Engineers and applied geophysicists routinely encounter interpolation and es-
timation problems when analyzing data from field observations. Introduction
to Geostatistics presents practical techniques for the estimation of spatial func-
tions from sparse data. The author’s unique approach is a synthesis of classic
and geostatistical methods, with a focus on the most practical linear minimum-
variance estimation methods, and includes suggestions on how to test and extend
the applicability of such methods.

The author includes many useful methods often not covered in other geo-
statistics books, such as estimating variogram parameters, evaluating the need
for a variable mean, parameter estimation and model testing in complex cases
(e.g., anisotropy, variable mean, and multiple variables), and using information
from deterministic mathematical models.

Well illustrated with exercises and worked examples taken from hydrogeol-
ogy, Introduction to Geostatistics assumes no background in statistics and is
suitable for graduate-level courses in earth sciences, hydrology, and environ-
mental engineering and also for self-study.
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Preface

This book grew out of class notes for a course that served two purposes:

1. To familiarize graduate students in hydrogeology and environmental engi-
neering with some practical methods for solving interpolation and related
estimation problems. The course emphasized geostatistical methods.

2. To illustrate how one may use data to develop empirical models, that is, to
provide an introduction to applied statistical modeling.

Engineers and applied geophysicists routinely encounter estimation prob-
lems: From data, they must surmise the values of unknown variables. A case
in point is drawing the map of the free surface (elevation of water table) in an
aquifer from observations of the free-surface elevation at a few wells in addition
to other information. A practitioner faces such estimation problems much more
often than some other problems that are covered in the academic curriculum.
And yet most practitioners have received no formal instruction on estimation
and, in many cases, are unable to judge the applicability of a method or to inter-
pret the results produced by software they use. Their efforts to develop a grasp
of the subject are frustrated by unfamiliar jargon. Indeed, the type of training
one receives in mathematics and physics does not help one to develop the skills
needed for using data to build empirical models. I believe that it is absurd to
expect one to “pick up” estimation methods without some systematic training
and a fair degree of effort.

After teaching the course for about ten years, I realized that there might
be room for a textbook that presumes no background in statistics and that
uses common sense to motivate and justify methods used for estimation of
spatial functions. This book resulted from this realization. As it propounds
methods and tools that the practitioner is likely to use, the book discusses in
plain terms the reasoning involved in building up empirical models and fitting
parameters. Jargon and mathematical abstraction have been avoided as much

XixX



XX Preface

as possible. Nevertheless, the student is expected to have had a calculus-based
course in probability theory and to have at least a rudimentary knowledge of
linear algebra.

The book could have been much shorter if a more abstract approach had been
followed. However, to write a single equation that describes ten different appli-
cations does not mean that one has understood at once all these applications!
To proceed from the general to the specific is mathematically elegant but more
appropriate for advanced texts, because it requires some degree of familiarity
with the methods. For an introductory textbook, particularly on a subject so
foreign to the intended audience, my experience has taught me that the only
approach that works is to proceed from the simple and specific to the more
complex and general. The same concepts are discussed several times, every
time digging a bit deeper into their meaning.

Because statistical methods rely to a great extent on logical arguments it is
particularly important to study the book from the beginning. Although this book
may appear to be full of equations, it is not mathematically difficult provided
again that one starts from the beginning and becomes familiar with the notation.
The book is intended for a one-semester course for graduate-level engineers
and geophysicists and also can be used for self-study. The material is limited to
linear estimation methods: That is, we presume that the only statistics available
are mean values and covariances. I cannot overemphasize the point that the
book was never meant to be a comprehensive review of available methods or
an assessment of the state of the art.

Every effort has been made to catch mistakes and typographical errors, but
for those that are found after the publication of the book, a list of errata will be
maintained at

http://www-ce.stanford.edu/cive/faculty/Kitanidis.html

I thank all my co-workers and students at Stanford and elsewhere who with
their comments have assisted me so much in writing this book.

Peter K. Kitanidis
Palo Alto, California
September 1996



1

Introduction

1.1 Introduction

It is difficult and expensive to collect the field observations that an environ-
mental engineer or hydrogeologist needs to answer an engineering or scientific
question. Therefore, one must make the best use of available data to estimate the
needed parameters. For example, a large number of measurements are collected
in the characterization of a hazardous-waste site: water-surface level in wells,
transmissivity and storativity (from well tests), conductivity from permeameter
tests or borehole flowmeters, chemical concentrations measured from water and
soil samples, soil gas surveys, and others. However, because most subsurface
environments are complex, even a plethora of data is not sufficient to resolve
with accuracy the distribution of the properties that govern the rates of flow, the
rates of transport and transformation of chemicals, or the distribution of concen-
trations in the water and the soil. The professionals who analyze the data must
fill in the gaps using their understanding of the geologic environment and of the
flow, transport, or fate mechanisms that govern the distribution of chemicals.

However, process understanding is itself incomplete and cannot produce a
unique or precise answer. Statistical estimation methods complement process
understanding and can bring one closer to an answer that is useful in making
rational decisions. Their main contribution is that they suggest how to weigh the
data to compute best estimates and error bounds on these estimates. Statistics
has been aptly described as a guide to the unknown; it is an approach for utilizing
observations to make inferences about an unmeasured quantity. Rather than the
application of cookbook procedures, statistics is a rational methodology to solve
practical problems. The purpose of this book is to provide some insights into
this methodology while describing tools useful in solving estimation problems
encountered in practice. Two examples of such problems are: point estimation
and averaging.
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In point estimation one uses measurements of a variable at certain points to
estimate the value of the same variable at another point. For example, consider
measurements of concentration from the chemical analysis of soil samples from
borings. The question is how to estimate the concentration at the many other
locations where soil samples are unavailable. Another example is drawing lines
of constant transmissivity (in other words, contour lines of transmissivity) from
the results of pumping tests at a number of nonuniformly spaced wells. Drawing
a contour map is equivalent to interpolating the values of the transmissivity on
a fine mesh. Examples can be found in references [54, 55, 105, 106, 119, 116,
141, and 15].

In averaging one uses point estimates of concentration to determine the aver-
age concentration over a volume of soil; this estimate is needed for evaluation
of the total mass of contaminants. Another example, drawn from surface hy-
drology, is the estimation of mean areal precipitation over a watershed from
measurements of rainfall at a number of rain gages.

Due to complexity in the spatial variability of the variables involved, one can-
not obtain exact or error-free estimates of the unknowns. Statistical methods
weigh the evidence to compute best estimates as well as error bars that describe
the potential magnitude of the estimation error. Error bars, or information about
how much faith to put in the estimates, are essential in making engineering de-
cisions. Statistical methods are applied with increased frequency to evaluate
compliance with regulatory requirements because the best one can do is to pro-
vide a reasonable degree of assurance that certain criteria have been met. Also,
using statistics one can anticipate the impact of additional measurements on
error reduction before the measurements are taken. Thus, statistics is useful in
deciding whether the present data base is adequate for detecting all important
sources of contamination and, if not, where to collect the additional measure-
ments so that the objectives of monitoring (such as demonstrating regulatory
compliance) are met in the most cost-effective way.

Once one masters the application of the statistical methodology to relatively
simple problems, such as those above, one can tackle more complicated prob-
lems such as estimating one variable from measurements of another. It is often
convenient to use a variable that can be easily observed or computed to estimate
another variable that is difficult or expensive to measure. For examples, (@) land
topography may be used to estimate the phreatic surface elevation of a surficial
aquifer; (b) overburden and aquifer thickness may correlate and can be used to
estimate the transmissivity of a confined permeable layer; and (¢) hydraulic head
measurements may provide information about the transmissivity and vice versa.

Such problems can be rather challenging, particularly if one integrates data
analysis with mathematical models that simulate geologic, flow, or transport
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processes. This book deals with relatively simple applications, but the same
general methodology applies to complicated problems as well. In fact, the power
of the methods to be described becomes most useful when utilizing measure-
ments of different types, combining these with deterministic flow and transport
models, and incorporating geological information to achieve the best charac-
terization possible. However, one is advised not to attempt to solve complex
problems before developing a sound understanding of statistical techniques,
which is obtained only through practice starting with simpler problems. Statis-
tical methods are sometimes misapplied because professionals who use them
have received no training and apply them without awareness of the implicit
assumptions or a firm grasp of the meaning of the results. (It has been said that
they are often used the way a drunk uses a lamppost: for support rather than
illumination.) Blindly following methods one does not understand provides
countless opportunities for misapplication.

1.2 A simple example

This first example will be used to provide context and motivate the application
of some of the techniques that will follow. (To understand all the details, some
readers will find it useful to go through the review of basic probability theory
presented in Appendix A.)

Well tests were conducted at eight wells screened in a confined aquifer pro-
viding values of the transmissivity. (The location of the wells on plan view is
shown as o in Figure 1.1. The values are given in Table 1.1.) The question is:

Given the information currently available, if a well were drilled at another
location (indicated by an x in Figure 1.1) and a similar pumping test were
conducted, what value of the transmissivity would be observed?

Table 1.1. Transmissivity data for
example in this section

T (m*/day) x (km) y (km)

29 0.876 0.138
2.5 0.188 0.214
4.7 2.716 2.119
42 2.717 2.685
42 3.739 0.031
2.1 1.534 1.534
24 2.078 0.267

5.8 3.324 1.670
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Figure 1.1 Location of transmissivity measurements (o) and unknown ().

Assume also that the driller’s logs indicate that all wells were drilled in the
same formation and geologic environment. There are good reasons to believe
that the formation is a confined aquifer bounded by nearly impermeable layers
above and below. Beyond that, however, and despite considerable geological
iformation available at the site, the variability among transmissivity measure-
ments cannot be explained in terms of other measurable quantities in a manner
useful in extrapolation to unmeasured locations. If we actually admit that we
cannot explain this variability, how can we extrapolate from the sample of the
eight observations to the unknown value? The point is that, because we cannot
come up with a deterministic mechanism that explains variability, we postulate
a probabilistic model, i.e., a set of mathematical equations that summarize what
we know and are useful in making predictions.

The simplest approach is to compute the frequency distribution of the data and
then to use it to describe the odds that the transmissivity at the location of interest
will have a certain value. The premise is that “each transmissivity observation is
randomly and independently sampled from the same probability distribution.”
It is like saying that every time we measure the transmissivity we perform
an experiment whose outcome is a random variable with given probability
distribution. Of course, this experiment is only a convenient concept; this simple
model is not meant to represent the physical reality of what transmissivity is or
how it is measured, but rather, it constitutes a practical and reasonable way to
use what we know in order to make predictions.
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We are still faced with the problem of estimating the probability distribution.
We may approximate it with the experimental probability distribution (i.e., the
distribution of the data); that is, we assume that the transmissivity takes any of
the eight observed values with equal probability 1/8. Now we are able to make
predictions. According to the model that we constructed, we predict that the
value of transmissivity at point x is 7}, 15, . . . , or Tg with equal probability 1/8.

Such a model may appear crude, but it is a rational way to use experience as a
guide to the unknown. In fact, this simple model is adequate for some practical
applications. Also, the reader should not be left with the impression that the
approach boils down to subjective judgement. The questions of the validity
or suitability of a model and of the sensitivity of the prediction to modeling
assumptions can be addressed, but this is left for later in this book.

In many applications, what is needed is to determine a good estimate of
the unknown, Ty, and a measure of the error. An estimator is a procedure to
compute Ty from the data. Even though we cannot foretell the actual error in the
estimate, we can describe its probability distribution. It is common to measure
the anticipated error by the quantity known as the mean square ervor, ie.,
the expected value (average weighted by the probability) of the square difference
of the estimate from the true value:

1 . 1 . 1 .
o =5 =T+ oo =T+ +gho =T (L)

After some algebraic manipulation to rearrange terms, the expression for the
mean square error becomes

. T+T+--+Tz\* 1
o (1 B

_<n+n+m+n)2
. .

(1.2)

Equation (1.2) demonstrates that the value of T, that makes the mean square
error as small as possible is the arithmetic mean of the observations,

A n+LHh+---4+T;
T0= 8 ’

which is the estimate with mean square error

(1.3)

2
oy =

n+n+m+ny (1.4)

(ﬁ+ﬁ+w+ﬁ%( 2

0| —

An estimator with minimum mean square error will be referred to as a best
or minimum-variance estimator.
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Using Equation (1.3), the expected value of the estimation error is
1/Tv+T+---+T 1/ +T+-- -+ T
_(1+ 2+---+ 8_Tl)+ (1+ 2+ 4+ 8—T2)

8 8 8 8
1 (Ty+T+ - +T
+~-+§( ! 28 8—Tg)=o. (1.5)

When the expected value of the estimation error is zero, the estimator is
called unbiased.
Notice that the estimate was obtained from a formula that looks like

To = MTi+ T+ - + A, Ty (1.6)

which, using the summation sign notation, can be written as

n
To=>_ MT, (1.7)
i=1
where n is the number of measurements and A;, A», ..., A, are coefficients

or weights. In this example, the weight A; can be conveniently interpreted as
the probability that the unknown equals the value of the i-th measurement,
assuming that the only possible values are the observed ones. This expression,
Equation (1.7), is known as a linear estimator.

In practice, the most useful class of estimators comprises best (minimum-
variance) linear unbiased estimators (affectionately known as BLUEs), which
is the subject of this book.

As already mentioned, for any estimator, the error is a random variable, i.e.,
it is described through a probability distribution. In the example, the error is
(To — T), for i from 1 to 8, with equal probability 1/8. If these errors are
symmetrically distributed about a central value, as are those of Figure 1.2, and

# of Samples

3 -2 - 1 2

Figure 1.2 Distribution of nearly normal data.

0 3 4

X
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follow a bell-shaped distribution that resembles a normal (Gaussian) distribu-
tion, then the mean of the distribution is the most representative value and the
mean square value is the definite measure of the spread. However, in the case of
transmissivities or hydraulic conductivities and concentrations, the histogram
of these errors usually indicates that the distribution is not symmetric. In this
case, there is no unequivocal representative value. In addition to the mean,
there are other possibilities, such as the value that minimizes the mean absolute
error or the median (the value exceeded by half the values). For this reason,
the minimum-variance estimators are most suitable when we have reason to
believe that the frequency distribution of the estimation errors may resemble the
normal distribution. In the case of transmissivities or concentrations, it is com-
mon to use linear estimators with the logarithm of transmissivity, Y = In(T'),
instead of with T'. That is, instead of analyzing T we analyze Y. Examples will
be seen in other chapters.

The weights in the linear estimator used in this example are equal; that is,
the probability that the unknown is equal to a measured value is presumed to
be the same no matter how far or in what direction the unknown is located from
the location of the observation. Also, the locations of the other measurements
have no effect in the selection of the weight. In many situations, however, the
transmissivity varies gradually in space in such a way that it is more likely
that the unknown will resemble an observation near than an observation far
from its location. Therefore, the weights should be nonuniform (larger for
nearby observations). This book describes methods that analyze data for clues
on how to compute these weights in a way that reflects the spatial variability
of the quantity of interest as well as the location of measurements and the
unknown.

1.3 Statistics

First, let us clear up a common misunderstanding. The word statistics (plural)
means averages of numerical data, such as the batting average of a player
or the median of a batch of hydraulic conductivity measurements. However,
data can be misleading, when improperly analyzed and presented. The word
statistics (singular) refers to a methodology for the organization, analysis, and
presentation of data. In particular,

statistical modeling is an approach for fitting mathematical equations to data
in order to predict the values of unknown quantities from measurements.

Hydrogeologists and environmental and petroleum engineers, like scientists
and engineers everywhere, use such methods on an almost daily basis so that
some knowledge of statistics is essential today. Those who casually dismiss
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statistical methods are the ones most likely to misuse them or to be misled by
them.

Basically, we are concerned with estimation problems in which the value of
an unknown needs to be inferred from a set of data. It is convenient to subdivide
the methodology into the following steps:

¢ Postulate a model that describes the variability of the data and can be used to
extrapolate from the data to the unknown.

¢ If the model involves undetermined parameters, these parameters are esti-
mated or fitted.

* The model is put to the test or validated.

¢ If the model is deemed acceptable, it is used to predict the unknown.

The postulated model is probabilistic. Parameter fitting, model validation,
and prediction involve computations of probability distributions or moments
(such as the mean, the variance, etc.). These models must be reasonably simple
or else the computations may be just too complicated for the approach to be
of practical use. The computations in the methods presented in this book are
reasonably simple and involve only mean values, variances, and correlation co-
efficients. However, there are even more important reasons for selecting simple
probabilistic models, as will be discussed later.

Conceptually, the part that novices in statistics have the most trouble under-
standing is the selection of the empirical model, i.e., the model that is introduced
to fit the data. So let us say a few things on this subject. How do we know that
we have the right model? The truth is that one cannot (and may not even need
to) prove that the postulated model is the right one, no matter how many the
observations. There is nothing that anyone can do about this basic fact, which
is not a limitation of statistics but to various degrees affects all sciences that
rely on empirical data. In the example of Section 1.2, we cannot prove the
assumption that the data were somehow generated randomly from the same
distribution and even more we cannot prove that the unknown was generated
from the same distribution. However,

1. unless there is evidence to the contrary, it is not an unreasonable assumption,
and
2. one can check whether the data discredit the assumption.

It is best to approach empirical models from a utilitarian perspective and see
them as a practical means to:

1. summarize past experience and
2. find patterns that may help us to extrapolate.
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Table 1.2. Porosity versus location (depth)

n 039 041 039 037 036 029 038 0.34 031 028 0.32 0.30
x(fty —-24 -26 -28 30 -32 -—34 -36 -38 —40 —42 -44 -—46

The model of Section 1.2 is another way of saying that frequency analysis
is a practical way to describe the variability in the data and to make use of
past observations in predicting future ones. It is a reasonable approach, which
should lead to rational decisions.

A model should be judged on the basis of information that is available at the
time when the model is constructed. Thus, a model that looks right with 10 mea-
surements may be rejected in favor of another model when 100 measurements
have been collected. It will be seen that, in all cases, the simplest empirical
model consistent with the data is likely to be best for estimation purposes (a
principle known as Occam’s razor). Furthermore, it will be seen that one of the
most important practical contributions of statistical estimation methods is to
highlight the fine distinction between fitting (a model to the data) and obtaining
a model that we may trust to some degree for making predictions.

Exercise 1.1 What are the basic characteristics of an estimation problem?
Describe an estimation problem with which you are familiar.

Exercise 1.2 Describe a common-sense approach to utilize observations
(known facts) to make extrapolations or predictions (about unknown facts).
Describe two examples, one from your everyday life and experience and one
from scientific research (e.g., put yourselves in Newton’s shoes and try to imag-
ine how he came up with the basic law of motion F = ma). Outline the steps
you follow in a systematic way. (You may find it useful to review what is known
as the scientific method and discuss its generality and relevance to everyday

life.)

Exercise 1.3 Consider observations of porosity in a borehole (first column is
measured porosity, second column is depth) as shown in Table 1.2. Find the
best estimate and standard error' at locations x = —37ft using the simple
model of Section 1.2. What is the significance of the standard error? Discuss
the pros and cons of this simple model and whether it seems that this model is
a reasonable description for this data set.

! The standard error of estimation is the square root of the mean square error of estimation.
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1.4 Geostatistics

In applied statistical modeling (including regression and time-series) least
squares or linear estimation is the most widely used approach. Matheron [94
and 95] and his co-workers advanced an adaptation of such methods that is well
suited to the solution of estimation problems involving quantities that vary in
space. Examples of such quantities are conductivity, hydraulic head, and solute
concentration. This approach is known as the theory of regionalized variables
or simply geostatistics. Popularized in mining engineering in the 1970s, it is
now used in all fields of earth science and engineering, particularly in the hydro-
logic and environmental fields. This book is an introductory text to geostatistical
linear estimation methods.

The geostatistical school has made important contributions to the linear esti-
mation of spatial variables, including the popularizing of the variogram and the
generalized covariance function. Geostatistics is well accepted among practi-
tioners because it is a down-to-earth approach to solving problems encountered
in practice using statistical concepts that were previously considered recondite.
The approach is described in books such as references [24, 36, 37,70, 73, 121,
and 76] with applications mainly in mining engineering, petroleum engineering,
and geology. Articles on geostatistics in hydrology and hydrogeology include
[7 and 102] and chapters can be found in [13 and 41]. A book on spatial statis-
tics is [30]. Software can be found in references [50, 145, and 43] and trends in
research can be discerned in reference [44].

The approach presented in this book departs from that of the books cited
earlier (which, for the sake of convenience will be called “mining geostatistics™)
in consequential ways. For the readers who are already familiar with mining
geostatistics, here is a list of the most important differences:

1. The estimation of the variogram in mining geostatistics revolves around
the experimental variogram; sometimes, the variogram is selected solely on
the basis that it fits the experimental variogram. This approach is simple to
apply but unsatisfactory in most other aspects. In contrast, in the approach
followed in this book, the variogram is selected so that it fits the data, i.e.,
the approach relies more on the minimization of a criterion of agreement
between the data and the predictions than on the experimental variogram.

2. Unlike mining geostatistics, which again relies on the experimental vari-
ogram to select the geostatistical model, the approach preferred in this work
is to apply an iterative three-step approach involving: 1. exploratory analy-
sis that suggests a model; 2. parameter estimation; and 3. model validation,
which may show the way to a better model. Model validation is implemented
differently and has a much more important role than in mining geostatistics.
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3. Ordinary kriging, which describes spatial variability only through a vari-
ogram and is the most popular method in mining geostatistics, can lead
to large mean square errors of estimation. In many environmental applica-
tions, one may be able to develop better predictive models by judiciously
describing some of the “more structured” or “large-scale” variability through
drift functions. The error bars can be further reduced by making use of
additional information, such as from the modeling of the processes. This
additional information can be introduced in a number of ways, some of
which will be seen in this book.

1.5 Key points of Chapter 1

This book is a primer of geostatistical estimation methods with applications in
contaminant hydrogeology. Statistics is a methodology for utilizing data and
other information to make inferences about unmeasured quantities. Statistical
methods complement deterministic process understanding to provide estimates
and error bars that are useful in making engineering decisions. The methods in
this book are an adaptation and extension of linear geostatistics.



2

Exploratory data analysis

The analysis of data typically starts by plotting the data and calculating statis-
tics that describe important characteristics of the sample. We perform such an
exploratory analysis to:

1. familiarize ourselves with the data and
2. detect patterns of regularity.

Graphical methods are useful to portray the distribution of the observations
and their spatial structure. Many graphical methods are available and even
more can be found and tailored to a specific application. The modest objective
of this chapter is to review common tools of frequency analysis as well as the
experimental variogram. Exploratory analysis is really a precursor to statistical
analysis.

2.1 Exploratory analysis scope

Before computers, hydrogeologists used to spend hours transcribing and plot-
ting their data. Although time consuming, labor intensive, and subject to human
errors, one cannot deny that this process enhanced familiarity with data to the
extent that the analyst could often discern patterns or spot “peculiar’” measure-
ments. This intimacy with one’s data might appear lost now, a casualty of the
electronic transcription of data and the extensive use of statistical computer
packages that perform the computations.

However, data analysis and interpretation cannot be completely automated,
particularly when making crucial modeling choices. The analyst must use judg-
ment and make decisions that require familiarity with the data, the site, and the
questions that need to be answered. It takes effort to become familiar with
data sets that are often voluminous and describe complex sites or processes.
Instead of striving for blind automation, one should take advantage of available

12
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computers and computer graphics to organize and display data in ways unimag-
inable using manual methods (for review of basic ideas see, for example, [20]).

Measurements may vary over a wide range. In most cases it is impossible,
and often useless, for any person to remember every single measurement in-
dividually. One may start by summarizing in a convenient way the behavior
of measurements that act similarly and by pointing out the measurements that
behave differently from the bulk of the data. What is the best way to organize
and display the data? What are the measures that summarize the behavior of a
bunch of data? And could it be that a certain data transformation can simplify
the task of summarizing the average behavior of a data batch? These are some
of the issues to be discussed. But first, here are three basic principles:

¢ It does little good to just look at tabulated data. However, the human eye can
recognize patterns from graphical displays of the data.

* Itisimportant to look at the data in many ways and to keep in mind that some
techniques implicitly favor a certain model. During exploratory data analysis
one should make as few assumptions as possible.

¢ Conclusions made during exploratory analysis are tentative. A model cannot
be accepted on the basis of exploratory analysis only but should be corrobo-
rated or tested.

To illustrate the objectives and usage of exploratory data analysis, consider
the following data sets:

1. Measurements of transmissivity of a thin sand-and-gravel aquifer at 8 loca-
tions (see Table 1.1 and Figure 1.1).

2. Measurements of potentiometric head at 29 locations in a regional confined
sandstone aquifer (see Table 2.1 and Figure 2.1).
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Figure 2.1 Plan view of aquifer showing location of head data.
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3. Measurements at 56 locations of concentration of trichloroethylene (TCE)
in groundwater on a transect in a fine-sand surficial aquifer (see Table 2.2
and Figure 2.2).

Table 2.1. Head observations in a regional confined aquifer

Head (ft) x y Head (ft) x y
1061 6.86 6.41 662 13.23 10.18
1194 4.32 5.02 685 13.56 9.74
1117 5.98 6.01 1023 8.06 5.76
880 11.61 4.99 998 10.95 3.72
1202 5.52 3.79 584 1471 1141
757 10.87 8.27 611 16.27 7.27
1038 8.61 392 847 12.33 6.87
817 12.64 6.77 745 13.01 7.05
630 14.70 10.43 725 13.56  7.42
617 1391 1091 688 13.76 8.35
986 9.47 5.62 676 12.54 9.04
625 14.36 11.03 768 8.97 8.6
840 899 731 782 9.22 8.55
847 11.93 6.78 1022 9.64 3.38
645 11.75 10.8
-40 -
o o o o o )
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) o o o o ) )
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) o o o o ) )
E .70 o o o o o o o
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Figure 2.2 Vertical cross section with location of TCE measurements.
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Table 2.2. TCE concentrations in groundwater in a vertical cross

section
No TCE (ppb) x(ft) y(ft) No TCE (ppb) x (ft) y (ft)
1 1.00e+01 0 —45 38 1.16e+03 200 -50
2 1.00e+01 0 -50 39  4.27¢+03 200 -55
3 6.40e+01 0 =55 40  9.87¢+03 200 —60
4  542e+02 0 —60 41  7.32e+03 200 —65
5 3.46e+02 0 —65 42 4.03¢e+03 200 =70
6 191e+02 0 -70 43 2.73e+02 200 =75
7  8.50e+01 0 =75 44 1.90e+02 200 —80
8  3.00e+01 0 -80 45  5.22e+02 200 —85
9  7.40e+00 0 -85 46  6.70e+01 270 —45
10 1.46e+01 0 -90 47  5.50e+01 270 -50
11 1.20e+01 70 —45 48  1.36e+02 270 -55
12 2.30e+01 70 -50 49  7.08e+02 270 —60
13 1.87¢+02 70 =55 50  8.82¢+02 270 —65
14 1.64e+02 70 —60 51 9.39¢+02 270 =70
15 7.01e+02 70 —65 52 3.08e+02 270 =75
16  2.13e4+04 70 =70 53 1.40e+401 370 -55
17  1.86e+04 70 -75 54  7.00e+00 370 —65
18 6.22¢+02 70 —80 55  2.50e+00 370 =70
19  1.39¢+03 70 —85 56  2.50e+00 370 =75

20 4.00e401 110 —45
21 4.20e401 110 =50
22 6.55e4+02 110 =55
23 2.16e+04 110 —-60
24 6.77e+04 110 —65
25 3.89e4+04 110 =70
26 5.84e+02 110 =75
27 2.54e403 110 =80
28 6.00e4+00 150 —45
29 6.63e+02 150 =50
30 3.75e+03 150 —55
31  8.76e+03 150 —60
32 1.40e404 150  —65
33 1.61e404 150 =70
34 1.28e4+04 150 =75
35 7.63e+02 150  —80
36 2.89e+02 150 -85
37 1.14e401 200 45

2.2 Experimental distribution

We want to describe the frequency distribution of a set of n measurements (such
as those on Tables 1.1, 2.1, and 2.2) without regard to their location. We call this
distribution “experimental” or “empirical” because it depends only on the data.
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We can describe the distribution of a set of data through the histogram, the
ogive, and the box plot. We will also review numbers that represent impor-
tant characteristics of a data set, such as central value, spread, and degree of
asymmetry.

2.2.1 Histogram

The histogram is acommon way to represent the experimental distribution of the
data, Consider a batch with 7 measurements that are sorted in increasing order,
7] < 7 < --- < z,,. The interval between the largest and the smallest value is
divided into m bins (intervals) by the points ag, a1, . . ., an—1, a,,- The intervals
are usually of equal length and selected so that the histogram is relatively free
from abrupt ups and downs. A measurement z belongs to the k-th bin if

a1 <z < ag. .1

Define n; as the number of measurements that belong to the £-th interval. The
ratio n; /n represents the frequency of occurrence in the k-th interval. Plotting
the number 7, or the frequency of occurrences 7,/ n as a bar diagram results in
the histogram. See, for example, Figures 2.3, 2.4, and 2.5.

The histogram is probably the most widely recognized way to portray a
data distribution. However, it has a potentially serious drawback: The visual
impression conveyed may depend critically on the choice of the intervals. From
Figure 2.3, we can see that the histogram is useless for small data sets, such
as that of Table 1.1. For this reason, in many applications the box plot (which
we will see later) is a better way to represent in a concise yet informative
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Figure 2.3 Histogram of transmissivity data.
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Figure 2.5 Histogram of TCE concentration data.
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way the experimental distribution of the data, particularly if the number of

measurements is small (e.g., less than 50).

2.2.2 Ogive

The ogive is the experimental cumulative distribution. For the sorted data, z; <

Zy < --- < Zp, W€ cOmpute

pi=(0—05)/n, fori=1,...,n,

(2.2)



18 Exploratory data analysis

and then plot p; (on the vertical axis) versus z; (on the horizontal axis). Typically,
we obtain an “S”-type curve. (See Figures 2.6, 2.7, and 2.8.) Note that p; is
a number that increases from 0O to 1 and represents the ratio of data that are
smaller than or equal to the z; value.

Note that the 0.5 in Equation 2.2 is sometimes replaced by 1 or 0. The
technical question of which choice is best is of little consequence in our work.
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Figure 2.6 Ogive of transmissivity data.
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Figure 2.8 Ogive of concentration data.

A related concept is that of the quantile (a term that has a similar meaning
to that of percentile). The p quantile (where p is a number between 0 and 1)
is defined as the number Q(p) that exceeds 100p percent of the data. For the
discrete values p; = (i — 0.5)/n, where i = 1, ..., n, the p; quantile of the
data is the value z;. For other values of p, we interpolate linearly. For example,
for p between p; and p;+i,

OP)=Q0(pi +v(pis1—p)) =0 —=v)z; + v zi4, (2.3)

where v is a number between O and 1, v = (p — p;)/(pi+1 — pi).

2.2.3 Summary statistics
Usually, we are interested in a few numbers that summarize conveniently the
most important features of the experimental distribution of the data. These are
known as summary statistics.

2.2.3.1 Representative value

First, we are interested in a number that can be treated as a “typical” or “central”
value, i.e., a representative of the values in the batch. The most common such
statistics are defined below.

The arithmetic mean or average of the batch is

. zZi+z+-+ 2z, 1<
= = - ;. 2.4
z n;z, 2.4)

n
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The median is defined so that it is larger than half the numbers in the batch
and smaller than the other half. That is,

_ {z,, where! = (n + 1)/2, ifn = odd 2.5)

(zi + z141)/2, wherel =n/2, ifn =even’

Note that the median is simply the 0.50 quantile.

Another number that can serve as typical value is the mode, defined as the
value where the histogram seems to peak. Many observations cluster near the
mode. If well defined and unique, the mode can be used as a typical value.
However, a histogram may exhibit many modes (multimodal histogram) or
may be too flat for a clear mode to appear.

Each of the three measures may give significantly different results if the
distribution is highly asymmetric, as illustrated in Figure 2.5. However, if the
distribution is unimodal and nearly symmetric, the three of them give practically
the same result.

2.2.3.2 Spread

After the selecion of a representative value, one is interested in obtaining a
measure of the spread of observations in the data set. A popular choice is the
mean square difference from the arithmetic mean:

o2 G-t 4 @D 1y

_! Z(zi — ) (2.6)
n n =1

s2 is known as the batch variance: its square root, s, is the standard deviation.
Another measure of spread is the interquartile range, I, (also known as the
Q-spread). The interquartile range is simply

1, = 0(0.75) — 0(0.25), Q.7

that is, the difference between the 0.75 and 0.25 quantiles. Note that Q(0.75)
is known as the upper quartile and Q(0.25) as the lower quartile. An advan-
tage of the interquartile range is that it is less sensitive to a few extreme values
than the standard deviation. For this reason, the Q-spread is preferred in ex-
ploratory analysis whereas the standard deviation is used when the data follow
an approximately normal distribution.

2.2.3.3 Symmetry

Of all the other characteristics of the distribution, symmetry or its absence is
the most striking and important. For example, when the spread is characterized
with a single number, it is implicitly assumed that the data are symmetrically
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distributed about the central value. Thus, it is useful to establish the degree of
symmetry.
A useful measure in evaluating symmetry is the skewness coefficient

ky = (% ;(zi - zﬁ) / 3, (2.8)

which is a dimensionless number. A symmetric distribution has k; zero; if
the data contain many values slightly smaller than the mean and a few values
much larger than the mean (like the TCE concentration data), the coefficient of
skewness is positive; if there are many values slightly larger and a few values
much smaller than the mean, the coefficient of skewness is negative.

The statistics that summarize the important characteristics of the data are
presented in Tables 2.3, 2.4, and 2.5.

Table 2.3. Summary statistics
for transmissivity data of

Table 1.1

Number of observations 8
Minimum value 2.1
First quartile 2.42
Median 3.57
Third quartile 4.24
Interquartile range 1.81
Maximum value 5.88
Mean 3.62
Standard deviation 1.33
Skewness coefficient 0.32

Table 2.4. Summary statistics

for head data of Table 2.1
Number of observations 29
Minimum value 584
First quartile 662
Median 782
Third quartile 998
Interquartile range 336
Maximum value 1,202
Mean 830
Standard deviation 186

Skewness coefficient 0.49
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Table 2.5. Summary statistics
for concentration data of

Table 2.2
Number of observations 56
Minimum value 2.5
First quartile 40
Median 435
Third quartile 2,540
Interquartile range 2,500
Maximum value 67,700
Mean 4,719
Standard deviation 11,300
Skewness coefficient 3.72
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Figure 2.9 Box plot of transmissivity of data.

2.2.4 The box plot

The box plot (see Figures 2.9, 2.10, and 2.11) is a visually effective way to
summarize graphically the distribution of the data. The upper and lower quartiles
of the data define the top and bottom of a rectangle (the “box”), and the median
is portrayed by a horizontal line segment inside the box. From the upper and
lower sides of the rectangle, dashed lines extend to the so-called adjacent values
or fences. The upper adjacent value is the largest observed value provided that
the length of the dashed line is smaller than 1.5 times the interquartile range;
otherwise, we just draw the dashed lines 1.5 times the interquartile range and
we plot all observations that exceed the upper adjacent point as little circles or
asterisks. Exactly the same procedure is followed for the lower adjacent value.
Observations outside of the range between the adjacent values are known as
outside values.
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Figure 2.11 Box plot of TCE concentration data.

You must realize that there is nothing magical about the number 1.5 x I,
used in the criterion for outside values. It is a useful convention (one of many
in statistics) and is to some extent arbitrary. The essence of the criterion is that
for normally distributed data, the probability of a measurement being outside
of the thus defined fences is very small.

The box plot is a graph of the key characteristics of the data distribution. The
line inside the box (location of the median) represents the center of the batch.
The size of the box represents the spread about the central value. One may judge
whether the data are distributed symmetrically by checking whether the median
is centrally located within the box and the dashed lines are of approximately
the same length. The lengths of the dashed lines show how stretched the tails
of the histogram are. Finally, the circles or asterisks indicate the presence of
outside values.
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2.3 Transformations and outliers
2.3.1 Normality

Unimodal and nearly symmetric distributions have many practical advantages.
A single number can be used to represent the central value in the batch, because
the mode, median, and arithmetic mean are practically the same. Furthermore,
for a histogram resembling the one in Figure 2.12, which approximates a bell-
shaped normal distribution, the standard deviation is about three-fourths the
interquartile range, so that it does not matter whether one uses the standard
deviation or the interquartile range to measure the spread. For such a batch, the
mean and the standard deviation provide enough information to reconstruct the
histogram with acceptable accuracy.

Figure 2.12 shows the histogram of some hypothetical data with mean m and
variance s> and the normal distribution with the same mean and variance. The
normal probability density function is given by the equation

N2
exp(-— u) 2.9)

f@)=

7'[32 2S2

Thus, bell-shaped (normal) distributions are easy to describe using two num-
bers (m and s?) and are straightforward to analyze.

One particular type of “data” is residuals, i.e., differences between observed
values and model predictions. We will see in other chapters how these residuals
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Figure 2.12 Histogram and theoretical distribution of normal data.
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are computed and why they are important. For now, we mention that the com-
monly used linear estimation methods make most sense when the distribution
of the residuals is approximately normal. For a normal distribution, the mean
is the indisputable central value and the standard deviation is the indisputable
measure of spread. That is why setting the mean of the residuals to zero and
minimizing the standard deviation of the errors (which is what linear estimation
methods do) is clearly a good way to make predictions.

As illustrated by the concentration observations of Table 2.2, data distri-
butions may not be unimodal and symmetric. Given the advantages of nearly
normal batches, it is reasonable to search for a simple transformation that makes
it possible to describe a distribution with a mean and a variance. For example,
for concentration and transmissivity data that are positive, one may use the
so-called power transformation:

-1/ k>0

o) (2.10)

Note that the commonly used logarithmic transformation is included as a special
case of the power transformation, obtained at the limit for x = 0. An application
of the logarithm transformation is found in reference [134].

For example, Figure 2.13 shows the box plot of the logarithm of the concen-
tration data. The distribution of the transformed data is much easier to describe
than the distribution of the original data. Thus, one can summarize the important
characteristics of a data set through the parameter « and the mean and variance
of the transformed data.

An important point remains to be made. The basic assumption in the type
of methods that we will see later is that the estimation errors are approxi-
mately normally distributed. Thus, the purpose of the transformation is to adjust
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Figure 2.13 Box plot of the logarithm of the concentration data.
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the distribution of some estimation errors (residuals) and not necessarily the
distribution of the data. Later, we will test the box plot residuals to ascertain
whether they are nearly normally distributed.

2.3.2 Outliers

Let us now discuss the often misunderstood issue of outside values; commonly
referred to as outliers, they are surrounded by an aura of mystique. The box
plot of the concentration measurements (Figure 2.11) calls attention to values
that seem to stand out from the bulk of data. All this means, however, is that
it would be unwise at this preliminary stage to lump those “unusual” values
with the other data and then to compute their mean and standard deviation.
The mean and the variance would be excessively affected by the relatively few
outside values and would not be representative of either the bulk of the data or
the outside values. However, it would be equally unwise to brand uncritically
these unusual measurements as “outliers,” ““stragglers,” or “stray”” and to discard
them.

If the box plot indicates that the data are distributed in a highly asymmetric
way or that the tails are stretched out, it is possible that after a transformation all
or some of the values that were originally outside will get inside. In this case,
the practical issue is to find a good way to describe the asymmetric distribution
of data, such as by transforming to a more symmetric distribution. In many
cases, including the concentration data of Table 2.2, the so-called outliers are
the most interesting measurements in the data set.

Before deciding what to do with an outside value, one must return to the
source of the data and use one’s understanding of the physical processes in-
volved. A reasonable effort should be made to verify that the measurement
was taken, interpreted, and transcribed correctly. Errors in interpretation and
copying of data are unfortunately all too common in practice. If it is concluded
that the measurement is not to be trusted, it should be discarded. In some
cases, one may decide to divide the data into two or more data sets, such as
when stray transmissivity measurements correspond to a geologic environment
different from that of the rest of the data. Common sense is often the best
guide.

2.4 Normality tests and independence

A question that is often asked is: Is the (univariate) distribution of the data
normal (Gaussian)?
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One approach involves applying statistical hypothesis tests (some of which
will be discussed elsewhere). There are general tests that can be applied to
any distribution, such as the chi-square ang the Kolmogorov-Smirnov tests, and
there are tests that have been developed specifically for the normal distribution,
such as variations of the Shapiro-Wilks test {126). Each of these tests provides
a procedure to determine whether the data depart sufficiently from the null
hypothesis that the observations were sampled independently from a normal
distribution.

The key limitation of these tests in exploratory analysis is that they assume
that the data were independently generated, i.e., that there is negligible correla-
tion among observations. However, as will be seen later, correlation is usually
important, such as when two measurements tend to differ by less as the distance
between their locations decreases. In this case, a statistical test that assumes
independence is not appropriate.

Actually, these tests should be applied to orthonormal residuals, which are
differences between observations and predictions. These residuals are supposed
to be uncorrelated and to follow a normal distribution with zero mean and unit
variance. The next two chapters describe how to compute these residuals and
how to apply such normality tests.

