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FOREWORD

“What is Calculus?” is a classic deep question. Calculus is the most powerful branch of

mathematics, which revolves around calculations involving varying quantities. It provides a

system of rules to calculate quantities, which cannot be calculated by applying any other branch

of mathematics. Schools or colleges find it difficult to motivate students to learn this subject,

while those who do take the course find it very mechanical. Many a times, it has been observed

that students incorrectly solve real-life problems by applyingCalculus. Theymay not be capable

to understand or admit their shortcomings in terms of basic understanding of fundamental

concepts! The study of Calculus is one of the most powerful intellectual achievements of the

human brain. One important goal of this manuscript is to give beginner-level students an

appreciation of the beauty ofCalculus.Whether taught in a traditional lecture format or in the lab

with individual or group learning, Calculus needs focusing on numerical and graphical

experimentation. This means that the ideas and techniques have to be presented clearly and

accurately in an articulated manner.

The ideas relatedwith the development ofCalculus appear throughoutmathematical history,

spanning over more than 2000 years. However, the credit of its invention goes to the

mathematicians of the seventeenth century (in particular, to Newton andLeibniz) and continues

up to the nineteenth century, whenFrenchmathematicianAugustin-Louis Cauchy (1789–1857)

gave the definition of the limit, a concept which removed doubts about the soundness of

Calculus, andmade it free from all confusion. The history of controversy about Calculus ismost

illuminating as to the growth of mathematics. The soundness of Calculus was doubted by the

greatest mathematicians of the eighteenth century, yet, it was not only applied freely but great

developments like differential equations, differential geometry, and so on were achieved.

Calculus, which is the outcome of an intellectual struggle for such a long period of time, has

proved to be the most beautiful intellectual achievement of the human mind.

There are certain problems inmathematics, mechanics, physics, andmany other branches of

science, which cannot be solved by ordinary methods of geometry or algebra alone. To solve

these problems, we have to use a new branch of mathematics, known as Calculus. It uses not

only the ideas and methods from arithmetic, geometry, algebra, coordinate geometry, trigo-

nometry, and so on, but also the notion of limit, which is a new ideawhich, lies at the foundation

ofCalculus. Using this notion as a tool, the derivative of a function (which is a variable quantity)

is defined as the limit of a particular kind.

In general, Differential Calculus provides a method for calculating “the rate of change” of

the value of the variable quantity. On the other hand, Integral Calculus provides methods for

calculating the total effect of such changes, under the given conditions. The phrase rate of

changementioned above stands for the actual rate of change of a variable, and not its average

rate of change. The phrase “rate of change” might look like a foreign language to beginners, but

concepts like rate of change, stationary point, and root, and so on, have precise mathematical

meaning, agreed-upon all over theworld. Understanding suchwords helps a lot in understanding

the mathematics they convey. At this stage, it must also be made clear that whereas algebra,
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geometry, and trigonometry are the tools which are used in the study of Calculus, they should

not be confused with the subject of Calculus.

Thismanuscript is the result of joint efforts byProf. UlrichL.Rohde,Mr.G.C. Jain,Dr.Ajay

K. Poddar, and myself. All of us are aware of the practical difficulties of the students facewhile

learningCalculus. I amof the opinion thatwith the availability of these notes, students should be

able to learn the subject easily and enjoy its beauty and power. In fact, for want of such simple

and systematicwork,most students are learning the subject as a set of rules and formulas, which

is really unfortunate. I wish to discourage this trend.

Professor Ulrich L. Rohde, Faculty of Mechanical, Electrical, and Industrial Engineering

(RF and Microwave Circuit Design & Techniques) Brandenburg University of Technology,

Cottbus, Germany has optimized this book by expanding it, adding useful applications, and

adapting it for today’s needs. Parts of the mathematical approach from the Rohde, Poddar, and

B€oeck textbook on wireless oscillators (The Design of Modern Microwave Oscillators for

Wireless Applications: Theory and Optimization, John Wiley & Sons, ISBN 0-471-72342-8,

2005) were used as they combine differentiation and integration to calculate the damped and

starting oscillation condition using simple differential equations. This is a good transition for

more challenging tasks for scientific studies with engineering applications for beginners who

find difficulties in understanding the problem-solving power of Calculus.

Mr. Jain is not an educator by profession, but his curiosity to go to the roots of the subject to

prepare the so-called concept-oriented notes for systematic studies in Calculus is his

contribution toward creating interest among students for learning mathematics in general,

and Calculus in particular. This book started with these concept-oriented notes prepared for

teaching students to face real-life engineering problems. Most of the material pertaining to this

manuscript on calculus was prepared by Mr. G. C. Jain in the process of teaching his kids and

helping other students who needed help in learning the subject. Later on, his friends (including

me) realized the beauty of his compilation and we wanted to see his useful work published.

I am also aware thatMr. Jain got his notes examined from some professors at theDepartment

of Mathematics, Pune University, India. I know Mr. Jain right from his scientific career at

Armament Research and Development Establishment (ARDE) at Pashan, Pune, India, where I

was a Senior Scientist (1982–1998) and headed theAerodynamicGroupARDE, Pune inDRDO

(Defense Research and Development Organization), India. Coincidently, Dr. Ajay K. Poddar,

Chief Scientist at Synergy Microwave Corp., NJ 07504, USA was also a Senior Scientist

(1990–2001) in a very responsible position in the Fuze Division of ARDE andwas aware of the

aptitude of Mr. Jain.

Dr. Ajay K. Poddar has been the main driving force towards the realization of the

conceptualized notes prepared by Mr. Jain in manuscript form and his sincere efforts made

timely publications possible. Dr. Poddar has made tireless effort by extending all possible help

to ensure that Mr. Jain’s notes are published for the benefit of the students. His contributions

include (but are not limited to) valuable inputs and suggestions throughout the preparation of

this manuscript for its improvement, as well as many relevant literature acquisitions. I am sure,

as a leading scientist, Dr. Poddar will have realized how important it is for the younger

generation to avoid shortcomings in terms of basic understanding of the fundamental concepts

of Calculus.

I have had a long time association with Mr. Jain and Dr. Poddar at ARDE, Pune. My

objective has been to proofread the manuscript and highlight its salient features. However, only

a personal examination of the bookwill convey to the reader the broad scope of its coverage and

its contribution in addressing the proper way of learning Calculus. I hope this bookwill prove to

be very useful to the students of Junior Colleges and to those in higher classes (of science and

engineering streams) who might need it to get rid of confusions, if any.
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My special thanks goes to Dr. Poddar, who is not only a gifted scientist but has also been a

mentor. It was his suggestion to publish the manuscript in two parts (Part I: Introduction to

Differential Calculus: Systematic Studies with Engineering Applications for Beginners and

Part II: Introduction to Integral Calculus: Systematic Studies with Engineering Applications

for Beginners) so that beginners could digest the concepts of Differential and Integral Calculus

without confusion and misunderstanding. It is the purpose of this book to provide a clear

understanding of the concepts needed by beginners and engineers who are interested in the

application ofCalculus of their field of study. This book has been designed as a supplement to all

current standard textbooks on Calculus and each chapter begins with a clear statement of

pertinent definitions, principles, and theorems together with illustrative and other descriptive

material. Considerably more material has been included here than can be covered in most high

schools and undergraduate study courses. This has been done tomake the bookmore flexible; to

provide concept-oriented notes and stimulate interest in the relevant topics. I believe that

students learn best when procedural techniques are laid out as clearly and simply as possible.

Consistent with the reader’s needs and for completeness, there are a large number of examples

for self-practice.

The authors are to be commended for their efforts in this endeavor, and I am sure that both

Part I and Part II will be an asset to the beginner’s handbook on the bookshelf. I hope that after

reading this book, the students will begin to share the enthusiasm of the authors in under-

standing and applying the principles of Calculus and its usefulness. With all these changes, the

authors have not compromised our belief that the fundamental goal of Calculus is to help

prepare beginners enter the world of mathematics, science, and engineering.

Finally, I would like to thank Susanne Steitz-Filler, Editor (Mathematics and Statistics)

at John Wiley & Sons, Inc., Danielle Lacourciere, Senior Production Editor at John Wiley &

Sons, Inc., and Sanchari Sil at Thomson Digital for her patience and splendid cooperation

throughout the journey of this publication.

AJOY KANTI GHOSH

PROFESSOR & FACULTY INCHARGE (FLIGHT LABORATORY)

DEPARTMENT OF AEROSPACE ENGINEERING

IIT KANPUR, INDIA
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PREFACE

In general, there is a perception that Calculus is an extremely difficult subject, probably because

the required number of good teachers and good books are not available. We know that books

cannot replace teachers, but we are of the opinion that good books can definitely reduce

dependence on teachers, and students can gain more confidence by learning most of the con-

cepts on their own. In the process of helping students to learn Calculus, we have gone through

many books on the subject and realized that whereas a large number of good books are available

at the graduate level, there is hardly any book available for introducing the subject to beginners.

The reason for such a situation can be easily understood by anyone who knows the subject of

Calculus and hence the practical difficulties associated with the process of learning the subject.

In the market hundreds of books are available on Calculus. All these books contain a large

number of important solved problems. Besides, the rules for solving the problems and the list of

necessary formulae are given in the books,without discussing anything about the basic concepts

involved.Of course, such books are useful for passing the examination(s), butCalculus is hardly

learnt from these books. Initially, the coauthors had compiled concept-oriented notes for

systematic studies in differential and integral Calculus, intended for beginners. These notes

were used by students in school- and undergraduate-level courses. The response and the

appreciation experienced from the students and their parents encouraged us tomake these notes

available to the beginners. It is due to the efforts of our friends and well-wishers that our dream

has nowmaterialized in the form of two independent books: Part I for Differential Calculus and

Part II for Integral Calculus. Of course there are some world class authors who have written

useful books on the subject at introductory level, presuming that the reader has the necessary

knowledge of prerequisites. Some such books are:What is calculus about? (By ProfessorWW

Sawyer), Teach yourself calculus (By P. Abbott, B.A), Calculus Made Easy (By S.P.

Thomson) and Calculus Explained (By W.J. Reichmann). Any person with some knowledge

of Calculus will definitely appreciate the contents and the approach of the authors. However, a

reader will be easily convinced that most of the beginners may not be able to get (from these

books) the desired benefit, for various reasons. From this point of view, both Parts (Part-I&Part-

II) of our bookwould prove to be unique since this provide comprehensivematerial on Calculus

for the beginners. The first six chapters of Part-I would help the beginner to come up to the level,

so that one can easily learn the concept of limit, which is in the foundation of calculus. The

purpose of these works is to provide the basic (but solid) foundation of Calculus to beginners.

The books aim to show them the enjoyment in the beauty and power of Calculus and develop the

ability to select proper material needed for their studies in any technical and scientific field,

involving Calculus.

One reason for such a high dropout rate is that at beginner levels, Calculus is so poorly

taught. Classes tend to be so boring that students sometimes fall asleep. Calculus textbooks get

fatter and fatter every year, withmoremulticolor overlays, computer graphics, and photographs

of eminent mathematicians (starting with Newton and Leibniz), yet they never seem easier to

comprehend. We look through them in vain for simple, clear exposition, and for problems that
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will hook a student’s interest. Recent years have seen a great hue and cry inmathematical circle

over ways to improve teaching Calculus to beginner and high-school students. Endless

conferences have been held, many funded by the federal government, dozens of experimental

programs are here and there. Some leaders of reform argue that a traditional textbook gets

weightier but lacks the step-by-step approach to generate sufficient interest to learn Calculus in

beginner, high school, and undergraduate students. Students see no reason why they should

master tenuous ways of differentiating and integrating by hand when a calculator or computer

will do the job. Leaders of Calculus reform are not suggesting that calculators and computers

should no longer be used; what they observe is that without basic understanding about the

subject, solving differentiation and integration problems will be a futile exercise. Although

suggestions are plentiful for ways to improve Calculus understanding among students and

professionals, a general consensus is yet to emerge.

The word “Calculus” is taken from Latin and it simply means a “stone” or “pebble,” which

was employed by the Romans to assist the process of counting.By extending themeaning of the

word “Calculus,” it is now applied towider fields (of calculation) which involve processes other

than mere counting. In the context of this book (with the discussion to follow), the word

“Calculus” is an abbreviation for Infinitesimal Calculus or to one of its two separate but

complimentary branches—Differential Calculus and Integral Calculus. It is natural that the

above terminology may not convey anything useful to the beginner(s) until they are acquainted

with the processes of differentiation and integration. What is the Calculus? What does it

calculate? IsCalculus different fromother branches ofMathematics?What type(s) of problems

are handled by Calculus?
The author’s aim throughout has been to provide a tour of Calculus for a beginner as well as

strong fundamental basics to undergraduate students on the basis of the following questions,

which frequently came to ourminds, and for whichwewanted satisfactory and correct answers.

(i) What is Calculus?

(ii) What does it calculate?

(iii) Why do teachers of physics and mathematics frequently advise us to learn Calculus

seriously?

(iv) How is Calculus more important and more useful than algebra and trigonometry or

any other branch of mathematics?

(v) Why is Calculus more difficult to absorb than algebra or trigonometry?

(vi) Are there any problems faced in our day-to-day life that can be solved more easily by

Calculus than by arithmetic or algebra?

(vii) Are there any problems which cannot be solved without Calculus?

(viii) Why study Calculus at all?

(ix) Is Calculus different from other branches of mathematics?

(x) What type(s) of problems are handled by Calculus?

At this stage, we can answer these questions only partly. However, aswe proceed, the associated

discussionswillmaketheanswersclearandcomplete.Toansweroneorallof theabovequestions,

itwasnecessary toknow:Howdoes the subject ofCalculus begin?;Howcanwe learnCalculus?,

andWhat canCalculus do for us?Theanswers to these questions are hintedat in thebooks:What

isCalculusabout?andMathematician’sDelight, bothbyW.W.Sawyer.However, itwill depend

on the curiosity and the interest of the reader to study, understand, and absorb the subject. The

author use very simple and nontechnical language to convey the ideas involved. However, if
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the reader is interested to learn the operations of Calculus faster, then hemay feel disappointed.

This is so, because the nature of Calculus and the methods of learning it are very different from

those applicable in arithmetic or algebra. Besides, one must have a real interest to learn the

subject,patiencetoreadmanybooks,andobtainproperguidancefromteachersortherightbooks.

Calculus is the higher branch of mathematics, which enters into the process of calculating

changing quantities (and certain properties), in the field ofmathematics and various branches of

science, including social science. It is said to be theMathematics of Change.We cannot begin to

answer any question related with change unless we know: What is that change and how it

changes? This statement takes us closer to the concept of function y¼ f(x), wherein “y” is

related to “x” through a rule “f.” We say that “y” is a function of x, by which we mean that “y”

depends on “x.” (We say that “y” is a dependent variable, depending on the value of x, an

independent variable.) From this statement it is clear that as the value of “x” changes, there

results a corresponding change in the value of “y” depending on the nature of the function “f ” or

the formula defining f.

The immense practical power of Calculus is due to its ability to describe and predict the

behavior of the changing quantities “y” and “x.” In case of linear functions (which are of the

form y¼mx þ b), an amount of change in the value of x causes a proportionate change in the

value of y. However, in the cases of other functions (like y¼ x2 – 5, y¼ x3, y¼ x4 – x3 þ 3,

y¼ sin x, y¼ 3ex þ x, etc.) which are not linear, no such proportionality exists. Our interest

lies in studying the behavior of the dependent variable y[¼ f(x)] with respect to the change in

(the value of) the independent variable “x.” In other words, wewish to find the rate at which “y”

changes with respect to “x.”

We know that every rate is the ratio of change that may occur in the quantities, which

are related to one another through a rule. It is easy to compute the average rate at which the

value of y changes when x is changed from x1 to x2. It can be easily checked that (for the

nonlinear functions) these average rate(s) are different between different values of x. [Thus, if

|x2 – x1|¼ |x3 – x2|¼ |x4 – x3|¼ . . .. . ., (for all x1, x2, x3, x4, . . .) then we have f(x2) – f(x1) 6¼
f(x3) – f(x2) 6¼ f(x4) – f(x3) 6¼ . . .. . .]. Thus, we get that the rate of change of y is different in
between different values of x.

Our interest lies in computing the rate of change of “y” at every value of “x.” It is known as

the instantaneous rate of change of “y”with respect to “x,” andwe call it the “rate function” of

“y”withrespect to“x.” It is alsocalled thederived functionof“y”with respect to“x”anddenoted

by the symbol y0[¼f 0(x)]. The derived function f 0(x) is also called the derivative of y[¼f(x)]with

respect to x. The equation y0 ¼ f 0(x) tells that the derived function f0(x) is also a function of x,
derived (or obtained) from the original function y¼ f(x). There is another (useful) symbol for the

derived function, denoted by dy/dx. This symbol appears like a ratio, but itmust be treated as a

singleunit,aswewill learn later.Theequationy0 ¼ f 0(x)givesus the instantaneousrateofchange
of y with respect to x, for every value of “x,” for which f 0(x) is defined.

To define the derivative formally and to compute it symbolically is the subject ofDifferential

Calculus. In the process of defining the derivative, various subtleties and puzzles will inevitably

arise. Nevertheless, it will not be difficult to grasp the concept (of derivatives) with our

systematic approach. The relationship between f(x) and f 0(x) is themain theme. Wewill study

what it means for f 0(x) to be “the rate function” of f(x), and what each function says about the
other. It is important to understand clearly the meaning of the instantaneous rate of change of

f(x) with respect to x. These matters are systematically discussed in this book. Note that we

have answered the first two questions and now proceed to answer the third one.

There are certain problems in mathematics and other branches of science, which cannot be

solved by ordinary methods known to us in arithmetic, geometry, and algebra alone. In

Calculus, we can study the properties of a function without drawing its graph. However, it is
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important to be aware of the underlying presence of the curve of the given function. Recall that

this is due to the introduction of coordinate geometry by Decartes and Fermat. Now, consider

the curve defined by the function y¼ x3� x2� x.We know that, the slope of this curve changes

from point to point. If it is desired to find its slope at x¼ 2, then Calculus alone can help us give

the answer, which is 7. No other branch of mathematics would be useful.

Calculus uses not only the ideas andmethods from arithmetic, geometry, algebra, coordinate

geometry, trigonometry, and so on, but also the notion of limit, which is a new idea that lies at the

foundation of Calculus. Using the notion of limit as a tool, the derivative of a function is defined

as the limit of a particular kind. (It will be seen later that the derivative of a function isgenerally a

new function.) Thus, Calculus provides a system of rules for calculating changing quantities

which cannot be calculated otherwise. Here it may be mentioned that the concept of limit is

equally important and applicable in Integral Calculus, which will be clear when we study the

concept of the definite integral inChapter 5 of Part II. Calculus is themost beautiful and powerful

achievement of the human brain. It has been developed over a period of more than 2000 years.

The idea of derivative of a function is among the most important concepts in all of mathematics

and it alone distinguishes Calculus from the other branches of mathematics.

The derivative and an integral have foundmanydiverse uses. The list is very long and can be

seen in any book on the subject. Differential calculus is a subject which can be applied to

anything that moves, or changes or has a shape. It is useful for the study of machinery of all

kinds - for electric lighting andwireless, optics, and thermodynamics. It also helps us to answer

questions about the greatest and smallest values a function can take. Professor W.W. Sawyer,

in his famous book Mathematician’s Delight, writes: Once the basic ideas of differential

calculus have been grasped, a whole world of problems can be tackled without great difficulty.

It is a subject well worth learning.

On the other hand, integral calculus considers the problem of determining a function from

the information about its rate of change. Given a formula for the velocity of a body, as a

function of time, we can use integral calculus to produce a formula that tells us how far the body

has traveled from its starting point, at any instant. It provides methods for the calculation of

quantities such as areas and volumes of curvilinear shapes. It is also useful for themeasurement

of dimensions of mathematical curves.

The concepts basic to Calculus can be traced, in uncrystallized form, to the time of the

ancient Greeks (around 287–212 BC). However, it was only in the sixteenth and the early

seventeenth centuries that mathematicians developed refined techniques for determining

tangents to curves and areas of plane regions. These mathematicians and their ingenious

techniques set the stage for Isaac Newton (1642–1727) and Gottfried Leibniz (1646–1716),

who are usually credited with the “invention” of Calculus.

Later on the concept of the definite integral was also developed. Newton and Leibniz

recognized the importance of the fact that finding derivatives and finding integrals (i.e.,

antiderivatives) are inverse processes, thus making possible the rule for evaluating definite

integrals. All these matters are systematically introduced in Part II of the book. (There were

many difficulties in the foundation of the subject of Calculus. Some problems reflecting

conflicts and doubts on the soundness of the subject are reflected in “Historical Notes” given at

the end of Chapter 9 of Part I.) During the last 150 years, Calculus has matured bit by bit. In the

middle of the nineteenth century, French Mathematician Augustin-Louis Cauchy (1789–1857)

gave the definition of limit, which removed all doubts about the soundness of Calculus and

made it free fromall confusion. It was then that, Calculus had become,mathematically,much as

we know it today.

Around the year 1930, the increasing use of Calculus in engineering and sciences, created a

necessary requirement to encourage students of engineering and science to learn Calculus.
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During those days, Calculus was considered an extremely difficult subject. Many authors came

up with introductory books on Calculus, but most students could not enjoy the subject, because

the basic concepts of the Calculus and its interrelations with the other subjects were probably

not conveyed or understood properly. The result was that most of the students learnt Calculus

only as a set of rules and formulas. Even today, many students (at the elementary level) learn

Calculus in the same way. For them, it is easy to remember formulae and apply them without

bothering to know: How the formulae have come and why do they work?

The best answer to the question “Why study Calculus at all?” is available in the book:

Calculus fromGraphical, Numerical and Symbolic Points of View by Arnold Ostebee and Paul

Zorn. There are plenty of good practical and “educational” reasons, which emphasize that one

must study Calculus.

. Because it is good for applications;

. Because higher mathematics requires it;

. Because its good mental training;

. Because other majors require it; and

. Because jobs require it.

Also, another reason to study Calculus (according to the authors) is that Calculus is among

our deepest, richest, farthest-reaching, and most beautiful intellectual achievements. This

manuscript differs in certain respects, from the conventional books on Calculus for the

beginners.

In both the Parts of the book (Part-I & Part-II), efforts have been made to ensure that the

beginners do not face such situations. The concepts related with calculus and the interrelations

between other subjects contributing towards learning calculus have been discussed in a simple

language in both part of book (Part-I & Part-II), maintaining the interest and the enthusiasm of

the reader. One such example is that of co-ordinate geometry, which is the merging of geometry

with algebra and helps in visualizing an equation as representing a curve and vice-versa

(Remember, calculus cannot be imagined without co-ordinate geometry.)

It is a fact that people can achieve many things in life even without learning calculus. It is

really a big loss to all thosewho had an opportunity to learn calculus but unfortunatelymissed it

for mere comfort and carelessness. Also, they would never know what really they have missed.

It is hoped that this bookwill motivate the readers whomay like to revise their basic knowledge

of calculus to achieve the delayed benefit now.

Organization

The work is divided into two independent books: Book I—Differential Calculus (Introduction

to Differential Calculus: Systematic Studies with Engineering Applications for Beginners) and

Book II—Integral Calculus (Introduction to Integral Calculus: Systematic Studies with

Engineering Applications for Beginners).

Part I consists of 23 chapters in which certain chapters are divided into two sub-units such

as 7a and 7b, 11a and 11b, 13a and 13b, 15a and 15b, 19a and 19b. Basically, these sub-units

are different from each other in one way, but they are interrelated through concepts. Also,

there are Appendices A, B, and C for Part-I.

Part II consists of 9 chapters in which certain chapters are divided into two sub-units such as

3a and 3b, 4a and 4b, 6a and 6b, 7a and 7b, 8a and 8b, and finally 9a and 9b. The division of

chapters is based on the same principle as in the case of Part I. Each chapter (or unit) in both the

parts begins with an introduction, clear statements of pertinent definitions, principles, and
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theorems. Meaning(s) of different theorems and their consequences are discussed at length,

before they are proved. The solved examples serve to illustrate and amplify the theory, thus

bringing into sharp focus many fine points, to make the reader comfortable.

Illustrative and other descriptive material (along with notes and remarks) is given in each

chapter to help the beginner understand the ideas involved. TheCONTENTSof each chapter are

reflected with all necessary details. Hence, it is not felt necessary to repeat the same details

again. However, the following two points are worth emphasizing.

The Part-I (Introduction to Differential Calculus: Systematic Studies with Engineering

Applications for Beginners):

. The first six chapters of Part I are devoted for revising the prerequisites useful for both the

parts. The selection of the material and its sequencing is very important. The reader will

find it quite interesting and easy to absorb. Once the reader has gone through these

chapters carefully, the reader will be fully prepared to study the concept of limit in

Chapters 7a and 7b. The reader will not find any difficulty in absorbing and appreciating

the « – d definition of limit. This definition is generally considered very difficult by the

students and therefore it is mugged up without understanding its meaning.

. Chapter 8 dealswith the concept of continuity that can be easily learnt, once the concept of

limit is properly understood. (Chapters 7a, 7b, and 8 are considered as prerequisites for the

purpose of understanding the concept of derivative.)

. Chapter 9 deals with the concept of derivative and its definition including the method of

computing the derivative, by the first principle of a given function using the definition of
derivative. (The concepts of limit, continuity, and derivative are discussed at length in the

above chapters and must be studied carefully and with patience.) Once the reader has

reached upto chapter-9, 50% ideas related with differential calculus is being understood.

Subsequently, the ideas related with the integral calculus will be found very simple for

understanding in Part-II of the book.

. Chapter 10 deals with the algebra of derivatives offering different methods for computing

derivatives of functions depending on their properties and the algebra of limits. The

concepts discussed in the remaining chapters do not pose problems to the reader since

every concept is introduced in a proper sequence suggesting its necessity and applications.

. Chapter 11 is sub-divided into two part (11a and 11b). Chapter 11a deals with basic

understanding of the trigonometric limits and its application for computing the derivatives

of these functions.

. Chapter 11b deals with the methods of computing limits of trigonometric functions.

. Chapter 12 deals with exponential form (s) of a positive real number and its logarithm(s):

Prerequisite for understanding exponential and logarithmic functions.
. Chapter 13 is sub-divided into two part (13a and 13b). Chapter 13a deals with the

properties of exponential and logarithmic functions including their derivatives.

. Chapter 13b deals with methods for computing limits of exponential and logarithmic

functions

. Chapter 14 deals with the inverse trigonometric functions and their properties including

derivatives of many other functions using trigonometric identities.

. Chapter 15 is sub-divided into two part (15a and 15b).

. Chapter 15a deals with implicit functions and their differentiation.

. Chapter 15a deals with parametric functions and their differentiation.
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. Chapter 16 deals with the concept of differentials dy and dx, and their applications in the

process of integration and for understanding differential equations. It is also discussed

how the symbol dy/dx for the derivative of a function can be looked upon as a ratio of

differential dy to dx.

. Chapter 17 deals with the derivatives of higher order, their meaning and usefulness.

Chapter 18 deals with applications of derivatives in studying motion in a straight line.

. Chapter 19 is sub-divided into two part (19a and 19b). Chapter 19a deals with the

concepts of increasing and decreasing functions, studied using derivatives of first and

second order.

. Chapter 19b deals with the methods of finding maximum and minimum values of a

function using the concept of increasing and decreasing functions.

. Chapters 20, 21, and 22 are extremely important dealing withMean Value Theorems and

their applications like L’Hospital’s Rule and introduction to the expansion of simple

functions.

. Chapter 23 deals with the introduction of hyperbolic functions and their properties.

Important advice for using both the parts of this book:

The CONTENTS clearly indicate how important it is to go through the prerequisites. Certain

concepts [like (�1) · (�1)¼ 1, and why division by zero is not permitted in mathematics, etc]

which are generally accepted as rules, are discussed logically. The concept of infinity and its

algebra are very important for learning calculus. The ideas and definitions of functions

introduced in Chapter-2, and extended in Chapter-6, are very useful.

The role of co-ordinate geometry in defining trigonometric functions and in the development

of calculus should be carefully learnt.

The theorems, in both the Parts are proved in a very simple and convincing way. The solved

examples will be found very useful by the students of plus-two standard and the first year

college. Difficult problems have been purposely not included in solved examples and the

exercise, to maintain the interest and enthusiasm of the beginners. The readers may pickup

difficult problems from other books, once they have developed interest in the subject.

Concepts of limit, continuity and derivative are discussed at length in chapters 7(a) & 7

(b), 8 and 9, respectively. The onewho goes through from chapters-1 to 9 has practically learnt

more than 60 % of differential calculus. The readers will find that remaining chapters of

differential calculus are easy to understand. Subsequently, readers should not find any

difficulties in learning the concepts of integral calculus and the process of integration

including the methods of computing definite integrals and their applications in fining areas

and volumes, etc.

The differential equations right from their formation and the methods of solving certain

differential equations of first order and first degree will be easily learnt.

Students of High Schools and Junior College level may treat this book as a text book for
the purpose of solving the problems and may study desired concepts from the book treating
it as a reference book. Also the students of higher classes will find this book very useful

for understanding the concepts and treating the book as a reference book for this purpose.

Thus, the usefulness of this book is not limited to any particular standard. The reference
books are included in the bibliography.

I hope, above discussion will be found very useful to all those who wish to learn the basics

of calculus (or wish to revise them) for their higher studies in any technical field involving

calculus.
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Suggestions from the readers for typos/errors/improvements will be highly appreciated.

Finally, efforts have been made to ensure that interest of the beginner is maintained all through.

It is fact that readingmathematics is very different from reading a novel. However, we hope that

the readers will enjoy this book like a novel and learn Calculus. We are very sure that if

beginners go through first six chapters of Part I (i.e., prerequisites), then they may not learn

Calculus, but will start loving mathematics.

DR. -ING. AJAY KUMAR PODDAR

CHIEF SCIENTIST,

SYNERGY MICROWAVE CORPORATION.

NJ 07504, USA.

FORMER SENIOR SCIENTIST (DEFENSE RESEARCH &

DEVELOPMENT ORGANIZATION (DRDO), INDIA

Spring 2011
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INTRODUCTION

In less than 15min, let us realize that calculus is capable of computing many quantities

accurately, which cannot be calculated using any other branch of mathematics.

To be able to appreciate this fact, we consider a “nonvertical line” that makes an angle “�”
with the positive direction of x-axis, and that � 6¼ 0.We say that the given line is “inclined” at an

angle “�” (or that the inclination of the given line is “�”).
The important idea of our interest is the “slope of the given line,” which is expressed by the

trigonometric ratio “tan �.” Technically the slope of the line tells us that if we travel by “one

unit,” in the positive direction along the x-axis, then the number of units by which the height of

the line rises (or falls) is the measure of its slope.

Also, it is important to remember that the “slope of a line” is a constant for that line. On the

other hand “the slope of any curve” changes from point to point and it is defined in terms of the

slope of the “tangent line” existing there. To find the slope of a curve y¼ f(x) at any value of x,

the “differential calculus” is the only branch of Mathematics, which can be used even if we are

unable to imagine the shape of the curve.

At this stage, it is very important to remember (in advance) and understand clearly that

whereas, the subject of Calculus demands the knowledge of algebra, geometry, coordinate

geometry and trigonometry, and so on (as a prerequisite), but they do not form the subject of

Calculus. Hence, calculus should not be confused as a combination of these branches.

Calculus is a different subject. The backbone of Calculus is the “concept of limit,” which is

introduced and discussed at length in Part I of the book. The first eight chapters in Part I simply

offer the necessary material, under the head: What must you know to learn Calculus? We learn

the concept of “derivative” in Chapter 9. In fact, it is the technical term for the “slope.”

The ideas developed in Part I are used to define an inverse operation of computing

antiderivative. (In a sense, this operation is opposite to that of computing the derivative of

a given function.)

Most of the developments in the field of various sciences and technologies are due to

the ideas developed in computing derivatives and antiderivatives (also called integrals). The

matters related with integrals are discussed in “Integral Calculus.”

The two branches are in fact complimentary, since the process of integral calculus is

regarded as the inverse process of the differential calculus. As an application of integral

calculus, the area under a curve y¼ f(x) from x¼ a to x¼ b, and the x-axis can be computed

only by applying the integral calculus. No other branch of mathematics is helpful in computing

such areas with curved boundaries.

PROF. ULRICH L. ROHDE
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1 From Arithmetic to Algebra

1.1 INTRODUCTION

Numbers are symbols used for counting and measuring. Hindu–Arabic numerals 0, 1, 2,

3, . . . . . ., 9 are grouped systematically in units, tens, hundreds, and so on, to solve problems

containing numerical information. This is the subject of Arithmetic. It also involves an

understanding of the structure of the number system and the facility to change numbers from

one form to another; for example, the changing of fractions to decimals and vice versa.

Adetailed discussion about theRealNumber System is given inChapter 3.However, it would be

instructive to recall some important subsets of real numbers, known to us.

Numbers, which are used in counting, are called natural numbers or positive integers. The

set of natural numbers is denoted by

N ¼ f1; 2; 3; 4; 5; . . .g

1.2 THE SET OF WHOLE NUMBERS

The set of natural numbers alongwith the number “0”makes the set ofwhole numbers, denoted

by W. Thus,

W ¼ f0; 1; 2; 3; 4; . . .g
Note: “0” is a whole number but it is not a natural number.

1.3 THE SET OF INTEGERS

All natural numbers, their negatives and zero when considered together, form the set of

integers denoted by Z. Thus,

Z ¼ f. . . ;�3;�2;�1; 0; 1; 2; 3; . . .g

1.4 THE SET OF RATIONAL NUMBERS

The numbers of the form p/qwhere p and q are integers, and the denominator q 6¼ 0, form the set

of rational numbers, denoted by Q.

Examples: 3
5
; �7

9
; 8

�15
; 0

15
; 9

1
; �121

�12
; 16

2
and so on, are all rational numbers.
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Remarks:

(a) Zero is a rational number, but division by zero is not defined. Thus, 5=0 and 0=0 are

meaningless expressions.

(b) All integers are rational numbers, but the converse is not true.

(c) Positive rational numbers are called fractions.

Let us discuss more about fractions.

Generally, “fractions” are used to represent the parts of a given quantity, under consider-

ation. Thus, 3/7 tells us that a given quantity or an object is divided into seven equal parts and

three parts are under consideration. A fraction is also used to express a ratio. Thus, 2:5 is also

written as 2/5 and similarly 12:5 iswritten as 12/5. Since the ratio of two natural numbers can be

greater than 1, all positive rational numbers are called fractions. This definition suggests that

fractions could be classified more meaningfully as follows:

. When both numerator and denominator are positive integers, the fraction is known as a

simple, common, or vulgar fraction (Examples: 1/2, 3/5, 9/7).

. A complex fraction is one in which either the numerator or the denominator or both are

fractions (Examples: 3/(7/5), (5/9)/2, (7/3)/(11/4)).

. If the numerator is less than the denominator, the fraction is called a proper fraction

(Examples: 4/7, 3/5, 1/4).

. If the numerator is greater than the denominator, the fraction is called an improper

fraction (Examples: 7/4, 5/3, 9/2).

. A unit fraction is a special proper fraction, whose numerator is 1 (Examples: 1/7, 1/100).

Note (1): A fraction is said to be in lowest terms, if the only common factor of the numerator

and denominator is 1. Thus, 3/4 is in lowest terms, but 6/8 is not in lowest terms since 6 and

8 have a common factor 2, other than 1. We say that a/b, 2a/2b, 3a/3b, . . . all belong to the

same family of fractions, described by a/b.

In fact, we use the fraction in lowest terms to describe the family of fractions. We define the

set of all fractions by F ¼ a=bja; b 2 Nf g

1.5 THE SET OF IRRATIONAL NUMBERS

There are numbers that cannot be expressed in the form p/q, where p and q are integers. They are

called irrationalnumbers, and theset isdenotedbyQ0 orQc. (MoredetailsaregiveninChapter3.)

Examples:

ffiffiffi
2

p
;
ffiffiffi
5

p
; 6

ffiffiffi
3

p
; 7

ffiffiffiffiffi
11

p
; e; p; 1:101001 . . . ; 5:71071007100071; . . . and so on:

1.6 THE SET OF REAL NUMBERS

The set of rational numbers together with the set of irrational numbers, form the set of real

numbers, denoted by R.(1)

(1) The square roots of negative numbers (i.e.,
ffiffiffiffiffiffiffi�1

p
or

ffiffiffiffiffiffiffi�7
p

, etc.) do not represent real numbers, hencewe shall not discuss

about such numbers at this stage.
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1.6.1 Arithmetic and Algebra

In arithmetic, there are four fundamental operations, namely, addition, subtraction, multiplica-

tion, and division, which are performed on the set of natural numbers to make new numbers,

namely, the number zero, negative integers, and rational numbers. For the formation of irrational

numbers, we have to go beyond the four fundamental arithmetic operations given above.

The subject of algebra involves the study of equations and a number of other problems that

developed out of the theory of equations. It is in connection with the solution of algebraic

equations that negative numbers, fractions, and rational numberswere developed. The number

“0” could enter the family of numbers only after negative numbers were developed.

In arithmetic, we deal with numbers that have one (single) definite value. On the other hand,

in algebra we deal with symbols such as x, y, z, . . ., and so on, which represent variable

quantities and those like a, b, c, . . ., and so on, which may have any value we chose to assign to

them. These symbols represent variable quantities and are hence called variables. We may

operate with all these symbols as numbers without assigning to them any particular numerical

value. Note that, both numbers and letters are symbols, which were developed to solve various

problems.

In fact, traditional algebra is a generalization of arithmetic. Hence, the symbols used in

arithmetic have the same meaning in algebra. Thus, we use þ (plus for addition), � (minus

for subtraction),� and � (cross and dot for multiplication), / (slash for division), ¼ (equals for

equality), > (for greater than), < (for less than) and so on, in algebra also.

Before we enter the true realm of algebra, it is useful to recall some more subsets of real

numbers, which will be needed in various discussions.

1.7 EVEN AND ODD NUMBERS

Every integer that is exactly divisible by 2, is called an even number, otherwise it is odd. Thus, an

even number is of the form 2n, where n is an integer.

An odd number is of the form (2n� 1). If number “a” is even, then (a� 1) is odd and vice

versa. It follows that 0 is an even integer.

1.8 FACTORS

Natural numbers that exactly divide a given integer are called the factors of that number. For

example, the factors of 12 are 1, 2, 3, 4, 6, and 12.We also say that 12 is amultiple of 1, 2, 3, 4, 6,

and 12. Similarly, the factors of 6 are 1, 2, 3, and 6, and the factors of zero are all the natural

numbers.

Remark: The number “0” is not a factor of any number.(2)

1.9 PRIME AND COMPOSITE NUMBERS

A natural number that has exactly two unique factors (namely the number itself and 1) is

called a prime number. A natural number that has three or more factors is called a composite

number.

(2) Factors are considered from natural numbers only. Besides, note that division by zero is not permitted in mathematics.

This is explained at the end of this chapter.

PRIME AND COMPOSITE NUMBERS 3



Some examples of prime numbers are 2, 3, 5, 7, 11, 13, 17, 19, . . .. . ., and so on.

. Each prime number, except 2, is odd.

. The number 1 is neither prime nor composite. Six is a composite number since it has four

factors, namely 1, 2, 3, and 6.

A given natural number can be uniquely expressed as a product of primes.

1.10 COPRIME NUMBERS

Two natural numbers are said to be coprime (or relatively prime) to each other if they have no

common factor except 1. For example, 8 and 25 are coprime to one another. Obviously, all prime

numbers are coprime to each other.

Remark: Coprime numbers need not be prime numbers.(3)

1.11 HIGHEST COMMON FACTOR (H.C.F.)

The highest common factor (H.C.F.) of two or more (natural) numbers is the greatest number

which divides each of them exactly. It is also known as the greatest common divisor (G.C.D.).

[The H.C.F. of any two prime numbers (or coprime numbers) is always 1.]

1.12 LEAST COMMON MULTIPLE (L.C.M.)

The least common multiple (L.C.M.) of two or more (natural) numbers is the smallest number

which is exactly divisible by each of them. To find the L.C.M. of two (ormore) natural numbers,

we find prime factors. If two (ormore) numbers have a factor in common,we select it once. This

is done for each such common factor and the remaining factors from each number are taken as

they are. The product of all these factors taken together, gives the L.C.M. of the given numbers.

ðProduct of two numbers ¼ their H:C:F:� their L:C:M:Þ

1.12.1 Continuous Variables and Arbitrary Constants

A changing quantity, usually denoted by a letter (i.e., x, y, z, etc.), which takes on any one of the

possible values, in an interval, is called a variable. On the other hand, the set of letters a, b, c, d,

and so on are used to denote arbitrary constants.

In the case of arbitrary constants, though there is no restriction to the numerical values a

letter may represent, it is understood that in the same piece of work, it keeps the same value

throughout. For example, in the expression, f(x) ¼ ax2 þ bx þ c, (0� x� 5), x is a contin-

uous variable in the interval [0,5] and a, b, c are arbitrary constants. (The concept of an interval

is discussed in Chapter 3.)

(3) There is one more term used in connection with prime numbers. A pair of prime numbers which differ by 2, are called

twin-primes (Examples: 3 and 5, 5 and 7, 11 and 13, 17 and 19, and so on).

Remark: It is proved that the number of primes is infinite, but it is not yet proved whether the number of twin-primes is

finite or infinite. This is because of the fact that, so far there is no formula that can generate all primes.
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1.13 THE LANGUAGE OF ALGEBRA

Let us now recall the terminology used in algebra:

. an algebraic expression;

. factors, coefficients, index/exponent (or power) of a quantity;

. positive and negative terms;

. like and unlike terms;

. processes involving addition, subtraction, multiplication, and division among algebraic

expressions;

. removal and insertion of brackets;

. simplification of an algebraic expression;

. polynomials and related concepts.

It is assumed that all these terms and processes are known to the reader. However, it is proposed

to extend the terminology and concepts related to polynomials, since the samewill be useful to

us, in our discussions to follow.

1.13.1 Polynomials

A polynomial in x is an expression of the form

pðxÞ ¼ an � xn þ an�1 � xn�1 þ . . . þ a1 � xþ a0

where a0, a1, a2, . . ., an are real numbers called the coefficients of p(x) and n in xn is a non-

negative integer.(4)

Usually, we write a polynomial in either descending powers of x or ascending powers of x.

The formof a ploynomialwritten in thisway is called the standard form. From the definition of a

polynomial, it is clear that polynomials are special types of algebraic expressions involving

only finite number of terms and one variable.(5)

1.13.2 Degree of a Polynomial

The exponent, in the highest degree term of a nonzero polynomial is called the degree of the

polynomial. Thus, if an 6¼ 0, then n (in xn) is the degree of the polynomial. In particular, the

degree of 3x5 þ 2x3� x þ 7 is 5 and the degree of ð3=2Þy3 � ffiffiffi
2

p
y� 1 is 3.(6)

A polynomial having only one term is called “monomial ”.

(4) By definition, the power of x in each term of a polynomialmust be awhole number. If the power of any term is a negative

integer or a fraction, then such an expression is not called a polynomial. Note that the power of x in p(x) can be zero. Such a

polynomial is called a constant polynomial. Another way for getting a constant polynomial could be to make all the

coefficients (except a0) equal to zero, so that we get p(x) ¼ a0, a0 6¼ 0. If each of the coefficients a0, a1, a2, . . ., an in p(x) is

zero, then such a polynomial is called the zero polynomial.

Remark: The zero polynomial is included in the definition of a polynomial.
(5) A polynomial may have more than one variable but our interest lies in the polynomials involving only one variable.
(6) If n ¼ 1, it is a linear expression [Example: f(x) ¼ 2x þ 5].

If n ¼ 2, it is a quadratic expression [Example: f(x) ¼ x2 þ 3x þ 1].

If n ¼ 3, it is a cubic expression [Example: f(x) ¼ x3 þ 3x2 þ 2x þ 1].

If n ¼ 4, it is a quartic or biquadratic expression. If n ¼ 5, it is a quintic expression.
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1.13.3 The Zero Polynomial

We know that a polynomial having all coefficients as zero is called “the zero polynomial ”.

Zero polynomial is unique and it is denoted by the symbol “0”.(7)

The degree of “zero polynomial” is not defined. (Note that, 0 ¼ 0�x ¼ 0�x5 . . . ¼ 0�x107,
and so on.These are all zero polynomials and obviously, their degree cannot be defined.) Inwhat

follows, a polynomial will mean a nonzero polynomial (in a single variable) with real

coefficients.

1.13.4 Polynomials Behave Like Integers

Many properties possessed by integers are also possessed by the polynomials. Therefore, we

extend the terminology, used in the algebra of numbers, to the algebra of polynomials. Thus, if

p(x) and q(x) are two polynomials, then the expression pðxÞ=qðxÞ, where q(x) is a nonzero-
polynomial, is called a rational expression.(8)

A rational expression must be expressed in its lowest terms, by canceling the common

factors in the numerator and denominator. For this purpose, one has to learn the process of

factorization of a polynomial.

1.13.4.1 Factors of a Polynomial A polynomial g(x) is called a factor of polynomial p(x),

if g(x) divides p(x) exactly; that is, on dividing p(x) by g(x) we get zero as the remainder.

1.13.4.2 Division Algorithm (or Procedure) for Polynomials On dividing a polynomial

p(x) by a polynomial g(x), let the quotient be q(x) and the remainder be r(x), then we have

p(x) ¼ g(x) � q(x) þ r(x), where either r(x) ¼ 0 or degree of r(x)< degree of g(x).

Remark: When a polynomial p(x) is divided by a linear polynomial (x�a) then the

remainder is a constant, which may be zero or nonzero. The value of the remainder can be

obtained by applying the remainder theorem.

1.13.4.3 Remainder Theorem If a polynomial p(x) is divided by a linear polynomial

(x�a), then the remainder is p(a). (This theorem can be easily proved using the division

algorithm.)

Remark: If p(x) is divided by (x þ a), then the remainder ¼ p(�a). Similarly, when p(x) is

divided by (ax þ b) then the remainder ¼ p(� b/a).

It is sometimes possible to express a polynomial as a product of other polynomials, each of

degree � 1. For example, x3� x2 þ 9x� 9 ¼ (x� 1)�(x2 þ 9) and 3x2� 6x� 9 ¼
3(x2� 2x� 3) ¼ 3(x� 3)(x þ 1).

1.13.5 Value of a Polynomial and Zeros of a Polynomial

We know that for every real value of x, a polynomial has a real value. For example, let

p(x) ¼ 3x4� 2x3 þ x þ 5. Then, for x ¼ 1, we have p(1) ¼ 7 and for x ¼ 0, p(0) ¼ 5.

(7) The role of zero polynomial can be compared with that of number “0”, in arithmetic. The symbol “0”, in polynomial

algebra represents the zero polynomial whereas in arithmetic it represents the real number “0”.
(8) Every polynomial may be regarded as a rational expression but the converse is not true. Note that ðxþ 3Þ=ðx� ffiffiffi

x
p Þ is

not a rational expression. It is an irrational algebraic expression.
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An important aspect of the study of a polynomial is to determine those values of x for which

p(x) ¼ 0. Such values of x are called zeros of the polynomial p(x). Consider the quadratic

polynomial q(x) ¼ x2� x� 6. It may be seen that q(3) ¼ 0 and q(� 2) ¼ 0. If x ¼ a is a zero

of the polynomial p(x) then (x� a) is a factor of p(x). This is known as the factor theorem

of algebra.

Thus, the factor theorem helps in finding the linear factors of a polynomial, provided such

factors exist. There are no standard methods available for finding linear factors of polynomials

of higher degrees, except in some very special cases.

Every quadratic polynomial can have at most two zeros, a cubic polynomial at most three

zeros, and so on. Some polynomials do not have any real zero. In other words, there may be no

real number “x” for which the value of the polynomial becomes zero. For example, there is no

real number “x” for which x2 þ 3 will be zero.

Now the following question arises: How do we determine the zeros of a given

polynomial pðxÞ?
This leads us to the question: How to solve the equation p(x) ¼ 0?

1.13.6 Polynomial Equations and Their Solutions (or Roots)

If p(x) is a quadratic polynomial, then the equation p(x) ¼ 0 is called a quadratic equation. If

p(x) is a cubic polynomial, then the corresponding equation p(x) ¼ 0 is called a cubic equation,

and so on. If the numbers a and b are two zeros of the quadratic polynomial p(x), we say that a

and b are the roots of the corresponding quadratic equation p(x) ¼ 0.(9)

Note: The fundamental theorem of algebra states that a nonzero nth degree polynomial

equation has at most n roots, in which some roots may be repeated roots.

Thus, starting from the concept of an algebraic expression we have revised the concepts of

polynomials, zeros of a polynomial, and the solution of simple polynomial equations.

1.14 ALGEBRA AS A LANGUAGE FOR THINKING

We know that algebra has a set of rules; but we should not feel satisfied to have learnt algebra

merely as a set of rules. It is more important to have some understanding of:What is algebra all

about? How does it grow out of arithmetic? And how is it used to convey concepts of

arithmetic? For instance, the following statements belong to arithmetic:

32 is 1 bigger than 2� 4

42 is 1 bigger than 3� 5

52 is 1 bigger than 4� 6

(9) It is easy to solve equations of degree one and two. Thus, we get from ax þ b ¼ 0, (a 6¼ 0), x ¼ � b/a and from a

x2 þ bx þ c ¼ 0, x ¼ �b� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðb2 � 4acÞp� �
=2a. Mathematicians also solved a number of particular equations of

degree three but were finding it difficult to express x in terms of general coefficients a, b, c, and d. This problemwas finally

solved by the Italian mathematician Tartaglia (1499–1557). Later Lodovico Ferari (1522–1565) solved the general fourth

degree equation. It seemed almost certain to the mathematicians that the general fifth degree equation and still higher

degree equations could also be solved. For 300 years this problem was a classic one. The Frenchman Evariste Galois

(1811–1832) showed that the general equation of degree higher than the fourth cannot be solved by algebraic operations

including radicals such as square root, cube root, and so on. To establish this result Galois created the Theory of Groups, a

subject that is now at the base of modern abstract algebra and that transformed algebra from a series of elementary

techniques to a broad, abstract, and basic branch of mathematics. [Mathematics and the Physical World by Morris Kline

(pp. 71–72).]
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These results suggest that “the square of any natural number is 1 bigger than the result of

multiplying two numbers ofwhich one is less by one and the other ismore by one, than the given

number”. Thus, we should guess that 872 would be 1 bigger than 86 � 88.

Thegeneral result is statedmost conveniently in the language of algebra. Let n be anynatural

number. Then “the number before n” will be written as (n� 1) and “the number after n” is

(n þ 1). We shall now say, n2 is 1 bigger than (n� 1)(n þ 1), or, completely in symbols,

n2 ¼ 1þðn� 1Þðnþ 1Þ ð1Þ

Note that, the above equation holds not only for natural numbers but also for all numbers. It

expresses what we guessed at by looking at particular results in arithmetic. The beauty of

algebra lies in its utility. Here, it enables us to prove that our guess is correct. By the usual

procedures of algebra, we can simplify the expression on the right-hand side of Equation (1) and

see that it equals the left-hand side.

In algebra itself, we often pass from particular results to more general ones. For example,

we get from Equation (1)

n2 � 1 ¼ ðn� 1Þðnþ 1Þ
but we know that n2 � 1 ¼ n2 � 12 ¼ ðn� 1Þðnþ 1Þ
In general; we have a2 � b2 ¼ ða� bÞðaþ bÞ

or a2 ¼ ða� bÞðaþ bÞþ b2 ð2Þ
This result is more general than the one expressed by Equation (1).

We can make use of Equation (2) in simple calculations. For example,

272 ¼ ð27� 3Þð27þ 3Þþ 32

¼ ð24� 30Þþ 9

¼ 720þ 9 ¼ 729

Similarly, 103� 97 ¼ (100 þ 3)(100� 3)

¼ ð100Þ2 � 32 ¼ 10000� 9

¼ 9991

Now consider the following products:

ðxþ 3Þðxþ 4Þ ¼ x2 þ 7xþ 12

¼ x2 þð3þ 4Þxþ 3 � 4
ðxþ 5Þðxþ 3Þ ¼ x2 þ 8xþ 15

¼ x2 þð5þ 3Þxþ 5 � 3
In algebraic symbols, we guess that:

ðxþ aÞðxþ bÞ ¼ x2 þðaþ bÞxþ a � b

We can easily prove that our guess is correct. This type of thinking is very useful in the study of

mathematics.
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1.14.1 Algebra is the Best Language for Thinking About Laws

Consider the following table

x: 0 1 2 3 4 5 . . .

y: 0 2 4 6 8 10 . . .

We can easily guess the law that lies behind this table. Each number in the bottom row is twice

the number that lies above it. The law behind the table is y ¼ 2x. In the same way, the law

behind the following table is y ¼ x2.

x: 0 1 2 3 4 5 . . .

y: 0 1 4 9 16 25 . . .

Incidentally, as a rule, there is little point in putting a law into words. It is far easier to see what

the formula y ¼ 2x2� 5x þ 7means (by preparing a table, as given above) than to understand

the same formula expressed in words.

1.15 INDUCTION

Inmathematics, it is not always wise to proceed by analogy and draw conclusions. The process

of reasoning from some particular results to general one is called “induction”.

As we know, induction begins by observation. We observe particular result(s) and use our

intuition to arrive at a tentative conclusion—tentative, because it is an educated guess or a

conjecture. It may be true or false. If the general result is proved by systematic deductive

reasoning, then it is accepted as true. On the other hand, the result will be considered false if we

are able to show a counter example where the conjecture fails.

Remember that, a conjecture remains a conjecture no matter how many examples we can

find to support it.Thegreat Frenchmathematician Pierre de Fermat (1601–1665) observed that:

ð221 þ 1Þ ¼ ð22 þ 1Þ ¼ 5 is a prime number.

ð222 þ 1Þ ¼ ð24 þ 1Þ ¼ 17 is a prime number.

ð223 þ 1Þ ¼ ð28 þ 1Þ ¼ 257 is a prime number.

Accordingly, he conjectured thatð22n þ 1Þis a prime number for every natural number n and had

challenged the mathematicians of his day to prove otherwise. It was several years later that the

Swiss mathematician Leonhard Euler (1707–1783) showed that ð225 þ 1Þ ¼ 4;294;967;297
is not a prime number since it is divisible by 641.Another interesting example is the following:

We observe that the absolute values of the coefficients of various terms in each of the following

factorization are equal to 1

x1 � 1 ¼ ðx� 1Þ; x2 � 1 ¼ ðx� 1Þðxþ 1Þ
x3 � 1 ¼ ðx� 1Þðx2 þ xþ 1Þ; x4 � 1 ¼ ðx� 1Þðxþ 1Þðx2 þ 1Þ
x5 � 1 ¼ ðx� 1Þðx4 þ x3 þ x2 þ xþ 1Þ

Therefore, it was conjectured that when xn� 1 (n, a natural number) is expressed into factors,

with integer coefficients, none of the coefficients is greater than 1, in absolute value.
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All attempts to prove this general statement failed, until 1941, when a Russian

mathematician, V. Ivanov came up with a counter-example. He found that one of the

factors of x105� 1 violates the conjecture. This factor is a polynomial of degree 48, as

given below.(10)

x48 þ x47 þ x46 � x43 � x42 � 2x41 � x40 � x39 þ x36 þ x35 þ x34 þ x33 þ x32

þx31 � x28 � x26 � x24 � x22 � x20 � x17 þ x16 þ x15 þ x14 þ x12 � x9 � x8

�2x7 � x6 � x5 þ x2 þ xþ 1:

9>>=
>>;

ð10Þ

Inmathematics, we have several such conjectures, which have remained conjectures for lack of

proof, even though literally thousands of examples have been found in support of them.Having

employed intuition and arrived at a conjecture, the very difficult task of proving the conjecture

begins. If the conjecture is in the form of a statement, say P(n), involving natural numbers, a

method of proof is provided by the principle of mathematical induction.(11) [For example, let

P(n) represent the statements: (i) n(n þ 1) is even or (ii) 3n> n, or (iii) n3 þ n is divisible by 3,

or (iv) 23n� 1 is divisible by 7, etc.]

1.16 AN IMPORTANT RESULT: THE NUMBER OF PRIMES IS INFINITE

There is no known formula that relates successive primes to successive integers. Therefore, it is

not possible to use the principle of mathematical induction to prove this result. Yet, algebra

provides a simple method to prove it. An indirect approach is needed.(12)

1.17 ALGEBRA AS THE SHORTHAND OF MATHEMATICS

Algebra can be compared to writing shorthand in ordinary life. It can be used either to make

statements or to give instructions in a concise form. Mathematical statements in ordinary

language can be translated into algebraic statements and similarly statements in algebra can be

translated into ordinary language. For example, consider the following instructions translated

into the language of algebra:

(10) A Textbook of Mathematics for Classes XI–XII (Book No. 1, p. 100) NCERT Publication, 1978.

(12) We assume that every natural number greater than 1, which is not prime can be represented by a product P1, P2, P3,

P4, . . ., Pn of prime integers Pi. This is known as the fundamental theorem of arithmetic.

Proof: Assume that there is but a finite number of primes and hence a last (largest) prime, P.

LetN be the product of all primes up to P: i.e.,N ¼ 2, 3, 5, 7, 11, . . .,P.Now considerN þ 1 ¼ (2, 3, 5, 7, 11, . . .,P) þ 1.

Let r be one of the prime numbers 2, 3, 5, . . ., P. If we divide (N þ 1) by r then we will always get the remainder 1.

Therefore,N þ 1 itself must be a prime, which is larger than P. This contradicts the assumption thatP is the largest prime.

[The largest known prime as of March 2011 is (243,112,609� 1). It has about 700 digits and a modern computer was used to

perform the necessary computation. Mathematics can be Fun by Yakov Perelman (p. 288), Mir Publishers, Moscow,

1985.]

(11) To prove that a statement P(n) is true for all natural numbers, we have to go through two steps.

Step (1): We must verify that P(1) is true.

Step (2): Assuming thatP(k) is true for some k2N, wemust prove thatP(k þ 1) is true. For this purpose, we obtain an

algebraic expression for P(k þ 1) and put it in desired form (if possible) to show that P(k þ 1) is true. If this is

achieved the result is proved to be true for all n.

Remark: If P(1) is not true, the principle of induction does not apply. [See Example (iii) above.]
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Statements in Ordinary Language Equivalent Statements in the Language of Algebra

(i) Think of a number,

add 7 to it and double the result.

2(x þ 7)

(ii) Choose a number, multiply it by 5, add 2,

square this expression, and divide the result by 8.

(5x þ 2)2/8

Algebra puts mathematical statements in a small space. The statement is shorter to write,

easier to read, quicker to say, and simpler to understand, than the corresponding sentence in

ordinary English.

Next, though it is easy to say that 2n (where n is a natural number) represents an even

number, it is not obvious that the number (n2� n) also represents an even number. Yet, algebra

tells us that (n2� n) ¼ n�(n� 1) must always be even (Why?).

When we say that algebra is a language, we mean that it has its own words and symbols for

expressing what might otherwise be expressed in ordinary language such as French or German.

However, we do not look at algebra from this point of view. For us, algebra is a special kind of

language for the following two reasons:

(a) Algebra is concerned primarily with statement(s) about numbers, items, symbols, or

quantities.

(b) The language of algebra uses symbols in place of words.

For example, to discuss about a class of numbers (say the class of natural numbers) a

mathematician may say: Let “a” be any natural number. Thereafter, in the entire discussion

whenever he wishes to refer to an arbitrary natural number, he will use the letter a and thus

save words and space. Of course, he will have to be careful because any statement(s) he makes

about a applies to all natural numbers.

1.18 NOTATIONS IN ALGEBRA

One important difference between the notation of arithmetic and algebra is as follows.

In arithmetic, the product of 3 and 5 is written as 3� 5, whereas in algebra, the product

of a and bmay bewritten in any of the forms a� b, a � b, or ab. The form ab is themost useful. In

arithmetic, this is not permitted since 35 means (3� 10) þ 5 and is read as “thirty-five”.

Acceptance of such notations in algebra may be treated as a special feature of algebra.

There are many notations in algebra with which the reader is familiar. For example,

. an ¼ a � a � a � a � a . . . (n times)

Example; 35 ¼ 3 � 3 � 3 � 3 � 3 ¼ 243

We know that; a7=a4 ¼ a7�4 ¼ a3

) an=an ¼ an�n ¼ a0 ¼ 1; ðprovided a 6¼ 0Þ
(a0 ¼ 1), a 6¼ 0, since, 00 is not defined.

. Product of first n natural numbers is given by

n! ¼ n � ðn� 1Þ � ðn� 2Þ � ðn ¼ 3Þ . . . 3 � 2 � 1
Example; 7! ¼ 7 � 6 � 5 � 4 � 3 � 2 � 1

NOTATIONS IN ALGEBRA 11



. Number of permutations (arrangements) of n different things taken r at a time is given by

npr ¼ n!

ðn� rÞ! Example; 5p3 ¼ 5!

ð5� 3Þ! ¼
5!

2!

¼ Product of first 5 natural numbers

Product of first 2 natural numbers

¼ 5 � 4 � 3 � 2 � 1
2 � 1 ¼ 60

npn ¼ n!

ðn� nÞ! ¼
n!

0!
¼ Product of first n natural numbers

Product of first “zero” natural numbers

¼ n!

It follows that 0! ¼ 1. (This is taken as the definition of 0!)

. Number of combinations of n different items taken r at a time; is given by
nCr ¼ n!

r!ðn�r!Þ.

Example: 7C3 ¼ 7!

3!ð7� 3Þ! ¼
7!

ð3!Þð4Þ! ¼
7:6:5:4:3:2:1

ð3:2:1Þð4:3:2:1Þ ¼ 35:

nCr ¼ nCðn�rÞ; nC0 ¼ 1; nCn ¼ 1

Note that in all these notations, n is a natural number and r is a whole number, with n � r.

Abeginnermay complain about somedifficulty in learning the language of algebra.However,

one who has mastered this language of mathematics and has grasped the ideas and reasoning,

does appreciate the mathematical symbolism. It is a relatively modern invention and math-

ematicians should be complimented for designing “symbols” and “notations”, out of necessity.

It is important to realize that, while all the languages of the world are quite different

from one another, the language of algebra is a common one (as is the language of mathematics)

and serves the purpose so well.

1.19 EXPRESSIONS AND IDENTITIES IN ALGEBRA

The basic function of algebra is to convert expressions into more useful ones. For example,

the sum.

Xn
k¼ 1

k ¼
X

n ¼ 1þ 2þ 3þ 4þ . . . . . . þ n

was converted by Gauss to the more useful form ðnðnþ 1Þ=2Þ.
How do you prove this?

The method is not obvious and yet a simple idea does the trick, as follows:

Let S ¼ 1þ 2þ 3þ 4þ . . . . . . þðn� 1Þþ n ð3Þ

Also; S ¼ nþðn� 1Þþ ðn� 2Þþ . . . . . . þ 2þ 1 ð4Þ
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Adding corresponding terms in (3) and (4), we get

2S ¼ ðnþ 1Þþ ðnþ 1Þþ ðnþ 1Þ . . . . . . ðn timesÞ
¼ nðnþ 1Þ:Hence; S ¼ ðnðnþ 1Þ=2Þ

The ideas in this proof must arouse some excitement in the reader’s mind.Here, it is important

to realize that by simplemeanswe have converted the cumbersome expression to a simpler and

readily computable expression.

Similarly, using algebra, many such useful expressions can be obtained easily. For example,

.
P

n2 ¼ 12 þ 22 þ 32 þ 42 þ . . . þ n2

¼ nðnþ 1Þð2nþ 1Þ
6

.
P

n3 ¼ 13 þ 23 þ 33 þ 43 þ . . . þ n3

¼ n2ðnþ 1Þ2
4

Note that
X

n3 ¼
X

n
� �2� �

. aþ arþ ar2 þ ar3 þ . . . þ arn�1

¼ að1� rnÞ
ð1� rÞ ; ðr < 1Þ

¼ aðrn � 1Þ
ðr� 1Þ ; ðr > 1Þ

It is sometimes possible that a question may have two answers which at first sight appear

different, but which are actually the same. This can be checked by simplifying both the

algebraic expressions. An important part of algebra therefore consists in learning how to

express any result in the simplest form. Algebraic identities,(13) and methods available for

factorizing polynomials, are helpful in simplifying algebraic expressions.

Some important identities are given below:(14)

. ðxþ yÞðx� yÞ ¼ x2 � y2:

Thus; ðaþ bÞða� bÞ ¼ a2 � b2:

. ðxþ yÞ2 ¼ x2 þ y2 þ 2xy:

Thus; a2 þ b2 ¼ ðaþ bÞ2 � 2ab:

(13) An algebraic statement expressed in two (or more) forms with a symbol of equality (¼ ) between them is called an

algebraic identity. Obviously, an identity is true for all real value(s) of the variable(s) involved.
(14) For some purpose, the expression a2� b2 is useful as it stands, but for others it may be better towrite it in the equivalent

form (a þ b) (a� b). This statement is also applicable for other expressions to follow.
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. ðx� yÞ2 ¼ x2 þ y2 � 2xy:

Thus; a2 þ b2 ¼ ða� bÞ2 þ 2ab;

ðaþ bÞ2 þða� bÞ2 ¼ 2ða2 þ b2Þ;
and ðaþ bÞ2 � ða� bÞ2 ¼ 4ab:

. ðxþ yÞ3 ¼ x3 þ y3 þ 3xyðxþ yÞ:
Thus; a3 þ b3 ¼ ðaþ bÞ3 � 3abðaþ bÞ;
or a3 þ b3 ¼ ðaþ bÞða2 � abþ b2Þ:

. ðx� yÞ3 ¼ x3 � y3 � 3xyðx� yÞ:
Thus; a3 � b3 ¼ ða� bÞ3 þ 3abða� bÞ;
or a3 � b3 ¼ ða� bÞða2 þ abþ b2Þ:

From the expression(s) for (a� b)3 and (a� b)2 many useful identities can be obtained.

For example,

a3 þ b3

a2 þ b2 � ab
¼ ðaþ bÞ; a3 � b3

a2 þ b2 þ ab
¼ ða� bÞ

ðaþ bÞ2 þða� bÞ2
ða2 þ b2Þ ¼ 2ða2 þ b2Þ

ða2 þ b2Þ ¼ 2;

ðaþ bÞ2 � ða� bÞ2
ab

¼ 4ab

ab
¼ 4:

Next, observe that,

.

 
aþ 1

a

!2

¼ a2 þ 1

a2
þ 2

 
a� 1

a

!2

¼ a2 þ 1

a2
� 2

9>>>>>>=
>>>>>>;

) aþ 1

a

� �2

� a� 1

a

� �2

¼ 4

. ðaþ bþ cÞ2 ¼ a2 þ b2 þ c2 þ 2ðabþ bcþ caÞ

. a3 þ b3 þ c3 � 3abc ¼ ðaþ bþ cÞða2 þ b2 þ c2 � ab� bc� caÞ

. If aþ bþ c ¼ 0; then a3 þ b3 þ c3 ¼ 3abc:

.
1

a � b ¼ 1

b� a

1

a
� 1

b

� �
. If n is a natural number, then the expansion

ðxþ yÞn ¼ nC0x
n þ nC1x

n�1 � yþ nC2x
n�2 � y2 þ . . . þ nCny

n is called the binomial

expansion, where x and y can be any real numbers.

– This expansion has (n þ 1) terms.

– The general term is of the form nCrx
n�ryr and it is the (r þ 1)th term in the expansion.

– In each term, the sum of the indices of x and y, is n.

. If m is a negative integer or a rational number, then the binomial expansion is

ðbþ xÞm ¼ bm þmbm�1xþ mðm� 1Þ
2!

bm�2x2 þ . . .

þ mðm� 1Þðm� 2Þ . . . ðm� rþ 1Þ
r!

bm�rxr þ . . .

provided xj j < b

ð5Þ
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Remark (1): Note that the coefficientsm, ðmðm� 1Þ=2!Þ, and so on, look like combinatorial

coefficients (i.e., nC0;
nC1;

nC2; . . . ; nCr, and so on). However, recall that nCris defined for

natural number n and whole number r (with n� r), and as such has no meaning in other cases.

Remark (2): Whenm is a negative integer or a rational number, there are infinite number of

terms in the expansion of (b þ x)m.

Remark (3): The following results are very useful and can be easily obtained by using the

expansion in Equation (5).

.
1

1þ x
¼ ð1þ xÞ�1 ¼ 1� xþ x2 � x3 þ . . . ; xj j < 1

.
1

ð1þ xÞ2 ¼ ð1þ xÞ�2 ¼ 1� 2xþ 3x2 � 4x3 þ . . . ; xj j < 1

.
1

1� x
¼ ð1� xÞ�1 ¼ 1þ xþ x2 þ x3 þ . . . ; xj j < 1

.
1

ð1� xÞ2 ¼ ð1� xÞ�2 ¼ 1þ 2xþ 3x2 þ 4x3 þ . . . ; xj j < 1

1.20 OPERATIONS INVOLVING NEGATIVE NUMBERS

Agood deal of themachinery of elementary algebra is concernedwith the solution of equations

involving unknowns. However, we should note that this simple machinery can lead directly to

useful results in numerous other types of problems.

Themost difficult item in algebra is that devoted to operations involving negative numbers.

The difficulty is twofold:

(i) Why introduce negative numbers?

(ii) Why does multiplication of two negative numbers (or division of a negative number by

another negative number) yield a positive number?

In fact, it is in connection with the solution of equations, that both questions can be answered.

For example, note that if we do not accept negative numbers then even a simple equation, like

2x þ 5 ¼ 0 cannot be solved. Next, consider the equation

7x� 5 ¼ 10x� 11 ð6Þ

To solve this equation,we can transpose the terms in twoways so that the unknowns are on one

side and the knowns are on the other side. (Of course, we will expect that in both the cases the

solution should be same.)

Thus, we get

11� 5 ¼ 10x� 7x

or 6 ¼ 3x so x ¼ 2

Also, we get

7x� 10x ¼ �11þ 5

� 3x ¼ �6:
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x ¼ �6

�3
¼ ð�1Þ � 6

ð�1Þ � 3 ¼ ð�1Þ
ð�1Þ �

6

3
¼ ð�1Þ

ð�1Þ � 2 ð7Þ

Also;
�6

�3
¼ ð�1Þ � 6 � ð�1Þ

3

)1
�3

¼ 1

ð�1Þ3 ¼ ð�1Þ 1
3
¼ ð�1Þ

3

2
4

3
5

¼ ð�1Þ � ð�1Þ � 6
3
¼ ð�1Þ � ð�1Þ � 2

ð8Þ

Now in order that the solution of the Equation (6) should be same, it is necessary that (� 1)/

(� 1) ¼ 1 in (7) and (� 1)(� 1) ¼ 1 in (8).

1.21 DIVISION BY ZERO

The question, “Why is division by zero not permitted in mathematics?” is answered through

algebra.

In arithmetic (or more generally in algebra), the operation of division is defined in terms of

the operation of multiplication. Thus according to the existing rule, the division of an arbitrary

number “a” by another number “b” means to find a number x such that

a � 1
b
¼ x where b 6¼ 0

b � x ¼ a

or

Let us see what happens if division by zero is permitted. If b ¼ 0, then wemust consider the

following two cases.

(i) when a 6¼ 0, and

(ii) when a ¼ 0

Case (i): We try to solve the equation

b � x ¼ a; ðwhere b ¼ 0; but a 6¼ 0Þ
We get 0 � x ¼ a

It follows that a ¼ 0, which is against our assumption that a 6¼ 0. This situation arises because

there is no number x, which could be multiplied by “0” to get a fixed (nonzero) number “a”. It

follows that if a nonzero number is divided by zero than we get a meaningless result.

Case (ii): We try to solve the equation

b � x ¼ a; ðwhere b ¼ 0; and a ¼ 0Þ
We get 0 � x ¼ 0

Unfortunately, this is true. Here anynumberx satisfies this equation. Let us see the consequence

of this situation.

If division by zero is permitted, thenwe get from the equation 0�x ¼ 0, x ¼ 0/0. Similarly from

0�y ¼ 0, we get y ¼ 0/0, where x, y, . . . are all different (nonzero) numbers. From the above, it

follows that 0/0 ¼ x ¼ y ¼ z . . ., which means that all different numbers are equal.
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Thus, if a ¼ 0, and b ¼ 0, then we have a/b ¼ 0/0 and it represents any number whatever we

choose. But mathematicians require that the division of “a” by “b” should yield a unique

number as a result. But this is again not achieved.

From the above, we observe that division by zero leads either to no number or any

arbitrary number. (Note that this is the consequence of permitting division by the number

zero.) Thus, division by zero leads to meaningless results and hence it is not permitted

in mathematics.

DIVISION BY ZERO 17



2 The Concept of a Function

2.1 INTRODUCTION

The concept of a “function” is one of the most basic in all of mathematics. The meaning of the

word “function” has evolved and changed during the last three centuries. Itsmodernmeaning is

much broader and deeper than its elementary meaning from earlier days. The statement: “y is a

function of x” means something very much like “y is related to x by some formula”. In fact,

this statement gives some idea about a function, but it is incomplete. In traditional algebra, x and y

stand for numbers. But today, functions can be defined that have nothing to do with numbers.

In our study of calculus, we shall be mostly concerned with functions, which are related to

numbers. Like any other mathematical concept, the concept of function is nicely expressed

through the language of sets. Therefore, it is useful to revise “Elementary Set Theory” (see

Appendix “A”).

Assuming the knowledge of Elementary Set Theory, we define two important terms:

(i) ordered pairs and (ii) Cartesian product of sets. These terms are needed to define a

“function” on the basis of set theory. Let us discuss:

(i) Ordered Pairs: When we wish to consider a pair of things as a whole, we may use the

terms couple or just pair. IfA ¼ {1, 2, 3, 4} then the subsets {1, 2}, {1, 3}, {1, 4}, {2, 1},

{3, 1} are some examples of pairs. Here we have listed some pairs twice; for example

{1, 2} ¼ {2, 1} and {1, 3} ¼ {3, 1}.

We know that the order, in which the elements of a set are written, is immaterial. If in a

pair wewish to single out one element as being the first, then the other element becomes

the second. Once we define the procedure of fixing the position of first element (in a

pair), we have example of an ordered pair. To denote an ordered pair we use the

following notation:

The ordered pair consisting of the element 1 and 2, in which 1 is the first element

will bewritten as (1, 2), whereas the ordered pair consisting of the elements 1 and

2 in which 2 is the first element will be written as (2, 1). Obviously, then

(1, 2) 6¼ (2, 1).(1)

Introduction to Differential Calculus: Systematic Studies with Engineering Applications for Beginners, First Edition.
Ulrich L. Rohde, G. C. Jain, Ajay K. Poddar, and Ajoy K. Ghosh.
� 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

(1) It is necessary to consider the sets of elements in which order is important. For example, in analytic geometry of the

plane, the coordinates ðx; yÞ of a point represent an ordered pair of numbers. The point (3, 4) is different from the point

(4, 3). Similarly, in 3D geometry, an ordered triplet ða; b; cÞ gives the coordinates of a point in 3D space. There are some

authors who use the notation<ha; bi for the ordered pair, and (a, b) for the open interval, but the ambiguity need not cause

any alarm because it will always be made clear by context and we will know which role the symbol ða; bÞ is to play.

What must you know to learn calculus? 2-The concept of function (Relations and functions, one-to-one correspon-

dence, equivalent sets, infinite sets, the notion of infinity, and its algebra)
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(ii) Definition: Cartesian Product of Two Sets A and B: Let A and B be two sets. We define

the Cartesian product of A and B, written A�B, to be the set of all ordered pairs (x, y)

where x2A and y2B.

Thus, A�B ¼ {(x, y)|x2A and y2B}

Example: Let A ¼ {1, 2, 3} and B ¼ {5, 6}

Then A�B ¼ {(1, 5), (2, 5), (3, 5), (1, 6), (2, 6), (3, 6)}

Note: It is important to note that in the product A�B the first element in each ordered pair

belongs toA and the second element to set B. Also note that if set A containsm elements and set

B contains n elements, then the set A�B will have m�n ordered pairs.(2)

2.2 EQUALITY OF ORDERED PAIRS

Two ordered pairs (a, b) and (c, d ) are equal if a ¼ c and b ¼ d.

2.3 RELATIONS AND FUNCTIONS

We know that if setA containsm elements and setB contains n elements, then the setA�Bwill

have m�n ordered pairs. Any subset of these ordered pairs is called a relation from A to B.

Consider the following example:

Example: Let A ¼ {1, 2, 3, 4} and B ¼ {2, 4, 5}

Then, A�B ¼ {(1, 2), (1, 4), (1, 5), (2, 2), (2, 4), (2, 5), (3, 2), (3, 4), (3, 5), (4, 2), (4, 4), (4, 5)}

Now there are many relations from A to B as follows:

R1 ¼ {(1, 2), (1, 5), (2, 2), (3, 4), (3, 5), (4, 5)}

R2 ¼ {(1, 4), (4, 2), (4, 5)}

R3 ¼ {(3, 2), (3, 4), (3, 5), (1, 4)}

R4 ¼ {(1, 4), (2, 5), (3, 2), (4, 4)}

R5 ¼ {(1, 2), (2, 5), (3, 4), (4, 4)}

However, if we select the ordered pairs in such a way that:

(i) their first elements constitute the entire set A, and

(ii) no two distinct pairs have the same first element,

then such a collection of ordered pairs (from the set A�B) constitute a special relation from A

to B, which is called a function from A to B.

(2) Here is a tricky situation: Let A ¼ {1, 2, 3}, B ¼ � then A�B ¼ � (Why?) Note that A�B is not defined as a set of

ordered pairs if eitherA orB is empty. However,A� {�} ¼ {(1,�), (2,�), (3,�)}. But this set of ordered pairs is of no use

to us.
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2.3.1 Domain of a Relation

In any relation (in the form of a set of ordered pairs), the set consisting of the “first” element of

each pair constitutes the domain of the relation. Let us consider the above relations.

. The domain of R1 ¼ {1, 2, 3, 4} ¼ A. But there are two ordered pairs (1, 2) and (1, 5) in

which the first element is same. Hence, R1 does not represent a function.

. The domain ofR2 ¼ {1, 4} 6¼A. Also, there are two ordered pairs (4, 2) and (4, 5) inwhich

the first element is the same. Hence, R2 is not a function, from A to B.(3) Obviously, R3 is

also not a function.

. The domain of R4 ¼ {1, 2, 3, 4} ¼ A. And no two distinct pairs have the same first

element. Hence, R4 represents a function. Similarly, R5 represents a function.

We can still define many functions from A to B, as follows:

f1 ¼ {(1, 2), (2, 2), (3, 2), (4, 2)},

f2 ¼ {(1, 4), (2, 2), (3, 5), (4, 4)},

f3 ¼ {(1, 5), (2, 4), (4, 2), (3, 2)},

f4 ¼ {(1, 5), (2, 5), (4, 5), (3, 5)}, and so on.

We are now in a position to define a “function” on the basis of set theory.

2.4 DEFINITION

Let A and B be two nonempty sets.

A function f fromA toB is a subset ofA�B (involving the entire setA) with the property that

each “a” belonging to A, belongs to precisely one ordered pair (a, b), in the subset of A�B,

under consideration. In other words, a function f from set A to set B consists of a set of ordered

pairs (a, b)2A�B such that no two ordered pairs have the same first element.

2.4.1 Alternative Definition of a “Function”

A function f from setA to setB (written as f:A ! B) is a rule of correspondence that associates

to each element of A, one and only one element of B.

(A function is also called a mapping from A to B.)

We observe that

(i) Each element ofB need not be in the association, but every element of Amust be involved

in it.Hence, a function is a one way pairing process. (Every element of A pairs off with

some element of B but not conversely.)

(ii) One element ofA cannot be associated tomore than one element ofB, but one element of

B may correspond to two or more elements of A.

The correspondence from the elements of set A to set B, shown in Figures 2.1–2.4 represents

function(s) whereas that shown in Figures 2.5 and 2.6 does not represent functions. (Why?)

To study functions in details, it is useful to fix certain terms,whichwill be needed frequently.

(3) Note that there are two reasons due towhich R2 is not a function. In fact, any one reason is sufficient for this conclusion.
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2.5 DOMAIN, CODOMAIN, IMAGE, AND RANGE OF A FUNCTION

Let f be a function from set A to set B ( f: A ! B), then

. The (entire) set A is called the domain of f.

. The (entire) set B is called the codomain of f.

. An element ofB that corresponds to some element x ofA is denoted by f(x), and it is called

the image of x under f.

. The set of all images constitute the range of f. The range of f is denoted by f(A) and it is a

subset of set B. In other words f(A)�B.

2.6 DISTINCTION BETWEEN “f ” AND “f(x)”

Consider a function f: A ! B, and let (x, y) be an arbitrary ordered pair belonging to f. Then,

instead ofwriting (x, y)2 f, we usuallywrite y ¼ f(x) tomean that y is related to x, through “f ”,

andwe read it as y [or f(x)] is a function of x. In this notation, x represents an arbitrary element

of the domain and y represents the corresponding element of the range. Remember that the

element “f(x)” is selected by the rule of correspondence defined by the function “f ”. Thus, “f ”

represents the rule of correspondence.

It is important to distinguish between the symbols f and f(x). It may be emphasized that a

single letter f (or g, or h, or�, etc.) is used to name a function. Remember that “f ” represents the
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rule of correspondence (which may be a statement(4) or a method or a formula) relating the

elements of set A to the elements of set B. The symbol f(x) represents the result of applying

“f ” to “x”. We call it the value of “f ” at x. If “f ” is the function defined by the formula

x2 � 2x þ 3, then we usually write

y ¼ f ðxÞ ¼ x2 � 2xþ 3; ðx 2 AÞ ðIÞ

Equation (I) tells that the rule of correspondence is the formula “x2 � 2x þ 3”, which

converts every number x2A, into a new number “f(x)” belonging to B, using the above

formula. Thus, the formula “x2 � 2x þ 3” must be identified with the function “f ”. For

computing the value “f(x)”, we use the formula defining “f ”. Thus, if we choose x ¼ 02A,

we get the corresponding element y2B as f(0) ¼ 3. Similarly, for x ¼ 1 we get y ¼ 2, and

for x ¼ 5, y ¼ 18.

To avoid the confusion, possibly caused due to equation (I) [wherein f(x) is equated to

x2 � 2x þ 3], we should write it as f: x ! x2 � 2x þ 3, which clearly states that “f ” is a

function that converts each x into x2 � 2x þ 3.

2.7 DEPENDENT AND INDEPENDENT VARIABLES

When the rule for a function is given by an equation of the form y ¼ f(x) (for example,

y ¼ x2 � 2x þ 3, or y ¼ sinx, or y ¼ ex, etc.), then x is called the independent variable and y

[or f(x)] is called the dependent variable. Note that for the dependent variable y [or f(x)], we

look at the expression for f(x). (For more details see Chapter 6.)

2.8 FUNCTIONS AT A GLANCE

(1) A function consists of three things:

(i) A set known as the domain of the function.

(ii) A set known as the range of the function.

(iii) A correspondence (a rule or amethod or a procedure), which associates with each

member of the domain, precisely one member of the range.

(2) If we conceive of a function as being specified by a set of ordered pairs, then we must

insist that no two selected distinct pairs may have the same first element.

2.9 MODES OF EXPRESSING A FUNCTION

A function is completely known if the objects and corresponding images are known. There are

many ways in which this can be done. We give below four methods for describing a function.

(i) Statement of the Rule of Association (By Formula or Otherwise): If the domain of the

function is known and rule(s) of association between objects and images are known, the

images can be found out and the correspondence is completely known.

(4) For example, nth digit in the decimal expansion of p, is a function, which has no formula.
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As we go through the other modes of expressing a function, it will be realized that this

mode of expressing a function is themost accurate and complete, when the domain is an

infinite set.

(ii) Description by Tables: When the domain of a function consists of a small number of

elements (say 10–20 numbers), it may be described by tabulating the objects and their

corresponding images.

This is specifically useful when the objects and images cannot be connected by a fixed

rule due to irregular variations, and so on. (This mode of expressing a function

however, is not useful when the domain has a large number of elements.)

(iii) Description in Terms of Ordered Pairs: A function is expressible as a set of ordered

pairs. In fact, the set-theoretic definition of a function is the basis for this mode of

expressing a function. We have already discussed about this mode earlier. In general,

this mode is not useful in handling problems in calculus.

(iv) Description by Graphs: We know that a function is a set of ordered pairs, and each

ordered pair is liable to be represented as a point in the plane. Therefore, the function

itself is represented by the set of these points. If f: A ! B is a function then the set

{(a, f(a))ja2A} is called the graph of f and is a subset of A�B. In particular ifA,B�R,

the graph of f can be represented by points in the plane. The graph of a functionmay be a

set of distinct points or it may be a (continuous) curve.

Example: Consider the function: f(x) ¼ 2x þ 1, x2 {0, 1, 2, 3}

Here, A ¼ {0, 1, 2, 3}.

The graph of this function consists of four isolated points with the coordinates (0, 1), (1, 3),

(2, 5), (3, 7) and is not a continuous curve. However, the graph of the function f(x) ¼ 2x þ 1,

x2R is a continuous curve (line) passing through the above four points.

2.10 TYPES OF FUNCTIONS

We know that a relation f: A ! B, which satisfies the following two conditions,will be called a

function:

(I) Each element of the domain A is involved in the relation.

(II) Each element of A is associated to exactly one element of B, and not more than one

element of B.

Remarks:

(a) Note that both the specifications are imposed on the elements ofA, and that no restriction

is imposed on the elements of the codomain B.

(b) If we make restrictions (I) and (II) on the codomain B, we get two special kinds of

functions namely (i) one–one function and (ii) onto function as discussed below in (A)

and (C), respectively.

(A) One–OneFunction: A function is one-one provided distinct elements of the domain are

related to distinct element of the codomain. In other words, a function f: A ! B is
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defined to be one-one if the images of distinct element of A under f are distinct, that is,

for every a1, a22A, f(a1) ¼ f(a2)) a1 ¼ a2. [It also means that, f(a1) 6¼ f(a2)) a1
6¼ a2.] A one–one function is also called injective function (Figure 2.7a and b).

Note: If there is at least one pair of distinct elements, a1, a22A, such that

f ða1Þ ¼ f ða2Þ ½though a1 6¼ a2�

then, such a function is called many–one. We define many-one function as follows:

(B) Many–One Function: If the codomain of the function has at least one element, which is

the image for two or more elements of the domain, then the function is said to be

many–one function (Figure 2.8a and b).

A constant function is a special case of many–one function (Figure 2.9).

(C) Onto Function: A function f: A ! B is called an onto function if each element of the

codomain is involved in the relation.

(Here, range of f ¼ codomain B.)

In otherwords, a function f:A ! B is said to be onto if every element of B is the image of

some element ofA, under f, that is, for every b2B, there exist an element a2A such that

f(a) ¼ b (Figure 2.10a and b). Onto function is also called surjective function.

Themost important functions are those which are both one–one and onto. In a function

that is one–one and onto, each image corresponds to exactly one element of the domain
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and each element of codomain is involved in the relation as shown in Figure 2.11.

Such a function is also called one-to-one correspondence or a bijective function.

(D) Bijective Function (or One-to-One Correspondence):

Definition (1): Consider a function f: A ! B with “A” as the domain of definition (i.e., the

admissible set of the values of x) and “B” as the range (i.e., the set of corresponding values of y).
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We say that the function y ¼ f(x) specifies a mapping of the set “A” onto the set B: if two

different points of the set A, there correspond different points of the set B, and the entire set B is

the range of “f ”. Such a mapping is called one-to-one onto mapping.(5)

Definition (2): Let A and B be two nonempty sets. A rule f, which, associates with each

element “a” of the set A, exactly one element “b” of the set B, and under which, each element

“b” of set B corresponds to exactly one element “a” of the set A, is called a one-to-one

correspondence between the sets A and B.(6)

Example (1): Consider the function y ¼ f(x) ¼ x3. Here, for every value of x2R, there

corresponds a single value of y, and, conversely, to each y2R, there corresponds a single value

of x given by
ffiffiffi
y3

p
. Therefore, f specifies a one-to-one mapping, from R onto R.

Example (2): Consider the function y ¼ g(x) ¼ x2. Here, for every value of x2R, there

corresponds a single value of y2 (0,1). However, to every y> 0, there correspond two values

of x: x ¼ � ffiffiffi
y

p
. Therefore, “g” is not one-to-one correspondence.

Example (3): Consider the exponential function y ¼ f(x) ¼ ex. It can be shown that the

function f(x) ¼ ex is one-to-one mapping from (�1,1) onto (0,1). Note that for x1 6¼ x2, we

have ex1 6¼ ex2 , where x1, x22R, and ex1; ex2 2Rþ . Consider ex1=ex2 6¼ 1) ex1 �x2 6¼ 1 or

ex1 � x2 6¼ e0 (since e0 ¼ 1)) x1 � x2 6¼ 0) x1 6¼ x2. In other words, ex1 6¼ ex2 ) x1 6¼ x2.

Thus, x1 6¼ x2, ex1 6¼ ex2 .

Therefore, “f ” defines a one-to-one correspondence from (�1, 1) onto (0, 1). (Here it is

important to note that a one-to-one mapping has been defined from the entire real line on to the

positive part of the real line.)(7)

(5) We distinguish between one–onemapping (which need not be ontomapping and one-to-one correspondence, which is a

one-to-one and onto mapping). In the case of one–one mapping

x1 6¼ x2 ) f ðx1Þ 6¼ f ðx2Þ ðIIIÞ

On the other hand, in the case of one-to-one onto mapping

x1 6¼ x2 , f ðx1Þ 6¼ f ðx2Þ ðIVÞ

(6) If a function y ¼ f(x) performs a one-to-onemapping of a setA onto a setB, then the same correspondence considered in

the reverse order assigns to every y belonging to the set B, a corresponding element x belonging to the set A. This reverse

correspondencemay be looked upon as defining a function x ¼ �(y), whose domain of definition is the set B and range the

set A. Such a reverse correspondence has a special name—the inverse of f, to be discussed shortly.
(7) If we have two sets A and B, each with infinite number of elements, then it is possible to define one-to-one and onto

mapping on them, irrespective of the observation that the onemight appear smaller than the other. This will be clear shortly

when we discuss the concept of infinity and define such functions on infinite sets.
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2.11 INVERSE FUNCTION f�1

If a function “f ” is one-to-one and onto, then the correspondence associating the same pairs

of elements in the reverse order is also a function. This reverse function is denoted by f�1,
and we call it the inverse of the function f. Note that, f�1 is also one-to one and onto.

Remark: A function f has an inverse provided that there exists a function, f�1 such that

(i) the domain of f�1 is the range of f and

(ii) f(x) ¼ y if and only if f�1(y) ¼ x for all x in the domain of “f ” and for all y in the range

of “f ”.

Note (1): Not every function has an inverse. If a function f: A ! B has an inverse, then f�1:
B ! A is defined, such that, the domain of f�1 is the range of f, and the range of f�1 is the
domain of f, associating the same pairs of elements.

A f

f : A → B

1
3
2

2

One–one and onto One–one and onto

4
6
84

B A f –1

f –1: B → A

1
3
2

2
4
6
84

B

It can be shown that if f has an inverse, then the inverse function is uniquely determined.

Sometimes, we can give a formula for f�1.
For example if y ¼ f(x) ¼ 2x, then x ¼ f�1(y) ¼ ð1=2Þy. Similarly, if y ¼ f(x) ¼ x3 � 1,

then x ¼ f�1(y) ¼ ffiffiffiffiffiffiffiffiffiffi
yþ 13

p
, In each case, we simply solve the equation that determines x in

terms of y. The formula in y expresses the (new) function f�1.
We cannot always give the formula for f�1. For example, consider the function

y ¼ f(x) ¼ x5 þ 2x þ 1. It is beyond our capabilities to solve this equation for x. (Why?)(8)

Note that, in such cases, we cannot decide whether a given function has an inverse or not.

Fortunately, there are criteria that tell whether a given function y ¼ f(x) has an inverse,

irrespective of whether we can solve it for x.(9)

In the case of simple functions (like linear functions, etc.) there is a three-step process that

gives a formula for the inverse.

Step (1): Solve the equation y ¼ f(x) for x, in terms of y.

Step (2): Use the symbol f�1(y) to name the resulting expression in y.

Step (3): Replace y by x to get the formula for f�1(x).

(8) A general polynomial equation of degree �5 cannot be solved in terms of the coefficients involved (see the relevant

footnote in Chapter 1)
(9) A practical criterion is that “f ” be strictly monotonic (i.e., either strictly increasing or strictly decreasing). For this

purpose the simple and practical way is to check the sign of derivative of the function f. This will be clear when we have

discussed the concept of derivative of a function (In Chapter 9 to follow) and its applications in Chapter 19a.
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Example (1): Consider the function y ¼ f(x) ¼ 3x � 2, x2R, and let us find its inverse

function.

Solution:

Step (1): y ¼ f ðxÞ ¼ 3x� 2 ) x ¼ yþ 2

3

Step (2): f � 1ðyÞ ¼ yþ 2

3

Step (3): f � 1ðxÞ ¼ xþ 2

3

Example (2): Let us find the formula for f�1(x) if y ¼ f ðxÞ ¼ x

1� x
.

Step (1): y ¼ x

1� x

) ð1� xÞy ¼ x or y� y x ¼ x or y ¼ xþ y x ¼ xð1þ yÞ
) x ¼ y

1þ y

Step (2): f � 1ðyÞ ¼ y

1þ y
ðy 6¼�1Þ

Step (3): f � 1ðxÞ ¼ x

1þ x
ðx 6¼ �1Þ

Whenever a function y ¼ f ðxÞ ðiÞ

has an inverse function, that we can solve for x, then we can write it as

x ¼ f �1ðyÞ ðiiÞ

We see that in this expression (of the inverse function) the roles of variables x and y are

interchanged: Both the functions at (i) and (ii) describe one and the same curve in the xy-plane,

and they are said to be mutually inverse functions.

For the function f, the axis of the independent variable is thex-axis, while for the function f�1

this role is played by the y-axis. If wewant to construct the graphs of mutually inverse functions

so that the axis of arguments (i.e., the axis of independent variables) for both of them is the

x-axis, then we should denote the independent variable in formula (ii) by x and express the

inverse function in the form: y ¼ f�1(x).
In this notation, the letter x designates the independent variable and the letter y the

dependent variable for both the mutually inverse functions. Thus the functions y ¼ x3 and

y ¼ ffiffiffi
x3

p
, represent a pair of mutually inverse functions. Also y ¼ 10x and y ¼ log10 x are

mutually inverse functions.

There is a simple relationship between the graphs of two mutually inverse functions y ¼ f

(x) and y ¼ f�1(x): They are symmetric with respect to the line y ¼ x.

A little thought convinces us that to interchange the roles of x and y on a graph, is to reflect

the graph across the line y ¼ x (see Figure 2.12b and c).

30 THE CONCEPT OF A FUNCTION



Caution: The symbol “f�1” stands for inverse function.
Here we are using the superscript “�1” in a new way. The number f –1(x) is almost always

different from [f(x)]�1 ¼ 1/(f(x)). Thus, the symbol f�1does not stand for 1/f. Thismay be clear

from the Examples (1) and (2) above. All mathematicians use the superscript “�1” to name the

inverse function.

Each pair of inverse functions (i.e., f and f�1) behave in such a way that one function undoes
(or reverses) what the other does, that is, suppose that f(x) ¼ y, then f�1(f(x)) ¼ x, and if

f�1(y) ¼ x, then f(f�1(y)) ¼ y.

Remark: From the definition of one-to-one correspondence between the sets A and B, one

might get the feeling that the number of elements in both the sets must be same. Of course

this is true if the number of elements in their domains is finite. With the same line of

thinking, when considering a pair of mutually inverse functions defined on intervals one

y
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might expect that the length of the domain interval and that of range interval should be the

same, but this need not be true. For example, recall that the exponential function y ¼ ex,

defines a one-to-one mapping from (�1, 1) onto (0, 1). The inverse of exponential

function y ¼ ex is called logarithmic function (expressed by x ¼ loge y), which is defined

from (0, 1) onto (�1, 1).

Remark: This is possible due to the fact that infinite sets can have proper subsets (which are

also infinite) such that a one-to-one mapping can be defined from one set on to the other. Such

sets are said to be equivalent, and they are said to have “in a sense” same number of elements.

These matters are discussed below at length.

2.12 COMPARING SETS WITHOUT COUNTING THEIR ELEMENTS

The concept of one-to-one correspondence helps in comparing sets (for their sizes) without

counting their elements. It also helps in distinguishing between infinite sets and in

answering a query whether all infinite sets share the “same degree of infinity” or whether

some infinite sets are “larger” than others. This discussion also helps in defining the notion

of “Infinity.”

Let A and B be two nonempty sets. We say that these sets are equal (A ¼ B) if and only if

they contain the same elements [For example, if A ¼ {1, 2, 3, 4} and B ¼ {1, 2, 3, k} then

A 6¼B.] Suppose A and B are not equal, then it is natural to ask whether or not the number of

elements in these sets is the same? The number of elements in a set is known as cardinality of

the set.(10)

In the case of finite sets, we can count the elements of each set and then observe whether or

not the numbers obtained as a result of counting are same. However, this question can also be

answered without actually counting the elements of the sets. This is possible by using the

concept of one-to-one correspondence as explained below.

2.13 THE CARDINAL NUMBER OF A SET

Let A be a set of Latin letters, that is, A ¼ {a, b, c, d, e}, and B be a set of Greek letters, that is,

B ¼ {a, b, g, d, «}. It is clear that A 6¼B (why?). We can arrange these sets as shown below.

Sets Elements

A a b c d e

B a b g d «

Now we can say without counting that both the sets A and B, have the same number of

elements.What is the characteristic of this method of comparing sets? For each element of one

set, there appears one and only one element corresponding to it in the other set, and conversely.

(10) One does not talk about the number of elements in a set. One only talks about the cardinal number of a set. The cardinal

number of a finite set is the number of elements in the set. (The cardinal numbers for infinite sets are discussed later in this

chapter.)
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Observe that in this example both the setsA andB have only a finite number of elements. The

strength of this method lies in that it can be applied even when the sets to be compared have an

infinite number of elements.(11)

In the case of infinite set(s), though it is not possible to count their elements entirely, yet it is

possible to compare them using the concept of one-to-one correspondence as in the above

example of sets A and B that have finite number of elements.

Now, consider the setN of all natural numbers andM is the set of all numbers of the form 1/n

where n2N, then the secondmethod of comparison shows at once that the number of elements

in both the sets is the same (in some sense) though the process of counting is endless and

accordingly it is never completed. More clearly, it is sufficient to arrange our sets as follows:

N: 1 2 3 4 5 6 . . .

l l l l l l
M: 1 1/2 1/3 1/4 1/5 1/6 . . .

and pair off the numbers n and 1/n. We now turn to precise definition.

2.14 EQUIVALENT SETS (DEFINITION)

If it is possible to establish a one-to-one onto correspondence between two sets A and B, then

these sets are said to be equivalent (or to have the same cardinality) and we write A	B.

Note: If two finite sets are equivalent then it means that both the sets have the same number

of elements. Infinite sets can also be equivalent. For example, N ¼ {1, 2, 3, 4, 5, . . .},
W ¼ {0, 1, 2, 3, 4, 5, . . .} are equivalent sets, since the function f defined by f(1) ¼ 0,

f(2) ¼ 1, f(n) ¼ n � 1 is a one-to-one correspondence between N and W.

Now, comparingwith the case offinite sets, these two setsN andW can be thought to have the

same number of elements. In mathematics, one says that they have the same cardinal number.

2.15 FINITE SET (DEFINITION)

A set S is called finite and is said to contain n elements, if

S 	 f1; 2; 3; . . . ; ng

Remarks:

. The empty set is considered finite.

. It is easily seen that two finite sets are equivalent if, and only if, they consist of the same

number of elements. So the concept of equivalence is a direct generalization of the

concept of having same number of element, for finite sets.

(11) We have not yet introduced the notion of “infinity”. However, we define a finite set as the one for which the process of

counting the elements ends for some number n2N. Also, for the time being we agree to define an infinite set as the one,

which is not finite. Though this is a negative definition of an infinite set, it coveys that in the case of infinite set the process of

counting the elementsmust be endless. These observations will become clear shortly, when we try to count the elements of

an infinite set using the concept of one-to-one correspondence.
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2.16 INFINITE SET (DEFINITION)

Sets that are not finite are called infinite.

We now give a few examples of pairs of equivalent infinite sets.

Example (1): Let A and B be the sets of points on two parallel sides of a rectangle. It is easy to

see that A	B.

A

B

Example (2): Let A and B be the sets of points of two concentric circles. Here also it is clear

that A	B. This example is less trivial than the earlier. If we cut and straighten out our circles,

one of them is transformed into a shorter line segment than the other. It would seem that there

ought to be more points on the longer segment. We see that this is not so.

B A

Example (3): Here is an example that is more surprising. In a right angle triangle, let A be the

set of points of the hypotenuse and B the set of points of a base. From the figure, it is clear that

A	B, despite the fact that the base is shorter than the hypotenuse. If we lay off the base on the

hypotenuse, the setB appears to be a proper subset of the setA, and hence different fromA itself.

In this example, we encounter a set A containing a proper subset B, which is equivalent to

A itself.
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A

B

Weknow that a finite set cannot contain a proper subset, which is equivalent to the given (finite)

set. It is thus the infiniteness of the set A that produces this curious phenomenon. Let us

consider one more example.

Example (4): Let N be the set of all natural numbers and let M be the set of all even natural

numbers, then we can show that N	M.

We have N ¼ f1; 2; 3; 4; 5; . . .g
and M ¼ f2; 4; 6; 8; 10; . . .g

Let us define a one-to-one correspondence f: N ! M given by f(x) ¼ 2x, for each x2N. This

function “f ” makes N and M equivalent. Observe that M is a proper subset of N. We may

therefore say that there are as many positive even numbers as there are natural numbers.

Similarly,

. N	 {1, 4, 9, 16, . . .}, where the one-to-one correspondence is defined by the function.

f ðxÞ ¼ x2; 8x 2 N

. N	 {1, 8, 27, 64, . . .}, where f(x) ¼ x3, 8 x2N

. W	N, where f(x) ¼ x þ 1, 8 x2W

. Let Z be the set of all integers and consider the correspondence shown below:

N: 1 2 3 4 5 6 7 . . .
l l l l l l l

Z: 0 1 �1 2 � 2 3 � 3 . . .

Here the function f: Z ! N is defined by two formulas.

f ðnÞ ¼ 2n for all n > 0; and f ðnÞ ¼ � 2nþ 1 for n 
 0:

The function is a one-to-one correspondence from Z to N.
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2.17 COUNTABLE AND UNCOUNTABLE SETS

Definition (1): If a set A is equivalent to a subset of all positive integers, then A is said to be

countable. Thus, by definition a finite set is countable.

Remark: It is important to note that even an infinite set will be called a countable set provided

its elements can be put in one-to-one correspondence with the set of natural numbers. Thus, the

sets {2, 4, 6, 8, . . .}, {1, 4, 9, 16, . . .}, {1, 8, 27, 64, . . .}, and so on, all are countable infinite sets.
A set that is not countable is called uncountable. For instance, the set of all points on a line

segment is an uncountable set. Another useful definition that distinguishes countable and

uncountable sets is given below:

Definition (2): For any positive integer n, let Jn ¼ {1, 2, 3, 4, 5, . . ., n}. Let J ¼ {1, 2, 3, 4,

5, . . .} ¼ N.

(Note that Jn is a finite subset of the set of natural numbers.)

Then, for any set A, we say

(a) A is finite if A	 Jn, for some n. (The empty set “�” is also considered finite.)

(b) A is infinite if it is not finite.

(c) A is countable, if A	 J. (In fact, we may call the set A as countably infinite if A	 J.)

Remark: Afinite set is always countable. Those infinite sets, which are equivalent to set J, will

be called countably infinite sets.

(d) A is uncountable if A is neither finite nor countable.

(e) A is at most countable if A is finite or countably infinite.

Note (1): It is clear that the definition (1) is equivalent to the statement (e) above, of the

definition (2).

Note (2): Countable sets are sometimes called enumerable or denumerable.

Note (3): If A	B, then we say that A and B have the same cardinal number or the same

cardinality.

