 19,999 synthetic sequences of Gaussian random
numbers. For ,n  the critical values of Q can be obtained from the
Kolmogorov-Smirnov goodness-of-fit statistic table (Doob, 1949). The critical
values of the distribution of R under the null hypothesis are given by Wallis
and O’Connell (1973) in a graphical form, while Buishand (1982) presents
salient critical values in a tabular form.
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4.1.3 Bayesian Test

The Bayesian test was developed by Chernoff and Zacks (1964), which was
modified later by Gardner (1969). The Gardner’s test-statistic ( G ) for a two-
sided test on a shift in the mean at an unknown point can be written as
(Gardner, 1969):

G =
1

2*
k k Y

1

n

k
p S (7)

where pk = prior probability that the shift occurs just after kth observation.
Here, it is assumed that the population variance 2( )Y is known. If 2

Y is not
known, it can be replaced with the sample variance. For pk independent of k,
the test-statistic, U can be expressed as:
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However, for pk proportional to [k(n – k)]-1, the test-statistic can be written
as:
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k
Z k = 1, 2, ......, n  (9)

where **
kZ = weighted rescaled partial sums, which can be computed using the

following formula:

**
kZ = 1 2 *

k xk n k S D  (10)

Large values of U and A test-statistics indicate departures from the
homogeneity, which is judged based on their critical values (Buishand, 1982).

Buishand (1982) reported that the tests based on the cumulative deviations
are superior to the von Neumann test for a model with only one change in the
mean. The tests were applied to the annual rainfall data of 264 rainfall stations
in the Netherlands, and departures from homogeneity were found. The von
Neumann test provided almost the same results as the tests based on the
cumulative deviations.

4.1.4 Tukey Test for Multiple Comparisons

This test is used to examine the significance of all possible differences among
different population means. The size of the different samples may be unequal
but all populations should be normally distributed with equal variances. Hence,
it is a parametric test, which depends upon the distribution parameters. To
apply this test on a hydrologic time series xt (t = 1, 2, …, n), the entire series
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is firstly divided into ‘K’ subseries of equal or unequal sample size. The total
variance of the samples is then calculated by the following expression (Kanji,
2001):

s2 =

2
i i

1
1

K

i
n s

n K  (11)

where si = variance of the ith sample, and n = total sample size. Now the test-
static or limit is computed as (Kanji, 2001):

W = 1 2
t

q s
n

(12)

where q is the Studentized range. The critical values for q can be obtained at
degrees of freedom ( ) from the standard table available in textbooks on
statistics (e.g., Sachs, 1972; Kanji, 2001). The degree of freedom ( ) can be
computed as:

i
1

K

i
n K  (13)

Here, nt is expressed as:

nt =

1 2 K

1 1 1
K

n n n

(14)

If the limit (W ) exceeds by the absolute difference between any two
sample means, it suggests that the corresponding population means differ
significantly.

4.1.5 Link-Wallace Test

The Link-Wallace test is employed for the purpose similar to the Tukey test;
however it has the limitation that the sample size of all populations must be
equal. It is a parametric test based on the assumption that the ‘K’ populations
are normally distributed with equal variances. This test can be used to examine
the homogeneity of any hydrologic time series, xt (t = 1, 2, …, n) after
dividing the entire series into ‘K’ subseries of equal sample size nk. The test-
statistic (KL) is defined as (Kanji, 2001):

KL =
k

i
1
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K

i

n w x

w x
(15)



56 Tools/Techniques for Time Series Analysis

where wi(x) is the range of the x values for the ith sample and ( )w x is the range
of the sample means. Critical values of the test-statistic can be found in Sachs
(1972) or Kanji (2001). If computed values of the test-statistic are greater than
the critical values, the null hypothesis of equal variances is rejected at 5%
significance level. Furthermore, the critical value of the sample mean
differences (D) is expressed as (Kanji, 2001):

D =
critical i

1

k

( )
K

i
K w x

n (16)

where Kcritical is the critical value of the test-statistic. If the mean differences
for a sample are greater than the value of ‘D’, the null hypothesis of equal
means is rejected.

4.1.6 Dunnett Test

This test is used to investigate the significance of the differences in means,
when several samples are compared with a control one. This is a parametric
test with a limitation that the samples of equal sizes (ns) are drawn independently
from normally distributed populations with equal variances. To apply this test
to a hydrologic record xt (t = 1, 2, …, n), the entire series is divided into ‘K
+ 1’ subseries. The variance within the K + 1 groups is calculated as (Kanji,
2001):

s2 =

2 2
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1

s1 1

K

i
s s

K n  (17)

where s2
0  is the variance of the control subseries and s2

i is variance of the ith
subseries. The standard deviation of the differences between control and
remaining subseries is then calculated as:

s(d̄ ) = 2
s2 s n (18)

The test-statistic (Dj) is given by (Kanji, 2001):

Dj =
0

( )
ix x
s d

(i = 1, 2, …, K)  (19)

Critical values of the test-statistic can be obtained from Kanji (2001). If
an observed value is larger than the tabulated value, it can be concluded that
the corresponding difference in mean between the subseries ‘i’ and control is
significant. Similarly, each subseries may be considered as control and
significance of differences between all the sample means can be examined.
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4.1.7 Bartlett Test

Techniques for comparing means of normally distributed populations generally
assume that the populations have the same variance. Before using ANOVA, it
should be confirmed whether this assumption of homogeneity of variance is
reasonable. The Bartlett test is widely used for equal variances. The step-by-
step procedure for applying this test to a hydrologic time series xt (t = 1, 2, …,
n) is given below.

Step 1: Fragment the entire series into ‘K’ subseries with ni size of each ith
series (i = 1, 2, …, K).

Step 2: Setup the null hypothesis that the variances of all subseries are equal
and alternative hypothesis of unequal variances.

Step 3: Compute the sample variance (si
2) of each subseries as:

si
2 =

2
ij i

i1 1

in

j

x x
n (20)

Step 4: Compute the overall variance as (Kanji, 2001):
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Step 5: Calculate the Bartlett test-statistic, which is defined as (Kanji, 2001):

B = 2 2
i i

1 1

2.30259 1 log 1 log
K K

i
i i

n s n s
C (22)

where ‘C’ is a bias correction factor and is mathematically expressed as
follows:

C =
i1
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1 1 11
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(23)

Step 6:
Case A: If ni > 6, ‘B’ will approximate to a 2-distribution with ‘K–1’ degrees

of freedom. Critical values of the test-statistic can be obtained from
the standard tables of 2-distribution.

Case B: If ni  6, the test-statistic becomes BC = M, for which the critical
values can be obtained from Kanji (2001).

In both the cases, the null hypothesis of equal variances is rejected if the
computed value of the test-statistic is greater than its critical values.
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4.1.8 Hartley Test

This is another parametric test to examine the significance of the differences
between the variances of ‘K’ normally distributed populations. The size of the
‘K’ samples should be approximately equal. The entire hydrologic time series
xt (t = 1, 2, …, n) is divided into ‘K’ subseries with approximately equal size.
The sample variances of all the subseries are then calculated from Eqn. (20).
The test-statistic (F) is defined as (Kanji, 2001):

Fmax =
2
max
2
min

s
s

(24)

where s2
max is the largest of the ‘K’ subseries variances, and s2

min is the smallest
of the ‘K’ subseries variances. The critical values of this test-statistic are given
in Kanji (2001). If the computed value of the test-statistic exceeds its critical
value, the null hypothesis of equal variances is rejected.

4.2 Methods for Checking Stationarity

A time series is said to be strictly stationary, if its statistical properties do not
vary with changes of time origin. That is, if two non-overlapping time intervals
are selected from a given time series, the two subseries will look almost the
same. In fact, both the subseries will differ from one another, but will be
scattered around the same mean value. Therefore, a stationary time series
cannot have any trend or periodic component. This is the reason that sometimes
trend and periodicity tests are used to check the stationarity of hydrologic time
series. There are two general approaches for checking stationarity: parametric
and nonparametric. The review of the literature reveals that the parametric
approach is usually used by the researchers working in the time domain, such
as economists, who make certain assumptions about the nature of their data.
On the other hand, the nonparametric approach is more commonly used by the
researchers working in the frequency domain, such as electrical engineers,
who often treat the system as a black box and cannot make any basic
assumptions about the nature of the system. However, in hydrology, both
parametric and nonparametric approaches are used. It should be noted that the
nonparametric tests are not based on the assumption that the population is
normally distributed (Bethea and Rhinehart, 1991). Hence, the nonparametric
tests are more widely applicable than the parametric tests which often require
normality in the data. Nevertheless, the nonparametric tests are reported to be
less powerful than the parametric tests. To arrive at the same conclusion with
the same confidence level, the nonparametric tests require 5 to 35% more data
than the parametric tests (Bethea and Rhinehart, 1991).

Only a couple of studies are reported wherein t-test has been used to
examine the stationarity of hydrologic time series (e.g., Jayawardena and Lai,
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1989). The Mann-Whitney test for detecting a shift in the mean or median of
hydrological time series has been applied by McCuen and James (1972),
Lazaro (1976), Lettenmaier (1976), Helsel and Hirsch (1988), Kiely et al.
(1998), Kiely (1999) and Yue and Wang (2002). Also, stationary stochastic
models such as AR (Autoregressive), MA (Moving Average), or ARMA
(Autoregressive Moving Average) models are frequently used to characterize
the standardized time series (Hipel and McLeod, 1994). However, the
standardization procedure does not ensure stationarity in the transformed series
(Salas, 1993). Moreover, some researchers (Appel and Brandt, 1983; Lovell
and Boashash, 1987; Imberger and Ivey, 1991; Chen and Rao, 2002) have
developed segmentation algorithms to determine stationary segments and to
estimate the parameters characterizing each segment in order to establish
piecewise stationary time series models. Two parametric tests and one
nonparametric test for checking stationarity in a time series are described in
the following sections.

4.2.1 Student’s t-test

For applying the t-test, the series is divided into a number of subseries, and t-
test is performed to check whether the statistical character of each subseries
is significantly different from that of the original series. The null hypothesis
that the means of each subseries do not significantly differ from the population
mean is examined using the test-statistic, ‘ts’, which is defined as follows:

ts = t( ) 1x N
(25)

where x̄ t = mean of the subseries,  = mean of the series,  = standard
deviation of the series, and N = number of the subseries.

Critical values for the ts-statistic can be obtained from standard texts on
statistics (e.g., Shahin et al., 1993; Haan, 2002). If the calculated value of ‘ts’
is found less than its critical value, the null hypothesis cannot be rejected.

4.2.2 Simple t-test

This is a parametric test, which assumes that the annual hydrologic series xt
(t = 1, 2, …, n) is uncorrelated and normally distributed with mean  and
standard deviation . The series is divided into two subseries of sizes n1 and
n2 such that n = n1 + n2. The first subseries xt (t = 1, 2, …, n1) has a mean 1,
and standard deviation  and the second subseries xt (t = n1+1, n1+2, …, n),
is assumed to have mean and standard deviation . The simple t-test can be
used to examine the null hypothesis = when the two subseries have the
same standard deviation. Rejection of the null hypothesis is considered as a
detection of a shift. The test-statistic is defined as (Snedecor and Cochran,
1980):
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ts = 2 1

1 2

1 1
x x

S n n

(26)

and S =
2 2

1 1 2 21 1
2

n s n s
n (27)

where 2 2
1 2 1 2, , andx x s s  are the estimated means and variances of the first and

the second subseries, respectively. Critical values of this test-statistic can be
taken from the Student’s t-distribution standard tables for ‘n-2’ degrees of
freedom and 5% level of significance. If the computed value of the test-
statistic is greater than its critical value, the null hypothesis that both the
subseries belong to the same population is rejected.

4.2.3 Mann-Whitney Test

For applying this nonparametric test, the annual hydrologic series xt (t =1, 2,
…, n) is divided into two subseries x1, x2, …, xn1 and xn1+1, xn1+2, …, xn of
sizes n1 and n2, respectively such that n1+n2 = n. A new series, zt (t = 1, 2, …,
n) is defined by arranging the original data (xt) in increasing order of magnitude.
The test-statistic to test the null hypothesis that the mean of the first subseries
is equal to the mean of the second subseries is defined as (Snedecor and
Cochran, 1980):

uc =

1

t 1 1 2
1

1 2
1 2 1 2

( ) ( 1)/2

1 /12

n

t
R x n n n

n n n n
 (28)

where R(xt) is the rank of the observation xt in ordered series zt. The null
hypothesis of equal means is rejected, if the computed value of this test-
statistic is greater than its critical value obtained from the tables of standard
normal distribution at 5% significance level.

4.3 Methods for Detecting Trend

A common deterministic component in a time series is a trend. A trend is a
tendency for successive values to be increasing or decreasing over time (Haan,
2002). Changes in hydrologic conditions by natural and/or artificial factors
can introduce linear or nonlinear trends into a hydrologic time series. The
trend in a time series can be expressed by a suitable linear or nonlinear model;
the linear model is widely used in hydrology (Shahin et al., 1993). The simplest
of linear trend detection models is Student’s t-test (Hameed et al., 1997),
which requires that the series under testing should be normally distributed.
Thus, whether or not the sample data follow a normal distribution has to be
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examined prior to applying the Student’s t-test to assess the statistical
significance of these two types of trends (Hoel, 1954). Unfortunately, some
researchers (e.g., Fanta et al., 2001) ignore this important check. If normality
is violated, the nonparametric test such as the Mann-Kendall test (Mann,
1945; Kendall, 1975) is commonly applied to assess the statistical significance
of trends. This test detects a monotonic trend in the mean or median of a time
series. As mentioned earlier, the nonparametric tests are more suitable for
non-normal data and censored data compared to the parametric t-test (Helsel
and Hirsch, 1988; Hirsch and Slack, 1984). The application of the nonparametric
Mann-Kendall test for detecting monotonic trends in hydrological time series
is reported by Hirsch et al. (1982), Hirsch and Slack (1984), Burn (1994),
Burn and Elnur (2002), Lettenmaier et al. (1994), Gan (1992, 1998), Lins and
Slack (1999), Douglas et al. (2000), Zhang et al. (2001), Yue et al. (2003), and
others. Another important trend test is the Spearman Rank Order Correlation
test, which has been applied by Khan (2001) and Adeloye and Montaseri
(2002). However, in some hydrologic studies, the Kendall’s Rank Correlation
test has been preferred (Jayawardena and Lai, 1989; Zipper et al., 1998;
Kumar, 2003).

Various parametric and nonparametric statistical tests have been reported
in the literature for detecting trend in a hydrologic time series. The parametric
statistical tests are: turning point, Kendall’s phase, Kendall’s rank, regression,
Wald-Wolfowitz total number of runs, sum of squared lengths, and inversion
tests (Shahin et al., 1993). The nonparametric tests are: Mann-Kendall test for
a linear and/or nonlinear trend (Salas, 1993), Hotelling-Pabst test (Conover,
1971), and Sen test (Gilbert, 1987). Some more rank correlation tests have
been suggested by Kanji (2001). Dahmen and Hall (1990) present salient
established methods to detect the presence of a significant trend in the
hydrologic time series.

Most of the tests (i.e., Turning Point, Kendall’s Phase, Wald-Wolfowitz
Total Number of Runs, Sum of Square Lengths, Adjacency, Difference Sign,
Run Test on Successive Differences, Wilcoxon-Mann-Whitney, and Inversions
tests) have not attracted the attention of hydrologists, which may be due to the
availability of some sound trend detection tests. Esterby (1996) and Hess et al.
(2001) present an excellent overview of the statistical methods for trend
detection and estimation in environmental time series (e.g., water quality and
atmospheric deposition monitoring data). Hess et al. (2001) evaluated six
methods of trend detection using real-world data and provided
recommendations based on a simulation study. It should be noted that the t-
test adjusted for seasonality and the Seasonal Kendall tests are more powerful
than the remaining four tests viz., the Spearman Partial Rank Correlation test,
Ordinary Least Square Regression, Generalized Least Square Regression, and
the Kolmogorov-Zurbenko test. However, all the trend detection tests, which
are currently available, sound and widely employed in the hydrologic time
series analysis, have not been reported by Hess et al. (2001). Some additional
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statistical tests for trend detection can be found in Mahé et al. (2001). A brief
description of 15 tests for trend detection is presented in the succeeding
sections.

4.3.1 Regression Test

The most commonly used approach for trend detection is to formulate a linear
model between the data and time in the following form (Hameed et al., 1997):

xt =  + t + t (29)

where xt (t = 1, 2, …, n) = observed value at time t,  and  = regression
coefficients, and t = a random error (white noise) with a mean of zero and
variance of Sv

2.
The data of n years are substituted in the normal equations obtained by

the least squares technique, and the parameters ˆˆ and are estimated. The
sum of squares of the residuals is given by:

SSres =
2 22

t
1 1

ˆ
n n

t t
x x t t (30)

The standard error of regression is calculated as:

s = 1/2
res / 2SS n (31)

The ts-statistic is then computed as:

ts = ˆ
ˆ s (32)

where, ˆs  = 1/2
2

1

n

t

s

t t

(33)

If the calculated value of the ts-statistic is less than its critical value at 5%
level of significance with n–2 degrees of freedom, the null hypothesis of
trend-free series cannot be rejected.

The main problem with the above approach is that it does not distinguish
between the trend and the persistence (Hameed et al., 1997). This test can be
misleading if seasonal cycles are present, the data are not normally distributed,
and the data are serially correlated (Gilbert, 1987).

4.3.2 Spearman Rank Order Correlation Test

To overcome the problem associated with the linear model for trend detection,
the Spearman rank order correlation (SROC) nonparametric test (McGhee,
1985) is used to check the existence of long-term trend. Among the available
nonparametric trend tests, the World Meteorological Organization (WMO,
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1988) recommends the SROC test for detecting trend in flow volumes. The
procedures for applying the SROC test are given below (McGhee, 1985).

Let the data series xt (t = 1, 2, …, n) be observed in time t.

Step 1: Assign ranks Rxt to xt such that the largest xt has Rxt = 1 and the least
xt has a rank = n. If there are ties in the xt, then assign to each of the
ties a rank equal to the mean of the ranks that would have been used
had there been no ties.

Step 2: Compute the difference,
dt = Rxt – t (34)

Step 3: Compute the coefficient of trend (rs) using the following expression:

rs =

2
t

1
2

6
1

1

n

t
d

n n
(35)

Under the null hypothesis (H0) that the time series has no trend, it can
be shown that the statistic, ts has a Student’s t-distribution with n–2
degrees of freedom. Here, ts is defined as:

ts = s 2
s

2
1
nr

r
(36)

Step 4: Calculate the value of ts from Eqn. (36) and get the critical value of
the t-distribution for the chosen significance level,  and n–2 degrees
of freedom. For a two-tailed test, denote the critical value by /2, 2nts

Step 5: Finally, compare the computed value of ‘ts’ with its critical value.
Reject null hypothesis (H0) if ts > /2, 2nts or ts < – /2, 2.nts

4.3.3 Turning Point Test

Let’s assume that a turning point occurs in the series xt (t = 1, 2, …, n) at any
time t (t = 2, 3, …, n–1) if xt is larger than each of xt-1 and xt+1 or xt is smaller
than xt-1 and xt+1. This situation has four chances of occurrence in six different
possibilities of the occurrence of xt-1, xt and xt+1, assuming that all three
elements have different values. Accordingly, the chance of having a turning
point in a sequence of three values is 4/6 or 2/3, for all the values of ‘t’ except
for t = 1 and t = n. In other words, the expected number of turning points ( p̄ )
in the given random series can be expressed as:

p̄  = 2 2 /3n (37)

For the same random series, variance is given by (Kendall, 1973):

var ( p̄ ) = 16 29 /90n (38)
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The test-statistic is represented by the standard normal variate (z), and is
given as:

z =
var( )
p p

p
(39)

where p is observed number of turning points.
The computed standard normal variate is then compared with the standard

normal variate obtained from the standard table at a given level of significance.
If the calculated value of ‘z’ is within the region of acceptance, the hypothesis
of no trend is accepted. If a trend is detected, it can be removed by regression
technique (i.e., fitting a suitable equation).

The turning point test is easy to apply, especially when the time series is
plotted graphically. It is an effective test for checking randomness against
systematic oscillation. But if the turning points tend to bunch together, the
Kendall’s phase test is more suitable. However, the difficulty with this test is
that a comparison of observed and theoretical numbers of phases based on the
chi-square criterion is invalidated by the fact that the lengths of phases are not
independent. The distribution of the phase lengths does not tend to normality
for large lengths of a series, but the number of phases does so (Kendall, 1973).

4.3.4 Kendall’s Phase Test

The phase is defined as the interval between any two successive turning
points. Let the length of the phase be denoted by ‘d’. The expected number of
phases (np) of length ‘d’ in a random series of length ‘n’ is given as (Kendall,
1973):

np =
22 2 3 1

3 !
n d d d

d (40)

Once np is calculated, the observed number of phases and the expected
number of phases for a given length is compared. If this difference is large,
the series is not considered to be random.

Among the above-mentioned trend tests, the superiority of one over other
is mainly associated with the extent of adaptability of a given test to the
structure of the time series to be examined. The turning points and number of
phases tests are practically out-dated due to the availability of more powerful
tests (Shahin et al., 1993), which are described below.

4.3.5 Wald-Wolfowitz Total Number of Runs Test

Let the objective be to test whether the data sample xt (t = 1, 2, …, n) is
random based on the runs of the data with respect to the median of the
observation. The step-by-step procedure for using the Wald-Wolfowitz test is
as follows (Shahin et al., 1993):
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Step 1: Determine the median of the data. For this, sort the data sample in
ascending order such that x1  x2 …  xn. Now, for an integer k, the
sample median ( 0.5x ) is computed as:

0.5x = k 1

k k 1

for 2 1
0.5 for 2
x n k

x x n k
(41)

Step 2: Examine all the data of the series to check whether or not it exceeds
the median. A plus sign (+) or minus sign (–) is assigned to every data
of the series according to whether its value is greater than or less than
the median, respectively. If the median coincides with an observed
value (n is odd), neither a plus nor a minus sign is assigned to such
a value, implying that the total number of observations is reduced
by 1.

Step 3: Count the number of runs ( )U of plus signs. A run is defined as a
sequence of the entries of same sign until it is interrupted by opposite
sign.

Step 4: The mean ( U+) and the variance ( U+) of the statisticU are calculated
by the following formulae:

U+ =
1 1
2

n (42)

U+ =
2

4 1
n n

n (43)

Step 5: Compute the test-statistic (z) using the following formula:

z =
0.5U

U

U
(44)

Step 6: Under the null hypothesis (H0) that the sequence of (+) and (–) signs
is random, z follows a standard normal distribution. Hence, obtain
the critical value of the standard normal distribution for a given
significance level  and denote it by ± z /2.

Step 7: If value of z calculated in Step 5 is greater than its critical value, the
null hypothesis is rejected.

It should be noted that the Wald-Wolfowitz test does not take into account
the length of the runs, and considerable information is ignored. Hence, this
test is not very powerful and not efficient, but can be used to determine
whether the observations of a random variable are independent. If the
observations of a random variable are independent, the time series is said to
have no trend (i.e., trend-free).
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4.3.6 Sum of Squared Lengths Test

This test considers the length of runs while testing a series for trend. The runs
of different lengths are counted. A run consists of a sequence of like signs as
defined in the Wald-Wolfowitz test. The test-statistic ( N ), the sum of the
squares of the run-lengths, is given by

N  = 2
j

j
j n (45)

where j = length of the run, and nj = number of runs of length j.
Critical values of the test-statistic at 5% level of significance and n/2

degrees of freedom can be obtained from Himmelblau (1969). If the calculated
test-statistic values are greater than its critical values, the null hypothesis of
trend-free series is rejected. Note that the Sum of Squared Lengths test is
more powerful than the Wald-Wolfowitz test (Himmelblau, 1969).

4.3.7 Adjacency Test

The adjacency test is applied to test the null hypothesis that the fluctuations in
a series are random in nature. The limitation of this test is the assumption that
the observations are obtained independently of each other and under similar
conditions (Kanji, 2001). For a time series xt (t = 1, 2, …, n), the test-statistic
‘z’ for n > 25 is computed as follows:

z =
L

(46)

wherein L for n > 25 is given as:

L =

1
2

t 1 t
1

2
t
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1
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n

t
n

t

x x

x x
(47)

It should be noted that L for n > 25 follows a normal distribution with zero
mean and variance ( 2) as:

2 =
2

1 1
n

n n (48)

Critical values of ‘z’ can be obtained from the tables for standard normal
distribution available in the textbooks on statistics.

For n  25, the test-statistic ‘z’ is computed with L as:



Methods for Time Series Analysis 67

L =

1
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t 1 t
1
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n

t
n

t

x x

x x
(49)

Critical values of the test-statistic ‘z’ for n  25 can be obtained from Hart
(1942). If the computed values of ‘z’ are less than its critical values, there is
no reason to reject the null hypothesis.

4.3.8 Difference Sign Test

The difference sign test is used to examine whether fluctuations in a time
series observations are independent of the order in the sequence. This test is
applied with the assumption that the number of observations is large and that
the observations are obtained under similar conditions (Kanji, 2001). In order
to apply this test, first of all, a sequence of successive differences (xt+1 – xt) is
formed from the sequence of ‘n’ observations (x1, x2, …, xn). Thereafter, the
number of ‘+’ signs (n+) in this derived sequence is counted. For large values
of ‘n’, n+ may be assumed to follow a normal distribution with the mean ( n+)
and variance ( 2

n ) given as:

n+ =
1

2
n

(50)

2
n  =

1
12

n
(51)

The test-statistic or standard normal variate (z) is defined as:

z = n

n+

0.5n
(52)

The test-statistic is computed using Eqn. (52) and is compared with 1.64
(i.e., critical value of ‘z’ at 5% level of significance). If the computed value of
‘z’ is greater than its critical value, the null hypothesis is rejected, which
suggests that the time series has a trend.

4.3.9 Run Test on Successive Differences

The necessary condition for applying this test is that the observations in the
sample are obtained under similar conditions. Null hypothesis (H0) is made
that the observations in a time series are independent of the order in the
sequence, which is tested by the run test on successive differences. From the
sequence of observations xt (t = 1, 2, …, n), a sequence of successive differences
(xt+1 – xt) is formed (i.e., each observation has the preceding one subtracted
from it). The test-statistic (K) is defined as the number of runs of ‘+’ and
‘–’ signs in the sequence of differences.
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For 5  n  40, critical values of the test-statistic can be obtained from
Kanji (2001). For n > 40, ‘K’ may be assumed to follow a normal distribution
with the mean ( k) and variance ( 2

k) given as:

k =
2 1

3
n

(53)

2
k =

16 29
90
n

(54)

Now, the test-statistic (z) for the case when n > 40 is computed by the
following expression:

z =
k

k

0.5K
(55)

Critical values of ‘z’ can be obtained from the standard normal distribution
tables available in statistics books. For both the cases of time series sizes, if
the computed test-statistic values are less than its critical values, the null
hypothesis cannot be rejected. That is, the time series is considered to be
random.

4.3.10 Wilcoxon-Mann-Whitney Rank Sum Test

This is a nonparametric test (i.e., distribution-free), which is applicable if the
observations are random and independent. It is used to examine whether the
occurrence of increasing or decreasing successive values of a time series is
random. Consider a time series xt (t = 1, 2, …, n). First, successive observations
in the sequence are coded with a ‘+’ or ‘–’ sign by comparing two successive
values, and the ranks (1, 2, 3, …, n) are assigned to all the observations of the
series. Thereafter, the number of ‘+’ and ‘–’ signs are counted and the larger
of two numbers is noted down (say n1). If n2 be the number of opposite signs,
then n = n1 + n2. Now, from the integers describing the natural order of signs,
the rank sum ‘R1’ of ‘n2’ signs is determined. Finally, the value of ‘R2’ statistic
is calculated by the following expression:

R2 = 2 11n n R (56)

The smaller of ‘R1’ and ‘R2’ is used as the test-statistic. The critical values
of the test-statistic can be found in Natrella (1963). If the computed value of
the test-statistic is greater than its critical value, the null hypothesis of no
trend is rejected.

4.3.11 Inversions Test

This test is used to examine the linear trend in a time series. It is almost
similar to the Kendall’s rank correlation test (described ahead). The number of
xj-values (j > i) each smaller than a chosen xi-value is counted for all i’s
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(i = 1, 2, …, n–1) and summed up. The total number of inversions denoted by
*I  has a mean ( I*) and variance ( 2

*I ) given as follows (Shahin et al., 1993):

I* =
1

4
n n

 (57)

and 2
I* =

3 22 3 5
72

n n n
(58)

As ,n the approximate standard normal variate (z) can be computed
as:

z =
*

I*

I*

I
 (59)

If the computed z-value is within the acceptable range, i.e., ±1.96, which
are the critical values for the two-sided test at 5% significance level, the null
hypothesis that the time series is trend-free cannot be rejected.

4.3.12 Kendall’s Rank Correlation Test

The Kendall’s rank correlation test is mostly preferred for trend detection in
hydrologic time series (Jayawardena and Lai, 1989; Zipper et al., 1998; Kumar,
2003). In this test, a null hypothesis of no trend is initially assumed, and then
the test is carried out to reject or accept the hypothesis. If a series xt (t = 1, 2,
..., n) is to be examined, the number of times ( p) that xj > xi is counted in all
pairs of observations (xi, xj). The Kendall’s test-statistic ( ) is defined as
follows:

 =
4

1
( 1)

p
n n (60)

The test-statistic is then expressed as a standard normal variate in the
following form (Kendall, 1973):

z =
Var( )

(61)

where Var( ) =
2(2 5)
9 ( 1)

n
n n (62)

If the value of ‘z’ lies within the limits ±1.96 at the 5% significance level,
the null hypothesis of no trend cannot be rejected.

4.3.13 Mann-Kendall Test

This is a nonparametric test for exploring a trend in a time series without
specifying the type of trend (i.e., linear or nonlinear). Mann (1945) originally
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used this test and Kendall (1975) subsequently derived the test-statistic
distribution. This test has been found to be an excellent tool for trend detection
(e.g., Hirsch et al., 1982; Gan, 1992). Considering the time series xt (t = 1, 2,
…, n), each value of the series (xt) is compared with all subsequent values
(xt+1) and a new series zk is generated as follows (Salas, 1993):

k t t

k t t

k t t

1 for
0 for

1 for

'

'

'

z x x
z x x
z x x

(63)

where k is given by:

k = 1 (2 )/2t n t t t (64)

The Mann-Kendall statistic (S) is defined as follows (Hirsch et al., 1982):

S =
1

k
1 1

n n

t t t
z (65)

Thus, this statistic represents the number of positive differences minus
the number of negative differences for all the differences under consideration.

Moreover, the above test-statistic for n > 40 may be written as (Hirsch et
al., 1982):

uc = ( )
S m
V S

(66)

where V(S) =
1

1 1 2 5 1 2 5
18

g

i i i
i

n n n e e e (67)

In Eqns (66) and (67), m = 1 for S < 0 and m = –1 for S > 0, g is the
number of tied groups, and ei is the number of data in the ith tied group. The
value of the test-statistic uc is taken as zero for S = 0. Now, if the computed
absolute value of uc is greater than the critical value of the standard normal
distribution, the hypothesis of an upward or downward trend cannot be rejected
at the  significance level. It should be noted that Kendall (1975) suggested
for using the Mann-Kendall test even for n values as low as 10 provided there
are not too many tied values. Hirsch et al. (1982) reported the application of
this test to seasonal time series.

4.3.14 Sen’s Slope Estimation Test

Kendall slope ( ), initially given by Sen (1968) and later extended by Hirsch
et al. (1982), is a useful index to quantify monotone trend in the hydrologic
time series (Hirsch et al., 1982; Gan, 1998). Sen’s test for the estimation of
slope requires a time series of equally spaced data. The slope is estimated by:
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gk =
igk jgkMedian

x x
i j for all i < j (68)

where gk = slope between data points xigk and xjgk, xigk = data measurement
at time i, xjgk = data measurement at time j; and j = time after time i;
g = season; and k = site. It is defined as the estimator  is the median overall
combination of record pairs for the whole dataset, and is resistant/robust to the
extreme observations or outliers. The positive value of the  connotes the
slope of the upward trend and negative value for the downward trend.

4.3.15 Trend-Homogeneity Test

The trend results of the seasonal data are assumed to be homogeneous to find
the overall trend by summing the trends over the seasons for a given station
(Hirsch and Slack, 1984). However, presence of noticeable upward and
downward seasonal trends may even result in an overall no trend in the series
due to summing (Van Belle and Hughes, 1984). Hence, the test of homogeneity
is conducted to interpret the seasonal and spatial variability of trend results
and also their interactions. The 2-based homogeneity test partitions the total
sum of square ( 2

Total) into 2
Homogeneity and 2

Trend (e.g., Van Belle and Hughes,
1984; Gan, 1998; Kahya and Kalayci, 2004). The 2

Homogeneity is further
partitioned into 2

Season, 2
Station and 2

Season-Station, and are used to test the
significance of heterogeneity of season, station and their interactions,
respectively. The 2-based test statistics to carry out homogeneity test are
given below:

2
Total, pq =

2
st

1 1

p q

s t
Z (69)

2
Homogeneity, pq-1 =

2
st

1 1
( )

p q

s t
Z Z (70)

2
Season, p-1 =

2
s

1
( )

p

s
q Z Z (71)

2
Station, q-1=

2
t

1
( )

q

t
p Z Z (72)

2
Season-Station, (p-1)(q-1) =

2
st s t

1 1
( )

p q

s t
Z Z Z Z (73)

2
Trend, 1 =

2
pqZ (74)



72 Tools/Techniques for Time Series Analysis

where the standardized Mann-Kendall test-statistics for s seasons and t stations
has been defined as Zst. It is to note that the Zst is computed by using either
Eqn. (65) for sample size (n) < 40 or Eqn. (66) otherwise. Here Zs is the
average of Zst for season s over the stations; Zt is the average of Zst for station
t over the seasons; and Z  is the average of Zst over the season-stations. The
computed test-statistic values are compared with the critical values of the chi-
square distribution at 5% significance level and specific degree of freedom
(df). The df for all the test-statistics are denoted as subscript in left side
expression [Eqns 69 to 74], for example, the df for 2

Total is pq and for
2

Homogeneity is pq–1. Finally, if the computed absolute value of a test-statistic
is greater than the critical value of the chi-square distribution, the hypothesis
of a trend cannot be rejected at the 5% significance level.

4.4 Methods for Checking Periodicity

Periodicity in the hydrologic time series can be detected if the time series are
defined at time intervals less than a year; in most cases, six and 12 months
periodicity is very common. The Fourier series has been mainly used for the
detection of periodic components in the hydrologic time series (e.g., Maidment
and Parzen, 1984; Kite, 1989; Jayawardena and Lai, 1989; Fernando and
Jayawardena, 1994; Pugacheva et al., 2003). However, some researchers have
suggested ‘coherence plot’ and ‘periodic autocorrelation function’ methods
for testing the periodically correlated time series (e.g., Hurd and Gerr, 1991;
Vecchia and Ballerini, 1991).

Periodicity is detected through harmonic analysis using the well-known
Fourier series. If a periodicity exists in a trend-free time series, it can be
represented by a Fourier series, which is expressed as follows (Stein and
Weiss, 1971; Shahin et al., 1993; Howell, 2001):

x(t) = 0 k k
1

[ sin (2 / ) cos (2 / )]
h

k
A A kt P B kt P (75)

where x(t) = harmonically fitted means at period t(t = 1, 2, ......, P), A0
= population mean, h = total number of harmonics [h = P/2 for even P and
(P+1)/2 for odd P]. P = base period or period of the function and Ak and Bk
are sine and cosine Fourier coefficients, respectively.

Here, Ao, Ak and Bk are computed as (Shahin et al., 1993):

A0 = t
1

(1/ )
P

t
P x (76)

Ak = t
1

(2/ ) sin (2 / ),
P

t
P x kt P k = 1, 2, ..., P/2–1 (77)
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Bk = t
1

(2/ ) cos (2 / ),
P

t
P x kt P k = 1, 2, ..., P/2–1 (78)

For the monthly hydrologic records, P = 12, and hence h = 6. As it may
not always be necessary to expand the Fourier series up to the maximum
number of harmonics, the maximum number of significant harmonics (h*)
can be obtained by examining the cumulative periodogram, which determines
the relative significance of each harmonic. To accomplish this task, firstly the
variations caused by a periodic component (Ik), say kth harmonic, is computed
as (Shahin et al., 1993; Haan, 2002):

Ik = 2 2
k k(1/2)( )A B (79)

Secondly, the periodogram is obtained by plotting Ik against 2 k/P for k
= 1, 2, ......, N/2. Thirdly, the cumulative periodogram (Pj) shows a rapidly
rising part up to h* and then gradually increases up to its maximum value of
unity and is calculated as (Jayawardena and Lai, 1989):

Pj =
2 2 2
k k t

1 1
( )/2 ( ) /

j P

k t
A B x P (80)

where  is the mean of t .x It should be noted that in the numerator of Eqn.
(80), the terms under summation should be arranged in decreasing order of
their magnitudes. Finally, the significance of different harmonics is tested
using the Fisher’s g-statistic, which is given as (Yevjevich, 1972; Shahin et
al., 1993):

gk =
/2

2 2
k k k

1
( )/2

P

k
I A B (81)

When the g-statistic (i.e., Eqn. 81) is multiplied by 100, it gives the
percent contribution of the kth harmonic. It is worth mentioning that the quantity

/2
2 2
k k

1
( )

P

k
A B  of Eqn. (81), when multiplied by ‘P’ is used as a measure of the

variation caused by a given periodic component (Shahin et al., 1993). On the

other hand, the total variations in a series are expressed as 2
t

1
( ) ,

P

t
x  which

is the denominator of Eqn. (80) multiplied by ‘P’. Thus, if these two terms are
equal, the total variations in the series can be explained by the periodic
components only considering its all harmonics, and under such circumstances
the cumulative periodogram is given as follows:

Pj = k
1

100
j

k
g (82)
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4.5 Methods for Persistence Testing

Persistence can sometimes be treated as periodicity. In many hydrologic time
series studies, no distinction is made between persistence and randomness
(McMohan and Mein, 1986; Aksoy, 2007). Therefore, the tests to examine the
randomness of a hydrologic time series are used for detecting both trend and
persistence (Machiwal and Jha, 2006). Generally, randomness or non-
persistence is defined as the independence among data in a time series. On the
contrary, the series is called persistent if the data in the series are dependent
on each other. Practically, persistence is a tendency of the successive values of
a time series to ‘remember’ their antecedent values and to be influenced by
them (Giles and Flocas, 1984). Mathematically, persistence is defined as the
correlational dependency of order k between each ith element and the (i-k)th

element of the series (Kendall, 1973), and is measured by autocorrelation (i.e.,
correlation between two terms of the same time series). Here, ‘k’ is usually
called time lag. The detection of persistence can be made by autocorrelation
technique (time domain) and/or spectral technique (frequency domain).
However, the autocorrelation technique has been applied in several studies
such as Mirza et al. (1998), Maidment and Parzen (1984), Schwankl et al.
(2000), etc. Here, it is worth mentioning that some researchers (e.g.,
Jayawardena and Lai, 1989) have used the autocorrelation technique for testing
periodicity in hydrologic time series. Such a misconception is quite common
in the analysis of hydrologic time series (Machiwal and Jha, 2006).

The persistence test of a time series can be performed in two ways:
(i) time domain (autocorrelation technique), and (ii) frequency domain (spectral
technique). However, some investigators (e.g., Quimpo, 1968) suggest the
application of autocorrelation technique only because the spectral technique
alone cannot be used without knowing the autocorrelation in a series. This is
due to the fact that the spectral density is a Fourier transform of the
autocorrelation function. The autocorrelation and spectral techniques for
examining the persistence in a time series are described below.

4.5.1 Autocorrelation Technique

The autocorrelation function in essence expresses the degree of temporal
dependency among observations. It is actually a process of self-comparison,
expressing the linear correlation between an equally-spaced series and the
same series at a specified time lag or separation (Jenkins and Watts, 1968). If
x0, x1, x2, ..., xn-1 is a realization of a stationary stochastic process, the covariance
between xt and its value xt+k, separated by a time interval k, is known as the
population autocovariance ( k) and is mathematically expressed as follows
(Box and Jenkins, 1976):

k = t t + k[( )( )]E x x (83)
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where xt = value of variable at the tth location in time; k = time lag,  =
population mean and E = expectation operator. Furthermore, the population
autocorrelation function ( k) is defined as a ratio of the population
autocovariance ( k) to the population variance [Var(xt)]. That is,

k =
k

tVar( )x  (84)

It should be noted that the population autocorrelation ( k) can also be
estimated by the serial autocorrelation function (rk) from sample data using
the following expression (Shahin et al., 1993; Haan, 2002):

rk =
t t+k t t k

0 0 0
1/2 1/22 2

2 2
t t t k t k
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1 ( ) 1 ( )

n k n k n k

t t t

n k n k n k n k

t t t t

x x n k x x

x n k x x n k x

(85)

For k = 0, Eqns (84 and 85) result in 0 = r0 = 1. As the lag (k) increases,
the number of the pairs of elements used in calculating rk decreases. It is a
common practice to set the upper limit of lag between 0.1n to 0.25n, depending
on the size (n) of the series (Matalas, 1967). The detailed information about
the internal structure of the time series can be obtained by examining
autocorrelogram, which is drawn with an array of autocorrelation coefficients
(i.e., 0, 1, ...) as ordinates and k as abscissa.

The upper and lower critical values of autocorrelation function can be
obtained from the Anderson’s test as follows (Anderson, 1942):

(rk)upper = 1 21 ( ) ( 1 1)n k z n k (86)

(rk)lower = 1 21 ( ) ( 1 1)n k z n k (87)

where z1- /2 = standard normal variate at  significance level. If the value of
rk obtained from Eqn. (85) falls within the critical value given by either Eqn.
(86) or Eqn. (87), the null hypothesis that ( k) is zero is rejected. This indicates
that the series is not purely random and some persistence exists.

4.5.2 Spectral Technique

The spectral analysis technique can be considered as an alternative to the
autocorrelation technique where the spectral density function replaces the
Fourier transformation of the autocorrelation function (Shahin et al., 1993).
The spectrum of a time series can be defined by harmonic analysis. The basic
function of the spectrum is to decompose a time series on a frequency basis,
and then frequencies and amplitudes of the series can be estimated, if they are
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present (Kottegoda, 1980). Therefore, if one or more persistence are present
in the time series, spectral technique is often used. A non-stationary periodic
time series x(t) may be expanded into a Fourier series using following
expression:

x(t) = 0 k k
1
[ sin (2 ) cos (2 )]

k
A A k f t B k f t  (88)

where f = frequency and rest of the parameters are the same as expressed in
Eqn. (75). The frequency can be given as:

f =
1

2P (89)

where P = period of the function (base period) and  = angular frequency.
With reference to Eqn. (89), two spectral density functions S( ) and S(f) can
be related as follows:

S( ) = 2 ( )S f (90)

The density function S( ) is related to Fourier transformation F( ) as
follows:

S( ) = ( )F (91)

Similarly, S(f) = ( )F f
f (92)

Considering an infinitesimal portion of frequency in the range of (f,
f + df ), the spectrum S( f ) df represents the contribution of components with
frequencies in the range ( f, f + df ) to the total variance.