2.5 Spatial structure

The goal of the data analysis methods of Sections 2.2-2.4 was to describe the
distribution of measurements independently of their location. What about de-
scribing how measurements vary in space or are related based on their location?
For example: Are neighboring measurements more likely to be similar in value
than distant ones? Do observed values increase in a certain direction?

Data, such as those of Tables 1.1, 1.2, and 2.2, should be displayed in ways
that reveal their spatial structure. First, a word of caution is warranted. Nowa-
days, there are commercial software packages that can draw contour maps or
three-dimensional mesh surfaces of a variable z(x|, x;) directly from the obser-
vations and even plot a variable z(x|, x2, x3) that varies in three dimensions. As
anintermediate step, these packages interpolate from the measurements to a fine
mesh, which is needed for contouring. If the observations are few, are nonuni-
formly distributed, and have highly skewed distributions, then the plot obtained
is affected by the interpolation and smoothing routines used in the program,
not just by the data. Important features may be smoothed out; puzzling results
may appear in areas with few measurements as artifacts of the algorithms used.
The software user usually has little control over the interpolation algorithms
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and sometimes is not even informed what methods are used. One may still find
it useful to apply such packages for exploratory data visualization but not to
produce final results.

If a variable depends on only one spatial dimension (such as measurements of
chemical concentrations in a boring or flowmeter measurements of conductivity
in a borehole) then the most powerful plot is obviously that of observation
against location, z(x;) against x;. Even for variables that depend on two or three
spatial dimensions, one may start with x -y plots of the observations against each
spatial coordinate. For example, see Figures 2.14 and 2.15 for the head data.

For two-dimensional variability, z(x;, x7), a particularly useful way to visu-
alize the data is by plotting an (x), x7) scatter plot showing the location of each
measurement with symbols indicating whether the measured value is above or
below the median, whether it is a stray value, and other pertinent information.
For example, such a plot in the case of the head data, Figure 2.16, suggests an
apparent trend.

For three-dimensional variability, one can use the draftsman’s display, which
consists of three pairwise scatter plots (xy, x2), (x1, x3),and (x3, x3), arranged so
that adjacent plots share an axis. The idea is that the three plots represent views
from the top, the front, and the side of points in a rectangular parallelepiped
that contains the measurement locations. With careful choice of symbols and
considerable effort, one may see some patterns. For example, for the data plotted
in Figure 2.17, the draftsman display shows that the measured values tend to
increase in value in the direction of increasing x; and x».
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Figure 2.14 Plot of data versus the first spatial coordinate.
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Figure 2.15 Plot of data versus the second spatial coordinate.
12 .
o o omin
0O
| O
10 o
ox 0O
0O
8 0O
X 0]
X, x Xx© o °
X
X X
4 X
nax x X
2 . . . : . .
4 6 8 10 12 14 16 18
xl

Figure 2.16 Plot showing the location and relative magnitude of data (o < median, x >
median). When outliers are present, they are indicated by *.

Three-dimensional graphics are gradually becoming available with perspec-
tive, movement, and shading for better visualization. Data are represented
as spheres or clouds of variable size or color indicative of magnitude of the

observation.
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Figure 2.17 Draftman’s display of some three-dimensional data.

2.6 The experimental variogram

The remaining sections of this chapter deal with the experimental variogram
(or semivariogram), which plays a leading role in practical geostatistics.

Consider the case of n measurements z(X;), z(X2), . .., z(X,). The bold letter
x stands for the array of coordinates of the point where these measurements
were taken. Plot the square difference %[z (x;) — z(xg)]2 against the separation
distance ||x; — x| for all measurement pairs (where || || means the length of
a vector). For n measurements, there are "("2_ D such pairs that form a scatter
plot known as the raw variogram (represented by the dots in Figure 2.18 for the
head data). The experimental variogram is a smooth line through this scatter
plot.

In the common method of plotting the experimental variogram, the axis of
separation distance is divided into consecutive intervals, similarly as for the
histogram. The k-th interval is [A¢, h%1and contains N; pairs of measurements
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[z(x;), z(x})]. Then, compute

A 1 Nk '
P = 55 i;[z(x,-) —z2(x) P, (2.11)

where index i refers to each pair of measurements z(x;) and z(x;) for which
hf < 1% — x| < hy. (2.12)

This interval is represented by a single point /. Take A; equal to the average
value,

1 &
hy = — X; — X.||. (2.13)
e= 5 gn ||

Next, these points [, P (k)] are connected to form the experimental variogram
(see Figures 2.18 and 2.19). Modifications to this basic approach have been
proposed to improve its robustness [5, 31, 30, 37, 107].

In selecting the length of an interval, keep in mind that by increasing the
length of the interval you average over more points, thus decreasing the fluc-
tuations of the raw variogram, but you may smooth out the curvature of the
variogram. It is unprofitable to spend too much time at this stage fiddling with
the intervals because there is really no “best” experimental variogram. Some
useful guidelines to obtain a reasonable experimental variogram are:
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Figure 2.18 Raw and experimental variogram of transmissivity data.
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Figure 2.19 Experimental variogram of the head data.

1. Use three to six intervals.
2. Include more pairs (use longer intervals) at distances where the raw vari-
ogram is spread out.

As an exploratory analysis tool, the experimental variogram has the drawback
that the graph depends on the selected intervals. It may also be somewhat
affected by the method of averaging. For example, some analysts prefer to use
for h; the median value while others prefer to use the midpoint of the interval,
ie.,

hk=%|h,':—hﬁ[, (2.14)

resulting into slightly different plots.

The experimental variogram presented above is a measure of spatial correla-
tion independent of orientation. In some cases, however, better predictions can
be made by taking into account the anisotropy in the structure of the unknown
function; for example, conductivities in a layered medium are more correlated
in a horizontal direction than in the vertical. The variogram should then depend
on the orientation as well as the separation distance (anisotropic model). The
issue of anisotropy will be discussed in Chapter 5.

2.7 Meaning of experimental variogram
2.7.1 Scale

The experimental variogram is the graph that is most commonly used in applied
geostatistics to explore spatial interdependence. It contains information about
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the scale of fluctuations of the variable, as we will explain in this section. Some
readers may prefer to skip this section at first reading and come back to it after
Chapter 3 or 4.

To grasp the concept of scale, consider the function z that varies over a one-
dimensional domain x. It is useful to approximate z(x) by the sum of cosines

2(x) ~ Z A; cosrx/L; + 1), (2.15)

where A; is coefficient of the trigonometric series, L; is spatial scale, and ¢; is
phase shift. Without getting too technical and disregarding pathological cases,
practically any function can be sufficiently approximated over a finite domain
by a few terms of a trigonometric, or Fourier, series. If the length of the domain
isL,then 1/L; =i/L,wherei =0,1,2,.... When A,.2 is relatively large, we
say that a proportionally large part of the variability is “at scale L;.” One can
reconstruct z(x) from knowledge of the triplets (L;, A;, ¢;) for all terms in the
series.

The bottom line is that the experimental variogram contains information
about the A? values. That is, one can infer the approximate value of some of
the A? values. Thus, the experimental variogram can provide clues on whether
the scale of the variability is large or small (or what is known as the “power
spectrum of the function”).

However, the experimental variogram provides no real information about the
phase shifts, i.e., the variogram is not helpful in reconstructing the starting points
of the cosinusoidal waves comprising the actual function. Two functions z that
have the same variogram may look radically different because of different phase
shifts. Also, the computation of the variogram scrambles or masks patterns in
the data, such as clear trends, which might be easy to recognize from other
plots. We have not attempted to prove these assertions mathematically because
that would involve knowledge that cannot be assumed at this point. In other
chapters, however, we will obtain insights that will support the statement that
the experimental variogram is basically a way to infer the distribution of spatial
variability with respect to spatial scales.

We need to emphasize that although it is an important exploratory analysis
tool, the experimental variogram should not monopolize the analysis. It should
be used in conjunction with other analysis tools, such as those presented in
Section 2.4.

Data analysts are particularly interested in two structural characteristics:

* The presence of variability at the scale of the sampling span. This depends
on the behavior of the experimental variogram near the origin, i.e., at small
separation distances.
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¢ The presence of variability at a scale comparable to the sampling domain. This
depends on the behavior of the experimental variogram at large distances.

2.7.2 Near the origin

The behavior of the variogram at small separation distances determines whether
the spatial function appears continuous and smooth. We will consider three
examples, which are intended to give you an intuitive feeling about what we
mean by continuity and smoothness in a practical context.

2.7.2.1 Discontinuous

First, consider the case that the actual variable is
z1 (x) = cos(2mwx/0.001). (2.16)

That is, all the variability is at scale 0.001. Consider now that z; (x) is sampled
at 100 locations randomly distributed in the interval between 0 and 1. (The same
sampling locations will be used in all three examples.) Note that the average
sampling interval (i.e., distance between measurement locations), 0.01, is ten
times larger than the scale of fluctuations of the variable. As a result, two
adjacent measurements are about as different as two distant measurements. At
the scale of the sampling interval, the variable z; is discontinuous because it
changes abruptly from one sampling point to the next, as shown in Figure 2.20.
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Figure 2.20 Plot of the measurements for the discontinuous case.
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Figure 2.21 Experimental variogram for the discontinuous data.

The experimental variogram, shown in Figure 2.21, is approximately a straight
horizontal line. Because the experimental variogram does not seem to converge
to zero as the separation decreases, we say that there is a discontinuity of the
experimental variogram at the origin or a nugget effect.

In general, a discontinuity at the origin in the experimental variogram is
indicative of fluctuations at a scale smaller than the sampling interval, called
microvariability. It may also be due to random observation error, as we will
discuss further elsewhere.

2.7.2.2 Parabolic

As a second example, consider
23 (x) = cos(2mx /2). 2.17)

All the variability is at a scale much larger than the scale of the sampling inter-
vals. Figure 2.22 is a plot of the data z»(x,,) versus x,, and Figure 2.23 is a plot
of the slopes of the data W versus X, i, forallm =2, ..., 100. The
changes in measured values are so gradual that both z and its slope are observed
to vary continuously. The experimental variogram, shown on Figure 2.24, has
parabolic behavior near the origin; that is, it is proportional to 42 for small val-
ues of 4. Generally, parabolic behavior near the origin is indicative of a quantity
that is smooth at the scale of the measurements so that it is differentiable (i.e.,
it has a well-defined slope).



36 Exploratory data analysis

s
05
- %,
%
-0.5f %o%b
A . .

0 0.2 0.4 0.6 0.8 1
X

Figure 2.22 Plot of the data for the parabolic case.
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Figure 2.23 Plot of the slopes for the parabolic case.

2.7.2.3 Linear

As a third example, we will consider a case in between the first two examples.
Consider that

z3 (x) = cos(2rx/0.2) + 0.10cos(27 x/0.02) (2.18)
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with the same sampling points. Note that this variable has most of its variability
at a scale larger than the average sampling interval but also some variability
at a scale comparable to that of the measurement spacing. The changes in
the value of z3 between adjacent sampling points are gradual, as shown on
Figure 2.25, so z3 is practically continuous at the scale of the measurements.
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Figure 2.24 Experimentzl variogram for the parabolic case.
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Figure 2.25 The data for the linear case.
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Figure 2.26 Slope of data for linear case.

However, the slope changes rather abruptly between adjacent intervals, as seen
in Figure 2.26, so that z3 does not appear to have continuous derivatives at the
scale of the measurements. The reason is that the derivative

dz;

P — 107 sin(27x /0.2) — 107 sin(27 x/0.02) (2.19)
X

has as much variability at scale 0.2 as at the small scale 0.02. The experimental
variogram, shown in Figure 2.27, has approximately linear behavior near the
origin, i.e., the variogram is proportional to / for small values of 4.

An example of a function that is continuous but not differentiable is the path
of a small particle in a fluid (known as “Brownian motion”). The particle gets
hit by molecules so often that it constantly changes direction and speed. Thus,
although the particle trajectory is continuous, the particle speed may change
instantaneously and is thus not continuous.

In summary, we have seen that the behavior of the experimental variogram at
the origin (at short distances) reveals the degree of smoothness of the function.
We distinguished among parabolic behavior, which characterizes a smoothly
changing variable with continuous slope; linear behavior, which characterizes
a continuous variable without continuous derivatives (such as a Brownian mo-
tion); and discontinuous behavior, which characterizes a discontinuous variable
(such as random “noise”).
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Figure 2.27 Experimental variogram for linear case.

2.7.3 Large-scale behavior

The behavior of the variogram at distances comparable to the size of the domain
determines whether the function is stationary. We will later give a technical
meaning to the term stationary; intuitively, a function is stationary if it consists of
small-scale fluctuations (compared to the size of the domain) about some well-
defined mean value. For such a function, the experimental variogram should
stabilize around a value, called the sill, as shown in Figure 2.28. For a stationary
function, the length scale at which the sill is obtained describes the scale at which
two measurements of the variable become practically uncorrelated. This length
scale 1s known as range or correlation length.

Otherwise, the variogram keeps on increasing even at a distance comparable
to the maximum separation distance of interest, as shown in Figure 2.28.

Exercise 2.1 Consider two functions describing a quantity that varies along
the spatial coordinate x in the interval [0, 4]:

X 1 3mx 1 Snx
z1(x) = cos > +3—2€0$ - +5—zcos - +..

X 1 3nx
(x) = COS<7 + ¢1) + ¥COS<T + ¢3)

+ : Cos 57rx+¢ +
52 2 > ’
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Figure 2.28 Experimental variogram indicative of stationary and nonstationary
behavior.

where ¢y, ¢3, s are numbers picked completely randomly from the interval
[0, 27]). Plot these two functions and discuss, based on what you have read
in this chapter, how the experimental variograms of these two functions are
expected to differ. Based on this example, discuss the strengths and limitations
of the experimental variogram as an exploratory analysis tool.

2.8 Key points of Chapter 2

The objective of exploratory analysis is to familiarize the analyst with the
important characteristics of the data. The analyst should keep an open mind and
avoid techniques that may be misleading if certain assumptions are not met.
We start by analyzing the distribution of data independently of their location in
space; this distribution may be portrayed using the histogram, the ogive, and
the box plot. Important summary statistics are the median and the mean, the
interquartile range and the standard deviation, and the skewness coefficient.
We discussed the practical advantages of working with symmetric and nearly
normal distributions and how transformations can be used to achieve this goal.
Spatial variability can be analyzed using graphical techniques, but the difficulty
increases significantly from variability in one dimension to variability in three
dimensions. The experimental variogram is an important tool that provides
information about the distribution of spatial variability with respect to scales.
Finally, note that conclusions reached during an exploratory analysis are usually
tentative. The next step is to use the ideas created during exploratory analysis
to select tentatively an “equation to fit to the data.”
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Intrinsic model

We preview the general methodology underlying geostatistical modeling and
apply it to the most common model, which is known as the intrinsic isotropic
model and is characterized by the variogram. This chapter introduces kriging,
which is a method for evaluating estimates and mean square estimation errors
from the data, for a given variogram. The discussion in this chapter is limited to
isotropic correlation structures (same correlation in all directions) and focuses
on the methodology and the basic mathematical tools. Variogram selection and
fitting will be discussed in the next chapter.

3.1 Methodology overview

Consider that we have measured porosity along a borehole at several locations
(see Figure 3.1). To estimate the value of the porosity at any location from the
measured porosity values, we need a mathematical expression (or “equation”
or “model”) that describes how the porosity varies with depth in the borehole.
In other words, we need a model of spatial variability.

However, hydrologic and environmental variables change from location to
location in complex and inadequately understood ways. In most applications,
we have to rely on the data to guide us in developing an empirical model. The
model involves the concept of probability in the sense that spatial variability is
described coarsely by using averages. For example, the best we can do might
be to specify that the porosity fluctuates about some mean value and to come
up with a formula to correlate the fluctuations at two locations depending on
their separation distance. This is often the most practical scheme to summarize
incomplete information or erratic data.

Consider the porosity or any other spatially variable quantity, such as chem-
ical concentration or precipitation; this quantity is a function of the spatial co-
ordinates and may be represented as z(x;), z(xy, x2), or z(xy, X2, x3) depending

41
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Figure 3.1 The interpolation problem. Observations are indicated by the symbol o.

on whether it varies in one, two, or three dimensions. For brevity, the notation
z(x) will be used to include all three cases, where x is the location index (a
vector with one, two, or three components). Thus,

X1
X =Xx;, O x=[xl], or x=|x|. 3.1

X3

The function z(x), known as a regionalized or field variable, is not known
everywhere but needs to be estimated from available observations and, perhaps,
additional information.

We are now ready to discuss the logical underpinnings of the approach. If
statistical modeling is new to you and you wonder what it means, pay particular
attention to this part.

In practice, our objective is to estimate a field variable z(x) over a region.
Usually, because of scarcity of information, we cannot find a unique solution.
It is useful to think of the actual unknown z(x) as one out of a collection
(or ensemble) of possibilities z(x; 1), z(x; 2), ... . This ensemble defines all
possible solutions to our estimation problem. The members of the ensemble are
known as realizations or sample functions.

Consider, for example, Figures 3.2, 3.3, and 3.4. Each figure contains five
realizations from a different ensemble (family of functions). Notice that despite
the differences among the realizations in each figure, they share some general
structural characteristics. The functions in Figure 3.2 are all “smooth” curves
with well-defined slope at every point. The functions in Figures 3.3 and 3.4 are
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X

Figure 3.2 Five realizations from a family of z(x) functions.

continuous but rough curves with ill-defined slopes. The curves in Figures 3.2
and 3.3 have fluctuations with much smaller periods than the fluctuations in
Figure 3.4.

Assume for argument’s sake that we have selected an ensemble and that
we have computed the probability that a realization is the actual unknown,
i.e., we can specify that the probability that z(x) = z(x; i), for any i, is P;.
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X

Figure 3.3 Five realizations from another family of functions.

Mathematically, we write
P, =Pr[z(x) = z(x; i)]. 3.2)

(We will see later how we can assign these probabilities.)
The ensemble of realizations with their assigned probabilities defines what is
known as a random function (or random field or spatial stochastic process). We
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X

Figure 3.4 Five realizations from yet another family of functions.

are interested in calculating averages over all possible realizations. Expectation,
denoted by the symbol E, is the process of computing a probability-weighted
average over the ensemble. Thus, the expected value of z at location X is

EzX)]=Pizx; D+ Prz(x;2) +--- = Z P; z(x; 1). (3.3)
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Instead of specifying all possible solutions and their probabilities, it is more
convenient to specify and to work with ensemble averages or statistical mo-
ments. In linear estimation, we use the first two statistical moments of the
random field, which are

1. the mean function (first moment), which gives the expected value at any
point X,

m(x) = E[z(x)], (3.4)

2. and the covariance function (second moment), which is the covariance for
any pair x and x/,

R(x,x) = E[(z(x) — m(x)) (z(x') — m(x"))]. (3.5)

Important structural characteristics of each ensemble can be described
through the mean and covariance functions. For example, the degree of smooth-
ness of the realizations or the scale of the fluctuations can be described nicely.

In a general sense, we use the first two moments instead of the probabilities
Py, P>, ....Thus,

the model of spatial structure consists of the mathematical expressions chosen
to describe the mean function and the covariance function.

It is important to grasp the meaning of the term structure in the context
of estimation of spatial functions: It is the information that characterizes the
ensemble of plausible solutions that our unknown function belongs to!

A statistical analysis of spatial data is conveniently subdivided into two
phases: structural analysis and best linear unbiased estimation (BLUE).

Structural analysis is the selection and fitting of mathematical expressions for
the required first two moments of the regionalized variable. The form of these
expressions comprises the model. Many expressions can be used to represent
these moments. Some are commonly used general-purpose models, such as the
intrinsic model, which we will see in this chapter; others are special-purpose
models developed by you, the user, for a specific application. A model is selected
based on the analysis of data and other information, including experience with
data at similar sites and geologic and hydrologic information. From those, the
analyst must decide whether the unknown function belongs, for example, in
the ensemble of Figure 3.2, 3.3, or 3.4. Typically, model selection is an iterative
procedure consisting of

(a) exploratory data analysis (see Chapter 2), on the basis of which a model is
tentatively selected;

(b) parameter estimation, such as selection of numerical values for the param-
eters of the expressions of the mean and covariance function; and
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(c) model validation or diagnostic checking, which involves careful examina-
tion of the performance of the model in test cases.

Best linear unbiased estimation deals with taking into account specific ob-
servations. Specifically, we look for estimates that are as representative and
accurate as possible, using the model developed during structural analysis and
the specific observations.

The basic idea is that we proceed to figure out an unknown function (e.g.,
the concentration over a cross section) in two stages.

1. During the first stage, structural analysis, the choice is narrowed down to the
functions sharing certain characteristics, collectively known as structure.

2. During the second stage, the choice is narrowed down further by requiring
that all possible solutions honor the data.

These ideas will become clearer after we study some examples. In this chap-
ter, after Section 3.2, we will present one of the most commonly used geosta-
tistical models, the intrinsic isotropic model.

3.2 Illustrative example

In this section, we will practice the concepts that we saw in the previous section
by working on an example.
Consider the following family of functions:

z(x; u) =sin(2rx + u), 3.6)

where x is the spatial location (one-dimensional) and u is a random variable
uniformly distributed between O and 2. That is, the probability distribution of
u is:
1 .
—, if0<u<2n
f)y=3 27 . 3.7
0, otherwise

We are asked to perform the following tasks:

(a) Justify why this information fully defines a random function z(x).

(b) Compute the mean function m(x).

(c) Compute the covariance function R (x, x’). Note that the covariance func-
tion depends only on ||x — x'||, where || || indicates the distance between x
and x’. Plot the covariance function.

(d) Using a program that generates random variables (such as functions rand
and randn in MATLAB) generate and plot five realizations of the random
function.
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(e) Now assume that you also measure the value 0.5 for z at x = 0. Conditional
on this information: What are the possible solutions for z(x) and their
probabilities? What is the mean function? What is the covariance function?

The answers are given below:

(a) The random function z(x) is fully defined because we have specified the
way to generate all possible realizations or sample functions and the cor-
responding probability. For example, to generate a set of M equally likely
realizations, generate M variates uniformly distributed between 0 and 27
(see Appendix C) and apply these in Equation (3.6).

(b) The mean at z(x) is the weighted average over all values of z at this location.
Intuitively, we expect that the mean will be zero. More systematically,

2
1
m(x) = E[sin(2rx + u)] = / sin(2rx + u)2—du =0, (3.8)
0 T
where ﬁ is the pdf (probability density function) of # inthe interval between
0 and 27. Thus, the mean is the same everywhere, 0. Note that the mean

function is much simpler than any of the realizations.
(¢) The covariance function is

R(x,x") = E[sinQrx + u) sin(Rrx’ + u)]
2 1
= / sin(2mx + u) sin(2mwx’ + u)—du
0 2
1 !
=3 cos(2m(x — x")). 3.9
Thus, we can see that the covariance function depends only on the dis-

tance ||x — x’||. The variance, R(x, x) = %, is the same everywhere. See
Figure 3.5.

04
02
R(x) ¢ x
0.2 0.4 0.6 08 10

-0.4

Figure 3.5 Plot of covariance function (periodic).
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We generate five random phases using the MATLAB command
2xpixrand(5,1).

This picks five numbers between 0 and 2. See Figure 3.6 for examples of
sample functions.

Given the available information, there are only two possible values for
u: /6 and 57 /6; each is equally probable. Then, the only realizations that
honor this measurement are

z1(x) = sin2rx + 7 /6), (3.10)
z2(x) = sin(2ax + 57/6). 3.11)

The conditional mean is

1 1 1
me(x) = =smQ2ax + 7/6) + = sin(2rx + 57/6) = = cos(2mx).
2 2
(3.12)
See Figure 3.7. Note that the conditional mean function is more com-
plex than the prior mean, which is zero everywhere. Also, note that the

Figure 3.6 Five sample functions.
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m(x)

-0.2

Figure 3.7 Conditional mean, given z(0) = 0.5.

conditional mean is smoother than either of the two possible solutions. The
covariance function is

R(x,x') = %(sin(an + 7/6) — me)(sin@rx’ + 7w/6) — me)
+ -lz—(sin(2nx +57/6) — me)(sin(2x’ + 57/6) — me)
- %(sin(ZTrx +7/6) — sin@rx + 57/6))
x (sinQ2rx’ + w/6) — sin(2wx’ + 57 /6))
= % sin(27 x) sin(2w x’). (3.13)

Note that the conditional covariance function is a function of two locations,
x and x’. The conditional variance, R.(x, x), is plotted in Figure 3.8.

R (x,x)

-1 1 2

Figure 3.8 Conditional variance, given z(0) = 0.5.
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Exercise 3.1 Consider the random function z defined on one dimension x by
z(x) =cos2mx + uy) + cos(x/zzrx + uy),

where uy and u, are two independently distributed random variables with uni-
form distribution in the interval 0 to 2.

(1) Find the mean function and the covariance function of z. (Plot results, if
possible.)

(2) Generate and plot five realizations of this random function over the interval
[0, 10].

3.3 Intrinsic isotropic model

In the outline of the general approach, it was mentioned that we need to write
expressions for the mean and the covariance function. One of the simplest
models is:

The mean is constant and the two-point covariance function depends only on
the distance between the two points.

That is,
Elz(x)]=m (3.14)
and
E[(z(x) — m)(z(x') —m)] = R(h), (3.15)
where
h=lx=xl= /00 —x)?+ -2+ (-2 (.16)

is the distance between sampling locations x and X', X = [x;, x2, x3], and X' =
[x{, x5, x4]. Equations (3.14) and (3.15) comprise the stationary model; a ran-
dom function z(x) satisfying these conditions is called stationary.! This model
is also isotropic because it uses only the length and not the orientation of the
linear segment that connects the two points. In this chapter we will focus on
isotropic models; we will see anisotropic models in other chapters.

The value of the covariance at # = 0 is known as the variance or the sill of
the stationary function.

Exercise 3.2 For the random function z(x) defined in Section 3.2:
(1) Is z(x) stationary?

1 Technically, this is known as “wide-sense” or “second-moment” stationary.
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(2) Compute the ensemble average

1
y(x,x) = SE[(() = z(x')?.

(3) Show that y (x, x') depends only on the distance || x — x'|| and plot the ex-
pressiony (|| x —x'||) versus the separation distance || x —x'||. Show also that

y(lx = x'I) + R(llx — xI) = R(0)

is a constant value.

Mathematically speaking, there are several types of functions that satisfy
Equations (3.14) and (3.15). The covariance function may be periodic (such as
a cosine), aperiodic but consisting of a number of sinusoids, or a function that is
none of the above but has a continuous power spectrum (from Fourier analysis)
and finite variance. In estimation applications, it is the last type that is of interest
so that, unless otherwise stated, we will assume that we deal with this type. All
we need to know for now, without getting into Fourier analysis, is that for a
stationary function (of the type we are interested in), the sill R (0) is finite and the
value R (k) vanishes or tends to vanish when / exceeds a value called the range.

In order to apply this model in interpolation, we need to find the parameter m
and to select an expression for the covariance function and find its parameters,
such as the expression R(h) = v exp(—h/£) with parameters v and £. Then, it
is possible to extrapolate from the locations of the observations.

In most cases, the mean is not known beforehand but needs to be inferred
from the data; to avoid this trouble, it may be more convenient to work with the
variogram. The variogram is defined as

1
y(h) = SE[((0) = z(x'))?]. (3.17)

(Originally, the term variogram was used for 2y (h), and y (k) was called
the semivariogram. Since we only use y (h), we will call it the variogram.) To
underline the distinction between the experimental variogram, which is com-
puted from the data, with the variogram, which is a mathematical expression,
the latter is sometimes called the theoretical variogram.

For a stationary function, the relation between the variogram and the covari-
ance function is

1 1
y(h) = SE[GX - z(x)?] = FEL(E00 —m) = () = m))?]
1
= = E[C() —=m)EX) —m)] + Elz(x) - m)?]

+%E[(z(x’) —~m)*] = —R(h) + R(0). (3.18)
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That is, the variogram is minus the covariance function plus a constant (which
happens to be the variance):

y(h) = —R(h) + R(0). (3.19)
Using the variogram, consider the model:

The mean is constant but unspecified and the two-point mean square differ-
ence depends only on the distance between the two locations.

That is,

Elzx)—z(x] =0 (3.20)
1
7 Elz00 = 2% = y (h), (321
where h = [|x — x/|| is the distance of the separation vector. Equations (3.20)

and (3.21) comprise the intrinsic isotropic model.

At first, the reader may be unable to distinguish the intrinsic model from
the stationary one. The difference is slight but important. Note, to begin with,
that the stationary and intrinsic models differ in the parameters needed to char-
acterize them as well as in mathematical generality. It takes less information
to characterize the intrinsic model than the stationary model. Whereas both
assume constant mean, in the intrinsic model we avoid ever using a numerical
value for the mean. Furthermore, the stationary model may use the covariance
function, which cannot be reconstructed only from the variogram over a dis-
tance smaller than the range. In a sense, to specify the covariance function one
needs the variogram plus an extra number, the variance.

The intrinsic model is mathematically more inclusive (i.e., general) than the
stationary one. If z(x) is stationary, then it is also intrinsic because Equation
(3.20) follows from (3.14) and Equation (3.21) follows from (3.15) by using
(3.19). For a stationary function, the variogram at large distances equals the
sill, y (00) = R(0) = o2. However, the important point is that not all intrinsic
functions are stationary. As a practical rule, an intrinsic function is nonstationary
if its variogram tends to infinity as / tends to infinity. For example, the

y(h) =h (3.22)

variogram characterizes an intrinsic function that is not stationary.

It is the intrinsic model that we will use in the remainder of this chapter. In-
variably, the question asked is: What is the practical significance and meaning of
this model? The practical significance is that it is a simple model that is useful in:

1. summarizing incomplete information and patterns in noisy data; and
2. allowing us to interpolate from observations of z(x), as we will soon see.



54 Intrinsic model

The meaning of this model and its applicability range will be appreciated
after we see examples and apply it to describe data.

Exercise 3.3 If z(x) is a stationary random function with mean m and covari-
ance function R(h), then find the mean and variance of

1
§[Z(X) +z(x)]
and

1 ,
12 =z,

where x and X' are two locations. Check each of these cases to see whether
you can find the variance in terms of the variogram y(h) = R(0) — R(h) at
separation distance |x — X'||, without necessarily specifying the variance of
the process.

3.4 Common models

There are mathematical restrictions on which functions may be used as covari-
ance functions or variograms. The reason is rather mundane: The variance of
a linear combination of values of z(x) at a number of points can be expressed
in terms of covariance functions or variograms (see Exercise (3.3)); the models
we use should be such that this expression cannot become negative. Criteria are
discussed in references [21 and 30].

In practice, variograms describing the spatial structure of a function are
formed by combining a small number of simple mathematically acceptable
expressions or models. This section contains a list of such covariance functions
R and variograms y. Plots of some of them and sample functions are also
presented. Symbol £ stands for the distance between two points.

3.4.1 Stationary models
34.1.1 Gaussian model
For the Gaussian model we have

h2
R(h) = azexp(—ﬁ)

h2
y(h) = o? (1 — exp(—ﬁ)),

where 62 > 0 and L > 0 are the two parameters of this model. Because the
covariance function decays asymptotically, the range « is defined in practice as
the distance at which the correlation is 0.05; i.e., « =~ 7 L /4.

(3.23)
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The Gaussian model is the only covariance in this list with parabolic behavior
at the origin (y (k) o« h? for small &, where o stands for “proportional to”),
indicating that it represents a regionalized variable that is smooth enough to be
differentiable (i.e., the slope between two points tends to a well-defined limit
as the distance between these points vanishes).

Figure 3.9 shows a sample function and a plot of the variogram y and co-
variance function R for 0> = 1 and L = 0.05.

3
0 0.2 0.4 0.6 0.8 1
X
1
Y(h)
0.8
0.6
0.4
0.2¢
R(h)
0 0.2 04 0.6 0.8 1
h

Figure 3.9 Sample function and model for Gaussian variogram and covariance function.
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34.1.2 Exponential model

For this model, the covariance and variogram are given by

R(h) = 6?2 exp (—%)

w=o(i-en(4)

where the parameters are the variance 6> > 0 and the length parameter (or
integral scale) £ > 0. The range is o &~ 3¢. This model is popular particularly
in hydrologic applications.

Figure 3.10 shows a sample function and a plot of the variogram y and
covariance function R for 62 = 1 and L = 0.05. Notice the difference from
the Gaussian case in the smoothness of the sample function.

(3.24)

3.4.1.3 Spherical model

For the spherical model,

h 1h
RUD (1—%E+§h—3)a2, for 0<h<a
= a
0, for h > «a (3.25)
3 .
gﬁ—lh— o2, for 0<h<a
y(h) = 2a 2ad ’ - -7,
o2, for h >

where the parameters are the variance > > 0 and the range a > 0.
Figure 3.11 shows a sample function and a plot of the variogram y and
covariance function R for 62 = 1 and a = 0.15.

3.4.1.4 Hole-effect model

In this case, the decay of the covariance function with distance is not monotonic.
It is used to represent some type of pseudo-periodicity. An expression that has
been used in hydrology to model one-dimensional processes is

(3.26)

wese(-2) (2]

This expression, however, is not appropriate for representing functions of two
or three variables (dimensions).
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0.8 vh)
06 }
04 |
0.2 R(h)
0 0.2 0.4 0.6 08 1

h

Figure 3.10 Sample function and model for exponential variogram and covariance func-
tion.

The hole-effect model describes processes for which excursions above the
mean tend to be compensated by excursions below the mean. Figure 3.12 shows
a sample function and a plot of the variogram y and covariance function R for
o?=1and L =0.05.

The exponential, spherical, and hole-effect models exhibit linear behavior at
the origin, i.e., y (k) o h for small 4. The realizations of a random field with
such a variogram are continuous but not differentiable, i.e., they are less smooth
than the realizations of a random field with a Gaussian covariance function.
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3.4.1.5 Nugget-effect model

The covariance and variogram for the nugget-effect model are

0, >0
Co, h=0

Co, h>0
0, h=0’

R(h) = Co 8(h) = {
(3.27)
yh) =Co(1=48(h)) = {

where Cp > 0 is the nugget variance and the symbol §(h) is the Kronecker

4 — v —

2r

0.8 'Y(h)

0.6
04}

02} R(%)

0 0.2 0.4 06 0.8 1
h

Figure 3.11 Sample function and model for spherical variogram and covariance func-
tion.



Common models 59

1.2

v(h)
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04 |

0 0.2 0.4 06 0.8 1
h

Figure 3.12 Sample function and model for hole-effect variogram and covariance func-
tion.

delta, which stands for 1 if 4 = 0 and for O in all other cases. The realizations
of this random field are not continuous; i.e., z(x) can be different from z(x’) no
matter how small the distance # = ||x — x'|| that separates them. Figure 3.13
shows a sample function and a plot of the variogram y and covariance function
R for 0% = 1 sampled at distances of about 0.004. Note that the sample function
is discontinuous everywhere. The variogram and the covariance function are
discontinuous at the origin. The variogram jumps up from O (at 2 = 0) to o2 (at
h > 0); the covariance function drops off from o2 (at & = 0) to O (at & > 0).
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Figure 3.13 Sample function and model for nugget-effect variogram and covariance
function.

The nugget-effect model represents microvariability in addition to random
measurement error. Microvariability is variability at a scale smaller than the
separation distance between the closest measurement points. For example, if
rain gauges are located with a typical spacing of 1 km, then rainfall variability
at the scale of 10 m or 100 m causes disparity among rainfall depths measured
at the various gauges. You may think of the nugget semivariogram as a special
case of the exponential semivariogram, y (h) = Co[1 — exp(—h/£)], when the
typical distance / between observations is much larger than the inherent scale
of the fluctuations of the phenomenon £.
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As already mentioned, discontinuous behavior can also be attributed to ran-
dom measurement error, which produces observations that vary from gauge to
gauge in an “unstructured” or “random” way.

Incidentally, the term “nugget” comes from mining, where the concentration
of a mineral or the ore grade varies in a practically discontinuous fashion due
to the presence of nuggets at the sampling points. Thus, nugget effect denotes
variability at a scale shorter than the sampling interval.

3.4.2 Intrinsic nonstationary models
3.4.2.1 Power model

The variogram for the power model is
yh) =6 h, (3.28)

where the two parameters are the coefficient & > 0 and the exponent0 < s < 2.
Figure 3.14 shows a sample function and a plot of the variogram y for 6 = 1
and s = 0.4.

The power model describes a self-similar process: The realizations of such
a process appear the same at any scale.

34.2.2 Linear model

In the linear model,
y(h) = 6h, (3.29)

where the only parameter is the slope 8 > O of the variogram. Although it is a
special case of the power model (for s = 1), we mention it separately because
of its usefulness in applications. Figure 3.15 shows a sample function and a plot
of the variogram y for6 = 1.

Note that in all of the above models, y(0) = 0.

3.4.2.3 Logarithmic model

The variogram for the logarithmic model is
y(h) = Alog(h), (3.30)

where A > 0. This model can be used only for integrals over finite volumes
and cannot be used directly with point values of the regionalized variable. For
example, it can be used to estimate solute mass over a finite volume given
measurements of mass in samples also of finite volume.
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Figure 3.14 Sample function for power variogram with exponent 0.4.

3.4.3 Model superposition

By adding variograms of types listed in this section, one can obtain other
mathematically acceptable variograms. For example, combining the linear and
nugget-effect semivariograms we obtain another useful model,

iy [ Coron h>0 )
Y=o, h=0 '

with two parameters, Cy > 0 and & > O. In this fashion, one can find a model
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Figure 3.15 Sample function for linear variogram.

that adequately represents the structure of a spatial variable. For example, one
may fit Equation (3.31) to the experimental variogram, as shown in Figure 3.16.

Exercise 3.4 Consider the following three variogram models:

1. R(h) = exp(—h?/0.01) + 0.002 exp(—h/0.0025)
2. R(h) = exp(—h?/0.0025) + 0.01 exp(—h/0.0025)
3. R(h) = exp(—h?/0.0025).

Each of these models corresponds to one ensemble from those sampled in
Figures 3.2, 3.3, and 3 4. Find which model corresponds to each figure.
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Figure 3.16 Experimental variogram and model.

3.4.4 Special topic: microstructure

One may modify a variogram in our list (excluding the nugget effect) by making
the substitution

h— Vh?+D?—D. (3.32)
For example, instead of the regular linear variogram,
y(h)=h

one may use

y(h) =+h2+ D2 - D. (3.33)

This variogram, Equation (3.33), corresponds to the multiquadric method which
is used in drawing topographic maps, in surveying, and in geodesy [63]. Ob-
viously, for D = O this reduces to the familiar linear variogram. For D > 0,
however, the interpolation at the observation points becomes smooth (differ-
entiable) at the observation points. Intuitively, D is a measure of the radius of
curvature of the curve or surface at the observation points, or “microstructure.”
This approach is valued by some practitioners because it produces smooth and
aesthetically pleasing maps.

The substitution of Equation (3.32) allows us to introduce models with two
different scale parameters. For example, the modified exponential variogram,

/72 2 _
y(h) =o? (1 — exp (—L—f_lD—B) >, (3.39)
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has two scale parameters: /, which controls the large-scale correlation in the
function, and D, which controls the curvature of the function (assuming that
> D).

3.5 Interpolation using kriging

Consider, for example, some log-transmissivity measurements and assume that
the intrinsic isotropic model is tentatively selected. Next, we need to specify the
variogram. One may use the experimental variogram to fit the expression for
the model variogram. To enure that the model is mathematically acceptable,
the exponential variogram may be chosen from one of the models listed in
Section 3.4, and its parameters may be adjusted to approximate the experimental
variogram. At the end, the following mathematical expression is used:

yh) =v [1 — exp (—%)], (3.35)

where 4 is the separation distance and v and £ are coefficients. It will be seen
later how we can complete the structural analysis by returning to address the
questions of whether this is a good model and, if so, whether we can refine it by
choosing better values for the parameters. (The details of variogram analysis
are dealt with in the next chapter.) For now, accept this model and proceed to
solve an interpolation problem using kriging.

Before getting to the kriging equations, let us discuss what we try to ac-
complish. Selection of a variogram is equivalent to selecting an ensemble of
solutions; we assume that the function we seek can be found in this collection
of functions. The variogram and the ensemble it defines were found on the basis
of considerations of spatial structure. However, the ensemble contains functions
that do not “honor” the measurements. For example, if we have measured and
(disregarding measurement error) thus know the value of z at a certain location,
it is only reasonable to eliminate from further consideration the functions that
do not have the right value at this location.

That is the basic idea. In practice, we do not keep track of individual re-
alizations but we try to compute a mean value and a variance of the ensem-
ble of the functions that are left after we account for the information about
the observations. These are the conditional mean (or best estimate) and vari-
ance (or mean square error of estimation) of the unknown function z(x). To
facilitate the analysis, we limit our attention to best estimates that depend on
the data linearly.

Kriging involves applying the general methodology known as best linear un-
biased estimation (BLUE) to intrinsic functions. The theory of kriging as well as
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its implementation on a computer are straightforward, despite the intimidating
equations that it involves. We will consider the generic problem:

Given n measurements of z at locations with spatial coordinates x;, X, .. .,
X,, estimate the value of z at point Xg.