Remark: All countable infinite sets are equivalent among themselves and hence all of them

have the same cardinality. Onemight askwhether all infinite sets have the same cardinality that

is whether they share the “same degree of infinity,” or whether some infinite sets are “larger”

than others?

2.18 CARDINALITY OF COUNTABLE AND UNCOUNTABLE SETS

The cardinality of any countable infinite set is denoted by the symbol @o, read as “aleph-null.”

The symbol “c” is used to denote the cardinal number of the set R of all real numbers (or of all

points on the real line) that is uncountable. (An uncountable set is necessarily infinite.)

Note: “c” is the cardinal number of R and of any set that is numerically equivalent toR. It can be

demonstrated that c is the cardinal number of any open interval, or any subset of R that contains

an open interval.
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Thus, our list of cardinal numbers has grown to 1, 2, 3, 4, . . ., @o, c. Just as the positive

integers, we can order the cardinal numbers, and they are related to each other by 1< 2< 3

< � � � <@o< c. At this stage, the following question arises.

Are there any infinite cardinal numbers greater than “c”? Yes, there are; for example, the

cardinal number of the class of all subsets ofR. This answer is the outcome of the axiom that ifX

is any nonempty set, then the cardinal number of X is less than the cardinal number of the class

of all subsets of X. [IfA is a finite set with n elements, then the set of all subsets of A, denoted by

P(A), has 2n elements. P(A) is called the power set of A.]

We also have a cardinal arithmetic. One can add, multiply, exponentiate cardinal numbers.

For example, the cardinal number of the power set P(X) of a set X, with cardinal number jXj is
known to be2jXj. Thus, the cardinal number of the power set of natural numbersP(N) is 2@0 and it

can be shown that 2@0 ¼ c.

If we follow up the hint contained in the fact that 2@0 ¼ c, and successively form 2c, 22
c

, . . .
we get a chain of cardinal numbers

1 < 2 < 3 < � � � < @o < c < 2c < 22c < � � �
in which there are infinitely many infinite cardinal numbers. Clearly, there is only one kind of

countable infinity, symbolized by @o, and beyond this there is an infinite hierarchy of

uncountable infinities that are all distinct from one another.

At this point we bring our discussion to a close. However, with a view to introduce the

“Notion of Infinity,” which will be frequently needed in our study of Calculus, we state below

one more definition of an infinite set.

2.19 SECOND DEFINITION OF AN INFINITE SET

A set A is infinite if, and only if, it is equivalent to one of its proper subsets.

2.20 THE NOTION OF INFINITY

In the history of mathematics the term “infinite” was obscure for a long period. The symbol for

infinity is “1”. Inmodernmathematics, the symbol “1” is not a number, and not all algebraic

operations are defined for this symbol.(12)

Oftenwe shall have to study the behavior of functions ofx, asx becomes infinitely large, that

is, when x is permitted to attain larger and larger values exceeding any bound K, no matter

how big K is chosen. For example, take f(n) ¼ 1/n. Then if n takes the values 1, 2, 3, . . ., 100, we
have an aggregate (i.e., the class, or set, consisting of the values of f(n), for various values of n

consisting of the fractions 1, 1/2, 1/3, . . . 1/100.
Wewish to discuss the behavior of this function for very large values of n. It is immediately

obvious that 1/n becomes very small when n is very large.

Note: It is wrong to say that 1/n ¼ 0 when n ¼ 1. Remember that 1 is not a number, so it

cannot be equated to any number, howsoever large. Further, 1/n can never be equated to zero,

however big n is chosen, since 1 6¼ 0. However, it makes sense to say that the function f(n) ¼ 1/

n tends to zero for values of n that tend to infinity. Now, we define precisely what we mean by

this statement.

(12) The symbol “1” for “infinity” was proposed by the English mathematician and theologian JohnWallis (1616–1703).
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Suppose we take a positive real number «, however small, then we can certainly choose a

number N so that whenever n>N, the function 1/n is less than «. For example, if we choose

« ¼ 0.001, then f(n) ¼ 1/n can be made less than « by choosing N� 103. (Note that if

n>N� 103 then 1/n< 0.001.) Similarly if we choose « as 0.00000001, then f(n) ¼ 1/n can

be made less than this by choosing n>N� 108.(13)

Ifwe nowconsider the function f(n) ¼ n2, it is clear that this function can bemade as large as

we please by taking sufficiently large values of n. We may therefore, say that the function f

(n) ¼ n2 tends to infinity when n tends to infinity.

Now, let us consider the function

f ðnÞ ¼ � n2

In this case, we say that f(n) tends to �1 when n tends to 1. We would usually write these

statements briefly as given below:

n2 !1 as n!1

and

�n2 ! �1 as n!1

(These notations will be used when we introduce the concept of limit, in Chapter 7.)

2.21 AN IMPORTANT NOTE ABOUT THE SIZE OF INFINITY

We must not confuse the word “infinite” with the “very large finite”. For example, think of

the number of inhabitants of the earth at any particular instant, or the number of leaves on all

the trees of the earth at any instant, or the number of blades of grass on the earth at any instant or

the number of all these things put together. These are all very large numbers, yet they are finite.

That is to say, given sufficient patience andmanpower, we could set out to count the numbers of

these large classes with the assurance that we could finish the job.

As an example of an infinite set we have the set of “natural numbers.” If we set out to count

the natural numbers, 1, 2, 3, 4, . . ., we cannot do so with the assurance that if we continue until
we die and pass the job on from generation to generation, neither we nor any of our descendants

will ever exhaust the supply. Also we know that there is the infinite in algebra, the infinite in

geometry, the infinitely small, the infinitely large, and so on. Again, there is not only one

infinite, but a whole hierarchy of infinites.

2.22 ALGEBRA OF INFINITY (1)

We accept the following properties of 1.

(i) If x2R, then we have

x þ (þ1) ¼ þ1, x þ (�1) ¼ �1
x � (þ1) ¼ �1, x � (�1) ¼ þ1
x/(þ1) ¼ 0 ¼ x/(�1)

(13) The Greek letter « (epsilon) has become a standard notation for an arbitrarily small positive number.
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(ii) If x> 0, then we have

x(þ1) ¼ þ1, x(�1) ¼ �1
(iii) If x< 0, then we have

x(þ1) ¼ �1, x(�1) ¼ þ1
(iv) (1) þ (1) ¼ (þ1) (þ1) ¼ (�1) (�1) ¼ þ1

(�1) þ (�1) ¼ (þ1) (�1) ¼ �1
(v) If x2R, then we write �1< x<þ1

or x2 (�1, 1)

Remark: Compare the above properties of 1 with those of real numbers, and note the

distinction. Besides, it may be mentioned that there are expressions involving 1
½i:e:; likeð1/1Þ; ð1Þ0; ð1�1Þ; etc:� that are not defined and such expressions are called

indeterminate forms. Later on, it will be seen that limiting values of such expressions can be

found by L’ Hospitals Rule (Chapter 21).
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3 Discovery of Real Numbers:
Through Traditional Algebra

3.1 INTRODUCTION

Calculus is based on the real number system and its properties. But what are real numbers and

what are their properties? To answer this question, we start with the simplest number system

consisting of Natural Numbers or Counting Numbers. In fact, the first numbers known to the

man were counting numbers.

In arithmetic, the four fundamental operations, namely addition, subtraction, multiplica-

tion, and division are used to make new numbers out of old numbers—that is, to combine two

numbers to create a third. Accordingly, these operations are called binary operations.

Ordinary algebra (or so-called traditional algebra) is a branch of mathematics, in which

symbols are used to represent numbers (or quantities), in all the arithmetical operations. In fact,

ordinary algebra is a generalization of arithmetic.(1)

The subject of algebra involves the study of equations and a number of other problems that

developed out of the theory of equations. It is in connection with the solution of algebraic

equations that negative numbers, fractions, rational numbers, and irrational numbers were

discovered. The set of rational numbers together with that of irrational numbers make the

set of real numbers.

It is interesting to study the history of development of the real number system. For example,

it took a long time for the zero to enter the family of numbers. The reason for this delay was due

to the fact that zero has a physical meaning of “nothing”, and therefore, in order to consider it as

a number, we had to wait for negative numbers to appear and be accepted.

It was nearly 150 years ago that mathematicians adopted the correct viewpoint toward these

various types of numbers. They recognized that the concept of numbers could be extended to

include negative and irrational numbers.

When the negative numbers were accepted as respectable members of the number

community, the remaining numbers were named as positive numbers. Thus, the concept of

positive numbers was developed from that of negative numbers and then “0” (zero) was

Introduction to Differential Calculus: Systematic Studies with Engineering Applications for Beginners, First Edition.
Ulrich L. Rohde, G. C. Jain, Ajay K. Poddar, and Ajoy K. Ghosh.
� 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

(1) Other forms of higher algebra also exist. These are connected with mathematical entities other than numbers. For

example, algebra ofmatrices, algebra of vectors, algebra of sets, and so on.Definitions of different entities, their properties,

and the rules for combining them are of course different in different algebras, but consistent with the physically observed

facts.
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accepted as a number that must neither be positive nor negative. Thus, the development of

algebra has contributed (in a way) to the development of the Number System.(2)

In Chapter 1, we have introduced certain important subsets of real numbers (namely, natural

numbers, whole numbers, integers, rational numbers, fractions, and irrational numbers). Also,

wehave introduced evenandoddnumbers (as subsets of integers),primeand composite numbers

(as subsets of natural numbers), and certain important concepts useful in selecting pairs of

coprime numbers or finding factors and computing H.C.F. (from a set of natural numbers).

Now, it is proposed to throw some more light on the following subsets of real numbers.

3.2 PRIME AND COMPOSITE NUMBERS

A natural numberwhich has exactly two (different) factors, namely the number itself and 1, is

called a prime number. Some examples of prime numbers are 2, 3, 5, 7, 11, 13, 17, 19, . . ..
Each prime number except 2 is odd.

The number 1 is neither prime nor composite, since it has only one factor.

Natural Nos. Factors Set of Factors No. of Factors Remark

1 1 ¼ 1� 1 {1} 1 Neither prime nor composite

5 5 ¼ 1� 5 {1,5} 2 Prime number

12 12 ¼ 1� 12 {1,2,3,4,6,12} 6 Composite number

¼ 2� 6

¼ 3� 4

A number that has three or more factors is called a composite number.

There is no formula that generates prime numbers. However, the number of primes is infinite

and this can be easily proved using algebra. Themethod of proof is indirect but it is beautiful and

surprisingly simple, as we have already seen in a footnote in Chapter 1.

Remark(s):

(i) By definition, no negative integer is prime.(3)

(ii) Every composite natural number can be expressed as a unique product of its prime

factors.

We recall the following subsets of real numbers, which will be needed frequently in our

discussion.

(2) In the process of solving certain algebraic equations (such as x2þ 1 ¼ 0), new type of numbers were discovered. These

numbers have the property that their squares are negative numbers (here x2 ¼ �1). The solutions of this equation were

denoted by x ¼ � ffiffiffiffiffiffiffi�1
p

. Thus
ffiffiffiffiffiffiffi�1

p
was born, as a strange mathematical entity. Then the contemporary mathematicians

thought that such a number was “useless”, “imaginary”, and “impossible.” Euler thought that expressions like
ffiffiffiffiffiffiffi�1

p
were

“neither nothing”, “nor greater than nothing”, “nor less than nothing”, which necessarily makes them “imaginary” or

“impossible”. Euler used imaginary numbers in some of his works and he was apparently the first to use the symbol “i ”

for
ffiffiffiffiffiffiffi�1

p
. It was not until Gauss adopted them, that imaginary numbers finally acquired legitimate status. Subsequently,

by combining real numbers with so-called imaginary numbers using the operation of addition, complex numbers came into

existence. [The Spell of Mathematics by W.J. Reichman (p. 156), Pelican Book.]
(3) “0” is a composite number. Since zero is divisible by all natural numbers, so that all natural numbers are the factors of

zero. Recall that factors are only natural numbers, thus zero is not a factor of an integer. Also, since division by zero is not

permitted in mathematics, the expressions like 1/0 and 0/0 are meaningless expressions.
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3.3 THE SET OF RATIONAL NUMBERS

Q ¼ p

q
p; q belong to Z; q 6¼ 0j g

�

Examples:
7

1
,
0

3
,
�3

8
,
5

�9
,
�2

�3
,
4

5
, and so on, are all rational numbers.

Zero is a rational number but division by zero is not permitted.

Also, 0/0 (i.e., zero divided by zero) is a meaningless expression, which is nothing more

than a mathematical drawing. Decimal representation of a rational number either terminates

(as in 3/8 ¼ 0.375) or else repeats in regular cycle, forever (as in 13/11 ¼ 1.18181818. . . or in
3/7 ¼ 0.428571428571. . .). A little experimenting with the long division process will show

why this happens. (Note that, there can be only a finite number of different remainders.)

Note: In the decimal form, a number of the type 3.2613261326132613 . . . or 6.32537537 . . .
or 7.000 . . ., and so on with nonterminating but repeating string of digits, in the decimal part

from anywhere onwards represents a rational number and it can be expressed in the form p/q,

where p and q are integers, and the denominator q 6¼ 0. (Positive rational numbers form the

set “F ” of fractions. F ¼ fa=b a; b 2 Ngj .)

If a number has a decimal representation which ends in zeros, for example, 1/4 ¼ 0.2500000 . . .
then it can also be written in another decimal expansion that ends in nines. For this purpose, we

must decrease the last nonzero digit by one and write the subsequent digits as 99999 . . .. Thus,
we have 1/4 ¼ 0.2499999 . . .. Similarly 7.000 . . . ¼ 6.9999 . . .. Except for such substitution,

decimal expansions are unique.

3.4 THE SET OF IRRATIONAL NUMBERS

Those real numbers, which are not rational, are called irrational numbers. (They cannot be

expressed in the form p/q, where p, q are integers with q 6¼ 0.) We denote the set of irrational

numbers by Qc or Q0. Irrational numbers too can be expressed as decimals.

Note : Irrational numbers: In the decimal form, a number of the type 5.7101001000100001 . . .,
or 7.3030030003 . . ., or p ¼ 3.141592653589793 . . . with nonterminating and nonrepeating

string of digits, in the decimal part, represents an irrational number. Obviously, it cannot be

expressed in the form p/q. Check this.

The numbers
ffiffiffi
2

p
;

ffiffiffi
3

p
; . . . ;

ffiffiffi
n

p
where n is a natural number which is not a perfect square, have

got decimal forms like that of p wherein no pattern is noticed
ffiffiffi
2

p ¼�
1:4142135623 . . . ;

ffiffiffi
3

p ¼ 1:7320508075 . . . ; Þ. These are all irrational numbers. Indirect

methods of algebra are available to prove that
ffiffiffi
2

p
;

ffiffiffi
3

p
; . . . , and so on are irrational numbers.

p and e (e ¼ 2.7182818284 . . .) are special types of irrational numbers (called transcendental

numbers), which arise naturally in geometry and calculus, respectively.

3.5 THE SET OF REAL NUMBERS

The set of rational numbers together with the set of irrational numbers forms the set of real

numbers denoted by R. Thus, R ¼ Q [ Qc.

Now, we define a real number.
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3.6 DEFINITION OF A REAL NUMBER

A real number is one that can bewritten as an unending decimal, positive or negative or zero.(4)

3.7 GEOMETRICAL PICTURE OF REAL NUMBERS

We use the term real line very frequently without any explanation, and of coursewhat we mean

by it is an ordinary geometric straight line whose points have been identified with the set R of

real numbers.

Weuse the letter R to denote the real line and the set of all real numbers.We say that, to every

real number there corresponds a unique point on the number line, and conversely, to every point

on the number line there corresponds a real number. It is due to this one-to-one correspondence

thatwe often speak of real numbers as if theywere points on the number line andwe speak of the

points on the real line as if theywere real numbers. Yet, the fact remains that, a real number is an

arithmetical object, whereas, a point is a geometric object.

For the purpose of representing rational numbers by points on a straight line, we label any

point on the line with “0” (zero) and any other point to the right of “0” with “1”. This fixes

the scale. With this scale as unit length, we can easily plot on the number line all those points,

which represent rational numbers. For this purpose we use the four fundamental operations

of arithmetic (namely addition, subtraction, multiplication, and division).With regards to the

irrational numbers, we have to go beyond these operations.

Shortly, we will learn that between any two rational numbers, there is always another

rational number.A similar statement is true in the case of irrational numbers. (This is known as

the property of denseness, which is studied later in this chapter.) Thus, if we plot only rational

numbers on thenumber line, then therewill be infinite number of holes throughout the line. These

unoccupied positionsmust represent irrational numbers. Geometric constructions can be used to

find points corresponding to certain irrational numbers, such as
ffiffiffi
2

p
,

ffiffiffi
3

p
,

ffiffiffi
5

p
,

ffiffiffi
7

p
, and so on.

Points corresponding to other irrational numbers can be found by using decimal approximations.

Every irrational number can be associated with a unique point on the x-axis, and every point

that does not correspond to a rational number can be associated with an irrational number. This

fact is guaranteed by the axiom of completeness and is discussed later at the end of this chapter.

Note:We are familiar with the simpler properties of real numbers. It is now proposed to discuss

some other properties of real numbers, which are not obvious. (This study will be found

useful for building up necessary terminology, required for defining the “concept of limit” in

Chapters 7a and 7b.)

The beauty and power of mathematics can be appreciated only if the properties of real numbers

are properly understood.Wegivebelow the necessarymaterial tomake the study systematic and

interesting. This material should be sufficient to meet the study requirements of this book and

also serve as a good background for studying these concepts at higher levels.

3.8 ALGEBRAIC PROPERTIES OF REAL NUMBERS

These properties are associatedwith twobasic operations on real numbers, namely addition and

multiplication. [The operations of subtraction and division (by nonzero numbers) can be

(4) Calculus with Analytic Geometry by John B. Fraleigh.
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defined respectively in terms of addition and multiplication.] We assume that the following

statements in real numbers are both well defined and true.

If a, b, and c are real numbers, then, we have

1. Commutative Property

aþ b ¼ bþ a a � b ¼ b � a
2. Associative Property

(aþ b)þ c ¼ aþ (bþ c) (a � b) � c ¼ a � (b � c)
3. aþ 0 ¼ 0þ a ¼ a a � 1 ¼ 1 � a ¼ a

Additive identity is “0” Multiplicative identity is “1”

4. aþ (�a) ¼ 0 a � (1/a) ¼ 1 if a 6¼ 0

Additive inverse of a is (�a) and

vice versa

Multiplicative inverse of a is (1/a) and

vice versa

Remark: Multiplicative inverse of the real number “0” does not exist.(5)

5. Multiplication distributes over addition

a � (bþ c) ¼ a � bþ a � c

The other algebraic properties of real numbers can be proved from these five properties.

For example, a � b ¼ 0, iff a ¼ 0 or b ¼ 0, (�a) � (�b) ¼ a � b, and so on.

At this stage, however, we are not proving these properties.

3.9 INEQUALITIES (ORDER PROPERTIES IN REAL NUMBERS)

Between any two unequal real numbers a and b, there is a relation (called the order relation)

which states whether a is less than b (a< b) or b is less than a (b< a).

Hence, for any two real numbers a and b, we have exactly one of the following statements

true.

1. Either a ¼ b or a< b or b< a. This property is called the Law of Trichotomy. A relation

of the form a< b (read “a is less than b”) or b> a (read “b is greater than a”) is called

an inequality.

Other properties of inequalities are as follows:

2. If a< b and b< c, then a< c. This is known as the Transitive Property.

3. If a< b and c is any real number, then aþ c< bþ c.

4. If a< b and c> 0, then a � c< b � c.
If a< b and c ¼ 0, then a � c ¼ b � c.
If a< b and c< 0, then a � c> b � c.

Note (1): If c< 0, and we multiply both sides of an inequality by c, then the direction of the

inequality changes.

Note (2): If a> 0, b> 0, with a< b, then 1/a> 1/b.

5. If a< b and c< d, then aþ c< bþ d.

6. If a, b, c, d are all positive and a< b, c< d, then a � c< b � d.

(5) Division by “0” leads to contradictions as was seen in Chapter 1.
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The properties (5) and (6) tell us that,

. two (similar) inequalities can always be added, and

. two (similar) inequalities (involving positive numbers) can be multiplied.

Note(s):

. If either a< b or a ¼ b, then we write a � b.

. If either a> b or a ¼ b, then we write a� b.

. If a� 0, then we say that a is non-negative.

. If a< x andx< b, thenwewrite a< x< b and in this casewe say thatx is between a and b.

. If x is a real number between a and b (where a< b) and xmay be equal to a or b, wewrite

a � x� b.

3.10 INTERVALS

If we wish to consider all the real numbers between a and b (with or without including one or

both the end points a and b) then such sets are called intervals as discussed below:

. Open Interval (a, b): If a and b are real numbers with a< b, we denote by (a, b) the set of

all real x such that a< x< b. We call (a, b) an open interval. Thus ða; bÞ ¼
fx x 2 R; a < x < bgj . It consists of all real numbers between a and b. Obviously

a and b are not included in the set.

 a b

. Closed Interval [a, b]: If a� b, then [a, b] denotes the set of all real numbers x such that

a � x� b. Thus ½a; b� ¼ fx x 2 R; a � x � bg � ½a; b�j is called a closed interval. It

consists of all real numbers between a and b, including the end points a and b.

a b

We occasionally need to use “half-open” intervals. For example, (a, b] denotes the set of

reals denoted by the interval a< x� b, which is open at a and closed at b. Similarly [a, b)

denotes the interval a� x< b.

baba

By (a, 1), we mean the set of all real x such that x> a.

Thus, ða; 1Þ ¼ fx x 2 R; x > agj .

a

By (�1, b), we mean the set of all real x such that x< b.
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Thus, (�1, b) ¼ {xjx2R, x< b}.

b

The set of all real numbers is sometimes denoted by (�1, 1).

Note: An open interval can be thought of as one that contains none of its end points, and a

closed interval can be regarded as one that contains all of its end points. Consequently, the

interval [a,þ1) is considered to be a closed interval, because it contains its only end point a.

Similarly, (�1, b] is a closed interval, whereas (a,þ1) and (�1, b) are open. The intervals

(a, b] and [a, b) are neither open nor closed. The interval (�1,1) has no endpoints and it is

considered both open and closed.

3.10.1 Bounded and Unbounded Intervals

The intervals inwhich the symbol “1” (infinity) does not appear, are called bounded intervals,

(They occupy a limited length of the real line.) The sets like (a,1), (�1, b), (a,1), (�1, b),

and (�1,1) are called unbounded intervals. (The usefulness of the concept of boundedness of

sets is discussed later, in different contexts, in various chapters.)

3.10.2 Usefulness of Intervals

The usefulness of intervals can be seen from the following examples.

(i) The values of x for which the expression
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið12� xÞp

is a real number, are given by

x� 12, i.e., (�1, 12) and those for which
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið16� x2Þp

is a real number, are given by the

interval �4� x� 4.

(ii) The function f(x) ¼ 1/(x� 2) is not defined for x ¼ 2, but for all other real values of x,

it is well defined. Thus, we say that f(x) is defined for x2 (�1, 2)[ (2, 1).

In calculus,we study the behavior of functions on intervals, which are defined using the absolute

value of a real number. Hence, we introduce the concept of the absolute value of a real number.

3.10.3 Definition of Absolute Value of Real Number(s)

If a is any real number, the absolute value of a, denoted by jaj is a, if a is non-negative, and –a if
a is negative. Thus, with symbols we write,

aj j ¼ a if a � 0

�a if a < 0

�

Examples: 7j j ¼ 7, 0j j ¼ 0, �3j j ¼ �(�3) ¼ 3

It is clear that aj j is never negative; that is aj j � 0.(6)

(6) Since aj j is never negative [i.e., aj j � 0], it follows that x� xj j for anyx, positive, zero, or negative. This observationwill
be useful in proving the triangle inequality, i.e., xþ yj j � xj j þ yj j, discussed later [as Theorem 3], in this chapter).
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The absolute value of a real number can be considered as its distance (without regard to

direction, left or right) from the origin.

3.10.4 The Geometric Interpretation of ja � bj
From the definition of the absolute value, we have,

a� bj j ¼ a� b if ða� bÞ � 0

�ða� bÞ if ða� bÞ < 0

�
or equivalently, a� bj j ¼ a� b if a � b

b� a if a < b

�

On the real line, a� bj j units can be interpreted as the distance between a and b without

regard to direction. In other words, the distance between a and b is said to be either (a� b) or

(b� a), whichever is non-negative.

Distance = a – b Distance = b – a

b ba a

Examples:

1. j7� 3j ¼ j4j ¼ 4

2. j5� 12j ¼ j�7j ¼ �(�7) ¼ 7

3. j8� (�3)j ¼ j8þ 3j ¼ j11j ¼ 11

4. j�2� (�7)j ¼ j�2þ 7j ¼ j5j ¼ 5

5. j�9� (�6)j ¼ j�9þ 6j ¼ j�3j ¼ �(�3) ¼ 3

Let us consider equations involving absolute values.

Example (6): Solve the equation jxj ¼ 5

If x� 0, then jxj ¼ x ¼ 5

If x< 0, then jxj ¼�x ¼ 5 ) x ¼�5.

Hence the solution set is {5, �5}.

Example (7): Solve the equation jx� 8j ¼ 7

If (x� 8)� 0, then jx� 8j ¼ x� 8 ¼ 7

So x ¼ 15

If (x� 8)< 0, then jx� 8j ¼ �(x� 8) ¼ 7

So �xþ 8 ¼ 7 or x ¼ 1.

Thus, the solution set is {1, 15}.

It turns out that the simplest way to describe an interval at the origin (or any other point) is by

using absolute value inequalities.
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3.10.5 Intervals Defined by Absolute Value Inequalities

The connection between absolute values and distance permits us to describe intervals using

absolute value inequalities. An inequality like jaj< 5, says that the distance from “a” to the

origin is less than 5 units. This is equivalent to saying that a lies between �5 and 5.

5

5 5

0–5
a

Thus, the set of numbers “a” with jaj< 5 is the same as the open interval �5 to 5.

Accordingly, the inequality jxj< a, where a> 0, states that on the real number line the distance

from the origin to the point x is less than “a” units; (Figure 3.1) that is,

�a < x < a ðIÞ

The inequality jxj> a, where a> 0, states that on the real number line the distance from the

origin to the point x is greater than a units (Figure 3.2). that is, either

x > a or x < �a ðIIÞ

Westate the above results (I) and (II), formally. The double arrow, is used here and throughout

the text to indicate that the statements on both sides of , are equivalent.

xj j < a , �a < x < a; where a > 0 ð1Þ

xj j > a , x > a or x < �a; where a > 0 ð2Þ

Example (8): Find

(i) The end points of the interval determined by the inequality jx� aj< c.

(ii) What is the geometric meaning of the inequality jx� aj> c?

Solution: (i) To find the end points of the interval jx� aj< c, we change jx� aj< c to

�c< x – a< c adding “a” throughout, a� c< x< aþ c. The end points are

a� c and aþ c (Figure 3.3a).

(ii) The points that satisfy the inequality jx� aj> c are the points on the x-axis

whose distances from a are greater than c (Figure 3.3b).

These are the points outside the closed interval, jx� aj � c, that is, the points that lie on the right

of a þ c and to the left of a� c.

0
a|x|<a–a

–a<x<a

FIGURE 3.1

INTERVALS 49



Geometrically, these points make up the two infinite open intervals x< a� c and x> aþ c.

Example (9): Find the values of x that satisfy the inequality

3xþ 1

2

����
���� < 1 ð3Þ

Solution: Change
3xþ 1

2

����
����< 1 to �1<

3xþ 1

2
< 1 to �2< 3xþ 1< 2 to �3< 3x< 1 to

�1< x<
1

3
. Thus the inequality (3) represents the open interval (�1,

1

3
).

3.10.6 Absolute Value Inequalities Used in Calculus

(a) The inequality jx� aj< dmeans that the distance between “x” and “a” is less than the

positive real number, d. This in turn means that,

�d< x� a< d or a� d< x< aþ d

i.e., x2 (a� d, aþ d), which is an open interval containing x whose distance from a is

less than d.
Thus, the following four statements have one and the same meaning.

(i) jx� aj< d

(ii) a� d< x< aþ d

0

|x|>a

x<–a x>a

|x|>a

FIGURE 3.2

a – c

a – c

x < a – c a + c < x

a + c

a + c

a

a

|x – a|<c

|x – a|>c

Radius = c

Center

(a)

(b)

FIGURE 3.3 (a) and (b).
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(iii) x2 (a� d, aþ d)

(iv) The distance between x and a is less than d.

(b) The double inequality 0< jx� aj< dmay be broken up in two inequalities as 0< jx� aj
and jx� aj< d. We know that the value(s) of x satisfying jx� aj< d, lie in the interval
(a� d, aþ d). Next, 0< jx� aj means that the distance between x and a is positive,

which in turn means that x 6¼ a.

These two observations tell us that x2 (a� d, aþ d) and x 6¼ a. In other words, if we

remove themidpoint from the interval (a� d, aþ d), thenxbelongs to the remaining set.

Thus, 0< jx� aj< d means x2 (a� d, a)[ (a, aþ d). Therefore, the following four

statements have one and the same meaning.

(i) 0< jx� aj< d

(ii) a� d< x< a or a< x< aþ d

(iii) x2 (a� d, a)[ (a, aþ d)

(iv) x 6¼ a and the distance between x and a is less than d.

[The inequality jf(x)� lj< «, («> 0) and the double inequality 0< jx� aj< d, (d> 0) both

will be used in the definition of limit of a function in Chapters 7a and 7b.]

3.11 PROPERTIES OF ABSOLUTE VALUES

Recall from algebra that the symbol
ffiffiffi
a

p
, where a� 0, is defined as unique non-negative number

x, such that x2 ¼ a. We read
ffiffiffi
a

p
as the principal square root of a (which is the positive square

root of a).

For example, ffiffiffi
4

p
¼ 2;

ffiffiffi
0

p
¼ 0;

ffiffiffiffiffi
9

25

r
¼ 3

5

Note: Since
ffiffiffi
4

p
denotes only the positive square root of 4, therefore

ffiffiffi
4

p 6¼�2, even though

(�2)2 ¼ 4

The negative square root of 4 is designated by � ffiffiffi
4

p
.

Remark (1): Since we are concerned only with real numbers,
ffiffiffi
a

p
is not defined for a< 0.

Remark (2): From the definition of
ffiffiffi
a

p
, it follows that

ffiffiffiffiffi
x2

p
¼ jxj, (since jxj is always non-

negative by definition).

Examples:
ffiffiffi
5

p ¼ 5j j;
ffiffiffiffiffiffiffiffiffiffiffiffi
ð�3Þ2

q
¼ �3j j ¼ �ð�3Þ ¼ 3

The properties of absolute value given in the following theorems are useful in calculus.

Theorem (1): Given a, b2R

and

ja � bj ¼ jaj � jbj���� ab
���� ¼ aj j

bj j g
(We shall prove the second result as Theorem 2.)
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Proof: ja�bj ¼
ffiffiffiffiffiffiffiffiffiffiffi
ðabÞ2

q

) ffiffiffiffiffi
x2

p
¼ xj j

h i
¼

ffiffiffiffiffiffiffiffiffi
a2b2

p

¼
ffiffiffiffiffi
a2

p ffiffiffiffiffi
b2

p

¼ aj j � bj j ðProvedÞ

Remark: The absolute value of a product is equal to the product of the absolute values of the

factors:

xyzj j ¼ xj j yj j zj j

In particular, jb�bj ¼ jbj � jbj ¼ jb2j ¼ jbj2 and ja � a�aj ¼ jaj jaj jaj ¼ jaj3.

Theorem (2): Given a, b2R
a

b

��� ��� ¼ aj j
bj j

Proof:

���� ab
���� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a

b

0
@

1
A

2
vuuut

¼
ffiffiffiffiffi
a2

b2

vuut ¼
ffiffiffiffiffi
a2

p
ffiffiffiffiffi
b2

p ¼ aj j
bj j

ðProvedÞ

In other words, the absolute value of a quotient is equal to the quotient of the absolute values of

the dividend and divisor.

Theorem (3): The Triangle Inequality

Given x, y 2 R

xþ yj j � xj j þ yj j

To prove this result, it is important to recall the definition of absolute value of a real number x

denoted by jxj.

We know that jxj is a non-negative real number x that satisfies the conditions:

xj j ¼ x; if x � 0:

xj j ¼ �x; if x < 0:

From the definition, it follows that the relationship x� jxj holds for any x. Now we consider

the following two cases.

Case (i): Let xþ y� 0, then

jxþ yj ¼ xþ y� jxj þ jyj (since x� jxj and y� jyj)
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Case (ii): Let xþ y< 0, then

jxþ yj ¼ �(xþ y)

¼ (�x)þ (�y)� jxj þ jyj (since (�x)< jxj and (�y)< jyj). Thus, jxþ yj � jxj þ jyj.

Remark: The absolute value of an algebraic sum of several real numbers is no greater than the

sum of the absolute values of the terms.

Examples: Of jaþ bj � jaj þ jbj:

10. 0þ 3j j ¼ 3 � 0j j þ 3j j ¼ 0þ 3 ¼ 3

11. �5þ 0j j ¼ 5 � �5j j þ 0j j ¼ 5þ 0 ¼ 5

12. 3þ 5j j ¼ 8 � 3j j þ 5j j ¼ 3þ 5 ¼ 8

13. �3� 5j j ¼ 8 � �3j j þ �5j j ¼ 3þ 5 ¼ 8

In all four cases, jaþ bj equals jaj þ jbj. On the other hand,

14. �3þ 5j j ¼ 2j j ¼ 2 � �3j j þ 5j j ¼ 3þ 5 ¼ 8 (Hence, 2< 8)

15. 3� 5j j ¼ �2j j ¼ 2 � 3j j þ �5j j ¼ 3þ 5 ¼ 8 (Hence also, 2< 8)

The general rule is that jaþ bj is less than jaj þ jbjwhen a and b differ in sign. In all other cases,
jaþ bj equals jaj þ jbj.

Note that the absolute value bars in expression like j�3þ 5j also work like parenthesis. We

do addition before taking the absolute value.(7)

Using theorem (3), we can easily prove the following theorem (4).

Theorem (4): Given a, b2R

(i) a� bj j � aj j þ bj j
(ii) aj j � bj j � a� b

Proof of (i):

a� bj j ¼ aþ ð�bÞj j � aj j þ ð�bÞj j

¼ aj j þ bj j

) j a� b j � j a j þ j b j (Proved)

Proof of (ii):

Consider j a j ¼ j (a� b)þ b j � j a� b j þ j b j

(7) The numbers ja� b j and jb� aj are always equal and give the distance between a and b on the number line. This is

found to be consistent with the square root formula for distance in the plane between the two points whose coordinates are

(a, 0) and (b, 0). ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� bÞ2 þ ð0� 0Þ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� bÞ2

q
¼ ja� bj ðIIÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð0� 0Þ2 þ ðb� aÞ2
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb� aÞ2

q
¼ jb� aj ðIIIÞ

(We shall be studying the square root formula for distance in Chapter 4, on Coordinate Geometry.)
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Thus from, subtracting j b j from both sides of the inequality, we have

j a j � j b j � j a� b j (Proved)

Note: In calculus, we often want to replace one inequality with an equivalent inequality, which

is simpler, as in the following example.

Example (11): Show that the inequality j (3xþ 2)� 8 j< 1 is equivalent to j x� 2 j< 1/3.

Solution: The following inequalities are equivalent:

ð3xþ 2Þ � 8j j < 1

3x� 6j j < 1

3 ðx� 2Þj j < 1

3j j x� 2j j < 1

x� 2j j < 1

3
:

3.12 NEIGHBORHOOD OF A POINT

Many timeswe are interested in the values of a function near a point “a” (say) of the domain and

not in thevalues throughout the domain.Hence, all the pointswhich are close to the point “a” on

both sides of “a” are of interest to us and we shall call it a neighborhood of “a”.

3.12.1 Definition

Let (a, b) be any open interval and let “c” be its midpoint then, we say that (a, b) is a

neighborhood of c. Specifically, if « is any positive number, the open interval (a� «, aþ «) is
called the «-neighborhood of “a.” Thus, «-neighborhood of a ¼ {x j a� «< x< aþ «}.

When we say that x is in the «-neighborhood of “a”, we write jx� aj< « and it means that,

the distance of the point x, from the point “a” (on the number line) is less than «.

3.12.2 Right Neighborhood and Left Neighborhood of “a”

Definition: The open interval (a, aþ «) is called a right-hand «�neighborhood of “a”, and

the open interval (a� «, a) is called a left-hand «-neighborhood of “a”.

Weknow that anyneighborhood of “a” isan open interval containing “a”as themidpoint of the

interval. Note that, in the case of one-sided neighborhood of “a” the point “a” is not included

in the neighborhood. Thus, one-sided neighborhood of “a” is also an open interval.

3.12.3 Deleted Neighborhood of “a”

Definition: If the point “a” is deleted from a neighborhood of “a”, then the remaining part of

the open interval is called deleted neighborhood of “a”.
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Thus, the deleted d-neighborhood of “a”

¼ fx j a� d < x < aþ d; x 6¼ ag; ðd > 0Þ

This neighborhood is defined by the inequality 0< jx� aj< d, as already discussed above.

3.12.4 A Useful Statement

If k < x<K, then there is a positive number M, such that jxj<M.

Of the numbers k and K, consider the one, which is farther away from the origin. Let

its distance from origin be M. Thus, M is the larger of the numbers jkj and jKj. Since x lies

between k and K, its distance, from the origin, denoted by jxj must be less than M.

Therefore, jx j<M.

Example (12): If �6< x< 3, then �6< x< 6. Hence jxj< 6.

3.13 PROPERTY OF DENSENESS

This is a very important property of real numbers. It states that between any two different real

numbers, there is always a third real number. It follows that between any two real numbers

there are infinitely many real numbers. Observe that between any two real numbers a and b, the

numbers, ðaþ bÞ=2, ð2aþ bÞ=2, ð3aþ bÞ=2, . . ., all lie between a and b. It is important to

consider the following problem:What is the smallest real number greater than 3?Note that this

question cannot be answered since there is no such real number.

To see this, suppose c is the smallest real number greater than 3. Then we can always find a

number c0 between 3 and c. Thus, c will not be the smallest number. Similarly there is no

greatest real number less than 3. Of course, there is nothing special about 3.We could replace it

by any other real number.

This property is also found to hold for rational numbers. But in integers, we can find the

smallest number greater than 3. It is 4. Thus, the property of denseness does not exist in the set

of integers.

Note: The property of denseness will be significant when we discuss the completeness property

(or the least upper bound property) of real numbers.

3.14 COMPLETENESS PROPERTY OF REAL NUMBERS

Roughly speaking, this property says that the real number system is complete in itself, in the

sense that it consists of rational and irrational numbers only and that no other type of number

exists in R.(8) (Of course, this property of real numbers is very important and useful, but a

beginner may skip it at this stage. He may read it later after completing Chapter 7.)

To understand this property we introduce the concept of bounded and unbounded

subsets of R.

(8) Technically speaking, the axiom of completeness states as follows. . .. If S is any nonempty set of real numbers, which

has an upper bound in R, then S has the least upper bound in R.
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3.14.1 Bounded and Unbounded Subsets of R

UpperBound of a Set (Definition): LetA	R, we say thatA is bounded above if there exists a

real number u such that for every x2A, x� u. Such a number u is called an upper bound of A.

Lower Bound of a Set (Definition): The subset A is said to be bounded below if there is a real

number l such that for every x2A, l� x. Such a number l is called a lower bound of A.

3.14.2 Bounded Set (Definition)

If A is both bounded above and bounded below then we say that A is bounded.

Remark:

(i) A is bounded, iff, A	 [l, u] for some interval [l, u] of finite length.

(ii) A is bounded, iff, there is a positive integer K such that l� l<K for all x2A. Such a

number K is called a bound of the set A.

(iii) Set A is said to be unbounded if A is not bounded.

(iv) An upper bound, a lower bound, and a bound of a set are not unique.

(v) A setmay ormay not have an upper bound (and/or a lower bound) and even if it has one

(or both), the bounds may not belong to the set.

(vi) Any real number is an upper bound for the empty set and any real number is a lower

bound for the empty set. Therefore, the empty set is bounded. (Here, the empty set �
must be looked upon with reference to the set of real numbers.)

Example (16):

(a) Consider the finite set B ¼ {2, 12, 0, 5,�7,�2}. Here, 12 is an upper bound and –7 is a

lower bound. Hence, B is bounded. From this example, it is clear that every finite set is

bounded.

(b) The set N of natural numbers is bounded below but not bounded above.

(c) The interval [0,1] is bounded. (These examples show that the boundedness has nothing

to do with countability.)

(d) Consider the set A ¼ {1, 1/2, 1/3, . . . . . .}. This set consists of all numbers of the form

1/nwhere n2N, the set of natural numbers.We observe that all the numbers inA are less

than or equal to 1. In this case, 1 is an upper bound of A and thus A is bounded above.

Also, we observe that no number of A is less than “0”. Therefore, we shall say that “0”

is a lower bound ofA, and thatA is bounded below. Thus, for any element x2A, we have

0< x� 1. We therefore say that A is bounded.

We have mentioned above that a set “A” is unbounded if it is not bounded. To discuss about

unbounded sets recall that a set is bounded iff it is bounded above and also bounded below.

Therefore, we define unbounded set.

3.14.3 Unbounded Set

A set is unbounded if either it is not bounded above and/or it is not bounded below.
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Nowwe ask the question:Whenwill you say that u is not an upper bound of A?Weknow that

a number u is an upper boundof A if the relation x� u holds for all x2A. Hence, uwill not be an

upper bound of A if there is some member of A, say a2 A such that a> u.(9)

Example (17): Consider the sets

C ¼ {4, 6, 8, 10, . . .}, D ¼ {0, �1, �2, �3, . . .}
Observe that each element of C is greater than or equal to 4. Hence, 4 is a lower bound of C

and thus C is bounded below. Is C bounded above?

From the nature of the elements ofC, we note that for any number u, however large, there are

always elements of C greater than u.

Therefore, u cannot be an upper bound of C. Hence, no real number can be an upper bound ofC.

Thus, C has no upper bound(10).

Similarly, it can be seen that the set D is not bounded below although it is bounded above.

Hence, both the sets C and D are unbounded sets.

Remark: If a set is bounded above, it has infinitely many upper bounds [because if u is an

upper bound so is (uþ1)] and similarly if it is bounded below, it has infinitely many lower

bounds.

Example (15): Consider the set A ¼ {1, 1/2, 1/3, 1/4, . . .}. It is bounded above and has 1 as

an upper bound. But, 2, 3, 4, . . . are also its upper bounds. In fact, any number greater than 1

is an upper bound. Similarly, zero and any number less than zero is a lower bound of A.

Now we may naturally ask whether there is the smallest (or the least) of all the upper bounds.

This leads us to the concept of least upper bound of a set.

3.14.4 Definition: The Least Upper Bound (l.u.b.) of a Set

Let the subset A of R be bounded above. A number M is called the least upper bound (l.u.b.)

for A if

(a) M is an upper bound for A, and

(b) No number smaller than M is an upper bound for A.

If such a number M exists, we write M ¼ l.u.b. A. [The l.u.b. for a set is also called the

supremum of A and is denoted by (sup) A.]

As in the case of upper bounds, we see that if a set is bounded below, it has infinitely

many lower bounds. If there is the largest of these lower bounds, we call it the greatest lower

bound (g.l.b.) of the set.

3.14.5 Definition: The Greatest Lower Bound (g.l.b.) of a Set

Let the subset A of R be bounded below.

(9) Note that the considerations of such negations are useful, as they throw a new light on concepts and help us to understand

them better.
(10) Geometrically, it means that the “set of points of C ” keeps on extending indefinitely on the right of 4 on the real line.

Thus, no finite segment of the real line can contain all the points of an unbounded set.
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A real number m is called the greatest lower bound (g.l.b.) of set A if

(a) m is a lower bound for A, and

(b) No number greater than m is a lower bound of A.

Wewrite,m ¼ g.l.b.A. [The g.l.b. for a set is called infimumof the set and is denoted by (inf)A.]

Remark: If a set has l.u.b., then it is unique. That is, a set can have only one l.u.b.

Proof: Suppose M and M0 are two l.u.b.s, then we get

M�M0 (since M is a l.u.b.) and M0 �M (since M0 is a l.u.b.)

It follows that M ¼ M0.
This explains why in the definition we say the l.u.b. (and not “a l.u.b.”) of a set.

Note:We know that the empty set � is bounded. Further, since every real number is an upper

bound for �, so � does not have a l.u.b. Similarly, � does not have a g.l.b.

Example (18):

(a) Consider A ¼ {1, 1/2, 1/3, . . .}. Here, the l.u.b. is 1 and it belongs to A. But, the g.l.b. is
0, which is not in A.

(b) If B ¼ {1/2, 3/4, 7/8, . . . , (2� 1)/2, . . .}. It can be shown that the g.l.b. ¼ 1/2 2 B and

the l.u.b. ¼ 12B.

(c) The set (3, 4) is an open interval. It does not contain its g.l.b. or its l.u.b., which are 3

and 4, respectively.

(d) The g.l.b. and the l.u.b. for {5} are both equal to 5.

(e) The empty set � is bounded. However, � has neither the least upper bound nor the

greatest lower bound.

(f) The set N ¼ {1, 2, 3, . . .} has the g.l.b., 12N. There is no l.u.b., since N is not bounded

above.

Note: We have seen that,

(a) a set has the l.u.b. only if it is bounded above and

(b) the empty set �, which is bounded (and hence bounded above), has no l.u.b. So now

the question is: If a nonempty set is bounded above, does it necessarily have the l.u.b.?

3.14.6 Discovery of Real Numbers

On the basis of the algebraic properties of real numbers, it is difficult to answer this question.

However, we can answer this question for the set of rational numbers.Wewill show that this set

does not possess the l.u.b. property. For the moment, let us assume that we know only rational

numbers.(11)

(11) We recall the terms an upper bound and the l.u.b. for a subset of rational numbers, exactly as we did for the real

numbers. For example, a rational number M is called the l.u.b. of A	Q if

(a) M is an upper bound of A, and

(b) No rational number less than M is an upper bound of A.
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We will now show that there is a set of rational numbers, which is bounded above, but it

does not necessarily have the l.u.b. in rational numbers. To show this, consider the set

A ¼ {x2Q j x> 0 and x2< 2}. Thus, A is the set of all those positive rationals whose square

is less than 2.

Clearly, the set A is bounded above. In fact, every positive rational number whose square is

greater than 2 is an upper bound for this set.But in this case, the l.u.b. is
ffiffiffi
2

p
. Some elements of set

A (in the decimal form) are 1, 1.4, 1.414, . . .,which are all rational numbers, but the l.u.b. forA inR

is
ffiffiffi
2

p
, which is not in the set of rational numbers, asweknow.Hence, among the rational numbers,

this set has no l.u.b., but among the reals, it has the l.u.b.
ffiffiffi
2

p
. Thus, if we had never heard of

irrational numbers, thenwewould say thatA has no l.u.b.However, we have seen that a nonempty

set A, of real numbers, bounded above necessarily has a l.u.b.—a fact that is not at all obvious.

For real numbers, however, it is not possible to show that every nonempty set bounded above

has the l.u.b. Therefore, we take this property of the entire real number system as an axiom,

called the completeness property or the axiom of l.u.b. or the axiom of least upper bound for

real numbers.

3.14.7 The Axiom of Least Upper Bound

If A is any nonempty subset of R, which has an upper bound in R, then A has the least upper

bound in R.

The l.u.b. axiom does not hold if R is replaced by Q, the set of rational numbers. Thus,

the l.u.b. property distinguishes real numbers from the rational numbers. The axiom says

roughly that R visualized as a set of points on a line has no gaps in it. In other words, the

real number system is complete in itself, in the sense that it does not have any other type of

numbers different from rational and irrational numbers. For this reason, the l.u.b. property

is also called the completeness property of real numbers.(12)

Remark: Note that, whereas the property of denseness is possessed by both the setsQ and R,

the property of completeness (or the l.u.b. property) is possessed only by the set R and not by the

set Q of rational numbers.

From the l.u.b. axiom, the following property of the g.l.b. can be proved.(13)

3.14.8 The Axiom of Greatest Lower Bound

If A is any nonempty subset of R, which has a lower bound in R, then A has the greatest lower

bound in R.

Before considering the problems of the l.u.b., let us examine the definition(s) of l.u.b. in

detail and put them in a more convenient form. Let us recall the definition of the l.u.b.

Definition I (l.u.b.): (Old definition at 3.14.4)

Let A	R be bounded above. A number M is called the l.u.b. of A if

(a) M is an upper bound for A; and

(b) No number smaller than M is an upper bound for A.

(12) It is not possible to show an example of a (nonempty) set of real numbers, which is bounded above but does not have a

l.u.b. (In fact, any set of real numbers is nonempty.)
(13) One can deduce g.l.b. axiom from the l.u.b. axiom.Remember that neither can be proved independently from the other

properties of the real numbers.
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If such a numberM exists, wewriteM ¼ l.u.b.A.We see that a real numberM is the l.u.b. ofA, if

it satisfies both the properties (a) and (b).

First of all,M is an upper bound ofA. Hence, every element ofAmust be less than or equal to

M (i.e., no element of A is greater than M).

Second, any number smaller than M is not an upper bound. It means that if we choose any

number smaller than M (for example, M� «, where «> 0) then there must be atleast one

element of A greater than the number

ðM � «Þð14Þ:

Hence, we may restate the definition of the l.u.b. in Section 3.15.

3.15 (MODIFIED) DEFINITION II (l.u.b.)

M is the l.u.b. of A if

(a) a�M, for every a2A, and

(b) for any positive number «, there is atleast one member ao of A such that ao>M� «.

Using arguments similar to those for the l.u.b., we can restate the definition of g.l.b. in

Section 3.16.

3.16 (MODIFIED) DEFINITION II (g.l.b.)

We say that “m” is the g.l.b. of A if

(a) a�m, for every a2A (i.e., m is a lower bound of A).

(b) for any positive number «, there is atleast one member ao of Awhich is less thanmþ «
(i.e., ao <mþ «).

Example (19): Let A ¼ (a, b) ¼ {x j a< x< b}

We observe that b is an upper bound of A. Also if we take any number c smaller than b, then

there is atleast one member of A greater than c (for example, bþc/2). Hence, by the above

definition (II), b is the l.u.b. of A. Note that b =2A.

Example (20): Let A ¼ {�6, �4, �2, 0, 2, 4}

Consider the upper bounds of this set. We observe that every number � 4 is an upper bound.

The smallest of these upper bounds is obviously 4. Hence, 4 is the l.u.b.Also it may be seen that

if we take any number c less than 4, then it cannot be the l.u.b. of A, since there is one member

of A greater than c (this member is 4 itself). Thus, 4 is the l.u.b. of A. It is also the greatest

element of A, 42A.(15)

(14) Here « represents an arbitrary positive real number, which can be used to get a number smaller than M.
(15) A set may or may not have the greatest (or the least) element of the set. For example, the set {1, 1/2, 1/3, . . .} does not

have the least element. In fact, the least element (i.e., the g.l.b.) of this set is “0,” which is not defined by 1/n for any value

of n. (Of course, the limit of the function 1/n, as n approaches infinity equals zero, but this concept will be clear only when

we discuss the concept of limit in Chapters 7a and 7b.)
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Example (21): Let A ¼ {1, 2, 3, 4, . . .}

Here, A is not bounded above. It has no upper bound. Hence, A has no l.u.b.

Example (22): If B ¼ 1

2
;
3

4
;
7

8
; . . . ;

2n � 1

2n
; . . .

� �
then g.l.b. ¼ 1

2
and l.u.b. ¼ 1.

Proof: Observe that every number � 1/2 is a lower bound for B. The greatest of these lower

bounds is obviously 1/2. Hence, 1/2 is the g.l.b.

Also it is clear that no real number y which is greater than 1/2 can be a lower bound for B,

since 1/2 which is an element of B is less than y. Thus, 1/2 is the greatest lower bound (g.l.b.).

To prove that l.u.b. B ¼ 1.

We observe that every element of B is less than 1.Hence, 1 is an upper bound for B. Then every

real number bigger than 1 is also an upper bound of B.

Now,we will show that any number less than 1 is not an upper bound of B. For this purpose,

suppose «> 0 and let 1� « be an upper bound of B.

Then, we must have

2n � 1

2n
< 1� « 8 n 2 N or 1� 1

2n
< 1� «

or
1

2n
> « or 2n <

1

«

But we can always find an integer n such that 2nis greater than 1/« (for any «> 0). This

is a contradiction. Thus, 1� « cannot be an upper bound of B for any «. Thus, 1 is the smallest

(or the least) of all the upper bounds. We, therefore, write l.u.b. B ¼ 1,

Example (23): Let A ¼ {0, 1�1/2, 1�1/3, 1�1/4, . . .}

¼ {0, 1/2, 2/3, 3/4, 4/5, . . .}

From the elements of set A, we guess that 1 may be the l.u.b. Let us check this. We observe

that each member of A is less than 1. Hence, 1 is an upper bound.

Let «> 0. Consider the number 1� «, which is less than 1. Let us suppose that 1� « is an

upper bound. We note that the nonzero elements of A are of the form (1�1/n), n2N.

If 1�« is an upper bound of A, then we will have,

1� 1

n
< 1� « or

�1

n
< �« or

1

n
> « or n <

1

«

Butwe can always find a natural number n such that n> 1
«, for any «> 0. This is a contradiction.

Thus, 1� « cannot be an upper bound of A for any «. Thus, 1 is the l.u.b. of A.
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4 From Geometry to Coordinate
Geometry

4.1 INTRODUCTION

Geometry appears to have originated from the need for measuring land. Today, geometry is a

branch of mathematics in which we study the properties of various figures. It is believed that

Egyptians and Babylonians (2000–1600 BC) were the first to use geometry, but mostly for

practical purposes. They had discovered many geometrical properties of simple figures (i.e.,

triangles, rectangles, etc.) through actual measurements, but they never developed it as a

systematic discipline. Geometry was also studied and taught by ancient Indians and references

to this are contained in Vedic literature.

Later on, this knowledgewas passed on toGreekswho developed the subject systematically.

The pioneer in this science was the Greek mathematician Euclid who lived around 300 BC. He

initiated a completely new approach in the study of geometry. He showed that by knowing

certain measurements in geometrical figures, the remaining ones could be found out by

calculation and thus one need not depend on actual measurements to know all the facts in

geometry. He is said to be the father of geometry.

In Euclidean Geometry, the approach was to start with three undefined concepts (or terms)

namely point, line, and plane. Suggested by physical experience, certain properties are

attributed to these terms. These terms along with the properties attributed to them are called

axioms or postulates. Euclid called them the self-evident truths.(1)

He showed that by accepting these axioms as true, other geometrical facts can be derived by

logical reasoning. The new results, so derived are called theorems, which reveal to us the

interesting and useful properties of various geometric figures. Now the question is: What is a

proof? The process of establishing a conclusion by deductive logical reasoning on the basis of

axioms and previously proved theorems is called proof.

Introduction to Differential Calculus: Systematic Studies with Engineering Applications for Beginners, First Edition.
Ulrich L. Rohde, G. C. Jain, Ajay K. Poddar, and Ajoy K. Ghosh.
� 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

(1) It must be clear that axioms are simple and obvious facts that we observe. For example

(i) When two distinct lines intersect, their intersection is exactly one point.

(ii) Infinite number of lines can pass through a given point, and so on.

(iii) Two distinct points determine one and only one line, and so on.

What must you know to learn calculus? 4-Coordinate geometry (Cartesian coordinates, distance formula, inclination

and slope of a line, loci and their equation(s), equations of lines and their slopes)
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Before we proceed further, it is useful to understand clearly what we mean by the terms

point, line, and plane in geometry.(2)

This was the only approach to geometry for some 2000 years till the French philosopher

and mathematician Rene Descartes (1596–1650) published “La Geometrie” in 1637 wherein

he introduced the analytic approach by systematically using algebra in his study of

geometry.(3)

He combined algebra and geometry in a fashion that had not been accomplished previously

and laid the foundations for Calculus. This wedding of algebra and geometry is known as

coordinate geometry or analytic geometry. This was achieved by representing points in the

plane by ordered pairs of real numbers (called Cartesian coordinates, named after Rene

Descartes) and representing lines and curves by algebraic equations.

4.2 COORDINATE GEOMETRY (OR ANALYTIC GEOMETRY)

Coordinate Geometry differs in procedure from the geometry studied in high school, in that the

formermakes use of the coordinate system. It includes the study of points, lines, curves, angles,

and areas in a plane, with the help of algebra.

We are familiar with the representation of real numbers on a line, which we call the number

line denoted by R. Descartes and Fermat, introduced two perpendicular lines (called axes) and

agreed to represent any point in the plane by its directed distances (or signed distances) from

the two axes.

(2) From a practical point of view, we have got some ideas about the terms point, line, and plane. However, there are

difficulties in defining these terms.

For example,we think of a point as a fine and tiny dotmade by a sharp pencil on a paper. Also, the top of a needle or a very

small hole made by a pointed pin on a sheet of paper can be considered as examples that are very close to the concept of a

point. The most important idea involved in this concept is that a point is assumed to have no physical dimension (i.e., it has

no length or width, etc.)

Similarly, the idea of a line comes in ourmind by considering the edge of a paper in our note book, the intersection of two

walls, a piece of thin wire, or a tight and stretched thread. The most important idea involved in this concept is that a line is

assumed to have only one dimension, namely “length”. It has no width and thickness. We use arrow heads at the ends of a

line segment to say that a line has unlimited length.

To get an idea of a plane, one can think of surface of a smooth wall, a black board, top of a table, or a sheet of a paper.

Again, one should keep in mind that a plane is assumed to have only two dimensions, namely “length” and “width”. It has

no thickness. Also, a plane is assumed to extend indefinitely in all sides.

Remark: If we try to define a “point ” as a “mark” observed at the intersection of two distinct lines, then the term “line”

enters into the definition,which is not defined. Similarly, if we try to define a line as a “mark” observed at the intersection of

two planes, then the term plane enters into the definition and it must be defined. Thus, an attempt to define these terms

makes them more difficult to understand, than what we already know about them.

It is therefore appropriate to accept these termswith the properties attributed to them, as “self-evident truths” so that they

are not required to be proved.Moreover, this understanding has helped in obtainingmany other facts (by logical reasoning)

that are useful and interesting, as properties ofmany geometrical figures. This is howEuclid has contributed in the progress

of geometry.
(3) Descartes complained that the geometry of Greeks was very much tied to figures, so he desired to have a simpler

approach for understanding the subject by using algebra. Fortunately, for theworld, a great deal of progress had beenmade

in algebra during the latter half of sixteenth century and the early part of the seventeenth. Another French mathematician

Pierre de Fermant (1601–1665) is also credited with the invention of coordinate geometry. His work was known after his

death. Both Descartes and Fermant working independently of each other saw clearly the potential in algebra for the

representation and study of curves.
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4.2.1 The Plane and the Cartesian Coordinates

We take two copies of the number line (with equal scales) and place them perpendicular to each

other in a plane, so that they intersect at the point “O” (say). We call this point of intersection,

the Origin, from where all the distances on both the axes should be measured.

It is customary to have one of the lines horizontal, with the positive numbers located to

the right of “O”, and call it the x-axis. The other line is usually called the y-axis, with the

positive numbers lying above “O”. Then the points to the left of “O”, on the x-axis and

those lying below “O” on the y-axis represent negative numbers. These axes (called coordinate

axes) divide the plane into four regions, called quadrants, labeled I, II, III, and IV numbered

in the counter clockwise direction (Figure 4.1).

Now, let P be any point in the plane. Through P, we draw perpendicular(s) to respectively

x-axis and y-axis. Let the foot of the perpendicular on the x-axis meet there at the point “a” and

that on the y-axis at the point “b”, then we associate P to the ordered pair (a, b) of numbers. If

the pointP is identifiedwith the ordered pair (a, b) of real numbers,we sometimes write P (a, b)

for P. Note that, in the ordered pair (a, b), the first number “a” is the x-coordinate (or abscissa);

and the second number “b” is the y-coordinate (or ordinate). The origin is a point whose x and y

coordinates are both “0”. Hence, we identify the origin “O” by the ordered pair (0, 0)

(Figure 4.2).

The set of all ordered pairs of real numbers is called the number plane denoted by R2, and

each ordered pair (x, y) is called a point in the number plane. Just as R, the set of real numbers,

can be identified with points on an axis (a one-dimensional space), we can identify R2 (i.e., the

number plane) with points in a geometric plane (a two-dimensional space).

There is a one-to-one correspondence between the points in a geometric plane and the

number plane R2; that is, with each point in the geometric plane, there corresponds a unique

ordered pair (x, y), and with each ordered pair (x, y) of real numbers there is associated only

one point.(4)

y

III

III IV

3

2

1

–3

–3

–2

–2

–1

–1

0 1 2 3

x

FIGURE 4.1 The number plane R2.

(4) Because of this one-to-one correspondence, we identify the number plane R2 with the geometric plane. Also, for this

reason we call an ordered pair (x, y), a point.
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This system of coordinating ordered pair (x, y) with every point in the (geometric) plane is

called the rectangular Cartesian coordinate system. Figure 4.3 illustrates a rectangular

Cartesian coordinate system with some points.

The convention of the positive and negative signs, marked with the numbers in the ordered

pairs, in different quadrants, follows from the very definitions of x-axis and y-axis in terms of

signed lengths of line segments.

4.2.2 The Notion of Directed Distance (or Signed Length)

If A is the point (x1, y1) and B is the point (x2, y1) (i.e., A and B have the same ordinate but

different abscissas), then the directed distance from A to B is denoted by AB, and we

define,

AB ¼ x2 � x1

y

2

1

–2 –1 1 3 a

b p

(a, b)

x

FIGURE 4.2
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(–5, –2)
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(–6, –     )9
2

(π, 3)

FIGURE 4.3

66 FROM GEOMETRY TO COORDINATE GEOMETRY



Illustration (1):

(a) If the two points are A(3, 4) and B(9, 4) then, AB¼ 9� 3¼ 6.

y

x

0

A(3, 4)

AB = 6

B(9, 4)

(b) If the two points are A(�8, 0) and B(6, 0) then, AB¼ 6� (�8)¼ 14.

y

0 (6, 0)(–8, 0)

AB =14

B xA

(c) If the two points are A(4, 2) and B(1, 2) then, AB¼ 1� 4¼�3.

B(1.2)

AB = –3

0

A(4.2)

We see that AB is positive if B is to the right of A, and AB is negative if B is to the left of A.

If C is the point (x1, y1) and D is the point (x1, y2), then the directed distance from C to D,

denoted by CD, is defined by

CD ¼ y2� y1
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Illustration (2):

(a) The directed distance between the points C(1, �2) and D (1, �8), from C to D is

given by

CD ¼�8� ð�2Þ ¼�6

(b) The directed distance between C(�2, �3) and D (�2, 4) is given by

CD ¼ 4� ð�3Þ ¼ 7

y

x

C(1, –2)

D(1, –8)

(a) (b)

0

y

x

C(–2, –3)

D(–2, 4)

0

The number CD is positive if D is above C, and CD is negative if D is below C.

Note (1): The terminology directed distance (or signed length) indicates both a distance and a

direction, positive or negative. Note that we can talk about positive or negative direction

only with reference to the horizontal and vertical line segments. Thus, if a line segment parallel

to the x-axis from x1 to x2 is denoted by the signed length Dx then the same line segment

from x2 to x1 will be denoted by the signed length �Dx. A similar statement is applicable to

any line segment of signed length Dy, parallel to the y-axis.

Note (2): The introduction of Cartesian coordinates allows us to use numbers and their

arithmetic as a tool in studying geometry. The term “analytic geometry” (or coordinate

geometry) is used for the study of geometry using coordinates. This coordinate system also

allows us to draw geometric pictures, which illustrates a great deal of numerical work.

Note (3):The notion of signed length is used for defining the slope of a line, to be studied shortly.

If we are concerned onlywith the length of the line segment between two pointsP(x1, y1) andQ

(x2, y2), without regard to direction, then we use the word distance to mean an undirected

distance (or unsigned length) between P and Q. The horizontal distance between the points
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P and Q is denoted by

jx2 � x1j ¼ jx1 � x2j

and the vertical distance is given by jy2� y1j ¼ jy1� y2j.

If the line segment joining P and Q is neither horizontal nor vertical, then we can find the

distance between the two points, as follows.

4.3 THE DISTANCE FORMULA

To find the distance between two points P(x1, y1) and Q(x2, y2) in the plane, we construct the

right triangle DPRQ as shown in Figure 4.4.

The point R(x2, y1) in the figure has the same x-coordinate as Q and the same y-coordinate

as P.

Therefore; jDxj ¼ jx2 � x1j ¼ length PR and jDyj ¼ jy2 � y1j ¼ length RQ

Now, the distance between P(x1, y1) and Q(x2, y2) is the length d of the hypotenuse of the

right triangle QRP; so, by the Pythagorean theorem, we get

d2 ¼ jDxj2 þ jDyj2 ð1Þ

Since the terms in (1) are squared, the absolute-value symbols are not needed, so that

d2 ¼ ðDxÞ2 þ ðDyÞ2

and

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðDxÞ2 þ ðDyÞ2�

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðx2 � x1Þ2 þ ðy2 � y1Þ2�

q

d ¼ PQj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðx2 � x1Þ2 þ ðy2 � y1Þ2�

q

This formula holds for all possible positions of P and Q in all four quadrants.

P(x1, y1) R(x2, y1)
|Δx| = |x2–x1|

|Δy| = |y2–y1|

d

Q(x2, y2)

FIGURE 4.4
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Example (1): Let P(3, �4) and Q(�2, 1). Find the distance between P and Q.

Solution: By the distance formula,

jPQj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�2� 3Þ2 þ ð1� ð�4ÞÞ2

q
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

25þ 25
p ¼ ffiffiffiffiffi

50
p ¼ 5

ffiffiffi
2

p

(Note that, by knowing the coordinates of two points in a plane, we have been able to compute

the distance between them.)

If P and Q are on the same horizontal line, then y2¼ y1 and

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 � x1Þ2 þ 02

q
¼ jx2 � x1j ) ffiffiffiffiffi

a2
p

¼ aj j
� �

Similarly, if P and Q are on the same vertical line then x2¼ x1 and

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
02 þ ðy2 � y1Þ2

q
¼ jy2 � y1j

4.4 SECTION FORMULA

We now obtain the formulas for finding the coordinates of the midpoint of a line segment.

Let M(x, y) be the midpoint of the line segment from P1(x1, y1) to P2(x2, y2).

Refer to Figure 4.5. Because DP1RM and DMTP2 are congruent,

jP1Rj ¼ jMT j and jRM j ¼ jTP2 j
Thus,

x� x1 ¼ x2 � x y� y1 ¼ y2 � y

) 2x ¼ x1 þ x2 ) 2y ¼ y1 þ y2

) x ¼ x1 þ x2

2
) y ¼ y1 þ y2

2

P2(x2, y2)

T(x2, y)

S(x2, y1)R(x, y1)

M(x, y)

x–x1

y–y1

x2–x

y2–y

x

y

(x1, y1)

0

P1

FIGURE 4.5
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Similarly, it can be easily proved that the coordinates of the point P(x, y) that divides the line

joining A(x1, y1) and B(x2, y2) internally in the ratio m:n are given by

x ¼ mx2 þ nx1

mþ n
; y ¼ my2 þ ny1

mþ n

In the derivation of the above formulas,we assumed thatx2> x1 and y2> y1. The same formulas

are obtained by using any ordering of these numbers.

We now proceed to discuss about the inclination and slope of a line, which are two different

concepts, but related to each other, as explained below.

4.5 THE ANGLE OF INCLINATION OF A LINE

In a coordinate plane, any line l will either intersect the x-axis or be parallel to that axis.

Definition: The angle of inclination (or simply inclination) of a line is the smallest positive

angle � (the part of the line above x-axis makes with the positive direction of x-axis)(5)

The angle of inclination may have any measure � such that 0� �< 180�. Note that the angle of
measure 0� is included in the definition of inclination but the angle of 180� in not included

(Figure 4.6a and b). (The angle of inclination of a line that does not cross the x-axis is taken

to be 0�.)

Remark: From the above definition of inclination, it follows that the inclination of x-axis

(or any line parallel to x-axis) is 0�, whereas the inclination of y-axis (or that of any line parallel
to y-axis) is 90�.

(5) The sense of an angle is derived from the direction of rotation of the initial side into the terminal side. If an angle is

measured in the anticlockwise direction, its measure is said to be positive, whereas the onewhich ismeasured in clockwise

direction is said to have negative measure.

(a) (b)

l

y

x

0

θ

l

y

x

0
θ

FIGURE 4.6 The angle of inclination � (0� �� 180).
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4.5.1 Slope (or Gradient) of a Nonvertical Line

Definition (1): The slope of a nonvertical line is defined as the ratio of the change in ordinates

to that of change in abscissa. For a given line, this ratio is a constant number denoted by m.

Consider a nonvertical line segment joining two points P(x1, y1) and Q(x2, y2). The number

y2� y1 gives the measure of the change in the ordinate from P to Q, and it may be positive,

negative, or zero. (In the case of horizontal line, y1¼ y2, and so y2� y1¼ 0.) The number

x2� x1 gives the measure of the change in abscissa from P to Q, and it may be positive or

negative but not zero because the line is nonvertical so, x1 6¼ x2 and therefore x2� x1 6¼ 0.

Thus, the slope of the line segment PQ is expressed by

m ¼ y2 � y1

x2 � x1
¼ �ðy2 � y1Þ

�ðx2 � x1Þ ¼
y1 � y2

x1 � x2
; ðx1 6¼ x2Þ

Remark: Parallel lines have equal angles of inclination and hence, if they are not vertical, they

have the same slope. The slope of a vertical line is not defined. (Why?)

Remark: Since
y2 � y1

x2 � x1
¼ y1 � y2

x1 � x2
, it makes no difference even if we label P(x2, y2) and

Q(x1, y1). In other words, the slope of the line PQ or QP is same.

Definition (2): By the slope of a line, we mean the number of units the line climbs up or falls

down vertically, for each unit of our horizontal advance from left to right.

From the definition of slope it follows that the slope “m” of a line will be positive if the line

makes an acute angle with the positive direction of x-axis, and will be negative if it makes an

obtuse angle with the positive direction of x-axis.(6)

Illustration (3):

If a line climbs upward three units for each unit step we go to the right, (as shown in

Figure 4.7a), the line has the slope 3.

If the line falls two units downward per unit step to the right (as shown in Figure 4.7b), the line

has slope¼�2.

Remark:

. A horizontal line neither climbs nor falls, so it has slope 0.(7)

. A vertical line climbs straight up over a single point, so it is impossible to measure how

much it climbs per unit horizontal change. Thus, the slope of a vertical line makes no

sense. (Its calculation involves division by zero.) We say that the slope of a vertical line is

not defined.(8)

(6) This becomes clear, if we use the lengths of directed line segments (i.e., the signed length).
(7) For a nonvertical line passing through P(x1, y1) and Q(x2, y2), the slopem is given bym ¼ ðy2 � y1Þ=ðx2 � x1Þ. If the
line is parallel to the x-axis y2¼ y1; so the slope of the line is zero.
(8) If the line is vertical (i.e., parallel to y-axis), x2¼ x1. Hence, the ratio defining m is meaningless, because division by

zero is not permitted.
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Example (2): Let us find the slope of the line passing through the points P(2, 4) andQ(5, 16).

Dy
Dx

¼ 12

3
¼ 4; which is the slope of the line PQ:

Solution: As we go from P(2, 4) to Q(5, 16), we have Dx¼ 5� 2¼ 3 and Dy¼ 16� 4¼ 12.

Thus, the line climbs Dy¼ 12 units, while we advance Dx¼ 3 units to the right. Therefore, the

amount it climbs per unit horizontal advance to the right is 12/3 = 4 units.

Note: To find the slope of the line passing through the points P(2, 4) and Q(5, 16), in Example

above, we may also proceed as follows.

As we go from Q(5, 16) to P(2, 4), we have the signed lengths

Dx ¼ 2� 5 ¼�3 and Dy ¼ 4� 16 ¼�12

) Dy
Dx

¼ �12

�3
¼ 12

3
¼ 4

We know that, m ¼ Dy
Dx

¼ y2 � y1

x2 � x1
¼ �ðy1 � y2Þ

�ðx1 � x2Þ ¼
y1 � y2

x1 � x2

Hence, the slope of a nonvertical line is given by

m ¼ Dy
Dx

¼ difference of y-coordinates

difference of x-coordinates

provided both the differences are taken in the same order.

y

3

1
1

10

m = 3

x

(a) (b)

y

1

1

1

2

0

m = –2

x

FIGURE 4.7 Slope of a non-vertical line.
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Example (3): The line through (7, 5) and (–2, 8) has slope

m ¼ Dy
Dx

¼ ð8� 5Þ
ð�2� 7Þ ¼

3

�9
¼� 1

3

The negative slope tells us that the line falls down vertically, as we go horizontally from left to

right.

4.5.2 Relation Between the Inclination and the Slope of a Line

It can be shown that if the angle of inclination of a line l is �, then tan � gives the slope of the line.
Further two cases arise, which are as follows:

Case (i): � is acute. Then it is clear from Figure 4.8a, that for the horizontal change Dx in the

positive direction, the line climbs up by Dy that is also positive. Hence, for the acute angle of
inclination �, we have

slopem of the line l ¼ m ¼ Dy
Dx

¼ tan �

This fact relates “slopes of lines” with trigonometric functions.

Case (ii): � is obtuse. (see Figure 4.8b)

Here again, we consider the horizontal change Dx in the positive direction and observe that the

line l fall down by Dy, which is negative. Hence, for the obtuse angle of inclination, we have

slopem of the line l ¼�ðDy=DxÞ; a negative number. There is another way to show that for

an obtuse angle of inclination the slope of line l is given by m ¼�ðDy=DxÞ.

Δx

(a) (b)

Δy

l

θ

Δx

Δy

l

π−θ θ

FIGURE 4.8 Another way of looking at the slope of a non-vertical line.
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We write,

Dy
Dx

¼ tanðp� �Þ
¼ �tan � ½ )tanðp� �Þ ¼�tan ��ð9Þ

) tan � ¼� Dy
Dx

Note: For the purpose of analytic geometry, we associate a number with the inclination of the

line in the following manner.

Definition: The slope of a nonvertical line having inclination �, is defined to be tangent �.

Points to Remember

Let a line with angle of inclination �, have the slope m, then

1. Value of m is given by tan �.

2. If � is acute, m is positive.

3. If � is obtuse, m is negative.

4. If �¼ 0; m¼ 0. The slope of x-axis (or any line parallel to x-axis) is 0.

5. If �¼ p/2, the line is vertical and m is not defined.

6. The slopem is independent of the sense of the line segment. [Note that if � is the angle of
inclination of lineAB then (pþ �) is the angle of inclination ofBA,which is the same line

considered in opposite direction.]

B

A

θ

(π + θ)

Now, we have slope of AB¼ tan �, and slope of BA¼ tan(pþ �)¼ tan �. Thus, the
direction of a line segment does not play any role in the measurement of its slope.

7. A line that rises to the right has positive slope and the one that falls to the right has

negative slope. [See (2) and (3) above.]

8. The slopem is ameasure of the steepness of a line either up or down. The larger jmj is, the
steeper the line is (Figure 4.9).

(9) In fact, all trigonometric ratios are defined with reference to an acute angle in a right triangle. When these definitions

are extended for angles of anymagnitude and sign, the trigonometric ratios are still defined for acute angles. Of course, then

the signed lengths of sides of the right triangle play their role. (This will be clear, when we study Chapter 5.)
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Remark (1): Note that, whereas the inclination of a vertical line is defined to be 90�, its slope is
not defined.

Remark (2): Of all the curves, the line is the only curve having the property that, for any two

distinct points P(x1, y1) and Q(x2, y2) on it, the value of the slope m is always constant and is

given by the formula

m ¼ y2 � y1

x2 � x1
¼ y1 � y2

x1 � x2
; x1 6¼ x2

For all other curves, the slope varies from point to point.

Note: “Slope” is one of the central concepts of calculus. In our study of calculus, an important

concept to be learnt is the slope of a curve at a point.We shall return to this concept inChapter 9,

for the derivative of a function.

We have demonstrated how a rectangular Cartesian system can be used to obtain geometric

facts (like length of a line segment and coordinates of the midpoint of a line segment, etc.) by

algebra. We now show how such a coordinate system enables us to associate a graph (a

geometric concept) with an equation (an algebraic concept).

4.6 SOLUTION(S) OF AN EQUATION AND ITS GRAPH

Consider an algebraic equation in two variables x and y. When x and y are replaced by specific

numbers, say a and b, the resulting statement may be either true or false. If it is true, the ordered

m = 
y

(0, 7)
(4, 7)

(4, 4)

(4, 2)

(2, 1)

(6, 1)

7
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3

2

SLOPE = –1

SLOPE = 4

–4 –3 –2 0 1 2 3 4 5 6 7 8 9

= –3 7 – 1
0 – 2

m = = 3 7 – 1
4 – 2

m = = – 1
2

(–2, 3)

3 – 1
–2 – 2

m = =  3
2

4 – 1
4 – 2

m = =  1
2

2 – 1
4 – 2

m = 
x

= 01 – 1
6 – 2

FIGURE 4.9 Lines of various slopes.
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pair (a, b) is called a solution of the equation, and it represents a point inR2. It can be easily seen

that, in general, an equation in two variables has an unlimited number of solutions. All such

ordered pairs can be graphed as points in a (geometric) plane and such a graph (which consists

of an unlimited number of points) is said to represent the algebraic equation under

consideration.(10)

4.6.1 Definition: Graph of an Equation

The graph of an equation inR2 is the set of all those points inR2whose coordinates are solutions

of the given equation.

The basic problem of coordinate geometry is to find algebraic equations for certain sets of

points (geometrical objects), which satisfy the given geometric condition. Such a set of points

is called locus.

4.6.2 More About the Word “Locus”

As stated above, “locus” is a set of points satisfying a given geometric condition. Since

each point of the set satisfies the given geometric condition, we may consider a representative

pointP(x, y) of such a set. Sometimes, it is advantageous to think of a locus as a path traced out

by a moving point satisfying at each position of its motion, the given geometric condition,

characteristic of the locus. Consider the following examples:

Example (4): Consider the set of points in a plane that satisfy the (geometric) condition that

they are all at the same distance “r” from a fixed point “c”. We can show that the set of all such

points is the circle with center “c” and radius “r” (Figure 4.10a).

Example (5): Consider the set of points P, in a plane that satisfy the (geometric) condition that

they all are equidistant from two fixed points A and B (Figure 4.10b).

We can show that the set of all such points is the perpendicular bisector of the line segment AB.

We use the word locus for such sets of points.

(10) The equation x2þ y2¼ 0, has only one solution, namely (0, 0). Hence, the graph of this equation consists of a single

point. The equation 2x2þ y2¼�1 has no solution, and hence it has no graph or its graph is a null set.

y

x

P

0

c

r P

A B

(a) (b)

FIGURE 4.10
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Note:With reference to Example (1) above, we may say that a circle is the locus of a point P

[i.e., the path traced by P(x, y)] that moves in a plane, such that it always remains at a fixed

distance “r ” from a fixed point “c” in the plane.

In our discussion to follow, we will consider the loci (plural of locus) in planes only.

4.6.3 Locus and Its Equation

When the locus is looked upon as a path traced out by the (representative) moving point P, the

geometric condition, which is satisfied at each position of the point P(x, y), can be expressed

in the form of a relation connecting the variables x and y—the coordinates of the point P. Such

a relation is called the equation of the locus.

Since, a locus can be looked upon as a graph of all those points satisfying the given geometric

condition, the equation of a locus also stands for the graph representing the locus. Thus, it is

possible to study the properties of graphs with the help of their equations. Our interest lies in

finding the algebraic equation for a locus.

4.6.3.1 Equation of a Locus Consider a circle with center C(1, 3) and radius 4 units. Let

P(x, y) be any point on this circle.

Then; CP ¼ 4 ð2Þ

By the distance formula, we get CP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 1Þ2 þ ðy� 3Þ2

q

Using (2), we get

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 1Þ2 þ ðy� 3Þ2

q
¼ 4

On squaring both sides, we get

ðx� 1Þ2 þ ðy� 3Þ2 ¼ 16 ð3Þ

Equation (3) is called the equation of locus of P(x, y). Also, Equation (3) is the equation of the

circle with center C(1, 3) and radius 4.

Note: The equation of a locus is an algebraic relation between the variables x and y, where

P(x, y) stands for an arbitrary point of the locus.

Two points should be noted:

(a) Coordinates of every point P(x, y) of the locus must satisfy the equation of the locus.

(b) Any point Q(x0, y0) satisfying the equation of the locus, must be on the locus.

The concept of locus forms the basis of coordinate geometry, and therefore a student has to first

learn the following two things in coordinate geometry:

(i) To find the locus, given an equation in x and y (or only x, or only y) (i.e., the cor-

responding set of points).

(ii) To find the corresponding equation; in x and y (or only x, or only y), given a locus (i.e., a

set of points defined by some geometric condition).(11)

(11) Finding the algebraic equation (in x and/or y) for a set of points defined by some (geometric) condition is the basic

problem of coordinate geometry.
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4.6.4 To Obtain the Equation of a Locus

To find the equation for a set of points satisfying a given geometric condition, we generally

proceed as follows:

Step (1): Take any point P(x0, y0) of the locus.
Step (2):Express the geometrical condition(s) of the locus bymeans of an algebraic relation

between x0 and y0.
Step (3): Replace x0 by x and y0 by y. The equation in x, y so obtained is the required

equation of the locus.

Note (1): If there is no possibility of any confusion, we take the coordinates of any point P of

the locus as (x, y) instead of (x0, y0).

Note (2): In the equation of a locus, the variables x and y [i.e., the coordinates of a

(representative) moving point P(x, y)] are called current coordinates.

Note (3): Locus represents a set of points, satisfying a given geometric condition. When

locus is viewed as a path traced by a moving point, it represents a curve. However, a locus,

that is, a set of points satisfying a given geometric condition (defined algebraically), may

also represent a region in a plane (Figure 4.11). (Thus, algebraic statement(s) defined

geometric figures.)(12)

Note: Every locus (i.e., a set of points satisfying a given geometric condition) need not be

represented by an equation. It can also be an inequality. For example, consider the set of points

lying inside a circle of unit radius with center at origin. If P(x, y) belongs to the locus (i.e., the

set of points in question), then the condition to be satisfied by P(x, y) is that

OP < 1½i:e:; x2 þ y2 < 1�

FIGURE 4.11

(12) It is for this reason that coordinate geometry is considered as a wedding of geometry and algebra.
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Here, the set of points, representing locus of P(x, y) is not a curve. Moreover, this locus is

represented by an inequality. Thus, every locus is not expressed by an equality. Also, we can

give examples to show that every equation does not represent a locus (i.e., a set of points).(13)

Illustrative Examples

Example (6): Let us find the equation of the locus of point P(x, y) that satisfies the conditions

as given below:

(i) Abscissa of P exceeds twice its ordinate by 7.

Solution: By the given condition x is greater than 2y by 7. x¼ 2yþ 7, which is the

required equation of the locus.

(ii) The sum of coordinates of P is 11.

Solution: Sum of coordinates of P is 11, ) xþ y¼ 11, is the required equation of the

locus.

(iii) P is always equidistant from A (�2, 3) and B (3, �5).

Solution: We have P(x, y) as a point of the locus.

) PA ¼ PB ðGivenÞ ð4Þ

) By the distance formula, we have

PA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½x� ð�2Þ�2 þ ðy� 3Þ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ 2Þ2 þ ðy� 3Þ2

q

and PB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 3Þ2 þ ½y� ð�5Þ�2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 3Þ2 þ ðyþ 5Þ2

q

) ð4Þ gives
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ 2Þ2 þ ðy� 3Þ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 3Þ2 þ ðyþ 5Þ2

q

On squaring both sides, we get

ðxþ 2Þ2 þ ðy� 3Þ2 ¼ ðx� 3Þ2 þ ðyþ 5Þ2

i:e:; ðy� 3Þ2 � ðyþ 5Þ2 ¼ ðx� 3Þ2 � ðxþ 2Þ2 ð14Þ

i:e:; y2 � 6yþ 9� ðy2 þ 10yþ 25Þ ¼ x2 � 6xþ 9� ðx2 þ 4xþ 4Þ
i:e:; � 6yþ 9� 10y� 25 ¼�6xþ 9� 4x� 4

i:e:; � 16y� 16 ¼�10xþ 5

i:e:; 10x� 16y ¼ 21 or 16y ¼ 10x� 21

which is the required equation of the locus (or the set of points).

(13) For example, the equation x2þ y2¼�5, does not represent any curve (nor a set of points).
(14) Here, we can use the identity a2� b2¼ (a� b) (aþ b) to simplify both sides. This will give us (y� 3� y� 5)

(y� 3þ yþ 5)¼ (x� 3�x� 2) (x� 3þ xþ 2) or �8(2yþ 2)¼�5(2x� 1) or �16y� 16¼�10xþ 5 or 10x� 16y

¼ 21 or 16y¼ 10x� 21
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(iv) The sum of the squares of its distances from the axes is 9.

Solution: The distance of P(x, y), from x-axis¼ y, and that from y-axis¼ x.

Now, according to the given condition, x2þ y2¼ 9, which is the required equation of

the locus.

(v) The sum of its distances from the coordinate axes equals to the square of its distance

from the origin.

Solution: The distance of P(x, y)

(a) from x-axis¼ y,

(b) from y-axis¼ x, and

(c) from origin 0(0, 0)¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 0Þ2 þ ðy� 0Þ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
Now according to the given condition

xþ y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

ph i2
or xþ y ¼ x2 þ y2

which is the required equation of the locus.

Example (7): Derive the equation of the locus of a point P(x, y), which moves so that the sum

of the squares of its distances from points A(0, 0), and B(2, �4) is always 20.

Solution: PA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 0Þ2 þ ðy� 0Þ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
PB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 2Þ2 þ ðyþ 4Þ2

q

It is given that PA2þPB2¼ 20

) x2 þ y2 þ ðx� 2Þ2 þ ðyþ 4Þ2 ¼ 20

) x2 þ y2 þ x2 � 4xþ 4þ y2 þ 8yþ 16 ¼ 20

) 2x2 þ 2y2 � 4xþ 8yþ 20 ¼ 20

) x2 þ y2 � 2xþ 4y ¼ 0 ðAÞð15Þ

This is the equation of the locus.

Example (8): A point moves so that its distance from the y-axis is always equal to its distance

from the given point A(4, 0). Find the equation of the locus.

(15) This equation can also be written in the form

ðx� 1Þ2 þ ðyþ 2Þ2 ¼
ffiffiffi
5

p� �2

Later, we will show that this equation represents a circle with center C(1,�2) and radius
ffiffiffi
5

p
. Also, we will show how the

equation (A) can be put in this convenient form (see “shift of origin”).
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Solution: Let P(x, y) be any point on the locus. Then the distance of P(x, y) from the

y-axis¼ jxj(16)

Let us denote it by PB, then PB¼ jxj

Again, the distance between P(x, y), and the given point A(4, 0)

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 4Þ2 þ ðy� 0Þ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 4Þ2 þ y2

q
Then, P(x, y) must satisfy the geometric condition PB¼PA.

) jxj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 4Þ2 þ y2

q
Squaring both sides, we get

x2 ¼ x2 � 8xþ 16þ y2

) y2 � 8xþ 16 ¼ 0ð17Þ

This is the required equation of the locus.

4.6.5 Points on the Locus

If a point P(x, y) belongs to a locus, then its coordinates satisfy the equation of the locus.

Conversely, if the coordinates of a point P(x, y) satisfy the equation of a locus, then the point

P(x, y) lies on the locus.

4.6.6 Points Not on the Locus

If a point P(x, y) is not on the locus, then its coordinates will not satisfy the equation of that

locus. Conversely, if the coordinates of a point P(x, y) do not satisfy the equation of the locus,

then the point P(x, y) does not belong to the locus.

Example (9): Find the points on the x-axis, which lie on the curvewhose equation is x2þ y2þ
5xþ 4¼ 0. Hence, find the length of the intercept (i.e., chord) made by the curve on the x-axis.

Solution: Any point on x-axis, has its y-coordinate zero. Let (a, 0) be a point (on the x-axis),

which lies on the curve. Therefore, coordinates (a, 0) must satisfy the given equation.

a2 þ ð0Þ2 þ 5ðaÞ þ 4 ¼ 0

a2 þ 5aþ 4 ¼ 0 or ðaþ 4Þðaþ 1Þ ¼ 0

) a ¼�1 or a ¼�4

The required points are (�1, 0) and (�4, 0).

By the distance formula,

Length of the chord¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�4þ 1Þ2 þ ð0� 0Þ2

q
¼ 3 Ans:

(16) The distance of P(x, y) from y-axis is the perpendicular distance of P from the y-axis, which is the absolute value of

x-coordinate of P.
(17) This is the equation of a parabola, as we will see later.
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4.7 EQUATIONS OF A LINE

A line (i.e., a straight line) is a geometric object. When it is placed in a coordinate plane, the

points (in the plane) through which the line passes, satisfy certain geometric conditions. For

example, any two distinct points P(x1, y1) and Q(x2, y2) on the line, determine it completely.

Also, if the line PQ is not vertical (i.e., if the line PQ is not parallel to y-axis), then its slopem is

given by the number,

m ¼ y2 � y1

x2 � x1
¼ y1 � y2

x1 � x2
; ðx1 6¼ x2Þ

which is a constant.

To obtain the equation of a linewe use the important fact that a point P(x1, y1) and a slopem

determines a unique line. But, we know that the slopem of a horizontal line is zero and that of a

vertical line is not defined. Hence, first we consider the equations of horizontal and vertical lines.

4.7.1 Equations of x-Axis, y-Axis, and the Lines Parallel to the Axes

. Observe that the x-axis consists of all points of the form (x, 0). It means that for any point

on the x-axis, the y-coordinate is always zero. Therefore, its equation is y¼ 0.

Similarly, the y-axis consists of all points of the form (0, y). Therefore, its equation

is x¼ 0.

. Any line parallel to the x-axis consists of all points of the form (x, b). Therefore

its equation is of the form y¼ b, for some number b. Similarly any vertical line is

perpendicular to x-axis and consists of all points of the form (a, y), therefore, it has an

equation of the form x¼ a, for some number a.

Remark: In our rectangular (x, y)-coordinate system, when we set coordinate variables equal

to constants, we get two equations of lines: x¼ a is vertical line and y¼ b is a horizontal line

(Figure 4.12).

Now we will consider only the equations of nonvertical lines in the following discussion.

4.7.2 Point–Slope Form of the Equation of a Line

[To find the equation of a line having the slopem, and passing through a given point A(x1, y1)]

Let a given line “l ” have slope m and pass through the point A(x1, y1) as shown in

Figure 4.13. Let P(x, y) be any point on the line l, other than A. Then, we have to find an

algebraic condition for the point P(x, y) to lie on the line “l ”.

y

x

b

a

Equation of y-axis is
x = 0

Equation of x-axis is y = 0

Equation of this line is
y = b

Equation of this line is
x = a

FIGURE 4.12
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Since the slope of the line that joins (x1, y1) and (x, y) is also required to bem, therefore, the

condition for P(x, y) to lie on the given line is that

y� y1

x� x1
¼ m ð5Þ

or y� y1 ¼ mðx� x1Þ ð6Þ

Equation (6) is called the point–slope form of the equation of the line “l ”.

Example (10): Find a point–slope equation of the line passing through (2, 1) with the given

slope, and sketch the line.

(a) Slope 0, (b) Slope 1
2
, (c) Slope �3

Solution:Point–slope form of the equation at (6) above is, y� y1¼m(x� x1). Here, x1¼ 2 and

y1¼ 1.

For (a), we have m¼ 0. Therefore equation (6) becomes y� 1¼ 0. The line is horizontal. It is

sketched in Figure 4.14.

x

0 x1

y

P(x, y)
y1 A(x1, y1)

l

slope = m

FIGURE 4.13

Slope = –3

Slope = 0

Slope = 1

1

1 2 30

2

(2, 1)

(3, –2)

x

y

FIGURE 4.14
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For (b), we havem¼ 1/2, so that equation (2) becomes y�1¼ (1/2)(x� 2). To sketch this line,

we need a second point on it. Now, if we put x¼ 0 in this equation, we obtain y¼ 0. Thus, the

line passes through (2, 1) and (0, 0). It is also sketched in Figure 4.14.

For (c), m¼�3, so that (2) becomes y� 1¼�3(x� 2).

By choosing any (convenient) value for x, we can get a corresponding value for y, and thus

obtain the coordinates of a second point on the line. However, we give below a very useful idea

of finding the coordinates of a second point on the line.

Note that the slope of the line is �3. It tells us that by moving 1 unit to the right causes a

change of –3 units in the value of y. Therefore, with reference to the point (2, 1) on the line,

we easily get another point on the line, with the x-coordinate as 2þ 1¼ 3 and y-coordinate

as 1þ (�3)¼�2.

[Note carefully themethod of obtaining the coordinates of a new point on a line, when the slope

of the line and a point P(a, b) on the line are known.]

Now, it is easy to sketch the line passing through the points (2, 1) and (3, �2). This line also

appears in Figure 4.14.

4.7.3 Slope–Intercept Form of the Equation of a Line

The point–slope form of the equation of a line, given at (6) above can also be rewritten in the

form

y ¼ mxþ ðy1 �mx1Þ

or y ¼ mxþ b; ð7Þ

where b ¼ y1 �mx1

[Note that (y1 � mx1) is a real number.]

This form of the equation is very useful. The constant b in equation (7), has a nice inter-

pretation. If we set x¼ 0, in Equation (7), we get y¼ b. So the point (0, b) lies on the line. Note

that the point (0, b) is on the y-axis and therefore the line makes an intercept b on the y-axis. It

is for this reason that equation (7) is called the slope–intercept form of the equation of a line.

Note: The slope–intercept form of equation of a line can also be obtained as follows.

Let a nonvertical line with slope m have the y-intercept b. Then, obviously, this line passes

through the point (0, b). Now, using the available information, we may write its equation in

point–slope form as

y� b ¼ mðx� 0Þ or y ¼ mxþ b

which is in the slope–intercept form.

Note (1): For any nonvertical line, the equation of the line can always be put in the form

y¼mxþ b, in which the coefficient of x represents the slope of the line. For the line y¼ x, the

slope is 1, for y¼ b (i.e., y¼ 0�xþ b), the slope is 0, and for 3y¼ 7x� 5, the slope is 7/3.
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Note (2): A vertical line has undefined slope, so it does not have an equation of the form of

equations (6) or (7).

Example (11): Let us find the equation of the line through (2, �3) with slope 7.

Solution: The required equation is given by

y� y1 ¼ mðx� x1Þ
or y� ð�3Þ ¼ 7ðx� 2Þ
or yþ 3 ¼ 7x� 14

or y ¼ 7x� 17

Here, the y-intercept of the line is�17. If it is desired to find the x-intercept, we set y¼ 0, in the

equation and get x¼ 17/7, which is the x-intercept.

Remark: Slope–intercept form of the equation of a line involves only y-intercept of the line.

There is another form of equation called “intercept form,” which involves the x-intercept “a”

and the y-intercept “b”, both. We shall discuss about this form in Section 4.7.5.

4.7.4 Two-Point Equation of a Line

(Equation of a nonvertical line passing through two given points.)

Let l be any nonvertical line in the plane andP(x1, y1),Q(x2, y2) any two distinct fixed points

on it. Since l is nonvertical, x1 6¼ x2. The slope of the line is given by

m ¼ y2 � y1

x2 � x1
; ðx1 6¼ x2Þ

Now, using the available information, we can easily write down the equation of the line using

the point–slope form

ðy� y1Þ ¼ mðx� x1Þ ð8Þ

or ðy� y2Þ ¼ mðx� x2Þ ð9Þ

where m ¼ y2 � y1

x2 � x1

Here, it is important to note that equations (8) and (9) are equivalent.

We write the desired equation using either (8) or (9)

Using ð8Þ; we get ðy� y1Þ ¼ y2 � y1

x2 � x1
ðx� x1Þ ð10Þ

and it is called two-point equation of the line.

Similarly, using (9) we can write the two-point equation of the line as

ðy� y2Þ ¼ y2 � y1

x2 � x1
ðx� x2Þ
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It can be verified that, on simplification, this equation and the one at (10) above, give the same

equation of the line.

Note that the fractionðy2 � y1Þ=ðx2 � x1Þ, is the slope of line l, which is a constant

independent of the points (x1,y1) and (x2, y2).

Remark: For writing the equation of a nonvertical line it is a matter of convenience to use

equations (6), (7), or (10), depending on the available information.

Example (12): Let us find the equation of the line through (�5, �3) and (6, 1).

Solution: We have

Slope m ¼ y2 � y1

x2 � x1
¼ 1� ð�3Þ

6� ð�5Þ ¼
4

11

Now, we may choose any of the two given points for writing the equation of the line. If we

choose the point (�5, �3), then we get the required equation as

y� y1 ¼ mðx� x1Þ
yþ 3 ¼ 4

11
ðxþ 5Þ

or 11yþ 33 ¼ 4xþ 20

or 4x� 11y ¼ 13 ðiÞ

or y ¼ 4

11
x� 13

11
ðiiÞ

If we choose the other point (6, 1), we get the equation of the line as

y� 1 ¼ 4

11
ðx� 6Þ ðiiiÞ

Equation (iii) can be simplified to (i) or (ii).

If a line crosses the x-axis at (a, 0), then “a” is called the x-intercept of the line. To find the x-

intercept, we set y¼ 0, in the equation of the line and solve it for x. Similarly, if we set x¼ 0 in

the equation of the line, and solve it for y, we get the y-intercept of the line.We shall now obtain

the equation of a nonvertical line in the intercept form inwhich both the intercepts are reflected.

4.7.5 Equation of a Nonvertical Line in the Intercept Form (Showing Both the

Intercepts)

Let l be any nonvertical line, which makes an intercept “a” on the x-axis and an intercept “b”

on the y-axis (a 6¼ 0, b 6¼ 0).

Therefore, by definition, the points (a, 0) and (0, b) are on the line l. The slope of this line is

given by

m ¼ b� 0

0� a
¼� b

a
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Now, using the point–slope form of the equation of a line, we may write the equation of the

above line considering the point (a, 0) on the line as

ðy� 0Þ ¼� b

a
ðx� aÞ or ay ¼�bxþ ab

Dividing both sides of the equation by ab, we get

or
x

a
þ y

b
¼ 1 ð11Þ

Equation (11) is called the “intercept form” of the equation of a line.

Similarly, equation (11) can also be obtained by considering the point (0, b) on the line, and

the slope obtained above, we get y� b¼ (�b/a) (x� 0), which simplifies to equation (11).

4.7.6 General Linear Equation

(The equation of the line in the form AxþByþC¼ 0.)(18)

It would be nice to have a form of the equation that covered all lines, including vertical

lines. We have shown that the equation of a nonvertical line is of the form y¼mxþ b [or

mx� yþ b¼ 0, wherem is any real number including zero], and an equation of a vertical line

is of the form x¼ a [or xþ (0)�y� a¼ 0]. It can be shown that each of these equations is a

special case of an equation of the form

Axþ Byþ C ¼ 0 ð12Þ

where A, B, and C are constants and both A and B are not zero simultaneously. In other words,

every line has an equation of the form (12).

Theorem (1): The equation AxþByþC¼ 0, always represents a straight line, provided A

and B are not zero simultaneously.

Proof: We consider the following three cases.

Case (I): IfB¼ 0 (butA 6¼ 0), then the equation (6) becomesAxþC¼ 0 or x ¼�ðC=AÞ, which
represents a vertical line (i.e., a line parallel to y-axis).

Case (II): If A¼ 0 (but B 6¼ 0), then equation (6) becomes ByþC¼ 0 or y ¼�ðC=BÞ, which
represents a horizontal line (i.e., a line parallel to x-axis).

Case (III): IfA 6¼ 0andB 6¼ 0,wecansolve theequation foryandobtainy ¼�ðA=BÞx� ðC=BÞ,
which represents the straight line with slope �ðA=BÞ, and y-intercept �ðC=BÞ.

The converse of the above theorem, given in the following theorem, is also true.

Theorem (2): Every straight line has an equation of the form AxþByþC¼ 0, where A, B,

and C are constants, with the condition that both A and B are not zero simultaneously.

(18) An equation of this type inwhich both x and y (or onlyx or only y) appear in degree one only, is called a linear equation,

because its graph is a line.
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Proof:Given a straight line, either it cuts the y-axis or is parallel to it (or coincidentwith it).We

know that the equation of a line that has a y-intercept “b”, can be put in the form

y ¼ mxþ b ðiÞ
Further, if the line is parallel to (or coincident with) the y-axis, its equation is of the form

x ¼ x1 ðiiÞ
(or x¼ 0 in case the line coincides with the y-axis).

Both equations (i) and (ii) are of the form given in the theorem; hence the proof.

4.7.7 Slope and Intercepts of the Line AxþByþC¼ 0

The equation AxþByþC¼ 0, can be written as

By ¼�Ax� C

) y ¼�A

B
x� C

B
ðif B 6¼ 0Þ

Comparing this equation with the equation y¼mxþ b, we get

m ¼�A

B

) Slope of the line ¼� coefficient of x

coefficient of y

and y intercept ¼�C

B
ðB 6¼ 0Þ

� �

[If the equation of a line is given in the form AxþByþC¼ 0, then it is important to remember

that its slope is given by the ratio m¼ (A/B).]

Let the line AxþByþC¼ 0, intersect the x-axis in (a, 0) and y-axis in (0, b), respectively.

Then, A(a)þB(0)þC¼ 0 and A(0)þB(b)þC¼ 0.

) a ¼�C

A
ðif A 6¼ 0Þ; ) b ¼�C

B
ðif B 6¼ 0Þ

) x-intercept ¼�C

A
; and y-intercept ¼�C

B

4.8 PARALLEL LINES

If two lines have the same slope, they are parallel. For example, y¼ 2xþ 1 and y¼ 2x� 3

represent parallel lines, as both have the slope 2. The second line is 4 units below the first, for

every value of x. Similarly, the lines with equations �2xþ 3yþ 12¼ 0 and 4x� 6y¼ 5 are

parallel. (To see this, we must solve these equations for y.)

Example (13): Find the equation of the line through (6, 8) which is parallel to the line with

equation 3x� 5y¼ 11.
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Solution:We solve 3x� 5y¼ 11 for y, and we get y ¼ ð3=5Þx� ð11=5Þ. This equation shows
that the slope of this line is 3/5. Since the desired line passes through the point (6, 8), its equation

must be,

y� 8 ¼ 3

5
ðx� 6Þ

or 5y� 40 ¼ 3x� 18

or 3x� 5yþ 22 ¼ 0 Ans:

Note: If the line y¼mxþ b passes through origin, O (0, 0), then its equation will be y¼mx.

[A line drawn perpendicular to x-axis at the point (1, 0), will intersect the line y¼mx at the

point (1, m) (since y¼m, for x¼ 1). This idea is found useful in the following derivation.

4.9 RELATION BETWEEN THE SLOPES OF (NONVERTICAL) LINES THAT

ARE PERPENDICULAR TO ONE ANOTHER

There is a simple slope condition between two nonvertical lines that are perpendicular to one

another.

Method (1):

Consider two nonvertical lines l1 and l2 that are perpendicular to one another and have the

slope(s) m1and m2, respectively, as shown in Figure 4.15. Without loss of generality, we may

assume that these lines intersect at the origin, or wemay translate them, so that they intersect at

the origin, without changing their slopes.

We draw a line, perpendicular to x-axis passing through the point (1, 0). Then P(1, m1) and

Q(1, m2) are points on the lines as shown in Figure 4.15.(19)

y

slope m2

slope m1

P(1, m1)

Q(1, m2)

(1, 0)

d
r

0
s

x

l2

l1

FIGURE 4.15 Pair of non-vertical lines (through origin) and perpendicular to one another.