The spectral density function S(f) for a discrete process can be written as
(Box and Jenkins, 1976):

S(f) = 0 k
1

2 cos (2 )
k

f k –  < f <  (93)

However, the spectral density function for a continuous process can be
written as:

S( f ) = ( )cos (2 )k f k dk – < f < (94)

Negative frequencies obtained with above expressions can be avoided
and integral of the normalized spectral density function can be maintained
over the entire range at one, a one-sided spectral density function G( f ) =
2S( f ) can be written, where f varies only over (0, ) and zero elsewhere
(Shahin et al., 1993). The function G( f ) may be expressed as:
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G( f ) =
0

2 ( )cos (2 )k f k dk 0 < f < (95)

The above function may be discretized as follows:

G(f) = 0 k
1

2 2 cos(2 )
k

f k 0 < f < (96)

The above analysis considers entire population of the variable, and for a
finite time series of size n, the k’s are replaced with their sample estimates
Ck’s and 0 is replaced with C0. Equation (96) for a finite time series may be
reduced to the following:

ˆ ( )G f =
1

0 k
1

2 2 cos(2 )
n

k
C C f k (97)

In Equation (97), an increase in value of k results in reduced precision in
estimating the value of Ck. Hence, there is a need to give more weight to Ck
values for small k’s and less weight to Ck values for larger k’s. This is normally
done by introducing a set of weights k, known as lag window, and by truncating
the upper limit of the summation in Equation (97) to k values less than (n–1).
Generally, k is chosen equal to or less than n/4. Equation (97) can be more
conveniently expressed in terms of autocorrelation function ( k) rather in
terms of autocovariances (Ck). The serial correlation coefficient (rk) based on
sample data is used as an estimate of the autocorrelation coefficient for the
same lag k. Considering all these statements, Equation (97) can be rewritten
as:

( )G f  = 0 k k
1

2 2 cos (2 )
m

k
r r f k (98)

For autocorrelation, r0 = 1, Equation (98) can be written as:

( )G f  = k k
1

2 1 2 cos (2 )
m

k
r f k (99)

where Ḡ( f ) = smoothed spectral ordinate.
Of the various available lag window expressions, the mostly used are

‘Parzen window’ (Parzen, 1963), ‘Tukey window’ (Blackman and Tukey,
1959), and ‘hamming and hanning procedures’ (Shahin et al., 1993).

4.6 Merits and Demerits of Time Series Methods

Based on the experiences of world-wide researchers and scientists in the area
of time series analysis, the following merits and demerits of time series analysis
methods can be identified. Firstly, the merits and demerits of time series
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analysis as a whole are described, and thereafter the merits and demerits of
individual tests used for time series analysis are highlighted:

(i) The assumptions of the classical parametric tests viz., normality,
linearity, and independence are usually not met by the hydrological
time series data, especially in case of surface water quality data.
Therefore, recently some nonparametric tests have been proposed to
determine the trend in surface water quality time series (Kalayci and
Kahya, 1998). At the same time, the statistical tests for trend detection
in water quality are normally confounded by one or more of the
following problems: missing values, censored data, flow relatedness,
and seasonality.

(ii) In general, the parametric methods to assess significance of trend
employ pre-specified models and associated tests, whereas the
nonparametric methods generally apply rank tests to the data. Neither
approach is suitable for exploratory analysis (Ramesh and Davison,
2002).

(iii) Cumulative Deviations test is superior to the classical von Neumann
test for a model with only one change in the mean (Buishand, 1982).

(iv) The major limitation with all the multiple comparison tests of
homogeneity (i.e., Tukey, Link-Wallace, Dunnett, Bartlett and Hartley
tests) is the requirement that populations should be normally distributed
with equal variances, which makes the tests parametric in nature.
Although the Link-Wallace test, the Dunnett’s test and the Hartley’s
test can be employed for the same purpose as the Tukey’s test, the
former three tests can be applied only when the sample size of all
populations is equal, though methodology of the Hartley’s test can
still be followed in case sample size of all the populations are more
or less similar.

(v) Of the three stationarity tests, both the t-tests are parametric in nature,
which require normality assumption of the time series to be tested.
However, the Mann-Whitney test is nonparametric in nature and is
more robust as it can be applied to normal as well as normal non-
normal time series.

(vi) Although the linear model (i.e., Regression test) is most commonly
used for trend detection, it has a demerit that it does not distinguish
between trend and persistence. The linear model can also be misleading
if seasonal cycles are present, the data are not normally distributed,
and/or the data are serially correlated (Gilbert, 1987). The Spearman
Rank Order Correlation (SROC) test overcomes these demerits of the
linear model. The merit of this test is its nearly uniform power for
detecting linear as well as nonlinear trends (WMO, 1966; Dahmen
and Hall, 1990). Among the trend tests, the superiority of one over
other is mainly associated with the extent of adaptability of a chosen
test to the structure of the time series to be tested.
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(vii) The Turning Point test is easy to apply, especially when the time
series is plotted graphically. It is an effective test for randomness
against systematic oscillation. However, if the turning points tend to
bunch together, the Kendall’s Phase test is more relevant (Shahin et
al., 1993). The demerit of the Kendall’s phase test is that a comparison
of observed and theoretical numbers of phases by the usual chi-
square test is invalidated due to the fact that the lengths of phases are
not independent. Also, the distribution of phase lengths does not tend
to be normal for large lengths of a series, but the number of phases
follows a normal distribution (Kendall, 1973). The Turning Point test
and Kendall’s phase test are practically out-dated due to the availability
of much more powerful tests (Shahin et al., 1993).

(viii) The Wald-Wolfowitz test has demerit that it does not consider length
of runs and significant information about the time series is ignored.
Hence, this test is not very powerful nor efficient. The Sum of Squared
Lengths test is more powerful than the Wald-Wolfowitz test
(Himmelblau, 1969).

(ix) The Adjacency test for checking trends has demerit that it inherently
considers that the time series data points are independent and the data
are collected under uniform conditions (Kanji, 2001), which may not
be true for the real-world time series.

(x) The Difference Sign test for trend detection has a demerit almost
similar to the Adjacency test that the data points of the time series are
collected under uniform conditions and the number of data points is
large, which may not be true for short-term time series where data
were collected under dissimilar conditions.

(xi) The Run test on Successive Differences has a demerit very similar to
the Adjacency test that the time series data are collected under uniform
conditions, which may not be true for real-world time series.

(xii) The Wilcoxon-Mann-Whitney test has merit that it is a nonparametric
test (i.e., distribution-free) and hence, it may be applicable to normal
and non-normal time series. However, this test has demerit that it
considers that the time series data points are random and independent
of time, which may not be true for an autocorrelated or persistent
time series.

(xiii) The Kendall’s Rank Correlation test is one of the most powerful tests
for trend checking in the hydrologic time series.

(xiv) The Mann-Kendall test is a nonparametric test for trend detection in
a time series without specifying whether the trend is linear or nonlinear.
Hence, this test has an advantage of being applicable for non-normal
as well as normal time series. The nonparametric nature of the test
avoids testing of normality in the time series. However, the existence
of serial correlation in a time series may affect the ability of the
Mann-Kendall test to assess the site significance of a trend, and the
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presence of cross correlation among sites in a network may influence
the ability of the test to evaluate the field significance of trends over
the network (Yue et al., 2003). The effect of serial correlation on the
Mann-Kendall test can be eliminated by using trend-free pre-whitening
procedure as suggested by Yue et al. (2003).
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5
Stochastic Modelling of Time Series

In practice, hydrologists often deal with a limited amount of recorded data
(i.e., a sample) while analyzing a hydrologic time series. This sample consists
of a limited number of realizations of the population of same hydrologic
process. When a hydrologic time series is characterized with statistical and
probabilistic parameters, it represents a probability of occurrence of one of its
possible stages. This probabilistic occurrence of the hydrologic time series is
considered as one realization. All possible realizations of the hydrologic process
constitute a population. The concept of terms sample and population has
already been explained in Chapter 2. The main intent of the most hydrologic
studies is to understand and quantitatively describe the population as well as
the process that generates it based on a limited number of samples. Also,
future predictions and/or simulations about the hydrologic time series can be
made by applying statistical tools and techniques using probabilistic or
stochastic models based on the historical data. When a hydrologic time series
is analyzed in this manner, the technique is known as ‘stochastic modelling’
of time series and the parameters described with statistic and probabilistic
terms are called ‘stochastic parameters’.

Stochastic models are used to model a time series without considering
physical nature of the time series (Box and Jenkins, 1976; Shahin et al.,
1993). In hydrology, common stochastic models are: pure random (or white
noise) model, autoregressive (AR) model, moving average (MA) model,
autoregressive moving average (ARMA) model, and autoregressive integrated
moving average (ARIMA) model. In this chapter, common stochastic processes
are discussed with a major emphasis on autoregressive integrated moving
average process. Step-by-step procedure for stochastic modelling of the time
series is explained.

5.1 Common Stochastic Processes

Different stochastic models mainly follow distinct stochastic processes. The
stochastic processes associated with stochastic models are briefly described in
this section.
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5.1.1 Purely Random Process

A discrete hydrologic process is called a purely random process if the random
data points of a variable xt (t = 1, 2, ...) form a sequence of mutually independent,
identically distributed data points of the same variable (Chatfield, 1980). It is
also known as white noise. The definition of a purely random process reflects
that it is strictly stationary. In practice, this type of stochastic process does not
appear. The purely random process has the least practical importance; however,
it is important as a building block for other processes.

5.1.2 Autoregressive (AR) Process

Most time series consist of data points that are serially dependent in the sense
that one can estimate a coefficient or a set of coefficients that describes
consecutive data points of the series from specific, time-lagged (previous)
data points. This can be summarized by the following expression of
autoregressive process (Box and Jenkins, 1976).

xt = 1 (t 1) 2 (t 2) 3 (t 3) tx x x (1)

where xt
 = data point of variable x at time t; x(t – 1), x(t – 2) and x(t – 3) = data

points of variable x at previous times t – 1, t – 2 and t – 3, respectively;
 = a constant (intercept or population mean); 1 2 3, and = autoregressive

model parameters; and t = random error component or random shock (white
noise).

It is seen from Eqn. (1) that each data point of a time series is made up
of a random error component and a linear combination of prior data points.
For the population of a hydrologic variable, expression given in Eqn. (1)
represents an infinite autoregressive process. However, in practice, population
mean in Eqn. (1) is replaced with sample mean and the order of autoregressive
process is reduced to p. Thus, Eqn. (1) can be rewritten as (Box and Jenkins,
1976):

xt = 1 2 p tt 1 t 2 t px x x x (2)

The order of the autoregressive process is defined by the highest value of
p, for which p 0. Thus, for p = 1, the autoregressive (AR) process is of the
first order and for p = 2, the process is of the second order. The first and
second order autoregressive processes can be simply denoted as AR(1) and
AR(2), respectively. Similarly, the AR process of order p can be denoted as
AR(p).

Stationarity Requirement: The autoregressive process will be stable only when
the autoregressive model parameters lie within a certain range. Otherwise,
past effects (influence of previous data points) would accumulate and the
successive values of the variable xt would move towards infinity, and therefore,
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the time series would not be stationary. For example, if there is only one
autoregressive model parameter ( 1) as the case of AR(1), then 1 must lie
within ± 1 or –1< 1 <+1. If there is more than one autoregressive model
parameter, similar kind of general restrictions on the parameter values can be
defined (Box and Jenkins, 1976; Montgomery et al., 1990).

5.1.3 Moving Average (MA) Process

Apart from the serial dependence of the data points as in case of autoregressive
process, each data point in the time series can also be affected by the past
random error (or random shock) that cannot be taken care of by the
autoregressive model. This can be expressed by moving average process as
given below (Box and Jenkins, 1976).

xt = t 1 (t 1) 2 (t 2) 3 (t 3) (3)

where xt
 = data point of variable x at time t;  = a constant or population mean;

1, 2, 3 = moving average model parameters; and t (t 1) (t 2) (t 3), , , =
random error components of the data points at previous times t, t – 1, t – 2 and
t – 3, respectively.

According to Eqn. (3), each data point of the time series is made up of a
random error component or random shock and a linear combination of random
shocks involved in prior data points. For the population of a hydrologic variable,
expression given by Eqn. (3) represents an infinite moving average process.
However, Eqn. (3) can be rewritten for a sample by replacing population
mean with sample mean and reducing the order of the moving average process
from infinite to q, as shown (Box and Jenkins, 1976):

xt = t 1 2 qt 1 t 2 t q (4)

The order of the moving average process is defined by the highest value
of q, for which q  0. Thus, for q = 1, the moving average (MA) process is
of the first order and for q = 2, the process is of the second order. The first and
second order moving average processes can be simply denoted as MA(1) and
MA(2), respectively. Similarly, the MA process of order q can be denoted as
MA(q).

Invertibility Requirement: There is a duality between the moving average
process and the autoregressive process (Box and Jenkins, 1976; Montgomery
et al., 1990) such that a MA(q) process is not uniquely determined by its
autocorrelation function. However, a unique relationship between moving
average process and their autocorrelation function is required, since the
coefficients of the MA(q) process can only be estimated by empirical
autocorrelation function. Box and Jenkins (1976) resolved the problem by
introducing a concept of ‘invertibility’ condition. The ‘invertibility’ condition
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states that the expression for the MA(q) [Eqn. (4)] can be rewritten (inverted)
into an autoregressive form (of infinite order) if the parameters of the moving
average model make the model ‘invertible’. Note that the invertibility condition
of a moving average process is analogous to the stationarity condition of an
autoregressive process.

5.1.4 Autoregressive Moving Average (ARMA) Process

The autoregressive AR(p) and moving average MA(q) processes are special
cases of an autoregressive moving average process. An autoregressive moving
average (ARMA) process of order (p,q) denoted by ARMA(p,q) represents a
real stochastic process xt with the following expression:

 t 1 2 p t 1 2t 1 t 2 t p t 1
qt 2 t q

x x x x (5)

An ARMA(p,0) process with p  1 is obviously an AR(p) process, whereas
an ARMA(0,q) process with q  1 is an MA(q) process.

5.1.5 Autoregressive Integrated Moving Average (ARIMA)
Process

Stochastic modelling and forecasting of a time series requires adequate
knowledge about mathematical techniques for identifying patterns in time
series data and for expressing the physical process in terms of the mathematical
model. However, the physical processes are very complex in nature, the patterns
of time series data are unclear, and individual data points involve considerable
error. Hence, it is highly challenging in practice to explore the hidden patterns
in the data and also to generate forecasts. Box and Jenkins (1976) developed
an autoregressive integrated moving average (ARIMA) model and successfully
demonstrated their applications in forecasting of physical processes. The
ARIMA modelling is inherently a very powerful technique and contains great
flexibility. However, the ARIMA modelling requires a great deal of experience
because it is complex to understand and it is not easy to use. The ARIMA
modelling may often produce satisfactory results but the results entirely depend
on the analyst’s/scientist’s level of expertise (Bails and Peppers, 1982).

The general ARIMA model includes autoregressive as well as moving
average parameters, and explicitly includes differencing in the formulation of
the model (Box and Jenkins, 1976). Three specific parameters of a general
ARIMA model are: the autoregressive parameters (p), the number of
differencing passes (d), and moving average parameters (q). Box and Jenkins
(1976) denoted the autoregressive integrated moving average process as
ARIMA (p,d,q), which means the ARIMA model contains ‘p’ autoregressive
parameters and ‘q’ moving average parameters which were computed for the
series after it was differenced ‘d’ times.
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5.2 Methodology for ARIMA Model Application

Methodology for applying any of the four stochastic models (AR, MA, ARMA
and ARIMA) is almost the same. This chapter describes methodology for
applying stochastic models to time series with reference to the ARIMA model,
since this model contains fundamental parameters of other stochastic models
(AR, MA and ARMA). In addition, the ARIMA(p,d,q) model can be easily
transformed to AR, MA and ARMA models by adjusting the model parameters.
The methodology for stochastic modelling of the time series involves four
basic steps (Box and Jenkins, 1976): (i) identification or selection of model,
(ii) estimation of model parameters/coefficients, (iii) evaluation or diagnostic
check of the model, and (iv) forecasting. It is necessary for a time series to be
stationary in nature, free from any kind of trends, and adjusted for seasonality
before proceeding to stochastic modelling. The four steps of the methodology
are elucidated in subsequent sections. An application-oriented methodology
of ARIMA models without mathematical descriptions can be found in
McDowall et al. (1980).

5.2.1 ARIMA: Identification of the Model

Number of Differencing Passes: The input time series for an ARIMA model
needs to be stationary, i.e., the time series should have a constant mean,
variance, and autocorrelation through time. A non-stationary time series is
first required to be made stationary. The most common way of making time
series stationary is simply differencing the series repetitively till it becomes
stationary. Sometimes, the time series is transformed for stabilizing the variance
of the series by applying suitable transformations; mostly logarithmic
transformation is applied. The number of times the series is differenced to
attain stationarity is known as number of differencing passes and is indicated
by the parameter ‘d ’ of ARIMA(p,d,q) model. To get an idea of the expected
number of differencing passes to make the time series stationary, time plot
and autocorrelogram of the series can be critically examined. Significant
changes in level (strong upward or downward) suggests that the time
series require first-order non-seasonal (lag = 1) differencing. However,
strong changes of slope suggest that the time series require second-order
non-seasonal differencing. If there are seasonal patterns, the time series
usually require respective seasonal differencing. In an autocorrelogram,
when the estimated autocorrelation coefficients decline slowly at longer lags,
first-order differencing of the time series is usually needed. It is suggested for
the newly practising analysts to avoid unnecessary differencing of the time
series as sometimes the time series may require little or no differencing. An
over-differenced time series may produce less stable coefficient/parameter
estimates.
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Order of the ARIMA Model: Number of autoregressive (p) and moving average
(q) parameters (i.e., order of the model) are also decided in identification
step. The order of the model is selected in such a way that the model
should be effective and parsimonious. A parsimonious model will have
the fewest parameters and the greatest number of degrees of freedom
among all the stochastic models that fit to the time series. It is observed that
the number of AR and MA parameters hardly exceed two in most of the
studies.

In addition to help deciding required number of differencing passes, the
time plots of the data series, correlograms of autocorrelation function (ACF),
and partial autocorrelation function (PACF) can also assist analysts in selecting
order of a stochastic model. Though the decision cannot be straightforward
and requires not only vast experience but also a good deal of testing with
alternative stochastic models and their parameters. Autocorrelation function
and partial autocorrelation functions are discussed below.

Autocorrelation refers to the correlation of a time series with its own past
and future data points. Autocorrelation is also sometimes called as ‘lagged
correlation’ or ‘serial correlation’, which refers to the correlation between
members of a series of numbers arranged in time. Positive autocorrelation
might be considered as a specific form of persistence, a tendency for a system
to remain in the same state from one data point to the next. Autocorrelation
analysis has been discussed in Chapter 4. The autocorrelation function (ACF)
is expressed as Eqns (84) and (85) in Chapter 4 for ‘population’ and ‘sample’
of the time series, respectively.

Partial autocorrelation function (PACF) is the partial correlation
coefficients between the time series and lags of the time series over time. The
partial autocorrelation at lag k is the autocorrelation between xt and xt-k that is
not accounted for by lags 1 through k – 1. The partial autocorrelation of an
AR(p) process is zero at lag more than or equal to (p + 1). Detailed algorithm
and mathematical expressions for computing the PACF can be found in Box
and Jenkins (1976) and Brockwell and Davis (1991).

Pankratz (1983) formulated general guidelines for identifying one of the
five basic stochastic models based on the shape/characteristics of
autocorrelogram (ACF) and partial autocorrelogram (PACF) (Table 5.1). A
majority of time series patterns can be satisfactorily approximated using one
of the five basic models mentioned in Table 5.1. Further details and suggestions
for selecting order of the stochastic model can be found in Box and Jenkins
(1976), Hoff (1983), McCleary and Hay (1980), McDowall et al. (1980), and
Vandaele (1983).

The selection of the correct orders p and q of an ARIMA model is fairly
challenging. In this situation, few criteria have been proposed in the literature
to select such a pair (p,q) of the parameters minimizing some function, which
is based on the variance estimate ( 2

p,qˆ ) of the estimated model parameters.
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Table 5.1. Guidelines for identifying model parameters based on the
characteristics of ACF and PACF

Sl. No. Model parameter Characteristics of Characteristics of
ACF PACF

1 One autoregressive (p) Exponential decay Spike at lag 1, no correlations
for other lags

2 Two autoregressive (p) A sine-wave shape Spikes at lags 1 and 2, no
pattern or a set of correlation for other lags
exponential decays

3 One moving average (q) Spike at lag 1, no
correlation for other Damps out exponentially
lags

4 Two moving average (q) Spikes at lags 1 and 2, A sine-wave shape pattern or
no correlation for other a set of exponential decays
lags

5 One autoregressive (p) Exponential decay Exponential decay starting at
and one moving starting at lag 1 lag 1
average (q)

One of the common functions is Akaike Information Criterion (AIC) (Brockwell
and Davis, 1991), which is expressed as:

AIC (p,q) = 2
p,q

1ˆlog ( ) 2
1

p q
n (6)

One minimization function is Bayesian Information Criterion (Brockwell
and Davis, 1991) expressed as:

BIC (p,q) = 2
p,q

( ) log( 1)ˆlog ( )
1

p q n
n (7)

Another criterion is proposed by Hannan and Quinn (1979), which is
given as:

HQ (p,q) = 2
p,q

2 ( ) log log( 1)ˆlog ( )
1

p q c n
n with c>1 (8)

It is worth mentioning that the variance estimate ( 2
p,qˆ ) becomes small as

(p+q) increases. Hence, the additive terms in the above criteria serve as penalties
for large values of p and q, and help to prevent over-fitting of the data by
selecting p and q too large. There is no specific reason to use a certain criterion
for a specific condition. However, it is to be noted that AIC has the tendency
not to underestimate the model order and the BIC is generally to be preferred
for larger samples (Schlittgen and Streitberg, 2001).
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Order of Seasonal ARIMA Model: A seasonal ARIMA is a generalization and
extension of the regular ARIMA process discussed earlier in this chapter. The
seasonal ARIMA or SARIMA model is used for a time series where a pattern
repeats seasonally over time. In addition to the non-seasonal or regular
parameters of the ARIMA model, seasonal model parameters for a specified
lag (selected in the identification step) need to be estimated. Analogous to the
simple or regular ARIMA model parameters, there are three seasonal model
parameters: seasonal autoregressive (ps), seasonal differencing (ds), and
seasonal moving average parameters (qs). The SARIMA model is usually
denoted as ARIMA(p,d,q)(ps,ds,qs), which describes a model that includes ‘p’
regular AR parameters and ‘ps’ seasonal AR parameters, and, ‘q’ regular MA
parameters and ‘qs’ seasonal MA parameters, and these parameters for the
time series were computed when the series was differenced ‘d’ times and ‘ds’
time seasonally differenced. The seasonal lag used for the seasonal parameters
is usually determined during the identification phase and must be explicitly
specified.

The general guidelines for the selection of regular model parameters to be
estimated (based on ACF and PACF) also apply to seasonal model parameters.
The main difference is that in seasonal series, ACF and PACF will show
sizable coefficients at multiples of the seasonal lag (in addition to their overall
patterns reflecting the non-seasonal components of the series).

5.2.2 ARIMA: Estimation of Model Parameters

Once ARIMA model has been identified and selection of model order is over,
the next step is estimation of model parameters. The model parameters are
estimated by using function minimization procedures, in order to minimize
the sum of squared residuals. There are different methods for estimating the
ARIMA model parameters. It is supposed that all the estimation methods
should produce very similar values of the model parameters, but a particular
estimation method may be more or less efficient for any given ARIMA model.
Generally, the model parameter estimation make use of a function minimization
algorithm (e.g., quasi-Newton method for nonlinear estimation) to maximize
the likelihood/probability of the observed time series for the given values of
the model parameters. In practice, sum of squares of the residuals for the
given respective parameters are computed for the function minimization. The
sum of squares of residuals can be computed by any of three methods: (i) the
approximate maximum likelihood method (McLeod and Sales, 1983), (ii) the
approximate maximum likelihood method with backcasting, and (iii) the exact
maximum likelihood method (Melard, 1984).

All the methods for computing the sum of squares of residuals are equally
efficient in the most real-world time series applications. However, the method
of approximate maximum likelihood with no backcasts is the fastest among
three methods, and should particularly be used for estimating the model
parameters of very long time series with more than 30,000 data points. The
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exact maximum likelihood method proposed by Melard (1984) may become
inefficient when used to estimate the model parameters with long seasonal
lags (e.g., annual lags). A general recommendation is to first use the approximate
maximum likelihood method in order to establish initial parameter estimates
that may be close to the real final values and then the exact maximum likelihood
method may be employed to get final estimates of the model parameters with
certainly a few iterations.

The ARIMA models may also include a constant in addition to the standard
parameters of AR and MA models. However, interpretation of the statistically
significant constant depends on the type of the model that is to be fit. When
the AR parameters are not present in the ARIMA model, the expected value
of the constant simply represents mean of the series. Whereas, if the
autoregressive parameters are present in the series, the constant represents the
intercept. If the series is differenced, the constant represents the mean or
intercept of the differenced series. Thus, if the series is differenced once, and
there are no autoregressive parameters in the model, the constant represents
the mean of the differenced series.

5.2.3 ARIMA: Evaluation of the Model

When the first two steps of ARIMA modelling are complete then orders p and
q of the model and respective AR and MA parameters are known in order to
model an ARIMA(p,d,q) process underlying the data. Before proceeding to
make forecasting by using the ARIMA model, it is essential to apply diagnostic
check of the model. The approximate values of the t test-statistics are computed
from the parameter standard errors. If the test-statistics are not found significant,
the respective parameter can in most cases be dropped from the model without
affecting substantially the overall fit of the model.

Another straightforward way for evaluating the reliability of the selected
ARIMA model is to check the accuracy of generated forecasts. A comparison
of the forecasts with the observed (measured) data points can reveal how
efficient the model is in making forecasts. A good model should not only
provide sufficiently accurate forecasts, but it should also be parsimonious and
produce statistically independent residuals that contain only noise and no
systematic components. The correlogram of the residuals should not reveal
any serial dependencies. One more approach is to plot the residuals of the
original (observed) series and inspect them for any systematic trends, and to
examine the autocorrelogram of residuals. There should not be any serial
dependency between residuals.

The portmanteau lack-of-fit test is generally applied to evaluate the model
fitness. The portmanteau lack-of-fit test-statistic, Q is defined as follows (Box
and Pierce, 1970):

Q = 2
k

1
( )

L

k
n r (9)
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where rk( ) = autocorrelation coefficient of the residual series at lag k, and L
= maximum lag considered. If t is independent, then Q, which is approximately
chi-squared distributed with L – p – q degrees of freedom, should be less than

2 (L – p – q).
The portmanteau lack-of-fit test checks whether the estimated residuals

tˆ , t = 1, 2, …, n, behave approximately like realizations from a white noise
process.

The major concern here is that the residuals are systematically distributed
across the series (e.g., they could be negative in the first part of the series and
approach zero in the second part) or that they contain some serial dependency
which may suggest that the ARIMA model is inadequate. The analysis of
ARIMA residuals constitutes an important test of the model. The estimation
procedure assumes that the residuals are not autocorrelated and that they are
normally distributed.

5.2.4 ARIMA: Forecasting

When the selected ARIMA model successfully passes the evaluation step, the
estimated model parameters are then used in the last stage of forecasting to
compute new values of the time series and confidence intervals for the predicted
values. Usually, the forecasts are made for future such that these computed
new values are beyond the data points included in the input time series. It is
worth mentioning that if the estimation process is performed on transformed
or differenced time series, then the series needs to be integrated before the
forecasts are generated. Integration is the inverse process of differencing,
which is performed in order to express the forecasts in values compatible with
the input time series data. This integration feature is represented by the letter
‘I’ in the name of the model (ARIMA = Autoregressive Integrated Moving
Average).
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6
Current Status of Time Series

Analysis in Hydrological Sciences

Time series analysis has been successfully applied in the fields like geology,
ocean engineering, seismology, hydrology, climatology, etc. The hydrological
and climatological time series studies have been carried out for analyzing the
historic rainfall data (e.g., Henderson, 1989; De Michele et al., 1998; Mirza et
al., 1998; Pagliara et al., 1998; Abaurrea and Cebrian, 2003; Pugacheva et al.,
2003; Astel et al., 2004), streamflow data (Avinash and Ghanshyam, 1988;
Capodaglio and Moisello, 1990; Radziejewski et al., 2000; Fanta et al., 2001;
Adeloye and Montaseri, 2002; Chen and Rao, 2002), flood data (Grew and
Werrity, 1995; Changnon and Kunkel, 1995; Westmacott and Burn, 1997;
Robson et al., 1998; Reed et al., 1999; Lins and Slack, 1999; Loukas and
Quick, 1996, 1999; Cayan et al., 1999; Jain and Lall, 2001; Douglas et al.,
2000; Adamowski and Bocci, 2001; Zhang et al., 2001; Cunderlik and Burn,
2002), infiltration data (Schwankl et al., 2000), and surface water quality data
(Jayawardena and Lai, 1989; Higashino et al., 1999) as well as for generating
synthetic rainfall data in semi-arid regions (Janos et al., 1988), determining
water consumption patterns (Maidment and Parzen, 1984), detecting trends in
evapotranspiration and wind speed (Hameed et al., 1997; Raghuwanshi and
Wallender, 1997), and for detecting climate change or variability (Kite, 1989;
Khan, 2001).

A comprehensive literature survey (Machiwal and Jha, 2006) revealed
that both theoretical and applied research on time series analyses have been
conducted in the hydrological and climatological (meteorological) sciences in
the past. The theoretical research basically involves advancement of an existing
time series test or development of a novel method for analyzing the hydrologic
time series while the applied research mainly highlights application of the
existing approaches of time series analysis to hydrologic time series for different
purposes. In climatological studies, time series analysis has been applied to
precipitation, maximum and minimum air temperature, water temperature,
evapotranspiration and climate change. In hydrologic studies, streamflow,
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groundwater flow and water quality are the variables, which have employed
application of the time series methods. This chapter discusses the current
status of time series analysis in hydrological sciences; it has been largely
drawn from Machiwal and Jha (2006) with updates. Although the reviewed
literature is extensive, only major relevant reviews in the context of this book
are included in this chapter.

6.1 Theoretical Research on Hydrologic Time Series

Sen (1968) studied a simple and robust estimator (point as well as interval) of
BETA based on the Kendall’s rank correlation tau. Various properties of these
estimators were studied and compared with those of the least squares and
some other nonparametric estimators. Statistical tests for monotonic trend in
seasonal hydrologic time series are commonly confounded by some of the
following problems: non-normal data, missing values, seasonality, censoring
(detection limits), and serial dependence. Hirsch and Slack (1984) presented
an extension of the Mann-Kendall trend test for such data. Because the
suggested test is based entirely on ranks, it is robust against non-normality
and censoring. Seasonality and missing values present no theoretical or
computational obstacles to its application. Monte Carlo experiments indicated
that, in terms of Type I error, it is robust against serial correlation except when
the data have strong long-term persistence [e.g., ARMA (1,1) monthly processes
with phi greater than 0.6] or short records (approximately five years). When
there is no serial correlation, it is less powerful than a related simpler test not
robust against serial correlation.

Anh et al. (1997) developed a new class of stochastic models to represent
the properties of time series (i.e., long-range dependence and small-scale
behaviour) from various fields, such as geophysics, meteorology, hydrology,
and air pollution. An efficient estimation procedure is described, which was
tested on two concentration time series collected in an environmental wind
tunnel. These time series simulated two different types of odour sources and
possessed quite different statistical properties that were well described by the
new model.

Hamed and Rao (1998) studied the effects of autocorrelation on the
variance of the Mann-Kendall trend test-statistic. A theoretical relationship
was derived to calculate the variance of the Mann-Kendall test statistic for
autocorrelated data. The special cases of AR(1) and MA(1) dependence were
discussed as examples. Based on the modified value of the variance of the
Mann-Kendall trend test statistic, a modified nonparametric trend test suitable
for the autocorrelated data is proposed. The modified test was applied to
rainfall and streamflow data to demonstrate its performance compared to the
original Mann-Kendall trend test. The accuracy of the modified test was
found to be superior to that of the original Mann-Kendall trend test without
any loss of power.
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Tsakalias and Koutsoyiannis (1999) developed a new approach for the
computer-aided exploration and analysis of hydrologic time series with a
focus on identification of multiple stage-discharge relationships in a river
section, analyses for homogeneity and temporal consistency, detection of
outliers, shifts and trends. To demonstrate the developed methodology, initially
a mathematical representation was proposed based on the set theory. It was
demonstrated that an exhaustive search of all candidate solutions is intractable.
Therefore, a heuristic algorithm is proposed, which emulates the exploratory
data analysis of the human expert. This algorithm encodes a number of search
strategies in a pattern directed computer program, and results in an automatic
determination of a satisfactory solution.

Anderson et al. (1999) used periodic ARMA, or PARMA time series to
model periodically stationary time series. The innovations algorithm was
developed for periodically stationary processes. Thereafter, the algorithm was
used to obtain parameter estimates for the PARMA model. These estimates
were proved to be weakly consistent for PARMA processes whose underlying
noise sequence has either finite or infinite fourth moment. Since many time
series from the fields of economics and hydrology exhibit heavy tails, the
results regarding the infinite fourth moment case are of particular interest.

Haywood and Wilson (2000) proposed a method for investigating the
evolution of trend and seasonality in observed time series. A general model
was fitted to a residual spectrum, using components to represent the seasonality.
The method was applied to model two time series and the resulting forecasts
and seasonal adjustment for one series are presented.

Darken et al. (2000) developed a methodology for testing the equivalence
of two modified Kendall’s tau nonparametric correlation coefficients. Several
estimators of the variance taumod (i.e., bootstrap estimate, the standard null-
case variance estimate, and a delta method variance estimate) were evaluated
using simulation. The variance estimators and their corresponding Wald-type
tests were studied under different conditions, including the presence of varying
degrees of serial correlation, different distributions, and different percentages
of tied data. The power study revealed that in the presence of serial correlation,
a new method for estimating variance, called the effective sample size bootstrap,
allowed the hypothesis test to consistently hold its level while no other methods
of variance estimation did so. Finally, it was demonstrated how this test can
be used to detect changes in trend of water-quality variables over time.

Perreault et al. (2000) proposed a Bayesian method for the analysis of two
types of sudden change at an unknown time-point in a sequence of energy
inflows modelled by independent normal random variables. To our knowledge,
this study is the first of its kind in hydrology from a Bayesian perspective.
Even if this model is quite simple, no analytic solutions for parameter inference
are available. It is shown that the Gibbs sampler is particularly suitable for
change-point analysis, and Markovian updating scheme is used. Finally, a
case study involving annual energy inflows of two large hydropower systems
of Canada is presented.
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Yue et al. (2002a) investigated the interaction between a linear trend and
a lag-one autoregressive [AR(1)] model using Monte Carlo simulation.
Simulation analysis indicated that the existence of serial correlation alters the
variance of the Mann-Kendall (MK) statistic estimate, and the presence of a
trend alters the magnitude of serial correlation. Furthermore, it was found that
the commonly used pre-whitening procedure for eliminating the effect of
serial correlation on the MK test leads to inaccurate assessments of the
significance of a trend. Therefore, it was suggested that firstly trend should be
removed prior to ascertaining the magnitude of serial correlation. Both the
suggested approach and the existing approach were employed to assess the
significance of a trend in the serially correlated annual mean and annual
minimum streamflow data of some pristine river basins in Ontario, Canada. It
was concluded that the researchers might have incorrectly identified the
possibility of significant trends by using the already existing approach.

Yue et al. (2002b) studied the efficacy of the two nonparametric rank-
based statistical tests (the Mann-Kendall test and Spearman’s rho test) by
Monte Carlo simulation. These two tests were used to assess the significance
of trends in annual maximum streamflow data of 20 pristine basins in Ontario,
Canada. The results indicated that their effectiveness depends on the pre-
assigned significance level, magnitude of trend, sample size, and the amount
of variation within a time series. Thus, the bigger the absolute magnitude of
trend or larger the sample size, the more powerful are the tests; but as the
amount of variation in a time series increases, the power of the tests decreases.
When a trend is present, the power is also dependent on the distribution type
and skewness of the time series. It was also found that these two tests have
practically similar power in detecting a trend.

Clarke (2002) described a model in which the Gumbel distribution has a
(possibly) time-variant mean. The time-trend in mean value was determined
by a single parameter  estimated by Maximum Likelihood (ML). The large-
sample variance of the ML estimate was compared with the variance of the
trend calculated by linear regression; the latter was found to be 64% greater.
The simulated samples from a standard Gumbel distribution were given
superimposed linear trends of different magnitudes, and the efficacy of three
trend-testing methods viz., Maximum Likelihood, Linear Regression, and the
nonparametric Mann-Kendall test was compared. The ML test was found
always more powerful than the Linear Regression or Mann-Kendall test
regardless of the value (positive) of the trend ; the MK test was found least
powerful for all the values of .

Ducré-Robitaille et al. (2003) evaluated eight homogenization techniques
for the detection of discontinuities in the temperature series using simulated
datasets reproducing a vast range of possible situations. The simulated data
represented homogeneous series and the series having one or more steps.
Although the majority of the techniques considered in this study performed
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very well, two methods are reported to work slightly better than the others: the
standard normal homogeneity test without trend, and the multiple linear
regression technique.

Yue et al. (2003) proposed a trend-free pre-whitening (TFPW) procedure
to remove serial correlation from the time series, and hence to eliminate the
effect of serial correlation on the Mann-Kendall (MK) test. An additional
bootstrap test with the preservation of the cross correlation structure of a
network was proposed to assess the field significance of upward and downward
trends over the network separately. At the significance level of 5%, the site
significance of trends in the Canadian annual minimum, mean, and maximum
streamflows with 30-, 40- and 50-year records was assessed by the MK test
using the TFPW procedure (TFPW-MK). It was found that: (a) the 30-year
annual minimum and mean daily flows significantly decreased in the regions
of southern British Columbia (BC), around the centre of Prairie Provinces,
and in Atlantic Provinces, but they significantly increased in the region of
northern BC and Yukon Territory; and (b) the annual maximum flow
significantly decreased across southern Canada. The field significance of trends
over the whole country was evaluated by the bootstrap test at the significance
level of 5% and none of the three flow regimes experienced field-significant
changes.

Yue and Wang (2004) proposed effective sample size (ESS) to modify the
MK statistic for eliminating the effect of serial correlation on the MK test.
This study investigated the ability of ESS to eliminate the influence of serial
correlation on the MK test by Monte Carlo simulation. Simulation demonstrated
that when no trend exists within time series, ESS can effectively limit the
effect of serial correlation on the MK test. When trend exists within time
series, the existence of trend will contaminate the estimate of the magnitude
of sample serial correlation, and ESS computed from the contaminated serial
correlation cannot properly eliminate the effect of serial correlation on the
MK test. However, if ESS is computed from the sample serial correlation that
is estimated from the detrended series, ESS can still effectively reduce the
influence of serial correlation on the MK test.

Zhang et al. (2010a) developed a novel approach to identify trend patterns
of streamflows when trend is gradual or abrupt. The proposed approach uses
repeated monotonic trend tests with varying beginning and ending times. The
sensitivity of trends with respect to the period of time was then employed to
characterize the trend pattern. The proposed approach was demonstrated by
applying to watersheds within the Susquehanna River Basin, US. It was
observed that the new approach is capable of characterizing trend patterns. A
comparison with the results of single monotonic trend tests showed that the
novel approach is also useful for the exploration of all available data in
contrast to a single monotonic trend test that only shows trends for a specified
time period.
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6.2 Application of Time Series Analysis in Climatology

6.2.1 Precipitation/Precipitation with Other Climatic Data

Bhuiya (1971) tested the assumption of stationarity of standardized hydrologic
series after subtraction of the periodic and trend components. Based on the
Fourier series representation of the periodic process, a test for stationarity was
developed. The first order periodicity was explained by the periodicity of the
first moment of the hydrologic variable, whereas the periodicity in the
covariance was explained by the harmonization of the stochastic component.
Finally, observed monthly runoff and precipitation records were tested for
stationarity using their raw and transformed series.

Buishand (1979) used monthly rainfall data from urbanized and rural
areas in the western part of The Netherlands to investigate the effects of
urbanization on the rainfall regime. A trend test in the sequence of differences
between urban and rural rainfall amounts is described. For the urban areas of
Amsterdam and Rotterdam, some evidence was found for an increase in
precipitation.

Buishand (1982) discussed the features of five tests on the cumulative
deviations from the mean, which are often used for the analysis of homogeneity.
Some of the tests showed optimal properties in testing the null hypothesis of
homogeneity against a shift in the mean at an unknown point. These tests
together with the classical von Neumann ratio were applied to the 30-year
annual rainfall records of The Netherlands. For a large number of records,
strong indications for a change in the mean were found. There were only
small differences between the various test-statistics with respect to the number
of records for which the null hypothesis was rejected.

Buishand (1984) presented methodology for testing the shift in the mean
of hydrological time series with great attention to the likelihood ratio and
Bayesian tests, and critical values were also derived for the Bayesian tests.
Furthermore, testing for a systematic change in a linear regression model was
also presented. The proposed methodology was demonstrated using the runoff
and precipitation data of the Colorado River Basin, USA, and the Thames
River at Teddington, U.K., respectively.

Boroneant et al. (1995) examined the time series of seasonal and annual
precipitation totals for selected representative stations in the southern part of
Romania. The common period was 1951-1993. The homogeneity was tested
by the Alexandersson’s test. In order to detect the trend and the change points
in the series, the linear test, Mann-Kendall’s and Pettitt’s tests were used.
Common change points were identified for different stations.

Brázdil and Stepánek (1995) examined the continuous air temperature
and precipitation measurements in Brno during 1848-1993 in different parts
of the city and then homogenized on the present station, Brno-Turany by
Maronna-Yohai and Alexandersson tests with the reference stations of Vienna,
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Kremsmünster and Prague. Results of the statistical analysis of homogenized
series are presented.

Fortuniak (1995) used the daily precipitation totals and mean daily
temperature for the period 1956-1990 from 10 Polish meteorological stations
(Gdansk, Szczecin, Suwalki, Poznan, Lódz, Warszawa, Wroclaw, Kraków,
Przemysl and Zakopane) to test their periodicity. The annual course of
temperature was removed by subtracting the 35th Fourier harmonic. The
classical Blackman and Tukey test was used to detect the cyclic behaviour of
the analysed series. The power spectrum of temperature for each station
exhibited two significant peaks: around 7.4 years and 193 days. For the
precipitation, the power spectra were found different for each station and it
was impossible to find a characteristic cycle for the entire region.

Nieplová (1995) applied five statistical homogeneity tests (Student’s,
Bartlett’s, Kruskal-Wallis’s, Abbe criterion, and Spearman rank correlation
method) and the Craddock’s relative homogeneity test to the annual and monthly
air temperature means, precipitation totals and relative air humidity means of
40 years and longer series. It was found that most of inhomogeneities were
caused by changed observation terms and by the relocation of measuring
stations. These results were used for selecting stations for long-term monitoring
of climate change in Slovakia.

Kristev and Koleva (1995) studied the variation of some important
characteristics of the snow cover pattern in Bulgaria during the period of
1935/6-1992/3. The basic data used were number of days with snow cover,
dates of the first and last days with snow cover and maximum snow depths.
The presence of some forms of trend in the data was examined by the Spearman
test and the Mann-Kendall rank test statistics.