An estimator is simply a procedure or formula that uses data to find a repre-
sentative value, or estimate, of the unknown quantity. We limit our attention to
estimators that are linear combinations of the measurements, i.e.,

n
fo =Y Mz(x). (3.36)
i=1
Thus, the problem is reduced to selecting a set of coefficients A, ..., A,.
The difference between the estimate %y and the actual value z(Xg) is the
estimation error:

n
20— 2(X) = D hiz(X;) — 2(%o). (3.37)
i=1
Obviously, we seek a good estimator. Specifically, we select the coefficients so
that the estimator meets the following specifications:

Unbiasedness On the average (i.e., over all possible solutions or realizations),
the estimation error must be zero. That is,

n n
El2g—z(x)]1 =) am—m= > x—1|m=0. (3.38)
i=1 i=1
But the numerical value of the mean, m, is not specified. For the estimator to
be unbiased for any value of the mean, it is required that

n

=1 (3.39)

i=1

Imposing the unbiasedness constraint eliminates the unknown parameter m.

Minimum Variance The mean square estimation error must be minimum. We
can compute the mean square error in terms of the variogram if we use condition
(3.39). After some algebra, we get

ElGo—z(%)1= =Y _ > aid;v(Ix—x;1D+2 Y hiy (1% —Xol]). (3.40)

i=1 j=1 i=1

Thus the problem of best (minimum mean-square error) unbiased estimation
of the A coefficients may be reduced to the constrained optimization problem:
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Select the values of 4, ..., A, that minimize the expression (3.40) while
satisfying constraint (3.39). Expression (3.40) is called the objective function,
because we try to minimize it; Equation (3.39) is called a constraint, because it
poses a restriction on the values that we may assign to the coefficients.

3.6 Kriging system
In the previous section we formulated a constrained optimization problem with
a quadratic objective function and a linear constraint. This problem can be
solved easily using Lagrange multipliers, a standard optimization method (see
Appendix B); the necessary conditions for the minimization are given by the
linear kriging system of n + 1 equations with n + 1 unknowns:

h
=S avlix —x)+v=—y(xi —%ol), i=12....n (341
j=1

n
dSoa=1, (3.42)
j=1

where v is a Lagrange multiplier.
It is common practice to write the kriging system in matrix notation. Let x be
the vector of the unknowns

Al
A2
x=|:[, (3.43)
An
)
b the right-hand-side vector
—y (Ix; — xoll)
—¥ (%2 — Xoll)
b= : , (3.44)
=y (X, — Xoll)
1
and A the matrix of coefficients
0 —y(Ix; —=x2l) -+ —ydlx —x,0) 1
=y %2 — %) 0 o =y (lxe = x,0) 1
A= : : : :
—yUx, —x1fl) —ydIx, —x2l) --- 0 1
1 1 . 1 0

(3.45)
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We denote by A;; the element of A at the i-th row and j-th column, and by
x; and b; the element at the i-th row of x and b, respectively. Notice that A is
symmetric, i.e., A;; = Aj;.

The kriging system can be written as

n+1
ZAijxj':bi’ fori=1,2,---,’l+1 (346)

j=1
or, in matrix notation,
Ax =b.

Note that the value of y vanishes at exactly zero separation distance. Thus,
on the left-hand side, the diagonal elements of the matrix of the coefficients
should be taken equal to zero.

All BLUE problems boil down to the solution of a linear system such as
this. Computer programs for their solution are readily available. Solving this
system, we obtain Ay, A, ..., Ay, v. In this manner, the linear estimator of
Equation (3.36) is fully specified. Furthermore, we can quantify the accuracy
of the estimate through the mean square estimation error. The mean square
estimation error may be obtained by substituting in Equation (3.40) the values
of Ay, A2, ..., A, obtained from the solution of the kriging system.

Actually, using the already computed Lagrange multiplier v we can find a
computationally more efficient method. For the optimal values of the kriging
coefficients, substituting

= xvdix = x;l) = —v = y(lIx — %oll) (3.47)
j=1

in (3.40) we obtain the useful expression

og = ElGo— z(x0)’1 = —v+ > Ay (Ixi —%ol).  (3.48)

i=1

In many cases we are interested in obtaining the 95% confidence interval
of estimation of z(xg). This is the interval that contains the actual value of
z(xp) with probability 0.95. Calculation of this interval is not possible without
making some explicit assumptions about the probability distribution of z(x).
Assuming normality, i.e., Gaussian distribution of the estimation errors, we get
a confidence interval approximately 2o — 207, 29 + 200].2

2 Even when normality is not explicitly mentioned, this is the conventional way of obtaining
confidence intervals in linear geostatistics.
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Example 3.1 Consider a one-dimensional function with variogram y(h) =
1 + h, for h > 0, and three measurements, at locations x; = 0, x, = 1,
and x3 = 3. Assume that we want to estimate the value of the function in
the neighborhood of the measurement points, at location xy = 2. The kriging
system of equations, which gives the weights Xy, Ay, and A3, is

—2x; —4X3 +v = =3

—2X 3% +v = =2

—4); —3X; +v = =2

A A A3 = 1

or, in matrix notation,

0 -2 —41 Al -3

-2 0 =31 | |2

—4 -3 01 M| =2

1 1 10 v 1

The mean square estimation error is
—v+3A1 + 242 4 223,

Solving the system, we obtain A; = 0.1304, A, = 0.3913, »3 = 0.4783, and
v = —0.304. The mean square estimation error is MSE = 2.43,

For xp = 0, i.e., a position coinciding with an observation point, the kriging
system is

0 -2 -4 1 Al 0
-2 0 -31 |l -2
-4 -3 01 Al | -4
1 1 10 v 1
By inspection, one can verify that the only possible solution is .y = 1, A =

A3 = 0, and v = 0. The mean square estimation error is MSE = 0, indicating
error-free prediction. The kriging estimate at a measurement location is the
measurement itself.

Example 3.2 We will illustrate how we can program kriging using MATLAB
with the following example.
We have two observations: 1.22 at location (9.7, 47.6) and 2.822 at (43.8,
24.6). Find best estimate and MSE at (18.8, 67.9) if the variogram is
0.1+ 0.006h, h >0
yh) = {0, h=0
The input data are

1.22 9.7 47.6
zdata = [2.822]’ xdata = [43.8 24.6] , x0=1[18.8 67.9],
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from which MATLAB yeilds the following results:

0 ~0.3468 1 ~0.2335
A= |-03468 0 1|, b= |-0.4000
1 1 0 1
[ 0.7401
coef = | 0.2599|, 20 = 1.6364, MSE = 0.4201.
| —0.1433

The MATLAB program used in this example was:

n=2 %number of observations
zdata=[1.22; 2.822] %column of observations
xdata={9.7,47.6;43.8,24.6] %column of obs.

%coordinates
x0=[18.8,67.9] %location of unknown
A=zeros (n+l,n+1); b=zeros(n+l,1); %initialize

%A is matrix of coefficients and
%b is right-hand-side vector of kriging system
A(n+l,1)=1; A(1,n+1)=1;
for i=2:n
A(n+l,1)=1; A(i,n+l)=1;
for j=1:1i-1
A(i1,j)=-.1-0.006*norm(xdata (i, :)-xdata(j,:));
A(j,1)=A(1i,3);
end
end
for i=1:n
b(i)=-.1-0.006*norm({xdata (i, :)-x0);
end
b(n+l)=1;
A,b
coef=A\b %solve kriging system
z0=coef (1l:n)’'*zdata %Find best estimate
MSE=-b’'*coef %find MSE

Exercise 3.5 You are given n measurements of concentration z(xy), ..., z(x,)
in a borehole at distinct depths x|, < --- < x,. The concentration is modeled
as an intrinsic function with linear variogram

ylx = x'ID = allx — x'll,
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where a is a positive parameter. Write the kriging system for the estimation of z
atlocation xy. Then, show that the only coefficients that are not zero are the ones
that correspond to the two adjacent measurement points, i.e., the ones between
which xg is located. (Hint: Because the kriging system has a unique solution,
all you need to do is verify that this solution satisfies the kriging system.) Write
the expressions for the values of these coefficients and the mean square error.
Draw sketches depicting how the best estimate and the mean square error vary
between the adjacent measurement points.

3.7 Kriging with moving neighborhood

In some applications, instead of using all n observations at the same time, only
a subset is selected in the neighborhood of the estimation point xo. For example,
one may use only the 20 observations that are positioned closest to X, or one
may use all observations within a specified radius, or one may use acombination
of these strategies. As the estimation point moves, the set of observations used
in estimation change with it.

One motivation for using such a “moving neighborhood” has been the re-
duction of computational cost achieved by solving kriging systems with fewer
unknowns. However, in many applications there are fewer than, say, 300 ob-
servations, and the cost of solving a system of that size in a workstation circa
1996 is insignificant (particularly in comparison to the cost of collecting the
data). Consequently, except in the case of very large data sets, computational
convenience should not be the overriding reason for choosing a moving neigh-
borhood. In Section 3.10, we point out that in kriging for contouring it may be
advantageous to use all observations at once.

Another motivation has been to make the estimate at xo dependent only on
observations in its neighborhood, which is often a desirable characteristic. How-
ever, the same objective can be achieved by using all data with an appropriate
variogram (such as the linear one) that assigns very small weights to observa-
tions at distant points. If the weights corresponding to points near the border of
the neighborhood are not small and the moving neighborhood method is applied
in contouring, the estimated surface will have discontinuities that are unsightly
as well as unreasonable, if they are the artifact of the arbitrary selection of a
moving neighborhood.

In conclusion, using a moving neighborhood is not recommended as a general
practice (although it may be useful in special cases) and will not be discussed
further in this book.



72 Intrinsic model

3.8 Nonnegativity

Quite often z, the function of interest, is known to be nonnegative. For example,
Z may represent transmissivity or storage coefficient or solute concentration.
However, kriging does not account for this nonnegativity requirement. An indi-
cation that nonnegativity may need to be enforced is when the 95% confidence
interval appears unrealistic because it includes negative values.

The most practical way to enforce nonnegativity is to make a one-to-one
variable transformation. The prevalent transformation is the logarithmic

y(x) = In(z(x)). (3.49)
Then, we proceed as follows.

1. We transform the data and develop a variogram for y.
2. We perform kriging to obtain best estimates and 95% confidence interval

fOr )’(XO), 5)0’ and [)’l, )’u]
3. Through the backtransformation

z(x) = exp(y(x)) (3.50)

we obtain a best estimate exp(§) and confidence interval [exp(y;), exp(y,)]
for z(xp).

Note, however, that exp(Jy) is a best estimate not in the sense of minimum
mean square error but in the sense that it is the median. (This does not represent
a difficulty because mean square error is not a particularly useful measure for
asymmetric distributions.)

One may also use other transformations that are less “drastic” than the log-
arithmic. A useful model is the power transformation encountered in Chapter
2, Equation (2.10), which includes the logarithmic transformation as a special
case. That is, we may apply Equation (2.10) instead of the logarithmic and then

2(%) = (ky(x) + 1)¥ (3.51)

is used for the backtransformation. However, care should be taken to select a
value of parameter « small enough to deal with values of y that satisfy the
requirement

ky(x)+1=>0 (3.52)

or else the transformation is not monotonic and the results may be nonsensical.

3.9 Derivation

This section contains a step-by-step derivation of the expression for the mean
square error, Equation (3.40). This is an exercise in algebra, really, and you
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may decide to skip it; however, the method is worth learning because the same
steps are followed to derive any best linear unbiased estimator.

It is convenient to work with the covariance function R(%), instead of the
variogram; so let us assume that the covariance function exists. (This is the case
for stationary functions. However, the result applies even for nonstationary
intrinsic functions, as we will see, because ultimately the result depends only
on the variogram.) Then

n 2
E[(Zo — z(%0))’1 = E (ZM(XJ—AM)) :

i=1

First, we add and subtract the mean (making use of the unbiasedness constraint,
Equation (3.39)) to get

n 2
E (in(z(xi) —m) — (z(xo) — m)) :

i=1

Expanding the square yields

n 2 n
E (in(z(xi) - m)) +(2o) =M =2 (%) —m)(2(X0) —m) |

i=1 i=1

Replacing the square of simple summation with double summation, we have

ED Y hiri(x) — m)E(x)) —m) + (z(x0) — m)?

i=1 j=1
—2) " M%) — m)(z(x0) — m),
i=1

which, upon changing the order of expectation and summation, becomes

N MAELE®X) — m)(z(x)) — m)] + E[(z(%0) —m)?]

i=1 j=1
-2 MEI(z(x) —m)(z(X) — m)].
i=1

This equation can be expressed using the covariance function as

SO xiaRAUIX = %D + R©) = 2> A R(Ix; — Xoll).-
i=1

i=1 j=I
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Finally, we substitute using R(k) = R(0) — y (k) and use the fact that the As
sum to 1 to obtain

=N gy dx = x50 +2) kv dlix = xol), (3.53)
i=1

i=1 j=1

which is (3.40).

3.10 The function estimate

The “textbook” version of kriging is to formulate the best estimate of the func-
tion at a point as a linear weighting of the data, then to determine the weights
by solving a system of linear equations of order equal to the number of ob-
servations plus one. However, in practice, one is often interested in estimating
values on the nodes of a fine mesh for various reasons, e.g., in order to display
the best estimates using computer graphics. To apply the kriging technique (i.e.,
to solve a system of equations, independently for every node) is inefficient in
the case of fine grids with many nodes, because solving a system of n equations
involves operations of the order of "3—3

We can, however, write analytical expressions for the best estimate at any
point x, as discussed in references [30 and 86]. The method is as follows: Set

n
2 ==Y yx—x;IDE +B, (3.54)
j=1
where the & and B coefficients are found from the solution of a single system
of n + 1 equations with n 4+ 1 unknowns:

—ZV(lei —x;IDE; + B =z(x;), fori=1,...,n
= (3.55)

Y& =o0.
j=1

Thus, the function estimate comprises a linear combination of # + 1 known
functions: The first function is a constant, and for every measurement there
corresponds a function y (||x — x;||). This formulation has computational ad-
vantages. Once the § coefficients are computed, the estimate at any point can be
computed with » multiplications. This formulation proves useful in graphing
functions.

This formulation is also valuable because it reveals immediately properties
of the best estimate function. For example:

* If the variogram is discontinuous at the origin (nugget effect), the estimate
function Z (x) will be discontinuous at observation points.
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¢ If the variogram has linear behavior at the origin, the estimate will have sharp
corners at observation points.

¢ The more the observations, the more complex will be the function since it
consists of more terms.

* Away from observations, the estimate will be a “simple” and smooth func-
tion. The estimate will be a more “complex and interesting” function near
observation points.

Thus, the properties of the function that is interpolated from the observations
through kriging depend pretty much on the properties of the variogram used. It
is also interesting to view the variogram as a “base function” or “spline” in a
linear interpolation scheme.

Analytical expressions for the mean square error and the estimation error
covariance function can be found in reference [86]. In summary, the conditional
covariance function (which is neither stationary nor isotropic) is given from the
expression

Re(x,x) = —p(lIx = x'I) = DY vllix— %Py lix; — X1

i=l j=1

n
—B+Y _a;j(y(x—x;I) +y(ix; = x|, (3.56)
j=t
where P is n by n, ais n by 1, and B is a scalar, obtained through the inversion
of the matrix of the coefficients in system (3.55):

-1
Q X _|P a
[XT 0 =1 Bl (3.57)
where Q is an n by n matrix, X is an n by 1 vector, and Q;; = —y (lIx; — x;])),
X, =1
Exercise 3.6 Consider data z(xy), ..., z(x,) in a one-dimensional domain.

Predict the form of function 2(x) based on formula (3.54) without carrying out
the computations for the following two cases:

(a) nugget-effect variogram

(b) linear variogram.

Exercise 3.7 Which of the basic variogram models presented in this chapter
yields an estimate that is differentiable at any order?

Exercise 3.8 Give an intuitive interpretation to the interpolation method of
Equation (3.54).
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3.11 Conditional realizations

In applications we are ultimately asking the question:
What is the actual function z(x)?

Due to inadequacy of information, there are many possible answers. It is
often useful to generate a large number of equally likely (given the available
information) possible solutions in order to perform probabilistic risk analysis.
We call these solutions conditional realizations, but they are also known as
conditional sample functions or conditional simulations. The average of the
ensemble of all conditional realizations is equal to the best estimate and the
covariance is equal to the mean square error matrix.

Conceptually, we start with the ensemble of unconditional realizations, such
as those shown in Figures 3.2, 3.3, and 3.4. The ensemble-average variogram
is the same as the model variogram,

1 L1
5 2 5 E® 0 =230 = y(Ix = X)), (3.58)
k=1

as N tends to infinity. Then, from that ensemble, we keep only those realizations
that are consistent or “honor” the observations z(xy), .. ., z(X,) to form the en-
semble of conditional realizations. Thus, conditional realizations are consistent
with both the structure and the specific observations.

We will provide a rudimentary description of how to generate a conditional
realization, with emphasis on the key ideas and without worrying about opti-
mizing algorithms.

3.11.1 Point simulation

Step 1 Generate an unconditional realization z(x; k), with zero mean. This
is a technical issue that goes beyond the scope of this book, but an
introduction is given in Appendix C. (The index £ is used as a reminder
that there are many realizations.)

Step 2 Generate a conditional realization z.(Xo; k) at a given point X, through
“rectification” of z.(Xo; k):

zc(Xo; k) = z(Xo; k) +Z)»i(2(xi) —z(X;3 b)), (3.59)

i=1

where z (X;) is the actual observation and the A coefficients are the same
ones that were used to obtain the best estimate.
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Exercise 3.9 Prove that the expected value and variance of z.(Xy; k) produced
from the above procedure is the same as the best estimate and mean square
error found from kriging.

3.11.2 Function simulation

The functional form of z.(X; k) is developed similarly to that of the best estimate
in Section 3.10. First, generate an unconditional realization, a function z(x; k),
with zero mean. Then

n
206 k) ==Y y(ix—x;D& + B+ 2(x: b, (3.60)
j=1
where the & and B coefficients are found from system

= vlixi —x; g + B =z(x) —z(xi3 k), fori=1,....n
/=1 (3.61)

g =0
j=1

3.12 Properties of kriging

Kriging, or best linear unbiased estimation (BLUE) given only the variogram,
has found many applications in mining, geology, and hydrology. It shares with
other variants of BLUE techniques the following features: 1. The estimator is
a linear function of the data with weights calculated according to the specifica-
tions of unbiasedness and minimum variance. Unbiasedness means that on the
average the error of estimation is zero. Minimum variance means that, again on
the average, the square estimation error is as small as possible. 2. The weights
are determined by solving a system of linear equations with coefficients that
depend only on the variogram that describes the structure of a family of func-
tions. (Neither the function mean nor the variance are needed.)

In selecting the weights of the linear estimator, kriging accounts for the rel-
ative distance of measurements from each other and from the location where
an estimate is sought. Consider, for example, the case in which z is a gradually
varying function. Then, measurements in the neighborhood of the unknown
value are given more weight than measurements located at a distance. Further-
more, kriging accounts for the fact that two measurements located near each
other contribute the same type of information. Thus, the area of influence of
each measurement is essentially taken into account.

In the case of interpolation, kriging is an “exact interpolator.” That is, the
contour surface of the estimate reproduces the measurements. In the case of
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variograms with a nugget (discontinuous at the origin), the contour map has a
discontinuity at each observation point.

How does kriging compare to other methods used in interpolation and spatial
averaging, such as inverse-distance weighing and deterministic splines, which
are used in interpolation and contouring, or Thiessen polygons, a method used
in hydrology for estimation of mean areal precipitation from point measure-
ments [90]? A major advantage of kriging is that it is more flexible than other
interpolation methods. The weights are not selected on the basis of some arbi-
trary rule that may be applicable in some cases but not in others, but depend
on how the function varies in space. Data can be analyzed in a systematic and
objective way, as we will see in the following chapters, and prior experience
is used to derive a variogram that is then used to determine the appropriate
weights. Depending on the scale of variability, we may use equal or highly
variable weights, whereas Thiessen polygons, to mention one example, ap-
plies the same weights, whether the function exhibits small- or large-scale
variability.

Another advantage of kriging is that it provides the means to evaluate the
magnitude of the estimation error. The mean square error is a useful rational
measure of the reliability of the estimate; it depends only on the variogram
and the location of the measurements. Thus, given the variogram, one can
evaluate the mean square error of an estimate for a proposed set of measurement
locations. A useful application of kriging is in the design of sampling networks
or in the selection of the location of the next measurement, as in references [7,
71, and 120].

An inherent limitation of the linear estimation methods discussed in this
chapter is that they implicitly assume that the available information about the
spatial structure of the spatial function can be described adequately through a
variogram. Although this is often an acceptable assumption, one must keep in
mind that distinctly different types of functions may have the same variogram.
Intuitively, this means that if we only specify the variogram, we specify a family
of functions that contains many different solutions. If additional information is
available about the shape of the spatial function allowing us to eliminate many
candidates, then the kriging method of this chapter may not be the best approach
because it cannot directly use this information. Other estimation methods have
been developed that extend the BLUE methodology, and we will see some of
these methods. Also, methods outside the BLUE family have been developed,
including disjunctive kriging, probability kriging, and indicator kriging [37, 75,
98,114,115, 143, 112, 117, 132]; however, such methods are beyond the scope
of this book.
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3.13 Uniqueness

The reader may wish to skip this section at first reading.

Will the kriging system always have a unique solution? The answer is yes,
provided that we have used a mathematically acceptable variogram and there are
no redundant measurements. If we superpose variograms from the approved list
with parameters in the right range, the variogram we obtain is mathematically
acceptable.

Let us clarify what we mean by redundant measurements. Consider two
measurements obtained at the same location. If the variogram is continuous
(no nugget effect), then the function z is continuous, which means that one
of the two measurements is redundant (i.e., it contains no information that is
not already given by the other measurement). One of the two measurements
must be discarded; otherwise, a unique solution cannot be obtained because
the determinant of the matrix of coefficients of the kriging system vanishes.
In practice, the same conclusion holds when two measurements are located at
a very short distance &, and y (h;) is very near zero at this short distance, as
sometimes happens when using the Gaussian variogram. Any attempt to solve
this system on a digital computer will encounter numerical difficulties.

There are only two possible solutions to this problem: Either keep the model
but get rid of the redundant measurement or modify the model to make the
two measurements necessary, thereby removing the numerical problem. This
modification can be accomplished by adding a nugget term to the variogram.

Note that, when the variogram contains a nugget, two observations at the same
location or at nearby locations may differ significantly, as the result of random
measurement error and microvariability. In such a case, it may be desirable to
keep both measurements. The value of y (x; — x;) should be taken equal to C,
the nugget-effect variance, even though x; = x;. The two measurements may
be interpreted as being taken at a very small but nonzero separation distance
from one another.

For readers interested in a more rigorous mathematical treatment of the issue
of uniqueness of the solution, necessary and sufficient conditions can be found
at page 226 in reference [92].

3.14 Kriging as exact interpolator

You may choose to skip this section at first reading.

Consider the case in which the location of the unknown coincides with the
location of the i-th measurement, i.e., xo = x;. For example, consider kriging
with two measurements and xo = x;. The kriging system consists of three
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equations:
0 Ay — y(x1—x2)A + v =—yxo—x1)
— v —x)ArA + 0y + v =—yxy—x2) 3.62)
A + Az + 0v = 1.

Let us distinguish between the cases of continuous and discontinuous
(nugget-effect) functions.

1. For continuous functions (e.g., y (x —x") = |x — x'|), set y (x; —x9) = 0on
the right-hand side of the kriging system. The solutionis A; = 1, A, =0,
and v = 0. Kriging, therefore, reproduces the measured value, and the mean
square estimation error, calculated from (3.40), is zero.

Of course, the same would be true for any number of measurements. Thus,
in the case of continuous functions kriging is an “exact” interpolator. The
estimate Z(x) varies in a continuous fashion and can be plotted.

2. What about the case in which xo = x;, but with a variogram that exhibits
a nugget effect? Setting y (x; — x9) = 0 on the right-hand side of the krig-
ing system does guarantee that Z(xp) = z(x;). Thus, it is mathematically
straightforward to make kriging an exact interpolator if it is so desired.
However, the practical significance or usefulness of such an exact interpo-
lator can be questioned in this case. Let us use the example with the two
measurements and assume that y (x — x") = Cg, for Jx — x’| > 0, while,
as always, y (0) = 0. When xy = x|, one can verify that A; = 1, A, = 0,
and v = 0. Thus, the kriging equations we have developed reproduce the
measured value, and the mean square estimation error is zero. However, for
any other xg, no matter how close it is to x{, A; = 1/2, A, = 1/2, and
v = —Cy/2. Kriging uses the arithmetic average of the measurements, and
the mean square estimation error is computed to be 3Cy/2. As a result, the
estimate 2(x) is a discontinous function.

Exercise 3.10 What is the meaning of the nugget effect? How would you explain
it in nontechnical terms? What are the practical consequences of introducing
or changing the intensity of the nugget effect in interpolation using kriging?
(Hint: You will find it useful to compare the extreme cases of no nugget versus
the pure nugget effect. You can experiment with a kriging program.)

3.15 Generalized covariance functions

As with the last two sections, you may wish to initially bypass this section.
It is rather straightforward to express the kriging equations in terms of co-
variance functions. For stationary functions with unknown mean, the kriging
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coefficients and the mean square estimation error are given below:

n
D AR —x)+v=Rx—xX) i=12..,n
j=1

dai=1 (3.63)
j=1

n
El(Zo — z(%)?] = —v — > _ XA R(X — Xo) + R(0).
i=1

These equations apply when the covariance function can be defined. This is a
good time to introduce the concept of the generalized covariance function. The
motivation is that it is so much more convenient to work with covariance func-
tions than with variograms. For the intrinsic case, the generalized covariance
function, K(h), is

K(h) = —y(h) +C, (3.64)

where C is an arbitrary constant. Note that if we use K(%) in the place of R (k)
in Equations (3.63)—(3.63), the kriging coefficients or the mean square error are
not affected by the value of C. Alternatively, we may use K(4) instead of —y (h)
in Equations (3.41) and (3.48). The usefulness of the generalized covariance
function will be appreciated when we work with more complicated models,
such as with a trending mean. We will stick with the variogram in this chapter.

Example 3.3 (continuation of Example 1): In this example the variance is
infinitely large. Nevertheless, we can use the generalized covariance function

{—h, ifh >0
Kh) = : .
1, ifh=0

The kriging system of equations needed to estimate the value at xo = 2 is

1 -1 =3 17 xn -2
-1 1 =2 1| x| _|-1
-3 =2 1 1] |a] " |-

1 1 10]|v 1

The mean square estimation error is —v + 2x; 4+ Ay 4+ A3 + 1.

Solving the system, we obtain A; = 0.1304, A, = 0.3913, A3 = 0.4783,
and v = —0.304. The mean square estimation error is MSE = 2.43. That is,
the solution is the same whether we use variograms or (generalized) covariance
functions.
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3.16 Key points of Chapter 3

Typically, the problem involves finding a spatially variable quantity, z(x), from
a few measurements, z(X1), .. ., z(X,). We perform the search in two phases:

1. structural analysis, where we determine the family of functions that includes
the solution and

2. conditioning, where we eliminate from consideration members of the family
that are inconsistent with the data.

In structural analysis, instead of studying the multitude of all possible so-
lutions individually, we deal with their averages. In practice, we work with
the first two statistical moments and so structural analysis entails fitting equa-
tions that describe the first two moments. The intrinsic model is the simplest
model and basically postulates that the mean is constant (with a value that is not
needed) and the mean square difference is a function of the separation distance
only. This function, called the variogram, is a way to describe the distribution
of variability among scales. Once the variogram is chosen, one can perform
conditioning through best linear unbiased estimation. In this method, the es-
timate is a linear function (in a sense, a “weighted average”) of the data with
coefficients that are selected to minimize the mean square error and to render
an expected error of zero.



4

Variogram fitting

To apply the most common geostatistical model in the solution of an interpo-
lation problem, the variogram must be selected. In this chapter, we discuss the
practice of

1. fitting a variogram to the data, assuming that the intrinsic model is applicable,
and

2. checking whether the intrinsic model is in reasonable agreement with the
data.

4.1 The problem

Let z(x) be the spatial function that needs to be estimated, such as concentration
as a function of the location X in an aquifer. Consider that 7 measurements have
been collected:

z(Xy), z(X3),...,z(X,).

We need to fit a model that can be used for interpolation of z(x) from the
measurement points to other locations. In Chapter 3, we saw that the intrinsic
model can be used for the solution of interpolation problems. For any location
Xp, using a method called kriging we can obtain the best estimate of z(xp) as
well as the mean square error associated with this estimate. In other words, we
can obtain the most accurate estimate and a measure of how close this estimate
is to the true value. To apply this approach to actual data, however, we have to

1. choose the variogram, assuming that the intrinsic model is applicable, and
2. ascertain whether the intrinsic model is appropriate.

These questions are related. However, for instructional purposes, they will be
treated separately. We will start with the first question. Unless otherwise men-
tioned, in this chapter it will be taken for granted that the intrinsic (and isotropic)

83
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model is applicable and the focus will be on determining the variogram that fits
the data as closely as possible. Finally, after an appropriate variogram has been
selected, we will deal with the second question.

4.2 Prior information

Although there is no disagreement about the practical usefulness of the vari-
ogram, there are diverse views on what it really represents. Two extreme posi-
tions are:

¢ The variogram is not dependent on the data but rather is introduced based on
other information.
¢ The variogram is estimated only from the data.

We will discuss some of these issues. Let us start by considering the state-
ment “even if no observations of field variable z were available, its variogram
could still be devised based on other information.” Of course, this statement
makes no sense if we consider the field variable z in abstract terms. However,
geostatistical estimation methods should be examined in the context of their
application, not as abstract theory. Thus, z(x) to hydrogeologist A may be
transmissivity in a specific aquifer, to environmental engineer B concentration
of given pollutant, and so on. Once we consider what we know about a variable,
we realize that some of this information can be translated into a geostatistical
model.

If we had absolutely no knowledge of z(x), the nugget-effect variogram with
infinite variance would be appropriate. Kriging would yield estimates with in-
finite mean square error at unmeasured locations, which is reasonable since the
adopted variogram means that z could be anything. However, in practice, this sit-
uation is definitely not realistic. For example, if z represents log-transmissivity,
its variance is unlikely to be larger that 10 and is probably less than 4; also,
the transmissivity function is likely to exhibit some degree of spatial continuity
(see reference [66]). When these considerations are taken into account, we may
decide to adopt an exponential variogram with variance and length parameters
selected based on our judgement and experience. If this variogram is then used
for kriging, the mean square error of estimation represents a rational measure
of prediction reliability that reflects our judgement and experience.

On the other extreme, conventional statistical methodology is concerned with
making statements based on data and involves as little subjective judgement as
possible. Such methods can be used to infer some features of the variogram
with accuracy that tends to improve as more observations are collected.

In practice, the selection of the variogram (or, more generally, the geostatis-
tical model) should follow two principles:
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Consistency with observations The variogram should be in reasonable agree-
ment with the data. Thus, the variogram depends on the observations, particu-
larly if the data set is large.

Consistency with other information Certain features of the variogram cannot
be determined from the data and may be resolved based on other information.
Thus, the variogram also depends on the analyst’s judgement and experience.

In what follows, we focus on developing variograms that are consistent with
the data or, in other words, on how to extract from data information about the
variogram.

4.3 Experimental variogram

Variogram selection is an iterative process that usually starts with an exami-
nation of the experimental variogram. We already have discussed how we can
obtain the experimental variogram from the data. Then, we fit a variogram
model by selecting one of the equations from the list of basic models of the
previous chapter and adjusting its parameters to reproduce the experimental var-
iogram as closely as possible. For example, we may select the linear variogram,
y (h) = 6h, and then fit the parameter 6 to trace the experimental variogram, as
illustrated in Figure 4.1a. If we cannot obtain a reasonably good fit with a single
basic model, we may superpose two or more of them. For example, superposing
the linear plus nugget-effect equations, we obtain the variogram model

C, +6h, h>0
h 0 ’ , 4.1
y(){o’ B0 4.1

which has two parameters that can be fitted to the data, C, > 0,0 > 0, (see
Figure 4.1b). Although one could superpose as many models as one might

(@) (b)

k) s ¥h)

h
h

Figure 4.1 Variogram (continuous line) fitted to experimental variogram (dashed line).
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want, in practice, one should use models with as few parameters as possible.
Furthermore, one should avoid superposing two models that have very similar
shapes (such as the exponential and the spherical). We will discuss some of
these issues later.

Fitting an equation to the experimental variogram enables us to get started
with the analysis and to obtain a reasonable rough estimate of the variogram.
In many studies one needs to refine this estimate. However, the experimental
variogram cannot provide a solid basis for model refinement and testing, for a
number of reasons:

1. The i-th node of the experimental variogram, ¥ (4;), is only an estimate of
the value of y (h;). Associated with this estimate is a measure of reliability,
which depends on many factors and may be quite different from one node
to the next. Thus, it is not clear how one should fit the equation to the
experimental variogram. For example, in most cases, it is desired to obtain a
better fit near the origin because the reliability of the experimental variogram
nodes decreases at large separation distance.

2. The experimental variogram is often sensitive to the discretization of the
separation distance into intervals. There is no universally satisfactory way to
select intervals because using longer intervals means that you trade resolution
for reliability.

3. Fitting the model to the experimental variogram is not necessarily the same
as fitting the model to the original data. The degree of agreement between
the model and the experimental variogram may have nothing to do with the
adequacy of the model or the accuracy with which the model can reproduce
the data.

These points will become clearer when we see applications. For now, keep in
mind that fitting an equation to the experimental variogram usually gives a good
preliminary estimate, but to refine this estimate one must examine residuals.

4.4 Residuals
4.4.1 The concept

Residuals are differences between observations and model predictions. In statis-
tical modeling (regression, time series, analysis of variance, and geostatistics),
parameter estimation and model validation depend heavily on the examination
of residuals. For example see references [9, 11, 46, and 12].

We will explain later what we mean by residuals in geostatistics. To illus-
trate the basic idea, consider the easy-to-visualize problem of fitting a straight
line to data. Assume that we have observations of porosity, z, along bore-
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X
Figure 4.2 Fitting a straight line to data.

hole depth, x. The porosity seems to decrease with depth and a straight line
(the “model”) is chosen to represent spatial variability. Then, the residuals
are z; — (ax; + b), where z; is observation at point { and ax; + b represents
the model prediction at location x;; a and b are parameters. See Figure 4.2,
which depicts the data as points and the model prediction with a continu-
ous line. From this example, we can see that residuals can be useful for two

purposes:

1. To adjust the parameters of the model to get the best fit. A common approach
is to select the coefficients a and b that minimize the sum of squares of the
residuals,

>z — (axi + B 4.2)
]

2. To evaluate whether another model, such as a quadratic function, may be a
“better’” model. If the residuals exhibit a nonrandom pattern, as illustrated
in Figure 4.3, then another model that accounts for this pattern may repre-
sent the data better than the present model. (Whether an alternative model
is appropriate is a different issue. The residuals simply point out patterns
missed by the model currently being tested.) The idea is that we view the
porosity data as the sum of a “predictable” part, which we try to capture with
our model, and a “random” part. The residuals should represent the random
part.

Thus, residuals prove useful in parameter estimation (or model calibration)
and in model testing. In linear estimation, such as the kriging method of Chapter
3, residuals play as important a role as in the example above.
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X

Figure 4.3 Fitting a straight line to data that would better fit a quadratic.

4.4.2 Residuals in kriging

Now, let us see what we mean by residuals in the case of kriging, following
reference [82].

The model is one where the unknown spatial function z(x) is a realization
of an intrinsic function with variogram y (h). We will pretend that the » mea-
surements are given to us one at a time, in a given sequence. The sequential
processing is an important part of the methodology. (For now, we do not need
to concern ourselves with how to arrange the measurements in a sequence. For
many applications, any sequence will give the same result.)

Next, calculate the kriging estimate of z at the second point, X», given only the
first measurement, x;. Obviously, 2, = z(x;) and 022 = 2y (x; — Xp). Calculate
the actual error,

8y =z(X2) — £y, (4.3)
and normalize by the standard error
)
£ =—. (4.4)
02

Use the same procedure to construct the other residuals. For the £-th mea-
surement location, estimate through kriging the value of z using only the first
k — 1 measurements and normalize by the standard error. Thus,

& =z(x¢)—2¢, fork=2,....n (4.5)
P

g =—, fork=2,...,n. (4.6)
o

Note that the ¢ residuals are a normalized version of the é residuals and that
we end up with n — 1 residuals, § or &.
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4.4.3 Distribution of residuals

Using the actual data, the variogram model, and kriging, one can compute the
actual (or experimental) residuals. It is useful (for example, in model valida-
tion) to invoke the concept of the stochastic process to establish a probability
distribution for the residuals.

Consider the ensemble of possible realizations of a random function z(x).
Using the observation locations, the variogram, and the method of kriging, we
can in theory compute the residuals for each realization. This is the way to
generate the ensemble of all possible realizations of the residuals. In this sense,
the residuals are random variables and we can compute their ensemble statistics
(mean values, variances, covariances, etc.) or probability distributions.

If the model is correct (i.e., that the process is intrinsic with the given vari-
ogram), the residuals satisfy the following important relations:

Eleg]1 =0, k=2,...,n 4.7
1, ifk=¢

Elecg]l = . Lk, 6=2,...,n. (4.8)
0, ifk#£¢

Proof That E[g,] = O follows from the unbiasedness property of kriging. That
E [8,%] = 1 is a consequence of the normalization. Now assume that £ > k and,
to simplify the algebra, assume that a covariance function R has been defined.
Then

1 k—1 £—1
Eleer) = —E [(z(xk) - Zxkiz(xn) (Z(Xz) — > hjz(x))

i=1 j=1
| -1
= a{ (R(Xk —Xg) — ;MjR(Xk - Xj))
k-1 -1
= i lR(x,- —x0) = Y AR — x,-)] } (4.9)
i=1 =1

where A4; and A,; are kriging coefficients determined from the kriging system;
forany i, i < ¢, the following relation holds:

-1
D AR =X+ v =R —X), i=12...,£-1 (410
Jj=1

Consequently,

k—1
1
Eleree] = o (w - Z*ki"f) =0. 4.11)
i=1
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We say that the ¢s are orthonormal (i.e., uncorrelated from each other and nor-
malized to have unit variance). In optimal filtering, such sequences are known
as innovations (meaning “new information”) since each &, contains informa-
tion about z(x;) that could not be predicted from the previous measurements
z(X1), ..., z(X¢—1). From

Z(Xg) = 2 + oxsx 4.12)

we can see that the measurement at x, is the sum of the best estimate using
previous measurements (the predictable part) and the innovation. The lack of
correlation in the orthonormal residuals can be explained in intuitive terms
as follows: If the sequence of the residuals were correlated, one could use
this correlation to predict the value of ¢; from the value of &5, ..., &_; us-
ing a linear estimator. This allows one to reduce further the mean square er-
ror of estimation of z(x;); but this is impossible because Z; is already the
minimum-variance estimate. Thus, the orthonormal residuals must be uncor-
related if the model is correct and kriging is a minimum variance unbiased
estimator.

Exercise 4.1 You are given measurements z(Xy), ..., z(X,). The model is an
intrinsic function with a pure-nugget effect variogram:
, Co, If x#£X
y(x —x) = ! y
0, ifx=x
Show that the residuals are
=
S = z(Xx) — k—_—lig;z(xi), for k=2,...,n
and
8
& = k , fork=2,...,n.
kCo
k=1

4.5 Model validation

Model validation means testing the model. Every empirical model must be
tested before it is used for predictions. The confidence we have in model pre-
dictions relies to a great extent on how the model has performed in tests that
have the potential to discredit the model.

In practice, model validation is based on statistical tests involving the resid-
uals. A statistical test is the equivalent of an experiment that is conducted to
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validate a scientific theory. Assume that a theory (“model” or null hypothesis,
denoted by Hp) has been proposed and we want to validate it. We design an
experiment and then we

1. predict the outcome to the experiment using the theory;
2. observe the actual outcome of the experiment; and
3. compare the anticipated and observed outcomes.

If the agreement is acceptable, such as when the difference is within the
anticipated error, then we say that the data provide no reason to reject the model.
Otherwise, the data discredit the theory, i.e., give us reason to reject the model.

We follow the same approach in statistical estimation of spatial functions.
Some examples will illustrate the idea.

4.5.1 O statistic

Experiment Compute the orthonormal residuals, as described in Section 4.4.2,
then compute their average:

n—1

1 n
0, = > a. (4.13)
k=2

Model Prediction Our model involves a family (or ensemble) of functions, as
we mentioned at the beginning of Chapter 3, with variogram y (h). (If this is
unclear, reread Section 3.1.) For each function with probability of occurrence
P;, we compute a value of Q; with probability of occurrence P;. That is, our
theory says that Q is arandom variable and allows us to compute its probability
distribution. We start with its mean value

n

1 1<
E[QI)=E [m Zsk} =— ;E[sk] =0, (4.14)

k=2

followed by the variance

2
21 _ 1 ! _ 1 Bely
E[Q]] =E <n—1k2=;8k> _E{<”_1) k=2 1=28k81}

1 V<& 1 \? 1
= <n_1) 2.2 Elerel= (Tl) b=

k=2 1=2
(4.15)

The distribution of Q1 is considered normal for the following reasons: (@) Im-
plicit in our linear estimation is that the residuals are approximately normal.
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The distribution of a random variable that is a linear function of normal ran-
dom variables is normal. (b) Even if the orthonormal residuals are not exactly
normal, the distribution of their average will tend more and more toward the
normal one as the number of terms included increases, as postulated by the
central limit theorem of probability theory.