(19) [Hint: We know that a line with slope m passing through the origin O(0, 0) has the equation y¼mx. Thus, the

equation of l1 is y¼m1x and that of l2 is y¼m2x. Therefore, the coordinates of P (on l1) are (l,m1) and those ofQ (on l2)

are (1, m2).]
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The lines are perpendicular, if and only if, the triangle with vertices (0, 0), (1, m1) and (1, m2)

satisfies the Pythagorean relation d2¼ r2þ s2. Let us compute r2, s2, and d2 using the distance

formula. We obtain

r2 ¼ ð1� 0Þ2 þ ðm1 � 0Þ2 ¼ 1þm2
1

s2 ¼ ð1� 0Þ2 þ ðm2 � 0Þ2 ¼ 1þm2
2

d2 ¼ ð1� 1Þ2 þ ðm2 �m1Þ2 ¼ ðm2 �m1Þ2

The Pythagorean condition becomes

ðm2 �m1Þ2 ¼ ð1þm2
1Þ þ ð1þm2

2Þ
m2

2 � 2m1m2 þm2
1 ¼ 2þm2

1 þm2
2

Therefore; � 2m1m2 ¼ 2

m1m2 ¼�1

or m2¼� 1

m1

Thus, if the slope of the line l is known, then we can write the slope of another line that is

perpendicular to l. The above relation may also be obtained as follows.

Method (2):

Let l1 and l2 be two (nonvertical) lines perpendicular to one another, with slopes m1 and m2,

respectively. Let �1 and �2 be their inclinations as shown in Figure 4.16.

) tan �2 ¼ tan
p
2
þ �1

� �
¼�cot �1 ¼� 1

tan �1

) tan �1 � tan �2 ¼�1

) m1 �m2 ¼�1 ½Fromð1Þ�:

y

0

x

l1 (slope m1)

l2 (slope m2)

θ1 θ2

FIGURE 4.16 Two non-vertical lines with slopes m1, m2 and perpendicular to one another.
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Example (14): Let us find the slope of a line perpendicular to the line passing through the

points (6, �5) and (8, 3).

Solution: The slope of the given line is

Dy
Dx

¼ �5� ð3Þ
6� ð8Þ ¼ �8

�2
¼ 4

Therefore, a line that is perpendicular to the given line has slope (�1/4).

Points to Remember

1. If a line with slope m passes through (0, 0), then y¼mx is the equation of the line.

2. Consider the line l, which passes through (0, 0), and is equally inclined to both the axes.

Twocases arise. If the angle of inclination isp/4, then the slopem¼ 1, and if it is 3p/4, then
the slope m¼�1. Hence y¼ x or y¼�x, will be the equations of the line, respectively.

3. The equation of a linemay bewritten in any of the forms discussed above. The choice is a

matter of convenience and requirement.

Note: It is important to remember that, for the line y¼mxþ b (which has the slope m) the

change of 1 unit in the value of x (i.e., from x1 to x1þ 1) causes a change of m units in the

value of y (i.e., from y1 to y1þm). In other words if (x1, y1) is a point on the line, then (x1þ 1,

y1þm), (x1þ 2, y1þ 2m), (x1þ 3, y1þ 3m), and so on, are other points on the line.

4.10 ANGLE BETWEEN TWO LINES

Suppose l1 and l2 are two intersecting lines. Then,we define the angle from l1to l2 to be the angle

� through which l1 must be rotated counter clockwise about the point of intersection in order

to coincidewith l2 (see � in Figure 4.17). Thus, 0� �< p. By using trigonometric identities, we

can express � in terms of the slopes of l1 and l2.

Theorem: Let l1 and l2 be two nonvertical lines that are not perpendicular, with slopesm1 and

m2, respectively. Then, the tangent of the angle � from l1 to l2 is given by

tan � ¼ m2 �m1

1þm1m2

θ2

θ1

y

0

x

l1

l2θ

FIGURE 4.17
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Proof: Let �1 and �2 be angles with initial sides along the positive x-axis and terminal sides

along l1 and l2, respectively. For easy understanding, we choose �1 and �2 such that 0� �< p
and �2� �1. Then, �¼ �2� �1. We have

m1 ¼ tan �1

and

m2 ¼ tan �2
ð20Þ

Also, since m1m2 6¼�1 (why?)

We have

tan � ¼ tanð�2 � �1Þ ¼ tan �2 � tan �1
1þ tan �1 tan �2

¼ m2 �m1

1þm1m2

: ðProvedÞ

Note: In numerical examples, the value of tan � will sometimes be found to be negative. This

would merely mean that instead of acute angle of intersection, its supplement, which too is the

angle of intersection of the lines, is being obtained.

Example (15): Let the equations of l1 and l2 be y� 2x¼ 2 and 2yþ 5x¼ 17.

Find the tangent of the angle � from l1 to l2.

Solution: From the equation of l1 and l2, we find that m1¼ 2 and m2¼ (�5/2)

tan � ¼ m2 �m1

1þm1m2

¼ ð�5=2Þ � ð2Þ
1þ 2ð�5=2Þ ¼ �ð9=2Þ

�4

� �
¼ 9

8

4.11 POLAR COORDINATE SYSTEM

So far, we have located a point in a plane by its rectangular Cartesian co ordinates. The

position of a point in a plane may also be determined bymeans of a so-called polar coordinate

system. This system is important because certain curves have simpler equations in the polar

coordinate system.

Cartesian coordinates are numbers, the abscissa and ordinates, and these numbers are

directed distances from two fixed lines. Polar coordinates consist of a directed distance and

the measure of an angle related to a fixed point and a fixed ray (or half line).

The fixed point is called the pole (or origin), designated by the letter “O”. The fixed ray

is called the polar axis (or polar line), which we label OA. The ray OA is usually drawn

horizontally and to the right and it extends indefinitely, (see Figure 4.18). Positive x-axis is

generally taken as the polar axis and the origin (0, 0) as the pole.

LetP be any point in the plane distinct from “O”. Let � be the radianmeasure of a directed

angle AOP, positive when measured counter clockwise, and negative when measured

clockwise. Let the initial side of the angle � be the ray OA and its terminal side the ray

OP. Then the pointP can be assigned the polar coordinates (r, �), if r is taken as the undirected
distance from O to P (i.e., r¼ jOPj).

Actually, the coordinates (r, �þ 2kp), where k is any integer, give the same point as (r, �).
Thus, a given point has an unlimited number of sets of polar coordinates unlike the rectangular

(20) If �2�p (as in Figure 4.17), then tan �2¼ tan(�2�p)¼m2
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Cartesian coordinate system in which a one-to-one correspondence between the coordinates

and the positions of points in the plane exists (see Figure 4.19a–c).

Polar coordinates of a point P are also defined by considering “r” as the directed distance

fromO toP. Thus, there can be a set of polar coordinates ofP, denoted by (r, �),where r¼�jOPj.
Now, we consider polar coordinates for which r is negative. In this case, instead of being on

the terminal side of the angle, the point is on the extension of the terminal side, which is the ray

from the pole in the direction opposite to the terminal side (see Figure 4.20a and b).

Thus, the point (�4,�ð1=6Þp) shown inFigure 4.20a is the same as (4, ð5=6Þp), (4, ð17=6Þp),
and (4, �ð7=6Þp) as shown in Figure 4.19a–c, and (�4, ð11=6Þp), as shown in Figure 4.20b.

The angle is usually measured in radians. Thus, a set of polar coordinates of a point is an

ordered pair of real numbers. For each ordered pair of real numbers, there is a unique point

having this set of polar coordinates. However, we have seen that a particular point can be given

by an unlimited number of ordered pairs of real numbers.

5

0

(a) (b) (c)

A

6
πP(4,      )5

6
π

0
A

17
6

π
P(4,       )17

6
π P(4, π)7

6

0
A

7–
6

π

FIGURE 4.19

P(– 4, –    π )1
6

−    π1
6

0
A

(a) (b)

P(–4, π)11
6

π11
6

0
A

FIGURE 4.20

A0

P(r, θ)

θ

FIGURE 4.18
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4.11.1 Relation Between the Rectangular Cartesian Coordinates and the Polar

Coordinates of Point

Tofind the desired relation,we take the origin of theCartesian coordinate system and the pole of

the polar coordinate system coincident, the polar axis as the positive side of the x-axis and the

ray for which � ¼ ð1=2Þp as the positive side of the y-axis.

SupposeP is a point, whose representation in the rectangular Cartesian coordinate system is

(x, y) and (r, �) is a polar coordinate representation ofP. As a particular case, supposeP is in the

second quadrant and r> 0, as indicated in Figure 4.21.

Then

cos � ¼ x

jOPj ¼
x

r
and sin � ¼ y

jOPj ¼
y

r

Thus,

x ¼ r cos � and y ¼ r sin � ð13Þ
These equations hold for P in any quadrant and r positive or negative.

From equation (13), we can not only obtain the rectangular Cartesian coordinates of a point

when its polar coordinates are known, but we can also obtain a polar equation of a curve from

its rectangular Cartesian equation.

From equation (13) we get

x2 þ y2 ¼ r2 ðcos2 �þ sin2 �Þ ¼ r2

) r ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
ð14Þ

Also, from equation (13), we get

r sin �

r cos �
¼ y

x

) tan � ¼ y

x
ðif x 6¼ 0Þ ð15Þ

P

0

θ

y

y

(x, y)

r

(r, θ )

x

x

FIGURE 4.21
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Note: If a curve in a plane is expressed in polar coordinates, say r¼ f(�) then r and � both vary
from point to point on the curve.

Note: For the purpose of learning basic calculus, the material given in this chapter will prove to

be sufficient. However, the subject of coordinate geometry is a very useful subject and can be

easily learnt from standard books. This study will be found useful in realizing and appreciating

the simpler methods, later offered by calculus, in studying many properties of curves,

represented by functions. Some details about conic sections and their identification by

Translation of Axes are given in Appendix B.
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5 Trigonometry and Trigonometric
Functions

5.1 INTRODUCTION

The word trigonometry is derived from two Greek words, together meaning measuring the

sides of a triangle. The subject was originally developed to solve geometric problems involving

triangles. One of its uses lies in determining heights and distances, which are not easy to

measure otherwise. It has been very useful in surveying, navigation, and astronomy. Applica-

tions have now further widened.

At school level, in geometry, we have studied the definitions of trigonometric ratios of

acute angles in terms of the ratios of sides of a right-angled triangle.

sin � ¼ P

H
; cos � ¼ B

H
; tan � ¼ P

B

cosec � ¼ H

P
; sec � ¼ H

B
; cot � ¼ B

P

9>=
>;

Note that in the right-angled triangle OAR, if the lengths of the sides are respectively denoted

by B (for base), P (for perpendicular), and H (for hypotenuse), as shown in Figure 5.1, then

the angle � (in degrees) is an acute angle (i.e., 0� <�< 90�). It is for such angle(s) that we have
defined trigonometric ratios in earlier classes.(1)

Now, in our study of trigonometry, it is required to extend the notion of an angle in such a

way that its measure can be of any magnitude and sign. Once this is done, the trigonometric

ratios are defined for angles of all magnitudes and sign. Finally, by identifying thesemagnitudes

and signs of angles, with real numbers, we say that the trigonometric ratios of directed angles

represent trigonometric functions of real variables. This is achieved by defining trigonometric

ratios of any angle expressed in radians. To enjoy the subject of trigonometry, it is useful to start

our study right from the concept of directed angles and the radian measure of an angle.

What must you know to learn calculus? 5-Trigonometry and trigonometric functions [Concept of angle, directed

angle(s) of any magnitude and sign, extending the concept of trigonometric ratios (of acute angles) to trigonometric

functions of real variable]

Introduction to Differential Calculus: Systematic Studies with Engineering Applications for Beginners, First Edition.
Ulrich L. Rohde, G. C. Jain, Ajay K. Poddar, and Ajoy K. Ghosh.
� 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

(1) For beginners, the trigonometric ratios are not considered for the angles of 0� and 90�, since the triangle does not exist
for these values of �. Also, since the above trigonometric ratios are found sufficient in solving the problems related to

heights and distances and for studying trigonometric identities, the notion ofdirected angles is not introduced for beginners

to avoid difficulties likely to be faced by them.
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5.2 (DIRECTED) ANGLES

Definition: In geometry, an angle is considered as themeasure obtained by rotating a given ray

about its end point.

. The original ray is called the initial side and the finial position of the ray (after rotation) is

called the terminal side of the angle (Figure 5.2).

. The point of rotation is called the vertex.

. If the direction of rotation is anticlockwise, the angle is said to be positive; and if the

direction of rotation is clockwise, the angle is negative.

5.2.1 An Angle in Standard Position

Adirected angle is said to be in standard position if its vertex lies at the origin and the initial side

lies on the positive side of the x-axis. Figure 5.3 shows an angle AOB in standard positionwith

OA as the initial side.

We know that the angleAOB can be formed by rotating the sideOA to the sideOB and, under

such a rotation, the point Amoves along the circumference of a circle having its center atO and

radius jOAj to the point B.

5.2.2 Measure of an Angle

. The measure of an angle is the amount of rotation performed to get to the terminal side

from the initial side.

Note (1): The definition of an angle suggests a unit, namely, one complete revolution, from the

position of the initial side, as shown in Figure 5.4.

R

O A

P (Perpendicular)(Hypotenuse) H

B (Base)

θ

FIGURE 5.1 Right angled triangle defining trigonometric ratios.

B

A

(a) (b)

O
Vertex

Terminal si
de

Initial side

A

B

O
Vertex

Terminal side

Initial side

FIGURE 5.2 (a) Positive angle. (b) Negative angle.
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This unit that is based on a complete revolution is often convenient for large angles.

For example, an engineer might speak of a spinning wheel making say 15 revolutions

per minute.(2)

There are several units of measuring angles. We describe below two units of measuring of

an angle that are most commonly used. One is the degree and the other is the radian measure

of an angle.

5.2.3 Degree Measure of an Angle

If a rotation from the initial side to the terminal side is ð1=360Þth of a revolution, the angle is said
to have a measure of 1�. For additional precision, we define two subunits of a degree by the

following relations:

60minutes (written as 600) ¼ 1� (one degree)
60 seconds (written as 6000) ¼ 10 (one minute)

In dealing with problems involving angles of triangles, the measurement of an angle is usually

given in degrees.(3)

x

y

B

AO

FIGURE 5.3 Angle in standard position.

A

B

Initial side

Terminal side
O

FIGURE 5.4

(2) The idea of spinning wheel making large angle(s) suggests that one may generate angles of any magnitude and sign.
(3) There is no deep reason for choosing the number 360. Early astronomers, with their imperfect instruments, thought that

the earth took 360 days to circle the sun, and hence divided a circle into 360 equal parts. Onemay wonder what theywould

have done had they known that this number was nearly 3651
4
, which itself is not accurate. So the choice is between 360 and

365 1
4
. When an angle is measured in degrees, minutes, and seconds, the system of measurement is called the sexagesimal

system of measurement, because it is based on multiples of 60.
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However, in calculus, we are concerned with trigonometric functions of real numbers, and

these functions are defined in terms of the radian measure of an angle.

5.2.4 Definition of Radian Measure of an Angle

Consider two concentric circles with B as their (common) center. Let the radius of the inner

circle be one unit and that of the outer circle be r units, as shown in Figure 5.5.

The radian measure of angle ABC at the center B of the unit circle is defined to be the length

of the circular arc AC.

IfA0C0 (¼ s) is the arc cut by the (same) angle from a second circle (which is the outer circle,

in Figure 5.5), then the circular sectors A0BC0 and ABC are similar. In particular, their ratios of

arc length to radius are equal. We denote this equality by the constant �.
In the notation of Figure 5.5, this means that

length of arc A0C0

r
¼ length of arc AC

1
¼ �

or

s

r
¼ length of arc AC ¼ � ð1aÞ

This is true no matter how large or small the radius of the second circle may be. Thus, for any

circle centered at B, the ratio s=r (of the length of the intercepted arc to the radius of the circle)
always gives the radian measure of the angle.

Equation (1a) is sometimes written in the form

s ¼ r� ð1bÞ

Equation (1b) can be used to find out any one of the related quantities (i.e., s, r, or �) if the other
two are known. Generally, this equation is used to compute the arc length s, when r and �
are known.

B

Center

C s

A

r

θ

1
A′

C′

FIGURE 5.5 Radian measure of an angle.
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Note (1): Equation (1b) is also useful in defining an angle of 1 rad, which is the unit angle in

radian measure. If we put r ¼ 1 in equation (1b), then the central angle �, in radians, is just

equal to the length of the circular arc AC, as defined above.

Definition: 1 rad is the measure of a central angle, subtended by a circular arc whose length is

equal to the radius of the circle (Figure 5.6).

Note (2): Although angles can be expressed (or measured) in degrees or radians, we will here

use only radian measure of angles, unless otherwise indicated. This will be convenient in our

study of calculus.

The circumference of a circle is approximately 6.28 times its radius. In other words, the

angle subtended by the circumference of a circle at the center is approximately 6.28 rad.(4)

Note (3): The length of circumference of a circle is given by 2pr, so for a unit circle, the

circumference equals the length 2p. Thus, p can be interpreted in two ways:

. When speaking in terms of the length of a circular arc of unit circle,p represents the length
of half the circumference of unit circle, and so it stands for a real number � 3.14159. . .
(note that this number is half of the number 6.28. . ., mentioned above).

. When speaking of angles, the unit circle subtends an angle of 2p rad at its center (or 360�).
It follows thathalf thecircle subtends theangleofp radat thecenter.Thus,p standsfor180�.

Remark: It is important to clearly understand that p never represents the number 180. When

expressing an angle in terms ofp, the statement 180� ¼ p should be read as 180� ¼ p rad. Thus,
the reader should mentally imply the word radians to avoid confusion between p and 180�.

(Note that, in the expression p rad, p is the coefficient of the unit radian and, therefore, it

must be looked upon as a real number.)

5.2.4.1 Angle of AnyMagnitude and Sign Suppose a ray starting from the initial position is

rotated about the vertex,more than one rotation in positive (or negative direction). Then, we can

generate angles of desired magnitude and sign, as indicated in Figure 5.7.

A

B

O
1 Radian

rr

r

A

B

O
1 Radian

11

1

B

A

1
1

1
O

–1 Radian

FIGURE 5.6 Angle of one radian.

(4) Radian measure of an angle assumes that we know how to measure the length(s) of circular arc(s). Later on, when we

discuss Integration, wewill show how this can be done. For the present, we agree that the circumference of a circle is 2pr,
where r is the radius of the circle. In other words, we agree that p is the ratio of circumference of a circle to its diameter. It is

true thatp is related to the circle, but it also appears inmany (definite) integrals and in sum (s) of certain infinite series. From

this point of view, one should not carry an impression that p is related only to the circle. It arises inmathematics in the same

wayas the number e arises in calculus. (Bothp and e are special types of irrational numbers, called transcendental numbers.)
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5.2.4.2 Zero Angle and Straight Angle

Zero Angle: Suppose the given rayOA is not rotated about the vertexO, then we say that the

measure of the angle at the point O is zero (Figure 5.8).

Straight Angle: Suppose the given ray OA rotates half the circle (so that it occupies the final

position OB opposite to the direction of OA), then the measure of the angle AOB will be 180�

(or �180�) depending on the direction of rotation of the line OA about the vertex. It is called

straight angle (Figure 5.9).

5.2.4.3 The Concept of Positive and Negative Arc Lengths Consider a circle centered at

the origin, with arbitrary radius r> 0. We place an angle of � rad (in the circle) in standard
position (so that its vertex is at the origin and its initial side is on the positive side of the x-axis.

If � � 0, then it opens counterclockwise (Figure 5.10a), and if �< 0, it opens clockwise

(Figure 5.10b).

We allow � to be greater than 2p (i.e., 360�). For example, an angle of 3p rad can be obtained
by rotating a line through one full revolution (2p rad) and an extra half-revolution. Thus, an

angle of 3p rad has the same initial and terminal side as an angle of p rad.

Since, the circle contains 2p rad and its circumference is 2pr, an angle of 1 rad intercepts an
arc of length r on the circle. If �> 0, an angle of � rad intercepts an arc of length r� on the circle.
If we denote this arc length by s, we have

s ¼ r�

y

(a) (b)

x

5⎯
2

O

π

x

y

O

13⎯
4– π

FIGURE 5.7 Angle of desired magnitude.

O A
Angle of measure zero

FIGURE 5.8 Angle of measure zero.

A
A

B
B

180° –180°

FIGURE 5.9 Straight angle.
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For �< 0, formula (1) holds if we think of s as the negative of the length of the arc intercepted on

the circle (Figure 5.10b).

(Note that for the purpose of defining directed angles, we have agreed to accept the idea of

positive and negative arc lengths, which is otherwise meaningless.)

5.2.5 Relation Between Degree and Radian Measures of an Angle

A circle subtends at the center an angle whose degreemeasure is 360� and radian measure is 2p
rad (Figure 5.11). It follows that

360� ¼ 2p rad ðAÞ
180� ¼ p rad � 3:1415 rad

180�

p
¼ 1 rad � 57�17044:800

and

1� ¼ 2p
360

¼ p
180

� 0:01745 rad

(Here the values of 1 rad and 1� are computed assuming p � 22/7.)

x

0 r

r

y

(a) (b)

(x, y)

Lenght s = rθ
θ x

0 r
r

y

(x, y)

Negative of
the lenght
 s = rθ

θ

FIGURE 5.10 Positive and negative arc-lengths.

360°
2π rad 

FIGURE 5.11 Angle of 360� or 2p radians.
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Remark: In the equation (A), it will be more appropriate to use the symbol� instead of using

the symbol of equality (i.e., ¼ ), which tells that the given measurements are for the same or

congruent angles.

Thus, we have(5)

x rad ¼ 180

p

� �
:ðxÞ�

and

x� ¼ p
180

� �
:ðxÞ rad

9>>>>>=
>>>>>;

Table 5.1 on conversion is very often useful in trigonometry.

Now, note that

162� ¼ 162 � p
180

rad ¼ 9

10
p rad

and

5

12
p rad ¼ 5

12
p � 180

�

p
¼ 75�

It should be emphasized, however, that the radian measure of an angle is dimensionless.

Note that r and s [in equation (1a)] represent lengthsmeasured in identical units, so that the units

get canceled.

5.2.6 Relation Between the Radian Measure and Real Numbers

Consider the unit circlewith center at the originO. LetA be any point on the circle so thatOA is

the radius of the circle and we consider it as the initial side of an angle (Figure 5.12a). We may

imagine the circumference of the circle marked of with a scale from which we may read �.
The unit on this number scale is the same as the unit radius (Figure 5.12b).

Now, let a line PQ be tangent to the unit circle and let the pointO be marked on it as 0 of the

number scale based on the unit radius.We place the pointO of the line at the pointA of the circle

so that the line PAQ is tangent to the circle at A.

We know that the length of an arc of the circle will give the radian measure of the angle,

which the arcwill subtend at the center of the circle. Thus, the pointA represents the real number

0 on the tangent line, AP represents the positive side of tangent line, and AQ represents the

negative side.

TABLE 5.1 Measure of Some Useful Angles in Degrees with their Corresponding Measure

in Radians

Degrees 0� 30� 45� 60� 90� 120� 135� 150� 180� 270� 360�

Radians 0
p
6

p
4

p
3

p
2

2p
3

3p
4

5p
6

p
3p
2

2p

(5) For converting radians into degrees and vice versa, it is useful to remember that 1 rad is a bigger angle, nearly 57 times

bigger compared to 1�. Hence, for converting radians into degrees, wemust multiply the radian measure by a bigger factor

180/p. On the other hand, the degree measure must be multiplied by a smaller factor p/180 to convert it to radians.
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If we wrap the line AP around the circle in the counterclockwise direction and AQ in the

clockwise direction, then every real number on the tangent line will correspond to a radian

measure and conversely (every radian measure will correspond to a real number). Thus, radian

measures of angles with reference to the unit circle can be considered to represent the real

numbers having the same magnitude and sign.

5.2.6.1 ConventionAbout theNotation If the angles aremeasured in degrees or radians, we

adopt the convention thatwheneverwewrite angle ��, wemean the anglewhose degreemeasure

is �, andwheneverwewrite angle � (i.e., without superscript �),wemean the anglewhose radian

measure is �. Thus, in the expression sin 30�, measure of the angle is 30�; whereas in cos 75, the
number 75 represents the radian measure of the angle involved and also the number 75.

Now, we are in a position to extend the definitions of the trigonometric ratios for angles of

any magnitude and sign. Such angles can be generated by rotating the initial side (about its

vertex) in the desired direction to any desired extent.

5.2.7 Trigonometric Ratios for Angles of Any Magnitude and Sign: Definitions

of Trigonometric Functions

Let an angle of � rad be placed in standard position in a circle of radius r. The terminal side of

the angle intersects the circle at a unique point (x, y) (see Figure 5.13a).We define the sine and

cosine functions of � by

sin � ¼ y

r
and cos � ¼ x

r
ð2Þ

In Figure 5.13a,x, y, and r represent the sides of a right-angled triangle and � is the angle that the
revolving line OP makes with the x-axis. In fact, the definitions of trigonometric functions at

equation (2) are the same as the definitions of trigonometric ratios given for acute angle(s).

P

(a) (b)

Q
–2

–1

0

1

2

A1

O

3

2
1 rad

0.3
0.2
0.1

0.1 0.2 0.3

0.5 rad
0.4 rad
0.3 rad
0.2 rad
0.1 radθ = 1.2 rad

6

5

4

FIGURE 5.12 An angle in radians looked upon as a real number.
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Here, it is important to keep in mind that the angle � can be of any magnitude and sign.

Therefore, the terminal sideOP can be in any quadrant. Thus, the angle � that the revolving line
makes with the x-axis need not be acute. However, we define the trigonometric function of the

angle � with reference to the right-angled triangle in which the revolving line (as hypotenuse)
makes the angle � with the x-axis. Obviously, � may be acute or obtuse or negative.

The properties of similar triangles imply that sin � and cos � depend only on � and not on the
value of r (Figure 5.13b).

From equation (2) above, we get that if r ¼ 1,

x ¼ cos � and y ¼ sin � ð3Þ

Since, the angle � (in radians) represents a real number, which can assume any real value

in (�1, 1), the domains of both sin � and cos � are (�1, 1).

[Note that, in the expression sin �, � represents a number. Thus, we write sin 3 to mean

sin (3 rad).]

y

P(x, y)

θ y
x

x

r

O

(a)

O

(b)

O

x x

yy

P(x′, y′)

P(x′, y′)

P(x, y)

P(x, y)

θ
θ

M M

(ii)(i)
M′ M′X X

FIGURE 5.13 Angle � in standard position.

106 TRIGONOMETRYAND TRIGONOMETRIC FUNCTIONS



5.2.7.1 Periodic Functions: sin u and cos u Since an angle of � rad (0� �< 2p) and the one
of (� þ 2p) radians have the same terminal side, we can write

sin � ¼ sin ð�þ 2pÞ and cos � ¼ cos ð�þ 2pÞ
Thus, the values of sine and cosine functions repeat for an interval of 2p rad. We say that both

sine and cosine functions are periodic; they both have a period of 2p. Consequently, for any
integer n and any number �,

sin � ¼ sin ð�þ 2npÞ and cos � ¼ cos ð�þ 2npÞ ð4Þ
Coterminal Angles The angles that differ in their measure by an integral multiple of 360�

(¼ 2pc) are called coterminal angles. They have the same initial arm and the same terminal arm.

5.2.8 Defining Other Trigonometric Functions using Sine and Cosine Functions

There are four other basic trigonometric functions that are defined in terms of sin � and cos �.
Remembering that sin � ¼ y=r; cos � ¼ x=r, we define

tan � ¼ sin �

cos �
¼ y

x
; x 6¼ 0 cot ¼ cos �

sin �
¼ x

y
; y 6¼ 0

sec � ¼ 1

cos �
¼ r

x
; x 6¼ 0 cosec � ¼ 1

sin �
¼ r

y
; y 6¼ 0

9>>=
>>;

The values of these functions can be quickly computed from the corresponding values of sin �
and cos �.

5.2.9 A Simple Approach for Calculating the Values of sin u and cos u

Let (x, y) be a point on the standard unit circle. Then, using equation (3), we can express the

coordinates (x, y) on the unit circle by (x, y) ¼ (cos �, sin �).
Thus, x ¼ cos � and y ¼ sin � (see Figure 5.14).

These values of cos � and sin � are called their line values and can be conveniently used for
drawing their graphs. Also, graphical methods are available to find the line values of other

trigonometric functions.

x

y

|y|

|x|

(x, y) = (cos θ, sin θ)

1

1

θ

FIGURE 5.14 The acute reference triangle for an angle �.
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Observe that (in Figure 5.14), the revolving line that makes the angle �with the x-axis lies in
the second quadrant. If we drop a perpendicular from the point (x, y) on the x-axis, we get

xj j ¼ cos �

that is,

�x ¼ cos � )x < 0½ 	

and

yj j ¼ sin �

that is,

y ¼ sin � )y > 0½ 	

Thus, we get that the sign of cos � is always the sign of x-coordinate and the sign of sin � is

the sign of y-coordinate. Now, recall that in the second quadrant, x-coordinate is negative and

y-coordinate is positive. Thus, the values of cos � and sin � expressed above are consistent with
their definitions at equation (3).

Important Note: Figure 5.14 suggests that the values of cos � and sin � can be calculated from
an acute reference triangle, made by dropping a perpendicular to the x-axis, as shown in the

figure. The ratios are read from the triangle, and the signs determined by the quadrant in which

the angle lies.(6)

In fact, the method for calculating the values of sin � and cos � discussed above is applicable
for any location of revolving line in the standard unit circle.

5.2.9.1 Values of sin u and cos u for Some Standard Angles. For certain values of �, the
values of sin � and cos � are easily obtained by placing the angle in a unit circle in standard

position (see Figure 5.15).

We observe that

sin 0 ¼ 0 and cos 0 ¼ 1

sin
p
4
¼ 1

2

ffiffiffi
2

p
and cos

p
4
¼ 1

2

ffiffiffi
2

p

sin
p
2
¼ 1 and cos

p
2
¼ 0

sin p ¼ 0 and cos p ¼ �1

sin
3p
2

¼ �1 and cos
3p
2

¼ 0

Table 5.2 gives these values and some others that are frequently used.

Note that in Table 5.2, a simple scheme is given for remembering the values of sin �
and cos �.

(6) It must be clear that in the acute reference triangle, the trigonometric ratios are read with reference to the acute angle

made by the revolving line with the x-axis. It is this acute angle that lies in the quadrant in which the revolving line lies.
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5.2.9.2 The Relations sin (�u) ¼ �sin u and cos (�u) ¼ cos u Figure 5.16a and b shows

two angles of opposite sign but of equal magnitude. The rays of the two angles t and (�t)

intersect the circle at the points (x, y) and (x, �y), respectively. Each has equal x and y

coordinates in magnitude, but the y-coordinates differ in sign.

From the above figure, we have

sin ð��Þ ¼ �y

r
¼ � y

r
¼ sin � and cos ð��Þ ¼ x

r
¼ cos � ð6Þ

Remark: To define the radian measure of an angle, we use a circle. Hence, trigonometric

functions of real variables are also called circular functions.

5.3 RANGES OF SIN u AND COS u

We know that the domains of sin � and cos � are (�1,1) (see Section 2.7). In the reference

right-angled triangle (Figure 5.13a), we have, x2 þ y2 ¼ r2.

(0, –1)

x

π

ππ

π
y

C(–1, 0) (1, 0)1
4
–3

2
–

1
2
– 1

2
–

1
2
–

(   √
–
2,     √

–
2 )

(0, 1)

FIGURE 5.15

TABLE 5.2 A Simple Scheme Indicating the Values of Basic Trigonometric Functions, for

Important Angles

0 0 p/6 p/4 p/3 p/2 2p/3 3p/4 5p/6 p

(0�) (30�) (45�) (60�) (90�) (120�) (135�) (150�) (180�)

sin �
ffiffiffiffiffiffi
0
4

� �q ffiffiffiffiffiffi
1
4

� �q ffiffiffiffiffiffi
2
4

� �q ffiffiffiffiffiffi
3
4

� �q ffiffiffiffiffiffi
4
4

� �q ffiffiffiffiffiffi
3
4

� �q ffiffiffiffiffiffi
2
4

� �q ffiffiffiffiffiffi
1
4

� �q ffiffiffiffiffiffi
0
4

� �q
0 1

2

ffiffi
2

p
2

ffiffi
3

p
2

1
ffiffi
3

p
2

ffiffi
2

p
2

1
2

0

cos �
ffiffiffiffiffiffi
4
4

� �q ffiffiffiffiffiffi
3
4

� �q ffiffiffiffiffiffi
2
4

� �q ffiffiffiffiffiffi
1
4

� �q ffiffiffiffiffiffi
0
4

� �q
�

ffiffiffiffiffiffi
1
4

� �q
�

ffiffiffiffiffiffi
2
4

� �q
�

ffiffiffiffiffiffi
3
4

� �q
�

ffiffiffiffiffiffi
4
4

� �q
1

ffiffi
3

p
2

ffiffi
2

p
2

1
2

0 � 1
2

�
ffiffi
2

p
2

�
ffiffi
3

p
2

�1
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Since r 6¼ 0, we get

x2

r2
þ y2

r2
¼ 1 or

x

r

� �2

þ y

r

� �2

¼ 1 or ðcos �Þ2 þ ðsin �Þ2 ¼ 1

We write (cos �)2 ¼ cos2�, (sin �)2 ¼ sin2 �, and so on.

) cos2�þ sin2 � ¼ 1 ð7Þ
) cos2 � � 1 and sin2 � � 1ð7Þ

Since cos2 � and sin2 � are nonnegative, the minimum value of cos2 � and sin2 � can be 0.

Therefore, from equation (A) above, the maximum value of cos2 � and sin2 � is 1.

) � 1 � cos � � 1 and � 1 � sin � � 1

Thus, range of both these functions is the closed interval [�1, 1].

5.3.1 Domains and Ranges of tan u, sec u, cot u, and cosec u

We have

tan � ¼ sin �

cos �
¼ y

x
; x 6¼ 0; and sec � ¼ 1

cos �
¼ r

x
; x 6¼ 0

Thus, tan � and sec � are not defined for those values of � for which x ¼ 0.

(In radian measure, this means that ðp=2Þ; ð3p=2Þ; . . . ; � ðp=2Þ; � ð3p=2Þ; . . . are

excluded from the domains of the tangent and the secant functions.)

Similarly, cot � and cosec � are not defined for those values of �, for which y ¼ 0. Thus,

� ¼ 0, p, 2p, . . ., �p, �2p, . . . are excluded from the domains of cot � and cosec �.

y

x

(a) (b)

O

θ

−θ

(–x, y)

(–x, –y)

y

x

O

θ

−θ

(x, y)

(x, –y)

FIGURE 5.16

(7) This conclusion can also be drawn as follows. We know that the square root of a positive number is its principal square

root, by which we mean its positive square root. Therefore, by taking the square root on both sides of the inequalities

cos2 � � 1 and sin2 � � 1, we get
ffiffiffiffiffiffiffiffiffiffiffiffi
cos2 �

p
¼ jcos �j �1 and

ffiffiffiffiffiffiffiffiffiffiffi
sin2 �

p
¼ jsin �j � 1 or cos �� j1j and sin �� j1j. Then, by

definition of absolute value we get �1� cos �� 1 and �1� sin �� 1.
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Note: The values of � for which these functions are defined, we have

tan � ¼ sin �

cos �
; cosec � ¼ 1

sin �
; sec � ¼ 1

cos �
; cot � ¼ 1

tan �
ð8Þ

These relations (being the basic definitions of trigonometric functions) are very important.

The domains and ranges of trigonometric functions are given in Table 5.3.

5.4 USEFUL CONCEPTS AND DEFINITIONS

(a) Trigonometric Ratios of Coterminal Angles: The trigonometric ratios are defined in

terms of coordinates (x, y) of a point P and its (constant) distance r from the origin.

Accordingly, the trigonometric ratios of coterminal angles are equal. Thus, the tri-

gonometric ratios of 60� and anyother angle ofmeasure 60� þ (n
 360�) (where n is an
integer) are same.

(b) Trigonometric Ratios of an Angle of LargeMeasure: To find the trigonometric ratios of

an angle of large measure (which is greater than 360�), we find one coterminal angle

whose measure � is such that 0 � �< 360�.
Then, the trigonometric ratios of the angle � are the same as the trigonometric ratios of

the given (large) angle. Furthermore, the concept of allied angles [discussed below in

(e)] will be found useful in computing the trigonometric ratios of any angle in terms of

the trigonometric ratios of any (small) angle � where 0<�< 90�.
(c) Quadrantal Angles: All angles that are integral multiples of p/2 are called quadrantal

angles: Some such angles are shown in the Figure 5.17.

(d) Definition (Angle in a Quadrant): An angle is said to be in a quadrant in which the

terminal side of the angle lies.(8)

(e) Allied Angles: Two angles are said to be allied angles if the sum or difference of their

measures is either zero or an integral multiple of 90�. Thus, if � is themeasure of a given

angle, then the angles whose measures are ��, 90� � �, 180� � �, 270� � �, 360� � �,

TABLE 5.3 Domains and Ranges of Trigonometric Functions

Function Domain Range

(1) sin � ¼ y=r All real numbers �1 � sin � � 1

(2) cos � ¼ x=r All real numbers �1 � cos � � 1

(3) tan � ¼ y=x All real numbers except �p/2, �3p/2, . . . All real numbers

(4) cot � ¼ x=y All real numbers except 0, �p, �2p, . . . All real numbers

(5) sec � ¼ r=x All real numbers except �p/2, �3p/2, . . . sec � � �1 and sec � � 1

(6) cosec � ¼ r=y All real numbers except 0, �p, �2p, . . . cosec � � �1 and cosec � � 1

(8) Note that for an obtuse angle �, the terminal side lies in the second quadrant, whereas the angle � covers partly the second

quadrant (see Figure 5.14). However, in view of this definition, the acute angle (180� � �) in the second quadrant is

considered for defining the trigonometric ratios of the angle �. This definition is important because we can define sin � and

cos � by considering the reference right-angled triangle in the second quadrant, in which the terminal arm (lying in the

second quadrant) is taken as hypotenuse, and the acute anglemadewith the x-axis is taken as the reference angle. The same

understanding is applicable for the location of the terminal arm in any quadrant.
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and so on are its allied angles. Our interest lies in finding their trigonometric ratios in

terms of those of �.
If we are given an angle of any measure (large or small), then its trigonometric

ratios can be found in terms of trigonometric ratios of a small angle � (where � lies
between 0� and 90�). For this purpose, we must express the given angle in the form of

an allied angle.

If the trigonometric ratios of the (small) angle � are known, then the procedure that
we are going to discuss will help us find the trigonometric ratios of the given angle in

terms of those of �. The procedure (i.e., the rules) under consideration suggests that for
writing the trigonometric ratios of allied angles, we shall need the sine and cosine

ratios of 90� and 180�.
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2 x
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FIGURE 5.17 Coterminal angles.
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In fact,we have already obtained thevalues of trigonometric ratios of 0�, 90�, and 180� using the
unit circle in the standard position and have reflected them in Table 5.2 alongwith the values for

some other angles frequently used. Besides, the tables for trigonometric ratios for angles of

measures between 0� and 90� have been published. This can be used to find the trigonometric

ratios of angles of large measures.

Note:Here, it may bementioned that the trigonometric ratios of the angles ofmeasure 30�, 45�,
and 60� can be easily obtained by drawing the right-angled triangles and using geometry. It is

convenient to take a hypotenuse of unit length.

Wegive three important points for expressing trigonometric ratios of an allied angle in terms

of an angle � whose trigonometric ratios are known.

(i) The signs of trigonometric ratios are governed by the location of terminal side in

different quadrants. This is indicated in the following graph.

sin and cosec positive, all others negative (second
quadrant)

tan and cot positive, all others negative (third 
quadrant)

cos and sec positive, all others negative (fourth 
quadrant)

(–, +) (+, +)

(–, –) (+, –)

All ratios positive (first quadrant)

Note: Observe that every trigonometric ratio (and its reciprocal) has a positive sign in

two quadrants and a negative sign in the remaining two quadrants. Therefore, if a single

trigonometric ratio is given, then it is not possible to determine exactly the quadrant in

which the terminal side is located.

For example, both sin 30� and sin 150� have the same value 1/2. Similarly, both cos

45� and cos�45� have the same value
ffiffiffi
2

p
=2 and likewise tan 60� and tan 240� have the

same value
ffiffiffi
3

p
=2.

The location of the terminal side (and hence the measure of angle involved) can

be uniquely determined iff the values of two independent trigonometric ratios are given.

This will become more clear from the solved examples to follow subsequently.

(ii) If the revolving line bounds the angle �withx-axis, then the trigonometric ratio remains

unchanged, when expressed in terms of �, while the sign of the ratio is governed by (i)
above.

Example (1):

sin 210� ¼ sin ð180� þ 30�Þ ¼ �sin 30

sec ð150�Þ ¼ sec ð180� � 30�Þ ¼ �sec 30�
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(iii) If the revolving line bounds the angle �with y-axis, then the trigonometric ratio changes

to the corresponding coratio, when expressed in terms of �, the sign of the ratio being
governed by (i) above. Thus,

sin 120� ¼ sin ð90� þ 30�Þ ¼ cos 30�

tan 240� ¼ tan ð270� � 30�Þ ¼ cot 30�

cot 300� ¼ cot ð270� þ 30�Þ ¼ �tan 30� and so on

5.5 TWO IMPORTANT PROPERTIES OF TRIGONOMETRIC FUNCTIONS

Nowwe introduce the following notions that will be needed to define two important properties

of trigonometric functions.

5.5.1 Notion of Even and Odd Functions

5.5.1.1 Even Function A function is said to be even if f(�x) ¼ f(x) for all x.

Example (2):

(a) A polynomial function of the following form is an even function:

pðxÞ ¼ a0 þ a1x
2 þ a2x

4 þ . . .þ anx
2n

Observe that the power of x in each term is an even integer.

(b) We have already seen that cos (�x) ¼ cos x for all x. Thus, the cosine function is an

even function.

(c) A constant function is always even (how?).

5.5.1.2 Odd Function A function f is said to be odd if f(�x) ¼ �f(x) for all x.

Example (3):

(a) It can be easily verified that the functions f(x) ¼ x and g(x) ¼ x3 are odd functions.

In fact, any polynomial function in which the power of each term is an odd integer is

an odd function.

(b) We have also seen that for all x,

sin ð�xÞ ¼ �sin x

tan ð�xÞ ¼ �tan x

Thus, the sine and the tangent functions are odd functions.

Note: The property of functions whether even or odd is very useful. In particular, it helps in

drawing graph of such functions.
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5.5.2 The Notion of Periodic Function

Definition: A function f: R!R is said to be periodic, if there exists a real number p (p 6¼ 0)

such that f(x þ p) ¼ f(x) for all x 2 R.

Period of a Periodic Function: If a function f is periodic, then the smallest p> 0, if it exists

such that f(x þ p) ¼ f(x) for all x, is called the period of the function. Obviously, the period

of the sine and cosine functions is 2p. It can be shown that the period of the tangent function

(and that of the cotangent function) is p.

Remark: Aperiodic functionmaynothaveaperiod.Note that a constant function f isperiodic as

f(x þ p) ¼ f(x) ¼ constantforallp> 0;however, thereisnosmallestp> 0forwhichtherelation

holds.Hence, there is noperiodof this function, though it is periodicbydefinition.Theperiodicity

of trigonometric functions helps us to compute their values for large angles greater than 2p.

5.6 GRAPHS OF TRIGONOMETRIC FUNCTIONS

The graph of a periodic function is completely known once we know it over an interval whose

length is equal to the period of the function. We have already seen that values of sin x and cos x

repeat after an interval of 2p. Hence, values of cosec x and sec xwill also repeat after an interval
of 2p. Also,we know that tan (p þ x) ¼ tanx. Hence, value of tanx is repeated after an interval

of p. Using this knowledge and the behavior of trigonometric functions, we can sketch the

graphs of these functions, as given in Figure 5.18a–f.

5.7 TRIGONOMETRIC IDENTITIES AND TRIGONOMETRIC EQUATIONS

Definition: An equation involving trigonometric functions, which is true for all those angles

for which the functions are defined, is called a trigonometric identity. For example, the

statements, sin2 � þ cos2 � ¼ 1 and sin 2� ¼ 2 sin ��cos � are trigonometric identities. They are

true for all values of �. Similarly, the statement tan � ¼ sin �/cos � is a trigonometric identity.

It holds for all �, except for those values for which cos � ¼ 0.

Note: In a trigonometric identity, two or more numbers (i.e., angles in radians) may be

connected by a relation existing among their circular functions, as shown in the statement

sin 2� ¼ 2sin ��cos �.

Definition: An equation of the form

sin � ¼ cos �

is a trigonometric equation but not a trigonometric identity, because it is not true for all �. For
example, if � ¼ p/2, then sin (p/2) ¼ 1, whereas cos p/2 ¼ 0. Thus, sin � 6¼ cos �, for � ¼ p/2.

Note:Trigonometric identities and solutions of trigonometric equations are very important and

useful in various problems of engineering and science. Simple methods are available to obtain

the solutions of trigonometric equations.(9)

(9) Solutions of trigonometric equations:
. The solutions of trigonometric equations for which 0� �< 2p are called principal solutions.
. The solution involving integer n that gives all solutions of a trigonometric equation is called the general solution
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Here, we shall obtain some trigonometric identities and also list below some important

identities used frequently.

Consider a circle of radius r, centered at the origin O(0, 0). Then, distance r between the

origin and any point P(x, y) on the circle (see Figure 5.13a) is given by

x2 þ y2 ¼ r2ðusing the distance formulaÞ
Substituting for x and y from the definitions cos � ¼ x/r and sin � ¼ y/r, we get

r2cos2 �þ r2sin2 � ¼ r2
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FIGURE 5.18 Graphs of trigonometric functions.
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This yields the famous Pythagorean identity

cos2 �þ sin2 � ¼ 1

Since we normally use x to represent points in the domain of a function, we will usually follow

that convention for sine and cosine functions and replace � by x. Thus, the above identity

becomes

sin2xþ cos2x ¼ 1 ð9Þ

The next two identities are obtained by dividing both sides of equation (9) by cos2x and sin2x,

respectively. We have

tan2xþ 1 ¼ sec2x

1þ cot2x ¼ cosec2x

These two identities are also called Pythagorean identities. Next, the following five important

identities follow from the definitions of tan x, cot x, sec x, and cosec x:

tan x ¼ sin x

cos x
; cot x ¼ cos x

sin x
; sin x � cosec x ¼ 1; cos x � sec x ¼ 1; and tan x � cot x ¼ 1

These eight identities are called fundamental trigonometric identities (or basic trigonometric

identities).

Also, we have discussed that sin (�x) ¼ �sin x and cos (�x) ¼ cos x (�)
Besides, it is easily proved (using geometry and the definitions of sine and cosine

functions) that

sin ðx� yÞ ¼ sin x cos y� cos x sin y

and

cos ðx� yÞ ¼ cos x cos y� cos x � sin y ð**Þ

The list of trigonometric identities is very large.Memorizing every trigonometric identity is out

of question. It is wiser to memorize only the basic eight identities and those indicated by (�)
and (��).

These are themost important ones. Other trigonometric identities can be derived using these

identities. For convenience, we give below a list of several of the more useful trigonometric

identities frequently used (including those mentioned above):

sin2xþ cos2x ¼ 1 ð10Þ

sec2x ¼ 1þ tan2x ð11Þ

cosec2x ¼ 1þ cot2x ð12Þ
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sin ðxþ yÞ ¼ sin x cos y þ cos x sin y

sin ðx� yÞ ¼ sin x cos y � cos x sin y

cos ðxþ yÞ ¼ cos x cos y � sin x sin y

cos ðx� yÞ ¼ cos x cos y þ sin x sin y

8>>>>>><
>>>>>>:

ð13Þ

tan ðxþ yÞ ¼ tan xþ tan y

1� tan x tan y

tan ðx� yÞ ¼ tan x � tan y

1þ tan x tan y

8>><
>>: ð14Þ

Other important trigonometric identities, listed below [from (6) onward] can be derived from

the above identities.

sin 2x ¼ 2 sin x cos x; sin 2x ¼ 2 tan x

1 þ tan2 x
; tan 2x ¼ 2 tan x

1� tan2 x

cos 2x¼ cos2 x � sin2 x

¼ 1 � 2 sin2 x

¼ 2 cos2 x � 1

) sin2 x ¼ 1� cos 2x

2

and cos2 x ¼ 1þ cos 2x

2

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

cos 2x ¼ 1 � tan2 x

1 þ tan2 x

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

ð15Þ

sin 3x ¼ 3 sin x� 4 sin3 x

tan 3x ¼ 3 tan x � tan3 x

1 � 3 tan2 x

cos 3x¼ 4 cos3 x� 3 cos x

ð16Þ

sin ðx þ 2npÞ ¼ sin x

cos ðx þ 2npÞ ¼ cos x

(
ð17Þ

sin ð�xÞ ¼ �sin x

cos ð�xÞ ¼ cos x

(
ð18Þ
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sin
p
2
� x

� �
¼ cos x; sin

p
2
þ x

� �
¼ cos x;

cos
p
2
� x

� �
¼ sin x; cos

p
2
þ x

� �
¼ �sin x;

tan ðxþ yÞ ¼ tan x þ tan y

1 � tan x tan y
;

tan ðx� yÞ ¼ tan x � tan y

1 þ tan x tan y
;

sin
p
2
¼ 1 and cos

p
2
¼ 0

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð19Þ

tan 2x¼ 2 tanx

1 � tan2 x
;

tan
p
4
þ x

� �
¼ 1þ tanx

1� tanx
; )tan p

4
¼ 1

h i
;

tan
p
4
� x

� �
¼ 1� tanx

1þ tanx
;

tan
p
2
� p

4
þ x

� �h i
¼ tan

p
4
� x

� �
¼ cot

p
4
þ x

� �
8>>>>>>>>><
>>>>>>>>>:

sinAþ sinB ¼ 2 sin
AþB

2
�cos A�B

2

sinA� sinB ¼ 2 cos
AþB

2
� sin A�B

2

cosA þ cosB ¼ 2 cos
AþB

2
�cos A�B

2

cosA � cosB ¼ �2 sin
AþB

2
� sin A�B

2

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð21Þ

These identities are expressed in the following useful forms.

sinA cosB¼ 1

2
sin ðAþBÞþ sin ðA�BÞ½ 	

Usefulness in solving problems :

sin 5x cosx¼ 1

2
sin 6xþ sin 4x½ 	

sin 5x cos 7x¼ 1

2
sin 12xþ sin ð�2xÞ½ 	 ¼ 1

2
sin 12x � sin 2x½ 	

Note : cosA � sinB¼ sinB �cosA½ 	

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð22aÞ

(20)
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cosA cosB¼ 1

2
cos ðAþBÞþ cos ðA�BÞ½ 	

Usefulness in solving problems :

cos 5x cos 3x¼ 1

2
cos 8xþ cos 2x½ 	

cos 2x cos 5x¼ 1

2
cos 7xþ cos ð�3xÞ½ 	

¼ 1

2
cos 7xþ cos 3x½ 	 )cos ð�xÞ ¼ cosx½ 	

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð22bÞ

sinA � sinB¼ 1

2
cos ðA�BÞ � cos ðAþBÞ½ 	

Usefulness in solving problems:

sin 3x � sin 2x¼ 1

2
cosx � cos 5x½ 	

sin 3x � sin 5x¼ 1

2
cos ð�2xÞ� cos 8x½ 	

¼ 1

2
cos 2x� cos 8x½ 	

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð22cÞ

5.8 REVISION OF CERTAIN IDEAS IN TRIGONOMETRY

It is useful to revise the following important points discussed in this chapter.

(a) In our school geometry, the definitions of trigonometric ratios are introduced for an

acute angle in a right-angled triangle in terms of the ratios of its sides. Then, the concept

of angle is extended to define directed angles that could have any magnitude (positive,

zero, or negative).

Using the concept of radian measure of an angle, the directed angles are identified

with real numbers, and vice versa. This helps in defining trigonometric ratios for angles

having any magnitude (i.e., trigonometric functions of real numbers).

(b) The values of trigonometric functions (i.e., trigonometric ratios for angles of any

magnitude) are still defined with reference to an acute angle in a right-angled triangle

as follows:

We choose on the revolving line (generating an angle �) a point P anywhere (other

than the origin) and draw a perpendicular PM on the x-axis, as shown in Figure 5.19.

The values of trigonometric functions of an angle � are then defined (as usual) for the
acute angle ffPOM, made by the revolving line with the x-axis, the reference right-

angled triangle being DOMP. Depending on the position of the revolving line, this

triangle may be in any quadrant with OM as the base segment and MP as the

perpendicular segment.

In the standard unit circle, if we change the (directed) angle �, then themagnitude(s)

of the (directed) line segment(s) OM and MP must change. The sign of any
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trigonometric ratio depends on the signs of these signed line segments. Accordingly, the

values of trigonometric functions (for different angles) have different values, and their

signs depend on the position of the terminal side. [The hypotenuse (being a line segment

of the revolving line) is treated as undirected segment, and hence identified with a

positive number.]

Recall that the functions sin � and cos � are the two basic trigonometric functions that

are independent of each other. The remaining four trigonometric functions (i.e., tan �,
cot �, sec �, and cosec �) are defined in terms of sin � and cos �.

(c) Coordinate geometry plays a very important role in defining trigonometric functions.

Wemay choose the pointP anywhere on the revolving line (except at the origin) and the

trigonometric ratios are defined on the basis of coordinates of P.

Definitions of trigonometric functions are justified, based on the following two

facts:

(i) Thevalue of each trigonometric function is independent of the position ofP on the

revolving line [see Figure 5.13b: (i) and (ii)].

(ii) The values of trigonometric functions depend on the position of the terminal side

in different quadrants.
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(d) We know that each trigonometric ratio (and its reciprocal) is positive in two quadrants

and negative in the remaining two quadrants. Hence, even if we are given the value of

any one trigonometric function, it is not possible to find exactly the quadrant in which

the terminal lies (depending on the quadrant in which the terminal side lies, we say that

the angle in question lies in that quadrant).

Hence, to be able to determine the position of the terminal side exactly, it is

necessary that the values of two independent trigonometric functions are given. Also,

if the value of a single trigonometric function is given and the quadrant in which the

angle x lies is also given, then we can find out exactly the values of all other

trigonometric ratios for the angle x.

(e) Recall that if theCartesian coordinates of a pointP are (x, y) and its polar coordinates are

(r, �), then we have

x ¼ r cos � and y ¼ r sin � ð23Þ

where

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and tan � ¼ y

x
ð24Þ

The relations (23) and (24) enable us to change the coordinates of a point from one system to

the other. In view of the relations at (23), we have

Pðx; yÞ ¼ Pðr cos �; r sin �Þ

Weknow (as already discussed in Chapter 4) that the polar coordinates differ fromCartesian

coordinates as follows:

With each point P in the coordinate plane is associated a unique pair of Cartesian

coordinates (x, y), and, conversely, with each ordered pair of real numbers is associated a

unique point in the coordinate plane.

On the other hand, each ordered pair (r, �) determines a point uniquely, but if � is the
amplitude of P (which means that if � is the varying quantity) then all ordered pairs of the

form (r, � þ 2np), where n is an integer, correspond to the same point. Thus, an unlimited

number of ordered pairs (r, � þ 2np) represent the same point in the polar coordinate

system.

Note: If � is the radian measure of the angle involved and r is treated as the undirected

distance from the origin O to P (i.e., r ¼ jOPj), then one set of polar coordinates of P is

given by r and �, denoted by (r, � þ 2np).

On the other hand, if r is treated as the directed distance (with usual convention of signs),

then we get another set of polar coordinates of P in which r is negative (details are already

discussed toward the end of Chapter 4).

5.8.1 Illustrative Solved Examples: Revision of Useful Concept in Trigonometry

Example (4): Write the sign of sin 2.
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Solution: sin 2 means sine of that angle whose measure is 2 rad. We know that p rad � 3.14.

Therefore, (p/2)� 1.57. Thus, (p/2)< 2< p. It means that the angle of measure 2 rad lies in the

second quadrant. Therefore, sin 2 is positive. Ans.

(Note that, cos 2 is negative and tan 2 must also be negative.)

Example (5): If the x-coordinate of a point on the unit circle is 8/17, find its y-coordinate.

Solution: Let the y-coordinate of the point on the unit circle be y.

) x2 þ y2 ¼ 1

8

17

� �2

þ y2 ¼ 1 or y2 ¼ 1� 64

289
¼ 225

289
¼ 15

17

� �2

) y ¼ � 15

17
Ans:

Example (6): Given sin x ¼�ð3=5Þ. State in which quadrants can the angle x lie.(10)

Solution: Since sin x is given to be a negative number, the angle x must lie in third or fourth

quadrant. Ans.

(If tan x is a negative number, then xmust lie in the second and fourth quadrants; and if cos x is

negative, then x must lie in the second and third quadrants.)

Example (7): If sin x ¼�ð3=5Þ and cos x ¼�ð4=5Þ, state the quadrant in which the angle x
lies.

Solution:We know that sin x is negative in the third and fourth quadrants and cos x is negative

in the second and third quadrants. Thus, both the given conditions are satisfied if x lies in the

third quadrant. Ans.

Example (8): Find the values of trigonometric functions sin x, cos x, and tan x of an angle x in

standard position whose terminal arm passes through the point P(�3, 4).

Solution: The distance of the point P(�3, 4) from the origin O(0, 0) is given by

r ¼ OP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�3� 0Þ2 þ ð4� 0Þ2

q
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9þ 16
p ¼ 5

) sin x ¼ y� coordinate of P

r
¼ 4

5

cos x ¼ x� coordinate of P

r
¼ �3

5
¼ 3

5

(10) Recall that angle x is said to be in that quadrant in which the terminal side of the angle lies.
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and

tan x ¼ sin x

cos x
¼ 4

�3
¼ � 4

3
Ans:

Example (9): If cos x ¼�ð3=5Þ, and x lies in the third quadrant, find the values of other five

trigonometric functions.

Solution: We have cos x ¼�ð3=5Þ.

) sec x ¼ � 5

3

(Now we can use the identity sin2x þ cos2x ¼ 1 to compute the value(s) of sin x.)

We have

sin2x ¼ 1� cos2x

¼ 1� � 3

5

� �2

¼ 1� 9

25
¼ 16

5

) sin x¼ �
ffiffiffiffiffi
16

25

r
¼ � 4

5

But, it is given that x lies in the third quadrant that means that sin x is negative. Therefore, we

take the value of sin x ¼ �ð4=5Þ. Accordingly, we have cosec x ¼ �ð5=4Þ. Furthermore,

we have tan x ¼ ðsin x=cos xÞ ¼ 4=3, and cot x ¼ 3/4 Ans.

Note: This example tells us about the usefulness of trigonometric identities.

Example (10): Find the values of the other five trigonometric functions if tan x ¼ �ð5=12Þ
and x lies in the second quadrant.

Solution: Since tan x ¼ �ð5=12Þ, we have

cot x ¼ � 12

5

The identity sin2x þ cos2x ¼ 1 suggests that (by dividing both sides by cos2x)

tan2xþ 1 ¼ sec2x ) � 5

12

� �2

þ 1 ¼ sec2x

or

sec2x ¼ 1þ 25

144
¼ 169

144
¼ 13

12

� �2

) sec x ¼ � 13

12
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But x lies in second quadrant, which means that sec x must be negative.

) sec x ¼ � 13

12

) cos x ¼ � 12

13

Furthermore, we have

tan x ¼ sin x

cos x
) sin x ¼ tan x � cos x ¼ � 5

12

� �
� � 12

13

� �
¼ 5

13

ð11Þ

and

cosec x ¼ 1

sin x
¼ 13

5
Ans:

Example (11): Given sin x ¼ 5/6, find cos x.

Solution: We know that sin x is positive in the first and second quadrants. We have sin2x þ
cos2x ¼ 1

) cos2x ¼ 1� sin2x ¼ 1� 5

6

� �2

¼ 1� 25

36
¼ 11

36

) cos x ¼ �
ffiffiffiffiffi
11

p

6
Ans:

(Note that cos x ¼ � ffiffiffiffiffi
11

p
=6

� �
when the angle x is in the second quadrant).

Example (12): Given sin x ¼ 5/6, find cosec x and cot x.

Solution: Since sin x ¼ 5/6, it follows that cosec x ¼ 6/5. Furthermore, in Example (8),

we have shown that for the given value of sin x, there are two values of cos x :
ffiffiffiffiffi
11

p
=6

and � ffiffiffiffiffi
11

p
=6

� �
.

Accordingly, cot x will have two values:

ffiffiffiffiffi
11

p

5
and �

ffiffiffiffiffi
11

p

5
Ans:

(11) It is convenient to compute sin x using the identity sin ¼ tan x�cos x, rather than using any other identity.
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Example (13): Fill in the blanks:

(a) If cot x ¼ �1 and sec x ¼ 1/2, then x must lie in _ quadrant.

(b) If sin x ¼ �ð3=5Þ and cos x ¼ 4/5, then x must lie in _ quadrant.

Solution:

(a) cot x is negative in the second and fourth quadrants. On the other hand, sec x is positive

in the first and fourth quadrants.

Therefore, x must lie in the fourth quadrant. Ans.

(b) sin x is negative in the third and fourth quadrants, while cos x is positive in the first and

fourth quadrants.

Therefore, x must lie in the fourth quadrant. Ans.

Example (14): The coordinates of P are (4 cos �, 4 sin �). Find jOPj if O is the origin.

Solution: If (r, �) are the polar coordinates of a point whose Cartesian coordinates are (x, y),

then we have x ¼ r cos � and y ¼ r sin �.

On comparing we get r ¼ 4 in this problem.

) OPj j ¼ 4 Ans:

Example (15): Convert x ¼ a into polar form.

Solution: By the relation between Cartesian coordinates and polar coordinates, we have x ¼ r

cos �.

) r cos � ¼ a:Ans:

Exercises

Q. (1) Find the values of sin x, sec x, and tan x under the following conditions:

(a) cos x ¼ 12/13, x lies in the first quadrant.

Ans:
5

13
;
13

12
;
5

12

(b) tan x ¼ 1/3, x lies in the third quadrant.

Ans: � 1ffiffiffiffiffi
10

p ;�
ffiffiffiffiffi
10

p

3
;
1

3

(c) sin x ¼ �ð3=5Þ and tan x is positive.

Ans:� 2

5
;� 5ffiffiffiffiffi

21
p ;

2ffiffiffiffiffi
21

p
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Q. (2) Find the values of all trigonometric functions:

(i) If cot x ¼ 2/3, x lies in the third quadrant.

Ans: sin x ¼ � 3ffiffiffiffiffi
13

p ; cos x ¼ � 2ffiffiffiffiffi
13

p ; tan x ¼ 3

2
; cosec x ¼ �

ffiffiffiffiffi
13

p

3
; sec x ¼ �

ffiffiffiffiffi
13

p

2

(ii) If tan x ¼ �5, x lies in the fourth quadrant.

Ans: sin x ¼ � 5ffiffiffiffiffi
26

p ; cos x ¼ � 1ffiffiffiffiffi
26

p ; tan x ¼ �5; sec x ¼
ffiffiffiffiffi
26

p
;

cosec x ¼ �
ffiffiffiffiffi
26

p

5
; cot x ¼ � 1

5
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6 More About Functions

6.1 INTRODUCTION

In Chapter 2, we defined a function as a special relation on the basis of set theory and discussed

the related terminology. In this chapter, we think of a function as amachine. It will be found that

this way of looking at a function is more useful than the earlier definitions.

The first important step toward learning the subject of calculus is to understand clearly

the concept of numerical function, by which we mean those functions in which both the

domain and the range consist of real numbers. The numerical functions of interest (in

calculus) are those that are defined on intervals. They may be defined by one, or more

formulas, given as follows:(1)

f ðxÞ ¼ 5xþ 2; x 2 R ð1Þ

gðxÞ ¼ 2xþ 3; x � 0

xþ 1; x > 0

� �
ð2Þ

hðxÞ ¼ x2 � 9

x� 3
; x 6¼ 3 ð3Þ

Many functions arise as combinations of other functions. It is, therefore, necessary to

discuss different methods of combining functions and find out the domain(s) of such

combinations. Recall that a single letter f (or g or h or F, etc.) is used to name a function and

that f (x) denotes the value that the function “f ” assigns to “x”. We read f (x) as “f of x” or

“the value of f at x”.

6.2 FUNCTION AS A MACHINE

Wecan thinkof a function as amachine (see Figure 6.1) that takes themembers “x” of the domain

and applies a rule (does something) to each “x”, to produce the members “f (x)” of the range.

Consider the function at (1) above.

Introduction to Differential Calculus: Systematic Studies with Engineering Applications for Beginners, First Edition.
Ulrich L. Rohde, G. C. Jain, Ajay K. Poddar, and Ajoy K. Ghosh.
� 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

(1) Though we are going to discuss only simple algebraic functions here, other functions of our interest (namely,

trigonometric, logarithmic, exponential, and hyperbolic, etc.) and their properties are discussed later at appropriate places.

What must you know to learn calculus? 6-More about functions (Function as a machine, combinations, and

compositions of functions and their domains)
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Here, the name of the machine is “f ”, and “rule of the machine” (or the operation of the

machine) is given by

f : x! 5xþ 2

This operation converts each x (of the domain) into 5x þ 2. Thus, the number “0” fed into

themachine is converted into the number 2. Similarly, 1/5 is converted into 3,�2/5 is converted
into “0”,

ffiffiffi
2

p
is converted into 5

ffiffiffi
2

p þ 2, and so on. In view of the above, we give the following

definition:

Definition: A function is an operation that assigns to each input number exactly one output

number.(2)

6.3 DOMAIN AND RANGE

The set of all input numbers that can be used in the operation is called the domain of the

function. The set of all output numbers is called the range.

6.3.1 Natural Domain

When no domain is specified for a function, we always take the domain as the largest set of real

numbers for which the rule of the function makes sense and gives real number values. This is

called the natural domain of the function.

For example, the natural domain for f ðxÞ ¼ 1=ðx� 5Þ is x 2 R x 6¼ 5j gf . We exclude 5 to

avoid division by 0. Similarly, gðxÞ ¼ ffiffiffi
x

p
has the natural domain [0, 1) since this function is

defined only for x� 0.

6.4 DEPENDENT AND INDEPENDENT VARIABLES

In calculus, we deal with functions, which are defined by formulas expressing dependence of

one quantity on another. When two variables are related to one another, strictly speaking,

either variable may be expressed in terms of the other. In most situations, it is more natural to

regard the variation of one as independent of other, in a way controlling the variation of the

x (input)

f: x→ 5x + 2
5x + 2
(output)

FIGURE 6.1 Function as a machine.

(2) We stress two key points in the definition:

(i) A function must make an assignment to each number in the domain.

(ii) A function can assign only one number to any given number in the domain.
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other. (For example, it is more appropriate to say that income tax depends on the income, than

it is to say it the other way round.) Similarly, we say that

. Area of a circle depends on its radius.

A(r) ¼ pr2 [A is a function of “r”]

. Volume of a sphere depends on its radius.

VðrÞ ¼ 4
3
pr3 [V is a function of “r”]

. Surface area of a cube depends on the length of its side

S(x) ¼ 6x2 [S is a function of “x”]

When the rule for a function is given by an equation of the form y ¼ f (x) (e.g., y ¼ x5 þ 7x2

� 2x þ 3), x is called the independent variable and y or f (x), the dependent variable. This

is a numerical function and its domainmust be a set of real numbers. Any element of the domain

must be chosen independently (as a value of the independent variable) and this choice completely

determines thecorrespondingvalueof thedependent variable, yor f (x).We say that thevalue f (x)

depends on the chosen value of x. In other words, the value f (x) changes with x.

Note: We shall sometimes, by abuse of notation, speak of the function f(x), but strictly

speaking, “f ” is the function and “f (x)” is the value of the function f at x.Whenever we speak of

“the function f (x)”, we shall generallymean “thevalue f (x)”. However, if “f (x)” is used to stand

for a function, we must read it as a function “f ” of “x”. Themeaning of the symbol f(x) will be

clear from the context.

Now, consider the function f : x ! x3� 4. Here, the function “f ” converts each number “x” (of

the domain) into x3� 4. We write f (x) ¼ x3� 4.

Thus, f ð2Þ ¼ 23 � 4 ¼ 4

f ð�1Þ ¼ ð�1Þ3 � 4 ¼ �5;

f ðaÞ ¼ a3 � 4

f ðaþ hÞ ¼ ðaþ hÞ3 � 4 ¼ a3 þ 3 a2hþ 3 a h2 þ h3 � 4:

Study the following examples carefully. They will play an important role later.

Example (1): For f (x) ¼ x2 – 2x, find and simplify

(a) f (4),

(b) f (4 þ h),

(c) f (4 þ h)� f (4),

(d) [ f (4 þ h)� f (4)]/h, where h 6¼ 0.

Solution:

(a) f ð4Þ ¼ 42 � 2ð4Þ ¼ 16� 8 ¼ 8

(b) f ð4þ hÞ ¼ ð4þ hÞ2 � 2ð4þ hÞ ¼ ½42 þ 2ð4Þhþ h2� � 2ð4þ hÞ
¼ 16þ 8hþ h2 � 8� 2h

¼ h2 þ 6hþ 8
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(c) f ð4þ hÞ � f ð4Þ ¼ ðh2 þ 6hþ 8Þ � 8 ¼ h2 þ 6h

(d)
f ð4þ hÞ � f ð4Þ

h
¼ h2 þ 6h

h
¼ hðhþ 6Þ

h
¼ hþ 6ð )h 6¼ 0Þ

Example (2): Find the natural domain for �ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
9� t2

p
.

Solution: Here, we must restrict “t” so that 9� t2� 0, in order to avoid nonreal values

for
ffiffiffiffiffiffiffiffiffiffiffiffi
9� t2

p
. This is achieved by requiring that 9� t2 or t2� 9 or jt j � 3. Thus, the natural

domain of � is t 2 R: jt � 3j gf . In interval notation, we can write the domain as [�3,3].

6.5 TWO SPECIAL FUNCTIONS

We give below, two very special functions that will be used in many contexts.

(i) The Absolute Value Function j j (Figure 6.2) is defined by

��x�� ¼
(

x if x � 0

�x if x < 0

Note that the graph of jxj has a sharp corner at the origin.

(ii) The Greatest Integer Function [ ] is defined by [x] ¼ the greatest integer less than or

equal to x. Thus, [2.1] ¼ 2, [1.99] ¼ 1, [�2.5] ¼ �3.

Its domain is the set of all real numbers and its range consists of all the integers.

The graph of [x] takes a jump at each integer (Figure 6.3).

6.6 COMBINING FUNCTIONS

Functions are not numbers. But, just as two numbers a and b can be added to produce a new

number (a þ b), two functions f and g can be added to produce a new function ( f þ g). This is

just one of the several operations on functions. We shall consider the combinations and

–5 5

5

x

y = |x |

y

0

FIGURE 6.2 Absolute value function, y ¼ jxj.
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compositions of functions, together with some special cases of combinations, under the

following heads:

. Sums, differences, products, and quotients of functions.

. Some simple functions and their combinations: constant function, identity function,

polynomial function, linear function, and rational functions.

. Power functions.

. Root functions.

. Raising a function to a power.

. Composition of functions.

6.6.1 Sums, Differences, Products and Quotients of Functions

Let f and g be functions. We define the sum f þ g, the difference f� g, and the product f�g to

be the functions whose domains consist of all those numbers that are common in the domains

of both f and g and whose rules are given by

ð f þ gÞðxÞ ¼ f ðxÞ þ gðxÞ
ð f � gÞðxÞ ¼ f ðxÞ � gðxÞ
ð f � gÞðxÞ ¼ f ðxÞ � gðxÞ

In each case, the domain is the expected one, consisting of those values of x for which both

f(x) and g(x) are defined. Next, because division by 0 is excluded, we give the definition of

quotient of two functions separately as follows:

The quotient f/g is the function whose domain consists of all numbers x in the domains of

both f and g for which g(x) 6¼ 0, and whose rule is given by

f

g

� �
ðxÞ ¼ f ðxÞ

gðxÞ ; gðxÞ 6¼ 0

y
5

5

4

4

3

3

2

20

1

1

–5

–5

–4

–4

–3

–3

–2

–2

–1

–1

x

FIGURE 6.3 The greatest integer function, y ¼ [x] ¼ the greatest integer less than or equal to x.
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Example (3): Let f ðxÞ ¼ 1=x and gðxÞ ¼ ffiffiffi
x

p
. Let us find the domain and rule of f þ g.

Solution: The domain of f is x 2 R x 6¼ 0j gf and the domain of g is x 2 R x � 0j gf . The

only numbers in both domains are the positive numbers, which constitute the domain

of f þ g.

For the rule, we have

ð f þ gÞðxÞ ¼ f ðxÞ þ gðxÞ ¼ 1

x
þ ffiffiffi

x
p

for x > 0

Example (4): Let f ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4� x2

p
and gðxÞ ¼ ffiffiffiffiffiffiffiffiffiffiffi

x� 1
p

. Let us find the domain and rule

of f�g.

Solution: The domain of f is the interval [�2, 2] and the domain of g is the interval [1,1).

)The domain of f�g ¼ [�2, 2] \ [1,1] ¼ [1,2]. The rule of f�g is given by

ð f � gÞðxÞ ¼ f ðxÞ � gðxÞ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4� x2

p ffiffiffiffiffiffiffiffiffiffiffi
x� 1

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4� x2Þðx� 1Þ

p
for 1 � x � 2

Caution: This example illustrates a surprising fact about the domain of combination of

functions. We found that the domain of f�g is the interval [1,2]. Now observe that the

expression
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið4� x2Þðx� 1Þp

is also meaningful for x in (�1, �2]. This is true because

(4� x2) (x� 1)� 0, x��2. However, (�1, �2] cannot be considered a part of

the domain of f�g. By definition, the domain of the resulting function f�g consists of those

values of x common to domains of f and g. It is not to be determined from the expression (or

the rule) for f�g. Similar comments hold for the domains of f þ g and f – g. For the domain

of f/g, there is an additional requirement that the values of x, for which g(x) ¼ 0, are

excluded.

Example (5): Let f (x) ¼ x þ 3 and g(x) ¼ (x�3) (x þ 2). Let us find the domain and rule

of f/g.

Solution: Observe that the domains of f and g are all real numbers, but g(x) ¼ 0, for x ¼ 3

and �2. It follows that the domain of f/g consists of all real numbers except �2 and 3. The

rule of f/g is given by

f

g

� �
x ¼ f ðxÞ

gðxÞ ¼
xþ 3

ðx� 3Þðxþ 2Þ for x 6¼ �2 and x 6¼ 3

Note:We can add ormultiplymore than two functions. For example, if f, g, and h are functions,

then for all x common to the domains of f, g, and h, we have ( f þ g þ h) (x) ¼ f (x) þ g(x) þ
h(x) and ( f�g�h) x ¼ f (x)�g(x)�h(x).
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6.6.2 Some Simple Algebraic Functions and Their Combinations

(a) Constant Function: A function of the form f (x) ¼ a, where “a” is a nonzero real

number (i.e., a 6¼ 0), is called a constant function.(3)

(The range of a constant function consists of only one nonzero number.)

(b) Identity Function: The function f (x) ¼ x is called the identity function.

From the functions at (a) and (b) above, we can build many important functions of

calculus: polynomials, rational functions, power functions, root functions, and so on.

(c) Polynomial Function: Any function, that can be obtained from the constant functions

and the identity function by using the operations of addition, subtraction, and

multiplication, is called a polynomial function. This amounts to saying that “f ” is a

polynomial function, if it is of the form

f ðxÞ ¼ anx
n þ an�1x

n�1 þ � � � þ a3x
3 þ a2x

2 þ a1xþ a0

where a0, a1, a2, . . . , an are real numbers ðan 6¼ 0Þ and n is a nonnegative integer.

If the coefficient an 6¼ 0, then “n” (in xn), the nonnegative integral exponent of x, is

called the degree of the polynomial. Obviously, the degree of constant functions is zero.(4)

. Linear Function: Polynomials of degree 1 are called linear functions. They are of the

form f (x) ¼ a1x þ a0, with a1 6¼ 0. Note that, the identity function [ f (x) ¼ x] is a

particular linear function.

. f (x) ¼ a2x
2 þ a1x þ a0 is a second degree polynomial, called a quadratic function.

If the degree of the polynomial is 3, the function is called a cubic function.

. Rational Functions:Quotients of polynomials are called rational functions. Examples

are as follows:

f ðxÞ ¼ 1

x2
; f ðxÞ ¼ x3 þ

ffiffiffi
5

p
x;

f ðxÞ ¼ x3 � 2xþ p

x� ffiffiffi
2

p ; f ðxÞ ¼ x2 þ x� 2

x2 þ 5x� 6

Example (6): Let f ðxÞ ¼ x2þx�2
x2þ5x�6

. Let us find the domain of f.

Solution: We have x2 þ 5x – 6 ¼ (x� 1) (x þ 6). Therefore, the denominator is 0 for x ¼ 1

and x ¼ �6. Thus, the domain of f consists of all numbers except 1 and �6.

Remark: Sometimes, it may happen that both the numerator and the denominator have

a common factor. For example, we have x2 þ x� 2 ¼ (x� 1) (x þ 2), and x2 þ 5x� 6 ¼
(x� 1) (x þ 6)

(3) Note that we do not call the function f (x) ¼ 0, as a constant function. A special case of product occurs when one of the

functions is a constant function: g(x) ¼ c for all x. For any function f, the domain of the product, c�f, is the same as the

domain of f.
(4) We distinguish between a zero-degree polynomial and a zero polynomial denoted by “0”. Remember that while the

degree of a constant polynomial is zero, the degree of zero polynomial is not defined. It can be easily seenwhy the degree of

a zero polynomial cannot be defined. Accordingly, though some authors consider “0” as a special constant polynomial, but

we shall not identify it as a constant polynomial.
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) f ðxÞ ¼ x2 þ x� 2

x2 þ 5x� 6
¼ ðx� 1Þðxþ 2Þ

ðx� 1Þðxþ 6Þ

which may be simplified to read ðxþ 2Þ=ðxþ 6Þ, provided x 6¼ 1.

Note that, while the expression (x þ 2)/(x þ 6) is meaningful for x ¼ 1, the number 1 is

not in the domain of function f.

(This again suggests that the domain of a combination of functions must be determined

from the original description of the function(s), and not from their simplified form.)

6.6.3 Power Functions

These are functions, of the form f (x) ¼ xn, where n is an integer.

Examples are x4, x3, x0, x�1, x�4, x�n.(5)

We know that

x3 ¼ x3

1
; x0 ¼ 1; x�1 ¼ 1

x
; x�4 ¼ 1

x4

The domain of xn consists of all real numbers, if n� 0. If n< 0 (i.e., if n is a negative integer)

then the domain consists of all real numbers except 0, since division by 0 is not defined.

Remark: Every power function is a rational function, but the converse is not true.

6.6.4 Root Functions

(a) Square root function: Consider the relation y2 ¼ x. We write it as y ¼ ffiffiffi
x

p
or x1/2 and

call it the square root function of x.We know that there is no real number whose square

is a negative number.Hence, we define square root function f ðxÞ ¼ ffiffiffi
x

p
that assigns to

each nonnegative number x the nonnegative number f(x).(6)

We emphasize that
ffiffiffi
x

p
is defined only for x� 0 and that

ffiffiffi
x

p � 0, for all x� 0.

Accordingly, it is meaningful to write
ffiffiffi
8

p
,

ffiffiffiffiffiffiffiffi
1=3

p
, and

ffiffiffi
0

p
, and so on, but

ffiffiffiffiffiffiffi�5
p

has no

meaning. Furthermore, while
ffiffiffi
4

p ¼ �2, we write
ffiffiffi
4

p ¼ 2

(We never write
ffiffiffi
4

p ¼ �2.)

(b) Cube Root Function: Consider the relation y3 ¼ x. We write it as y ¼ ffiffiffi
x3

p
or x1/3, and

call it the cube root function. It assigns to any number x, the unique number y such that

y3 ¼ x. Of course, our interest lies only in real roots.

In contrast to the square root function, the cube root function has in its domain all

real numbers, including negative numbers. For example,
ffiffiffiffiffiffiffi�13

p ¼ �1;
ffiffiffiffiffiffiffi�83

p ¼ �2;

and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�27=643

p ¼�3=4. Similarly
ffiffiffi
83

p ¼ 2;
ffiffiffiffiffiffiffiffi
1253

p ¼ 5, and
ffiffiffiffiffiffiffiffiffiffiffi�1253

p ¼ �5. Thus cube

root of any negative number is a negative number and that of any positive number is a

positive number.

(c) nth Root Function: We note that cube root function “
ffiffiffi
x3

p
” is defined for all real

numbers x, whereas square root function “
ffiffiffi
x

p
” is defined only for x� 0 with the

understanding that
ffiffiffi
x

p � 0 (i.e., only nonnegative square roots are accepted). By

(5) Note that power functions are a special class of rational functions.
(6) There is a legitimate relation between square root and absolute value of a number, given by jxj ¼ ffiffiffi

x
p 2

. This is obtained

from the relation xj j2 ¼ x2, which gives the definition of absolute value jxj.
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extending these concepts to the roots of higher order, we get that if n is odd, then

nth root function “
ffiffiffi
xn

p
” is defined for all real numbers, and on the other hand, if n is

even, then “
ffiffiffi
xn

p
” is defined only for x� 0.(7)

Note (1): In view of the above, the expressions
ffiffiffiffiffiffiffi�13

p
;

ffiffiffiffiffiffiffiffiffiffi�32;5
p

and
ffiffiffiffiffiffiffiffiffiffiffi�1287

p
are meaningful,

whereas the expressions
ffiffiffiffiffiffiffi�14

p
;

ffiffiffiffiffiffiffiffiffiffi�64;6
p

and
ffiffiffiffiffiffiffiffiffiffiffi�9=4

p
are meaningless.

Note (2): For every positive integer n, we also have

ffiffiffi
1

n
p

¼ 1 and
ffiffiffi
0

n
p

¼ 0

Now, we can define the nth root function, by f ðxÞ ¼ ffiffiffi
xn

p
; x � 0, with the understanding that

whenever n is even, we shall consider only positive nth root (i.e., for x> 0,
ffiffiffi
xn

p
> 0).

6.7 RAISING A FUNCTION TO A POWER

We may also raise a function to a power. By f n, we mean the function that assigns to x the

value [ f (x)]n. Thus, if f ðxÞ ¼ x�3
2

and gðxÞ ¼ ffiffiffi
x

p
, then

f 2ðxÞ ¼ f ðxÞ½ �2 ¼ x� 3

2

� 	2
¼ x2 � 6xþ 9

4

g3ðxÞ ¼ gðxÞ½ �3 ¼ ffiffiffi
x

p
 �3 ¼ x3=2

and

f�2ðxÞ ¼ 1=½ f ðxÞ�2 ¼ 1=½ðx� 3Þ=2�2 ¼ 4=ðx2 � 6xþ 9Þ

Remark: There is one exception to the above agreement.We never give the power “�1” to f.

We reserve the symbol f �1 for the inverse function, which we have already introduced in

Chapter 2. Thus, f �1does not mean 1=f .

6.8 COMPOSITION OF FUNCTIONS

This is another way of combining functions that occur frequently in calculus. In fact, obtaining

the composite function of two given functions is a new operation. This (new) operation

consists of carrying out two operations one after the other, as illustrated by the following

example.

(7) To understand this more clearly, consider
ffiffiffiffiffi
164

p ¼
ffiffiffiffiffiffiffiffiffi
ð2Þ44

q
¼ ð2Þ4

h i�1=4 ¼ 2. Though it is also possible to writeffiffiffiffiffi
164

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ð�2Þ44

q
¼ ð�2Þ4

h i1=4
¼ �2, we discard this negative fourth root of 16 (note that in

ffiffiffiffiffi
164

p
; n is 4, which is even).
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Consider the function, �ðxÞ ¼ f ðxÞ ¼ ffiffiffiffiffiffiffiffiffiffiffi
xþ 7

p
Wemay look at �(x) as the result of carrying out the following two operations, one after the

other:

(i) Add 7 to x. We express this operation by f (x) ¼ x þ 7.

(ii) Take the square root of the above result.

We express this operation by gðxÞ ¼ ffiffiffi
x

p
.

(Here, it must be clearly understood that
ffiffiffi
x

p
stands for

ffiffiffiffiffiffiffiffiffi
f ðxÞp

.)

Thus, �(x) is obtained by first applying f to x and then applying g to the resulting value

f(x).

To understand the method of composition of functions, think of two machines, put together,

one after the other, thus making a more complicated machine. Let these machines represent

functions f and g.

If f works on x to produce f(x) and then g works on f(x) to produce g( f (x)), we say that we

have composed g with f (see Figure 6.4a).

The resulting function is called the composite of g with f, and we denote it by g � f.

Thus,

ðg � f Þ ðxÞ ¼ gð f ðxÞÞ

If gworks onx to produce g(x) and then fworks on g(x) to produce f (g (x)),we say thatwe have

composed f with g (see Figure 6.4b).

The resulting function is called the composite of f with g, and we denote it by f � g.

f

f

x

↓

f(x)

g [ f(x)] f [g(x)]

↓

↓
g(x)

↓

↓

x

↓

g

g

(a) (b)

FIGURE 6.4
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6.8.1 Definition of a Composite Function

Given the two function f and g, the composite function denoted by (g � f) is defined by

ðg � f Þ ðxÞ ¼ gð f ðxÞÞ

and the domain of g( f (x)) is the set of all numbers x in the domain of f such that f (x) is in the

domain of g.

The definition indicates that when computing ( f � g)(x), we first apply g to x and then the

function f to g(x).

We write

ð f � gÞðxÞ ¼ f ðgðxÞÞ

Example (7): Let f ðxÞ ¼ x�3
2

and gðxÞ ¼ ffiffiffi
x

p
. We may composite them as follows:

(i) ðg � f ÞðxÞ ¼ g f ðxÞð Þ ¼ g

�
x� 3

2

�
;

�

) f ðtÞ ¼ t� 3

2

	

¼
ffiffiffiffiffiffiffiffiffiffiffi
x� 3

2

vuut ; ) gðtÞ ¼ ffiffi
t

p� 

(ii) ð f � gÞðxÞ ¼ f gðxÞð Þ ¼ f
ffiffiffi
x

pð Þ )gðtÞ ¼ ffiffi
t

p� 
Now consider f ðtÞ ¼ t� ð3=2Þ. From this definition of f, it follows that

f
ffiffiffi
x

p
 � ¼ ffiffiffi
x

p � 3

2

) ð f � gÞðxÞ ¼ f gðxÞð Þ ¼ f
ffiffiffi
x

p
 � ¼ ffiffiffi
x

p � 3

2

Remark: Note that (g � f ) (x) 6¼ ( f � g) (x). Thus, composition of functions is not

commutative; g � f and f � g are usually different.

6.8.2 Domain of a Composite Function

We must be more careful in describing the domain of a composite function. Let f(x) and g(x)

be defined for certain values of x. Then, the domain of g � f is that part of the domain of f (i.e.,

those values of x) for which g can accept f(x) as input.(8)

In the above example, the domain of g � f is [3,1), since xmust be greater than or equal to 3

in order to give a nonnegative number x� 3=2 for g to work on.

(8) Thus, the domain of g � f is a subset of the domain of f. Similarly, the domain of f � g is a subset of the domain of g.
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In calculus, we shall often need to take a given function and decompose it (i.e., break it) into

composite pieces.(9)

Usually this can be done in several ways.

Example (8): Consider the function �ðxÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
x3 þ 7

p
.

We can express � as the composition of the two functions g and f, given by f (x) ¼ x3 þ 7 and

gðxÞ ¼ ffiffiffi
x

p
.

Now, we have

�ðxÞ ¼ ðg � f Þ ðxÞ ¼ gð f ðxÞÞ ¼ gðx3 þ 7Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x3 þ 7

p
:

Next, we can also express � as the composition of another pair of functions g and f given by

f(x) ¼ x3 and gðxÞ ¼ ffiffiffiffiffiffiffiffiffiffiffi
xþ 7

p
.

Consider �ðxÞ ¼ ðg � f ÞðxÞ ¼ gð f ðxÞÞ ¼ gðx3Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x3 þ 7

p
:

Example (9): Given �ðxÞ ¼ 1ffiffiffiffiffiffiffiffi
x2þ3

p

Express � as the composition of two function f and g in two ways:

(i) The function f containing the radical.

(ii) The function g containing the radical.

Solution: To solve such problems, it is necessary to develop the ability of decomposing the

given function into composite pieces.

(i) We choose f ðxÞ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffi
xþ 3

p
and gðxÞ ¼ x2:

Now; ð f � gÞðxÞ ¼ f ðgðxÞÞ ¼ f ðx2Þ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 3

p
:

(Observe that to express f (g(x)), first we insert the expression for g(x) and obtain f (t),

where t stands for g(x). Next, we write the expression for f (t) and replace t by g(x).)

(ii) Now; we choose f ðxÞ ¼ 1=x and gðxÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 3

p
:

Then,

ð f � gÞðxÞ ¼ f ðgðxÞÞ ¼ f ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 3

p
Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ 3
p

(Here again, to express f (g(x)), first we insert the expression for g(x) and obtain f (t),

where f (t) stands for g(x).Nowwe look at the expression for f (t),which suggests thatwe

must take the reciprocal of t.)

Example (10): Let f ðxÞ ¼ ffiffiffiffiffiffiffiffiffiffiffi
x� 1

p
and g(x) ¼ 1/x. We shall determine the functions g � f

and f � g, and then find g ( f (5)) and f g 1=4ð Þð Þ.

(9) An important theorem in calculus, called the chain rule (discussed in Chapter 10), involves composite functions.When

applying the chain rule (for computing the derivative of a composite function), it is necessary to think of the given function

as the composition of two other functions.
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Solution: The function g � f is given by

g f ðxÞð Þ ¼ g
ffiffiffiffiffiffiffiffiffiffiffi
x� 1

p� �
¼ 1ffiffiffiffiffiffiffiffiffiffiffi

x� 1
p ; )gðtÞ ¼ 1

t

� 	

The domain of f is [1,1). Therefore, the domain of g � f consists of those numbers x in [1,1)

for which g can accept f(x) as input. This demands that

g
ffiffiffiffiffiffiffiffiffiffiffi
x� 1

p
 � ¼ 1ffiffiffiffiffiffiffi
x�1

p must be defined, which requires that x 6¼ 1. Therefore, the domain of g � f
is (1, 1).

The rule for f � g is given by

f gðxÞð Þ ¼ f

�
1

x

�
;

�

) gðtÞ ¼ 1

t

	

¼
ffiffiffiffiffiffiffiffiffiffiffi
1

x
� 1

s
;
h ) f ðtÞ ¼ ffiffiffiffiffiffiffiffiffiffi

t� 1
p i

The domain of g is the set of nonzero numbers, that is, (�1, 0) [ (0, 1). Therefore,

the domain of f � g consists of those numbers x in the above domain for which f can

accept g(x) as input. This demands that f 1=xð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1=xÞ � 1
p

must be defined. It requires

that

1

x
� 1 � 0

) 1

x
� 1ðxmust be positive with 1=x � 1Þ

) x � 1

The domain is (0, 1].

Finally, we have gð f ðxÞÞ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffi
x� 1

p
and f ðgðxÞÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1=xÞ � 1

p

) g f ð5Þð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
5� 1

p ¼ 1ffiffiffi
4

p ¼ 1

2
and

f

�
g

�
1

4

��
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1=4
� 1

s
;

�

)x ¼ 1

4

	

¼ ffiffiffiffiffiffiffiffiffiffiffi
4� 1

p ¼ ffiffiffi
3

p

Note: We shall discuss about trigonometric, exponential, and logarithmic functions and their

various properties (involving their combinations) at appropriate places in corresponding

chapters.

COMPOSITION OF FUNCTIONS 141



6.9 EQUALITY OF FUNCTIONS

We say that two functions f and g are equal (or the same) if

(i) f and g have the same domain and

(ii) f (x) ¼ g(x), for each x in the common domain.

Thus, f (x) ¼ x2, (1� x� 3) and

g(x) ¼ x2, (1� x� 4), define two distinct functions because their domains are different.

On the other hand, the equations

f ðxÞ ¼ x2; x � 3;

gðxÞ ¼ ðx� 1Þ2 � 2x� 1; x � 3; and hðyÞ ¼ y2; y � 3

represent the same function because their domains are identical and their rules assign the same

numerical number to each element (number) in the domain.

To summarize, if two functions have the same domain and assign the same value to each

number in their domain, then they are equal.

6.10 IMPORTANT OBSERVATIONS

(i) Two or more formulas may define a single function. For example, consider

y ¼
cosx; x < 0

1þ x; 0 � x � 2

logðx� 1Þ; x > 2

8><
>:

Note that, this is a single function defined on the real line, by three formulas.

(ii) Not all functions can be written as formulas. One such example is the Dirichlet

function that is defined on the real line as follows:

y ¼ 1 if x is a rational number

0 if x is an irrational number

�

This is certainly an unusual function, but still is a function. It maps the set of rational

numbers to unity and the set of irrational numbers to zero. So far, no analytical

expression is suggested for this function.

Similarly, the statement nth digit in the decimal representation of p defines a

function that cannot be expressed by any formula.

(iii) Not every formula defines a function. The rule of correspondence is the heart of a

function. However, a function is not completely determined until its domain is given.

We canwrite formulaswhose domain is the empty set. Obviously, such formulas cannot

represent any function.

For example, consider the formula

�ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
x� 2

p
þ

ffiffiffiffiffiffiffiffiffiffiffi
1� x

p
ðAÞ
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The domain of y ¼ ffiffiffiffiffiffiffiffiffiffiffi
x� 2

p
is [2,1) (i.e., x� 2), while that of y ¼ ffiffiffiffiffiffiffiffiffiffiffi

1� x
p

is (�1, 1]

(i.e., x� 1). These intervals do not intersect. Thus, the formula (A) does not define any

function.

Remark: The above example also tells that if f and g define functions, then f� g need not

define a function. Following are some more examples of formulas, which do not define

functions:

y ¼ FðxÞ ¼ 1ffiffiffi
x

p þ 1ffiffiffiffiffiffiffi�x
p

y ¼ GðxÞ ¼ log xþ logð�xÞ
y ¼ f ðxÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin x� 2
p

y ¼ hðxÞ ¼ logðsin x� 2Þ; and soonð10Þ

In view of the above, we must distinguish between a function and a formula. Of course, in

calculus we shall generally be dealing with functions, which are expressed by formula(s).

However, it must be remembered that there are certain functions, for which no formula exists.

Furthermore, polynomials and rational functions are particular kinds of algebraic

functions.(11)

In addition to algebraic functions that we have considered in this chapter, we shall also

consider transcendental functions that are trigonometric functions discussed in Chapter 5,

inverse trigonometric functions discussed in Chapter 14, exponential and logarithmic func-

tions discussed in Chapter 13a, and hyperbolic functions discussed in Chapter 23.

6.11 EVEN AND ODD FUNCTIONS

We have introduced the notion of even and odd functions, in Chapter 5. We recall the formal

definitions:

(i) A function is an even function if for every x in the domain of f

f ð�xÞ ¼ f ðxÞ

(ii) A function is an odd function if for every x in the domain of f

f ð�xÞ ¼ �fðxÞ:

Remark: From both the definitions (i) and (ii) above, it is clear that �x is in the domain of f

whenever x is.

Note: It will be shown later that we can define functions that are neither even nor odd. For

detailed discussion about even and odd functions, refer to Chapter 7b on integration (i.e., Part II

(10) Calculus: Basic Concepts for High School by L.V. Tarasov (pp. 52–54, English translation), Mir Publishers, Moscow,

1982.
(11) A complicated example of an algebraic function is the one defined by f ðxÞ ¼ x3 � 3x2 þ xþ 1Þ3

� �
=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x4 þ 5

p
.
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of this book), wherein we have discussed some special properties of definite integrals,

restricted to even and odd functions.

6.12 INCREASING AND DECREASING FUNCTIONS

Increase and decrease of a function are important characteristics of the behavior of a function.

Definition: A function y ¼ f (x) is said to be increasing on an interval if to greater values of

the argument x belonging to that interval there correspond greater values of the function.

Similarly, f (x) is called decreasing if to greater values of the argument there correspond

smaller values of the function.

If the graph of a function is traced from left to right (this corresponds to the increase of

the argument x), then for an increasing function the moving point of the graph goes

upward (relative to the positive direction of OY), and for a decreasing function it moves

downward.

6.12.1

The increase and the decrease of a function can be interpreted in a broader sense.

A function f (x) is called nondecreasing on an interval [a, b] if for any x1, x22 [a, b], the

condition x1< x2 implies the nonstrict inequality

f ðx1Þ � fðx2Þ

Similarly, if x1< x2 implies f (x1)� f (x2), the function is said to be nonincreasing.

This type of increase or decrease in the broad sense is most often a characteristic of

functions having different analytic expressions on different intervals. The definitions

of nondecreasing (nonincreasing) functions cover bigger classes of functions than those

of increasing (decreasing) functions (see Figures 6.5–6.10). Most often, they are defined by

two or more different analytic expressions on different intervals. Note that such functions

may stay constant on a subinterval, while on the remaining ones they must either be

y y

xx

a

(a) (b)

b0

y = ax

(a>1)

0

1

FIGURE 6.5 Graphs of increasing functions.
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increasing (see Figure 6.6b) or be decreasing (see Figure 6.8b). The following graphs of

functions must clarify the distinction not only between the increasing and the nondecreasing

functions but also between decreasing and nonincreasing functions.

Note that a nondecreasing function may be an increasing function (see Figure 6.6a), but the

converse is not true (see Figure 6.6b). Similarly, a nonincreasing function may be a decreasing

function (see Figure 6.8a), but the converse is not true (see Figure 6.8b). For obvious reasons,

a nondecreasing function may be looked upon as an increasing function and similarly a

nonincreasing function is considered a decreasing function.(12)

It is usually possible to break up the interval (on which a function is considered) into a

number of subintervals on each of which the function is either increasing or decreasing. At

times we use the terms strictly increasing (or strictly decreasing) function to mean increasing

(or decreasing) function.

In Figure 6.9, we give the graphs of (strictly) increasing and (strictly) decreasing functions.

6.12.2 Monotonic Function

A function f (x) is said to be monotonic on [a, b] if f (x) is only nondecreasing, in particular

increasing on [a, b], or only nonincreasing, in particular decreasing on [a, b].

6.12.3 Strictly Monotonic Function

A function which is either increasing or decreasing on an interval will be called strictly

monotonic function on that interval.

6.12.4 A Function Neither Increasing nor Decreasing

It is possible that a function is neither increasing nor decreasing on a given interval. For

instance, see Figure 6.11 where the graph of a function defined on the interval [a, b] is shown.

y

a

(a) (b)

b c d0

x

a b c d0

x

y

FIGURE 6.6 Graphs of nondecreasing functions.

(12) Note that the question of using the terms nondecreasing and nonincreasing functions arises only if a function is defined

on two or more subintervals, with different analytic expressions.
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This interval is split into the intervals [a, x1], [x1, x2], [x2, x3], and [x3, b], on which,

respectively, the function decreases, increases, decreases, and increases. If a function f increases

and decreases on different subintervals of its domain I, we say that the function is neither

increasing nor decreasing on I.

Note: Later on, we will find out the intervals on which a function is only increasing (or only

decreasing). In Chapter 19a,we shall use the properties of derivatives to find such intervals and

study certain local properties of functions. Furthermore, wewill be able to investigate functions

for maximum/minimum values of functions in Chapter 19b.

y

x

a 0 b

(a) (b)

c

y

x
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FIGURE 6.8 Graphs of nonincreasing functions.
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FIGURE 6.7 Graphs of decreasing functions.
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6.13 ELEMENTARY AND NONELEMENTARY FUNCTIONS

First, we talk about the basic elementary functions by which we mean the following

analytically represented functions:

(i) Power Function: y ¼ xa, where a is a real number.

If a is irrational, this function is evaluated by taking logarithms and antilogarithms:

log10y ¼ / log10x. It is assumed that x> 0.

a

a1 x1

x2 x3

x

y

a2 a3 a4

b

FIGURE 6.11 Graph of a function which is neither increasing nor decreasing.
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FIGURE 6.9 Graphs of (strictly) increasing functions.
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FIGURE 6.10 Graphs of (strictly) decreasing functions.
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(For more details, refer to the definition of logarithm using integral calculus

discussed in Chapter 6b of Part II)

(ii) Exponential Function: y ¼ ax, where a> 0 and a 6¼ 1.

(iii) Logarithmic Function: y ¼ loga x, a> 0 and a 6¼ 1.

Throughout this book, the base of the logarithm will be either 10 or e,

depending on the requirement of the problem. In case no base is indicated, the symbol

log will stand for the logarithm to the base “e”. (For a detailed discussion about the

logarithmic function, refer to Chapters 12 and 13a.)

(iv) Trigonometric Functions: y ¼ sin x, y ¼ cos x, y ¼ tan x, y ¼ cot x, y ¼ sec x;
and y ¼ cosec x:

(v) Inverse Trigonometric Functions: y ¼ sin�1x, y ¼ cos �1x, y ¼ tan�1x, y ¼ cot�1x,

y ¼ sec�1x, and y ¼ cosec�1x.

Elementary Functions: Elementary functions are those that are represented analytically.

In general, it is represented by a single formula of the type y ¼ f (x), where the expression on

the right-hand side is made up of basic elementary functions and constants by means of finite

number of operations of addition, subtraction, multiplication, division, and taking function

of a function.

(An elementary function may also be represented by two formulas. The important point to

be emphasized is that elementary functions are represented analytically.)

Examples of Elementary Functions:

y ¼ jxj ¼
ffiffiffiffiffi
x2

p
; y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4sin2x

p
; y ¼ log xþ 4

ffiffiffi
x3

p þ2tan x

10x � xþ 10
; and so on:

Examples of Nonelementary functions:

(a) TheDirichlet function defined on thewhole real line, is not an elementary function. It is

defined as follows:

y ¼ 1 if x is rational and 0 if x is irrational.

(Note that this function is defined in terms of a property of real numbers and not in the

form y ¼ f (x). Thus, it is not represented analytically.)

(b) The function y ¼ 1,2,3, . . . , n [y ¼ f (n)] is not elementary because the number of

operations that must be performed to obtain y increases with “n”. Thus, the number

of operations is not finite.
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7a The Concept of Limit
of a Function

7a.1 INTRODUCTION

Addition, subtraction, multiplication, division, raising to a power, extracting a root, taking a

logarithm, or a modulus are operations of elementary mathematics. In order to pass from

elementarymathematics to highermathematics, wemust add to this list onemoremathematical

operation, namely, “finding the limit of a function”.

The notion of limit is an important new idea that lies at the foundation ofCalculus. In fact, we

might define Calculus as the study of limits. It is, therefore, important that we have a deep

understanding of this concept. Although the topic of limit is rather theoretical in nature, we shall

try to represent it in a very simple and concrete way.

7a.2 USEFUL NOTATIONS

Our work for understanding the concept of limit will be simplified if we use certain notations.

Therefore, let us first get familiar with these notations:

. Meaning of the notation x ! a:

Let x be a variable and “a” be a constant. If x assumes values nearer and nearer to “a”

(without assuming the value “a” itself), then we say x tends to a (or x approaches a) and

we write x ! a. In other words, the procedure of giving values to x (from the domain

of “f ”) nearer and nearer to “a”, but not permitting x to assume the value “a”, is denoted

by the symbol “x ! a”.

Thus, x ! 1 means, we assign values to x which are nearer and nearer to 1 (but not

permitting x to assume the value 1), which means that x comes closer and closer to “1”,

reducing the distance between “x” and “1”, in the process.

Thus, by the statement “x” tends to “a”, we mean that:

(i) x 6¼ a,

(ii) x assumes values nearer and nearer to a, and

(iii) The way in which x should approach a is not specified.

(Different ways of approaching “a” are given below.)

What must you know to learn calculus? 7a-The concept of limit of a function, development of epsilon («), delta (d)

definition of limit and its applications. Algebra of limits (limit theorems) and one-sided limits.