Walanus-Gliwice (1995) analyzed the periodicity by using the Fast Fourier
Transform (FFT). The water stages of Vistula River at Szczucin, discharges of
Warta (Poland) and Tisa (Hungary) rivers, Dnieper River (Ukraina),
precipitation from Warsaw, Cracow, Wroclaw and other towns, air temperature,
dendroclimatological curves and the thickness of yearly strata (Warws) from
Gosciaz Lake (Central Poland) were analyzed. The 3.5-year (3.5±0.15 yr)
periodicity of unknown origin in the river discharge and the precipitation was
confirmed. For rivers, the 3.5-yr signal was found much less in Szczucin, but
it was visible. For the precipitation, the signal was still less, especially in
comparison to the more dominant seasonal periodicity. The periodicity in
rivers’ discharges was of higher amplitude than that in the precipitation. Finally,
a detailed analysis revealed that the 3.5-yr peak in frequency domain should
be treated as a random event.

Aulenbach et al. (1996) evaluated the trends in precipitation and surface
water quality at a network of 15 small watersheds (<10 km2) in USA using the
seasonal Kendall test for monotonic trends and a graphical smoothing technique
for the visual identification of trends. A relation between precipitation and
surface water trends was not evident either for individual inorganic solutes or
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for solute combinations at most sites. The only exception was chloride, which
had the same trend at 60% of the sites. The smoothing technique indicated that
the short-term patterns in precipitation chemistry were not reflected in surface
waters. The magnitude of short-term variations in surface water quality was
generally larger than the overall long-term trend.

 Kothyari et al. (1997) analyzed rainfall and temperature (i.e., long-term
monsoon rainfall, number of rainy days during the monsoon season, and
annual maximum temperature) from three stations at Agra, Dehradun and
Delhi for evaluating the changes in regimes in the upper and middle parts of
the Ganga basin in northern India. The nonparametric methods employed to
identify trends showed that the total monsoon rainfall and the number of rainy
days during the monsoon season have a declining trend, whereas the annual
maximum temperature has a rising trend. These changes were found to have
started around the second half of the 1960’s. The results of this study suggested
a possible change in the climatic regime of the Ganga basin, which has far-
reaching implications for the Indian economy.

Giakoumakis and Baloutsos (1997) investigated trends in the historic
hydrological time series of aerial annual precipitation and mean annual runoff
from the Evinos River basin in western Greece. Using different tests for
randomness, a statistically significant long-lasting decreasing trend was found
in the precipitation records, whereas a significant fluctuating “local” trend
was detected in the runoff records. Further, it was demonstrated that the
effects of precipitation change on the mean annual runoff can be quantified
through a magnification factor.

Angel and Huff (1997) examined the stationarity and trends of precipitation
records for the period 1901 to 1994 at 304 sites in the midwestern United
States. The results of this study indicated that the stations are more likely to
experience their heaviest rainfall events in more recent years. An analysis of
the geographic distribution of changes in the annual maximum rainfall time
series showed an increase in areas across the Midwest. It was concluded that
the rainfall frequency studies should be updated on a regular basis for maximum
usefulness.

Mirza et al. (1998) highlighted the importance of analyzing the trends and
persistence in precipitation time series. The annual precipitation time series
for the Ganges, Brahmaputra and Meghna river basins were examined for
trends by the Mann-Kendall rank statistic, Student’s t-test and the regression
analysis, and for persistence by the first order autocorrelation technique. The
results indicated that the precipitation in the Ganges basin is almost stable,
while in the Brahmaputra basin, decreasing and increasing trends were found
in two subdivisions. One of the three subdivisions in the Meghna basin has a
decreasing trend, while the two subdivisions have an increasing trend. The
Markovian persistence was not found present in the Ganges basin, but it was
present in the two common subdivisions of the Brahmaputra and Meghna
basins.
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Tarhule and Woo (1998) analyzed the rainfall records (i.e., annual total
rainfall, number of rainy days, dates of onset, termination and duration of
rainy seasons as well as monthly rainfall, monthly number of rainy days and
various categories of rainfall above certain intensities) at 25 locations in
northern Nigeria to examine the abrupt changes and trends using the Pettitt
and the Mann-Kendall tests. It was found that an abrupt change occurred in
the time series of annual rainfall and number of rainy days, which affected the
areas north of latitude 11° N. However, the sub-periods before and after the
change points was considered to be homogenous. The series of duration of
rainy seasons exhibited no significant trends or jumps. It was concluded that
recent changes in rainfall over the Sahel were driven by a reduction in the
frequency of rainy days of high rainfall intensities during August and September.
The continuation of agricultural activities in the Sahel despite massive
reductions in annual rainfall is attributed to the fact that the high intensity
rainfall does not contribute significantly to crop growth.

Johann et al. (1998) proposed a method for filling gaps in the precipitation
time series obtained from the Emschergenossenschaft and Lippeverband (EG/
LV) in northwest Germany. Several neighbouring stations of the EG/LV
raingauge network were considered. Various time intervals based on
deterministic and statistical approaches were investigated, but the intervals
between 5 and 120 min are discussed in more detail. Based on representative
examples, it was demonstrated how the time intervals influence the quality of
the estimated (gap-filling) rainfall data.

Moraes et al. (1998) investigated change in the patterns of streamflow
and precipitation and its possible relation to man-induced changes in the
Piracicaba River basin of Brazil. With an area of 12,400 km2, this basin is a
typical example of new landscape resulting from development in tropical and
sub-tropical regions: establishment of intensive industrial and agricultural
processes were followed by significant population growth and water
management. Statistical analyses were performed using the precipitation,
evapotranspiration and streamflow data from 1947 to 1991. The precipitation
and evapotranspiration data showed significant increasing trends for the entire
basin. Out of eight streamflow gauging stations, four stations showed a
significant decreasing trend. The cause of these trends was attributed to the
export of water from the basin to the metropolitan region of São Paulo city.

De Luís et al. (2000) examined the spatial and temporal rainfall
characteristics in the Valencia region, Western Mediterranean Basin (east Spain)
using the WMO normal period 1961-1990. The dense and homogeneous daily
precipitation database comprising 97 rainfall stations were collected and mean
values, interannual variability and spatial diversification of total and monthly
rainfalls were studied. Trends were analyzed using both parametric and
nonparametric tests. The spatial distribution of rainfall patterns was established
and the homogeneous areas with similar rainfall patterns were detected based
on the Cramér-von Mises test-statistic. The kriging interpolation technique
was used for characterizing the magnitude of detected changes.
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Brunetti et al. (2000) analyzed the daily precipitation data of northern
Italy for trend detection. The nonparametric Mann-Kendall test was applied to
the mean anomaly series of some precipitation intensity statistics over five
stations: Genoa (1833-1998), Milan (1858-1998), Mantova (1868-1997),
Bologna (1879-1998) and Ferrara (1879-1996). It was found that in northern
Italy, the number of rainy days has a more significant negative trend than the
corresponding precipitation amount. Consequently, the precipitation intensity
has a positive trend. The increase in precipitation intensity was found to cause
a significant positive trend in the total precipitation contributed by heavy
precipitation events (i.e., daily precipitations >25 mm and >50 mm).
Furthermore, the trend was mainly caused by past 60-80 years, and was
particularly evident during the periods of 1930-1945 and 1975-1995.

Molénat et al. (2000) analyzed the hydrological and hydrochemical
behaviour of three agricultural catchments located in different regions of
France (Kervidy, Melarchez and Mercube). The time series were considered
as input or output data and the spectral analysis was performed. The input data
for hydrology and chemistry were respectively rainfall and nitrate leaching,
and the output data were streamflow and nitrate concentration in the stream.
It appears that nitrate concentrations measured at the outlet of the three
catchments exhibit a strong and unique one-year periodicity. This periodicity
is due to the hydrological regime and the time distribution of the nitrate
availability in the soil. Moreover, a cross-spectral analysis was performed
between the input and output data for each catchment and the major processes
that govern water and nitrate transfer and the characteristic time scale of these
processes were identified. It was concluded that the spectral and cross-spectral
methods are valuable techniques for identifying the main transfer processes
operating in different catchments.

Sharma et al. (2000) studied basinwide land-use, climatic and hydrologic
trends over the Kosi Basin (54,000 km2) in the central Himalayan region. The
analysis of anthropogenic inputs showed that the population of the basin has
increased at a compound rate of about 1% per annum during past four decades.
A comparison of the land-use data of the 1960s and 1978-1979 did not reveal
noticeable trends in the land-use change. On the other hand, the analysis of the
meteorological and hydrological time series from 1947 to 1993 indicated an
increasing tendency of temperature and precipitation. However, the statistical
tests of hydrologic trends indicated an overall decrease in the discharges of
the Kosi River and its major tributaries. The decreasing trends of streamflow
were found more significant during low-flow months. Further, the statistical
analysis of homogeneity suggested that the climatic as well as the hydrologic
trends are more localized in nature and do not have a distinct basinwide
significance.

Brunetti et al. (2001) analyzed the seasonal and annual precipitations and
the number of rainy days in northeastern Italy during 1920-1998. The
precipitation intensity was analyzed by using both the mean precipitation
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amount per wet day and dividing the precipitation into heavy and non-heavy
classes. In addition, the return period of extreme events was calculated for the
30-years and its variations were examined. The results indicated a negative
trend in the number of wet days associated with an increase in the contribution
of heavy rainfall events to the total precipitation. This finding is in agreement
with the reality (i.e., a reduction in the return period of extreme events since
1920).

Kripalani and Kulkarni (2001) prepared regional rainfall anomaly time
series using the 118-year (1881 to 1998) data of three regions, India, northern
China and southern Japan. All the three series (India, China and Japan) were
subjected to selected statistical tests. The analysis of the results revealed that
though there are year-to-year fluctuations in rainfalls, the Mann-Kendall rank
statistic suggested no significant long-term trends. However, the application
of the Cramer’s statistic to study the short-term climate variability depicts
decadal variability with certain epochs of above and below normal rainfall
over each region. The epochs tend to last for about three decades over India
and China, and about five decades over Japan. The turning points for China
follow those of India after about a decade.

Adamowski and Bougadis (2003) estimated trends for different durations
of annual extreme rainfall by using the regional average Mann-Kendall S
trend test. The method of L-moments was employed to delineate homogeneous
regions. The trend test was modified to account for the observed autocorrelation,
and the bootstrap method was used to account for the observed spatial
correlation. Numerical analysis was performed for 44 rainfall stations in
Ontario, Canada for a 20-year time frame using the data from homogeneous
regions. Depending on the rainfall durations, four and five homogeneous
regions were delineated. At the 5% significance level, approximately 23% of
the regions tested had a significant trend, predominantly for short-duration
storms. The serial dependency was observed in 2-3% of datasets and the
spatial correlation was found in 18% of the regions. The presence of serial and
spatial correlation was found to have significant impacts on trend determination.

Xu et al. (2003) detected long-term trends in the spatially averaged Japanese
precipitation time series by applying the parametric t-test and the nonparametric
Mann-Kendall and Mann-Whitney tests. The results indicated that despite
several step changes in the Japanese precipitation, the time series did not
exhibit significant evidence of monotonic trend during the past century. Further,
it was found that if the magnitude of the step change reaches one or two times
of its standard deviation, the previous 50-year records together with five years
or more new data will be available for detecting the possible trend. This
finding is useful for the detection of step changes in the regions where the
precipitation has near-normal distributions.

Oguntunde et al. (2006) investigated hydrological variability and trends
in the Volta River basin in West Africa over the period 1901-2002. Potential
(Ep) and actual evaporation (E), rainfall variability index (d), Budyko’s aridity
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index (IA), evaporation ratio (CE) and runoff ratio (CQ) were analyzed by
using Mann-Kendall and Sen’s slope estimation trend tests to detect monotonic
trend direction and magnitude of change over time. Rainfall variability index
showed that 1968 was the wettest year (d = +1.75), while 1983 was the driest
(d = –3.03), with the last three decades being drier than any other comparable
period in the hydrological history of the Volta basin. An increase of 0.2 mm/
yr2 (P < 0.05) was observed in Ep for the 1901-1969 sub-series while an
increase of 1.8 mm/yr2 (P < 0.01) was recorded since 1970. Rainfall increased
at the rate of 0.7 mm/yr2 or 49 mm/yr between 1901 and 1969, whereas a
decrease of 0.2 mm/yr2 (6 mm/yr) was estimated for 1970-2002 sub-series.
Runoff increased significantly at the rate of 0.8 mm/yr2 (23 mm/yr) since
1970. Runoff before dam construction was higher (87.5 mm/yr) and more
varied (CV = 41.5%) than the post-dam period with value of 73.5 mm/yr (CV
= 23.9%). A 10% relative decrease in P resulted in a 16% decrease in Q
between 1936 and 1998. Since 1970, all the months showed increasing runoff
trends with significant slopes (P < 0.05) in nine out of the 12 months.

Yu et al. (2006) evaluated long-term trends in seasonal and annual
precipitations for 33 raingauge stations in Taiwan. Cumulative Deviations,
Mann-Whitney-Pettitt and Kruskal-Wallis tests were employed to analyze the
trends. Analytical results indicated that the annual rainfall has increased in
northern Taiwan, declined in central and southern Taiwan, and exhibited no
clear tendency in Eastern Taiwan. Almost all of these rainfall series changed
significantly around 1960, which date divides historical rainfall series into
two sample groups.

Kumar et al. (2010) studied monthly, seasonal and annual rainfall trends
using monthly data series of 135 years (1871-2005) for 30 sub-divisions in
India. Half of the sub-divisions showed an increasing trend in annual rainfall.
However, the trend was statistically significant for only three (Haryana, Punjab
and Coastal Karnataka) sub-regions. Similarly, only one sub-division
(Chattisgarh) indicated a significant decreasing trend out of the 15 sub-divisions
showing decreasing trend in annual rainfall. In India, the monsoon months of
June to September account for more than 80% of the annual rainfall. During
June and July, the number of sub-divisions showing increasing rainfall is
almost equal to those showing decreasing rainfall. In August, the number of
sub-divisions showing an increasing trend exceeds those showing a decreasing
trend, whereas in September, the situation is the opposite. The majority of
sub-divisions showed very little change in rainfall during non-monsoon months.
The five main regions of India showed no significant trend in annual, seasonal
and monthly rainfall in most of the months. For the whole of India, no
significant trend was detected for annual, seasonal, or monthly rainfall. Annual
and monsoon rainfall decreased, while pre-monsoon, post-monsoon and winter
rainfall increased at the national scale. Rainfall in June, July and September
decreased, whereas in August it increased, at the national scale.
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Sahin and Cigizoglu (2010) performed homogeneity analysis of the
maximum air temperature, the minimum air temperature, the mean air
temperature, the total precipitation, the relative humidity and the local pressure
of 232 stations of Turkey for the period 1974-2002. The homogeneity analysis
was performed on the annual data using a relative test and four absolute
homogeneity tests were used for the stations where non-testable series were
found due to the low correlation coefficients between the test and the reference
series. A comparison was accomplished by the graphics where relative and
absolute tests provided different outcomes. Absolute tests failed to detect the
inhomogeneities in the precipitation series at a significance level of 1%.
Interestingly, most of the inhomogeneities detected on the temperature variables
existed in the Aegean region of Turkey. It is considered that these
inhomogeneities were mostly caused by non-natural effects such as relocation.
Because of changes in topography at short distance in this region, non-random
characteristics of the temperature series are intensified when relocation occurs
even in small distances. The marine effect, which causes artificial cooling
effect due to sea breezes, has important impact on temperature series and the
orography allows this impact go through the inner parts in this region.

6.2.2 Air and Water Temperature

Esteban-Parra and Castro-Diez (1995) analyzed the longest annual and seasonal
series of maximum, minimum and average temperatures of some localities in
Spain. The homogeneity was checked by using the Thom and Bartlett tests.
These methods are reported to yield different results in some cases. The
analysis was performed to explore how the existence of actual trends and/or
discontinuities in the series affects the sensitivity and have a repercussion on
the results of the tests. This analysis suggested an adequate confidence level
and the need of the use of relative homogeneity tests.

Webb (1996) analyzed the future trends in water temperatures from
different parts of the world. The potential causes of trends in the thermal
regimes of streams and rivers are many, but the existing database of water
temperature was found inadequate to provide a global perspective on changes
during the recent past. The data from Europe suggested that an increase of up
to 1°C in the mean river water temperatures has occurred during the 20th

century. However, this trend was not found continuous and correlated with
simple hydrometeorological factors, rather it was found to be distorted by
extreme hydrological events influenced by a variety of human activities.
Predictive studies indicated that an accelerated rise in stream and river water
temperatures will occur during the next century because of global warming.
However, the forecasts are tentative because future climatic conditions are
uncertain, and the interactions between climate and hydrological and vegetation
changes are complex.

Tayanç and Toros (1997) studied the daily maximum temperature and
temperature difference series (1951-1990) of four urban stations and their
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neighbouring rural stations in Turkey. The results indicated that there is a shift
towards the warmer side in the frequency distributions of both the series,
which is an indication of urban heat island. The seasonal analysis of individual
21.00 h temperature series suggested that the regional warming is the strongest
in spring and the weakest in autumn and winter. Urban warming is detected to
be more or less equally distributed over the year with a slight increase in
autumn. Using the Mann-Kendall trend test for the temperature difference
series, the urban heat island effect was found to be significant at all urban
sites. On the other hand, no significant urban effects on the precipitation were
found.

Kadioglu (1997) analyzed the mean annual temperature records of Turkey
for the period 1939 to 1989. A warming trend was found from 1939 to 1989
but a cooling trend was detected from 1955 to 1989. These trends in the mean
annual temperature series, however, were not found to be statistically
significant. Comparatively greater warming effects were found in spring and
minimum in winter. A regional increase in the mean minimum temperature
around 1955 is attributed to the urban heat island effect. In general, the
predictions of general circulation model (GCM) were consistent with a sign of
trends only in the Turkish climatic records during the entire (1939 to 1989)
period.

Keiser and Griffiths (1998) used a homogeneity test developed by
Alexandersson (1986, 1995) and applied it to the mean monthly maximum,
minimum, and mean temperature data from 22 stations in the northern Great
Plains of USA. One of these stations, Valentine, is a first-order station and is
used as the reference station. When Valentine station was adjusted for a possible
inhomogeneity due to its move, it was found that the Valentine’s adjustments
have a distinct seasonal pattern. The testing of other stations against Valentine
revealed that the position of a significant discontinuity in a station’s monthly
mean or annual temperature series is not always the same as in the
corresponding monthly maximum and minimum series. In addition, a seasonal
pattern similar to that of Valentine station was found in every station’s
adjustment values.

Tayanç et al. (1998) presented a combination of different methods (i.e.,
graphical analysis, nonparametric Kruskal-Wallis homogeneity test and Wald-
Wolfowitz runs test) to test climatological time series for inhomogeneities.
These methods were applied to the annual mean difference temperature series
of 82 Turkish weather stations, and the inhomogeneity detection efficiencies
of these tests were determined by a series of Monte Carlo simulation studies.
It was concluded that the procedure is statistically rigorous, provides estimates
of the time and magnitude of change in the mean, and is a valuable tool for
testing time series.

Vincent and Gullett (1999) developed the Canadian historical temperature
database (CHTD) to produce an improved historical climate change database
based on the datasets of monthly mean maximum and minimum temperatures
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of 210 Canadian stations. The stations were selected based on the length of
record, data completeness, and spatial distribution across the country. Relative
homogeneity was assessed using a Canadian developed technique based on
regression models. A bias in the minimum temperatures was identified and
adjusted at principal stations located in eastern Canada. Although a bias was
also detectable in western Canada, it was smaller and hence no bias adjustments
were performed. The spatial presentation of linear trends before and after
adjustments indicated overall improvement in the regional and national trends
in terms of spatial consistency.

Serra et al. (2001) used the entropy concept and spectral power analysis
to analyze the homogeneity, randomness, trends and their statistical significance,
and time irregularities in the daily maximum and minimum temperature series
(1917 to 1998) recorded at Fabra Observatory, Barcelona. The homogeneity,
randomness and the statistical significance of trends in the time series were
tested by using the adaptive Kolmogorov-Zurbenko filter, the von Neumann
ratio test, and the Spearman and Mann-Kendall tests, respectively. The
periodicities obtained from spectral power analyses were checked with the
hypothesis of white-noise and Markov’s red-noise stochastic processes. The
most notable features, common to maximum and minimum temperatures,
were the lack of randomness in the series and the different trends obtained for
the periods 1917-1980 and 1917-1998, which were confirmed by the Spearman
and sequential Mann-Kendall tests. Nevertheless, the maximum and minimum
temperature series showed a very different behaviour based on the time
irregularities in terms of entropy and periodicities.

Astatkie et al. (2003) used the daily average temperature data of 15
locations spatially distributed across Canada to test the presence of trend in
variability (measured by the range, standard deviation and IQR) by using a
bootstrap method. The length of the temperature series at these sites ranged
from 30 to 151 years. The analysis was undertaken for the monthly, seasonal,
and annual data. For calculating standard deviations, estimates of the annual
mean temperatures were used to make the results invariant to the presence of
trend in mean. The monthly and seasonal analysis revealed the presence of
either increasing or decreasing variability for some months and some seasons.
The results of the annual data analysis did not reveal appreciable variability,
especially at sites where some months have an increasing trend while others
have a decreasing trend. The results across sites did not exhibit a clear
geographic pattern. However, consistently increasing trends in the variability
were found in Toronto and St. John’s during non-summer months, and mostly
decreasing trend in Edmonton. The significance of trend in the variability
measured by the range and standard deviation were consistent in less than
30% of the time across sites and across the monthly, seasonal and annual
aggregations. There was not much agreement between the standard deviation
and the IQR, which shows the importance of the choice for measuring
variability.
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Singh et al. (2008) estimated seasonal and annual trends of change in
maximum temperature (Tmax), minimum temperature (Tmin), mean temperature
(Tmean), temperature range (Trange), highest maximum temperature (Hmax), and
lowest minimum temperature (Lmin) in northwest and central India by applying
Mann-Kendall test. Monthly data of first four variables and annual data of last
two variables were used for 90- to 100-year period for 43 stations over nine
river basins. Of the nine river basins studied, seven showed a warming trend,
whereas two showed a cooling trend. The Narmada and Sabarmati river basins
experienced the maximum warming and cooling, respectively. The majority
of basins showed increasing trend in Trange, Hmax and Lmin. Seasonal analysis
of different variables shows that the greatest changes in Tmax and Tmean were
observed in the post-monsoon season, while Tmin experienced the greatest
change in the monsoon season. This analysis provides scenarios of temperature
changes which may be used for sensitivity analysis of water availability for
different basins, and accordingly in planning and implementation of adaptation
strategies.

Feng et al. (2011) applied parametric regression test and nonparametric
Mann-Kendall test to analyze trends in annual temperature of 16 hydrological
stations in Nenjiang River basin, Northeastern China. The mean annual
temperature data of 1956-2006 were used for the analysis. The results showed
significant increasing trends of annual and seasonal mean temperature versus
time. An overall increase of 2 oC in the temperature was observed over the
past 50 years.

6.2.3 Evapotranspiration

Zaninovic and Gajic-Capka (2000) analyzed the variations and trends in some
water balance components viz., soil water content, evaporation losses from
the surface and subsurface soil layers, transpiration, groundwater recharge
and runoff. These components were calculated by the Palmer method using
the 1900-1995 data from Osijek, Croatia. Besides the meteorological inputs
necessary for the water balance calculation (i.e., precipitation, temperature
and relative humidity), the pedological characteristics of this area was also
taken into account. Fluctuations have been considered by means of the 11-
year binomial filtered series and the linear trends were tested by means of the
Mann-Kendall rank test. A progressive analysis of the time series was also
performed to obtain further insights into the trends of water balance
components. The results suggested a significant increase in the potential
evapotranspiration and evapotranspiration, but a decrease in the runoff and
soil water content during the twentieth century.

Hobbins et al. (2001) analyzed the annual and seasonal trends in a monthly
time series of actual evapotranspiration using the Mann-Kendall test within
the context of the complementary relationship on a regional basis to establish
that regional trends can be determined to originate in either the energy budget
or the water budget, or both. The monthly time series of 27 years at a 5-km
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resolution over the conterminous United States was created by using a regional,
seasonal Advection-Aridity model, which provided a tool for studies on climate
change and variability based on comparison of intra-annual trend results with
results from another study.

6.2.4 Climatic Change

Burn (1994) examined the impact of climatic change on the timing of spring
runoff by using a nonparametric statistical trend test applied to the datasets of
84 natural rivers from the west-central region of Canada. The results indicated
that a greater number of rivers exhibit earlier spring runoff than can be attributed
to the chance occurrence. The impacts on the timing of spring runoff were
found more prevalent in the recent portion of the records, which is consistent
with what one would expect if the impacts are due to the greenhouse gas-
induced climatic change.

Charvátová (1995) processed the time series of solar and volcanic activities
as well as the time series of surface air temperature in connection with climatic
change in recent centuries in central Europe. The subintervals used
corresponded to the two types of solar motion, the ordered and chaotic. The
exceptional and repeating behaviour of these phenomena in the intervals of
the ordered motion of the Sun, in spacing of 180 years, and a quite different
behaviour in the intervals of chaotic motion were demonstrated by means of
statistical characteristics. The results enabled predictions because the solar
motion can be computed well in advance.

Vassilev and Georgiev (1996) reported that climatic changes have already
started in Bulgaria. Because water resources to a great extent depend upon
climate dynamics, the linkage of climatic fluctuations and water resources
were developed using the time-series analysis of climatic parameters and
some river runoff characteristics and their correlation. The results of this
study pointed to several problems of regional and local importance. It was
concluded that the climatic change manifested during last 15 years has
significantly influenced the river runoffs. A study of the recent prolonged
drought and the influence of changes on water resources and human activity
begins with characterizing climate-hydrology linkages.

Westmacott and Burn (1997) evaluated the possible effects of climate
change on four hydrologic variables pertaining to the magnitude and timing of
hydrologic events in the Churchill-Nelson River basin of west-central Canada.
By using the Mann-Kendall trend test, and a regionalization procedure, the
severity of climatic effects within the river basin was quantified, which was
then used to create awareness about future consequences of water resource
planning and management strategies. It was found that the magnitude of
hydrologic events decreased during the study period, while the snowmelt
runoff events occurred earlier. The only exceptions to this behaviour were the
spring mean monthly streamflows, which exhibited increasing trends due to
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the potential for snow melting during the study period. The timing of a
hydrologic event was greatly influenced by the changes in temperature. Further,
the decreasing trends were found to be concentrated in the southern regions of
the basin whereas the increasing trends were found primarily in northern
regions.

Lubes-Niel et al. (1998) investigated the power and the robustness of
some widely-used climatic variability tests with the help of simulation. In
each case, 100 samples of fifty elements were generated based on the main
characteristics of natural rainfall series. A shift in the mean was used to
represent a possible climatic variation. The rank correlation test, Pettitt’s test,
Buishand’s test, Lee and Heghinian’s bayesian method, and the Hubert and
Carbonnel’s segmentation method were used for hydrometeorological series.
Each simulation of 100 samples were used to assess the performance of
different methods considering a specific characteristic of the series, viz.,
normality or nonnormality, autocorrelation, trend, and shift in the variance.
The rank correlation test, Pettitt’s test, Buishand’s test and the segmentation
method with a significance level of 1% (significance level of Scheffé’s test)
rejected heterogeneity less than 10 series over 100 homogeneous simulated
series. On the other hand, the Lee and Heghinian’s bayesian method rejected
about 40% of the series. This finding suggests that the latter method should be
applied only under the hypothesis of heterogeneity. Independent series were
simulated by normal, log-normal and Pearson distributions to compare the
performance of the methods requiring normality. The results indicated that the
normality has no significant impacts on the performance of the methods used.
However, the simulation results indicated that the condition of independence
of the successive elements of the series is essential to keep the performance
constant. Otherwise a trend in the series makes the methods inefficient, except
for the rank correlation test for which the alternative is a trend. None of the
method were found to be robust against both negative and positive
autoregressive dependencies.

Loaiciga et al. (2000) derived climate change scenarios created from
scaling factors based on several general circulation models to assess the impacts
of aquifer pumping on the water resources of the Edwards Balcones Fault
Zone (BFZ) aquifer, Texas, which is one of the largest aquifer systems in the
United States. Historical climatic time series for the periods of extreme water
shortage (1947-1959), near-average recharge (1978-1989), and above-average
recharge (1975-1990) were scaled to 2×CO2 conditions to create aquifer
recharge scenarios in a warmer climate. Several pumping scenarios were
combined with the 2×CO2 climate scenarios to evaluate the sensitivity of
water resources impacts to human-induced stresses on the Edwards BFZ aquifer.
The 2×CO2 climate-change scenarios were linked to surface hydrology and
used to drive aquifer dynamics with alternative numerical simulation models
calibrated for the Edwards BFZ aquifer. The aquifer simulation indicated that
given the predicted growth and water demand in the Edwards BFZ aquifer
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region, the aquifer’s groundwater resources seem to be threatened under 2xCO2
climate scenarios. It was also found that the 2xCO2 climatic conditions could
exacerbate negative impacts and water shortages in the Edwards BFZ aquifer
even if pumping does not increase above its present average level. Based on
the historical evidence and the results of this study, it was concluded that
without proper consideration to variations in aquifer recharge and sound
pumping strategies, the water resources of the Edwards BFZ aquifer could be
severely affected under a warmer climate.

Burn and Elnur (2002) analyzed 18 hydrologic variables for a network of
248 Canadian catchments reflecting natural conditions. The Mann-Kendall
test was used to detect trends and a permutation approach was used to estimate
the test distribution. The catchments having trends in hydrologic variables
were further studied to examine trends in meteorological variables and explore
the relationship between hydrologic and meteorological responses to climatic
change. It is concluded that a greater number of trends were detected than are
expected to occur by chance. There were differences in the geographic location
of significant trends in the hydrologic variables, which indicated that the
climatic impacts were not spatially uniform.

Yu et al. (2002) investigated the impact of climate change on the water
resources of the Kao-Pen Creek basin in southern Taiwan. The historical
trends of salient meteorological variables (i.e., mean daily temperature, mean
daily precipitation on wet days, monthly wet days, and the transition
probabilities of daily precipitation occurrence in each month) were detected
using the nonparametric Mann-Kendall test. The trends of these meteorological
variables were then employed to generate runoff under future climatic
conditions using a continuous rainfall-runoff model. The results indicated that
the transition probabilities of daily precipitation occurrence significantly
influence the precipitation generation, and the generated runoff under future
climatic conditions was found to increase during the wet season and decrease
during the dry season.

6.3 Application of Time Series Analysis in Surface
Water Hydrology

6.3.1 Streamflow

Cehak (1979) performed the frequency analysis of the flood data from five
stations in the east Alps rivers by using Fisher-Tippett II and III distributions.
The data of the longest observation periods were fitted well to the Type II
distribution. A comparison of the calculations with only a part of the
observations showed that the magnitude of the curvature parameter k of the
Fisher-Tippett curves increases with increasing observation periods. A trend
test indicated an increasing trend in all of the Danube stations after about 1860
and no trend in the flood data from southern rivers. The variance spectra
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suggested that the series may be considered as realization of autoregressive
processes of the first order. Superposed to the red-noise spectra there were
waves with periods of 2.4 and 8 years in the case of Danube stations and with
periods of 5.7 and 6.7 years in the case of southern rivers.

Lye and Lin (1994) analyzed the peak flow series from 90 Canadian
rivers to examine stationarity. The results suggested that although short-term
dependence is practically absent for most peak flow series, significant long-
term dependence is present for a large number of peak flow series tested. It
was demonstrated that the most statistical tests of independence or stationarity
are designed to detect only short-term serial correlation. They were found
insensitive to the long-term serial correlation structure of flood records, which
can be far more important.

Lin and Lye (1994) investigated the suitability of Sen’s method (Gilbert,
1987) for modelling hydrologic time series, especially the generation of
synthetic flow series. It was found that several problems exist with the proposed
method. They are: too many parameters in the model, difficulties in modelling
skewed series, and finding a suitable stochastic model for the residuals between
the original and fitted cumulative departure curves. On the other hand, it was
found that the Sen’s method is effective in preserving the Hurst phenomenon
and is especially suited for modelling time series with a relatively high Hurst
coefficient but a low lag-one serial correlation coefficient. It was also
demonstrated that after some modifications in the Sen’s method, some of the
problems could be overcome to a certain extent.

Knapp (1994) analyzed the long-term streamflow records of Upper
Mississippi River Basin to determine trends in streamflows and flooding.
Trends in average flow and flooding were found strongly correlated to the
coincident increases in average annual precipitation. For many portions of the
watershed, the precipitation and streamflows over the last three decades were
found higher than any earlier period on record. Outside of the dominant
influence of climate variation, only one major change in Mississippi River
flood discharges was observed. Further, the flood control reservoirs in the
Missouri River watershed appeared to produce a 10% reduction in the average
flood peak and flood volume for the Mississippi River at St. Louis, Missouri.

Rao (1995) analyzed the rainfall (1901-1990) and streamflow series (1926-
1980) of Mahanadi River, India in relation to the climatic change in the river
basin. The analysis of trends in the runoff from the upper catchment suggested
a steady decrease in the river flows at Hirakud and Naraj gauging stations
during the 55-year period of the study. In order to increase confidence in this
result, the moisture indices for the catchment were computed and examined,
which also indicated a clear declining trend during the period 1901-80. It was
concluded that the climate warming that occurred over the basin resulted in a
gradual decrease of river flows of the upper catchment as well as of the entire
basin during the period 1926 to 1980.
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Lins and Slack (1999) determined secular trends in the streamflows of
395 climate-sensitive streamgaging stations in the conterminous United States
by the nonparametric Mann-Kendall test. Trends were calculated for the selected
quantiles of discharge [0th] to [100th percentiles] to evaluate the differences
between low-, medium-, and high-flow regimes during the twentieth century.
Two general patterns emerged: (i) trends are most prevalent in the annual
minimum (Q0) to median (Q50) flow categories and least prevalent in the
annual maximum (Q100) category; and (ii) at all but the highest quantiles,
streamflow has increased across broad sections of the United States. The
decreases in streamflow was found only in parts of the Pacific Northwest and
Southeast. Systematic patterns were less apparent in the Q100 flow.
Hydrologically, these results imply that the conterminous US is getting wetter.

Douglas et al. (2000) evaluated trends in the flood and low streamflows
of the US by using a regional average Kendall’s S trend test at two spatial
scales and over two timeframes. The field significance was assessed following
a bootstrap methodology to account for the regional cross-correlation of
streamflows. The flood flow series was found trend-free at 5% level of
significance, but low streamflows showed upward trends with significant
temporal persistence. After removing serial correlation from the series,
significant trends in low flows were apparent but were less in numbers. The
ignorance of regional cross-correlation resulted in statistically significant trends
in all but two of the low flow analyses and in two-thirds of the flood flow
analyses. In addition, it was found that the cross-correlation of streamflow
records dramatically reduces the effective number of samples required for
trend assessment.

Radziejewski et al. (2000) normalized and de-seasonalized the raw series
of good quality streamflow data and subsequently transformed to the Fourier
spectral domain. Keeping the power spectrum preserved, the phase spectrum
was subjected to randomization. After transformation back to the temporal
domain, the data were contaminated with trends and step changes in a controlled
way. Then the detectability of nonstationarity by particular tests as a quasi-
continuous function of magnitude of the contaminating change was evaluated.
A method was devised to compare the tests’ performance. The analysis of
detectability versus the magnitude of change provides a new insight into the
properties of the tests.

Zhang et al. (2001) studied the trends computed for past 30-50 years for
11 hydroclimatic variables obtained from the recently created Canadian
Reference Hydrometric Basin Network Database. It was found that the annual
mean streamflow has generally decreased during the periods, with significant
decreases in the southern part of the country. The monthly mean streamflow
has also decreased, with the greatest decrease occurring in August and
September. However, significant increases in streamflow were observed in
March and April. Furthermore, significant increases were identified in lower
percentiles of the daily streamflow frequency distribution over northern British
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Columbia and the Yukon Territory. On the other hand, in southern Canada,
significant decreases were observed in all percentiles of the daily streamflow
distribution. The breakup of river ice and the ensuing spring freshet occur
significantly especially in British Columbia. The results also suggest earlier
freeze-up of rivers, particularly in eastern Canada. The trends observed in the
hydroclimatic variables in this study are in agreement with those identified in
the climatic variables in other Canadian studies.

Alemaw and Chaoka (2002) investigated possible trends in the annual
riverflow of 502 rivers (data from early 1950s to late 1990s) in the region of
South Africa by visualization technique. The rescaled adjusted partial sums
(RAPS) were used instead of the actual time series plots of runoff. A simulation
experiment of the technique was conducted to demonstrate how the plot of
RAPS offers a reasonable visualization of the readily apparent mode of
underlying trend, which may be hidden in the standard time series plots. The
dominantly visualized trends were linear and declining. A subsequent linear
trend test by fitting a linear trend model to the annual river discharge series
revealed a dominant negative slope ranging from –6.8 to –0.2%; it suggests
the existence of declining trends in some rivers of the South African region.
Of the 502 time series under study, 137 time series had statistically significant
decreasing trend, 96 series had significant increasing trend, and the remaining
269 series had no trend at all.

Birsan et al. (2002) analyzed the mean daily runoff data from undisturbed
and independent watersheds in Switzerland for detecting trends by the Mann-
Kendall trend test. Based on the seasonal analyses of streamflow quantiles, it
was found that: (i) the streamflow has increased in the winter period, especially
the winter annual maximum, at about 60% of the stations; and (ii) the
streamflow has decreased in the summer period, particularly the low streamflow
quantiles. The trends were found to be statistically significant, which indicate
a substantial change in the streamflow regime.

Ramesh and Davison (2002) proposed semi-parametric approaches to
trend analysis using local likelihood fitting of annual maximum and partial
duration series, and demonstrated their application to the exploratory analysis
of changes in extremes in sea level and river flow data. Bootstrap methods
were used to quantify the variability of estimates.

Adeloye and Montaseri (2002) described three tests for determining
consistency, trend, and randomness in hydrological data series. The tests were
then applied to monthly streamflow data records from seven sites — three in
Iran and four in Yorkshire, England. All hydrological series were found
consistent, trend-free and random. Furthermore, few goodness-of-fit tests (i.e.,
Chi-square, Kolmogorov-Smirnov, probability plot correlation coefficient and
moment ratio diagram) for probability distribution are discussed. Based on
the results, probability plot correlation coefficient test was found simple to
use and this test can be employed even if critical test-statistic values are not
known.
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Beighley and Moglen (2002) analyzed the trends of nonstationary discharge
corresponding to the periods of urbanization by employing three statistical
tests: one parametric t-test and two nonparametric tests (Kendall’s Tau and
Spearman Rank Correlation tests) using the annual maximum discharge and
annual maximum discharge-precipitation ratios series. It was concluded that
the ratios are more effective than the discharges alone for identifying
nonstationarity resulting from urbanization. In addition, the relationships
between measures of urbanization and the presence/absence of significant
trends in the discharge series are presented.

Kahya and Kalayci (2004) presented a trend analysis of 31-year monthly
streamflows obtained from 26 basins of Turkey. Four non-parametric trend
tests (i.e., the Sen’s T, Spearman’s Rho, Mann-Kendall, and the Seasonal
Kendall), which are popular for detecting linear trends in a hydrological time
series were used. The Van Belle and Hughes’ basin-wide trend test was also
included in the analysis. Homogeneity of trends in monthly streamflows was
tested following the method developed by Van Belle and Hughes. Thus, this
study presents a complete application of both the Van Belle and Hughes’ tests
for homogeneity of trends and basin-wide trend tests (originally developed for
trend detection in water quality data) in a hydroclimatic variable. The results
revealed that the basins located in western Turkey, in general, exhibit downward
trend (significant at the 0.05 or lower level), whereas the basins of eastern
Turkey have no trends. In most cases, the first four trend tests were found to
yield the same conclusion about the trend existence. Furthermore, based on
the Van Belle and Hughes’ basin-wide trend test, some basins located in
southern Turkey were found to exhibit a global trend, which suggests the
homogeneity of trends both in seasons and in stations.

Ludwig et al. (2004) presented a detailed portrait of the average
hydroclimatic patterns in the Têt River basin using the data from 1980 to
2000, which is a typical Mediterranean river in the south of France where
short but violent flash-floods frequently occur. Average temperatures during
the selected period were the warmest of the last century. Average spring
temperatures in the basin followed a highly significant trend of increasing
temperatures. The average autumn temperature, however, decreased and partly
counterbalanced the temperature increase in springs. The mean annual runoff
was found highly variable, but no clear trend over the investigated period was
detected. However, an increasing trend was detected in the flood discharge in
the downstream portion of the basin. Also, the mean annual precipitation over
the entire basin showed no clear evolution, but the contribution from the
upper part of the basin was found decreased, whereas the contribution from
the middle and lower parts of the basin was found increased. It was concluded
that the humidity of Mediterranean origin is more important for the hydro-
climatic functioning of the Têt basin. If the detected trends persist in the
future, the flood frequency is most likely to increase.
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Yurekli et al. (2004) analyzed daily maximum streamflow data of each
month from three gauge stations on Cekerek Stream in Turkey for simulation
using stochastic approaches. Initially non-parametric Mann-Kendall (MK)
test was used to identify the trend during study period. The two approaches of
stochastic modelling, ARIMA and Thomas-Fiering models, were used to
simulate monthly maximum data. The error estimates (RMSE and MAE) of
predictions from both approaches were compared to identify the most suitable
approach for reliable simulation. The MK test suggested no linear trend in
monthly maximum data sequences of each mentioned gauge station. The two
error estimates calculated for two approaches indicate that ARIMA model
appear to be slightly better than Thomas-Fiering. However, both approaches
were identified as appropriate method for simulating daily maximum
streamflow of Cekerek Stream.

Recent evidence of nonstationary trends in water resources time series as
a result of natural and/or anthropogenic climate variability and change, has
raised more interest in nonlinear dynamic system modelling methods. Coulibaly
and Baldwin (2005) investigated the effectiveness of dynamically driven
recurrent neural networks (RNN) for complex time-varying water resources
system modelling. An optimal dynamic RNN approach is proposed to directly
forecast different nonstationary hydrological time series. The proposed method
automatically selects the most optimally trained network in any case. The
simulation performance of the dynamic RNN-based model is compared with
the results obtained from optimal multivariate adaptive regression splines
(MARS) models. It is shown that the dynamically driven RNN model can be
a good alternative for the modelling of complex dynamics of a hydrological
system, performing better than the MARS model on the three selected
hydrological time series, namely the historical storage volumes of the Great
Salt Lake, the Saint-Lawrence River flows, and the Nile River flows.

Burn et al. (2008) performed trend analysis on streamflow data in terms
of spring and summer runoff volumes, peak flow rates and peak flow
occurrences, as well as an annual volume measure, for analysis periods of
1966-2005, 1971-2005, and 1976-2005 for 26 hydrometric gauging stations
in Canadian Prairies. The data were analyzed by using Mann-Kendall test.
The Mann-Kendall test for trend and bootstrap resampling were used to identify
the trends and to determine the field significance of the trends. Partial correlation
analysis was used to identify relationships between hydrological variables
that exhibit a significant trend and meteorological variables that exhibit a
significant trend. The results revealed decreasing trends in the spring snowmelt
runoff event volume and peak flow, decreasing trends (earlier occurrence) in
the spring snowmelt runoff event peak date and decreasing trends in the
seasonal (1 March-31 October) runoff volume. These trends were attributed to
a combination of reductions in snowfall and increases in temperatures during
the winter months.