Thus, under the null hypothesis, Q; is normally distributed with mean 0 and
variance . The pdf of Q1 is

2

_ ex (_—x ) (4.16)
Safn=Dn P\ 2/n-1 ) '

The important point is that we expect that all sample values of 1 must be near
zero, especially if # is large. For example, there is only about a 5% chance that a
01 value will be larger than 2/+/n — 1 in absolute value. See Figure 4.4, which
shows the pdf of Q| for n = 20 as well as the fences at £2/+/n — 1 = £0.46.
The area under the curve between these two fences is approximately 0.95.

f@n=

Experimental Observation Measure the experimental value of O (the numer-
ical value from the actual data).

Compare Model with Experiment If the experimental value of 0 turns out to
be pretty close to zero then this test gives us no reason to question the validity of
the model. However, if itis too different from zero, then the model is discredited.
We may adopt the following:

Decision rule Reject the model if

2
- , 4.17
L — (4.17)
15
g
5 10
a
05
1 205 0 05 1

Q,

Figure 4.4 Probability density function of Q, statistic for n = 20.
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This rule involves a 5% probability that the correct model may be rejected.
We may reduce this risk by increasing the value of the threshold (2/+4/n — 1),
but by doing so we reduce the chance to weed out a bad model. The 5%
cutoff, although customary in statistics, is somewhat arbitrary. One may adjust
the test on the basis of the prior confidence in the model. That is, if one has
reasons to trust the model, then one may use 2.5/4/n — 1. The bottom line,
however, is that a large || value is a sign that the model does not fit the
data.

4.5.2 @, statistic

The same procedure can be applied with several other statistics. The most useful
one is

n—1

1 n
0, = > el (4.18)
k=2

Again, under the null hypothesis, @ is a random variable with mean
E[Q:]=1 4.19)

and variance that can be calculated for normally distributed z,

2
E[(Q,— 1= ——. (4.20)
n—1
Furthermore, under the assumption that the residuals are approximately nor-
mal, (n — 1) @, follows the chi-square distribution with parameter (n — 1). The
pdf of O, can then be derived:
o a3
(n =1 0,7 exp (-1=P2)

, (4.21)

where I' is the gamma function. A plot of this distribution for n = 20 is shown
in Figure 4.5. The key point is that most values should be near 1. Specifically,
for n = 20, there is a probability 0.95 that the value of Q0 is between 0.47 and
1.73.

Thus, we can come up with another 5% rule:

Decision rule Reject the model if
Q,>U or QO <L, 4.22)

where the values of U and L are known from the pdf of f((Q,) (see Table 4.1,
which was adapted from a table of the x? distribution in [62].) Actually, for
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Table 4.1. The 0.025 and 0.975
percentiles of the Q, distribution

n—1 L U n—1 L U
1 0.001 5.02 21 0490 1.69
2 0.025 3.69 22 0500 1.67
3 0.072 3.12 23 0509 1.66
4 0.121 2.78 24 0517 1.64
5 0.166 2.56 25 0.524 1.62
6 0.207 2.40 26 0531 1.61
7 0.241 2.29 27 0541 1.60
8 0273 2.19 28 0546 1.59
9 0.300 2.11 29 0552 1.58
10 0.325 2.05 30 0560 1.57
11 0347 1.99 35 0.589 1.52
12 0.367 1.94 40 0.610 148
13 0.385 1.90 45 0.631 145
14 0402 1.86 50 0.648 1.43
15 0417 1.83 75 0.705 1.34
16 0.432 1.80 100 0.742 1.30
17 0445 1.78
18 0457 1.75
19 0469 1.73
20 0479 1.71
1.2
-
g
o 08
Q
04
0 0.5 15 2 25
Q,

Figure 4.5 Probability density function of Q5 for n = 20.
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Table 4.2. Coefficients for the Filliben test
for departures from normality

n R n R

5 0.879 45 0.974
10 0.917 50 0.977
15 0.937 60 0.980
20 0.950 70 0.982
25 0.958 80 0.984
30 0.964 90 0.985
35 0.968 100 0.987
40 0.972

n > 40, approximating the distribution of Q, as Gaussian is adequate for this
application, so that one can use the following rule:
Reject the model if

|Q2— 1] > 2.8/+/n—1. (4.23)

4.5.3 Normality

One should also test whether the ¢ residuals follow a Gaussian distribution,
because minimum-variance linear unbiased estimation methods implicitly as-
sume that the estimation errors are approximately normal. Plotting ¢,, ..., ¢,
on normal probability paper allows one to detect visually departures from nor-
mality.

Another approach is to perform formal goodness of fit tests, such as the
Shapiro-Wilk [126] and Filliben [52] tests. We do not intend to deal with all
the details of such tests. In simple terms, we proceed as follows: We evaluate a
number r between 0 and 1 that measures how close the probability distribution
of the residuals is to the normal distribution with mean 0 and variance 1. The
value of r varies from realization to realization, i.e., r is a random variable with
probability distribution that depends only on the value of n. We can compute
the number R that is exceeded 95% of the time (see Table 4.2); in other words,
the value of r should be between R and 1 in 95% of the times. For example,
for n = 21, R = 0.972. If the experimental value is less than this value
R, then we have reason to suspect that the residuals may not be normally
distributed.
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4.5.4 No correlation

Finally, if the model is correct, the ¢ residuals should be uncorrelated, i.e., they
should have the pure nugget-effect variogram,

( ) 1, for x; # x; (4.24)
Xi—Xj) = . .
v / 0, for x; =x;

One may thus perform a variogram analysis and test the hypothesis that the
experimental variogramof e, .. ., &, isindeed this y . One can also plot the signs
of the residuals seeking patterns indicating disagreement between the actual and
the expected behavior of the model.

4.5.5 Ordering

As already mentioned, an important feature of the methodology is that the data
are ordered. As long as no other model is being considered as a likely candidate,
this order should be picked at random. However, if a reasonable alternate model
exists, it makes sense to order the data to increase the probability that the original
model will be rejected if the alternate model is valid. We will return to this issue
after we consider models with variable mean.

Thus, we have seen that the orthonormal ¢ residuals are useful in testing the
validity of the model. The idea is simple: If the model is good, we expect that
the orthonormal residuals will have zero mean and unit variance and will be
uncorrelated from each other. If the actual residuals do not behave this way,
then the model can probably be improved.

4.6 Variogram fitting

In this section, we will see that the § residuals are particularly important in
evaluating how closely the model fits the data. The smaller the values of the §
residuals the better the fit. We can thus select parameters that optimize the fit.
Consider that we have tentatively accepted the model and selected an expres-
sion for the variogram; next, we must fit its parameters to the data. For example,

we have chosen
h
y(h)y=v [1 — exp (— Z)] 4.25)

but we need to fit the parameters v and £ to the data. In general terms, we evaluate
the agreement between the model and the data by examining the differences
between the data and the predicted values (the § residuals). To optimize the
agreement, we must select the parameters that minimize, in some sense, the
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residuals. Note that parameters impact the residuals in two ways: They affect
the residuals §; (through their influence on the best estimates) and the estimation
variances aiz. For instance, in the variogram of Equation (4.25), §; depends only
on parameter £, whereas a,-z is proportional to parameter v and is less sensitive
to parameter £.

To ensure that the model neither overestimates nor underestimates the vari-
ance, we select parameters so that

1 K82
0, = M L=1 (4.26)

n—1 = o

If, for example, £ is known in Equation (4.25) and the only parameter to be
estimated is v, then we select v so that 0, = 1. However, if both parameters
need to be estimated, then this requirement does not specify a unique answer
because there are many combinations of v and £ that satisfy (4.26). To choose
among them, we must account for the size of the § residuals. That is, we must
select the values of the parameters that make the § residuals as small as possible.

The underlying idea is simple: The right parameters should make the model
reproduce the data. The challenge lies in finding the index that best represents
in an average sense the size of the residuals; then, the best estimates of the
parameters are the values that minimize the value of this index while at the
same time satisfying (4.26).

A reasonable index is the mean square § residual,

1 n
M=— Za}. (4.27)
n i=2

An important advantage of this criterion is that it is simple and easy to explain.
If the § residuals follow the same (approximately normal distribution with zero
mean), then M is the most representative measure of the size of the residuals.
In such a case, the most reasonable estimates of the parameters are the ones
that minimize the value of M.

However, in most applications the measurements are distributed in space
in such a way that a few of the 82 values may determine the value of M.
The largest values usually correspond to measurements located far away from
other measurements and are consequently more erratically predicted from other
measurements. Thus, a limitation of this method is that the parameter estimates
are too sensitive to the values of the erratic large 82 values.

Another criterion is the geometric mean of the 82 residuals,

1 n
gM = exp| — ; en(a,?)) . (4.28)
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Note that

1 n n ﬁ
exp (;1-—:-1 ; tn (53)) = ( ]1 5,.2) (4.29)

is the geometric mean of the square residuals, §?. With this criterion, we have
reduced the sensitivity to large values but now the problem becomes oversen-
sitivity to values of § near zero. Suppose, for instance, that by pure chance a §
residual practically vanishes; this residual determines the value of gM.

To construct more stable (i.e., less affected by random error) criteria, we may
use instead of 87 its kriging variance o2. Of course, 8?7 is a true residual whereas
o} is a theoretical value; however, according to our model, o? is the expected
value of 87. Intuitively, this means that o is representative of §>—as we have
made sure by enforcing Equation (4.26)—but o;? is more stable than §7.

If we use this idea with Equation (4.28), we obtain the criterion

n
R = Q, exp ﬁ > en(a?) ), (4.30)
i=2

which is a good index of the agreement between the model and the data. cR
is simply the stabilized geometric mean of the square residuals but is a con-
siderably more reliable indicator than gM; note that we have eliminated the
chance of accidentally getting a o7 value that vanishes because, unless there
are redundant measurements, we cannot have zero values of kriging variance.

In summary, an accurate and practical approach is to select the parameters
that minimize

R = exp(# Zen(a,?)) (4.31)
i=2

subject to the constraint

R
Y L=1 (4.32)

A convenient feature of this method is that the estimates do not depend on
how the data are ordered. This is because neither (4.31) nor (4.32) depend
on the order with which the data are processed. Algorithms are available for
the solution of this optimization problem; however, the computational cost
may be large if the data set exceeds a couple of hundred measurements, and
these algorithms will likely not function well if the problem involves too many
or poorly identifiable parameters. In simple applications involving up to two
parameters, it is straightforward to optimize the parameters manually.
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Find variogram parameters that:
minimize cR
while

@, =1

Figure 4.6 Recommended procedure to estimate variogram parameters.

This method, which is summarized in Figure 4.6, is practically the same as
the Restricted Maximum Likelihood (RML) parameter estimation method of
statistical theory ([28, 113]). This method is described in references [79, 81,
and 88]. A related method is given in reference [130]. For large samples, this
approach has been shown mathematically to yield estimates of the variogram
parameters that are unbiased and have the smallest mean square error (given
the data). However, the RML method and the asymptotic properties of these
parameter estimation methods are beyond the scope of this book. We have used
some intuitive arguments to demonstrate that this is a reasonable method if we
use an acceptable model. Methods for estimating variograms are also reviewed
in references [81 and 149]. A resampling approach is given in reference [16].

4.7 On modeling

It may be worth reiterating that, in practice, a model and its parameters are
often selected based on criteria other than their agreement with data: additional
information (sometimes called “soft data”), preference of the analyst for certain
models, and even available software. However, in this section we will focus on
the data set and its use on model selection.

The intrinsic model that has been the subject of Chapters 3 and 4 is the sim-
plest geostatistical model and is also the one most commonly used in practice.
There are several reasons that explain its popularity:

1. This first reason is the general principle, known as Occam’s razor, that under-
lies the scientific approach: Use the simplest model that fits the data. More
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Checklist:

ls @, near O¢

ls @, about 1?7

ls cR as small as possible?
Are € residuals normal?

Are € residuals uncorrelated?

Figure 4.7 List for checking the fit of the model.

complicated models must fit the data significantly better than the simple
model to assure that they will give better predictions.

2. To apply the intrinsic isotropic model, only the variogram is needed.

3. The intrinsic isotropic model is generally quite a conservative choice, in the
sense that to use it one assumes very little about the structure of the function.
(The drawback, however, is that a more elaborate model, if justified, could
yield estimates with smaller mean square error.)

A general principle is to fit a variogram with as few parameters as possible.
Include a nugget-effect variogram if the data indicate clearly the presence of a
discontinuity. Include a model with a sill (such as the exponential) only if the
data clearly show stationarity; otherwise, use a linear variogram. It is generally
quite difficult to estimate from data more than two variogram parameters. In
many applications, one can make do with models having only one or two pa-
rameters. When comparing a model with three parameters against a model with
two parameters, the three-parameter model should be chosen only if it fits the
data clearly better than the two-parameter model.

Variogram estimation is an iterative procedure. Several models are fitted and
tested. Figure 4.7 gives a list of criteria that must be met to assure that the model
fits the data adequately. A variogram that meets the criteria in this list will be
sufficient for most practical applications (interpolation, contouring, volume av-
eraging). If more than one model seems to fit the data equally well, select the
simplest. In most applications the results from kriging will not be sensitive to
the exact shape of the variogram, again assuming that the criteria of Figure 4.7
are met. For example, see reference [14]. A formal approach for incorporating
parameter uncertainty into the prediction is described in reference [80]. An ap-
proach for incorporating additional information can be found in reference [108].



Estimation simulator 101

4.8 Estimation simulator

It takes practice to become good at model selection and calibration. We will
practice using an estimation simulator (the same idea as a flight simulator),
which uses data that were synthetically generated by a mathematical procedure.
The idea is that before we try to solve a problem for which the answer is
unknown, it is prudent to solve some problems with known answer. Here, we
will generate data from a realization of a function with a given variogram and
then we will try to infer the variogram from the data. Other more challenging
exercises can also be devised, but due to space limitations we will present here
only two examples.

A comment is in order on the relevance of such exercises to real-world
applications. In practice, there is no such thing as the “true” variogram of the
function we want to estimate; the selected variogram represents information
about the structure of that function. Thus, the role of estimation simulators is to
help us find out whether or how the main structural features can be indentified
adequately for practical purposes.

4.8.1 Synthetic realizations

First, we need to make a few comments on generating synthetic realizations.
As we discussed in Chapter 3, the intrinsic model with variogram y () means
that the function of interest, z(x), belongs to an ensemble of many functions
(or realizations) and

Elz(x) — z(x’)] =0 (4.33)
1
5 Elz(0) - z(x))?] =y (x—x), (4.34)

where E denotes averaging over all possible realizations in the ensemble.
Now, given y (h), there are computational methods that can generate as many
equiprobable realizations as we want. These synthetic realizations are such that
they meet statistical tests for model validation. For instance, 95% of them pass
the |Q4] < —\/;27—1 test. Furthermore, if n realizations are generated, then

LS i) — 263 )] (435)
n i=1
and
1 . 1 : 7. N2 ’
= Sl ) — 2 DF — y(Ix = X)) (4.36)
n 2

i=1

both decrease as n increases and tend to zero as n tends to infinity.
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Figure 4.8 Plot of observations versus locations for Example 1.

4.8.2 Example 1

Consider 70 measurements that were synthetically generated from a one-dimen-
sional random process. Our task is to infer the variogram and to test the intrinsic
model.

We always start by plotting and calculating basic statistics for the data (ex-
ploratory analysis). For one-dimensional data, the task of exploratory analy-
sis is simplified because a plot of the observations versus the location (see
Figure 4.8), pretty much conveys a visual impression of the data. In this
case, we infer that the data are reasonably continuous but without a well-
defined slope. The data indicate clearly that much of the variability is at a
scale comparable to the maximum separation distance, so that the function
does not appear stationary. These observations are important in selecting the
variogram.

Next, we plot the experimental variogram. For a preliminary estimate, we
subdivide the separation distances into 10 equal intervals. One might proceed
to draw a straight line from the origin through the experimental variogram, as
shown in Figure 4.9. That is, our preliminary estimate is that the variogram is
linear with slope 0.40.

To test the model and possibly refine the preliminary estimate of the vari-
ogram, we compute the residuals. The experimental value of Q; is —0.25, and
95% of the values of Q; are expected to be within the interval £0.25. The
experimental value of Q5 is 2.34 with 95% of the values of O, expected to
lie within the interval [0.66, 1.34]. These statistics indicate that something is
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Figure 4.9 Experimental variogram and preliminary fit.
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Figure 4.10 Experimental variogram and fit from residuals.

wrong with the model that we fitted. The orthonormal residuals clearly do not
have variance 1, and they likely do not have mean O.

The best fit obtained using the method of Figure 4.6 yields a slope of 0.94.
Plotting this fitted model with the experimental variogram in Figure 4.10, we
see that the two do not seem to be in great agreement. (Actually, as we will see,
the fitted model and the variogram are in agreement where it matters.)
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0.1 0.2 0.3 04
Figure 4.11 Experimental variogram and fitted model for Example 1.

Which is the correct answer? The data were actually generated using a linear
variogram model with slope 1. Thus, using the residuals, we were able to ob-
tain a far better estimate for the slope than using the experimental variogram.
The reason is that the reliability of the experimental $ () as an estimate of the
“actual” variogram is very poor at large distances when we deal with non-
stationary functions. Thus, it is pointless to fit a curve to the nodes of the
experimental variogram at large separation distances because the experimental
variogram there has no meaning. As a rough rule of thumb, one can assume
for this case that the error in $ (h) is proportional to the value of y (k). Thus,
the most reliable nodes of the experimental variogram are the ones near the
origin. To see these nodes more clearly, we use short intervals near the ori-
gin and long ones at large distances. It is usually unnecessary to use more
than 5 intervals. The variable-interval experimental variogram of Figure 4.11
is much better than the uniform-interval experimental variogram of Figure
4.10.

There are several important lessons to remember from this exercise:

1. If the function is continuous (which we can see from the exploratory analysis
of the data as well as from the behavior of the experimental variogram near
the origin), then fit a variogram that reproduces the experimental variogram
quite closely near the origin. Compute an experimental variogram using
short intervals near the origin, as shown in Figure 4.11.

2. If the function is nonstationary (which we can often infer from the ex-
ploratory analysis of the data), pay no attention to the values of the exper-
imental variogram at large distances. Typically, for a function that is both
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Figure 4.12 Data for Example 2.

nonstationary and continuous, disregard the variogram points at distances
larger than half the maximum separation distance.

3. Itcan be shown' that the relative standard error of estimation of the slope of
the linear variogram is /2/(n — 1); thus, the larger the sample, the smaller
the relative error.

4.8.3 Example 2

Again we deal with 70 measurements of a one-dimensional function. Let us
plot the data in Figure 4.12. From this plot, we see that the function from
which we have data may be stationary (i.e., large-scale components are not
very prominent) and perhaps the function is continuous.

We next plot the experimental variogram using two different discretizations,
shown in Figures 4.13 and 4.14. The second discretization shows that the func-
tion is indeed practically continuous. We choose an exponential variogram,

yh)=v (1 —exp (—?)) , 4.37)

with preliminary estimates v = 0.8 and I = 0.03. Next, we try to refine the
estimate by adjusting the value of / to optimize the value of cR.

! This result and some others mentioned later in this section are based on the method of restricted
maximum likelihood ({79, 88, 81]). A number of implicit assumptions are made, such as normality
and large sample size.
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Figure 4.13 Experimental variogram and preliminary fit for Example 2.
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h

Figure 4.14 Experimental variogram and preliminary fit for Example 2 using another
discretization.

We see that the fitting criterion is quite insensitive to the value of / (see
Table 4.3). That is, good fits can be obtained for a range of values of /. The
estimate that gives the smallest cR is/ = 0.03 and v = 0.64 (to make Q; = 1).
This model is shown in Figure 4.15. For these parameters, Q is 0.12, which
means that the average of the residuals is insignificantly different from zero;
the residuals pass the normality test (see Figure 4.16); and the residuals seem
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Table 4.3.
Optimizing the fit
) cR
0.020 0.2111
0.025 0.2064
0.030 0.2053
0.035 0.2059
0.040 0.2071

0.8

0 0.1 0.2 0.3 0.4
h

Figure 4.15 Experimental variogram and best fit estimate of variogram.

uncorrelated, as evidenced by their experimental variogram, which is practically
a nugget effect with variance 1 (see Figure 4.17).

Thus, we conclude that the variogram is exponential with sill 0.64 and length
parameter 0.03. How did we do? (The envelope, please!) The data were gener-
ated from a stationary function with exponential variogram with sill 1 and length
parameter 0.05. Our estimation failed to come very close to the actual values
of the sill and the length parameter, but notice that it did a good job estimat-
ing the slope of the variogram at the origin. (Compare “true” value ﬁ =20
with estimate g:—g% = 21). Again, we see that, because there was no nugget
effect, we could reproduce the behavior at the origin. Finding the sill and the
length parameter, however, is always much tougher. Fortunately, interpolation
and averaging depend mostly on the behavior of the variogram near the origin.



108 Variogram fitting

r=0.986
2| |R=0.982at 95% level
Pass normality test

order statistics median
o

2
3 . . . . . . . . .
-2 -1 0 1 2 3
normalized observations
Figure 4.16 Orthonormal residuals pass normality test.
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Figure 4.17 Experimental variogram of residuals in nugget effect.

Some lessons can be learned from this exercise:

1. If the function is continuous, then fit a variogram that reproduces the exper-
imental variogram quite closely near the origin.

2. Evenifafunction is stationary, the errors associated with estimation of the sill
and the length parameter may be large and are positively correlated (i.e., these
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parameters are usually either both overestimated or both underestimated).
The relative error in the sill turns out to be of the order of ./2(I/L), where /
is the length parameter and L is the size of the sampling domain, provided
that we have sufficient measurements. In this example, we expect that the
relative error will be of the order of 30%.

3. It can be shown that for a continuous stationary function, the slope of the
variogram at the origin can be inferred with relative standard error of the
order of /2/(n — 1) orless. Thus, for large samples, we can expect to obtain
accurate estimates of the slope of the variogram, which is good news if we
intend to solve problems of interpolation or averaging.

4.9 Key points of Chapter 4

We examined the problem of fitting a variogram to the data and testing the
efficacy of the model. In practically all applications, data are insufficient for
estimating accurately the whole variogram. However, a reasonable model can
be obtained following an iterative procedure. Starting with the experimental
variogram, a model is postulated, which is then improved using residuals. The
recommended procedure for variogram fitting relies more on the residuals than
on the experimental variogram. “Fitting a (model) variogram” should not be
confused with fitting to the experimental variogram; instead, fitting a variogram
should be to the data in the sense that residuals are small and have the properties
anticipated by the model. Figure 4.7 summarizes a practical way to evaluate the
model fit.
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Anisotropy

The structure of a variable may depend on the direction. This chapter provides
an overview of selected techniques for modeling such behavior.

5.1 Examples of anisotropy

The variograms studied in Chapters 3 and 4 are examples of isotropic models,
in which the correlation structure (in particular, the variogram) does not differ
with the orientation. The variogram depends only on the separation distance /
and not on the orientation of the linear segment connecting the two points; that
is, the average square difference between two samples at distance # is the same
whether this distance is in the horizontal or in the vertical direction.

There are many cases, however, where the structure of a certain variable does
depend on the direction (anisotropy). The best examples of anisotropic struc-
tures can be found in stratified formations. Consider, for example, an alluvial
unit formed by the deposition of layers of gravel, sand, and silt. The layers
and lenses of the various materials are oriented in the horizontal direction; as
aresult, the mean square difference of hydraulic conductivity measured at two
points at a short distance 4 in the horizontal direction is smaller than the mean
square difference at the same distance in the vertical direction. The same holds
true for other hydrogeologic parameters, such as storativity.

Figure 5.1 is a vertical cross section showing a sketch of the cross section
of an alluvial formation. Assume that we compute the experimental variogram
y1 as a function only of the separation distance /] in the vertical direction and
then we compute the experimental variogram ¥, as a function of the horizontal
distance 4,. (We use the same method as for the experimental variogram except
that, instead of the overall distance, we use the distance in the horizontal or
vertical direction.) The two variograms, shown in Figure 5.2, have the same
sill, but ¥, reaches the sill at a shorter separation distance than does y;. That is,

110
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Figure 5.1 Vertical cross section of alluvial formation.
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Figure 5.2 Variograms in horizontal and vertical directions.

the correlation distance in the vertical direction is shorter than in the horizontal
direction.

Consider the practical implications of anisotropy in, for example, interpola-
tion. From measurements of log-conductivity (logarithm of hydraulic conduc-
tivity) in boreholes, we want to estimate the log-conductivity at another point.
A measurement at 10 m horizontal distance is probably as informative (i.e.,
should be given the same weight) as a measurement at 1 m vertical distance
because there is much more correlation in the horizontal direction than there is
in the vertical direction.
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Figure 5.3 Streamlines and iso-concentration contour lines.

Anisotropy is often the result of hydrodynamic or transport mechanisms.
Consider, for example, steady two-dimensional flow in a homogeneous and
isotropic (in hydraulic conductivity) porous medium. The streamlines are par-
allel straight lines. A plume of a chemical in solution in this flow field tends
to be elongated in the direction of flow, as shown in Figure 5.3, because hy-
drodynamic dispersion is much stronger in the direction of flow than in the
transverse direction. Thus, the correlation length of the chemical concentration
in the direction of flow is much larger than in the transverse direction.

Anisotropy is encountered when studying groundwater flow in a hetero-
geneous formation (see [35 or 57]). As a rule, hydraulic head (or pressure),
velocity, and solute concentration in a unidirectional flow field with variable
conductivity are anisotropic; that is, the variogram in the direction of flow is
different from the variogram in the direction perpendicular to it. The “principal
axes” of the anisotropy are determined by the direction of flow.

Finally, examples of anisotropic structures are encountered in hydrometeo-
rology. The structure of precipitation is often anisotropic as the result of wind
prevailing in a certain direction or orographic effects.

5.2 Overall approach

Inmany of the cases mentioned above, such as conductivity in a layered medium
or concentration in a flow field, we can probably develop a model that represents
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available information better and that has the potential to give more accurate
predictions by accounting for anisotropy. A drawback of anisotropic models
is that they require more parameters than the corresponding isotropic models.
Consequently, anisotropic models must be used only when sufficient data or
prior information allow us to differentiate with respect to direction.

The overall approach used with anisotropic intrinsic models is the same as
the approach for isotropic intrinsic models that we saw in Chapters 3 and 4.
The basic difference is that in the anisotropic case the variogram depends on
the separation vector h = [h;, h2, h3], instead of the scalar separation distance
h = +/h3 + h3 + h}, known as the Euclidean distance, that is used in the
isotropic case. In other words,

in the anisotropic case, the separation between two points is characterized
not only by distance but also by orientation.

Consequently, the choice of a system of spatial coordinates is more important
than it was in the isotropic case. An example of an anisotropic variogram is

Yh1, ha, h3) = o |1 —exp| — | 2+ ke 2+ ha\’ 5.
’ 20 20 2 ’

where /4 and 4, are distances along the horizontal axes of a Cartesian system
and A3 is the distance along the vertical axis, measured in meters. This variogram
conveys the information that the correlation length in a horizontal direction is
ten times longer than the correlation length in the vertical direction.

Using linear estimation (kriging) in an anisotropic case is as easy as in an
isotropic case. Exactly the same formulae apply, with the exception that we use
y(h1, ha, h3) or y(h) instead of y(h). The challenge lies in structural analysis,
because anisotropic variograms have more parameters and are harder to esti-
mate. We follow the usual approach in which a variogram is tentatively selected
and then tested using the methods that we saw in Chapter 4. It is important to
keep in mind that, in practice, one should adopt a complicated empirical model
only if it fits the data significantly better than a simpler model: In other words,
always use the simplest empirical model consistent with the data.

5.3 Directional variogram

The directional experimental variogram is a tool useful in exploring the degree
of anisotropy of the data. To plot it, consider the raw variogram. For two dimen-
sions, in addition to the separation distance, compute the direction angle ¢;;
(where angles differing by 180° are considered the same, e.g., 110° is the same
as —70°) for any pair of measurements. The data pairs are grouped with respect
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to the orientation. Then a separate directional experimental variogram is plotted
for each group of direction angles. That is, plot one experimental variogram
for those in the interval —90° to 0° and another experimental variogram for
those in the interval 0° to 90°. Commonly, in two-dimensions, two orthogonal
directions (those whose orientations differ by 90°) are selected.

Significant differences between directional variograms may be indicative of
anisotropy, and the orthogonal directions where the contrast is the sharpest may
be taken as the principal directions of anisotropy. However, the same differences
may be indicative of a drift. Thus, the directional variogram is an exploratory
tool that can be used to suggest models worthy of further analysis. However, the
next step is to propose a model and to calibrate and validate it using orthonormal
residuals.

5.4 Geoanisotropy
5.4.1 General

After data exploration, we tentatively select a model. The most useful type of
empirical model is one in which the variable is isotropic in an appropriately
chosen Cartesian coordinate system. Consider, for example, the anisotropic var-
iogram model of Equation (5.1). We can transform from the original (x;, x,, x3)
coordinate system to the new system (x}, x3, x3):

xX=x1, x=x, x5=10x (5.2)

h* 2 hz 2 ; 2
By, o hs) = 02| 1= _J(5 h n
i, hay hs) = o P (20) +(20> +(20>
2 h*
=01 —exp 320/ (5.3)

where h* = /(h})? + (B3)? + (h})%.

Thus, the simple “stretching” of the vertical axis allows us to use a familiar
isotropic model. Whereas in this example we used an exponential variogram,
any of the variograms that we saw in Chapter 3 can be used. Also, it should
be clear that the same approach applies if we work with covariance functions
instead of variograms. In the remainder of this section we will discuss this useful
class of models, making references to the variogram of an intrinsic function.

The basic premise is that there is a special rectangular Cartesian coordinate
system, which can be obtained from the original system through axis rotation
and stretching, in which the variogram depends only on the Euclidean distance.
The axes of this special system are known as principal. The term geoanisotropy
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Figure 5.4 Vertical dimension stretched by a factor 12.

has been coined to describe this specific model of anisotropy. (The term geomet-
ric anisotropy, used in other books, refers to the more general model where the
anisotropy can be reduced to isotropy by a linear transformation of coordinates.
Geoanisotropy limits the choice of linear transformation to a combination of
axis rotations and stretchings.)

It is easier to visualize the concept of geoanisotropy in the two-dimensional
case of a vertical cross section in a stratified formation (see Figures 5.1 and
5.4). The original coordinate system is (x;, x). First, we rotate the axes to align
them with the directions parallel and perpendicular to the stratification, which
are the directions of maximum and minimum correlation length, i.e., the princi-
pal axes. Then, we stretch the domain in the direction of minimum correlation
length (perpendicular to the stratification) by a coefficient larger than 1. In this
new coordinate system, the variogram depends only on the separation distance.

In three dimensions, the same general approach applies. The transformation
generally involves three rotation angles, needed to align the coordinate system
with the principal directions, and two stretching parameters, needed to equalize
the correlation length in all three dimensions.

The same idea can be expressed in a mathematically succinct way using
the concept of a generalized distance. We say that an intrinsic function is
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geoanisotropic if its variogram depends only on the generalized Euclidean dis-
tance (or metric):

5.4)

where d is 2 or 3 (the number of dimensions) and H;; is the ij element of a
symmetric and positive definite tensor. We will see later how we can parame-
terize this tensor. The basic advantage is that 4, can now be used in place of 4
in methods where isotropy is assumed.

Of course, not all anisotropic structures can be transformed into isotropic
ones through such a change of coordinate system. An intrinsic function with
variogram

h h h
y(hl,hz,h3)=az[1—exp(—%—';g—'—%)] (5.5)

is an example of a function that is anisotropic but not geoanisotropic.

5.4.2 Two dimensions

Let us first study the transformation to the principal-axes system:
x{ = cos(p)x| + sin(p)x;
(5.6)
x5 = ~a sin(p)x; + o cos(p)xz,

where, as Figure 5.5 indicates, ¢ is the rotation angle needed to bring positive
x1 to overlap with positive x| and « is the stretching applied on the second axis

A
X2

Figure 5.5 Rotation of coordinate system (new system is denoted by *).
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after the rotation. The angle ¢ is positive in the counterclockwise direction.
Note that both systems are assumed positively oriented, i.e., if we rotate the
first axis by 90° in the counterclockwise direction we make it coincide with the
second. In vector notation,

x| _ |1 0 cos(p) sin(e) | [ x;
x| |0 e« [—sin(p) cos(p) | | x2

x*=MTx,

or

where T is the matrix of rotation and M is the diagonal matrix of stretching.
Thus, this transformation involves two user-chosen parameters: the rotation
angle ¢ and the stretching parameter . Tensor H is parameterized as follows:

2 2 2 I
H— [ cos’p +a?sinp (1—a )sm(pcosq)], 5.7)

(1 —a?)singcosg sin’¢ +a’cos’@

where ¢ is an angle between —90° and 90° and « is a positive parameter.
Let us consider two special cases:

Isotrapic In this case ¢ = 1, so that, from the previous equation,

H= [1 0], (5.8)

and the generalized Euclidean distance reduces to the usual separation distance.
The value of the rotation angle ¢ does not matter because it has no effect on the
distance. That is, in the isotropic case, the orientation of the coordinate system
is unirnportant.

Anisotropic but aligned with principal axes In this case ¢ = 0, so that
1 0
= 5.
H [ 0 o ] (5.9)

which is equivalent to simple stretching of one of the axes.

5.4.3 Three dimensions

Not surprisingly, the equations for rotation in three dimensions are considerably
more complex. We will summarize in vector notation key results that may be
useful to some of the readers. We assume that all systems are positively oriented:
By convention, a system xx2x; is positively oriented if when viewed from an
arbitrary point on the positive x3 semiaxis, the positive x; axis would have to
be rotated counterclockwise by 90° to coincide with the positive x; axis.
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We will consider the rotation from an original coordinate system x;x;x; to a
new coordinate system x7x5x5. The transformation in vector notation is

x*=Tkx, (5.10)
where T;; is the cosine of the angle formed between the positive semiaxes x}
and x;. Formula (5.10) constitutes all that is needed.

To verify that T is indeed such a matrix, the matrix logarithm of T must be
a skew symmetric matrix:

0 ©» P
logm(TYy=p=|-p3 0 ¢ |. (5.11)
v —¢ 0

That is, because of the constraints that must be satisfied by the nine cosines,
the transformation matrix is defined fully through three variables: the rotation
angles ¢, ¢, and @3, which are positive if directed in the counterclockwise
direction. Here, ¢; is the rotation about axis x;, etc. Sometimes, it is more
convenient to define these three angles and to find T from the matrix exponential:

T = expm(p). 5.12)

See reference [131] regarding the matrix exponential, expm, and the matrix
logarithm, logm. Most computer packages have efficient algorithms to compute
the matrix exponential and the matrix logarithm. (For example, in MATLAB,
these are functions expm and 1ogm.)

5.5 Practical considerations

Unless the form of the variogram is known, such as from stochastic theory, as
in references [35 or 57], we may limit our attention to geoanisotropic models.
This means that there exists a special coordinate system where the anisotropic
case simplifies to the familiar isotropic case, i.e., only a scalar distance matters.
Actually, we do not even need to carry out the transformation; all we have
to do is replace in the expression for the variogram (or covariance function)
the Euclidean distance 4 by the metric #, given by Equation (5.4). Thus, the
modeling of anisotropy boils down to determination of H.

The simplest case is when the axes have been chosen so that they are already
aligned with the principal directions. This proves to be relatively straightforward
because in most applications the directions of anisotropy are obvious (direc-
tion of overall stratification, direction of mean flow, etc.). In this case, the only
parameters are the stretching coefficients. This means that the modeler needs
to choose only one stretching coefficient in the two-dimensional case and two
coefficients in the three-dimensional case. In three dimensions, it is common
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that the structure is isotropic on a plane; for example, in the case of stratifica-
tions, the correlation structure is isotropic in the two directions parallel to the
stratification but differs from the structure perpendicular to it, as in Equation
(5.1). Consequently, only one stretching parameter needs to be computed.

If the axes of the system that gives the coordinates of the points do not
coincide with the principal directions of anisotropy, but these directions are
known, then one needs to rotate the axes. This is simple in two dimensions
because all one needs to specify is the rotation angle. In three dimensions,
however, visualization poses some difficulty . Possible methods to specify the
rotation include: (a) specifying the nine directional cosines (the cosines of each
principal axis with respect to each presently used axis), a straightforward but
tedious approach, and (b) computing the nine angles from three of them.

Adjustment of parameters can be made based on the minimization of the cR
fitting criterion. However, blindly trying to adjust the parameters of the general
geoanisotropic model is not warranted in most applications, especially in three-
dimensions where it is hard to justify five adjustable parameters in addition to
the parameters of the isotropic model. It is best to fix as many of the parameters
as possible based on process understanding and to leave only a few parameters
for fitting to the data.

Exercise 5.1 Assume that you have a data set of a quantity that varies in
two-dimensional space and that we consider two models.

(a) an isotropic model with linear plus nugget-effect variogram.
(b) an anisotropic model with linear plus nugget-effect variogram.

Justify that the minimum cR (obtained by optimizing the parameters so that they
minimize cR) for model (b) will always be smaller than or equal to the value of
the minimum cR for model (a). Then, suggest a procedure that can be used to
determine whether the difference in cR between the two models is large enough
to justify use of the more complicated model (b). Just recommend the procedure
without being concerned about analytical or computational difficulties in the
implementation.

5.6 Key points of Chapter 5

When the correlation structure of a hydrogeologic property varies with the
direction, as in the case of layered formations, it is possible to utilize more
information and thus improve estimation accuracy by taking this anisotropy
into account. In the absence of information pointing to another model, the
geoanisotropic model may be used: The correlation may be transformed to
isotropic through rotation and stretching of the axes.
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Variable mean

In this chapter, we justify the use of models with variable mean and show how
the methods we saw in the previous chapters for constant-mean cases can be
extended. We also discuss generalized covariance functions, which take the
place of variograms.

6.1 Limitations of constant mean

In Chapters 3-5, we dealt with the intrinsic model. This model represents the
variable of interest, z(x), as wavering about a constant value, and the variogram
provides information about the scale and intensity of fluctuations. The fluctua-
tions are characterized statistically as having zero mean and a certain correlation
structure. In more mathematical terms, if z(x) is intrinsic, then

z2(x) = m + €(x), 6.1)
where m is a constant and €(x) is a stochastic process with zero mean,
Ele(x)] =0, 6.2)

and variogram

1
Bl - XN =yx—x). (6.3)

One way to interpret Equation (6.1) is to think of z(x) as consisting of a
deterministic part, z4(x), and a stochastic part, z,(x). These two parts differ
because the deterministic part involves exact determination and the stochastic
part involves approximate correlation: Specification of the parameter m com-
pletely determines the value of z4(x), whereas specification of y (|x — x'|) gives
an approximate value of z,(Xx) based on its correlation with the measurements.
In other words, the deterministic part is “definite” whereas the stochastic part
is generally “fuzzy.” In this sense, the assumptions about the deterministic part

120
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Table 6.1. Data for
illustative example

Observation  Location

0.20 0.20
0.30 0.30
0.40 0.40
0.50 0.50
0.60 0.60
0.70 0.70
0.80 0.80
1.00 1.00

are stronger than the assumptions about the stochastic part; that is, assumptions
about the deterministic part have more impact on the predictions and are more
important to justify than assumptions about the stochastic part. If an analyst
does not know or is unwilling to assume much about z(x), it is natural to rely
more on the stochastic part than on the deterministic part to describe the spatial
structure of the variable of interest.

The deterministic part in the intrinsic model is the simplest possible: a con-
stant. This model relies mainly on the correlation structure as expressed by the
variogram. In a way, it is a conservative and cautious model; such character-
istics explain its popularity in fields where processes are so complex that one
cannot confidently make strong assumptions. The intrinsic model often is an
adequate representation of the data and suffices for the solution of interpolation
and averaging problems. However, there certainly exist cases, especially in hy-
drogeology, where one is justified in shifting onto the deterministic part some
of the burden of representing the spatial variability of z(x).

Let us start with a simple example that will shed light on the strengths and
limitations of the intrinsic model. The hypothetical data of Table 6.1 show a
clear linear trend. Let us compare two models.

Model 1 In this model the deterministic equation,

z=2x, 6.4)
fits the data perfectly and the predictions are presumed to be error-free.
Model 2 Our second model is intrinsic with power variogram

y(h) = %hl'g"’. 65)
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Figure 6.1 Experimental and model variogram for intrinsic case.
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Figure 6.2 Comparison of best estimates.

See Figure 6.1 for a comparison between the experimental and model vari-
ogram. (Of course, by now we know that despite the appearance of Figure 6.1,
this model does not necessarily represent the data well. We will use this model
only for illustration purposes.)