Introduction to Differential Calculus: Systematic Studies with Engineering Applications for Beginners, First Edition.
Ulrich L. Rohde, G. C. Jain, Ajay K. Poddar, and Ajoy K. Ghosh.
� 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

149



. Meaning of x ! a�

If we consider x to be approaching closer and closer to “a” from the left side (i.e., through

the values less than “a”), then we denote this procedure by writing x ! a� and read it

as “x” tends to “a minus”.

x a

. Meaning of x ! aþ

If we consider x approaching closer and closer to “a” through the values greater than “a”

(i.e., x approaching “a” from the right side), then this procedure is denoted by writing

x ! aþ and we read it as “x” tends to “a plus”.

a x

Example (1): Consider the function F(x)¼ 3xþ 5, x2 (2, 3)[ (3, 5].

Note the following points:

(i) “4” is in the domain of F, and it can be approached from both the sides. Therefore, we

can write x ! 4.

(ii) “5” is in the domain of F, but x can approach “5”, only from the left of 5 (i.e., through

values of x< 5).

(iii) “2” is not in the domain of F, but x can approach “2”, from the right of “2” (i.e.,

through values of x> 2). Thus, in this case, it is meaningful to write x ! 2þ, but we
cannot write x ! 2� or x ! 2.(1)

(iv) “3” is not in the domain of F, but x can approach “3” from both the sides of “3”.

Thus, we can write x ! 3þ and x ! 3� or x ! 3.(1)

7a.2.1 What Happens When “x” Approaches “a”?

We know that the distance between “x” and “a” is denoted by jx� aj. Thus, as x tends to “a”,

jx� aj becomes smaller and smaller for values of “x” nearer and nearer to “a”.Mathematically,

we say that for an arbitrary small positive number d, the absolute number jx� aj can be made

less than d, if the number x is chosen nearer and nearer to “a”.

Wewrite x ! a)jx� aj< d, for an arbitrary small d> 0. But, we alsowant that x should

never attain the value “a” (i.e., x 6¼ a). This is expressed by the inequality 0< jx� aj. We can,

therefore, combine these two inequalities and write 0< jx� aj< d, to mean x ! a.

In other words, x ! a means

0 < jx� aj < d; for an arbitrary small d > 0 ð1Þð2Þ

(1) Note the conditions under which “x” can approach “a”, even when “a” does not belong to the domain of the function.
(2) This statement is true irrespective of whether “x” approaches “a” from one side or from both the sides.

150 THE CONCEPT OF LIMIT OF A FUNCTION



Notes:

(1) The variable “x” may approach the fixed number “a” from either side (or both the sides,

simultaneously). This approachmay be along all the points of an interval (on either side)

or by jumping on certain points, which are closer and closer to “a”.(3)

(2) If x can approach “a” from both sides, then the statement (1) tells us that, for an

arbitrary small d> 0, x always belongs to the deleted d-neighborhood of “a”, that is,

x2 (a� d, aþ d), with x 6¼ a.

a – δ a + δax → ← x

This is equivalent to assigning values to “x”, closer and closer to “a” from both sides of

“a”. (This procedure is useful for studying the values of a function in the neighborhood

of the given point “a”.)

(3) If x ! a� (i.e., if x approaches “a” from the left) then, statement (1) means that for an

arbitrary small d> 0, x always belongs to (a� d, a).(4)

a – δ ax →

(4) If x ! aþ (i.e., if x approaches “a” from the right) then, statement (1) means that for an

arbitrary small d> 0, x always belongs to (a, aþ d).(4)

a + δa ← x

7a.3 THE CONCEPT OF LIMIT OF A FUNCTION: INFORMAL DISCUSSION

We know that the value of a function “f ” for any given number “a” of its domain is denoted by

f(a). However, if “a” is not in the domain of “f ”, then we say that f(a) does not exist or f(a) is

not defined. For example, consider the function

f ðxÞ ¼ 5xþ 2; x 2 ½0; 2�

Note that, the numbers 0, 1, and 2 are in the domain of “f ”. Here, we have

f ð0Þ ¼ 2; f ð1Þ ¼ 7; and f ð2Þ ¼ 12:

Next, consider the function �(x)¼ 5xþ 2, x2 (0, 1)[ (1, 2).(5)

Observe that 0, 1, and 2 are not in the domain of �. Accordingly �(0), �(1), and �(2) are not
defined. We ask the following question:

If x ismade to assume values closer and closer to 1 (fromeither side),howwill the value�(x)
change? In other words, to what number is �(x) closest to when x is close to 1?

(3) Whenever “x” approaches “a” through jumps, we are in effect considering the limit(s) of sequences, which are also

functions of a particular type. Here, it may be mentioned that once we have learnt the concept of limit of a function, it is

simpler to understand the concept of limit of a sequence, which is a function whose domain is the set of natural numbers.

Here, we shall not discuss about the limit of a sequence <an>.
(4) Remember that in the one-sided neighborhood of “a”, the point “a” itself is not included in the neighborhood

(see Chapter 3).
(5) Recall that, whenever the domain of a function is changed, we get a new function. Thus, f1(x)¼ 5xþ 2, x2 [0, 2] is

different from f2(x)¼ 5xþ 2, x2 [0, 2).
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In this case, it is easy to guess that if x gets close to 1, then, �(x)¼ 5xþ 2 gets close to 7.

Similarly, if x gets close to 0, �(x) gets close to 2 and if x gets close to 2, then �(x) gets
close to 12. We say that the limit of the function �(x)¼ 5xþ 2, when x approaches the

number 1, is 7.

We express this idea by the notation:

lim
x! 1

�ðxÞ ¼ lim
x! 1

ð5xþ 2Þ ¼ 7; here x can approach 1 from both the sides

lim
x! 0þ

�ðxÞ ¼ lim
x! 0þ

ð5xþ 2Þ ¼ 2; here x can approach 0 only from the right

lim
x! 2�

�ðxÞ ¼ lim
x! 2�

ð5xþ 2Þ ¼ 12; here x can approach 2 only from the left

Note that, whereas the function �(x) is not defined at the point 0, 1, and 2, yet the limit(s) as

indicated above exist.

We agree that our discussion will be restricted to the real valued functions of real variables.

This restricts our choice of functions. For example, the formula gðxÞ ¼ ffiffiffi
x

p
will be a function

only for x� 0.

Now, it is easy to guess that as x approaches “9”,
ffiffiffi
x

p
approaches 3 and (

ffiffiffi
x

p þ 13)

approaches 16. It follows that the reciprocal of (
ffiffiffi
x

p þ 13) should approach 1/16 and

(
ffiffiffi
x

p þ 13)1/4must approach 2.Later on,wewill be able to show that all our guesses are correct.

Remark: In connection with limit of the function�, we have considered only those points that
are not in the domain of �. However, the concept of limit is equally applicable to the points

(numbers), which are in the domain of �. For example, 1/5 is in the domain of � (and it can be

approached from either side), hencewe can say that asx approaches the number 1/5 (from either

side), the function � approaches 3.

We write,

lim
x! 1=5

�ðxÞ ¼ lim
x! 1=5

ð5xþ 2Þ ¼ 3

Similarly;

lim
x! ffiffi

2
p �ðxÞ ¼ lim

x! ffiffi
2

p ð5xþ 2Þ ¼ 5
ffiffiffi
2

p
þ 2

The point we are making here is that the following two questions are different.

(i) What is the value of �(1)?

(ii) What is the number which �(x) is close to, when x is close to 1?

Note that, whereas �(1) does not exist, the lim
x! 1

�(x) exists and it is the number 7.

The idea of limit indicated in (ii) above will be found useful when we compute the limit of

the type lim
x! a

ðx2 � a2Þ=ðx� aÞ� �
. In fact, it is due to this type of function that we can

understand the concept of the limit in a better way.

Remark: Tobe able to find the limit of a function at anypoint “a”, (whichmay ormay not be in

its domain) it is necessary that there exists some neighborhood of “a” in which “f ” is defined,

except possibly at “a”. This is necessary, since only then can x approach “a”.
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7a.4 INTUITIVE MEANING OF LIMIT OF A FUNCTION

Let f(x) be a function. If x assumes values nearer and nearer to the number “a” except possibly

the value “a” and f(x) assumes the values nearer and nearer to l, which is a finite real number,

then we say that f(x) tends to the limit l as x tends to a, and we write lim
x! a

f ðxÞ ¼ l.

Notice thatwe do not insist anything to be true at “a”. The function f need not even be defined

at “a”. Since “a” may be approached from both the sides of a (i.e., left side and right side

of a) when we say that lim
x! a

f ðxÞ ¼ l; we really mean to say that lim
x! a�

f ðxÞ ¼ l ¼ lim
x! aþ

f ðxÞ. If
these conditions are not satisfied simultaneously, we say that lim

x! a
f ðxÞ does not exist.(6)

The following examples will clarify the situation.

Example (2): Consider f1ðxÞ ¼ x2 � 4

x� 2
; x 6¼ 2

Observe that, here f1(x) is not defined for x¼ 2. Further, since (x2� 4) and (x� 2) both

approach “0” as x approaches 2, it follows that limit of the quotient function is of the form 0/0,

which is not defined. Therefore, it is not possible to compute lim
x! 2

ðx2 � 4Þ=ðx� 2Þ� �
. We,

therefore, use an indirect method as explained below.

We have seen that f1(2) is not defined. However, since f1 is defined for all other values of x,

there is no objection in computing the values of f1at all other points. We, therefore, study the

values of f1when x is considered very close to the number 2.

For this purpose, we prepare the following calculations, by choosing successive values of x

from a small neighborhood of 2 (say 0.1 neighborhood of 2) and compute corresponding

values f1(x).

This involves the following calculations:

x x2 x2 � 4 x� 2 f1ðxÞ ¼ x2 � 4

x� 2

From the above calculations, we get the data of our interest, which is given in Table 7a.1.

Observe that as x approaches 2, f1(x) takes up values closer and closer to 4. We, therefore,

say that the limit of f1(x), as x approaches 2, is 4. In symbols, we write lim
x! 2

f1ðxÞ ¼ 4.

Note that the preparation of Table 7a.1 is time consuming and tedious. On the other hand, a

logical way of thinking (which is explained below) is found to be useful and simpler in

evaluating the limits. We have

f1ðxÞ ¼ x2 � 4

x� 2
; x 6¼ 2 ¼ ðx� 2Þðxþ 2Þ

ðx� 2Þ ; x 6¼ 2 ð2Þ

Note that, if (x� 2) 6¼ 0, (i.e., if x 6¼ 2) then we can cancel the factor (x� 2) from the numerator

and the denominator of the above expression on the right-hand side of Equation (2), and get,

f1ðxÞ ¼ ðxþ 2Þ; x 6¼ 2 ð3Þ

(6) In other words, if lim
x! a�

f ðxÞ is different from lim
x! aþ

f ðxÞ then we will say that lim
x! a

f ðxÞ does not exist.
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Thus, we have two Equations (2) and (3), both representing the same function f1(x), when

x 6¼2. We may choose any of them for computing the limit of the function in question.

Obviously, the Equation (3) is simpler to handle inview of the difficulty observed in connection

with the expression ðx2 � 4Þ=ðx� 2Þ; x 6¼ 2, in listing the values of f1(x) in the neighborhood

of 2. Hence, we choose the expression (xþ 2) for computing the limit in question. We get

lim
x! 2

f1ðxÞ ¼ lim
x! 2

x2 � 4

x� 2
; x 6¼ 2

¼ lim
x! 2

ðxþ 2Þ; x 6¼ 2

¼ 2þ 2 ¼ 4

Note that whereas f1(2) does not exist (since 2 is not in the domain of “f ”), lim
x! 2

f1ðxÞ
exists, and it is given by the number 4.

This shows that the existence or nonexistence of the limit of a function at a point does not

depend on the existence or nonexistence of the value of the function at that point.

Example (3): Consider F(x)¼ x2� 5xþ 2, x2 (0, 3)[ (3, 5)

Here,F is not defined for x¼ 0, 3, and 5. Therefore, F(0),F(3), and F(5) do not exist. However,

the limit(s) of F at 0, 3, and 5 exist. (Of course, limits at 0 and 5 are one-sided limits, to be

discussed later.)

Remark: Limit of a function at any point “a” may be considered if and only if it is possible to

approach “a” from at least one side. Thus, if “a” is an isolated point in an interval (so that there

exists an open interval which contains “a” alone) then limit of a function at “a” cannot be

discussed.

In the following example, we observe that lim
x! a

GðxÞ should not exist even though “a” can be
approached from both the sides.

TABLE 7a.1

x f1(x)

1.91 3.91

1.92 3.92

1.96 3.96

1.99 3.99

1.997 3.997

1.9998 3.9998

1.999998 3.999998

1.99999999 3.99999999

2 Not defined

2.00000001 4.00000001

2.0000001 4.0000001

2.000001 4.000001

2.00001 4.00001

2.0001 4.0001

2.001 4.001

2.01 4.01

2.02 4.02
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Example (4): Consider GðxÞ ¼ xþ2
x�2

; x 6¼ 2

Note that this function is defined for all real values of x, except x¼ 2, which is not an isolated

point. However, the limit lim
x! 2

ðxþ 2Þ=ðx� 2Þð Þ; x 6¼ 2 does not exist.

This is because, as x ! 2, the numerator (xþ 2) approaches the number 4 whereas the

denominator approaches the number “0”, so that G(x) approaches arbitrary large values and

hence not defined.Whenever such a situation arises, we say that the limit of the function does

not exist.(7)

Further note that

lim
x! 1

GðxÞ ¼ lim
x! 1

xþ 2

x� 2
¼ �3; and lim

x! 3
GðxÞ ¼ lim

x! 3

xþ 2

x� 2
¼ 5

Remark: To evaluate the limit lim
x! a

f ðxÞ=gðxÞð Þ; where f ðaÞ ¼ 0 and g(a)¼ 0, we cannot put

x¼ a, since it produces the expression 0/0, which is not defined. In such cases, we must search

for a common factor in f(x) and g(x). If there is a common factor in both f(x) and g(x) whose

limit is zero as x ! a, thenwe can reduce the quotient to a simpler form and finally evaluate the

limit by using the direct method.(8)

Example (5): Let FðxÞ ¼
x2 � 4

x� 2
; x 6¼ 2

6; x ¼ 2

8><
>: , and consider lim

x! 2
FðxÞ.

We know that lim
x! 2

ðx2 � 4Þ=ðx� 2Þ� � ¼ 4 [see Example (2)]. Here, F(2) is defined to be 6. In

fact, we may define F(2) to be any real number, artificially. Thus, limit of the function F(x) at

x¼ 2 and the value F(2) both exist, but they are not equal. This example shows that lim
x! a

FðxÞ
need not be equal to F(a), even when both exist.

Next, consider the following example.

Example (6): Let GðxÞ ¼
x2 � 4

x� 2
; x 6¼ 2

4; x ¼ 2

8><
>: , and consider lim

x! 2
GðxÞ.

Here, we note that the limit of the function G(x) at x¼ 2 and the value of the function at x¼ 2,

both exist and each is equal to 4.

(This property will be very useful in the next chapter, where we study the concept of

continuity of a function.)

Example (7): Consider f2ðxÞ ¼ xþ 5; for x > 0

xþ 2; for x < 0

�

Observe that f2(0) is not defined. Let us study the values of f2(x) as x ! 0. We note that as

x ! 0�, f2(x) ! 2. On the other hand, as x ! 0þ, f2(x) ! 5. Thus, lim
x! 00

f2ðxÞ 6¼ lim
x! 0þ

f2ðxÞ.
When this happens, we say that the limit of the function does not exist.

(7) Remember that “limit of a function” at any point must be a “finite” (real) number. Since lim
x! 2

xþ2
x�2

approaches

infinity (1), which does not represent a real number, we say that this limit does not exist. Later on in Chapter 7b, we shall

introduce infinity as limit of a function.
(8) As regards other algebraic, trigonometric, exponential, and logarithmic functions or their combinations, different

methods are available for evaluating their limit(s) in corresponding chapters.
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Example (8):

f3ðxÞ ¼ 2x� 1; for 1 � x < 2

4x� 5; for 2 < x � 3

�

Observe that f3(2) is not defined. Let us study the values of f3(x) as x ! 2. We prepare

Table 7a.2. From Table 7a.2, we observe that lim
x! 22

f3ðxÞ ¼ 3, and lim
x! 2þ

f3ðxÞ ¼ 3. Thus, the

left-hand limit of f3(x) at x¼ 2 is equal to its right-hand limit at x¼ 2. In this case, we say

that the limit of f3(x) as x ! 2 exists, and we write

lim
x! 2

f3ðxÞ ¼ 3

The function f3(x) is really interesting. Moreover, it is very simple to define any number of such

functions.(9)

Nowwe consider the following (more complicated) functions and the associated difficulties

in finding their limit(s). These examples should help us 0 suitablyword the definition of the limit

of a function at a point, covering all possible situations.

Example (9): Let f6ðxÞ ¼
x if x < 1

2 if x ¼ 1

xþ 2 if x > 1

8><
>:

Let us consider lim
x! 1

f6ðxÞ We have the following observations:

(a) As x ! 1�, f6(x) ! 1 (left-hand limit)

(b) As x ! 1þ, f6(x) ! 3 (right-hand limit)

(c) f6(1)¼ 2

Thus, lim
x! 12

f6ðxÞ ¼ 1 6¼ lim
x! 1þ

f6ðxÞ ¼ 3

Obviously, lim
x! 1

f6ðxÞ does not exist.

TABLE 7a.2

x< 2 f3(x) x> 2 f3(x)

1.9 2.8 2.1 3.4

1.99 2.98 2.01 3.04

1.999 2.998 2.001 3.004

1.9999 2.9998 2.0001 3.0004

1.9999 2.99998 2.00001 3.00004

As x ! 2� f(x) ! 3 As x ! 2þ f(x) ! 3

(9)

(a) Let f4ðxÞ ¼
2xþ 10; for 1 � x < 3

7x� 5; for 3 < x � 5
ðHere; lim

x! 3
f4ðxÞ ¼ 16Þ

(

(b) Let f5ðxÞ ¼
2x3 � 10; for x < 2

3x3 � 18; for x > 2
ðHere; lim

x! 2
f5ðxÞ ¼ 6Þ

(
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Example (10): Let f7ðxÞ ¼ 1
x�1

; for all x 6¼ 1

Observe that asx ! 1þ (asx assumes values closer and closer to 1 from the right hand side) f7(x)

gets larger and larger positive values. On the other hand, when x ! 1� (as x assumes values

closer and closer to 1 from the left hand side), f7(x) gets larger and larger negative values.

Thus, lim
x! 1

f7ðxÞ does not exist. Here, it may also be noted that f7(1) is not defined. In this

case, neither the value f7(1) exists nor does the limit of the function, as x ! 1.

Example (11): Consider the function f ðxÞ ¼ 1 for x 6¼ 0

2 for x ¼ 0

�

Observe that for all values of x (other than zero), f(x)¼ 1. Since, lim
x! 0�

f ðxÞ ¼ 1 and

lim
x! 0þ

f ðxÞ ¼ 1, hence lim
x! 0

f ðxÞ ¼ 1.

x

y

2

1

0 1

Hiccup Function

Note that though f(0)¼ 2, yet this does not make any difference for the existence of the limit,

which is 1. In view of this example, we would like that the definition of lim
x! a

f ðxÞ should

be independent of the value f(a). (This function is known as a “hiccup function” due to the

appearance of its graph.)

Example (12): Now consider the function defined by

f ðxÞ ¼ 0 for x < 0

1 for x � 0

�

x

y

1

0

Diving Board function
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We ask the question: Does “f ” have a limit as x ! 0? Notice that in any interval about 0, say

(�1/1000, 1/1000) the function assumes both the values 0 and 1. Observe that lim
x! 0�

f ðxÞ ¼ 0,

and lim
x! 0þ

f ðxÞ ¼ 1. Here, left-hand limit 6¼ right-hand limit, therefore, we conclude that “f ”

does not have limit. This function is sometimes called “diving board function”.

Example (13): Consider the graph of the signum function defined by

sgn x ¼
�1 if x < 0

0 if x ¼ 0

1 if x > 0

8>><
>>:

x

y

1

–1

0

Signum Function

Since, sgn x ¼�1, if x< 1 and sgn x¼ 1, if x> 0. We have,

lim
x! 0�

sgn x ¼ lim
x! 0�

ð�1Þ ¼ �1 and lim
x! 0þ

sgn x ¼ lim
x! 0þ

ð�1Þ ¼ 1

Because the left-hand limit and the right-hand limit are not equal, the two-sided limit, lim
x! 0

sgn x

does not exist. Hence, we say that, lim
x! 0

sgn x does not exist.
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Example (14): Now, let us evaluate the following limit

lim
x! 0

sin x

x
; ðx in radiansÞð10Þ

Here, there is no way of canceling terms in the numerator and denominator. Since

sin x ! 0 as x ! 0, the quotient sin x=x might appear to approach 0/0. But, we know that

0/0 is undefined, so if the above limit exists, then we must find it by a different technique.

Since we do not have any other simpler way of rewriting sin x/x to obtain the limit, we use

a calculator to find the values of sin x/x for values of x close to 0 and angles x (in sin x)

in radians.(11)

(Other methods of finding this limit will be discussed later.)

From Table 7a.3, it is obvious that, as x ! 0, either from the right or from the left, the value

of sin x/x approaches closer and closer to the number 1. We, therefore, agree to write

lim
x! 0

ðsin x=xÞ ¼ 1. This limit is used very often to find the limits of many trigonometric

functions (including various functions involving trigonometric functions), and plays a very

important role in deriving many useful results. It must be emphasized that the limiting

value of lim
x! 0

ðsin x=xÞ is 1 provided x is measured in radians. If x is measured in degrees, this

limit will be different (and thus, the above does not hold).Wewill discuss this particular limit (x

measured in degrees) later in Chapter 11a.

We have discussed limits informally. In some cases, we were able to deduce limits easily.

However, when we tried to ascertain; whether

lim
x! 0

sin x

x

exists, wewere reduced to calculating sin x/x for several values of x approaching 0. Using these

calculations, we guessed that the above limit exists and it should be 1. However, the uncertainty

about this limit leads us to seek a formal definition of limit.

TABLE 7a.3

x sin x sinx/x

�0.10 �0.0998333 0.99833

�0.09 �0.0898785 0.99865

�0.05 �0.0499792 0.99958

�0.03 �0.0299955 0.99985

�0.02 �0.0199987 0.99993

�0.01 �0.00999983 0.999983

0.00 0.00000 ?

0.01 0.00999983 0.999983

0.02 0.0199987 0.99993

0.03 0.0299955 0.99985

(10) We have so far considered only algebraic functions. The purpose of considering this trigonometric limit is to convey

that the concept of limit is applicable to all types of functions.
(11) Radian measure of any angle subtended at the center of unit circle equals the length of the circumference, which is

taken to have subtended the angle in question. Thus, the measure of an angle “x” radians and the real number “x”

representing the length of circumference in the question, both have the same numerical value. In other words, the angle “x”

in radians may be looked upon as a real number “x”.
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7a.4.1 Points of Concern: Formulating the Precise Definition

In formulating the precise definition of lim
x! a

f ðxÞ we will allow f to be undefined at “a” and

ensure that the following requirements are covered in the definition.

(1) Even when f(a) is not defined (i.e., f is not defined at “a”), lim
x! a

f ðxÞ may exist.

(2) If “f(a) happens to be defined at “a”, we would like the definition of lim
x! a

f ðxÞ to be

independent of the value f(a) [see Examples (5) and (11)].

(3) If lim
x! a

f ðxÞ exists, wewould like the limit to be the same,whetherwe approach from the

left hand side or the right hand side. For any reason if the limit is not unique (i.e., if it is

found that left-hand limit 6¼ right-hand limit) thenwe agree to say that the limit does not

exist [see Examples (9), (12), and (13)].

7a.4.2 Rigorous Study of Limits

We gave an informal definition of limit of a function in Section 7a.4.(12)

Here is a slightly better, reworded definition.

Definition: To say that lim
x! a

f ðxÞ ¼ l, means that the difference between f(x) and l can bemade

arbitrarily small (i.e., as small as we please) by demanding that x be considered sufficiently

close to “a”, but not exactly “a”

We are now ready to formulate a precise definition of limit.

7a.4.3 The Formal Definition of Limit

We have said that l is the limit of f(x) as “x” approaches “a”, if f(x) gets close to l as x gets close

to a. But precisely what does this mean? Does it mean to say that f(x) gets close to l or that x

gets close to a? We begin to answer this question by reinterpreting lim
x! a

f ðxÞ ¼ l. We demand

that if x is considered close to “a” (but distinct from “a”) “then f(x) must be at least as close to

l as we wish”. (This statement is very important.)

In other words, even when f is not defined at “a”, we should be able to obtain the values f(x)

closer and closer to l as x is assigned values nearer and nearer to “a”.

In order to put this definition in precisemathematical terms,we shall be usingGreek letters «
and d to stand for arbitrary positive numbers. We think of « and d as small positive numbers,

which can be chosen to be as small as we please.(13)

7a.4.4 Making the Definition Precise («, d Definition of Limit)

To say that f(x) differs from l by less than « is to say that jf(x)� lj< «. Next, to say that x is

sufficiently close to a, but different from a, is to say that for some d> 0, x is in the small open

interval (a� d, aþ d) with “a” deleted.We demand that “x” be chosen distinct from “a”, so that

(12) We reproduce it here, for convenience: Let f(x) be a function. If “x” assumes values nearer and nearer to “a”, except

possibly the value “a”, f(x) assumes values nearer and nearer to some finite number l then we say that f(x) tends to the

limit l as “x” tends to “a” and we write lim
x! a

f ðxÞ ¼ l.

(13) At this point, it must be clearly understood that the arbitrary positive numbers « and d are not to be confused with

variables. It is because of their arbitrary nature that we can choose their numerical values as per our requirements.
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the value of “f ” at “a” (if it exists there), has no influence on the existence or value of the limit.

The best way to say this is to write 0< jx� aj< d.(14)

We are now in a position to give the «, d definition of limit.

7a.4.4.1 «, d Definition of Limit Let f be a function defined at every number of some

open interval containing “a”, except possibly at the number “a” itself. We say that the limit of

f(x) as “x” approaches “a” is l, if the following statement is true.

For every number «> 0, there exists a number d> 0, such that

if 0 < jx� aj < d then j f ðxÞ � lj < « ð4Þ
It is to be emphasized that the number « is chosen first and then the number d has to be produced.
Once we have chosen «> 0, we must search for a number d> 0 to ensure that if x is in the

interval (a� d, aþ d), with x 6¼ a, then the distance between f(x) and l is less than «. If for every

«> 0, it is possible to get a corresponding d> 0, such that the condition (4) is satisfied, then we

say that the limit at “a” exists, or that f has a limit at “a” or that the limit lim
x! a

f ðxÞ exists.
Using the above «, d definition, it can be easily proved that a function, can have at most one

limit at “a” (we do not prove it here). This justifies calling it “the” limit (and not “a” limit) of

“f ” at “a”.

7a.4.5 Geometric Interpretation of the Definition

It is useful to understand carefully the following geometric interpretation of the definition of

the limit of a function f. Figure 7a.1 shows a portion of the graph of f near the point where x¼ a.

Because f is not necessarily defined at a, there need be no point on the graphwith abscissa a.

Observe that if x on the horizontal axis, lies between a� d1 and aþ d1, then f(x) on the vertical
axis will lie between l� «1 and lþ «1. In other words, by restricting x (on the horizontal axis)

to lie between a� d1 and aþ d1, f(x) on the vertical axis can be restricted to lie between l� «1
and lþ «1.

y

l + ε1

y = f (x)

l – ε1

a – δ1 a + δ1a

x

0

l

FIGURE 7a.1

(14) Note that jx� aj< d describes that a� d< x< aþ d, while 0< jx� aj tells that x 6¼ a.
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Thus, if 0< jx�aj< d1 then jf(x)� lj< «1.
[In Figure 7a.1, observe that the function values (on the vertical axis), lie well within the

interval (l� «1, lþ «1).]
If smaller value of « is chosen, then it can require a different choice for d. In Figure 7a.2, it is

seen that for «2< «1, the d1 value does not serve the purpose since it is too large; so that, there

are values of x (like �x) in the open interval (a� d1, aþ d1), for which 0 < j�x� aj < d1, but
j f(�x)� lj> «2.

(15)

So we must choose a smaller value d2 as shown in Figure 7a.3, such that if 0< jx� aj< d2
then jf(x)� lj< «2.

l + ε1

l

0

l – ε2

l – ε1

y = f(x)y

x

a – δ1
a + δ1a

l + ε2

f(x–)

x–

FIGURE 7a.2

y

x

y = f(x)

l + ε2

a – δ2 a + δ2

a0

l – ε2

l

FIGURE 7a.3

(15) In other words, if we choose «2< «1, then to restrict the value of f(x) to lie between l� «2 and lþ «2, wemust search for

a positive number d2, so that whenever x lies between a� d2 and aþ d2, f(x) lies between l� «2 and lþ «2. In general, the

closer f(x) is to be to l the nearer x must be to a.
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Note (5): Some people call the above «, d definition as themost important definition in calculus.

Use of symbols “«” and “d” in the definition make it look abstract. But the one who has gone

through the process of developing this definition, appreciates its wording and the roles of the

variables “«” and “d”. To be able to prove something requires that we should be very clear about

themeaning of thewordswe are using. This is especially true for theword “limit”, because all of

Calculus rests on the meaning of this word.

If “l ” is the limit of f as “x” approaches “a”, then we write

lim
x! a

f ðxÞ ¼ l

(Note that, in the definition of limit, nothing is mentioned about the function value at x¼ a.)

Remark: The «, d definition of limit does not give any method for evaluating lim
x! a

f ðxÞ. It can
be used only to verify, whether a given number (or a guessed number) “l” is the limit of the

function or not as x ! a.

7a.5 TESTING THE DEFINITION [APPLICATIONS OF THE «, d DEFINITION

OF LIMIT]

It is desirable to test the «, d definition against familiar examples to see whether it gives

results consistent with our past experience. For instance, our experience tells us that as x ! 4,

3x ! 3(4)¼ 12, and (3x� 7) ! 3(4)� 7¼ 5.

Now we give the following examples to show our «, d definition gives the kinds of results

we want.

Example (15): Use the epsilon, delta definition to prove that lim
x! 4

ð3x� 7Þ ¼ 5.

Solution: The first requirement of our definition is that (3x� 7) be defined at every number in

some open interval containing 4 except possibly at 4. Here, since (3x� 7) is defined for all real

numbers, any open interval containing 4 will satisfy this requirement.

Now, we must show that for any «> 0, there exists a d> 0 such that

0 < jx� 4j < d then jð3x� 7Þ � 5j < « ð5Þ

, 0 < jx� 4j < d then jð3x� 7Þ � 5j < «

, 0 < jx� 4j < d then 3jx� 4j < «

, 0 < jx� 4j < d then jx� 4j < 1

3
«

This statement indicates that (1/3)« is a satisfactory d. With this choice of d, we have the

following argument:

0 < jx� 4j < d

) 3jx� 4j < 3d

) j3x� 12j < 3d

) jð3x� 7Þ � 5j < 3d

) jð3x� 7Þ � 5j < «

)d ¼ 1

3
« ) 3d ¼ «

" #
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We have, therefore, established that if d¼ (1/3)«, statement (5) (based on the definition) holds.

This proves, that lim
x! 4

ð3x� 7Þ ¼ 5.

Again, we discuss the above limit in a slightly different way. We begin with what we call a

preliminary analysis. It is not part of the proof. It is the kind of work, which may be treated as

rough work. We include it here, so that our proof will look more logical, systematic and

convenient.

To prove that lim
x! 4

ð3x� 7Þ ¼ 5(16)

Preliminary Analysis

Let « be any positive number. We must produce a d> 0, such that 0< jx� 4j< d )
j(3x� 7)� 5j< «, where « is any arbitrary small positive number, that we may like to choose.

For this purpose, consider the inequality,

ð3x� 7Þ � 5j j < « , 3x� 12j j < «

, 3ðx� 4Þj j < «

, 3j j x� 4j j < «

, x� 4j j < «

3

This suggests theway for choosing d. Of course, any smaller d (for example, d¼ «/4, etc.) would
work. Now, we proceed to give the Formal Proof.

Formal Proof:

To show that, lim
x! 4

ð3x� 7Þ ¼ 5.

Consider,
jð3x� 7Þ � 5j

¼ j3x� 12j
¼ j3ðx� 4Þj
¼ 3jx� 4j

We know that

x! 4 , 0 < jx� 4j < d; for any d > 0:

Let «> 0 be given. We choose d ¼ «=3, based on our preliminary analysis.

Now, 0< jx� 4j< d means

0 < x� 4j j < «

3

)d ¼ «=3½ �

) 0 < 3jx� 4j < «
) 0 < jð3x� 7Þ � 5j < «

[ )3jx� 4j is the simplified expression of j(3x� 7)�5j, Thus, for any «> 0, it is possible to

produce d> 0 (here d ¼ «=3) such that 0< jx� 4j< d)j(3x� 7)� 5j< «

) lim
x! 4

ð3x� 7Þ ¼ 5 ðProvedÞ

Note that, here, d depends on « (i.e., d ¼ «=3) and this may be the situation in general, however,

this may not always be the case [see Example (4)].

(16) Note that, we are not asked to evaluate the limit lim
x! 4

ð3x� 7Þ. Also, observe that this limit is given to be 5, andwe have

to prove that this statement is true.
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Example (16): Prove that lim
x! 2

2x2�3x�2
x�2

¼ 5, x 6¼ 2

Preliminary Analysis

We are looking for d such that 0 < x� 2j j < d ) 2x2�3x�2
x�2

� 5
��� ��� < «

Now for x 6¼ 2,

���� 2x2 � 3x� 2

x� 2
� 5

���� < « ,
���� ð2xþ 1Þðx� 2Þ

ðx� 2Þ � 5

���� < «

, ð2xþ 1Þ � 5j j < «

, 2ðx� 2Þj j < «

, 2j j x� 2j j < «

, x� 2j j < «

2

This indicates that d¼ «/2 will work.

Formal Proof: To show that lim
x! 2

2x2�3x�2
x�2

¼ 5

Consider,

���� 2x2 � 3x� 2

x� 2
� 5

���� ¼
���� ð2xþ 1Þðx� 2Þ

ðx� 2Þ � 5

����
¼ ð2xþ 1Þ � 5j j ¼ 2ðx� 2Þj j
¼ 2 x� 2j j

Let «> 0 be given. We have to search for a d such that

if 0 < jx� 2j < d then
2x2 � 3x� 2

x� 2
� 5

����
���� < «

We know that x ! 2, 0< jx� 2j< d for every d> 0

We choose d¼ «/2, then

0 < jx� 2j < «=2 ½ )d ¼ «=2�

) 2jx� 2j < « or

���� 2x2 � 3x� 2

x� 2
� 5

���� < «

It follows that lim
x! 2

2x2 � 3x� 2

x� 2
¼ 5 (Proved)

Note (6):The cancellation of the factor (x� 2) is legitimate because 0< jx� 2j)x 6¼ 2. Thus,

division by 0 is avoided.
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7a.5.1 Simpler and Powerful Rules for Finding Limits (Algebra of Limits)

Limits are extremely important throughout Calculus. Most readers will agree that proving the

existence of limit using «, d definition is both time consuming and difficult. Also, up to this

point, we do not have any general method that can be applied to any function to find its limit at a

given point “a”.

Of course, as a generalmethod,we can prepare a table listing values ofx, closer and closer to

“a”, and the corresponding values f(x). Such a table may help us guess a number to which f(x)

approaches, suggesting the limit of f, asx! a.Once such a number (say “l ”) is guessed, the «, d
definition can be used to check whether l is the limit of “f ” or not. However, such a process of

finding the values of “f ” as x! a is generally very tedious, as we have seen in the case of

computing

lim
x! 0

sinx

x
¼ 1

Yet, it is useful to have some experience in computing limit(s) by the above process, in very

simple cases.(17)

Fortunately, such a procedure will usually not be necessary because simpler and powerful

rules for finding limits are available and we shall discuss about them shortly in Section 7a.5.2.

Now, we shall verify the following two basic limits using «, d definition.

. lim
x! a

c ¼ c and

. lim
x! a

x ¼ a

These limits will be treated as standard results, so that they can be freely used in evaluating the

limits of many other functions.(18)

(17) Here, it may also be mentioned that simply by studying the values of a function, it may not be possible to guess

the limit of a function, especially when the given function consists of a combination of functions. For example,

consider limx! 0 x2 � cos x
10;000

h i
. Following the procedure used earlier, we have constructed Table 7a.4, of values for the

given function. Table 7a.4 suggests that the desired limit is 0. But, that is wrong. If we recall the graph of y¼ cos x,

we realize that cos x approaches 1 as x approaches 0. Thus, lim
x! 0

x2 � cos x
10;000

h i
¼ 02 � 1

10;000 ¼ � 1
10;000. This situation

will be clearer when we study algebra of limits.

TABLE 7a.4

x x2 � cosx
10;000

� 0.99995

�0.5 0.24991

�0.1 0.00990

�0.01 0.000000006

# #
0 ?

(18) Later on, whenwe have studied the properties of trigonometric, exponential, and logarithmic functions,wewill be able

to establish some other basic limits like, lim
x! 0

sin x
x

¼ 1; ðx in radiansÞ; lim
x! 0

ax�1
x

¼ logea; lim
x! 0

ð1þ xÞ1=x ¼ e; etc:, which

will be treated as standard limits.
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Example (17): Show that lim
x! a

c ¼ c.

Preliminary Analysis

We write lim
x! a

c ¼ lim
x! a

f ðxÞ; where f(x)¼ c.

Let « be any positive number. We must produce a d> 0, such that

0 < jx� aj < d ) jf ðxÞ � cj < « where f ðxÞ ¼ c:

Consider, jf(x)� cj< «,jc� cj< «

, 0 < « which is true for any « > 0:

Thus, for a constant function, f(x)¼ c, we have, for any d> 0,

0 < jx� aj < d ) j f ðxÞ � cj ¼ jc� cj ¼ 0 < «:

It follows that, lim
x! a

c ¼ c.

Remark: In the case of a constant function, the (positive) number d does not depend on the

arbitrary positive number «, since any constant function f(x)¼ c does not change with x. In

other words, x approaching any number “a” does not have any effect on the limit of a constant

function. Accordingly,

lim
x! 3

1 ¼ 1; lim
x!� ffiffi

2
p

p
3
¼ p

3
and lim

x! 2
ð�pÞ ¼ �p

Example (18): Show that, lim
x! a

x ¼ a

Solution: Here, f(x)¼ x for all x.

Let «> 0, be an arbitrary number.

We must find a number d> 0, such that,

0 < x� aj j < d ) x� aj j < «

Consider; f ðxÞ � aj j ¼ x� aj j:
In this case, for jx� aj< «, we can choose d¼ «, so that we can write 0< jx� aj< «)

jx� aj< «, that is, 0< jx� aj< d)jx� aj< « [by putting «¼ d on the left-hand side].

From the above statement, we conclude that lim
x! a

x ¼ a. In view of the above, we can write

lim
x! 4p

x ¼ 4p and lim
x!� ffiffiffiffi

11
p x ¼ �

ffiffiffiffiffi
11

p

Remark: A slight alteration in the situation would show that for any fixed numbers a, b, and c.

lim
x! a

ðbxþ cÞ ¼ baþ c; lim
x! a

xj j ¼ aj j
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It follows that
lim
x! 2

ð�5xþ 3Þ ¼ ð�5Þ � ð2Þ þ 3 ¼ �7

and lim
x!�3

xj j ¼ �3j j ¼ �ð�3Þ ¼ 3

7a.5.2 Algebra of Limits [Limits Theorem]

For computing limits, there aremethodswhich are simpler than using the «, d definition. In these

methods, we employ theorems (called limit theorems) whose proofs are based on the «, d
definition. In fact, these theorems define the algebra of limits, and they are useful in finding the

limits of various combinations of functions. We accept these theorems without proof, which

are given below.

7a.5.3 Theorem (A): Main Limit Theorem

Let n be a positive integer, k be a constant, and f and g be functions, such that

lim
x! a

f ðxÞ and lim
x! a

gðxÞ exist; then

lim
x! a

f ðxÞ þ gðxÞ½ �; lim
x! a

kf ðxÞ; lim
x! a

f ðxÞ � gðxÞ½ �; and lim
x! a

f ðxÞ � gðxÞ½ � exist:

Let

lim
x! a

f ðxÞ ¼ l and lim
x! a

gðxÞ ¼ m; then we have the following theorems (rules).

(1) Sum Rule:

lim
x! a

f ðxÞ � gðxÞ½ � ¼ lim
x! a

f ðxÞ � lim
x! a

gðxÞ
¼ l �m

(This rule is applicable for a finite number of functions.)

(2) Constant Multiple Rule:

lim
x! a

k f ðxÞ ¼ k lim
x! a

f ðxÞ; for any constant k:

¼ k � l

(3) Product Rule:

lim
x! a

f ðxÞ � gðxÞ½ � ¼ lim
x! a

f ðxÞ � lim
x! a

gðxÞ ¼ l �m

(4) Quotient Rule:

If lim
x! a

f ðxÞ and lim
x! a

gðxÞ exist and lim
x! a

gðxÞ 6¼ 0; then; lim
x! a

f ðxÞ
gðxÞ exists and, we have

the following rule

lim
x! a

f ðxÞ
gðxÞ ¼

lim
x! a

f ðxÞ
lim
x! a

gðxÞ ¼
l

m
; ðm 6¼ 0Þ
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A special case of this rule is the following.

If a is any real number except zero, then

lim
x! a

1

x
¼ 1

a
:Also; lim

x! a

1

f ðxÞ ¼
1

lim
x! a

f ðxÞ provided lim
x! a

f ðxÞ 6¼ 0.(19)

(5) lim
x! a

f ðxÞ½ �n ¼ lim
x! a

f ðxÞ
h in

(6) lim
x! a

ffiffiffiffiffiffiffiffiffi
f ðxÞn

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lim
x! a

f ðxÞn

q
; provided lim

x! a
f ðxÞ > 0; when n is even.

(7) lim
x! a

f ½gðxÞ� ¼ f lim
x! a

gðxÞ
� �

¼ f ðmÞ.

Now, we also include the following two results (to be treated as theorems), which we

have already proved above.

(8) lim
x! a

c ¼ c

(9) lim
x! a

x ¼ a

Since “limits are real numbers”, any combination of limits must follow the rules for

combining real numbers. This should help us remember the above theorems. Remember

that we have accepted the above theorem and rules without proof. Hence, one should not

bother about their proofs immediately. For the time being, it is more important to see how

all these theorems are applied. The proofs may be referred to in any standard book on the

subject.(20)

Exercise: Using «, d definition, show that

Q. (1) lim
x! 2

3x� 2ð Þ ¼ 4

Q. (2) lim
x! 4

2
x2 � 16

x� 4

	 

¼ 16, (x 6¼ 4)

Q. (3) lim
x! 1

x2 þ 2x� 3

x� 1

	 

¼ 4; ðx 6¼ 1Þ

Q. (4) lim
x! 5

x2 � 2x� 15

x� 5

	 

¼ 24; ðx 6¼ 5Þ

Q. (5) lim
x! 3

ðx2 þ x� 5Þ ¼ 7

Q. (6) Prove that if a> 0, lim
x! a

ffiffiffi
x

p ¼ ffiffiffi
a

p

Note: Solutions to Q. (5) and Q. (6) are given below in Examples (19) and (20).

(19) We can deduce rule (5) from rule (4).

Note that
f ðxÞ
gðxÞ ¼ f ðxÞ � 1

gðxÞ
	 


(20) Calculus with Analytic Geometry (Alternate Edition) by Robert Ellis and Denny Gulick, HBJ Publication.
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Example (19): Prove that lim
x! 3

ðx2 þ x� 5Þ ¼ 7,

Preliminary Analysis

Our task is to find d such that 0< jx� 3j< d)j(x2þ x� 5)� 7j< «.

Consider, j(x2þ x� 5)� 7j ¼ jx2þ x� 12j ¼ j(xþ 4)(x� 3)j ¼ jxþ 4jjx� 3j
Since the second factor x� 3 can be made as small as we please, it is enough to bound the

factor jxþ 4j (i.e., to find themaximum value of this factor as x ! 3). To do this, we first agree

to make d� 1.

Let us see what happens when we choose d� 1.(21)

We have jx� 3 < 1) �1< x� 3< 1

) 2 < x < 4

) 2þ 4 < xþ 4 < 4þ 4

) 6 < xþ 4 < 8

(When d� 1, the value of jx� 3j � 1 suggests that maximum value of jx� 3j can be 1.)

Then, jx� 3j< d implies

jxþ 4j ¼ jðx� 3Þ þ 7j
� jx� 3j þ j7j ðTriangle InequalityÞ
< 1þ 7 ¼ 8

This indicates that if we also take d� «/8, the product jxþ 4j jx� 3j will be less than «.

Formal Proof:

Let «> 0 be given.

Choose d¼min{1, «/8}; that is choose d to be smaller of 1 and «/8.
Then, 0< jx� 3j< d implies

jðx2 þ x� 5Þ � 7j ¼ jx2 þ x� 12j
¼ jxþ 4jjx� 3j < 8: «=8 ¼ «:

Example (20): Prove that if a> 0, lim
x! a

ffiffiffi
x

p ¼ ffiffiffi
a

p

Preliminary Analysis

(Note that
ffiffiffi
x

p
is defined only for x� 0.)

We must find d such that 0 < x� aj j < d ) ffiffiffi
x

p � ffiffiffi
a

pj j < «

Consider;
ffiffiffi
x

p � ffiffiffi
a

pj j ¼
���� ð

ffiffiffi
x

p � ffiffiffi
a

p Þ � ð ffiffiffi
x

p þ ffiffiffi
a

p Þ
ð ffiffiffi

x
p þ ffiffiffi

a
p Þ

����
¼

���� x� affiffiffi
x

p þ ffiffiffi
a

p
����

¼ x� aj jffiffiffi
x

p þ ffiffiffi
a

p � x� aj jffiffiffi
a

p

Now, to make
x�aj jffiffi

a
p less than «, requires that we make jx� aj < «

ffiffiffi
a

p
.

(21) Note that we may as well choose d� 2 or d� 3, (or d� any other convenient positive number) and then obtain the

relation between that number and «.
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Formal Proof: To prove lim
x! a

ffiffiffi
x

p ¼ ffiffiffi
a

p
, (a> 0)

Let «> 0 be given.

Choose d ¼ «
ffiffiffi
a

p
Then, 0< jx� aj< d implies

ffiffiffi
x

p � ffiffiffi
a

pj j ¼
���� ð

ffiffiffi
x

p � ffiffiffi
a

p Þ � ð ffiffiffi
x

p þ ffiffiffi
a

p Þ
ð ffiffiffi

x
p þ ffiffiffi

a
p Þ

����
¼

���� x� affiffiffi
x

p þ ffiffiffi
a

p
���� � x� aj jffiffiffi

a
p <

«
ffiffiffi
a

pffiffiffi
a

p ; )x� aj j < «
ffiffiffi
a

p� �

i:e:;
x� aj jffiffiffi

a
p < «

ffiffiffi
x

p � ffiffiffi
a

pj j < «

lim
x! a

ffiffiffi
x

p ¼ ffiffiffi
a

p

Remark: There is one more technical point.We should insist that d� a, for then jx� aj< d

implies x> 0 so that
ffiffiffi
x

p
is defined.(22)

Thus, for absolute rigor, we must choose d to be smaller than a and «
ffiffiffi
a

p
.

Note (8): In Example (6) given above, we had to rationalize the numerator for the purpose of our

demonstration. Rationalization is a trick frequently useful in calculus.

7a.5.3.1 Applications of the Main Limit Theorem

Example (21): Evaluate the following limits:

(a) lim
x!�1

x2

(b) lim
x!�1

ðpxþ x2Þ

(c) lim
x!�1

x2

xþ 3

Solution:

(a) lim
x!�1

x2¼
�

lim
x!�1

x
��

lim
x!�1

x
�
¼ ð�1Þð�1Þ ¼ 1

(Here, we have applied the product rule.)

(b) We have lim
x!�1

px ¼ pð�1Þ ¼ �p (By constant multiple rule)

and lim
x!�1

x2 ¼ 1 [By part (a) above].

We conclude that

lim
x!�1

ðpxþ x2Þ ¼ lim
x!�1

pxþ lim
x!�1

x2

¼ �pþ 1
ðBy sum ruleÞ

(22) jx� aj< d)� d< x� a< d) a� d<x< aþ d (i). Now, d� a) a� d� 0. ) From (i) it follows that

0�x< aþ d.
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(c) We have lim
x!�1

ðxþ 3Þ ¼ �1þ 3 ¼ 2; (By sum rule)

and lim
x!�1

x2 ¼ 1 [By part (a)].

We conclude from the quotient rule that

lim
x!�1

x2

xþ 3
¼

lim
x!�1

x2

lim
x!�1

ðxþ 3Þ ¼
1

2

Note (9): Rule no. (6) of Theorem A, demands special attention.

We have,

lim
x! a

ffiffiffiffiffiffiffiffiffi
f ðxÞn

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lim
x! a

f ðxÞn

q
; provided lim

x! a
f ðxÞ > 0; when n is even:

Recall that the nth root function,
ffiffiffi
xn

p
is defined for any real number x, if n is odd. However, if n

is even then
ffiffiffi
xn

p
is defined only for x� 0, with the understanding that only non-negative values

of the nth root are accepted. As a particular case of rule (6), we have

lim
x! a

ffiffiffi
xn

p ¼ ffiffiffi
an

p
;

for all a if n is odd:

for a > 0; if n is even:

�

In particular, lim
x! a

ffiffiffi
x

p ¼ ffiffiffi
a

p
; for a > 0:

For example, lim
x! 1=4

ffiffiffi
x

p ¼
ffiffiffi
1

4

r
¼ 1

2
.

7a.5.3.2 Substitution Rule
Consider the following limit

lim
x! 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x5 � 4x2 þ 3xþ 2

p
To evaluate this limit we have to apply the Rule (7), which states that

lim
x! a

f ½gðxÞ� ¼ f lim
x! a

gðxÞ
� �

Now, suppose lim
x! a

gðxÞ ¼ c (i.e., some constant) and we substitute y¼ g(x).

Then, we can write, lim
x! a

gðxÞ ¼ lim
y! c

y.

This is a valid statement and we can write lim
x! a

f ½gðxÞ� ¼ lim
y! c

f ðyÞ, provided f(y) exists.

This is known as Substitution Rule. Frequently, the process is straight-forward.

This rulemight look innocent but it is a very convenient and useful rule for evaluating certain

limits. The following examples will convince the reader about its usefulness.

Example (22):

Find lim
x! 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x5 � 4x2 þ 3xþ 2

p
ð6Þ

In trying to evaluate this limit, we first let y¼ x5� 4x2þ 3xþ 2 and notice that as x ! 1, y

approaches (1)5� 4(1)2þ 3(1)þ 2¼ 2.

This suggests that by substituting y ¼ x5 � 4x2 þ 3xþ 2 . . . ð7Þ
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We can easily evaluate the limit of the expression on the right-hand side of Equation (7),

as x ! 1.

Now, in order to evaluate the limit at (6) above, we substitute y ! 2, for x ! 1.

Thus, we write

lim
x! 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x5 � 4x2 þ 3xþ 2

p
¼ lim

y! 2

ffiffiffi
y

p ¼
ffiffiffi
2

p
Ans:

Example (23): Consider lim
x! 2

ffiffiffiffiffiffiffiffiffiffiffi
xþ 1

x

q
. We first let y ¼ xþ 1

x
. Then, we notice that

lim
x! 2

y ¼ lim
x! 2

xþ 1
x

� � ¼ 2þ 1
2
¼ 5

2
: )y ¼ xþ 1

x

� �
.

) By the substitution rule, we get lim
x! 2

ffiffiffiffiffiffiffiffiffiffiffi
xþ 1

x

q
¼ lim

y! 5=2

ffiffiffi
y

p ¼
ffiffiffi
5

2

r
.

Example (24): If lim
x! 3

f ðxÞ ¼ 4 and lim
x! 3

gðxÞ ¼ 8; find lim
x! 3

f 2ðxÞ �
ffiffiffiffiffiffiffiffiffi
gðxÞ3

p
�

h
Solution:

lim
x! 3

f 2ðxÞ �
ffiffiffiffiffiffiffiffiffi
gðxÞ3

p
� ¼ lim

x! 3
f 2ðxÞ � lim

x! 3

ffiffiffiffiffiffiffiffiffi
gðxÞ3

p	

¼ lim
x! 3

f ðxÞ
	 
2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lim
x! 3

gðxÞ3

q

¼ ½4�2 �
ffiffiffi
8

3
p

¼ 16 � 2 ¼ 32 Ans:

Note (10): Usefulness of the substitution rule is appreciated when we have to evaluate the

following limit.

Example (25):

lim
x! 1

x1=4 � 1

x1=3 � 1

Here, we observe that the indices of x are fractions. Hence, it is not possible to factorize both

numerator and denominator. Further,we see that the denominator of these indices is 4 and 3, and

their L.C.M. is 12.

We substitute x¼ y12. Thus, we get y¼ x1/12 ) x1/4¼ (y12)1/4¼ y3 and x1/3¼ (y12)1/3¼ y4.

Also, we see that as x ! 1, y ! 1.

) Required limit is lim
y! 1

y3 � 1

y4 � 1
that is lim

y! 1

y3 � 1

y4 � 1

(Note that, now the numerator and the denominator both can be factorized.)

¼ lim
y! 1

ðy� 1Þðy2 þ yþ 1Þ
ðy� 1Þðy3 þ y2 þ yþ 1Þ

¼ lim
y! 1

ðy2 þ yþ 1Þ
ðy3 þ y2 þ yþ 1Þ ; ð )y 6¼ 1Þ

¼ 1þ 1þ 1

1þ 1þ 1þ 1
¼ 3

4
Ans:
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Note (11): Many such limits are evaluated in the Chapter 7b.

Another example in which the beauty of the substitution rule can be enjoyed is the following

limit.

Example (26): lim
x! 0

ffiffiffiffiffiffiffi
1þx

p �1
x

[Hint: Put y¼1þx, then as x ! 0, y ! 1. Hence, the limit

reduces to the form lim
y! 1

ðy1=2 � 1Þ=ðy� 1Þ
� �

.]

7a.6 THEOREM (B): SUBSTITUTION THEOREM(23)

If f is a polynomial function or a rational function, then

lim
x! a

f ðxÞ ¼ f ðaÞ

provided that, in the case of a rational function, the value of the denominator at “a” is not zero.

Note that Theorem (B) allows us to find limits for polynomials and those of rational

functions by simply substituting “a” for x throughout. Let us see what happens when in a

rational function the limit of the denominator is zero.

Note (12): Suppose, we have to find lim
x! 1

x5þ2xþ8
x2�2xþ1

¼ lim
x! 1

x5þ2xþ8

ðx�1Þ2 .

In this case, neither Theorem (B) nor the “Quotient Rule” of Theorem (A) applies, since the

limit of the denominator is 0. However, since the limit of the numerator is 11, we see that as x

nears 1, we are dividing a number near 11 by a positive number near 0. The result is a large

positive number. In fact, the resulting number can bemade as large as you like by letting x get

close enough to 1. Here, wemay say that the limit does not exist, but later on inChapter 7bwe

will allow ourselves to say that the limit is þ1.

(This becomes possible once we accept þ1 and �1 as limits.)

Note (13): Now suppose that we have to find lim
t! 2

t2�t�2
t2þ2t�8

¼ lim
t! 2

ðt�2Þðtþ1Þ
ðt�2Þðtþ4Þ

Again, in this case, Theorem (B) does not apply. But this time, the quotient takes the

meaningless form 0/0 at t¼ 2. Whenever this happens we should look for an algebraic

simplification of the quotient (by factorization), before taking the limit.

lim
t! 2

t2 � t� 2

t2 þ 2t� 8
¼ lim

t! 2

ðt� 2Þðtþ 1Þ
ðt� 2Þðtþ 4Þ

¼ limt! 2

tþ 1

tþ 4
; )t 6¼ 2½ �

¼ 3

6
¼ 1

2
Ans:

(23) The substitution theorem [i.e., Theorem (B)] discussed here should not be confused with the substitution rule

discussed in Section 7a.5.3.2.
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7a.7 THEOREM (C): SQUEEZE THEOREM OR SANDWICH THEOREM

Let f, g, and h be functions satisfying f(x)� g(x)� h(x), for all x near a, except possibly at a.

If lim
x! a

f ðxÞ ¼ lim
x! a

hðxÞ ¼ l; then lim
x! a

gðxÞ ¼ l(24)

Proof: Let «> 0 be given. Choose d1 such that,

0< jx� aj< d1) l� «< f(x)< lþ «, and d2 such that 0< jx� aj< d2) l� «< h(x)< lþ «.
Also, choose d3 so that 0< jx� aj< d3) l� «< g(x)< lþ «.

Let d¼min{d1, d2, d3}. Then 0< jx� aj< d) l� «< f(x)< g(x)< h(x)< lþ «) l� «

< g(x)< lþ «.
Hence, we conclude that lim

x! a
gðxÞ ¼ l.

Note (14): This theorem will be found very useful in evaluating limits of a variety of

trigonometric functions, to be studied later.

Remark: Suppose lim
x! a

f ðxÞ does not exist, then, limit rules can help in proving this fact, as

the following example illustrates.

Example (27): Show that lim
x! 0

1

x
does not exist.

Solution: To prove the above result, we approach by the indirect method.

Suppose that lim
x! 0

ð1=xÞ exists, and let lim
x! 0

ð1=xÞ ¼ l. Consider, 1 ¼ x � ð1=xÞ.

) We have lim
x! 0

1 ¼ lim
x! 0


x � 1

x

�
or 1 ¼


lim
x! 0

x

�
�


lim
x! 0

1

x

�
) 1 ¼ 0 � l ¼ 0

This is absolutely false (since 1 6¼ 0). Therefore, lim
x! 0

ð1=xÞ cannot exist.

7a.8 ONE-SIDED LIMITS (EXTENSION TO THE CONCEPT OF LIMIT)

Now, we are in a position to give the «, d definitions for left-hand and right-hand limits of a

function.

Definition: Let f be defined on some open interval (c, a).(25)A number “l ” is the limit of f(x)

as x approaches a from the left, if, for every «> 0, there is a corresponding d> 0, such that

�d< x� a< 0)j f(x)� l j< «.
In this case we write, lim

x! a�
f ðxÞ ¼ l; and we say that the left-hand limit of “f ” at “a”

exists. Right-hand limits are treated in a completely analogous way. Thus, if “f ” is defined on

some open interval (a, c), then a number “l ” is the limit of f(x) as x approaches “a” from the

right, if for every «> 0, there is a corresponding d> 0, such that 0< x� a< d)j f(x)� lj< «.

In this case, wewrite lim
x! aþ

f ðxÞ ¼ l; andwe say that the right-hand limit of “f ” at “a” exists.

(24) Roughly speaking, the theorem tells us that if a function can be “sandwiched” between two other functions, each of

which approaches the same limit “l” (say) as x approaches a, then the sandwiched function also approaches the same limit

“l” as x approaches a. For obvious reasons, we call it the “Sandwich Theorem”.
(25) Observe that “f ” is not defined at “a”. Besides, “a” can be approached only from the left-hand side of “a”.
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Remark: One can show that lim
x! 0þ

ffiffiffi
x

p ¼ 0; but it must be clear that neither lim
x! 0�

ffiffiffi
x

p
nor

lim
x! 0

ffiffiffi
x

p
exists (because

ffiffiffi
x

p
is not defined to the left of 0). Similarly, for f ðxÞ ¼ ffiffiffi

x
p

, x2 (1, 2),

lim
x! 2�

ffiffiffi
x

p ¼
ffiffiffi
2

p
, but neither lim

x! 2þ

ffiffiffi
x

p
nor lim

x! 2

ffiffiffi
x

p
exists.

Note (15): Right-hand and left-hand limits are called one-sided limits. Ordinary limits are

called two-sided limits.

Note (16): Sometimes a function “f ” is defined by two (or more) different rules. In such cases,

one rule may be applicable for the values of x less than “a” and the other for the values of x

greater than “a”.

We have already given examples, wherein

lim
x! a�

f ðxÞ ¼ l1 and lim
x! aþ

f ðxÞ ¼ l2. (l1 6¼ l2) [see Examples (6)–(9)].

If l1¼ l2¼ l (say), then we say that lim
x! a

f ðxÞ exists, otherwise we say that the limit does not

exist. Thus, the statement

lim
x! a

f ðxÞ ¼ l , lim
x! a�

f ðxÞ ¼ l ¼ lim
x! aþ

f ðxÞ:

Note (17): The concept of one-sided limits will be very useful in studying the concept of

continuity of a function:

(i) at any point in an interval and

(ii) at the end point of a closed interval.(26)

Example (28): Let us find lim
x! 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p

Solution: First observe that
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
is not defined for jxj> 1. (Why?)

Let y¼ 1� x2

For any value ofx, such that jxj � 1we have y� 0. Thus, whenx ! 1�, y ! 0þ. Therefore,
we have, lim

x! 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
¼ lim

x! 0þ

ffiffiffi
y

p ¼ 0.

Remark: Although lim
x! 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
exists, lim

x! 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
does not exist, because 1� x2 will

be negativewhenever x lies to the right of 1, andwe know that square root of a negative number

is not defined.

(26) The concept of “continuity of a function” is discussed in Chapter 8.
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7b Methods for Computing Limits
of Algebraic Functions

7b.1 INTRODUCTION

InChapter 7a,we introduced the notion of limit of a function.There, we defined themeanings of

certain notations (such as x! a, x! aþ, x! a�, where “a” is a real number), applied intuitive

and logical thinking to compute the limit(s) of some polynomials and rational functions. In

fact, this has been the simplest and themost practicalway of introducing the concept of limit of

a function.

Recall that, in the process of assigning meaning to a rational function like

f ðxÞ ¼ ðx2 � 9Þ=ðx� 3Þð Þ, wherein the variable x is permitted to assume values closer and

closer to 3, we learnt that whereas the value of f(x) at x¼ 3 is not defined, we can still give

a logical meaning to the statement lim
x! 3

f ðxÞ, which matches our intuitive meaning of

the statement. This allows us to assign the number 6 to the statement lim
x! 3

f ðxÞ (i.e.,

lim
x! 3

ðx2 � 9Þ=ðx� 3Þ� �
), which we called the limit of f(x) at x¼ 3.

Such examples help us distinguish between the value f of the function f(x) at x¼ a and the

limit of f(x) as the variable x approaches the number a. We get that the value of a function and

the limit of a function are two different numbers. Of course, under certain situation both may

stand for the same number.

Note: In our study of differential calculus we will be required to compute the derivative of a

function, which itself is the limit of a particular kind (this wewill understand later in Chapter 9).

Hence, it is necessary to understand the limiting process in full clarity.

Recall that, the «, d definition of the limit introduced inChapter 7a does not help in evaluating

lim
x! a

f ðxÞ. It can only be used to verify whether a given number (or a guessed number) is the limit

of the given function f(x), as x! a. The method of preparing the tables: one for the values of

x closer and closer to “a” and the other for the corresponding values “f(x)”, can help us guess

the number to which the values “f(x)” approaches. But, this process is not only tedious but also

unreliable (under certain situations) as shown in Chapter 7a.

Further, there is no general theorem, which can be applied to a given function to obtain its

limit at a desired point. However, there are limit theorems (based on «, d definition of limit),

which offer very simple methods for evaluating limits of (all) functions. Standard limits have

Introduction to Differential Calculus: Systematic Studies with Engineering Applications for Beginners, First Edition.
Ulrich L. Rohde, G. C. Jain, Ajay K. Poddar, and Ajoy K. Ghosh.
� 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

What must you know to learn calculus? 7b-Methods for computing the limits of algebraic functions. Limit at infinity

[i.e., lim
x!1 f ðxÞ, lim

x!�1 f ðxÞ] and infinite limits [i.e., meaning of lim
x! a

f ðxÞ ¼ �1].
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been established for different functions (through «, d definition) and then by using these

standard limits directly, we can easily obtain their limits, avoiding all practical difficulties

associated with «, d definition of limit.(1)

In Chapter 7a, we have handled various algebraic functions and obtained their limit(s) for

developing the «, d definition of limit. What remains to be discussed are different methods for

evaluating limits of many other types of algebraic functions. Accordingly, we now introduce

the following methods.

7b.2 METHODS FOR EVALUATING LIMITS OF VARIOUS ALGEBRAIC

FUNCTIONS

7b.2.1 Direct Method [or Method of Direct Substitution]

Thismethod is applicable in the case of very simple functions, inwhich the value of the function

and the limit of the function both are the same. For learning the concept of limit, such functions

are neither important nor useful, since they do not distinguish between the two different ideas

involved. If we replace x by a in the formula defining f(x), we get the value f(a), and the limit

lim
x! 3

f ðxÞ both representing the same (finite) number.

Example (1):
lim
x! 2

ðx2 þ 3Þ¼ lim
x! 2

x2 þ lim
x! 2

3

¼ 22 þ 3 ¼ 7: Ans:

Example (2):

lim
x! 5

ffiffiffiffiffiffiffiffiffiffiffi
x� 1

p þ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþ 31

p
� �

¼
lim
x! 5

ffiffiffiffiffiffiffiffiffiffiffi
x� 1

p
þ lim

x! 5
2

lim
x! 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþ 31

p

¼
ffiffiffiffiffiffiffiffiffiffiffi
5� 1

p þ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5þ 31

p ¼ 4

6
¼ 2

3
Ans:

Example (3):

lim
x! 1

x3 � 9

x� 3
x 6¼ 3

lim
x! 1

ðx3 � 9Þ
lim
x! 1

ðx� 3Þ ¼ ð13 � 9Þ
ð1� 3Þ ¼ �8

�2
¼ 4 Ans:

7b.2.2 Factorization Method

For computing limit(s) of the type, lim
x! a

f ðxÞ=gðxÞð Þ, where f(a)¼ 0 and g(a)¼ 0, the direct

substitution method fails. In such cases, we search for a common factor (x� a) in f(x) and

g(x) by factorizing them and canceling this factor to reduce the quotient to the simplest form

(1) In fact, the standard limits of trigonometric functions are established in Chapter 11a and those for exponential and

logarithmic functions in Chapter 13a. Accordingly the methods of computing limits of functions involving trigonometric

functions are discussed in Chapter 11b and those involving exponential and logarithmic functions are discussed in

Chapter 13b.
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and then apply the directmethod to obtain the limit. [Remember thatx ! ameans thatx 6¼ 0, at

any stage. In other words (x� a) 6¼ 0, at any stage. This permits us to cancel the common factor

(x – a) from both numerator and denominator.]

Example (4): Evaluate lim
x! 1

x2 � 4xþ 3

x2 þ 2x� 3
.

Solution:

lim
x! 1

x2 � 4xþ 3

x2 þ 2x� 3
¼ lim

x! 1

ðx� 3Þðx� 1Þ
ðxþ 3Þðx� 1Þ

¼ lim
x! 1

x� 3

xþ 3
; ðx� 1Þ 6¼ 0½ �

¼ 1� 3

1þ 3
¼ �2

4
¼ � 1

2
Ans:

Note: For evaluating lim
x! a

f ðxÞ=gðxÞð Þ, we may also follow the following steps:

(i) Put x¼ aþ h () as x! a, h! 0)

(ii) Simplify numerator and denominator and cancel the common factor h.

(iii) Put h¼ 0, in the remaining expression in h and obtain the limit.

Example (5): Evaluate lim
x! 4

x3 � 8x2 þ 16x

x3 � x� 60

Solution: Consider x3 � 8x2 þ 16x

¼ xðx2 � 8xþ 16Þ; f16 ¼ ð�4Þð�4Þg
¼ xðx2 � 4x� 4xþ 16Þ
¼ x½xðx� 4Þ � 4ðx� 4Þ�
¼ x½ðx� 4Þðx� 4Þ�

Now consider x3 � x� 60

¼ x3 � 4x2 þ 4x2 � 16xþ 15x� 60

¼ x2ðx� 4Þ þ 4xðx� 4Þ þ 15ðx� 4Þ
¼ ðx� 4Þðx2 þ 4xþ 15Þ

lim
x! 4

x3 � 8x2 þ 16x

x3 � x� 60
¼ lim

x! 4

xðx� 4Þðx� 4Þ
ðx� 4Þðx2 þ 4xþ 15Þ

lim
x! 4

xðx� 4Þ
ðx2 þ 4xþ 15Þ ¼ 4ð4� 4Þ

ð42 þ 4ð4Þ þ 15Þ ¼ 0 Ans:

An Important Standard Limit

We will prove the following limit.

lim
x! a

xn � an

x� a
¼ n � an�1 ð1Þ

Let n be a natural number and a> 0.
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Consider xn � an

¼ xn � xn�1 � aþ xn�1 � a� xn�2 � a2 þ xn�2aþ xn�3a3
2 � xn�3 � a3

�xn�4 � a4 þ � � � � � � þ xan�1 � x0 � an

¼ xn�1ðx� aÞ þ xn�2 � aðx� aÞ þ xn�3 � a2ðx� aÞ þ � � � � � � þ x0 � an�1ðx� aÞ

¼ ðx� aÞ½xn�1 þ xn�2 � � aþ xn�3 � a2 � � � � � � þ an�1�
xn � an

x� a
¼ xn�1 þ xn�2 � aþ xn�3 � a2 þ � � � � � � þ an�1

�
Therefore; lim

x! a

xn � an

x� a
¼ lim

x! a
ðxn�1 þ xn�2 � aþ xn�3 � a2 þ � � � � � � þ an�1Þ

¼ an�1 þ an�1 þ an�1 þ � � � � � � n terms

¼ n � an�1 ðProvedÞ
(We will use this formula in evaluating the following limits.)

7b.2.3 Applications of the Standard Limit in Solving Special Type of Problems

Example (6): Evaluate lim
x! 1

xþ x2 þ x3 þ � � � � � � þ xn � n

x� 1

Solution: The given limit

¼ lim
x!1

ðxþx2þx3þ ��� �� � þxnÞ�ð1þ1þ1þ ��� �� � n timesÞ
x�1

¼ lim
x!1

ðx�1Þþðx2�1Þþðx3�1Þþ ��� � � � þðxn�1Þ
x�1

¼ lim
x!1

ðx�1Þþðx�1Þðxþ1Þþðx�1Þðx2þxþ1Þþ ��� � � � þðx�1Þðxn�1þxn�2aþxn�1a2 � � � þ1Þ
x�1

¼ lim
x!1

½1þðxþ1Þþðx2þxþ1Þþ ��� � �� þðxn�1þxn�2þ ��� þ1Þ�; ½ )ðx�1Þ 6¼0�

¼1þð1þ1Þþð1þ1þ1Þþ ��� � � � n timesÞ
¼1þ1þ3þ4þ5þ6 � � � �� � þn

¼nðnþ1Þ
2

Ans:

We have seen above that,

xn � an ¼ ðx� aÞ½xn�1 þ xn�2 � aþ xn�3 � a2 � � � � � � þ an�1�

where n is a natural number and a> 0.(2)

The above formula can be used to evaluate limits of the form ðxn � anÞ=ðxm � amÞ, (where
n, m 2 N, and a> 0).

(2) Note that the expression xn � an can be factorized only if n 2 N and a> 0.
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For this purpose, we write

lim
x! a

xn � an

xm � am
¼ lim

x! a

xn � an

x� a
� x� a

xm � am
¼ lim

x! a

xn � an

x� a
� lim

x! a

xm � am

x� a

and apply the standard limit to obtain

lim
x! a

xn � an

xm � am
¼ n

m
an�m ð2Þ

which is a corollary to the standard limit (1).

Example (7): Evaluate lim
x! a

x5 � a5

x3 � a3

Solution: lim
x! a

x5 � a5

x3 � a3
¼ lim

x! a

5 � a5�1

3 � a3�1
¼ 5a4

3a2
¼ 5

3
a2 Ans:

Remark: Formula (2) has been proved for natural numbers n andm. However, the result is true

for rational values of n and m. The following examples tell how this is justified.

Example (8): Evaluate lim
x! 1

x1=4 � 1

x1=3 � 1

Note (1): In such cases the important point is that the given limit can be converted in the form (2)

by substitution as follows.

Here, the indices of x are fractions (i.e., the positive rational numbers) and hencewe cannot

factorize. The denominators of these indices are 4 and 3. Their L.C.M. is 12. Therefore, we use

the substitution x¼ t12, for our purpose.

Solution: Put x ¼ t12 ) t ¼ x1=12

) x1=4 ¼ ðt12Þ1=4 ¼ t3 and x1=3 ¼ ðt12Þ1=3 ¼ t4

Also we see that as x! 1, t! 1.

) Required limit ¼ lim
t! 1

t3 � 1

t4 � 1
¼ lim

t! 1

t3 � 13

t4 � 14
¼ 3ð1Þ3�1

4ð1Þ4�1
¼ 3 � 12

4 � 13 ¼
3

4
Ans:

Note (2): We can also apply Corollary (2) directly and obtain the limit as follows:

lim
x! 1

x1=4 � 1

x1=3 � 1
¼ lim

x! 1

x1=4 � 11=4

x1=3 � 11=3

¼ ð1=4Þ
ð1=3Þ � ð1Þð1=4Þ�ð1=3Þ ¼ 3

4
� ð1Þ1=12 ¼ 3

4
Ans:

Example (9): Evaluate lim
x! 1

x2=5 � 32=5

x1=2 � 31=2

¼ ð2=5Þ
ð1=2Þ � 3ð2=5Þ�ð1=2Þ

¼ 4

5
� ð3Þ�ð1=10Þ

¼ 4

5
� 1

3ð1=10Þ
Ans:
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Example (10): Evaluate lim
x! 2

x�3 � 2�3

x� 2

Solution: lim
x! 2

x�3 � 2�3

x� 2
¼ lim

x! 2

x�3 � 2�3

x1 � 21

¼ �3

1
� 2ð�3Þ�ð1Þ ¼ �3 � 2�4

¼ �3

16
Ans:

Note (3): To evaluate limits of this type, it is always useful to convert the given limit to the

standard form as follows:

x�3 � 2�3 ¼ 1

x3
� 1

23
¼ 23 � x3

23 � x3 ¼ �ðx3 � 23Þ
8x3

) The given limit is lim
x! 2

� 1

8x3
x3 � 23

x� 2

� 	

¼ � 1

8 � 23 � 3

1
23�1

� 	
¼ � 1

64
� 3 � 4 ¼ � 3

16
Ans:

Example (11): Evaluate lim
x! a

ðxþ 2Þ5=3 � ðaþ 2Þ5=3
x� a

Solution: lim
x! a

ðxþ 2Þ5=3 � ðaþ 2Þ5=3
x� a

¼ lim
ðxþ2Þ! ðaþ2Þ

ðxþ 2Þ5=3 � ðaþ 2Þ5=3
ðxþ 2Þ � ðaþ 2Þ

)x� a ¼ ðxþ 2Þ � ðaþ 2Þ½ �

¼ 5

3
� ðaþ 2Þð5=3Þ�1

¼ 5

3
� ðaþ 2Þ2=3 Ans:

Example (12): Evaluate lim
x! 1

1� x�1=3

1� x�2=3

Solution: lim
x! 1

1� x�1=3

1� x�2=3

¼ lim
x! 1

ðx1=3 � 1Þ=x1=3
ðx2=3 � 1Þ=x2=3

¼ lim
x! 1

x1=3 � ðx1=3 � 1Þ
ðx2=3 � 1Þ ¼ 11=3 lim

x! 1

x1=3 � 1

x� 1
� x� 1

ðx2=3 � 1Þ

¼ lim
x! 1

x1=3 � 1

x� 1
� lim

x! 1

x2=3 � 1

x� 1

¼
�
1

3

	
� 1ð1=3Þ�1 � 2

3
ð1Þð2=3Þ�1 ¼ 1

3
� 2

3
¼ 1

2
Ans:
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Exercise [Application of Standard Limits]

(1) Evaluate the following limits:

(i) lim
x! 1

xn�1

xm�1

(ii) lim
x! 0

ð1þ xÞn � 1

x
Hint : 1þ x ¼ y½ �

(iii) lim
x! 3

x�3 � 3�3

x�2 � 3�3

(iv) lim
x! 2

1

x3
� 1

8

� 	
=ðx� 2Þ

(v) lim
x!�1

x3 þ 1

xþ 1
Hint : x3 þ 1 ¼ x3 � ð�1Þ� 


(vi) lim
x! 0

ffiffiffiffiffiffiffiffiffiffiffi
1þ x

p � 1

x

(vii) lim
x! a

ðxþ 3Þ7=2 � ðaþ 3Þ7=2
x� a

(viii) lim
x! a

x3 � 64

x2 � 16

(ix) lim
x! 1

xþ x2 þ x3 þ x4 þ x5 � 5

x� 1

(x) If lim
x!�a

x9 þ a9

xþ a
¼ 9, find the value of a. [Hint: xþ a¼ x� (�a)]

(xi) If lim
x! 2

xn � 2n

x� 2
¼ 80, and n is a positive integer, then find the value of n.

(xii) lim
x! 2

ðx2 � x� 2Þ20
ðx3 � 12xþ 16Þ10 [Hint: factorize Nr and Dr]

Answers

(i) n/m (ii) n (iii) 1/2 (iv) �3/16 (v) 3

(vi) 1/2 (vii) ð7=2Þðaþ 3Þ5=2 (viii) 6 (ix) 15 (x) �1

(xi) 5 (xii) ð3=2Þ10.

7b.2.4 Method of Simplification

Sometimes it is required to simplify the given function and then evaluate the limit.

Example (13): Evaluate lim
x! 3

1

x� 3
þ 1

3� x

� 	

Solution: lim
x! 3

1

x� 3
þ 1

3� x

� 	
¼ lim

x! 3

�
1

x� 3
� 1

x� 3

	
¼ lim

x! 3
ð0Þ ¼ 0
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Example (14): Evaluate lim
x! 5

1

x� 5
� 5

x2 � 5x

� 	

Solution: lim
x! 5

1

x� 5
� 5

x2 � 5x

� 	

¼ lim
x! 5

�
1

x� 5
� 5

xðx� 5Þ
	
;

�
x! 5 ) x 6¼ 5) ðx� 5Þ 6¼ 0

¼ lim
x! 5

�
x� 5

xðx� 5Þ
	

¼ lim
x! 5

�
1

x

	
¼ 1

5
Ans:

Example (15): Evaluate lim
x!�2

1

x2 þ 5xþ 6
þ 1

x2 þ 3xþ 2

� 	

Solution: We have, x2þ 5xþ 6

¼ ðx2 þ 3xÞ þ ð2xþ 6Þ ½6 ¼ 3� 2�
¼ xðxþ 3Þ þ 2ðxþ 3Þ
¼ ðxþ 3Þ ðxþ 2Þ

and x2 þ 3xþ 2

¼ ðx2 þ 2xÞ þ xþ 2 ½2 ¼ 2� 1�
¼ ðxþ 2Þ ðxþ 1Þ

) The given limit is

¼ lim
x!�2

�
1

ðxþ 3Þðxþ 2Þ þ
1

ðxþ 2Þðxþ 1Þ
	

¼ lim
x!�2

�
xþ 1þ xþ 3

ðxþ 3Þ ðxþ 2Þ ðxþ 1Þ
	

¼ lim
x!�2

�
2ðxþ 2Þ

ðxþ 3Þ ðxþ 2Þ ðxþ 1Þ
	

¼ lim
x!�2

�
2

ðxþ 3Þ ðxþ 1Þ
	 �

)x! � 2; ) x 6¼ �2; ) ðxþ 2Þ 6¼ 0

¼ 2

ð22þ 3Þð22þ 1Þ ¼
2

ð1Þð21Þ ¼ �2: Ans:

Exercise [Method of Simplification]

(2) Evaluate the following limits:

(i) lim
x! 3

�
1

ðx� 3Þ �
7

ðx2 þ x� 12Þ
	

(ii) lim
x! b

a

�
a

ðax� bÞ �
b

ðax2 � bxÞ
	

184 METHODS FOR COMPUTING LIMITS OF ALGEBRAIC FUNCTIONS



(iii) lim
x! b

�
1

ðy� 3byþ 2b2Þ �
7

ð2y2 � 3byþ b2Þ
	

(iv) lim
x! 3

ðx2 � 9Þ
�

1

ðxþ 3Þ þ
1

ðx� 3Þ
	

(v) lim
x! 2

�
x8 � 16

x4 � 4
þ x2 � 9

x2 � 3

	

Answers

(i) 1/7 (ii) a/b (iii) �3/b2 (iv) 6 (v) 25.

7b.2.5 Method of Rationalization

If the numerator or the denominator or both contain functions of the type ½ ffiffiffiffiffiffiffiffiffi
f ðxÞp � gðxÞ� or

½ ffiffiffiffiffiffiffiffiffi
f ðxÞp � ffiffiffiffiffiffiffiffiffi

gðxÞp �, and the direct method fails to give the limit, we rationalize the given

function bymultiplying and dividing by ½ ffiffiffiffiffiffiffiffiffi
f ðxÞp þ gðxÞ� or ½ ffiffiffiffiffiffiffiffiffi

f ðxÞp þ ffiffiffiffiffiffiffiffiffi
gðxÞp �, as the case may

be. After simplification of the function, we evaluate the limit by the earlier methods.

Example (16): Evaluate lim
x! 0

xffiffiffiffiffiffiffiffiffiffiffi
1þ x

p � 1

Solution: Consider
xffiffiffiffiffiffiffiffiffiffiffi

1þ x
p � 1

¼ xffiffiffiffiffiffiffiffiffiffiffi
1þ x

p � 1
�

ffiffiffiffiffiffiffiffiffiffiffi
1þ x

p þ 1ffiffiffiffiffiffiffiffiffiffiffi
1þ x

p þ 1
¼ xð ffiffiffiffiffiffiffiffiffiffiffi

1þ x
p þ 1Þ

x

) Given limit is lim
x! 0

xð ffiffiffiffiffiffiffiffiffiffiffi
1þ x

p þ 1Þ
x

¼ lim
x! 0

ð ffiffiffiffiffiffiffiffiffiffiffi
1þ x

p þ 1Þ; )x 6¼ 0½ �

¼ ffiffiffiffiffiffiffiffiffiffiffi
1þ 0

p þ 1 ¼ 1þ 1 ¼ 2 Ans:

Example (17):

lim
x! 3

x� 3ffiffiffiffiffiffiffiffiffiffiffi
x� 2

p � ffiffiffiffiffiffiffiffiffiffiffi
4� x

p
Solution: Consider

x� 3ffiffiffiffiffiffiffiffiffiffiffi
x� 2

p � ffiffiffiffiffiffiffiffiffiffiffi
4� x

p ¼ x� 3ffiffiffiffiffiffiffiffiffiffiffi
x� 2

p � ffiffiffiffiffiffiffiffiffiffiffi
4� x

p �
ffiffiffiffiffiffiffiffiffiffiffi
x� 2

p þ ffiffiffiffiffiffiffiffiffiffiffi
4� x

pffiffiffiffiffiffiffiffiffiffiffi
x� 2

p þ ffiffiffiffiffiffiffiffiffiffiffi
4� x

p

¼ ðx� 3Þð ffiffiffiffiffiffiffiffiffiffiffi
x� 2

p þ ffiffiffiffiffiffiffiffiffiffiffi
4� x

p Þ
ðx� 2Þ � ð4� xÞ

¼ ðx� 3Þð ffiffiffiffiffiffiffiffiffiffiffi
x� 2

p þ ffiffiffiffiffiffiffiffiffiffiffi
4� x

p Þ
2x� 6

¼ ðx� 3Þð ffiffiffiffiffiffiffiffiffiffiffi
x� 2

p þ ffiffiffiffiffiffiffiffiffiffiffi
4� x

p Þ
2ðx� 3Þ

) Required limit is lim
x! 3

ðx� 3Þð ffiffiffiffiffiffiffiffiffiffiffi
x� 2

p þ ffiffiffiffiffiffiffiffiffiffiffi
4� x

p Þ
2ðx� 3Þ

¼ lim
x! 3

ð ffiffiffiffiffiffiffiffiffiffiffi
x� 2

p þ ffiffiffiffiffiffiffiffiffiffiffi
4� x

p Þ
2

)x! 3; ) x 6¼ 3; ðx� 3Þ 6¼ 0½ �

¼ ð ffiffiffiffiffiffiffiffiffiffiffi
3� 2

p þ ffiffiffiffiffiffiffiffiffiffiffi
4� 3

p Þ
2

¼ ð ffiffiffi
1

p þ ffiffiffi
1

p Þ
2

¼ 1þ 1

2
¼ 1 Ans:
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Example (18): Evaluate lim
x! 0

ffiffiffiffiffiffiffiffiffiffiffi
aþ x

p � ffiffiffiffiffiffiffiffiffiffiffi
a� x

pffiffiffiffiffiffiffiffiffiffiffi
bþ x

p � ffiffiffiffiffiffiffiffiffiffiffi
b� x

p

Solution: Consider
ffiffiffiffiffiffiffiffiffiffiffi
aþ x

p � ffiffiffiffiffiffiffiffiffiffiffi
a� x

p

¼ ð ffiffiffiffiffiffiffiffiffiffiffi
aþ x

p � ffiffiffiffiffiffiffiffiffiffiffi
a� x

p Þ �
ffiffiffiffiffiffiffiffiffiffiffi
aþ x

p þ ffiffiffiffiffiffiffiffiffiffiffi
a� x

pffiffiffiffiffiffiffiffiffiffiffi
aþ x

p þ ffiffiffiffiffiffiffiffiffiffiffi
a� x

p

¼ ðaþ xÞ � ða� xÞffiffiffiffiffiffiffiffiffiffiffi
aþ x

p þ ffiffiffiffiffiffiffiffiffiffiffi
a� x

p ¼ 2xffiffiffiffiffiffiffiffiffiffiffi
aþ x

p þ ffiffiffiffiffiffiffiffiffiffiffi
a� x

p

Consider
ffiffiffiffiffiffiffiffiffiffiffi
bþ x

p � ffiffiffiffiffiffiffiffiffiffiffi
b� x

p

¼ ð ffiffiffiffiffiffiffiffiffiffiffi
bþ x

p � ffiffiffiffiffiffiffiffiffiffiffi
b� x

p Þ
ffiffiffiffiffiffiffiffiffiffiffi
bþ x

p þ ffiffiffiffiffiffiffiffiffiffiffi
b� x

p
ffiffiffiffiffiffiffiffiffiffiffi
bþ x

p þ ffiffiffiffiffiffiffiffiffiffiffi
b� x

p

¼ 2xffiffiffiffiffiffiffiffiffiffiffi
bþ x

p þ ffiffiffiffiffiffiffiffiffiffiffi
b� x

p

) Given limit is lim
x! 0

2xffiffiffiffiffiffiffiffiffiffiffi
aþ x

p þ ffiffiffiffiffiffiffiffiffiffiffi
a� x

p � 2xffiffiffiffiffiffiffiffiffiffiffi
bþ x

p þ ffiffiffiffiffiffiffiffiffiffiffi
b� x

p

¼ lim
x! 0

ffiffiffiffiffiffiffiffiffiffiffi
bþ x

p þ ffiffiffiffiffiffiffiffiffiffiffi
b� x

p
ffiffiffiffiffiffiffiffiffiffiffi
aþ x

p þ ffiffiffiffiffiffiffiffiffiffiffi
a� x

p

¼
ffiffiffiffiffiffiffiffiffiffiffi
bþ 0

p þ ffiffiffiffiffiffiffiffiffiffiffi
b� 0

p
ffiffiffiffiffiffiffiffiffiffiffi
aþ 0

p þ ffiffiffiffiffiffiffiffiffiffiffi
a� 0

p ¼ 2
ffiffiffi
b

p

2
ffiffiffi
a

p ¼
ffiffiffi
b

a

r
Ans:

Exercise [Method of Rationalization]

(3) Evaluate the following limits:

(i) lim
x! 2

ð ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 5

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5x� 1

p Þ
x2 � 4

(ii) lim
x! 0

x

1� ffiffiffiffiffiffiffiffiffiffiffi
1� x

p

(iii) lim
h! 0

ffiffiffiffiffiffiffiffiffiffiffi
xþ h

p � ffiffiffi
x

p
h

(iv) lim
x! 0

ffiffiffiffiffiffiffiffiffiffiffi
1þ x

p � ffiffiffiffiffiffiffiffiffiffiffi
1� x

p

x

(v) lim
x! 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ 2x

p � ffiffiffiffiffiffi
3x

pffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3aþ x

p � ffiffiffi
x

p ; ða 6¼ 0Þ

(vi) lim
x! 1

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p
þ ffiffiffiffiffiffiffiffiffiffiffi

x� 1
p Þffiffiffiffiffiffiffiffiffiffiffiffiffi

x3 � 1
p

[Hint: Take
ffiffiffiffiffiffiffiffiffiffiffi
x� 1

p
common from numerator and denominator.].

Answers

(i) �1/24 (ii) 2 (iii) 1=2
ffiffiffi
x

p
(iv) 1 (v) 1=

ffiffiffi
3

p
(vi) ð ffiffiffi

2
p þ 1Þ= ffiffiffi

3
p
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7b.3 LIMIT AT INFINITY

Evaluating limit(s) of the form lim
x!�1

f ðxÞ.
The concept of infinity (1) was introduced in Chapter 2, and the concept of interval

involving infinity [i.e., (a, 1) [a, 1), (�1, b), (�1, b] and (�1, 1)] was introduced in

Chapter 3. Thus, (3,1) is our way of denoting the set of all real numbers greater than 3, and

similarly we denote the set of all numbers less than or equal to 5 by the interval (�1, 5].

We know that infinity (1) does not represent a number. In this section, we will use the

symbols 1 and �1 in a new way, maintaining the same clear understanding about the

concept.(3)

Consider the function f ðxÞ ¼ x=ð1þ x2Þð Þ. We ask the question:What happens to f(x) as

x gets larger and larger? In symbols, we ask for the value of lim
x!1 f ðxÞ: We use the symbol

x ! 1 as a shorthand way of saying that x gets larger and larger without bound.

(When we write x ! 1, we are not implying that somewhere far, far to the right on the

x-axis, there is a number bigger than all other numbers to which x is approaching. Rather, we

use x ! 1 to say that x is permitted to assume larger and larger values endlessly.)

In Table 7b.1, we have listed values of f, for larger and larger values of x, for several

values of x.

It appears that f(x) gets smaller and smaller as x gets larger and larger. Therefore, we

write lim
x!1 ¼ x=ð1þ x2Þ� � ¼ 0.

Experimenting with large negative values of x, would again lead us to write

lim
x!�1 ¼ x=ð1þ x2Þ� � ¼ 0. We say that the limit of f(x) at infinity is 0.

7b.3.1 Rigorous Definitions of Limits as x!�1
In analogy with our «, d definition for ordinary limits, we make the following definitions.

Definition (a): (Limit as x ! 1)

Let f be defined on [a,1) for some number “a”. We say that a number l is the limit of f(x) as

x approaches 1, if for every «> 0 there is a corresponding number M, such that

x > M ) j f ðxÞ � lj < «:

TABLE 7b.1

x f ðxÞ ¼ x
ð1þx2Þ

10 0.099

100 0.010

1000 0.001

10,000 0.0001

# #
1 ?

(3) The concept of “infinity” has inspired and also confusedmathematicians from time immemorial. The deepest problems

and profoundest paradoxes of mathematics are often intertwined with the use of this word. Yet, mathematical progress can

in part be measured in terms of understanding of the role of infinity. [Calculus with Analytic Geometry (Fifth Edition) by

Edwin J. Purcell and Dale Verberg (p. 184), Prentice-Hall Publication.]
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In this case, we write, lim
x!1 f ðxÞ ¼ l:

We say that the limit of f(x) exists as x ! 1 (or that f has a limit at 1).

Definition (b): (Limit as x ! �1)

Let “f ” be defined on (�1, a] for some number “a”. We say that a number l is the limit of

f(x) as x approaches �1, if for every «> 0 there is a corresponding number M such that

x < M ) f ðxÞ � l < «:

In this case, we write, lim
x!�1 f ðxÞ ¼ l:

We say that the limit of f(x) exists as x ! �1 (or that f has a limit at �1).

Remark: Definitions (a) and (b) will remain unchanged evenwhen f is defined on the intervals

(a, 1) and (�1, a), respectively.

Note (4): The number M in the above definitions corresponds to the number d as in all other

definitions of limit(s) so far. We think of x as “close to”1when x>M, just as we say that x is

“close to” a when a� d< x< a.M can depend on «. In general, the smaller « is, the larger M
will have to be.

Example (19): To show that if K is a positive integer, then

lim
x!1

1

xK
¼ 0 and lim

x!�1
1

xK
¼ 0

Solution: Let «> 0 be given. We have to find a (positive) number M such that

x > M )
���� 1

xK
� 0

���� < «

)
���� 1

xK

���� < «;

) 1

xK
< «;

since we want x to be greater than a

positive numberM; it follows that x > 0:

Hence; xK > 0:

8><
>:

) xK >
1

«

) x >
ffiffiffiffiffiffiffiffi
1=«K

p

Thus,M 	 ffiffiffiffiffiffiffiffiffi
1=«K

p
implies 1=xKð Þ � 0j j < «. It follows that, lim

x!1 1=xK ¼ 0. Similarly, we can

prove that lim
x!�1 1=xK ¼ 0. (In particular, lim

x!1 1=x ¼ 0 and lim
x!�1 1=x ¼ 0:) These limits

must be treated as standard limits.

We must face the question of whether the main limit theorem (i.e., Theorem A) holds

for them. The answer is yes. We accept the corresponding statements of the limit theorem,

without proof.
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Thus, the limit as x approaches 1 (or �1) is unique, when it exists. Furthermore, if

lim
x!1 f ðxÞ and lim

x!1 gðxÞ exist, we have

lim
x!1 f ðxÞ þ gðxÞ½ � ¼ lim

x!1 f ðxÞ þ lim
x!1 gðxÞ

lim
x!1 f ðxÞ � gðxÞ ¼ lim

x!1 f ðxÞ � lim
x!1 gðxÞ

(There are corresponding formulas for limits at �1.)

Example (20): Prove that lim
x!1

x

1þ x2
¼ 0:

Solution: Here we use a standard trick: dividing numerator and denominator by the highest

power of x that appears in the denominator.

lim
x!1

x

1þ x2
¼ 0 ¼ lim

x!1
x=x2

ð1þ x2Þ=x2 ¼ lim
x!1

1=x

1=x2 þ 1

¼
lim
x!1 1=x

lim
x!1 1=x2 þ lim

x!1 1
¼ 0

0þ 1
¼ 0

Example (21): To find lim
x!�1

2x3

1þ x3

Solution: Divide numerator and denominator by x3, we get

lim
x!�1

2x3

1þ x3
¼ lim

x!�1
2

1=x3 þ 1
¼ 2

0þ 1
¼ 2:

Remark: We can think of the lim
x!1 f ðxÞ as a kind of left-hand limit, because x approaches1

from the left. Similarly, we can think of lim
x!�1 f ðxÞ as the right-hand limit.

Exercise

(4) Evaluate the following limits:(4)

(i) lim
x!1

2x2 � 4xþ 5

3x3 � xþ 7

(ii) lim
x!1

ð2x� 1Þ20 � ð3x� 1Þ30
ð2xþ 1Þ50

(iii) lim
x!1

ffiffiffiffiffiffiffiffiffiffiffi
xþ 1

p � ffiffiffi
x

p� �

(4) [Hint: Consider the highest powers of the terms involving x, in both numerator and denominator, and proceed to

compute the limit.]
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(iv) lim
x!1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 2

p � xffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 3

p � x

(v) lim
x!1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 5

p � ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 3

pffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 3

p � ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1

p

Answers

(i) 0 (ii) (3/2)30 (iii) 0 (iv) 2/3 (v) 1.

7b.4 INFINITE LIMITS

lim
x! a

f ðxÞ ¼ �1; where “a” is finite.(5)

So far we have considered the cases where as x ! a (a finite number), f(x) ! l, (a finite

number). But, it may happen that as x ! a, f(x) increases (or decreases) endlessly. Symbol-

ically, we express these statements as follows:

x! a ) f ðxÞ!1 or lim
x! a

f ðxÞ ¼ 1
or x! a ) f ðxÞ! �1 or lim

x! a
f ðxÞ ¼ �1

Consider the graph of f ðxÞ ¼ 1=ðx� 2Þ, as shown in Figure 7b.1.

Note that it makes no sense to ask for lim
x! 2

1=ðx� 2Þ (why?), but we think it is reasonable to
write lim

x! 2�
1=ðx� 2Þ ¼ �1; and lim

x! 2þ
1=ðx� 2Þ ¼ 1: The following definition relates to

this situation.

7b.4.1 Definition (Infinite Limits)

We say that lim
x! aþ

f ðxÞ ¼ 1, if for each positive numberM, there corresponds a d> 0, such that

0< x – a< d) f(x)>M.

y

0 x

f(x) = 1
x – 2

FIGURE 7b.1

(5) So far, only finite numbers were considered to be the limit(s) of function(s). Now, we shall consider infinite limits.
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There are corresponding definitions of lim
x! aþ

f ðxÞ ¼ �1; lim
x! a�

f ðxÞ ¼ 1; and
lim

x! a�
f ðxÞ ¼ �1.

Example (22): Find lim
x! 1�

1

ðx� 1Þ2 and lim
x! 1þ

1

ðx� 1Þ2

Solution: The graph of f ðxÞ ¼ �
1=ðx� 1Þ2Þ is shown in Figure 7b.2.

We think it is quite clear that

lim
x! 1�

1

ðx� 1Þ2 ¼ 1;

lim
x! 1þ

1

ðx� 1Þ2 ¼ 1:

Since both limits are 1, we could also write

lim
x! 1

1

ðx� 1Þ2 ¼ 1 f ðxÞ ¼ 1

ðx� 1Þ2

Example (23): Find lim
x! 2þ

xþ 1

x2 þ 5xþ 6

Solution: lim
x! 2þ

xþ 1

x2 þ 5xþ 6
¼ lim

x! 2þ

xþ 1

ðx� 3Þðx� 2Þ

As x ! 2þ, we see that xþ1 ! 3, x�3 ! �1, and x�2 ! 0þ. Thus, the numerator is

approaching 3, but the denominator is negative and approaching 0. We conclude

that lim
x! 2þ

�ðxþ 1Þ=ðx� 3Þðx� 2ÞÞ ¼ �1:

The concept of limit at infinity [i.e., lim
x!1 f ðxÞ; lim

x!�1 f ðxÞ], and the meaning of infinite

limits [ lim
x! a

f ðxÞ ¼ �1] as discussed above, make it easy to introduce the concept of

asymptote(s).

y

3

2

1

–1 2 3

f(x) = 1
(x –1)2

x

FIGURE 7b.2
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7b.5 ASYMPTOTES

Definition: An asymptote to a curve is defined as a straight line, which has the property

that the distance from a point on the curve to the line tends to zero as the distance of this

point to the origin increases without bound. There are vertical, horizontal, and oblique

asymptotes.

7b.5.1 Vertical Asymptotes

The graph of the function y¼ f(x) has a vertical asymptote for x ! a, if lim
x! a

f ðxÞ ¼ þ1 or

lim
x! a

f ðxÞ ¼ �1 (see Figure 7b.3a and b).

Note (5): In the case of a vertical asymptote for x ! a, the point x¼ a is a point of

discontinuity. (In Chapter 8, this is classified under the discontinuity of the second kind.)

The equation of the vertical asymptote has the form x¼ a. (In Figure 7b.3a, it is x¼ 0, and in

Figure 7b.3b it is x¼ a.)

7b.5.2 Horizontal Asymptotes

The graph of the function y¼ f(x) for x ! þ1 or for x ! �1, has a horizontal asymptote, if

lim
x!þ1 f ðxÞ ¼ b or lim

x!�1 f ðxÞ ¼ b, where b is a finite number.

It may happen that either only one or none of these limits is finite. Then, the graph has either

one or no horizontal asymptote. Of course, the graph of a function may have two horizontal

asymptotes.

The equation of the horizontal asymptote has the form y¼ a.

(In Figure 7b.4a, it is y¼ b, and in Figure 7b.4b the two asymptotes are y¼ 1 and y¼�1.)

7b.5.3 Oblique Asymptotes

In Figure 7b.5a and b, it is indicated that the graph of the function y¼ f(x) has an oblique

asymptote y¼ kxþ b.

(a) (b)

y

x

4

3

2

1

1 2 3 4 5–5 –4 –3 –2 –1 0

xy0 ax

x2
3

f (x) =

x2
3

f (x) =

(x – a)2
1–g (x) =

1

0.5

0.25

0.1

0.01

0.001

3

12

48

300

30,000

3,000,000

FIGURE 7b.3 Vertical Asymptotes.
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In this case, the following equality holds true.

lim
x!�1

½ f ðxÞ � ðkxþ bÞ� ¼ 0

or lim
x!�1

½ f ðxÞ � kx� b� ¼ 0 ð3Þ

Taking out x, as a factor, we get

lim
x!�1

x
f ðxÞ
x

� k � b

x

� �
¼ 0

) f ðxÞ
x

� k � b

x
¼ 0 ð4Þ

Now, observe that lim
x!�1

b=x ¼ 0 always. Thus, we get the formulas for computing the para-

meters k and b given by

lim
x!�1

½ f ðxÞ � kx� ¼ b from ð3Þ; and

lim
x!�1

f ðxÞ=x ¼ k from ð4Þ

y

y =1

y =–1

y =
x

x

x2 + 1

0

y

y=f(x)

y=b
x

(a) (b)

0

M(0, b)

FIGURE 7b.4 Horizontal Asymptotes.

y

0

x

(a) (b)

y=f(x)

y = kx•b

y

0

x

y=f(x)

y = kx•b

FIGURE 7b.5 Oblique Asymptotes.
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Thus, we get the procedure for finding oblique asymptote for the given curve as follows: The

constant k is given by the limit lim
x!�1

f ðxÞ=x ¼ k, and the constant b is obtained by computing

the limit lim
x!�1

½f ðxÞ � kx� ¼ b:

Having found the values of k and b, we can write down the equation (of straight line)

representing the oblique asymptote.

Note (6): For finding the asymptotes to the given curves, both the cases x ! þ1 and

x ! �1, should be considered separately.

Example (24): Find the asymptotes to the curve y ¼ 1
x�3

Solution: We have lim
x!�1

1=ðx� 3Þ ¼ 0. Therefore, the curve has a horizontal asymptote at

y¼ 0. Further, we observe that

lim
x! 3�

1

x� 3
¼ �1 and lim

x! 3þ

1

x� 3
¼ þ1:

Hence, the curve has a vertical asymptote at x¼ 3 (see Figure 7b.6).

Example (25): Find the oblique asymptotes to the curve y ¼ x2

x�1

Solution: From the given equation, we obtain

k ¼ lim
x!�1

f ðxÞ
x

¼ lim
x!�1

x2

ðx� 1Þ � x ¼ lim
x!�1

x

x� 1

¼ lim
x!�1

x� 1þ 1

x� 1
¼ lim

x!�1


1þ 1

x� 1

�
¼ 1

y

x

y = 1
x–3

x = 3

0

FIGURE 7b.6

194 METHODS FOR COMPUTING LIMITS OF ALGEBRAIC FUNCTIONS



and

b ¼ lim
x!�1

f ðxÞ � kx½ � ¼ lim
x!�1

x2

ðx� 1Þ � x

� �

¼ lim
x!�1

x2 � xþ x

ðx� 1Þ
� �

¼ lim
x!�1

x

ðx� 1Þ
� �

¼ lim
x!�1

x� 1þ 1

x� 1
¼ lim

x!�1


1þ 1

x� 1

�
¼ 1

Thus, k¼ 1 and b¼ 1. Consequently, for x ! þ1 or for x !�1, the graph of the function

has an oblique asymptote, y¼ kxþ b¼ xþ 1 (see Figure 7b.7).

Remark: Observe that the curve shown in Figure 7b.7 also has the vertical asymptote, x¼1.