Wu et al. (2008) detected spatial and temporal trends in streamflow
droughts in terms of frequency, duration and severity in Nebraska. The studies
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were conducted on three time periods: 1970-2001 (60 stations), 1950-2001
(43 stations), and 1932-2001 (nine stations). The analysis was performed on
the drought event parameters by applying correlation between event parameters
tests, Hurst coefficients and lag-one coefficients, and trend-free pre-whitening
Mann-Kendall (TFPW-MK) tests. The analysis showed that there is no uniform
trend on the streamflow drought in the entire state. However, some trends are
evident for specific regions. Specifically, it is most likely that droughts in the
Republican watershed have become more intense; whereas the drought has
become slightly alleviated in the Missouri and nearby watersheds.

Khaliq et al. (2009a) reviewed usefulness of four methods for identification
of hydrological trends (Mann-Kendall, Spearman rank correlation, Sen’s slope
and linear regression tests) in the presence/absence of short-term serial and
cross correlations. The ability of the reviewed tests for detecting trends and
interpreting their collective results is demonstrated by a case study of annual
mean daily flows of Canadian river basins. The results of the case study
indicated that failure to incorporate the effects of serial and cross correlations
in a trend investigation study could result in erroneous conclusions. It is
recommended that the old practice of identifying hydrological trends without
the consideration of serial and cross correlations should be avoided and these
characteristics should be given adequate attention in all studies on temporal
trends.

Khaliq et al. (2009b) investigated trends in annual, summer and winter
time series of 30-day low flows occurring in pristine rivers basins of Canada.
This study investigated effect of independence (IND), short-term persistence
(STP) and long-term persistence (LTP) using the observed low flow data and
simulated time series of known STP- and LTP-like structures. Mann-Kendall
(MK) test along with two modified versions and a block bootstrap resampling
test were used to estimate significance of temporal trends under the assumptions
of IND and STP. A semi-parametric and a parametric procedure based on the
fractional autoregressive integrated moving average modelling approach and
a MK scaling test were used to estimate significance of temporal trends under
the assumption of LTP. The results of the study suggested that for a majority
of the time series of low flows analyzed, the assumption of IND or STP
cannot be ruled out. On the contrary, the fluctuating behaviour of trends
revealed in selected time series of low flows, with longer records, using
moving window technique favour the LTP hypothesis. In general, the results
of trend investigation suggested that the estimates of trend significance are
highly sensitive to IND, STP and LTP assumptions, e.g., adopting IND
assumption instead of LTP for a given set of hydrological time series exhibiting
LTP, could result in incorrect estimation of trend significance. Also, substituting
IND assumption for STP would result in incorrect estimates of trend
significance. Therefore, for reliable trend investigation, satisfactory
identification of STP- or LTP-like behaviour in hydrologic time series, which
seldom exceed 100 years, is important and challenging, and must be given
adequate attention in all trend investigation studies.
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Zhang et al. (2010b) employed repeated monotonic trend tests with varying
beginning and ending time for detecting changes in streamflow in tributaries
within the Susquehanna River Basin, USA. The method was employed to
analyze long-term streamflow trends and detect change for annual minimum,
median, and maximum daily streamflow for eight unregulated watersheds
within the basin. Monthly baseflow and storm runoff were investigated. The
results showed a considerable increase in annual minimum flow for most of
the examined watersheds and a noticeable increase in annual median flow for
about half of the examined watersheds. Both these streamflow increases were
abrupt, with only a few years of transition centered around 1970. The abrupt
change in annual minimum and median flows appeared to occur in the summer
and fall seasons. The abrupt change in annual minimum and median flows
was considered as a result of increased flows in the summer and fall seasons.
The results also indicated that there is no long-term significant increasing or
decreasing change in annual maximum flow in the examined watersheds.

Zhao et al. (2010) investigated seasonal and annual trends of streamflow
and the correlations between streamflow and climatic variables in five sub-
basins in Poyang Lake basin in the southeast China over 50-year period. The
Theil-Sen approach and the non-parametric Mann-Kendall test were applied
to identify the trends in the annual and seasonal streamflow, precipitation and
evapotranspiration series. It was found that annual and seasonal streamflow of
all the stations had increasing trends except Lijiadu station in wet season.
Only 37.5% hydro-stations in annual streamflow increased significantly, while
most stations increased at 95% significance level in dry season. Trends in
annual and seasonal precipitation during the whole period were generally not
as significant as those in evapotranspiration. The correlations between
streamflow and climate variables (precipitation and evapotranspiration) were
detected by the Pearson’s test. The results showed that streamflow in the
Poyang Lake basin are more sensitive to changes in precipitation than potential
evapotranspiration.

6.3.2 Surface Water Quality

Hirsch et al. (1982) presented techniques for the exploratory analysis of monthly
water quality data for monotonic trends. The first procedure is a nonparametric
test for trend detection, which is applicable to the datasets having seasonality.
The second procedure, the seasonal Kendall slope estimator, is an estimator of
trend’s magnitude. The third procedure provides a means for testing the
temporal change in the relationship between constituent concentration and
streamflow.

El-Shaarawi et al. (1983) examined the temporal changes in some water
quality parameters (i.e., pH, alkalinity, total phosphorous, and nitrate
concentrations) using the 1975-1980 data of the Niagara-on-the-lake in Ontario.
The moving averages, Spearman’s rank correlation coefficients and regression
methods, which model the seasonal cycle, were used in this study. It was
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found that the pH and alkalinity are decreasing, and nitrate increasing, but
these changes were not found in all months.

Van Belle and Hughes (1984) proposed several nonparametric tests for
detecting trends in water quality, because the assumptions of classical
parametric tests are usually not met by water quality data. Also, the additional
peculiarities of data, such as missing values, censored data, and seasonality,
compound the problem of analysis.

Harned and Davenport (1990) analyzed trends in the water quality data of
1945-1988 from major streams flowing into the Albemarle-Pamlico estuarine
system. The nonparametric seasonal Kendall test indicated a change in the
water quality data during the 1945 to 1988 period. The evaluation of water-
quality data and more than 50 basin variables indicated 121 significant
correlations between 11 basin characteristics and 12 water-quality constituents
at 21 estuary locations and seven National Stream Quality Accounting Network
stations.

Yu et al. (1993) analyzed the surface water quality data of the Arkansas,
Verdigris, Neosho, and Walnut River basins, Kansas to examine trends in 17
major constituents by using four different nonparametric methods. The results
indicated that the concentrations of specific conductance, total dissolved solids,
calcium, hardness, sodium, potassium, alkalinity, sulfate, chloride, total
phosphorus, ammonia plus organic nitrogen, and suspended sediment generally
have downward trends. Some of the downward trends were related to the
increase in discharge, while the others were attributed to the decrease in
pollution sources. The homogeneity tests suggested that both the station-wide
trends and basin-wide trends are non-homogeneous.

Robson and Neal (1996) examined the trend of ten years upland stream
and bulk deposition water quality data from Plynlimon, mid-Wales by applying
the seasonal Kendall test. The plotted data on time scale showed long-term
cycles, which relate to the fluctuations in weather patterns at Plynlimon and
thus violate the assumptions of common statistical trend tests. Even though
the seasonal Kendall test was significant for some determinands, the graphs
suggested that many of these trends are unlikely to continue. There was no
indication of changing acid deposition inputs or changing acidity within the
runoff, despite a decline in the UK sulphur dioxide emissions. The streamwater
dissolved organic carbon showed an increase over time, but there was not
corresponding decrease in pH as might be expected from the acidification
theory. There were cyclic variations in bulk precipitation and in streamwater
quality, which indicated that trends cannot be established even with 10 years
of data. Therefore, it was strongly recommended that long-term monitoring
programmes should continue for several decades. It was also emphasized that
graphical analysis greatly enhances data interpretation, and should be considered
as an essential component for trend investigation.

Kalayci and Kahya (1996) detected linear trends in the surface water
quality of rivers in the Susurluk Basin by employing four nonparametric trend
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tests, viz., the Sen’s T test, Spearman’s Rho test, Mann-Kendall test and the
Seasonal Kendall test. The linear slopes (change per unit time) of trends were
calculated by using a nonparametric estimator. In addition, the homogeneity
in monthly trends was tested by the Van Belle and Hughes method. The results
of the nonparametric tests indicated that the discharge and sediment
concentration have downward trends, while the temperature, EC and the
concentrations of sodium, potassium, calcium+magnesium, bicarbonate and
chloride have upward trends. In contrast, the concentrations of carbonate, pH,
sulfate, organic matter, and boron have no trends.

Harned and McMohan (1997) examined the monotonically increasing or
decreasing temporal trends in riverine water quality including the suspended
sediment, solids, and nutrients for six stations of the Contentnea Creek Basin
by using the seasonal Kendall test. The variation in water quality, because of
the variation in streamflow, was also accounted for in cases where streamflow
data were available. Nutrient concentrations for Contentnea Creek at Hookerton
have declined since 1980. Total nitrogen, nitrate+nitrite, and nitrate
concentrations have a significant declined trend, with the greatest reductions
occurring from 1980 to 1992. Total ammonia and organic nitrogen
concentrations, which were increasing during the 1980s, have declined since
around 1990. Total phosphorus, dissolved phosphorus and orthophosphorus,
which increased during the 1980, have shown a significant decline since 1988
— the first year of the legislated phosphate detergent ban.

Antonopoulos et al. (2001) analyzed the time series of water quality
parameters and the discharge of Strymon River, Greece for the 1980-1997
period. The nonparametric Spearman’s criterion was employed to detect the
existence of trends for the variables: discharge, ECw, DO, SO4

-2, Na+, K+ and
NO-3 and the evaluation of the best-fitted models were performed by using

2-test and the Kolmogorov-Smirnov test. Furthermore, the relationships
between concentration and loads of constituents both with the discharge were
also examined. According to the correlation coefficient (r) values, the relation
between concentrations and discharge is weak (r < 0.592), whereas the relation
between loads and discharge is very strong (r > 0.902).

Stansfield (2001) illustrated the importance of considering detection limits
of variables and sampling frequencies by analyzing the trends in water quality
time series (part of the Wellington Regional Council’s freshwater baseline
water quality monitoring programme, New Zealand) using the nonparametric
seasonal Kendall test and the Sen Slope estimator. Results indicated that the
trends (upward and downward) obtained using a low detection limit are often
not discernible when a higher limit is adopted. It was also found that if the
sampling frequency was changed from monthly to quarterly, fewer trends
were detected. Moreover, the quarterly data exhibited a trend, which was
usually of different magnitude (slope) compared to that in the monthly data.

Gangyan et al. (2002) examined the temporal and spatial sediment load
characteristics of Asia’s longest river, the Yangtze by using the turning point
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test, Kendall’s rank correlation test and the Anderson’s correlogram test for
randomness and trend identification. The annual sediment load data from
1950 to 1990 and the monthly sediment load data from 1950 to 1969 were
used. The periodicity was analysed by harmonic analysis and the stochastic
component was modelled by autoregressive model. The analysis of the results
indicated that the annual sediment load series is trend-free at 5% significance
level and the monthly means and standard deviations of sediment load have
periodicity. The month-to-month correlation structure was found nonstationary.
Using the AR(1) model for the dependent stochastic component, 100 years of
monthly sediment data were generated, and the observed and generated data
matched well.

Jassby et al. (2003) developed a time series model of the Secchi depth for
Lake Tahoe, USA incorporating a mechanistic understanding of interannual
variability. The Secchi depth was found occasionally over 40 m for Lake
Tahoe, but the mean annual Secchi depth has declined by about 10 m since
1967, prompting a large-scale restoration programme. The year-to-year
variability was found to be extremely high, obscuring restoration actions and
compliance with water quality standards. The model focussed on the Secchi
depth during summer, when the lake is least transparent and most heavily
used. Interannual variability for the summer season was driven largely by
precipitation differences. The model offers a tool for determining the
compliance with water quality standards when precipitation anomalies may
persist for years. It was also demonstrated by means of an ex-post forecast
that the increasing Secchi depths during 1999-2001 are simply climate-driven
and do not represent a recovery of the lake. The long-term trend for summer
is attributed to the accumulation of allochthonous mineral suspension.

Panda et al. (2011) examined trends in sediment load of the tropical
(Peninsular) river basins of India and explored influence of climatic and
human forcing mechanisms on the land-ocean fluvial systems. Sediment time
series of different timescale during the period 1986-87 to 2005-06 from 133
gauging stations was analyzed. Results indicated dramatic reductions in
sediment load in the tropical river basins, which is beyond the fold of assignable
natural variability. Around 88 and 62% of the total 133 gauging stations
showed a decline in sediment loads in the monsoon and non-monsoon seasons,
respectively. The significant downward trends outnumbered the corresponding
upward trends in high proportions for both the seasons. Striking spatial
coherence was observed among the significant trends, suggesting the presence
of the cross-correlation among the sediment records. The regional trends,
which account the spatial correlation, also indicated a widespread nature of
sediment declines. The rainfall, characterized by the non-significant decreasing
trends and frequent drought years, was found to be the primary controller of
sediment loads for most of the river basins. It was concluded that a little
change in rainfall towards the deficit side leads to a significant reduction in
the sediment load. Among the tropical rivers, the maximum reduction in
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sediment flux took place for the Narmada River (–2.07 × 106 t/yr) due to the
construction of dam.

6.4 Application of Time Series Analysis in
Groundwater Hydrology

6.4.1 Groundwater Flow

Molénat et al. (1999) viewed the catchment as a system that converts the
rainfall to the stream discharge through a transfer function (TF). By comparing
the observed TF with the simulated TF, the hydrological processes and their
time scales were identified. The simulated transfer functions were developed
using the Dupuit’s assumptions and linear representation of the aquifer. The
identification of the TF was based on the stochastic method using a spectral
representation of the rainfall and streamflow time series. The novelty of this
work is to extend the stochastic approach to the one-order catchment hydrology
and to develop a model, which takes into account both the aquifer discharge
and rapid flows. The proposed method was applied to three first-order
agricultural catchments located in different regions of France. For each site,
the obtained results were in good agreement with reality. These results indicated
that the streamflow is dominated by the aquifer flow, which is the fast transfer
accounting for 3-8% of the total discharge depending on the catchment. The
stochastic approach based on the spectral analysis of temporal variations in
global observations was emphasized to be useful for extracting significant
information about the dominant processes occurring in the catchment and
their characteristic time scales.

6.4.2 Groundwater Quality

Chang (1988) developed a modelling technique that includes the homogeneity
test of data and the best model selection to fit the water loss series by a
stochastic process. The results of this study revealed nonhomogeneities in the
annual water loss time series from the Ohio River basin, and hence the
adjustments were required before the model fitting by a stochastic process.
The best model selected based on the criterion of the parsimony of parameters
was successfully used to forecast the regional water losses.

Wilson et al. (1992) established groundwater quality changes caused by
anthropogenic activities with the help of a time-series analysis of well water
quality data from a 1964-1965 survey. In all cases, Ca+2 and Fe+3 were found
to increase with depth due to the dissolution of Ca minerals as water moves
downgradient, and due to a change from oxidizing to reducing conditions
downgradient, respectively. NO3

- and Cl- concentrations were found higher in
the recharge areas possibly due to surface pollution sources. The significant
variability of chemical constituents was attributed to the recharge events,
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aquifer depth, spatial lithological changes, and the anthropogenic activities in
recharge areas.

Loftis (1996) reviewed national assessments, agricultural, urban, point
source and hazardous waste case studies on regional and localized groundwater
quality all over the world, including a few snapshots. Based on this review,
the correct meaning of ‘trend’ was emphasized as a critical step for groundwater
quality studies in both temporal and spatial context. Generally, trends are
thought of as changes over time at either a regional or local spatial scale and
the water quality managers are mostly interested in changes due to artificial
activities. It was concluded that although there are many regional groundwater
studies, which provide a ‘snapshot  water quality description over an area at
a time, only few consider temporal changes and still fewer include a statistical
analysis of long-term trends.

Lee and Lee (2003) evaluated and quantified the potential of natural
attenuation of groundwater at a petroleum-contaminated site in an industrial
area of Seoul, Korea. Eight rounds of groundwater sampling and subsequent
chemical analyses were performed for a period of three years. Groundwater of
the study area was found contaminated by toluene, ethylbenzene and xylene
(TEX). TEX concentration was found decreasing with time, with the TEX
plume in a quasi-steady state. The trend analysis by the Mann-Kendall Test
along with the changes in mass flux and plume area confirmed that the TEX
plume reached a quasi-steady state. Furthermore, the proportion of the total
attenuation attributable to biodegradation was found decreased during the
monitoring period, while the contribution of other attenuation processes
(dilution or dispersion) was found increased.

Kim et al. (2005) applied time series analysis to investigate the effect of
tide on groundwater quality in a coastal area of Korea. Continuous and regular
in situ monitored data of electrical conductivity (EC) and groundwater level,
and tidal level data measured by the National Oceanographic Research Institute
were used for the time series analysis. It was found that EC and groundwater
level conspicuously fluctuate with two periodicities (15.4- and 0.52-day),
which is very similar to those of the tide. Also, the behaviours of their
fluctuations vary in accordance with the tidal period. It was concluded that the
groundwater quality is mainly controlled by the tidal level, and the strength of
tidal effect on the groundwater quality is different according to the tidal
period.

6.5 Time Series Analysis of Irrigation Requirement
and Soil Moisture

Gupta and Chauhan (1986) studied the stochastic structure of weekly irrigation
requirements of a crop by considering the irrigation requirement time series as
an additive model with trend, periodicity and stochasticity as its components.
Each component was identified and, if found, removed from the original



Current Status of Time Series Analysis in Hydrological Sciences 127

series. The turning point test and the Kendall’s rank correlation test were
applied for detecting trends, whereas the correlogram technique was used to
detect the periodicity. The harmonic analysis was done for identifying
significant harmonics. The series was then tested for stationarity and the
dependent part of the stochastic component was found to be expressed well by
the second-order autoregressive model. Therefore, the developed model
superimposed a periodic-deterministic process and a stochastic component.
The adequacy of fit was judged by the insignificant correlation and the normal
distribution of obtained residuals. It was concluded that the developed periodic-
stochastic model can be used for representing the time-based structure of the
irrigation requirement time series for paddy crops.

Wu et al. (1997) evaluated the efficacy of the time series analysis technique
to predict average water content in the soil profile and the water content at
different soil depths from the measurements made at a single depth. The
volumetric water content of a Zimmerman fine sand in Princeton, MN was
measured by TDR at six depths during the early 1993 growing season. The
time series made up of hourly measurements of soil water content was first-
order differenced to obtain stationarity. The differenced data were used to
conduct analyses in the frequency domain to evaluate the coherence and
cross-amplitude between two soil water content time series and were
subsequently fitted to the autoregressive moving average models to obtain
coefficients for the transfer function models in the time domain. The transfer
function models were then used to predict water contents at 50, 75 and 100 cm
depths and the average water content in the top 100-cm soil profile from the
measured water content at 25-cm depth. Overall, the predictions were
reasonable, with an increased accuracy as the separation distance from the 25-
cm depth decreased.

6.6 Concluding Remarks

Time series analysis has been used in a variety of fields in the past, such as
hydrology, climatology, geology, ocean engineering, seismology, etc. In this
chapter, however, the studies related to only hydrologic and climatologic time
series have been reviewed. It is clear from this review that precipitation and
streamflow are major hydrologic variables followed by temperature and surface
water quality, which attracted the attention of researchers from different parts
of the world for applying time series analysis techniques. The application of
standard statistical tests and the evaluation of some statistical tests has been a
major focus of applied research in this area. Comparatively, less number of
studies is reported wherein a new approach is developed or an existing approach
is modified to improve overall efficiency of some time series analysis
techniques. Furthermore, no study is reported to date which covers all aspects
(i.e., basic properties) of hydrologic/hydrogeologic time series analysis. Trend
detection by Kendall or seasonal Kendall test has been a major focus of most
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studies. Unfortunately, remaining trend detection tests and other important
properties of the time series (i.e., stationarity, homogeneity, periodicity and
persistence) are often ignored. The main reason behind this ignorance seems
to be lack of scientists’/researchers’ knowledge about the availability of
appropriate statistical tests for time series analysis as well as the lack of easy-
to-use guidelines/book for their effective application. It is expected that the
application of time series analysis to hydrological/hydrogeological variables
will expand considerably in the future with gradual advancements in
computation technology and increasing availability of software packages for
time series analysis. More and more studies encompassing a wide variety of
hydrological/hydrogeological variables, together with innovative studies are
needed to bring the time series analysis techniques to maturity.
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PART II

Salient Case Studies



7
Efficacy of Time Series Tests:

A Critical Assessment

7.1 Introduction

The application of statistical hydrology in earlier days was restricted to surface
water problems only, especially for analyzing the hydrologic extremes such as
floods and droughts (McCuen, 2003). However, during past three decades, the
statistical domain of hydrology has broadened to encompass the problems
related to both surface water and groundwater resources (Shahin et al., 1993;
Machiwal and Jha, 2006). With such a broad domain, time series analysis has
emerged as a powerful tool for the efficient planning and management of
scarce freshwater resources.

Time series analysis has a vast scope in geology, ocean technology,
seismology, etc. Time series analysis has also been applied to many hydrological
and climatological situations in the past. For instance, time series studies have
been carried out for analyzing the historic rainfall data (e.g., Henderson,
1989; De Michele et al., 1998; Mirza et al., 1998; Pagliara et al., 1998;
Abaurrea and Cebrian, 2003; Pugacheva et al., 2003; Astel et al., 2004),
streamflow data (Avinash and Ghanshyam, 1988; Capodaglio and Moisello,
1990; Radziejewski et al., 2000; Fanta et al., 2001; Adeloye and Montaseri,
2002; Chen and Rao, 2002), flood data (Grew and Werrity, 1995; Changnon
and Kunkel, 1995; Westmacott and Burn, 1997; Robson et al., 1998; Reed et
al., 1999; Lins and Slack, 1999; Loukas and Quick, 1996, 1999; Cayan et al.,
1999; Jain and Lall, 2001; Douglas et al., 2000; Adamowski and Bocci, 2001;
Zhang et al., 2001; Cunderlik and Burn, 2002), infiltration data (Schwankl et
al., 2000), and surface water quality data (Jayawardena and Lai, 1989;
Higashino et al., 1999) as well as for generating synthetic rainfall data in
semi-arid regions (Janos et al., 1988), determining water consumption patterns
(Maidment and Parzen, 1984), detecting trends in evapotranspiration and wind
speed (Hameed et al., 1997; Raghuwanshi and Wallender, 1997), and for
detecting climatic changes (Kite, 1989; Khan, 2001).
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Natural time series, including hydrologic, climatic and environmental
time series, which satisfy the assumptions of normality, homogeneity,
randomness, non-periodic, non-persistence and stationarity, seem to be the
exception rather than the rule (Rao et al., 2003). In fact, for all water resources
studies involving the use of hydrologic time series data, preliminary statistical
analyses must always be carried out (Adeloye and Montaseri, 2002).
Nevertheless, most time series analysis is performed using standard methods
after relaxing the required conditions one way or another in the hope that the
departure from these assumptions is not large enough to affect the result of the
analysis (Rao et al., 2003). A comprehensive survey of the past studies on the
hydrologic time series analysis (Machiwal and Jha, 2006) revealed that no
studies to date have considered all the aspects of time series analysis. Major
work is reported dealing with only linear trend analysis. However, other equally
important characteristics of the hydrologic time series, i.e., normality,
homogeneity, stationarity, periodicity and persistence, have been ignored.
Further, most past studies report only Regression and/or Kendall’s Rank
Correlation tests for trend detection. Two of the past studies (Esterby, 1996;
Hess et al., 2001) report an overview of some selected trend tests. Thus, no
studies are reported to date, which deal with a complete and extensive analysis
of normality, homogeneity, stationarity, periodicity, persistence and stochastic
component in the hydrologic time series (Machiwal and Jha, 2006).

As mentioned in Chapter 4, several statistical tests are available for
determining a particular time series characteristic. Some of the available time
series tests are more powerful than others. However, the use of a specific
statistical test is still dependent on the user’s familiarity with the test rather
than on the strength of the test. It has been found that the results of two
different tests may be dissimilar in characterizing the same characteristic of a
hydrologic time series (Machiwal and Jha, 2008). Therefore, the goal of this
chapter is to demonstrate the efficacy of various time series tests for detecting
particular characteristics through a case study on the annual and salient
consecutive days’ maximum rainfall series of Kharagpur, West Bengal, eastern
India. This chapter draws significantly from Machiwal and Jha (2008).

7.2 Methodology

In this case study, annual rainfall series of 46 years (1957-2002) and the six
consecutive days’ maximum rainfall series of 47 years (1956-2002) in
Kharagpur, West Bengal, India have been analyzed. Annual rainfall for a year
is the total rainfall occurring in that year. The consecutive days’ maximum
rainfall denotes the maximum rainfall, which occurs during given consecutive
days in a particular year. For instance, consecutive 2-day maximum rainfall
denotes the amount of maximum rainfall that occurs in any of the two
consecutive days in a particular year. Needless to mention that the maximum
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rainfall series comprising one-day, consecutive two, three, four, five and six
days maximum rainfall are equally important for estimating the total annual
runoff and maximum runoff produced during a rainfall event. The daily rainfall
data of Kharagpur for the 1956-2002 period were obtained from the Physics
and Meteorology Department of Indian Institute of Technology Kharagpur,
West Bengal, India. These data were checked for the anomalies, and the
rainfall records were found free from anomalies, with no missing data in the
series. It is worth mentioning that the length of the daily rainfall records is
large enough to be used successfully for demonstrating the proper application
of various time series tests.

Three tests (i.e., Geary’s test, Kolmogorov-Smirnov test and D’Agostino-
Pearson Omnibus test) have been applied for testing normality, seven tests
(i.e., The von Neumann test, Cumulative Deviations tests, Bayesian test, Tukey
test, Link-Wallace test, Bartlett test, and Hartley test) for testing homogeneity,
three tests (i.e., Student’s t-test, Simple t-test and Mann-Whitney test) for
examining stationarity, and twelve tests (i.e., Regression test, Spearman Rank
Order Correlation test, Turning Point test, Kendall’s Phase test, Wald-Wolfowitz
Total Number of Runs test, Sum of Squared Lengths test, Adjacency test,
Difference Sign test, Run test on Successive Differences, Inversions test,
Kendall’s Rank Correlation test and Mann-Kendall test) for detecting trend.
Additionally, periodicity and persistence have been examined through harmonic
analysis and autocorrelation analysis, respectively. These time series tests are
described in Chapters 3 and 4.

7.3 Graphical Interpretation

It is always a good practice to present a time series in the form of a simple
x-y plot prior to the application of statistical techniques. Seven such plots
(i.e., total annual, one-day, 2-, 3-, 4-, 5- and 6-day maximum rainfall) showing
mean and range of the rainfall time series in this study were drawn and two
plots for annual and one-day maximum rainfall are shown in Figs 7.1(a-b) as
an example. It is apparent from Fig. 7.1(a) that the time series plot of annual
rainfall does not depict any temporal trend. Similarly, the plots of maximum
rainfalls have no overall trends [Fig. 7.1(b)]. One significant observation is
discernible from time plots of maximum rainfall series that the time pattern of
maximum rainfalls is similar for all the series regardless of the consecutive
days (i.e., one-day, 2-, 3-, 4-, 5- and 6-day). It is also obvious that the increment
in rainfall with an increase in the number of consecutive days is not considerable
compared to the amount of maximum rainfall, which is a major reason for the
similar time patterns in all the maximum rainfall series.

In addition to the time plots, box plots (Fig. 7.2) were drawn to compare
all the rainfall time series under investigation which provide an excellent
summary of five important aspects (lowest value, 25th percentile, median, 75th
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Fig. 7.1. Time series plots of (a) annual and (b) 1-day maximum
rainfall time series.

percentile and highest value) of the distribution of rainfall data together with
the identification of ‘outliers’. The bottom and top horizontal lines in the box
in a box plot indicate the 25th and 75th percentile, respectively, of the statistics
computed from the observed data. The square within the box represents the
median. The whiskers are lines extending from each end of the box to show
the extent of the rest of the data. The whisker extends to the most extreme data
value within 1.5 times the interquartile range of the data. The values beyond
the ends of the whiskers are called ‘outliers’. Further details about the box
plot can be found in Chapter 2 of this book and USEPA (1998).

It is apparent from Figs 7.2(a, b) that for the annual rainfall series, median
is at the centre in between upper and lower quartiles with the upper adjacent
value larger than the lower one. Only a single mild outlier is found in the
annual series beyond the upper adjacent value. This figure also reveals that
the distribution of annual rainfall data below the median value is more
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condensed than that above the median. A comparison of the box plots of
maximum rainfall series reveals that more data are lying in the lower half of
the range in all the series (i.e., one-day, 2-, 3-, 4-, 5- and 6-day). In other
words, the lower half range of the maximum rainfall is heavily weighted than
its upper half range. The medians of the one-day, 2- and 3-day maximum
rainfall series are below the centre of the rectangle, whereas the medians of
the 4-, 5- and 6-day maximum rainfall series are at the centre of the rectangle.
Therefore, it can be concluded that the maximum rainfall time series becomes
more uniform in distribution by increasing the number of consecutive days.
Furthermore, mild outliers can be seen in the one-day and consecutive 2-day
maximum rainfall time series, which disappear completely in the consecutive
3-, 4-, 5- and 6-day maximum rainfall time series. It should be noted that in
all the maximum rainfall box plots [Fig. 7.2(b)], the upper whisker (i.e.,
distance of upper adjacent value from the upper quartile) is longer than the
lower whisker, which indicates the less density of data in the upper half range
compared to the density in the lower half range.

Fig. 7.2. Box plots of the (a) annual and (b) maximum rainfall
time series of Kharagpur.
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One of the most significant findings of box plot analysis, is the presence
of mild outliers in the total annual rainfall, one-day and consecutive 2-day
maximum rainfall time series. Therefore, normal probability plots [Figs 7.3(a-
g)] were drawn for testing the significance of mild outliers and normality of
the rainfall data. The normal probability plot is reported to be the single-most
valuable graphical aid in diagnosing how a population distribution appears to
differ from a normal distribution (PROPHET StatGuide, 2007). These plots
revealed that for the one-day and consecutive 2- and 3-day maximum rainfall,
a straight line cannot be obtained on normal probability plots, whereas the
data of the remaining rainfall series do not deviate significantly from the
straight line. The non-normality in one-day and consecutive 2-day maximum
rainfall time series could be attributed to the presence of few mild outliers as
mentioned earlier.

Fig. 7.3. Normal probability plots of the (a) annual and (b-g) salient
consecutive days’ maximum rainfall time series of Kharagpur.

Dotted straight lines represent regression lines.

7.4 Checking Normality

Three most-widely used statistical tests, i.e., Geary’s Test (Walpole and Myers,
1989), Kolmogorov-Smirnov test (NIST/SEMATECH, 2007) and D’Agostino-
Pearson Omnibus test (D’Agostino, 1986), were applied to examine the
normality of the rainfall series under study. Results of these normality tests
are presented in Table 7.1. If normality is present in a time series, the Geary’s
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test-statistic value approaches one (Walpole and Myers, 1989). Given this
criterion, all the seven rainfall time series can be considered normal based on
the Geary’s test (Table 7.1). The results of the Kolmogorov-Smirnov test and
the D’Agostino-Pearson Omnibus test can be interpreted by comparing
observed P-values with 0.05. If the P-value is more than 0.05, the null
hypothesis of normality cannot be rejected. It can be seen from Table 7.1 that
observed P-values for the annual rainfall and 5- and 6-day maximum rainfalls
are greater than 0.05 for the Kolmogorov-Smirnov test. Similarly, observed P-
values are greater than 0.05 for the 4-, 5- and 6-day maximum rainfall time
series for the D’Agostino-Pearson Omnibus test. Thus, based on the box
plots, normal probability plots and three normality tests, the rainfall series
under study can be considered to be normal, though one-day and consecutive
2-day maximum rainfall time series have few mild outliers that causes deviation
from normality. After removing these mild outliers and then applying the
D’Agostino-Pearson Omnibus test, which is reported as powerful normality
test (e.g., DeCarlo, 1997; Öztuna et al., 2006), it was found that observed P-
value is not significant (Table 7.1). Thus, all the seven rainfall series under
study could be considered to be normal.

7.5 Checking Homogeneity

In this study, three homogeneity tests (i.e., von Neumann test, Cumulative
Deviations test and Bayesian test) were employed to examine the homogeneity
in the annual and maximum rainfall series. The results of the three homogeneity
tests are presented in Table 7.2. The von Neumann ratio is a statistic that has
an expected value of 2 for a homogeneous series, but it tends to be less than
2 for a non-homogeneous series. It is apparent from Table 7.2 that the von
Neumann ratio (N) becomes smaller than 2 for the one-day and consecutive
2-day maximum rainfall series, which suggests non-homogeneity in these
rainfall series of Kharagpur. However, N reaches close to 2 for the total
annual, consecutive three-, four-, five- and six-day maximum rainfall series.
In case of Cumulative Deviations and Bayesian tests, all the applied test-
statistics (i.e., Q, R, U and A) have the smaller values compared to their
critical values (Buishand, 1982) at 5% significance level for the total annual
and the maximum rainfall series, which indicate that all the rainfall time series
are homogenous and belong to the same population. Furthermore, as mentioned
in Chapter 4, non-homogeneity arises due to changes in the method of data
collection and/or the environment in which it is done. Environmental or physical
factors are type, height and exposure of the raingauge, which may affect
homogeneity (Buishand, 1982). For the present study, location of the raingauge
station and the method of recording rainfall did not change since its
establishment. Also, the surrounding environment of the raingauge station
and/or physical factors has not altered over the years. Therefore, the physical
factors affecting homogeneity did not change for the raingauge station under
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study for the entire period of collected data. Hence, it is believed that the
rainfall series could be homogeneous. Based on the results of the Cumulative
Deviations and the Bayesian tests, the rainfall series in this study are found
homogeneous. Thus, based on the available history of the raingauge station,
the Cumulative Deviations and the Bayesian tests seem to be superior to the
classical von Neumann test. Similar finding has also been reported by Buishand
(1982) based on the data generation method.

Table 7.2. Observed and critical test-statistics of the three homogeneity tests for
the annual and maximum rainfall time series of Kharagpur

Rainfall          von Neumann Cumulative deviations Bayesian test
time series test (N) /Q n /R n U A

1 2 3 4 5 6

Annual 1.908 0.990 0.990 0.249 1.471
(1.265) (1.540) (0.450) (2.460)

1-day max. 1.784 0.752 0.745 0.113 0.651
(1.265) (1.540) (0.450) (2.460)

2-day max. 1.873 0.637 0.631 0.067 0.407
(1.265) (1.540) (0.450) (2.460)

3-day max. 1.922 0.603 0.602 0.076 0.462
(1.265) (1.540) (0.450) (2.460)

4-day max. 2.008 0.670 0.657 0.087 0.504
(1.265) (1.540) (0.450) (2.460)

5-day max. 2.120 0.613 0.611 0.100 0.584
(1.265) (1.540) (0.450) (2.460)

6-day max. 2.022 0.575 0.571 0.099 0.601
(1.265) (1.540) (0.450) (2.460)

Note: max.: maximum; Bracketed figures in Columns 3 to 6 are critical values.

Moreover, four tests for multiple comparisons of homogeneity were also
applied to all the seven rainfall time series after fragmenting these in two
ways: (a) two fragmentations each comprising half of the entire series, and (b)
three fragmentations each consisting of one-third of the entire series. The
computed values of all the homogeneity test-statistics for multiple comparisons
were compared with their critical values (Table 7.3). It is clear from this table
that for the Tukey test, the calculated difference in the means of different
possible combinations of two subseries in two individual fragmentations are
always less than the critical limit. Therefore, the null hypotheses of homogeneity
cannot be rejected for annual, one-day, 2-, 3-, 4-, 5- and 6-day maximum
rainfall time series, which also have equal variances. Similarly, the observed
value of the test-statistic KL is found less than its critical value in case of Link-
Wallace test, which suggests the presence of homogeneity in the annual rainfall
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series of Kharagpur. The Link-Wallace test could not be applied to the second
fragmentation of annual rainfall time series and to both the fragmentations
(i.e., first and second) of maximum rainfall time series because of their unequal
sample sizes. The results of the Bartlett test (Table 7.3) indicate that the
homogeneity is associated with the annual rainfall time series for both the
fragmentations and with the second fragmentation of all maximum rainfall
time series (i.e., 1-, 2-, 3-, 4-, 5- and 6-day). However, the first fragmentation
of one-day, consecutive 3-, 4-, 5- and 6-day maximum rainfall time series are
found non-homogeneous based on the Bartlett test. Table 7.3 also reveals that
the results of the Hartley test are exactly similar to that of the Bartlett test for
the first fragmentation of all the rainfall time series under study. However, the
second fragmentation of consecutive 3-, 4- and 5-day maximum rainfall can
be declared non-homogeneous based on the Hartley test. Furthermore, based
on the historical information of the raingauge station, the Tukey test is found
to be more powerful in identifying the homogeneity than the Bartlett and
Hartley tests.

Based on the above results of three homogeneity tests and available
historical information for the raingauge station, it can be concluded that the
Cumulative Deviations and Bayesian tests are superior to the von Neumann
test. Similarly, Tukey test is better than Bartlett, Hartley and Link-Wallace
tests for multiple comparisons. All these superior tests indicated that annual
and maximum rainfall time series of Kharagpur are homogeneous. Here, it is
emphasized that adequate number of tests should be applied and the results of
all the applied tests should be critically analyzed to arrive at a reliable decision
about the characteristics of a hydrologic time series.

7.6 Checking Stationarity

The entire time series of annual and maximum rainfalls were divided into five
subseries according to the first-half, second-half, first one-third, second one-
third, and last one-third of the entire period of rainfall records, and then the
stationary tests were applied to examine whether the means of the five subseries
are significantly different from that of the entire series. The salient statistical
parameters of the entire and subseries, i.e., annual and maximum rainfalls, are
summarized in Table 7.4. It is obvious from Table 7.4 that the annual and
maximum rainfall series have been derived from positively skewed distributions
with wide variations from the mean (standard deviation 18% for annual
rainfall and standard deviation 25% for all maximum rainfall series). It is
also evident that the skewness coefficients for the first one-third rainfall
subseries are comparatively high, which indicates that the subseries contains
more low values than high values. This finding supports the earlier made
inferences based on the box plots of time series.
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Moreover, two parametric tests (i.e., Student’s t-test and Simple t-test)
and one non-parametric Mann-Whitney test were used for testing stationarity
in the rainfall series. The values of the Student’s t-statistics for annual and
maximum (one-day, consecutive 2-, 3-, 4-, 5- and 6-day) rainfall series are
less than their critical values (Table 7.4), and hence the null hypothesis cannot
be rejected at 5% significance level. Here, the choice of 5% significance level
(or 95% confidence level) is arbitrary, but it seems to be a reasonable limit for
the type of data under study (Jayawardena and Lai, 1989). Critical values for
the t-statistic were taken from standard statistical texts (e.g., Shahin et al.,
1993). Further, the parametric Simple t-test was applied to the entire rainfall
series after dividing them into two half-subseries viz., annual rainfall series of
46 years into two 23-year series and the maximum rainfall series of 47 years
into two series (i.e., 23-year series and 24-year series). A comparison between
the calculated and the critical values of the test-statistics is shown in Table 7.5.
It is clear from this table that the stationarity exists in the annual series as well
as one-day, 2-, 3-, 4-, 5- and 6-day maximum rainfall time series of Kharagpur.
Also, the calculated values of the Mann-Whitney test-statistic are less than
their critical values (±1.96) for all the seven rainfall time series, which indicates
stationarity in the rainfall time series of Kharagpur. Thus, based on the results
of three stationarity tests, the annual and maximum rainfall time series under
study are undoubtedly stationary.

7.7 Checking Trend

7.7.1 Application of Trend Tests

The annual and the maximum rainfall time series of Kharagpur were examined
for the presence of a linear trend by applying the trend detection tests mentioned
in methodology. It can be seen that most of the available trend tests are of
parametric character, which necessitates that series should follow a normal
statistical distribution. Hence, the normality of the Kharagpur rainfall time
series data was tested using normal probability plots, and it was found that
they can be considered to follow a normal distribution as discussed earlier in
Section on Graphical Interpretation. The results of the twelve trend detection
tests are presented in Tables 7.5 and 7.6, together with the critical values of
the test-statistics. Critical values for the test-statistics of Regression test,
Spearman Rank Order Correlation test, Wald-Wolfowitz Total Number of
Runs test, Sum of Squares Lengths test, Adjacency test, Difference Sign test
and Runs test on Successive Differences were taken from Shahin et al. (1993).
Similarly, the critical values for the Mann-Kendall test were obtained from
Salas (1993). In the Kendall’s Phase Lengths test, the phase length and observed
number of each phase length was counted in annual and maximum rainfall
(i.e., one-day, 2-, 3-, 4-, 5- and 6-day) time series, and then the expected
number of phase lengths was computed. For the one-day and consecutive



Efficacy of Time Series Tests: A Critical Assessment 155

Ta
bl

e 
7.

5.
 C

om
pa

ris
on

 o
f o

bs
er

ve
d 

an
d 

cr
iti

ca
l t

es
t-s

ta
tis

tic
s 

of
 th

e 
Si

m
pl

e 
t-t

es
t, 

M
an

n-
W

hi
tn

ey
 te

st
 a

nd
 K

en
da

ll’
s 

ph
as

e 
le

ng
th

s 
te

st
 re

su
lts

Ra
in

fa
ll

Si
m

pl
e 

t-t
es

t
M

an
n-

W
hi

tn
ey

 te
st

K
en

da
ll’

s 
ph

as
e 

le
ng

th
 te

st
tim

e 
se

ri
es

ts
co

m
pu

te
d

ts
cr

iti
ca

l
u c

u c
ri

tic
al

1
2

3
4

A
nn

ua
l

0.
93

1.
30

-1
.2

2
±1

.9
6

17
7

2
1

(1
7.

92
)

(7
.7

0)
(2

.1
6)

(0
.4

6)
O

ne
-d

ay
 m

ax
.

1.
16

1.
30

0.
40

±1
.9

6
13

12
2

-
(1

8.
33

)
(7

.8
8)

(2
.2

2)
2-

da
y 

m
ax

.
1.

07
1.

30
0.

66
±1

.9
6

13
9

4
-

(1
8.

33
)

(7
.8

8)
(2

.2
2)

3-
da

y 
m

ax
.

1.
03

1.
30

0.
38

±1
.9

6
22

8
0

1
(1

8.
33

)
(7

.8
8)

(2
.2

2)
(0

.4
7)

4-
da

y 
m

ax
.

1.
23

1.
30

0.
64

±1
.9

6
19

8
0

2
(1

8.
33

)
(7

.8
8)

(2
.2

2)
(0

.4
7)

5-
da

y 
m

ax
.

1.
07

1.
30

0.
53

±1
.9

6
24

9
0

0
(1

8.
33

)
(7

.8
8)

(2
.2

2)
(0

.4
7)

6-
da

y 
m

ax
.

1.
03

1.
30

0.
55

±1
.9

6
21

9
1

0
(1

8.
33

)
(7

.8
8)

(2
.2

2)
(0

.4
7)

N
ot

e:
 B

ra
ck

et
ed

 fi
gu

re
s 

in
 la

st
 fo

ur
 c

ol
um

ns
 a

re
 c

rit
ic

al
 v

al
ue

s 
at

 5
%

 s
ig

ni
fic

an
ce

 le
ve

l.
Fi

gu
re

s 
in

 b
ol

d 
fa

ce
 in

di
ca

te
 th

e 
re

je
ct

io
n 

of
 th

e 
nu

ll 
hy

po
th

es
is

 o
f n

o 
tre

nd
.

m
ax

. =
 m

ax
im

um
.