Figure 6.2 compares the best estimates using the two models; Figure 6.3
compares the mean square error. The best estimates given by the two models are
the same, with some very small differences away from measurements. However,
the mean square errors evaluated by the two models are quite different.
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x 10*

MSE

0 0.2 0.4 0.6 0.8 1
location

Figure 6.3 Comparison of mean square error of estimation.

In applications, we are often interested in comparing two plausible models
that differ in the emphasis that they place on the deterministic part. The two
models described in this section represent two opposite extremes: Model 1 relies
only on the deterministic part, whereas Model 2 relies as much as possible on
the stochastic part. We may draw conclusions from this simple example that
are generally applicable:

1. The differences in the best estimates are most pronounced away from mea-
surements. Near measurements, the two methods usually give similar best
estimates because of the effect of conditioning on the data.

2. Model 2, which relies mainly on the stochastic part, is more conservative
in the evaluation of the accuracy of predictions, i.e., it tends to calculate a
larger mean square error than the more self-confident Model 1.

Which model is best? Obviously, the answer depends on our confidence in
Equation (6.4). If we have reasons to believe that the good fit that Equation (6.4)
has with the data is not coincidental, then the intrinsic model of Equation (6.5)
overestimates the mean square error. In Section 6.14, we will see an approach
for evaluating whether the data support the use of a variable-mean model.

6.2 The linear model

In some cases, such as the representation of the hydrogeologic parameters of a
regional aquifer, there may exist a large-scale component of spatial variability
that can be represented with reasonable assurance as a deterministic function.



124 Variable mean

For example, if the aquifer is thinning out from one end to another, the coef-
ficient of transmissivity varies in a way that can be represented well through
a deterministic function (a “drift” or “trend” or *“variable mean”). The piezo-
metric head, on a regional scale, is another typical example of a function that
usually has a pronounced drift. In such cases, the assumption of variable mean
is more appropriate and may lead to better estimation (i.e., improved accuracy
of predictions and more realistic evaluation of the mean square error.)

For such cases, we will generalize in this chapter the model of Equation (6.1).
Assume now that

z(x) = m(x) + €(x), (6.6)

where x is the vector of spatial coordinates, m (x) is a deterministic function of
spatial coordinates, and € (x) is arandom function with zero mean. The function
m(x), called the drift, represents the deterministic part z(x). The function € (x)
represents the stochastic (“fuzzy”) part of z(x) and is characterized with some
sort of correlation function.

For the sake of convenience, the drift is represented by the summation of
known functions with unknown coefficients,

P
mx) = fi®p, 6.7)

k=1
where f1(x), ..., f,(x) are known functions of the spatial coordinates x and are
called trial or base functions. The coefficients i, .. ., B, are deterministic but

unknown and are referred to as drift coefficients. Examples of trial functions are
polynomials (see example in next section), trigonometric functions, and families
of orthogonal functions (such as sines and cosines). Because the mean function
is linear in the drift coefficients, Equations (6.6) and (6.7) constitute what is
known as the linear model (not to be confused with the linear variogram or the
linear trend). The linear model plays a prominent role not only in geostatistics
but also in every other field of applied statistics.

Example 6.1 For z defined on one dimension,
z(x) = 1+ x B2 + €(x) (6.8)
means that z(x) consists of a deterministic first-order polynomial plus a random

function described through a correlation function.

In this chapter we will show how we can generalize the concepts and methods
of Chapter 3 to apply to the more general model of Equations (6.6) and (6.7).
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6.3 Estimation with drift

Linear minimum-variance unbiased estimation can be readily extended to the
linear model with variable mean and is known in geostatistics by the name
universal kriging or kriging with a drift. The spatial function is given by the
linear model

P
20 =Y ik +e®), (6.9)

k=1
where fi(x),..., fp(x) are known functions of the spatial coordinates x;

B1, ..., Bp are deterministic but unknown coefficients; and € (x) is a zero-mean
random field.

It is assumed here that € (x) in Equation (6.9) has a known covariance func-
tion, R(x, x'). We have not yet assumed any form of stationarity or discussed
how to determine R from data; we will do so in other sections.

The problem is to obtain an estimate of z at xp from measurements

z(Xy), - .., 2(X,). As in ordinary kriging, we require that:
1. The estimate be a linear function of available data z(x;), z(X3), ..., z(X,),
ie.,
n
2(xp) = Z Aiz(X;). (6.10)
i=1
2. The coefficients A, Az, ..., A, be selected so that the estimate is unbiased,
ie.,
E[2(x0) — z(x0)]1 =0 6.11)
for any value of the unknown drift coefficients By, ..., Bp.

3. The estimation variance

E[(2(xo) — z(x0))’] (6.12)
be as small as possible.

The unbiasedness condition (6.11) may be written

E [Z Aiz(x;) — z(xo)] =0, (6.13)
i=1

and, making use of (6.7), we get

14 n
> (Z M fie(x) = fk<xo))) Bi =0. (6.14)

k=1 i=1
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For this condition to hold for any values of B, ..., Bp, it is required that

n
D hifitk) = fitxo), k=1,....p. (6.15)
i=1
This set of p constraints that must be satisfied by the X coefficients is known
among geostatisticians as the universality conditions, although “unbiasedness
conditions” or even ‘“elimination conditions” are more descriptive terms. Note
that each unbiasedness condition has the effect of eliminating an unknown drift
coefficient. (There are, of course, as many conditions as there are unknown drift
coefficients.) Intuitively, we want to estimate z(xo) from z(x;), ..., z(x,) but
we must first eliminate the unknown B coefficients that are in the way.

Example 6.2 To illustrate the meaning of the unbiasedness conditions, assume
that z(X) is the piezometric head of a two-dimensional aquifer and m(x) is a
linear function. Then

fi=1, fi=x1, f=1x, (6.16)
where x| and x; are the two Cartesian coordinates of location x. The unbiased-
ness conditions (6.15) become

n n n
ZM =1, Z AiXi1 = Xo1, Z AiXiz = Xp2. (6.17)
i=1 i=1 i=1

We have assumed that the covariance function of € (x) is R(x, xX'). Making
use of the unbiasedness condition, we find that the variance of the estimation
error is

n 2
E[(¢(x0) — 2(x0))*] = E (Zm(xn - e(xo))

i=1

=) Mk R x)=2)  AiR(Xi,X0) + R(Xo, Xo).
=]

i=1 j=1

(6.18)

Thus, the coefficients Aq, Az, ..., A, will be estimated by minimizing the ex-
pression of Equation (6.18) subject to the p linear constraints of Equation (6.15).
Using the method of Lagrange multipliers, the coefficients must be determined
from the following system:

n 14
D ORGG XA+ Y filxidve = R(X;, X0), i=1,...,n (6.19)
k=1

j=I1

D fexoh = fixo), k=1,...,p,  (620)
i=1



Generalized covariance function 127

where 2vy, ..., 2y, are Lagrange multipliers. The kriging system consists of
n + p linear equations with #n + p unknowns.

Note that once the A coefficients have been determined, they can be substi-
tuted in Equation (6.18) to determine the mean square estimation error. Actually,
it is more computationally efficient to use the following expression for the mean
square estimation error:

P n
E[((x0) —z(x0))’1 = =Y _ fiko)vk— ¥ _AiR(xi,X0)+R(x0,%0). ~ (621)
k=1 i=1

Equations (6.19-6.21) comprise the key results of this section.

Example 6.3 Consider the case with the linear trend given by Equation (6.16).
The coefficients must be selected by solving the following system of n + 3 linear
equations with n -+ 3 unknowns Ay, Ay, ..., Ay, V1, V2, V3!

n
ZR(xi»xj))\j + v+ wxi + wnxip = R(x;,xg), i=1,...,n
j=1 n
S -
i=l1
n
an)»i = Xo1
i=1
n
inz)»i = X02,
i=1

and the mean square error is

E[(3(x0) — 2(X0))*] = —v1 — Xo1V2 — Xp2V3 — ZMR(Xi, Xo) + R(xo, Xo).

i=1

We have written the covariance function in the most general form to em-
phasize that, contrary to what is sometimes thought, the kriging equations do
not really require stationarity or isotropy of any kind. Such assumptions are
introduced in practice in order to make possible the selection of a covariance
function from measurements. In the special case of stationary and isotropic
€(x), instead of R(x, x), use R(j|lx — x'|)).

6.4 Generalized covariance function

Consider the linear model of Section 6.2. In kriging with a drift, the estimation
error

2(x0) — z(%0) = ) _ Aiz(%) — z(Xo) (6.22)

i=1
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does not depend on the values of the drift coefficients because of the unbiased-
ness conditions (i.e., the A coefficients must satisfy Equation (6.15)). Because
it has this property, we say that the estimation error is an authorized increment.
(We will explain later the origin of the term.)

What is special about an authorized increment? It has some important prop-
erties:

1. Its expected value is zero.

2. Its mean square value can be calculated from the covariance of the stochastic
part of the linear model (see Equation (6.18)).

3. Furthermore, as we will soon demonstrate, the mean square error actually
depends on a kernel of the covariance function, which is known as a gener-
alized covariance function.

The concept of a generalized covariance function is actually quite simple: It
is the part of the covariance function that determines the mean square error of
an authorized increment. We are already familiar with the concept. In Chapter
3, we saw that with stationary functions

R(x—x']) = R(0) — y(Ix —x') (6.23)

and for ordinary kriging we only need the variogram. Therefore, —y (|x —
x'|), which is the part of the covariance function that matters, is a generalized
covariance for kriging with a constant mean.

In the case of kriging with a variable mean, we may have several unbiasedness
constraints. In simple terms, every time we add a new constraint we reduce the
importance of the covariance function in estimation. The reasonis that by adding
another term in the deterministic part, we rely less on the stochastic part for the
description of the spatial variability of z(x). Thus, in an intuitive sense, we are
allowed to use a simplified (or “generalized”) version of the covariance function
that works just as well as the actual covariance function. From the standpoint
of practical estimation applications, this is good news because it is easier to
infer from data the generalized covariance function than it is to infer the actual
covariance function.

In general terms, we can view the covariance function as consisting of two
parts,

R(x,x)=K(x,x)+C(x,x), (6.24)

where K (x,x’) is (by definition) the generalized covariance function and
C (x, X) satisfies the condition

DD M x) =2 MC (%, %) + C (%o, X0) =0 (6.25)

i=1 j=I i=1
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for any n and locations X, X1, X2, ..., X,. Then, only K (x,x') matters in
kriging.

The reader is warned that interpretation of a generalized covariance function
independently of the authorized increments that it refers to may be totally mis-
leading. A generalized covariance function is not the actual covariance between
tworandom variables; however, it can be used to calculate the variance of and the
covariance between authorized increments. (Indeed, the term “authorized” can
be interpreted as “authorized to use the generalized covariance function.””) More
on generalized covariance functions can be found in references [23, 99, 140].

Example 6.4 Consider an intrinsic function z(X) with generalized covariance
Junction

K(x—x'|)=—|x—x|.
Can we use it to find the mean square value of z(x) — z(x)?
Note that z(x) — z(X') is not affected by the value of the mean and, con-
sequently, is an authorized increment. Thus, we can go ahead to compute the

mean square value of z(x) — z(X) as if z(x) had zero mean and covariance
Sfunction —|x — x'|:

E[(z(x) — z2(x)?] = E[z2(x)? + z(x))? = 2z(x)z(x)] = 2|x — X/|.
This may be rewritten as
1
SElz00) = z(x))*] =[x — x|,

i.e., the generalized covariance is effectively the same as our familiar linear
variogram. However, z(X) or Z(")';—Z(",) are not authorized increments. Thus, if
we use the generalized covariance function as if it were the true covariance
Junction, we obtain absurd results, such as zero variability,

El(z(x))’] =0,

or, even worse, negative mean square error,
2
z(x) 4 z(x) 1
E|[Z2=222 ) | =——x =X
2 2

Example 6.5 Consider a random function z(x) defined on one dimension with
a linear drift. Take the increment

y=z(x —a)—2z(x) + z(x + a). (6.26)
If a linear trend, by + byx, is added to z(x), then
y=bi+x—a)b+:z(x —a) —2(b; +xbr + z(x)) + b1 + (x + a)b,
+zx+a)=z(x —a) —2z(x) + z(x + a), 6.27)
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which is exactly the same as y in Equation (6.26). This means that y is an
authorized increment.

6.5 Illustration of the GCF concept

This section illustrates through a detailed example some of the points made
in the previous section. It is heavy in algebra and you may prefer to skip this
section at first reading.

We will consider a spatial function z defined on two dimensions (x, y) that
is modeled as the sum of a linear trend and a zero-mean stochastic process:

z2(x,y) = B1 + Bax + B3y + €(x, y), (6.28)

where x and y are spatial coordinates; 81, B>, and B3 are unknown drift coef-
ficients; and € is a zero-mean stochastic process with covariance function, for
example,

R(h) = o’ exp (-?) (6.29)

where h = \ﬁx —x’)2 4 (y — y')? is distance and o2 and [ are parameters.

Given these observations (which we will denote by z1, 25, ..., z,) we want
to estimate zg, the value of z at location (xg, ¥o). Limiting our attention to linear
estimators,

n
o= Mz (6.30)
i=1
our task is to select A, Az, ..., A,. We will enforce the unbiasedness condition,

i.e., that the expected value of the estimation error should be zero,

E{Zmi —Zo] =0. (6.31)
i=1

Using Equation 6.28, we have that

E I:Z)Vi(ﬁl + Baxi + B3yi + €(xi, yi)

=1
— (B1 + Baxo + B3yo + €(xo, }’0)):| =0 (6.32)

or, using the fact that € is a zero-mean process and rearranging terms, we get

(in— 1)/81 + (inx,- —x0>ﬁ2+ (iny,- —yo>ﬁ3 =0. (6.33)
i=1

i=1 i=1
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The only way to guarantee that this expression will be zero for any value of 8,
B>, and B is to enforce the unbiasedness constraints:

dai=1 (6.34)
i=1
D hixi =xo (6.35)
i=1
> Xy = yo. (6.36)
i=1

Next, we compute the mean square error

n 2
MSE = E (Z Aizi — z0> ) 6.37)
i=1

Making use of the unbiasedness constraints, we obtain

n 2
MSE = E (in(z,- — Elz]) — (z0 - E[Zo]))

i=1

n n n
=D D MMR(Gip) =2) NR(hio) +RO),  (638)
i=1 j=1 i=1

where h;; is the distance between the locations of measurements / and j and
h;o is the distance between the locations of measurement / and the unknown.
Using the method of Lagrange multipliers, the solution that minimizes the mean
square error subject to unbiasedness constraints is given by solving the system
of n 4 3 equations with n 4 3 unknowns (A, A3, ..., Ay, V1, V2, V3):

> T hjR(y) + v+ voxi +v3y; = R(hyo) fori=1,2,....n  (6.39)
j=1
combined with Equations (6.34), (6.35), and (6.36).
We can now verify that, due to the unbiasedness constraint, the MSE is the
same whether one uses R(h) or R(h) + ao + axh?, where ag and a, are ar-
bitrary coefficients,

MSE =33 id; [R(hij) +ao + azh3]

i=1 j=1

—23 " Xi[Rhio) + a0 + ashly] + R(0) + ag

i=1

=3 > MAR(hip) =2 XiR(hio) + R(O0). (6.40)
i=1

i=l j=1
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The proof follows:

ZZX A ao—22l,ao+ao

i=1 j=1

= K;O (;x,> —2<gxi> + 1]a0=0

because the sum of the A coefficients is 1. Furthermore,

ZZ)\)\azh” 22)»02]110

i=1 j=1

e [ZZ)W)\]((X, _xj)z + (yl - yf)z)

i=1 j=1
—2) " Ml = x0)* + i — y0))
i=1

I:ZZ)»,')»]'(XI-Z +Xj2~ - 2x,~x,~ +y12 +y12 — 2y,-y,-)
i=1 j=1

az

— ZZ A (xF + x¢ — 2xix0 + yF + ¥ — 2y,-yo)} a=0. (641
i=1
We will show that the bracketed expression is zero. This expression can be
factored into the form

Zn:h(xf2+y.-2) (ZM) + (le> Zn:x,(xf. +57)

A5 () A5 (5

—ZZA x4 y? +4<ka,>:co+4<zkiyi)yo
i=1 i=1 1

_2<Zki> x0+y0 —ZZA X; +y,)—2x§—2y§
i=1

=23 M(F +y7) + 4G+ 4 —2(x3 +33) =0, (642
i=1
Therefore, adding the term a; + a,h? to the covariance funtion has no effect
on the mean square error or the associated kriging equations. Consequently:
(a) These terms cannot be identified from data and (b) including these terms in
the model results in “overparameterization.”
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6.6 Polynomial GCF

This section presents an example that also constitutes a useful model.

We will focus on one particular isotropic generalized covariance function,
known as the polynomial generalized covariance function (or PGCF). We dis-
cuss it in some detail because it is useful in applications and can serve to clarify
a number of points associated with kriging with a drift.

Matheron [96] extended the idea of intrinsic functions to intrinsic functions
of higher order. Let us start by saying that:

The drift of an intrinsic function of k-th order is a polynomial of order k.

Example 6.6 Considerthe one-dimensional case.Referring to the linear model,
Equation 6.7, the zeroth-order intrinsic function corresponds to p = 1 and
f1(x) = 1. Thus, what we called in Chapter 3 “an intrinsic function” becomes
in this chapter “a 0-order intrinsic function.” The first-order intrinsic function
correspondstop =2, fi = 1,and f, = x. The second-order intrinsic function
correspondstop =3, fy =1, f, = x,and f3 = x*.

Thus, the base functions of the mean of an intrinsic function of order k are
monomials of order k or less.

We are now ready to present a model useful in estimation. In all cases, the
model is

z(x) = m(x) + €(x), (6.43)
where m(x) is a k-th-order polynomial and €(x) is a zero-mean stationary
process with isotropic covariance function R (%), h = |x — x'|. (We will soon

see that the assumption of stationarity can be relaxed.) To fix ideas, assume that
z(x) is defined in the two-dimensional space, x = ;;). Then

k= 0, m(xl,xp_) = 1.,31, (644)
k=1,  m(x,x) =16 +x18 + x28, (6.45)
k=2,  m(x,x)=14+x182+x28;
+x7Ba + X3 B5 + X126, (6.46)
and so on.
The generalized covariance function also includes the nugget-effect term
Coé(h), where
0, ifh>0
8(h) = . 6.47
(k) { 1, ifth=0 (647)

Thus,
K (h) = Cy8(h) + 61h, (6.48)
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where K (%) is the polynomial generalized covariance function and the two
parameters Cp and €, must satisfy

Co=>0 and 6, <0. (6.49)
For k = 1, according to reference [38],
K (h) = Co8(h) + 61h + 63h°, (6.50)
where
Co=>0, 6,<0, and 63 >0, (6.51)
and, for k = 2,
K (h) = Cod(h) + 61h + 63h° + 65h°, (6.52)
where
Co>0, 6, <0, and 65<0
and

63 >

—(10/3)[6:65]1'/2, in two dimensions
{ (10/3)[6165] 653

—[108,651'/2, in three dimensions

Application of this model is discussed in reference [ 77]. Extension to anisotropic
cases is straightforward by making use of the geoanisotropic model. The ba-
sic idea is that, after a combination of rotations and stretchings of the spa-
tial coordinates, the generalized covariance function becomes a function of
distance.

6.7 Stationary-increment processes

In the kriging applications that we have seen, we have dealt only with authorized
increments. We may expand the concept of stationarity accordingly. This leads
us to the class of random functions with stationary increments. An operational
definition of such functions is:

A random field z(x) is stationary-increment with generalized covariance
function K (x — x') if the mean of any authorized increments is zero and
the covariance of any two authorized increments can be calculated using
K asif z(x) were stationary with zero mean and covariance function K.

An example of a stationary-increment process is an intrinsic function of order
k with a polynomial generalized covariance function.

One cannot overemphasize that stationary-increment random fields are de-
fined and can be interpreted only in terms of authorized increments, just like
our familiar intrinsic random field. Obviously, the stationary-increment process
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is a generalization of the intrinsic function of Chapters 3 and the generalized
covariance function is a generalization of the variogram.

We have seen that in the case of intrinsic functions (constant mean) the
continuity and differentiability of the realizations depend on the behavior of
the variogram at the origin (zero distance). In the case of functions with vari-
able (but continuous and differentiable) mean the following properties
hold:

1. Ifthe driftis continuous, the realizations are continuous when the generalized
covariance is continuous at the origin.

2. If the drift is differentiable, the realizations are differentiable when the gen-
eralized covariance is twice differentiable (i.e., has parabolic behavior) at
the origin.

6.8 Splines

The scope of geostatistics has gradually expanded to include applications that
traditionally have been addressed using spline interpolation methods. Moreover,
the relation of kriging or Bayesian estimation to interpolating splines has been
explored in references [30, 47, 78, 97, 142] and others.

Consider, for example, kriging with a first-order polynomial with unknown
coefficients for a mean and a generalized covariance function given by

R(x—x)=0|x—-x|° (6.54)

where 6 is a positive parameter. The estimate reproduces the data and is smooth,
possessing continuous first and second derivatives everywhere. This case cor-
responds to a form of cubic-spline interpolation.

In two dimensions, a useful model is one in which the mean is a first-order
polynomial with unknown coefficients and the generalized covariance func-
tion is

R(x —x) =0|x —x'||*log ||x — x'||. (6.55)

This case corresponds to interpolation through “thin-plate” (in two-dimensional
applications) splines, which gives the simplest smooth curve that reproduces
the data. The estimate does not have well-defined second derivatives at ob-
servation points but has continuous first derivatives everywhere and is flatter
and supposedly more “elegant” than the estimate in the cubic-spline interpo-
lation method. Figure 6.4 illustrates some of these points for an easy-to-plot
one-dimensional case.
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Figure 6.4 Interpolation through data (shown as o) using cubic and thin-plate splines.

6.9 Validation tests

We can now return to the problem of data analysis with an enlarged repertory
of models, since we can deal with variable-mean models. As usual, however,
model selection is an iterative (trial and error) process in which a model is
proposed, calibrated, checked, modified, and so on until a satisfactory one



Validation tests 137

Suggestions for Developing the
Model:

1. Adopt variable-mean model only if it
fits the data significantly better than
the constant-fit model or if there is
other justification.

2. Obtain preliminary estimate of
variogram from the experimental
variogram of the detrended data.

3. Calibrate variogram (estimate
parameters) and validate model using
residuals.

Figure 6.5 How to proceed in developing a model with variable mean.

is found. Figure 6.5 gives some useful hints on how to proceed when the
mean is variable. We will elaborate on these points in the remainder of this
chapter.

We will start by discussing the method of residuals as a way of validating or
testing a model. Suppose that we have somehow developed a model, such as a
first-order intrinsic one with a nugget and a linear term. Before the proposed
model is used for estimation, its consistency with the data must be ascertained
through what we called model validation. The methods that we saw in Chapter
3 are generally applicable to the case of variable drift. Here, we will focus on
the same relatively simple tests involving orthonormal residuals that we saw in
Chapter 4.

Consider the following procedure: The n measurements may be shuffled
to obtain, randomly, a fresh order in the sample. Then, calculate the kriging
estimate of z at the (p + 1)-th point, x,, 1, given only the first p measurement,

X1, X2, ..., Xp. (p is the number of drift coefficients.) Calculate the actual error
2(Xp4+1) — 2,41 and normalize it by the standard error 6,4 1. The normalized
error is called &,4. For the k-th (k = p + 1, p + 2, ..., n) measurement

location we estimate through kriging the value of z using only the previous
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k — 1 measurements, and we normalize by the standard error. Thus,

= IR (6.56)
O
We thereby obtain n — p residuals, which, as one can verify, have the or-

thonormality property:

1, if k=¢

0, if k#¢
The proof follows the same lines as for the intrinsic case (see Chapter 3).

Now, consider the statistics

E[skse]z{ k,e=p+1,...,n. (6.57)

1 n
01 = > & (6.58)
n—p k=p+1
1 n
0= > &l (6.59)
n—p k=p+1

If the model is consistent with the data, the first number must be near zero,
while the second must be near one. The sampling distribution of Q; and Q;
can be obtained easily:

E[Q1=0 (6.60)

E[0}] = . (6.61)
n—p
In applications it is usually sufficient to assume that Q1 is normally distributed
so that one can use the following rule:

Reject the model if

Q1] > 2/+/n —p. (6.62)

When using this rule, the probability of rejecting the model even though the
model is good is about 5%.
Regarding Q,, we see that

E[Q)]=1. (6.63)
The variance of Q5 can be easily calculated for Gaussian z:
3 2
E[(Q:— D] = ——. (6.64)
n—p

Furthermore, still under the Gaussian assumption, (n — p) Q> is chi-square
distributed with (n — p) degrees of freedom, which leads to the rule:

Reject the model if
Q:>U or Qy<L, (6.65)
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where the values of U and L can be found from a table in a handbook of
statistical methods. Actually, for n > 40, approximating the distribution of Q;
by a Gaussian is adequate for this application so that one can use the following
rule:

Reject the model if
|Q2 — 1| > 2.8//n— p. (6.66)

The & residuals can also be used to test the hypothesis that they were generated
from a Gaussian distribution and to locate outliers. Also, one may perform a
variogram analysis and test the hypothesis that the experimental variogram of
Ep+ls -« - » & is indeed a pure nugget effect.

6.10 Parameter estimation

We assume that the model is known and the problem s to estimate the parameters
6y, ..., 06, of the generalized covariance function.

We can use the same method that we used in Chapter 3. Simply speaking,
when the correct parameters are used and many measurements are available,
the sample value of the statistic O, should be near 1. We are now faced with
the inverse problem: The parameters are not known, but we can calculate the
value of Q- for any set of parameters. It is reasonable to select the parameters
that make Q> equal to 1:

1 &8
0, = Z £ =1 (6.67)

=P o Ok

If there is only one unknown parameter, it can be estimated from this criterion.
Otherwise, there may be more than one set of parameter estimates satisfying
this criterion. Good parameters should result in small estimation errors. Thus, it
is reasonable to add the criterion that the parameter estimates should minimize,
in some sense, the square kriging errors 6% pr e 6,21. An alternative approach
is to use, instead of the square kriging error, 6,%, its average value, orkz. Because
we have imposed requirement (6.67), ork2 is a good measure of 6,% and is also
less affected by randomness. Thus, we may introduce the requirement

min — PORZICHE (6.68)

or some other measure of overall accuracy, and obtain the following parameter-
estimation method:

Estimate the parameters that minimize the expression of (6.68) subject to the
constraint (6.67).
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Actually, solutions to this optimization problem are easily obtained for the
case of the polynomial generalized covariance function model. We will discuss
how estimates can be obtained in the most commonly encountered cases of one
and two parameters:

1. One parameter. The procedure in the case of only one parameter is the
following: Set the value of the parameter equal to one. The parameter is then
equal to the computed value of n—l—; 2 i=pt1 &%. No iterations are needed.

2. Two parameters. The main objective is to determine the ratio of the two
parameters 6, and 6,. We may set 6, equal to some reasonable value and
vary 6,. For each value of 6;:

* Using the current estimates of the parameters, calculate kriging errors &;
and kriging variances o2

* Calculate Q2 = ;55 >ok_ 44 8i/0%-

* Calculate C(6,/6,) = ﬁ D k= pi In(c?) + In(Q»).

* Select the ratio 8y /6, for which C is minimum. Then adjust parameters by
multiplying them by the value of @, which corresponds to the minimum.

One might raise the following question: What is the accuracy of parameter
estimates? Let us start with the case of only one parameter. The parameter
estimate is the value that makes the value of Q; equal to 1. In fact, Q; is a
sample value of a random variable whose mean value is 1. The variance, for
Gaussian z and large sample, is 2/(n — p). By the method we use to estimate the
parameters, one can conclude that the variance of estimation of the parameter is
proportional to 2/(n — p). Thus, if the sample is small, the parameter estimate
obtained from the data may not be reliable. In the case of many parameters, an
error analysis is less straightforward. However, one can reason that the accuracy
will depend on the curvature of C. The more curved or peaked that C(6,/6,)
is, the more accurate are the results.

6.11 On model selection

We have seen that kriging with a drift is not significantly more complicated
than kriging with a constant mean. Even parameter estimation is a relatively
straightforward procedure once we select a model and a fitting criterion. The
solution to these problems follows well-defined rules and can be automated. We
now start considering how to choose the model, which in our case means the
form of the drift and the generalized covariance function. Unlike kriging, which
is a straightforward mathematical problem given the model and its parameters,
this part involves induction, the development of a model from data and other
information, and, consequently, it is a different game.
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As a matter of principle, one cannot “deduce” or “prove” a model on the basis
of limited information, such as a finite sample. This is true in all sciences that
deal with empirical data. “Inducing” a model means that a model is proposed
and found to be consistent with available evidence. Model development is a trial
and error procedure in which a series of assumptions are tentatively proposed
and then tested. However, one should not think that induction does not have its
own rules. What follows is a discussion of the most important of these rules,
presented from a practical standpoint.

1. Choose the simplest model consistent with past experience with similar
data. For example, it is often reasonable to start with the assumption that
the regionalized variable is intrinsic and isotropic and to determine its ex-
perimental variogram. This model should, however, be put to the test using
validation tests, such as those described in Chapter 3. If model inadequacies
are detected, one should relax the assumption of constant mean or of isotropy.
One should be careful to do so gradually so that the model can stay as simple
as possible. For example, one should add complexity by introducing either
anisotropy or variable mean, not both at the same time.

The drift model is selected on the basis of past experience, prior infor-
mation, the data, and the objectives of modeling. In practice, variable-mean
models should be used only when there is strong evidence from prior infor-
mation and the data. This topic has been discussed in reference [137].

Regarding covariance functions, a useful rule of thumb is to avoid covari-
ance models that involve more than two unknown parameters. (Of course,
exceptions can be made in special cases.) Models with many parameters
do not necessarily yield better predictions. If anything, the opposite is the
case.

2. We should always strive to pick the right model, which means the one that
most accurately represents our prior information and what we have learned
from the new measurements. However, if we are unsure about what is the
actual spatial variability, it is preferable to choose a model that does not
prejudice the solution by much. For example, one of the appealing aspects
of the intrinsic hypothesis is that it does not predetermine the solution but
lets the data speak for themselves. As we have already pointed out, the in-
trinsic model is a prudent choice when little information is available. As
more measurements are obtained, the actual structure starts to emerge, at
which point we may want to adopt a different assumption.

3. Keep in mind that the model is usually developed to solve a specific predic-
tion problem. Thus, it is of little practical usefulness to keep searching for
the “true” model when one model has already been found that adequately
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represents what is known about the spatial function of interest and seems to
fit the data adequately.

In some cases, one may come up with many models which appear equally
plausible given the available information. Instead of agonizing about which
one to choose, one should calculate the predictions using each of these mod-
els and then compare the results. In many cases, one finds that the results
are practically the same, and hence there would be no point in fretting about
model uncertainty. However, if results differ, a more logical and honest ap-
proach would be to present the results of all plausible models.

4. Structural analysis does not rely solely on available observations. Sometimes
observations are not sufficient to figure out some important feature of the
covariance function (or variogram). For example, the exact behavior near
the origin may be hard to determine on the basis of point measurements, and
so the analyst must exercise his judgement. Ultimately, a practitioner would
choose the model of spatial structure that has the most important features
that the true function is perceived to possess.

Most engineers and geophysicists seem comfortable with the idea that
their knowledge and experience not only can but also should be used. Spe-
cific measurements or “hard data” are not the only source of objective in-
formation. Measurements are affected by error and must be interpreted very
carefully in the context of a conceptual model of the actual process. To be
sure, hard data contain valuable information—which we labor to extract—
but so does the hydrogeologists’s understanding of the geological processes
and the mechanisms of flow and transport.

5. The importance of prior information is inversely proportional to the size
of the data. Actually, with the methods presented in this book, we usually
assume the availability of a set of measurements of reasonable size that con-
tains most information about the variable of interest. However, you realize
that to try to determine a variogram from, say, only two or three measure-
ments is futile. If the number of observations is so small, it is preferable to
use prior information to establish a variogram. For example, if the variable
is log-conductivity (natural logarithm of conductivity), based on the infor-
mation about the type of the formation one should be able to assign a value
to the variance. For example, assume we know that the formation is sandy.
Because sand varies widely in coarseness, it is expected that the conductivity
k may vary over four orders of magnitude. The log-conductivity (In k) varies
by In10* = 9.2. An estimate of the In k variance is }‘ of this range squared:
(%)2 =~ 5. It is obvious that in this case, the variance represents what little
is known about the formation and is not to be interpreted as a range of actual
spatial variability at the specific formation.
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6.12 Data detrending

We turn our attention now to the problem of obtaining a preliminary estimate
of the covariance. In ordinary kriging (with constant mean) most practitioners
graphically fit an equation to the experimental variogram. The same approach
has been extended to kriging with variable mean by using the detrended data,
i.e., the original data from which the fitted drift has been subtracted. This
approach has been criticized [5] because the variogram of the detrended data
is different from the variogram of the original stochastic process and depends
on the method of detrending. It is well known [129] that the presence of a drift
distorts the experimental variogram.

It turns out that although the detrended data has a different covariance
function (or variogram) from the original process, the original and the detrended
data have the same GCF [83]. The practical significance of this result is that:

The experimental covariance (or variogram) of the detrended data can be
used to estimate the generalized (not the ordinary) covariance function.
The simplest and most computationally efficient approach is to detrend
using ordinary least squares.

Since the original and the detrended data share the same generalized co-
variance, one may ask what are the advantages of using the detrended data
instead of the original data in experimental variogram analysis. The answer is
that, when the original data are used, the trend swamps the experimental var-
iogram, making the job of inferring the generalized covariance function even
more difficult. Detrending is helpful because it removes much of the redundant
(drift-related) variability in the experimental variogram, thereby revealing the
generalized covariance function.

6.13 An application

Following reference [83], we will analyze hydraulic head data from the Jordan
aquifer in Iowa [64]. The data are given in Table 2.1 and the location of the
measurements is shown on Figure 2.16. As is often the case with hydraulic head
in deep aquifers at aregional scale, the data indicate an approximate linear drift.
The nodes of the experimental variogram of the data are shown on Figure 6.6.
Based on statistical arguments as well as additional hydrogeologic information
not part of the data set, it was deemed appropriate to try a variable mean model
with

m(xy, x2) = p1 + faxi + B3xz (6.69)

where x; and x; are spatial coordinates and B;, B, and B3 are deterministic but
unknown coefficients.
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Figure 6.6 Experimental (semi)variogram of original data. (Adapted after [83].)
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Figure 6.7 Experimental (semi)variogram of detrended data. (Adapted after [83].)

The experimental variogram of the original data (Figure 6.6) is not very
helpful because it suggests a quadratic power model. However, an /4% term is
redundant in kriging with a linear drift (Equation 6.69). The problem is that the
drift has swamped the variability of the stochastic part in the experimental var-
iogram. For this reason, the data were detrended and the variogram was plotted
in Figure 6.7. It appears that an exponential variogram might be appropriate.
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Figure 6.8 Experimental variogram and fitted equation (exponential GCF) using de-
trended data. (Adapted after [83].)

This corresponds to the following generalized covariance function:
K (h) = 61 exp(—h/62), (6.70)

where A is separation distance and 6; and 6, are positive parameters. The pa-
rameters can be fitted graphically from the experimental variogram, but the
procedure is somewhat subjective.

Another approach is to select the 6, that minimizes the prediction error and to
select 8; from the mean square error of estimation in the method of orthonormal
residuals. This method leads to estimates of 91 = 4228 and 92 = 6. Values of
6, in the range 5-7 provide essentially equally good fits. On Figure 6.8, the
continuous line represents the fitted model and is shown to be in agreement
with the experimental variogram. Note that the apparent discrepancy between
the model and the experimental variogram at large lags is of no concern for two
reasons: First, the sampling error associated with the experimental variogram
at large lags is so large that it would be inappropriate to modify the model
to obtain better reproduction of the experimental variogram at large distances.
Second, variograms that differ by a quadratic function are practically the same
for purposes of estimation when a linear drift is included in the model.

6.14 Variance-ratio test

One of the questions often raised in practice is whether to add terms to the drift
(deterministic part) of a geostatistical model. Here, we describe a practical way
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to evaluate whether the better data fit that is obtained with a more complex
model is statistically significant or just the trivial consequence of the fact that
we have more parameters to fiddle with.

The idea is that we consider a basic model and a more complex alternate
model. For example, the basic model could be the intrinsic one, i.e., one in
which the deterministic part is a constant, and the alternate model could be any
model that includes a constant term in the expression for the drift. We compute
a ratio that measures the relative improvement in the fit associated with having
more terms. Then, we evaluate whether this improvement is significantly larger
than the improvement one would get if the basic model were actually valid but
we fitted a model with more adjustable parameters.

The basic model (null hypothesis, Hy) consists of an expression for the mean
with p terms (or unknown drift coefficients) and an expression for the covariance
function (or variogram) of the stochastic part.

The alternate model (H;) differs from the basic model in the expression
used for the mean. The alternate model has p + ¢ terms (drift coefficients).
The important requirement is that the alternate model is more general than
the basic model. That is, the basic model can be reduced from the alternate
model by setting ¢ different linear combinations of drift coefficients to zero.
For illustration, consider the following examples:

Example 6.7 Hy: m(x) = B1, Hi: m(x) = B + Byx + ﬂgxz. In this case,
p = 1, q = 2, and the alternate model is more general because it can be
reduced to the basic model if we set B; = 0 and B3 = 0.

Example 6.8 Hy: m(x) = B; + Ba(x + x2), Hy: m(x) = B} + Bjx + Bjx*. In
this case, p = 2, q = 1, and the alternate model is more general because it
can be reduced to the basic model if we set B, — 3 = 0.

We emphasize that the same covariance function that is found for the basic
model must be used without modification for the alternate model.

We start with our basic model Hy, but we are considering whether we should
reject it in favor of the alternate model H;. If we look at an overall measure
of how well the model reproduces the data after we fit its parameters to the
data, we always find that the more general model gives a better fit, for the
simple reason that the more general model has more parameters to adjust. This
is not necessarily an indication that the alternate model is better for prediction
purposes. We should reject our simpler model in favor of the more complicated
one only if the fit is significantly better.
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We will now construct a test that measures the fit for each model and addresses
the issue of the significance in their difference. We will consider the following
weighted sum of squares (WSS), which measures the agreement between model
and data:

n
WSSo= > &, Ho, (6.71)
i=p+1
where ¢ are the orthonormal residuals computed for the basic model.
Then, we compute the same quantity using the orthonormal residuals of the
alternate model,

n

WSS = Y &, Hi. (6.72)
i=pt+q+1

We expect that
WSSy — WSS, = 0,

but the question is whether the difference is large enough to justify adopting of
the model with the additional adjustable parameters.
We will consider the sampling variability of the relative improvement,

WSS,—-WSS,
v= —W_g_ST’ (6.73)
n—p-q
under the hypothesis that the simple model is the true one.

The expression of Equation (6.73) follows a well-studied distribution known
as F, with ¢ and n — p — g parameters (called “degrees of freedom”), or
F(v;q,n — p — ¢q). Thus, with a 5% probability of incorrectly rejecting the
simple model, we judge that:

The improvement in the fit through use of the more complex model is sig-
nificant if

Vexp > V(g,n — p —q;0.95), (6.74)

where Vexp is the experimental value and v(g,n — p — g; 0.95) is the
0.95 percentile of this distribution, which can be found in [109] and other
references. Or, if
WSSo — WSS| > —— WSS, v(q.n — p—q:0.95),  (6.75)
n—p-—4q
then using the more complex model is warranted.

This is a rational answer to the question: How large must the improvement
in the fit be in order to support the use of a model with additional parameters?
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For small data sets, having more parameters to adjust allows us to reproduce
the data much more faithfully, but this improvement in the fit does not neces-
sarily promise better predictions. The variance ratio test takes the data size into
account and specifies that the improvement in the fit has to be large to justify
the rejection of the simple model in favor of a more complicated one.

Example 6.9 p = 1, q = 1, n = 50, and we computed from the analysis
of data vexp = 2.2. From the table in [109] we find: v(1,48; 0.95) = 4.04.
Thus, we do not reject the simple model in favor of the more complicated model
because the improvement from the simple model is not significant.

Example 6.10 Let us consider the data of Table 6.1. We use as basic model the
intrinsic with power variogram (Equation (6.5)) and find WSSy = 0.998. Then,
with the same variogram, we assume that the trend is linear,

m(x) = B + Bax, (6.76)

and compute' that WSS, = 4.4 x 10°2 In this case,n = 8, p = 1, andq = 1.
Then, the ratio is Vexp = 1.4 X 10%, indicating that the improvement from using
the variable mean model is statistically significant. (This simply says that there
is an astronomically low probability that 8 observations will fall exactly on a
straight line if Equation (6.5) is valid.)

Exercise 6.1 Consider some hydraulic head data, taken in horizontal flow in
an aquifer and shown in Table 9.2. Fit a variogram for the intrinsic case. Then,
check whether a linear-trend model gives a significantly better fit.