TABLE 7b.2 Good and Bad Uses of Infinity (1)a

Expression Is it Right or Wrong? What it Means? Remarks

1
1¼ 0 Usually right, but likely to create confusion. Here, we really mean to say that

lim
x!1 1=x ¼ 0, which is a right statement

3 �1¼1 This is right, as mathematical shorthand. It means if a quantity increases without bound,

so does three times that quantity

1þ1¼1 This is right again. It means if two quantities increasewithout bounds, so does their sum

1
0
¼1 This is wrong. Division by 0 is not defined for real numbers. Besides, note that

lim
x! 0þ

1=x ¼ 1, but lim
x! 0�

1=x ¼ �1. Hence, it is worse to write the expression

under consideration

1 � 1¼ 0 This is wrong again. Note that, as x!1, x3!1, and x2!1 but x3 � x2 !1b

1
1¼ 1 This iswrong. Note that, as x!1, x3!1, and x2!1, but x3=x2 ¼ x!1. Again,

x2=x3 ¼ 1=x! 0

aThe reader may also refer to the algebra of infinity (1), given at the end of Chapter 2.
b lim
x!1ðx

3 � x2Þ ¼ lim
x!1x3 1�1

xð Þ¼limx!1ðx3Þ¼1.

y

x

y =

0 x = 1

x–1
x2

y =
 x+

1

FIGURE 7b.7
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8 The Concept of Continuity
of a Function, and Points
of Discontinuity

8.1 INTRODUCTION

The study of calculus begins with the concept of limit introduced and discussed in Chapters 7a

and 7b. Of all the many consequences of this concept, one of the most important is the concept

of a continuous function. One cannot think of the subject of calculus without continuous

functions, which we study now.

Theword continuousmeansmuch the same inmathematics as in everyday language.We can

introduce the concept of continuity proceeding from a graphic representation of a function.

A function is continuous if its graph is unbroken, i.e., free from sudden jumps or gaps.

Suppose a function is defined on an interval I. We say that the function is continuous

on the interval I, if its graph consists of one continuous curve, so that it can be drawn

without lifting the pencil. There is no break in any of the graphs of continuous functions

(Figure 8.1a–c).

If the graph of a function is broken at any point “a” of an interval, we say that the function is

not continuous (or that it is discontinuous) at “a”. We give the following definition:

Definition: A function is discontinuous at x¼ a, if and only if it is not continuous at x¼ a.

This point “a” is called the point of discontinuity of the function. The domain of a function

plays an important role in the definition of continuity (and discontinuity) of a function. A

function may be continuous on one set but discontinuous on another set. It is useful to

recall the definitions of the domain of definition and the natural domain of a function,

from Chapter 6.

. The set of all those numbers that can be used in the definition of a function (which we call

“input numbers”) constitute the domain of definition (or simply the domain) of the

function.

Introduction to Differential Calculus: Systematic Studies with Engineering Applications for Beginners, First Edition.
Ulrich L. Rohde, G. C. Jain, Ajay K. Poddar, and Ajoy K. Ghosh.
� 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

What must you know to learn calculus? 8-Continuity of functions and the points of discontinuity. The definition

of continuity “at a point” and “in an interval.” Types of discontinuities and some theorems defining properties of

continuous functions.
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. If the domain of the given function is not specified, we take the domain as the largest set of

real numbers forwhich the rule of the functionmakes sense and gives real-number values.

This is called the natural domain of the function.

Note that, the natural domain of a given function f(x) is a fixed set of points for which f(x) is

defined. It does not include those points at which f(x) is not defined. On the other hand, the

domain of definition of a given function f(x) is the set of all input numbers that can be used in

the definition of a function. (It may include even those numbers at which the function is not

defined.). It is not a fixed set of points. The “domain of definition” of a function can be varied.

Of course, when we change the domain of a function we define a new function.

For the purpose of studying the property of continuity (and discontinuity) of a function we

shall always take the domain of a function as an interval. One may also consider a domain,

which is the union of an interval with some isolated points. Obviously, such a domain is more

general (than an interval) for the purpose of discussion. Here, we may state (in advance) that a

point of discontinuity can be any point “a”, provided there exists some neighborhood of “a”

y

x

7

5

3

1

1–1

f1(x) = 2x + 3

3

y

0

x

(a) (b)

(c)

f2(x) = x2

y

5

5–5 0

x

f3(x) = |x|

FIGURE 8.1

198 THE CONCEPT OF CONTINUITY OF A FUNCTION, AND POINTS OF DISCONTINUITY



in which the function is defined. The function may or may not be defined at a. It follows that an

isolated point (if any) of a domain cannot be a point of discontinuity. In fact, a function whose

domain of definition is a singleton “a” is considered continuous at “a”. Intuitively, this

statement might appear to create a situation of confusion but it is true as will be seen when

we define one-sided continuity of a function. The conclusion follows from the definition of

continuity “at a point” (to be discussed later), and the fact that a constant sequence {a, a, a,}

converges to “a”, which means both the one-sided limits defined at “a” are equal. We do not

discuss sequences and their properties in this compilation.

For example, the natural domain of the function f ðxÞ ¼ 1=ðx� 5Þ is x 2 Rjx 6¼ 5f g. We

exclude “5” (from the domain of “f ”) to avoid division by zero. Note that, “f ” is defined for

each x in its natural domain. We can also say that the functions gðxÞ ¼ 1=ðx� 5Þ, x 2 ð5;1Þ
and h(x)¼ 1/(x�5), x 2 ð�1; 5Þ, (wherein the number “5” is excluded from the definitions

of these functions) are defined for each x in their respective domains.

We can also include the number “5” in the definition of such a function. For example,

consider, F(x)¼ 1/(x�5), x 2 ½4; 7�, and so on.We say that the domain (of definition) of F is the

interval [4, 7] in which the function F is not defined at x¼ 5. (Shortly, it will be seen that any

such point “a” is the point of discontinuity of “f.”)

To understand the concept of continuity better, it is useful to study the following graphs of

functions, which represent discontinuous functions.

The graph of the function f1(x), appears in Figure 8.2a. It consist of all points on the line

y¼ 2xþ 3, except (1, 5). The graph has a break at the point (1, 5). Here f1(x) is not continuous

at x¼ 1 since “1” is not in the domain of f1(x).We say that f1(x) is not defined at x¼ 1.We can

also say that f1(x) is continuous for all x, except for x¼ 1. It is also correct to say that f1(x)

is discontinuous at x¼ 1 (or that it is discontinuous in any interval containing “1”).

y

5

(a)

x

0

f1(x) = 2x + 3, x ≠ 1

(b)

f2(x) =     , x ≠ 0
x2
1

1

y

x

x2

0

y = 1

FIGURE 8.2
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Note (1):Some authors do not prefer to say that f1(x) is discontinuous atx¼ 1 (or a function like

1/x2 is discontinuous at x¼ 0). They are of the opinion that we should not consider the question

of continuity (or discontinuity) at a point that is not in the domain of the function. (We shall

come back to this discussion, shortly.)

Now consider the function f2(x)¼ 1/x2, x 6¼ 0. Its graph appears in the Figure 8.2b. Observe

that as x ! 0, 1/x2 ! 1, which means that f2(x) does not exist at x¼ 0 or that f2(x)¼ 1/x2 is

not defined atx¼ 0.We say that in any interval containing “0”, the function f2(x) is discontinuous

at the point x¼ 0. This is an example of infinite discontinuity to be discussed later.

Note (2):We say that a function f(x) is not defined at x¼ a if either “a” is not in the domain of

f(x) or f(x) ! 1 as x ! a.

We give below some more situations when a function may be discontinuous “at a point”, in

the interval of its definition. The functions f3(x) and f4(x) are defined for all x. Note that the

point (1, 5) is torn out from the graph of f3(x) and shifted to the location (1, 2). Here, the point

(1, 5) of the graph jumps out from the height 5 to 2, creating a break in the graph at x¼ 1

(Figures 8.3 and 8.4).

The graph of the function f4(x), shows a break at the point x¼ 1. Here, a portion of the graph

has a finite vertical jump at x¼ 1 making the graph discontinuous at x¼ 1.

Next, consider the graphs of the functions f5(x) and f6(x) as indicated in Figures 8.5 and 8.6,

respectively.

The function f5(x) is defined for all x. There is a finite jump in the graph suddenly at x¼ 0

[as in the case f4(x)] causing a break. Thus, f5(x) is discontinuous at x¼ 0.

The function f6(x) is not defined at x¼ 0 but it is defined for all other values of x.We observe

that as x ! 0þ, 1/x ! 1, and as x ! 0�, 1/x ! �1. (This is another example of infinite

discontinuity, to be discussed later.)

From the above discussion (and the graphs), it is clear that the question of continuitymust be

considered only for those points, which are in the domain of the function. However, a point of

discontinuity may or may not be in the domain of the function.

y

x

0 1

f3(x) =
2x + 3  if   x ≠ 1
2          if   x =1

⎧

⎩
⎨

5

FIGURE 8.3
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Note (3): If a function “f ” is not defined at some point “a” (say), then “a” may not be a point

of discontinuity of “f ”. This will be clear from the Examples (1) and (2) to follow shortly.

(The important point to be emphasized is that if “f ” is defined on an interval containing “a”, but

“f ” is not defined at “a”, then “a” must be the point of discontinuity.)

Now, we give the intuitive definition of continuity of a function “at a point”.

8.1.1 Intuitive Definition of Continuity of a Function at Any Point “a”

Let y¼ f(x) be a function defined on an interval I, which contains a point “a” in its interior or on

its boundary.

Roughly speaking the function “f ” is continuous at the point x¼ a, provided that its graph

does not have a break at x¼ a.(1)

8.1.1.1 Points of Discontinuity of a Function An elementary function can have a

discontinuity only at separate points of a certain interval but not at all of its points.

[The Dirichlet Function (see Chapter 6, Section 6.10) which is defined throughout the real

line is not continuous at any point. Of course, it is not an elementary function.]

The following Figure 8.7a and b are the graphs of functions which are discontinuous as

indicated there.

The function represented by the graph in Figure 8.7a is discontinuous at x¼ 1 and

x¼ 2. It is continuous at all other points of its domain. The function graphed in Figure 8.7b

is discontinuous at x¼ 1, x¼ 2, and x¼ 4. It is continuous at all other points of

its domain.

y

x

0 1

2

4

f4(x) =
3 + x,  if x ≤ 1

3 – x,  if x > 1

⎧

⎩
⎨

FIGURE 8.4

(1) If the graph of a function has a break in its interior, then it is not difficult to imagine such a break. However, if the break

occurs at the end point of the graph then it is not easy to visualize such a break. It is for this reason that the phrase: “roughly

speaking” is used in the definition.
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From a graphical point of view, the following definitions are useful in deciding whether any

point “a” is a point of discontinuity of the given function or not.(2)

Definition (a): A point at which a function is not continuous, but is defined in its neighbor-

hood, is a point of discontinuity.

Definition (b): A point at which a function is not defined (but is defined in a neighborhood), is

a point of discontinuity.

x

0

y

1

1

f5(x) =
0,  if x < 0

1,  if x ≥ 1

⎧

⎩
⎨

FIGURE 8.5

x

0

y

f6(x =    , x ≠ 0) x
1

FIGURE 8.6

(2) Elements of Higher Mathematics for High School Students by D. K. Faddeev, M. S. Nikulin, and I. F. Sokolovsky, Mir

Publisher, Moscow, 1989.
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Note (4):Weknow that the property of discontinuity of a function “f ” depends upon the interval

I on which the function “f ” is defined. Accordingly, an arbitrary point “a” outside the interval I

cannot be point of discontinuity of the function (note that “f ”may ormay not be defined at “a”).

The following Examples (1) and (2) make the situation clear.

Example (1): Consider the function g1(x)¼
ffiffiffi
x

p
which is defined only for x� 0, which means

that the domain of
ffiffiffi
x

p
is [0,1). Obviously, “�5” is not in the domain of

ffiffiffi
x

p
or that

ffiffiffi
x

p
is not

defined at x¼�5 (see Figure 8.8). Further, observe that there is no neighborhood of “�5” in

which the function
ffiffiffi
x

p
is defined. Hence, the condition of Definition (b) is not satisfied for the

number “�5” (or any other negative number). Therefore, the number “�5” cannot be a point of

discontinuity of
ffiffiffi
x

p
. Accordingly, itwill bewrong to say that

ffiffiffi
x

p
is discontinuous at “�5,” since

it is not in the domain of
ffiffiffi
x

p
.

Example (2): Now let us consider the function g2(x) defined by:

g2(x)¼ 2xþ 3, x2 [2, 8], x 6¼ 3

Obviously, this function is not defined at x¼ 3, but it is discontinuous at x¼ 3 (why?). [Note

that there is neighborhood of “3” in which the function g2(x) is defined, and so “3” is a point of

x

0 1

1

2

2 3 4

yy

x

(a) (b)

0 4321

FIGURE8.7 Graphs of functionswith discontinuities: (a) at x¼ 1 and x¼ 2 (b) at x¼ 1, x¼ 2 and x¼ 4.

5 10

g1(x) = √
−
x

x

y

0

FIGURE 8.8
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discontinuity in view of the Definition (b) above.] On the other hand, if we consider any other

point outside the interval [2, 8], say “10”, then obviously, it will be wrong to say that g2(x) is

discontinuous at “10”.

Now, in view of the Definition (b) it is easy to understand that the functions G(x)¼ 1/x,

x 6¼ 0 and H(x)¼ 1/x2, x 6¼ 0 are both discontinuous at x¼ 0 (see Figure 8.9a and b,

respectively). We know that, these functions have infinite discontinuity at x¼ 0. However,

the functionH(x)¼ 1/x2, x 6¼ 0 is an example of infinite discontinuity with one sign as x ! 0.

Here, we can also say that both these functions are continuous on the intervals (�1, 0) and

(0, 1) whose union forms the natural domain of these functions.(3)

8.2 DEVELOPING THE DEFINITION OF CONTINUITY “AT A POINT”

Of course, graphical intuition is helpful in understanding the concept of continuity, but a precise

definition of continuity cannot depend on pictures.

The notion of continuity can be best expressed through limits as will be clear from the

following examples.

Example (3): Consider the following functions:

(i) f ðxÞ ¼ x2 � 9

x� 3
; x 6¼ 3; i:e:;

ðx� 3Þðxþ 3Þ
ðx� 3Þ ; x 6¼ 3

(ii) gðxÞ ¼ xþ 3; if x 6¼ 3

2; if x ¼ 3

�

h(x) = 1/x2, x ≠ 0

x

(b)

y

0

y

(a)

20

10

–10

g(x) = 1/x, x ≠ 0

1–1

–20

x

FIGURE 8.9

(3) John B. Fraleigh, a world-class author of the book Calculus with Analytic Geometry (published by Addison-Wesley,

1979) has expressed (in a footnote on p. 52) that we should not even prefer to consider the question of continuity at a point

that is not in the domain of the function. He is of the opinion that whereas we can talk about the continuity of 1/x on the

intervals (�1, 0) and (0, 1), he is against the statement that 1/x is discontinuous at x¼ 0. However, in view of the

definition of the domain of a function defined earlier, and the definition (b) given above, we agree to say that 1/x is

discontinuous at x¼ 0. This is a matter of approach and outlook that helps in accepting the concept of discontinuity with

uniformity in our thinking.
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The graphs of f(x) and g(x) appear in Figure 8.10a and b, respectively. In the graph of f(x) the

point (3, 6) is missing from the graph. On the other hand, in the graph of g(x), it appears as if

the point (3, 6) is torn out from the graph of g(x) and pushed at a new location (3, 2) which is

vertically below the point (3, 6) at a lower height. Thus, a break is created in these graphs,

making both of them discontinuous at x¼ 3.

ðiÞ f ðxÞ ¼ x2 � 9

x� 3
; x 6¼ 3 gðxÞ ¼ xþ 3; if x 6¼ 3

2; if x ¼ 3

�

Stated another way, if we were to trace these graphs with a pencil, we would have to lift the

pencil at x¼ 3. These situations can be technically expressed through limits as follows.

(i) The function f(x)¼ (x2� 9)/(x�3) is not defined at x¼ 3, or we say that the function

f(x) is meaningless for x¼ 3 (why?). Here is a preliminary remark: The concept of

limit of a function f(x), as x ! a is connected with the behavior of the function in the

vicinity of the point “a”, except for the point “a” itself. Note that, the ratio (x2�9)/(x�3)

is identically equal to the expression (xþ 3) at all points, except for the point x¼ 3.

Consequently, in the vicinity of the point x¼ 3 as well the functions (x2�9)/(x�3) and

(xþ 3) coincide, and we have

lim
x! 3

ðx2 � 9Þ=ðx� 3Þ ¼ lim
x! 3

ðxþ 3Þ ¼ 6; ðx 6¼ 3Þ

Thus, although the function, f ðxÞ ¼ ðx2 � 9Þ=ðx� 3Þ ¼ ðx� 3Þðxþ 3Þð Þ=ðx� 3Þ is
meaningless, at the point x¼ 3, this does not exclude the possibility of the existence of

the limit of the function as x ! 3. Also, note that f(x) is discontinuous at x¼ 3, for

obvious reasons.

y

x

(a) (b)

0 3

6

y

x

0 3

2

6

, x ≠ 3
x – 3

x2 – 9
f(x) = g(x) =    

x + 3  if   x ≠  3 

2,       if   x ≠ 3

FIGURE 8.10
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Now, if we agree to define f(x) at x¼ 3 by f(3)¼ 6, then it appears as if the missing

point (3, 6) is brought back into the gap, making the graph continuous. In other words,

the discontinuity of the function f(x) is removed by defining f(x) at x¼ 3 suitably so that

this value equals the limit f(x) as x ! 3.

(ii) The function g(x) has the same function values as the function f(x) when x 6¼ 3. But it is

also given that g(3)¼ 2. Thus, g(x) is defined for all values of x, but still there is a break

in its graph at x¼ 3.

If, however, we redefine g(x) at x¼ 3, by g(3)¼ 6, it is equivalent to shifting the

point (3, 2) (of the graph) to the location (3, 6), [which is vertically above the point

(3, 2)]. This fills up the gap in the graph at x¼ 3 and makes it continuous.

The redefined function g(x) is given by:

gðxÞ ¼ xþ 3; if x 6¼ 3

6; if x ¼ 3
ð4Þ

�

Note that by redefining the function g(x) atx¼ 3 (which is the point of discontinuity) the

value g(3) is numerically made equal to the lim
x! 3

gðxÞ.
This is the basis of our definition of continuity of a function at any point “a” in the

domain of definition of the function. At this state, it is necessary to consider one more

contrasting situation as indicated in the following example (in which a function is

discontinuous), before formulating the definition of continuity at any point “a” in an

interval I.

Example (4): Let � be defined by

�ðxÞ ¼ 3þ x; if x � 1

3� x; if x > 1

�

Figure 8.11 shows the graph of �. Here, we note that

(4) Herewe have retained the same name of the redefined function, to convey that the discontinuity of g(x) can be removed.

Technically, this is not correct. The refined function must be denoted by a different notation, say h(x) or c(x), and so on.

x

y

0 1

2

4

FIGURE 8.11
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(i) �(1)¼ 4 (as clear from the graph),

(ii) lim
x! 1�

�ðxÞ ¼ lim
x! 1�

ð3þ xÞ ¼ 4; and

(iii) lim
x! 1þ

�ðxÞ ¼ lim
x! 1þ

ð3� xÞ ¼ 2:

Here, we know that limit lim
x! 1�

�ðxÞ 6¼ lim
x! 1þ

�ðxÞ, which means that the lim
x! 1

�ðxÞ does not
exist.We observe that the graph of� has a break at the pointx¼ 1, where the lim

x! 1
�ðxÞ does not

exist. From the above discussion, involving the functions f(x), g(x), and �ðxÞ we get the

following total picture.

Let a function “f(x)” be defined on an interval I, and let “a” be an arbitrary point in I. Then,

there are three contrasting possibilities for the behavior of f(x) near “a” as follows:

(i) lim
x! a

f ðxÞdoes not exist (see Figure 8.12a and b)

(ii) lim
x! a

f ðxÞexists, but lim
x! a

f ðxÞ 6¼ f(a) (see Figure 8.12c and d)

(iii) lim
x! a

f ðxÞexists, and lim
x! a

f ðxÞ¼ f(a) (see Figure 8.12e)

y

y =
x2

x

0

1–

y

x

(a) (b)

0

2

4

1

(c)

y

x

0 1

5

(d)

y

x

0 1

5

(e)

y

x

5

7

3

1

1–1 30

FIGURE 8.12
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lim
x! a

f ðxÞdoes not exist [i.e., lim
x! a�

f ðxÞ 6¼ lim
x! aþ

f ðxÞ. (Here, “a” stands for “0”, with reference
to Figure 8.12a and it stands for “1” with reference to the Figure 8.12b–e.)

For Figure 8.12c, lim
x! a

f ðxÞexists, but lim
x! a

f ðxÞ 6¼ f ðaÞ [since, f(a) is not defined].
For Figure 8.12d, lim

x! a
f ðxÞexists, but lim

x! a
f ðxÞ 6¼ f ðaÞ [since, f(a) is different from

lim
x! a

f ðxÞ].
For Figure 8.12e, lim

x! a
f ðxÞ exists, and lim

x! a
f ðxÞ ¼ f ðaÞ.

Notice that in Figures 8.12c and d the graphs appear to be broken at “1”. Next observe that

in Figure 8.12e the graph appears to be unbroken (i.e., continuous) at “1”, with f(x) approaching

f(1) as x approaches “1”. This type of behavior is of great importance in calculus.

8.2.1 Defining Continuity of a Function at Any Point “a”

From the above observations, we can now give the following definition(s) of continuity at any

point “a”, in its domain, using the concept of limit.

Definition [Continuity]: Let a function “f ” be defined in an interval I, and let “a” be any point

in I. The function “f ” is said to be continuous at the point “a”, if and only if the following three

conditions are met:

ðiÞ f ðxÞ is defined at x ¼ a

ðiiÞ lim
x! a

f ðxÞ exists; and

)
ð1Þð5Þ

ðiiiÞ lim
x! a

f ðxÞ ¼ f ðaÞ:

In fact, these three conditions of continuity “at a point”, are summed up in the following short

definition.

A function f(x) is said to be continuous at a point x¼ a, if the limit of the function as x ! a, is

equal to the value of the function for x¼ a, which we express by the statement,

lim
x! a

f ðxÞ ¼ f ðaÞ ð2Þ

There is another way to express continuity of a function at a point “a”. In the statement (2), if

we replace x by aþ h, then as x ! a, we have h ! 0 (see Figure 8.13).

Thus, the statement

lim
h! 0

f ðaþ hÞ ¼ f ðaÞ ð3Þ

defines continuity of the function “f ” at “a”.

(5) We give here the meanings of certain statements, which are frequently used in mathematics.

. f(x) is defined at x¼ a means, the value f(a) is a finite number.

. f(x) is not defined atx¼ ameans, either the point (a, f(a)) ismissing from the graph (which alsomeans that “a” is not

in the domain of “f ”) or f(a) is not finite [i.e., as x! a, f(x) !1].

. lim
x! a

f ðxÞ exists means lim
x! a�

f ðxÞ ¼ lim
x! aþ

f ðxÞ, both being finite.
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The statement (3) of the definition of continuity is very useful and convenient for applying to

the trigonometric, exponential, and logarithmic functions, and so on to prove their continuity

or otherwise.

Note (5): It is important to remember that the value f(a) and lim
x! a

f ðxÞ are two different concepts
and hence evenwhen both the numbers exist, theymay be different. The concept of continuity of

the function (at any point x¼ a, in its domain) is based on the existence and equality of these

two numbers, at “a”.

Remark: In the notion of limit lim
x! a

f ðxÞ, the value f(a) plays no role [since, lim
x! a

f ðxÞ may

exist, even when f(a) is not defined] but the value f(a) becomes very important when we

consider the continuity of “f(x)” at “a”.

8.2.2 A Little More About Continuity

The condition of continuity of a function in an interval can be described as the property of

the function to change gradually within that interval in the sense that small variations

of argument (i.e., the independent variable) generate small variations of the function

itself.(6)

In descriptive geometrical terms, the continuity of a function at a given point signifies that

the difference of the ordinates on the graph of the function y¼ f(x) at the points x0þ h and x0
will, in absolute value, be arbitrarily small, provided jhj is sufficiently small (i.e., if we can

choose jhj arbitrarily small, closer and closer to zero).

If the function f(x) is known to be continuous at the point “a”, then the problem of

calculating the limit of the function f(x) as x ! a is trivial, since the calculation of the limit at

the point “a” reduces to the calculation of the value of the function at the point “a”.

y

x

x

f (a+h)

x → a,
h → 0

y = f (x)

f (a)

as x→ a,

a + h a 

then h→ 0

h

{

FIGURE 8.13

(6) This is a characteristic feature ofmany phenomena and processes, for instance, expansion in the length ofmetal rods on

heating, the growth of an organism during a period, and variation in air temperature during the day, and so on, are

considered continuous processes.
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For example, if h(x)¼ (x2�3)/(x�1), then we can easily compute

lim
x! 2

hðxÞ ¼ lim
x! 2

x2 � 3

x� 1
¼ 22 � 3

2� 1
¼ 1

It can be shown that all the basic elementary functions are continuous in the intervals where

they are defined. (Of course, the proofs can be seen in the advanced courses in mathematical

analysis.)

Besides, continuous functions can be easily investigated and their properties can be studied.

Hence, it is often important that a function be continuouswherever possible.We ask the question,

is it possible to remove the discontinuity of a function? The answer is “only sometimes”. If the

discontinuity of a function is not removable it is called an irremovable or an essential

discontinuity. We shall discuss about removable and irremovable discontinuities shortly.

Note (6):The continuity of a function can be expressed either in terms of the points at which the

function is continuous or in terms of the points at which the function is discontinuous or by

considering the entire situation covering all the points of interval.

For example, technically it is correct to say that the function

FðxÞ ¼ ðx� 1Þð2xþ 3Þ
ðx� 1Þ ; x 6¼ 1

is continuous throughout its domainwhere it is defined or that it is discontinuous atx¼ 1 or that

it is continuous for all x except for x¼ 1, where it is not defined.

Remark: If we simply say that the function F(x) is continuous throughout its domain of

definition, then there comes up an element of curiosity (or discomfort) in the reader’s mindwho

is able to visualize the point of discontinuity in the expression defining F(x). Therefore, from

this point of view it is more convenient and convincing to say that F(x) is continuous for all x

except for x¼ 1, where it is discontinuous.We can understand the concept of continuity better,

if we study its opposite—the concept of discontinuity.

8.2.3 Definition

A function is discontinuous at x¼ a if and only if it is not continuous at x¼ a. (Recall that we

have already given this definition earlier in Section 8.1.1. Note that, this is an indirect definition

wherein by denying the property of continuity to a function, “at a point”, we identify it as a

discontinuous function.)

When we say that a function is not continuous at x¼ a, we mean that the condition of

continuity is violated at x¼ a, so that

lim
x! a

f ðxÞ 6¼ f ðaÞ ð4Þ

The point “a” is then called a point of discontinuity of the function.

8.2.3.1 A Point of Discontinuity in Terms of Limit(s) Having discussed the definition of

continuity in terms of limits (in Sections 8.2.1 and 8.2.2) we now use our knowledge, to discuss

and find out what happens at a point of discontinuity (of a function) in terms of limits.
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With reference to the definition of discontinuity at (4) above, we can say that, a function

defined on an interval I is discontinuous at a point a2 I, if at least one of the following

conditions occur at the point x¼ a.

(i) The function f(x) is not defined at x¼ a,

(ii) lim
x! a

f ðxÞ does not exist [whichmeans that lim
x! a�

f ðxÞ 6¼ lim
x! aþ

f ðxÞ or at least one of the
one-sided limits is infinite],

(iii) lim
x! a

f ðxÞ 6¼ f ðaÞ, in the arbitrary approach ofx ! a (whichmeans that the expressions

on the right and the left both exist but they are unequal).

8.2.4 Removable and Irremovable Discontinuities of Functions

If lim
x! a

f ðxÞ exists but f(a) is either not defined, or not equal to lim
x! a

f ðxÞ then, we may redefine

“f ” (at the point of discontinuity “a”) such that we assign to f(a), the number which equals the

limit lim
x! a

f ðxÞ. This makes the function f(x) continuous at x¼ a (by definition of limit). This

we have seen in the process of developing the definition of continuity (see Figure 8.10a and b).

Such a discontinuity is called removable discontinuity, for obvious reasons.

It is not always possible to remove the discontinuity of a function. If the discontinuity is

not removable it is called an irremovable (or an essential) discontinuity of the function, as

mentioned earlier. If lim
x! a

f ðxÞdoes not exist then f(x) is said to have an irremovable (or

essential) discontinuity at x¼ a. (Note that the graphs of the functions in Figures 8.2a and 8.3

indicate the point of removable discontinuities whereas those displayed in Figures 8.2b, 8.4,

8.5, and 8.6 indicate the points of irremovable discontinuities.)

The simplest type of essential discontinuity occurs at those points at which a functionmakes

a (finite) jump, that is, where the function has a definite limit as x ! a� and a different definite

limit as x ! aþ. Such discontinuities are displayed in Figures 8.4 and 8.5.

Note (7): It must be clear that if the graph of the function has a finite jump of a point alone, then

the function is said to have removable discontinuity at that point. But, if there is a finite jump of a

portion of the curve, then such a function has irremovable (or essential) discontinuity at the

point of jump.

Remark: In the case of an irremovable discontinuity it does not matter whether or how the

function is defined at the point of discontinuity. This will be clear from the following example,

and many more later on.

Example (5): Recall the function f(x)¼ 1/x, x 6¼ 0. Clearly this function is not continuous

at x¼ 0, and in any interval containing the point “0”. The examination of the graph of 1/x

in the vicinity of the point x¼ 0 clearly shows that it splits into two separate curves at the

point x¼ 0 (see Figure 8.9a). Further note that, in this case,we cannot make “f ” continuous

by assigning any value to f(0). Also observe that neither lim
x! 0

f ðxÞ exists nor f(0) is defined.
We say that “f ” has an infinite discontinuity at x¼ 0. This is an essential discontinuity of

the function.

The same behavior is observed in the graph of the function y¼ tan x, in the vicinity of the

points x¼ (2kþ 1)p/2. Even in the case of signum function (denoted by y¼ sgn x), and the
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function y ¼ xj j=x (which are the examples of jump discontinuity), the curve “splits” into two

separate curves [see Examples (6) and (7), given below].

Example (6): Let the function f ðxÞ ¼ sgn x ¼
�1 if x < 0

0 if x ¼ 0

1 if x > 0

8<
:

The function f(x) is called signum function (or sign function) denoted by sgnx and read “signum

of x” (Figure 8.14). (It gives the sign of x.) Note that the function sgn x is defined for all x.

Because sgn x¼�1, if x< 0 and sgn x¼ 1, if x> 1, we have

lim
x! 0�

sgnðxÞ ¼ lim
x! 0�

ð�1Þ, and lim
x! 0þ

sgnðxÞ ¼lim
x! 0þ

ð1Þ ¼ 1

Thus, the left-hand limit and the right-hand limit are not equal, which means that lim
x! 0

sgnðxÞ
does not exist. Accordingly, f(x) is discontinuous at x¼ 0.

Note that f(0) exists. Obviously, the function sgn x has a jump discontinuity at x¼ 0.

Example (7): Consider the function y ¼ jxj
x
, x 6¼ 0 (see Figure 8.15).

The arrows at the ends of the rectilinear portions of the graphmean that for x¼ 0, the function is

not defined but for the values of x less than zero the value of the function is “� 1”, and for the

values ofx exceeding zero, it is equal to “1”.Hence, there exists no number towhich thevalue of

the function becomes arbitrarily close for all thevalues ofx, approaching the point “0”. (In other

words, this function has no limit as x ! 0.)

Note (8): If we add the point x¼ 0 to the domain of this function and put y¼ 0, for x¼ 0, we get

the signum function discussed in the previous example.

Remark: We must distinguish between a jump discontinuity and an infinite discontinuity.

Recall that a function has a jump discontinuity at x¼ a, if both the one-sided limits are finite

y

x

0

1

–1

FIGURE 8.14
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and unequal. In the case of an infinite discontinuity, at least one of the one-sided limits is infinity.

Of course, both are irremovable discontinuities.

Example (8): The greatest integer function ofxdenoted by [x] is defined as: [x]¼ the greatest

integer less than or equal to x. Thus, for all numbers x less than 2 but near 2, [x]¼ 1, and for all

numbers greater than 2 but near 2, [x]¼ 2.(7)

The graph of [x] takes a jump at each integer as clear from the graph (Figure 8.16).
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FIGURE 8.15
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FIGURE 8.16 Greatest integer function

(7) Obviously, [3.1]¼ 3, [2.99]¼ 2, [2]¼ 2, [0]¼ 0, [0.9]¼ 0, [�3.1]¼�4, [�2.99]¼�3, [7.2]¼ 7.
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Nowweask thequestion: is [x] near toa singlenumber l,whenx is near 2?The answer is “No”.

When x ! 2�, [x] ! 1, but when x ! 2þ, [x] ! 2. Thus, lim
x! 2

½x�, does not exist. This is as
well true for any other integer. Thus, [x] is not continuous for any integer x.

8.2.4.1 Infinite discontinuities appear at points of discontinuity “a” for which lim
x! a

f ðxÞ¼
1. We have already seen that for the function y¼ 1/x2, this point is x¼ 0, and for the function

y¼ tan x, such points are x¼ (2kþ 1)p/2.(8)

Note (9): Because, continuity is defined in terms of limits, we can get information about

continuity from the various limit theorems already stated. For example, we know that if “a” is

in the domain of the rational function f(x) which means that f(a) is defined, then we have,

lim
x! a

f ðxÞ¼ f(a). It follows that, any rational function is continuous at every point where it is

defined (i.e., at the points where the denominator does not become zero). Similarly, each of the

six trigonometric functions sin x, cos x, tan x, and so on, is continuous at every point where

they are defined (i.e., in their natural domains). (In Chapter 11a, we have shown that

lim
x! a

sin x¼ sin a, and lim
x! a

cos x¼ cos a, which is equivalent to saying that both the functions

are continuous at any point “a” in their domain.)

Example (9): Find any points of discontinuity for the function f(x) given by

f ðxÞ ¼ x4 � 3x3 þ 2x� 1

x2 � 4

The denominator is zero when x¼�2. Hence “f ” is not defined at �2 and accordingly it is

discontinuous at these points. Otherwise, the function is “well behaved”. In fact, any rational

function (i.e., any quotient of polynomials) is discontinuous at points where the denominator

becomes 0, but it is continuous at all other points.

Earlier, we have broadly identified the discontinuities of functions as: (i) removable

discontinuities and (ii) irremovable discontinuities.

Our discussion of discontinuous functions suggests that the following finer classification of

the points of discontinuity should help in understanding various types of discontinuities.

8.3 CLASSIFICATION OF THE POINTS OF DISCONTINUITY:

TYPES OF DISCONTINUITIES

If a function y¼ f(x) has a discontinuity for x¼ a, then to identify the character (or nature or

type) of the discontinuity, it is necessary to find the left-hand and right-hand limits of the

function f(x) as x ! a.

Depending on the behavior of a function in the vicinity of the point of discontinuity, we

distinguish between two basic kinds of discontinuity:

(i) ADiscontinuity of the First Kind. In this case, there exist both the one-sided limits. That

is, lim
x! a�

f ðxÞ and lim
x! aþ

f ðxÞ, both are finite numbers.

(8) Some other examples are the point x¼ 0 for the function y¼ log x (which is defined on the right of that point of

discontinuity x¼ 0), and the points x¼�1 and x¼ 1 for the function y¼ 1/
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
. In this case, the points of

discontinuity are the end points of the interval [�1, 1]. Note that this function is defined only on the open interval

(�1, 1), where it is continuous.
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This is an important class of points of discontinuity. Obviously the jump discontinuity

belongs to the first kind. Also note that removable discontinuity is of the first kind.

(ii) A Discontinuity of the Second Kind. All other discontinuities (which are not of the first

kind) are called discontinuities of second kind. In this case, at least one of the one-sided

limits does not exist or is infinite.

In view of the above classification, note that the discontinuities indicated in the graphs of

Figures 8.2a, 8.3, 8.4, and 8.5 are of the first kind, whereas those indicated in the graphs of

Figures 8.2b and (8.6) are of the second kind.(9)

8.4 CHECKING CONTINUITY OF FUNCTIONS INVOLVING

TRIGONOMETRIC, EXPONENTIAL, AND LOGARITHMIC FUNCTIONS

Recall that the concept of continuity of a function f(x), at a point “a” is defined in terms of the

equality of both the one-sided limits of the function at “a”with the value f(a). All the statements

of the definition of continuity are useful in dealing with different requirements of the problems.

One definitionwhichmay be useful for checking the continuity of an algebraic functionmay not

be convenient for checking the continuity of a trigonometric or exponential function. Hence,

depending on the type of function and the requirement involved, one may have to choose the

suitable definition to be applied. Of course, all the three definitions are equivalent.

So far we have discussed about the continuity (and discontinuity) of some algebraic

functions only. In almost all the cases, the graphs of the functions were also given, for easy

understanding. In fact, this approach has been quite simple (and systematic), since the concept

of limit of a function was introduced with the help of simple algebraic functions only. In our

further study, it will be found that the continuity of a function can be checked without having an

idea about the graph of the function. In fact, in most of the cases, it may not be possible to draw

the graph of the function or even imagine its shape.

Now, it is proposed to discuss the continuity of functions involving trigonometric,

exponential and logarithmic functions. Accordingly, it is necessary to study their properties

and the methods for computing their limit(s). Since, this requirement is met in different

chapters, it is necessary that we assume certain results (i.e., the standard limits), since thesewill

be needed to compute the limits involving these functions.

. Standard Limit of Trigonometric Functions. We know that the trigonometric functions

are defined for the angle “x”, expressed in radians, which represents real numbers, as

discussed in Chapter 5.

The following trigonometric limits, are discussed at length in Chapter 11a.

(i) lim
x! 0

cos x ¼ 1,

(ii) lim
x! 0

sin x ¼ 0

(iii) lim
x! 0

sin x

x
¼ 1

(iv) lim
x! 0

cos x� 1

x
¼ 0

(9) One must not think that a point of discontinuity of the second kind is necessarily a point of infinite discontinuity. There

are bounded functions having neither a left-hand limit nor a right-hand limit as the argument (i.e., a independent variable)

approaches a point of discontinuity. Such an example is the function y¼ sin(1/x). When x ! 0, the function does not tend

to any limit, finite or infinite, left-hand or right-hand.
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These results are treated as standard trigonometric limits, and they are used for computing

limits of other functions involving trigonometric functions as discussed in Chapter 11b.

. Standard Limits of Exponential Functions. If “a” is a positive real number, then the

function f defined by f(x)¼ ax is called an exponential function. The number “e” is

introduced later in Chapter 13a and the natural exponential function is denoted by

f(x)¼ ex. The following results (A) and (B) are also proved there. These are treated as

standard limits.

1. lim
x! 0

ð1þ xÞ1=x ¼ e ðAÞ
Further, if f(x) ! 0, as x ! 0, then

lim
x! 0

ð1þ k f ðxÞÞ1=k f ðxÞ ¼ e; ðk 6¼ 0Þ

This result is easily obtained by expressing its left-hand side in the form as shown

above on the left-hand side of (A). For this purpose, we use the method of substitution

as follows:

Put k f(x)¼ t, then as x ! 0, t ! 0 [since, f(x) ! 0 as x ! 0]

Therefore, lim
x! 0

ð1þ k f ðxÞÞ1=k f ðxÞ ¼ lim
t! 0

ð1þ tÞ1=t ¼ e

2. lim
x! 0

ax � 1

x
¼ loge a; where a > 0 ðBÞ

However, if f(x) ! 0, as x ! 0, and k 6¼ 0 then, t¼ k f(x) ! 0, as x ! 0.

Therefore, lim
x! 0

ak f ðxÞ � 1

k f ðxÞ ¼ lim
t! 0

at � 1

t
¼ loge a

Themethods for computing the limits of exponential and logarithmic functions are

discussed in Chapter 13b.

Besides, for computing the limit(s) of certain functions involving exponential functions, the

following results will be found very useful. We know that,

lim
x! 0�

1=x ¼ �1 and lim
x! 0þ

1=x ¼ 1

Therefore, as x ! 0�, 51/x ! 0 (since, 51/x ! 5�1¼1/51¼ 0) and as x ! 0þ, 51/x ! 1
(since, 51/x ! 51¼1).

Example (10): Check whether the function f ðxÞ ¼ 21=x þ 2

21=x þ 1
is continuous at x¼ 0.

Solution: Note that the function f(x) is not defined at x¼ 0. To check whether this function is

continuous at x¼ 0, we compute its one-sided limits. As x ! 0 from the left (i.e., as x! 0�,
1/x ! �1, so that 21/x ! 0).

) lim
x! 0�

f ðxÞ ¼ lim
x! 0�

21=x þ 2

21=x þ 1
¼ 0þ 2

0þ 1
¼ 2 ð5Þ

However, as x ! 0 from the right (i.e., as x ! 0þ, 1/x ! 1, so that 21/x ! 1 and

2(�1/x) ! 0.)

Note that, here it is not useful to apply the result lim
x! 0þ

21=x ¼ 1. Hence, we express the

given function in a different form, so that its limit can be computed easily. We have,
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f ðxÞ ¼ 21=x þ 2

21=x þ 1
¼ 21=xð1þ 2:2�1=xÞ

21=xð1þ 2�1=xÞ ; x 6¼ 0

¼ 1þ 2:2�1=x

1þ 2�1=x
; x 6¼ 0

) lim
x! 0þ

f ðxÞ ¼ 1þ 0

1þ 0
¼ 1 ð6Þ

Thus, the function f(x) has a limit 2, as x ! 0� and a limit 1 as x ! 0þ. These limits are

unequal (and finite). Therefore, the function in question is discontinuous at x¼ 0, and the

discontinuity is of the second kind. (Note that without having any idea of the graph of this

function, we have obtained the above result.)

Example (11): Prove that the function defined by

f ðxÞ ¼ x sin
1

x
; when x 6¼ 0

0; when x ¼ 0

8<
:

is continuous at x¼0.

Solution:We shall compute the left-hand limit and right-hand limit of this function, at x¼ 0.

Since we have to find the limit of f(x) at x¼ 0, we put x¼ 0þ h. Therefore, as x ! 0, h ! 0.

We know that, on the left side of “0”, each number is negative and on the right side of “0”, each

number is positive (by convention), which means

lim
x! 0þ

f ðxÞ ¼ lim
h! 0

f ð0þ hÞ and lim
x! 0�

f ðxÞ ¼ lim
h! 0

f ð0� hÞ

lim
x! 0þ

f ðxÞ ¼ lim
x! 0þ

x � sin 1
x

¼ lim
h! 0

ð0þ hÞ � sin
�

1

0þ h

�
¼ lim

h! 0
ðhÞ � sin

�
1

h

�

¼ lim
h! 0

ðhÞ � sin 1
h
¼ 0: ða finite quantityÞ ¼ 0

(Since sin(1/x) is a bounded function, which lies between �1 and 1.)

Now, lim
x! 0�

f ðxÞ ¼ lim
x! 0�

x � sin 1
x

¼ lim
h! 0

ð0� hÞ � sin 1

0� h

� �
¼ lim

h! 0
ð�hÞ � sin � 1

h

� �

¼ lim
h! 0

ðhÞ � sin 1
h
¼ 0 � (a finite quantity)¼ 0

(Since sin(1/x) is a bounded function which lies between �1 and 1.)

As lim
x! 0�

f ðxÞ ¼ lim
x! 0þ

f ðxÞ ¼ f ð0Þ, f(x) is continuous at x¼ 0.
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Example (12): f ðxÞ ¼ sin
1

x
; x 6¼ 0

0; x ¼ 0

8<
:

Test the continuity of f(x) at x¼ 0.

Solution: Note that f(x) is defined for all x. However, since the part sin(1/x) is not defined for

x¼ 0, there is a possibility of discontinuity at x¼ 0. The function f(x) is well defined for all

other values of x. The value of f(x) in the neighborhood of “0” is given by

f ð0þ hÞ ¼ sin
1

ð0þ hÞ, where h is a real number other than 0.

Or f ðhÞ ¼ sin
1

h
; ðh 6¼ 0Þ

) lim
h! 0

f ðhÞ ¼ lim
h! 0

sin
1

h
, which does not exist.

[Indeed, the lim
h! 0

f ðhÞoscillates between �1 and þ1.]

In other words, the lim
h! 0

sin
1

h
does not exist at h¼ 0. Hence, the given function f(x) is not

continuous at x¼ 0.

Note (10): The function sin(1/x) is defined for all values of x except for x¼ 0. It

does not approach either a finite limit or infinity as x ! 0. The graph of this function is

shown below.

y

y = sin 

x

x

0

1

–1

1⎯

π
2⎯π

1⎯π
2⎯− π

1⎯−

Note (11): The function f(x), defined in Example (7) is a peculiar function wherein the point of

discontinuity does not fit into the first kind, since it is neither a removable discontinuity nor a

jump discontinuity. Hence, this is an example of the second kind of discontinuity.

Example (13): f ðxÞ ¼ x2 � sin 1
x
; x 6¼ 0

0; x ¼ 0

8<
:

Test the continuity of f(x) at x¼ 0.

Solution:Note that f(x) is defined for allx. However, since the partx2 � sinð1=xÞ is not defined at
x¼ 0, there is a possibility of discontinuity of f(x) atx¼ 0. Therefore, we compute the left-hand

and the right-hand limits of f(x), at x¼ 0.
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Put x¼ 0þ h. Therefore, x! 0) h! 0.

Also, lim
x! 0þ

f ðxÞ ¼ lim
h! 0

f ð0þ hÞ and lim
x! 0�

f ðxÞ ¼ lim
h! 0

f ð0þ hÞ

lim
x! 0þ

f ðxÞ ¼ lim
x! 0þ

x2 � sin 1
x

¼ lim
h! 0

ð0þ hÞ2 � sin 1

ð0þ hÞ
¼ lim

h! 0
h2 � sin 1

h
¼ 0 � ða finite quantityÞ

¼ 0: ð7Þ

Again; lim
x! 0�

f ðxÞ ¼ lim
x! 0�

x2 � sin 1
x

¼ lim
h! 0

ð0� hÞ2 � sin 1

ð0� hÞ
¼ lim

h! 0
h2 � sin 1

h
¼ 0 � ða finite quantityÞ

¼ 0 ðas aboveÞ ð8Þ

Also we have f ð0Þ ¼ 0 ð9Þ
In view of the statements at (7), (8), and (9) above, f(x) is continuous at x¼ 0.

Example (14): Test the continuity/discontinuity of the following function at x¼ 0.

f ðxÞ ¼
e1=x

1þ e1=x
; x 6¼ 0

0; x ¼ 0

8><
>:

Solution: Given, f ðxÞ ¼ e1=x

1þ e1=x

Put x¼ (0þ h) ) As x ! 0, h ! 0.

) lim
x! 0þ

f ðxÞ ¼ lim
h! 0

f ð0þ hÞ ð10Þ

lim
x! 0�

f ðxÞ ¼ lim
h! 0

f ð0� hÞ ð11Þ

In view of (10) above, we have

lim
x! 0þ

f ðxÞ ¼ lim
h! 0

e1=ð0þhÞ

1þ e1=ð0þhÞ ¼ lim
h! 0

e1=h

1þ e1=h
¼ l1 (say)

Now, dividing the numerator and the denominator by e1=h, we express l1 by

l1 ¼ lim
h! 0

1

e�1=h þ 1

We know that as h ! 0, � 1

h
! �1, so that e�1=h ! 0.
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Therefore, l1 ¼ 1

0þ 1
¼ 1, which is the limit from the right. (12)

In view of (11) above, we have

lim
x! 0�

f ðxÞ ¼ lim
h! 0

e1=ð0�hÞ

1þ e1=ð0�hÞ

¼ lim
h! 0

e�1=h

1� e�1=h
¼ 0

1� 0
¼ 0, which is the limit from the left. (13)

Since lim
x! 0þ

f ðxÞ 6¼ lim
x! 0�

f ðxÞ, we conclude that f(x) is discontinuous at x¼ 0. [Also note that

the point of discontinuity (at x¼ 0) is of the second kind.]

Example (15): f ðxÞ ¼
sin 2x

x
; x 6¼ 0

1; x ¼ 0

8<
: . Is f (x) continuous at x¼ 0?

Solution:Note that the function is defined for allx. Tofindwhether f(x) is continuous atx¼ 0 or

not, we check the left-hand and the right-hand limits at x¼ 0.

Put x¼ (0þ h) ) As x ! 0, h ! 0.

) lim
x! 0þ

f ðxÞ ¼ lim
h! 0

f ð0þ hÞ ð14Þ

lim
x! 0�

f ðxÞ ¼ lim
h! 0

f ð0� hÞ ð15Þ

Now, in view of (14), we have

lim
h! 0

f ðxÞ ¼ lim
h! 0

sin 2ð0þ hÞ
ð0þ hÞ ¼ lim

h! 0

sin 2h

h

¼ lim
h! 0

sin 2h

2h
� ð2Þ ¼ 2 lim

2h! 0

sin 2h

2h
¼ 2 ð16Þ

lim
x! 0�

f ðxÞ ¼ lim
h! 0

sin 2ð0� hÞ
ð0� hÞ ¼ lim

h! 0

�sin 2h

�h

¼ lim
h! 0

sin 2h

2h
� ð2Þ ¼ 2 ð17Þ

Here, we have lim
x! 0þ

f ðxÞ ¼ lim
x! 0�

f ðxÞ ¼ 2, which means that lim
x! 0

f ðxÞ exists and it is 2. But, it
is given that f ð0Þ ¼ 1. Thus, lim

x! 0
f ðxÞ 6¼ f ð0Þ. Hence, the given function is not continuous

at x¼ 0.

Note (12): Since the limit of f(x) and its value both exist at x¼ 0, the given function f(x) can be

made continuous at x¼ 0, if we redefine the function at x¼ 0 by f(0)¼ 2 (instead of 1).

Example (16): Let f ðxÞ ¼ ðsin xÞ=x. Define a function g(x) which is continuous, and

g(x)¼ f(x) for all x 6¼ 0.
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Solution: We have, lim
x! 0

f ðxÞ ¼ lim
x! 0

sinx

x
¼ 1

Let g(x)¼
sin x

x
; for x 6¼ 0

1; for x ¼ 0

8<
:

Then, g(x) is continuous at “0”. Since lim
x! 0

gðxÞ ¼ 1 ¼ gð0Þ. Furthermore, gðxÞ ¼ f ðxÞ for all
x, as was desired.

Note (13): The graph of the function (sin x)/x is given below. It gives a feel of how it becomes

continuous when we redefine it at x¼ 0 as 1.

y

y = −−−−sin x
x

x

0

1

π-π–2π 2π 3π

Example (17): Discuss the continuity of the function

f ðxÞ ¼
ð3x � 1Þ2

sin x log ð1þ xÞ ; for x 6¼ 0

2 log 3; for x ¼ 0

8><
>:

Solution: Given f ð0Þ ¼ 2 log 3 ð18Þ

lim
x! 0

f ðxÞ ¼ lim
x! 0

ð3x � 1Þ2
sin x log ð1þ xÞ

¼ lim
x! 0

ð3x � 1Þ=xð Þ2
sin x=xð Þ � ð1=xÞlogð1þ xÞ

¼
lim
x! 0

ð3x � 1Þ=xð Þ2

lim
x! 0

sin x=xð Þ
� �

� log lim
x! 0

ð1þ xÞ1=x
� � ¼ ðlog 3Þ2

ð1Þ � loge e
¼ ðlog 3Þ2 ð19Þ

From (18) and (19), we have lim
x! 0

f ðxÞ 6¼ f ð0Þ,

) f is discontinuous at x¼ 0.

Note (14):Since, the lim
x! 0

f(x) and thevalue of “f ” atx¼ 0, both exist, it is possible to remove the

discontinuity by redefining f as follows:

f ðxÞ ¼ f ðxÞ ¼
ð3x � 1Þ2

sin x logð1þ xÞ ; for x 6¼ 0

ðlog 3Þ2; for x ¼ 0

8><
>:
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Remark: In the definition of f(x), the value f(0) is given to be 2 log 3¼ log 32¼ log 9.

However, for continuity of “f ” at x¼ 0, it is found to be (log 3)2. [Note that log 32 6¼ (log 3)2.]

. The Problems Related with the Concept of Continuity can be Classified as Follows:

Type (1): Discontinuity of a function at a given point. We have already discussed a

good number of such problems.

Type (2): To find the value of the unknown, if f(x) is given to be continuous at a

certain point.

Type (3): To find the value f(a) when f is given to be continuous at x¼ a. [Such

problems demand that we must compute the limx! af(x). Then by definition,

f(a)¼ lim
x! a

f(x).]

Type (4): It is given that f(x) is continuous atx¼ a, and it is required to state either the

lim
x! a

f(x) or the value f(a), when anyone of them is given. [Such problems require

minimum effort. (Why?)]

Example (18): Find the value of k, if

f ðxÞ ¼
1� cos kx

x sin x
; for x 6¼ 0

2; for x ¼ 0

8<
:

is continuous.

Solution: Since f is continuous at x¼ 0, ) lim
x! 0

f(x)¼ f(0) (20)

Now, it is given that f(0)¼ 2. (21)

Hence our problem reduces to computing the limit of f(x) as x ! 0.

Consider,

lim
x! 0

f ðxÞ ¼ lim
x! 0

1� cos kx

x sin x
¼ l ðsayÞ

(We try to apply some method of expressing the given expression in a convenient form so that

the above limit can be easily evaluated.) We have,

l ¼ lim
x! 0

ð1� cos kxÞ
x sin x

� ð1þ cos kxÞ
ð1þ cos kxÞ

¼ lim
x! 0

1� cos k2x

x sin xð1þ cos kxÞ

¼ lim
x! 0

1� cosk2x

x sin xð1þ cos kxÞ

l ¼ lim
x! 0

sin kx=kxð Þ2 � k2
sin x=xð Þð1þ cos kxÞ

¼ 12 � k2
1ð1þ cos 0Þ ¼

k2

2
ðas cos 0 ¼ 1Þ ð22Þ
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Substituting the values from (21) and (22) in (20), we get

k2

2
¼ 2

k2¼ 4 ) k¼� 2

Example (14): f ðxÞ ¼ ð5x � 2xÞ � x
cos 5x� cos 3x

, for x 6¼ 0, is continuous at x¼ a. Find f(0).

Solution: It is given that f is continuous at x¼ 0. Therefore, by definition, we have,

f ð0Þ ¼ lim
x! 0

f ðxÞ: ð23Þ

Thus, our problem is reduced to computing the lim
x! 0

f(x).

Now, lim
x! 0

f(x)¼ lim
x! 0

ð5x � 2xÞ � x
cos 5x� cos 3x

¼ l (say)

Note (15): The standard limits of exponential functions and trigonometric functions suggest

that: (i) numerator and denominator must be divided by x2 and (ii) the denominator must be

expressed as a product of “sine functions”, using the trigonometric identity.

Now, cos 5x� cos 3x ¼ �2sin
5xþ 3x

2

� �
� sin 5x� 3x

2

� �

¼ �2sin 4x � sin x

l ¼ lim
x! 0

ð5x � 2xÞ=xð Þ
ð�2sin 4x � sin xÞ=x2ð Þ

¼ lim
x! 0

ð5x � 1Þ=xð Þ � ð2x � 1Þ=xð Þ½ �
ð�8Þ sin 4x=4xð Þ sin x=xð Þ

¼ loge5� loge 2

ð�8Þð1Þð1Þ

¼ � 1

8
loge

�
5

2

�

) From (23) we have f ð0Þ ¼ � 1

8
loge

5

2

� �

Example (20): The function f is defined by

f ðxÞ ¼
ex � 1� x

x2
; for x 6¼ 0

1

2
; for x ¼ 0

8><
>:

is continuous at x¼ 0. What is lim
x! 0

f(x)?

Solution: [If the problem is read carefully, it must be clear that we do not have to compute

lim
x! 0

f(x). On the other hand, we have to simply state the number that gives the limit.]
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Since, f(x) is continuous at x¼ 0,

lim
x! 0

f(x)¼ f(0)

But f(0)¼ 1
2
:

) lim
x! 0

f(x)¼ 1
2
:

8.5 FROM ONE-SIDED LIMIT TO ONE-SIDED CONTINUITY

AND ITS APPLICATIONS

In Chapter 7b, the concept of limit of a function was extended to include one-sided limits (and

limits involving 1). The importance of one-sided limits has since been seen in testing the

continuity of a function at any point and in identifying the type of discontinuity at that point.

Now, we extend the concept of limit to define the concept of one-sided continuity, which is

useful in defining continuity in a closed interval. For this purpose, we start our discussion with

the function
ffiffiffi
x

p
.

We know that the domain of the square root function
ffiffiffi
x

p
is [0,1). Therefore, the lim

x! 0

ffiffiffi
x

p
does not exist. As a consequence, under the definition of continuity, the square root function

ffiffiffi
x

p
is not continuous at x¼ 0 (Why?).

However, it has a right-hand limit at 0. We express this fact by saying that the square root

function
ffiffiffi
x

p
is continuous from the right of “0”.We give the following definitions of one-sided

continuity.

. Definition [Continuity from the Right]:A function f(x) is continuous from the right at a

point “a” in its domain, if lim
x! aþ

f ðxÞ ¼ f ðaÞ.
. Definition [Continuity from the Left]: A function f(x) is continuous from the left at a

point “a” in its domain, if lim
x! a�

f ðxÞ ¼ f ðaÞ.

Inview of the above definitions a functionwhose domain is a singleton is considered continuous

at that point. See Note (17) on Page 176 (Chapter 7a).

8.6 CONTINUITY ON AN INTERVAL

We say that a function is continuous on an interval if it is continuous at each point there. Itmust

be clear that each point in the interval has to satisfy all the three conditions of continuity at a

point as stated in the definition (1). This is exactly what it means for continuity on an open

interval. When we consider a closed interval [a, b], we face a problem as we have seen in the

case of the square root function
ffiffiffi
x

p
.

We overcome this situation by agreeing as follows: we say that “f ” is continuous on closed

interval [a, b], if it is continuous at each point of (a, b) and if the following limits exist:

lim
x! aþ

f ðxÞ ¼ f ðaÞ; and lim
x! b�

f ðxÞ ¼ f ðbÞ

(These are one-sided limits at the end points of a closed interval.)

Remark: To define the continuity of a function at any end point of a closed interval, we agree

to accept the one-sided limit, as the limit of the function, at that point. It is a matter of

convenience that, we accept the one-sided limit(s), as the limit(s) at the end point(s).Wegive the

following well accepted definition of continuity on an interval.
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Definition: We say that “f ” is continuous on an open interval (a, b), if it is continuous at each

point of that interval.

It is continuous on the closed interval [a, b], if it is continuous on (a, b), right continuous at a,

and left continuous at b.

Note (16): If there exists at least one point in the domain of a function (assumed to be an

interval) where it is not continuous, then the function is said to be discontinuous in its domain.

Thus, if a function is not continuous even at an end point of a closed interval [a, b], then it is said

to be discontinuous on [a, b].

Example (21): Given f ðxÞ ¼ x=ðx� 2Þ. Test the continuity of the function in the intervals

(1, 2), [1, 2], and (1, 3). Note that, f(x) is not defined for x¼ 2. Accordingly, f(x) is continuous

in any interval which does not contain 2. Thus, “f ” is continuous on (1, 2), but it is dis-

continuous on [1, 2] and on (1, 3).

. Some Theorems on Continuity (Without Proof):

1. If f and g are two functions continuous at the number “a”, then fþ g, f� g, f�g, are
continuous at “a” and f/g is continuous at “a”, provided that g(a) 6¼ 0.

2. Continuity of a Composite Function: If the function g is continuous at “a” and the

function f is continuous at g(a), then the composite function f o g is continuous at “a”.

Remark: A function continuous in a domain is continuous on any nonempty subset of

the domain.

. Bounded and Unbound Intervals: Any interval of the form [a, b], (a, b 2 R) is said to be

closed and bounded. Open intervals (a, b) are bounded, if a and b are finite numbers. (In

fact, in this notation a and b are assumed to be finite.) The interval (�1, 1), which

represents the entire real line, is both open and closed, and of course unbounded. Intervals

of the form (a,1) and (�1, b) are said to be closed and unbounded. Remember that the

symbol “1” does not represent a real number.

8.7 PROPERTIES OF CONTINUOUS FUNCTIONS

Continuous functions have many useful properties that discontinuous functions do not have. A

function continuous on a closed and bounded interval [a, b] possesses many important

properties. Here we state, without proof, one of them, namely the Intermediate Value Theorem

(IVT) with some of its consequences and applications.

8.7.1 The Intermediate Value Theorem: IVT

If function “f ” is continuous on closed interval [a, b], and if f(a) 6¼ f(b), then for any number k

between f(a) and f(b), there exists a number c between a and b such that

f(c)¼ k� (24)

The intermediate value theorem assures us that if the function f is continuous on the

closed (and bounded) interval [a, b], then f(x) assumes every value between f(a) and f(b), as x

assumes all values between a and b. For example, if a function f is continuous throughout

the interval [2, 6], and if f(2)¼ 1 and f(6)¼ 4, then every number between 1 and 4 must be

in the range of f.
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In terms of geometry, the intermediate value theorem states that the graph of a function,

continuous on a closed interval must intersect every horizontal line y¼ k, between the lines

y¼ f(a) and y¼ f(b), at least once. Refer to Figure 8.17a, where (0, k) is a point on the y-axis

between (0, f(a)) and (0, f(b)); the line y¼ k intersects the graph of f, at the point (c, k),

where c lies between a and b.

For somevalues of k, wemay havemore than one possible value of c. The theorem states that

at least one value of c exists, but such avalue is not necessarily unique. Figure 8.17b shows three

possible values of c (c1, c2, and c3) for a particular k.

The following theorem is a direct consequence (a corollary) of the intermediate value

theorem.

8.7.2 The Intermediate Zero Theorem

If the function f is continuous on a closed interval [a, b] and if f(a) and f(b) have opposite signs,

then there exists a number c between a and b such that f(c)¼ 0.

Proof: The hypothesis of the intermediate value theorem is satisfied by the function f, and

because f(a) and f(b) have opposite signs, the number “0” qualifies as a number k between f(a)

and f(b). Thus, there is a number c between a and b such that

f(c)¼ 0 (25)

Such a number “c”, is called a zero or a root of “f ”. For example, let f ðxÞ ¼
x2 � 4x� 5 ¼ ðx� 5Þðxþ 1Þ.

Then, we get f(x)¼ 0, for x¼�1 and x¼ 5.

Accordingly, the zeros of “f ” are �1 and 5.

Remark: Zeros of functions of the form f ðxÞ ¼ ax2 þ bxþ c, where a 6¼ 0 can be located by

means of the quadratic formula. But for higher-degree polynomials (and functions in general)

there is no simple formula from which we can determine a zero.

y

f (b)
(c, k)

y = k

y = f (x)

f (a)

k

x

a c b0

y

f (b)

y = k

y = f (x)

f (a)

k

x

(a) (b)

a c1 c2 c3 b0

FIGURE 8.17
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8.7.3 Importance of Zeros of a Function

Let f be continuous on an interval I. If f has both positive and negative values on I, then the

intermediate value theorem implies that f(x)¼ 0, for some x in I, that is, f has a zero in I.

Equivalently, if f has no zero in I, then either f(x)> 0, for all x in I or f(x)< 0, for all x in I.

This fact yields a procedure for discovering the intervals on which a continuous function f is

positive, and those on which f is negative.(10)

Example (22): Let f ðxÞ ¼ ðxþ 1Þ2ðx� 2Þðx� 3Þ. We shall determine the intervals on

which f is positive and those on which f is negative.

Solution: Note that the zeros of “f ” are �1, 2, and 3. Now we can determine the sign of

f(x) on the relevant intervals (�1, �1), (�1, 2), (2, 3), and (3, 1), by preparing the

following table.

Interval (I) An Arbitrary but

Convenient Point c in (I)

f(c) Sign of f(x)

on the Interval

(�1, �1) �2 20 þ
(�1, 2) 0 6 þ
(2, 3) 5/2 �49/16 �
(3, 1) 4 50 þ

From the table, we observe that f is positive on (�1,�1), (�1, 2), and (3,1), and is negative on

(2, 3). Thus, the intermediate value theorem can be used to determine the intervals, where

continuous functions are positive, where they are negative, and where they are zero.

Remark: The method used in the above example, applies to a function such as a rational

function, even if it is not defined on certain points in its domain.

The intermediate value theorem will not hold, if the function f is discontinuous at a point

in [a, b].(11)

The intermediate value theorem can also be used to show that every non-negative number

has a square root, that is, the domain of the square root function consists of all non-negative

numbers, as asserted in Chapter 6.

Proof: To prove the assertion, we select any non-negative number p, and show that p has a

square root which is a non-negative number, that is, there is a number c� 0, such that c2¼ p.

(10) Here it may be mentioned (in advance) that once we have introduced the concept of the derivative and studied its

properties, we shall apply this technique to determine the zeros of the derivative of f. This will help us in finding the

intervals on which the function “f ” is increasing and those on which f is decreasing. This technique is very useful for

studying many applications of derivatives; for instance, maximum and minimum values of a function, and some other

related concepts.
(11) For details refer to the following:

1. Calculus with Analytical Geometry (Alternate Edition) by Robert Ellis and Denny Gulick (pp. 97–100), HBJ

Publication.

2. The Calculus 7 of a Single Variable by Louis Leithold (pp. 87–89), HCC Publishers.
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For this purpose, we consider f(x)¼ x2, for x� 0.We know that f is continuous on any interval,

and observe that

f ð0Þ ¼ 0 � p; ð )p � 0Þ

� p2 þ 2pþ 1 ¼ ðpþ 1Þ2 ¼ f ðpþ 1Þ

Thus, f(0)� p� f(pþ1). But the intermediate value theorem says that there is a number c

in [0, pþ1] such that f(c)¼ p or equivalently, c2 ¼ p ð )f ðcÞ ¼ c2Þ. Thus, p has a square

root.

Since p was an arbitrarily chosen non-negative number, it follows that the square root is

defined for every non-negative number.

In fact, a continuous function f defined on a closed interval [a, b], possessesmany properties,

that we shall be using. Some of these properties are listed below.

If f is continuous on a closed interval [a, b], then

. f is bounded on [a, b],

. f has a maximum and a minimum value on [a, b],

. f is uniformly continuous on [a, b].

The importance of continuity of a function on a closed interval will become more and more

apparent when the reader proceeds through his study of calculus. This property is a part of the

hypothesis of many key theorems, such as themean value theorem, the fundamental theorems

of calculus and the extreme value theorem.

8.7.3.1 Continuity of Some Elementary Functions It can be shown that

(i) A constant function is continuous for all x.

(ii) A polynomial function f(x)¼ a0þ a1xþ a2x
2þ . . .þ anx

n is continuous for all values

of x on (�1, 1).

(iii) xn; n> 0 is continuous for all values of x.

(iv) A rational function is continuous at every point in its domain.

(v)
1

xn
; n> 0 is continuous for all values of x, except x¼ 0.

(vi) Trigonometric functions: f(x)¼ sin x and g(x)¼ cos x are continuous on (�1, 1).

Other trigonometric functions (i.e., tanx, cot x, sec x, cosecx) are continuous for all

values of x for which they are defined.

(vii) Inverse trigonometric functions are continuous for all values of x for which they are

defined.

(viii) The exponential function: f(x)¼ ax, (a> 0) is continuous on (�1,1). (In particular,

ex is continuous for all x.)

(ix) The logarithmic function: f(x)¼ loga x, (a> 0) is continuous on (0, 1).

It is now proposed to solve the following problems that may also be treated as an exercise. [This

discussion is expected to be useful for a beginner to get a deeper idea of the concept of continuity

(and discontinuity). This should prepare him to handle difficult problems presented in various

exercises in the textbooks.]
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Exercise I

Discuss the continuity of the following functions in the intervals indicated against them. In

case a function is discontinuous, state whether the discontinuity is removable or irremovable.

Q. (1): f ðxÞ ¼ 1

x� 2
at x¼ 2

Q. (2): gðxÞ ¼
1

x� 2
; if x 6¼ 2

3; if x ¼ 2

8<
:

Q. (3): �ðxÞ ¼ x� 3j j; if x 6¼ 3

2; if x ¼ 3

�

Q. (4): f ðxÞ ¼ x2 þ 2; for x > 1

5x� 1; for x � 1

�

Q. (5): gðxÞ ¼ xþ 6; if x � 3

x2; if x < 3

�

Q. (6): f ðxÞ ¼ xþ 2; if x > 2

x2; if x < 2

�

Q. (7): f ðxÞ ¼ x2; for x � 1

x; for x > 1

�

Q. (8): f(x)¼ x2/(1þx2)

Q. (9): Show that the function f(x)¼ 5 is continuous for every value of x.

Solutions

(1) Let f be definedby f ðxÞ ¼ 1=ðx� 2Þ. The graph of f has a break at the pointwherex¼ 2;

so we investigate the conditions of definition (1). Note that “f ” is not defined at x¼ 2.

Hence, f is discontinuous at 2. Again, lim
x! 2

f ðxÞ does not exist (Why?). This is an

example of infinite discontinuity of second kind.

x

f(x) =
x – 2

y

0

2

1
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(2) Let g be defined by

gðxÞ ¼
1

x� 2
; if x 6¼ 2

3; if x ¼ 2

8<
:

Note that g(x) is defined for all x. Here again, the graph of g has a break at 2. We check

the conditions of Definition (1), at x¼ 2. Observe that

(i) g(2)¼ 3

(ii) lim
x! 2�

gðxÞ ¼ lim
x! 2�

1

x� 2
¼�1 and lim

x! 2þ
gðxÞ ¼ lim

x! 2þ

1

x� 2
¼ þ1.

Thus, lim
x! 2

gðxÞdoes not exist. Obviously, g is discontinuous at 2. The discontinuity is infinite

and it is of second kind.

x

y

0

2

3

(3) Let � be defined by

�ðxÞ ¼ x� 3j j; if x 6¼ 3

2; if x ¼ 3

�

The graph of � shows that it has a discontinuity at x¼ 3. We check the three conditions

of definition (1) at x¼ 3.
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0 3

2

x

y

(i) �(3)¼ 2

(ii) lim
x! 3�

�ðxÞ ¼ lim
x! 3�

ð3� xÞ ¼ 0

lim
x! 3þ

�ðxÞ ¼ lim
x! 3þ

ðx� 3Þ ¼ 0

Hence, the lim
x! 3

�ðxÞ exists.
(iii) limx! 3 �ðxÞ 6¼ �ð3Þ

Because condition (iii) is not satisfied, � is discontinuous at 3. This discontinuity

is removable because, if �(3) is redefined to be 0, then the new function becomes

continuous at x¼ 3. This is a discontinuity of first kind.

(4) Let us determine whether f ðxÞ ¼ x2 þ 2; for x > 1

5x� 1; for x � 1

�
is continuous at x¼ 1.

Solution: The functions having values x2þ 2 and 5x� 1 are polynomials and are

therefore continuous everywhere. Thus, the only number at which continuity is

questionable is 1. We check the three conditions for continuity at “1”.

(i) f(1)¼ 4. Thus, f(1) exists.

(ii) lim
x!1þ

f ðxÞ ¼ lim
x!1þ

ðx2þ2Þ ¼ 3; and lim
x!1�

f ðxÞ ¼ lim
x!1�

ð5x�1Þ ¼ 4

Thus, lim
x!1þ

f ðxÞ 6¼ lim
x!1�

f ðxÞ.

Therefore, lim
x! 1

f ðxÞdoes not exist, and so “f ” is discontinuous at x¼ 1.

This is an example of jump discontinuity, which is of course irremovable. It is of the

second kind.

(5) Let gðxÞ ¼ xþ 6; if x � 3

x2; if x < 3

�

The only possible trouble may occur when x¼ 3.

We observe that, g(3)¼ 3þ 6¼ 9.

Further; lim
x! 3þ

gðxÞ ¼ lim
x! 3þ

ðxþ 6Þ ¼ 3þ 6 ¼ 9

and lim
x! 3�

gðxÞ ¼ lim
x! 3�

ðx2Þ ¼ 9

Thus; lim
x! 3

f ðxÞ ¼ f ð3Þ: ) f is continuous at x ¼ 3:
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(6) Let f ðxÞ ¼ xþ 2; if x > 2

x2; if x < 2

�

Since “f ” isnot defined atx¼ 2, it isdiscontinuous there. (It is continuous for all otherx.)

This discontinuity can be removed by redefining f. Note that

lim
x! 2þ

f ðxÞ ¼ lim
x! 2þ

ðxþ 2Þ ¼ 4 and lim
x! 2�

f ðxÞ ¼ lim
x! 2�

ðx2Þ ¼ 4.

Thus, lim
x! 2

f ðxÞ exists. Hence this discontinuity can be removed.

Also note that, by including “2” in the domain of “f ” [in any part of the formula

defining f(x)], we get f(2)¼ 4. Thus, f becomes continuous at “2”, if 2 is included in the

domain of f.

(7) Let f ðxÞ ¼ x2; for x � 1

x; for x > 1

�

Show that “f ” is continuous at 1.

y

x

f

1

10

Solution: We have lim
x! 1�

f ðxÞ ¼ lim
x! 1�

x2 ¼ 1 and lim
x! 1þ

f ðxÞ ¼ lim
x! 1þ

x ¼ 1.

) lim
x! 1

f ðxÞ ¼ 1 ð26Þ

Also, f(1)¼ (1)2 (27)

Thus, lim
x! 1

f ðxÞ ¼ f ð1Þ. Therefore, “f ” is continuous at x¼ 1.

(Note that the graph of “f ” has a sharp corner at x¼ 1.)(12)

(12) Later on, when the concept of differentiable functions is introduced (in Chapter 9), it will be noted that a continuous

function, whose graph has a sharp corner at some point x¼ a (say), is not differentiable at that point.

232 THE CONCEPT OF CONTINUITY OF A FUNCTION, AND POINTS OF DISCONTINUITY



(8) Let f(x)¼ x2/(1þx2). Determine the numbers at which “f ” is continuous.

Solution: Here again “f ” is a rational function, but its denominator (1þx2) is never 0.

Thus, “f ” is defined for all x and therefore “f ” is continuous for every real value of x.

(9) Let us show that the function f(x)¼ 5 is continuous at x¼ 7.

Solution: We must verify that the conditions for continuity are satisfied.

(i) “f ” is defined at x¼ 7 [Here, we have f(7)¼ 5.]

(ii) lim
x! 7

f ðxÞ ¼ lim
x! 7

5 ¼ 5

Thus, lim
x! 7

f ðxÞ ¼ f ð7Þ. Therefore, f(x) is continuous at x¼ 7.

Remark: Note that f(x)¼ 5 is a constant function. It is easy to show that every constant

function is continuous for every value of x.

Exercise II

Discuss the continuity of the following functions:

(a) f(x)¼
e3x � e2x

sin 3x
; when x 6¼ 0

1; when x ¼ 0

(b) f(x)¼
sin 5x

3x
; for x 6¼ 0

3

5
; for x ¼ 0

8><
>:

(c) If f(x)¼
ex � e�x

x
; when x 6¼ 0

k; when x ¼ 0
is continuous at x¼ 0, find k.

(d) If the function f(x)¼ logð1þ xÞ
sin x

; for x 6¼ 0, is continuous at x¼ 0, find f(0).
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9 The Idea of a Derivative of
a Function

9.1 INTRODUCTION

There are certain problems in mathematics, mechanics, physics, and many other branches of

science, which cannot be solved by ordinary methods of geometry or algebra alone. To solve

these problems, we have to use a new branch ofmathematics known as calculus. It uses not only

the ideas and methods from arithmetic, geometry, algebra, coordinate geometry, trigonometry,

and so on, but also the notion of limit, which is a new idea that lies at the foundation of calculus.

Using this notion as a tool, the derivative of a function is defined as the limit of a particular kind.

The idea of derivative of a function is among the most important and powerful concepts in

mathematics. This concept distinguishes calculus from other branches of mathematics. It will

be found that the derivative of a function is generally a new function (derived from the original

function). We call it the rate function or the derivative function.

Calculus is the mathematics of change. The immense practical power of calculus is due to

its ability to describe and predict the behavior of changing quantities.We cannot even begin to

answer any question related to change unless we knowwhat changes and how it changes?Let

us discuss.

We know that

. the area of a circle, A(r) ¼ pr2, changes with (respect to) its radius “r”.

. the volume of a sphere, VðrÞ ¼ ð4=3Þ pr3 ¼ kr3 (k ¼ ð4=3Þp), changes with (respect

to) its radius “r”.

. the surface area of a cube, S(l ) ¼ 6l2, changes with (respect to) the length “l ” of its side.

Consider a function y ¼ h(x) whose graph is a smooth curve (not a straight line). Then, the

inclination “�” of the tangent line (drawn at any point of the curve) changes from point to point

on the curve. (Later on, this observation will be used to define a (new) concept, namely, “the

slope of a curve” in terms of the slope of the (tangent) line.)

The fact is that all our effort is aimed at defining the slope of a curve at a point, which also

stands for instantaneous rate of change of the function y [¼ h(x)] at any value of x. To get a

better idea of the whole situation, it is useful to study a little more as explained below.

The notion of dependent variable introduced in Chapter 6 suggests that if “f ” is any function

defined by y ¼ f(x), then the dependent variable y [¼ f(x)] changes whenever there is any
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change in the value of independent variable x. We say that the quantity f(x) changes with

(respect to) x.(1)

9.1.1

The calculus tool that tells us about the behavior of changing quantities is called the derivative

function (or the rate function). For a given function y [¼ f(x)], the derivative function (or the

rate function) is denoted by f 0(x), which tells us the instantaneous rate of change of f(x) with
(respect to) x.

In this chapter, we will invest a lot of time and effort in studying how to define derivative

functions formally and how to calculate them symbolically. In the process of defining the

derivative function (or a rate function), various subtleties and puzzles will inevitably arise.

Nevertheless, it will not be difficult to grasp the concept (of derivatives) with our systematic

approach.

The relationship between f(x) and f 0(x) is the main theme. We will study what it means for

f 0(x) to be the rate function (or derivative function) derived from f(x) and what each function

says about the other. The important requirement is to understand clearly the meaning of the

instantaneous rate (or the actual rate) of change of f(x) with respect to x.

For this purpose, it is necessary to distinguish between the average rate of change and the

actual (or instantaneous) rate of change of a varying (dependent) quantity f(x) with respect to

another varying quantity “x”, considered to be varying independently.(2)

We know that every rate is the ratio of two changes that may occur in two related quantities.

For example, consider the volume of a sphere, defined by

VðrÞ ¼ 4

3
pr3 ¼ kr3 where constant k ¼ 4

3
p

� �

Note that, V(r) will change if “r” is changed. Now consider the situation when “r” is increased

by 2 units from 1 unit to 3 units. We get

Average rate of change in V(r) (for increase in “r” by 2 units)

¼ Change in VðrÞ
Change in r

¼ kð3Þ3 � kð1Þ3
ð3� 1Þ

¼ kð27� 1Þ
ð3� 1Þ ¼ 26k

2
¼ 13k ð1Þ

Again, consider the situation when r is increased by 2 units from 2 units to 4 units. We get

Average rate of change in V(r) (for increase in “r” by 2 units)

¼ Change in VðrÞ
Change in r

¼ kð4Þ3 � kð2Þ3
ð4� 2Þ

¼ kð64� 8Þ
ð3� 1Þ ¼ 56k

2
¼ 28k ð2Þ

(1) Here, it may bementioned that a falling object (dropped froma tower), orbiting spacecraft, growing populations, decaying

radioactive material, rising consumer prices, etc., can all be modeled through calculus. – The Mathematics of Change
(2) Once we have defined the rate function, it will be found that the same principle, suitably interpreted, lies behind all our

calculations and applications of derivatives. Later on, it will be found quite useful to see how the graphs of f(x) and f 0(x) are
related.
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Also, it can be checked that average rate of change in V(r), for one unit increase in “r” varies as

follows:

Change in r Average rate of change ( for one unit increase in r)

From r ¼ 0 to r ¼ 1 k

From r ¼ 1 to r ¼ 2 7k

From r ¼ 2 to r ¼ 3 19k

From r ¼ 3 to r ¼ 4 37k

From the above data, we observe that for two units increase in “r”, the average rate of

change in V(r) is not the same as can be seen from (1) and (2) above. Similarly, the average

rate of change in V(r) for a unit change in “r”, is different for two different values of “r”.

This observation indicates that the rate at which V(r) increases must be different, for

different values of “r”.

The rate of change at any particular value of r is called the rate of change (or the

instantaneous rate of change) for that value of r. Our interest lies in computing the actual

rate of change in V(r) at each value of “r”. This statement might look confusing or even

useless to a beginner since, so far, we neither know the usefulness of “the actual rate of

change of V(r)” nor do we know the method of computing it.(3)

9.1.2 From the Average Rate to the Actual Rate (or the Instantaneous Rate) of Change

Consider an object moving in a straight line. A parameter of our interest is its speed. Let the

moving object be a car, which may be moving with a constant speed or varying speed, with or

without stoppages in between. In all situations, we can always compute the average speed of the

object by noting the distance traveled in an interval of time, and using the formula

Average speed ¼ Distance traveled

Time taken

Note that, the average speed does not give any information about the variation in speed during

any interval of time. If one plans to travel 160 km by this car, and hopes to make the trip in 4 h,

then it suffices for him to know that hemust travel at an average speed of 40 km/h. Thus, in such

cases, what matters is the average speed.

Calculus is not meant for computing average speed(s) (or average rate(s)). These can be

computed using simple arithmetic. Differential calculus is designed to compute actual rate(s)

of change (or instantaneous rate(s) of change) of varying quantities.

To emphasize the importance of actual speed, imagine the situation when the car strikes a

tree. Here, what matters is the actual speed of the car at the time of strike. Similarly, as a bullet

travels through air, its average velocity may be around 2000 km/h (i.e., 555m/s, approximately),

but what counts when it strikes a person is the actual velocity at the instant of striking.

If it is 2 km/h (i.e., 0.55m/s), the bullet will drop (without causing any harm), but if it is

555m/s, the person will drop.

The speedometer of a vehicle indicates its actual speed at each instant (to keep the driver

alert, so that he could use necessary controls to avoid accidents). Again, we are interested

neither in the speeds of vehicles meeting with accidents nor in the velocities of bullets striking

(3)We have observed that “the average rate of change” can be computed using algebra; but it will be seen shortly that, in

general, we cannot compute actual rate of change using algebra.
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individuals. However, our interest lies in being able to compute the actual rate(s) of change of

varying quantities because there are many scientific problems that require the use of instan-

taneous speed.(4)

Consider a function f (in the form of a formula) defining the way in which the quantity

y [¼ f(x)] changes with x. Then, the differential calculus helps in computing a new function,

denoted by f 0(x), which describes the actual rate of change in f(x) with respect to x. The new
function f 0(x) is obtained from the given function f(x), through a definite procedure, to be

discussed shortly.(5)

In practice, the speed of a car (or anyother vehicle) is always varying, reasonably close to the

desired average speed. For our purpose, let us assume that a car moves in a straight line

according to the formula y ¼ f(x) ¼ 3x2, connecting the distance traveled with time (y in

meters, x in seconds). Note that, with the passage of time (i.e., for higher values of x) the car can

attain a very high speed, and our interest lies in computing actual speed of the car, at any instant

of time. In fact, the actual speed (or instantaneous speed) of the car can be read from the

speedometer or it can be obtained by substituting the value of the instant “x” in the formula of

the derivative function to be obtained from the given function f(x).(6)

Note (1): It will be found that in general f 0(x) depends on x, except when it is a constant

function, (that is, f 0(x) ¼ c). Also, in certain cases it will be observed that f 0(x), is not defined
for certain values of x, for which f(x) is defined. For the time being, we assume that (unless

otherwise noted) our functions are well behaved, which means that the given function f(x) and

its derivative function f 0(x) both have smooth, unbroken graphs.(7)

To get an idea of the actual speed at any instant, the simplest way is to compute the average

speed over shorter and shorter intervals of time. This average speed may be considered very

close to the actual speed (i.e., the speedometer speed) at any time during the same small

interval. However, to get a systematic and definite procedure (to define derivative function), we

consider a function f, given by y ¼ f(x) andmake a very small positive changeDx in thevalue of
x (at x ¼ x1).

Let the corresponding change in the value of y [¼ f(x)] be computed. This change in the

value of y may be any real number (positive, negative, or zero). Then the ratio of resulting

change, that is, the change in the value of y to the change in the value of x, gives an approximate

value of f 0(x)at x ¼ x1.Our interest lies in this ratio andwe shall use it in obtaining the desired

formula for f 0(x).

(4) For example, an object near the surface of the Earth fallswith varying speed according to a known law s ¼ 16t2 (s in feet,

t in second(s)). Therefore, to know its speed at any time means to know its instantaneous speed. It is also known that when

an object is far from the Earth and falls toward it under gravitational attraction, then not only its velocity but also its

acceleration varies from instant to instant.

A deep investigation of all such motions requires understanding of instantaneous speed and instantaneous acceleration.

The problems scientists have faced since the seventeenth century are not only that of treating instantaneous speed and

acceleration but also instantaneous rates of changes of forces, energies, intensities of light and sound, and hundreds of other

instantaneous rates of change.
(5) Note that, while the function f tells the way in which the value f(x) changes with x, the (new) function f 0(x) is expected to
tell the actual rate at which f(x) changes with x at each value of x.
(6) Any function f can be used to build new functions derived in one way or another, from f. For example, consider the

functions: f1(x) ¼ 2f(x), f2(x) ¼ f(x) þ a, f3(x) ¼ [f(x)]3 þ 2f(x), and f4ðxÞ ¼ ðf ðxþ 0:1Þ� f ðxÞÞ=0:1. All these

functions may be called “relatives” of f, and the possibilities are endless. Among all the possible functions one might

obtain from the given function f (x), the derivative function f 0(x) is the most important. Our interest lies in establishing the

procedure for defining the derivative function of a given function y ¼ f ðxÞ:
(7) This assumption is useful to overcome the initial difficulties in understanding the concept of derivatives. As we develop

new languages and tools, we will be able to handle complicated functions for computing their derivatives. Of course, all

such functions are defined on intervals.
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Here is an informal description of derivatives:

9.2 DEFINITION OF THE DERIVATIVE AS A RATE FUNCTION

Let f be any function. The new function f 0, called the derivative function of f, is defined by the
rule:

f 0ðxÞ ¼ instantaneous rate of change of f at x:ð8Þ

This definition tells us that if f is any function defined by the formula y ¼ f(x), then f 0(x)
represents “the rate at x” at which y changes with respect to x. For instance, the statement

f 0(3) ¼ 5means that if x� 3 then increasing x by a small amount produces about five times as

much increase in f(x).

9.3 INSTANTANEOUS RATE OF CHANGE OF y [¼ f(x)] AT x ¼ x1 AND THE

SLOPE OF ITS GRAPH AT x ¼ x1

Most functions of our interest can begraphed, hence it is natural to expect that the graphs of the

functions must reveal useful information about their derivatives. We ask the question: What

does the derivative mean graphically?

Suppose, a car starting at some point on the x-axis moves (in the positive direction) a

distance given by the formula

y ¼ gðxÞ ¼ 2xþ 3 ½x units of time; y units of distance�

(Let us not worry about the units of y and x.] From the above formula, it can be easily checked

that in each unit of time, the car moves 2 units of distance. In other words, the car moves with a

constant speed of 2 units. The graph of this motion is a straight line with slope 2. Whenever an

object moves with any constant speed, the graph of distance against time is a straight line with

positive slope, which is numerically equal to the constant speed (see Figure 9.1).(9)

In otherwords, the slope of a straight line represents the constant speed of themoving object.

Note that any constant speed may be looked upon as the instantaneous speed (of the moving

object), which represents the derivative of the given function.

Next, suppose the car accelerates gradually in the positive direction of x-axis. Let this

motion be represented by the graph (Figure 9.2), which we may call the function h(x) (we have

not defined y ¼ h(x) by any formula).

Observe from this graph that the value h(x) (i.e., the height of the graph from x-axis)

increases with x, indicating that the car is gradually accelerating (i.e., moving greater and

greater distance per unit time as the time x passes). It follows that the slope of the tangent

line on each point of the graph increases with x. In other words, the slope at a point on the

(8) The phrase instantaneous rate of change is applicable even in the caseswhere nothing seems to bemoving.We say that a

road bends suddenly.We can discuss how quickly the direction of a railway line changes. Words such as “suddenly” and

“quickly,” which are originally meant to describe a motion, can also be used to describe motionless objects. Differential

calculus is, therefore, a subject that can be applied to any thing that moves or changes.
(9) The speed of a particle is defined as the absolute value of the instantaneous velocity. Hence, speed is a nonnegative

number. The terms speed and instantaneous velocity are often confused. Note that the speed indicates only how fast the

particle is moving, whereas the instantaneous velocity also tells the direction of motion.
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curve is the slope of the tangent line at that point. We call it the slope of the curve at that

point. Note that, by using the concept of slope of a line, we have now defined the slope of a

curve at a point.

In view of our observation that the slope of a straight line represents the constant speed (or

the instantaneous speed), we conclude that the slopes of the curves (representing functions) can

y
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0

FIGURE 9.2 Varying speed.
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FIGURE 9.1 Constant speed.
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be interpreted to represent instantaneous rate(s) of change or (derivatives) of functions.We give

another informal description of derivatives.

9.3.1 Definition (The Derivative as a Slope Function)

Let f(x) be any function given by y ¼ f(x). The derivative function f 0(x) is given by the rule

f 0ðxÞ ¼ slope of the graph of y ¼ f ðxÞ at any point x:

So far,wehave introducedonlywhat itmeans for f 0(x) to be the derivative of f(x).Wehave neither

given its definition nor described the method of obtaining it from the original function f(x).

From the above description, we get that, to find the instantaneous rate of change of a given

function y ¼ f(x) at a desired point x1, we should compute the slope of the tangent line at the

point (x1, f(x1)) of the graph of f.

From all that we have discussed so far, to understand the derivative, we proceed to consider

the following two problems, which are the foundation of differential calculus.

(a) The Problem of the Tangent Line: To define the tangent line to a curve at a point and to

find its slope at that point.(10)

(b) The Problem of Instantaneous Velocity: An object is moving in a straight line. We are

given a rule (a function), which tells where the object is at any time, and we are asked to

find how fast it is moving at any desired time.

The two problems, one geometric and the other mechanical, might appear to be unrelated, but

the fact is that they define one and the same problem, as will be clear from the discussion that

follows. Let us discuss first the problem of the tangent line.

9.3.2 The Problem of the Tangent Line

In our school geometry, we learnt that the tangent to a circle is a line, which meets the circle, at

exactly one point. Todrawa tangent line, to a circle at anygivenpointP, we join “O,” the center of

the circle, with P. Then, the line perpendicular to OP at P is the tangent to the circle, at P

(see Figure 9.3).

Using this property of the circle, it is possible to draw a tangent line to a circle, by geometric

methods. Euclid’s notion of a tangent, as a line touching a curve at one point, is all right for

circles, but completely unsatisfactory for most other curves, as will be clear from the following

discussion.

Suppose, we want to draw a tangent line to any other curve, which is not a circle. The

problem is:How do we get such a line? Let us try to understand what is meant by a line being a

tangent to a curve.

In Figure 9.4a, the lines l1 and l2 intersect the curve at exactly one point P. Intuitively, we

would not think of l2 as the tangent at this point, but it seems natural to say that l1 is.

Also, in Figure 9.4b, we would consider l3to be the tangent at P, even though it intersects

the curve at other points. From these examples, it is clear that we must drop the idea that a

tangent line intersects a curve at only one point.To develop a suitable definition of tangent line,

we have to use the limit concept as follows.

(10) It is assumed that the given functions are defined on intervals and have smooth and unbroken graphs.
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Consider, a curve that is the graph of a function y ¼ f(x). LetP(x1, y1) be a fixed point on the

curve andQ(x, y) be a nearbymovable point on that curve. The line through P andQ is called a

secant line.(11)

Now imagine that the point Q moves along the curve approaching closer and closer to P.

Then, the secant PQ is approaching nearer and nearer to a definite line PT, as shown in

Figure 9.5.

WhileQ approachesP, it has to pass through an infinite number of positions along the curve

and accordingly the secant PQ has to pass through an infinite number of positions to approach

closer and closer to the definite position PT. (Note thatQ can be considered arbitrarily close to

P, but we never allow the pointQ to coincide with the point P.) Thus, the line PT is the limiting

position of the secant linePQ and it is the samewhetherQ approachesP from the left or from the

right. This common limiting position of secant lines is called the tangent line to the curve at P.

l2 l1

P

(a) (b)

P
l3

FIGURE 9.4

O

T

P

FIGURE 9.3 Tangent line to a circle at any point P.

(11) A fixed point is identifiedwith coordinates (x0, y0), (x1, y1), and so on, wherein the coordinates arewith subscript 0, 1, 2,

and so on. An arbitrary point or amovable point is expressed with coordinates (x, y), wherein the coordinates are without

subscript.
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This definition is in agreement with our intuition and avoids the failings previously discussed.

We now give the following definition.

9.3.3 Definition (Tangent Line to a Curve at a Point P)

The tangent line PT is the limiting position of the secant lines PQ, as Q approaches P, along

the curve.

To draw the tangent line at any given point P of a curve, it is necessary to know the slope of

the tangent line at P. The method of coordinate geometry gives the slope of any secant line

(which passes through any two points on the curve) but fails to give the slope of the tangent

line at any point of the curve. Let us see why?

To see the actual difficulty, note that the slope of any secant line denoted by msec passing

through two distinct points P(x1, y1) and Q(x2, y2) on the curve is given by

msec ¼ y2 � y1

x2 � x1
ð3Þ

Observe that asQ ! P along the curve, the secant line PQ approaches the limiting position PT

and hence the slopes of the secant lines PQ approach the slope of the tangent line PT. Now

consider the expression (3), which gives the slope msec of the secant line PQ. As Q ! P,

x2 ! x1, y2 ! y1 and (x2 � x1) ! 0. Therefore, by using (3), we are unable to compute the

slope of tangent line. Thus, althoughwe are able to visualize the existence of the tangent line at

P, we are unable to compute its slope at P.

To find the slope of the tangent line at the point P(x1, f(x1)), we choose another point

Q(x2, f(x2)) on the curve, distinct from P (see Figure 9.6).

Now we express the slope of the secant line PQ as

msec ¼ f ðx2Þ� f ðx1Þ
x2 � x1

where f ðx2Þ ¼ y2 and f ðx1Þ ¼ y1½ �

Since x2 can be obtained by adding a nonzero number h to x1, we can write x2 ¼ x1 þ h,

where h 6¼ 0. Here, h is a variable nonzero number, positive or negative. Thus, the slope of the

Q

Q

Q

Q
Q

Q

Q T Tangent
line

P(x1, f(x1))
Secant
line

P

FIGURE 9.5 Limiting position of secant line is defined as the tangent line.
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secant line PQ may be expressed as

msec ¼ f ðx1 þ hÞ� f ðx1Þ
ðx1 þ hÞ� x1

¼ f ðx1 þ hÞ� f ðx1Þ
h

Since, the tangent line is the limiting position of secant lines, the slope of the tangent line at P is

the limiting value of the slopes of secant lines PQ as Q ! P. But, as Q ! P along the curve,

x2 ! x1 and so h ! 0. (Note that at any stage h 6¼ 0, for if h ¼ 0, then x2 ¼ x1 and then no

secant line would exist.)

Therefore, the slope of the tangent line at P(x1, f(x1)) is given by

lim
h! 0

f ðx1 þ hÞ� f ðx1Þ
h

ð4Þ

provided the limit at (4) exists.

If the limit at (4) exists, then in view of the definition of derivative as a slope function, we

identify the above limit as the derivative function (or the rate function) of f at x1.

Since, x1 in (4) can be any number (in the domain of f), we may replace it by x to make the

result more general. Thus, our problem condenses to evaluating the limit.

lim
h! 0

f ðxþ hÞ� f ðxÞ
h

ð5Þ

which gives the slope of the tangent line at any point P(x, y) of the curve y ¼ f(x), provided

the limit at (5) exists, and we call it the derivative function of f(x) at x and denote it by the

symbol f 0(x).
The above discussion suggests that to find the derivative of the given function f(x), we must

construct a new function ðf ðxþ hÞ� f ðxÞÞ=h; ðh 6¼ 0Þ without bothering to know what

this wouldmean, and take its limit as h ! 0. If the limit limh! 0 ðf ðxþ hÞ� f ðxÞÞ=h exists, we
call this limit as the derivative function of f(x) and denote it by f 0(x). Note that derivative of f(x)
can be defined aside from any geometric meaning attached to f(x).

T

Q(x2, f (x2))

f (x2) – f (x1)

P(x1,  f (x1))
x

0

y

Δx = x2 – x1

FIGURE 9.6 Tangent line PT at P.
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The above discussion also suggests that we can define the slope of a curve at any point

of the curve, as the slope of the tangent line at that point, obtained from the limit at (5) if

it exists.

9.3.4 Definition

The slope of a curve at a point P is the slope of the tangent line at P. (Note that the concept of

slope of a curve at a point is not to be found anywhere in geometry.)

Not every curve has a definite single tangent at each of its points. For example, if the graph of

a function has a sharp corner then there will be two tangent lines at such a point, one from the

left and the other from the right, with different slope. In other words, the slope at any sharp

corner of a curve is not unique. For example, see the graph of y ¼ jxj at the origin.
Besides, there are functions whose graph may have vertical tangent line(s) at certain

point(s). We know that the slope of the tangent line is not defined at such points.

For example, this happens in the graph of y ¼ x1/3, at the origin. If the slope of the curve

cannot be defined at certain points, we say that the function does not have derivative at

those points. This amounts to saying that the limit at (C) does not exist at such points (see

Figures 9.7 and 9.8).

It is now proposed to go back again to the concept of actual rate of change of a function at a

point (or the actual velocity at any instant), in more details.

y

x

0

y = |x|

FIGURE 9.7

y

x

0 1

f (x) = x1/3

FIGURE 9.8
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9.4 A NOTATION FOR INCREMENT(S)

Let y ¼ f(x) be a function of x. The symbol dx (sometimes Dx) is used to denote an arbitrary
nonzero increment in the value of the independent variable x and the symbol dy (or Dy) is
used to denote the corresponding change in the value of dependent variable y [¼ f(x)].(12)

From the relation f(x) ¼ y, we write

f ðxþ dxÞ ¼ yþ dy
¼ f ðxÞþ dy ðsince y ¼ f ðxÞÞ

) dy ¼ f ðxþ dxÞ� f ðxÞ
Thus, [f(x þ dx) � f(x)] ¼ dy is the increment (or the resulting change) in the value of the

function, corresponding to the increment, dx in x.(13)

9.4.1 The Increment Ratio (or the Difference Quotient) at x1

The ratio ðf ðx1 þ dxÞ� f ðx1ÞÞ=dx ¼ dy=dx is called the increment ratio (or the difference

quotient) of the function f(x), at the point x1. This increment ratio represents the “average

rate of change”, in the value f(x), relative to the change dx at x1.Our interest lies in computing

the actual rate of change (or the instantaneous rate of change) in the value f(x) relative to the

change dx at x1. Note that for this purpose, the increment dx has no role to play.

9.5 THE PROBLEM OF INSTANTANEOUS VELOCITY

We have seen that in certain situations the instantaneous rate of change of a varying quantity is

more significant than its average rate of change—it may be a vehicle hitting a tree or a bullet

hitting a person.(14)

The following examples, connecting varying quantities, may be found useful:

(i) As one travels, his distance from the starting point continually changes, as does the time

that elapses.(15)

(12) The symbol “d” is theGreek small “d” and is pronounced “delta”. Contrary to the ordinary usage of algebra, dx does not

mean a product of d and x. It is a single symbol and hence the letters should not be separated. A single letter h and k can also

be used. An advantage in using the composite symbols dx and dy (instead of single letters h and k) will be noted when we

define the derivative of the function y ¼ f(x) as the limit limdx! 0 dy=dx.
(13) Observe thatdx is an arbitrary nonzero increment (positive or negative) in thevalue ofx anddy [¼ f(x þ dx) � f(x)] is

the corresponding increment in y, which can be any real number (positive, negative, or zero). (Note that for a constant

function y ¼ f(x) ¼ c, dy will always be zero.) Thus, while x and x þ dx represent two distinct points on the x-axis, the

corresponding values f(x) and f(x þ dx) need not be distinct on the y-axis.
(14)We may consider another example of a person traveling in a train at a speed of 200 km/h or so. He may hardly be

conscious of the speed but a sudden decrease in the speed can throw him out of his seat. In fact, it does not hurt to travel at a

high speed such as 200 km/h (or even 1000 km/h). What does hurt is the sudden change in speed.
(15)We have already seen that if the law ofmotion is a linear function of time, the speed of the object is constant throughout.

It means that “average speed” of the object for “any” interval of time is the same. Obviously, then it must also represent the

actual speed of the object, at any instant. Furthermore, considering only the algebraic aspect, if the law of motion involves

higher powers of t, then “the average speeds are different for different time intervals” and hence the actual speeds are

different at different instants. In such cases, computation of instantaneous speed is not simple, even in the case of

polynomial functions, when the law of motion involves powers of t> 2. On the other hand, if the law of motion involves

trigonometric, exponential, or logarithmic functions, or even algebraic functions involving fractional, then differential

calculus can help only in computing the actual rates (or the actual speed ofmoving object at any instant) provided the lawof

change (or the law of motion) is expressed by a function.
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(ii) A bob on a spring (or on a simple pendulum) moves with constantly varying speed and

acceleration.

(iii) For any curve (other than a straight line), the slope of the curve changes from point to

point.

(iv) In electrical circuits, as a capacitor is charged (or discharged), the voltage across it

changes during the time of charging (or discharging).

(v) In DC circuits, the current takes time to grow to its steady value after the circuit is

completed.

Now, we give below some simple experiments by which we can clearly observe the varying

rates of change.

(a) If water is poured at a constant rate in a glass pot having different diameter in different

portions, thenwe can easily see that water level rises at different rates in different portions

(see Figure 9.9). This arrangement also suggests that if water is poured (at a constant rate)

in a conical pot, then water level must rise at different rates at different heights.

(b) Ifwewalk toward a street light bulb (or go away from the pole), then the rate atwhich the

length of our shadow changes at different distances from the pole is not the same.

(c) It is easy to check that if the radius of a sphere changes, the rate at which the volume of

the sphere changes is different for different values of the radius. (This, we have already

discussed.).

FIGURE 9.9
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Having realized the importance of the fact of instantaneous rate of change, we would like to be

able to compute the instantaneous rate of change of varying quantities.

But there are certain difficulties in computing instantaneous rates. The first question is:What

is an instant? It may be difficult to give a good physical definition of an instant, but the notion of

an instant does have some physical meaning.

For example, when two objects collide, we think of this happening at an instant. A lightning

flash is practically instantaneous.We speak of an event happening at 6 o’clock and refer thereby

to an instant. Thus, even in common situations, we think of and utilize the notion of an instant.

Let us discuss about this notion in details.

9.5.1 The Notion of an Instant

Mathematically, we have less troublewith the concept of an instant. Amathematician thinks of

time as ameasurable quantity,measured, say, in seconds. Then, the passage of time is recorded

by the number of seconds measured from some event that is represented as happening at zero

time. Thus t ¼ 2 is an instant, 2s after the event that the mathematician has selected as

happening at zero time.

Having understood the notion of an instant, let us try to understand the notion of

instantaneous speed. It is true that a person traveling in an automobile has a speed at each

instant. But there is difficulty in stating just what we mean by instantaneous speed, and

if we do not know precisely what it means, then we certainly shall have trouble in

calculating it.(16)

9.5.2 From Average Speed to Instantaneous Speed

We know that speed is the rate of change of displacement compared to time. Therefore, the

average speed, which applies over an interval of time (rather than at an instant), is the distance

traveled during any time interval divided by the time taken. Let the distance traveled by an

object in a time interval of “dt” units be “ds” units of distance. Then, we can write

Average speed ¼ Distance travelled

Time taken
¼ ds

dt
units of speed

The definition of average speed permits us to calculate it very easily. Hence, we are tempted to

define and calculate instantaneous speed in the same way. But at an instant, zero distance is

traveled and zero time elapses. Hence, to define instantaneous speed as distance divided by time

leads to the expression 0=0, which is meaningless from amathematical point of view. Here then

lies the problem.