156 Salient Case Studies

2-day maximum rainfall series, three phases of lengths 1, 2 and 3 were
encountered, whereas in case of annual and 3-, 4-, 5- and 6-day maximum
rainfall time series, phases with lengths of 1, 2, 3 and 4 were found. The
observed and expected numbers of phase lengths are given in Table 7.5. It is
apparent from Table 7.5 that the differences between the observed and expected
numbers of individual phases are small for the annual rainfall time series,
whereas the differences are significant for the maximum rainfall series of all
durations. Thus, the Kendall’s Phase test indicates absence of trend in the
annual rainfall time series and presence of trend in all the maximum rainfall
time series of Kharagpur.

The results of the linear model or Regression test are summarized in
Table 7.6. It is clear from this table that the computed values of the test-
statistic are less than their critical values (±1.96) for all the rainfall time series
under study, which suggests that the annual and maximum rainfalls of
Kharagpur do not have any linear trends. However, the computed test-statistic
value (1.78) for the nonparametric Spearman Rank Order Correlation (SROC)
test is greater than its critical value (1.681) for the annual rainfall time series
(Table 7.6), and hence the null hypothesis of no trend is rejected. Thus, the
annual rainfall series of Kharagpur has a trend based on the SROC test. On the
other hand, results of the SROC test indicate that one-day, 2-, 3-, 4-, 5- and 6-
day maximum rainfalls of Kharagpur are trend-free. Similarly, the annual and
maximum rainfall series were found not to have any trend based on the
Turning Point test (Table 7.6). On the contrary, the results of the Wald-
Wolfowitz Total Number of Runs test indicated trends for all the seven rainfall
time series. Furthermore, it can also be seen from Table 7.6 that the computed
values of the Sum of Squared Lengths test-statistic vary from 49 to 67 for all
the seven rainfall time series, which are considerably less than its critical
value (>118). This suggests no trend in any of the rainfall series. The computed
and critical values of the test-statistic of the Adjacency and the Difference
Sign tests are also compared in Table 7.6, which reveals that all the rainfall
series are free from any kind of trend. However, based on the Difference Sign
test, the 4-day maximum rainfall series has some trend, but the remaining six
rainfall series are trend-free.

Finally, a comparison between the computed and critical values of the
test-statistics of Run test on Successive Differences (Table 7.6) reveals that
the annual rainfall series and all the maximum rainfall time series of Kharagpur
are trend-free at 5% significance level. Thus, the results of the four tests (i.e.,
Run test on Successive Differences, Inversions test, Kendall’s Rank Correlation
test and Mann-Kendall test) are similar to each other (Table 7.6). It can also
be seen that the computed test-statistic values of the Kendall’s Rank Correlation
test are closely related to that of the Mann-Kendall test, which emphasizes the
equal power of both the tests in detecting a trend in hydrologic time series.
This might be the reason that of these four tests, the Kendall’s Rank Correlation
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and Mann-Kendall tests have been used widely in recent hydrological studies
as well as in studies related to soil, plant and meteorology.

7.7.2 Assessment of Trend Tests

Based on the results of various trend detection tests (Tables 7.5 and 7.6), a
comparative evaluation could be done. The only test which indicates presence
of trend in all the seven rainfall time series under study (i.e., annual rainfall
and one-day, 2-, 3-, 4-, 5- and 6-day maximum rainfalls) is Wald-Wolfowitz
test. However, this test is reported to be neither very powerful nor efficient by
Himmelblau (1969) because this test does not take into account the phase
length for computing the test-statistic and thus some useful information is
ignored. The Kendall’s Phase test indicates a trend in all the maximum rainfall
time series, whereas it indicated no trends in the annual rainfall time series.
On the contrary, the SROC test, which is recommended by the World Health
Organization for hydrologic time series analysis, suggests presence of trend
of the annual rainfall time series, but it suggests no trend in all the maximum
rainfall time series. It is worth mentioning that the Kendall’s Phase test is
currently outdated due to the availability of sound and robust trend detection
tests (Shahin et al., 1993). Therefore, results of SROC test can be considered
superior to the Kendall’s Phase test. A trend is also detected in the 4-day
maximum rainfall time series by the Difference Sign test. Apart from the
above-mentioned tests, the remaining nine trend tests did not reveal any trends
in the annual as well as the one-day, 2-, 3-, 4-, 5- and 6-day maximum rainfall
time series of Kharagpur. Thus, bearing in mind the fact that more the applied
tests, more is the chance to reject a true null hypothesis, it can be inferred that
the annual rainfall series (46 years) of Kharagpur does not have any trends
(i.e., series is stable) and similarly the one-day, consecutive 2-, 3-, 4-, 5- and
6-day maximum rainfall series (47 years) are free from any linear trends.
Based on the above results, it can be concluded that the SROC test, Kendall’s
Rank Correlation test and Mann-Kendall test are more reliable or powerful
than the Wald-Wolfowitz test, Kendall’s Phase test and Difference Sign test.

It is a usual practice to consider a hydrologic time series to be stationary
if it is homogeneous and trend-free. Therefore, all the rainfall time series of
Kharagpur can also be considered stationary. This finding is in agreement
with that based on the three specific stationary tests (mentioned in Section on
Checking Stationarity). It is also well discernible from the results of different
trend tests that if more tests are applied for the same objective, it is usually
difficult to arrive at a common conclusion. This is due to the fact that on
increasing the number of tests for analyzing a time series, the probability that
at least one test rejects the null hypothesis of being true increases. Therefore,
it is strongly recommended that the null hypothesis should not be rejected on
the basis of only one or two test results (Brockwell and Davis, 1991).
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7.8 Investigating Periodicity

The harmonic analysis was performed to examine the periodic/cyclic nature
of the annual rainfall series for past 46 years (1957-2002) and maximum
rainfall (one-day maximum, consecutive 2-, 3-, 4-, 5- and 6-day maximum)
series for past 47 years (1956-2002) of Kharagpur. The harmonic analysis was
performed up to 23 maximum number of harmonics in all these rainfall series.
It was found that the periodicity effect is not apparent in the seven rainfall
series and about 75% variation in all the rainfall series is caused by 15
harmonics cumulatively. Furthermore, since the periodicity in a time series is
generally introduced due to the earth’s rotation around the sun (Kite, 1989), it
is expected to be inherent in the time series having a period of less than one
year (e.g., monthly and/or seasonal) rather than annual or annual maximum
rainfall series. In this context, the average monthly rainfall time series of
Kharagpur were also subjected to the harmonic analysis, which revealed six-
month and one-year periodicities in the rainfall series.

7.9 Investigating Persistence

The persistence in the total annual and the selected consecutive days’ maximum
rainfall series was tested by using the autocorrelation technique. Separate
autocorrelograms were prepared for all the rainfall time series as shown in
Figs 7.4(a-g). According to the time series lengths of 46 and 47 years, the
autocorrelation functions/coefficients were determined up to a maximum order
of 12 years. The upper and lower bounds for defining the non-critical
(acceptable) range were computed by the Anderson’s test (Anderson, 1942)
for large samples. It is apparent from these figures that for all the rainfall time
series, the autocorrelograms have a zigzag path closer to zero, and the
autocorrelation coefficients are more or less same for a given time lag. Further,
all the autocorrelograms have almost the similar profile over the time lag
scale.

Moreover, for the annual rainfall time series, the autocorrelation function
at nine years time lag falls outside the acceptable region [Fig. 7.4(a)]. The
appearance of autocorrelation coefficient (rk) beyond the upper critical limit
indicates persistency in the annual rainfall time series of Kharagpur with nine
years time lag. For the remaining time lags, the autocorrelation coefficients
were found within the acceptable range. Thus, it can be safely inferred that the
annual rainfall time series of Kharagpur is slightly persistent in nature with a
nine-year time lag. This means that the annual rainfall of a tth year has some
relationship with the annual rainfall of (t + 9)th year, though it is not significant
in this study as the deviation of rk from the critical limit (i.e., 0.14) may not
be considered very significant for practical purposes. However, persistency
from the annual rainfall series was removed through transformation of the
series by removing autocorrelation for nine years time lag prior to the
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subsequent stochastic analysis. On the other hand, it is obvious from Figs
7.4(b-g) that the autocorrelograms for the one-day, consecutive 2-, 3-, 4-, 5-
and 6-day maximum rainfall time series are non-persistent, i.e., they are
independent of each other.

7.10 Conclusions

A critical assessment of various time series tests has been carried out to
demonstrate the efficacy of these tests for analyzing hydrologic time series
through a case study on the annual and salient consecutive days’ maximum
rainfall series of Kharagpur, India. The time series plots, box plots and normal
probability plots of the one annual and six maximum rainfall time series
revealed no trends. The box plots indicated no severe outliers in both types of
rainfall series (i.e., annual rainfall and consecutive days maximum rainfalls),
except for one or two mild outliers in the 1-day and 2-day maximum rainfall
time series but they were also not found significant. The normal probability
plots indicated normality in the annual rainfall series as well as in the
consecutive 3-, 4-, 5- and 6-day maximum rainfall series, with slight non-
normality in the one-day and consecutive 2-day maximum rainfall series.
However, after removing two-three mild outliers, the D’Agostino-Pearson
Omnibus test suggested normality in all the seven rainfall series. Therefore,
the annual and maximum rainfall time series under investigation are considered
to be normally distributed.

Analysis of the results of three homogeneity tests and four multiple
comparisons tests indicated that the annual and maximum rainfall time series

Fig. 7.4. Autocorrelograms for the (a) annual and (b-g) maximum
rainfall series of Kharagpur.
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are homogeneous. Based on the physical parameters affecting homogeneity,
the Cumulative Deviations test and the Bayesian test were found superior to
the classical von Neumann test. The performance of the Tukey test was found
excellent among all the multiple comparisons tests used in this study. The
results of the Bartlett test were found to be almost similar to that of the
Hartley test. The applicability of the Link-Wallace test, however, is limited
due to the basic assumption of equal sample size. Here, it is emphasized that
the history of data-recording stations should always be associated with the
time series records in order to assess the performance of different types of
homogeneity tests.

The rainfall time series of Kharagpur were found stationary at 5%
significance level based on the two parametric t-tests and one nonparametric
Mann-Whitney test. Out of the twelve trend-detecting tests applied, nine tests
revealed randomness (i.e., no trends) in all the seven rainfall time series.
Though the Wald-Wolfowitz Total Number of Runs test and the Spearman
Rank Order Correlation test reject the randomness in the annual rainfall time
series, this series is still considered random based on the results of other ten
tests (some of which such as Kendall’s Rank Correlation and Mann-Kendall
tests are equally powerful in detecting randomness in the hydrologic time
series). Besides the results of three specific tests for stationarity, the results of
homogeneity and randomness tests also suggested stationarity in the annual
and maximum rainfall time series of Kharagpur. Furthermore, the Fourier
series analysis did not indicate apparent periodicity in any of the seven rainfall
series. The autocorrelation analysis indicated persistence in the annual rainfall
series with a time lag of nine years, though the deviation from the critical
value may not be considered significant for practical purpose. This observed
persistency in the annual rainfall series can be removed through transformations
(Machiwal and Jha, 2008).

Finally, it is concluded that the application of several statistical tests for
the same purpose in a time series analysis increases the chance for rejecting
a true null hypothesis. Therefore, the decision about the rejection of null
hypothesis should be made by critically analyzing the results of adequate
number of statistical tests (at least more than two tests). Such an approach for
time series analysis is essential to ensure efficient application of time series
tests in analyzing hydrologic time series, thereby enhancing the reliability of
time series tests in scientific decision making.
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8
Trend and Homogeneity in

Subsurface Hydrologic Variables:
Case Study in a Hard-Rock

Aquifer of Western India

8.1 Introduction

A comprehensive review on the applications of time series analysis in surface
water hydrology, climatology and groundwater hydrology (Machiwal and
Jha, 2006) revealed that although several studies deal with the application of
time series analysis in surface water hydrology, the application of time series
analysis in subsurface hydrology is greatly limited. In subsurface hydrology,
time series analysis has been mostly used for detecting trends in groundwater
quality (Loftis, 1996; Broers and van der Grift, 2004; Chang, 2008; Visser et
al., 2009).

Trend and homogeneity are the two most important characteristics of
hydrologic time series, which have been investigated in most studies (e.g.,
Esterby, 1996; Loftis, 1996; Hess et al., 2001; Machiwal and Jha, 2006). A
time series is said to have trends, if there is a significant correlation (positive
or negative) between the observations and time. Trends and shifts in hydrologic
time series are usually introduced due to natural or artificial changes (Salas,
1993). The trend in a time series can be expressed by a suitable linear or
nonlinear model. However, the linear models are more widely used in hydrology
than the nonlinear ones (Shahin et al., 1993). Various parametric and
nonparametric statistical tests have been reported in the literature for detecting
the trend in the hydrologic time series, viz., turning point test, the Kendall’s
phase test, the Kendall’s rank correlation test, regression test, the Wald-
Wolfowitz total number of runs test, sum of squared lengths test, adjacency
test, difference sign test, the run test on successive differences, inversion test
(Shahin et al., 1993), the Spearman rank order correlation test, the Mann-
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Kendall test for a linear and/or nonlinear trend (Salas, 1993), the Hotelling-
Pabst test (Conover, 1971), and the Sen test (Gilbert, 1987). Except one, all
these trend detection tests are discussed in Chapter 4 of this book. A few more
rank correlation tests have also been suggested by Kanji (2001).

On the other hand, homogeneity implies that the data in the series belong
to one population, and hence have a time invariant mean. Non-homogeneity
arises due to changes in the method of data collection and/or the environment
in which it is done (Fernando and Jayawardena, 1994). Three homogeneity
tests, viz., the von Neumann test, Cumulative Deviations test and the Bayesian
test (Buishand, 1982) and four multiple comparison tests, viz., Tukey test,
Link-Wallace test, Bartlett test and Hartley test (Kanji, 2001) are most widely
used for exploring homogeneity in hydrologic time series. All these
homogeneity tests are described in Chapter 4 of this book.

The main intent of this chapter is to demonstrate the application of time
series analysis to subsurface hydrologic time series viz., groundwater level
and net recharge time series. Trends and homogeneity have been examined in
these time series as well as in rainfall time series using the data of Udaipur
district, Rajasthan, western India. Udaipur district (study area) is situated in
the hard-rock hilly terrains of Aravalli Range in Rajasthan and suffers from
frequent droughts due to poor and delayed monsoon, low rainfall, abnormally
high summer-temperature and inadequate water resources (Bhuiyan et al.,
2006). Among consecutive five drought years (1998-2002), the 2002 drought
was one of the severest droughts in Rajasthan as well as in the history of India,
which affected 56% of the geographical area and the livelihoods of 300 million
people in 18 states (Samra, 2004). Thus, the study area is severely affected by
water scarcity, which has a direct impact on the livelihood, health and hygiene
of the inhabitants. Considering growing water scarcity and global climate
change, it is essential to examine trends and homogeneity in rainfall,
groundwater level and net recharge time series for the efficient management
of water resources in the study area. This case study also demonstrates the use
of geographical information system (GIS) in presenting the results of trend
and homogeneity tests.

8.2 Study Area and Data

The study area (Udaipur district) is situated in the southern part of the largest
and driest state (Rajasthan) of India (Fig. 8.1). It lies between 23°45  and
25°10  North latitude and 73°0  and 74°35  East longitude encompassing a
geographical area of about 12,698 km2. It consists of 11 blocks (viz., Badgaon,
Bhinder, Dhariawad, Girwa, Gogunda, Jhadol, Kherwara, Kotra, Mavli,
Salumber and Sarada). It is worth mentioning that for the administration
purpose, a state in India is divided into districts, districts into blocks and
blocks into Gram Panchayats; each Gram Panchayat consists of several
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villages. The Udaipur district is bounded by Rajsamand district in the north,
Pali district in the northwest, Dungarpur and partly Banswara districts in the
south and Chittaurgarh district in the east.

The climate of Udaipur is tropical, semi-arid with mercury staying between
a maximum of 42.3 °C and a minimum of 28.8 °C during summers. Winters
are a little cold with the maximum temperature rising to 28.8 °C and the
minimum dipping to 2.5 °C. January is the coldest month and May is the
hottest month. The mean annual rainfall is 625 mm, precipitating more than
80% during June through September. The rainy season (i.e., wet season)
usually starts from mid-June and lasts for about four months up to the end of
October. November to May can be characterized as the dry period.

There are ten rainfall gauging stations in Udaipur district for recording
rainfall on a regular basis. The locations of the rainfall stations are shown in
Fig. 8.1. Monthly rainfall data of these ten standard rainfall stations for the

Fig. 8.1. Location map of the study area.
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period 1965-2006 were collected from the Land Record Section of Collectorate,
Udaipur, Rajasthan. The collected rainfall data of the ten rainfall stations were
processed to prepare annual rainfall time series at each station. Pre- and post-
monsoon groundwater level data of 251 monitoring wells over the study area
for the 19-year period (1988-2006) were collected from the Ground Water
Department, Udaipur, Rajasthan; the location of sites are shown in Fig. 8.1.
All the collected groundwater level data were screened to check anomalies
and 140 monitoring wells were identified with continuous and unambiguous
records of pre- and post-monsoon groundwater levels for a period of 16 years
(1991-2006). Using 1991-2006 years data of groundwater levels, the annual
net recharge was calculated at 140 sites by water table fluctuation method.

8.3 Application of Time Series Tests

In this study, both graphical and statistical methods of time series analysis
were applied to determine spatial and temporal patterns in rainfall, pre- and
post-monsoon groundwater levels and net recharge time series. Trend and
homogeneity are two most important statistical characteristics of the
hydrological time series, which reveal temporal variability of hydrologic
variables (Machiwal and Jha, 2008). The GIS technique is used to present
spatial patterns of presence/absence of trend and homogeneity in the study
area. It is quite common to use only one or two tests for time series analysis,
which facilitates easy decision making. However, Machiwal and Jha (2008)
recommended that an adequate number of statistical tests must be applied for
detecting a particular time series characteristic and the results should be
analyzed critically to arrive at a reliable decision. Therefore, unlike the
customary approach, adequate/multiple statistical tests were applied in this
study in order to ensure realistic decisions about the time series analysis.

Firstly, spatial and temporal variations in annual rainfalls of ten rainfall
stations were analyzed using 43 years (1965-1997) data. Box and whisker
plots of annual rainfalls, which provide a summary of five statistical properties,
were drawn for ten rainfall stations and for 43 individual years. In addition,
annual rainfall time series of ten rainfall stations for the 43 years (1965-2007)
were analyzed for detecting trends by applying three most powerful statistical
tests, namely Mann-Kendall test, Spearman Rank Order Correlation (SROC)
test and Kendall Rank Correlation test. The details of these tests are given in
Chapter 4 (Section 4.3). Spatial homogeneity of the annual rainfall time series
was also examined by applying Levene’s Analysis of Variance (ANOVA) test
and Levene’s Median test. To carry out these time series analyses, spreadsheet
programs were developed using MS-Excel software.

Moreover, trend in the seasonal (pre-monsoon and post-monsoon)
groundwater level time series was examined by using above-mentioned
statistical tests. Homogeneity of the seasonal groundwater level time series
was investigated by using seven statistical tests, namely Hartley test, Link-
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Wallace test, Bartlett test, Tukey test, von Neumann test, Cumulative Deviation
test and Bayesian test. Theoretical backgrounds of these statistical tests are
provided in Chapter 4 (Section 4.1). The trend and homogeneity tests were
applied separately for pre- and post-monsoon seasons using 16 years (1991-
2006) groundwater level time series data of 140 sites. Thus, in total, ten time
series tests were applied to 280 individual groundwater level time series.
Finally, trend and homogeneity were examined in the annual net recharge
time series of 16 years (1991-2006) at 140 sites over the study area by applying
three trend tests and seven homogeneity tests. To accomplish these tasks,
spreadsheet programs were developed using MS-Excel software.

8.4 Spatial and Temporal Variations of Annual Rainfall

8.4.1 Annual Rainfall Pattern

The long-term variation of rainfall is also of prime importance for the efficient
management of water resources. The variation of annual rainfalls over the
study area along with the 43-year mean annual rainfall is shown with the help
of box and whisker plots in Fig. 8.2. It is evident from this figure that the
temporal variation of annual rainfall is the highest for Kotra rainfall station
and the median rainfalls of Dhariawad and Kotra stations are more than the
43-year mean annual rainfall (662 mm) in the area. It is also revealed from the
box and whisker plots (Fig. 8.2) that some outliers and/or extreme rainfall
events occurred during the 43-year period at almost all the ten rainfall stations
in the study area. The outliers and extremes were detected by the STATISTICA
software, which considers a data point to be an outlier if the data point is

Fig. 8.2. Spatial variation of 43-year period annual rainfalls.
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outside the 1.5 times box length range from the upper and lower values of the
box. An extreme value is that which is outside the three times box length
range from the upper and lower values of the box (Tukey, 1977).

Moreover, long-term temporal variation of the annual rainfall for the 43-
year period is shown in Fig. 8.3. Clearly, no overall trend in the annual rainfall
is visible, but the presence of outliers indicates that the annual rainfalls in
some of the years at Dhariawad and Kotra stations are substantially higher
than the rainfalls at other stations. Of the total 43-year period, the annual
rainfalls at all the rainfall stations exceeded the mean annual rainfall in five
years (1973, 1983, 1990, 1994 and 2006), whereas they were below the mean
annual rainfall in eleven years (1966, 1972, 1974, 1982, 1986, 1987, 1988,
1995, 1999, 2000 and 2002). Thus, the rainfall in the study area exhibits
considerable variations with space and time.

Fig. 8.3. Spatio-temporal variations of 43 years annual rainfalls.

8.4.2 Trend and Homogeneity in the Annual Rainfall Time Series

Results of the Mann-Kendall, SROC, and Kendall Rank Correlation tests are
summarized in Table 8.1. It can be seen from this table that the calculated test-
statistic values of all three trend tests is more than their critical values at 5%
level of significance (  = 0.05) for Mavli rainfall station, which indicates
presence of trend in the annual rainfall time series of Mavli station. However,
the calculated test-statistic values of all trend tests for the remaining nine
rainfall stations are less than their critical values, and hence there is no trend
in the rainfall series of these stations. Negative test-statistic value of the
Mann-Kendall test suggests declining trend in the annual rainfall time series
of Mavli rainfall station.

Furthermore, the results of the Levene’s ANOVA test (Table 8.2) revealed
that the calculated test-statistic value (0.014) is less than its critical value
( 1.96) for 9 degrees of freedom in the numerator and 420 degrees of freedom
in the denominator. Hence, the annual rainfalls at the ten rainfall stations do
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not have significant variance at  = 0.05. It is apparent from Table 8.1 that the
calculated test-statistic values of the Levene’s median test do not vary
significantly for the ten rainfall stations. Thus, the results of the Levene’s
median test are in agreement with those of the Levene’s ANOVA test. This
finding suggests that the annual rainfalls over the area are spatially
homogeneous.

8.5 Trend and Homogeneity in Seasonal Groundwater
Levels

8.5.1 Results of Trend Tests

Results of the three trend tests indicating number of sites with presence/
absence of the trends in pre- and post-monsoon groundwater levels are shown
in Figs 8.4 and 8.5, respectively. It is apparent that the number of sites with
significant trends of increasing groundwater level at 5% significance level
(  = 0.05) is approximately same for Mann-Kendall test (49% and 7% of the
sites in pre- and post-monsoon seasons, respectively) and Kendall Rank
Correlation test (51% and 8% of the sites in pre- and post-monsoon seasons,
respectively). However, Spearman Rank Order Correlation test does not indicate
nature of trend (i.e., increasing/decreasing) and results in relatively large
number of sites with significant trends (i.e., 61% in pre-monsoon and 20% in
post-monsoon) at  = 0.05 compared to two earlier trend tests.

Fig. 8.4. Trends in pre-monsoon groundwater levels based on
the three trend tests.

It is apparent from Figs 8.4 and 8.5 that the number of sites with significant
trends of increasing groundwater levels (at  = 0.05) is relatively more in the
pre-monsoon season than in the post-monsoon season. Presence of the
increasing trends of post-monsoon groundwater level at relatively small number
of sites compared to that in the pre-monsoon groundwater level is due to the
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rise in groundwater levels during monsoon season, which results in increased
hydraulic connectivity among the sites.

Fig. 8.5. Trends in post-monsoon groundwater levels based on
the three trend tests.

It is also evident from Fig. 8.4 that the sites with significant trends (p <
0.05) appear to be in three major clusters during pre-monsoon season over the
study area: (i) in northeast portion, (ii) in southwest portion, and (iii) in south
portion of the area. Of the three clusters, the first cluster falls in the residential
area, second in hillocks, and the third cluster falls in the cultivated command
area. Based on the type of land use/land cover in significant trend clusters, the
significant trends in the pre-monsoon groundwater levels of the first cluster
may be due to unsystematic and uncontrolled seasonal domestic groundwater
withdrawals. Similarly, the significant trends of the third cluster may be
attributed to the non-systematic and uncontrolled groundwater withdrawals
for irrigation during pre-monsoon season when surface water supply is not
adequate to meet the crop water requirements in the command area. Thus, the
significant trends in pre- and post-monsoon groundwater levels in the first and
third clusters are due to anthropogenic factors. However, the significant trends
in the second cluster could be attributed to geogenic factors (e.g., natural
geologic processes). It can be seen from Figs 8.4 and 8.5 that significant
increasing trends in post-monsoon groundwater level time series exist at less
number of sites than the number of sites having increasing trends in pre-
monsoon groundwater level time series.

8.5.2 Results of Homogeneity Tests

Results of the seven homogeneity tests indicating sites with presence/absence
of homogeneity in the time series of pre- and post-monsoon groundwater
levels are shown in Figs 8.6 and 8.7. Clearly, the number of sites with
homogeneity and non-homogeneity differs for different homogeneity tests in
both pre- and post-monsoon groundwater levels. For example, according to
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Hartley test, the pre-monsoon groundwater levels at about 96% of the sites are
homogeneous, while von Neumann test indicates that only 11% of the sites
have homogeneity in pre-monsoon groundwater levels (Fig. 8.6). The results
of the Tukey and Link-Wallace tests suggest that homogeneity is associated
with 31% of the sites in pre-monsoon groundwater levels. On the other hand,
three test-statistics (Q of Cumulative Deviations test and U and A of Bayesian
test) indicate that 47, 44 and 46% of the sites have homogeneity in pre-
monsoon groundwater level time series, respectively, whereas the R test-

Fig. 8.6. Homogeneous and non-homogeneous pre-monsoon groundwater
levels over the study area based on the seven homogeneity tests.
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statistics of Cumulative Deviation test reveals that 78% of the sites have
homogeneity (Fig. 8.6).

As far as the post-monsoon groundwater level time series is concerned,
the results of the Hartley test (Fig. 8.7) suggest presence of homogeneity in all
140 post-monsoon groundwater level time series. The Tukey, Bartlett and the
Link-Wallace tests suggest that 66, 66 and 59% of the sites have homogeneous
post-monsoon groundwater level time series. Three test-statistics (i.e., Q, U

Fig. 8.7. Homogeneous and non-homogeneous post-monsoon groundwater
levels over the study area based on the seven homogeneity tests.
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and A) of the Cumulative Deviations and the Bayesian tests indicate that 79,
82 and 88% of the sites have homogeneity in post-monsoon groundwater
level time series, respectively, but the R-statistic of the Cumulative Deviations
test shows that homogeneity is present in 97% of the post-monsoon groundwater
level time series.

It is apparent from Figs 8.6 and 8.7 that except for Bartlett and von
Neumann tests, all other tests indicate more number of sites with homogeneous
groundwater levels in post-monsoon season than in pre-monsoon season. The
large homogeneity in post-monsoon groundwater levels seems to be logical
because of limited human stress on the aquifer during monsoon/post-monsoon
season.

The homogeneity tests (Fig. 8.6) suggest that non-homogeneous sites
appear in three major clusters during pre-monsoon season over the study area
almost similar to the clusters found in case of trend tests. The first cluster is
in the northeast portion, second in southwest portion, and third in south portion
of the area. The factors responsible for non-homogeneities (p < 0.05) in these
clusters could be explained based on the type of land use/land cover in the
area as discussed in Section 8.5.1. It should be noted that non-homogeneities
in the first and third clusters are due to non-systematic variation of groundwater
withdrawals for domestic and irrigation purposes, respectively (or
anthropogenic sources) since the clusters exist at the same location where the
clusters of significant increasing trends exist. However, non-homogeneities in
the second cluster may be attributed to geogenic factors. Almost similar types
of three non-homogeneity clusters are also discernible in post-monsoon
groundwater levels (Fig. 8.7) for the Link-Wallace test, Tukey test, Cumulative
Deviations (Q-statistic) test, and Bayesian test (both U and A test-statistics).
However, these clusters are relatively less dense for the post-monsoon
groundwater levels compared to the pre-monsoon groundwater levels. The
lesser number of non-homogeneous groundwater level sites in post-monsoon
season is reasonable because of the fact that sufficient surface water is available
for domestic and agricultural purposes as well as groundwater supply is
augmented due to natural recharge, and hence, the underlying groundwater
system is almost free from artificial stress.

8.6 Trend and Homogeneity in Annual Net Recharge

8.6.1 Trends in Annual Net Recharge

Results of the three trend tests indicating number of sites with presence/
absence of trends in the annual net recharge are depicted in Fig. 8.8. This
figure shows that the number of sites having significant trends of increasing
net recharge (at  = 0.05) is almost same for the Mann-Kendall test (5%) and
the Kendall Rank Correlation test (6%). However, the Spearman Rank Order
Correlation test suggests that the annual net recharge has trends at 12% sites.
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The three clusters of increasing trend sites are not clearly visible in the case
of net recharge due to relatively less number of sites having increasing trend
compared to the pre- and post-monsoon groundwater level time series.

Fig. 8.8. Trends and no trends in the annual net recharge based
on the three trend tests.

8.6.2 Homogeneity/Non-homogeneity of Annual Net
Recharge

Results of the seven homogeneity tests indicating number of sites with presence/
absence of the homogeneity in the annual net recharge time series are shown
in Fig. 8.9.

Figure 8.9 shows that the number of sites having homogeneity or non-
homogeneity differs for different homogeneity tests. The Hartley test suggests
homogeneity in the annual net recharge at about 98% of the sites, whereas the
von Neumann test indicates homogeneity only at 34% sites. The results of the
Link-Wallace and both the test-statistics (U and A) of the Bayesian tests show
that annual net recharge time series is homogeneous at 93% sites. In case of
Cumulative Deviations tests, the applied Q and R test-statistics indicate
homogeneity in 88 and 99% sites, respectively (Fig. 8.9). The Tukey test
reveals that 96% sites have homogeneous annual net recharge time series.
Thus, six of the nine applied test-statistics suggest homogeneity in annual net
recharge at more than 90% sites.

A comparison of the homogeneity results for annual net recharge time
series with those of seasonal groundwater level time series reveals that the
annual net recharge time series is relatively more homogeneous than pre- and
post-monsoon groundwater levels (Figs 8.6 and 8.7). It is worth mentioning
that unlike pre- and post-monsoon groundwater levels non-homogeneous annual
net recharge sites are not very dense and hence, no cluster could be delineated
for the net recharge.
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8.7 Conclusions

This study demonstrates the application of statistical tests to determine trend
and homogeneity in two subsurface hydrologic variables (groundwater levels
and net recharge) as well as in rainfall time series of Udaipur district, Rajasthan,
western India. Both graphical and statistical methods are used along with GIS
technique to determine spatial and temporal patterns in rainfall, pre- and post-

Fig. 8.9. Homogeneous and non-homogeneous annual
net recharge in the study area.



Trend and Homogeneity in Subsurface Hydrologic Variables 179

monsoon groundwater levels and net recharge time series. The box and whisker
plots for the mean annual rainfalls reveal that long-term variation in the
rainfall is the highest at Kotra rainfall station. The annual rainfalls in some of
the years at Dhariawad and Kotra stations are substantially higher than the
rainfalls at other stations. The results of trend tests indicate the presence of
significant declining trend at Mavli rainfall station. The results of the Levene’s
ANOVA test suggest that the rainfall over the study area is spatially
homogeneous. Overall, the spatial and temporal variations of annual rainfall
in the study area are not statistically significant. Also, no trend was detected
in the annual rainfall series except at single rainfall station.

The results of the seven homogeneity tests and the three trend tests for
groundwater level time series in both pre- and post-monsoon seasons indicate
that non-homogeneous sites appear in three dense clusters over the study area:
(i) in northeast portion (dominated by residential area), (ii) in southwest portion
(dominated by hillocks), and (iii) in south portion (dominated by cultivated
command). The non-homogeneity in groundwater levels in the first and third
clusters is attributed to anthropogenic factors, and that in the second cluster is
due to geogenic factors. It is also found that the non-homogeneity and trend
are present at relatively large number of sites in the pre-monsoon season
compared to that in the post-monsoon season.

The results of two homogeneity tests, viz., Link-Wallace test and Bayesian
test for the annual net recharge time series are almost similar. It is also found
that the annual net recharge time series are relatively more homogeneous
compared to the pre- and post-monsoon groundwater level time series. The
results of the Mann-Kendall test and Kendall Rank Correlation test for trend
detection are almost similar. Homogeneity and trend tests suggest that the
annual net recharge time series is homogeneous without any trends in a major
portion (more than 90% sites) of the study area.

Overall, it is concluded that the Tukey, Link-Wallace, Bayesian tests and
Q-statistic of the Cumulative Deviations test are superior to other homogeneity
tests. Further, it is recommended to use either Mann-Kendall test or Kendall
Rank Correlation test for exploring trends in similar future studies.
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9
Analysis of Streamflow Trend in the

Susquehanna River Basin, USA

9.1 Introduction

Streamflow statistics are extensively employed for the management and
development of water resources. The magnitude and frequency of streamflows
in the Susquehanna River Basin (SRB) are often used by the Susquehanna
River Basin Commission (SRBC) and other agencies for the purposes of
water resources planning and management (SRBC, 2006). For example, a
wide range of streamflow statistics are used for consumptive water use
mitigation, reservoir operation, and minimum release management. Water
resources engineers and managers often implicitly assume that streamflow
series are stationary over time when using streamflow data and statistics
(SRBC, 2006; Zhang and Kroll, 2007a,b; Milly et al., 2008). This assumption
may not be valid if the watershed under consideration is sensitive to human
disturbance and/or climate change. More generally, climate variability, and
change in population, land use and water use are implicated in the non-
stationarity of streamflow series (Koutsoyiannis et al., 2009; Lins and Stakhiv,
1998; Milly et al., 2008). In a review of its consumptive use mitigation strategy,
the SRBC examined the frequency and duration of consumptive use
compensation releases from reservoirs located in the upper reaches of the
SRB. It was evident that the number and frequency of 7-day-10-year low flow
(Q7,10) events had dropped substantially since around 1970. This suggests that
the assumption of stationarity in the basin might be invalid. Therefore, an
investigation of the assumption of streamflow stationarity in the SRB was of
interest.

Invited contribution by Zhenxing Zhang, Robert D. Pody, Andrew D. Dehoff and John
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PA, USA.
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The changes of means and the variability of streamflows are the major
factors that have contributed to the end of streamflow stationarity. To accurately
characterize streamflows, it is of interest to detect these changes. Trend analyses
are commonly used in literature to detect changes in streamflow time series.
Linear and nonlinear models are often employed to express the trend in a time
series in hydrology literature (Shahin et al., 1993). Student’s t-test is commonly
used to detect linear trend. However, this method assumes that the time series
is normally distributed. For non-normal data, a nonparametric test such as the
Mann-Kendall test (Mann, 1945; Kendall, 1962) is preferred (Hirsch and
Slack, 1984; Helsel and Hirsch, 1992). The serial correlation in a time series
will impact the ability to evaluate the significance of the test (Kulkarni and
von Storch, 1995; von Storch, 1995; Yue et al., 2002b). Lettenmaier et al.
(1994) found strong upward trends in about half the 1009 investigated streams
in the continental United States for the months of November through April
using the streamflow records from 1948 through 1988. Lins and Slack (1999)
found similar results with lower magnitude streamflow quantiles.

Noticing that many studies did not consider the regional cross-correlation
of streamflow, Douglas et al. (2000) proposed a bootstrap approach to account
for it and detected upward trends in low flows in the Midwestern U.S. An
increase in high streamflows in the conterminous US has been reported by
Groisman et al. (2001). Zhu and Day (2005) reported downward trends in 47
streams across Pennsylvania for the 1971-2001 period. Kalra et al. (2008)
documented increased streamflow in the Mississippi and Missouri regions for
the period 1951-2002. Different trends in streamflows in varying months in
the Colorado River Basin have been documented by Miller and Piechota
(2008). Wu et al. (2008) found that there is no uniform trend in droughts in
Nebraska. The detection and characterization of trends should be studied in a
framework that recognizes and characterizes the dependence structure of
hydroclimatic records (Koutsoyiannis and Montanari, 2007). Bhutiyani et al.
(2008) reported changing streamflow patterns in the rivers of northwestern
Himalaya during the 20th century. Milly et al. (2005) demonstrated an ensemble
of 12 climate models to simulate patterns of changes in global streamflows.
Changnon and Demissie (1996) examined streamflow changes in the Midwest
region of the United States and investigated the effects of land use and climate
fluctuations. Machiwal and Jha (2006) provided an excellent review of trend
analysis on hydrologic time series, together with the application of other time
series analysis techniques in hydrology and climatology.

Traditionally, a period of time is pre-specified and a trend test is conducted
using the data within the selected period. However, this approach cannot
demonstrate the pattern of change. To effectively and efficiently manage water
resources, water resources engineers and managers need to know not only if
there are trends but also if the trends are abrupt or gradual. The magnitude of
the change and length of the period during which the change occurred have
considerably different implications. For a gradual trend, the change occurs
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during a relatively long period of time and is expected to continue into the
future. If the trend is abrupt, the change is a level shift that occurs over a
relatively short time. Once the level shift is completed, the streamflows remain
stationary at the new level until another change occurs (McCabe and Wolock,
2002). The hydrologic literature has so far devoted very limited attention to
the characterization of trend patterns. Kalra et al. (2008) studied the step
change in 639 U.S. streamflows over period of 1951-2002 using the Rank
Sum test and Student’s t-test. However, in their study, a prior hypothesis of a
time of change was required for detecting the step change. Miller and Piechota
(2008) investigated the step change in monthly hydroclimatic variables around
the Colorado River Basin. They divided the time series into two sub-series for
the step change analysis which requires the prior knowledge of the time of
change. McCabe and Wolock (2002) employed multiple nonparametric
statistical trend tests with various record lengths to detect change of streamflow
across the conterminous United States. Changes in streamflow could be detected
by examining the number of stream sites with significant trends. To employ
the method suggested by McCabe and Wolock (2002), a group of stream
gauges are required. Hydrology literature is often focussed on large spatial
scale (national or regional) flow change analyses with a large number of
stream gauges. Zhang et al. (2010b) found that their coarse spatial resolution
limits the practical application to specific watersheds in the SRB. To detect a
change in streamflow for single streams, Zhang et al. (2010a) proposed to use
the nonparametric trend test with varying record lengths. Zhang et al. (2010b)
applied this approach as a screening tool to identify potential changes in
streamflow of watersheds within the SRB.

This study expands on the work of Zhang et al. (2010b). The method
proposed by Zhang et al. (2010a) is employed to detect trend patterns in
streamflow in the SRB. Both annual and monthly streamflow characteristics
are investigated. The two components of streamflow, i.e. ‘baseflow’ and ‘storm
runoff’, have been examined. Baseflow and storm runoff are estimated by
employing the baseflow separation programme, BFI which is available at the
U.S. Bureau of Reclamation website (http://www.usbr.gov/pmts/hydraulics_lab/
twahl/bfi/). Three questions have been addressed in this study: (i) Are there
changes in the streamflow in the basin? (ii) If so, what is the pattern of the
change, i.e., are the flow changes increasing or decreasing and are they gradual
or abrupt? (iii) If there are changes, in which month(s) do they occur?

9.2 Study Area

The area of the Susquehanna River Basin (SRB) is 71,250 km2, which includes
portions of the states of Pennsylvania, New York and Maryland. It is the
largest tributary of the Chesapeake Bay, comprising 43% of the bay’s drainage
area and providing 50% of its freshwater. The length of the Susquehanna
River is about 715 km and it is the largest river within the United States that
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drains into the Atlantic Ocean. The SRB extends from the Atlantic coastal
plain inland approximately 260 km, crossing several physiographic regions
(Fig. 9.1) of the Appalachian Highlands. These regions generally run northeast-
southwest, approximately parallel to the Atlantic coastline. The physiographic
provinces covered by the basin include Appalachian Plateau, Valley and Ridge,
Blue Ridge and Piedmont (Marsh and Peirce, 1995; Pennsylvania Department
of Environmental Protection, 2009).

The northern and western portions of the basin are located in the
Appalachian Plateau. This region is characterized by sedimentary rocks of
Devonian, Mississippian and Pennsylvanian age that are flat lying or very
gently folded. The rocks are dominantly siliciclastics. The Pennsylvanian
formations contain coal beds that are widely mined. The streams generally
flow in deep, steep-sided valleys with 150 to 300 m of local relief. Dissection
of the plateaus is variable, with some portions having extensive summit areas
while other portions are nearly all in slope. The Appalachian Plateau is largely
forested. The population is concentrated in widely scattered towns with a
population of a few hundreds to a few thousands. The Valley and Ridge
section occupies the central portion of the basin. This region is characterized
by strongly folded and faulted sedimentary rocks of Paleozoic age. Erosion of
this terrain has produced even-crested parallel ridges of Paleozoic sandstone
with intervening valleys formed on less resistant rock types. The ridges typically
have 300-450 m of local relief. The valleys are generally hilly. The ridges are
primarily forested while the valleys are primarily comprised of agricultural
lands. The population is concentrated in towns of a few hundred to several
thousand people. The larger streams flow parallel to the ridges, while the
trunk streams cross the ridges in deeply cut water gaps. The Susquehanna
River and its major tributaries actually flow across this structural and
topographic grain. The Blue Ridge section is a broad anticlinorium of largely
Lower Cambrian metasediments with a core of late pre-Cambrian igneous and
meta-volcanic rocks. The Blue Ridge is about 10 km in width, and ends
abruptly about 24 km west of the Susquehanna River. Summit areas are gently
rounded, with extensive flat areas. The Piedmont section is located seaward of
the Blue Ridge. It is approximately 60 km wide where it crosses the SRB.
Landuse is a mix of forestry and agriculture. The Piedmont consists largely of
uplands underlain by meta-sedimentary and meta-volcanic rocks, with minor
lowlands underlain by Mesozoic age sediments and igneous intrusions. The
structural grain of the Piedmont is parallel to that in the neighbouring
physiographic sections: northeast-southwest. Local relief is typically 30-90
m. The Susquehanna River flows through a rugged bedrock valley as it crosses
the Piedmont.

The climate of the SRB is humid continental, and reflects both an
alternation and interplay between oceanic and continental air masses, and
their associated weather. The Appalachian Plateau section of the SRB is
characterized by average annual precipitation in the range of 90-100 cm,
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Fig. 9.1. Susquehanna River Basin and the location of watersheds
under investigation.

average minimum January temperatures of –10 oC and average maximum
July temperatures of 27 oC (Pennsylvania Department of Environmental
Protection, 2009). The Valley and Ridge section is characterized by average
annual precipitation in the range of 84-102 cm in the west, and 107-130 cm in
the east. Average minimum January temperatures range from –8 oC in the
valleys to –10 oC in the mountains. Average maximum July temperatures
range from 29 oC in the valleys to 24 oC in the mountains. The Blue Ridge and
Piedmont sections are characterized by average annual precipitation in the
range of 102-119 cm. Average minimum January temperature is about –6 oC.
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Average maximum July temperatures range from 30 oC in the valleys to 28 oC
in the mountains.