6.15 Key points of Chapter 6

A variable can be represented as the sum of a deterministic part (drift or mean
function) and a stochastic part. The drift is the sum of known functions with un-
known coefficients. The best linear unbiased estimator is a linear function of the
observations with weights such that the mean estimation error is zero (unbiased-
ness) and the mean square error is as small as possible. Restrictions imposed
to eliminate the unknown coefficients to satisfy the unbiasedness requirement
make part of the covariance function (of the stochastic part) redundant in esti-
mation. That is, the covariance can be written as the sum of an essential part,
called a generalized covariance function, and a redundant part, which may be

! The value should actually be 0 but the computed value is affected by the numerical accuracy of
the computer.
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neglected for purposes of linear unbiased estimation. In other words, the gener-
alized covariance function is a simplified version of the customary covariance
function.

The larger the part of the spatial variability described through the determin-
istic part, the simpler the generalized covariance that is needed and the less
sensitive are the results on the generalized covariance function that is used.
Therefore, one should not shy away from using variable-mean models only out
of concern for difficulties associated with generalized covariance functions. The
question is whether the data and other information can support the rather strong
assumption of describing with a specific deterministic function part of the vari-
ability of a quantity that is measured at only a few places. The variance-ratio
test provides some guidance on this matter.

A preliminary estimate of the generalized covariance can be obtained through
the familiar method of fitting an equation to the experimental variogram of the
detrended data. This estimate may then be improved by using the method of the
orthonormal residuals, which is applied in the same way as for the constant-
mean case (see Chapter 4).



7

More linear estimation

We now examine some other best linear unbiased estimators, including estima-
tion with given mean or drift, estimation of the drift coefficients, estimation of
the continuous part of a regionalized variable with a nugget, and estimation of
spatial averages or volumes. Many of the formulae appearing in this chapter
are summarized in reference [84].

7.1 Overview

So far we have seen how to apply best linear unbiased estimation (BLUE) when
we have n observations z(xy), ..., z(X,) and we want to find the value of z at
location Xxg, with z(x) being modeled as an intrinsic process. The method is
known as ordinary kriging or just kriging. We also studied the same problem
when the mean is variable, consisting of the summation of terms, each of which
having one unknown drift coefficient; the approach that resulted is known as
universal kriging.

By slightly changing the criteria or the conditions, variants of these estima-
tors can be obtained. Furthermore, one can solve other problems; for example,
one can estimate the volume or the spatial average of z(x) over a certain do-
main or one can estimate the slope of z(x) in a certain direction at some point
[110]. There is no end to the list of problems in which we can apply estimation
techniques.

In all of these cases, we apply best linear unbiased estimation. Once we
set up the problem, this methodology is mathematically and algorithmically
straightforward. In other words, we always follow the same basic steps and
we always end up with a system of linear equations that can be solved with
relatively little effort with currently available computers.

The steps to set up a problem are:

150
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1. We express the unknown estimate as a linear function of the data. The weights
or coefficients are found from the following two conditions.

2. We require unbiasedness.

3. We require minimum mean square error of estimation.

We will see several examples in this chapter. However, the algebra associated
with setting up BLUE problems may be of little interest to most readers. For
this reason, in this section, we will present a quick overview of the problems
that we solve in detail in the other sections. Readers may then skip sections that
contain applications they are not interested in.

7.1.1 Kriging with known mean

We examine the same problem as ordinary or universal kriging but we consider
that the mean is known, i.e., specified separately from the data. Then, we find
an estimator that is a weighted average of the data and the given mean. This
estimator uses the covariance function (not the variogram or the generalized
covariance function).

An important special case is simple kriging, which involves a stationary
function with known mean.

7.1.2 Estimation of drift coefficients

Although we seldom are interested in estimating the mean of a stationary func-
tion or the drift coefficients (in the linear model of Chapter 6), this is a straight-
forward problem. A potential application is in finding coefficients that can be
used in data detrending.

7.1.3 Estimation of continuous part

Estimating the continuous part is an interesting variant of any kriging approach
that may be considered when there is a nugget term. The difference from ordi-
nary kriging is due to a different interpretation of what we try to estimate.

We can view the variable z(x) as the summation of a continuous function
z.(x) and a pure nugget effect process n(x). The objective in ordinary kriging
(OK) is to estimate a value of z, whereas the objective in continuous-part kriging
(CPK) is to estimate z.. In some applications, the nugget effect part represents
undesirable “noise” that needs to be filtered out since we are really interested
in the estimation of the continuous part.

The key differences are:
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1. The CPK estimate yields the same result as the OK estimate everywhere
except at exactly the location where there is a measurement. At a location
of a measurement, OK reproduces the measurement, whereas the CPK does
not. The OK estimate as a function of the location, Z(x), is discontinuous at
the location of an observation, but the CPK estimate, 2.(x), is continuous.

2. The mean square error in CPK is smaller than the mean square error in OK
by the nugget-effect variance everywhere except at observation points. (The
reason is that z. is less variable than z.) At an observation point, the mean
square error for OK vanishes, whereas for CPK it equals the nugget-effect
variance.

7.1.4 Spatial averaging

We are often interested in estimating the average concentration of a solute over
a block or the volume of rainfall or infiltration over an area. In all of these cases,
the estimate involves an integral (area, volume, etc.). For example, we might
seek an estimate of the average,

Zp = ﬁ/Az(x)dx, .1

from point observations, z(Xy), ..., z(X,).

We follow the usual approach in which we set up a linear estimator with
coefficients that are determined from the requirements of unbiasedness and
minimum variance.

7.2 Estimation with known mean
7.2.1 Known drift

We consider the familiar interpolation problem: Given n measurements of re-
gionalized variable z at locations Xy, .. ., X,, estimate the value of z at point
Xo. For example, estimate the piezometric head at a selected location, given
measurements of head at observation wells. We assume that z(X) is a realiza-
tion of a random field with known mean function m (x) and covariance function
R(x, x).

Linear estimation means that we limit our search to estimators that are a
linear function of the measurements (including a constant):

Bo=k+ Y hiz(xi), (1.2)

i=1
where ¥ and A;, i = 1,...,n, are deterministic coefficients. The difference
from ordinary or universal kriging is that we add a constant that should take
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into account that the mean is known. Intuitively, this term represents the estimate
if no observations are available.

Unbiased stands for the specification that «, A1, ..., A, should be selected
so that the estimation error, weighted over all possible solutions, be zero:
Ef[Zo — z(x0)] =0 (1.3)
or
K+ xim(x;) — m(xo) = 0. (7.4)

i=1

Substituting the value of «, we get the following form for the estimator:

Bo=mxo) + Y _ Aiz(%i) — m(x)). (7.5)
i=1

This estimator may be interpreted as follows:

The best estimate of z at xq is m(Xg), which is the estimate prior to the data
plus a correction prompted by the data. The correction from measurement
i is given by the deviation of the observation z(x;) from its prior estimate
m(x;) times a weight or influence coefficient A;.

Finally, minimum variance stands for the specification that the average of the

square error of estimation
2

ElGo — 2x0)?1 = E | 3" M) — mx)) — (2(%0) = m(x0)) | (7.6)
i=l1

be as small as possible.
Expanding and then taking the expected values inside the summations, we
get

El(o — z(x0)" 1= > AihjR(Xi,X;) =2 ) AR (X, Xo) + R (X0, Xo).

i=1 j=1 i=1
7.7
Thus, the As may be calculated from the solution of the well-defined opti-
mization problem:

n

min ¢ > 0D AR X)) —2) AR, %0) + R(%0.%0) o (7.8)

i=1 j=1 i=1
Taking the derivative of this expression with respect to A; fori =1, ..., n,
we obtain a system of n linear equations with n unknowns:

> R, x)r; =R %), i=1,...,n. (7.9)
j=1
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When we solve this system of equations, we obtain the coefficients that define
the linear estimator of Equation 7.5. The solution is unique as long as there are
no redundant measurements. The mean square error then is

El(Zo — 2(x0))’) = — > _ A:R(Xi, X0) + R(Xo, Xo). (7.10)

i=1

Let us now look at a special case.

7.2.2 Simple kriging
If z(x) is stationary, the mean is a known constant and the covariance function
is a function of the distance. Then, the estimator is

20=m+2ki(z(xi)—m). (7.11)

i=1

From the kriging system we have

n
S R —xpAj=R(x —X), i=1,...,n (7.12)
j=1

The mean square error then is
n
E[( — z(x0))’l = — 3 _ AR (x; — Xo) + R(0). (7.13)
i=1

Example 7.1 When the covariance function is a pure nugget effect,

o?, ifx; =X;
R(x; — x;j) = ) , (7.14)
0, ifx; #x;

then, assuming that the location of the unknown is not the same with the location
of any of the measurements, the kriging system becomes

rot=0, i=1,...,n, (7.15)
which means that all the coefficients vanish,
A=0, i=1,...,n, (7.16)
and the mean square estimation error is
E[(20 — 2(x0))*] = 0. (7.17)

Notice that the estimator in ordinary kriging had a mean square estimation
error of 6% + a2 /n. The variance reduction in simple kriging is due to the
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Figure 7.1 Simple kriging lambda coefficient as function of distance from observation.

fact that information about the mean, which is additional to the information
contained in the data, is used in simple kriging.!

Example 7.2 Consider an exponential covariance,

R(x; —x;) =azexp<——lxi;—xj|), (7.18)

with only one observation. Then,
X1 — X
Aot =o? exp <_¥) .

Thus the BLUE estimator is
x| — Xo|

20=m+exp<—| ]

MSE = o° (1 —exp (— M) ) (7.20)

Figure 7.1 shows the A coefficient and Figure 7.2 shows the mean square error
of estimation as a function of x, — xq in a one-dimensional case, form =0,0% =
1,and! = 1. One can see that the best estimate coincides with the observation
at the location of the observation and with the mean far away (a distance of
few ls) from the observation. The MSE is zero at the location where we have a
measurement, and it tends to the variance away from the measurement.

)(Z(xl) —m), (7.19)

with

! It is incorrect to use the data to estimate the mean and then to use simple kriging with the same
observations because in simple kriging we assume that the mean represents information obtained
separately from the n measurements.
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Figure 7.2 Mean square estimation error.

7.3 Estimation of drift coefficients

Let us use, for illustration purposes, the stationary case with unknown mean m
and covariance function R (k). We will use the n observations z(x;), ..., z(Xs)
to infer the value of m.?

‘We will use a linear estimator,

= Zx,»z(x,»). (7.21)
i=1

Keep in mind that 77 is not the actual mean m but an estimate of it. The esti-
mation error, 71 — m, may be viewed as a random variable, because it depends
on random variables z(X;), . . ., z(X,). For unbiasedness, we want the expected
value to be zero:

n
E > hzx)—m| =0 (7.22)
i=1
or

> ohi— 1) m=0. (7.23)
i=1

For this condition to hold, we need to limit our attention to coefficients that
satisfy

i:)»i =1. (7.24)
i=1

2 The same general approach can be used to estimate the drift coefficients of the linear model used
in Chapter 6.
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The mean square error of estimation is

n 2 n n
MSE(#) = E (Zkiz(xk)—m) =ZZA,-A,-R(x,-—x,-). (7.25)
i=l1

i=1 j=1

Then, the coefficients are obtained by minimizing the mean square estimation
error subject to the unbiasedness constraint. Using the method of Lagrange
multipliers, the kriging system that determines the coefficients can be written as

n
ZR(xi—xj)Aj+v=0, i=1,...,n (7.26)

i=1

n
Z A =1 (1.27)
j=1
Solving this system with » + 1 linear equations with » 4 1 unknowns, we

obtain the values of the Ay, ..., A, and v. Then, we can compute the best
estimate of the mean. The mean square error is

n 2
MSE(®) = E (Z riz(xg) — m) = —v. (7.28)
i=1

Example 7.3 Consider the pure nugget effect case (Equation (7.14)). Then,
from the kriging system,

rol4+v=0, i=1,....n (7.29)
v 1
)\i=_;=;, i=1,...,n
02
p=—— (7.30)
n
02
MSE(h) = —. (7.31)

Thus, in the case of pure nugget effect, the variance of estimation of the mean
is inversely proportional to the total number of observations.

How accurate are the estimates of the mean? Consider a stationary function
with covariance that has variance o with length parameter /. In this case, it
will be useful to define the effective number of observations, n., as

o2

He = W . (732)
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In a sense, the effective number of observations defines how many inde-
pendent measurements are really available. It turns out that when the length
parameter is about the same as the largest distance between observations, Ly,
then the effective number of measurements is nearly 1 no matter how many ob-
servations we really have. Increasing the number of observations does not really
increase the effective number of observations (as long as the largest distance
does not change).

Thus, it should be clear that when the variance o2 is large and the length
parameter over largest separation distance, I /L, is also large, it is impossible
to obtain an accurate estimate of the mean. (However, this has little impact on
the accuracy of interpolation.)

Finally, note that in this section we have assumed that the covariance func-
tion is known. What if the process is intrinsic with linear variogram (which is
nonstationary)? Can we use the results of this section by substituting —y (h)
where R(h) appears, as we did for ordinary kriging? The answer is no; an
intuitive interpretation is that the mean of a nonstationary process is not well
defined and, consequently, it is not meaningful to try to estimate its mean square

error.3

7.4 Continuous part

We have already seen that in ordinary kriging (OK) the estimate always repro-
duces the observations. This is true even when there is a nugget effect. However,
if there is a nugget effect, the best estimate, Z(x), from kriging is discontinuous
at the location of an observation. Is this result reasonable?

The answer depends on what we want to estimate. If we truly want to calcu-
late the value of z(x), a discontinuous process, it makes sense to try to reproduce
the measurements. However, the nugget effect usually represents measurement
error and microvariability; one may then question whether reproducing the mea-
surement serves any practical purpose. Instead, what is needed in many cases
is to filter out measurement error and microvariability. This can be achieved by
using the method described in this section.

7.4.1 Rationale

Consider a discontinuous intrinsic random field z(x). That is, its variogram
y (h) is discontinuous at the origin. It is instructive to view z(x) as the sum of

3 Nevertheless, the A coefficients could be computed and used to obtain a crude sort of estimate of
the mean, which is useful for data detrending.
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(k) =

Y.(h) + Y,(h)

h h

Figure 7.3 Variogram of z versus variograms of z. and 7.

two random fields, z.(x) and n(x):
z(X) = zc(x) + n(x), (7.33)

where z.(X) is a continuous intrinsic function and represents variability at the
scales of typical distances between measurements and 7 (x) is a discontinuous
function with zero mean and no spatial correlation (pure nugget effect) and
stands for random measurement error and spatial variability at a scale smaller
than the distance between adjacent measurements. There is no correlation be-
tween z. and 1. Measurements are taken from a realization of the sum of the
two processes, but we want to estimate the continuous function.

It is often appropriate to view the continuous part as the “signal” of interest;
the measurements contain the signal plus “noise.” The objective is to reproduce
as accurately as possible the signal, not the corrupted-by-noise measurements.

Figure 7.3 shows the relation between the variogram of z and the variograms
of z. and n. The variogram of z. passes through the origin, whereas the vari-
ogram of 1 is a pure nugget effect.

7.4.2 Kriging equations

It will be more convenient to work with covariance functions instead of vari-
ograms and, after the results are obtained, to replace R with —y.

In Equation 7.33, z.(x) is the continuous part, a stationary function with con-
tinuous covariance function R.(x) (i.e., R.(x — X') — R(0) as |x — x| — 0),
n(x) is a zero-mean, pure-nugget-effect, stationary random field with variance
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Co. The functions z.(x) and n(x) are independent of each other. Thus,

Elz.(x)] =m (7.34)
E[(zo(x) — m)(zc(X') —m)] = R.(x — X)) (7.35)
E[n(x)]=0 (7.36)
El(xn(x)] = { Cor x=x (7.37)
0, x#x
E[z.(x)n(x")] = 0. (7.38)

The covariance function of z(x) is the sum of the covariance functions of the
two components. Thus,

{Rcm) +Co, x=X
Rx—x)= . (7.39)
R.(x—x), x#Xx

We seek a linear estimator of the value z. at Xq,

n
Zoe = ) hiz(Xi), (7.40)
i=1
such that, for any m,
ElZgc — z.(x0)] =0 (7.41)
or
n
D=1 (7.42)
i=1

and the smallest possible variance of estimation,

El(foc = 2e(x0)*1 = ) > Mk R = X;)

im=1 j=1

n
—2) " MiRe(X; — Xo) + Re(0). (7.43)
i=1
Then, the kriging system of equations and the mean square error can be calcu-
lated from

n
S AR —x)+v=R(x —x0), i=12...,n (7.44)
j=1

dai=1 (7.45)
j=1

E[0(20 — ze(x0))*] = —=v — > LiRe(X; — %) + Re(0).  (7.46)

i=1
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Note that:

1. When x; = Xg, the estimate does not coincide with measurement z(x;).
However, at points where there are no measurements, OK and CPK give the
same estimate.

2. The mean square estimation error value computed from OK equations is
larger than the value computed from CPK equations by Cy. This difference
was to be expected since the former is the mean square error of estimation
of z(Xp), whereas the latter is the mean square error of estimation of the less
erratic z.(Xg).

Comparison of the kriging equations indicates that:

¢ The left-hand side of the kriging system is the same for both versions, i.e.,
whether z or z. are sought.

¢ The difference is that in the right-hand side of the kriging equations and in
the expression for the mean square error, R is used for estimation of z and
R, is used for estimation of z.

If the covariance function has infinite variance, the generalized covariance
function or the variogram should be used. The expressions applicable in terms
of variograms are:

—ijy(xi —X)+v=—Y(x—%X)—Co, i=1,....,n (147

j=1
doa=1 (7.48)
j=1
El(20c — ze(%0))’] = —=v + Y Ai¥e(Xi — Xo). (7.49)

i=1

Example 7.4 Consider kriging with two measurements and assume that y (X —
x") = Cy, for |x —x'| > 0, while, as always, y (0) = 0. In this case y. = 0 and
we obtain .y = Ay = 1/2 and v = —Cy/2 for any point. Thus, the estimate is
the arithmetic average of the measurements, and the mean square estimation
error is Cy/2.

Example 7.5 Consider the variogram
0.034+0.754, A >0
y(h) =

) (7.50)
0, h=0
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Table 7.1. Data
(observation and location)

z X
0.9257 0.10
—0.1170 0.30
0.0866 0.50
—0.5137 0.70
—0.3817 0.80

« Observation
— Best Estimate
: Confidence Interval

0 0.2 0.4 0.6 0.8 1
X

Figure 7.4 Results from ordinary kriging.

with observations given in Table 7.1. The results are given in Figures 7.4
for ordinary kriging and Figure 7.5 for continuous-part kriging. The best
estimates (solid lines) are the same except at exactly the points where we
have observations (indicated by solid circles). There, ordinary kriging repro-
duces the observations exactly, whereas continuous-part kriging reproduces
the measurement only approximately. The reason for the difference is that
CPK interprets the nugget effect as representing noise that must be filtered
out of the observations. The confidence intervals (dotted lines) are also plot-
ted. They are computed from Z £ 2+/MSE. Note that, at an observation point,
MSE is 0 for OK but is the value of the nugget variance for CPK. Every-
where else, the MSE for OK is larger than the MSE for CPK by the nugget
variance.
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2
+ Observation
-— Best Estimate
Confidence interval
1

0 0.2 0.4 0.6 0.8 1
X

Figure 7.5 Results from continuous-part kriging.

7.5 Spatial averaging

Consider the problem of estimating spatial averages or volumes. Several exam-
ples come to mind:

¢ If z(x) is infiltration rate, we are interested in calculating the average rate over
a given area from point measurements obtained at locations Xi, X, - - . , X,

¢ If z(x) represents concentration of a chemical, then we are interested in calcu-
lating the average concentration over a formation (the average concentration
being needed in the estimation of total mass).

¢ One might want to estimate mean areal precipitation over a watershed from
observations at rain gauges, which may be assumed to represent point mea-
surements.

7.5.1 Stationary

To fix ideas, we will limit our discussion to regionalized variables defined on the
plane and the problem of estimating the spatial average over a region, A, given
measurements z(X1), .. ., z2(X,). We will start by modeling z(x) as a stationary
function with constant (but unknown) mean m and given covariance function
R(x — x'). However, the approach is more general.

The unknown quantity is

1
Zpa = E/Az(x)dx, .51
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where f 4 2(X)dx is shorthand notation for the double integral,

/z(x)dx:// z{xy, x2)dx1 dx;. (7.52)
A

Note also that A is the domain over which the average is computed and |A| =
J, dx s the area of the domain.
As in kriging for interpolation, it is desired to develop a linear estimator,

n
Ba =) hiz(x), (71.53)

i=1

with the weights A1, X5, ..., A, selected so that the estimation error
n
1
Za—2zZa= riz(x;) — — / z(x)dx (7.54)
S ; 1Al J4

is unbiased and has the smallest possible mean square error.

Unbiasedness 1t is required that
E[2a—z4]1=0 (7.55)

or

in E[z(x)] — ﬁ/ E[z(x)]dx = <Z A — 1) m =0. (7.56)
i=1 A

i=l1

For this condition to hold for any value of m, it is required that
n
dn=1 (7.57)
i=1

Minimum variance The variance of the estimation error is
n 1 2
E[(2a— 24’ 1= E (Z A (2x) = m) = / () - m)dx)
i=1 A

=3 > MMR& —x) =23 AR+ Raa,  (7.58)
i=1

i=1 j=l1

where

1
R ,-=—/R(x,-—u)du
Al

1
= m//R(x,'l — Uy, Xjp — uz)dul duz (759)
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and
R ! //R( v)du d
= — u— \%
MTIAR S

1
= W////R(ul — vy, Uy — va)du; duy dvy dvy. (7.60)

A crude numerical method for the computation of these multiple integrals
will be described in the next section. For the moment, assume that the integrals
can be calculated using some analytical or numerical technique. Thus, R 4; for
i=1,...,nand R4, will now be considered known.

Minimizing (7.58) subject to the constraint (7.57), we obtain a system of
n + 1 linear equations:

> R&i —x)Aj+v=Rp. i=1...,n

= . (7.61)
D=1,
j=1
and the mean square estimation error is
E[(Ga—za)"1==v—> AR + Raa. (7.62)

i=1

7.5.2 Intrinsic

If the function is intrinsic rather than stationary, the same calculations hold if
R (h) is substituted by —y (h).*
The system of equations is

n
—Z)’(Xz’ —X)A;tv=—ya4, i=1....n

/=1 . (7.63)
D 4=
j=1
and the mean square estimation error is
E[Ga—z4)1=—v+ D> Aivai — vas, (7.64)

i=1

4 This substitution works because the estimation error is an authorized increment, i.e., it does not
vary with the mean m.
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where

1

Yai = 1Al /A y(x; —u)du (7.63)
1

Yaa = W /A /A y(u —v)dudv. (7.66)

7.5.3 Variable mean

The approach can be extended rather easily to the general linear model that
we saw in Chapter 6. In that model, the mean is variable but is modeled as the
summation of p terms, each involving an unknown drift coefficient:

p
mx) =" fi®he, (7.67)

k=1
where f;(x) are known functions and 8, are unknown drift coefficients, &k =

1,...,p.
Then, for each unknown drift coefficient we obtain an unbiasedness con-
straint,

. 1
ka(xi)}w = —/ fitwdu, k=1,...,p. (7.68)
P [A] Ja

We also introduce p Lagrange multipliers. Thus, our kriging system comprises
n + p equations with n + p unknowns:

n p
D R&i—x)hj+ ) fikdw =Ra i=1....n (169
=1 k=1
and Equations (7.68). The mean square estimation error is

Blea =21 =- 3 1 o [ Ay - S AR +Ras. (170)
i=1

7.6 Spatial averaging implementation

In this section, we will describe a simple method for computing the integrals
and look at some examples.

7.6.1 Nugget effect

We will start by examining how to handle a discontinuity at the origin, i.e.,
a nugget effect, when computing the integrals. Assume that z(x) is stationary
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with covariance R (%) that is discontinuous at the origin:

Co+R.0), if h=0

Ry = ] S0 RO : (1.71)
R.(h), if h>0

where Cy is the nugget and R.(h) is a continuous covariance function (i.e.,

limy,_, o R.(k) tends to R.(0) as & tends to 0). For instance, if

C0+02, if h=0
Rb)={ L , (1.72)
olexp(—12), if h>0

then R.(h) = o2 exp(—%).

Thus, R(x; —u) = R.(x; — u) when u takes any value except x; and R(x; —
u) = Cy + R.(0) when u takes the value x;. Since the area associated with x;
is infinitesimal, the effect of Cy is infinitesimal; consequently,

/ R(x; —u)du = / R.(x; —u)du. (7.73)
A A

//R(u—v)dudv://Rc(u—v)dudv. (7.74)
AJA AJA

In other words, in computing the integrals R 4; and R 44 needed in the esti-
mation of the spatial averages, we may disregard the nugget effect and use only
the continuous part of the covariance function.

Similarly, when we use the variogram

0, if h=0
y(h) = { (7.75)

Similarly,

Co+ye(h), if h£0"
then

1 1
m / y(x; —u)du = Cy + m/ Y. (X; —u)du (7.76)
A A

1 1
an [, Jyemvinar=Cos g [ [ wiw=vduav. o)
AJA AJA

In numerical computations of the multiple integrals, it is essential to use R,
or ..

7.6.2 Numerical quadrature

For illustration, let us consider the case that z(x) is intrinsic with variogram
y (h). The estimation of the kriging coefficients involves the calculation of n
double integrals, f AV — u)du, and the calculation of the estimation error
involves a quadruple integral, f, [, ¥ (u — v)dudv. Methods from calculus



168 More linear estimation

and numerical analysis may be used to calculate these deterministic integrals.
In practice, one often has to resort to numerical methods.

A straightforward and general numerical method that may be adequate in
many cases is to divide the total area into N subareas, Ay, ..., Ay. Each area
A, may be represented by a point u, that may be the center of the area or some
other representative point. Then,

N
|A| = Z As (7.78)
k=1
N
/ yexi —wdu =Y " ye(x — we)Ag (7.79)
A k=1
N N

/ / Ye@—vydudv => > ye(w — w)AcA,. (7.80)
AJA

k=1 I=1

7.6.3 Examples

Let us study some applications. Consider the case of estimating mean areal
precipitation from point measurements of rainfall.

Example 7.6 Let us first look at the extreme case of uncorrelated measurements
(pure nugget effect). In this case,

(h) = 0, if h=0 (7.81)
"= ith>0 '
That is, y.(h) = 0. The system of Equation (7.64), becomes
0 —Co )\2 —Co )\3 —Co )\n + V=—C0
—Co A 0 —Cyp 23 -+ —=Cg Ap + v=—-Cy
—Co )\1 —Co )\2 o ... —Co )\n + v= —Co (782)
A+ M+ A e+ A, = 1.
By symmetry, the solutionis .y = Ay =---=x, =1/nandv = —Cy/n. The
mean square error is given from Equation (7.64):
C
E[(s—z0)%=—v=—. (7.83)
n

Thus, in the case of a pure nugget effect, the estimate is the arithmetic av-
erage of all measurements, and the mean square estimation error is inversely
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proportional to the number of measurements. One should have anticipated this
result since, according to the model, z(x) varies at a scale much smaller than
the distance between stations. Consequently, observations at all stations have
the same weight in determining the areal mean. This is not the case if rain-
fall exhibits variability at a scale comparable to the distance between adjacent
stations, as we will see in the next example.

Example 7.7 Assume that
0, if h=0
v = {Co+h if h#£0 "
The area (see Figure 7.6) is subdivided into 16 squares with sides equal to
2.5 km. Thus |A;| = 6.25 km®. The coordinates of the center of each element
are given in Table 7.2.
The location of the four stations is

(7.84)

x_5 x_3.5 x_5 _ 1|75
1= 107 2 = 757 3_57 x4— 5
1

2 @ 3
........ Q
4 5 6 7
Qe ‘ ..............................
8 9 = 10 11 12
........ O @
13 14 15
xz .........
16
X
: 2.5km

Figure 7.6 Map of area, showing subdivision into blocks and location of observations.
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Table 7.2. Coordinates of
the center of each element

i U Uy
1 6.25 13.75
2 3.75 11.25
3 6.25 11.25
4 3.75 875
5 6.25 8.75
6 8.75 8.75
7 11.25 8.75
8 1.25 6.25
9 3.75 6.25
10 6.25 6.25
11 8.75 6.25
12 11.25 6.25
13 3.75 3.75
14 6.25 375
15 8.75 3.75
16 6.25 1.25

First, compute the multiple integrals:

4.75
16

1 1 4.66
- —wdu = — ;= = 7.85
IAI/AVC(X' wdu 16;%(7& uy) 4.46 (7.85)

4.39

1 | J6 16
— —v)dudv = — —v;)=5.28. (7.86
IAIZ/A/AV"(“ v)dudv 162;;%(uk v)) (7.86)
Then, form the kriging system of equations. For Cy = 1,

[ 0 —3.915 —-6.000 —6.590 17 [A;] [-5.75

-3915 0 —3915 5717 1| | A2 | |—5.66
—6.000 -3915 O —3.500 1| | A3 ]| {—5.45]. (7.87)

—-6.590 —-5.717 -3.500 O 1l | A | |—5.39

1 1 1 1 0 v 1

The weights are 0.3127,0.1607,0.186, and, 0.3406, and the mean square error
is 1.04. (How would you expect these results to change if Co = 0? Verify by
repeating the calculations.)
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Now assume that it is proposed to move station 2 to either

oslr[33]

Which of the two positions would do the most to reduce the mean square error
of estimation?

Because the accuracy depends only on the spatial structure of the function
and the location of the gauges, the MSE of estimation can be calculated. We find
that in the first location MSE = 0.76, while in the second location MSE = 0.93.
Consequently, the objective of accurate estimation of the mean areal rainfall is
better met by moving the station to

10
)

In this case, the weights are 0.31, 0.24, 0.26, and 0.19.

This example illustrates that the ability of these methods to evaluate the
reliability of the estimates is very useful in the design of monitoring networks
and of sampling strategies.

7.7 Key points of Chapter 7

Linear estimation methods are straightforward to develop and implement. In
this chapter we got some practice applying them to several problems.



8
Multiple variables

This chapter introduces the subject of joint analysis of multiple spatial functions
such as log-transmissivity and hydraulic head. Cokriging is the equivalent of
kriging in the case of multiple variables. The general approach is introduced
with a few comments on how to develop geostatistical models using only data.
Additional information is given in references [1, 3, 7, 8, 32, 33, 35, 51, 59, 60,
64, 65, 87, 89, 100, 122, 123, 136, and 144].

8.1 Joint analysis

Some of the most interesting estimation problems involve two or more spatial
functions. For example, in regional groundwater flow studies we deal with
piezometric head (or pressure), transmissivity, and net recharge. Each of these
quantities is variable in space. We have already seen how one may use log-
transmissivity data to obtain a variogram or generalized covariance function
and then linear minimum-variance unbiased estimates of log-transmissivity.
The same procedure can be followed for the recharge and the head data. The
relevant methods were described in Chapters 3 through 7.

However, what about the way each of these variables is correlated with the
others? And how about using measurements of one type to estimate values of
another type? For example, from groundwater mechanics we know that under
certain conditions low values of transmissivity in a certain area tend to increase
the slope of the piezometric head in the same area; an above-average elevation
and curvature of the head surface correlates with increased rates of recharge in
the same area; and so on. Such knowledge can be used to develop estimators
of, say, log-transmissivity using measurements of not only log-transmissivity
but also of head and recharge.

As we did previously, we will use probabilistic models because available
information is not sufficient to specify a unique solution for the set of unknown

172
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spatial functions. Nevertheless, one can constrain these functions to belong to
the families of realizations of correlated random fields. By choosing the first two
moments of these random fields appropriately, one can represent some important
characteristics of the unknown functions in the same way as for a single variable.

The procedure we will follow is a generalization of methods we became
familiar with in previous chapters. Let us start by summarizing the basic steps:

1. The related functions are modeled as realizations of jointly distributed ran-
dom fields.

2. The random fields are described through their joint first two moments. This
“second-moment characterization” will require the introduction of the cross-
covariance (and generalized cross-covariance) functions.

3. Following the second-moment characterization, prediction problems are
solved using linear minimum-variance unbiased estimation.

8.2 Second-moment characterization

Consider the case of N correlated functions, z;(x), ..., zy(x), modeled as
realizations of random fields. The first two moments of these fields comprise
mean functions,

ElzzX)]=m(x), k=1,...,N, 8.1
autocovariance (or just covariance) functions,
E[(z(x) — mp(®)) (2 (X) — mp(x))] = Rue(x,X), k=1,...,N, (82)
and cross-covariance functions,
E[(zx(x) — m(x))(z¢(x') — me(x')] = Ree(x, X)),
for k,=1,...,Nand k#¢{. (8.3)

Mean and autocovariance functions are familiar to us from Chapters 3 through
7 because they were also needed in the analysis of a single regionalized variable.
The cross-covariance function is needed for the joint analysis of pairs of spatial
functions.

Since the cross-covariance is the only new element in this description, let us
study its properties and compare it with the autocovariance function. Unlike
the autocovariance, the cross-covariance does not need to be symmetric in the
arguments X and x’. For example, the covariance between the head upgradi-
ent and the log-transmissivity downgradient may be completely different from
the covariance between the log-transmissivity upgradient and the head down-
gradient. (The exact relation depends on the geometry of the domain and the
boundary conditions.) However, note that

ng(x, X/) = Rek(x/, X). (8.4)
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Furthermore, R;;(x,X), k # £, is not the variance of a random variable but the
covariance between two variables (say, head and recharge) at the same location
in space. Consequently, unlike the autocovariance, it can have negative values.
This is an important difference from the autocovariance.

Nevertheless, the autocovariance and cross-covariance functions that char-
acterize a group of random fields must satisfy some conditions emanating from
the requirement that variances cannot be negative. Consider, for example, the
case of two jointly distributed random fields (N = 2). The first may be log-
transmissivity and the second might be head. Let « be a linear combination of
values from both fields, with n, values from variable z; and n; from variable z,:

ni na
o= Z)»lizl(xli) +Z)»2i22(xzi)- (8.5)
i=1 i=1
The As are prescribed coefficients. We can find the mean and variance of the
random variable « from the mean, autocovariance, and cross-covariance func-
tions of functions z; and z,. The mean is

Ela] = Z)»liml(xli) + Z)»zimz(xzi), (8.6)

i=1 i=1

and the variance is
nyon ny N

El@ - E@)] = Z ZM:‘M,‘RM(XU, X)) + Z Z)»zi)»szzz(Xzis X25)
i=1 j=1 i=1 j=1
ny  n2
+ZZZ)»U)»2,'R12(XU,X2,')' 8.7)
i=1 j=I
The point is that we must select Ry, R2, and Rj» so that for any n|, n, and
any A weights, the expression of Equation (8.7) is nonnegative. If we do not,
we may end up calculating a negative variance, which is absurd. Thus, as with
autocovariance functions, not every model is acceptable.1
In addition to the requirement that the selected second-moment representation
be mathematically reasonable, second moments must be selected so that they
represent our understanding of the correlation structure of the spatial functions
we are interested in. In principle, the determination of the second moments can
be based on a purely statistical analysis of the data, which would hopefully
suggest an appropriate model, or could make use of the relations between
variables such as head and log-transmissivity as suggested by a physics-based
mathematical model. We will address these issues after we look at the problem
of best linear unbiased estimation for more than one spatial function.

! There are a number of ways to come up with covariance functions for a set of N correlated
functions so that “positive definiteness” requirements are satisfied. One general way is to view
each of the functions z(X), ..., zy (x) as a linear transformation of N uncorrelated pure-nugget
effect processes.
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8.3 Best linear unbiased estimation

In this section, we will study the problem of linear estimation (also known
as cokriging), assuming that we have the expressions for the first two mo-
ments. In other words, we will assume that the mean, autocovariance, and cross-
covariance functions have somehow been determined. We will get back to the
problem of how to develop a model and find its parameters in another section.

Up to this point we have seen best (minimum-variance) linear unbiased es-
timation applied only to a single variable. Actually, the generalization to the
case of multiple variables is conceptually straightforward. To fix ideas while
at the same time illustrating several concepts, let us illustrate the approach in
the following example of joint analysis of head and log-transmissivity data. We
assume we have n head measurements and m log-transmissivity data.

The model is as follows:

1. The mean F of the log-transmissivity ¥ is constant but unknown.

2. The mean H (X) of the head ¢ is a known deterministic function of x.

3. The autocovariance functions and the cross-covariance function of the two
variables are known.

The problem is to use available measurements to estimate the value of log-
transmissivity at a particular location Xo.

Linear estimator Following the same general approach we have so many times
applied to a single variable, we limit our attention to linear estimators. That is,

n m
Po=> i+ MYj+E, 3.8)
i=1 j=1

where ¢ is head and is Y is log-transmissivity. Note that now we have two sets of
coefficients: those that multiply the head measurements and those that multiply
the log-transmissivity measurements. The two sets of coefficients differ in a
number of ways, e.g., they have different units. We have also added a constant
&, because the mean of the head is assumed known (the reason will become
clearer later.)

The estimation problem is reduced to finding the coefficients u, A, and &.
The estimation error, defined as the difference between the estimate and the
actual value of Yy (or Y (xg)), is

n m
Yo—Yo=) midi+ Y MY +E&—Yo 8.9)
i=1 j=1

The coefficients will be determined according to the following specifications:
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Unbiasedness The expected value of the estimation error must be zero or

E[Yo—Yo]=Zu,-H,-+(Zx,—l)f‘+s=o. (8.10)

i=1 j=1
For this condition to be satisfied for any value of F,

> wiHi+& =0 (8.11)
j=1
m
> aj—-1=0. (8.12)
j=1

Note that (8.11) specifies the value of & and condition (8.12) eliminates the
dependence of the estimate on the value of F. Thus, we may rewrite the estimator
without &:

n m
Yo=Y wilg —H)+ Y \Y;, (8.13)
i=1 j=1
where the A coefficients are constrained to satisfy Equation (8.12).

Minimum variance The coefficients must be such that the variance of the
estimation error is as small as possible:

n m 2

E[(Yo-Yo) 1= E <Zui(¢i —H)+Y Aj(¥;=F) —(Y0~F)) , (8.14)
i=1 Jj=1

where we made use of (8.12). Expanding and interchanging summation and

expectation, we get

MSE = E[(Yo — Yo)*]

n n m m
= ZZﬂiﬂkRaw(xi, Xe) + EZ)»,'MRYY(XJ', X¢)
j=11=1

i=1 k=1

n m
+ Ryy (X0, Xp) + ZZZﬂi}\-ijﬁY(xi, X;)

i=1 j=1

n m

—2) iRy (%i, %) — 2 A;Ryy (X, o). (8.15)
i=1 j=1
The coefficients A and i can thus be estimated from the solution of the fol-
lowing optimization problem: Minimize (8.15) subject to the constraint (8.12).
Define the Lagrangian
m
L=MSE+2v|) % —1]. (8.16)
j=1
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Taking derivatives with respectto p;,i = 1,...,n,A;, j =1,...,m,and v,
we obtain the following system of # + m + 1 linear equations with n +m + 1

unknowns:
n

ZMqusqs(Xi, Xi) + Z)\qubY(xi’ X;) = Rgy(Xi,X0), i=1,...,n

k=1 =1
&.17)
Z)\ZRYY(Xj’ X¢) + ZM:’RM(XhX,’) +v=Ryy(xj,X0), j=1,....,m
- - (8.18)
ix,- = 1. (8.19)

j=1
Once this system is solved, the values of the coefficients can be substituted
in the expressions for the best estimate and the mean square estimation error.

Exercise 8.1 Consider the data and model described in Section 8.3. Derive
the cokriging equations and the expression for the mean square error for the
estimation of ¢, the hydraulic head at location xo. (Hint: Write the estimator

n m
$o = Zﬂid’i + Z)»ij +é.
i=1 =1

Next, show that as a consequence of the unbiasedness requirement, it can be
written as

n m m
$o=Ho+ ) wi(@i—H)+Y AyY; where Y 1;=0.
i=1 j=1 j=1
Then write the expression for the MSE and apply the method of Lagrange
multipliers.)

8.4 Another cokriging example

‘We will see here a variation of the cokriging example of Section 8.3.

‘We will repeat the procedure to find best estimates of the log-transmissivity
as well as the head at any point under the assumption that the head mean is a
linear function:

H(x1,x2) = B1 + Bax1 + Baxa, (8.20)

where x| and x; are spatial coordinates, and B8, B2, and B3 are constant but
unknown drift coefficients. All other conditions are identical with those given
in the preceding section.
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We will start with the estimation of log-transmissivity. The only difference
from the equations in Section 8.3 is that £ = 0, so that the following estimator
is used:

n m
Yo=Y widi+ Y AY; 8.21)
i=1 j=1

The mean square estimation error expression is the same, but in the kriging
system we have three more unbiasedness constraints and the corresponding
Lagrange multipliers:

n m
Zl/«ka(Xi, X;) + ZMR‘»Y(Xi, X;) + V2 + v3x;1 + vaxio = Ry (xi, Xo),

=1 =1
i=1,...,n (8.22)

m n
ZMRYY(X,', X¢) + le«iRw(Xi, X;) + v1 = Ryy(x;, X0),
=1 i=1
j=1,....,m (823)

da=1 (8.24)
i=1
> ui=0 (8.25)
i=1
> mixn =0 (8.26)
i=1
> wixip = 0. (8.27)
i=1

Next, consider the estimation of the hydraulic head. Following a similar ap-
proach, we write down a linear estimator,

n m
bo=D wmidi +y_ MY, (8.28)
i=1 Jj=1

and impose unbiasedness and minimum variance requirements. The expression
for mean square error of estimation is

n n m m
MSE =" tipuRop(xi, x0) + D Y AjAeRyy (X, %)

i=1 k=1 j=1I=1

n m
+ Ry (X0, X0) + 2ZZMi)»jR¢Y(Xi, X;)

i=1 j=1

n m
=2 1iRo(xis X0) — 2D AjRys(x}, Xo). (8.29)
i=1 j=1
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The kriging system of equations is

ZMka(Xu Xg) + ZMRW(X:', X;) + 1 + x1;v3 + x2:v4 = Ry (Xi, Xo),
k=1 j=1
i=1,....n (830)

ZMRYY(X,', X¢) + ZM:’RW (xi, X;) +v1 = Ryy(x;, Xp),
=1 i=1
j=1,...m (831)

> a=0 (8.32)
j=1
3 = (8.33)
i=1
> wixin = xor (8.34)
i=1
D i = xon. (8.35)
i=l1

Thus, we have seen that the problem of best linear unbiased estimation with
many variables is conceptually and algorithmically straightforward.