Physically we have every reason to believe that there is such a thing as an instantaneous

speed, yet we face difficulty in defining it and calculating it mathematically.(17)

(16)Note (2): From the above discussion, one might think that “differential calculus” is difficult to learn, but this is not true.

Once the basic ideas of differential calculus have been grasped, a whole world of problems can be tackled without great

difficulty. It is a subject well worth learning and this book is compiled to achieve this goal systematically, maintaining the

interest and enthusiasm of the reader.
(17) Of course, now we know that this difficulty can be overcome only by applying the method(s) of evaluating the limit

limdt! 0 ds=dt and check if the limit exists.
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9.5.3 Approaches by Newton and Leibniz

Let us consider how Newton and Leibniz approached the problem of defining and calculating

instantaneous rates. Though there were differences in their approaches, we shall ignore them

and examine the subject in the form in which it has been standardized in recent years.

To start with, let us consider the formula

s ¼ 16t2; ðt seconds; s feetÞ ð6Þð18Þ

that governs the free fall motion of a ball, relating the distance the ball falls to the time it falls.

Note (3): The formula (6) is strictly correct only if the object falls in vacuum. The factor 16 is

approximate. Also, note that the ball falls vertically in a straight line and thus we are

considering the motion in a straight line.

Suppose it takes exactly 4 s for the ball to hit the ground, after it is dropped from a tower, and

suppose it is required to compute the instantaneous speed of the ball at the end of third second.

We prepare the following table:

From this table, we observe that the average speed of the ball keeps on increasing with time

and therefore its instantaneous speed is increasing as the time passes.What canwe say about its

speed at the end of the third second?

Observe that the ball started with no velocity at all, and increased its speed under

gravitational attraction. In first 3 s, the ball falls by 144 ft and so the average speed of the

ball during this period is 48 ft/s. Obviously, then its actual speed at the end of third secondmust

be greater than 48 ft/s, to balance its slow initial speed. Next, we observe that the distance the

ball fell by during the third second is 80 ft. Hence, its actual speed at the end of third second

must be greater than 80 ft/s.

It is reasonable to say that the actual speed at any instant will not differ verymuch from the

average speed during the previous 10th of a second. Furthermore, if we compute the average

speed for the previous 1000th of a second, then it will still be closer to the actual speed, at

the instant under consideration. In other words, if we take the average speed for smaller and

smaller intervals of time around the instant under consideration, then we shall get nearer and

nearer to the true speed at the instant in question.

For many practical purposes, the average speed during a 1000th of a second may be

regarded as the exact speed, but in reality it is still different from the actual speed. It is

important that we should not agree to accept any approximate value of the average speed

howsoever close to the actual speed it might be.

(Here, we introduce the area of logical thinking, leading to the concept of limit.)

The distance “s” traveled by the ball in 3 s is given by

s ¼ 16t2 ¼ 16ð3Þ2 ¼ 144 ft ð7Þ

(18) Formulas for free fall near the Earth’s surface:

1. s ¼ ð1=2Þgt2; s ¼ distance, t ¼ time, g ¼ gravitational constant.

2. s ¼ 16gt2; s ¼ feet, t ¼ seconds, g ¼ 32 ft/s2.

3. s ¼ 490t2; s ¼ centimeters, t ¼ seconds, g ¼ 980 cm/s2.

4. s ¼ 4.9t2; s ¼ meters, t¼ seconds, g ¼ 9.8m/s2.
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Also, using the formula (6), we can find where the ball will be at the end of (3 þ dt) s, dt being
an arbitrarily small additional time interval, after third second. Then, we have

sþ ds ¼ 16ðtþ dtÞ2 ¼ 16ðt2 þ 2tdtþ dt2Þ
¼ 16ð9þ 6dtþ dt2Þ

144þ ds ¼ 144þ 96dtþ 16dt2 ð8Þ

) ds ¼ 96dtþ 16dt2 ð9Þ

But, we know that the average speed during the additional time interval dt is given by ds=dt.
Therefore, we divide both sides of formula (9) by dt(dt> 0) and obtain

ds

dt
¼ 96dtþ 16dt2

dt
ð10Þ

From formula (10), we observe that the average speed ds=dt(over the time interval dt) is a

function of dt. Furthermore, since dt 6¼ 0, we can divide the numerator and denominator on the

right side of (10) by dt and obtain the simplified expression for ds=dt. Thus, we get

ds

dt
¼ 96þ 16dt; ðdt 6¼ 0Þ ð11Þ

Up to this point, Newton and Leibniz had calculated the average speed of the falling body in the

time interval dt, after the third second of the fall. Moreover, since dt can be chosen as small as

we please and the above algebra still holds; they had obtained the formula for average speed

over any small interval, just after the third second.

But, the problem they set out to solve was to calculate the speed just at the end of the third

second, that is, when dt ¼ 0. One is tempted to put dt ¼ 0 in (11) and obtain the answer 96.

Unfortunately, the answer happens to be correct, but the reasoning is incorrect (Why?).(19)

To determine the value of ds=dt (when dt ¼ 0), we should use formula (10). But if we

substitute dt ¼ 0 in (10), we obtain ds=dt ¼ 0=0, which poses the same difficulty (in obtaining

instantaneous speed) as we mentioned at the outset. The situation is exasperating. The answer

we seek is obviously at hand in formula (11), but we cannot use formula (11).

One is tempted to cheat a little by putting dt ¼ 0 in formula (11) and get the answer, but it is

not correct as discussed above. (The new idea that Newton and Leibniz contributed comes in at

this point.) They operated on the expression 96 þ 16dt in the way we would treat it today for
computing its limit as dt ! 0.(20)

Let us examine formula (11) when dt is not 0, and see what happens to it as dt approaches
closer and closer to 0 invalue.For all nonzero values of dt, formula (11) is valid, andwe see that

as dt ! 0, the right side of (11) (i.e., 96 þ 16dt) approaches 96. We therefore take 96 to be the

actual speed at the end of third second.

(19) Note that (11) is derived from (10)with the condition that dt 6¼ 0. Thus, (11) is not the correct expression for the value of

ds/dt when dt ¼ 0.
(20) No one can read the details of their writings on calculus without being amazed by the number of times they changed

their explanations of the limit concept and still failed to get it right. Some of these explanations contained outright

contradictions of earlier ones. It is fair to say that though both men had their hands on a sound idea, they could not grasp it

securely. The concept of a limit, as we know it today, was not known to either Leibniz or Newton. (The Calculus of a Single

Variable by Louis Leithold (p. 115), Harper Collins).
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In this calculation, we observed the behavior of formula (6) when dt ! 0, but did not permit

dt to assume thevalue 0. Thus,we did use formula (11), but themanner inwhichwe used it, is all

important.

In other words, what we do is as follows: Consider the formula at (6) and try to guess the

number to which the expression (96 þ 16dt) approaches as dt approaches 0. This number is

called the limit of (96 þ 16dt) as dt ! 0, and we take it as the actual speed at the end of the

third second.(21)

Observe that 96 is also the value of the expression (96 þ 16dt) for dt ¼ 0. This is equiva-

lent to saying that the limit of the function (96 þ 16dt) as dt ! 0 and value of the function at

dt ¼ 0 both are same. This is due to the fact thatwe had a very simple function “16t2”,which is

continuous. This may not be the situation always, that is, the expression representing the

difference quotient ds=dt may not be as simple as the one in (10).

In other words, it may not be possible to simplify the function ds=dt, to the form that is so

convenient for finding its limit.(22)

Since our requirement is to find the limit of the function ds=dt as dt ! 0, we must

understand and respect the distinction between the limit of the function as dt ! 0, and the

value of the function at dt ¼ 0.We have discussed about this distinction at length, in the process

of formulating the d, « definition of limit in Chapter 7a. The general fact, about speed at an

instant, is expressed as follows:

The speed at an instant is the limit approached by the average speed ds/dt as dt approaches
0. In our problem, we applied this fact in computing the speed at the end of the third second, by

considering the average speed over smaller and smaller intervals, just exceeding the third

second.(23)

To appreciate the full generality of the process of computing instantaneous rates, wemust go

a step further. Let us consider the function

y ¼ f ðxÞ ¼ 16x2

where y [¼ f(x)] is the dependent variable and x is an independent variable, representing any

quantity, and let us ask for instantaneous rate of change of y with respect to x, at any value of x

(say at x ¼ x1).

(21) At this stage, it is important to consider onemore situation that could create confusion in computing the actual speed. To

understand it, let us go back toTable 9.1,which gives average speeds of the ball during various intervals. Therewe observed

that during the period of 1 s before t ¼ 3 (i.e., from t ¼ 2 to t ¼ 3), the distance covered by the ball is 80 ft, and during the

subsequent period of 1 s after this instant (i.e., from t ¼ 3 to t ¼ 4), the distance covered is 112 ft. It is therefore reasonable

to guess that the velocity at the instant t ¼ 3 must lie between 80 and 112 ft/s. Accordingly, one might take the average of

80 and 112, and conclude that thevelocity of the ball is 96 ft/s. Unfortunately, this answer is correct.We say “unfortunately”

because as a rule taking the average does not give the correct velocity. In fact, it hardly gives the correct velocity. It is only

when the law of variable is of the type s ¼ at2 þ bt þ c will taking the average work. It is easy to understand why this

happens. It may be checked that averaging gives a wrong result for the law, v(r) ¼ (4/3)pr3, as we had discussed earlier in
this chapter.
(22) For example, it will be found that in the process of computing the instantaneous rate of change for the function y ¼ sin x

(to be discussed later in Chapter 11a), we have to use the result lim
x! 0

ðsin xÞ=x ¼ 1 and similarly for the function y ¼ ax (in

Chapter 13a), we have to use the result lim
x! 0

ðax � 1Þ=x ¼ loge a. In both these cases, there is noway of canceling terms in

the numerator and the denominator. Each quotient appears to approach 0/0, which is not defined. However, these limits

exist and are evaluated by different techniques. Therefore, to be able to compute the derivatives of certain functions, it is

important to learn method(s) of evaluating such limits.
(23)Note (4): Now, we propose to treat y ¼ 16x2 to represent any function and try to obtain its (actual) rate of change. It

might appear as if we are repeating thewhole thing that we have already discussed, but it is not so. If y is the distance s, x is

time t, and x1 is 3, then the above relation reduces to the earlier problem.
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From the above relation, we can write the value of “f ” at x ¼ x1, and denote it by y1. Thus,

we get

y1 ¼ f ðx1Þ ¼ 16x1
2 ð12Þ

Now, let us give an arbitrary, nonzero, increment dx to x1 and let the corresponding

increment in y1 be denoted by dy. Then we have

y1 þ dy ¼ f ðx1 þ dxÞ
¼ 16ðx1 þ dxÞ2 24

¼ 16x1
2 þ 32x1dxþ 16dx2

ð13Þ

Therefore, we get from (13)� (12)

dy ¼ f ðx1 þ dxÞ� f ðx1Þ ¼ 32x1dxþ 16dx2 ð14Þ

To get the average rate of change of y with respect to x, in the interval dx, we divide both

sides of (14) by dx and obtain

dy

dx
¼ f ðx1 þ dxÞ� f ðx1Þ

dx
¼ 32x1dxþ 16dx2

dx
ð15Þ

Observe that right-hand side of (15) is a function of dx. Fortunately, in this case, it is possible
to simplify the RHS of equation (15) by dividing both numerator and denominator by dx,
which is a nonzero common factor in both. Thus, we obtain from (15)

dy

dx
¼ f ðx1 þ dxÞ� f ðx1Þ

dx
¼ 32x1 þ 16dx; where dx 6¼ 0 ð16Þ

At this stage the crucial step is to seewhat happens on the right side of (16)when dx ! 0? In

this, case the answer is obvious. As dx ! 0 in value, the quantity 16dx ! 0 and so the limit

TABLE 9.1 Guessing the Actual Speed (of a Freely Falling Ball) From its Average Speed

No of

second(s)

the ball

falls

Total

distance

fallen in feet

(s ¼ 16t2)

Time

interval

during which

the ball falls

Actual

period

of fall

(dt)

Actual distance

fallen (ds) during
the actual period

of fall (dt)

Average

speed

during the

period (ds/dt)

0 0

1 16 0 to 1 s 1 s (16–0) ¼ 16 ft 16 ft/s

2 64 1–2 s 1 s (64–16) ¼ 48 ft 48 ft/s

3 144 2–3 s 1 s (144 � 64) ¼ 80 ft 80 ft /s

4 256 3–4 s 1 s (256 � 144) ¼ 112 ft 112 ft /s

(24) Here, x1 is a particular point on the x-axis and (x1 þ dx) is another neighboring point, which is obtained by giving an

arbitrary nonzero increment dx to x1. The increment “dx” given to x1 is arbitrary; hence, it is expressed without any

subscript. Similarly, the resulting increment dy in y1 is expressed without subscript.
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of the function (32x1 þ 16dx) is 32x1. Thus, the instantaneous rate of change of y [¼ f(x)]

with respect to x, at x ¼ x1, is 32x1. We write

lim
dx! 0

dy

dx
¼ 32x1 ð17Þ

9.5.4 Formula (17) Tells Us Several Valuable Things

(a) The quantity x1 was any value of x. Hence, in steps (12)–(17), we obtained the

instantaneous rate of change of y with respect to x, for any value of x. We may

emphasize this fact by dropping the subscript and writing

lim
dx! 0

dy

dx
¼ 32x ð18Þ

Notation: If the lim
dx! 0

dy=dx exists, we use the notation dy=dx to express this limit.

We write

lim
dx! 0

dy

dx
¼ 32x ¼ dy

dx
ð19Þ

and call it the derivative of the function y ¼ f(x), and it is true for any value of x at which

it is defined.

Remark: Since dy=dx is a notation for a limit, it must be treated as a single symbol, though its

appearance is that of a quotient.(25)

Thus, we have calculated the rate of change of y with respect to x, for an infinite number of

values of x, in one operation. In fact, the relation (19) is a new formula (and we look at it as a

new function of x), which is derived from the given function y ¼ 16x2.We say that the function

32x is the derivative of the function y ¼ 16x2. We can link the formula at (19) with that at (11).

As a check on (19), let us note that at x ¼ 3, dy=dx ¼ 32(x) ¼ 32(3) ¼ 96, and this result

agrees with the conclusion derived from equation (11).

(b) The second valuable implication of (18) or (19) is that the result holds regardless of the

physical meaning of y or x. Remember that mathematics treats only pure numbers or pure

special relationships. Hence, we can apply the result to thousands of physical situations in

which the original function, y ¼ 16x2, applies. Moreover, the process that we used to obtain

the result (19) can be applied to any function.

We can calculate the rate of change of one variable with respect to the other at a value of the

second variable, by the same mathematical procedure that we used for calculating instan-

taneous rate of change of y with respect to x when y ¼ 16x2. For example, if y represents

(25) Leibniz used the suggestive butmisleading notation dy=dx for the instantaneous rate. It suggests that the instantaneous

rate is obtained by considering an average rate, which is indeed a quotient. On the other hand, this notation is misleading in

the sense that it represents instantaneous rate in the form of a quotient, whereas instantaneous rate is not a quotient but the

limit approached by a quotient. Besides, the symbols dy and dx have not been given independent meaning. They are called

differentials of dependent and independent variables, respectively, and their ratio dy=dx can be interpreted as the derivative

of y w.r.t x. Details are discussed in Chapter 16.
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velocity and x time, we can calculate the rate of change of velocity compared to time at an

instant. This instantaneous rate of change of velocity is called instantaneous acceleration.

As another example, the pressure of the atmosphere varies with height above the surface of

the Earth. Given the formula that relates pressure and height, we can calculate the rate of change

of pressure compared to height at any given height and the rate of change of surface area of a

cube, with respect to the length of its edge.(26)

Remark: The original calculus problems of speed and acceleration did involve time and were

concernedwith rates at an instant of time.Our interest lies in computing the rate of change of the

dependent variable y [¼ f(x)] with respect to the independent variable x at any value of x. All

such rates are referred to as instantaneous rates, despite the fact that timemay not be one of the

variables involved.

9.5.5

From the above discussion, we note the following:

(i) If y is a function of x denoted by y ¼ h(x), whose graph is a curve, then the slope

of the curve at any point P(x, y) on the curve, is given by the limit

limdx! 0 ðhðxþ dxÞ� hðxÞÞ=dx, provided this limit exists. We denote it by dy=dx.

(ii) Consider a particle “P”moving in a straight line. Suppose the position of the particle at

any instant “t” is expressed by function y ¼ g(t), then the velocity of the particle at any

instant t is given by the limit limdt! 0 ðgðtþ dtÞ� gðtÞÞ=dt, provided this limit exists.

We denote it by dy=dt.

(iii) Let the velocity of a particle at any instant t be given by the function v ¼ �(t), then the
instantaneous rate of change of velocity at any instant t, is given by the limit

limdt! 0 ð�ðtþ dtÞ��ðtÞÞ=dt, provided this limit exists. We denote it by dv=dt. It
is called the instantaneous acceleration of the particle.

Thus, if y ¼ f(x) is a given function, whichmay define a curve, the position of amoving particle

at time x, or the velocity of a particle at time x, then the limit lim
dx! 0

ðf ðxþ dxÞ� f ðxÞÞ=dx,
if it exists, will define, respectively, the slope of the curve at a point, the velocity of the particle

at an instant, or the acceleration of the particle at an instant.

This limit also appears in many other contexts in economics, physics, and chemistry. Since

it has various interpretations, it is treated as an abstract mathematical entity called a

derivative, and its properties are studied in detail.

In view of the above, it is reasonable and natural to give the following useful definition of

the derivative of a function at a point in its domain.

Now, we give the following formal definitions:

. Derivative of a Function:

Let y ¼ f(x) be a given function defined in an open interval (a, b). Let the points x and

(x þ dx) both belong to the domain of function f(x), where dx is an arbitrary nonzero

number.

(26) At the end of this chapter, we have discussed some interesting applications of the process of finding the derivatives or

rates of change. There, we have computed the rate of change of the area of a circle with respect to radius and the rate of

change of volume of a sphere with respect to its radius.
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From the function f(x), we form a new function

�ðxÞ ¼ f ðxþ dxÞ� f ðxÞ
dx

The limit of this ratio, as dx ! 0, may or may not exist.

If

lim
dx! 0

f ðxþ dxÞ� f ðxÞ
dx

¼ lim
dx! 0

dy

dx
ð20Þ

exists, then we call it the derivative of f with respect to x.

. Derivative of a Function at a Particular Point:

The derivative of a function y ¼ f(x) at a particular point x ¼ x1 in the domain of f is

given by the limit

lim
dx! 0

f ðx1 þ dxÞ� f ðx1Þ
dx

ð21Þ

if this limit exists. It is denoted by f 0(x) or dy=dx.
If we replace (x1 þ dx) by x, and accordingly dx by x � x1, then the derivative of f

at x1 is given by

f 0ðx1Þ ¼ lim
x!x1

f ðxÞ� f ðx1Þ
x� x1

ð22Þð27Þ

if this limit exists.

In all cases, the number x1atwhich f
0 is evaluated is held fixed during the limit operation. Here,

x is the variable and x1is regarded as a constant.

Note (5):Observe that if f 0(a) exists, then the letter x in (C) can be replaced by any other letter.

For example, we can write

f 0ðaÞ ¼ lim
t! a

f ðtÞ� f ðaÞ
t� a

Note (6): The quotients ð f ðx1 þ dxÞ� f ðx1ÞÞ=dx and ð f ðxÞ� f ðx1ÞÞ=ðx� x1Þ, both are

called standard difference quotients of the function f, at the number x1. If it is desired to

(27) Derivatives can be regarded as a rate measure. It measures the rate at which a function is changing its value with that of

the variable upon which it depends. Thus, for a function y ¼ x2 since ðdy=dxÞ ¼ 2x, when x ¼ 1, y[¼ x2] changes its

value at two times the rate atwhichx is changing. Similarly,whenx ¼ 3, y is changing its value six times the rate atwhichx

is changing.

THE PROBLEM OF INSTANTANEOUS VELOCITY 255



compute the derivative of a function at a particular point x ¼ x1, and if f
0(x1) exists, then it is

more convenient to evaluate the limit

lim
x!x1

f ðxÞ� f ðx1Þ
x� x1

Consider the following example.

Example (1): Let f ðxÞ ¼ ð1=4Þx2 þ 1. Find f 0(� 1) and f 0(3), and draw the line tangent to the

graph of f at the corresponding points.

Solution: Using (22), we obtain

f 0ð � 1Þ ¼ lim
x! � 1

ðð1=4Þx2 þ 1Þ� ð5=4Þ
x�ð� 1Þ

¼ lim
x! � 1

ð1=4Þx2 �ð1=4Þ
xþ 1

¼ lim
x! � 1

ð1=4Þðx2 � 1Þ
xþ 1

¼ lim
x! � 1

ð1=4Þðx� 1Þðxþ 1Þ
xþ 1

¼ lim
x! � 1

1

4
ðx� 1Þ )x 6¼ � 1½ �

¼ � 1

2

We also obtain

f 0ð3Þ ¼ lim
x! 3

ðð1=4Þx2 þ 1Þ� ð13=4Þ
x� 3

¼ lim
x! 3

ð1=4Þx2 �ð9=4Þ
x� 3

¼ lim
x! 3

ð1=4Þðx2 � 9Þ
x� 3

¼ lim
x! 3

1

4
ðxþ 3Þ

¼ 3

2

The lines, tangent to the graph at the corresponding points, are shown in Figure 9.10.

Next, we give the following formal definitions.

. The Natural Domain of Derivative: Let a set D be the domain of f(x). The question is

whether D is also the domain of f 0(x)? In any case, the domain of f 0(x) cannot be wider
than the domain of f(x) because to compute f 0(x) we use f(x). In general, the domain

of f 0(x) is a subset of D. It is obtained from D by elimination of those points x for

which f 0(x) does not exist. It is called the domain of differentiability of f(x).

. Differentiation: The process of computing the derivative of a function is called

differentiation.
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. Differentiability of Functions:

(i) Functions differentiable at a point. If a function has a derivative at x1 of its

domain, then it is said to be differentiable at x1.

(ii) Functions differentiable in an open interval. A function is differentiable in an

open interval (a, b) if it is differentiable at every number in the open interval.(28)

(iii) Functions differentiable in a closed interval. If f(x) is defined in a closed

interval [a, b], then the definitions of the derivatives at the end points are

modified so that the point (x þ dx) lies in the interval [a, b].

For example, if x ¼ b and dx> 0, then the point (x þ dx), that is, (b þ dx) will not lie in the

interval [a, b]. Similarly, if dx< 0, then the point (a þ dx)will not lie in [a, b]. Hence,wedefine
the derivative at the end points as follows:

f 0ðaÞ ¼ lim
dx! 0

f ðaþ dxÞ� f ðaÞ
dx

; ðdx > 0Þ and

f 0ðbÞ ¼ lim
dx! 0

f ðbÞ� f ðb� dxÞ
dx

; ðdx > 0Þ

. Differentiable Function: If a function is differentiable at every number in its domain, it is

called a differentiable function.

Note (7): The above definition appears to be quite simple, but certain situations might create

confusion. Hence, to get a clear idea of a differentiable function, it is useful to consider

Examples (2) and (3) as follows:

y

x

Slope 3
2

Slope 1
2

–1 30

–

f(x) =     x2 + 11
4

FIGURE 9.10

(28) In this case, at every point of the open interval, the two-sided limit of the difference quotient exists.
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Note (8): It can be proved that the derivative of xa is given by

dðxaÞ
dx

¼ axa� 1; ða 2 RÞ

However, for our purpose, let us consider (without proof)

dðxrÞ
dx

¼ rxr� 1; ðr 2 QÞ

Example (2): Let f ðxÞ ¼ 3=x, then f 0ðxÞ ¼ � ð3=x2Þ.

Note that the domain of f is the set of all real numbers except the number 0. Also, f 0(x)
exists at every real number except “0”. Thus, f is differentiable at every number in its

domain. Hence, f is a differentiable function.

Example (3): Let gðxÞ ¼ ffiffiffi
x

p ¼ x1=2, then g0ðxÞ ¼ ð1=2ÞðxÞ� 1=2 ¼ ð1=2Þ ffiffiffi
x

p

Here, the domain of g is [0,þ 1), but g0 (x) does not exist atx ¼ 0. Thus, g is not differentiable

at “0”, which is in the domain of g. Therefore, wewill say that g is not a differentiable function.

However, if we define the function
ffiffiffi
x

p
in the open interval (0, 1), then it becomes a

differentiable function.

In view of the above, we agree to say that if the domain of f 0 is the same as that of

f, then f is a differentiable function.

Nearly every function we will encounter is differentiable at all numbers or all but finitely

many numbers in its domain.

Note (9): The derivative of a function, at a given point (irrespective of its physical meaning)

has the same numerical value.

Note (10): To obtain the derivative of a function, by using the definition of the derivative, is

known as the method of finding the derivative from the first principle.

Notation for Derivative:

We know that differentiation of y ¼ f(x) by the first principle involves two steps: first, the

formation of the difference quotient and second, the evaluation of its limit.

If the limit, lim
dx! 0

ðf ðxþ dxÞ� f ðxÞÞ=dx ¼ lim
dx! 0

dy=dx exists, then we denote it by the

symbol f 0(x) or dy=dx and call it the derivative of the function f(x).

Note (11): We can look at the process of differentiation as an operation. The operation of

obtaining f 0(x), from f(x), is called differentiation of f(x). The symbol d=dx is assigned for this

operation. We call it the operator of differentiation.(29)

. The Operator of Differentiation d=dx:

(29) The “operator of differentiation” is a new term that we have introduced here. This operator may be looked upon as a

machine, which generates a numerical function at the output, in response to a “numerical function at the input”.

Numerical function!½operator�! ðnewÞNumerical function
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In view of the above discussion, we can say that the symbol d=dx stands for the operation

of computing the derivative of a given function by the first principle. In other words, we agree

to say that d=dx constructs from f(x), the difference quotient ðf ðxþ dxÞ� f ðxÞÞ= dx,
and determines its limit as dx ! 0 (treating the difference quotient as a function of

variable dx).(30)

Note (12):The notation d=dx should be interpreted as a single entity and not as a ratio. (It reads
“d over dx”). InChapter 10, it will be seen that the symbol d=dx is also used in a formula to stand

for the phrase “the derivative of ”. Thus, the symbol d=dx is used to define the derivatives of

combinations of functions.(31)

9.6 DERIVATIVE OF SIMPLE ALGEBRAIC FUNCTIONS

Now, we proceed to evaluate the derivatives of some simple algebraic functions by definition.

. The Derivative of the Power Function: Let us find the derivative of some simple

(algebraic) functions.

We begin with

Example (4): Let y ¼ f(x) ¼ x. Then, we have

f 0ðxÞ ¼ lim
dx! 0

f ðxþ dxÞ� f ðxÞ
dx

¼ lim
dx! 0

ðxþ dxÞ� x

dx

¼ lim
dx! 0

dx

dx
¼ 1:

That is, the derivative of f(x) ¼ x is a constant equal to 1. We write ðd=dxÞ(x) ¼ 1

(This is obvious since y ¼ x is a function whose graph is a straight line with a constant

slope.)

Example (5): Let y ¼ f(x) ¼ x2, then

f 0ðxÞ ¼ lim
dx! 0

f ðxþ dxÞ2 � x2

dx
¼ lim

dx! 0

2x dxþðdxÞ2
dx

¼ lim
dx! 0

ð2xþ dxÞ
¼ 2x

We write ðd=dxÞ(x2) ¼ 2x.

(30)We can also say that the operator d=dx constructs from f(x) the difference quotient ðf ðxÞ� f ðaÞÞ=ðx� aÞ and

determines its limit as x ! a treating it as a function of x.
(31) For example, d½f ðxÞgðxÞ�=dx ¼ f ðxÞðdgðxÞ=dxÞþ gðxÞðdf ðxÞ=dxÞ.
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Example (6): Let y ¼ f(x) ¼ x3, then

f 0ðxÞ ¼ lim
dx! 0

f ðxþ dxÞ3 � x3

dx

¼ lim
dx! 0

x3 þ 3x2 dxþ 3xðdxÞ2 þðdxÞ3 � x3

dx

¼ lim
dx! 0

3x2 þ 3x dxþðdxÞ2 ð )dx 6¼ 0Þ

¼ 3x2

We write ðd=dxÞ(x3) ¼ 3x2.

Observe the general feature of the structure of the derivatives of the power function y ¼ xn

for n ¼ 1, 2, 3.

Now, we shall prove that

d

dx
ðxnÞ ¼ n xn

� 1

; ðn 2 NÞ

Proof: Let y ¼ f(x) ¼ xn

) yþ dy ¼ f ðxþ dxÞ ¼ ðxþ dxÞn

) dy

dx
¼ f ðxþ dxÞ� f ðxÞ

dx
¼ ðxþ dxÞn � xn

dx

We have

d

dx
ðxnÞ ¼ lim

dx! 0

dy

dx
¼ lim

dx! 0

ðxþ dxÞn � xn

dx

Now,

ðxþ dxÞn ¼ xn þ nC1x
n� 1 dxþ nC2x

n� 2 ðdxÞ2 þ � � � þ ðdxÞn

¼ xn þ nxn� 1 dxþ nðn� 1Þ
2

xn� 2ðdxÞ2 þ � � � þ ðdxÞn

) dy

dx
¼ nxn� 1 þ nðn� 1Þ

2!
xn� 2 dxþ � � � þ ðdxÞn� 1 )dx 6¼ 0½ �

The expression on the RHS is a sum of n terms; the first term is independent of dx and the

others tend to zero as dx ! 0. Therefore,

lim
dx! 0

dy

dx
¼ nxn

� 1
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Thus, for every positive integral exponent n, the power function y ¼ xn has the derivative

n xn� 1. We write

d

dx
ðxnÞ ¼ n xn� 1; ðn 2 NÞ:ð32Þ

Note (13): In Chapter 15a, where the method of logarithmic differentiation is discussed,

we shall show that the above formula remains valid for any (real) exponent n. Thus, we

can write

d

dx
ð ffiffiffi

x
p Þ ¼ d

dx
ðx1=2Þ ¼ 1

2
x� 1=2 ¼ 1

2
ffiffiffi
x

p

Similarly,

d

dx

1ffiffiffi
x

p
� �

¼ d

dx
ðx� 1=2Þ ¼ � 1

2x
ffiffiffi
x

p ð33Þ

. Now, Let Us Consider the Derivative of a Constant, y ¼ f(x) ¼ c. Since, the value of the

function does not change, as the independent variable x changes, we have

f ðxþ dxÞ ¼ f ðxÞ
f ðxþ dxÞ� f ðxÞ ¼ 0

) dy ¼ f ðxþ dxÞ� f ðxÞ ¼ 0

dy

dx
¼ 0

dx
¼ 0

Consequently, lim
dx! 0

dy

dx
¼ lim

dx! 0
ð0Þ ¼ 0.

Thus, the derivative of a constant is equal to zero. It is reasonable to say that the rate of

change of any constant is zero.

Example (7): Find the derivative of
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3xþ 7

p

Solution: Let f ðxÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
3xþ 7

p

f ðxþ hÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðxþ hÞþ 7

p

f 0ðxÞ ¼ lim
h! 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðxþ hÞþ 7

p � ffiffiffiffiffiffiffiffiffiffiffiffiffi
3xþ 7

p

h

(32)We know that dðx2Þ=dx ¼ 2x; dðxÞ=dx ¼ 1; dðx� 1Þ=dx ¼ �x� 2. Note that we have not yet encountered any

function whose derivative is x� 1. This problem is dealt with in Part II of the book.
(33) For writing these results, we have used the formula dðxnÞ=dx ¼ nxn� 1; n 2 R.
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By rationalizing the numerator, we get

f 0ðxÞ ¼ lim
h! 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðxþ hÞþ 7

p � ffiffiffiffiffiffiffiffiffiffiffiffiffi
3xþ 7

p

h

¼ lim
h! 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðxþ hÞþ 7

p � ffiffiffiffiffiffiffiffiffiffiffiffiffi
3xþ 7

p

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðxþ hÞþ 7

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
3xþ 7

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðxþ hÞþ 7

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
3xþ 7

p

¼ lim
h! 0

ð3þ 3hþ 7Þ� ð3xþ 7Þ
hð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ðxþ hÞþ 7
p þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

3xþ 7
p Þ

¼ lim
h! 0

3h

hð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðxþ hÞþ 7

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
3xþ 7

p Þ

¼ lim
h! 0

3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðxþ hÞþ 7

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
3xþ 7

p

¼ 3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðxþ 0Þþ 7

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
3xþ 7

p

f 0ðxÞ ¼ 3

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3xþ 7

p Ans:

Example (8): Find the derivative of 1=
ffiffiffi
x

p
.

Solution: Let f ðxÞ ¼ 1ffiffiffi
x

p , ) f ðxþ hÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
xþ h

p
Now consider

f ðxþ hÞ� f ðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
xþ h

p � 1ffiffiffi
x

p ¼
ffiffiffi
x

p � ffiffiffiffiffiffiffiffiffiffiffi
xþ h

p
ffiffiffi
x

p ffiffiffiffiffiffiffiffiffiffiffi
xþ h

p

By rationalizing the numerator, we get

f ðxþ hÞ� f ðxÞ ¼
ffiffiffi
x

p � ffiffiffiffiffiffiffiffiffiffiffi
xþ h

pffiffiffiffiffiffiffiffiffiffiffi
xþ h

p ffiffiffi
x

p
ffiffiffi
x

p þ ffiffiffiffiffiffiffiffiffiffiffi
xþ h

p
ffiffiffi
x

p þ ffiffiffiffiffiffiffiffiffiffiffi
xþ h

p

¼ x�ðxþ hÞffiffiffiffiffiffiffiffiffiffiffi
xþ h

p ffiffiffi
x

p 1ffiffiffi
x

p þ ffiffiffiffiffiffiffiffiffiffiffi
xþ h

p

¼ � hffiffiffiffiffiffiffiffiffiffiffi
xþ h

p ffiffiffi
x

p ð ffiffiffi
x

p þ ffiffiffiffiffiffiffiffiffiffiffi
xþ h

p Þ
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Now,

f 0ðxÞ ¼ lim
h! 0

f ðxþ hÞ� f ðxÞ
h

¼ lim
h! 0

� h

h
ffiffiffiffiffiffiffiffiffiffiffi
xþ h

p ffiffiffi
x

p ð ffiffiffi
x

p þ ffiffiffiffiffiffiffiffiffiffiffi
xþ h

p Þ� �
¼ � 1

ð ffiffiffi
x

p ffiffiffi
x

p Þð ffiffiffi
x

p þ ffiffiffi
x

p Þ

)h! 0; h 6¼ 0½ �

¼ � 1

x2
ffiffiffi
x

p

¼ � 1

2x
ffiffiffi
x

p

d

dx

1ffiffiffi
x

p
0
@

1
A ¼ d

dx
ðxÞ� 1=2 ¼ � 1

2x
ffiffiffi
x

p Ans:

9.7 DERIVATIVES OF TRIGONOMETRIC FUNCTIONS

To find the derivatives of trigonometric functions by the first principle (i.e., by definition) we

have to use the following standard limits:

(i) lim
x! 0

sinx

x
¼ 1 where x is an angle expressed in radians.

(ii) lim
x! 0

cosx� 1

x
¼ 0 [or equivalently x stands for a real variable].

Then, the following results can be proved:

d

dx
ðsin xÞ ¼ cos x

d

dx
ðcos xÞ ¼ � sin x

d

dx
ðtan xÞ ¼ sec2 x

d

dx
ðcot xÞ ¼ � cosec2 x

d

dx
ðsec xÞ ¼ sec x � tan x

d

dx
ðcosec xÞ ¼ � cosec x � cot x

(All necessary details about the proof of limits (i) and (ii) are available in Chapter 11.)
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9.8 DERIVATIVES OF EXPONENTIAL AND LOGARITHMIC FUNCTIONS

To find the derivatives of exponential and logarithmic functions, by the first principle, we have

to use the following limits:

(i) lim
x! 0

ð1þ xÞ1=x ¼ e.

(ii) lim
x! 0

ax � 1

x
¼ loge a, where a> 0.

Then, the following results can be proved:

d

dx
ðaxÞ ¼ ax loge a; a > 0; ða 6¼ 0Þ

d

dx
ðexÞ ¼ ex loge e ¼ ex

d

dx
ðloge xÞ ¼

1

x
; x > 0

d

dx
ðloga xÞ ¼

1

x

1

loge a
; ðx > 0; a > 0; a 6¼ 1Þ

(All necessary details about the proof of limits (i) and (ii) are available in Chapter 13.)

Note (14): So far, we have seen the evaluation of derivative(s) of some simple functions by the

first principle (i.e., by definition). The direct evaluation of the limit

lim
dx! 0

f ðxþ dxÞ� f ðxÞ
dx

ð34Þ

is most often connected with lengthy and complicated calculations. But, it turns out that for

basic elementary functions (i.e., basic trigonometric, exponential, and logarithmic functions), it

is possible to derive general formulas expressing their derivatives analytically, as in the case of

the power function y ¼ xn.

Furthermore, the rules for differentiating combinations of functions resulting from arith-

metical operations (i.e., sums, products, and quotients) and the rules for computing derivatives of

composite functions are readily established, in terms of the derivatives of constituent functions.

Accordingly, we can always find analytically the derivative of any combination of finite

number of basic elementary functions, without resorting to the computation of the limit indicated

above. (The rules for differentiating combinations of functions are discussed in Chapter 10).

9.9 DIFFERENTIABILITY AND CONTINUITY

There is an important relationship between differentiability of a function and continuity of that

function, as stated in the following theorem.

Theorem: If a function f is differentiable at x1, then f is continuous at x1.

(34) Evaluation of this limit means applying the operator d=dx to the function f(x).
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Proof: Suppose f is differentiable at x1.

) lim
h! 0

ðf ðx1 þ hÞ� f ðx1ÞÞ=h ¼ f 0ðx1Þ exists:

Now, consider

lim
h! 0

½f ðx1 þ hÞ� f ðx1Þ� ¼ lim
h! 0

h
f ðx1 þ hÞ� f ðx1Þ

h

2
4

3
5

¼ lim
h! 0

ðhÞ lim
h! 0

f ðx1 þ hÞ� f ðx1Þ
h

2
4

3
5

¼ 0f 0ðx1Þ ¼ 0

) lim
h! 0

½f ðx1 þ hÞ� f ðx1Þ� ¼ 0

) lim
h! 0

f ðx1 þ hÞ ¼ lim
h! 0

f ðx1Þ

It means that f is continuous at x. This theorem tells us that if a function f is given (or proved) to

be differentiable at x ¼ x1, then it is definitely continuous at x ¼ x1. It also tells us that a

function cannot have a derivative at points of discontinuity.

Remark: From the fact that at some point x ¼ x1 the function y ¼ f(x) is continuous, it does

not follow that it is differentiable at that point. In other words, if a function is continuous at a

point, it is not necessarily differentiable at that point, as must be clear from the following

examples.

Example (9): Let f(x) ¼ |x|. It is easy to show that this function is continuous at all points, in

particular continuous at 0 (see Figure 9.11a). We can show that it is not differentiable at 0.

To find the derivative at x ¼ 0, consider the difference quotient:

f ð0þ hÞ� f ð0Þ
h

¼ 0þ hj j � 0j j
h

¼ hj j
h

Let us consider the limit of the above difference quotient as h! 0.

If h! 0 from the right, then the limit of this ratio is þ 1 and if h! 0 from the left, then the limit

is � 1. Since lim
h! 0þ

hj j=h 6¼ lim
h! 0� hj j=h, it follows that the two-sided limit lim

h! 0
hj j=h does not

exist. In other words, jxj is not differentiable at 0.

y

0

x

y=|x|

FIGURE 9.11a

DIFFERENTIABILITYAND CONTINUITY 265



Example (10): A function f(x) is defined on an interval [0,2] as follows (see Figure 9.11b):

f ðxÞ ¼ x; when 0 � x � 1

f ðxÞ ¼ 2x� 1; when 1 < x � 2

At x ¼ 1, the function has no derivative, although it is continuous at this point as shown below.

Consider a nonzero variable h. (Note that h stands for an increment that can be either positive or

negative, but not zero.) Thus, at x ¼ 0, when h> 0, we have

lim
h! 0

f ð1þ hÞ� f ð1Þ
h

¼ lim
h! 0

2ð1þ hÞ� 1½ � � 2ð1Þ� 1½ �
h

¼ lim
h! 0

ð1þ 2hÞ� 1

h
¼ lim

dh! 0

2h

h
¼ 2; since f ðxÞ ¼ 2x� 1½ �

Again when h< 0, we get

lim
h! 0

f ð1þ hÞ� f ð1Þ
h

¼ lim
h! 0

ð1þ hÞ� 1

h
lim
dh! 0

h

h
¼ 1:

(The definition of a derivative requires that the ratio dy/dx (as dx ! 0) should approach one and

the same limit regardless of the way in which dx ! 0.)

Since, the above limit depends on the sign of (the increment) h, it follows that the function

has no derivative at the point x ¼ 1. Geometrically, this is in accordance with the fact that at

x ¼ 1, the “curve” does not have a definite tangent line.

Note (15): In Example (9), there is a sharp corner at x ¼ 0 and in Example (10), such a corner

exists at x ¼ 1. At such points, the graph is continuous, but there are possible two tangent lines

with different slopes. In other words,

lim
dx! 0�

dy

dx
6¼ lim

dx! 0þ

dy

dx

It is easy to show that this function is continuous at x ¼ 1.

0

y

x

1 2
y =

 x

y 
=

 2
x–

1

FIGURE 9.11b
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We have f(x) ¼ x for 0 � x � 1, and f(x) ¼ 2x � 1 when 1 < x � 2

) f ð1Þ ¼ 1 ð23Þ

Next; lim
x! 1� f ðxÞ ¼ lim

x! 1� x ¼ 1 ð24Þ

lim
x! 1þ

f ðxÞ ¼ lim
x! 1þ

ð2x� 1Þ ¼ 2� 1 ¼ 1 ð25Þ

From (24) and (25), we have lim
x! 1� f ðxÞ ¼ lim

x! 1þ
f ðxÞ

Also, we have f(1) ¼ 1 [from (23)]

) lim
x! 1

f ðxÞ ¼ f ð1Þ

) f is continuous at x ¼ 1:

Example (11): The function y ¼ ffiffiffi
x3

p
is not differentiable at 0, though it is continuous for all

values of x.

Let us find out whether this function has a derivative at x ¼ 0.

We have, at x ¼ 0,

f 0ðxÞ ¼ lim
x! 0

f ðxÞ� f ð0Þ
x� 0

¼ lim
x! 0

x1=3 � 0

x

¼ lim
x! 0

1

x2=3

But this limit does not exist. Thus, f is not differentiable at 0. However, f is continuous at

0, because lim
x! 0

f ðxÞ ¼ lim
x! 0

x1=3 ¼ 0 ¼ f ð0Þ.

Note (16): A function f can fail to be differentiable at a number x1 for one of the following

reasons:

. Function f is not continuous at x1.

. Function f is continuous at x1, but the graph of f does not have a (unique) tangent line at

point x ¼ x1. Figure 9.11a and b shows the graph of functions satisfying this condition.

Observe a “sharp turn” (or corner) in these graphs (see Figure 9.11a at x ¼ 0 and

Figure 9.11b at x ¼ 1).

. Function f is continuous at x1, but the graph of f has a vertical tangent line at the point

x ¼ x1. Remember that the slope of a vertical line is not defined. This situation occurs in

Example (11) (see Figure 9.12). In such cases, we say (for generality) that the function has

an infinite derivative, which also means that the function is not differentiable at the point

in question.
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Note (17):Before giving another example of a function that is continuous but not differentiable

at a point of the domain, it is useful to recall the fact that the values of the trigonometric

functions sin x and cos x lie between � 1 and 1, for all x. Obviously, this is also true for the

functions sinð1=xÞ,x 6¼ 0, and cos ð1=xÞ,x 6¼ 0. In otherwords, lim
x! 0

sinð1=xÞ and lim
x! 0

cosð1=xÞ
oscillate between � 1 and 1, which means that these limits do not exist.

Now, we give an example of a function (involving trigonometric functions) that is continuous at

x ¼ 0, but not differentiable.

Example (12): Prove that the function defined as follows is continuous at x ¼ 0, but not

differentiable at x ¼ 0.

f ðxÞ ¼ x cos
1

x
if x 6¼ 0

0 if x ¼ 0

8<
:

Solution: lim
x! 0� f ðxÞ ¼ lim

x! 0� x cos

�
1

x

�

¼ lim
h! 0

ð0� hÞcos
�

1

0� h

�

¼ lim
h! 0

�� h
�
cos

�
� 1

h

�

¼ lim
h! 0

ð� hÞcos
�
1

h

�

)cosð� �Þ ¼ cos �½ �

¼ 0� a finite quantity )cos 1
h
lies between� 1 and 1

2
4

3
5

¼ 0 ðiÞ

Similarly; lim
x! 0þ

f ðxÞ ¼ lim
h! 0

h cos
1

h
¼ 0 ðiiÞ

y

10

x

f(x) = x1/3

FIGURE 9.12
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Also; f ð0Þ ¼ 0; ðgivenÞ ðiiiÞ

In view of (i), (ii), and (iii), we conclude that f(x) is continuous at x ¼ 0. Now to find the

derivative of f(x), at x ¼ 0, we compute the following limit:

lim
x! 0

f ðxÞ� f ð0Þ
x� 0

¼ lim
x! 0

f ðxÞ
x

¼ lim
x! 0

x cosð1=xÞ
x

¼ lim
x! 0

cos
1

x
; )x 6¼ 0½ �

But, this limit does not exist.

) f 0(0) does not exist. That is, f(x) is not differentiable at x ¼ 0.

Remark: It can be shown that the function

f ðxÞ ¼ x2 cos
1

x
if x 6¼ 0

0 if x ¼ 0

8<
:

is continuous and differentiable at x ¼ 0, and obviously at all other points.

Consider the limit (of difference quotient)

lim
x! 0

gðxÞ� gð0Þ
x� 0

¼ lim
x! 0

x2 cosð1=xÞ� 0

x� 0

¼ lim
x! 0

x2 cosð1=xÞ
x

¼ lim
x! 0

x cos
1

x
; ð )x 6¼ 0Þ

¼ lim
x! 0

x

� �
lim
x! 0

cos
1

x

0
@

1
A

¼ ð0Þða finite quantityÞ ¼ 0

Thus, the limit of the difference quotient exists at x ¼ 0. This proves that the function g(x) is

differentiable at x ¼ 0, which also tells us that g(x) is continuous at x ¼ 0. (The continuity, at

x ¼ 0, can also be proved independently.) Note that in the definition of this function, the

component x2 (in x2 cosð1=xÞ) plays an important role. (This also suggests that we can define

any number of such differentiable functions.)
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Example (13): Prove that the greatest integer function y ¼ [x] is not differentiable at x ¼ 1.

Solution: Here, we will show that the function f(x) ¼ [x] is not continuous at x ¼ 1.

Consider lim
x! 1� f ðxÞ ¼ lim

x! 1� ½x�

¼ lim
h! 0

½1� h�; ðh > 0Þ

¼ 0 ðby definition of ½x�Þ

Again lim
x! 1þ

f ðxÞ ¼ lim
x! 1þ

½x�

¼ lim
h! 0

½1þ h�; ðh > 0Þ

¼ 1 ðby definition of ½x�Þ
Thus left-hand limit 6¼Right-hand limit

) lim
x! 1

½x� does not exist.
) the function [x] is not continuous at x ¼ 1.

) [x] is not differentiable at x ¼ 1.

Note (18): The greatest integer function y ¼ [x] is a step function.

Recall that [x] ¼ the greatest integer less than or equal to x.

Selected values of y ¼ [x]

Positive values: [3] ¼ 3, [3.1] ¼ 3, but [2.9] ¼ 2

The value 0: [0] ¼ 0, but [0.5] ¼ 0

Negative values: [� 2] ¼ � 2, [� 1.8] ¼ � 2, but [� 2.1] ¼ � 3

Note that if x is negative, [x] may have a larger absolute value than x does.

Furthermore, observe that

[5] ¼ 5, lim
x! 5þ

½x� ¼ 5; ð )½5:01� ¼ 5Þ

but lim
x! 5� ½x� ¼ 4; ð )½4:99� ¼ 4Þ

Next, [� 4] ¼ � 4, lim
x! � 4þ

½x� ¼ � 4; ð )½ � 3:81� ¼ � 4Þ

but lim
x! 4� ½x� ¼ � 5; ð )½ � 4:12� ¼ � 5Þ

From the above,we observe that the function y ¼ [x] is right continuous for each integral value

of x. Furthermore, [x] is not differentiable for any integral value of x.

9.10 PHYSICAL MEANING OF DERIVATIVES

We know that

If f ðxÞ ¼ 5xþC; then f 0ðxÞ ¼ 5 ð26Þ

If gðxÞ ¼ x3; then g0ðxÞ ¼ 3x2 ð27Þ
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The relation (26) tells us that for function “f ” the (actual) rate of change is 5 (a constant), which

means that for any (small or big) increase (or decrease) in x, the value f(x) must increase (or

decrease) five times the change in x, anywhere in the domain of f(x). In other words, the rate of

change of f(x) (being constant) does not depend on the value of x.

The relation (27) tells that, for the function “g” the (actual) rate of change of g(x) is 3x2,

which depends on x. It means that at x ¼ 1, any small change in x causes nearly 3 times the

change in the value g(x), and at x ¼ 2, any small change in x causes nearly 12 times the change

in the value g(x) (since for x ¼ 2, 3x2 ¼ 12).

In other words, the derivative of a function gives an idea about the variation in y-coordinate

of a point on the graph (for a very small variation in the x-coordinate of the point).(35)

9.11 SOME INTERESTING OBSERVATIONS (36)

(a) We know that area A of any circle is given by the formula

AðrÞ ¼ pr2 ð28Þ

where r is radius of the circle. Here A is a function of r. Let us find the instantaneous rate

of change of A, with respect to r.

(Wemay carry out the process as done in steps (12)–(18) for function y ¼ 16x2. There is,

however, no need to repeat all the details. The two functions are practically alike, the only

difference being that p occurs in formula (28), whereas the number 16 occurs in y ¼ 16x2.

Of course, dr in the present case is an increase in the length of the radius (see Figure 9.13) and
dA is the corresponding increase in the area that results due to the increase dr in r.)

We get
dA

dr
¼ 2pr ð29Þ

The result (29) is of interest since it tells us that the rate of change of area of a circle with

respect to radius is the circumference of the circle. This result is intuitively clear, for as the

radius increases, one might say that successive circumferences are added to the area.

r

δr

δA

FIGURE 9.13

(35)We have mentioned about the derivative as a rate measurer in an earlier footnote.
(36) The following examples are selected from the book What Calculus Is About by W.W. Sawyer, Random House.
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(b) With the preceding result at hand, onemight guess that the rate of change of volume of a

sphere with respect to the radius could be the area of the surface of the sphere. In fact,

this is true.

The volume of a sphere is given by

vðrÞ ¼ 4

3
pr3

Here v is a function of r. We get

dv

dr
¼ 4

3
3pr2

¼ 4pr2

which is the formula for the area of the surface of a sphere.

This can hardly be a coincidence. In fact, it is easy to see why it occurs. Supposewe have

a sphere and we want to make it a little larger. We might spray an even coating of paint all

over its surface, thus giving it an extra skin. It is not at all surprising that the amount bywhich

the volume has increased during this operation should be closely related to the area of the

surface, on which the skin has been placed (or paint has been sprayed).

In this argument, it is absolutely essential that the coating should be even (i.e., the skin

must have the same thickness everywhere). In effect, we are estimating the increase dv in the
volume by multiplying the surface area to the thickness dr of the skin. This estimate is

reasonable only if the coating is thin.

(c) The idea that objects grow by forming an extra skin can also be illustrated without using

circles and spheres. Imagine a cube placed in the corner of a room as shown in

Figure 9.14. This cube will grow if someone continually sprays paint onto the exposed

faces of the cube.

This is done in such a way that the points A, B, and C move outward at some constant speed

(say, 1mm/s). At any time, let the side of the cube be x mm. Its volume will be v ¼ x3. This, we

know, grows at the rate ðdv=drÞ ¼ 3x2. The picture shows why 3x2should come into focus.

Observe that the exposed surface consists of three squares.

C

BA

FIGURE 9.14
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9.12 HISTORICAL NOTES

Who invented derivatives?

No one person invented the derivative. Related ideas and methods appear throughout math-

ematical history, spanning at least 2000 years. The modern European development happened

largely in the seventeenth and eighteenth centuries as follows:

Pierre de Fermat (1601–1665, French)

Isaac Newton (1642–1727, English)

Gottfried Leibniz (1646 – 1716, German)

Leonard Euler (1707–1783, Swiss)

Joseph-Louis Lagrange (1736–1813, French)

Isaac Newton and Gottfried Leibniz are generally considered the cofounders of modern

calculus. Building on Euler’s idea of a function, Lagrange may have been first to use the

phrase “derivative function”, and the prime symbol, to denote it.

Because of the difficulties in the very foundation of calculus, conflicts and doubts on the

soundness of the entire subject were prolonged. Among many contemporaries of Newton were

the following:

. Michel Rolle (who then contributed a famous theorem) taught that calculus was a

collection of ingenious fallacies.

. ColinMaclaurin (after whom another famous theoremwas named) decided that hewould

give a proper foundation to calculus and published a book on the subject in 1742. The book

was undoubtedly profound but also unintelligible.

. One hundred years after Newton and Leibniz, Joseph Louis Lagrange, one of the greatest

mathematicians of all times, still believed that calculus was unsound and gave correct

results only because errors were offsetting each other. He too formulated his own

foundation for calculus, but it was incorrect.

. Near the end of eighteenth century, d’Alembert had to advise students of calculus to keep

on with their study: faith would eventually come to them.

. Some of the strongest criticisms came from religious leaders. Of these, themost famous is

the highly original philosopher Bishop George Berkely.

Since the fundamental concept of calculuswas not clearly understood and therefore, not

well presented by either Newton or Leibniz, Berkely was able to enter the fray with

justification and conviction.

In “The Analyst” (1734), addressed to an infidel mathematician, he condemned

instantaneous rates of change of functions as “neither finite quantities nor quantities

infinitely small, nor yet nothing”. These rates of change were but “the ghosts of the

departed quantities”.

To account for the fact that calculus gave correct results, Berkely, like Lagrange, argued

that somewhere errors were compensating for each other.

The problem of calculating instantaneous rates, of which speed and acceleration were the most

pressing, attracted almost all the mathematicians of the seventeenth century, and the roster of

those who contributed to the subject and achieved limited success is extensive. Newton and

Leibniz took decisive steps in applying their ideas, which involved both intuition and
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imagination. They had an idea that made physical sense, and, since mathematics and physical

science were closely intertwined, they were not greatly concerned about the lack of mathe-

matical rigor. One might say that in their minds the end justified the means.

. Both Newton and Leibniz had a good “intuitive understanding” of the idea involved.

They applied it in a way we may call today, “the process of computing the limit of a

function”. However, in concluding the result(s), the explanations given by them were

inconsistent andmany a time contradictory. The concept of limit, as we know it today, was

not known to either Newton or Leibniz. Since theywere not very clear about the idea (of a

limit) they applied, they could not define it. Also, nobody before themdefined the concept.

The “merely intuitive quality of the idea” (of a limit) hampered progress in the

development of calculus, for a century, after Newton and Leibniz.

. In 1754, the French mathematician d’Alembert (1717–1783) suggested that the logical

basis of calculus would reside in the concept of limit. It was French mathematician

Augustin-Louis Cauchy (1789–1857), who gave the definition of limit that removed

doubts as to the soundness of the subject and made it free from all the confusion.With the

availability of systematic and refined material on the concept of limit, the reader today,

can easily grasp the concept. However, if the reader still finds some difficulty in grasping

it, he may be less discouraged when it is told that the concept of limit eluded evenNewton

and Leibniz.

The history of controversy surrounding calculus is most illuminating. The soundness of

calculus was doubted by the greatest mathematicians of the eighteenth century (as mentioned

above), yet it was not only applied freely but some of the greatest developments inmathematics-

differential equations, the calculus of variation, differential geometry, potential theory- and a

host of other subjects comprising what is now called analysis were developed and explored by

means of calculus.

Calculus might have been lost to us forever had the mathematicians of that age been too

concerned with rigor. We know now that even in mathematics, intuition and physical

thinking produce big ideas and that logical perfection must come afterward. We also see

more clearly today that the pursuit of absolute rigor in mathematics is an unending

endeavor, calling for patience. The understanding and mastery of nature must be sought,

with the best tools available.

(Most of these notes are taken fromMathematics and the Physical World, byMorris Kline,

and Calculus with Analytic Geometry (Alternate Edition), by Robert Ellis and Denny Gulick,

HBJ Publishers.)
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10 Algebra of Derivatives:
Rules for Computing Derivatives
of Various Combinations
of Differentiable Functions

10.1 INTRODUCTION

In Chapter 7a and b, we have studied the concept of limit of a function and used the notion (of

limit) as a tool to define the derivative of a function. We know that while the notion of limit is a

general notion for functions, the derivative of a function f(x) is defined by the limit

lim
h! 0

f ðxþ hÞ � f ðxÞ
h

If this limit exists, we denote it by f 0(x) and call it the derivative of f. In other words, the

derivative of a function is a limit of a particular kind.(1)

Since there are limit rules for sums, differences, products, and quotients of functions, it is

natural to ask whether there are corresponding rules for derivatives. Of course, there are rules

for computing the derivatives of such combinations of functions, but some of these rules (or

formulas) are quite different from their counterparts for limits. Also, there are rules

governing the derivative(s) of composite functions and those of inverse functions. All these

rules constitute the algebra of derivatives. We will also see how these rules are used in

applications and in the further development of calculus itself.

The necessity of such rules can be shown by means of the following example. Suppose we

have to find the derivative of the function defined by

f ðxÞ ¼ x5 � 4x3 þ 7xþ 8

This is a simple combination of algebraic functions, but still a complicated formula defining a

function. To find its derivative by applying the definition (i.e., by forming its difference quotient

(1) It must be clear that the difference quotient limh! 0 f ðxþ hÞ � f ðxÞ=h is constructed from the given function f (x) and

looked upon as a new function of “h”. If the limit of this difference quotient as h ! 0 exists, only then is f (x) said to be a

differentiable function, the limit being denoted by f 0(x).

Introduction to Differential Calculus: Systematic Studies with Engineering Applications for Beginners, First Edition.
Ulrich L. Rohde, G. C. Jain, Ajay K. Poddar, and Ajoy K. Ghosh.
� 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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and evaluating its limit) will be naturally time consuming and tedious. But, if we know how to

find the derivative of a combination of functions from the derivatives of the individual

functions, then obtaining the derivative f 0(x) would be much simpler.

For example, if f (x) and g(x) are differentiable functions of x, then the following results can

be proved:

d

dx
kf ðxÞ½ � ¼ k

d

dx
f ðxÞ; ðk 2 RÞ ð1Þ

d

dx
f ðxÞgðxÞ½ � ¼ f ðxÞ d

dx
gðxÞ þ gðxÞ d

dx
f ðxÞ ð2Þ

These relations define the rules (or formulas) expressing the derivative(s) of certain

combinations of functions in terms of the derivatives of individual functions. The functions

f(x), g(x), h(x), and so onmay be basic elementary functions (like xn, sin x, ex, loge x, etc.) or

their (simple) combinations (like k sin x, cos x2, e3x, loga(x þ 5), etc.) that are called

elementary functions. We distinguish between the terms: basic elementary functions and

the elementary functions.

10.1.1 Definition (A)

Basic elementary functions are the following analytically represented functions:

(i) Power Function: y ¼ xa, a2R, x> 0(2)

(ii) General Exponential Function: y ¼ ax, (a> 0, a 6¼ 1, x2R)

(iii) Logarithmic Function: y ¼ logax, (a> 0, a 6¼ 1, x> 0)

(iv) Trigonometric Functions: y ¼ sin x, y ¼ cos x, y ¼ tan x,

y ¼ cot x; y ¼ sec x; y ¼ cosec x:

(v) Inverse Trigonometric Functions: y ¼ sin�1 x, y ¼ cos�1x, y ¼ tan�1 x,

y ¼ cot�1x; y ¼ sec�1x; y ¼ cosec�1x:

Observe that certain basic elementary functions are combinations of other basic elementary

functions, for example, tan x ¼ sin x=cos x.

10.1.2 Definition (B)

An elementary function is a function that may be represented by a single formula of the type

y ¼ f ðxÞ
where the expression on the right-hand side is made up of basic elementary functions and

constants, by means of a finite number of operations of addition, subtraction, multiplication,

division, and taking the function of a function.(3)

(2) If a is irrational, this function is evaluated by taking logarithms and antilogarithms. Thus, we canwrite log y ¼ a log x,

which is defined for x> 0.
(3) For more details, see Differential and Integral Calculus by N. Piskunov (vol. I, pp. 20–24), Mir Publishers, Moscow.
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Examples of elementary functions:

y ¼ xj j ¼
ffiffiffiffiffi
x2

p
; y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4sin2x

p
y ¼ log xþ 2 tan xþ 4

ffiffiffi
x3

p
10x � xþ 10

10.1.3 An Example of a Nonelementary Function

The function y ¼ 1.2.3.4.5. . .n [y ¼ n! ¼ f (n)] is not elementary because the number of

operations that must be performed to obtain y increases with n. In other words, the number

of operations is not bounded.

10.2 RECALLING THE OPERATOR OF DIFFERENTIATION

We introduced the symbol d=dx in Chapter 9 and named it the operator of differentiation.

Recall that when it is applied to a differentiable function y ¼ f (x), it carries out the entire

operation of computing the derivative of f (x), in the following two steps:

(a) From the function f (x), it constructs a new function (called the difference quotient)

lim
h! 0

f ðxþ hÞ � f ðxÞ
h

ð3Þ

where h is a nonzero variable number, and

(b) Treating the difference quotient as a function of the variable h; it determines the limit

lim
h! 0

f ðxþ hÞ � f ðxÞ
h

ð4Þ

If this limit exists, we call it the derivative of the function y ¼ f (x), and denote it by the symbol

ðdy=dxÞ or ðd=dxÞðyÞ½ �or f 0(x) or y0.

10.2.1 Operator of Differentiation

Here a very important question arises.

Why should we introduce the operator of differentiation d=dx; if d f=dx represents nothing
else but the limit transition operation described at (4)?

To answer this, note that the operator d=dx stands for the entire process of computing

the derivative of a function. (This includes the method(s) required for evaluating the limit of

the difference quotient.) Accordingly, for certain functions (which are complicated combi-

nations of functions), the process of differentiation by applying the operator will be obviously

quite tedious.

Now, suppose it is proved separately that for a given function f ðxÞ; lim
h! 0

f ðxþ hÞ � f ðxÞ
h

¼ f 0ðxÞ
exists, then we can always write (the notation)

d

dx
f ðxÞ½ � ¼ f 0ðxÞ ð5Þ

without evaluating the limit of the difference quotient of f(x). Thus, we can use the symbol

d=dx in two useful ways.
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First, as an operator, when it defines the entire process of computing the derivative of a given

function, and second, it can be used to stand for the phrase, the derivative of f(x) as indicated

at (5) above.

(Note that in the formulas at (1) and (2) above, we have used the result (5), in expressing

the derivatives of certain combinations of functions without forming the difference quotient

of the given functions and evaluating their limits.)

To continue the discussion smoothly, we give below one more formula that expresses the

derivative of the ratio of differentiable functions:

Let f (x) and g(x) be differentiable functions. Then the derivative of the ratio

uðxÞ ¼ f ðxÞ=gðxÞ is given by

d=dx uðxÞ½ � ¼ d=dx
f ðxÞ
gðxÞ

� �
¼ gðxÞð d

dx
Þ f ðxÞ � f ðxÞð d

dx
ÞgðxÞ

gðxÞ½ �2 ; gðxÞ 6¼ 0 ð6Þð4Þ

If the derivatives of f (x) and g(x) are known, then we can easily write down the derivative of

the quotient uðxÞ ¼ f ðxÞ=gðxÞ using the formula (6), avoiding the direct use of limits.

(Note that, here, the symbol d=dx does not demand the formation of difference quotient and

evaluation of its limit since it does not act as an operator of differentiation.) This simplifies the

procedure for evaluating the derivative of the given combination of functions.

But to use such rules, we must know the derivatives of the basic elementary functions,

appearing in the formulas. It is therefore necessary to compute the derivatives of basic

elementary functions by some method and prepare a table for using them in the formulas to be

established.

Oneway is to obtain the derivatives of basic elementary functions by the first principle. It is

a good exercise but time consuming. There is a simpler way.We can obtain the derivatives of

some selected basic elementary functions by the first principle and then by using these

derivatives in the formulas, we can obtain the derivatives of other basic elementary functions,

by using properties of the functions, as will be clear from the following example.

Example (1): We know that d=dx ðsin xÞ ¼ cos x. Now, by using the relation cos x ¼
sinððp=2Þ � xÞ and the chain rule for differentiation (to be studied shortly), we can

computeðd=dxÞðcos xÞ. Furthermore,we know that tan x ¼ sin x=cos x; ðcos x 6¼ 0Þ. Hence,
by applying the formula (6),we can obtain the derivative of tan x, using the derivatives of sin x

and cos x.(5)

10.2.2 Rules of Differentiation of Functions

The above discussion suggests that our first step should be to establish the rules for differentia-

tion of functions. For this purpose, first, we find the result of applying the operator d=dx to

certain combinations of differentiable functions, namely, sums, products, and ratios. (It turns

out that the rules for differentiating such combinations of functions are easily established in

terms of the derivatives of the constituent functions.).

(4) The proof of this formula is discussed later under Rule (4).
(5) This gives an idea about the applications of the rules of differentiation. Later on, in the process of computing derivatives

of implicit functions and parametric functions, it will be noted how the rules of differentiation contribute to the further

development of calculus.
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Second, we find out the result of applying the operator d=dx to some selected basic

elementary functions, namely, functions like y ¼ xn; y ¼ sin x; y ¼ ax; y ¼ loga x. It is

found that the derivatives of these functions are easily computed by applying the operator d=dx
and using the properties of the functions. It will be seen that using the formulas (or rules) for

differentiation and the derivatives of these functions, we can obtain the derivatives of many

other basic elementary functions. (We can then prepare a table of these basic elementary

functions with their derivatives.)

After these two steps are completed, we may practically forget about the relations of the

type (4). In order to differentiate a function, it is sufficient to express the given function (via

basic elementary functions) and apply the rules of differentiation. Using the differentiation

rules and the table of derivatives for the basic elementary functions, we are in a position to

forget about the relations of the type (4) and compute the derivatives of elementary functions

using the language of the relations of type (5).

10.2.3 Formal Differentiation

By using the rules of differentiation, we can compute the derivatives (of functions) without

applying the operator d=dx (i.e., without applying the definition of derivatives). Hence, this

method of obtaining derivative(s) is called formal differentiation. Note that, in obtaining the

derivatives of functions by applying the formal rules of differentiation, the definition of

derivatives is indirectly used.(6)

In a formal course of differential calculus, the approach could be to skip the relations of the

type (4). These rules allow us to compute the derivatives of most complicated combinations of

functions, almost instantly, avoiding evaluation of limit(s). For the time being, we shall accept

the following standard results. These results are established later, in different chapters, as

indicated below:

10.2.4 Derivatives of Some Basic Elementary Function

1.
d

dx
ðcÞ ¼ 0; (c being constant) 2.

d

dx
ðxnÞ ¼ nxn�1; (n2N)(7)

3.
d

dx
ðsin xÞ ¼ cos x 4.

d

dx
ðcos xÞ ¼ �sin x

5.
d

dx
ðtan xÞ ¼ sec2x 6.

d

dx
ðcot xÞ ¼ �cosec2x

7.
d

dx
ðsec xÞ ¼ sec x � tan x 8.

d

dx
ðcosec xÞ ¼ �cosec x � cot x

9.
d

dx
ðexÞ ¼ ex 10.

d

dx
ðaxÞ ¼ ax � logea; ða > 0Þ

11.
d

dx
ðlogexÞ ¼ 1

x
; ðx > 0Þ 12.

d

dx
ðlogaxÞ ¼ 1

x

1

loge a
; ða > 0; x > 0Þ

(6) If differential calculus were formulated in terms of limits, using relations of type (4), all books on calculus would have

been increased in their volume several folds and become unreadable. The use of the relations of type (5), instead of (4),

makes it possible to avoid this.
(7) This rule is true for any real n, as will be clear later on.

INTRODUCTION 279



Of these results, those at (1) and (2) are already proved in Chapter 9.

. Derivatives of trigonometric functions are established in Chapter 11.

. Derivatives of exponential and logarithmic functions are established in Chapter 13.

Having accepted the standard results stated in Section 10.2.4, our next step is to establish the

rules for differentiation.

Our approach will be to state the differentiation rules and discuss their application(s). Also,

wewill prove some of these rules, preferably those that demand special care in proof(s), leaving

the rest as exercises. It is assumed that each function under consideration is a differentiable

function of a real variable.

Rule (1): Derivative of a sum (or difference) of functions

Let f1 and f2 be differentiable functions of x, with the same domain, and let

f ðxÞ ¼ f1ðxÞ þ f2ðxÞ

then

d

dx
f ðxÞ ¼ d

dx
f1ðxÞ þ d

dx
f2ðxÞ

This rule tells us that the derivative of a sum (or difference) of functions is the sum (or

difference) of their derivatives. (This rule is similar to the corresponding rule for limit of a sum

(or difference) of functions.)

Note (1): This rule can be extended to the derivative of the sum (or difference) of any finite

number of differentiable functions, with the same domain. Thus, if

f ðxÞ ¼ f1ðxÞ � f2ðxÞ � . . .� fnðxÞ

then

f 0ðxÞ ¼ f 01ðxÞ � f 02ðxÞ � � � � � f 0nðxÞ

Example (2):

.
d

dx
ðsin x� cos xÞ ¼ cos xþ sin x

.
d

dx
ðx3 þ 7x� 5Þ ¼ 3x2 þ 7

.
d

dx
ðax � tan xþ loge xÞ ¼ axlogea� sec2xþ 1

x

.
d

dx
ðx5 þ ex � sec xÞ ¼ 5x4 þ ex � sec x � tan x
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Rule (2): The Constant Rule for Derivatives

If k is any constant, f is any differentiable function, and g(x) ¼ k � f (x), then
d

dx
gðxÞ ¼ d

dx
k � f ðxÞ½ � ¼ k

d

dx
f ðxÞ

Example (3):

.
d

dx
ð5 sin xÞ ¼ 5

d

dx
ðsin xÞ ¼ 5 cos x

.
d

dx
ð7x3Þ ¼ 7

d

dx
ðx3Þ

� �
¼ 7ð3x2Þ ¼ 21x2

Note (2):This rule reminds us of the formula for the limit of a functionmultiplied by a constant.

Besides, the difference rule for derivatives is obtained by combining the addition rule and the

constant multiple rule for derivatives.

Remark: The constant rule can be interpreted geometrically. The graph of k � f (x) is obtained
by stretching the graph of “f ”vertically, with factor k.

How does such a stretch affect a tangent line to the graph of “f” at x ¼ a?

The constant rule says that a vertical k stretch multiplies slopes of every thing – both the

graph and the tangent line – by the same factor k. For example, the slope of the line y ¼ 3x is

three times that for y ¼ x. Similarly, the slope at each point of y ¼ 5x2 is five times that for

y ¼ x2.

Note (3): By combining rule(2), with rule(1), we can write

d

dx
ð5 sin x� 7ex þ 2 loge xþ 2x3 � 8x2 þ 3Þ ¼ 5 cos x� 7ex þ 2

x
þ6x2 � 16x

Rule (3): The derivative of product of two functions

Let f1(x) and f2(x) be differentiable functions of x and let

f ðxÞ ¼ f1ðxÞ f2ðxÞ

Then

d

dx
f ðxÞ ¼ d

dx
f1ðxÞ f2ðxÞ½ � ¼ f1ðxÞ ¼ d

dx
f2ðxÞ½ � þ f2ðxÞ d

dx
f1ðxÞ½ �ð8Þ

Proof: We have

f ðxÞ ¼ f1ðxÞ f2ðxÞ
f ðxþ hÞ ¼ f1ðxþ hÞ f2ðxþ hÞ

(8) To remember this formula, we can read it as follows:

d½ f1ðxÞ f2ðxÞ�
dx

¼ First function � dðSecond functionÞ
dx

þ Second function � dðFirst functionÞ
dx

:
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By the definition of derivative (i.e., by applying the operator d=dx), we have

d

dx
f1ðxÞ f2ðxÞ½ � ¼ lim

h! 0

f1ðxþ hÞ f2ðxþ hÞ � f1ðxÞ f2ðxÞ
h

¼ lim
h! 0

f1ðxþ hÞ f2ðxþ hÞ � f1ðxþ hÞ f2ðxÞ þ f1ðxþ hÞ f2ðxÞ � f1ðxÞ f2ðxÞ
h

¼ lim
h! 0

f1ðxþ hÞf f2ðxþ hÞ � f2ðxÞg þ f2ðxÞf f1ðxþ hÞ � f1ðxÞg
h

¼ lim
h! 0

f1ðxþ hÞf f2ðxþ hÞ � f2ðxÞg
h

þ f2ðxÞf f1ðxþ hÞ � f1ðxÞg
h

� �

¼ f1ðxÞ d

dx
f2ðxÞ½ � þ f2ðxÞ d

dx
f1ðxÞ½ �

) d

dx
f1ðxÞ f2ðxÞ½ � ¼ f1ðxÞ d

dx
f2ðxÞ½ � þ f2ðxÞ d

dx
f1ðxÞ½ �

Note (4):This rule can also be proved,without using the trick of adding the number 0 (i.e., adding

f1ðxÞ f2ðxÞ and subtracting the same). Another convenient notation for stating this rule is

d

dx
u v½ � ¼ u

dv

dx
þ v

du

dx
; where u and v are differentiable functions of x.

Note (5): This rule can be extended to the product of more than two functions (and in general

for a product of finite number of differentiable functions).

Thus,

d

dx
u v w½ � ¼ d

dx
ðu vÞw½ � ¼ u v

dw

dx
þ w

dðuvÞ
dx

¼ uv
dw

dx
þ w u

dv

dx
þ v

du

dx

� �

¼ uv
dw

dx
þ vw

du

dx
þ wu

dv

dx

Example (4):

d

dx
ðx2 logaxÞ ¼ x2

d

dx
ðlogaxÞ þ logax

d

dx
ðx2Þ

¼ x2
1

x loge a
þ loga x

2x

¼ x

loge a
þ 2x logax Ans:

Remark (1):We have seen that the derivative of a sum (or difference) of functions is a sum (or

difference) of their derivatives. By analogy, it is tempting to assume that the derivative of a
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product of functions is the product of their derivatives. But this is not correct as can be seen from

the example d
dx
ðx2Þ(9)

(The correct formula as discussed under Rule (3) was discovered by Leibniz. Hence, it is

often called the Leibniz rule.)

Remark (2): If k is a constant and f (x) is a differentiable function of x, then

d=dx[kf(x)] ¼ kf(x). This we have stated as rule (2). It can also be proved by applying

the definition of derivative (i.e., by the first principle). It can also be proved by applying

Rule (3) as follows:

Proof:
d

dx
kf ðxÞ½ � ¼ k

d

dx
f ðxÞ þ f ðxÞ dk

dx

¼ k
d

dx
f ðxÞ þ f ðxÞ 0

¼ k
d

dx
f ðxÞ

Example (5): Find the slope of the graph of hðxÞ ¼ ð7x3 � 5xþ 2Þð2x4 þ xþ 7Þ; at x ¼ 1.

Solution: Let f ðxÞ ¼ 7x3 � 5xþ 2 and gðxÞ ¼ 2x4 þ xþ 7

Then,
hðxÞ ¼ f ðxÞgðxÞ

) h0ðxÞ ¼ f ðxÞg0ðxÞ þ gðxÞf 0ðxÞ
¼ ð7x3 � 5xþ 2Þð8x3 þ 1Þ þ ð2x4 þ xþ 7Þð21x2 � 5Þ

ð7Þ

Now, by evaluating h0(x) at x ¼ 1, we get the slope of the graph of h(x) at that point. We have

h0ð1Þ ¼ ð7� 5þ 2Þ ð8þ 1Þ þ ð2þ 1þ 7Þ ð21� 5Þ
¼ 4ð9Þ þ 10 ð16Þ ¼ 36þ 160 ¼ 196

Another approach could be that we expand the right side of (7) and differentiate the resulting

polynomial. Besides, note that in this example h(x) is a polynomial, whereaswewill be applying

the product rule to many functions other than polynomials.

Example (6): Differentiate ðx3 þ 5x2Þsin x.

Solution: Let y ¼ ðx3 þ 5x2Þ sin x

) dy

dx
¼ ðx3 þ 5x2Þcos xþ sin xð3x2 þ 10xÞ
¼ ðx3 þ 5x2Þcos xþ ð3x2 þ 10xÞsin x Ans:

(9) Note that dx2=dx ¼ dðx � xÞ=dx. If the above assumption were true, we would conclude that dx2=dx ¼
ðdx=dxÞ � ðdx=dxÞ ¼ 1� 1 ¼ 1, which is not correct.
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Example (7): Differentiate 3x log5 x

Let y ¼ 3x log5 x

¼ 3x
d

dx
ðlog5 xÞ þ ðlog5 xÞ

d

dx
ð3xÞ

¼ 3x
1

x loge 5
þ ðlog5 xÞ3x loge3

¼ 3x

x loge 5
þ loge3 � 3xðlog5 xÞ

¼ 3x
1

x loge 5
þ 3xloge3ðlog5 xÞ Ans:

Exercise Answer

(1) Differentiate x logex 1 þ loge x

(2) If y ¼ (x2 þ 2x) 3x, find dy=dx at x ¼ 2 18(log 34 þ 3)

(3) If y ¼ 6x tan x, find dy=dx at x ¼ 0 0

The rules defining the derivatives of product(s) and quotient(s) of functions are not as straight-

forward as those of sums and constant multiples. Just as the derivative of the product of two

functions is not the product of their derivative, the derivative of the quotient of two functions is

not the quotient of their derivatives, as you see in the next rule.

Rule (4): The derivative of quotient of two functions

Let f1 and f2 be differentiable functions of x and let

f ðxÞ ¼ f1ðxÞ
f2ðxÞ

Then,

d

dx

f1ðxÞ
f2ðxÞ

� �
¼ f2ðxÞð ddxÞ f1ðxÞ½ � � f1ðxÞð ddxÞ f2ðxÞ½ �

½ f2ðxÞ�2

Proof: We have f ðxÞ ¼ f1ðxÞ
f2ðxÞ

) f ðxþ hÞ ¼ f1ðxþ hÞ
f2ðxþ hÞ

d

dx

f1ðxÞ
f2ðxÞ

� �
¼ lim

h! 0

ð f1ðxþ hÞÞ=ð f2ðxþ hÞÞ � ð f1ðxÞÞ=ð f2ðxÞÞ
h

¼ lim
h! 0

f1ðxþ hÞ f2ðxÞ � f1ðxÞ f2ðxþ hÞ
hf2ðxþ hÞ f2ðxÞ

As we did in the proof of the product rule, we perform another clever manipulation.

Again, we add the number 0 in the numerator, but this time the expression (that we add) is

[� f1(x)f2(x) þ f1(x)f2(x)].
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We get

d

dx

f1ðxÞ
f2ðxÞ

� �
¼ lim

h! 0

f1ðxþ hÞ f2ðxÞ � f1ðxÞ f2ðxÞ þ f1ðxÞ f2ðxÞ � f1ðxÞ f2ðxþ hÞ
hf2ðxþ hÞ f2ðxÞ

¼ lim
h! 0

f2ðxÞ½ð f1ðxþ hÞ � f1ðxÞÞ=h� � f1ðxÞ½ð f2ðxþ hÞ � f2ðxÞÞ=h�
f2ðxþ hÞf2ðxÞ

Now, taking the limit, we 2 get

d

dx

f1ðxÞ
f2ðxÞ

� �
¼ f2ðxÞð ddxÞ f1ðxÞ½ � � f1ðxÞð ddxÞ f2ðxÞ½ �

½ f2ðxÞ�2
; where f2ðxÞ 6¼ 0

This formula can be remembered as follows.

The derivative of the quotient of two functions:

¼ Drð d
dx
ÞNr� Nrð d

dx
ÞDr

½Dr�2 ; Dr 6¼ 0

where, Nr ¼ Numerator and Dr ¼ Denominator.

Another convenient notation used to state this rule is given below.

If u and v are differentiable functions of x, then

d

dx

u

v

h i
¼ vðdu

dx
Þ � uðdv

dx
Þ

v2
; where v 6¼ 0

Note (6): The formula for the derivative of a quotient becomes more concise when the

numerator u ¼ 1, for all x. In this case, the formula is

d

dx

1

v

� �
¼ vð d

dx
Þð1Þ � 1ð d

dx
ÞðvÞ

v2
¼ �1

v2
dv

dx

Example (8): Show that ðd=dxÞtan x ¼ sec2x.

Solution: We have, tan x ¼ sin x=cos x.

) d

dx
tan x ¼ cos xð d

dx
Þsin x� sin xð d

dx
Þcos x

cos2x

¼ cos x � cos x� sin xð�sin xÞ
cos2x

¼ cos2xþ sin2x

cos2x

¼ 1

cos2x
¼ sec2x
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Similarly,

d

dx
cot x ¼ �cosec2x

Example (9): Show that ðd=dxÞ sec x ¼ sec x � tan x.

Solution:
d

dx
sec x ¼ d

dx

1

cos x

� �

¼ cos xð d
dx
Þð1Þ � 1ð d

dx
Þðcos xÞ

cos xð Þ2

¼ 0� ð�sin xÞ
cos xð Þ2 ¼ 1

cos x

sin x

cos x

¼ sec x � tan x

Similarly,
d

dx
ðcosec xÞ ¼ �cosec x � cot x

Rule (5): The power rule of differentiation for negative powers

(As an application of Rule (4))

Show that ðd=dxÞðx�nÞ ¼ �nx�n�1; for any positive integer n.

Proof: Since –n is a negative integer, it means that n is a positive integer.

We, therefore, express f(x) as a quotient and apply the quotient rule.

We have

f ðxÞ ¼ x�n ¼ 1

xn

f ðxÞ ¼ ðxnÞ0� 1 � nðxn�1Þ
xnð Þ2

¼ �nxn�1

x2n
¼ �nxn�1�2n

¼ �nx�n�1

In particular,

d

dx

1

x

� �
¼ d

dx
ðx�1Þ ¼ �1x�2 ¼ �1

x2
and

d

dx
ðx�13Þ ¼ �13x�14

Note (7): The function x�2 appears in Newton’s law of gravitation and in the formula for the

electric force between charges. In addition, x�4 appears in the formula for the flow of blood

through arteries. Thus, functions of the form x�n, where n is positive, arise in the real world.(10)

(10) Calculus with Analytic Geometry (Alternate Edition) by Robert Ellis and Denny Gulick (p. 128), HBJ Publication.
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Remark: We have

d

dx
ðx�nÞ ¼ �nx�n�1

and
d

dx
ðxnÞ ¼ nxn�1

Combining these two functions, we get

d

dx
ðxnx�nÞ ¼ xnð�nx�n�1Þ þ x�nðnxn�1Þ

¼ �nx�1 þ nx�1

¼ ð�nþ nÞx�1

¼ 0x�1

If we assume that 0 x�1 ¼ 0; then we can write

d

dx
ðxnx�nÞ ¼ d

dx
ðxn�nÞ ¼ d

dx
ðx�Þ ¼ 0x�1 ¼ 0

which means that the result

d

dx
ðxnÞ ¼ nxn�1 holds even when n ¼ 0

In particular, if n ¼ 1, then
d

dx
ðx1Þ ¼ 1x1�1 ¼ x� ¼ 1

Thus, we conclude that if n is any integer (positive, zero, or negative), then the power rule

holds.

Remark: Note that, there is no power function y ¼ xn, which can give dy=dx ¼ x�1 ¼ 1=x:
Later on, we will discover a new function, namely, the logarithmic function to the base e

(denoted by y ¼ loge x, (x> 0)] that gives dy=dx ¼ dðyÞ=dx ¼ dðloge xÞ=dx ¼ 1=x ¼
x�1: (This is discussed in Chapter 13 of Differential Calculus and Chapter 6b of Integral

Calculus.)

Example (10): If y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin 2x

1þ sin 2x

r
; find dy=dx.

Solution: Consider 1� sin 2x

¼ sin2xþ cos2x� 2 sin x cos x

¼ ðsin x� cos xÞ2

) y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin 2x

1þ sin 2x

r
¼ sin x� cos x

sin xþ cos x

We have

d

dx
ðsin x� cos xÞ ¼ cos xþ sin x
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and

d

dx
ðsin xþ cos xÞ ¼ cos x� sin x

) dy

dx
¼ Drð d

dx
ÞNr� Nrð d

dx
ÞDr

½Dr�2 ; Dr 6¼ 0

¼ ðsin xþ cos xÞðcos xþ sin xÞ � ðsin x � cos xÞðcos x� sin xÞ
ðsin xþ cos xÞ2

¼ ðsin xþ cos xÞ2 þ ðsin x� cos xÞ2
ðsin xþ cos xÞ2

¼ ð1þ 2 sin x cos xÞ þ ð1� 2 sin x cos xÞ
ðsin xþ cos xÞ2

) dy

dx
¼ 2

ðsin xþ cos xÞ2 ¼ 2

ð1þ sin 2xÞ
ð11Þ

Example (11): If y ¼ ðtan xþ sec xÞ=ðtan x� sec xÞ; find dy=dx.

Solution: Consider

tan xþ sec x ¼ sin x

cos x
þ 1

cos x
¼ sin xþ 1

cos x

Similarly

tan x� sec x ¼ sin x� 1

cos x

) y¼ sin xþ 1

sin x� 1

Furthermore,
d

dx
ðsin xþ 1Þ ¼ cos x

and
d

dx
ðsin x� 1Þ ¼ cos x

) dy

dx
¼ d

dx

sin xþ 1

sin x� 1

� �

¼
ðsin x� 1Þ d

dx
ðsin xþ 1Þ � ðsin xþ 1Þ d

dx
ðsin x� 1Þ

sin x� 1ð Þ2

¼ ðsin x� 1Þcos x� ðsin xþ 1Þcos x
sin x� 1ð Þ2

¼ �cos x� cos x

sin x� 1ð Þ2

) dy

dx
¼ �2cos x

sin x� 1ð Þ2

(11) Note (8): If we express the given function as y ¼ ðcos x� sin xÞ=ðcos xþ sin xÞ, then we will get dy=dx ¼
�2=ð1þ sin 2xÞ.
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Example (12): Differentiate with respect to x, the function, y ¼ logx a

Solution: We have logx a ¼ loge a � logx e

¼ loge a

loge x
¼ k

loge x

Where k (constant) ¼ loge a

Thus, we have

y ¼ k

loge x

) dy

dx
¼ loge xð0Þ � kð1=xÞ

loge xð Þ2

¼ �k

x loge xð Þ2

) dy

dx
¼ �loge a

x loge xð Þ2 Ans:

Example (13): If y ¼
ffiffiffiffiffiffiffi
xþ1

p þ ffiffiffiffiffiffiffi
x�1

pð Þffiffiffiffiffiffiffi
xþ1

p � ffiffiffiffiffiffiffi
x�1

pð Þ; find dy=dx:

Solution: Consider

y ¼
ffiffiffiffiffiffiffiffiffiffiffi
xþ 1

p þ ffiffiffiffiffiffiffiffiffiffiffi
x� 1

p
ffiffiffiffiffiffiffiffiffiffiffi
xþ 1

p � ffiffiffiffiffiffiffiffiffiffiffi
x� 1

p �
ffiffiffiffiffiffiffiffiffiffiffi
xþ 1

p þ ffiffiffiffiffiffiffiffiffiffiffi
x� 1

p
ffiffiffiffiffiffiffiffiffiffiffi
xþ 1

p þ ffiffiffiffiffiffiffiffiffiffiffi
x� 1

p

¼ ðxþ 1Þ þ ðx� 1Þ þ 2
ffiffiffiffiffiffiffiffiffiffiffi
xþ 1

p ffiffiffiffiffiffiffiffiffiffiffi
x� 1

p

ðxþ 1Þ � ðx� 1Þ ¼ 2xþ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p

2
¼ xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p

) dy

dx
¼ 1þ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p 2x
dy

dx
¼ 1þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � 1
p x Ans:

Example (14): If y ¼
ffiffi
a

p þ ffiffi
x

pð Þffiffi
a

p � ffiffi
x

pð Þ ; find dy=dx.

Solution:
d

dx

ffiffiffi
a

p þ ffiffiffi
x

p� � ¼ 0þ 1

2
ffiffiffi
x

p ¼ 1

2
ffiffiffi
x

p

and
d

dx

ffiffiffi
a

p � ffiffiffi
x

p� � ¼ � 1

2
ffiffiffi
x

p
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Now,

dy

dx
¼

ffiffiffi
a

p � ffiffiffi
x

pð Þ 1=2
ffiffiffi
x

pð Þ � ffiffiffi
a

p þ ffiffiffi
x

pð Þ �1=2
ffiffiffi
x

pð Þffiffiffi
a

p � ffiffiffi
x

pð Þ2

¼
ffiffiffi
a

p
=2

ffiffiffi
x

pð Þ � 1=2ð Þ þ ffiffiffi
a

p
=2

ffiffiffi
x

pð Þ þ 1=2ð Þffiffiffi
a

p � ffiffiffi
x

pð Þ2
¼

ffiffiffi
a

p
=

ffiffiffi
x

p
ffiffiffi
a

p � ffiffiffi
x

pð Þ2

) dy

dx
¼

ffiffiffi
a

p
ffiffiffi
x

p ffiffiffi
a

p � ffiffiffi
x

pð Þ2
Ans:

Exercise (1):

Find the derivative of

the following functions

with respect to x: Answers

1.
ex

sin x

exðsin x� cos xÞ
sin2 x

2.
ax

xn
ax

xn
logea�

n

x

	 


3.
x cos x

loge x
ð�x sin xþ cosÞ log x� cos x

loge xð Þ2

4.
loge x

cos x

cos xþ x loge x sin x

x cos2 x

5.
ex þ e�x

ex � e�x

�4

ex � e�xð Þ2

6.

ffiffiffiffiffiffiffiffiffiffiffi
1þ x

1� x

r
1

ð1� xÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p or
1

ð1� xÞ3=2ð1þ xÞ

7.

ffiffiffiffiffiffiffiffiffiffiffi
aþ x

p � ffiffiffiffiffiffiffiffiffiffiffi
a� x

pffiffiffiffiffiffiffiffiffiffiffi
aþ x

p þ ffiffiffiffiffiffiffiffiffiffiffi
aþ x

p a2 � a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x2

p

x2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x2

p

8. log

ffiffiffiffiffiffiffiffiffiffiffi
aþ x

a� x

r a

a2 � x2

9. log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþ ab

x� ab

r
ab

x2 � a2b2

10.
1

log10 x

�loge10

xðloge xÞ2

10.3 THE DERIVATIVE OF A COMPOSITE FUNCTION

We have already introduced the concept of composite functions in Chapter 6. Many of the

functions we encounter in mathematics and in applications are composite functions. Consider

the following examples:

(i) sin x3 is a function of x3, and x3 is a function of x.

(ii) loge x
4 is a function of x4, and x4 is a function of x.
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(iii) ecos 2x is a function of cos 2x, cos 2x is a function of 2x, and 2x is a function of x.

(iv) logðtan ðx=2ÞÞ is a function of tan ðx=2Þ; tan ðx=2Þ is a function of x=2; and x=2 is a

function of x.

Thus, sin x3, logex
4, ecos 2x, logðtan ðx=2ÞÞ; and so on are examples of composite functions of x.

If we could discover a general rule for the derivative of a composite function in terms of

the component functions, then we would be able to find its derivative without resorting to the

definition of the derivative.

To find the derivative of a composite function, we apply the chain rule, which is one of the

important computational theorems in calculus. It assumes a very suggestive form in the Leibniz

notation and can be stated as follows:

If y is a function of u, defined by y ¼ f(u) and dy=du exists, and if u is a function of x, defined
by u ¼ g(x) and du=dx exists, then y is a function of x and dy=dx exists, and is given by

dy

dx
¼ dy

du

du

dx
ð8Þ

Note (9): The resemblance between (8) and an algebraic identity makes it easy to remember

this rule. Here, it is important to note that in the product of derivatives on RHS, there are two

separate operators of differentiation, namely, d=du and d=dx. Hence, dy=dx is not obtained

by canceling du from the numerator and the denominator.(12)

Note (10): The proof of the chain rule for all differentiable functions is sophisticated and

appears in advanced texts. A simplified proof (pertaining to functions satisfying an additional

hypothesis) is given below.

Rule (5): The Chain Rule

If y ¼ f(u) is a differentiable function of u and u ¼ g(x) is a differentiable functions of x, such

that the composite function y ¼ f(g(x)) is defined then

dy

dx
¼ dy

du

du

dx
ð9Þ

Proof: It is given that y is a differentiable function of u and u is a differentiable function of x

such that f(g(x)) is defined. Thus, y is a function of x.

As x changes to (x þ dx), let u change to (u þ du) and in turn y to (y þ dy).

) As dx! 0; du! 0

(12) Whenwe introduced the Leibniz notation dy=dx, we emphasized that it should be treated as a single symbol.Wedid not

give independent meanings to dy and dx. We should, therefore, consider the statement (9) as an equation involving formal

differentiation. Later on, we will see the separate meanings attached to dy and dx (in Chapter 16), so that the meaning of

dy=dx is retained.
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Now, consider the algebraic identity

dy

dx
¼ dy

du

du

dx
ðwhere du 6¼ 0; dx 6¼ 0Þ

Taking limit as dx ! 0

lim
dx! 0

dy

dx
¼ lim

dx! 0

dy

du

du

dx

� �

¼ lim
du! 0

dy

du

� �
lim
dx! 0

du

dx

� � ð10Þ

Now,

lim
du! 0

dy

du
¼ dy

du
; )y is a differentiable function of u½ �

and

lim
dx! 0

du

dx
¼ du

dx
; )u is a differentiable function of x½ �

) RHS of (10) exists.

) LHS of (10) exists, that is, lim
dx! 0

dy=dx; which is equal to dy=dx.

) dy

dx
¼ dy

du

du

dx
Proved

Rule (5.1): Extension of Chain Rule (i.e. The Compound Chain Rule)

In general, if y ¼ f(t), t ¼ g(u), and u ¼ h(x), where dy=dt; dt=du; and du=dx exist, then y is a

function of x and dy=dx exists, given by

dy

dx
¼ dy

dt

dt

du

du

dx

Thus, the derivative of y is obtained in a chain-like fashion. In practice, it is convenient to

identify the functions t, u, and so on at different stages of differentiation, as indicated in the

solved examples.

Remark: In formula (R), y is represented in two different ways:once as a function of x and

once as a function of u. The expression dy=dx is the derivative of y, when y is regarded as a

function of x.

In the same way, dy=du is the derivative of y, when y is regarded as a function of u.(13)

Formula (9) is especially useful when y is not given explicitly in terms of x, but is given in terms

of an intermediate variable (see solved examples on related rates.)

Example (15): If y ¼ logðlog ðsin xÞÞ; find dy=dx.

(13) It can be shown that dy=dx and dy=du may be different. For example, consider a simple function. Suppose y ¼ u2

and u ¼ ð1=xÞ: Then y ¼ ð1=xÞ2 ¼ 1=x2 ¼ x�2; so that dy=dx ¼ �2=x3;whereas dy=du ¼ 2u ¼ 2=x: Thus;

dy=dx 6¼ dy=du:
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Solution: We have y ¼ logðlog ðsin xÞÞ; differentiating w. r. to x, we get

dy

dx
¼ d

dx
logðlogðsin xÞÞ

¼ d

dx
log t; where t ¼ logðsin xÞ½ �

¼ d

dt
logt

dt

dx
; )dy

dx
¼ dy

dt

dt

dx

� �

¼ 1

t

dt

dx

¼ 1

logðsin xÞ
d

dx
logðsin xÞ; putting the value of t½ �

¼ 1

logðsin xÞ
d

dx
log u; where u ¼ sin x½ �

¼ 1

logðsin xÞ
d

du
ðlog uÞ du

dx

¼ 1

logðsin xÞ
1

u

d

dx
sin x

¼ 1

logðsin xÞ
1

sin x
cos x

) dy

dx
¼ cot x

logðsin xÞ Ans:

Example (16): If y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
sec

ffiffiffi
x

pp
; find dy=dx.

Solution: We have
y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
sec

ffiffiffi
x

pq

) dy

dx
¼ d

dx

ffiffiffiffiffiffiffiffiffiffiffiffiffi
sec

ffiffiffi
x

pq
¼ d

dx
t1=2; where sec

ffiffiffi
x

p ¼ t
� �

¼ d

dt
t1=2

dt

dx
; )dy

dx
¼ dy

dt

dt

dx

� �

¼ 1

2
ffiffi
t

p d

dx
sec

ffiffiffi
x

p

¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
sec

ffiffiffi
x

pp d

dx
sec u; where u ¼ ffiffiffi

x
p� �

¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
sec

ffiffiffi
x

pp d

du
sec u

du

dx

¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
sec

ffiffiffi
x

pp sec u tan u
d

dx
x1=2

¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
sec

ffiffiffi
x

pp sec
ffiffiffi
x

p
tan

ffiffiffi
x

p 1

2
ffiffiffi
x

p

¼ sec
ffiffiffi
x

p
tan

ffiffiffi
x

p

4
ffiffiffi
x

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
sec

ffiffiffi
x

pp Ans:
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Example (17): If y ¼ log
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þsin mxÞ
ð1�sin mxÞ

q
; find dy=dx.

Solution: Given, y ¼ log
1þ sinmx

1� sinmx

� �1=2

y ¼ 1

2
log

1þ sinmx

1� sinmx

� �

¼ 1

2
log 1þ sinmxð Þ � log 1� sinmxð Þ½ �

) dy

dx
¼ 1

2

d

dx
logð1þ sinmxÞ � d

dx
logð1� sinmxÞ

� �ð14Þ

¼ 1

2

d

dx
logt� d

dx
log u

� �
where t ¼ 1þ sinmx; and u ¼ 1�sinmxf gx

¼ 1

2

d

dt
log t

dt

dx
� d

du
log u

du

dx

� �

¼ 1

2

1

t

d

dx
ð1þ sinmxÞ � 1

u

d

dx
ð1� sinmxÞ

� �

¼ 1

2

m cosmx

1þ sinmx
þ m cosmx

1� sinmx

� �

¼ 1

2
m cosmx

1� sinmxþ 1þ sinmx

1� sin2 mx

� �

¼ 1

2

2m cosmx

cos2 mx

� �
¼ m

cosmx

¼ m secmx Ans:

Simpler method for Example (17) and other similar problems:

Given y ¼ 1

2
log

1þ sinmx

1� sinmx

� �
¼ 1

2
logð1þ sinmxÞ � logð1þ sinmxÞ½ �

) dy

dx
¼ 1

2

d

dx
log ð1þ sinmxÞ � d

dx
log ð1þ sinmxÞ

� �

Consider
d

dx
log ð1þ sinmxÞ

¼ 1

1þ sin mx
ðm cosmxÞ ¼ m cosmx

1þ sinmx

Similarly
d

dx
log ð1� sinmxÞ ¼ �m cosmx

1� sinmx

(14) Note (11): From this step onward, we can adopt a simpler approach, as given below, instead of the one that follows in

continuation.
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) dy

dx
¼ 1

2

m cosmx

1þ sinmx
þ m cosmx

1� sinmx

� �

¼ 1

2
m cosmx

1� sinmxþ 1þ sinmx

1� sin2 mx

� �

¼ 1

2

2m cosmx

cos2 mx

� �
¼ m

cosmx
¼ m secmx Ans:

Note (12):When computing derivatives by the chain rule,we do not actuallywrite the functions

t, u, and so on, but bear them in mind, and keep on obtaining the derivatives of the component

functions, stepwise, as shown in the following solved examples.

Example (18): If y ¼ log ðsin x2Þ; find dy=dx.

Solution: Given, y ¼ log ðsin x2Þ.

Using the comments given in the above note, we write

dy

dx
¼ d

dx
logðsinx2Þ� �

¼ 1

sinx2
cos x2

d

dx
ðx2Þ

¼ cot2x � 2x
¼ 2x cot x2 Ans:

Note (13): Observe that when we differentiate a function by using the chain rule, we

differentiate from the outside inward. Thus, to differentiate sin(3x þ 5), we first differentiate

the outer function sin x (at 3x þ 5) and then differentiate the inner function (3x þ 5), at (x).

Similarly, to differentiate cos x7, we first differentiate the outer function cos x (at x7) and then

differentiate the inner function x7, at x.

The chain rule can be applied to even longer composites. The procedure is always the same:

Differentiate from outside inward and multiply the resulting derivatives (evaluated at the

appropriate numbers).

For example,

d

dx
sinðcosðtan5 xÞÞ� � ¼ cosðcosðtan5 xÞÞ� � �sinðtan5 xÞ� �ð5tan4 xÞsec2 x

Example (19): If y ¼ log log ðlog xÞ; find dy=dx.

Solution: We have y ¼ loglogðlogxÞ
dy

dx
¼ d

dx
loglogðlogxÞ½ �

¼ 1

logðlog xÞ
d

dx
logðlog xÞ½ �

¼ 1

logðlog xÞ
1

log x

d

dx
ðlog xÞ

¼ 1

logðlog xÞ
1

log x

1

x

¼ 1

x log x logðlog xÞ Ans:
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Example (20): If y ¼ log log log x3; find dy=dx.

Solution: We have

y ¼ log log log x3

dy

dx
¼ d

dx
log log log x3
� �

¼ 1

log log x3
d

dx
log log x3
� �

¼ 1

log log x3
1

log x3
d

dx
log x3
� �

¼ 1

log log x3
1

log x3
1

x3
d

dx
ðx3Þ

¼ 3x2

x3 log x3 log log x3

¼ 3

x log x3 log log x3
Ans:

Example (21): If y ¼ ex
3

; find dy=dx:

Solution: We have, y ¼ ex
3

dy

dx
¼ d

dx
ðex3Þ

¼ ex
3 d

dx
ðx3Þ

¼ ex
3

3x2

¼ 3x2ex
3

Ans:

Example (22): If y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
cos

ffiffiffi
x

pp
; find dy=dx.

Solution: We have, y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
cos

ffiffiffi
x

pp

) dy

dx
¼ d

dx

ffiffiffiffiffiffiffiffiffiffiffiffiffi
cos

ffiffiffi
x

pq� �

¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
cos

ffiffiffi
x

pp �sin
ffiffiffi
x

p� � d

dx
ð ffiffiffi

x
p Þ

¼ �sin
ffiffiffi
x

p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
cos

ffiffiffi
x

pp 1

2
ffiffiffi
x

p d

dx
ðxÞ

¼ �sin
ffiffiffi
x

p

4
ffiffiffi
x

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
cos

ffiffiffi
x

pp Ans:

296 ALGEBRA OF DERIVATIVES



Example (23): If y ¼ sinðlog10 xÞ; find dy=dx.

We have, y ¼ sinðlog10 xÞ
dy

dx
¼ d

dx
sinðlog10 xÞ½ �

¼ cosðlog10 xÞ
d

dx
ðlog10 xÞ

¼ cosðlog10 xÞ
1

x loge 10

) dy

dx
¼ cosðlog10 xÞ

x loge 10
Ans:

Example (24): If y ¼ log½sin x� þ cos x��; find dy=dx.

) dy

dx
¼ 1

ðsin x� þ cos x�Þ
d

dx
sin x� þ cos x�½ �

¼ 1

ðsin x� þ cos x�Þ
d

dx
sin

px
180

þ cos
px
180

h i

¼ 1

ðsin x� þ cos x�Þ cos
px
180

	 
 p
180

� sin
px
180

	 
 p
180

h i

) dy

dx
¼ p

180

cos x� � sin x�

cos x� þ sin x�

� �

)px
180

¼ x�
	 


Ans:

Example (25): If y ¼ 2x cos ð3x� 2Þ; find dy=dx.