To investigate the potential streamflow changes and their character,
streamflow measurements at unregulated streams are warranted as they are
minimally impacted by flow regulations or other human activities. Eleven
long-term gauges distributed across the SRB were identified by SRBC staff as
unregulated streams which are suitable for the purpose of this study (Fig. 9.1).
Salient characteristics of the identified gauge stations are provided in Table
9.1. Most of these streams were also listed as such in the USGS Hydro-
Climatic Data Network (HCDN) (Slack and Landwehr, 1992). In the HCDN
datasets, about 1,600 unregulated gauged watersheds distributed throughout
the United States were identified as being potentially suitable for study of
potential impact of climate change on hydrology. Hydrology literature
extensively employed the HCDN dataset for streamflow trend analyses in the
United States (McCabe and Wolock, 2002; Vogel et al., 1997; Kroll et al.,
2004; Zhang and Kroll 2007, a, b). Daily streamflow data from 1940 to 2006
were downloaded from the USGS website (http://waterdata.usgs.gov/nwis/
sw). Annual daily minimum, median and maximum flows are used for the
detection of streamflow changes. The monthly average baseflow, storm runoff,
total streamflow, and monthly minimum total streamflow are used for detection
of changes as well.

9.3 Methodology

When the hydrologic time series records being investigated are in two non-
overlapping periods with a lengthy gap between them or a known event which
is expected to change the hydrologic time series has occurred at a time during
the record, the step change in hydrologic record can be tested by dividing the
record into two periods and using techniques such as the rank-sum test, two-
sample t-test, and analysis of covariance (Helsel and Hirsch, 1992). These
techniques require a highly specific situation or prior hypothesis of a time of
change. Otherwise, monotonic trend tests such as the Mann-Kendall test are
appropriate. In hydrologic practice, hydrologists and water resources managers
often do not have the prior information or a known event to identify the time.
Thus, many studies of changes in hydrologic time series have focussed on the
monotonic changes over time, which can be tested with the Mann-Kendall
test. However, the Mann-Kendall test with a specified period of record is not
capable of showing the trend pattern, i.e., whether the change is gradual or
abrupt (McCabe and Wolock, 2002).

Zhang et al. (2010a) suggested apply multiple Mann-Kendall tests with
varying beginning and ending times to detect trend patterns in hydrologic
time series. The step-by-step procedure is presented here.

Step 1: Rank the data set according to time T.
Step 2: Set the beginning time Tb = 1.
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Step 3: Set the ending time Te = Tb + 9 so that the minimal data points in the
selected period is 10.

Step 4: Select the subset with the determined beginning time and ending time
and conduct the Mann-Kendall test for the selected subset.

Step 5: Set the ending time Te = 11, 12, …, n, and repeat step 4.
Step 6: Set the beginning time Tb = 2, 3, …, n – 9, and repeat steps 3, 4, and 5.
Step 7: The resulting p-values of each Mann-Kendall test are plotted with

graduated colour (or shades) against beginning and ending times of
each subset. The graduated colour (or shades) denotes the underlying
p-values of individual tests. Therefore, the single Mann-Kendall test
with beginning time of Tb and ending time of Te will have the
coordinate (Tb, Te) on the plot with the graduated colour (or shades)
determined by the resulting p-values of the test. The significant
increasing trends at significance level of 5% are marked with upward
triangles and the significant decreasing trends at the same significance
level are denoted by downward triangles.

Step 8: The 45-degree line that is parallel to the 1:1 line represents the results
with the same record length with different beginning or ending times.
To investigate the impact of record lengths, the lines denoting record
lengths of 10, 30 and 50 years are plotted.

In the procedure, 10 or more data points are used for the Mann-Kendall
test as at least 10 data points are needed so that the test-statistic follows a
standard normal distribution (Kendall, 1962; Douglas et al., 2000). Yue et al.
(2002a) suggested that the more data points available, the more powerful the
test. The multiple Mann-Kendall test with all data series of at least 10 data
points and the visualization of the test results can be used to examine the
impact of record length, beginning time and ending time. The lines representing
varying record lengths can be used to examine the impact of record length.
The pattern of various beginning time and fixed ending time demonstrates the
impact of the beginning time. The pattern of changing ending time and a
specified beginning time shows the impact of the ending time. Trend patterns
can be demonstrated by the sensitivity of the multiple trend tests to the
beginning time, ending time and record length. For example, Fig. 9.2 shows
the raw data and Fig. 9.3 shows the results of multiple Mann-Kendall tests. It
is obvious from Fig. 9.2 that the annual minimum flows in the study area
abruptly changed over a short period around 1970. From Fig. 9.3, it can be
seen that the monotonic trend tests are often significant if the beginning year
is before 1970 and the ending year is after 1970. If either the beginning year
is after 1970 or the ending year is before 1970, the monotonic tests are usually
insignificant. This suggests that the change is abrupt over a short period
around 1970. The impact of record length can be explored by Fig. 9.3, which
reveals that most long-term trends in the annual minimum flows are significant.
However, the short-term trends are usually insignificant unless the records
include the period around the year of 1970.
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Fig. 9.2. Annual minimum flows of the West Branch Susquehanna River at
Bower, Pennsylvania (modified from Zhang et al., 2010a).

Fig. 9.3. Results of the trend pattern detection in the annual minimum streamflows
of the West Branch Susquehanna River at Bower, Pennsylvania. Upward triangles
indicate significant increasing trend at the significance level of 0.05 and
downward triangles indicate significant decreasing trend at the significance

level of 0.05 (modified from Zhang et al., 2010a).
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9.4 Results and Discussion

9.4.1 Annual Streamflow Time Series

The annual minimum, median and maximum streamflows over the period of
1940 to 2006 are analyzed in this study and the results are based on the
detailed analysis of Sinnemahoning Creek at Sinnemanhoning, Pennsylvania,
and summaries of the detailed analysis of the other watersheds.

Figure 9.4 shows the annual minimum streamflows at Sinnemahoning
Creek and Fig. 9.5 demonstrates the test results. The individual trend tests are
usually significant if the beginning year is in the 1960s or before and the
ending year is in the 1970s or later. The long-term trends are usually significant.
As discussed in ‘Methodology’, this finding suggests that a long-term change
in annual minimum streamflows at Sinnemahoning happened during a short
period around 1970. For the trends of shorter periods, there are often no
significant trends if both beginning and ending years are before 1970. If the
beginning year is in the mid-1970s to mid-1980s, there are often significantly
decreasing trends, which show that the annual minimum streamflows in
Sinnemahoning are relatively high in that period.

Other than Deer Creek at Rock, Maryland, and Dunning Creek at Belden,
Pennsylvania, all the remaining watersheds show sensitive annual minimum
streamflows as what have been seen in Sinnemahoning Creek and West Branch
Susquehanna River at Bower, Pennsylvania. These watersheds are distributed
in the western and middle portions of the Susquehanna River Basin (Fig. 9.6).
On the other hand, Deer Creek and Dunning Creek do not show the abrupt
increased annual minimum flows which occurred around 1970.

Moreover, the annual median streamflows at Sinnemahoning Creek are
shown in Fig. 9.7 and the results of the trend pattern identification are shown
in Fig. 9.8. While only some of the trend tests are significant if the beginning
year is before the mid-1960s and the ending year is after the mid-1970s, those
tests often have p-values of less than 0.10. If the significance level of 0.10 is
adopted, the pattern is very like the one seen in the annual minimum streamflow.
This indicates that the abrupt increase in annual median streamflows in
Sinnemahoning Creek is of a lesser magnitude than the abrupt increase in
annual minimum streamflows. Pine Creek at Cedar Run, Pennsylvania, West
Branch Susquehanna River at Bower, Pennsylvania, and Frankstown Branch
Juniata River at Williamsburg, Pennsylvania, share similar trend patterns with
Sinnemahoning Creek in that all have relatively sensitive annual median
streamflows. The watersheds with relatively sensitive annual median
streamflows are located in the western portion of the Susquehanna River
Basin (Fig. 9.9).
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Fig. 9.4. Annual minimum streamflows of the Sinnemahoning Creek at
Sinnemahoning, Pennsylvania.

Fig. 9.5. Results of the trend pattern detection in the annual minimum streamflows
of the Sinnemahoning Creek at Sinnemahoning, Pennsylvania. Upward triangles
indicate significant increasing trend at the significance level of 0.05 and
downward triangles indicate significant decreasing trend at the significance

level of 0.05.
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Fig. 9.6. The watersheds with abrupt increased annual minimum
streamflows around 1970.
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Fig. 9.7. Annual median streamflows of the Sinnemahoning Creek at
Sinnemahoning, Pennsylvania.

Fig. 9.8. Results of the trend pattern detection in the annual median streamflows
of the Sinnemahoning Creek at Sinnemahoning, Pennsylvania. Upward triangles
indicate significant increasing trend at the significance level of 0.05 and
downward triangles indicate significant decreasing trend at the significance

level of 0.05.
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Fig. 9.9. The watersheds with abrupt increased annual median
streamflows around 1970.

For annual maximum streamflows, none of the 11 watersheds of the study
area show an abrupt increase around 1970 as seen in the annual minimum and
median streamflows in Sinnemahoning Creek. For example, Fig. 9.10 shows
the annual maximum streamflows at Sinnemahoning Creek and Fig. 9.11
shows the results of the multiple tests. The majority of the multiple monotonic
trend tests are insignificant with limited scattered significant trends over
relatively short-term periods.
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Fig. 9.10. Annual maximum streamflows of the Sinnemahoning
Creek at Sinnemahoning, Pennsylvania.

Fig. 9.11. Results of the trend pattern detection in the annual maximum
streamflows of the Sinnemahoning Creek at Sinnemahoning, Pennsylvania.
Upward triangles indicate significant increasing trend at the significance level of
0.05 and downward triangles indicate significant decreasing trend at the

significance level of 0.05.
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9.4.2 Monthly Streamflow Time Series

The trend pattern detection is conducted for monthly average baseflow, average
storm runoff, average total streamflow, and monthly minimum total streamflow
with the visualization of the multiple trend tests. As the abrupt step increase
over a short period around 1970 is the most common change for the monthly
streamflow statistics, the results of monthly streamflow time series are
summarized based on whether the abrupt increase has occurred over the short
period around 1970. Table 9.2 shows the results of monthly streamflow at
Sinnemahoning Creek at Sinnemahoning, Pennsylvania. For Sinnemahoning
Creek, the step increase around 1970 occurred in monthly average baseflow
and minimum total flow in September through December. In September and
November, average storm runoff and average total flow have seen the step
increase around 1970.

 Table 9.2. The results of monthly average baseflow, average storm runoff,
average total flow, and minimum total flow of the Sinnemahoning

Creek at Sinnemahoning, Pennsylvania

Hydrologic time series Whether step increase occurred around 1970?

September October November December

Average baseflow Yes Yes Yes Yes
Average storm runoff Yes  No Yes  No
Average total flow Yes  No Yes No 
Minimum total flow Yes Yes Yes Yes

The results of monthly streamflow across all watersheds are shown in
Table 9.3. The value in individual cells represents the number of watersheds
that show the step increase around 1970. There is no step increase around
1970 for any monthly streamflow time series examined for January through
May. The step increase of the monthly streamflow time series happened
primarily in the summer and fall seasons, which are usually characterized by
low flows in the SRB. This is consistent with the observation of the step
increase of annual minimum flow at most of the watersheds investigated.

9.5 Conclusions

Individual monotonic trend tests are capable of detecting the increasing or
decreasing trends. However, trend pattern and change points cannot be identified
by monotonic trend tests. When prior hypotheses of the change points are
known, the step change before and after the hypothesized change points can
be explored by the rank-sum test, two-sample t-test, and analysis of covariance.
However, more often the prior hypothesized change points are not known.
The use of multiple monotonic trend tests with varying beginning and ending



Analysis of Streamflow Trend in the Susquehanna River Basin, USA 197

Ta
bl

e 
9.

3.
 N

um
be

r o
f w

at
er

sh
ed

s 
w

ith
 a

n 
ab

ru
pt

 in
cr

ea
se

 a
ro

un
d 

19
70

 in
 m

on
th

ly
 fl

ow
 s

ta
tis

tic
s

H
yd

ro
lo

gi
c 

tim
e 

se
ri

es
N

um
be

r 
of

 w
at

er
sh

ed
s 

w
ith

 s
te

p 
in

cr
ea

se
 a

ro
un

d 
19

70

Ja
n

Fe
b

M
ar

Ap
r

M
ay

Ju
n

Ju
l

Au
g

Se
p

O
ct

N
ov

D
ec

Av
er

ag
e 

ba
se

flo
w

0
0

0
0

0
0

2
2

5
4

2
4

Av
er

ag
e 

st
or

m
 ru

no
ff

0
0

0
0

0
0

0
0

3
1

2
0

Av
er

ag
e 

to
ta

l f
lo

w
0

0
0

0
0

0
0

0
4

0
2

1
M

in
im

um
 to

ta
l f

lo
w

0
0

0
0

0
1

3
4

7
8

2
6



198 Salient Case Studies

times can be used to detect the trend pattern. In this study, the graphical
representation of the multiple trend tests was used to aid in the detection of
changes in the streamflow time series. This methodology (computational and
graphical) was applied to 11 selected watersheds distributed across the
Susquehanna River Basin of the United States.

The analysis of the results of this study indicated that the four watersheds
located in the Appalachian Plateau experienced a step increase around 1970 in
the annual median flow and annual minimum flow, while the four watersheds
located in the Valley and Ridge experienced a step increase around 1970 in the
annual minimum flow. However, none of the watersheds experienced a step
increase in the annual maximum flow. The trend changes are seen to be
geographically arranged with the greatest change at inland locations, and with
the amount of change decreasing toward the Atlantic coast. The abrupt step
increases around 1970 occur in the summer and fall seasons, which are usually
characterized by low flows in the Susquehanna River Basin (SRB). This is
consistent with the step increase in annual minimum flow in most of the
watersheds under study. This implies that there has been an increase in the
amount of recharge received by aquifers in the SRB during low flow months
in the Appalachian Plateau and valley and ridge.

Overall, it can be concluded that the methodology of multiple Mann-
Kendall tests with varying beginning and ending times, and the graphical
interpretation of the results, as demonstrated in this study, are valuable screening
tools for the detection of trend patterns in hydrologic time series. Although the
SRB is not a geographically large basin, the watersheds within this basin still
show varying trend patterns which indicate that fine spatial resolution trend
analyses may be warranted.
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10
Analysis of Trends in Low-Flow
Time Series of Canadian Rivers

10.1 Introduction

The main objective of studies on analysis of trends is to ascertain how the
statistical characteristics (e.g., mean and variance) of hydrological variables
change over time at a given location or at a number of locations in a watershed/
region. From the historical perspective, much of the earlier studies on temporal
trends in time series of hydrological variables were focussed on water quality
related parameters. Most of the earlier studies, reported during 1970s and
1980s, have been reviewed and documented in the work of Helsel and Hirsch
(1992) and Hipel and McLeod (1994). Quite recently, interest in the
investigation of trends in time series of hydrological variables has increased
enormously and numerous studies have been undertaken in different parts of
the world. It is difficult to present an exhaustive account of these studies in
this chapter and therefore only some of these studies are listed here: Chiew
and McMahon (1993), Yulianti and Burn (1998), Lins and Slack (1999),
Douglas et al. (2000), Yue et al. (2002b), Robson (2002), Xiong and Shenglian
(2004), Hannaford and Marsh (2006), Dixon et al. (2006), Fu et al. (2007),
Khaliq et al. (2008, 2009a, 2009b) and Khaliq and Gachon (2010) for trends
in streamflows (e.g. mean annual, low and high flows); Hisdal et al. (2001)
for trends in hydrological droughts; Suppiah and Hennessy (1998), Haylock
and Nicholls (2000), Kunkel et al. (2003), Krishnamurthy et al. (2009) and
Kumar et al. (2010) for trends in precipitation related variables (e.g., annual
or seasonal total precipitation, frequency and magnitude of extreme events
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and dry days). Scientific research on the identification of trends in time series
of hydrological variables is still continuing, however using improved
approaches and with an enhanced focus on the interpretation of trends. It is
important to note that the majority of the studies on trends over the last two
decades were driven mainly by concerns of climate change and less due to the
influence of other factors like agricultural and industrial developments that
could also influence time evolution of hydrological variables.

Many different trend analysis methods and their modifications particularly
to address the influence of serial correlations, when assessing local/site
significance of trends, and cross correlations, when assessing field/regional
significance of trends, have been proposed in the literature. These methods
are presented and discussed in Chapter 4 of this book (Section 4.3). The trend
analysis methods are further addressed in Section 10.2 of this chapter under
four topics: (i) assumptions about the data distribution (parametric and
nonparametric), (ii) the type of trend model (linear and nonlinear), (iii)
assumptions about the serial structure of the hydrological time series (i.e.,
serial independence versus dependence), and (iv) assessment of field
significance. These items play a fundamental role for a sound and
comprehensive analysis of trends in a particular watershed or in a region. A
later section of this chapter contains a case study on trend analysis in time
series of annual and seasonal low flows observed at selected gauging stations
included in the Canadian Reference Hydrometric Basin Network (RHBN).
The river basins of RHBN are minimally affected by human activities and
therefore provide an excellent dataset for investigation of trends in time series
of hydrological variables. Concluding remarks are provided in the last section
of the chapter. It should be noted that most of the contents of this chapter are
based on the review of various trend analysis methods presented in Khaliq et
al. (2009a) and analyses of Monte Carlo simulated and observational data
reported in Khaliq et al. (2008, 2009a, b) and Khaliq and Gachon (2010) due
to focus of the case study on Canadian basins. Also, appropriate figures from
the published literature have been included and new insights about the analysis
of trends are presented and discussed.

10.2 Components of Trend Analysis Framework

In order to perform a meaningful trend analysis for a given problem, one has
to address a number of issues that affect the overall outcome of such an
analysis. Some of these topics are discussed below. Undoubtedly, good quality
and longer observational records are equally important topics that also deserve
adequate attention.

10.2.1 Assumptions about Data Distribution

In general, trend analyses are performed using parametric and nonparametric
approaches. An example of the parametric approach could be a non-stationary
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generalized extreme value (GEV) distribution (Khaliq et al., 2006
and references therein) and that of the nonparametric approach could be the
Mann-Kendall (MK) trend test (Mann, 1945; Kendall, 1975). Though
less widely used for the analysis of trends, the advantage of the parametric
approach is that it allows one to investigate trend as well as modelling of
hydrological observations. Compared to these aspects of the parametric
approach, the nonparametric approach allows investigation of trends
only. Based on the extensive literature survey, Machiwal and Jha (2008)
and Khaliq et al. (2009a) found that the nonparametric approach, particularly
the MK test, had been widely used for analyzing trends in hydrologic time
series. The reason for this inclination towards the nonparametric approach
could be fewer assumptions that are required for the application of this approach
compared to the parametric approach, wherein, among other factors, one
has to assume underlying distribution of data and type of the trend
model. Wide use of the MK test is just a coincidence because the equivalent
Spearman rank order correlation (SROC) test (Dahmen and Hall, 1990) is as
powerful as the MK test. To compare the ability of the SROC and MK tests
for identifying trends, Monte Carlo simulation method was used. Hundred
thousand samples were generated from the Normal and GEV (with shape
parameter equal to ±0.15) distributions, with mean and coefficient of variation
equal to unity, and each sample was superimposed by linear trends with
values ranging from –0.03 to 0.03, with an interval of 0.0025, before applying
the MK and SROC tests. Rejection rates of the null hypothesis of no trend
are shown in Fig. 10.1 that strongly support the above assertion, i.e. the power
of the MK and SROC tests in identifying trends, represented in terms of
rejection rates of the null hypothesis, is indistinguishable. It has been shown
in the literature (e.g., Yue et al., 2002a) that the trend identification ability of
the MK and SROC tests depends on the type of the underlying parent
distribution of the data. The results shown in Fig. 10.1 for samples of eight
different sizes generated from the Normal and GEV distributions also support
this observation.

It is important to mention here that least squares linear regression (Haan,
1977) that requires the data to be normally distributed is another parametric
approach that is also commonly used for the analysis of trends. Application of
the parametric approaches for investigation of trends in hydrological time
series is not addressed here. For that the reader is referred to Kundzewicz and
Robson (2000) and Khaliq et al. (2006), among others. Because of its popularity
and wide use, the MK trend test in its original and modified forms (to be
discussed later) is used for detailed analysis of trends in simulated and observed
data in the remainder of this chapter.
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10.2.2 Type of Trend Model

The widely used MK test identifies only the presence or absence of a trend
through a test of significance and it does not specify whether the trend is
linear or nonlinear. Therefore, in most of the studies on trends, the MK test
was combined with a nonparametric estimator of monotonic trend which is
commonly known as Sen’s slope estimation technique (Sen, 1968); details
about the Sen’s slope estimation are provided in Chapter 4 of this book.
Though a monotonic trend represents rather a general case (that could include
a step change at some time point over the period of observations or an
exponential or logarithmic trend, etc.), it was often assumed as linear for
practical applications. In addition to this, a least squares linear regression-type
trend was also estimated in numerous studies. Thus, in most of the studies on
trends, a monotonic or a linear trend was assumed. On the other hand, it is
straightforward to investigate presence of linear as well as any type of nonlinear
trends using parametric approaches that involve modelling of hydrological
variables. For example, both linear as well as nonlinear trends in characteristics
of flood flow series were considered by Strupczewski et al. (2001) for modelling
non-stationary frequency-magnitude relationships for Polish rivers.

Fig. 10.1. A Monte Carlo simulation based comparison of the ability of the MK
and SROC tests for identifying trends in samples from (a) Normal and (b–c) GEV
(with shape parameter 0.15) distributions. Rejection rates (shown on the y-
axis) correspond to 5% significance level and solid (dotted) lines correspond to
MK (SROC) test. Because of approximate symmetry, only right halves of the
plots corresponding to positive (increasing) trends are shown in Figs 10.1(b, c).
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10.2.3 Assumptions about Serial Structure: Independence vs
Short- and Long-term Persistence

It is documented in the literature that the performance of the MK test is
seriously affected by serial structure of the time series being tested, i.e. if a
time series is positively (negatively) correlated then the MK test will suggest
a significant trend more (less) often than it will for an independent series (von
Storch, 1995). The serial structure of a hydrological time series could exhibit
short-term persistence (STP) or long-term persistence (LTP) or no persistence
at all. In the STP case, it may resemble to serial structures of autoregressive
moving average (ARMA) type stochastic process (Box and Jenkins, 1970)
and in the LTP case, it may resemble to serial structures of fractional Gaussian
noise or fractional autoregressive integrated moving average (FARIMA) type
stochastic process (Hosking, 1984). To address the influence of STP on trend
significance, Hamed and Rao (1998) and Yue and Wang (2004) proposed two
different modified MK tests (respectively referred to as MMK1 and MMK2
hereafter) based on the effective sample size approach, originally introduced
by Bayley and Hammersley (1946) and implemented by Lettenmaier (1976)
to develop the modified SROC test of trend. Since the influence of LTP on
trend significance is considerably different from that of STP, Cohn and Lins
(2005) proposed adjusted likelihood ratio test (ALRT) based on FARIMA-
type time series modelling and simulation approach that was further elaborated
in Khaliq et al. (2009b). In addition, Hamed (2008) proposed another modified
test, MK scaling (MKS) test, to address the influence of LTP on trend
significance.

The influence of STP on the performance of the MK test is demonstrated
in Fig. 10.2, using hundred thousand samples generated from an AR(1) process

Fig. 10.2. Rejection rates of (a) MK, (b) MMK1, and (c) MMK2 tests for eight
sample sizes ranging from 30 to 100, with an interval of 10. The inset in Fig.
10.2(a) is an enlarged, off scale, view of the rejection rates of the MK test. The
dotted line corresponds to the nominal significance level (0.05). Autocorrelations
of data were used in Fig. 10.2(c) and those of their ranks in Fig. 10.2(b). Figure

adopted and modified from Khaliq et al. (2009b).
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assuming mean and variance equal to unity and innovation term taken from
Normal (0, 1) distribution whose variance appropriately scaled for each selected
lag-1 autocorrelation considered. Fig. 10.2(a) suggests that the MK test correctly
converges to the nominal significance level for independent cases (i.e. when
lag-1 autocorrelation is nearly zero) and it considerably deviates from the
nominal significance level as the degree of serial association departs from
zero resulting in biased tests. For example, when the autocorrelation is of the
order of 0.6, the rejection rate is about 30% compared to the nominal rate of
5%. In addition, the rejection rate appears to be independent of the sample
size but it shows a slight increasing tendency as the sample size increases [see
the inset in Fig. 10.2(a)]. The MMK1 and MMK2 tests, applied with the
assumption of an autoregressive process of order-1 [i.e., AR(1)], are able to
address the influence of serial dependence on trend significance for a larger
part of the range of autocorrelations [Figs 10.2(b, c)]. On overall basis, the
MMK1 test performs relatively better than the MMK2 test. Thus, the results
of simulation experiments suggest that when the assumption of an AR(1)
process holds true, the MMK1 test would provide better estimates of trend
significance than the MK and MMK2 tests.

Two other approaches namely the pre-whitening (PW) (von Storch, 1995)
and trend-free pre-whitening (TFPW) (Yue et al., 2002b) were also suggested
to address the influence of serial dependence of type AR(1) on the significance
of trends. Yue et al. (2002b) and Fleming and Clark (2002) found that if both
trend and autocorrelation are present in a time series then the PW approach
renders a positively (negatively) autocorrelated time series appearing less
(more) trendy. To address this issue, Wang and Swail (2001) introduced a
modified iterative PW approach. Though the procedure of the TFPW approach
appears to be plausible, it has serious difficulties in preserving the nominal
rejection rates of the null hypothesis at a given significance level. This could
be due to the influence of autocorrelation on trend and vice versa. The PW and
TFPW approaches are not considered further in this chapter. In addition, a
resampling based approach, block bootstrap (BBS) (Kundzewicz and Robson,

Fig. 10.3. Proportion of time series with significant trends identified with the (a)
MK, (b) MMK1 and (c) MMK2 tests for eight sample sizes ranging from 30 to
100, with an interval of 10. For the MMK tests, only the first autocorrelation,
whether found significant or non-significant, is considered. Figure adopted from

Khaliq et al. (2009b).
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2000, 2004; Khaliq et al., 2008), can also be used to address the influence of
serial dependence on trend significance provided data over longer time periods
are available. The BBS approach is more flexible and hence it can address the
influence of autocorrelations of higher lags also and not just that of the lag-1
autocorrelation. The BBS approach is considered for the analysis of trends in
the case study presented in Section 10.3.

In a similar manner as presented above for the STP case, hundred thousand
samples were simulated from the FARIMA (0, d, 0) model with values of the
fractional differencing parameter d ranging from 0.001 to 0.498. In its one
parametric form, FARIMA (0, d, 0) is the most simplistic LTP model. Other
complicated structures of FARIMA model with autoregressive and moving
average components were not explored because of simplicity reasons. With
the increase in the value of the parameter d, the strength/intensity of LTP
increases. For an independent time series, the value of the parameter d is zero.
Thus, d = 0.001 would approximately result in an independent time series and
d = 0.498 would result in a highly long-term persistent time series. It is
important to note that the FARIMA is a stationary model and therefore it
would generate stationary time series meaning that the statistical characteristics
of such time series do not change over time. The results of this investigation
are shown in Fig. 10.3. The MK, with the independence assumption, and the
MMK1 and MMK2 tests, with the AR(1) assumption, were used to identify
trends in each simulated time series. It is clear from Fig. 10.3 that the rejection
rate of the null hypothesis increases as the sample size increases meaning that
the MK, MMK1 and MMK2 tests would result in significant trends more
often for the longer samples than for the smaller samples. The MK test
converges to the nominal significance level nearly for all sample sizes when
there is no/weak LTP suggesting that the MK test is unbiased. However, it
considerably deviates from the nominal significance level in the presence of
strong LTP. For example, for a sample size of 50 and d = 0.498, there are
nearly 50% chances that the MK test would suggest a significant trend, given
that there is no trend under the assumption of LTP. Such trends are not real
because they are merely due to fluctuations of the behaviour of the LTP
model. Figures 10.3(b, c) also suggest that STP based MMK1 and MMK2
tests are not adequate to address the influence of LTP on trend significance.
These observations as well as the results of the STP based investigation
presented above suggest that proper verification of the serial structure of the
time series being tested for temporal changes is very important before applying
the MK test for identifying trends.

10.2.4 Field Significance Analysis

As the presence of positive (negative) serial correlation in a hydrological time
series inflates (deflates) the rate of rejecting the null hypothesis of no trend,
the presence of positive cross correlation among a gauging network will
inflate the rate of rejecting the null hypothesis of no field significance of



208 Salient Case Studies

trends, while it is true (Douglas et al., 2000). The term ‘field significance’, in
contrast to ‘point or local significance’, has been brought into hydrology from
climatology/meteorology. This approach was introduced in the work of Livezey
and Chen (1983). When the cross correlation in a gauging network is negligible,
the theory of binomial distribution can be used to identify field significance.
However, when the cross correlation cannot be ignored (e.g. observed and
climate model simulated rainfall fields), the methods based on the Monte
Carlo simulations and vector block bootstrap resampling approach can be
used to determine field significance of identified trends. Details of all these
methods along with their advantages and disadvantages can be found in Livezey
and Chen (1983), Yue et al. (2003), Elmore et al. (2006) and Khaliq et al.
(2009a).

In the above mentioned techniques of field significance analysis, the
number of sites with significant trends at a given level of local significance
(i.e., the significance level used to identify trends at each of the selected sites)
are counted and assessed if this number has arisen due to purely coincidence.
Because of the involved counting procedure, these methods of field significance
testing are generally categorized as counting techniques. These techniques
have been criticized because of the integer valued nature of the result of the
counting procedure and because of the binary view of the results of local
testing. Local null hypotheses that are very strongly rejected (i.e. local p-
values that are very much smaller than the local significance level) carry no
greater weight in the field significance test than do local tests for which the p-
values are only slightly smaller than the local significance level (Wilks, 2006).
In addition to this issue, the above tests only indicate whether the overall
results are field significant or not but they do not specify where and how the
results are field significant. These shortcomings of the counting procedures to
field significance assessment can in general be improved upon through the
use of test statistics that depend on the magnitudes of individual p-values of
the local tests. One of such kind of tests is the false discovery rate (FDR) test
proposed by Benjamini and Hochberg (1995), which is a relatively new
statistical procedure for simultaneous evaluation of multiple tests by recognizing
that a certain number of false rejections of the null hypothesis are to be
expected. Ventura et al. (2004) and Wilks (2006) demonstrated through
extensive simulation experiments that the FDR test is robust to spatial
correlations. This procedure works with any statistical test for which one can
generate a p-value. Thus, as long as the effects of serial structure of time series
is taken care of appropriately for evaluating at-site p-values in a hydrological
network/region, the FDR test could be applied for field significance analysis.
A step-by-step procedure for applying the FDR test can be found in Wilks
(2006) and an application of this method to hydrological time series in Khaliq
et al. (2009a).
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10.3 A Case Study of Trend Analysis in Time Series of
Annual and Seasonal Low Flows

10.3.1 Study Area and Data

Canada is a vast country with various distinct climatic regions. Hare and
Thomas (1979) delimited Canadian territory into eleven major homogenous
ecoclimatic regions, based on similarity in physiography, i.e., land formation,
climate, currents and distribution of flora and fauna within a region. These
ecoclimatic regions include the luxuriant Pacific rainforest region with warm,
humid Mediterranean climate on the west coast, the Maritimes with Maritime
climate of the Atlantic on the east coast, the Arctic consisting of frozen,
windswept, treeless polar deserts in the north and the Prairies (sun-drenched
grain fields and grasslands) and boreal forests on the south (Yue and Pilon,
2005). Canada has more lakes than any other country and some of the largest
freshwater reserves in the world. Typically, spring melt alone or spring melt
with rain generates spring floods that are several orders of magnitude larger
than the winter and summer low flows. Spring high flows are followed by a
decline in flow which is revived occasionally by summer/fall rainstorms. In

Fig. 10.4. Location and seasonal classification of 201 RHBN gauging stations.
Empty circles, asterisks and filled diamonds correspond to stations where annual
7-day minimum flows were observed during the winter season only, during the
summer season only and during both winter and summer seasons, respectively.
The two letter abbreviations are: YT–Yukon Territory, NT–Northwest Territories,
NU–Nunavut, BC–British Columbia, AB–Alberta, SK–Saskatchewan, MB–
Manitoba, ON–Ontario, QC–Quebec, NB–New Brunswick, NS–Nova Scotia,
PE–Prince Edward Island and NL–Newfoundland. Source: Khaliq et al. (2008).
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some parts of the country, both annual high and low flows could come from
more than one generating mechanism (Waylen and Woo, 1982, 1987).

Daily streamflows from the Canadian RHBN were used in the case study.
The RHBN, a subset of the national hydrometric network, shown in Fig. 10.4
was identified for use in the detection, monitoring, and assessment of climate
change across the country (Brimley et al., 1999; Harvey et al., 1999). The
RHBN covers most of Canada’s major hydrologic regions, although there are
gaps in some regions of the country and there are no RHBN stations north of
70 degrees latitude. The river basins of RHBN are characterized by either
pristine or stable hydrological conditions. Originally, the RHBN consisted of
249 hydrometric stations, including continuous and seasonal streamflow and
continuous lake level stations. According to Khaliq et al. (2008, 2009b), this
network has evolved over the years and it consisted of 229 hydrometric stations
based on the best available information at that point in time. Of these 229
stations, 201 stations have continuous year-round streamflow observations;
the remaining 28 stations are either lake level stations or stations which do not
have year-round continuous records. Of the total 201 stations, the stations
with relatively longer records (i.e.  50 years) and with not more than three
missing years were considered for the present study. There are 49 hydrometric
stations that satisfy this criterion; their description is provided in Fig. 10.5.
Continuous daily streamflow data of the selected 49 hydrometric stations
were obtained from the Water Survey of Canada’s HYDAT data archive (http:/
/www.wsc.ec.gc.ca/hydat/H20, accessed on 15 January 2008). For most of
these stations (45), data until 2003 were analyzed except for stations located
in the province of Quebec. For four hydrometric stations in the province of
Quebec, data up to the end of 2000 were analyzed.

Fig. 10.5. List of 49 Canadian RHBN stations with record length  50 years
(allowing three missing years). Number of years of record used in the analysis
and the seasonal (i.e. winter, summer and mixed) classification of low flows for
a given station are shown along the top x-axis. Station names and indices are

shown along the bottom x-axis. Figure modified from Khaliq et al. (2009b).
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10.3.2 Seasonality of Low Flows

Low flows in Canadian streams exhibit a seasonal behaviour (Waylen and
Woo, 1987; Sushama et al., 2006; Khaliq et al., 2008) and they occur because
of two different seasonal mechanisms. Firstly, the low flows occur as a result
of storage depletion following below freezing temperatures during the winter
season. Secondly, the low flows occur as a result of lack of precipitation and
increased evaporation due to higher temperatures during the summer season.
Seasonality of annual 1-, 7-, 15- and 30-day low flows is shown in Fig. 10.6.
This figure suggests that it is important to study the temporal behaviour of low
flows on seasonal scales because the annual scale alone would not be able to
capture the seasonality of low flow regimes of river basins included in the
RHBN. Also, for many of the stations, samples of low flows derived on the
basis of annual time scale may appear physically inconsistent. Based on the
seasonality of annual 7-day low flows, Khaliq et al. (2008) classified the
RHBN stations into three categories: (a) stations with low flows occurring in
winter only, (b) stations with low flows occurring in summer only, and (c)
stations with low flows occurring in both winter and summer seasons (i.e.,
mixed low flows). This seasonal classification of 201 RHBN stations is shown
in Fig. 10.4 and that of the selected 49 RHBN stations, with longer records,
is shown in Fig. 10.5. For this seasonal categorization, six-monthly winter
(December to May) and summer (June to November) seasons were used. For
the selected 49 stations, time series of summer low flows would be the same
as those of annual low flows for four stations and time series of winter low
flows would be the same as those of annual low flows for seven stations and
they would be different from each other for the remaining 38 stations due to

Fig. 10.6. Relative frequencies of starting dates of occurrences of 1-, 7-, 15- and
30-day annual low flows observed at 201 RHBN stations during 8590 station
years. For developing these frequency plots, each month was divided into three
non-overlapping time windows: first window: 1 to 10 days; second window:

11 to 20 days; and third window: remaining days of the month.
Source: Khaliq et al. (2008).



212 Salient Case Studies

mixed low flows. In the analyses presented in this chapter, characteristics of
low flows and temporal changes in their magnitudes were studied separately
for each of the three (annual, winter and summer) time scales.

10.3.3 STP- and LTP-like Serial Structures

The low flow time series could exhibit STP or LTP or no persistence at all. For
the investigation of STP, an AR(1) is assumed and therefore the statistical
significance of the first autocorrelation alone was assessed. Lag-1
autocorrelation values of annual, winter and summer low flow time series are
shown in Fig. 10.7. About 78 (22), 67 (33) and 59 (41) percent of annual,
winter and summer low flow time series were found positively (negatively)
autocorrelated. Thus, positive autocorrelations appear to dominate the low
flow regimes of RHBN stations. Out of the 49 stations, the number of stations
where annual, winter and summer low flow time series were found significantly
autocorrelated at 5% level is 8, 8 and 4, respectively. Though the number of
stations with significant autocorrelations at 5% level is not very large,
autocorrelation for many of the remaining low flow time series was found
marginally significant at 10% level (Fig. 10.7), suggesting that it is important
to consider the effect of serial dependence on trend significance.

Fig. 10.7. Lag-1 autocorrelations of (a) annual, (b) winter and (c) summer 30-day
low flows. For each case considered, upper and lower values of the 90%
confidence interval are shown using horizontal dashes. The autocorrelations
that were found significant at the 5% level are circled for clarity. Station indices

(1 to 49) are the same as shown in Fig. 10.5.

The presence of LTP was investigated by estimating Hurst exponent
H (Hurst, 1951). The 0.5 < H < 1 range corresponds to a persistent process,
0 < H < 0.5 range corresponds to an antipersistent process and H = 0.5
corresponds to a purely independent process in an asymptotic sense. Several
methods have been developed to estimate the Hurst exponent (Taqqu et al.,
1995; Doukhan et al., 2002). However, five selected techniques were applied
in this study: (1) rescaled adjusted range statistic (RARS) (Mielniczuk and
Wojdyllo, 2007), (2) aggregated standard deviation (ASD) (Koutsoyiannis,
2003, 2006), (3) FARIMA (p, d, q) modelling approach (Hosking, 1984),
where p and q respectively stand for the number of autoregressive and moving
average parameters assumed here not greater than one and d = H – 0.5 is the
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fractional differencing parameter, (4) detrended fluctuation analysis (DFA)
(Peng et al., 1994; Kantelhardt et al., 2001) assuming local segmental trends
of linear type and (5) maximum likelihood based estimator (MLE) (Hipel and
McLeod, 1994; Hamed, 2008). In order to determine whether the estimated H
value by using the first four selected techniques for a given low flow time
series significantly deviates from 0.5, a simulated distribution of H was
developed by using a large number of randomly generated samples. The
random samples with sample size being equal to observed sample were
generated from a white noise process (i.e. normally distributed values with
zero mean and unit variance). From the simulated distribution of H, 2.5th and
97.5th percentile values of H were obtained to define a 95% confidence interval
for each of the selected techniques. For the MLE method, 95% confidence
interval was obtained using the parametric approximation described in Hipel
and McLeod (1994) and Hamed (2008).

Observed values of H along with 95% confidence intervals for selected
10 stations (out of 49) with longer records (ranging from 75 to 93 years) are
shown in Fig. 10.8. According to the results obtained for the RARS method,
none of the estimated H values fall at or outside the upper limit at 95%
confidence interval. However, the results for the ASD method suggest the
possibility of LTP in annual and winter low flow time series at a single station
(05BB001) while the results of the FARIMA method suggest the possibility of

Fig. 10.8. The Hurst exponent estimated using the (a) RARS, (b) ASD, (c) FARIMA
modelling and (d) DFA methods for time series of annual, winter and summer
low flows observed at 10 selected stations. The 95% confidence intervals for
each of the four methods and selected stations were obtained from the simulated
distribution of the Hurst exponent developed by generating 10,000 random
samples, of size equal to the observed samples, from Normal (0, 1) distribution.

Dotted horizontal line corresponds to an independent time series.
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LTP in annual low flows at a single station (05BB001) and in winter low
flows at three stations (01AQ001, 02PJ007 and 05BB001). The DFA method
suggests the possibility of LTP in annual low flows at a single station
(02EC002), in winter low flows at three stations (01AQ001, 01EO001 and
02PJ007) and in summer low flows at stations 02EC002 and 02PJ007 (a
marginal case). A similar investigation using the MLE method for all the 49
stations suggests significant values of H for 12, 13 and 10 annual, winter and
summer low flow time series, respectively. The number of time series which
could possibly be assumed to exhibit LTP would increase in the case of
smaller than 90% confidence intervals. Differences between the results of
various methods for estimating Hurst exponent have also been noticed in
some earlier studies, e.g. Montanari et al. (1997), who suggested using FARIMA
modelling technique to estimate Hurst exponent.

10.3.4 Results of Trend Analysis

The analyses of STP and LTP diagnostics presented above suggest that the
independence assumption or the STP and LTP assumptions do not hold for all
of the low flow time series collectively. Therefore, to realize the influence of
each of these assumptions on trend significance, estimates of trend significance
for all of the low flow time series were obtained separately assuming
independence, STP and LTP. For the independence case, the original MK test
was applied without considering the effect of serial dependence. For the MMK1
test, first autocorrelation of ranks of data was considered, irrespective of it
being significant or non-significant. By doing so, even small departures from
independence would contribute in modifying the trend significance. Because
of the influence of trend on autocorrelations and vice versa, this test was
applied after removing an estimate of the linear trend obtained using the Sen’s
slope estimation technique (Sen, 1968). However, a more reasonable alternative
would be a joint estimate of both first autocorrelation and linear trend following
the iterative procedure described in Khaliq and Gachon (2010) that is consistent
with the trend analysis procedure using time series modelling and simulation
approach introduced in the work of Cohn and Lins (2005). For the MK-BBS
test (i.e., when the MK test was combined with the BBS approach), the
number of contiguous significant autocorrelations, starting from the first one,
was determined and their effect was considered for estimating trend
significance. Thus, for those time series for which none of the first few
contiguous autocorrelations were found significant, the p-values for the MK
and MK-BBS tests should exactly match but they would differ slightly because
of the involvement of bootstrap resampling procedure for estimating trend
significance. For the case of LTP, both MKS and ALRT tests were used. Step
by step instructions for applying the MKS test are available in Hamed (2008)
and those of the ALRT in Cohn and Lins (2005). The MKS test was developed
on the basis of scaling approach and the ALRT on the basis of time series
modeling and simulation approach. Exactly the same procedure as described
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in Cohn and Lins (2005) was used except that the non-normality of low flow
time series was taken care of by adopting a three parameter gamma marginal
distribution. For these two tests, estimates of trend significance were obtained
with the assumption of LTP only if the estimated value of H was greater than
0.5, otherwise STP was assumed (i.e., MMK1 for the case of MKS test and
AR(1) process in the case of ALRT). Collective results of trend significance
were considered under the name of the LTP based test for the sake of discussion
and convenience of presentation. Similar to the MMK1 test, an estimate of
linear trend using the Sen’s slope estimation technique was removed from
observations before applying the MKS test. It must be noted that for the case
of ALRT, the magnitude of linear trend as well as model parameters were
estimated by optimizing the likelihood function of the FARIMA model.