We need to make a final remark before we leave the question of cokrig-
ing. Because the estimation error is an authorized increment, in the sense
that it does not depend on unknown coefficients in the mean, we may re-
place the autocovariance or cross-covariance functions with their generalized
equivalents (i.e., with the parts of the covariance functions that do matter in
cokriging).

8.5 Model selection

A mathematical mode] for the first two moments can be developed from data
using an adaptation and extension of the approach used in Chapter 4. We will
present a general outline.

Assume that we want to develop a model for log-transmissivity and head.
First, let us deal with log-transmissivity only. On the basis of what is known and
after inspection of the data, we may decide that an intrinsic model is appropriate.
Using the methods of Chapter 4, we may determine the variogram and validate
the model. With the hydraulic head, similarly, we may postulate a model, such
as a first-order intrinsic function (i.e., with linear drift). Using the methods
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of Chapter 6, we may estimate the parameters and validate the model using
orthonormal residuals.

Then, the only task remaining is to determine a cross-covariance function.
In the absence of better information, one may want to limit attention to cross-
covariance functions that are a function of separation distance only, extending
the concept of stationarity and isotropy. One can then plot the experimental
cross-covariance. The experimental cross-covariance is conceptually similar to
our familiar experimental variogram and is obtained following an analogous
approach. In other words, form all pairs of head and log-transmissivity data. If
there are n head measurements and m log-transmissivity measurements, we ob-
tain 7 x m such pairs. For each pair we compute the product of the observations
and the distance, and we then plot the product against the distance. Following a
procedure similar to the one used to obtain the experimental variogram from the
raw variogram, we obtain a line that is called the experimental cross-covariance.

However, graphical methods for selection of the cross-covariance are of lim-
ited help and cannot identify complex relations, so that one must rely mostly on
the usual procedure of postulating a model and checking whether it is appro-
priate using validation techniques. In particular, the method of the orthonormal
residuals is directly applicable. At the end of this chapter, we outline in com-
pact matrix notation how to apply the equivalent of the method of covariance
function parameter estimation through minimization of cR.

We will describe two methods that can lead to reasonable models in ground-
water applications. The first method employs auxiliary variables and is outlined
in Section 8.6. The second method, which is described in Chapter 9, makes use
of mathematical groundwater flow and transport models.

8.6 Method of auxiliary variables

We will illustrate this method for developing a statistical model through an
example from reference [68].

Assume that the objective is to come up with the contour map of the water
table elevation of a shallow phreatic aquifer. The water table has been measured
at a number of locations z(x1), ..., z(x,). However, it is known that the water
table is a subdued replica of the ground surface. Consequently, one can use
measurements of the ground surface elevation to obtain details of the water
table contour map that cannot be found in measurements of the piezometric
head, available only in wells. This can be achieved by developing a model of
the spatial correlation of the two functions and then applying cokriging.

The model was developed as follows: Based on data inspection, the water
table function, w(x), was represented as an intrinsic function with covariance
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function consisting of a nugget plus a linear term:

Elwx) —w(x)]=0 (8.36)
wa(x - xl) = Owla(x - xl) + 0w2|x - X, s (837)
where
1, ifx=x
8 S = 9 .
x=x) {0, otherwise ’

0,1 = 0 and 6,,, < 0 are parameters of the generalized covariance function
Ky (i.e., alinear plus nugget variogram was adopted).
Similarly, for the ground surface elevation function g(x),

E[g(x) —g(x)] =0 (8.38)
Koo (x — X') = 0518(x — X) + Og0|x — X, (8.39)

where 8,1 > 0 and 8,; < 0 are additional parameters.
We still have to determine the cross-covariance between the ground surface

and the water table elevation. A simple approach [100] was used based on the
introduction of an artificial spatial function ¢, defined as the sum of w and g:

t(x) = w(x) + g(x). (8.40)

This is represented as intrinsic
E[t(x) —t(x)] =0 (8.41)
K (x—=x)=0,18(x—x)+6nx — x|, (8.42)

where 6;,; > 0 and 6,, < 0 are two more parameters. These parameters can
be estimated because the values of ¢ are known at the locations of wells where
both the ground surface and the water surface elevations are measured.

One can verify that

Ki(x —X) = Kyy(x—x) + Kgg(x -x)

+ Ky (x — X) + Ky (—x + ). (8.43)
It is reasonable here? to take K ow @S an even (symmetric) function:
Kyg(x — X') = Ky (—x + X)), (8.44)

in which case,
1 ! ! !
Koyg(x — xX) = E(K,,(x —X)—Kyuy(XxX—X) — Kgp(x — X)). (8.45)

This example illustrates how the cross-covariance function can be found from
the covariances of the original and auxiliary spatial functions. A similar result

2 Generally, cross-covariances are not necessarily even functions. In other cases, they could actually
be odd functions. Here, it makes sense to assume that the cross-covariance is even because there
is no preferential direction of flow and the topography is rolling farmland.
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would have been obtained if we had used as an auxiliary function the difference
between the land surface elevation and the water table elevation. In practice,
the auxiliary variables usually have some well-defined physical meaning.

Next, the parameters were estimated and the model was validated using
residuals. Finally, the validated model was used for cokriging.

Suchan approach is best suited for cases for which there are some clear a priori
notions about what a model should look like and there is a reasonably good data
base to verify the model. For cases such as the aforementioned application, it can
be quite successful. However, for applications not meeting these requirements,
such an approach may not be appropriate because it neglects a potentially
important source of information: the principles that govern groundwater flow.
We will address this issue in the next chapter.

8.7 Matrix form

We will complete this chapter with a synopsis of the best linear estimation equa-
tions in matrix form and a generalization of the method of parameter estimation
through minimization of ¢R. This section is at a more advanced level and may
be skipped at first reading.

8.7.1 Linear model

The observations are modeled as the sum of a deterministic and a stochastic
term:

y=XG+e (8.46)

where y is the n x 1 measurement vector, X is a known n x p matrix, Bisa p x 1
vector of parameters (“drift coefficients” in kriging), and € is a random vector
with zero mean and covariance matrix Q,, (8) (a function of some covariance
parameters). Similarly, the unknowns are modeled as

Yo = XoB + €0, (8.47)

where yj is the m x 1 vector of unknowns, X is aknown m x p matrix, and € is a
random vector with zero mean, covariance matrix Qg (8), and cross-covariance
to € that is Qq, (8).

8.7.2 BLUE

The best estimate is

Jo = Ay, (8.48)
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where A ism x n and M is p x n. They are found by solving

Q, X][AT Qy0
» =", (8.49)
X" 0| M X7
where 7 indicates matrix transpose. The estimation error covariance matrix is
E[(§o — ¥o) (Jo — ¥0) 1= —XoM + Qoo — Qo, AT (8.50)
8.7.3 Parameter estimation
Select covariance parameters 6 that minimize
1Q,,| |XTQ;, X[ IXTX|7, (8.51)
while at the same time satisfying
1 T (-1 -1 Th-lv) lvTn-1
0> = " _py (Qy — Qy X(X'Qy, X)X ¥y Jy=1, (8.52)

where | | in this section stands for matrix determinant.

8.8 Key points of Chapter 8

This chapter dealt with estimation problems involving two or more correlated
spatial functions. Our approach was to show how ideas familiar from previous
chapters can be extended to the case of multiple functions.

The cross-covariance function represents the relation between different spa-
tial functions. Given the covariance and cross-covariance functions, cokriging
is a straightforward extension of the familiar BLUE approach. The estimator is
a linear function of the measurements with weights that are obtained from the
unbiasedness and minimum variance requirements. The weights are computed
from a system of linear equations.

Model development in the case of multiple functions involves development
of amodel for the mean and covariance functions of each function and the cross-
covariance for each function pair. As in earlier applications, we are guided by
the data and what we know about the functions in question. Through exam-
ple, we have illustrated that the cross-covariance function can sometimes be
obtained from the covariance functions of the original and auxiliary functions.
The method of orthonormal residuals can be used for parameter estimation and
model validation.
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Estimation and GW models

This chapter presents an introduction to how one can use estimation methods in
conjunction with groundwater modeling. Applications include the calibration
and validation of groundwater models and the evaluation of their predictive
accuracy. A key objective is to illustrate the applicability of familiar principles
to more challenging problems. The chapter also serves as an introduction to
stochastic groundwater mechanics, which is covered in references such as [35,
53, 57, 58, 59, 60, 127, and 128].

9.1 Groundwater models

Groundwater (GW) models are mathematical representations of the flow of
water and the transport of solutes in the subsurface, as in references [72 and 139].
Commonly, they employ finite-difference or finite-element approximations to
the mathematical descriptions of hydrodynamic (flow, advection, dispersion)
and physicochemical (e.g., sorption, chemical transformations) processes.
Models are used to compute the hydraulic head, velocity, concentration, etc.,
from hydrologic and mass inputs, hydrogeologic and mass-transfer parameters,
and conditions at the boundary of the domain. In the case of GW flow models,
inputs include pumping, accretion, and evapotranspiration. The pertinent hy-
drogeologic parameters are hydraulic conductivity or transmissivity and storage
coefficients. Boundary conditions are usually the head at the boundary of the
flow domain or the flux rate through it. The output variable is hydraulic head
(from which the discharge and advective velocity may also be calculated).
One of the difficulties encountered in applying these models to make predic-
tions involves securing good estimates of the hydrogeologic parameters and,
often, the boundary conditions. Most of the parameters are not measured di-
rectly. Hydrogeologic parameters are often estimated based on observations
of how the system behaves under certain conditions. That is, parameters are

184
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selected so that they reproduce, when utilized in the numerical model, the
measured values of hydraulic head, solute concentration, and other observable
system variables. This approach has been widely applied as a manual trial and
error procedure. In the past two decades, however, anumber of systematic, com-
puterized methods has been proposed [147]. In a sense, these methods treat the
parameters as dependent variables in a new problem called the inverse problem
of groundwater modeling. For example, see references [91, 103, 104, 133 and
138]. In practice, the problem of adjusting the parameters becomes an optimiza-
tion problem in which parameter estimates are found from the minimization of
a fitting criterion, as in references [17, 18, 25, and 26]. A good reference on
general estimation methods is [124].

In numerical GW models, the domain is “discretized,” e.g., in finite-element
models the geologic formation is conceptualized as a patchwork of uniform
tiles or blocks known as elements. It is necessary to assign to every element
parameter values. A numerical model may have hundreds or thousands of ele-
ments. If the formation is heterogeneous, the simple-minded approach is to let
the parameters at each element of the domain be free to vary in any way that
will allow the reproduction of the data. However, trying to estimate hundreds
of unrestricted parameters from a few observations is asking for trouble. In a
sense, groundwater models have too many parameters, so that [56, p. 3371,

... in a given problem, many different sets of property estimates may provide satisfac-
tory and essentially indistinguishable data fits. Some of these parameter estimates can be
grossly in error with respect to the actual properties and as a result can lead to erroneous
prediction of future reservoir behavior. To reduce the statistical uncertainty one must
either decrease the number of unknowns or utilize additional information (about the
parameters).

Overparameterization will likely cause an automatic calibration method to
produce nonsensical results. For example, the estimates of the parameters may
be different depending on the initial guess or the numerical accuracy of the
computer. These undesirable features are accentuated by the fact that a small
change in the measured hydraulic head may result in very different estimates
of the conductivity parameters. For such problems, which are characterized as
“ill-posed”:

A straightforward minimization without considering the uncertainty and reliability
of the estimated parameters will result in meaningless parameter estimates.

[146, p. 665]

The severity of the overparameterization problem has been recognized as the
core of the parameter estimation problem, and several interesting approaches
have been proposed ([74, 101, 125]). The most common method for reducing
the number of independent parameters is the method of zonation, which is based
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on grouping the node parameters into zones. Another interesting approach is
to represent the spatially distributed transmissivity as the sum of known basis
functions with unknown coefficients. This, as we have seen, is the method used
in geostatistics to represent large-scale variability. Some of these methods, such
as that described in [ 146], address the need to choose the right number of param-
eters. However, trend surfaces and zones, although useful in representing large-
scale variability, may be too inflexible to account for smaller-scale variability.

Emsellem and DeMarsily [49] argued that “conductivity is a parameter with
no punctual value but with an average value in a region of a given size.” They
suggested that it makes sense to look for a solution that varies smoothly in some
prescribed fashion.

The key issue is that, no matter what we do, the parameters cannot be de-
termined uniquely. That is, even after taking stock of all available information,
there remains an ensemble of equally plausible solutions. The conventional
approach is to choose one of them and use it to predict the movement of a
plume. The justification for choosing this parameter set is that it reproduces
the data when it is used in the model. However, many other parameter sets
have the same effect. When there are a hundred adjustable parameters, repro-
ducing a dozen measurements is not a great accomplishment. Even physically
implausible parameter sets may reproduce the data.

In this chapter, we will discuss an approach (from, [64, 67, 87, 122, 123])
that is an extension of the geostatistical methodologies that we have already
seen. The problem of parameterization is addressed in the context of our familar
structural analysis. To describe the spatial structure in a way that is not too
restrictive and can account for variability at various scales, we employ geo-
statistical models. (Geostatistical methods in hydrogeology are also addressed
in references [7, 35, 39, 40, and 41.]) These models include trend surfaces
or zones, when appropriate, but also less restrictive representations based on
the use of variograms and covariance functions. The number of independent
parameters describing the aquifer properties can be reduced dramatically by em-
ploying geostatistical concepts. The geostatistical parameters of, for instance,
transmissivity are estimated from point measurements of transmissivity (a com-
mon procedure in geostatistics) and point measurements of piezometric head,
pumping rate, recharge, etc. The correlation between head and conductivity is
computed using a groundwater model. The technique allows flexibility in the
selection of the appropriate (given the data) geostatistical structure. After the
geostatistical structure has been identified, the best linear unbiased estimate
of the hydrogeologic parameter at any “point” of interest is found using best
linear unbiased estimation theory. Here, we will focus on the basic approach
but many extensions are possible, as in reference [27].



Using a mathematical model 187

Exercise 9.1 Discuss how the linear model of Equation (6.7) can accommodate
the representation of zones and large-scale trends.

9.2 Using a mathematical model
9.2.1 Equations and conditions

Consider, for example, the case of representing steady two-dimensional flow
without sources or sinks, such as pumping wells or recharge. Application of
conservation of mass and Darcy’s law results in the following well-known
partial differential equation:

9 g 9 o\
a—m(TaTl) +a72(Ta72> =0 ©-b

where x; and x;, are the spatial coordinates, T is transmissivity, a spatial func-
tion, and ¢ is the piezometric head, another spatial function. The location index

takes values in a two-dimensional domain.

There are also auxiliary conditions. For example, the numerical models that
are used in practice require that the domain be finite in size and that on the
boundary either the head or the flux be known (see Figure 9.1). This could be
achieved by selecting the boundary to coincide with hydrologic features such
as a river or lake in hydraulic connection with the groundwater system, where
the head is approximately known, or a hydrologic divide where the flux is zero,
etc.

In practice, we seldom have direct information to specify all the boundary
conditions of a numerical groundwater model. The common approach is to

No-Flux Boundary
|

Fixed Head H,
Fixed Head H,

1
No-Flux Boundary

Figure 9.1 Example of a simple flow domain.
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increase the size of the domain (to reduce the impact of the boundary conditions)
and to calibrate the boundary conditions from other information, such as the
level of wells in the interior of the domain. However, we will see that the
approach followed here is much more attuned to the information that is really
available.

Mathematical procedures are used to calculate ¢(x) given T (x) by solv-
ing the boundary value problem (i.e., the partial differential equation, such as
(9.1), and the prescribed boundary condition). Performing these calculations in
an efficient and accurate manner is the subject of deterministic mathematical
modeling.

9.2.2 Log-transmissivity

In geostatistical applications, it is more convenient to work with the logarithm
of transmissivity, to be referred to as log-transmissivity:

Y = In(T). 9.2)

The reasons have to do with assumptions implicit in linear estimation, which
have been discussed in previous sections (see also [66]).
The governing equation can then be written in terms of ¥:
aY 9 aY d 92 92
oY 99 Y 39 —f+—ij=0. 9.3)
dx1 dxy dx; 9x axi x5
We model Y (x) as a random field with mean function F (x) and covariance
function Ryy (X, X’), as we saw in Chapter 3.

9.2.3 Derivation of joint moments

Here, we will see that we can derive (from the mean and covariance func-
tion of the log-transmissivity) the covariance functions of the head and the
cross-covariance function, instead of postulating and calibrating expressions
for them.

To fix ideas, assume that the head on the boundary of the domain is given.
For each realization of Y (and T = exp(Y)) and given boundary conditions one
can compute a spatial function ¢ that satisfies Equation (9.1) and the boundary
condition. The ensemble of all possible realizations of ¢ defines a random field
jointly distributed with Y .

In principle, if Y;(x) is the i-th realization in a sequence of N equiproba-
ble realizations and ¢;(x) is the corresponding head, then the first two mo-
ments of ¢ can be calculated by taking the limit of the following averages as
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N — oo:

1 N

H® =+ §¢,~ x) (9.4)
1 N

Rgp (%, X) = & D " (@i(x) — H®)(¢i(X) — HX)) 9.5)
i=1

N
Rey (x,%) = % Y @i(x) — Hx)(Xi(x) — F(x)). 9.6)
i=1
An advantage of this derivation is that we utilize principles of flow in porous
media to derive mean and covariance functions instead of groping in the dark.
In fact, even if some approximations have to be made to derive the moments of
the dependent variable, this approach may be advantageous to the extent that it
uses information that would be neglected otherwise. Notice that when one uses
this approach, there is no need to make simplifications about the structure of
the dependent variable, such as stationarity and isotropy.
In practice, the mean head, the covariance function of the head, and the
head-log-transmissivity cross-covariance function are calculated using one of
two methods:

* Monte Carlo simulations or
* first-order analysis.

These methods will be described next.

9.3 Monte Carlo simulations
9.3.1 The approach

The method of Monte Carlo (MC) simulations is conceptually simple and con-
sists of commonly available tools:

1. A random-field generator. A random-field generator is a mathematical pro-
cedure that generates realizations of the input variable. For example, con-
sider the log-transmissivity as a random function with zero mean and expo-
nential covariance function, exp(—|x — x'|). A mathematical procedure can
be developed to generate many possible functions Y (x), Y2(x), ..., Yy (x).
These functions are generated in such a way that ﬁ Z,N=1 Y;(x) ~ 0 and
# Z,N=1 Y;(x)Y; (x') >~ exp(—{x — X'|), provided that N is large.

2. A boundary-value problem solver. For each of the Y;(x) sample functions,
one can solve a deterministic boundary value problem and obtain a head
function ¢; (x).
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3. Routines for the statistical analysis of data (Equations (9.4)—(9.6)). That is,
one can take averages to approximate the mean, the autocovariance, and the
cross-covariance.

The main advantage of the Monte Carlo method is its generality. In practice,
because of the usually high cost of generating realizations of random fields and
particularly of solving boundary value problems, N seldom exceeds a few hun-
dred. The penalty for using a small N is that the results are affected by sampling
error. (Sampling error in Monte Carlo simulations is due to the fact that the aver-
age value for a finite N differs from the average that would have been obtained at
the limit of a very large N.) It can be shown that the standard (root mean square)
sampling error, associated with estimation of the first two moments by taking
averages over N realizations, is proportional to 1/+/N, so that beyond a certain
point the standard sampling error decreases slowly. Nevertheless, even when the
results are affected by sampling error, they can be adequate for purposes of best
linear estimation (cokriging). An application can be found in reference [69].

9.3.2 Example

Consider one-dimensional flow between two boundaries where the head is
known. Consider that the log-conductivity may be modeled as a realization of
a stationary random field with mean m and exponential covariance function

Ryy(x — x') = o% exp(—|x — x'|/0), .7

where the variance o2 and the integral scale ¢ are known. The governing equa-
tion is
ar 3 a—zf =0, 9.8)
dx dx  Ix?
with ¢ (0) = Hp and ¢(L) = H|.

Analytical solutions to differential equations with variable coefficients are
normally unavailable. Monte Carlo simulations usually require that the problem
be discretized in some way, so that computer-based methods of solution can
be used. Let us use a simple finite-difference scheme, with a uniform grid with
spacing Ax, to approximate (9.8):

Yipin —Yic1 @i — dica n biv1 — 2¢; + iy
2Ax 2Ax Ax?

=0,
fori=2,....M -1 (9.9
or
[4— Yipr = YicDlpio1 — 8¢ + [4+ Yigy = YicDisa =0 (9.10)
and ¢, = Hyp and ¢y = Hy.
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The solution procedure is then the following:

1. Generate a sequence of M values Y,Y>, ..., Y. For the exponential co-
variance function in one dimension, the following simple scheme can be
used: Generate M standard normal variates u, 5, . .., upy. Then,

Yi=m+ou (9.11)

Yi=m+p¥i-1—m)+ov/1—p%u;, fori=2,....M, (9.12)

where p = exp(—Ax/£). (This method is generally inapplicable for other
covariance functions or for the exponential function in two or three dimen-
sions.)

2. Solve the system of M — 2 equations with M — 2 unknowns, @2, ..., Py—1.
In matrix notation, we write
-8 44+ (Y —-Yy) 0 0
4~ (Yy—Y>) -8 4+ (Ys—Y>2) 0
0 4—(Ys—Y3) -8 44 (Ys—Y3)
0 0 0 0
0 0 o2 [—44+ (Y3 —-Y)]Hy
0 0 b3 0
0 0 $1 | = 0
4— Yy —Yu-2) —81 lou- [—4—(Yu—Yu2)]|H,
(9.13)

(This approach is presented because it is general, but in this specific exam-
ple one can take shortcuts based on the fact that the flow rate is constant
everywhere.)

In the numerical results that will be presented, the normalized parameters are
Hy=1, H =0, L=1, ¢*=1, ¢=05.

Because the head depends only on increments of the log-conductivity, we may
use any value for the mean, such as m = 0.

Discretizing into M = 21 nodes and taking N = 400 realizations, we can
determine the mean and covariance function of ¢ and the cross-covariance be-
tween ¢ and Y at the nodes. Some results are shown in Figures 9.2 through 9.6.

Figure 9.2 is the head mean, H (x). Itcan be approximated closely by a straight
line. Figure 9.3 shows the head variance, R4 (x, x), at each node. Clearly, ¢ (x)
is not stationary since its variance is different from node to node. It is small
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Figure 9.2 Mean head from Monte Carlo simulations.
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Figure 9.3 Variance of head from Monte Carlo simulations.

near the fixed-head boundaries and large at the center. Figure 9.4 depicts the
correlation between the head at x = 0.25 and the head at any node. Figure
9.5 shows the cross-covariance of head with the log-conductivity at exactly the
same location, Rsy (x, x).

Figure 9.6 is a plot of the correlation between the head at x = 0.25 and the
log-K at any node. The result is as one should have expected: If the head at
x = 0.25 is above the value given by the straight line of 9.2 at this location,
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Figure 9.4 Correlation of head at x with head at x = 0.25.
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Figure 9.5 Cross-covariance of head—log-conductivity at same location.

then the conductivity near the upgradient end of the domain is likely to be high
or the conductivity near the downgradient end of the domain is likely to be low.

Figure 9.7 shows Ryy (x, x) computed from the 400 realizations. It can be
seen that it is not exactly 1, as it would have been if N were infinitely large. This
small discrepancy is due to the sampling error associated with MC simulations.
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Figure 9.7 Log-conductivity variance from Monte Carlo simulations.

The results may vary substantially when the number of realizations is small,
such as N ~ 10. In many estimation applications, the first two moments do
not need to be calculated with great accuracy; N = 400 is sufficient in our
example. Nevertheless, it is prudent to try to evaluate the size of the sampling
error. Here are two methods:
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Figure 9.8 Comparison of head variance from two sets, each with 400 realizations.
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Figure 9.9 Comparison of head—log-conductivity covariance (same location) from two
sets, each with 400 realizations.

1. One way is by repeating the procedure with a different set of realizations,
i.e., starting the simulation procedure with a different “seed number” (see
Appendix C). The difference between the results provides an indication of
the sampling error. For example, Figures 9.8 and 9.9 are the head variance
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and head-log-conductivity cross-covariance (for same location) for two sets
of 400 realizations. The figures indicate that the differences are relatively
small.

2. Another way involves calculating the sample variance in addition to the
sample mean. Take, for example, the calculation of H (x). In addition to
finding the average of the head at x over N realizations, we also compute
the variance over N realizations:

1 N
Var(@ () = ~ > (@:(x) = H)” 9.14)

i=1
Then, the mean square error of estimation of H (x) from N realizations is
xVar(p(x)).

Note that if one wants to reduce the difference by a factor of 10, one needs
to increase the number of simulations by a factor of 100.

In addition to the sampling error, there is a discretization error associated with
the application of finite-difference or finite-element methods. In the example,
Ax is one tenth of the integral scale /, which seems to be adequately small.

9.4 First-order approximation
9.4.1 The principle

The derivation of the first two moments of a variable that is a linear function of
other variables is straightforward. For example, if

y=ax+b, (9.15)

where @ and b are constants and x is a random variable with mean u, and
variance o2, then we can derive the mean and variance of y,

my = am, + b (9.16)
o) =a’c}, 9.17)

and the covariance between x and y,
C,y = ac?. (9.18)

9.4.2 Linearization

We capitalize on this idea by developing an approximate method for calculating
the first two moments of a dependent variable (e.g., hydraulic head) from the
first two moments of an independent variable (e.g., log-transmissivity) after the
relation between the two variables has been linearized. The approach is known
as a first-order analysis or small-perturbation approximation.
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Yx)=F(x)+ f(x) 9.19)
¢ (x) = H(X) + h(x), (9.20)

where f and 4 are the fluctuations of the log-transmissivity and head about
their mean functions F and H, respectively. We assume that the fluctuations of
log-transmissivity and of head are small and, more precisely, are of the order
of a small dimensionless scalar &. Note that ¢ does not need to be interpreted
as anything more than a guide in separating the “small” f and 4 terms from
the “large” F and H terms and will play no other role in the analysis. In other
words, all we need to know is that terms of order &2 are smaller than terms of
order ¢, which are smaller than terms of order 1, etc. That is,

fx)=0() (9.21)
h(x) = O(e), 9.22)

where
ekl (9.23)

and O stands for “order of,” which in an intuitive sense is about the same as
“proportional to.” Actually, this assumption is equivalent to linearizing the re-
lation between f and k, since we say that they are both proportional to the
same number. F and H are viewed as O(1) (or O (%)) terms. Substituting in
the governing equation, we have

AF + f)d(H +h) N AF + )dH +h) + 2(H +h) 0%*H +h)

=0.
axy dxy dx2 dxz dx? ax2
(9.24)
If we retain only zero-order terms (O (¢°)), this reduces to
dF 9H 9F d0H 3*°H 3*H
R =0. (9.25)

0x1 dxy 0x2 _Bx—z 8x12 8x22

Equation (9.25) is a deterministic differential equation (since both F and H
are deterministic functions) that can be solved subject to the given boundary
conditions with the usual methods such as finite elements, finite diferences, etc.
Once H is calculated, we can equate terms of O (¢!) to get
OF dh  OF dh  3*h  3*h _ O0f 0H df 9H 9.26)
dx1 9x1  dxp dx2  AxF  AxF  dx1 dx;  dxp dxp )
If the value of the head on the boundary is given (¢ = H), the fluctuation is
zero on the boundary.
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Equation (9.26) is the stochastic differential equation that relates the fluctu-
ation /4 to the fluctuation f. We call it stochastic because it relates stochastic
processes: It can be used to determine the first two moments of 4 given the first
two moments of f and appropriate boundary conditions. This is what we will
mean by “solving a stochastic boundary value problem.”

9.4.3 Moment derivation

The task is facilitated by the fact that Equation (9.26) denotes a linear rela-
tion between 2 and f. Also, if the boundary conditions to Equation (9.3) are
deterministic, we have homogeneous boundary conditions,

oh
h=0 or PPl 0 on the boundary, 9.27)

where n here is the direction perpendicular to the boundary. For a given function
f(x), the solution is of the form

h(x) = /G(x, u) f (wdu, (9.28)

where G (x, u) is the “influence” function. Note that here f indicates a multiple
integral and that du is shorthand notation for du, du, .. ..

Function G (x, u) quantifies the effect of fluctuation f at location u on fluctu-
ation £ at location x. Its analytical derivation in a closed form may be anything
but simple. Nevertheless, it is useful in understanding the principle to assume
for a moment that G (x, u) has somehow been obtained. Then, the statistics of
h(x) can be calculated:

Eh(x)h(X)] =E [//G(x, WG, u) f(u)f(u)dudy'|. (9.29)
Interchanging the order of expectation with integration, we obtain

Eh(x)h(x)] = //G(x, wWG X, W)E[f(u)f(u)]dudu (9.30)

=//G(x, w)G (X', u)Ryy(u, u)dudu’. (9.31)

Similarly,

E[h(x) f(x)] = /G(x, wWE[f(u)f(x)]du (9.32)

= /G(x, u) Ryy (u, x')du. (9.33)
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Thus, the first-order approximation method consists of four steps:

1. Linearization or small-perturbation approximation of the governing differ-
ential equation.

2. Solving a deterministic boundary value problem.

3. Obtaining influence function, G (x, u), which corresponds to the linear equa-
tion satisfied by the first-order terms.

4. Deriving the second moments of /4 by calculating integrals.

Useful closed-form analytical solutions can often be obtained by making a
number of reasonable simplifications (examples are given in [8, 60, 32, 33, 35,
and 57].) Commonly made assumptions include constant F' and constant slope
of H. It is also possible in simple cases to derive an analytical solution for a
bounded domain with fixed-head or fixed-discharge boundary conditions (see
[87]), but the analysis tends to be cumbersome. For this reason, most analytical
solutions are derived for unbounded domains. For purposes of illustrating the
methodology, this important special case will be described in the next section,
after an example.

Example 9.1 The applicability of the described methodology will be illustrated
on the problem that we have already solved using the Monte Carlo method:
steady flow in a one-dimensional aquifer with prescribed head boundary con-
ditions and with no sources or sinks. In this case, the first-order equations lead
to analytical closed-form solutions.

The mean head function is

H(x) = Hy — AH{-, (9.34)

where AH = Hy — H, and

L X
h(x)=—%[%/0 f(u)du~/0 f(u)du]. (9.35)

We focus on the case that the covariance function of Y is exponential:

!

Then, after performing integrations that involve a fair amount of analytical
work, it was derived [87] that Rye(X;, x;) is given by the general relation,

R¢¢(X,‘,x}') - E{[¢t - Ht][¢j - H}]}

! xp x;i |
— 2,22 AU R
= AH*oc U( , ==, ) (9.37)

Rys(xi x;) = oexp [—u] 9.36)
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Xj ) Xi Xj l L l
LR =2__ 1 T - 7 - T
L L) LL( +LeXp< )7L
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11

+2min(xi,xj) _%_ Lexp(— !Xi —XJl):|

L L £
(9.38)
Ry (xi, x;) = E{l¢ — H;1[Y; — F;1}
_ 2Ly (%% L
=AHo LV ') (9.39)

X ) X X L—Xj
Jd)==-ZE|2- _ Y - _
L L) L[ e""( 1) e""( I

X 2—exp(— '1’-1_1‘1), ifxi > x;
- exp(— —) + .
exp(—— B—’—I_—ﬂ), fxi <x;
(9.40)

Finally, Rgy (xi, x;) = Ryg(x;,x;). The moments computed from the first-
order analysis for this case are accurate for small . In practice, they are
adequately accurate for purposes of cokriging even when c? is large (such as

2t04).

A comparison betweeen Monte Carlo simulations (400 realizations) and
first-order analysis is given in Figures 9.10-9.14. The asterisks are the re-
sults of the Monte Carlo simulations, the continuous lines are the results of
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Figure 9.10 Comparison for mean head (o2 = 1).
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Figure 9.11 Comparison for head variance (62 = 1).

the first-order analytical solution, and the dots (practically indistinguishable
from the continuous lines) are the results of the numerical first-order analy-
sis that we will describe later. Figure 9.10 compares the head mean, H (x).
Figure 9.11 shows the head variance, Rg4(x, x), at each node. Figure 9.12
is the correlation between the head at x = 0.25 and the head at any node.
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Figure 9.13 Comparison of cross-covariance (6> = 1).

In Figure 9.13, the cross-covariance of head with the log-conductivity at ex-
actly the same location, Ryy (x, x), is plotted. Figure 9.14 shows the corre-
lation between the head at x = 0.25 and the log-conductivity at any node.
From the comparison, we can see that the two methods produce very similar
results.
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Figure 9.14 Comparison of ¢ (0.25) to ¥ (x) correlation (62 = 1).
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Figure 9.15 Comparison of mean head (6% = 2).

The two methods were also compared for the case in which 6% = 2; these
results are shown in Figures 9.15-9.19. It is evident that the differences increase
with o2. For 62 = 2, the results of the perturbation method are less accurate but
still adequate for many applications. Note that there is a general tendency for
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the head variance calculated from the perturbation method to be larger than the
one computed from Monte Carlo simulations. (Keep in mind, though, that sam-
pling error in the Monte Carlo method also tends to increase with the variance.)
The agreement in the calculated cross-covariances and correlation coefficients
is satisfactory.

Head Variance
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Figure 9.17 Comparison of ¢(0.25) to ¢ (x) correlation (¢° = 2).

Figure 9.16 Comparison of head variance (6% = 2).
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Figure 9.18 Comparison of cross-covariance (62 = 2).
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Figure 9.19 Comparison of ¢(0.25) to Y (x) correlation (52 = 2).

9.5 Large-domain analytical solutions

Large-domain analysis is appropriate when the actual boundaries of the for-
mation are far away from the area of interest or if we are uncertain about the
location and effects of the boundaries. Because of its complexity, you may
choose to skip this section at first reading.
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We assume steady flow in an n-dimensional unbounded domain, with no
sources or sinks; log-conductivity (or log-transmissivity) with constant mean;
and head with constant mean slope §; in direction i. For example, for three
dimensions,

F=E[Y]=C, (9.41)
H(x1, x2,x3) = S1x1 + Sax2 + S3x3 + Co, (9.42)
where S;, S2, and S are known constants and C; and C, are unspecified con-

stants. §; is the slope of the mean piezometric head in the x; direction. The
equations satisfied by H and 4 are simplified as follows:

8°H 98*H 9*H

=0, 9.43
o7 Vo T o ©43)
which is satisfied by the solution, and
h  3*h  3%h 0 0 0
Cho Fh Ph_ (0 o A g,
ox;  O0xy;  0x3 axy dx; 0x3

Under these conditions, a general expression can be obtained for the influence
function G. The solution depends on whether the domain is one, two, or three
dimensional. It turns out that in the unbounded domain G depends only on the
separation between x and u, rather than on both arguments. For n; = x; — u;,
we obtain the following analytical expressions:

For one dimension,

—51/2, if?’]l >0

G(m)=10, ifn =0. (9.45)
$1/2, nm <0
For two dimensions,
_—51?71 + Sam ifn>0
G, m) = 2rp? , (9.46)
0, ifn=0

where 7 = \/n? + 5.
For three dimensions,
_Sim+ Samp + Sams

G(m,m,m) = 4mn?
0, ifp=0

where n = \/n? + 03 + n%.

Basically, these results mean that an increase in log-conductivity at location
u translates into an increase in head downgradient and a decrease upgradient of
u. The head fluctuation at location x depends only on the distance x — u from
the log-conductivity fluctuation and is given by the functions above.

» ifn>0 (9.47)
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Figure 9.20 Influence function for one dimension. Positive 7 indicates that the head
fluctuation is downgradient of the log-conductivity perturbation.

Note that the influence of a small fluctuation of log-conductivity on head does
not decrease with distance for one-dimensional flow. See Figure 9.20, which
shows G(n) for S; = —1 (i.e., the flow is in the positive direction). However,
the influence decreases with the inverse of the distance for two-dimensional
flow and with the inverse of the square distance for three-dimensional flow.

Let us examine the two-dimensional case in some detail. Equation (9.46) can
be written

G 6) {|S| cos@1/[2nr], ifr > 0, ©.48)

0, ifr=0

where r is the distance and 8 is the angle with the direction of flow as shown in
Figure 9.21. (This expression is the “dipole” of potential flow theory.) With the
exception of the singularity at 0, the influence of a log-transmissivity fluctuation
at a point at distance r is inversely proportional to r and is proportional to the
absolute value of the head gradient. The influence is maximum in the direction
of flow and zero at the direction exactly perpendicular to that of flow. The influ-
ence is positive downgradient and negative upgradient of the log-transmissivity
fluctuation.

In interpreting these results, keep in mind that a very large domain is assumed
so that the effects of the boundaries are neglected. Furthermore, the influence is
computed for a small fluctuation of the log-transmissivity about a background
of constant log-transmissivity.
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flow

Transmissivity

Figure 9.21 Influence function in two dimensions.

For purposes of illustrating this approach, consider the following two-dimen-
sional case (adapted after Dagan [33]). Assume that the log-transmissivity ¥
is an isotropic stationary function with mean F and exponential covariance
function

{

where o2 is the variance and £ is the integral scale of Y . With these assumptions
Dagan found, for §; = S, S, =0,

Ryy(x,X) = o2 exp <— X —x '), (9.49)

Roy (X, x) = 02§ E%[l — (1 +r)exp(—n)], (9.50)

where

/|
Note that the cross-covariance is positive when the head is downgradient of the
log-transmissivity. The head covariance does not exist because in an unbounded
domain the variance of the head can be infinitely large. However, the variogram
can be defined:

Xy —X; X3 — X5
1 2
r=(,n)= < —), r= \/r12+r22.

2 r?

1 2 1 2434 3) — 3
Yoo (X, X) = —028%¢2 My n exp(—r)(r? +3r +3)
2 r2

+E(r) +In(r) + exp(—r) — 0.4228},

ifr >0 (9.51)
Yoo (r) =0, ifr =0, 9.52)
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\

where E|(r) = f 1°° e"p(t—_”)dt is a tabulated function known as the exponential
integral and C is a constant. (For convenience in computing function E, (r),
MATLAB program expint1 is given in Section 9.9.) At large separation dis-
tances, the variogram increases logarithmically with the distance. In particular,
the variograms in the principal directions at large distances are

0.1

2 4 6

Figure 9.22 Contour plot of cross-covariance.

Yoo (r1) = In(r1)/2 + 0.0386, yp4(r2) = In(r2)/2 — 0.4613.

Near the origin, the variogram has parabolic behavior. Note that the variogram
increases faster with the distance in the direction of flow, indicating that a
higher degree of spatial continuity is found in the direction perpendicular to the
flow.

Results are plotted foro?> = 1, § = 1, and/ = 1. Figure 9.22 is a contour map
of the cross-covariance of the log-transmissivity and head. Figure 9.23 shows
the cross-covariance as a function of r;, when r, = 0. It is worth noticing that
the cross-covariance is an odd function in the direction of flow and an even
function in the direction perpendicular to flow.

Figure 9.24 shows the (semi)variogram in the two principal directions: (1)
along the flow and (2) across the flow. The variogram increases faster in the
direction of flow, indicating that a head observation will be more informative
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Figure 9.24 y,4(r) in the two principal directions. r; is the distance in the direction of

flow.

about the hydraulic head in the direction perpendicular to flow. Figure 9.25
shows a contour plot of the variogram.

In cokriging it is more convenient to work with the generalized covariance
of the hydraulic head. Let

Kss(r) = —ype(r) 9.53)

be a generalized covariance function that becomes 0 when r = 0.



Large-domain analytical solutions 211

r2
8 A
10
6
0.8
4 0.6
0.4
2 0.2
0
—>
0 2 4 6 8

Figure 9.25 Contour plot of the variogram.