Solution: We have
y ¼ 2x cos ð3x� 2Þ

) dy

dx
¼ 2x

d

dx
cosð3x� 2Þ þ cosð3x� 2Þ d

dx
2x

¼ 2x½�sinð3x� 2Þ�3þ cosð3x� 2Þ2xloge2
¼ 2x½loge 2 cos ð3x� 2Þ � 3sin ð3x� 2Þ� Ans:

Example (26): If y ¼ 1=ðx loge xÞ; find dy=dx.

Solution: We have

y ¼ 1

x loge x
¼ ½x loge x��1

) dy

dx
¼ d

dx
½x loge x��1

¼ �1½x loge x��2 d

dx
ðx loge xÞ

¼ �1

ðx loge xÞ2
x
1

x
þ loge xð1Þ

� �

¼ �ð1þ loge xÞ
ðx loge xÞ2

Ans:
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Note (14): Some important Observations about the Chain Rule

Suppose we have to differentiate the function: y ¼ ðx2 þ 2Þ2. Then, we may write it as

y ¼ x4 þ 4x2 þ 4

and differentiate it easily. But this method is impractical for a function such as

y ¼ ðx2 þ 2Þ1000 or y ¼ ðx2 þ 2Þ5=3

Note that, since y ¼ ðx2 þ 2Þ1000 is like y ¼ u1000, where, u ¼ x2 þ 2; we can write (using

the chain rule),
dy

dx
¼ 1000u999 ð2xÞ

¼ 2000xðx2 þ 2Þ999 Ans:

Example (27): If y ¼ x
xþ3

	 
5

; find dy=dx.

Solution: We have

y ¼ x

xþ 3

� �5

dy

dx
¼ d

dx

x

xþ 3

� �5

¼ 5
x

xþ 3

� �4
d

dx

x

xþ 3

� �

¼ 5
x

xþ 3

� �4 ðxþ 3Þð1Þ � xð1Þ
ðxþ 3Þ2

" #

¼ 5
x

xþ 3

� �4
3

ðxþ 3Þ2
" #

¼ 5x43

ðxþ 3Þ4ðxþ 3Þ2

¼ 15x4

ðxþ 3Þ6 Ans:

(i) When we apply the chain rule we use the power rule first and then the quotient rule.

(ii) The power rule is a special case of the chain rule.

Let us prove the following result:

d

dx
f ðxÞ½ �n ¼ n f ðxÞ½ �n�1

f 0ðxÞ

Proof: Let y ¼ ½ f ðxÞ�n
y ¼ un; where u ¼ f ðxÞ

dy

du
¼ nun�1 and

du

dx
¼ f 0ðxÞ
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Now,

dy

dx
¼ dy

du

du

dx

¼ nun�1 f 0ðxÞ ¼ n½f ðxÞ�n�1
f 0ðxÞ

) d

dx
f ðxÞ½ �n ¼ n f ðxÞ½ �n�1

f 0ðxÞ

In particular, we have,

d

dx

1

f ðxÞ½ �n ¼ d

dx
f ðxÞ½ ��n

¼ �n f ðxÞ½ ��n�1
f 0ðxÞ

¼ �n

f ðxÞ½ �nþ1
f 0ðxÞ

and

d

dx

ffiffiffiffiffiffiffiffiffi
f ðxÞ

p
¼ d

dx
f ðxÞ½ �1=2 ¼ 1

2
f 0ðxÞ½ ��1=2 ¼ 1

2
ffiffiffiffiffiffiffiffiffiffi
f 0ðxÞp

Similarly, we can prove the following results, using the chain rule.

An important requirement is that we must remember the derivatives of basic elementary

functions involved.

y dy=dx

sin½ f ðxÞ� cos½ f ðxÞ�f 0ðxÞ
cos½ f ðxÞ� �sin½ f ðxÞ�f 0ðxÞ
tan½ f ðxÞ� sec2½ f ðxÞ�f 0ðxÞ
cot½ f ðxÞg �cosec2½ f ðxÞ�f 0ðxÞ
sec½ f ðxÞ� sec½ f ðxÞ�tan½ f ðxÞ�f 0ðxÞ
cosec½ f ðxÞ� �cosec½ f ðxÞ� cot½ f ðxÞ�f 0ðxÞ

y dy=dx

a½ f ðxÞ� a½ f ðxÞ� loge a f 0ðxÞ
e½ f ðxÞ� e½ f ðxÞ� f 0ðxÞ
loge½ f ðxÞ� 1=ð f ðxÞÞf 0ðxÞ
loga½ f ðxÞ� 1=ð½ f ðxÞ�loge aÞf 0ðxÞ

If ðd=dxÞ f ðxÞ ¼ �ðxÞ; then ðd=dxÞ f ðaxþ bÞ ¼ a �ðaxþ bÞ

(iii) All the above results are the corollaries to the chain rule. They should not be used as

formulas. In other words, towrite the derivative of a composite function, wemust write

all the steps before reaching the final answer, as shown in the solved examples, (4)–(13).
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10.4 USEFULNESS OF TRIGONOMETRIC IDENTITIES

IN COMPUTING DERIVATIVES

The following examples indicate that trigonometric identities can be used in expressing certain

combinations of functions (in suitable forms), convenient for computing their derivatives in a

simple form.

Example (28): If y ¼ ða cos x�b sin xÞ
ða sin xþb cos xÞ ; find dy=dx.

Solution: If this function is considered as a quotient, then its differentiation by the rule (5) will

be very complicated. Hence, we simplify the given function by changing the constants, as given

below.(15)

Put a ¼ r sin t and b ¼ r cos t

) tan t ¼ a

b
; and r2 ¼ a2 þ b2 ðwhere r and t are obviously constantsÞ

) ¼ r sin t cos x� r cos t sin x

r sin t sin xþ r cos t cos x

¼ r sin ðt� xÞ
r cos ðt� xÞ ¼ tanðt� xÞ

) dy

dx
¼ �sec2ðt� xÞ ¼ �1

½cosðt� xÞ�2

¼ �1

cos t cos xþ sin t sin x½ �2

¼ �1

b

r
cos xþ a

r
sin x

� �2

¼ �r2

b cos xþ a sin xð Þ2

) dy

dx
¼ �ða2 þ b2Þ

ðb cos xþ a sin xÞ2 Ans:

Example (29): If y ¼ sin x
ð1þcos xÞ ; find dy=dx.

We have ðd=dxÞðsin xÞ ¼ cos x and ðd=dxÞð1þ cos xÞ ¼ �sin x.

(15) A good number of examples of this type are discussed in Part II (Chapter 3) of this book.
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Now consider,

dy

dx
¼ ð1þ cos xÞð d

dx
Þðsin xÞ � sin xð d

dx
Þð1þ cos xÞ

ð1þ cos xÞ2

¼ ð1þ cos xÞðcos xÞ � sin xð�sin xÞ
ð1þ cos xÞ2

¼ 1þ cos2 xþ sin2 x

ð1þ cos xÞ2

) dy

dx
¼ 2

ð1þ cos xÞ2 Ans:

Also, it is easy to show that,

y ¼ sin x

1þ cos x
¼ tan

x

2

ð16Þ

) dy

dx
¼ sec2

x

2

1

2

� �
¼ 1

2
sec2

x

2
Ans:

Example (30): If y ¼ log tan ðp=4Þ þ ðx=2Þð Þ; find dy=dx:

Solution: We have, y ¼ log tan ðp=4Þ þ ðx=2Þð Þ.

Using trigonometric identities and algebraic operations, we can show that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin x

1� sin x

r
¼ tan

p
4
þ x

2

	 
ð17Þ

(16) sin x

1þ cos x
¼ 2sinðx=2Þcosðx=2Þ

1þ 2cos2ðx=2Þ � 1
¼ 2sinðx=2Þcosðx=2Þ

2cos2ðx=2Þ ¼ sinðx=2Þ
cosðx=2Þ ¼ tan

x

2

(17) Similarly, we can easily prove the following results:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin 2x

1� sin 2x

r
¼ tan

p
4
þ x

	 

;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin x

1þ sin x

r
¼ tan

p
4
� x

2

	 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos 2x

1þ cos 2x

r
¼ tan x;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos x

1� cos x

r
¼ cot

x

2

	 


sin x

1þ cos x
¼ tan

x

2
;

cos x

1þ sin x
¼ tan

p
4
� x

2

	 

:

We should be able to obtain these results and they need not be remembered. For necessary details, refer to Part II of this

book, Chapter 2
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Assuming this result, we have,

y ¼ log
1þ sin x

1� sin x

� �1=2

¼ 1

2
logð1þ sin xÞ � logð1� sin xÞ½ �

dy

dx
¼ 1

2

1

ð1þ sin xÞ cos x� 1

ð1� sin xÞ ð�cos xÞ
� �

¼ 1

2

cos x

ð1þ sin xÞ �
�cos x

ð1� sin xÞ
� �

¼ 1

2

cos x� cos x sin xþ cos xþ cos x sin x

1� sin2 x

� �

¼ 1

2

2cos x

cos2 x

� �
¼ 1

cos x
¼ sec x

) dy

dx
¼ sec x Ans:

Exercise (2): Differentiate the following functions w.r.t. x:

ð1Þ logðlog sin xÞ ð2Þ logðlogðlog xÞÞ½ �4 ð3Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
sin

ffiffiffi
x

pp
ð4Þ sin

ffiffiffi
x

pffiffiffi
x

p

ð5Þ cosðx3 exÞ ð6Þ eeex ð7Þ 22x ð8Þ log7ðlog7 xÞ ð9Þ sin x�

x

ð10Þ ex þ e�x

ex � e�x
ð11Þ log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin 3x

1� sin 3x

r
ð12Þ log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos x

1� cos 3x

r

Answers:

ð1Þ cot x

log sin x
ð2Þ 4 logðlogðlog xÞÞ½ �3

x log x logðlog xÞ ð3Þ cos
ffiffiffi
x

p

4
ffiffiffi
x

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
cos

ffiffiffi
x

pp
ð4Þ

ffiffiffi
x

p
cos

ffiffiffi
x

p � sin
ffiffiffi
x

p
2x3=2

ð5Þ �x2 exðxþ 3Þ sinðx3 exÞ ð6Þ eeex eex ex

ð7Þ 22x2x loge2 ð8Þ 1

xðlog7Þ2log7 x
ð9Þ 1

x2
px
180

cos x� � sin x�
h i

ð10Þ �4e2x

e2x � 1ð Þ2 ð11Þ 3sec 3x ð12Þ � cosec x

10.5 DERIVATIVES OF INVERSE FUNCTIONS

We have seen (in Chapter 2) that if a function y ¼ f (x) is one–one and onto, from A to B,

then the inverse of f exists, and is denoted by f�1. Also, f�1 is a one–one and onto
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function from B to A. The inverse function consists of the same pairs of elements but in

reverse order.(18)

Now the question is: If f is differentiable, will f� 1be differentiable? If so, at what points, and

what is the rule of differentiation? If this information is available to us, it will help us to obtain

the derivatives of logex, sin
�1 x, cos�1x, and so on whenever they are defined.

Rule (6)

Theorem: If y ¼ f(x) is a differentiable function ofx such that the inverse functionx ¼ f�1(y)

is defined and dy=dx; dx=dy both exist, then

dx=dy ¼ 1
ðdy=dxÞ ; provided dy=dx 6¼ 0.(19)

Proof: Suppose y ¼ f (x) be a one–onemapping ofA ontoB,whereA andB are subset of Real

numbers.

Let x ¼ f�1(y) be the inverse mapping of B onto A.

Then, the composite mapping ð ff�1Þ is the identity mapping of B onto B.

That is, f [ f –1(y)] ¼ y

Differentiating both sides of the above equation w.r.t. y, we get

d

dy
f f�1ðyÞ� � ¼ dy

dy
¼ 1 ð11Þ

By the chain rule for composite functions (and remembering that f �1(y) ¼ x), we get LHS

of (11)

d

dx
f ðxÞ dx

dy
¼ 1

using f (x) ¼ y, we get

dy

dx

dx

dy
¼ 1

We have thus shown that if y is a function of x and x is the inverse function of y, then

dx=dy ¼ 1
ðdy=dxÞ ; provided dy=dx 6¼ 0.

Corollary: If x ¼ g(y) is a differentiable function of y such that the inverse function

y ¼ g�1(x) exists, then dy=dx ¼ 1
ðdx=dyÞ ; provided dx=dy 6¼ 0.

We can also prove the above results as follows:

(18) It means that the domain of f-1 is the range of f, and range of f-1 is the domain of f.
(19) Suppose y ¼ f (x) has an a differentiable function, which has an inverse. Then, we can express the inverse function by

the equation x ¼ f -1(y). Accordingly, the derivative of f is expressed by dy=dx, whereas the derivative of f�1 by dx=dy.
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Theorem: (Method II)

If y ¼ f (x) is a derivable function of x, such that the inverse function x ¼ f�1(y) is defined and

dy=dx; dx=dy both exist, then dx=dy ¼ 1=ðdy=dxÞ; provided dy=dx 6¼ 0.

Proof: As x changes to x þ dx, let y change to y þ dy.

) As dx ! 0, dy ! 0

Now, consider the algebraic identity,

dy

dx
¼ 1 ðdx 6¼ 0; dy 6¼ 0Þ

) dx

dy
¼ 1

dy=dx

Taking limit as dx ! 0

lim
dx! 0

dx

dy
¼ lim

dx! 0

1

dy

dx

� �
2
664

3
775 ¼ 1

lim
dx! 0

dy

dx

� �
2
664

3
775 ð12Þ

)y is a differentiable function of x,

) lim
dx! 0

dy

dx
¼ dy

dx
ð13Þ

) lim
dx! 0

dx

dy
exists, provided

dy

dx
6¼ 0

Again, as dx ! 0, dy ! 0

) lim
dx! 0

dx

dy
¼ lim

dy! 0

dx

dy
¼ dx

dy
ð14Þ

using (13) and (14) in (12), we get

dx

dy
¼ 1

dy=dx
; provided

dy

dx
6¼ 0

Note: Since f and f�1 are mutually inverse functions, we also have

dy

dx
¼ 1

dx=dy
; provided

dx

dy
¼ 0
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Summary of Differentiation Rules

Rule (1) d

dx
f1ðxÞ þ f2ðxÞ½ � ¼ d

dx
f1ðxÞ½ � þ d

dx
f2ðxÞ½ �

(Derivative of a sum of functions)

Rule (2) d

dx
kf ðxÞ ¼ k

d

dx
f ðxÞ k ¼ constantÞ½

(Derivative of a constant multiple

of a function)

Rule (3) d

dx
f1ðxÞ f2ðxÞ½ � ¼ f1ðxÞ d

dx
f2ðxÞ½ � þ f2ðxÞ d

dx
f1ðxÞ½ �

(Derivative of a product of functions)

Rule (4) d

dx

f1ðxÞ
f2ðxÞ

� �
¼ f2ðxÞð ddxÞ f1ðxÞ½ � � f1ðxÞð ddxÞ f2ðxÞ½ �

f2ðxÞ½ �2
(Derivative of ratio of functions)

Rule (5) d

dx
g f ðxÞ½ � ¼ d

df
gð f Þ½ � � d

dx
f ðxÞ½ �

(Derivative of composite functions):

the chain rule

Rule (6) dx

dy
¼ 1

dy=dx

(Derivative of inverse of functions)
that is,

d

dy
xðyÞ ¼ 1

ðd=dxÞyðxÞ

Remark: One may get an impression that by using differentiation rules (1)–(6), we should be

able to compute the derivative of any function. However, there are still some functions whose

derivatives cannot be computed with these rules. On the other hand, the derivative of such

a function can sometimes be computed directly from the definition. For instance, consider

the function

f ðxÞ ¼ x xj j
We cannot apply any of the rules to obtain f 0(0) because jxj is not differentiable at 0.

Nevertheless, using the definition of derivative, we find that

f 0ð0Þ ¼ lim
x! 0

f ðxÞ � f ð0Þ
x� 0

¼ lim
x! 0

xjxj � 0

x� 0
¼ lim

x! 0
jxj ¼ 0

However, a great majority of the differentiable functions that we will encounter can be

differentiated by rules (1)–(6).
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11a Basic Trigonometric Limits
and Their Applications
in Computing Derivatives
of Trigonometric Functions

11a.1 INTRODUCTION

Every timewe come across new functions, wewould like to find if they are differentiable, and if

so, we would like to find their derivatives. In Chapter 9, we have seen that the derivative of a

function is the limit of the particular kind. To compute the derivative(s) of basic trigonometric

functions, we shall be using the following basic trigonometric limits:

(i) lim
x! 0

cos x ¼ 1

(ii) lim
x! 0

sin x ¼ 0

(iii) lim
x! 0

sin x

x
¼ 1 and

(iv) lim
x! 0

cos x� 1

x
¼ 0

But how do we get these limits? We shall obtain the above results shortly.

In Chapter 5, we extended the definitions of trigonometric ratios (of an acute angle) to the

trigonometric functions of real variable. (1)

In Chapter 7, we introduced the concept of limit of a function, and gave illustrative

examples, for evaluating the limits of some simple algebraic functions, involving polynomials

(including rational functions).(2)

Also, we stated the main limit theorem (without proof), introduced the substitution rule

(with its usefulness), and proved the sandwich theorem (or the squeezing theorem), which is

very useful in evaluating limits of a variety of trigonometric functions.

Introduction to Differential Calculus: Systematic Studies with Engineering Applications for Beginners, First Edition.
Ulrich L. Rohde, G. C. Jain, Ajay K. Poddar, and Ajoy K. Ghosh.
� 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

(1) For this purpose, the concept of directed angles and their radian measure was introduced with a logical understanding

that angles of any magnitude and sign could be generated.
(2) Starting from intuitive meaning of limit, we entered into the rigorous study of the concept and developed «, d definition

of limit by considering a good number of suitable examples to cover various possible situations, so as tomake the definition

complete in all respects.

11a-Basic trigonometric limits and their applications in computing derivatives of trigonometric functions
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If the reader has gone through the concept of limit (as discussed in Chapters 7a and 7b), then

he will be able to appreciate that our way of introducing the concept of limit has been the

simplest and the most practical one, and that it would not be so simple if it were introduced by

considering trigonometric or any other functions.
Now, since we have some idea about the limit concept, we are in a position to discuss and

establish the basic trigonometric limits mentioned above (i–iv). It is important that we are very

clear about the definition of trigonometric functions of an arbitrary angle whose measure “�” is
expressed in radians. (Recall that radian measure “x” in sin x stands for a real number.)

Accordingly,we can use, instead of “�”, anyother symbol (likex, y, or t) that is used to represent

real numbers, and identify it, as the measure of an angle in radians. It is in this sense that

expressions such as xþ sin x, x cos x, ðsin xÞ=x; and other similar ones are understood.

Also, recall (from Chapter 7a) that for evaluating the limit lim
x! 0

ðsin xÞ=x; we listed the

values of the ratio ðsin xÞ=x, for several values of x closer and closer to the number “0”, and

observed that the value of this ratio approaches nearer and nearer to 1, as x tends to “0”. We

therefore guessed (and, in fact, agreed) that

lim
x! 0

sin x

x
¼ 1; ðx in radiansÞð3Þ

Fortunately, our guess happens to be correct but the feeling of uncertainty (and incompleteness)

remains in our mind. This situation demands that we should prove the above result in a more

systematic way. Such a proof is available in the text.

11a.2 BASIC TRIGONOMETRIC LIMITS

Toprove the basic trigonometric limits (i) and (ii),we recall the definitions of the sine and cosine

functions (with reference to a circle of radius “r” centered at the origin, and an angle of �
radians, placed in standard position at the center of the circle, as shown in Figure 11a.1).

y

y

r

θ x

x

P(x, y)

0

FIGURE 11a.1 Angle � in standard position.

(3) It is due to this limit (and many other problems creating various situations in the way of guessing limits of certain

functions) that compelled mathematicians to seek a suitable definition of limit of a function. This is how the «, d definition

of limit came into existence. This definition might look abstract to someone, but in fact it is a beautiful definition of limit,

complete in all respects.

308 BASIC TRIGONOMETRIC LIMITS AND THEIR APPLICATIONS IN COMPUTING DERIVATIVES



The terminal side of the angle intersects the circle at a unique point P(x, y). We define the

sine function and cosine function by

sin � ¼ y

r
and cos � ¼ x

r
ð4Þ

If r¼ 1, then sin �¼ y and cos �¼ x(5)

Since we normally use “x” to represent points in the domain of a function, we will

usually follow that convention for the sine and cosine functions and replace � by x (see

Figure 11a.2).

In Figure 11a.2, let C be any point on the unit circle (placed in the standard position) such

that it is at the end of the arc length x. Since this arc length subtends an angle of x radians at the

center, we identify the pointC as a function of the anglex and define cosine and sine functions of

this angle as follows:

sin x ¼ y�coordinate of C

cosx ¼ x�coordinate of C

Since C (cos x, sin x) can move endlessly around the unit circle (with positive or negative

arc length), the domain of both sine and cosine functions is (�1,þ1). The largest value

either function may have is 1 and the smallest value is �1. Also, observe that both these

functions assume all values between �1 and 1. Hence, the range of both the functions is

[�1, 1].

Note that as x ! 0, the point P(cos x, sin x) moves toward (1, 0) so that we get

lim
x! 0

cosx ¼ 1 and lim
x! 0

sinx ¼ 0

Thus, we have shown the correctness of the results (i) and (ii).

x

0

x

cos x

1 – cos x

1

AB

sin x

C = (cos x, sin x)

FIGURE 11a.2 Unit circle centered at the origin.

(4) The properties of similar triangles imply that sin � and cos � depend only on �, not on the value of r.
(5) We repeat that in the expression sin�, “�” represents a number. Thus, we write sin2 to mean sin(2 radian).
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(Thoughwe have concluded results (i) and (ii) in a very simpleway, their rigorous proof uses

sandwich theorem.)(6)

Note (1): Now, onward, we shall be using results (i) and (ii) freely in solving problems and

obtaining other results.

Now, our next goal is to show that for any real number “a”,

lim
x! a

sin x ¼ sin a and lim
x! a

cos x ¼ cos a ð1Þ

We know that, if “a” is a fixed number and x¼ aþ h, then

lim
x! a

f ðxÞ ¼ l if and only if lim
h! 0

f ðaþ hÞ ¼ l

Therefore, in order to prove the result(s) at (1) above, we can instead show that

lim
h! 0

sinðaþ hÞ ¼ sin a and lim
h! 0

cosðaþ hÞ ¼ cos að7Þ

Solution: Let “a” be a fixed number. To prove that lim
h! 0

sinðaþ hÞ ¼ sin a and hence that

lim
x! a

sinx ¼ sin a; we use the trigonometric identity:

sin (aþ h)¼ sin a � cos hþ cos a � sin h

Since “a” is fixed, sin a and cos a are constants.

Now,

lim
h! 0

sinðaþ hÞ ¼ lim
h! 0

ðsin a cos hþ cos a sin hÞ

¼ sin a
�
lim
h! 0

cos h
�þ cos a

�
lim
h! 0

sin h
�

(Here, we have applied the sum and constant multiple rules for limits.)

¼ ðsin aÞ1þ ðcos aÞ0 ½Applying the results ðiÞ and ðiiÞ�
¼ sin a

Similarly, to prove that lim
h! 0

cosðaþ hÞ ¼ cos a, we use the trigonometric identity:

cos(aþ h)¼ cos a � cos h� sin a � sin h and conclude the result, lim
x! 0

cos x ¼ cos a.

(6) For this proof refer to Calculus with Analytic Geometry (Alternate Edition) by Robert Ellis and Denny Gulick, HBJ

Publishers.
(7) In fact, these results tell us that both sine and cosine functions are continuous at any point “a” in their domain (see

Section 8.2.1, Statement (3) of continuity of a function in Chapter 8). It is important to remember that continuity of a

function at a point is a higher concept than the existence of the limit at that point.
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Remark: Note that the proofs of the results at (1) depend on the limits (i) and (ii).

The other trigonometric functions have similar properties, as can be verified from (1), by using

the limit rules. For example,

lim
x! a

tan x ¼ lim
x! a

sinx

cosx
¼

lim
x! a

sin x

lim
x! a

cos x
¼ sin a

cos a
¼ tan a

for any number a in the domain of the tangent function. In particular, lim
x! 0

tanx ¼ 0.

A very useful trigonometric limit is the result (iii), that is,

lim
x! a

sinx

x
¼ 1; ðx in radiansÞ

This result is proved using the sandwich theorem (also called squeezing theorem). We have

already stated and proved this theorem in Chapter 7a. Here, we give the geometrical view of

this theorem.

11a.2.1 Geometrical View of Squeezing Theorem (the Sandwich Theorem)

The squeezing theorem says (in effect) that if the graphs of f and h converge at a point P in the

plane and if the graph of g is “squeezed” (or sandwiched) between the graphs of g and h, then

the graph of g converges with the (graphs of) f and h at P (Figure 11a.3).

Theorem: Show that lim
x! 0

sin
x

x
¼ 1; ðx in radiansÞ.

Proof:Consider a unit circle with center “O”, placed at the origin, and let the radianmeasure of

angle AOC be x radians (Figure 11a.4).

x

0

l

a

y

h

P

f

g

FIGURE 11a.3 Geometrical View of the Sandwich Theorem.
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Using Figure 11a.4, we obtain the following equations, which are valid for 0 < x <
p
2

Area of triangle OAC ¼ 1

2
OAj j BCj j ¼ 1

2
1 � sin x ¼ sin x

2

Area of sector OAC ¼ x

2p
ðArea of circleÞ ¼ x

2
ð8Þ

Area of triangle OAD ¼ 1

2
OAj j ADj j ¼ 1

2
1 � tan x ¼ 1

2

sin x

cos x

It is geometrically clear that

Area of DOAC< area of sector OAC< area of DOAD, so that

sin x

2
� x

2
� 1

2

sinx

cosx

AB

C

D

0

x x

y

x

sin x

tan x

cos x

(cos x, sin x)

l

FIGURE 11a.4 Applying Geometric Considerations and Sandwich Theorem.

(8) Area Sector OAC

Area of Circle
¼ x

2p
) Area of sector OAC ¼ x

2p
p ¼ x

2
. Note that the area of the unit circle¼ pð1Þ2 ¼ p.
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Separately, the first and second inequalities yield

sin x

x
� 1 and cos x � sin x

x
að Þ

Combining the inequalities in (a), we get

cos x � sin x

x
� 1; for 0 < x <

p
2

Furthermore, using the fact that

cosð�xÞ ¼ cos x and
sinð�xÞ
�x

¼ �sin x

�x
¼ sin x

x

we obtain

cos x � sin x

x
� 1; for 0 < xj j < p

2

But lim
x! 0

cos x ¼ 1; and lim
x! 0

1 ¼ 1; it follows from the sandwich theorem that

lim
x! 0

sin x

x
¼ 1 Proved.

Remark: We emphasize that the result lim
x! 0

sin x
x
¼ 1 is valid only if the angle x in sinx is

expressed in radians. In case, angle x in sinx is expressed in degrees, then the limit in question

does not hold. Let us see why?

If “x” in sinx is in degrees, then the limit to be evaluated is lim
x! 0

sin x
�
=x, where

x
� ¼ ðpx=180Þcradians. Note that the degree measure of an angle is a linear function of the

radian measure x.

Note (2): To evaluate lim
x! 0

sin x
�
=x, we must express the numerator sin x

�
as a function of real

variable x. Hence, we replace x
�
by the number p x=180 and then adjust the denominator

suitably so that we can apply the result lim
t! 0

sin
t

t
¼ 1.

Let us evaluate this limit.

We have

lim
x! 0

sin x
�

x
¼ lim

x! 0

sinðp x=180Þ
x

) ¼ lim
x! 0

sinðp x=180Þðp x=180Þ
ðp x=180Þ

¼ 1
p
180

�

)as x! 0;
p x

180
! 0

�

¼ p
180

6¼ 1

Now, using the result lim
x! 0

sin
x

x
¼ 1, we can easily prove the result lim

x! 0

x

ðcos x� 1Þ ¼ 0.
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11a.2.2 Important Observation

To evaluate the limit, lim
x! 0

x

ðcos x� 1Þ, notice that limx! 0
x ¼ 0; so we cannot apply the quotient

rule (for limits) directly. However, we can evaluate this limit through the following mathe-

matical manipulations:

cos x� 1

x
¼
�
cos x� 1

x

��
cos xþ 1

cos xþ 1

�
¼ cos2 x� 1

xðcos xþ 1Þ

¼ �sin2 x

xðcos xþ 1Þ ¼
�
sin x

x

�� �sin x

cos xþ 1

�

) lim
x! 0

cos x� 1

x
¼ lim

x! 0

�
sin x

x

�� 	
lim
x! 0

�sinx

cos xþ 1

� 	ð9Þ

¼ ð1Þ
�

0

1þ 1

�
¼ 0

11a.3 DERIVATIVES OF TRIGONOMETRIC FUNCTIONS

By using the basic trigonometric limits (listed in the beginning at (i)–(iv)) and applying

the definition of the derivative, we can compute the derivatives of all basic

trigonometric functions.

11a.3.1 The Derivatives of sin x and cos x (From the First Principle)

To find the derivative of f(x)¼ sin x, using the definition of the derivative.

We have,

d

dx
f ðxÞ ¼ lim

dx! 0

f ðxþ dxÞ � f ðxÞ
dx

provided the limit on the RHS exists.

) d

dx
sin x ¼ lim

dx! 0

sinðxþ dxÞ � sin x

dx

¼ lim
dx! 0

ðsin x cos dxþ cos x sin dxÞ � sin x

dx

)sinðxþ yÞ ¼ sin x cos yþ cos x sin y½ �

(9) To compute the limit of a function, which is in the form of a ratio, some trick like algebraic manipulation or the use of

some algebraic/trigonometric identity is almost always needed to eradicate the troublesome denominator.
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¼ lim
dx! 0

sin xðcos dx� 1Þ
dx

þ cos x sin dx

dx

� 	

¼ lim
dx! 0

sin xðcos dx� 1Þ
dx

þ cos x sin dx

dx

� 	

¼ sin x lim
dx! 0

cos dx� 1

dx

� 	
þ cos x lim

dx! 0

sin dx

dx

¼ ðsin xÞ0þ ðcos xÞ1 )lim
dx! 0

cos dx� 1

dx
¼ 0

� 	

¼ cos x; for all x

Thus,

d

dx
sin x ¼ cos x; for all x ð1aÞ

We can also prove the above result by using the trigonometric identity, sin 2x¼ 2 sin x cos x,

as follows:

To prove

d

dx
sin x ¼ cos x; for all x

Proof: Let f(x)¼ sin x

) f ðxþ dxÞ¼ sinðxþ dxÞ

d

dx
f ðxÞ ¼ lim

dx! 0
f ðxþ dxÞ � f ðxÞdx

) d

dx
ðsin xÞ ¼ lim

dx! 0

sinðxþ dxÞ � sinx

dx

¼ lim
dx! 0

sinðxþ dxÞ þ sinð�xÞ
dx

)�sin x ¼ sinð�xÞ½ �

) d

dx
ðsin xÞ¼ lim

dx! 0

2sin
xþ dx� x

2

� �
cos

xþ dxþ x

2

� �� 	
dx

ð10Þ

(10) Using the trigonometric identity, sin Aþ sin B¼ 2 sin
ðAþBÞ

2
cos

ðA�BÞ
2

.
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) sinAþ sinB ¼ 2 sin

�
Aþ B

2

�
cos

 
A� B

2

!" #

¼ lim
dx! 0

2sin

�
dx

2

�
cos

�
2xþ dx

2

�
dx

2
664

3
775

¼ lim
dx! 0

sinðdx=2Þ
dx=2

� 	
lim
dx! 0

cos

�
2xþ dx

2

�
¼ 1cos x

) d

dx
ðsin xÞ ¼ cos x

Similarly, we can show that

d

dx
ðcos xÞ ¼ �sin x ð2aÞ

Note: It is convenient to use the symbol “h” instead of the composite symbol dx.

11a.3.2 Derivative of tan x (from the First Principle)

To prove

�
d

dx

�
ðtan xÞ ¼ sec2 x:

Proof: Let f(x)¼ tan x

f ðxþ hÞ ¼ tanðxþ hÞ

d

dx
ðtan xÞ ¼ lim

h! 0

tanðxþ hÞ � tan x

h

d

dx
ðtan xÞ ¼ lim

h! 0

1

h

sinðxþ hÞ
cosðxþ hÞ �

sin x

cos x

� 	

¼ lim
h! 0

1

h

sinðxþ hÞ cos x� cosðxþ hÞ sin x
cosðxþ hÞ cos x

� 	

¼ lim
h! 0

1

h

sinðxþ h� xÞ
cosðxþ hÞ cos x
� 	

¼ lim
h! 0

1

h

sin h

cosðxþ hÞ cos x
� 	
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¼ lim
h! 0

sin h

h
� lim
h! 0

1

cosðxþ hÞ cos x

¼ ð1Þ 1

cos x cos x
¼ 1

cos2 x
¼ sec2 x

d

dx
ðtan xÞ ¼ sec2 x ð3aÞ

Similarly, we can prove the following results:

d

dx
ðcot xÞ ¼ �cosec2 x ð4aÞ

d

dx
ðsec xÞ ¼ sec x tan x ð5aÞ

d

dx
ðcosec xÞ ¼ cosec x cot x ð6aÞ

11a.3.3 Alternative Simpler Methods (for Finding Derivatives

of Basic Trigonometric Functions)

Here, we use formal rules of differentiation, trigonometric identities, and derivatives of sin x

and cos x (i.e.,
�

d
dx

�ðsin xÞ ¼ cos x;
�

d
dx

�ðcosxÞ ¼ �sin x), which we have obtained by

applying the definition of the derivative.

To prove

�
d

dx

�
ðcos xÞ ¼ �sin x:

We know that,

cos x ¼ sin xþ p
2


 �

) d

dx
ðcos xÞ ¼ d

dx
sin xþ p

2


 �
¼ cos xþ p

2


 � )d
dt
ðsin tÞ ¼ cos t

� 	

) d

dx
ðcos xÞ ¼ �sin x )cos xþ p

2


 �
¼ �sin x

h i
Therefore,

d

dx
ðcos xÞ ¼ �sin x

Similarly, we can show that

d

dx
ðsin xÞ ¼ cos x
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11a.3.4 Derivatives of tan x, cot x, sec x, and cosec x (Alternative Simpler Methods)

These trigonometric functions are quotients involving only sin x and cos x, so their derivatives

can be found using the quotient rule for differentiation.

d

dx
ðtan xÞ ¼ d

dx

sin x

cos x

� �
¼

cos x

�
d

dx

�
ðsin xÞ � sin x

�
d

dx

�
cos x

cos2 x

¼ ðcos xÞðcos xÞ � ðsin xÞð�sin xÞ
cos2 x

¼ cos2 xþ sin2 x

cos2 x
¼ 1

cos2 x
¼ sec2 x

In exactly the same way we can show that,

d

dx
ðcot xÞ ¼ �cosec2 x

Note: The formulas for the derivative of a quotient becomes more concise when the quotient is

of the form 1=gðxÞ for all x.

d

dx

Numerator ðNrÞ
Denominator ðDrÞ
� �

¼
Dr

�
d

dx

�
Nr� Nr

�
d

dx

�
Dr

ðDrÞ2 :

When the Numerator¼ 1, the RHS reduces to �� d
dx

�ðDrÞ=ðDrÞ2.
In this case, the formulas is

d

dx

1

gðxÞ
� �

¼
�
�

d

dx

�
gðxÞ

½gðxÞ�2 ð7Þ

Example (1): Show that
�

d
dx

�ðsec xÞ ¼ sec x tan x.

Solution: From the formulas (7), we obtain

d

dx
ðsec xÞ ¼ d

dx

1

cos x

� �
¼ �ð�sin xÞ

cos2x
¼ 1

cos x

sin x

cos x
¼ sec x tan x

Similarly,

dðcosec xÞ ¼ �cosec x cot x

11a.3.5 A Question For Consideration

Now the next question is: How can we find the derivative of sin x3, or in general, that of sin u,
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where u is a differentiable function of x?

(To find the derivatives of such functions, we apply the chain rule.)

We have

d

dx
ðsin uÞ ¼ d

du
ðsin uÞ du

dx
¼ cos u

du

dx

Thus, for the function y¼ sin (x3), we have

dy

dx
¼ cosðx3Þ d

dx
ðx3Þ ¼ 3x2 cos x3

Similarly, for the function y¼ cos(2x5), we may put 2x5¼ u, so that we have

y ¼ cos u

dy

dx
¼ d

du
ðcos uÞ du

dx

dy

dx
¼ �sin u

du

dx

¼ �sinð2x5Þ10x4; because du
dx

¼ 10x4
� 	

¼ �10x4 sinð2x5Þ ¼ �10x4 sinð2x5Þ

We list below for convenience the formulas for derivatives of basic trigonometric functions,

proved above, in three sets.

Set (1)

1(a)
d

dx
ðsin xÞ ¼ cos x

2(a)
d

dx
ðcos xÞ ¼ �sin x

3(a)
d

dx
ðtan xÞ ¼ sec2 x

4(a)
d

dx
ðcotxÞ ¼ �cosec2x

5(a)
d

dx
ðsec xÞ ¼ sec x tan x

6(a)
d

dx
ðcosecxÞ ¼ �cosec x cot x

Corresponding to the formulas for derivatives of basic trigonometric functions, we list their

chain rule formulas.
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Set (2)

1(b)
d

dx
ðsin uÞ ¼ cos u

du

dx

2(b)
d

dx
ðcos uÞ ¼ �sin u

du

dx

3(b)
d

dx
ðtan uÞ ¼ sec2 u

du

dx

4(b)
d

dx
ðcot uÞ ¼ �cosec2 u

du

dx

5(b)
d

dx
ðsec uÞ ¼ sec u tan u

du

dx

6(b)
d

dx
ðcosec uÞ ¼ �cosec u cot u

du

dx

Set (3)

In the trigonometric functions sin x, cos x, and so on, if x is replaced by the linear function

(axþ b) then we have the following standard results, known as the derivatives of extended

forms of basic trigonometric functions.

1(c)
d

dx
sinðaxþ bÞ ¼ a cosðaxþ bÞ

2(c)
d

dx
cosðaxþ bÞ ¼ �a sinðaxþ bÞ

3(c)
d

dx
tanðaxþ bÞ ¼ a sec2 ðaxþ bÞ

4(c)
d

dx
cotðaxþ bÞ ¼ �a cosec2 ðaxþ bÞ

5(c)
d

dx
secðaxþ bÞ ¼ a secðaxþ bÞ tanðaxþ bÞ

6(c)
d

dx
cosecðaxþ bÞ ¼ �a cosecðaxþ bÞ cotðaxþ bÞ

Note (5): The functions cos x, cot x, and cosec x (starting with “co”) are called cofunctions

of sin x, tan x, and sec x, respectively. Note that the derivatives of cofunctions are with

negative sign.

Note (6): Importance of the Radian Measure

The radianmeasure of an angle is convenient for calculus on trigonometric functions.We know

that
�

d
dx

�
(sin x)¼ cos x, provided “x”, represents a real variable (or equivalently, angle x is

expressed in radians).

On the other hand, if angle x is expressed in degrees and we have to compute the derivative

of sin x
�
, then we proceed as follows:

) d

dx
sin x

� ¼ d

dx
sin

�
p
180

x

�
since x

� ¼ p x

180
radians

h i

¼ cos

�
p
180

x

�
d

dx

�
p
180

x

�
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¼ ðcos x� Þ p
180

¼ p
180

cos x
�

Remark: Observe that if we use degree measure, we would have the factor p/180 in our

differentiation formulas for basic trigonometric functions. On the other hand, if the angles

are expressed in radians, then derivatives of trigonometric functions are in their simplest

form. It is for this reason that radian measure is considered convenient for calculus.

11a.3.6 More Uses of Basic Trigonometric Limits

The limits lim
x! 0

ðsin x=xÞ¼ 1 and lim
x! 0

ðcos x� 1=xÞ ¼ 0 are mainly useful to prove the

derivative formulas. However, we can also use them for evaluating other trigonometric limits.

Some applications of the result lim
x! 0

ðsin x=xÞ¼ 1 are given below through examples.

Example (2): To evaluate lim
x! 0

ðsin x=x2=3Þ:

Solution: We rewrite (sin x)/x2/3 as follows:

sin x

x2=3
¼ sin x

x

� �
x x�2=3 ¼ sin x

x

� �
x1=3

Since lim
x! 0

x1=3 ¼ 0; it follows from product rule (for limits) that

lim
x! 0

sinx

x2=3
¼ limx! 0

sin x

x

� �
x1=3

� 	

¼ lim
x! 0

sin x

x

� �
lim
x! 0

x1=3 ¼ 1:0 ¼ 0

Example (3): To evaluate lim
x! 0

ðsin 5xÞ=x:

Solution: Because of the appearance of 5x in the numerator, we write

sin 5x

x
¼ 5

sin 5x

5x

� �
ð8Þ

Furthermore, notice that as x ! 0, 5x ! 0. Now, if we put 5x¼ y, we can write

) lim
x! 0

sin 5x

x
¼ lim

5x! 0

�
sin 5x

5x

�
5

¼ lim
y! 0

�
sin y

y

�
5

¼ 5 lim
y! 0

sin y

y
¼ ð5Þð1Þ ¼ 5
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Remark: In evaluating the above limit, we have used “the substitution rule”. (We have

already introduced this rule in Chapter 7. However, it is useful to repeat it again.)

11a.3.7 The Substitution Rule

Using the limit rules and the sandwich theorem, we can evaluate limits of rational functions and

a variety of trigonometric functions. But, as yet we have no convenient method for evaluating

limits such as

lim
x! 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2x3 þ x2 � 5xþ 8Þ

p ð11Þ

To evaluate this limit, suppose we first let y¼ 2x3þ x2� 5xþ 8 and notice that as x ! 1, y

approaches 2(1)3þ (1)2� 5(1)þ 8¼ 6. It is then suggesting that if we substitute y for 2x3þ
x2� 5xþ 8, and substitute y ! 6 for x ! 1, then we can write

lim
x! 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2x3 þ x2 � 5xþ 8Þ

p
¼ lim

y! 6

ffiffiffi
y

p

Since lim
y! 6

ffiffiffi
y

p ¼
ffiffiffiffi
6;

p
it would follow that

lim
x! 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2x3 þ x2 � 5xþ 8Þ

p
¼

ffiffiffi
6

p

More generally, if lim
x! a

f ðxÞ ¼ c and if lim
y! c

gðyÞ exists, then we have the following result,

known as the substitution rule.

lim
x! a

g f ðxÞð Þ ¼ lim
y! c

gðyÞð12Þ ð9Þ

To find lim
x! a

g f ðxÞð Þ, by using the substitution rule (9), we approach as follows:

(i) We substitute y for f(x)

(ii) find c ¼ lim
x! a

y; and then

(iii) compute lim
y! c

gðyÞ

The process is straightforward. Let us consider the following example:

Example (4): To evaluate lim
x! p=3

cosðxþ p=6Þ:

Solution: Let y¼ xþ p/6 and notice that

lim
x!p=3

y ¼ lim
x!p=3

xþ p
6


 �
¼ p

3
þ p

6
¼ p

2

(11) Surely, resorting to «’s and d’s has no appeal in this case because the proof will be very tedious.
(12) Calculus with Analytic Geometry (Alternate Edition) by Robert Ellis and Denny Gulick (p. 78), HBJ Publishers.
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Then, by substitution rule

lim
x!p=3

cos xþ p
6


 �
¼ lim

y!p=2
cos y ¼ cos

p
2
¼ 0

Remark: The substitution rule tells us that we can write

lim
x! a

gðf ðxÞÞ ¼ g lim
x! a

f ðxÞ

 �

provided the limit on RHS exists. (See Chapter 7, theorem (A), rule (8).)
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11b Methods of Computing Limits
of Trigonometric Functions

11b.1 INTRODUCTION

To evaluate limits of the functions involving trigonometric functions, the following points must

be remembered:

1. It is assumed that all the trigonometric functions are defined for real variable x. Thus, x

in sin x, cos x, tan x, and so on stands for a real variable (or equivalently the angles

contained in the trigonometric functions are expressed in radians).

Note (1): In any problem, if the degree measure of an angle is given, then it must be converted

into radian measure using the relation, 1� ¼ p=180 radians.

2. We shall apply the following basic trigonometric limits, proved in Chapter 11a:

(i) lim
x! 0

sin x ¼ sin 0 ¼ 0 (ii) lim
x! 0

cos x ¼ cos 0 ¼ 1

(iii) lim
x! 0

sin x

x
¼ 1 (iv) lim

x! 0

cos x� 1

x
¼ 0

These are all standard limits and can be directly used for evaluating the required limits.

3. Using the standard limits given at (2) above, we can easily prove the following results:

Corollary (i)

lim
x! 0

x

sin x
¼ 1

Corollary (ii)

lim
x! 0

tan x

x
¼ 1

Corollary (iii)

lim
x! 0

x

tan x
¼ 1

Introduction to Differential Calculus: Systematic Studies with Engineering Applications for Beginners, First Edition.
Ulrich L. Rohde, G. C. Jain, Ajay K. Poddar, and Ajoy K. Ghosh.
� 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

11b-Methods of computing limits of trigonometric functions using basic trigonometric limits, sandwich theorem,

trigonometric identities, and algebraic manipulations methods
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Corollary (iv)

lim
x! 0

1� cos x

x2
¼ 1

2

ð1Þ

Corollary (v)

lim
x! 0

x2

1� cos x
¼ 2

Remark: Observe that

lim
x! 0

1� cos 5x

x2
¼ lim

x! 0

1� cos 5x

ð5xÞ2 25 ¼ 25

2

Note (2): While the standard limits given in (2) above can be used freely for evaluating the

required limits, the five corollaries listed above should not be used freely, since they are not

considered standard limits.

4. We know that tan ðp=2Þ is not defined because

(i) as x!p=2, from left, tan x!1, while

(ii) as x!p=2, from right, tan x!�1.

(iii) ) lim
x!p=2

tan x does not exist.

Here, the important point to be remembered is that for the function f(x) ¼ tan x, neither

does the value f ðp=2Þ exist nor does the lim
x!p=2

f ðxÞ exist. In fact, lim
x! a

tan x ¼ tan a pro-

vided “a” is not an odd multiple of p=2.
Similarly, we have

. lim
x! a

sec x ¼ sec a; provided seca is defined.

. lim
x! a

cosec x ¼ cosec a; provided cosec a is defined.

. lim
x! a

cot x ¼ cot a; provided cota is defined.

Proposition: If f(x) is a bounded function, and if lim
x! a

gðxÞ ¼ 0:

Then, lim
x! a

f ðxÞgðxÞ ¼ 0:

Proof: Since f(x) is a bounded function,

f ðxÞ has both the lower and the upper bounds.

Suppose, l is the lower bound, and u is the upper bound of f(x)

) l � f ðxÞ � u; for every x 2 domain of f :

(1) Toprove lim
x! 0

ð1� cos xÞ=x2 ¼ 1=2; consider ð1� cos xÞ=x2 ¼ ð1� cos x2Þ=ðx2ð1þ cos xÞÞ ¼ ðsin2 xÞ=ðx2ð1þ cos xÞÞ

) lim
x! 0

1� cos x

x2
¼ lim

x! 0

sin x

x

� �2
1

1þ cos x

" #
¼ ð1Þ2 1

ð1þ 1Þ ¼ 1

2
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Multiplying by g(x), throughout. Then, for every x such that g(x) � 0, we have l � gðxÞ �
f ðxÞgðxÞu � gðxÞ; and for every x such that gðxÞ � 0; we have l � gðxÞ � f ðxÞgðxÞ � u � gðxÞ:

Thus, in any case, the product f(x) � g(x) lies in between l � g(x) and u � g(x). But,

lim
x! a

l � gðxÞ ¼ l � lim
x! a

gðxÞ ¼ l � 0 ¼ 0 and lim
x! a

u � gðxÞ ¼ u � lim
x! a

gðxÞ ¼ u � 0 ¼ 0:

) By the sandwich theorem

lim
x! a

f ðxÞ � gðxÞ ¼ 0:

Remark (1): In the above proposition, the condition that “f(x) is bounded” is necessary.

The following example justifies this remark.

Example (1): Let f ðxÞ ¼ 1=x and gðxÞ ¼ x:

(Note that f(x) is not bounded for x! 0.)

Now,

lim
x! 0

f ðxÞgðxÞ½ � ¼ lim
x! 0

1

x
x

0
@

1
A

¼ lim
x! 0

1 ¼ 1 ð )x 6¼ 0Þ

Thus,

lim
x! 0

f ðxÞgðxÞ ¼ 1 6¼ 0; through lim
x! 0

gðxÞ ¼ 0

Therefore, the above proposition may not hold if f(x) is not bounded.

Remark (2): The above proposition remains valid if we replace “x ! a” by “x ! 1”.

Example (2): Evaluate lim
x!1ðsin xÞ=x ¼ lim

x!1 ð1=xÞsin x½ �:

Solution: Note that � 1 � sin x � 1; for all x

) sin x is a bounded function.

Also, lim
x!1 1=x ¼ 0:

) lim
x!1

1

x
sin x ¼ 0

) lim
x!1

sin x

x
¼ 0 (by remark (1))
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Example (3): Evaluate lim
x! 0

sinð1=xÞ=1=x:

Solution: lim
x! 0

sinð1=xÞ=1=x ¼ lim
x! 0

x � sin 1=x:

We know that � 1 � sin 1
x
� 1; for all x:

) sin 1=x is a bounded function.

Next, lim
x! 0

x ¼ 0:

) lim
x! 0

x sin
1

x

� �
¼ 0

) lim
x! 0

sin 1
x

1
x

¼ 0 (by remark (1))

Note (3): We shall be dealing with two types of limits of trigonometric functions:

1. Limits of the type: lim
x! 0

f ðxÞ; (type (I)).

2. Limits of the type: lim
x! a

f ðxÞ; where a 6¼ 0 (type (II)).

In dealing with limits of the type lim
x! a

f ðxÞ;where a 6¼ 0, we first substitute t ¼ x � a, so that as

x ! a, t ! 0. Thus, we convert the limits of the type (II) into the form of limits of type (I).

If the given limit is in the form of a ratio and both the numerator and the denominator are

trigonometric functions, then it is possible to evaluate the limit more easily by canceling a

common factor. Certain algebraic manipulations and/or use of trigonometric identities may

be needed.

11b.2 LIMITS OF TYPE (I)

Example (4): Evaluate lim
x! 0

sin 3x=x:

Solution: lim
x! 0

sin 3x

x
¼ lim

x! 0

sin 3x

3x

� �
3

Note that as x! 0, 3x! 0. If we put 3x ¼ t, we get the given limit as

lim
t! 0

sin t

t

� �
3

� �
¼ lim

t! 0

sin t

t

� �
lim
t! 0

3

¼ ð1Þð3Þ ¼ 3 Ans:

Note (4): In solving problems, we need not indicate the above substitution. Thus, we can

directly write lim
x! 0

ðsin 3x=3xÞ ¼ 1: However, one must remember that the standard limit

is lim
x! 0

sin x=x ¼ 1; where x is expressed in radians.

Example (5): Evaluate lim
x! 0

ðtan xÞ=x:

Solution: lim
x! 0

tan x

x
¼ lim

x! 0

sin x

x cos x

¼ lim
x! 0

sin x

x

1

cos x

� �
¼ lim

x! 0

sin x

x

� �
1

lim
x! 0

cos x

0
@

1
A

¼ 1 � 1
1
¼ 1

Thus, lim
x! 0

tan x

x
¼ 1 Ans:
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Remark: This limit is not used as a standard limit.

Example (6): Evaluate lim
x! 0

ðx cos xþ sin xÞ=ðxþ tan xÞ.

Solution: Let us denote the above limit by l.

Consider
x cos xþ sin x

xþ tan x
¼ cos xþðsin x=xÞ

1þðtan x=xÞ

¼ cos xþðsin x=xÞ
1þðsin x=xÞð1=cos xÞ

) l ¼
lim
x! 0

cos xþðsin x=xÞð Þ
lim
x! 0

1þ lim
x! 0

sin x=xð Þð1=cos xÞ½ � ¼
cos 0þ 1

1þ 1ð Þð1=cos 0Þ

¼ 1þ 1

1þ 1
¼ 1 Ans:

Note (5): Observe that we have not directly used the results limx! 0 tan x=x ¼ 1 simply

because it is not considered a standard limit.

Example (7): Evaluate lim
x! 0

ðcosec 2x� cot 2xÞ=sin x:

Solution: Let us denote the given limit by l.

Consider, cosec 2x� cot 2x

¼ 1

sin 2x
� cos 2x

sin 2x
¼ 1� cos 2x

sin 2x

¼ 1�ð1� 2 sin2 xÞ
2 sin x cos x

¼ sin x

cos x

) l ¼ lim
x! 0

1

sin x

sin x

cos x

2
4

3
5 ¼ lim

x! 0

1

cos x
¼ 1

1
¼ 1 Ans:

Example (8): Evaluate lim
x! 0

ð
ffiffiffi
2

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ cos 2x
p Þ=sin2 x:

Solution: Let us denote the above limit by l.

Consider

ffiffiffi
2

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos 2x

p

sin2 x
:

ffiffiffi
2

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos 2x

pffiffiffi
2

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos 2x

p

¼ 2�ð1þ cos 2xÞ
sin2 xð ffiffiffi

2
p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ cos 2x
p Þ ¼ 1� cos 2x

sin2 xð ffiffiffi
2

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos 2x

p Þ

) l ¼ lim
x! 0

2 sin2 x

sin2 xð ffiffiffi
2

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos 2x

p Þ

)cos 2x ¼ 1� 2 sin2 x
� �

¼ lim
x! 0

2ffiffiffi
2

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos 2x

p ; As x! 0; sin x! 0 ) sin x 6¼ 0½ �

¼ 2ffiffiffi
2

p þ ffiffiffiffiffiffiffiffiffiffiffi
1þ 1

p ¼ 2

2
ffiffiffi
2

p ¼ 1ffiffiffi
2

p ¼
ffiffiffi
2

p

2
Ans:
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Example (9): Method (II)

Evaluate lim
x! 0

ð
ffiffiffi
2

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ cos 2x
p Þ=sin2 x.

Let us denote the above limit by l.

Consider
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos 2x

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2 cos2 x� 1

p ¼ ffiffiffi
2

p
cos x:

l ¼ lim
x! 0

ffiffiffi
2

p � ffiffiffi
2

p
cos x

sin2 x

¼ lim
x! 0

ffiffiffi
2

p
1� cos xð Þ
sin2 x

� ð1þ cos xÞ
ð1þ cos xÞ

¼ lim
x! 0

ffiffiffi
2

p ð1� cos2 xÞ
sin2 xð1þ cos xÞ

¼ lim
x! 0

ffiffiffi
2

p
sin2 x

sin2 xð1þ cos xÞ

¼ lim
x! 0

ffiffiffi
2

p

1þ cos x
sin x 6¼ 0½ �

¼
ffiffiffi
2

p

1þ 1
¼

ffiffiffi
2

p

2
Ans:

Example (10): Evaluate lim
x! 0

ð1� cos 4x=x2Þ ¼ l; say.

Solution: Consider,
1� cos 4x

x2
1þ cos 4x

1þ cos 4x

¼ 1� cos2 4x

x2ð1þ cos 4xÞ ¼ sin2 4x

x2ð1þ cos 4xÞ

¼ sin2 4x

ð4xÞ2 16
1

ð1þ cos 4xÞ

¼
 
sin 4x

4x

!2

16
1

ð1þ cos 4xÞ

) l ¼ lim
x! 0

" 
sin 4x

4x

!2

16
1

ð1þ cos 4xÞ

#

¼ 12 � 16 1

1þ 1
¼ 16

1

2
¼ 8 Ans:
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Note (6): It is useful to prove the following results and compare them.

(i) lim
x! 0

1� cos x

x
¼ 0 (ii) lim

x! 0

1� cos x

x2
¼ 1

2

(iii) lim
x! 0

1� cos 2x

x
¼ 0 (iv) lim

x! 0

1� cos 5x

x2
¼ 25

2

(v) lim
x! 0

1� cos x

x2
¼ 1

2
(vi) lim

x! 0

x2

1� cos x
¼ 2

Example (11): Evaluate lim
x! 0

ð3 sin x�� sin 3x�Þ=x3 ¼ l; say.

Solution: Consider 3 sin x�� sin 3x�

¼ 3 sin x�� ½3 sin x�� 4 sin3 x�� )½sin 3x ¼ 3 sin x� 4 sin3 x�
¼ 4 sin3 x�

l ¼ lim
x! 0

4 sin3 x�

x3

¼ lim
x! 0

4

�
sin x�

x

�3

¼ 4

"
lim
x! 0

sinðpx=180Þðp=180Þ
px=180

#3

¼ 4

"
1

p
180

#3
¼ 4

�
p
180

�3

Ans:

Example (12): Evaluate lim
x! 0

ðcos ax� cos bxÞ=ðcos cx� cos dxÞ ¼ l; say.(2)

Solution: Consider, cos ax� cos bx ¼ � 2 sin
ðaþ bÞx

2
sin

ða� bÞx
2

¼ � 2 sinððaþ bÞx=2Þsinðða� bÞx=2Þ
ðaþ bÞx=2

ððaþ bÞx=2Þðða� bÞx=2Þ
ða� bÞx=2

lim
x! 0

ðcos ax� cos bxÞ ¼ lim
x! 0

"
� 2

ðaþ bÞx
2

ða� bÞx
2

#

¼ lim
x! 0

"
� ða2� b2Þx2

2

#

Similarly; lim
x! 0

ðcos cx� cos dxÞ ¼ lim
x! 0

� ðc2� d2Þx2
2

) l ¼ lim
x! 0

ða2� b2Þx2
ðc2� d2Þx2

2
4

3
5

¼ lim
x! 0

ða2� b2Þ
ðc2� d2Þ

2
4

3
5 )x! 0; x 6¼ 0

) x2 6¼ 0

� �

¼ ða2� b2Þ
ðc2� d2Þ Ans:

(2) Recall that cos Aþ cos B ¼ 2 cos ðAþB=2ÞcosðA�B=2Þ and cos A� cos B ¼ � 2 sinðAþB=2ÞsinðA�B=2Þ:
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Exercise (1):

(1) lim
x! 0

sin ax

sin bx
(2) lim

x! 0

sin2 x

2x

(3) lim
x! 0

1� cos 2x

x
(4) lim

x! 0

x cos x� sin x

x2 sin x

(5) lim
x! 0

x3 cot x

1� cos 2x
(6) lim

x! 0

2 sin2 3x

x2

(7) lim
x! 0

1� cos 5x

tan2 x
(8) lim

x! 0

3x3� 2x2 þ 1� cos 4x

x sin x

(Hint: Divide numerator and denominator by x2.)

(9) lim
x! 0

2 sin x�� sin 2x�

x3
(10) lim

x! 0

ffiffiffiffiffiffiffiffiffiffiffi
1þ x

p � ffiffiffiffiffiffiffiffiffiffi
1� x

p

sin x

(11) lim
x!1 sin x tan

1

x

Hint : x!1;
1

x
! 0

) tan
1

x
! 0:Also� 1 � sinx � 1

2
6664

3
7775

(12) lim
x!1

sin
ffiffiffi
x

p
x

(13) lim
x! 0

sinðaþ xÞþ sinða� xÞ� 2 sin a

x2

(14) lim
x! 0

cos 8x� cos 2x

cos 12x� cos 4x
(15) Show that lim

x! 0
x2 cos

1

x
¼ 0

(16) Show that lim
x! 0

x2 sin
1

x
¼ 0

Answers.

(1)
a

b
(2) 0 (3) 0 (4) � 1

3
(5) 2

(6) 18 (7)
25

2
(8) –16 (9)

p
180

	 
3
(10) 1

(11) 0 (12) 0 (13) � sin/ (14)
15

32
:

11b.3 LIMITS OF THE TYPE (II) [ lim
x! a

f(x), WHERE a 6¼ 0]

Example (13): Evaluate lim
x! a

ðsin x� sin aÞ=ð ffiffiffi
x

p � ffiffiffi
a

p Þ:

Solution: Let the given limit be denoted by l.

Consider lim
x! a

sin x� sin affiffiffi
x

p � ffiffiffi
a

p ¼ lim
x! a

sinx� sinaffiffiffi
x

p � ffiffiffi
a

p �
ffiffiffi
x

p þ ffiffiffi
a

pffiffiffi
x

p þ ffiffiffi
a

p (3)

¼ sin x� sin að ffiffiffi
x

p þ ffiffiffi
a

p Þ
ðx� aÞ

put t ¼ x � a. ) x ¼ t þ a

(3) Note (7): The method of rationalization introduced for algebraic functions is also applicable here.
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As x ! a, t ! 0.

) l ¼ lim
t! 0

sinðtþ aÞ� sin a½ � ffiffiffiffiffiffiffiffiffiffi
tþ a

p þ ffiffiffi
a

p� �
t

¼ lim
t! 0

�
2 cos

�
aþ t

2

�
sin

t

2

� ffiffiffiffiffiffiffiffiffiffi
tþ a

p þ ffiffiffi
a

p� �
t

¼ lim
t! 0

cos

�
aþ t

2

��
sin t=2

t=2

� ffiffiffiffiffiffiffiffiffiffi
tþ a

p þ ffiffiffi
a

p� �
¼ cos ðaþ 0Þ½1�½ ffiffiffiffiffiffiffiffiffiffiffi0þ a

p þ ffiffiffi
a

p �
¼ 2

ffiffiffi
a

p
cos a Ans:

Example (14): Evaluate lim
x!p

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ cos x

p � 1Þ=ðp� xÞ2 ¼ l; say.

Solution: Put x� p ¼ t ) x ¼ pþ t.

Note that x!p; t! 0:

l ¼ lim
t! 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ cosðpþ tÞp � 1

t2

¼ lim
t! 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� cos t

p � 1

t2
; )cosðpþ tÞ ¼ � cos t½ �

¼ lim
t! 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� cos t

p � 1

t2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� cos t

p þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� cos t

p þ 1

¼ lim
t! 0

ð2� cos tÞ� 1

t2ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2� cos tÞp þ 1Þ

¼ lim
t! 0

1� cos t

t2ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2� cos tÞp þ 1Þ

¼ lim
t! 0

1� cos t

t2
lim
t! 0

1

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2� cos tÞp þ 1Þ

We have shown earlier that,

¼ lim
t! 0

1� cos t

t2
¼ 1

2

(We must prove it here again since it is not a standard limit. However, we use this result to

save time.)

) l ¼ 1

2

1ffiffiffiffiffiffiffiffiffiffi
2� 1

p þ 1
� � ¼ 1

2

1

2
¼ 1

4
Ans:
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Example (15): Evaluate lim
x!p=4

ð1� tan xÞ=ð1�
ffiffiffi
2

p
sin xÞ ¼ l; say.

Solution: Consider
1� tanx

1� ffiffiffi
2

p
sin x

¼ cos x� sin x

cos x

1

1� ffiffiffi
2

p
sin x

1þ ffiffiffi
2

p
sin x

1þ ffiffiffi
2

p
sin x

¼ cos x� sin x

cos x

1þ ffiffiffi
2

p
sin x

1� 2 sin2 x

¼ cos x� sin x

cos x

1þ ffiffiffi
2

p
sin x

cos2 x� sin2 x

) l ¼ lim
x!p=4

cos x� sin x

cos x

1þ ffiffiffi
2

p
sin x

ðcos x� sin xÞðcos xþ sin xÞ

2
4

3
5

¼ lim
x!p=4

1þ ffiffiffi
2

p
sin x

cos x cosxþ sin xð Þ

2
4

3
5;

)cos x 6¼ cos
p
4
6¼ 1ffiffiffi

2
p

sin x 6¼ sin
p
4
6¼ 1ffiffiffi

2
p

) cos x� sin x 6¼ 0

2
66666664

3
77777775

¼
1þ ffiffiffi

2
p � 1ffiffiffi

2
p

1ffiffiffi
2

p
�

1ffiffiffi
2

p þ 1ffiffiffi
2

p
� ¼ 1þ 1

1ffiffiffi
2

p � 1ffiffiffi
2

p
¼ 2

1
¼ 2:

Example (16): Evaluate lim
x! 1

ðx2� 3xþ 2Þ=½x2� xþ sinðx� 1Þ� ¼ l; say.

Solution: Consider x2� 3xþ 2

¼ x2� 2x� xþ 2

¼ xðx� 2Þ� 1ðx� 2Þ
¼ ðx� 2Þðx� 1Þ

) l ¼ lim
x! 1

ðx� 1Þðx� 2Þ
xðx� 1Þþ sinðx� 1Þ ;

put x� 1 ¼ t; ) x ¼ tþ 1

As x! 1; t! 0

� �

¼ lim
t! 0

t t� 1ð Þ
ðtþ 1Þtþ sin t

¼ lim
t! 0

ðt� 1Þ
ðtþ 1Þþ sin t=t

)t! 0; ) t 6¼ 0½ �

¼ 0� 1

ð0þ 1Þþ 1
¼ � 1

2
Ans:
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Exercise (2):

Evaluate the following limits (type (II)):

(1) lim
x! 1

1þ cos px

ðx� 1Þ2 (2) lim
x! a

sin x� sin a

ðx� aÞ

(3) lim
x!p=4

sinx� cosx

ðx� p=4Þ (4) lim
x! p=2

2x� p
cos x

(5) lim
x!p=2

ffiffiffi
2

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin x

p

cos2 x
(6) lim

x! p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5þ cosx

p � 2

p� xð Þ2

(7) lim
x!p=4

1� tan x

1� ffiffiffi
2

p
sin x

(8) lim
x! a

sinðxþ aÞ� sinða� xÞ� 2 sin a

x sin x

(9) lim
x!p=6

2 sin x� 1ffiffiffi
3

p
tan x� 1

(10) lim
x! a

cos x� cos affiffiffi
x

p � ffiffiffi
a

p

Answers:

(1)
1

2
p2 (2) cos a (3)

ffiffiffi
2

p
(4) � 2 (5)

1

4
ffiffiffi
2

p

(6)
1

8
(7) 2 (8) � sin a (9)

3

4
(10) � 2

ffiffiffi
2

p
sin a

11b.4 LIMITS OF EXPONENTIAL AND LOGARITHMIC FUNCTIONS

(Basic exponential and logarithmic functions and the related standard limits are discussed in

Chapter 13.)

Definition: If a > 0, then the function f defined by

y ¼ f(x) ¼ ax

is called an exponential function.

Note (8): (i) ax ¼ y , x ¼ loga y

Thus, we can write

If ax ¼ y; ð1Þ
Then, loga y ¼ x; ð2Þ
and vice versa.

It is easy to obtain the following results:

logaa
x ¼ x; ð3Þð4Þ

and

a loga y ¼ y; ð4Þð5Þ

(4) This result is obtained if we consider (2) and substitute for y from (1).
(5) This result is obtained if we consider (1) and substitute for x from (2).
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(ii) a1 ¼ a ) logaa ¼ 1

(iii) a0 ¼ a ) log1a ¼ 0

(i) loga xy ¼ loga xþ loga y

(ii) loga
x

y
¼ loga x� loga y

(iii) loga x
m ¼ m loga x

Rules for Change of Base

loga x ¼ logb x

loga b
ðAÞð6Þ

By writing x ¼ b, in the above statement, we get

loga b ¼ logb b

logb a

¼ 1

logb a
ð )logb b ¼ 1Þ

) loga b ¼ 1

logb a

11b.4.1 Common Logarithms and Natural Logarithms

Logarithms to the base e (e	 2.7182) are called natural logarithms (or Napierian logarithms).

(i) When we are considering natural logarithms, the convention is not to write the

base e.

In our study of calculus, we are going to use, in general, natural logarithms only.

Therefore, we need not write the base when it is to the base e. Thus, log x will mean

“logex”
(7)

Note (9):

(ii) log e ¼ loge e ¼ 1

(iii) log ex ¼ loge e
x ¼ x

(iv) elog x ¼ eloge y ¼ y

(6) It is very easy to remember this rule. Write the algebraic identity, x=a ¼ ðx=bÞ=ða=bÞ; and it helps to write this rule.
One may also write down the identity x=a ¼ ðx=bÞðb=aÞ; and then write down logax ¼ logbx; which gives (A).
(7) By not writing the base “e” repeatedlywe save time and effort. However, one can still write the base “e” for clarity, if and

when needed. (At the school levelwhere the base “e” is not introduced, and only base 10 is used, some authors insist that log

x should be read to mean log10x:)
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We shall assume the following results:

(i) lim
x!1 1þ 1

x

� �x

¼ e

(ii) lim
x! 0

1þ xð Þ1=x ¼ e

(iii) lim
x! 0

1þ x

a

	 
a=x
¼ e

(iv) If f ðxÞ! 0; as x! 0; then lim
x! 0

1þ kf ðxÞð Þ 1
kf ðxÞ ¼ e; where k 6¼ 0

It follows that

lim
x! 0

1� xð Þ� 1=x ¼ e; and lim
x! 0

1� 1

x

� ��x

¼ e

We also assume the following limit(8):

(i) lim
x! 0

ax� 1

x
¼ loge a ðBÞ

(Recall that for proving this result, we first prove lim
x! 0

logað1þ xÞ=x ¼
loga e ¼ 1=loge a by the change of base.)

(ii) By replacing a with e in (B), we get

lim
x! 0

ex� 1

x
¼ loge e ¼ 1

In particular; lim
x! 0

5x� 1

x
¼ loge 5; and lim

t! 0

2t� 1

t
¼ loge 2

Let f(x) ! 0 as x ! 0. If k 6¼ 0, then any number t ¼ k � f(x) ! 0 as x ! 0.

We have

lim
x! 0

ak � f ðxÞ� 1

k � f ðxÞ ¼ lim
x! 0

at� 1

t
¼ loge a ¼ log a

(8) We have proved these results in Chapter 13.
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12 Exponential Form(s) of a
Positive Real Number and its
Logarithm(s): Pre-Requisite for
Understanding Exponential and
Logarithmic Functions

12.1 INTRODUCTION

The product 2� 2� 2� 2� 2� 2 ¼ 64, is conveniently written in the form 26 ¼ 64, to mean

that the number is multiplied by itself, six times. In the expression 26, the number “2” is called

the base and “6” is called the exponent. We say that the number 64 is expressed in the

exponential form as 26. Similarly, we can write 43 ¼ 64 and 641 ¼ 64, which are two other

exponential forms for 64.

In fact, any positive number can be expressed in any number of exponential form(s), by

choosing a positive base and an appropriate exponent.(1)

12.2 CONCEPT OF LOGARITHM

At this stage, we introduce the concept of logarithm of a positive real number. If three numbers

a, b, and c are so related that

ab ¼ c; ða > 0; a 6¼ 1Þ ð1Þ

then the exponent “b” is called the logarithm of “c” to the base “a.”

We write

logac ¼ b ð2Þ

It may be noted that the logarithm of a number can be different for different bases. Detailed

discussion about logarithm(s) and their applications will follow later.

Introduction to Differential Calculus: Systematic Studies with Engineering Applications for Beginners, First Edition.
Ulrich L. Rohde, G. C. Jain, Ajay K. Poddar, and Ajoy K. Ghosh.
� 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

(1) This statement is true from a mathematical point of view. However, it should not create any fear or confusion in the

reader’s mind by visualizing the practical difficulties. Later on, it will be clear that our interest lies in only two bases,

namely “10” and “e”, and tables for exponents are readily available.

What must you know to learn calculus? 12-Logarithms [Exponential form(s) of a positive real number and its

logarithm(s)]
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Both (1) and (2) given above express the relations between the three numbers a, b, and c.

The relation (1) is in the index form and the relation (2) expresses the same thing in the log arithm

(log) form. Let us discuss the role of the conditions a> 0 and a 6¼ 1. reflected at (1) above.

(i) By definition, 0n ¼ 0, (n2N).

In general, 0K ¼ 0, (k2R, k 6¼ 0).(2)

Note that in the relation 0k ¼ 0, the exponent k loses its role and identity due to the

base “0.” Moreover “0k” represents the number “0,” only. Hence, in order to express a

positive number in the exponential form,we cannot consider the number “0” as the base.

(ii) By definition 1n ¼ 1 (n2N).

In general 1k ¼ 1 (k2R)

Further, 1k ‚ 1k ¼ 1 (k2R)(3)

Also, 1k ‚ 1k ¼ 1k�k ¼ 10

) 10 ¼ 1.

Note that in the expression 1k (k2R) the exponent k looses its role and identity due to

the base “1”. Moreover, 1k always represents the number 1. Hence, in order to express

any positive number (other than “1”) in the exponential form, we cannot consider the

base to be one.

(iii) Now, let us seewhat happens if the base “a” is taken as a negative number.We know that,

ð�3Þ2 ¼ 9 and ð3Þ2 ¼ 9:On the other hand; ð�3Þ3 ¼ �27 and ð3Þ3 ¼ 27:

From the above examples, it is clear that if a negative base is raised to an even power we

get a positive number, but if it is raised to an odd power, we get a negative number.

On the other hand, if the base is positive, then any power raised to it represents a

positive number. Therefore, to represent a positive number in the exponential form, the

base is always taken to be a positive number, other than 1.

12.3 THE LAWS OF EXPONENT

The laws of exponents are initially defined for natural numbers and then extended to integers

and rational numbers. Let us revise the following definitions and laws of exponents:

(i) a� a� a . . .. . . (n factors) ¼ an, (a2R, n2N). In particular, 0n ¼ 0.

(ii) a�n ¼ 1/an, (a 6¼ 0)

(iii) a0 ¼ 1 (a 6¼ 0)

(iv) The nth root of a positive number “a”. If the exponent of a positive number “a” is a

rational number of the form 1/n (n2N), then we call it the nth root of “a”. Thus, 161/4

is called the fourth root of 16 and 1251/3 is called the third root of 125. The root of a

number is also written using a radical symbol ð ffip Þ. An expression for a root is called
radical. We write a1/q as

ffiffiffi
aq

p
and read it as the qth root of “a”. Here

ffiffiffi
aq

p
is called a

radical and q is called the index of the radical.

(2) It is assumed that the reader is familiar with the basic laws of exponents, which are used for combining exponents.

Further, since the expression 00 cannot be assigned any value, we do not define it.
(3) Note that, ak‚ ak ¼ 1 ¼ ak�k ¼ a0.

) a0 ¼ 1ða 2 R; a 6¼ 0Þ:
This follows from the laws of exponents, valid for real numbers. Thus, 70 ¼ 1,

(�5)0 ¼ 1, ð5=7Þ0 ¼ 1, ð ffiffiffi
3

p Þ0 ¼ 1, and so on.
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Definition: The nth root of a positive number “a” is the positive number
ffiffiffi
an

p
(or a1/n), whose

nth power is “a”. The above definition tells us that, for a> 0,(4)� ffiffiffi
an

p �n ¼ ðða1=nÞn ¼ a > 0ð4Þ

Remark: A negative number does not have a square root (since the square of any number

is never negative). On the other hand, a positive number has two square roots, of which one is

positive and the other is negative. For example,

52 ¼ 25 and ð�5Þ2 ¼ 25; so that; ð25Þ1=2 ¼
ffiffiffiffiffi
25

p
¼ �5:

Thus, if n is even, then the nth root of a positive number is not unique. If we agree to exclude

negative value(s) of this nth root when n is even, then nth root of “a” (a> 0) is uniquely

defined, whether n is even or odd. Thus, the nth root operation on a> 0, becomes a function, if

we discard negative values of
ffiffiffi
an

p
, whenever n is even.

(v) Positive Rational Numbers as Exponents: Let “a” be any positive real number and p/q

be a positive rational number (where p and q both are positive integers).

Note (1):We have already given ameaning to a1/q and nowwe are in a position to give a

meaning to ap/q. ap/q is defined as (ap)1/q. Thus, ap/q is defined as qth root of ap. Notice,

however, that if q is an even integer, then apmust be positive, so that (ap)1/q is defined.(5)

(This is definitely achieved, if a> 0.)

Note (2): We assume that in the expression ap/q, the base a> 0.

(vi) Negative Rational Numbers as Exponents: A negative rational number is generally

written in such a form that its denominator is always positive. If the denominator is

negative, we can multiply both, the numerator and the denominator by “(�1)” and thus

make the denominator positive. For example,

43=�2 ¼ 4�3=2 ¼ ð4�3Þ1=2 ¼ 1

43

� �1=2

¼ 1

ð64Þ1=2
¼ 1

8
:

Remark: Conventionally, an exponential expression iswritten in such away that its exponent

is a positive number.

12.4 LAWS OF EXPONENTS (OR LAWS OF INDICES)

Now,we clearly know themeaning of ax, wherex is a rational number. At this stage,we assume

that axis defined, when x is an irrational number. Now, we can give the “laws of exponents”

(or laws of indices) valid for real exponents.

12.4.1 Laws of Exponents (or Laws of Indices) for real exponents

For any real numbers a, b, m, and n, the following laws are valid:

(i) am� an ¼ amþn

(ii) (am)n ¼ am � n

(4) We agree that
ffiffiffi
0n

p ¼ 01=n ¼ 0.
(5) We have remarked earlier that the square root of a negative number does not exist. For the same reason, if q is even then,

qth root of a negative number does not exist.
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(iii) (a� b)n ¼ an� bn

(iv) am

an

� �
¼ am� a�n ¼ am�n, if a 6¼ 0.

Remark: If m ¼ n, then m� n ¼ 0.

It follows that a0 ¼ 1, provided a 6¼ 0.

(v)
a

b

� �n

¼ an

bn
, if b 6¼ 0.

12.4.2 Applications of the Laws of Exponents

It is interesting to know that the above laws of exponents can be used tomultiply and divide any

given numbers (however, large or small, they might be) using addition and subtraction, which

are simpler operations. Themain ideas of themethodwere developed and given by JohnNapier

in 1614, as explained below. Let us consider the following two sets, A and B. Set A contains

some positive integers which are powers of 2, written in ascending order. Set B consists of

corresponding exponents of 2.

12.4.3 Multiplication of Numbers in Set A

Suppose, we have to multiply two numbers in the Set A.

For example, 32� 512, we locate the exponents of “2”, corresponding to 32 and 512. They

are 5 and 9, respectively. Add these exponents, that is, 5þ 9 ¼ 14. Thenwe look for the number

in the Set A corresponding to the exponent 14. It is 16384.

) 32� 512 ¼ 16384:

Note that,wehave used the operation of addition to calculate the product. This becomes clear if

we look at law (i) above.

32� 512 ¼ 25 � 29 ¼ 25þ9 ¼ 214 ¼ 16384

Set A Set B

2 ¼ 21 1

4 ¼ 22 2

8 ¼ 23 3

16 ¼ 24 4

32 ¼ 25 5

64 ¼ 26 6

128 ¼ 27 7

256 ¼ 28 8

512 ¼ 29 9

1024 ¼ 210 10

2048 ¼ 211 11

4096 ¼ 212 12

8192 ¼ 213 13

16384 ¼ 214 14

32768 ¼ 215 15
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12.4.4 Division of Numbers in Set A

Now, supposewewish to divide 8192 by 128. The corresponding exponents of “2” are 13 and 7,

respectively. We subtract the exponents, that is, 13� 7 ¼ 6. The number in Set A correspond-

ing to exponent 6 is 64.

) 8192

128
¼ 213

27
¼ 213�7 ¼ 26 ¼ 64

[Note that, we have used law (iv) in the above computation.]

The Sets A and B considered above are quite simple. Similar sets can be designed

using other bases such as 3, 4, 5, . . ., and so on. Obviously, it will not be convenient to

choose the (positive) rational numbers as bases. Recall, that in the statement ab ¼ c, the

exponent (or the power) “b” raised to the positive base “a” is called the logarithm of the

number “c”.

12.5 TWO IMPORTANT BASES: “10” AND “e”

In the system of logarithms, which we use in our day-to-day calculations (such as those in the

field of engineering, etc.), the base 10 is found to be most useful. Logarithms to the base 10 are

called common logarithms. Once the base “10” is chosen, it has to be raised with a suitable real

number “b” (positive, zero, or negative) so that, it represents the given (positive) number

c, exactly or very close to it. Thus, we write,

10b ¼ c or 10b � c

where the symbol “�” stands for “very close to”. For example,

log10100 ¼ 2:0000
log101000 ¼ 3:0000

)
These values of logarithms are exact, since 102 ¼ 100 and

103 ¼ 1000

log105� 0.6990 These values of logarithms are not exact, but they are very close to

the numbers in question, since (10)0.6990� 5 and (10)1.4453� 27.8

log1027.8� 1.445

Now, the question is,How do we find these exponents (i.e., logarithms of the given positive

numbers) to the base “10”? For our purpose, the answer is that the logarithms can be found out

by using suitable tables.(6)

12.5.1 Notations

In common logarithms, the base is always 10, so that, if no base is mentioned, the base 10 is

always understood. However, it is useful only while dealing with arithmetical calculations.

(6) Detailed methods, for preparing the tables (of logarithms) are available in many books on algebra and trigonometry.

Study of these methods is quite interesting, but here our interest lies in concentrating more on logarithms and their

properties.
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Important in calculus are logarithms to the base “e”, called natural logarithms (or Naperian

logarithms). The number “e”, (which is the base for natural logarithms) is a typical irrational

number, lying between 2 and 3 (e� 2.71828. . .).(7)

The notation for “natural logarithm” is “ln”, but we shall be using logex to mean ln x.

Throughout this book, we are going to use natural logarithms only.

(Once we get used to it, we will start identifying log x to stand for logex.) To avoid,

confusion in the notation, whether log x should mean log10x or logex, we agree that in dealing

with arithmetical calculations it will stand for log10x. On the other hand,while solving problems

in calculus, it will stand for logex. Besides, this notation will be implemented only after a

suitable note.

12.6 DEFINITION: LOGARITHM

The logarithm of any number to a given base, is equal to the power towhich, the base should be

raised to get the given number.(8)

We Know That Therefore, we say That We Write

26 ¼ 64 log of 64 to the base 2 ¼ 6 log264 ¼ 6

43 ¼ 64 log of 64 to the base 4 ¼ 3 log464 ¼ 3

641 ¼ 64 log of 64 to the base 64 ¼ 1 log6464 ¼ 1

52 ¼ 25 log of 25 to the base 5 ¼ 2 log525 ¼ 2

5�3 ¼ 1/125 log of 1/125 to the base 5 ¼ �3 log5 1/125 ¼ �3

a0 ¼ 1, (a 6¼ 0) log of 1 to the base a ¼ 0 loga1 ¼ 0

a1 ¼ a log of a to the base a ¼ 1 logaa ¼ 1

Note (1):

(i) From the first three illustrations, we observe, that the logarithm of a (positive) number is

different for different bases.

(ii) From the last two illustrations, we get the following two results:

(a) The logarithm of 1 to any base is zero.

(b) The logarithm of any number to the same base (as the number itself) is (i.e.,

logaa ¼ 1, log1010 ¼ 1, logee ¼ 1.)

(7) It might look odd to choose “e” as a base. Later, it will be found that choosing “e” as a base, providesmany advantages in

analysis. It arises quite naturally in calculus (similar to p appearing in geometry) as a basic property of mathematics. A

detailed discussion about “e”, its origin and properties along with the exponential function ex and its properties are

discussed in the next chapter.
(8) Note that, we shall be considering logarithms of “positive real numbers” only. However, it may be mentioned that

logarithms of negative numbers (and those of complex numbers) are also defined and handled, when we deal with the

algebra of complex numbers.
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Recall the following three laws of exponents,

(i) am � an ¼ amþn,

(ii) am ‚ an ¼ am�n,

(iii) (am)n ¼ amn.

Corresponding to the above laws (of exponents), we have the following three fundamental laws

of logarithms:

(i) loga(mn) ¼ logamþ logan

(ii) loga(m/n) ¼ logam� logan

(iii) logam
n ¼ n logam

Let us prove these laws (or properties) of logarithms.

(I) To prove, loga(mn) ¼ logam þ logan

Let, x ¼ logam, so that ax ¼ m

and y ¼ logan, so that ay ¼ n

o
ð3Þ

Now, consider,

mn ¼ ax � ay ¼ axþy ðby law of exponentsÞ
) logamn ¼ xþ y; ðby definition of logarithmÞ
¼ logamþ logan; ½using ð3Þ�

(II) To prove, loga (m/n) ¼ logam� logan

Let, x ¼ logam, so that ax ¼ m

and y ¼ logan, so that ay ¼ n

	
ð4Þ

Now consider,

m

n
¼ ax

ay
¼ ax � ay ¼ ax�y

) logaðm=nÞ ¼ x� y ðby definition of logarithmÞ
¼ logam� logan

(III) To prove, logam
n ¼ n logam

Let, x ¼ logam so that ax ¼ m:Now, consider,mn ¼ ðaxÞn ¼ anx

) logaðmnÞ ¼ nx ðby definition of logarithmÞ
¼ n logax

It is necessary to get acquainted with the terminology related to logarithms.
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12.6.1 Characteristic and Mantissa of Logarithm

Definition: If the logarithm of any number is partly integral (i.e., it is an integer) and partly

fractional, the integral portion of the logarithm is called its characteristic and the decimal

portion is called its mantissa.

For example, log 795 ¼ 2.9004. Here, the number 2 is the characteristic and 0.9004 is the

mantissa.

12.6.2 Method of Expressing Negative Logarithm

The characteristic of a logarithm may be any real number (positive, zero, or negative), but the

mantissa “x” is always expressed as a non-negative number (0	 x< 1). The method of

expressing a negative logarithm, with positive mantissa is made clear from the following

example.

From the table of logarithms, it will be found that, log 2 ¼ 0.3010(9)

Then, we have log
1

2

� �
¼ log 1� log 2¼ 0� 0:3010 ¼ �0:3010 ðsince log 1 ¼ 0Þ

which is a negative number.

This is a case of a negative logarithm, wherein the characteristic is zero, and hence the

mantissa is a negative number.

To express the mantissa as a positive number, we write

�0:3010 ¼ �1þ 1� 0:3010

¼ �1þ 0:6990:

For shortness, we write this latter expression as �1:6990. The horizontal line over the number 1

denotes that the integral part (i.e., characteristic) is a negative number; the decimal part (i.e.,

mantissa), however, is positive. Thus, �2:3276, stands for �2þ 0.3276.

There is an advantage in expressing the mantissa as a positive number with reference to the

base 10. This is explained in point (b) given in Section 12.7.

12.7 ADVANTAGES OF COMMON LOGARITHMS

(a) The characteristic of the logarithm of any number can always be determined by

inspection.

Case (I): Let the number be greater than unity

Since 100 ¼ 1, therefore log 1 ¼ 0,

since 101 ¼ 10, therefore log 10 ¼ 1,

since 102 ¼ 100, therefore log 100 ¼ 2, and so on.

(9) Here the characteristic (i.e., integral part of logarithm) is zero.
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Hence, the logarithm of any number between 1 and 10must lie between 0 and 1. From the log

tables, it may be seen that,

log 3 ¼ 0:4771; log 7 ¼ 0:8451;

log 8:3 ¼ 0:9191; log 9:9 ¼ 0:9958:

Similarly, the logarithm of any number between 10 and 100 must lie between 1 and 2, the

logarithm of any number between 100 and 1000 must lie between 2 and 3, and so on. Thus, the

logarithm of any number between 10n and 10nþ1 must lie between n and nþ 1. From the log

tables, we have

log 27:6 ¼ 1:4409; log 153:2 ¼ 2:1853;

log 1623 ¼ 3:2067; log 7295 ¼ 3:8576:

Case (II): Let the number be less than unity.

Since 100 ¼ 1, therefore log 1 ¼ 0,

since 10�1 ¼ 1/10 ¼ 0.1, therefore log 0.1 ¼ �1,

since 10�2 ¼ 1/102 ¼ 0.01, therefore log 0.01 ¼ �2,

since 10�3 ¼ 1/103 ¼ 0.001, therefore log 0.001 ¼ �3 and so on.

Thus, the logarithmof anynumber between 0.1 and 1, lies between�1 and 0, and so it is equal to

“�1”þ some number in decimal (i.e., its characteristic is �1). Similarly, the logarithm of any

number between 0.01 and 1 lies between �2 and �1 and hence it is equal to “�2”þ some

number in decimal (i.e., its characteristic is �2). From the log tables, we get,

log 0:35 ¼ �1:5441; log 0:057 ¼ �2:7559;

log 0:0091 ¼ �3:9590; log 0:0006 ¼ �4:7782:

(b) A very important property of logarithms to the base 10, is that the mantissa (i.e., the

decimal portion) of the logarithms of all numbers, consisting of the same significant

digits, are the same. The following example makes this point clear.

Suppose we are given that log 66818 ¼ 4.8249. Then, consider the numbers 66818,

668.18, 0.66818, and 0.00066818, which consist of the same significant figures, but

differ only in the position of the decimal point. Let us find the logarithms of these

numbers, to the base 10. From the log tables, we have log10 66818 ¼ 4.8249.

Now, consider

log 668:18 ¼ log
66818

100
¼ log 66818� log 100

¼ 4:8249� 2

¼ 2:8249

log 0:66818 ¼ log
66818

100000
¼ log 66818� log100000

¼ 4:8249� 5

¼ �1:8249

log 0:00066818 ¼ log
66818

108

¼ 4:8249� 8

¼ �4:8249
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Observe that, the logarithms of the above numbers have the same decimal portion (i.e.,

the same mantissa), and they differ only in the characteristic.

Remark: In view of the above, we say that themantissa of a logarithm is by convention

positive. However, the above property (possessed by logarithms to the base 10) is not

possessed by logarithms to the base “e” (or other bases such as 2, 3, 5, 7, . . . etc.).

12.8 CHANGE OF BASE

Wewill now show that, if we are given the logarithm of a number, to any base, then we can easily

compute the logarithmof that number to any other base. The following relation states the rule.

logax ¼ logbx

logba

or logax � logba ¼ logbx ð5Þð10Þ

Let us prove this relation.

Proof: Let

logbx ¼ y and logba ¼ c ð6Þ

by ¼ x and bc ¼ a ð7Þ
We must eliminate “b”. For this purpose, we obtain from (7)

b ¼ x1=y and b ¼ a1=c

) x1=y ¼ a1=c ) x ¼ ay=c

) y=c ¼ logax

) logax ¼ y=c ¼ logbx

logba
; using ð6Þ½ �

) logax ¼ logbx

logba
ðProvedÞ

In the same manner, it can be proved that

logax ¼ logbx � logab ð8Þ

Thus, if we know the logarithm of any number to a base “b” thenwe can easily find its logarithm

to any other (desired) base “a”.

(10) Look at the following algebraic identity. (x/a)�(a/b) ¼ (x/b). It is useful, in writing the rule for change of base, for

logarithms.
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12.8.1 Corollary

An important property of logarithms

logba � logab ¼ 1 or logba ¼ 1

logab

Proof: Let

logba ¼ c ) bc ¼ a ð9Þ

and

logab ¼ d ) ad ¼ b ð10Þ

From (10), we obtain

bc ¼ acd ð11Þ

Now, from (9) and (11) we have (by eliminating “b”),

a ¼ acd ; which means c � d ¼ 1

) logba � logab ¼ 1

or

logba ¼ 1

logab
ð12Þ

Remark: Using (12), result (5) can be written in the form (6).

12.8.1.1 To Express Any Positive Number in the Exponential Form Now, it is easy to

show that

aðlogabÞ ¼ b; cðlogcbÞ ¼ b; aðlogaxÞ ¼ x; and so on:

Now, we will show that, aðlogaxÞ ¼ x.

Let, logax ¼ t

) x ¼ at ðby definition of logarithmÞ
¼ aðlogaxÞ; ð )t ¼ logaxÞ

Remark: The above result tells us that any positive number “x” can be expressed in the

exponential form by choosing an arbitrary positive base “a” (a 6¼ 1) and raising it to the power

logax.
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12.8.2 Antilogarithm: Definition

If logac ¼ b, then c is called the antilogarithm of b, to the base a. We read, c ¼ antilog b, to the

base a. Thus, the process of finding the antilogarithm is just the reverse of the procedure for

finding the logarithm of a given number.

Now, we shall work a few numerical examples to show the application of logarithms and

antilogarithms for calculations. Here, it is assumed that the reader is familiarwith how to use the

tables for logarithms and antilogarithms. (Later in the text, we have discussed the method of

using these tables.)

12.8.3 Application of Logarithms

(a) Multiplication of Numbers

To find the product (0.035681)(2763.5)

Let x ¼ (0.035681)(2763.5)

log x ¼ log 0:035681þ log 2763:5
¼ �2:5524þ 3:4254
¼ 1:9778

) x ¼ antilog ð1:9778Þ
¼ 95:01:

(b) Powers and Roots

(i) To find (5.978)4

Let x ¼ (5.978)4

) log x ¼ 4 log 5:978
¼ 4� 0:7766
¼ 3:1064

) x ¼ antilogð3:1064Þ
¼ 1277

Check 64 ¼ 1296.

(ii) To find cube root of 79507

Let x ¼ [79507]1/3

) log x ¼ ð1=3Þ log 79507
¼ ð1=3Þ½4:9004�
¼ 1:6334

) x ¼ antilog 1:6334 ¼ 43:00

Thus, the cube root of 79507 is 43.

From the above, we note that the simpler process of addition has replaced the process of

multiplication, and the simpler process of division has replaced the difficult process of

extracting the cube root.
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12.9 WHY WERE LOGARITHMS INVENTED?

To speed up and simplify calculations, naturally. Indeed, logarithms simplify and speed up

calculations to a remarkable degree. They make it possible to perform operations that would

otherwise be extremely difficult (e.g., extracting high-index roots).

Today, we are used to logarithms and to the extent to which they simplify the computation

process so it is hard to imagine the wonder and excitement they caused when they first

appeared.

If the logarithm of a number is an irrational number, then it cannot be exactly expressed in

decimal form. The logarithms of such numbers are given only approximately, no matter how

many decimal places are taken—the larger the number of decimal places in the mantissa, the

better the approximation.(11)

The idea that shortermantissaswould sufficewas realized recently. Formost practical needs,

even three place mantissas are suitable. This is because of the fact that, rarely domeasurements

involve more than three decimal places.

12.10 FINDING A COMMON LOGARITHM OF A (POSITIVE) NUMBER

The common logarithm of a (positive) number, consists of the sum of two parts, namely the

“characteristic” and the “mantissa”. Thus,

log x ¼ characteristic for xþmantissa for x:

The characteristic is an integer (positive, zero, or negative) and the mantissa is always a non-

negative number, less than 1 in the decimal form (e.g., 0.2539, 0.0703, etc.). Characteristic is

found by inspection, whereas mantissa is found from the tables of (common) logarithms.

Note (4):Tofind the logarithm of a number, it is necessary to “write” the number in the decimal

form. For example, we write 635 (¼ 635.00), 5923/5 ¼ 1184.6, and consider numbers of the

type 2.0357, 0.8305, 0.003751, and so on.

12.10.1

To find the characteristic by inspection, we consider the following two cases:

(a) Characteristic of a Number Greater Than 1

Rule:

We count the number of digits on the left of the decimal point of a given number. Suppose, there

are “n” digits, then the characteristic of that number will be (n� 1).

(11) With this idea, nearly 500 types of logarithm tables have been prepared from the time logarithms were invented. They

include 10-place tables (for common logarithms) by Dutch mathematician Adrian Vlacq to 260-place logarithms (to the

base “e”) byAdams. Interesting information about these developments is available in the book “Mathematics can be Fun”,

by Ya Perelman (p. 381), Mir Publishers, Moscow, 1979.
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Example (1):

Given number Characteristic

3073.563 3

506.335 2

93.672 1

8.359 0

(b) Characteristic of a (Positive) Number Less Than 1 (i.e., 0< x< 1)

Rule:

Count the number of zeros appearing immediately after the decimal point and before the first

nonzero digit, in the decimal form of the number. Suppose, there are “z” such zeros. Then,

characteristic of that number is�(zþ 1). In this case, the characteristic is a negative number.

However, to indicate the negative characteristic we use a bar over the characteristic, to

emphasize the point that, only the number below the bar is negative.

Example (2):

Given number Characteristic

0.23931 �1

0.05729 �2

0.00315 �3

0.00063 �4

12.10.2 Method of Finding the Mantissa (Using Logarithm Tables)

[It is useful to open the log tables(s) at the time of reading the following material.] We have to

use logarithm tables, to find the mantissa (i.e., decimal part) of the logarithm of a number. The

logarithm tables consist of rows and columns. Rows beginwith the numbers 10, 11, 12, . . . upto
99, and there are columns with headings 0, 1, 2, 3, . . . upto 9. After these columns, there are

other columns, with headings 1, 2, 3, . . ., 9. These are known asmean differences. (Reader may

refer to a log table.)

The common logarithm tables are designed to find themantissa for four-digit numbers. For

finding the mantissa, we ignore the decimal point, and consider only four (significant) digits of

the number. If we have numbers, which have more than four digits, after ignoring the decimal,

then we proceed as follows:

. If the fifth digit is
5, then increase the fourth digit by 1 and ignore all the digits from fifth

onwards.

. If the fifth digit is less than 5, then ignore all the digits from fifth onwards.

For example,
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Number for

Finding

Logarithm

Number for

Finding

Mantissa

Four-Digit

Number for

Finding Mantissa

Mantissa

(Found Using

the Table)

57.314 57314 5731 0.7582

57.315 57315 5732 0.7583

5.7317 57317 5732 0.7583

0.57313 57313 5731 0.7582

0.057318 57318 5732 0.7583

Remark: The column(s) of mean differences are prepared to ensure proper accuracy of the

mantissa. Let us find the logarithm(s) of the following numbers to understand the entire

procedure.

Example (3): To find the logarithm of 7452.76.

(a) Characteristic for 7452.76 is 3.

(b) Mantissa: Ignoring decimal point, we read the number as 745276 and consider the four-

digit number 7453. (Why ?) Now, we look at the row starting with 74. Since the next

digit (in 7453) is 5, we find the number in this row under the column headed by 5. Here

the number at the crossing of 74 and 5 is 8722.

Now, we read the number in the same row under the column 3 of mean differences [3 is the next

(last) digit in 7453]. The difference is 2. We add the mean difference to 8722 and obtain the

mantissa as 0.8724.

) log 7452:76 ¼ 3:8724

Example (4): To find logarithm of 0.035244.

(a) Characteristic for 0:035244 ¼ �2

(b) Mantissa: For the four-digit number 3524

¼ 5465þ 5 ðmean differenceÞ¼5470:

) log 0:035245¼�2:5470:

12.11 ANTILOGARITHM

Now, we consider the problem of finding the number m, when logm is known. We know that

log 1000 ¼ 3. Therefore, we say that antilog 3 ¼ 1000. Our interest lies in finding,

antilogarithm(s) of numbers with four-digit mantissa (i.e., numbers of the type 3.8424,

0.0134, �2:5470:, �1:6133:, etc.).
For finding antilog of a number, we have to refer to the table with heading Antilogarithms.

These tables also consist of rows and columns. Here, the rows begin with numbers 0.00, 0.01,

and 0.02, up to 0.99. Everything else looks similar to the log tables. The method of referring to

these tables is also the same.We explain the method of finding the antilog of a number with the

help of some examples. [Of course, it will be useful to refer to the antilog table(s) while solving

the following examples.]
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Example (5): Let us find the antilog (3.8724).

Here, we have to find the numberwhose log is equal to 3.8724. Suppose, the required number is

y, then

log y ¼ 3:8724 ¼ 3þ 0:8724:

Here, characteristic for y is 3, and mantissa is 0.8724. (Antilog tables are used with reference to

the first four digits of mantissa. Final number is found by placing the decimal point suitably,

using the characteristics.)

Step I: First we consider the mantissa part, which is 0.8724.

In the antilog table, the entry in the rowbeginningwith 0.87 and under the columnheaded by

2 is 7447. Now, the next digit in 0.8724 is 4, sowe find the number in the same row (in the mean

difference column) headed by 4. This number is 7. We add this number to 7447 and obtain the

number 7454.

Step II: Since the characteristic of the required number is 3, the number of digits before the

decimal point must be 4. Hence, the required number is equal to 7454.0.

Note (5): In the earlier Example (3), for finding the logarithm, we have computed the logarithm

of 7452.76 as 3.8724. Therefore, antilogarithm of 3.8724, should be nearly 7453, but here it is

found to be 7454. Thus, there is a difference between the original number and the recovered

number, in the fourth digit only. This indicates the accuracy achieved in obtaining the original

number, by applying the antilog to the logarithm of the given number. Similarly, it will be found

that, for recovering a five-digit number, there may be a difference of (at most) two-digit

number, and so on. Let us check about this expectation.

Consider, log 63293 ¼ 4.8009þ 6 (mean difference) ¼ 4.8015.

Now, let us compute antilog 4.8015.

(Recall that, for computing the antilog, we consider the mantissa only, and then place the

decimal point suitably, depending on (the value) of characteristic.)

Antilog 4:8015 ¼ 6324þ 7 ðmean differenceÞ ¼ 63310:0 ¼ 6331:

Note that, the difference between the original number and the recovered number is

(63310� 63293) ¼ 17.

Example (6): Now, consider log 0:07627 ¼ �2:8824.

It is found that, antilog �2:8824 ¼ 0:07628.
(Here, the characteristic is �2. Hence, after finding the antilog with reference to the mantissa

0.8824, we put one zero to the right of decimal point) and write the digits discovered.

Example (7): To find antilog �1:0352.

(Note that, in this case the four-digit mantissa to be considered is 0352.)

) Antilog �1:0352 ¼ 0:1084:

Example (8): Antilog �1:31527

In this case, the four-digit mantissa to be considered is 3153 (Why?).

) Antilog �1:3153 ¼ 0:2066:

(Also, antilog �1:3152 ¼ 0:2066.)
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12.11.1 Antilogarithm of a Negative Number

In dealing with real numbers, our interest is restricted to the logarithms of positive numbers

only (excluding 1). However, we may be required to compute the antilogarithm(s) of a (small)

negative number like (�1.3256) or (�0.5913) or (�2.6512), and so on. How to compute these

antilogarithm(s)?

[Note that, in (�1.3256) the characteristic and the mantissa both parts are negative. To

express the mantissa (i.e.,�0.3256) as a positive number, we add 1 and subtract 1, to keep the

given number unchanged.]

�1:3256 ¼ ð�1� 0:3256Þ þ 1� 1

¼ �2þ 0:6744
¼ �2:6744

�0:5913 ¼ ð�0:5913Þ þ 1� 1

¼ �1þ 0:4087
¼ �1:4087

Now, it is simple to compute the antilogarithms of these numbers.

12.12 METHOD OF CALCULATION USING LOGARITHM

Using tables of (common) logarithms and antilogarithms numerical calculations, involving

operations of multiplication, division, raising to the power, and root extraction are easily

computed, by applying the laws of logarithms and using the tables of common logarithm(s) and

antilogarithm(s). Earlier (in Section 12.4), we have seen some examples, which explain the

applications of tables of logarithms and antilogarithms. Now, having learnt the method of using

log tables and antilog tables, we illustrate below, the logarithmmethod of calculation, which is

very useful in arithmetical calculations, especially in labs.

Example (9): Using logarithm tables, let us calculate

ð59:6Þ3
ð4:7Þ2 � ð7:2Þ

( )1=2

:

Solution: Let t ¼ ð59:6Þ3
ð4:7Þ2 � ð7:2Þ

( )1=2

) log t ¼ log
ð59:6Þ3

ð4:7Þ2 � ð7:2Þ

8<
:

9=
;

1=2

¼ 1

2
log

ð59:6Þ3
ð4:7Þ2 � ð7:2Þ

8<
:

9=
;

¼ 1

2
logð59:6Þ3 � 1

2
log ð4:7Þ2 � ð7:2Þ

h i

¼ 1

2
3 logð59:6Þ½ � � 1

2
2 logð4:7Þ þ log ð7:2Þ½ �
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Now, 3 log 59.6 ¼ 3 (1.7752) ¼ 5.3256.

2 log 4:7 ¼ 2 ð0:6721Þ ¼ 1:3442
log 7:2 ¼ 0:8573

o
2:2015 ðTotalÞ

) log t ¼ 1

2
5:325� 2:2015½ � ¼ 1

2
3:1241½ � ¼ 1:5625

) t ¼ antilog 1:5625 ¼ 36:52

) ð59:6Þ3
ð4:7Þ2 � ð7:2Þ

( )1=2

¼ 36:52 Ans:

Example (10): To calculate
5:8� 13:6� 18:9

ð2:7Þ3 � 0:21
.