The number of stations where the trends were found significant (at 5%
significance level) with the above five tests is shown in Fig. 10.9. From the
results of Fig. 10.9, the effect of LTP on trend significance is obvious, i.e.,
some of the significant trends noted with the assumption of independence and
STP simply disappeared.

Fig. 10.9. Number of stations with significant (at 5% significance level) (a)
positive (or upward) and (b) negative (or downward) trends observed in time
series of annual, winter and summer 30-day low flows. Number of all stations
with significant trends is shown in panel (c). The positive and negative type of

trend was decided on the basis of the sign of the MK test statistic.

It is difficult to clearly appreciate the influence of STP and LTP on trend
significance from the results shown in Fig. 10.9, where only one significance
level was used. The effect of these serial structures on trend significance was
explored further using selected tests p-values, since it is the p-value of the
trend test which is affected by any of these three assumptions. The differences
between the p-values obtained with the MK test from those obtained with the
MK-BBS and MKS tests are shown in Fig. 10.10. The results for the STP case
shown in Figs 10.10(a-c) demonstrate that the p-values increased for positively
autocorrelated time series and decreased for negatively autocorrelated time
series. This suggests that it is very likely that the MK test with the independence
assumption would produce significant trends more (less) frequently for
positively (negatively) autocorrelated time series. This observation is in
agreement with the results presented in Fig. 10.2 using simulated data. In Fig.
10.10, the higher range of p-value differences shown in Figs 10.10(d-e) for
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the LTP case compared to those shown in Figs 10.10(a-c) for the STP case
(note the scale difference) suggests that it is very less likely to find trends with
the LTP based tests. In other words, it means that many of the significant
trends with the independence assumption can be explained merely on the
basis of the serial structure of the time series.

Overall, without reference to positive and negative type of trends, the
trends in annual, winter and summer low flows identified with the MK test
and those with the STP based tests were found field significant at the 5%
significance level using the FDR test; for the case of LTP based tests, trends
in summer low flows were found field significant at the 5% significance level
and those in winter low flows were found field significant only at 10%
significance level. A similar analysis performed separately for positive and
negative trends led to the following conclusions. Negative trends in annual
and summer low flows were found field significant at the 5% significance
level for the case of MK and both STP based tests and those in winter flows
were not found field significant even at the 10% significance level. Positive
trends in annual and summer low flows were found field significant at 5%
significance level only for the case of MK and MMK1 tests and not for the
case of MK-BBS test, while those in winter low flows were found field
significant for the case of MK and both STP based tests. For the LTP based
tests, only negative (positive) trends in summer (winter) low flows were
found field significant at 5% (10%) significance level. The Canadian RHBN
spans over many different climatic regions and hence it would be more sensible
to perform field significance analysis on the basis of suitably defined

Fig. 10.10. The effect of assuming (a-c) only STP and (d–f) LTP and/or STP, where
applicable, on the significance of trends shown as differences in p-values (e.g.
p-value for the MK-BBS test minus p-value for the MK test). The time series for
which the first (or the first few) autocorrelation(s) was (were) found significant
are circled. Station indices are the same as shown in Fig. 10.5. The six figures
are adopted from Khaliq et al. (2009b) and modified to improve their clarity.
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hydrological homogeneous regions or on the basis of Canadian climatic regions
and their plausible subdivisions such as those studied in Plummer et al. (2006)
and Mladjic et al. (2011).

10.4 Concluding Remarks

In this chapter, a framework of trend analysis is outlined and importance of
various fundamental items (like the distributional assumptions and type of
trend model, assumptions about the serial structure of the hydrological time
series and the influence of cross correlations) is discussed for performing a
sound and comprehensive analysis of trends in a given watershed/region. The
influence of serial dependence on the performance of the MK test is studied
through Monte Carlo simulations by generating and testing time series of
known serial structures of type AR(1) and FARIMA in order to establish
general benchmarks. This is followed by a case study on analysis of observed
annual, winter and summer 30-day low flows at selected stations, with longer
records, included in the Canadian RHBN in order to explore sensitivity of
trend significance to STP- and LTP-like serial structures. The choice of 30-
day low flows is made, assuming that longer duration low flow indicators are
more likely to reflect the influence of basin storage in terms of persistence
compared to those of short duration and high flow indicators. For the analysis
of observed low flows, the MMK1 and MK-BBS tests to address the influence
of STP on trend significance and the MKS and ALRT tests to address the
influence of LTP on trend significance were used. For comparison purposes,
the original MK test was applied assuming no serial dependence within
observations. The results of simulated and observed data suggest considerable
influence of serial dependence on trend significance; it means it is very less
likely to find significant trends in the presence of STP- and LTP-like serial
structures. The implication of this finding is that the MK test, if applied with
the independence assumption, will suggest trends more (less) frequently if
positive (negative) autocorrelations prevail in a hydrological gauging network.
For example, the results of simulations suggest that in the presence of a strong
LTP, there are more than 50% (60%) chances that the original MK test would
suggest a significant trend for a sample of size 50 (100), given that there is no
trend with the LTP assumption.

The above discussion and results of simulated and observed low flow
data suggest that it is important to systematically investigate and take into
consideration the influence of serial dependence on trend significance.
However, having recognized the role of STP- and LTP-like serial structures
on trend significance, the risk is that it is very likely that an investigator would
end up misdiagnosing a weak to moderate LTP as STP or no persistence at all.
This is due to the large uncertainty associated with the Hurst exponent estimated
from small size samples. In addition, this exponent also appears to be sensitive
to the method of estimation. Thus, longer observational records as well as
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more than one estimation methods for the Hurst exponent are required to
reliably diagnose LTP-like behaviour.

Lastly, for a reliable estimate of trend significance, large samples of high
quality data are very important and results of trend analyses from small samples,
typically of 20 to 30 years long, should be viewed with caution because the
apparent short-term regime changes could be an artifact of the fluctuating
behaviour of the underlying observation generating hydrological mechanism.
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11
Exploring Trends in Climatological
Time Series of Orissa, India Using

Nonparametric Trend Tests

11.1 Introduction

Scientific literature and successive assessment reports of the Intergovernmental
Panel on Climate Change (IPCC, 2001; IPCC, 2007; Min et al., 2011) show
that the net anthropogenic radiative forcing causes the global warming and
intensification of hydrological cycle with consequent increase in the occurrence
of extreme weather events. To trace the future of water resources under climate
change, climate research uses simulation models well known as general
circulation models (GCMs) for forecasting (Koutsoyiannis and Montanari,
2007). Trend analysis of paleoclimatic observation has been an important tool
to test the presence of a systematic component (i.e., signal) against the
background of natural variability and randomness (i.e. noise) of the instrumental
record of hydroclimatic time series (e.g., Zhang et al., 2001; Bhutiyani et al.,
2007; Wilson et al., 2010). Huntington (2006) reported that trends in hydrologic
variables are consistent with an intensification of the water cycle. However,
substantial uncertainty in trends exists due to regional differences of response
variables and unavailability of datasets.

Frequent extreme weather events of recent years are increasingly more
pronounced in the Indian sub-continent due to large dependence of the
population (~68% of above one billion population) on the climate-sensitive
agriculture and allied sectors (O’Brien et al., 2004; De et al., 2005). For
example, the impact of the deficit of 19% in the Indian summer monsoon
rainfall in 2002 is estimated to be of billions of dollars i.e. well over 1% of the
gross domestic production (Gadgil et al., 2004). Using both GCMs and regional
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simulation models, several efforts have been made to link the climate change
with the hydrology of India, and to project the future climate scenarios (e.g.,
Singh and Kumar, 1997; Kumar et al., 2006; Tripathy et al., 2006). Although
intensification of the hydrological cycle is a unanimous projection for India,
there still remains considerable uncertainty about the regional variations and
projections of the response of hydroclimatic variables. The uncertainty may
be due to the complex physiography and large spatial and temporal variations
of the climate, which include the subfreezing Himalayan range, the tropical
coastal climate, the rainy climate of the northeastern states, and the arid Great
Indian Desert. Furthermore, the GCMs do not resolve the mesoscale processes
that play key role in the climate feedback processes (Pan et al., 2004).
Additionally, the Indian summer monsoon being the prime modulator of the
hydroclimatic variability, is influenced by the action and interaction among
the factors such as El Nino/southern oscillation (ENSO) (Kumar et al., 1999;
Ashrit et al., 2001), sea surface temperature (SST) (Krishnan et al., 2003);
deforestation (Gupta et al., 2005); Eurasian snow cover (Bamzai and Shukla,
1999); and the aerosols (Menon et al., 2002; Ramanathan et al., 2005;
Ramanathan et al., 2007).

References to trend analysis of hydroclimatic variables of India are mostly
confined to the study of temperature patterns. A general warming temperature
trend was observed for India given substantial spatial and temporal differences
in trend magnitude (e.g. Arora et al., 2005; Kothawale and Kumar, 2005;
Fowler and Archer, 2006). However, bringing consensus about the rainfall
trends of India possess difficulty, may be due to the high spatial and temporal
variability of rainfall. Different parts of the country exhibit significant increasing
and decreasing trends in monsoon rainfall during different timescales (Dash et
al., 2007; Ramesh and Goswami, 2007). Recently several studies show a
significant increase in the occurrence of extreme rainfall events (Sen Roy and
Balling Jr, 2004; Goswami et al., 2006; Rajeevan et al., 2008). However, the
rainfall amount and the number of rainy days in both the early and late
monsoon exhibit a decreasing trend implying a shorter monsoon over India
(Ramesh and Goswami, 2007).

The Orissa state of India is the most climate change-affected region due
to frequent occurrence of hydrologic extremes in the recent past (Swiss Re,
2002; Mirza, 2003). The Centre of Environmental Studies (CES, 2007) reported
that the erratic behaviour of climate of Orissa is primarily due to the combination
of anthropogenic factors such as deforestation, extensive construction activities,
uncontrolled mining, elimination of water bodies and extensive carbon
consumption over a period of time. Further, a minor change in the pressure
anomaly of the Bay of Bengal can have profound hydrological impact on the
land mass of Orissa due to its geographical location (Fig. 11.1) at the head of
the Bay where the weather forms (CES, 2007). Applying nonparametric
methods to the GCM output, Ghosh and Majumdar (2007) predicted a severe
drought condition for Orissa. They attributed this future drying scenario to the
global warming due to greenhouse effect, sensitivity of rainfall to ENSO, and
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the coastal setting of Orissa. Also, Panda et al. (2007) found a significant
declining trend of groundwater levels in Orissa, which is due to the systematic
forcing mechanism of drought in conjunction with human stress and high
temperatures.

The Bay of Bengal plays an important role in the global climate system:
it is one of the intense heat source regions in the global tropics (Ding, 1994;
Chu and Wang, 1997), and also possesses the largest global maximum of
summer monsoon rainfall (Hoyos and Webster, 2007). Further, the northwest
Bay of Bengal and the adjoining landmass is the region of higher aerosol
optical depth (e.g., Menon et al., 2002; Chylek et al., 2006; Prasad et al.,
2006). It is, therefore, of scientific interest to study the long-term response of
hydroclimatic variables of Orissa due to its geographical location at the head
of the Bay of Bengal. The aim of this chapter is to identify and quantify the
trends of the hydroclimatic variables such as annual rainfall, monthly minimum
and maximum air temperatures, and monthly average relative humidity of the
eastern Indian state of Orissa, using the nonparametric statistical tests.

Fig. 11.1. The geographical location of the study area. Four predominant
physiographic zones include the coastal zone (Balasore, Cuttack, Puri, Ganjam),
the eastern ghat zone (Koraput, Phulbani, Kalahandi), the central table land
(Bolangir, Dhenkanal, Sambalpur), and the northern plateau (Keonjhar,

Mayurbhanj, Sundargarh).
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11.2 The Study Area and Climate

The Orissa state lies on the east coast of India, adjacent to the north Bay of
Bengal and close to the south of the normal position of monsoon trough with
17o47 -22o33  N latitude and 81o31 -87o30  E longitude (Fig. 11.1). The
geographical area of Orissa is 1,55,707 km2 (cultivated area 62,000 km2;
forest area 58,130 km2). The state has a coastline of 384 km. The long-term
average annual rainfall is about 1482 mm, and the mean air temperature
ranges from a minimum of 12 °C to a maximum of 39 °C. The area is featured
by the presence of mountains, hills, hillocks, rivers and rivulets. The
predominant physiographic zones are: the coastal zone having undivided
districts (Balasore, Cuttack, Puri, Ganjam), the eastern ghat zone (Koraput,
Phulbani, Kalahandi), the central table land (Bolangir, Dhenkanal, Sambalpur),
and the northern plateau (Keonjhar, Mayurbhanj, Sundargarh). Overall slopes
of the area are from northern and northeast direction to west and southwest,
and from southern and southwest direction to east and then to the coastal
plains. The river system and their tributaries of the state carry an annual
surface runoff of 132 ×109 m3 (95 ×109 m3 from Orissa) (Lenka, 2001). The
Mahanadi is the largest river of the area, which drains 42% geographical area
with a length of 494 km in Orissa. The Mahanadi River branches off into
several streams at the Naraj gauging station, and carries an annual runoff of
66.88 ×109 m3. The Brahmani River drains 14% geographical area with a
length of 541 km. The annual runoff of the Brahmani River is 28.48 × 109 m3.
The major hydrogeologic settings, covering 80% of the geographical area, are
pre-Cambrian hard-rock formation, which includes granites, gneisses, schist,
khondalites and charnockites.

Variability of both rainfall and the total cyclonic disturbances has been
above normal since the 1960s, leading to occurrence of more droughts and
floods in the study area. However, the extreme events of the late 1990s have
been more severe. A record-breaking heat wave in 1998 claimed 2200 human
lives, which has been linked to the El Nino. The super cyclone of 1999 was
the strongest and deadliest of the region with a recorded wind speed of about
356 km h-1 and sea water surge of 8-10 m high (Mirza, 2003). Over 10,000
people were killed, and the coastal ecosystem in particular was seriously
affected due to the cyclone. Further, the droughts in 2000 and 2002, and
floods in 2001 and 2003 have also affected the economy and environment of
the state.

11.2.1 Anthropogenic Activities

The Orissa state is rich in minerals and ores having deposit of iron ore, coal,
bauxite, chromites, nickel, lead, copper and limestone. The state accounts for
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18% of the explored mineral and ore of country (Sene-Johansen, 1995). The
coal belts of Orissa are situated on the bank of the rivers Mahanadi and
Brahmani. Availability of water and minerals have led to setting up of thermal
power plants and coal-based industries like aluminum, steel, fertilizer, cement
plants, etc. In Orissa, ~22 × 106 tonnes of coal is consumed annually for
power generation to meet the domestic and industrial energy requirements.
The National Thermal Power Corporation (NTPC), National Aluminum
Company (NALCO), and Talcher Thermal Power Station (TTPS) are the
largest consumers of coal in the state with requirements of 36,000, 14,000 and
7000 tonnes of coal per day, respectively. A direct correlation between coal
consumption and the regions having high greenhouse gas built-up has been
established (Garg et al., 2001). Further, biomass burning, and construction
activities are also the sources of atmospheric perturbation. In Orissa, more
than 80% of the population (36 million in 2001) live in rural area, where the
biofuels meet the major chunk of domestic energy requirement. The Cuttack
district is the hotspot district for biofuel use in India (Garg et al., 2001).
Large-scale deforestation for industrialization, reservoirs construction and
agriculture are also the sources of CH4 emission in the study region (Rao,
1993).

Industrial and mining operations like drilling, blasting, loading, hauling,
dumping, crushing, transportation, and processing of ore and mine products
emit radiatively active air pollutants such as carbon monoxide (CO), sulphur
dioxide (SO2), oxides of nitrogen (NOx), suspended particulate material (SPM)
and unburned hydrocarbons (SER, 2006; OSPCB, 2007). Around 10 ×106

tonnes (NTPC 4.62 ×106 tonnes; NALCO 2.14 ×106 tonnes) of fly ash and 1.4
×106 tonnes of blast furnace slag are generated every year in the state. Total
solid waste from the major industrial sectors has been estimated to be 25×106

tonnes. The aluminium production process (production capacity 0.58×106

tonnes yr-1) emits SO2, per flouro carbon, and hexa flouro ethane, which
contribute to global warming having high residence period (CSE, 2006). The
chromium mines in the Sukinda Valley is the largest open cast ore mines in
the world, and the mining is associated with the pollution due to the hexavalent
chromium, overburden dump, and mine water discharge. One tonne of
chro-mium mining generates around 10 tonnes of overburden, which contains
hexavalent chromium in the overburden with a concentration range 12-311
mg kg-1 (OSPCB, 2004). Recently, the Blacksmith Institute (2007) has
designated the Sukinda Valley region as one of the highly polluted places of
the world. All these anthropogenic activities are likely to perturb the atmosphere,
resulting in global warming with consequent changes in the climate. Therefore,
it is imperative to explore the long-term climatological trends of the study
area.
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11.3 Methodology

In this study, monthly rainfall data of 13 districts of Orissa (Fig. 11.1) for 44-
year period (1960-2003) were collected from the Directorate of Economics
and Statistics, Government of Orissa. The district rainfall represents the average
of rainfall of all the administrative blocks of that district. The state revenue
department maintains one raingauge for each of the 324 blocks. In addition,
monthly maximum temperature (Tmax), monthly minimum temperature (Tmin),
monthly average relative humidity at 8:30 hours (RHfn) and at 17:30 hours
(RHan) for 16 meteorological stations of the study area for 15-year period
(1987-2001) were obtained from the report ‘Climatological Data of Orissa
1987-2001’ published by Directorate of Economics and Statistics, Government
of Orissa. The above-mentioned data were also available for two newly
established stations (ANG, TTG) at an industrial region for 8-year period
(1994-2001). For trend analysis, the two new stations having short records
were included for the spatial coverage and importance of the stations at the
industrial region. Trends in three climatic time series, i.e., annual rainfall,
maximum and minimum air temperature and relative humidity, were explored
by applying Mann-Kendall test and Spearman’s rho test. Furthermore,
the trends were quantified by applying Sen’s slope estimation technique
and homogeneity of the trends was tested by applying 2-based homogeneity
test.

The locally weighted scatter-plot smooth (LOWESS) procedure, a robust
nonparametric method for estimating the regression surfaces (Burn and Elnur,
2002; Broers and Grift, 2004), was used to draw the smoothed plots for the
annual rainfalls of the districts of Orissa. The Yule-Kendall skewness (Sk), a
resistance measure of the shape of the distribution (Ferro et al., 2005), was
calculated using the 25th percentile (Q1), 50th percentile (Q2), and 75th percentile
(Q3) as (Q1 – 2Q2 + Q3)(Q3 – Q1)-1. The probability plot correlation coefficient
(PPCC) (Helsel and Hirsch, 1995) was computed for the test of normality of
the rainfall time series. Furthermore, the change in the linear relationship was
tested using the Chow’s F-test (Wilby et al., 2004) with rainfall as the response
variable and year as independent variable between the sub-periods.

11.4 Results and Discussion

11.4.1 Trend and Variability in Annual Rainfall Time Series

Figure 11.2 shows the cases of differential annual rainfall pattern in different
physiographic regions of Orissa during 44-year period (1960-2003). The
anomalous events in terms of both drought and flood are increasingly more
conspicuous in recent years. The LOWESS plots and visual inspection of the
annual rainfall indicated a subtle shift in the rainfall pattern of most of the
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Fig. 11.2. Annual rainfalls for (a) Balasore in coastal physiography, (b) Phulbani
in the eastern ghat zone, (c) Bolangir in the central table land, and (d) Sundargarh

in the northern plateau.
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districts during the mid 1980s. To compare the changes in the location and
shape parameters of the rainfall distribution, the complete time series was
divided into two sub-series, i.e., Sub-series 1 (1960-1984) and Sub-series 2
(1985-2003). The basic statistics of annual rainfall presented in Table 11.1
show that an increase in average for the period 1985-2003 is associated with
an increase in the variability (standard deviation). This indicates that the wet
period is more prone to uncertainty compared to the corresponding dry period.
Studying the changes in percentiles and quantiles, however, is of interest to
understand the nature of extreme climatic events, and also has greater societal
impacts (Beniston et al., 2004; Ferro et al., 2005). The minimum and maximum
annual rainfall have moved towards opposite direction in the recent period in
comparison to the earlier period suggesting that both drought and flood have
become more severe. The negative value of the Yule-Kendall skewness (Sk)
was observed largely in the coastal zone and the northern plateau of Orissa
(Table 11.1), which indicates that the wet years have outnumbered the dry
years and a few unusually low rainfall years have influenced the shape of the
distribution. However, the Eastern Ghat region and part of the central table
land of the state have experienced more dry years and a few unusually high
rainfall years as evident from the positive Sk.

The PPCC test of normality indicated (not shown) that the annual rainfall
for the whole time series is nearly normally distributed for most of the districts.
Hence, change in origin of the annual rainfall for different sub-periods was
examined using the t-test. Furthermore, the change in the linear relationship
between the sub-periods was tested using the Chow’s F-test. Results of t-test
and F-test show that neither the shift in origin (average) nor the structural
changes have taken place for the sub-series of annual rainfall as both the
observed t- and F-statistics are less than their respective critical values. In
most of the districts, annual rainfall exhibited negative linear relationship
with the year for the sub-series indicating a decreasing trend. However, the
positive linear relationship between annual rainfall and year was observed for
most of the districts when the complete time series was considered. This
indicates that the severe anomalous years during second sub-series have
influenced the overall trend. In India, an increasing trend of extreme rainfall
events has been reported (Sen Roy and Balling Jr, 2004; Goswami et al.,
2006). The number of raining days, however, has decreased. Similarly, Liu et
al. (2005) observed that the increasing proportion of rainfall in China has been
contributed by the heavy rainfall events, and also noted a decreasing trend of
light rainfall events.

11.4.2 Trends in Seasonal Rainfall Time Series

The monsoon season comprising June, July, August and September months,
contributes about 80% of the mean annual rainfall of Orissa. Rainfall from the
non-monsoon months has been clubbed into pre-monsoon season (February,
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March, April and May) and post-monsoon season (October, November,
December and January), as the non-monsoon months receive no rainfall or
very negligible rainfall. The descriptive statistics of the seasonal rainfall for
the study period includes: pre-monsoon season (mean 129 mm; standard
deviation 99 mm), June (mean 199 mm; standard deviation 96 mm), July
(mean 307 mm; standard deviation 110 mm), August (mean 334 mm; standard
deviation 116 mm), September (mean 220 mm; standard deviation 92 mm),
and post-monsoon season (mean 136 mm; standard deviation 119 mm),
respectively. The long-term normal rainfall for the monsoon season are 213
mm, 351 mm, 335 mm, 236 mm in June, July, August and September,
respectively. This indicates a reduction in monsoon season rainfall for the
study period. The seasonal hydroclimatic variables are not normally distributed
in this study, and therefore, the nonparametric statistical tests were employed
for trend identification and quantification. Both the Mann-Kendall (MK) and
the Spearman rho (SR) tests were applied to the seasonal rainfall in two time
frames, i.e. 1985-2003 and 1960-2003. Before application of the Mann-Kendall
test, the presence of significant serial correlation was tested and the pre-
whitening was done.

Figure 11.3 shows the cumulative frequency distribution of MK and SR
trend test results of 78 season-stations rainfall time series (six seasons for
each of the 13 stations). The positive trend indicates wetting trend and the
negative trend indicates drying trend. Under the null hypothesis of no trend,
the frequency curve should have been around the axis resulting zero mean
trend. Further, under the assumption that both the drying and the wetting
trends have equal distribution, the frequency curve should divide the axis into
two halves with equal proportions of area above and below the axis. For the
time frame 1985-2003, 60% and 62% of the season-stations have experienced
the drying trends based on the MK and SR tests, respectively [Fig. 11.3(a)].
However, no significant trend was observed except one for the SR test. The
mean observed test-statistic value of MK test is –0.2 (standard deviation
0.88), and the mean observed test-statistic value of SR test is –0.20 (standard
deviation 0.79). However, for the time frame 1960-2003 [Fig. 11.3(b)], 44%
of the season-stations have experienced the drying trends based on the MK
and SR tests. The mean observed test-statistic value of MK test is 0.26 (standard
deviation 1.14), and the mean observed test-statistic value of SR test is 0.26
(standard deviation 1.12). To illustrate the seasonal distribution of the rainfall
trend, the MK test results were used. Figure 11.3(a) shows that the negative
drying trends are more conspicuous in the monsoon and the post-monsoon
seasons for the time frame 1985-2003. However, for the time frame 1960-
2003, positive (wetting) rainfall trends have been more in the pre-monsoon,
June, August seasons. The results of this study are in agreement with findings
of several other studies conducted in the study area or other parts of India
(e.g., Mohapatra and Mohanty, 2004; Ramanathan et al., 2005; Chung and
Ramanathan, 2006; Goswami et al., 2006; Dash et al., 2007; Ramesh and
Goswami, 2007).
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Fig. 11.3. Cumulative frequency distribution of MK and SR trend test results of
78 rainfall time series (6 seasons × 13 stations) for the time frame (a) 1985-2003,

and (b) 1960-2003, respectively.

In both the time frames considered in this study, the non-monsoon seasons
experienced a wetting trend. The annual rainfall does not show the traces of
drying monsoon trend. Increase in the pre- and post-monsoon seasons rainfall
promoted by strengthened low-pressure systems in the Bay of Bengal, and
anomalous raining events may have influenced the annual rainfall amount.
This finding is in agreement with results of Dash et al. (2007). The box plots
of the Kendall slope ( ) (not shown) for quantifying the seasonal rainfall
trends for both the time frames indicated a decreasing and more fluctuating
seasonal rainfall pattern in recent years. The monsoon season rainfall in June,
July, August and September months decreased by 1.67, 1.80, 1.10 and 1.64
mm per year, respectively. However, for the second time frame, only two
monsoon season months (July and September) exhibited drying trend at the
rate 0.19 and 0.74 mm per year, respectively.

The result of the trend tests showed high spatial and seasonal variability
of monsoon season rainfall, and thus, homogeneity of the trend was examined.
The homogeneity test was used to test homogeneity in only monsoon rainfall
trends and the results are presented in Table 11.2. For the time frame 1985-
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2003, the overall trend ( 2
Trend, 1) is significant at  = 0.05 level (critical

2
0.995, 1 = 3.84). This result indicates an overall drying trend of monsoon

rainfall (Z = – 0.38) without any significant spatial and seasonal heterogeneity.
For the second time frame (1960-2003), however, the seasonal heterogeneity
( 2

Season, p-1) is found to be significant at  = 0.05 level (critical 2 
0.995, 3

= 7.81). Based on the results of tests for heterogeneity among the seasons, the
June and September months of the monsoon season are found to be significantly
heterogeneous with 2-values of 20.22 and 7.85, respectively. It can be inferred
that the June month exhibited a significant wetting trend (Zs = 1.24), and the
September month exhibited a significant drying trend (Zs = – 0.78) for the
second time frame. Higher frequency of drying trend in monsoon rainfall time
series of Orissa in the present study, and the future occurrence of extreme
weather events with probable severe droughts reported by Ghosh and Majumdar
(2007) necessitates a more detailed future research.

11.4.3 Trends in Temperature Time Series

The basic statistics of mean monthly maximum temperature (Tmax) and mean
monthly minimum temperature (Tmin) for 16 stations of the study area are
presented in Table 11.3. The standard deviation values of the temperatures are
relatively lesser for coastal belt (Balasore, Chandbali, Paradeep, Cuttack, Puri,
Bhubaneswar, Gopalpur) compared to the non-coastal region, which indicates
a stable Tmax and Tmin in coastal belt. Although the coastal region is densely
populated, the mean Tmax of the non-coastal region is more than that of the
coastal region. However, the average Tmin of the non-coastal region is less
than that of the coastal region. Most of the stations exhibit positive skewness
for Tmax and negative skewness (Sk) for Tmin. This indicates that unusually
high and low temperatures influenced the distribution of Tmax and Tmin,
respectively. The topographic features, location of the station from the coast,
and the anthropogenic interventions are the plausible factors for the spatial
difference of the temperature pattern. The coal-based industrial regions such
as ANG, JRG, TTG and SNG show higher temperatures as obvious from the
location parameters.

Figure 11.4 shows the cumulative frequency distribution of MK and SR
trend test results of 192 temperature time series (12 seasons for each of the 16
stations) for the Tmax and Tmin, respectively. The cumulative frequency
distribution of Tmax shown in Fig. 11.4(a) exhibits a pronounced warming
trend as 99% of the season-stations show positive trends for both the MK and
SR trend test. However, the cumulative frequency distribution of Tmin
experiences a cooling trend as 93% and 94% of the season-stations show
negative trends for the MK and SR trend test, respectively [Fig. 11.4(b)].
Higher cases of positive trends of the MTR [Fig. 11.4(c)] are also observed,
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which indicate that both Tmax and Tmin are moving in opposite direction.
Around 46% and 60% of the season-stations experienced significant warming
trend of Tmax at  = 0.05 and 0.10 levels, respectively. The significant warming
trends of Tmax were more concentrated in the non-monsoon seasons. For Tmin,
around 39 and 48% of the season-stations experienced significant cooling
trend at  = 0.05 and 0.10 levels, respectively. Increasing number of cooling
trends was observed in the pre-monsoon summer season. The Kendall slopes
for trend quantification indicated that the Tmax exhibited an overall warming
trend at the rate 0.37 oC yr-1 (standard deviation 0.18). The seasonal distribution
of the Kendall slope indicated that the pre-monsoon summer months
experienced more warming trends. The Tmin exhibited a cooling trend at
the rate 0.32 oC yr-1 (standard deviation 0.23). Comparatively higher rate of
cooling was experienced in the pre-monsoon summer months. The test
of homogeneity (Table 11.4) indicates that the overall trend ( 2

Trend, 1) for
both Tmax and Tmin are significant at  = 0.05 level (critical 2

0.995, 1 = 3.84).
This result indicates an overall warming trend for Tmax (Z— = 1.85) and cooling
trend for Tmin  (Z— = –1.62) without any significant spatial and seasonal
heterogeneity.

The opposite trends of Tmax and Tmin indicate that the governing factors
are also different. Greenhouse gases in the atmosphere accelerate the warming
process. The observed pronounced warming trend of Tmax in the study area
may be attributed to the build-up of greenhouse gases due to coal combustion,
land-use change, and other anthropogenic factors (Garg et al., 2001; CSE,
2006). Earlier, Rao (1993) attributed the warming trend in the Mahanadi river
basin of Orissa to the increase in the greenhouse gases, specially CO2 and
CH4, and the changes in the land-use pattern. Several other researchers have
also observed the warming trends of seasonal and annual temperatures for
different parts of India (e.g., Hingane et al., 1985; Arora et al., 2005; Kothawale
and Kumar, 2005; Flower and Archer, 2006). More interesting result is the
simultaneous cooling trend of the night temperatures i.e. Tmin, and consequent
widening trend of the MTR. The aerosol loads may have influenced the
observed cooling trends by reducing the surface receipt of solar radiation and
rainfall efficiency as discussed in the previous section. Cooling trends have
also been observed at other parts of India (Hingane et al., 1985; Yadav et al.,
2004; Flower and Archer, 2006). The deforestation and drying rainfall trend
may have partially contributed to the cooling trend of Orissa.



238 Salient Case Studies

Fig. 11.4. Cumulative frequency distribution of MK and SR trend test results of
192 temperature time series (12 seasons × 16 stations) for (a) monthly maximum
temperature (Tmax), (b) monthly minimum temperature (Tmin), and (c) monthly

temperature range (Tmtr), respectively.
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Table 11.4. Homogeneity tests of trends of monthly maximum temperature and
monthly minimum temperature for the period 1987-2001

Sources of Monthly maximum Monthly minimum
variation temperature (Tmax) temperature (Tmin)

2-cal d.f. Significance 2-cal d.f. Significance

Total variation 765.54 192 – 679.95 192 –
Homogeneity 104.12 191 – 174.43 191 –
Season 12.13 11 NS 11.27 11 NS
Station 21.42 15 NS 77.75 15 NS
Season station 70.57 165 NS 85.41 165 NS
Trend 661.42 1 S (p  0.05) 505.52 1 S (p  0.05)

Note: d.f. = Degrees of freedom; NS = Not significant; S = significant.

11.4.4 Trends in Time Series of Relative Humidity

The descriptive statistics of monthly average relative humidity for 16 stations
of the study area recorded at 8.30 hours (RHfn) and at 17.30 hours (RHan) are
presented in Table 11.5. The water vapour over the coastal-belt is more in
comparison to the inland areas. However, unusually low values of relative
humidity have influenced the shape of distribution as obvious from the negative
skewness (Sk) in most of the stations. The spatial and temporal variability of
water vapour is due to a combination of factors such as the proximity of the
location to the Bay of Bengal, topographic features, and anthropogenic factor
like land-use changes. Decrease in vapour fluxes has occurred due to reduction
in evapotranspiration at places where forest lands were converted to agricultural
lands (Mishra and Das, 1984; Douglas et al., 2006).

Figure 11.5 displays the cumulative frequency distribution for the results
of MK and SR trend test for 192 season-stations relative humidity time series
(12 seasons for each of the 16 stations). For RHfn, 67 and 65% of 192 season-
stations relative humidity time series exhibit positive trends based on the MK
and SR tests, respectively [Fig. 11.5(a)]. However, for RHan, 50 and 56% of
192 season-stations relative humidity time series exhibit positive trends based
on the MK and SR tests, respectively [Fig. 11.5(b)]. Comparatively higher
cases of positive trends indicate an increasing moisture load in the atmosphere.
Significant positive trends, although less in number, were more concentrated
in the monsoon season months. The Kendall slopes indicated that both RHfn
and RHan exhibited an overall moistening trend at a rate of 0.07% yr-1 (standard
deviation 0.48) and 0.01% yr-1 (standard deviation 0.53), respectively. The
location parameters of the box plot showed that the trends of RHfn, and RHan
were more stable in the monsoon and post-monsoon seasons. The test of
homogeneity of the RHfn trend results (Table 11.6) indicates that the overall
trend ( 2

Trend, 1) is significant at  = 0.05 level (critical 2
0.995, 1 = 3.84). This

positive overall RHfn trend (Z– = 0.37) indicates an overall moistening trend of
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Fig. 11.5. Cumulative frequency distribution of MK and SR trend test results of
192 relative humidity time series (12 seasons × 16 stations) for (a) monthly
average relative humidity recorded at 8.30 hours (RHfn), and (b) monthly average

relative humidity recorded at 17.30 hours (RHan), respectively.

Table 11.6. Results of trends homogeneity tests of monthly average relative
humidity in forenoon (RHfn) and afternoon (RHan) for the period 1987-2001

Sources of Monthly average relative Monthly average relative
variation humidity in forenoon (RHfn) humidity in afternoon (RHan)

2-cal d.f. Significance 2-cal d.f. Significance

Total variation 261.05 192 - 174.58 192 -
Homogeneity 234.01 191 - 171.98 191 -
Season 21.36 11 NS 26.97 11 NS
Station 109.28 15 NS 39.64 15 NS
Season station 103.37 165 NS 105.37 165 NS
Trend 27.04 1 S (p  0.05) 2.60 1 NS

Note: d.f.= Degrees of freedom; NS = Not significant; S = Significant;
2–cal = Calculated chi-square test-statistics.
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the forenoon relative humidity without any significant spatial and seasonal
heterogeneity. However, results of the test of homogeneity of trend for the
RHan indicates no heterogeneity with respect to seasons and stations, and also
a non-significant overall positive (Z

– 
= 0.12) trend.

The result of increasing trend of relative humidity is consistent with that
evidenced by Wang and Gaffen (2001). The increasing trends of the relative
humidity may be attributed to the abundant moisture supply from the Bay of
Bengal. The minimum temperature also contributes to the increase in relative
humidity trends in winter. This explains the increasing trend of relative humidity
in Orissa as the night temperature shows a cooling trend. However, the
pronounced warming trend of daytime temperature could have increased the
moisture load in the atmosphere. Combustion of coal and other fossil fuel,
although in small quantity, produces water vapour (Gaffen and Ross, 1999).
Further, Gorden et al. (2005) reported that the increase in water vapour is
correlated with intensive food production in the Indian subcontinent, and thus
expanding irrigation increases the risk for changes in the monsoon system.
However, the uncertainty in both the temporal and spatial distribution of
water vapour remains to be a hindrance while attributing the trends and
variability of relative humidity (Gaffen and Ross, 1999). Even the day-night
difference in relative humidity is larger than the amplitude of the seasonal
cycle (Wang and Gaffen, 2001).

The radiative effect of water vapour feedback mechanism in climate change
context is comparable to the radiative forcing from CO2 enrichment (Fasullo
and Sun, 2001). Surface relative humidity regulates the evaporation and
transpiration process, and consequently has connections with both hydrological
and surface energy budgets. Any increase in atmospheric moisture enhances
the moisture convergence into storm, and thus amplifies the intensity of rainfall.
However, the frequency and duration of rainfall decreases with consequent
prevalence of drought because the total precipitation is controlled by the
available surface energy (Trenberth, 1998; Trenberth et al., 2007). Therefore,
the drought occurrence has increased over tropics and sub-tropics partly due
to the reduced rainfall in landmass, and also due to the warming and increased
atmospheric demand for moisture. Increasing trend of relative humidity for
Orissa, although not significant, may also have contributed partially to the
occurrence of intense weather events.

11.5 Conclusions

This study employed two nonparametric statistical tests, i.e., Mann-Kendall
(MK) test and Spearman’s rho (SR) test for trend detection to understand
response of three hydroclimatic variables (rainfall, temperature and relative
humidity) of Orissa. The annual rainfall shows that the anomalous events in
terms of both drought and flood are increasingly more conspicuous in recent
years. However, the mean annual rainfall and the linear relationship did not
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change significantly. The homogeneity test indicates that the monsoon rainfall
of recent years experiences an overall drying trend. Furthermore, the mean
monthly maximum temperature and mean monthly minimum temperature
exhibited pronounced warming and cooling trends, respectively. The monthly
temperature range showed an increasing trend. The monthly mean relative
humidity showed higher percentage of increasing trends indicating an enhanced
moisture load in the atmosphere. The pronounced warming with consequent
increase in rainfall intensity and decrease in rainfall frequency may have led
to a drying monsoon trend of the study area. Although the present study has
not explored the trend attribution of the hydroclimatic variables, we speculate
that the observed trends and variability are primarily due to the local
anthropogenic activities. Future research is needed to estimate the local
greenhouse gas and aerosol forcings for precise characterization of trends of
hydroclimatic variables. The economic development and ecological security
need to go hand in hand as the local anthropogenic activities can even cause
global climate change. Therefore, policy should be formulated to establish the
tradeoff between the two. There is a need to reduce aerosol and greenhouse
gas emission by exploring the alternate energy sources.
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12
Analysis of Trend and Periodicity

in Long-Term Annual Rainfall
Time Series of Nigeria

12.1 Introduction

Understanding trends and variations of current and historical hydroclimatic
variables is pertinent to the future development and sustainable management
of water resources of a particular region. Information regarding
hydroclimatological issues is important within the context of global warming,
water and energy cycles and the increasing demand for water due to population
and economic growth (Sankarasubramanian and Vogel, 2003; Oguntunde et
al., 2006). Changes in the climate system and land cover have been widely
accepted to have important consequences for regional to global water resources
management and conservation. The extent to which human alteration of earth’s
environment affects the global hydrologic cycle is still largely unknown
(Szilagyi, 2001). Valuable historical records of hydrologic patterns over
complex drainage basins help to understand anthropogenic and climatic effects
on large-scale terrestrial ecosystems (Vörösmarty and Sahagian, 2000). One
of the very important necessities of research into climate change is to analyze
and detect historical changes in the climatic system (Houghton et al., 1996).
Rainfall is a principal element of the hydrological cycle, hence understanding
its behaviour may be of profound social and economic significance. Detection
of trends and oscillations in the rainfall time series yields important information
for understanding the climate. However, rainfall changes are particularly hard
to gauge, because rainfall is not uniform and varies considerably from place
to place and time to time, even on small scales.
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Several studies on analysis of rainfall time series have been carried out at
different temporal scales and in different parts of the globe. Existing analyses
of rainfall time series show for some areas a positive trend and a tendency
towards higher frequencies of heavy and extreme rainfall in the last few
decades (Houghton et al., 1996). In the Canadian Prairies, a significant increase
in the amounts and number of rainfall events have been reported (Akinyemi
et al., 2001). Ati et al. (2009) reported significant increase in rainfall over nine
stations in northern Nigeria between 1953 and 2002. Increasing trends were
also reported for Ibadan in southwest Nigeria (Oguntunde et al., 2011). Many
researchers analyzed the precipitation patterns in several parts of Europe.
Brazdil (1992) described fluctuations of precipitation in Europe using a time
series of annual areal precipitation totals. Some of the results of precipitation
analysis suggest that spatial and temporal non-uniformity in trend exists,
which make generalization over large areas difficult if not impossible.
Significant positive and negative trends have also been observed in the USA
(Karl et al., 1995; Trenberth, 1998; Kunkel et al., 1999), Australia (Suppiah
and Hennessey, 1998; Plummer et al., 1999), South Africa (Mason et al.,
1999), the United Kingdom (Osborn et al., 2000) and Italy (Brunetti et al.,
2000; 2001). Besides the increase in precipitation intensity, there are some
indications that the overall percentage of the earth’s surface affected by either
drought and/or excessive wetness has increased (Dai and Trenberth, 1998).
Gemmer et al. (2004) analyzed the annual rainfall series of 160 stations in
China. They observed a spatial clustering of the trends in certain months,
including district trend belts in east and northeast China.

Recent studies have shown that Africa has been drier over the last few
decades (Nicholson et al., 2000; L’Hóte et al., 2002; Oguntunde et al., 2006).
Furthermore, there are two schools of thought regarding the recent trends in
Sahelian rainfall. Some researchers believe that the Sahelian drought continued
till the end of the 20th century (L’Hóte et al., 2002), while others argue it may
have ended in the 1990s (Ozer et al., 2003). Ojo (1987) examined the
characteristics of rainfall variations between 1901 and 1985 in West Africa
and discussed such characteristics as periodicities and variabilities. The study
found no observable regular patterns in trends, periodicities and persistence of
hydrologic consequences of rainfall variations to allow for predictability of
these consequences in relation to rainfall variations. The role of rainfall trends
in poor growth performance of sub-Saharan African nations relative to other
developing countries, using a new cross-country panel climatic dataset in an
empirical economic growth framework was examined (Barrios et al., 2010).
The results showed that rainfall has been a significant determinant of poor
economic growth for African nations but not for other countries.

In Nigeria, studies on rainfall analyses have been reported for different
periods and locations within the country (e.g., Adefolalu, 1986; Tarhule and
Woo, 1998; Bello, 1998; Olaniran, 2002; Ogolo and Adeyemi, 2009; Ati et al.,
2009; Alli, 2010; Oguntunde et al., 2011). For example, Bello (1998) compared
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the seasonality of rainfall distribution in Nigeria for two periods, 1930-1961
and 1962-1993, and Alli (2010) studied rainfall trends and cycles for 20
rainfall stations scattered over Nigeria since 1960. Adefolalu (1986) analyzed
70-year period (1911-1980) rainfall data from 28 meteorological stations to
examine trends in precipitation patterns. The results indicated a general decrease
of dry season contribution to annual rainfall. In Nigeria, with more than 70%
of the populace engaged in agriculture that is mostly rainfed, rainfall is the
most important climatic variable owing to its manifestation as a deficient
resource (droughts) or a catastrophic agent (floods). Therefore, for the purpose
of sustainable water resources planning and management, trends and
periodicities in long-term rainfall must be examined. The main aim of this
study is to detect significant temporal and spatial trends and periodicities in
the long-term (1901-2000) annual rainfall time series of Nigeria. This chapter
is organized as follows: after presenting the background of this study, an
overview of the study area is presented in Section 12.2 followed by
methodology in Section 12.3, results and discussion in Section 12.4 and
conclusions in Section 12.5.