A useful closed-form analytical solution was thus obtained by making a num-
ber of simplifications about the form of the mean and the covariance function
of Y (x), the geometry of the flow domain, and the boundary conditions. The
assumption of an unbounded domain is appropriate if the boundary of the do-
main is not well defined and values of the head or discharge on the boundary are
not actually measured. This is often the case in regional flow modeling, where
the only available information is measurements of head and transmissivity at
interior points. Furthermore, if the objective of second moment characterization
of ¢ is cokriging, approximate solutions may suffice given the relative insen-
sitivity of linear estimation results to the form of the second moments. It has
been shown [42] that the general characteristics of the analytical solution just
described were found even in a finite domain that did not meet the mathematical
assumptions of the analysis.
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9.6 Numerical small-perturbation method

We willillustrate how one can use numerical methods based on the discretization
of the governing equations in the spatial domain, such as finite differences and
finite elements.

For the sake of simplicity, we will consider the same simple case that we saw
in the Monte Carlo example. We will assume a one-dimensional flow domain
with constant F and no sources or sinks. However, it must be emphasized that
the main advantage of the numerical approach is that it can be applied under
more general conditions [65].

We will deal with a uniform finite-difference grid with spacing Ax. The
equation for the mean is approximated numerically by

Hi_y —2H; + H;4,
Ax?

By writing one equation for each interior “node” and substituting the values
of H on the boundary, we obtain a system of linear algebraic equations that
can be solved to obtain the value of H at each node. For the case at hand, the
solution is obvious after we give the problem some thought:

M—i

i .
Hi=—1W—'H1+MHL, l=2,...,M—1. (955)

For a more general case, we obtain the mean from a computer-based numerical
model using uniform transmissivity and the prescribed boundary conditions.
The expected head slopes d H /dx; and 9 H /9x, are then approximated by using
the discrete values of H resulting from the solution.
The stochastic partial differential equation for %, Equation (9.26), can also
be written in a finite-difference form:
hioy —2hi +hiya _ finn— fi-1 AH

= 9.56
Ax? 2Ax L (9-36)

=0. (9.54)

or

Ax AH
hisy —2hi +hip = —TT(ﬁH = fic1)- 9.57)

This equation is written for each node. In matrix form, this set of equations is
Ah = Bf, (9.58)

where h is the vector of values of /2 sampled on the nodes, f is the same type of
vector for f, and A and B are constant matrices. The same can be written as

h = Cf, (9.59)
where C = A~1B.
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Equation (9.59) is but the discrete equivalent of (9.28). It can be used to
develop the required second moments:

E[hh"] = CE[ff"1CT (9.60)

E[hfT] = CE[ff"]. (9.61)

Example 9.2 Let us continue with the one-dimensional flow example that we
saw in Monte Carlo simulation. The h and f vectors of random variables are

hy fi
hy f
h=| [ f=] .|
hy biti
The M x M A matrix is
1 o o 0 0 O]
1 =2 1 0 0 0
0 1 =2 0 0 0
A= s (9.62)
0 0 0 1 -2 1
o o0 o 0 0 1]
and the B matrix is
0 0 0 0 O]
1 0 -1 0 0 0
AxAH 01 0 - 00 0
B=——— . 9.63
L (9.63)
0 0 o -« 1 0 -1
00 0 .- 00 0

A comparison between the numerical and the analytical small-perturbation
solution indicates that they are indistinguishable for the case depicted in Figures
9.10-9.19.

Exercise 9.2 In the discrete formulation of numerical models, function f(x)
is replaced by vector £ and function h(x) is replaced by vector h. Identify the
equivalents of the influence function G (x, u) and of Equations (9.28), (9.30),
and (9.32) in the discrete formulation.
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9.7 An inverse problem

We will illustrate some of the concepts and methods we have covered through
an application to an inverse problem. Consider steady two-dimensional flow in
an unbounded domain with negligible pumping or recharge. The data consist
of 9 observations of the transmissivity (see Table 9.1) and 19 observations of
the hydraulic head (Table 9.2). The problem will be formulated using the linear
estimation methods we have seen in this book. !

The transmissivity is measured in 10™* m?/sec, the head is in meters, and x
and y are in units of 100 meters. The objective is to estimate the log-transmis-

Table 9.1. Measured transmissivity
and coordinates of observation points

T x y

3.084 —6.0 4.0
0.442 -4.0 -3.0
0.263 -3.0 —-4.0
0.340 -3.0 -2.0
1.022 -1.0 6.0
1.012 3.0 -3.0
0.526 5.0 -4.0
0.537 5.0 -3.0
0.278 7.0 -5.0

Table 9.2. Measured head and coordinates of
observation points

o X y ¢ X y

13.832 —4.0 -5.0 9.113 0.0 7.0

12.406 —4.0 7.0 6997 1.0 =20

11.809 -3.0 3.0 6.055 3.0 -60

10.830 -2.0 =50 5593 3.0 4.0

10.605 —-2.0 -2.0 4924 4.0 1.0
9.143 —-1.0 -40 4.163 50 =20
9.644 —1.0 1.0 2971 5.0 5.0

10391 -1.0 6.0 2569 60 70
8.980 0.0 20 2834 60 =30
9.542 0.0 5.0

! The method assumes that the transmissivity varies gradually and that the linearization about the
prior mean is adequate [34]. For methods that iterate in order to linearize about the conditional
mean and that could be useful in large-variance cases, see [19, 85, and 148). There are also other
nonlinear estimation methods, such as the one in reference [22].
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Figure 9.26 True transmissivity and location of transmissivity observations.

sivity and the hydraulic head in the domain x = [-7, 8], y = [—7, 8]. Figure
9.26 shows the location of the transmissivity observations and the contour map
(or lines of equal value) of the true transmissivity. For instructional purposes,
we consider a synthetic case where the transmissivity is known although only
some measurements are used in estimation. We do this so that we can evaluate
the effectiveness of the estimation method at the end of the exercise. Figure
9.27 shows the locations of the head observations and the contour map of the
true head.

We may start by using only the transmissivity data to perform kriging. It is
common practice to work with and apply krigingonY = In 7. Because we have
only 9 observations, we fit a simple variogram to the log-transmissivity data:

y =0.1h, (9.64)

where £ is the separation distance. Then, we estimate through kriging the best
estimate of log-transmissivity ¥ and we plot exp(¥) in Figure 9.28. The esti-
mated transmissivity? is a much smoother and simpler function than the actual

2 1f ¥ is the conditional mean of ¥, exp(f’) is not the conditional mean of T . Nevertheless, exp(f’)
is median value of T and in this sense is a reasonable estimate of T.
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Figure 9.27 True head and location of head observations.
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Figure 9.28 Location of transmissivity data and estimate of transmissivity obtained
using only these data.
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Figure 9.29 Location of head data and estimate of head obtained using only these data.

one. The transmissivity data allowed us to identify some coarse features of the
actual function but because the observations are few and nonuniformly dis-
tributed they cannot give any information about the function at the northeast of
the domain and elsewhere. Similarly, we analyze the head data to establish the
following simple model. The mean is variable,

H(x,y) = S0+ Six + S2y, (9.65)

where Sy, S;, and S; are three unknown drift coefficients, and the variogram y
(or generalized covariance function K) is linear,

y(h) =0.077h, K(h) = —-0.077h. (9.66)

The best estimates obtained using (universal) kriging with this model are shown
in Figure 9.29. The estimates are clearly quite accurate where measurements
abound.

An estimate of the transmissivity using cokriging, using both transmissiv-
ity and head observations, is presented in Figure 9.30. It is obvious that many
more details of the actual transmissivity were identified using the head data in
addition to the transmissivity data. Although many small-scale features remain
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Figure 9.30 Estimate of transmissivity obtained from transmissivity and head observa-
tions.

undetected most of the important large-scale features of T have been deter-
mined. The same cokriging approach was applied to obtain best estimates of
the head (shown in Figure 9.31). The estimate of the head in most of the domain
is practically perfect. In the remainder of this section, we will provide some
more details on how these estimates were obtained.

We will use cokriging as given in Chapter 8 and will derive second moments
of head following the analytic small-perturbation approach, described in Section
9.5. The log-transmissivity is modeled as stationary with unknown mean F and
covariance function

Ryy(x; — Xj) = 02 €Xp <— IIXI;—XJII), 9.67)

which has two parameters, o2 and /. The mean head is modeled as having
variable mean (Equation (9.65)), where S is treated as unknown whereas S
and S, are treated as known, consistent with the analysis of Section 9.5. From
Figure 9.29, we roughly estimate that S = —1 and §; = 0. As discussed in
Chapter 8, we still need to define the head generalized covariance K4 and the
head-log-transmissivity cross-covariance Rgy to be able to solve the cokriging
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Figure 9.31 Estimate of head obtained from transmissivity and head observations.

problem. The generalized covariance is found from Equations (9.53) and (9.51),
using § = —1. The cross-covariance is given from Equation (9.50). Thus, we
may proceed to apply cokriging.

Exercise 9.3 Write out the cokriging equations for estimating log-transmis-
sivity and head under the assumptions of this section.

9.8 Key points of Chapter 9

In many important applications, different spatial functions are related by the
equations that describe the flow and transport in geologic formations. These
equations may be the best way to determine the correlation structure of a de-
pendent variable, such as head, from the correlation structure of an independent
variable, such as conductivity. Two possible methods are Monte Carlo simula-
tions and first-order analysis.

Monte Carlo simulations are based on the mathematical generation of many
input-function realizations and the solution of the governing equations to com-
pute output-function realizations. Then the correlation structure of the output-
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function is determined by taking averages. The more realizations there are, the
more accurate are the results.

The first-order (or small-perturbation) method is based on the linearization
of the relation between the input and the output. The approach is much more
efficient computationally than Monte Carlo simulations. In some simple cases,
closed-form expressions for the covariance of the output can be derived analyt-
ically. However, this approach is only valid when the fluctuations of the input
function are small and gradual so that the relation can be linearized about the
prior mean.

9.9 Addendum

Here we present a MATLAB program for calculating an exponential integral:

function [expintl] = expinti(r)

)

% expintl(r)

h

% This function returns the value of exponential integral
% order 1 with argument r, a scalar or matrix quantity.
% See Abramowitz and Stegun, Eq. 5.1.1.

h

if r<1

b

a0 = -0.57721566;

al = 0.99999193;

a2 = -0.24991055;

a3 = 0.056519986;

a4 = -0.00976004;

ab = 0.00107857,;

expintl = -log(r)+aO+al*r+a2+*r. 2+a3*r. 3+ad+r. 4+ab*r."5;
else

al = 2.334733;

a2 = 0.250621;

bl = 3.330657;

b2 = 1.6815634;

expintl = exp(-r).*(r. 2+al*r+a2)./(r. 3+bl*r. 2+b2*r);
end

For example, the command expint1(0.5) should return the value 0.5598.
At the limitasr — 0, E{(r) — +oobut E{(r) + In(r) — —0.5772.
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Probability theory review

In this appendix we review some basic concepts and results of probability theory
that will be of use in this book. It is meant to be a refresher of concepts that
the reader has already seen elsewhere in a more complete form and at the same
time as a way to establish notation. The choice of topics reflects the emphasis of
this book on using mean values, variances, and covariances. Useful textbooks,
which could be used in a formal course on probability theory, are listed at the
end of this appendix.

A.1 Introduction
A.1.1 Experiments

Probability theory is concerned with “experiments” with multiple possible out-
comes. An example of an experiment is to toss a coin. The only outcomes (also
known as realizations or sample values) are “heads” and “tails.” We say that
the ensemble of all possible realizations of this experiment are heads and tails.
Another example, with many possible outcomes, is to spin a wheel of fortune.

Consider now the problem of predicting the piezometric head of an aquifer
at a location. If we cannot predict the outcome but we realize that there are
many possible outcomes (predictions), then it is useful to conceptualize the
process the same way we do a game of chance. Prediction with incomplete
information and games of chance share the characteristic that their outcomes
cannot be predicted with certainty and we have to come up with a different
(from the usual deterministic) way to make predictions. In some instances,
we may be able to evaluate the likelihood of an “event,” such as that the
head is less than 420 meters above mean sea level. Although this is perhaps
not as satisfactory for general purposes as predicting the exact value of the
head (which is not possible given the available information), it is information
useful to someone faced with the decision whether to drill a well at that location.

221
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A.1.2 Probability

Intuitively, one may define the probability of an event as the number between
zero and one that represents the chance or relative frequency of occurrence of
the event. The probabilities of all possible (mutually exclusive) events of an
experiment must sum to 1.

A.1.3 Random variables

In practically all cases we deal with experiments whose outcomes can be de-
scribed through numerical values. The (uncertain) outcome of such an experi-
ment is called a random variable. Unlike a deterministic variable, which has a
unique value, a random variable may take any of many values, depending on
the outcome of an experiment. A deterministic variable is characterized (fully
described) by its unique numerical value (and, of course, its units). For example,
the transmissivity is 1,000 m?/day. By contrast, a random variable is charac-
terized by a probability distribution that can be used to assign probabilities to
any possible outcome. For example, consider the experiment of tossing a coin.
Assign to the outcome a numerical value x, with x = 1 if heads and x = 0
if tails. (These are the only two possible outcomes of the experiment.) The
random variable we have just defined is characterized as soon as we define the
probability of all outcomes, e.g., Pr[x = 0] = Pr[x = 1] = 1/2. The random
variable may be denoted by an upper-case letter X so that it can be distinguished
from the outcome of the experiment, which is denoted by a lower-case letter.
(However, this convention is not maintained when the distinction is obvious.)
When the random variable can take only the discrete values xy, ..., x,, the
probability law is equivalent to defining the probability of each outcome,

P=PiX=x], i=1,...,n (A.1)

The set of values (Py, ..., P,) constitutes a discrete probability distribution.
In most cases of practical value we are interested in experiments whose out-
comes can take any real value in some interval(s). To describe the probability
law of such a continuous random variable, we may use the cumulative distri-
bution function (cdf) defined as follows:

Fx(x) =Pr[X < x]. (A.2)

For example, if Fx(x) = 1 — exp(—x), for x > 0, then Fx(1) = 0.623
means that the probability that the outcome of the experiment (realization of
the random variable) will take values smaller than 1 is equal to 0.623. Note that
since F (x) is a probability, it must be nonnegative, and the probability of the
“certain” event (i.e., X < 0o) must be equal to one.
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For a continuous random variable it is convenient to define the density of its
probability, called a probability density function or pdf, denoted by fx (x), and
defined in an indirect way as follows:

/ " fdu = Prixv, < X < x] (A3)

or, for an infinitesimal dx,
fxx)dx =Pr[x < X < x +dx]. (A4)

The cumulative distribution function and the probability density function are
obviously related through

Fx(x)=Pr[—oo§X§x]=/x fx(u)du (A.5)
or ”
Fx(x2) — Fx(x1) = / fxw)du (A.6)
and
dF
—= = fx o). (A7)
X

That is, the pdf of a random variable is the derivative of the cdf with respect
to the argument x.

The pdf fx (x) has as units the inverse of the units of x. It must satisfy the
following properties:

fxx) =0 (A.8)
+o0

fx@)du = 1. (A.9)

—00

A.2 Jointly distributed random variables

In many applications, we are interested in the joint behavior of two random
variables. Consider, for example, the value of transmissivity at two nearby
locations in the same aquifer. The two locations are aligned downgradient of
a contaminant source. To evaluate the chance of a low resistance pathway,
we would like to quantify the probability that both transmissivities are high.
Furthermore, we would like to evaluate how measuring the one transmissivity
affects the probability that the other transmissivity is high. To answer these
questions we need to define the joint probability law of two or more random
variables. We will restrict our attention to continuous random variables.
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To keep the notation simple let us consider only two random variables, X
and Y. The joint cumulative distribution function is defined by

Fxy(x,y)=Pr[X <x and Y <y]. (A.10)

Again, the capital letters X and Y stand for the random variables and the lower-
case letters x and y are realizations or sample values (variables taking numerical
values).

The joint probability density function fx y (¥, v) is defined through the prop-
erty that its integral over a domain gives the probability that the outcome will
be in this domain. That is

/ /fx,y(u, vdudv=Pr[(X,Y) e D], (A.11)
D

where D is a domain in the space where X and Y take values (e.g., D is the
domain of nonnegative outcomes of X and Y) and € stands for “‘belongs to.”
Or, for infinitesimally small dx and dy,

Sxy@, Vdxdy=Prix <X <x+dx and y <Y <y+dy]. (A12)

Obviously,
fxy(x,y) =0 (A.13)
and
400 +o0
/ fxy(u, v)dudv = 1. (A.14)
—00 -0
We define the marginal pdf of x as
~+o00
Sx(x) = Fxy(x, wdu. (A.15)
-0

Similarly, the marginal cdf is the already familiar cdf of random variable X.
The same holds true for the marginal functions of y. In a sense, the marginal
functions allow us to concentrate on the probability law of one variable by
averaging out the variability of the other.

The conditional pdf of X, given Y = y, is denoted by f(x | y) and is defined
as the ratio of the joint of X and Y over the marginal of Y,

Fxr(x, »)
fr»

This can be interpreted as the probability density function of random variable
X conditional on the information that the outcome of the otheris ¥ = y. For
example, let X and Y denote the values of transmissivity at two locations in close
proximity to each other. Before any measurements are made, the probability

Sxy(x | y) = (A.16)
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law of X is given by the marginal pdf fx (x). However, once Y is measured and
found to be equal to y, the probability law of X is given by fxy(x | y). Thus,
a high value of y may increase the probability that X is also high.

In the special case that the marginal is equal to the conditional, i.e.,

fxpx | y) = fx(x), (A.17)

the two random variables are called (in a probabilistic sense) independent. It fol-
lows from Equations (A.16) and (A.17) that for independent random variables
the joint pdf is equal to the product of the marginal pdfs:

fxy(x, y) = fx®) fr(». (A.18)

For independent random variables, information about the outcome of the one
does not affect the probability of the outcome of the other.

A.3 Expectation and moments

If x is the realization of a random variable with discrete probability distribution
(Py, ..., P,) and g(x) is a deterministic function, e.g., g(x) = x2, then the
expected value of g is a deterministic quantity defined as follows:

n
E[g(X)] =) gx)P:. (A.19)
i=1
The expected value thus represents the average of all possible outcomes of
g(X) weighted by the probability of their occurrence. Similarly, in the case of
a continuous random variable, the expected value is

+00

Els0) = [ g0 e, (A20)
—00
The process of calculating the expected value is linear (like summation or
integration) and is called the expectation operator or ensemble averaging. We
will only consider the continuous case from this point.
Of particular interest is the mean of a random variable defined as

+00
nw=E[X]= / x fx(x)dx. (A.21)

The mean is also known as the first statistical moment. The i -th moment about
the origin is defined as

+00
m; = / x' fx(x)dx, (A.22)

—00
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where i is a positive integer. Also of interest are the central (i.e., about the mean
value) moments. The i-th central moment is defined as follows:

+00 .
M; = / (x — ) fx(x)dx. (A.23)

The second central moment is commonly used as a measure of the spread
of the distribution about the mean. It is called the variance and is usually
denoted by o2 Its square root is known as the standard deviation. (Note that a
deterministic real number can be seen as a random variable with zero variance.)
A useful relation is

E[X*1 = u*+ o2 (A.24)

The expectation operator can be defined for many random variables in a
similar way. Consider, for example, the case of two random variables X and
Y with joint pdf fx y(x, y) and a deterministic function g(x, y). The expected
value of g is defined as the weighted average,

+00 +00
E[g(X,Y)]= / / g(x, y) fxy(x, y)dxdy. (A.25)
—oQ —0Q
We can also define moments about the origin,
+00 +oo
mi ;= / / x'y! fxy(x, y)dxdy, (A.26)
—0Q —o0
and about the mean,
+00 +0o0 ) )
M; ;= / / (x — E[XD'(y — EIYD fxy(x,y)dxdy. (A27)
—00 —0Q

Of particular interest is the central moment with i = j = 1, known as the
covariance and denoted by cxy:

+00 p+00
cxy = / / (x — EIXD(y — E[YD fxy (x, ydxdy.  (A28)

A normalized and dimensionless form of the covariance is the correlation
coefficient

(A.29)

One can verify that p is dimensionless and can take values only in the interval
[—1,1]. If X and Y are independent random variables then the correlation co-
efficient is exactly zero. The opposite is not necessarily true, except in the
important special case that the random variables have a Gaussian distribution
(which we will discuss elsewhere). In linear estimation, which does not use
complete distributions but implicitly assumes that a Gaussian distribution is
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not too far away from the truth, we treat the absolute value of the correla-
tion coefficient as the measure of dependence between two variables. In reality,
| oxy | measures the degree of linear dependence between two random variables.
However, in linear estimation, when we talk of dependence we usually mean
linear dependence. When |pxy| = 1 the realizations of the random variables X
and Y satisfy a linear relation

x=ay+b, (A.30)
where a and b are constants and a has the same sign as pxy. Values of |pxy|
near one indicate a high degree of linear dependence, i.e., Equation (A.30) is a
good approximation. Values near zero indicate practically no linear dependence
between x and y.

Moments are important because, among other applications, they are often
used instead of complete distributions to characterize random variables. In linear
geostatistics we deal, whenever possible, only with mean values, variances, and
covariances.

A.4 Functions of random variables

Let y = g(x) be a deterministic function. If x is a realization of a random vari-
able X with given probability density function fx (x), then for every realization
of X we can compute a value of y. These values of y are the realizations of
another random variable Y. In applications we often are faced with the problem
of derived distributions, i.e., calculating the pdf of Y, fy(y), from the pdf of
X, fx(x). For example, we may have to determine the pdf of piezometric head
from the pdf of transmissivity, where the two variables are related via continuity
and Darcy’s law.
The cumulative distribution function of Y is

Fy(y) =Pr[Y <y]=Pr[g(X) <yl (A.31)
This relation can be used to derive Fy (y) and then fy (y). However, with the
exception of special cases, this method of calculation is fraught with difficulties.

An analytical method applicable when g is differentiable and is continuous in
an interval yields

_ Jx(x)
fron= ; IO (A.32)

where x;, is a root of the equation y — g(x) = 0 and g’ is the derivative of g. (If
g is monotonic, then k = 1.)
These methods can be extended to cases of many input and output variables.
Consider, for example, the case of two of each:
U=g(X,Y) (A33)
V=g(X,7Y). (A.34)
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The problem is how to determine fy v (i, v) from fx y (x, y). For differentiable
g1 and g, and continuous random variables, it can be computed analytically
according to the relation

fuv(u,v) =

Z Fxy G, ye) (A35)

(T Gy YOI

where for given values of 1 and v, x; and y; are roots of the system of equations,
and J is the Jacobian, which in this case is

_g0s 0sidg o

This method gives analytical closed-form solutions in, among other cases,
the special case of Gaussian distributions and linear relations.

An approximate method that is widely used in applications is first-order
analysis. For example, consider the case of an input variable and an output
variable. First, we linearize the relation about the mean of the input variable:

8(x) = g(ux) + &' (ux)(x — ux), (A.37)

where g’(uy) is the derivative of g evaluated at the mean of X. We then use
(A.37) to calculate the mean and variance of Y and the covariance between X
and Y:

ny = g(ux) (A.38)
of ~ [g'(u:) o} (A.39)
cxy = g/ (1x)og. (A.40)

In this fashion, the first two moments of the joint distribution are approximated.

A.5 Further reading

There are, of course, countless books on probability theory. I will only mention
two of my favorites: Drake [45] is a complete first textbook in applied proba-
bility theory with many examples and interesting problems and brain twisters.
Benjamin and Cornell [10] provide a good introduction to probabilistic methods
with excellent examples from engineering.

A.6 Review exercises

Exercise A.1 Prove that if two random variables are independent, then their
correlation coefficient is exactly 0.
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Exercise A.2 If X has mean pandvariance o2, then find the mean and variance
of
Y =aX+b,

where a and b are constants, and also find the correlation coefficient between
Xand?.

Exercise A.3 Consider random variable X with cdf given by
X
Fx(x) =1 —eXp<— 7), x>0,
where | is positive. Find the pdf of X . Plot the pdf and the cdf for | = 1.

Exercise A.4 Consider random variable X with standardized normal pdf of
1 x2
xX) = —exp|——|.
(a) Find the mean and the variance of X.
(b) Derive the pdf of
Y =aX +b.

Exercise A.5 Consider the random variable X with a pdf of

1 x?
fx(x) = ﬁexp<— 7)-

(a) Find the mean and variance of
Y =X?

(b) Find the correlation between X and Y .
(c) Derive the pdf of Y .

Exercise A.6 Let X and Y be two jointly distributed random variables. The
mean and variance of X are mx and 0’)2(, the mean and variance of Y are my
and 6}3 and the correlation coefficient between X and Y is pxy.

(a) What is the best (i.e., with minimum mean square error) estimate of Y? (This
is known as the unconditional estimate.) Show that it is unbiased. What is
the mean square error associated with this estimate?

(b) What is the best linear unbiased estimate of Y given the additional infor-
mation that X was sampled and was found to be x. (This is known as the
conditional estimate.) Show that it is unbiased. What is the mean square



230 Probability theory review

error associated with this estimate? (Hint: The linear estimator in this case
is § = k+Ax. That is, the estimate is a weighted average of the observation
and of a constant, which represents information from the specification of
the pdf. You have to determine the value of the two coefficients kand by
minimizing the mean square error.)

Exercise A.7 Consider a tagged particle that has a probability 1 — p of being
in the mobile phase (the water in connected pores where a particle moves with
a certain average velocity) and p of being in the immobile phase of the porous
medium (e.g., sorbed on the solids). Determine the retardation coefficient of the
particle. (In groundwater studies, we use the retardation coefficient, which is
the average velocity in the mobile phase divided by the average velocity of a
tagged particle.)

Exercise A.8 A tagged particle is subject to Brownian motion with dispersion
coefficient D in one dimension. That is, starting from some location at time
t = 0, it moves according to the following equation:

x(t) =x(t)) + /2Dty —t)) ¢, wherety > t,

where € is a normal random variable with mean 0 and variance 1, independent
of the location or the past path of the particle.

(a) Find the mean and variance of the location of the particle at time t.

(b) Write the probability distribution of x (t). (Hint: You may use, if you want,
the following facts from probability theory: A normal random variable with
mean w and variance o has a pdf of

1 (x—p)?
V2mo? exp<— 202 ) ‘
A random variable that can be expressed as a linear function of normally
distributed random variables is also normally distributed.)

(c) Show that the pdf of the location of a tagged particle at time t, p(x,t),
satisfies the diffusion equation:

o _p¥p,
ot ax?

(d) For D = 0.0001 m?/day,compute and plot the pdf of the location of a tagged
particle at t = 10 days. Then, simulate on the computer the location of
1,000 particles at time t = 10 days, plot their histogram, and compare this
with the pdf. (Hint: You may use program randn in MATLAB.)

(e) Calculate and plot the path of a tagged particle over 10 days using a time
interval of At = 0.05 days.
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Exercise A.9 For the tagged particle that is subjected to Brownian motion of
the previous problem: Show that for any two times t) and tz, t > t; > 0,

Elx(t)—x(@)]=0
and

1
S Elx(e) — x(t1))*1=D(t2 —1y).

(a) What kind of variogram describes the Brownian motion? Discuss the prop-
erties of realizations of functions that have this property.

(b) Brownian motion is called a process with “independent” increments. That
is, if we see the process as the sum of many consecutive steps, each step
should take place independently of past steps. Justify this by arguing that
foranyts >ty > 11,

E[(x(82) — x(t1))(x(53) — x(2))] = 0.
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Lagrange multipliers

B.1 The method

Inkriging, we select the weights A1, . . ., A, that minimize the expression for the
mean square error while at the same time meeting the unbiasedness constraints.
This problem has the general form:

min f(Ag, ..., Ay) (B.1)
subject to
gk()"l’---a)“n)=bka k=l,...,p. (B2)

For example, for ordinary kriging (Chapter 3) with stationary isotropic func-
tions,

min f (A, Ae) = YD A R(X — ;1)

i=1 j=1

n
~2) MR(x —%D+RO (B3
i=1
subject to the condition

Xn: ao=1. (B.4)
i=1

Equations (B.1) and (B.2), which constitute a constrained optimization prob-
lem, can be solved through the method of Lagrange multipliers. The steps in
this method are:

1. Form the Lagrangian L(Ay, ..., Ay, V1, ..., Vp)
L()“l’ "-’)“na Vi, oony l)p) = f()“la ---’)“n) +2V1(gl()~1, -'-a)“n) _bl)
+"'+2vp(gp(kla--'a)\n)_bp)a (BS)

where vy, ..., v, are parameters called Lagrange multipliers. The 2 is used
in kriging only for convenience.

232
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2. Take derivatives of L with respect to Ay, ..., A,, V1,..., V), and set them
equal to zero:
of 981 08p .
— 4+ 2vy—+ -+ 2v,—= =0, =1,...,n B.6
an T FTY : (B.6)

gk=bk, k=1,...,p. (B7)

Equation (B.7) is the same as (B.2), the constraints. The meaning of Equation
(B.6) will be explained later.

3. Solve the system of n + p linear equations, Equations (B.6) and (B.7), with
n + p unknowns.

For more details on this method, see reference [92].

B.2 Explanation

We will explain how the method of Lagrange multipliers achieves the desired

objective by focusing on a simple example: ordinary kriging, Equations (B.3)

and (B.4) with only two measurements. The covariance function is R(x, X') =

exp(—|x — x’|/5), and the locations are x; = [g], Xy = [i], and xg = [3].
The objective is to minimize f (A3, A3),

min f (A1, A2) = A2 + A2 +0.7358%,4, — 1.09761; — 0.89874, + 1, (B.8)
subject to
ArtA=1. (B.9)

Figure B.1 shows a contour map of f (i}, A2). (Note that we did not have to
specify the values of the measurements!) The minimum is at the center of the
ellipses, at A; = 0.4435, X, = 0.2862. It can be calculated algebraically by
setting the derivatives of the mean square error, Equation (B.8), with respect to
A1 and A, equal to zero and then solving the system of linear equations. This
method is well known from basic calculus.

However, this solution does not satisfy the constraint (B.9). The problem is
to find the values of A; and X, that give the smallest possible value f while
satisfying the constraint (i.e., the values must be located on the straight line
shown in Figure B.1). Graphically, this point can be found on this figure where
the line of the constraint is tangent to a contour line of constant f.

The algebraic equivalent of this condition is at the heart of the method of
Lagrange multipliers. At any (A1, A,), the vector

A
o ]
A
EPe

Vf=
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Figure B.1 Contour lines of constant MSE and the line of the constant.

computed at a point is perpendicular to the line of constant f that passes through
this point. Furthermore, the vector

&1
R
Vg = ae1
3k,

is perpendicular to the line representing the constraint.
The equation

B an
lzz +2v _g;} =0 (B.10)
23S 2%

expresses the geometric condition that the line of constant f and the line of the
constraint are parallel at the point of the optimum As. This is the meaning of
Equation (B.6).
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Generation of realizations

In the text, we make references to the generation of realizations of random
variables or functions. This appendix presents a rudimentary introduction to
this subject.

C.1 Background

Generation of realizations (or sample values) of random variables and functions
with given probability distributions on a digital computer is an important topic
in numerical analysis [111] about which much has been written. It is useful as
a numerical method for deriving probability distributions of statistics and for
testing the effectiveness of estimation methodologies. In reality, the numbers
generated by a digital computer (unlike the outcomes of analog devices used
in lotteries) following specific algorithms only look random to someone who is
not intimately familiar with the exact algorithm that is followed. The generated
numbers are called pseudorandom variates and for practical purposes can be
treated as random.

On a digital computer, it all starts with the generation of numbers that are
uniformly distributed between 0 and 1. A simple method sets out from an integer
“seed number” rg to generate other integers according to an equation of the type

ri =(ari-y +bymodd), i=12,..., (C.1D

where a, b, and d are given integer values and A mod B signifies the remainder
of the division of A by B. (For example, 37 mod 7 = 2.) Then, the numbers
u; = r;/d are like the realizations of a random variable with uniform distribution
between 0 and 1. The numbers a, b, and d vary from algorithm to algorithm
and from computer to computer. For illustration, consider

a=2%4+9 b=1, d=2%. (C.2)

235
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Given a source of uniform pseudorandom variates, one can generate through
transformations variates that follow the normal distribution with mean 0 and
variance 1,

1 2
— —n2/2). C3
p() o exp(—n~/2) (C.3)

A common transformation is the Box-Muller. From two uniform variates
(u1, uz) we generate two normal variates through the equations

m = «/—2Inu; cosmuy),
N2 = +/—2Inu; sinQmus).

In this appendix, we will assume that we have a source of standard normal vari-
ates, i.e., realizations of Gaussian random variables with mean 0 and variance
1, generated independently of each other. Practically all computer systems or
packages of scientific software contain procedures for generation of realiza-
tions of 7. These realizations are known as “normal variates.” In MATLAB 4,
function rand generates uniformly distributed variates; to generate N variates,
use the following command:

(C4)

x = rand(N,1)

Function randn has the same capacity for normal variates; to generate, for
example, a matrix of N x M normal variates, just type:

X = randn(N,M)

Exercise C.1 For practice, generate 1,000 normal variates, (a) plot their his-
togram, and (b) compute their arithmetic mean and variance and check whether
they are close enough to the values you expected.

C.2 Linear transformation

We will limit our focus to Gaussian random variables and processes. The most
important property of interest here is that the linear transformation of normal
random variables gives also Gaussian variables.

In applications, we often have to deal with the following tasks:

1. The generation of a random vector with given first and second moment. For
example, this is needed in testing the significance of some statistics used in
diagnostic checking. We will review a general method.

2. The generation of realizations of a stationary or stationary-increment random
field with given covariance function. For example, we can have realizations
of a stationary random field with mean 1 and exponential covariance with
variance 1 and scale parameter 2.
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C.3 Random vector

Lety be an n x 1 Gaussian random vector with mean m and covariance matrix Q.
That is, y; is a random variable, m; is the mean of y; and Q;; is the covariance
of y;and y;,fori, j = 1,..., n. Then, we can obtain realizations of this vector
from the following equation:

y =m+ Bu, (C.5)

where u is an n x 1 vector of standard normal variates and B is an n x n matrix
such that

BB” = Q. (C.6)

Proof 'y is Gaussian as a linear function of Gaussian u. Its mean value can
be found by taking expected values E[y] = m + BE[u] = m. Its covariance
matrix is E[(y —m)(y —m)”] = E[Buu’B7] = BE[uu?|B” = BB? = Q.
The question now is how to find B, known as a square root of Q. Actually,
there are multiple square roots of a matrix, in the same way that 2 and —2 are
both square roots of 4. Our algorithm requires that we compute any one of them.
A simple and efficient way to compute the root is through the Lower Triangular
Cholesky decomposition, to be described later. We start by generating a vector
with zero mean and given covariance matrix. Adding the mean is trivial. See
reference [4] for additional information. For example,! using MATLAB:

Q = zeros(3,3) %initialize

for i=1:3, j=1:3 %open ‘’'do’‘’ loops

Q(i,j) = exp(-abs(i-j)); %covariance matrix

end, end %end do loops

B (chol(Q))’ %cholesky decomposition, then take
%transpose

B*randn(3,1) %find zero-mean y

Y

Let us illustrate how the Cholesky decomposition algorithm works through
a simple example.

Example C.1 Let

1 08
Q= [0.8 1 ]

BBT=[ B} B11B> ]
BuBy B3 + B3|

Then,

! The method below applies only if Q is positive definite. Extensions for algorithmically singular
or for conditionally positive definite matrices are beyond our scope.
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where By = 1, Byz = 0.8, and B2 = /1 — 0.8%2 = 0.6, hence,

1 0
B= [0.8 0.6]'

Exercise C.2 Generate realizations of a Gaussian vector with mean vector

1
2
3
and covariance matrix
1 el 2
e! 1 -1
2 gt 1

C.4 Stationary random functions

The method of the previous section is general but not necessarily efficient
computationally. The computational cost increases with the number of elements
of y raised to a power near 3. However, for the special case of generating
realizations of a stationary (or stationary-increment) process on a regular grid,
there are algorithms that are much faster; they are based on the decomposition

of the power spectrum (the Fourier transform of the covariance function.)

The topic is technical and requires some understanding of power spectra and
fast Fourier transforms. It is beyond the scope of this work. Useful references

include [13, 48, 61, 93, 118, and 135].
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anisotropy
definition, 110
examples, 110
geoanisotropic model, 114, 116, 118
2-D, 116
3-D, 117
variogram calibration, 119
modeling, 118
authorized increment, 128, see also
generalized covariance function
averaging, 2, 163
example, 166

BLUE, 6, 47
box plot, 22, see also experimental distribution

cokriging, 175

system, 177, 178

using matrix notation, 182
confidence interval, 68, 72
cross covariance, 173, 219

derived moments, 188
first-order approximation, 196, 214
1-D example, 199
large-scale analytical solutions, 205
method, 196, 198
numerical, 212
Monte Carlo, 189
small perturbation, 196
drift, 124, see also variable mean

ensemble
concept, 42
covariance function, 46
expected value, 45
mean, 46
moments, 46
probabilities, 43
estimation error, 66

estimator, 5

best, 5, see also minimum variance

linear, 6

minimum variance, 5

unbiased, 6
experimental distribution

arithmetic mean, 19

box plot, 22

histogram, 16

interquartile range, 20

median, 20

mode, 20

ogive, 17

outside values, 22

quartile, 20

skewness coefficient, 21

standard deviation, 20

symmetry, 21

variance, 20

experimental semivariogram, 30, see also

experimental variogram

experimental variogram, 30, 52

behavior near the origin, 34

construction, 31

directional, 113

as exploratory analysis, 33, 86

large-scale behavior, 39

limitations, 33

meaning, 33, 34

relation to variogram, 86
exploratory analysis

objectives, 12

principles, 13

spatial relations, 27
exponential variogram, 56

F-distribution, 147, see also variable mean

Gaussian distribution, 7, 24
of orthonormal residuals, 95
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Gaussian distribution (cont.)
relation to BLUE, 7
of residuals, 25
statistical tests, 26
Gaussian variogram, 54
GCEF, 139, see also generalized covariance
function
generalized covariance function
example, 130
explanation, 128
from data detrending, 143
PGC, 133
polynomial, 133
relation to covariance function, 81
relation to variogram, 81
generalized increment, 128, see also
generalized covariance function
geostatistics, 10
various schools, 10
groundwater models, 184
boundary value problems, 187

calibration, 184, see also inverse problems

groundwater problems
boundary value problems, 188

histogram, 16, see also experimental
distribution
hole-effect model, 56

interpolation, 2
intrinsic model
definition, 53
relation to stationary model, 53
inverse problems, 2, 185
cokriging, 175, 177, 217
example, 214
ill-posed problems, 185
overparameterization, 185
structural analysis, 186
isotropy, 51
kriging
exact interpolator, 80
of continuous part, 158
equations, 160
rationale, 159
moving neighborhood, 71
ordinary, 66
conditional covariance function, 75
derivation, 72
function estimate, 74
minimum variance, 66
system, 67, 68, 79
unbiasedness, 66
variance, 68
simple, 151, 154
to estimate integrals, 163, see also
averaging

Index

universal, 125, see also variable mean
with drift, 125 see also variable mean
with known mean, 152

Lagrange multipliers, 67, 176, 178
meaning, 233
method, 126, 232

linear variogram, 61

MATLAB, 47, 49, 70, 118, 220, 230, 236, 237
mean square eITor, 5, see also variance
measurement error, 158
microstructure, 64
microvariability, 60, see also nugget-effect
model, 158
model testing, 137, see also validation
multiple variables, 2, see also cokriging
model development, 179
auxiliary variables, 180
derived moments, 188
using matrix notation
BLUE, 182
covariance estimation, 183

nonnegativity, 72, see also transformation
nugget-effect model, 58
meaning, 60

Occam’s razor, 9, 99
ogive, 17, see also experimental distribution
orthonormal residuals, 58
experimental, 89
in GCF calibration, 193
in model validation, 91, 93, 95, 96, 137
in variogram calibration, 96
outliers, 26

parsimony, see also Occam’s razor, 9, 119

PGC, 133, see also generalized covariance
function

power variogram, 61

prior information, 84, 142

pseudo-periodic, 56, see also hole-effect
model

random field, 44, see also random function
random function, 44, see also ensemble
intrinsic, 53
intrinsic k-order, 133
stationary, 51
stationary increment, 134
random number generation, 235, see also
realization
range, 52
realization, 42, 191
Cholesky decomposition, 237
conditional, 76
spectral methods, 238
residuals, 7, 24, 86
in kriging, 88
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in model validation, 87
in parameter estimation, 87
restricted maximum likelihood, 99

sample function, 42, see also realization
scale, concept of, 33
self-similar process, 61
semivariogram, 51, 52, see also variogram
spherical variogram, 56
splines, 135, see also variable mean
cubic, 135
thin plate, 135
stationarity, 51
estimation of mean, 156
statistics, 1,7, 8
stochastic PDE, 198, 212
stochastic process, 44, see also random
function
structural analysis, 46
and inverse problems, 186

theoretical variogram, 52, see also variogram
transformation
justification, 72

logarithmic, 7, 72, 188
power, 25,72
trend, 124, see also variable mean

universal kriging, 125, see also variable
mean

validation, 90, see also orthonormal residuals
variable mean, 121, 124, 128, see also
generalized covariance function
covariance calibration, 139
data detrending, 143
justification, 143
estimation of drift coefficients, 156
kriging, 125
linear model, 124
model selection, 140
model validation, 137
variance ratio test, 145
variogram, 52
common models, 54, see also Section 3.4
dependence on data, 85
prior information, 85
superposition, 62