12.2 Study Area

Nigeria is located in West Africa between latitude 4o-14oN and longitude
2o-15oE and encompasses a total area of about 925,796 km2. The climate of
Nigeria is more varied than that of any other country in West Africa. This is
the result of the great length from south to the north (1100 km), which covers
virtually all the climatic belts of West Africa. The climate is dominated by the
influence of three main wind currents. These are the tropical maritime (MT)
air mass, the tropical continental (CT) air mass and the equatorial easterlies
(Ojo, 1987). The first air mass (MT) originates from the southern high-pressure
belt located off the Namibian coast, and along its way picks up moisture from
over the Atlantic Ocean and is thus wet. The second air mass (CT) has the
high-pressure belt north of the Tropic of Cancer as its origin. This air mass is
always dry as a result of little moisture it picks along its way. The first two air
masses, MT and CT, meet along a starting surface called the Inter-Tropical
Discontinuity (ITD). The third air mass (equatorial easterlies) is a somehow
erratic cool air mass, which comes from the east and flows in the upper
atmosphere along ITD. This air mass penetrates occasionally to actively
undercut the MT or CT and gives rise to squall lines or dust devils (Iloeje,
2001). The entire country is grouped into three ecological zones based on
latitude, which are Sahel (11o-14oN), Savannah (8o-11oN) and the Guinea
(4o-8oN) zones as shown in Fig. 12.1. The climate is semi-arid in the north and
humid in the south and also humid strip along the coast with an average
annual rainfall of more than 2000 mm. Rainfall commences at the beginning
of the rainy season around March/April from the coast (in the south), spreads
through the middle belt, reaching its peak between July and September, to
eventually get to the northern part very much later. The reverse of the situation
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also holds for the rainfall retreat period (Iloeje, 2001). About two thirds of the
cropped area of Nigeria is in the north, with the rest cropped areas distributed
between the middle belt and the south. According to the results of 2006
census, Nigeria is by far the most populous country in Africa with over 140
million people and population density of 138 people per km2.

Fig. 12.1. Map of Nigeria showing the location of the delineated
agro-ecological zones.

12.3 Methodology

12.3.1 Data Collection

Monthly rainfall data of Nigeria were collected from the Global Gridded
Climatology of Climatic Research Unit Time Series (CRU TS 2.1) presented
at a new high resolution and made available by the Climate Impacts LINK
project, Climate Research Unit, University of East Anglia, Norwich, UK
(Mitchell and Jones, 2005). The Climatic Research Unit (CRU) dataset is
composed of monthly 0.5o latitude/longitude gridded series of precipitation;
mean monthly temperature, diurnal temperature range, wet-day frequency,
vapour pressure, cloud cover and ground-frost frequency (New et al., 1999).
The 0.5 degree resolution dataset of monthly surface-based climate parameters
cover the period 1901-2002. Amongst these parameters monthly accumulations
of precipitation are generated from available gauge datasets. Although the
time series extends back to 1901, it should be noted that the number of
available gauges varies with time, for example, in 1901 a total of 4,957
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gauges contributed to the dataset, which by 1981 has increased to 14,579
gauges. The CRU inserts synthetic zero anomaly values in regions that are
“too far” from observations (i.e., farther than 450 km), while the other schemes
simply interpolate over the entire distance. The annual rainfall time series data
were checked for consistency and normality prior to testing for trends and
periodicities.

12.3.2 Data Analysis

In this study, first of all, descriptive statistics of annual rainfall time series
including minimum, maximum, range, mean, standard deviation, variance,
standard error of the mean, kurtosis and skewness with their standard errors
were computed by using SPSS 15.0 software. These statistics help to provide
a preliminary overview of the dispersion and distribution of the data series.
Details about these descriptive statistics can be found in Chapter 2 of this
book.

Normality tests are used to determine whether a dataset can be described
by a normal distribution or not, or to compute how likely an underlying
random variable is to be normally distributed. There are many reasons for
applying the normality tests to a hydrologic time series, which include data
screening, outlier identification, description, assumption checking, and
characterizing differences among sub-populations (groups of cases). Data
screening may show that you have unusual values, extreme values, gaps in the
data, or other peculiarities. Exploring the data this way may help to determine
whether the statistical techniques that are intended for data analysis are
appropriate. There exist different approaches to normality testing as mentioned
in Chapter 3. In this study, histogram, and box and whisker plot were used as
graphical methods, while the Kolmogorov-Smirnov test and the Shapiro-Wilk
test were used to check the presence of normality in the rainfall datasets.

Rainfall variability index is usually computed as the standardized
precipitation departure and helps to separate the available rainfall time series
into different climatic regimes such as ‘very dry climatic year’, ‘normal climatic
year’, ‘wet climatic year’, ‘very wet climatic year’, etc. (Lamb, 1982; L’Hóte
et al., 2002). Rainfall variability index ( ) was calculated as (L’Hóte et al.,
2002; Oguntunde et al., 2006):

( )/i iP (1)

where i is rainfall variability index for year i, Pi is annual rainfall for year i,
and  and  are the mean and standard deviation of annual rainfalls for the
1901-2000 period. When  is within ±0.5, the year is characterized as a
‘normal year’; when  is between +0.5 and +1, it is characterized as a ‘wet
year’; when  > +1, it is characterized as a ‘very wet year’. Similarly, when
 is between –0.5 and –1, the year is characterized as a ‘dry year’, when  <

–1, it is characterized as a ‘very dry year’ (Lamb, 1982; L’Hóte et al., 2002).
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Spatial annual rainfall time series were examined for presence of trends
by using one of the World Meteorological Organization (WMO) recommended
nonparametric tests, i.e. Mann-Kendall test. The Mann-Kendall test is often
used to explore trends in hydroclimatological time series (Salmi et al., 2002;
Tosic and Unkasevic, 2005, Oguntunde et al., 2006). Details about the Mann-
Kendall test can be found in Chapter 4. It should be noted that the Mann-
Kendall test is non-dimensional and does not quantify the scale or the magnitude
of the trend in the units of the time series under study, but is rather a measure
of the correlation of variable with time and, as such, simply offers information
as to the direction and a measure of the significance of the observed trends. To
estimate the true slope of an existing trend, the nonparametric Sen’s slope
estimation method was used (Salmi et al., 2002). The Sen’s slope estimation
method can be used in cases where the trend can be assumed to be linear. The
details about the Sen’s slope estimation method can be found in Chapter 4.

Generally, before embarking on the parametric trend test or least-squares
(regression) analysis, the time series data are checked for its suitability for
regression analysis by checking the three assumptions of the linear regression
(Montgomery et al., 2006; Kleinbaum et al., 2007): (i) the source population
is normally distributed, (ii) the variance of the dependent variable in the
source population is constant regardless of the value of the independent
variable(s), and (iii) the residuals are independent of each other. In this study,
the normality assumption for linear regression was tested using the
Kolmogorov-Smirnov test (details can be found in Chapter 3). Constant
variance was tested by computing the Spearman rank correlation between the
absolute values of the residuals and the observed value of the dependent
variable and the Durbin-Watson statistic was used to test residuals for their
independence to each other. The Durbin-Watson statistic is a measure of serial
correlation between the residuals. If the residuals are not correlated, the Durbin-
Watson statistic will be 2 (Montgomery et al., 2006; Kleinbaum et al., 2007).

To estimate the true slope of an existing trend, the parametric method or
least-squares regression analysis was used (Liu et al., 2008). This method can
be used in cases where the trend can be assumed to be linear. This means that
slope (Q) and intercept (B) in linear equation f(t) = Qt + B are estimated by
minimizing the sum of square errors between predicted and observed values.
Thus, the mean values of Q and B that yield the least error of estimate for the
model are selected. A t-statistic is then computed to measure the significance
of the independent variable in predicting the dependent variable. The regression
module of SigmaPlot 10.0 software was used in this analysis, including the
verification of the assumptions.

Finally, autocorrelation and spectral methods were used to analyze periodic
signals in the annual rainfall time series of three zones, namely Guinea, Savanna
and Sahel. Autocorrelation is the correlation of a time series dataset signal
with itself at different time lags (Phillips et al., 2008). Theoretical details
about autocorrelation analysis are presented in Chapter 4. Spectral analysis,
on the other hand, is a procedure for decomposing a complex time series
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dataset into a spectrum of cycles of different lengths. It decomposes the
dataset into few underlying sinusoidal (sine and cosine) functions of particular
wavelength (Jenkins and Watts, 1968; Wei, 1989). This analysis helps to
uncover reoccurring cycles of different length in a time series, which at first
looks like a random noise. A periodogram presents a plot of amplitude (or
power) of each cycles against their frequencies (or periods).

12.4 Results and Discussion

12.4.1 Temporal Analysis

12.4.1.1 Summary of Descriptive Statistics
Salient statistical properties of the long-term (1901-2000) annual rainfall time
series for different zones of Nigeria (Guinea, Savannah, Sahel and entire
Nigeria) are summarized in Table 12.1. It can be seen from Table 12.1 that the
annual rainfall varies mostly in the south (Guinea) with standard deviation of
158 mm, and ranges from about 1340 to 2200 mm (mean = 1830 ± 158 mm).
The annual rainfall in Sahel ranges from about 430 to 970 mm and least varied
with standard deviation of 114 mm among the three ecological time series
examined. For the country as a whole, the annual rainfall varied between
about 870 and 1500 mm (mean = 1220 ± 110 mm). All the examined series are
slightly skewed to the left whereas the positive kurtosis, a measure of the
relative flatness of a distribution compared with the normal distribution (zero
kurtosis), indicates tapering distributions.

12.4.1.2 Rainfall Variability
Rainfall variability index for the three zones of the study area are shown in
Fig. 12.2. The Rainfall variability index observed in both Guinea and Savannah
seems to have overriding effect on the mean values for the entire Nigeria.
There are slight differences in the distribution of rainfall variability index
especially prior to the beginning of drought in 1970. Following the findings of
other researchers, e.g., Nicholson et al. (2000) and L’Hote et al. (2002), four
series of characteristic periods may be distinguished for the Sahel as: (i) from
1901 to 1949 (49 years), an apparently random succession of dry periods,
“normal” periods and wet periods; (ii) from 1950 to 1968 (19 years), a series
of 19 successive wet years; (iii) from 1969 to 1979 (11 years), an apparently
succession of four dry years, five “normal” years and two wet years; and (iv)
1980 to 2000 – a series of 21 years that were dry or very dry, with five wet
years. The driest decade was of the 1980s while the wettest decade was of the
1950s. Three time series of characteristic periods may be distinguished for the
Guinea as: (i) from 1901 to 1953 (53 years), an apparently random succession
of dry periods, “normal” periods and wet periods; (ii) from 1954 to 1969 (16
years), a series of an apparently random succession of nine wet years, four
“normal” years and three very dry years; and (iii) from 1970 to 2000 (31
years), an apparently succession of 15 dry and very dry years, 11 “normal”
years and five wet years. Rainfall variability characteristics exhibited by
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Fig. 12.2. Rainfall variability index for different zones of Nigeria.
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Savannah zone and the Nigeria average are very similar. Generally, it has been
wet before the 1970s, whereas in the post 1970s, there has been dramatic
reduction in annual rainfall over Nigeria.

12.4.1.3 Temporal trends

1. Normality analysis: Prior to applying parametric trend tests, normality of
the annual rainfall was tested by using both graphical and statistical tests.
Using data averaged over Nigeria, histogram of the annual rainfall was plotted
along with the theoretical normal distribution curve as shown in Fig. 12.3.
The results showed that apart from the one outlier, 870 mm (with a distance
of slightly more than three times the standard deviation from mean), the series
can be approximated by a normal distribution. A similar result was obtained
by plotting a box plot, presented in Fig. 12.4, where the outlier was clearly
flagged better than the histogram. The results of statistical tests such as the
Kolmogorov-Smirnov test and a more robust Shapiro-Wilk test are presented
in Table 12.2. For these tests, p-value for normality determines the probability
of being incorrect in concluding that the data is not normally distributed (p-
value is the risk of falsely rejecting the null hypothesis that the data is normally
distributed). If the p-value computed by the test is greater than the p-value set
a priori, the test passes. To require a stricter adherence to normality then the
p-value must be increased. The suggested value in SigmaPlot and SPSS
software is 0.05. Larger p-values (for example, 0.10) require less evidence to
conclude that the residuals are not normally distributed. One often rejects the
null hypothesis when the p-value is less than 0.05 or 0.01, corresponding
respectively to a 5% or 1% chance of rejecting the null hypothesis when it is
true (Type I error). It was observed from Table 12.2 that the Kolmogorov-
Smirnov test accepted the null hypothesis that our sample is normally distributed
for data with ‘the outlier’ and a more robust Shapiro-Wilk test also barely
accepted the null hypothesis. However, both the statistical tests confirmed
presence of normality in annual rainfall time series after the removal of single
outlier (Table 12.2). In a sample of 1000 observations, the presence of up to
five observations deviating from the mean by more than three times the standard

Table 12.2. Results of two normality tests for annual rainfall time series of Nigeria

Kolmogorov-Smirnova test Shapiro-Wilk test

Test-statistic df Significance Test-statistic df Significance

(a) Annual rainfall time series with outlier

0.058 100 0.200* 0.989 100 0.612

(b) Annual rainfall time series after removing single outlier

0.053 99 0.200* 0.992 99 0.853

Note: aLilliefors Significance Correction; df = degree of freedom; *Lower bound of
true significance.
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Fig. 12.3. Histogram for annual rainfall time series of Nigeria to be used as a
check of normality (the outlier is enclosed in the oval shape). The histogram

is overlay with the theoretical normal distribution curve.

Fig. 12.4. Box plot for annual rainfall time series of Nigeria to be used as a
check for normality (the outlier is encircled and corresponds to the annual

rainfall of year 1983).
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deviation is within the range of what can be expected. The sample size is only
100 in this case study, thus only one of such outliers seems not to be out of
place, and hence, the statistical tests accepted the null hypothesis that the data
with inclusion of the one extreme value can still be approximated with a
normal distribution.
2. Parametric and nonparametric trends: The parametric Least Square
Regression test and nonparametric Mann-Kendall test were performed on the
annual rainfall time series with and without outlier flagged in Fig. 12.4. The
Kolmogorov-Smirnov test revealed presence of normality for linear regression
in the annual rainfall time series (test-statistic value 0.071 at 0.68 significance
level). The annual rainfall time series passed the constant variance test (p =
0.92) verifying the assumption that variance of the annual rainfall in source
population is constant. The Durbin-Watson test-statistic value is computed to
be 1.56, which does not deviate from 2 by more than 0.50. This indicates that
the linear regression assumption of independent residuals is true. Thus, all the
three assumptions of the linear regression hold true, and therefore, the
parametric trend test, i.e. least square regression test, can be applied to the
annual rainfall time series in this study. The results of the parametric and
nonparametric trend tests for the four annual rainfall time series are summarized
in Table 12.3. The linear regression lines depicting trends in the annual rainfall
time series for the Guinea, Savannah and Sahel zones, and Nigeria over the
last century are shown in Fig. 12.5.

Both the graphical and statistical methods (Table 12.3 and Fig. 12.5)
detected negative trends, i.e., decreasing rainfall in all the zones and in entire
Nigeria. The results of the parametric trend test were significantly affected by
the presence/removal of the outlier. For example, a trend of –0.90 mm/year,
which translate to a reduction of about 90 mm, was observed in Guinea for the
1901-2000 period, while the removal of the outlier changed this trend to –0.71
mm/year, which translate to a reduction of about 71 mm for the same time
series. This observed variation was common to all the time series examined.
However, the nonparametric tests are less sensitive to the outliers as compared
to the parametric tests and also do not require the knowledge of the data
distribution a priori. For example, a trend of –1.07 mm/year, which translate
to a reduction of about 107 mm, was observed in Guinea for the 1901-2000
periods, while the removal of the outlier changed this trend slightly to –0.98
mm/year, which translate to a reduction of about 98 mm. For the parametric
test, a relative change of about 21% was observed as against 8% in the
nonparametric test. This may be one of the reasons that many researchers as
well as the WMO have recommended the use of the nonparametric methods
for trend detection in hydroclimatological time series (Mitchell et al., 1966;
Liu et al., 2008). It should be noted that, in the above example, both the
magnitude and direction of the outlier’s departure from the sample mean
contribute significantly to the overall trend estimated.
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Fig. 12.5. Time series plots of annual rainfall for Guinea, Savannah, Sahel,
and entire Nigeria. Linear regression lines are shown as solid thick lines.

12.4.2 Spatial Analysis

12.4.2.1 Spatial Distribution of Rainfall
The distribution of annual rainfall and the corresponding values of coefficient
of variation (CV) are shown in Figs 12.6 and 12.7, respectively. The mean
annual rainfall generally decreased with latitude (Fig. 12.6). Its value ranged
from about 400 mm near the Lake Chad in the northeast corner to about 2500
mm at the southern part of Nigeria. Spatial pattern of the CV increased with
latitude as rains become more varied northwards. The coefficient of variation
values vary from 5 to 25% for the major portion of the southern and the
middle-belt of the study area covering entirely the Guinea and the Savannah
zones, whereas the CV values range between 15 and 35% for the Sahel zone.
Cumulative distribution function (cdf) of the mean annual rainfall for 100-
year period (1901-2000) is shown in Fig. 12.8. The cdf is very helpful to set
threshold values below or above which certain rainfall events occurs. For
example, it can be deduced from Fig. 12.8 that less than 10% of the entire
Nigeria landscape experience about 500 mm of annual rainfall, 60% experience
about 1300 mm while only about 10%, in the southern part, of the landscape
experience very heavy storm above 2000 mm.

12.4.2.2 Spatial Trends
Pixel level trend analysis was carried out using only the nonparametric Mann-
Kendall trend test. A total of 320 pixels covering the entire Nigeria were
analyzed. Results obtained for different significance levels (10%, 5% and 1%)
are summarised in Table 12.4. The number and percentages of pixels with
negative or positive trends are reported for different significant levels. Guinea
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Fig. 12.6. Distribution of mean annual rainfall over Nigeria.

Fig. 12.7. Coefficient of variation of annual rainfall over Nigeria.
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zone has a total of 104 pixels, out of which only 11 or 10.6% exhibit negative
significant trends at 1% significance level. However, the negative significant
trends were observed for 18 pixels (17.3%) at 5% significance level and for
21 pixels or 20.2% at 10% significance level. Similarly, of the entire Nigeria,
3.8% exhibits negative significant trends at 1% significance level. Whereas,
negative trends were observed for 63 pixels (19.7%) at 5% significance level,
which increased to 98 pixels or 30.6% at 10% level. No pixel showed positive
significant trend at any of the three significance levels.

Table 12.4. Spatial distribution of significant negative trends at three significance
levels in the three zones and in entire study area

Significance Number of pixels with positive or negative trends
level (% within parenthesis)

Guinea Savannah Sahel Nigeria

1% 11 (10.6) 0 (0.0) 1 (1.1) 12 (3.8)
5% 18 (17.3) 28 (22.6) 17 (18.5) 63 (19.7)
10% 21 (20.2) 47 (37.9) 30 (32.6) 98 (30.6)

Figure 12.9 showed the spatial distribution of the trends at 0.5 mm/year
intervals. These values varied between –3.46 and +0.76 mm/year. About 90%
of the entire landscape exhibited negative trends while less than 10% showed
positive trends. For a better understanding of the significance of rainfall change
in Nigeria, spatial distribution of the estimated values of Mann-Kendall test-
statistics is presented in Fig. 12.10. The test-statistic values varied spatially
from –3.33 to +0.91. The spatial pattern of the changes at 10%, 5% and 1%
significance levels are vividly displayed towards the southern part of Nigeria
in the Niger Delta area and in the north-central portion of the study area. The

Fig. 12.8. Cumulative probability distribution curve for spatial estimates of
mean annual rainfall for the 100 years (1901-2000).
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Fig. 12.9. Spatial distribution of annual rainfall trends (1901-2000).

Fig. 12.10. Spatial distribution of observed values of Mann-Kendall test-statistic
for the 100-year period (1901-2000) annual rainfall time series.
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Fig. 12.11. Change in annual rainfall of Nigeria between 1901 and 2000.

Fig. 12.12. Significant changes in annual rainfall at 5% significance level.

actual changes in rainfall in the last century over the entire Nigeria is shown
in Fig. 12.11 and the area with significant change in annual rainfall values at
5% significance level is shown in Fig. 12.12. About 2.5% of the total area
experienced overall rainfall change in the order of between –350 and –250
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mm; 4.4% showed changes varying from –250 to –150 mm; 56.9% of the
Nigeria landscape experienced changes between –150 and –50 mm; ± 50 mm
occurred on about 34.6% while only 1.6% of Nigeria showed changes in the
positive direction from +50 to +150 mm.

12.4.3 Rainfall Cycles and Periodicities

Autocorrelation plots for annual rainfall time series in Sahel, Savanna and
Guinea zones are presented in Figs 12.13(a-c). The annual rainfall time series
has an underlying sinusoidal pattern, because it exhibits alternating sequence
of positive and negative correlation values, and the values are not decaying to
zero. Such a pattern is signature of an autocorrelation of sinusoidal model.
However, the signal has different strength over the zones, the strongest over
Savanna and the weakest over Sahel. It is worth mentioning that this signal
only emerges after applying a 5-year moving average to filter out the noise in
the dataset. Without the filtering, the rainfall series over the zones is better
classified as random; but the filtering enhance the performance of the
autocorrelation analysis in revealing hiding periodic signal in the rainfall
series. However, it is difficult to describe the characteristic of the periodic
signal using the autocorrelation plots. This is better done with spectral analysis.

Fig. 12.13. Autocorrelation coefficients of annual rainfall over (a) Sahel,
(b) Savannah and (c) Guinea zones (5-year moving average

was applied to the rainfall data).
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Periodograms of the annual rainfall series over three zones of the study
area are presented in Figs 12.14(a-c). Three dominant peaks of rainfall cycles
are evident over the zones. The cycles have periods 14 and 33 years over
Sahel zone, 3 and 33 years over Savanna zone, and 3, 7 and 33 years over the
Guinea zone. The 3-year oscillation period may be linked to the stratospheric
Quasi-Biennial Oscillation (QBO) of equatorial zonal winds (Reed et al.,
1961), the 7-year to tropical sea-surface temperatures (including El Nino-
Southern Oscillation events, ENSO; Tosic and Unkasevic, 2005), the 14-year
to the sunspot cycle (Makarau and Jury, 1997; Currie and O’Brien, 1988), and
the 33-year to the Atlantic Multi-Decadal Oscillation (AMO) of sea surface
temperature (Zhang and Delworth, 2006; Chang-Seng, 2007).

Fig. 12.14. Periodogram of annual rainfall over (a) Sahel,
(b) Savannah and (c) Guinea zones.

12.5 Conclusions

Global climate change could have important effects on various environmental
variables including rainfall in many countries of the world. Changes in rainfall
regime directly affect agriculture, water resources management, hydrology
and ecosystems. Hence, the significance of investigating the changes in the
spatial and temporal rainfall patterns is imperative for suggesting suitable
strategies for sustainable management of water resources, agriculture,
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ecosystems and environment. In this study, parametric and nonparametric
statistical tests such as Least Square Regression test, Mann-Kendall test, rainfall
variability index, autocorrelation and spectral analyses are used for detecting
temporal and spatial trends and periodicities in 100-year period time series of
annual rainfalls in Nigeria.

The observed annual rainfall variability index showed slight differences
for the three zones, namely Guinea, Savannah and Sahel. Rainfall variability
characteristics, exhibited by the Savannah zone and the mean rainfall over
entire Nigeria, are very similar. Generally, it has been wet before the 1970s,
whereas there has been dramatic reduction in annual rainfall totals over Nigeria
in the post-1970s. The analysis of rainfall trends showed that more than 90%
of the entire landscape was generally drying, while only 10% of the total area
was getting wetter during the 20th century. The annual rainfall has been reduced
significantly over 20% of the landscape. The amount of annual rainfall has
been declined by 50 to 350 mm in 63.7% (590,000 km2) portion of the entire
country during the 20th century. The 100-year period Nigerian annual rainfall
time series has an underlying sinusoidal signal embedded in random noise.
The signatures of QBO, ENSO and sunspot cycles are evident in the annual
rainfall series.

There is a need to extend the present study to include monthly and seasonal
analyses so as to capture intra-annual trends and distribution of rainfall over
Nigeria. Analysis of each calendar month and season will allow the
identification of time characteristics peculiar to each month and season, which
may be masked in annual total rainfall analysis. Furthermore, future related
studies should investigate country-wide changes in other rainfall characteristics
such as frequency of events, onset of rains, cessation and length of growing
season.
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Appendix A1

Standard Normal Distribution (Left side)

zp 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

-0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641
-0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247
-0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859
-0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483
-0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121
-0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776
-0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2614 0.2483 0.2451
-0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148
-0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867
-0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611
-1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379
-1.1 0.1357 0.1335 0.1314 0.1292 0.1217 0.1251 0.1230 0.1210 0.1190 0.1170
-1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985
-1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823
-1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681
-1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559
-1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455
-1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367
-1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294
-1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233
-2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183
-2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143
-2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110
-2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084
-2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064
-2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048
-2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036
-2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026
-2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019
-2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014
-3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010
-3.1 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007
-3.2 0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005
-3.3 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003
-3.4 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002

Note: zp = standard normal variate.
Source: Kanji, G.K. (2001). 100 Statistical Tests. Sage Publication, New Delhi, India.
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Appendix A2

Standard Normal Distribution (Right side)

zp 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6247 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8987 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9889 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9137 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998

Note: zp = standard normal variate.
Source: Kanji, G.K. (2001). 100 Statistical Tests. Sage Publication, New Delhi, India.



Appendix A3

Critical Values of Student’s t-Distribution

Degrees of 1–
freedom 0.60 0.75 0.90 0.95 0.975 0.99 0.995 0.999

1 0.325 1.000 3.078 6.314 12.706 31.821 63.657 318.315
2 0.289 0.816 1.886 2.920 4.303 6.965 9.925 22.327
3 0.277 0.765 1.638 2.353 3.182 4.541 5.841 10.215
4 0.271 0.741 1.533 2.132 2.776 3.747 4.604 7.173
5 0.267 0.727 1.476 2.015 2.571 3.365 4.032 5.893
6 0.265 0.718 1.440 1.943 2.447 3.143 3.707 5.208
7 0.263 0.711 1.415 1.895 2.365 2.998 3.499 4.785
8 0.262 0.706 1.397 1.860 2.306 2.896 3.355 4.501
9 0.261 0.703 1.383 1.833 2.262 2.821 3.250 4.297

10 0.260 0.700 1.372 1.812 2.228 2.764 3.169 4.144
11 0.260 0.697 1.363 1.796 2.202 2.718 3.106 4.025
12 0.259 0.695 1.356 1.782 2.179 2.681 3.055 3.930
13 0.259 0.694 1.350 1.771 2.160 2.650 3.012 3.852
14 0.258 0.692 1.345 1.761 2.145 2.624 2.977 3.787
15 0.258 0.691 1.340 1.753 2.131 2.602 2.947 3.733
16 0.258 0.690 1.337 1.746 1.120 2.583 2.921 3.686
17 0.257 0.689 1.333 1.740 2.110 2.567 2.898 3.646
18 0.257 0.688 1.330 1.734 2.101 2.552 2.878 3.610
19 0.257 0.688 1.328 1.729 2.093 2.539 2.861 3.579
20 0.257 0.687 1.325 1.725 2.086 2.528 2.845 3.552
21 0.257 0.686 1.323 1.721 2.080 2.518 2.831 3.527
22 0.257 0.686 1.321 1.717 2.074 2.508 2.819 3.505
23 0.257 0.685 1.319 1.714 2.069 2.500 2.807 3.485
24 0.257 0.685 1.318 1.711 2.064 2.492 2.797 3.467
25 0.257 0.684 1.316 1.708 2.060 2.485 2.787 3.450
26 0.257 0.684 1.315 1.706 2.056 2.479 2.779 3.435
27 0.257 0.684 1.314 1.703 2.052 2.473 2.771 3.421
28 0.257 0.683 1.313 1.701 2.048 2.467 2.763 3.408
29 0.257 0.683 1.311 1.699 2.045 2.462 2.756 3.396
30 0.257 0.683 1.310 1.697 2.042 2.457 2.750 3.385
40 0.255 0.681 1.303 1.684 2.021 2.423 2.704 3.307
50 0.255 0.679 1.299 1.676 2.009 2.403 2.678 3.261
60 0.254 0.679 1.296 1.671 2.000 2.390 2.660 3.232

(Contd.)



Degrees of 1–
freedom 0.60 0.75 0.90 0.95 0.975 0.99 0.995 0.999

70 0.254 0.678 1.294 1.667 1.994 2.381 2.648 3.211
80 0.254 0.678 1.292 1.664 1.990 2.374 2.639 3.195
90 0.254 0.677 1.291 1.662 1.987 2.368 2.632 3.183

100 0.254 0.677 1.290 1.660 1.984 2.364 2.626 3.174
120 0.254 0.677 1.289 1.658 1.980 2.358 2.617 3.160
150 0.254 0.676 1.287 1.655 1.976 2.351 2.609 3.145

0.253 0.674 1.282 1.645 1.960 2.326 2.576 3.090

Note:  = significance level.
Source: Shahin, M., Van Oorschot, H.J.L. and De Lange, S.J. (1993). Statistical

Analysis in Water Resources Engineering. A.A. Balkema, Rotterdam, the
Netherlands.
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Appendix A4

Critical Test-Statistic Values of Cumulative Deviations Test

Sample Q n R n
size n 90% 95% 99% 90% 95% 99%

10 1.05 1.14 1.29 1.21 1.28 1.38
20 1.10 1.22 1.42 1.34 1.43 1.60
30 1.12 1.24 1.46 1.40 1.50 1.70
40 1.13 1.26 1.50 1.42 1.53 1.74
50 1.14 1.27 1.52 1.44 1.55 1.78

100 1.17 1.29 1.55 1.50 1.62 1.86
1.22 1.36 1.63 1.62 1.75 2.00

Note: Q = sensitivity to departures from homogeneity; R = range.
Source: Buishand, T.A. (1982). Some methods for testing the homogeneity of rainfall

records. Journal of Hydrology, 58: 11-27.



Appendix A5

Critical Test-Statistic Values of Bayesian Test

Sample U A
size n 90% 95% 99% 90% 95% 99%

10 0.336 0.414 0.575 1.90 2.31 3.14
20 0.343 0.447 0.662 1.93 2.44 3.50
30 0.344 0.444 0.691 1.92 2.42 3.70
40 0.341 0.448 0.693 1.91 2.44 3.66
50 0.342 0.452 0.718 1.92 2.48 3.78

100 0.341 0.457 0.712 1.92 2.48 3.82
0.347 0.461 0.743 1.93 2.49 3.86

Note: U and A = Bayesian Test-statistics.
Source: Buishand, T.A. (1982). Some methods for testing the homogeneity of rainfall

records. Journal of Hydrology, 58: 11-27.
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Appendix A10

Critical Test-Statistic Values for Dunnett Test

K 2 3 4 5 6 7 8 9
Level of Significance = 5%

5 2.44 2.68 2.85 2.98 3.08 3.16 3.24 3.30
6 2.34 2.56 2.71 2.83 2.92 3.00 3.07 3.12
7 2.27 2.48 2.62 2.73 2.82 2.89 2.95 3.01
8 2.22 2.42 2.55 2.66 2.74 2.81 2.87 2.92
9 2.18 2.37 2.50 2.60 2.68 2.75 2.81 2.86

10 2.15 2.34 2.47 2.56 2.64 2.70 2.76 2.81
11 2.13 2.31 2.44 2.53 2.60 2.67 2.72 2.77
12 2.11 2.29 2.41 2.50 2.58 2.64 2.69 2.74
13 2.09 2.27 2.39 2.48 2.55 2.61 2.66 2.71
14 2.08 2.25 2.37 2.46 2.53 2.59 2.64 2.69
15 2.07 2.24 2.36 2.44 2.51 2.57 2.62 2.67
16 2.06 2.23 2.34 2.43 2.50 2.56 2.61 2.65
17 2.05 2.22 2.33 2.42 2.49 2.54 2.59 2.64
18 2.04 2.21 2.32 2.41 2.48 2.53 2.58 2.62
20 2.03 2.19 2.30 2.39 2.46 2.51 2.56 2.60
24 2.01 2.17 2.28 2.36 2.43 2.48 2.53 2.57
30 1.99 2.15 2.25 2.33 2.40 2.45 2.50 2.54
40 1.97 2.13 2.23 2.31 2.37 2.42 2.47 2.51
60 1.95 2.10 2.21 2.28 2.35 2.39 2.44 2.48

120 1.93 2.08 2.18 2.26 2.32 2.37 2.41 2.45
1.92 2.06 2.16 2.23 2.29 2.34 2.38 2.46

Level of Significance = 1%

5 3.90 4.21 4.43 4.60 4.73 4.85 4.94 5.03
6 3.61 3.88 4.07 4.21 4.33 4.43 4.51 4.59
7 3.42 3.66 3.83 3.96 4.07 4.15 4.23 4.30
8 3.29 3.51 3.67 3.79 3.88 3.96 4.03 4.09
9 3.19 3.40 3.55 3.66 3.75 3.82 3.89 3.94

10 3.11 3.31 3.45 3.56 3.64 3.71 3.78 3.83
11 3.06 3.25 3.38 3.48 3.56 3.63 3.69 3.74
12 3.01 3.19 3.32 3.42 3.50 3.56 3.62 3.67

(Contd.)



K 2 3 4 5 6 7 8 9
Level of Significance = 5%

13 2.97 3.15 3.27 3.37 3.44 3.51 3.56 3.61
14 2.94 3.11 3.23 3.32 3.40 3.46 3.51 3.56
15 2.91 3.08 3.20 3.29 3.36 3.42 3.47 3.52
16 2.88 3.05 3.17 3.26 3.33 3.39 3.44 3.48
17 2.86 3.03 3.14 3.23 3.30 3.36 3.41 3.43
18 2.84 3.01 3.12 3.21 3.27 3.33 3.38 3.42
20 2.81 2.97 3.08 3.17 3.23 3.29 3.34 3.38
24 2.77 2.92 3.03 3.11 3.17 3.22 3.27 3.31
30 2.72 2.87 2.97 3.05 3.11 3.16 3.21 3.24
40 2.68 2.82 2.92 2.99 3.05 3.10 3.14 3.18
60 2.64 2.78 2.87 2.94 3.00 3.04 3.08 3.12

120 2.60 2.73 2.82 2.89 2.94 2.99 3.03 3.06
2.56 2.68 2.77 2.84 2.89 2.93 2.97 3.00

Note: K = total number of subseries;  = degrees of freedom.
Source: Kanji, G.K. (2001). 100 Statistical Tests. Sage Publication, New Delhi, India.
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Appendix A13

Critical Test-Statistic (Fmax) Values for Hartley Test (Right-Sided)

Level of Significance = 5%

K 2 3 4 5 6 7 8 9 10 11 12
n–1

2 39.0 87.5 142 202 266  333  403 475 550 626 704
3 15.4 27.8 39.2 50.7 62.0  72.9 83.5 93.9 104 114 124
4 9.60 15.5 20.6 25.2 29.5  33.6 37.5 41.1 44.6 48.0 51.4
5 7.15 10.8 13.7 16.3 18.7 20.8 22.9 24.7 26.5 28.2 29.9
6 5.82 8.38 10.4 12.1 13.7  15.0 16.3 17.5 18.6 19.7 20.7
7 4.99 6.94 8.44 9.70 10.8 11.8 12.7 13.5 14.3 15.1 15.8
8 4.43 6.00 7.18 8.12 9.03 9.78 10.5 11.1 11.7 12.2 12.7
9 4.03 5.34 6.31 7.11 7.80 8.41 8.95 9.45 9.91 10.3 10.7

10 3.72 4.85 5.67 6.34 6.92 7.42 7.87 8.28 8.66 9.01 9.34
12 3.28 4.16 4.79 5.30 5.72 6.09 6.42 6.72 7.00 7.25 7.48
15 2.86 3.54 4.01 4.37 4.68 4.95 5.19 5.40 5.59 5.77 5.93
20 2.46 2.95 3.29 3.54 3.76 3.94 4.10 4.24 4.37 4.49 4.59
30 2.07 2.40 2.61 2.78 2.91 3.02 3.12 3.21 3.29 3.36 3.39
60 1.67 1.85 1.96 2.04 2.11 2.17 2.22 2.26 2.30 2.33 2.36

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Level of Significance = 1%

2 199 448 729 1036 1362 1705 2063 2432 2813 3204 3605
3 47.5 85 120 151 184 216 249 281 310 337 361
4 23.2 37 49 59 69 79 89 97 106 113 120
5 14.9 22 28 33 38 42 46 50 54 57 60
6 11.1 15.5 19.1 22 25 27 30 32 34 36 37
7 8.89 12.1 14.5 16.5 18.4 20 22 23 24 26 27
8 7.50 9.9 11.7 13.2 14.5 15.8 16.9 17.9 18.9 19.8 21
9 6.54 8.5 9.9 11.1 12.1 13.1 13.9 14.7 15.3 16.0 16.6

10 5.85 7.4 8.6 9.6 10.4 11.1 11.8 12.4 12.9 13.4 13.9
12 4.91 6.1 6.9 7.6 8.2 8.7 9.1 9.5 9.9 10.2 10.6
15 4.07 4.9 5.5 6.0 6.4 6.7 7.1 7.3 7.5 7.8 8.0
20 3.32 3.8 4.3 4.6 4.9 5.1 5.3 5.5 5.6 5.8 5.9
30 2.63 3.0 3.3 3.4 3.6 3.7 3.8 3.9 4.0 4.1 4.2
60 1.96 2.2 2.3 2.4 2.4 2.5 2.5 2.6 2.6 2.7 2.7

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Note: K = total number of subseries; n = sample size.
Source: Kanji, G.K. (2001). 100 Statistical Tests. Sage Publication, New Delhi, India.
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Appendix B2

Web Resources on Time Series Analysis
www.itl.nist.gov/div898/handbook/eda/section3/eda35g.htm.
(NIST/SEMATECH (2007): e-Handbook of Statistical Methods)
http://mathworld.wolfram.com/TimeSeriesAnalysis.html
(Wolfram MathWorld: the web’s most expensive mathematics resource)
http://sites.google.com/site/bookenglishlang/Nonlinear-Time-Series-Analysis
[Kantz, H. and Schreiber, T. (2004). Nonlinear Time Series Analysis]
http://www.iasri.res.in/ebook/EBADAT/5-Modeling%20and%20Forecasting
%20Techniques%20in%20Agriculture/2-time_series_analysis_22-02-07_revised.pdf
(Ramasubramaniam, V. Time Series Analysis. Lecture Notes, Indian Agricultural
Statistical Research Institute, New Delhi, India)
http://www.statistik-mathematik.uni-wuerzburg.de/fileadmin/10040800/user_upload/
time_series/the_book/2011-March-01-times.pdf
[Falk, M., Marohn, F., Michel, R., Hofmann, D., Macke, M., Spachmann, C. and
Englert, A. (editors) (2011). A First Course on Time Series Analysis: Examples with
SAS. Chair of Statistics, University of Würzburg]
http://processtrends.com/toc_trend_analysis_with_excel.htm
(Trend Analysis with Excel)
http://www.wessa.net/tsa.wasp
(Free Statistics and Forecasting Software)
http://www.statisticssolutions.com/resources/directory-of-statistical-analyses
(Directory of Statistical Analyses)
http://stats.stackexchange.com/
(Q&A for Statisticians, Data Analysts, Data Miners and Data Visualization Experts)
http://www.math.yorku.ca/SCS/StatResource.html
(Statistics and Statistical Graphics Resources)
http://www.statistics.com/glossary/
(Glossary of Statistical Terms)
http://www.top4download.com/free-statistical-analysis-software/
(Download Statistical Analysis Software)
http://statpages.org/
(Web Pages that Perform Statistical Calculations)
http://statpages.org/javasta2.html#Freebies
(Free Statistical Software)
http://statpages.org/javasta3.html#Textbooks
(Statistical Books, Manuals and Journals)
http://statpages.org/javasta5.html#OtherSites
(Links to Other Statistical Web Sites)



http://www.abs.gov.au/websitedbs/d3310114.nsf/4a256353001af3ed 4b2562bb-
00121564/b81ecff00cd36415ca256ce10017de2f!OpenDocument
(Time Series Basics, Australian Bureau of Statistics)
http://www.scribd.com/doc/7194005/Handbook-for-Statistical-Analysis-of-
Environmental-Background-Data
(Handbook for Statistical Analysis of Environmental Background Data)
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Appendix B3

Software for Time Series Analysis

STATISTICA (www.statsoft.com)
DataPlot (www.itl.nist.gov/div898/software/dataplot/)
SPSS (http://spss.co.in/)
SYSTAT (http://www.systat.com/)
SAS Software (http://www.sas.com/technologies/analytics/statistics/stat/)
DataQUEST – Data Quality Evaluation Statistical Toolbox (US Environmental

Protection Agency, Report No. EPA QA/G-9D)
NCSS – Statistical and Power Analysis Software (http://www.ncss.com/)
DTREG – Software For Predictive Modeling and Forecasting (http://www.dtreg.com/)
Estima – Econometrics and Time Series Analysis Software Package (http://

www.estima.com/)
Catterpillar SSA – Time Series Analysis and Forecasting Software (http://

www.gistatgroup.com/cat/)
GMDH Shell (www.gmdhshell.com)
Tableau Software (http://www.tableausoftware.com/)
Modified WEKA – Waikato Environment for Knowledge Analysis (http://

davis.wpi.edu/~xmdv/weka/)
STEM – Short Time-series Expression Miner (http://gene.ml.cmu.edu/stem/)
STSA – Statistical Time Series Analysis Toolbox (http://www.omatrix.com/stsa.html)
HYDROSPECT – Software for Detecting Changes in Hydrological Data (http://

water.usgs.gov/osw/wcp-water/detecting-trend.pdf)
TSM – Time Series Modeling (http://www.timeseriesmodelling.com/)
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absolute water scarcity, 2
Adjacency test, 61, 66, 79, 141, 154,

156, 157, 165
Akaike Information Criterion, 91
Anderson test, 75, 159
Anderson-Darling, 32, 42-45
arithmetic mean, 16, 19, 26
autocorrelation coefficient(s), 75, 77,

89, 94, 159, 267
autocorrelation function(s), 72, 74, 75,
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159
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continuous time series, 6
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discrete time series, 6
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erodicity, 5
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field significance, 80, 100, 116, 119,

202, 207, 208, 216
Filliben’s test-statistic, 46
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Fourier series, 72, 73, 76, 101, 161
Fourier transform, 74, 102
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frequency plot, 33, 34, 38
full time series, 6
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Hartley test, 52, 58, 78, 141, 148, 150,

161, 166, 168, 174, 175, 177
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259
Hurst exponent, 212-214, 217, 218
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Hurst’s phenomenon, 9, 115
hydrologic(al) process(es), 4, 85, 86,
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