Solution: Let t ¼ 5:8� 13:6� 18:9

ð2:7Þ3 � 0:21
.

) log t ¼ log
5:8� 13:6� 18:9

ð2:7Þ3 � 0:21

2
4

3
5

¼ ðlog 5:8þ log 13:6þ log 18:9Þ � ð3 log 2:7þ log 0:21Þ

Now;

log 5:8 ¼ 0:7634

log 13:6 ¼ 1:1335

log 18:9 ¼ 1:2765

)
3:1734 ðTotalÞ

3 log 2:7 ¼ 3 ð0:4314Þ ¼ 1:2942

and log 0:21 ¼ �1:3222

)
0:6164 ðTotalÞ

) log t ¼ ð3:1734� 0:6164Þ ¼ 2:5570

) t ¼ antilog 2:5570 ¼ 360:6

) t ¼ 360:6 Ans:

Note (6): Besides the above applications, the computation of compound interest (on fixed

deposits) or population growth, or depreciation values of houses, and so on are easily calculated

by using “log method ”. The compound interest formula is

A ¼ P 1þ r

100

h in
;

where A, P, r, and n have their usual meaning.

Remark: The logarithm of a number is based on representing the number in exponential

form. The mathematical operation “raising to a power” has two inverse operations. If ab ¼ c,
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then finding the base “a” is one inverse operation called extraction of the root, and finding the

exponent “b” is the other inverse operation called taking the logarithm.

Note that, in the operation(s) of addition and multiplication, both the terms are of an equal

status and can be interchanged (thus, aþ b ¼ bþ a and a � b ¼ b � a). But the numbers (or

terms) that take part in “raising to a power” are not of the same status, and, generally, cannot be

interchanged (e.g., 35 6¼ 53). It is for this reason that, “raising to a power” has two inverses.

Further, finding the base and finding the exponent are handled in different ways.

Let us revise the following terms, which we have frequently used in this chapter.

Power: The number of times a quantity is to be multiplied by itself. For example,

26 ¼ 2� 2� 2� 2� 2� 2 ¼ 64, is known as the sixth power of 2.

Exponent: A number or symbol placed as a superscript after an expression to indicate the

power, to which it is raised. For example, x is an exponent in ax, and in (ayþ b)x.

Index: A number that indicates a characteristic (or a role or a function) in a mathematical

expression. For example, in y6, the exponent 6 is also known as the index. Similarly, in
ffiffiffiffiffi
273

p
and log10x, the numbers 3 and 10, respectively, are called indices (plural for index).
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13a Exponential and Logarithmic
Functions and Their Derivatives

13a.1 INTRODUCTION

Exponential and logarithmic functions are among the most important and most practically

useful functions in calculus. The definition of logarithm of any (positive) number is based on

exponents and the properties of logarithms are then proved from corresponding properties

of exponents.(1)

If a> 0 (a 6¼ 1), then the expression axmakes sense for any real number x. Accordingly, for

any positive base a (except a ¼ 1), the expression ax defines a sensible exponential function.

In practice, a ¼ 2, a ¼ 10, and a ¼ e are the most useful bases. Among all exponential

functions, the one with base e (i.e., the function ex) turns out to be especially useful and

convenient. For day-to-day calculations such as those in the field of engineering, the base 10 is

found to be very useful. Logarithms to the base 10 are called common logarithms. Important in

calculus are logarithms to the base e called natural logarithms.(2)

In many books, systematic and excellent information about the number e is available. It

possesses certain unique properties valuable in many branches of mathematics, particularly

calculus. For a student of mathematics, the knowledge of this unique number (and the related

functions: ex, logex; a
x, logax) is very essential. We give here a brief account of the number e.

Its approximate value is given by

e ¼ 2:7 1 8 2 8 1 8 2 8 4 5 9 0 4 5 2 3 5 3 6 . . .

For this number, the symbol e was first adopted by the great Swiss mathematician Leonard

Euler.

What must you know to learn calculus? 13a-The number “e,” its origin, value, and properties Exponential and

logarithmic functions (ex, logex, a
x, logax), their derivatives and the applications of ex (exponential growth and

decay)

(1) Recall that, if three numbers a, b, and c are related such that, ab ¼ c (a> 0, a 6¼ 1), then the exponent b is called the

logarithm of c to the base a. Observe that, for a> 0, c is always a positive number.
(2) In mathematics, the two numbers, namely, p and e are very important. They arise in a natural way in geometry and

calculus, respectively. Both p and e are special types of irrational numbers, known as transcendental numbers. They arise

not as the result of a simple algebraic relationship, but as a basic property of mathematics. (Transcendental numbers are

defined as numbers that are not the roots of any algebraic equation with rational coefficients.) In this chapter, we shall

discuss why e is important in mathematics.

Introduction to Differential Calculus: Systematic Studies with Engineering Applications for Beginners, First Edition.
Ulrich L. Rohde, G. C. Jain, Ajay K. Poddar, and Ajoy K. Ghosh.
� 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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13a.2 ORIGIN OF e

The idea of the number e comes from the practice of money lending. Consider a quantity

growing in such a way that the increment of its growth, during a given time, shall always be

proportional to its own magnitude. This situation resembles the process of computing interest

on money lent at some fixed rate, since the bigger the capital, the bigger the amount of interest.

Here, wemust distinguish clearly between twoways for calculating interest on the capital: (a) at

simple interest, and (b) at compound interest.

13a.2.1 At Simple Interest

We know that in this case the capital remains fixed, so the interest is always calculated on the

fixed capital for a given time. Thus, if the initial capital is Rs. 100 and the rate of interest is 10%

per annum, then the owner will earn Rs. 10 every year. If this earning continues for a period of

10 years, then the owner must have received 10 increments of Rs. 10 each (so the total interest

earned is Rs. 100) and thus, his initial capital will be doubled in 10 years. (In this case, the value

of the yearly interest is 1/10 of the capital.)

If the rate of interest is 5% (i.e., 5/100 ¼ 1/20), then the initial capital will be doubled in

20 years, and if the rate of interest is 1% (i.e., 1/100), then it will take 100 years for the initial

capital to be doubled. It is easy to see that if the value of the yearly interest is (1/n)th of the

initial capital, the owner must go on hoarding for n years in order to double his capital. In other

words, if p is the initial capital and the yearly interest is p/n, then at the end of n years his final

amount will be

pþ p

n
� n ¼ 2p

13a.2.2 At Compound Interest

In this case, the interest is added to the capital every year (or every half or every quarter of the

year, and so on, as the terms may be); so the capital increases by successive additions of the

interest part to it at the end of every term.

As before, let the owner beginwith an initial capital of Rs. 100, earning an interest at the rate

of 10% per annum. Then, at the end of first year, the capital will grow to Rs. 110 and in the

second year this new capital will earn (assuming the interest rate is still 10%) Rs. 11 as interest.

Accordingly, he will start the third year with Rs. 121 as capital and the interest on this amount

will be Rs. 12.10. He will, thus, start the fourth year with Rs. 133.10 as capital, and so on.

Ifp is the initial capital that grows by compound interest at the rate of 10%per annum, then at

the end of 10 years the capital will grow to the amount A given by

A ¼Rs: p

�
1þ 10

100

�10

¼Rs: p

�
1þ 1

10

�10

�Rs: p� 2:594

However, this mode of calculating compound interest, once a year, is not quite fair because it is

possible to earnmore by computing the interest at the end of every half-year. This demands that

instead of computing the interest at the rate of 10% per year, we should compute it at the rate of
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5%per half year. Thus, during the period of 10 years, therewill be 20 operations involved, at the

end of which the initial capital is multiplied by 21/20.

Now, since 1þ 1=20ð Þ20 ¼ 21=20ð Þ20 ¼ 2:654; the original capital (of Rs. 100) will be
multiplied by the factor 2.654, showing that the capital must grow to Rs. 265.40.

But even so, the process is still not quite fair since by further reducing the period of each

term, it is possible to earnmore andmore. Supposewe divide the year into 10 parts and reckon a

1% interest for each tenth of the year. In this case, we will have 100 operations lasting over the

period of 10 years. Thus, at the end of 10 years, the capital will bemultiplied by factor 101/100,

thereby obtaining the amount A given by

A ¼ Rs: 100 1þ 1

100

� �100

which works out to approximately Rs. 270.40.

Even this is not final. Let 10 years be divided into 1000 periods (each of 1/100 of a year), the

interest being 1/10% for each such period. Then,

A ¼ Rs: 100 1þ 1

1000

� �1000

which works out to approximately Rs. 271.71.

Let 1/n be the fraction added on at each of the n operations, then the value of the capital p at

the end of n operations is given by p 1þð1=nÞð Þn.
Now, it must be clear that what we are trying to find is in reality the ultimate value of the

expression (1 þ 1/n)n as n!1. As we take n larger and larger, the number (1 þ 1/n)n grows

closer and closer to a particular limiting value. However large we make n, the value of this

expression grows nearer and nearer to the figure 2.718281828459. . ., a number never to be

forgotten. To this number, the mathematicians have assigned the English letter “e”.

13a.2.3 Compound Interest and True Compound Interest

In the process of computing compound interest, the capital p has its interest added to it at regular

periods of time and thus increases by jumps at the end of each period. If we calculate the interest

at shorter and shorter intervals, then in the limiting case it will signify in a sense that the interest

is compounded continuously at each instant. When the interest is compounded in this way, we

say that true compound interest is calculated.

13a.2.4 What Is e

Supposewe are to let 1 grow at simple interest till it becomes 2, and if at the samenominal rate of

interest and for the same period of timewewere to let 1 grow at true compound interest instead

of simple, then it would grow to the value e.

Further Explanation for e:

Let us take 100% as the unit of rate and any fixed period as the unit of time. Then, the result of

letting 1 grow arithmetically (i.e., by simple interest) at the unit rate for the unit time will be 2,

while the result of letting 1 grow by true compound interest at the unit rate for the unit timewill

be 2.71828. . ., which is the number e.

ORIGIN OF e 361



Accordingly, we write

lim
n!1 1þð1=nÞð Þn ¼ e

13a.3 DISTINCTION BETWEEN EXPONENTIAL AND POWER FUNCTIONS

The expression 2x can be carelessly mistaken for the expression x2 as typographically they are

similar; however, the resemblance ends here. They in fact define entirely different functions.

The function x2 is an algebraic power function in which the base is a variable and the exponent

is a constant. On the other hand, the function 2x is an exponential function inwhich the base is a

constant and the exponent is a variable. The difference in their pattern of behavior is illustrated

in Table 13a.1.

As can be seen from Table 13a.1, the exponential function y ¼ 2x increases more slowly for

small values of x and is actually less than the power function y ¼ x2 between x ¼ 2 and x ¼ 4.

However, y ¼ 2x increases more and more rapidly as compared to y ¼ x2. This is because the

exponent in the exponential function increases with x (which means that the base is multiplied

to itself more number of times), whereas for the power function the exponent remains constant

and only the base increases with x.(3)

Another important difference between the two functions is as follows: Corresponding to the

fact that 2x! 0 as x! �1, the graph of y ¼ 2x has the line y ¼ 0 (i.e., the x-axis) as a

horizontal asymptote. In fact, every exponential function y ¼ ax (a> 0, a 6¼ 1) has the line

y ¼ 0 as a horizontal asymptote. By contrast, no power function xa (where a is a real number)

has a horizontal asymptote.

13a.4 THE VALUE OF e

We know that lim
n!1(1 þ 1/n)n ¼ e. A good number of values obtained for this expression,

taking n ¼ 2, n ¼ 5, n ¼ 10, and so on up to n ¼ 10,000, are given below.

TABLE 13a.1 Comparative Values of the Function x2 and 2x

x x2 2x

0 0 1

1 1 2

2 4 4

3 9 8

4 16 16

5 25 32

6 36 64

7 49 128

(3) Each of the expressions 2x, ex, 4x, (1/2)x, and so on defines an exponential function. Note that, the name, exponential,

function is chosen, since the value of the function depends on the exponent x. The most general exponential function is of

the form [ f(x)]g(x), where both f(x) and g(x) are variables.
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�
1þ 1

2

�2
¼ 2:25

�
1þ 1

5

�5
¼ 2:489

�
1þ 1

10

�10
¼ 2:594

�
1þ 1

20

�20
¼ 2:653

�
1þ 1

100

�100
¼ 2:704

�
1þ 1

1000

�1000
¼ 2:7171

�
1þ 1

10; 000

�10000
¼ 2:7182

For practical purposes, we can obtain the above values with the help of a pocket calculator.

Besides, the value of e can be computed to any prescribed degree of accuracy using Taylor’s

Theorem (introduced later in Chapter 22).

It is, however, worthwhile to find another way of calculating this immensely important

figure. First, observe that since n is infinitely large, the number 1/n is very small and hence<1.

Therefore, by using the binomial theorem, we can expand the expression 1þð1=nÞð Þn and
have

�
1þ 1

n

�n
¼ 1þ n � 1

n
� 1
1!

þ nðn� 1Þ
2!

� 1

n2
þ nðn� 1Þðn� 2Þ

3!
� 1

n3
þ � � �

¼ 1þ 1þ
n � n

�
1� 1

n

�

2!
� 1

n2
þ

n � n
�
1� 1

n

�
� n
�
1� 2

n

�

3!
� 1

n3
þ � � �

1þ 1

n

� �n
¼1þ 1þ 1� 1

n

� �
2!

þ 1� 1
n

� �
1� 2

n

� �
3!

þ 1� 1
n

� �
1� 2

n

� �
1� 3

n

� �
4!

þ � � �

Now, when n!1, 1/n, 2/n, 3/n, and so on all tend to 0. This permits us to write

lim
n!1

�
1þ 1

n

�n

¼ 1þ 1

1!
þ 1

2!
þ 1

3!
þ 1

4!
þ � � �

or e ¼ 1þ 1

1!
þ 1

2!
þ 1

3!
þ 1

4!
þ � � �
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We know that n! grows very fast, therefore ð1=n!Þ goes on reducing rapidly with increasing n.
We can work out the sum to any prescribed degree of accuracy by considering the necessary

number of terms and ignoring the rest.

Here is the working for 10 terms:

1st term ¼ 1.000000

2nd term ¼ (dividing 1st term by 1) ¼ 1.000000

3rd term ¼ (dividing 2nd term by 2) ¼ 0.500000

4th term ¼ (dividing 3rd term by 3) ¼ 0.166667

5th term ¼ (dividing 4th term by 4) ¼ 0.041667

6th term ¼ (dividing 5th term by 5) ¼ 0.008333

7th term ¼ (dividing 6th term by 6) ¼ 0.001389

8th term ¼ (dividing 7th term by 7) ¼ 0.000198

9th term ¼ (dividing 8th term by 8) ¼ 0.000025

10th term ¼ (dividing 9th term by 9) ¼ 0.000002

Total 2.718281

Remark: It might seem that the unbounded increase in the exponent would imply an

unbounded increase in the function (1 þ 1/n)n. But the growth in the exponent is compensated

by the fact that the base (1 þ 1/n) tends to 1 as n!1. The integral function (1 þ 1/n)n

increases as n!1, but remains bounded. The bounded character of (1 þ 1/n)n can be easily

proved. It can be shown that e lies between 2 and 3.

13a.5 THE EXPONENTIAL SERIES

Now, we will show that,

ex ¼ 1þ xþ x2

2!
þ x3

3!
þ x4

4!
þ � � �

For this purpose, consider the expression (1 þ 1/n)nx. Note that, for n> 1, (1/n)< 1. Therefore,

by making use of the binomial theorem, we can expand this expression and get

�
1þ 1

n

�nx
¼ 1þ nx � 1

n
þ nxðnx� 1Þ

2!
� 1

n2
þ nxðnx� 1Þðnx� 2Þ

3!
� 1

n3
þ � � �

¼ 1þ xþ n2x x�ð1=nÞð Þ
2!

� 1

n2
þ n3x x�ð1=nÞð Þ x�ð2=nÞð Þ

3!
� 1

n3
þ � � �

¼ 1þ xþ x x�ð1=nÞð Þ
2!

þ x x�ð1=nÞð Þ x�ð2=nÞð Þ
3!

þ � � �

But, as n!1, the terms 1/n, 2/n, and so on approach 0. Therefore, the right-hand side

simplifies to the following:

R:H:S: ¼ 1þ xþ x2

2!
þ x3

3!
þ x4

4!
þ � � �
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Moreover, the number of terms (being n þ 1) becomes infinitely large as n!1, whatever x

may be. Hence, the series continues to infinity.

Also; L:H:S: ¼
�
1þ 1

n

�nx

¼
"�

1þ 1

n

�n
#x

) lim
n!1

"�
1þ 1

n

�n
#x

¼
"

lim
n!1

�
1þ 1

n

�n
#x

¼ ex

) We get; ex ¼ 1þ xþ x2

2!
þ x3

3!
þ x4

4!
þ � � �

This series is called the exponential series. It can be shown that this infinite power series is a

rapidly convergent series for all real values of x.

13a.6 PROPERTIES OF e AND THOSE OF RELATED FUNCTIONS

The greatest reason why e is regarded important is that the function ex possesses a property that

is not possessed by any other function of x, that is, when ex is differentiated, the result is the

same (i.e., ex).(4)

This can be easily seen by differentiating ex with respect to x. We have

y ¼ ex ¼ 1þ xþ x2

2!
þ x3

3!
þ x4

4!
þ � � � ;we get

dy

dx
¼ d

dx
ðexÞ

¼ 0þ 1þ 2x

2!
þ 3x2

3!
þ 4x3

4!
þ 5x4

5!
þ � � �

¼ 1þ xþ x2

2!
þ x3

3!
þ x4

4!
þ � � �

which is exactly the same as the original function ex.

13a.6.1 Another Way of Obtaining the Exponential Series

Let us try to find a function of x such that its derivative is the same as the function itself.

We may also ask: Is there any expression involving only powers of x that is unchanged by

differentiation?

We will show that such a function is

y ¼ 1þ xþ x2

2!
þ x3

3!
þ x4

4!
þ x5

5!
þ � � �

(4) This is equivalent to saying that ðexÞ0 ¼ ex; 8x 2 R, that is, ðd=dxÞðexÞ ¼ ex.
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As a general expression (involving only powers of x), let the required function be

y ¼ AþBxþCx2 þDx3 þEx4 þ . . . ð1Þ

where the coefficients A, B, C, and so on are to be determined.

By differentiating (1) we get,

dy

dx
¼ Bþ 2Cxþ 3Dx2 þ 4Ex3 þ � � � ð2Þ

Now, if this new expression at (2) is to be the same as that at (1), fromwhich it was derived, then

by comparing coefficients it is clear that

B ¼ A

2C ¼ B; ) C ¼ B

2
¼ A

1 � 2 ¼ A

2!

3D ¼ C; ) D ¼ C

3
¼ A

1 � 2 � 3 ¼ A

3!

4E ¼ D; ) E ¼ D

4
¼ A

1 � 2 � 3 � 4 ¼ A

4!

Using these values of B, C,D, E, and so on in equation (1), we get the general expression of the

desired function to be

y ¼ A 1þ x

1!
þ x2

2!
þ x3

3!
þ x4

4!
þ � � �

� �
ð3Þ

Ifwecomparethisexpressionwiththatofex,weobservethatboththeexpressionswillbethesame

if we choose A ¼ 1. Note that, in the general expression in equation (3), we can assume A ¼ 1,

without any loss of generality. Therefore, for the sake of simplicity, we take A ¼ 1 and get

y ¼ 1þ xþ x

1!
þ x2

2!
þ x3

3!
þ x4

4!
þ � � � ð4Þ

which is the function ofx (involvingonly powers ofx) having the desired property.Moreover, it

represents ex.

Thus,

y ¼ ex ¼ 1þ x

1!
þ x2

2!
þ x3

3!
þ x4

4!
þ � � � ð5Þ

is the only function (in powers of x) that has the property that differentiating it any number of

timeswill always give the same function. The function f(x) ¼ ex (with base e) is often called the

exponential function, or sometimes the natural exponential function.

In Chapter 2, we have shown that the exponential function f(x) ¼ ex, x 2 R has one-to-one

mapping from (�1, 1) onto (0, 1). Hence, its inverse function exists. The inverse of the

exponential function is called the logarithmic function.
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Note (1): Exponential and logarithmic functions come in pairs. An exponential function with

base e corresponds to a logarithmic function with the same base.What makes base e special for

both exponential and logarithmic functions will become clearer when we study the derivatives

of these functions. Instead of taking e as the base, we can choose any other positive number a

as the base. Then this function is called an exponential function to the base a.We now define the

function ax and logax.

Definition: The exponential function, y ¼ ax (a> 0, a 6¼ 1) is defined at every point on the

number line R and its range is the set of positive numbers. This function monotonically

increases, if the base is a> 1 and monotonically decreases if 0< a< 1 (see Figures 13a.1a

and 13a.1b).

To define the logarithm function, we use the exponential function.

Definition: The logarithm function with positive base a is denoted by

f ðxÞ ¼ logax ðx > 0Þ

and defined by the condition

y ¼ logax , ay ¼ x

Note (2): For any positive base a (a 6¼ 1), the value of ay, y2R, is always positive. Let ay ¼ x.

This equation also stands for the statement logax ¼ y. It follows that the logarithm function is

defined only for positive numbers and that the logarithm of a positive number will be a real

number (positive, zero, or negative).

The logarithm function, y ¼ logax is defined for all positive x, and its range is the interval

(�1, 1). This function monotonically increases if a> 1, and monotonically decreases if

0< a< 1 (see Figures 13a.2a and 13a.2b).

The logarithmic function, y ¼ logax is the inverse of the exponential function y ¼ ax and

vice versa. [The logarithmic function to the base e is called the natural logarithm (or Naperian

logarithm) and is usually denoted by ln x (or logex).] The logarithmic function to the base 10

is called the common logarithm and sometimes denoted by log x.

y

x

(a) (b)

0

1

y = ax

(a >1)

y

x

0

1

y = ax

0< a<1

FIGURE 13a.1 Two graphs of the function, y¼ ax for different positive values of the base ‘a’.
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Thus, logex ¼ ln x and log10x ¼ log x. We observe the following:

(i) If the base a> 1, then for x� 1, logax � 0 and for 0< x< 1, logax < 0 (see

Figure 13a.2a).

(ii) If the base a is such that 0< a< 1, then for x� 1, logax � 0 and for 0< x< 1,

logax > 0 (see Figure 13a.2b).

To get the proper feel of our observation at (ii), let us find out what happens if the base a lies

between 0 and 1. For convenience, let us consider the base a ¼ 1/2.

We have

ð1=2Þ3 ¼ 1=8 ) log1=2ð1=8Þ ¼ 3

ð1=2Þ1 ¼ 1=2 ) log1=2ð1=2Þ ¼ 1

ð1=2Þ0 ¼ 1 ) log1=2ð1Þ ¼ 0

ð1=2Þ� 5 ¼ 1=ð1=2Þ5 ¼ 32 ) log1=2ð32Þ ¼ � 5

Thus, if the base a is such that 0< a< 1, then for x> 1, logaðxÞ < 0, and for 0< x< 1,

logaðxÞ > 0:
In Table 13a.2, we give values of matched pair of exponential and logarithm functions

with base a ¼ 2. The values illustrate the correspondence between the functions 2x and

log2x.

(a) (b)

y

x

0

y = logax (a > 1)

1

y

0

y = loga x0 < a < 1

x

1

FIGURE 13a.2 Two graphs of the function, logax, for positive values of ‘a’.
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Note (3): The rules of common logarithms hold good for natural logarithms also.

Thus,

(i) logeab ¼ logeaþ logeb

(ii) logeða=bÞ ¼ logea� logeb

(iii) logea
n ¼ n logea

But, as 10 is no longer the base, one cannot write down the logarithm of 100x or 1000x by

merely adding 2 or 3 to the index. What does this mean?

Table 13a.3 clarifies the point.

13a.7 COMPARISON OF PROPERTIES OF LOGARITHM(S)

TO THE BASES 10 AND e

(a) Common logarithms (i.e., log to the base 10) are usually studied in elementary

mathematics. They are the most convenient to use for most arithmetical calculations,

because their base coincides with the decimal base of our number system.

(b) Natural logarithms (i.e., log to the base e) are useful in calculus. The logarithmic base e

is “natural” only in the sense that it is “naturally convenient” in making the standard

process of differentiation work out simply for a logarithmic function.(5)

For all practical purposes, we can always convert back and forth between natural and

common logarithms of the same number by the following relations:

log10x ¼ log10e� logex ð6Þ

logex ¼ loge10� log10x ð7Þ

It is simple to establish these relationships between common and natural logarithms of the

same number x.

Let

y ¼ log10x ð8Þ

TABLE 13a.2 Exponential and Logarithmic Function Values for the Base a ¼ 2

x � 2 � 1 0 1 2 3 10 13.28771

2x 1/4 1/2 1 2 4 8 1024 10,000

x 1/4 1/2 1 2 4 8 1024 10,000

log2x � 2 � 1 0 1 2 3 10 13.28771

TABLE 13a.3 Comparative Values of Logarithms (of some numbers) to the bases 10 and e.

log1050 ¼ 1:6990 log10500 ¼ 2:6990 log105000 ¼ 3:6990

loge50 ¼ 3:9120 loge500 ¼ 6:2146 log105000 ¼ 8:5172

(5) Later we will see that if the base is e, then the result of differentiating logarithmic and exponential functions assumes

simpler forms.
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or

x ¼ 10y ð9Þ

Consider equation (9) and take logarithms of both sides to the base e. We get,

logex ¼ y loge10

logex ¼ log10x� loge10

log10x ¼ 1

loge10
� logex

log10x ¼ log10e� logex

To remember the above relationships, it is useful to remember the algebraic identity,

a

b
¼ a

c
� c

b

Now, the identity ðx=10Þ ¼ ðx=eÞ � ðe=10Þ may be looked upon as suggesting

log10x ¼ logex� log10e

and similarly we can remember the other one.

But, log10e ¼ log102:718 ¼ 0:4343 and loge10 ¼ 2:3026: Therefore,

log10x ¼ 0:4343ðlogexÞ
logex ¼ 2:3026ðlog10xÞ

(c) The characteristic of common logarithm of any (positive) number N changes from 0

to 1 at a convenient point, where N ¼ 10, and from 1 to 2 at a convenient point,

where N ¼ 102 ¼ 100, and so on. But the corresponding part of the natural

logarithm of N changes from 0 to 1 at the (inconvenient) point, where N ¼ e ¼
2.718. . ., and from 1 to 2 at the (inconvenient) point, where N ¼ e2 ¼ 7.389. . ., and
so on. Thus, a drawback of natural logarithms is that their integral parts (i.e.,

characteristic or digits to the left of decimal point) are not obvious, as in the case of

common logarithms.

Thus, the naturalness of natural logarithms has nothingwhatsoever to dowith themathematical

nature of our decimal number system. For this reason, tables of natural logarithmsmust include

digits to the left of the decimal point as well as to the right (corresponding to both the

characteristic and mantissas of common logarithms) (Table 13a.4).

Besides, additional tables are computed for certain functions involving e. The value of ex,

e�x, and (1� e�x) are frequently required in different branches of physics. Some of the values

of these functions are tabulated here for convenience.
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13a.8 A LITTLE MORE ABOUT e

The number e� 2.718281. . . plays a vital role in higher mathematics, physics, astronomy, and

other sciences. It often appears in a situation where it is least expected. For example, let us have

a look at the following problems:

(i) It is required to partition a given positive number a so that the product of all its parts is a

maximum. How to do this? Of course, each part must be greater than 1. It is known that

TABLE 13a.4 A Useful Table of Naperian Logarithms (Also Called Natural Logarithms)

No. loge No. loge No. loge

1 0.0000 3.0 1.0986 20 2.9957

1.1 0.0953 3.5 1.2528 50 3.9120

1.2 0.1823 4.0 1.3863 100 4.6052

1.5 0.4055 4.5 1.5041 200 5.2983

1.7 0.5306 5.0 1.6094 400 6.2146

2.0 0.6931 6 1.7918 1000 6.9078

2.2 0.7885 7 1.9459 2000 7.6010

2.5 0.9163 8 2.0794 5000 8.5172

2.7 0.9933 9 2.1972 10000 9.2104

2.8 1.0296 10 2.3026 20000 9.9035

TABLE 13a.5

x ex e�x 1� e�x

0.00 1.0000 1.0000 0.0000

0.10 1.1052 0.9048 0.0952

0.20 1.2214 0.8187 0.1813

0.50 1.6487 0.6065 0.3935

0.75 2.1170 0.4724 0.5276

0.90 2.4596 0.4066 0.5934

1.00 2.7183 0.3679 0.6321

1.10 3.0042 0.3329 0.6671

1.20 3.3201 0.3012 0.6988

1.25 3.4903 0.2865 0.7135

1.50 4.4817 0.2231 0.7769

1.75 5.754 0.1738 0.8262

2.00 7.389 0.1353 0.8647

2.50 12.183 0.0821 0.9179

3.00 20.085 0.0498 0.9502

3.50 33.115 0.0302 0.9698

4.00 54.598 0.0183 0.9817

4.50 90.017 0.0111 0.9889

5.00 148.41 0.0067 0.9933

5.50 244.69 0.0041 0.9959

6.00 403.43 0.00248 0.99752

7.50 1808.04 0.00053 0.99947

10.00 22026.5 0.000045 0.999955

A LITTLE MORE ABOUT e 371



the largest product for a constant sum can be obtained when the numbers are all equal.

Clearly, then the number amust be partitioned into equal parts. But into howmany equal

parts? Two, three, five, or what?

Techniques in higher mathematics enable us to establish that the largest product is

obtained when the parts are as close as possible to e.

For example, if we want to partition 10 into a number of equal parts such that they

are as close as possible to 2.718. . ., then we have to find the quotient

ð10=2:718Þ ¼ 3:678 . . . that is approximately 4.

Then, we get the product

ð2:5Þ4 ¼ 39:0625

which is the largest product that can be obtained frommultiplying together (four) equal parts

of the number 10.

Observe that by dividing 10 into three or five equal parts, we get smaller products:

10

3

� �3

¼ 37;
10

5

� �5

¼ 32

Again, in order to obtain the largest product of the parts of 20, the number has to be

partitioned into seven equal parts, because 20� 2.718 ¼ 7.36� 7.

Similarly, the number 50 has to be partitioned into 18 parts and the number 100 into 37

parts as

50� 2:718 ¼ 18:4

100� 2:718 ¼ 36:8

(ii) Stirling’s Formula: To compute the product n! that stands for the product of all

natural numbers, from 1 to a certain number n is a tedious exercise. It may be

verified that

10! ¼ 362800

25! ¼ 15511210043330985984000000

In the eighteenth century, the Scottish mathematician James Stirling elaborated a formula that

could calculate factorials approximately:

n! �
ffiffiffiffiffiffiffiffi
2pn

p n

e

	 
n

where p ¼ 3.141. . . and e ¼ 2.718. . .. Both these numbers play an important role in various

mathematical problems. Applying Stirling’s formula and using the tables of logarithms, it is

easy to obtain 25!� 1.55� 1025.

There are many other questions, considered mathematically, that involve e.

(Note (4):Both the problems given above are taken from the bookMathematics Can Be Fun by

Yakov Perelman, Mir Publishers, Moscow).
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13a.9 GRAPHS OF EXPONENTIAL FUNCTION(S)

The general exponential function (to the base a) is expressed by the formula

y ¼ ax; ða > 0; a 6¼ 1Þ

It is defined for all values of x.

Note (5): The restriction a 6¼ 1 merely excludes from our consideration the rather trivial

constant function y ¼ f(x) ¼ 1x ¼ 1.

Note (6): Since the exponent x (in ax) can be any real number, the question comes up as to how

shall we define something like a
ffiffiffi
2

p
? Stated simply, we use an approximationmethod as follows:

First, a
ffiffiffi
2

p
� a1.4 ¼ a7/5, which is defined. Better approximations are a1.41 ¼ a141/100 ¼

ffiffiffiffiffiffiffiffi
a141

100
p

and a1.414, and so on. In this way, a meaning of a
ffiffiffi
2

p
becomes clear. Thus, we can say that ax is

defined for all real x.

It is simple to calculate the points for drawing the graphs of y ¼ 2x, y ¼ 3x, and y ¼
(1/2)x ¼ 2� x. The following table gives the value(s) of the function(s) corresponding to some

values of independent variable x. We consider the following three cases, concerning different

positive values of the base a in Table 13a.6.

The ordered pairs are now plotted in a two-dimensional Cartesian frame of reference. Since

the domain is the set of all real numbers, we join these points by a smooth continuous curve, as

shown in Figure 13a.3.

TABLE 13a.6

x � 2 � 1 0 1 2 3

Case (I) y ¼ 2x 1/4 1/2 1 2 4 8

a> 1 y ¼ 3x 1/9 1/3 1 3 9 27

Case (II) a ¼ 1 y ¼ 1x 1 1 1 1 1 1

Case (III) 0< a< 1 y ¼ (1/2)x ¼ 2� x 4 2 1 1/2 1/4 1/8

y

y = (–)x

y = 3x

y = 2x

5

1
2

–3 –2 –1 1 2 3

x

FIGURE 13a.3 Three graphs of the exponential function, y ¼ ax, showing their behavior.
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Case (I): a> 1: Let a ¼ 2 and a ¼ 3. The curve y ¼ 3x draws a comparison with y ¼ 2x and

shows how the graph changes as the base a (arbitrary constant) changes from 2 to 3.

Case (II): a ¼ 1: The graph of y ¼ 1x ¼ 1 is a line parallel to the x-axis, passing through the

point (0, 1). (We have excluded this case from our consideration and hence from the graph.)

Case (III): 0< a< 1: Let a ¼ 1/2. The graph of y ¼ (1/2)x is drawn to see how the curve

changes as a changes to less than 1, while remaining positive.

Observations: We make the following observations regarding the nature of the graph(s) of

y ¼ ax for different (positive) values of a and real values of x.

1. In each case, the curve always passes through the point (0, 1), whatever be the value of a.

2. In each case, whatever be the value of x (þ ve, zero, or � ve), the value of y ¼ ax is

always positive. Hence, the graph of every exponential function must completely be

above x-axis (i.e., in the first and second quadrants only). No part of the graph(s) will lie

in the third or fourth quadrant.

3. When a> 1 (see the graphs for 2x and 3x), the following are the observation:

(i) For x> 0: As x increases (or decreases), the value of the function y ¼ ax

increases (or decreases) at a faster rate.(6)

(ii) For x< 0: As x decreases by having negative values, y also goes on decreasing

and the curve comes nearer and nearer to thex-axis on the negative side.However,

since y ¼ ax can never actually become equal to zero, whatever x may be, the

graph will not touch x-axis. The x-axis is said to be an asymptote to the curve on

the negative side of the axis.

For negative values of x, the function y ¼ ax (a> 1) increases (or decreases)

with x, but at a slower rate. Thus, the change of y depends, directly on the change

of x. The function y ¼ ax (a> 1) is an increasing function.

4. When 0< a< 1 [see the graph of y ¼ (1/2)x], the observation is just the reverse.

(i) Forx< 0: As x decreases (by having negative values), the value of the function

y ¼ ax increases at a faster rate.

(ii) Forx> 0: As x increases, y can take on values closer and closer to 0, that is, the

curve comes nearer and nearer to the x-axis on the positive side. However, since

y ¼ ax can never actually become equal to zero, whatever x may be, the graph

will never touch x-axis. The x-axis is then said to be an asymptote to the curve on

the positive side of the axis.

For positive values of x, the value of the function y ¼ ax (0< a< 1) decreases at a slower

rate as x increases. Thus, the function y ¼ ax (0< a< 1) is a decreasing function.

5. The graphs of the functions y ¼ ax and y ¼ (1/a)x ¼ a� x, are symmetricwith respect to

the y-axis (see the graphs of 2x and (1/2)x).

Note that, the function y ¼ (1/a)x can be written as y ¼ a� x. It then follows that the values

assumed by a� x for positivex’s are the same as those assumed by ax for negativex’s, having the

same absolute values and vice versa. This means that the graphs of the functions y ¼ ax and

y ¼ (1/a)x ¼ a� x are symmetric, relative to the axis of ordinates.

(6) Itmeans thatwhenx increases (or decreases) by one unit, the corresponding increase (or decrease) in thevalue of y ¼ ax

is more than one unit.
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13a.9.1 Notation

The exponential function to the base a is denoted by expa. It relates x to ax. We write

expa: x! ax

Similarly, the exponential function to the base e is denoted by expe. It relates x to ex. Wewrite,

expe: x! ex

The logarithmic function to the base a (a> 0, a 6¼ 1) is denoted by loga (read as log to the base

a). It relates x (x> 0) to logax. We write

loga: x! logax ðfor each positive xÞ

13a.10 GENERAL LOGARITHMIC FUNCTION

Definition: The general logarithmic function of x> 0 (to the base a) is denoted by

logax ða > 0; a 6¼ 1Þ and defined by y ¼ logax, if and only if, ay ¼ x.

(It is important to remember that to define a logarithmic function, we use an exponential

function.)

We know that if f and f� 1 are the functions that are inverses of one another, then their

composite in either order is the identity function. In other words,

f ð f � 1ðxÞÞ ¼ x

f � 1ð f ðxÞÞ ¼ x

Since the functions expa and loga are inverses of one another, we obtain the equations:

logaðexpaðxÞÞ ¼ x; or logaa
x ¼ x ðfor all xÞ ð10Þ

expaðlogaðxÞÞ ¼ x; or alogax ¼ x ðfor each positive xÞ ð11Þ

Note: Since loga is the inverse of expa, the domain of loga is the range of expa, which is the set of

all positive numbers. Hence, we say that equation (11) is defined for each positive x.

Remark: Equation (11) says that we can represent any positive number x in an exponential

form. For this purpose,wemust choose anypositive number a (excepta ¼ 1) as base and raise it

to the power of the logarithm of x to the base a. Thus, we can write,

alogax ¼ x ða > 0; a 6¼ 1; x > 0Þ

elogex ¼ x ðx > 0Þ7

(7) This equation, together with the expansion of ex, permits us to expand elog ex as an infinite power series. We may write

x ¼ elogex ¼ 1þ logexþ ðlogexÞ2
2! þ ðlogexÞ3

3! þ � � �This expansion will be found useful in evaluating certain limits,

including derivatives of ax (a> 0, a 6¼ 1).
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In other words, the logarithm to the positive base a (a 6¼ 1) is the exponent to which we raise a

to get x.

Besides, equation (11) can be used to represent any power function xa (x> 0), with an

arbitrary exponent / in the form of a function of a function composed of the logarithmic and

exponential functions.

y ¼ xa ¼ ðalogaxÞa ¼ aa logax
ð8Þ

13a.10.1 Graphs of Logarithmic Functions y ¼ logax

The graph of a logarithmic function can be obtained just by interchanging the domain and range

of the equivalent exponential function. Thus, to plot points for a logarithmic function log2x,

we use the equivalent exponential form: 2y ¼ x.

If y ¼ 0, then x ¼ 1, giving the point (1, 0). Similarly, we find other points as follows:

y � 2 � 1 0 1 2 3

x 1/4 1/2 1 2 4 8

(x, y) (1/4, � 2) (1/2, � 1) (1, 0) (2, 1) (4, 2) (8, 3)

[Remember that the domain of ðlog2xÞ is the set of all positive numbers and the range is the

set of all real numbers.]

Similarly, we may plot points for y ¼ log1=2x; using the equivalent exponential function

(1/2)y ¼ x or 2� y ¼ x.

y � 2 � 1 0 1 2 3

x 4 2 1 1/2 1/4 1/8

(x, y) (4, � 2) (2, � 1) (1, 0) (1/2, 1) (1/4, 2) (1/8, 3)

We expect the graph of the loga function to be the curve that behaves with respect to the

x-axis as the expa curve does with respect to the y-axis and vice versa (or, more informally, we

may say that if the axes of x and y are interchanged, the expa curve becomes the loga curve and

conversely).

13a.10.2 Observations from the Graphs of Logarithmic Functions

The observations we make are mostly similar to those we have made for the graphs of

exponential functions.

1. All logarithmic curves pass through the point (1, 0).

2. The graphs lie in the first and fourth quadrants only. That is, the graphs lie entirely on the

right of the y-axis. From this observation, we get that logarithmic functions are not

defined for negative values of x. (What about x ¼ 0?).(9)

3. For a> 1, the function is an increasing function. That is, as x increases, so does y and

conversely (this is clear from the equation 2y ¼ x, which stands for log2x ¼ y).

(8) Mathematical Analysis (English Translation) by A.F. Bermant and I.G. Aramanovich (p. 59), Mir Publishers, Moscow,

1975.
(9) Remember that for a> 0, the equation logax ¼ y means ay ¼ x. Therefore, for x ¼ 0, we get ay ¼ 0, which is not

possible (why?). Hence, logarithmic function is not defined for x ¼ 0.
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For 0< a< 1, it is a decreasing function, that is, as x increases, y decreases and conver-

sely (this is clear from the equation (1/2)y ¼ x, which stands for log1=2x ¼ y).

4. The curve never meets the y-axis, since ay cannot be zero for any value of y.

5. For a> 1, the curve y ¼ logax approaches the y-axis on its negative side but never

crosses it. The y-axis is said to be an asymptote to the curve on its negative side (see the

graphs of y ¼ log2x; y ¼ logex; and y ¼ log4x).

For a< 1, the same observation ismade for the positive side of the y-axis. In this case, the

y-axis is an asymptote to the curve on its positive side (see the graphs for y ¼ log1=2x;
Figure 13a.4.

The graphs of the logarithmic functions to the bases a and 1/a are symmetric with respect to the

x-axis (see graphs of log2x and log1=2x in Figure 13a.4).

13a.10.3 Geometrical Relationship Between the Graphs of Mutually Inverse

Functions

We know that the following two functions are mutually inverse functions:

ðiÞ y ¼ ex

ðiiÞ x ¼ logey

)
ðx 2 R; y > 0Þ

The relation (i) is in the index form and the relation (ii) expresses the same thing in the log form.

It is important to note that these two equations reallymean the same thing and that they describe

one and the same curve in the xy-plane. For the function ex, the axis of argument is the x-axis;

while for the function logey; this role is played by the y-axis (Figure 13a.5a). Similarly, if

y ¼ x3, then x ¼ ffiffiffi
y3

p
. The graph of these relationships is a cubical parabola (Figure 13a.5b).

It is seen that although the calculations yield different points for plotting, the result is

identical, that is, the two curves are the same.

Important Note (8): Generally, we construct the graphs of two mutually inverse functions in

such a way that the x-axis is the axis of argument for both of them. For this purpose, we express

the two mutually inverse functions in the forms y ¼ f(x) and y ¼ �ðxÞ. The ordered pairs (for
plotting) are then calculated and graphed. All such graphs are symmetric about the line y ¼ x

(for more details, see Chapter 2).

Note that, the following graphs of functions, are symmetric about the line y ¼ x.

y

x

3

2

1

0

–1
1 2 3 4 5 6

log2 x

log4 x

log½x

loge x

–2

–3

FIGURE 13a.4 Logarithm functions with various bases.
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13a.11 DERIVATIVES OF EXPONENTIAL ANDLOGARITHMIC FUNCTIONS

We know that

(a) lim
n!1

	
1þ 1

n


n
¼ e ¼ 1þ 1

1!
þ 1

2!
þ 1

3!
þ 1

4!
þ � � �

(b) ex ¼ 1þ x

1!
þ x2

2!
þ x3

3!
þ x4

4!
þ � � �

(c)
d

dx
ðexÞ ¼ ex [This result is obtained by differentiating both sides of the result in

equation (b).]

Now, to find the derivative of the logarithmic function y ¼ logex; we use the following two

results:

(i) The logarithmic function y ¼ logex and the exponential function x ¼ ey are

mutually inverse functions, of which we know the derivative of the exponential

function ey.

(ii) For any pair ofmutually inverse functions y ¼ f(x) andx ¼ f� 1(y), their derivatives are

related by the condition

dy

dx
¼ 1

dx=dyð Þ ; provided
dx

dy
6¼ 0ð10Þ

y y = ex

x = ln y

y = ln x

x

0 el

l

(a) (b)

x

0

y y = x

x = y3

y = x3

x = √ −y
3

y = √ ¯̄x
3

FIGURE 13a.5

(10) The rule for the derivative of inverse function states as follows: If x ¼ f(y) is a differentiable function of y such that the

inverse function y ¼ f� 1(x) exists, then ðdy=dxÞ ¼ 1=ðdx=dyÞ provided ðdx=dyÞ 6¼ 0 (see Chapter 10).
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13a.11.1 Finding the Derivative of the Logarithmic Function

To find the derivative of the logarithmic function y ¼ logex; consider the equation

y ¼ logex ð12Þ

We transform equation (12) into its equivalent exponential form.

We have,

x ¼ ey ð13Þ

[Here,x stands for the function (i.e., the dependent variable) and y for the independent variable.]

Hence, differentiating both sides of (13) with respect to y, we get,

dx

dy
¼ d

dy
ðeyÞ ¼ ey ð14Þ

The derivative of ey with respect to y is the original function unchanged.

Now, to compute the derivative of y ¼ logex; we use the formula

dy

dx
¼ 1

ðdx=dyÞ ; provided
dx

dy
6¼ 0ð11Þ

¼ 1

ey

�
) dx

dy
¼ ey; by equation ð14Þ

�

¼ 1

x
½) ey ¼ x; by equation ð13Þ	

Therefore, for the function y ¼ logex; we get

dy

dx
¼ d

dx
ðlogexÞ ¼ 1

x
¼ x� 1 ð15Þ

This is a very curious result. Note that, x� 1 is a result that we obtained by differentiating the

function logexwith respect to x, and that we could never have got it by differentiating the power

functions, as can be seen from the following results.

d

dx

x3

3

� �
¼ x2;

d

dx

x2

2

� �
¼ x1

d

dx
xð Þ ¼ x0 ¼ 1

d

dx
????ð Þ ¼ x� 1 ¼ 1

x

(11) Note that, dx/dy ¼ ey 6¼ 0, for any value of y.
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d

dx
� x� 1
� � ¼ x� 2;

d

dx

x� 2

2

� �
¼ x� 3

From the above list of derivatives, we note that by differentiating any power function, we

can never get the result x� 1. Thus, we can say that if there exists any function whose derivative

is (1/x), then such a function must be a new function other than a power function. We ask

the question:

Is there any function whose derivative is (1/x)?(12)

Note that, we have obtained the function logex whose derivative is (1/x). Thus, logex is the

desired (new) function that fills up the gap noticed above. We call it the natural logarithm

function.

Recall that the definition of logarithmic function was encountered in algebra and it was

based on exponents. The properties of logarithms were then proved from the corresponding

properties of exponents.(13)

Definition: The natural logarithmic function denoted by ln (or loge) is defined by

ln x ¼ logex ¼
ðx
1

1

t
dt; x > 0

The properties of logarithms can be proved bymeans of this definition. However, to understand

this definition, we have to study the properties of definite integrals and the first fundamental

theorem of calculus. These topics are discussed in Part II of this book.

Now, let us try to differentiate y ¼ loge ðxþ aÞ:

Consider, y ¼ loge ðxþ aÞ
) xþ a ¼ ey

Differentiating both the sides with respect to y, we get

) d

dy
ðxþ aÞ ¼ ey )d

dy
ðeyÞ ¼ ey

� �

This gives

dx

dy
¼ ey ¼ xþ a

(12) This is equivalent to asking the question: Is there any function that is antiderivative of 1/x? [Here, antiderivative is a

new term that stands for a (new) function such that its derivative must be equal to the given function].

In other words, we can say that if there is any antiderivative of 1/x denoted by f(x), then we must have

ðd=dxÞ f ðxÞ½ 	 ¼ 1=x. Later in Part II of the book, it is shown that the antiderivative of 1/x is logex.
(13) In particular, to define the logarithm function y ¼ logex (x> 0), we used the exponential function x ¼ ey (y 2 R).

The condition, y ¼ logex,x ¼ ey means that a logarithm function and an exponential function with the same base are

inverse of each other.
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Now, for reverting to the original function, we use the formula

lim
x! 0

1

x
� logað1þ xÞ

We get

dy

dx
¼ 1

xþ a
¼ note that

dx

dy
¼ xþ a ¼ ey 6¼ 0

� �

Thus, for y ¼ loge ðxþ aÞ; we have

dy

dx
¼ 1

xþ a

Next, let us try to differentiate y ¼ logax: First, we must change logax to natural logarithms

(why?). We get

y ¼ logex � logae ðhere; logae is a constantÞ

¼ logex �
1

logea

ð14Þ

) dy

dx
¼ 1

x
:

1

logea
ðwhere logea is constantÞ

In particular, for the function y ¼ log10x; we have

dy

dx
¼ d

dx
ðlog10xÞ ¼ 1

x
� 1

loge10
¼ 0:4343

x

) 1

loge10
¼ log10e ¼ 0:4343

� �

13a.11.2 Finding the Derivative of the Exponential Function

To find the derivative of the exponential function y ¼ ax (a> 0, a 6¼ 1) is not very simple.

Taking the natural logarithm of both the sides, we get

logey ¼ xlogea

) x ¼ logey �
1

logea
ð16Þ

Note that, here the independent variable is y; hence, differentiating both sides of equation (16)

with respect to y, we get

dx

dy
¼ 1

y
� 1

logea
¼ 1

ax
� 1

logea

(14) Any expression of the form logae must be expressed in the form logea, since tables are available for log to the base e.

DERIVATIVES OF EXPONENTIAL AND LOGARITHMIC FUNCTIONS 381



Now, reverting to the original function, we get

dy

dx
¼ 1

ðdx=dyÞ ¼ ax � logea

Thus, for the function y ¼ ax (a> 0, a 6¼ 1), we have

dy

dx
¼ d

dx
ðaxÞ ¼ ax � logea

Remark: We have obtained the following results:

d

dx
ðexÞ ¼ ex ð17Þ

d

dx
ðaxÞ ¼ ax � logea ð18Þ

d

dx
ðlogexÞ ¼ 1

x
ð19Þ

d

dx
ðlogaxÞ ¼ 1

x
� logea ð20Þ

From the above results (17)–(20), observe that the derivatives of exponential and logarithmic

functions assume simplest forms, if the number e is chosen as the base.

Also, note that for any constant

d

dx
ðekxÞ ¼ kekx

d

dx
ðakxÞ ¼ d

dx
ðbxÞ ðwhere b ¼ akÞ

¼ bxlogeb ½using ðiiÞ	
¼ akx � logeak ¼ kakx � logea

Note (9): We have obtained the derivatives of exponential functions (ex and ax) and those of

logarithmic functions (logex and logax) using the special property that ðd=dxÞðexÞ ¼ ex and

(the relationship) that the functions at and logat (with the same base) are mutually inverse.

In fact, this is an indirect approach by which we could obtain their derivatives. Subsequently,

we shall obtain the derivatives of these functions by applying the definition of derivative, that is,

by the first principle.
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13a.12 EXPONENTIAL RATE OF GROWTH

The process of growing proportionately at every instant to themagnitude at that instant is called

the exponential rate of growth.

Definition: Unit Exponential Rate of Growth: It is the rate of growth that in unit time will

cause 1 to grow to the value 2.718281. . . (i.e., the value of e).

13a.13 HIGHER EXPONENTIAL RATES OF GROWTH

Let us find out what should be the meaning of twice (or thrice) the logarithmic rate of growth?

Observe that a unit logarithmic rate causes 1 to grow (in unit time) to e. Now, if the rate of

growth is doubled then 1 will grow to e in half the time, and during the remaining half the time

(at the same rate), the quantity e must again grow e times, resulting in total growth to e2 times.

Similarly, if the rate of growth is thrice the logarithmic rate, then 1must grow to e3, in unit time,

and so on. In general, if a quantity grows at the exponential rate, x units per unit time, then it

causes 1 to grow to ex in unit time.

Remark: Note that in the statement y ¼ ex, the exponent x is the logarithm of the (positive)

number y to the base e. Since the value of the function ex changes with the exponent x,

some people say that the (exponential) function ex grows at the logarithmic rate x. But since the

rate of change of the function y ¼ ex is also given by the value of ex for every x2R [since,

ðd=dxÞðexÞ ¼ ex], it is logical to say that the exponential function ex grows at the exponential

rate ex (see Figure 13a.6). Thus, both the statements about the rate of growth of ex given above

mean the same thing.

Note (10): In the case of any other exponential function whose base is a (positive) number a

other than e (a 6¼ 1), then its rate of change is different from the rate of change of ex for obvious

y

x

0

1

y = ex y = e–x

FIGURE 13a.6 Graphs indicating growth (and decay) of the function, y ¼ ex, x 2 R.
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reasons. Of course, all such exponential functions are said to grow (or decline) exponentially

(see Figures 13a.7 and 13a.8).

We know that

lim
n!1 1þ 1

n

� �n

¼ e ðn 2 NÞ ð21Þ

y

x

0

1

y = ax, a > 1

FIGURE 13a.7 Exponential growth, y ¼ ax, a>1 x 2 R.

y

x

0

1

y = ax, 0 < a < 1

FIGURE 13a.8 Exponential decay, y ¼ ax, 0< a< 1 x 2 R.
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It can also be shown that

lim
x!1 1þ 1

x

� �x

¼ e ðx 2 RÞ ð22Þ

lim
x! 0

1þ xð Þ1=x ¼ e ðx 2 RÞ ð23Þ

Furthermore, if f(x)! 0 as x! 0, then

lim
x! 0

1þ kf ðxÞð Þ1=ðkf ðxÞÞ ¼ e ðk 6¼ 0Þ ð24Þ

In the process of defining the number e, we accepted the result (21). By applying (21), we can

prove the results at (22) and (23). Here, we shall accept the results without proof. Furthermore,

the result at (24) can be proved if we put kf(x) ¼ t (where k 6¼ 0), since it can be then expressed

in the form (23).(15)

The limits at (21)–(23) will be used as standard results. They are used for computing the

derivatives of logarithmic functions. Besides, they are used for establishing the following

standard limit that is needed for computing the derivative(s) of exponential functions.

13a.14 AN IMPORTANT STANDARD LIMIT

To prove lim
x! 0

ax � 1

x
¼ logea:

To prove the above result, we shall prove the following prerequisite results:

lim
x! 0

logað1þ xÞ
x

¼ 1

logea

Proof: Consider

lim
x! 0

logað1þ xÞ
x

¼ lim
x! 0

1

x
� logað1þ xÞ

¼ lim
x! 0

logað1þ xÞ1=x

¼ loga lim
x! 0

ð1þ xÞ1=x
� �

¼ logae ½using equation ð23Þ	

¼ 1

logea
ðby change of baseÞ

(15) Differential and Integral Calculus (Second Edition, Vol. I, pp. 49–50; revised from 1972 Russian edition) by

N. Piskunor, Mir Publishers, Moscow, 1974.
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Corollary:

lim
x! 0

logeð1þ xÞ
x

¼ logee ¼ 1

Now, it is easy to prove the result

lim
x! 0

ax � 1

x
¼ logea

Solution: Put ax � 1 ¼ y

) ax ¼ 1þ y

) x ¼ logað1þ yÞ ðby definition of logarithmÞ

Also, as x! 0, y! 0 ( )as x ! 0, ax� 1 ¼ y! 0).

lim
x! 0

ax � 1

x
¼ lim

y! 0

y

logað1þ yÞ ¼ 1

lim
y! 0

logað1þ yÞ
y

¼ 1

logae
¼ logea

) lim
x! 0

ax � 1

x
¼ logea ð25Þ

Corollary:

lim
x! 0

ex � 1

x
¼ logee ¼ 1

In particular,

lim
x! 0

7x � 1

x
¼ loge7; lim

x! 0

ex � 1

x
¼ logee ¼ 1:

Remark: Note that if f(x)! 0, as x! 0 and k 6¼ 0, then t ¼ k�f(x)! 0 as x! 0.

) lim
x! 0

akf ðxÞ � 1

kf ðxÞ ¼ lim
t! 0

at � 1

t
¼ logea

13a.14.1 Derivative of Exponential Function ax (by the First Principle)

To prove ðd=dxÞðaxÞ ¼ ax � logea ða > 0; a 6¼ 1Þ:
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Proof: Let f ðxÞ ¼ ax ða > 0; a 6¼ 1Þ

) f ðxþ hÞ ¼ axþ h

Now;
d

dx
ðaxÞ ¼ d

dx
f ðxÞ:

¼ lim
h! 0

f ðxþ hÞ� f ðxÞ
h

ðdefinition of derivativeÞ

¼ lim
h! 0

axþ h � ax

h

¼ lim
h! 0

axðah � 1Þ
h

¼ ax lim
h! 0

ðah � 1Þ
h

¼ ax � logea ½using equation ð25Þ	

) d

dx
ðaxÞ ¼ ax � logea ð26Þ

In particular,

d

dx
ð5xÞ ¼ 5x � loge5

and

d

dx
ðexÞ ¼ ex � logee

¼ exð )logee ¼ 1Þ

Recall that earlier we had proved this result by differentiating both sides of the result.

ex ¼ 1þ xþ x2

2!
þ x3

3!
þ x4

4!
þ � � �

The result (26) can also be obtained as follows:

We have

d

dx
ðaxÞ ¼ lim

h! 0

axþ h � ax

h
; ðprovided the limit existsÞ

¼ ax lim
h! 0

ðah � 1Þ
h
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Now, we can put ah ¼ eh � logea(16)

) d

dx
ðaxÞ ¼ ax lim

h! 0

ðeh logea � 1Þ
h

¼ ax lim
h! 0

1

h

 
1þ h logeaþ

ðh logeaÞ2
2!

þ ðh logeaÞ3
3!

þ � � �
!
� 1

2
4

3
5

¼ ax½logeaþ 0þ 0þ 0þ � � � 	 ðtaking lim
h! 0

Þ
¼ ax � logea

Note (11): By expressing ah in the form eh logea, we can expand it by using the exponential

series.

Corollary: Derivative of the Logarithmic Function logax (by the First Principle):

We have

d

dx
ðlogaxÞ ¼ lim

h! 0

logaðxþ hÞ� logax

h
ðprovided the limit existsÞ

¼ lim
h! 0

1

h
loga

� ðxþ hÞ
x

�2
4

3
5

d

dx
ðlogaxÞ ¼ lim

h! 0

1

h

x

x
loga

�
xþ h

x

�2
4

3
5

¼ lim
h! 0

1

h
loga

�
1þ h

x

�2
4

3
5 ¼ lim

h! 0

1

x
loga

�
1þ h

x

�x=h
2
4

3
5

Put ðh=xÞ ¼ t: Therefore, as h! 0, t ! 0. We get

d

dx
ðlogaxÞ ¼ 1

x
lim
t! 0

loga 1þ tð Þ1=t
h i

¼ 1

x
logae

)lim
t! 0

1þ tð Þ1=t ¼ e

� �

¼ 1

x
� 1

logea
ðby change of baseÞ

d

dx
ðlogxaÞ ¼ 1

x
� 1

logea

(16) We know that any positive number x can be expressed in the exponential form as the following: x ¼ alogax ¼ blogbx ¼
elogex, . . . where a, b, e, and so on are positive numbers other than 1. Now a ¼ elogea. Therefore, ah ¼ ehlogea.
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In particular,

d

dx
ðlogexÞ ¼ 1

x
� 1

logee
¼ 1

x
ð )loge e ¼ 1Þ

Corollary: If y ¼ loga½ f ðxÞ	 ða > 0; a 6¼ 1Þ
Then,

dy

dx
¼ d

dx
loga f ðxÞ½ 	 ¼ 1

f ðxÞ logea
� f 0ðxÞ ðby chain ruleÞ

In particular, for y ¼ loge½ f ðxÞ	;

dy

dx
¼ 1

f ðxÞ logee
� f 0ðxÞ ¼ f 0ðxÞ

f ðxÞ ð )logee ¼ 1Þ

13a.14.2 Derivatives of Different Exponential Functions: Graphical View

We know that, if f(x) ¼ ex, then f0(x) ¼ ex.

We ask the question: Does something similar hold for exponential functions, with other

bases?

Consider the exponential functions, y ¼ 4x, y ¼ ex, and y ¼ 2x whose graphs are given in

Figure 13a.9. We have the following:

For; y ¼ ex;
dy

dx
¼ ex

For; y ¼ 2x ¼ exloge 2; ) dy

dx
¼ ðloge2Þ � ex

For; y ¼ 4x ¼ exloge 4; ) dy

dx
¼ ðloge4Þ � ex

y y = 4x

y = 2x

y = ex

x

–2 –1 0 1 2

2

4

6

8

FIGURE 13a.9 Graphs of three exponentials.
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Note that, at x ¼ 0, the ex graph has the slope 1, the graph of y ¼ 2x has the slope loge2; and the
graph of y ¼ 4x has the slope loge 4. The three graphs cross at the point (0, 1), but have different

slopes there.

For any other value of x, the slope of ax depends on a and it is logea times the slope of ex at

that value of x.

13a.14.3 Derivative of the Logarithmic Function: A Graphical View

Weknow that for anypositive base, a 6¼ 1, the functions ax and logax are inverses of one another.

Geometrically, this relationship means that either graph can be obtained from the other by

reflection around the line y ¼ x. Figure13a.10 shows thegraph for the casea ¼ e and illustrates

a crucial point. It is interesting to observe how such a reflection affects the tangent lines.

We notice the following features of the graph:

(i) Symmetric Points: A point p(x, y) lies on one graph if and only if the point p0(y,x) lies on
the other. Several such points are shown.

(ii) Symmetric Tangent Lines: Like the graphs themselves, the tangent lines at the

symmetric points are symmetric to the line y ¼ x. It follows that the slopes of the

tangent lines at P and P0 are reciprocals. (This is a key fact!) At points (0, 1) and (1, 0),
the graphs of y ¼ ex and y ¼ ln x are parallel to each other and to the line y ¼ x (why?).

13a.15 APPLICATIONS OF THE FUNCTION ex: EXPONENTIAL GROWTH

AND DECAY

Earlier in this chapter, we have discussed exponential and logarithmic functions to the base e

and respectively expressed them by the following equations:

y ¼ ex ðx 2 RÞ ð27Þ
x ¼ log y ðx 2 R; y > 0Þ ð28Þ

y

10

5

–5

–5 10P = (1, 0)
P = (0.368, –1)

P = (5, 1.609)

P' = (1.609, 5)

P' = (0, 1)

P' = (–1, 0.368)

y = ln x

y = ex y = x

x

Slope = 1/5

Slope = 5

FIGURE 13a.10 Inverse functions and their derivatives.
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We know that the relation (27) is in the index form, and the relation (28) expresses the same

thing in the log form. We emphasize that these two equations mean the same thing and that they

describe the same curve in the xy-plane.

Now, our interest is to discuss the applications of the exponential function ex. For this

purpose, we shall review (through geometrical illustrations) the growth of a capital by both

simple interest and compound interest, so that the capital is doubled in a given interval of time.

In Figure 13a.11, OP stands for the original value of a function representing the capital (or

the quantity). OT is the whole time during which the value is increasing (we treat this time

interval as the unit time). Let the time interval be divided into 10 (equal) periods, each of which

have an equal step-up; meaning there is an equal increase in the capital in each interval.We say

that the valueOP increases at a constant rate. This is also clear from the straight linePQ sloping

up by equal steps. Here, dy/dx is a constant.

Note (12): To learn the subject of calculus, it is important to understand clearly the meaning of

the symbol dy/dx. We know that if y is a function of x given by y ¼ f(x), then dy/dx stands for

the (instantaneous) rate of change of y [¼ f(x)] with respect to x and it is generally different

from the “average rate of change” of ywith respect to x, which we denote by ðDy=DxÞ. It is only
in the case of functions of the form y ¼ ax þ b that both these rates are equal. This is so because

dy/dx also stands for the “slope of the curve” at a point that varies from point to point, but

the slope of the straight line is same at each point. Here, each step-up is 1/10 of the originalOP;

so with 10 such steps, the height is doubled. If we had taken 20 steps, each being half the height

shown, at the end (of 20 steps) the height would still have just doubled. Obviously, n such steps,

each being 1/n of the original height OP, would suffice to double the height. This is the case of

simple interest.

Figure 13a.12 illustrates the corresponding geometrical progression. Each of the successive

ordinates is to be 1 þ (1/n) [i.e., ðnþ 1Þ=n] times as high as its predecessor.(17)

0 1

1

2

2 3 4 5 6 7 8 9 T

Q

P

FIGURE 13a.11

(17) Recall that in a geometric progression (or a geometric sequence), the ratio of each term to the one after it is a constant.

The general term of a geometric progression is expressed by arn, where r represents the common ratio and a stands for the

first term (i.e., when n ¼ 0). If r> 1, each term of the sequence increaseswith n, but if r is a proper fraction (i.e., 0< r< 1),

then the terms keep on decreasing as n increases. Obviously, the general term of a geometric sequence represents the

(n þ 1)th term.
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The step-ups are not equal because each step-up is now 1/n of the ordinate at that part of the

curve. If we literally had 10 steps, with (1þ (1/10)) for the multiplying factor, the final total

would be ð1þð1=10ÞÞ10 or 2.593 times the original 1. But, if we take n sufficiently large (and

the corresponding (1/n) sufficiently small), then the final value ð1þð1=nÞÞn to which 1 will

growwill be 2.7182818, and so on.Mathematicians have assigned this (mysterious) number the

English letter e. It is an irrational number (and a transcendental number). It is known that e is

even more important than p.
The process of growing proportionality at every instant to the magnitude at that instant

is called the exponential rate of growth. Some people call it a logarithmic rate of growth,

since the quantity y (¼ ex) grows with the exponent x, which is the logarithm of y to the

base e. It might also be called the organic rate of growing, because it is characteristic of

organic growth that (in certain circumstances) the increment of the organism in a given

time is proportional to the magnitude of the organism itself. Some such examples are as

follows:

. Somemodels of population growth assume that the rate of change of the population at any

time t is proportional to the number y of individuals present at that time.

. In biology, under certain circumstances, the rate of growth of a culture of bacteria is

proportional to the amount of bacteria present at any specific time.

. We may recall an application of these phenomena in business. When interest grows

continuously, the number e originates in the process, as we have already seen.

. It is known fromexperiments that the rate of decay of radium is proportional to the amount

of radium present at the given moment.

Besides, there are many physical processes in which something is gradually dying away.

Mathematical models of these processes involve differential equations whose solutions contain

powers of e. Some such processes will be discussed subsequently.

Now, we are in a position to discuss the phenomenon of growth and decay of a number (or a

quantity or an amount) whose rate of increase (or decrease) is proportional to the number

present at any given time.

P

Q

0 1 2 3 4 5 6 7 8 9

2.7182

T

1

FIGURE 13a.12
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Suppose y ¼ f(t) represents the number at time t and ðdy=dtÞ or f 0(t) represents the

(instantaneous) rate of increase of the number at time t, then there is a positive constant k

such that

dy

dt
¼ k � y i:e:; f 0ðtÞ ¼ kf ðtÞ½ 	ð18Þ ð29Þ

Also,wemay consider a different physical phenomenon inwhich the number (or the quantity) is

decreasing at a rate proportional to the number present at that time. (This happens in the case of

a radioactive substance.) Then, the function f(t) satisfies equation (29) for an appropriate

negative constant k. Thus, equation (29) describes two quite different physical phenomena:

(a) The situation(s) in which something representing a number (or a quantity) is increasing

at every instant proportional to the number at that instant. In such cases, the numberk is a

positive constant (see Figure 13a.13a).

(b) The situation(s) in which something representing a number (or a quantity) is decreasing

at every instant proportional to the number at that instant. In such cases, the numberk is a

negative constant (Figure 13a.13b).

Remark: Note that both the situations (defining the phenomenon of growth or decay) are

described only by a geometrical progression that is a function of the type f(x) ¼ bpkx, where k

is a positive constant in the case of growth and a negative constant in the case of decay.

It would therefore be of interest to determine all such functions which satisfy equation (29). [In

other words, we have to solve the differential equation (29).]

y

x
b

1 2 3 4 5 60

y

b

(a) (b)
1 2 3 4 5 60

x

FIGURE 13a.13 (a) The curve showing exponential growth f(x) ¼ bpkx, k> 0. (b) The curve showing

exponential decay f(x) ¼ bpkx, k< 0.

(18) Equation (29) involving the derivative f0(t) [i.e., dy/dt] of the function y ¼ f(t) is called a differential equation.We shall

discuss the formation of differential equations and their solutions in Chapter 9a (in Part II of this book).
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First, observe that the constant function 0 satisfies equation (29). Also, for f(t) ¼ ekt, we

have f 0(t) ¼ kekt ¼ k�f(t) [ )ekt ¼ f(t)]. It follows that functions such as ekt also satisfy

equation (1) [recall that the exponential function et is the only function such that

ðd=dtÞðetÞ ¼ et].

Beforewe proceed to solve the differential equation (29),wemake the following assumption

that is in fact an important idealization of the function f(t).

We know that if y [¼ f(t)] is the population of a certain community, then by definition y is a

positive integer. However, to apply calculus to the phenomenon, we assume that y can be any

positive real number, such that y ¼ f(t) represents a continuous function of t. The same logic

is applicable when f(t) represents an amount or a quantity.

13a.15.1 Solving the Differential Equation (29)

Consider a mathematical model given by the equation, y ¼ f(t), involving the law of natural

growth or decay and the initial condition that y ¼ y0, when t ¼ 0. Then, the differential

equation formed at equation (29) is

dy

dt
¼ ky or f 0ðtÞ ¼ kf ðtÞ½ 	

where k is a constant and y> 0 for all t� 0, with the initial conditions y ¼ y0 when t ¼ 0

[i.e., f(t) ¼ f(0) when t ¼ 0]. [In the above equation, the time is represented by t units

(from t ¼ 0 onward) and y represents the number of y units present (in the process) at any

time t.]

Separating the variables, we obtain,

dy

y
¼ kdt

On integrating, we get

ð
dy

y
¼ k

ð
dt

) loge yj j ¼ ktþ c;where c is an arbitary constant

or yj j ¼ ektþ c ¼ ec � ekt

Letting ec ¼ b, we get jyj ¼ bekt, and because y is positive, we can omit the absolute value bars

and write,

y ¼ bekt; t � 0

Also, since y ¼ y0 when t ¼ 0, we obtain from the above equation b ¼ y0 when t ¼ 0. Thus,

we get

y ¼ y0 � ekt ð30Þð19Þ

(19) Note that, the function y ¼ y0�ekt represents a geometrical progression in which the base e> 1 and k is a constant for

the given phenomenon. Also, it is clear that y> 0 for all t� 0 and that for t ¼ 0, y ¼ y0.
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Equation (30) gives us the form of the functions satisfying equation (29).We call it the solution

of the differential equation (29).

If k> 0, then equation (29) is the law of natural growth and equation (30) defines a function

that has exponential growth.

If k< 0, then equation (29) is the law of natural decay and equation (30) defines a function

that has exponential decay.

It must also be noted that in the case of exponential growth, f(t) increases without bound;

whereas, in the case of exponential decay, f(t) approaches 0 through positive values.

In fact, e� kt serves as a die away factor for all those phenomena inwhich the rate of decrease

(in our usual symbols dy/dt) is proportional at every moment to the value that is decreasing at

that moment.

13a.15.2

Wegive below some processes inwhich the solution (of the above differential equation) given at

equation (30) is applicable

. The cooling of a hot body is represented (inNewton’s celebrated “LawofCooling”) by the

equation �t ¼ �0e
� kt, where �0 is the original excess of temperature of a hot body over

that of its surroundings, �t is the excess of temperature at the end of time t, and k is a

constant, namely, the constant of decrement (here k depends on the amount of surface

exposed by the body and on its coefficients of conductivity and emissivity, and other

parameters).

. The formula

Qt ¼ Q0e
� kt

is used to express the charge of an electrified body, originally having a charge Q0 that is

leaking awaywith a constant of decrement k (here k depends on the capacity of the body

and on the resistance of the leakage path).

. The oscillations given to a flexible spring die out after a time; and the dying out of the

magnitude of the motion may be expressed in a similar way.

13a.15.2.1 TheTimeConstant In the expression for the die away factor e� kt, let us replace

k by another quantity (1/T). Then, the die away factor will be written as eð� t=TÞ (note that

the quantity k is represented by the reciprocal of another quantity T, which we call the time

constant). Now, we may explain the meaning of T as follows:

In the die away factor eð� t=TÞ, if we put t ¼ T, themeaning ofT [or of (1/k)] becomes clear. It

means thatT is the length of time that the (die away) process takes for the original quantity (�0 or
Q0, in the proceeding instances) to die away to (1/e)

th part (i.e., to 0.3678) of its original value.

Example (1): Consider a hot body that is cooling. Suppose at the beginning of the experiment

(i.e., when t ¼ 0), it is 72
 hotter than its surrounding objects. Let the time constant of this

cooling be 20min [whichmeans that it takes 20min for its excess of temperature to fall to (1/e)th

part of 72
]. We can then calculate its temperature at any given time. For instance, suppose we

wish to find the temperature of the hot body after 60 min. Here, t ¼ 60 min and T ¼ 20 min.

Therefore, (t/T) ¼ 60� 20 ¼ 3. Nowwe can find the value of e� 3 (fromTable 13a.5] and then

multiply the original difference of temperature, that is, 72
, by this number. The table shows
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that e�3 is 0.0498. Hence, at the end of 60 min, the excess of temperature will have fallen to

72
 � 0.0498 ¼ 3.586
.(20)

Similarly, we can compute the temperature of the hot body after 30 min. Here, t ¼ 30 min

and T (i.e., time constant) ¼ 20 min. ) t
T
¼ 30

20
¼ 1.5

FromTable 13a.5, we get that e� 1.5 ¼ 0.2231. Hence, the temperature of the hot body after

30 min will be around 72
 � 0.2231 ¼ 16.063
.
Now, we proceed to discuss some real-life problems.

Example (2): The rate of increase of the population of a certain city is proportional to

its population. In 1950, the population was 50,000 and in 1980 it was 75,000. (a) If y is the

population after t years since 1950, express y as a function of t. (b) Estimate analytically what

the population will be in 2010.

Solution: Let y ¼ f(t) denote the population after t years for t� 0. The differential

equation is

dy

dt
¼ ky or f 0ðtÞ ¼ k � f ðtÞ½ 	 ð31Þ

We know that the solution of the differential equation (31) is given by

y ¼ y0e
kt ½or f ðtÞ ¼ f ð0Þekt	 ð32Þ

where k is a constant and y0 ¼ 50,000, when t ¼ 0 [ f(0) ¼ 50,000, when t ¼ 0] (this is the

situation in the year 1950).

The following table indicates the boundary conditions:

Units of time t (in the year) t ¼ 0(in 1950) t ¼ 30 (in 1980) t ¼ 60 (in 2010)

Units of population y (in numbers) y0 ¼ 50,000 ¼ f(0) y30 ¼ f(30) ¼ 75,000 y60 ¼ f(60) ¼ ?

Now, in view of the solution at equation (32) and the boundary conditions, we have

f ðtÞ ¼ 50; 000ekt ð33Þ

and our interest is to find f(60).

In order to find f(60), we first determine the value of k and then apply the formula (32) to

obtain the value of f(60) (or y60). It is given that in 1980 (i.e., after 30 from 1950) the population

has grown to 75,000. (Thus, y(30) ¼ 75,000).

Using this information in equation (33), we get

75,000 ¼ 50,000e30k

) e30k ¼ 75; 000

50; 000
¼ 3

2
ð34Þ

(20) Calculus Made Easy by S.P. Thomson (a fellow of Royal society), published in 1948.
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Now, it is easy to compute f(60).We can utilize the information of equation (34) in equation (33)

as follows:

We have

f ðtÞ ¼ 50; 000ekt

or

f ðtÞ ¼ 50; 000 ðe30kÞt=30 )kt ¼ ð30kÞ t

30

h i

Now, we can put t ¼ 60 in the above equation so that we get

f ð60Þ ¼ 50; 000

�
3

2

�2

¼ 50; 000 � 9
4

¼ 12; 500� 9

¼ 1; 12; 500

Thus, the population in the year 2010 will be 1,12,500. Ans.

Example (3): The rate of decay of radium is proportional to the amount present at any time.

The half-life of radium is 1690 years and 20 mg of radium is present now.

(a) If y mg of radium will be present t years from now, express y as a function of t.

(b) Estimate how much radium will be present 1000 years from now.

Solution: The boundary conditions are recorded in the table given below, where it is indicated

by Y1000, the units of (the material) radium in milligrams that will be present after 1000 years

from now.

Units of time t (in years) 0 1690 (half-life of radium) 1000 years

Units of radium (in mg) 20 10 [¼ y] Y1000 (remaining quantity)?

The differential equation is

dy

dt
¼ ky ð35Þ

where k is a constant and y ¼ 20 when t ¼ 0 [we say y0 ¼ 20 ¼ f(0) when t ¼ 0].

The solution of the differential equation (35) is known to be

y ¼ y0e
kt ¼ 20ekt ¼ f ðtÞ ð36Þ

Our interest is to find the value of y1000 or f(1000).

It is given that y ¼ 10 when t ¼ 1690.
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Therefore, from equation (36), we get

10 ¼ 20e1690k

or

e1690k ¼ 10

20
¼ 1

2
ð37Þ

Now, we can compute the quantity Y1000 [or f(1000)] using equation (36), along with the

information available at equation (37). From equation (36), we have

f ðtÞ ¼ 20ekt

) f ðtÞ ¼ 20 � ðe1690kÞt=1960 ðwhere t ¼ 1000Þ

) f ð1000Þ ¼ 20 �
	 1
2


t=1960

¼ 20 �
	 1
2


1000=1960
ð )t ¼ 1000Þ

¼ 20 �
	 1
2


0:5917
¼ 13:27

Thus, 1000 years from now, 13.27 mg of radium will be present out of 20 mg. Ans.

Example (4): In a certain culture, the rate of growth of bacteria is proportional to the amount

present. Initially, 1000 bacteria are present and the amount doubles in 12 min.

(a) If y bacteria are present at t min, express y as a function of t.

(b) Estimate to the nearest minute how long will it take for 10,000 bacteria to be present.

Solution: The following table gives the boundary conditions where y bacteria are present at

t min. Suppose that it will take t min for 10,000 bacteria to be present.

Units of time t (in min) 0 12 t?

Units of bacteria (y in numbers) 1000 2000 10,000

The differential equation is

dy

dt
¼ ky ð38Þ

where k is a constant and y ¼ 1000 when t ¼ 0 [we say y0 ¼ 1000 ¼ f(0) when t ¼ 0].

The solution of differential equation (38) is known to be

y ¼ y0e
kt or f ðtÞ ¼ 1000ekt ð39Þ
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Our interest is to find the value of twhen f(t) ¼ 10,000. But, it is given that y ¼ 2000 when t ¼
12. From this information, we obtain from equation (39)

f(12) ¼ 1000e12k or 2000 ¼ 1000e12k [) f(12) ¼ 2000].

) e12k ¼ 2000

1000
¼ 2 ð40Þ

We use equation (40) in equation (39) to obtain the value of t for which f(t) ¼ 10000. Equa-

tion (39) tells us that f(t) ¼ 1000e12kt or f(t) ¼ 1000(e12k)t/12. Now, 10,000 ¼ 1000(2)t/12

½) kt ¼ 12kðt=12Þ	.

) 10; 000¼1000ð2Þt=12

) ð2Þt=12¼10

) t

12
loge2¼ loge10

) t ¼ 12loge10

loge2

¼ 12½2:3026	
0:6931

ðusing Table 13a:4Þ

¼ 27:6312

0:6931
¼ 39:86 ðusing calculatorÞ

Thus, in 40 min, 10,000 bacteria will be present. Ans.

Definition: The time that a population takes to double is called its doubling time.

If the population grows exponentially with doubling time d; then, that time t is given by

FðtÞ ¼ f ð0Þ2t=d

Definition: The half-life of a radioactive substance is the length of time it takes for half of a

given amount of the substance to disintegrate through radiation.

Note: The half-life of C14 by international agreement is 5568 years. However, recent measure-

ments indicate that the half-life of C14 is actually closer to 5730 years.

If the half-life of a substance having exponential decay is h years and f(0) units of the

substance are present now, then f(t) units will be present in t years, where f(t) ¼ f(0) t
12

� �t=h
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13b Methods for Computing
Limits of Exponential and
Logarithmic Functions

13b.1 INTRODUCTION

In Chapter 13a, we have studied exponential and logarithmic functions and plotted their graphs.

In this Chapter, our interest lies in learning themethods that help in computing limits of functions,

which are in the exponential form, and those that involve exponential or logarithmic functions.(1)

For this purpose, it is useful to review in brief the topic of logarithms and then see how to

evaluate limits of these functions. For convenience, wewill also list some basic limits and some

standard limits, which were proved (or accepted) earlier.

13b.2 REVIEW OF LOGARITHMS

If three numbers a, b, and c are related such that,

ab ¼ cða > 0; a 6¼ 1Þ ðIÞ

then, the exponent b is called the logarithm of c to the base a.

We write,

logac ¼ b ðIIÞ
Definition: Let a be a positive real number (a 6¼ 1) and y be any given real number. If there is a

number x such that

ax ¼ y

then x is called the logarithm of y to the base a and we write loga y¼ x.

Introduction to Differential Calculus: Systematic Studies with Engineering Applications for Beginners, First Edition.
Ulrich L. Rohde, G. C. Jain, Ajay K. Poddar, and A. K. Ghosh.
� 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

(1) Here are some examples of the type of limit(s) that we will learn to evaluate:

lim
x! 0

5þ x

5� x

� �1=x

; lim
x! 0

ax � bx

x
; lim
x! 4

x� 3ð Þ1=ðx�4Þ; lim
x! 2

log x� log 2

x� 2

� �
; lim
x! e

log x� 1

x� e

� �
; lim
x! 0

8sin x � 1

sin x

� �
;

lim
x! 0

12x � 4x � 3x þ 1

x sin x

� �
; and so on

.
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Note (1): From the above definition, we have

(i) If ax ¼ y ð1Þ

then loga y ¼ x ð2Þ

Substituting for y [from equation (1)] in equation (2), we get

loga a
x ¼ x ð3Þð2Þ

Again, substituting for x [from equation (2)] in equation (1), we get

alogay ¼ y ð4Þð3Þ

(ii) a1 ¼ a; ) loga a ¼ 1 ð5Þ

(iii) a0 ¼ 1; log1a ¼ 0 ð6Þ

13b.2.1 Laws of Logarithms

(i) logaxy ¼ logaxþ logay

(ii) loga
x
y
¼ logax� logay

(iii) logax
m ¼ m logax

(iv) Change of base:

logax ¼ logbx

logab
ð7Þ

If we write x¼ b in the above equation, we get

logab ¼ logbb

logba
¼ 1

logba
ð ) logb b ¼ 1Þ ð8Þ

The relation (7) tells that we can express logax in terms of logbx, wherein the base a is changed

to a new base b, logba being a constant.

Next, the relation (8) tells us that logba � logab ¼ 1.

We know that there are two important bases: 10 and e. In the system of logarithms, whichwe

use in our day-to-day calculations (such as in the field of engineering), the base 10 is found to

be the most useful. Logarithms to the base 10 are called common logarithms. Logarithms

to the base e are called natural logarithms and they are useful in calculus.(4)

(Recall that if the base is e, then the result of differentiating the functions logex and ex

assume simpler forms.) Besides, for all practical purposes, we can always convert back and

forth between natural and common logarithms. Therefore, throughout this course, we are going

(2) Equation (3) tells that any real number x can be expressed in log form.
(3) Equation (4) tells that any real number y can be expressed in exponential form.
(4) The logarithmic base e is “natural” only in the sense that it is “naturally convenient” in order to make the standard

process of differentiation work out simply for a logarithmic function (for details, see Chapter 13a).
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to use natural logarithms only. We may or may not write the base. Thus, even when we write

logx, we shall mean logex.

Note (2):

(i) log e ¼ logee ¼ 1 ½see equation ð5Þ�
(ii) log ex ¼ logee

x ¼ x ½see equation ð3Þ�
(iii) elog x ¼ elogey ¼ y ½see equation ð4Þ�

13b.3 SOME BASIC LIMITS

The following basic limits are used for evaluating the limits of exponential and logarithmic

functions.

1. lim
x! p

ax ¼ a p, whenever a p is defined.

2. (i) If 0< a< 1, then lim
x!1 ax ¼ 0 (x2R).

(ii) If a> 1, then lim
x!1 ax ¼ 1 (x2R).

3. If p> 1, then lim
x! p

logax ¼ logap.

4. (i) If a> 1, then lim
x!1 logax ¼ 1.

(ii) If 0< a< 1, then lim
x!1 logax ¼ �1.

In Chapter 13a, we have seen that

. lim
n!1 1þ 1

n

� �n

¼ e ðn 2 NÞ ð9Þ

It can also be shown (by substitution) that

. lim
x!1 1þ 1

x

� �x

¼ e ðx 2 RÞ ð10Þ

. lim
x! 0

1þ xð Þ1=x ¼ e ðx 2 RÞ ð11Þ

. lim
x! 0

1þ kf ðxÞð Þ1=ðkf ðxÞÞ ¼ e ðk 6¼ 0Þ ð12Þ

Note: Limits at (9)–(11) are considered as standard limits. The limit at (12) can be expressed in

the form (11) by substitution, and then we can use the standard result (11).

The following important limits have already been proved in Chapter 13a.

1. lim
x! 0

logað1þ xÞ
x

¼ logae ¼
1

logea
ð13Þ

2. lim
x! 0

ax � 1

x
¼ logea ð14Þ

Corollary: lim
x! 0

ex � 1

x
¼ logee ¼ 1:
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Note (4): The limit at equation (13) is not considered as a standard limit. However, it is a very

important limit, since it is used in proving the limit at equation (14), which is treated as a

standard limit.

First, we will evaluate certain limits that can be evaluated by applying the results given in

equations (9)–(12). Later on, wewill recall the proof of the result (13) and then evaluate certain

limits wherein the result (14) is applicable.

Example (1): lim
x! 0

3þ 2x

3� 2x

� �1=x

Solution: lim
x! 0

3þ 2x

3� 2x

� �1=x

¼ lim
x! 0

1þ ð2x=3Þ
1� ð2x=3Þ

� �1=x

¼ L ðsayÞ

First consider lim
x! 0

1þ 2x

3

� �1=x

(If we put 2x/3¼ t, then 3/(2x)¼ 1/t. Furthermore, note that as x ! 0, t ! 0 and 1/t ! 1.)

¼
�
lim
x! 0

�
1þ 2x

3

�3=2x�2=3
¼ lim

t! 0
ð1þ tÞ1=t

� �2=3

¼ e2=3 since lim
t! 0

ð1þ tÞ1=t ¼ e

� �

Next, consider,

1

lim
x! 0

1� ð2x=3Þð Þ1=x

¼ lim
x! 0

�
1� 2x

3

��ð1=xÞ
¼

�
lim
x! 0

�
1� 2x

3

��ð3=2xÞ�2=3

¼
�
lim
x! 0

�
1� 2x

3

�ð3=2xÞ��ð2=3Þ
¼ e�ð2=3Þ

) L ¼ eð2=3Þ

e�ð2=3Þ ¼ eð4=3Þ Ans:

Example (2): lim
x!1

2xþ 3

2x� 1

� �xþ1
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Solution: L ¼ lim
x!1

�
2xþ 3

2x� 1

�x

lim
x!1

�
2xþ 3

2x� 1

�

lim
x!1

�
1þ ð3=2xÞ
1� ð1=2xÞ

�x

�
�
1þ ð3=2xÞ
1� ð1=2xÞ

�

lim
x!1

1þ ð3=2xÞð Þx
1� ð1=2xÞð Þx � 1þ ð3=2xÞð Þ

1� ð1=2xÞð Þ

Now, consider,

�
1þ 3

2x

�x

¼ lim
x!1

�
1þ 3

2x

�ð2x=3Þ" #3=2

As x!1;
3

2x
! 0; and

2x

3
!1

� �

¼ e3=2; since lim
x! 0

ð1þ tÞ1=t ¼ e; where t ¼ 3=ð2xÞ

Next, consider,

lim
x!1

�
1� 1

2x

�x

¼ lim
x!1

�
1� 1

2x

��2x
" #�ð1=2Þ

¼ e�ð1=2Þ

) L ¼ eð3=2Þ

e�ð1=2Þ �
ð1þ 0Þ
ð1þ 0Þ ¼ eð3=2Þþð1=2Þ ¼ e2 Ans:

Note that,

lim
x!1 1� 1

2x

� ��2x

¼ lim
x!1 1þ 1

�2x

� �ð�2xÞ
¼ 1

lim
x!1 1þ

�
1

�2x

�� �2x

Furthermore, note that as x ! 1, ð1=� 2xÞ! 0 and 2x!1. Accordingly, the limit in

question (in the denominator) is e�1=2

Example (3): Evaluate; lim
x! 1

xð1=ðx�1ÞÞ

Solution: Let lim
x! 1

xð1=ðx�1ÞÞ ¼ L

Put x� 1¼ t. Therefore, x¼ 1 þ t. Note that, as x! 1; t! 0,

) L ¼ lim
t! 0

ð1þ tÞ1=t
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But lim
x! 1

ð1þ tÞ1=t ¼ e.

) the limit in question¼ e. Ans.

Example (4): Evaluate; lim
x! 4

ðx� 3Þð1=ðx�4ÞÞ

Solution: Let lim
x! 4

ðx� 3Þð1=ðx�4ÞÞ ¼ L.

Put x� 4¼ t. Therefore, x¼ 4 þ t. Note that, as x! 4; t! 0,

) L ¼ lim
t! 0

ð4þ t� 3Þ1=t ¼ lim
t! 0

ð1þ tÞ1=t

(Note that, as t! 0; ð1=tÞ!1.)

) L ¼ lim
t! 0

ð1þ tÞ1=t ¼ e: Ans:

Exercise (1): Evaluate the following limits:

(i) lim
x! 0

1� x

1þ x

� �ð1=xÞ

(ii) lim
x! 0

1� x

2þ 3x

� �ð1=xÞ

(iii) lim
x! 0

3þ 2x

3� x

� �ð1=xÞ

(iv) lim
x! 0

5þ 2x

5� x

� �ð1=xÞ

(v) lim
x! 0

3þ 2x

3� 2x

� �ð1=xÞ

(vi) lim
x!1 1þ 2

x

� �x

(vii) lim
x!1

3xþ 1

3x� 1

� �x

(viii) lim
x! 2

ðx� 3Þð1=ðx�4ÞÞ

Answer:

(i) e�2

(ii) e�1/2

(iii) e

(iv) e3/5

(v) e4/3
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(vi) e2

(vii) 1/e

(viii) e

(3) Now, we recall for convenience, the proof of the result (15) that was proved in Chapter 13a.

This is an important limit.

To show that

lim
x! 0

logað1þ xÞ
x

¼ 1

logea
ð15Þ

Solution:

Consider

lim
x! 0

logað1þ xÞ
x

¼ lim
x! 0

1

x
� logað1þ xÞ

¼ lim
x! 0

logað1þ xÞð1=xÞ

¼ loga lim
x! 0

ð1þ xÞð1=xÞ
� �

¼ logae ðusing CÞ

¼ 1

logea
ðby change of baseÞ ðProvedÞ

Corollary:

lim
x! 0

logeð1þ xÞ
x

¼ 1

Solution:

¼ lim
x! 0

logeð1þ xÞ
x

¼ lim
x! 0

1

x
logeð1þ xÞ ¼ lim

x! 0
logeð1þ xÞð1=xÞ

¼ logee ¼ 1 ðProvedÞ

Important Note (5): We know that the limit (15) is not considered as a standard limit.

Hence, we cannot use this result directly in evaluating other limits. Accordingly, to evaluate any

limit that involves logarithm of a function, we must express the inner function in a suitable

standard form whose limit can be evaluated using standard limits. We proceed as follows:

(i) Use suitable substitutions and the properties of logarithms to simplify the given limit.

(ii) Express the given expression in the form of a logarithm of an expression and then

modify the inner function suitably so that its limit can be evaluated using standard

limit(s).

(iii) Evaluate the given limit by expressing the limit lim
x! a

loge f ðxÞ½ � in the form

loge lim
x! a

f ðxÞ
h i

.
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The following solved examples indicate the various steps involved.

Example (5): Evaluate

lim
x! 3

log x� log 3

x� 3

Solution: Let

lim
x! 3

log x� log 3

x� 3
¼ L

ð5Þ

Put x� 3¼ t. Therefore, x¼ 3 þ t. Note that as x ! 3, t ! 0.

Thus,

L ¼ lim
t! 0

log ð3þ tÞ � log 3

t
¼ lim

t! 0

1

t

�
log

�
3þ t

3

��

¼ lim
t! 0

log

�
1þ t

3

�ð1=tÞ
¼ log lim

t! 0

�
1þ t

3

�ð3=tÞ" #ð1=3Þ

½Note that; as t! 0; ðt=3Þ! 0:�

) L ¼ log e1=3 ¼ ð1=3Þlogee ¼ ð1=3Þ Ans:

Note (6):When we are considering logarithms to the base e, it is conventional not to write the

base e. Thus, log x means logex.

Example (6): Evaluate

lim
x! e

log x� 1

x� e

Solution: Let

lim
x! e

log x� 1

x� e
¼ L

(5) Note that the method of substitution is very important in converting the given expression to the desired form.
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Put x� e¼ t. Therefore, x¼ e þ t. Also, note that as x ! e, t ! 0.

L ¼ lim
t! 0

�
logðeþ tÞ � 1

t

�

¼ lim
t! 0

�
logðeþ tÞ � log e

t

�

) logee ¼ 1½ �

¼ lim
t! 0

�
1

t
log

eþ t

e

�
¼ lim

t! 0
log

�
1þ t

e

�ð1=tÞ

¼ log lim
t! 0

�
1þ t

e

�ðe=tÞ" #ð1=eÞ

Note that; as t! 0; ðt=eÞ! 0:½ �

) L ¼ log e1=e ¼ 1

e
loge e ¼

1

e
Ans:

Example (7): Evaluate

lim
x! 0

log 10þ logðxþ 0:1Þ
x

Solution: Let

lim
x! 0

log 10þ logðxþ 0:1Þ
x

¼ L

Consider; log 10þ logðxþ 0:1Þ

¼ log 10þ log
10xþ 1

10

� �

¼ log 10þ logð10xþ 1Þ � log 10 ¼ logð1þ 10xÞ

Therefore, the given limit can be expressed in the form

L ¼ lim
x! 0

logð1þ 10xÞ
x

¼ lim
x! 0

1

x
logð1þ 10xÞ ¼ lim

x! 0
logð1þ 10xÞð1=xÞ

¼ lim
x! 0

log ð1þ 10xÞð1=10xÞ
h i10

¼ log lim
x! 0

ð1þ 10xÞð1=10xÞ
� �10

¼ loge10 ¼ 10 logee ¼ 10 Ans:
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Exercise (2): Evaluate the following limits:

(i) lim
x! 2

log xþ log 2

x� 2
Ans : ð1=2Þ½ �

(ii) lim
x! 0

log 1þ ð8x=3Þð Þ
x

Ans : ð8=3Þ½ �

(iii) lim
x! 0

logð5þ xÞ � logð5� xÞ
x

Ans : ð2=5Þ½ �

(iv) lim
x! 2

1

x
logð3þ xÞ � logð3� xÞ½ � Ans : ð2=3Þ½ �

13b.4 EVALUATION OF LIMITS BASED ON THE STANDARD LIMIT

lim
x! 0

ððax � 1Þ=xÞ ¼ logea, where a> 0 (we have proved this limit in Chapter 13a).

Corollary: Replacing a by e, we get

lim
x! 0

ex � 1

x
¼ logee ¼ 1

Furthermore, if f(x) ! 0 as x ! 0 and k is a nonzero number, then

t ¼ k � f ðxÞ! 0 as x! 0

) lim
x! 0

ak � f ðxÞ � 1

k � f ðxÞ

¼ lim
t! 0

at � 1

t
¼ logea

Example (8): Evaluate

lim
x! 0

ax � bx

x

Solution: lim
x! 0

ax � bx

x
¼ lim

x! 0

ðax � 1Þ � ðbx � 1Þ
x

¼ lim
x! 0

ðax � 1Þ
x

� ðbx � 1Þ
x

¼ logea� logeb

¼ loge
a

b
Ans:
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Example (9): Evaluate

lim
x! 0

38x � 1

x

Solution: Let

lim
x! 0

38x � 1

x

� �
¼ L

L ¼ lim
x! 0

38x � 1

x
¼ lim

x! 0

38x � 1

8x

� �
� 8

Put 8x¼ t. Then, as x ! 0, t ! 0.

L ¼ lim
t! 0

�
3t � 1

t

�
� 8

¼ ðloge3Þ � 8
¼ 8 � loge3 Ans:

Example (10): Evaluate

lim
x! 0

ex � e�x

sin x

Solution:

lim
x! 0

ex � e�x

sin x
¼ lim

x! 0

e2x � 1

ex sin x
¼ L; say:

) L ¼ lim
x! 0

�
ðe2x � 1Þ � 1

sin x
� 1

ex

�
¼ lim

x! 0

�
e2x � 1

2x
� 2x

sin x
� 1

ex

�

or L ¼ lim
x! 0

�
e2x � 1ð Þ
2x

� 2x

sin x
� 1

ex

�

¼ lim
x! 0

�
e2x � 1

2x

�
� 2
�

lim
x! 0

x

sin x

�
� lim
x! 0

�
1

ex

�

) L ¼ lim
x! 0

�
e2x � 1

2x

�
� 2
�

lim
x! 0

1

sin x=x

�
� lim
x! 0

�
1

ex

�

¼ lim
x! 0

�
e2x � 1

2x

�
� 2
�

1

lim
x! 0

ðsin x=xÞ
�
� lim
x! 0

�
1

ex

�

¼ ð1Þ � ð2Þ � ð1Þ � ð1Þ
�

) lim
t! 0

et � 1

t
¼ loge e ¼ 1; lim

x! 0

sin x

x
¼ 1; and lim

x! 0
ex ¼ 1

�

¼ 2 Ans:
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Example (11): Evaluate

lim
x! 0

ðabÞx � ax � bx þ 1

x2

Solution: Consider, ðabÞx � ax � bx þ 1

¼ axbx � ax � bx þ 1

¼ axðbx � 1Þ � 1ðbx � 1Þ
¼ ðbx � 1Þ � ðax � 1Þ

) The required limit¼ lim
x! 0

ðbx � 1Þðax � 1Þ
x2

¼ lim
x! 0

ax � 1ð Þ
x

� bx � 1ð Þ
x

¼ logea � logeb Ans:

Example (12): Evaluate

lim
x! 0

ax þ a�x � 2

x2

Solution: Consider ax þ a�x� 2

¼ ax þ 1

ax
� 2 ¼ a2x � 2ax þ 1

x2
¼ ðax � 1Þ2

ax
ðThis is the simplified numerator:Þ

) The required limit ¼ lim
x! 0

ðax � 1Þ2
x2 � ax

¼ lim
x! 0

�
ax � 1

x

�2

lim
x! 0

1

ax
¼

�
lim
x! 0

ax � 1

x

�2
lim
x! 0

1

ax

¼ ðlogeaÞ2
1

a0
¼ ðlogeaÞ2 � 1 ¼ ðlogeaÞ2 Ans:

The following example explains clearly the approach for evaluating limits involving exponen-

tial functions:

Example (13): Evaluate

lim
x! 0

35x � 1

tan 3x
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Solution: Let

lim
x! 0

35x � 1

tan 3x
¼ L

First, consider only the numerator:

35x � 1 ¼ 35x � 1

5x

� �
� 5x

Now, consider the denominator:

1

tan 3x
¼ 1

ðsin 3xÞð1=cos 3xÞ ¼
1

ðsin 3x=3xÞ � 3x � ð1=cos 3xÞ

) L ¼ lim
x! 0

½ðð35x � 1Þ=5xÞ � 5x�
½ððsin3xÞ=3xÞ � 3x � ð1=cos 3xÞ�

) L ¼ lim
x! 0

ðð35x � 1Þ=5xÞ � 5x
ðsin 3x=3xÞ ð5x=3xÞðcos 3xÞ

¼ ðlog 3Þ � 5
3
� 1 ¼ 5

3
ðlog 3Þ Ans:

Note carefully the important points in evaluating limits in the following two examples:

Example (14): Evaluate

lim
x! 0

12x þ 4x � 3x � 1

x

Solution: Let

lim
x! 0

12x þ 4x � 3x � 1

x
¼ L

) L ¼ lim
x! 0

ð12x � 1Þ þ ð4x � 1Þ � ð3x � 1Þ
x

ðNote that the last two bracketed terms in the numerator keep the numerator unchanged:

¼ lim
x! 0

ð12x � 1Þ
x

þ ð4x � 1Þ
x

� ð3x � 1Þ
x

¼ loge12þ loge4� loge3

¼ loge

�
12� 4

3

�

¼ loge16 Ans:
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Example (15): Evaluate

lim
x! 0

12x � 4x � 3x þ 1

x sin x

Solution: Let

lim
x! 0

12x � 4x � 3x þ 1

x sin x
¼ L

[The points of difference between Examples (6) and (7) are as follows: In this example

12x¼ (�4)x(�3)x. This suggests that numerator can be factorized. Note that this was not the

case in Example (6). Furthermore, the denominator has a product of two functions that may

be suitably adjusted to apply the standard result(s).]

) L ¼ lim
x! 0

4x � 3x � 4x � 3x þ 1

x sin x

¼ lim
x! 0

4xð3x � 1Þ � 1ð3x � 1Þ
x sin x

This form of expression suggests that both the denominator and the numerator must be

multiplied by x. Thus, we get

¼ lim
x! 0

ð3x � 1Þð4x � 1Þ
x sin x

� x
x

¼ lim
x! 0

ð3x � 1Þ
x

:
ð4x � 1Þ

x
:

1�
sin

x

x

�
2
664

3
775

L ¼ loge3 � loge4 � 1 ¼ ðloge3Þðloge4Þ Ans:

An important point here is that both problems look alike at a glance, but the distinction between

the two must be carefully noted. This should help in solving similar problems.

Exercise (3): Evaluate the following limits:

(i) lim
x! 0

ax þ bx � 2xþ1

x

(ii) lim
x! 0

a3x � a2x � ax þ 1

x sin x

(iii) lim
x! 0

5x � 5�x � 2

x2

(iv) lim
x! 0

15x � 5x � 3x þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� cos 2x

p � 1
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(v) lim
x! 0

ex � e�x � 2

cos 3x� cos 7x

(vi) lim
x! 0

5sin x � 1

sin x

(vii) lim
x! 0

6x � 3x � 2x þ 1

x2

(viii) lim
x! 0

52x � 1

tan x

Answers

(i) log
ab

4

� �

(ii)
1

4
log

3

2

(iii) (log 5)2

(iv) 1

(v) �2

(vi) log5

(vii) (log2) (log3)

(viii) 2 log 5

EVALUATION OF LIMITS BASED ON THE STANDARD LIMIT 415



14 Inverse Trigonometric
Functions and Their Derivatives

14.1 INTRODUCTION

We introduced the concept of the inverse of a function in Chapter 2. It is useful to review

this concept before we discuss inverse trigonometric functions. Functions that always give

different outputs for different inputs are called one-to-one. Since each output of a one-to-one

function comes from just one input, any one-to-one function can be reversed to turn the outputs

back into the inputs from which they came. Thus, a function has an inverse if and only if it is

one-to-one. The function defined by reversing a one-to-one function f [which means that

each ordered pair (a, b) belonging to f, is replaced by a corresponding ordered pair (b, a) in the

new function] is called the inverse of f and denoted by f�1.(1)

Example (1): Consider the function y ¼ x3. It gives different output(s) for different input(s).

Hence, it is a one-to-one function. On the other hand, the function y ¼ x2 can give the same

outputs for different inputs. (Check for the inputs 1 and �1,
ffiffiffi
2

p
and � ffiffiffi

2
p

, �3 and 3, etc.)

Hence this function is not one-to-one. However, if we restrict the domain of this function to

non-negative numbers then the same expression (with restricted domain), that is, y ¼ x2,

x> 0, defines a one-to-one function. This example tells us that by restricting the domain of

a function suitably, it is possible that a given formula (expression) defines a one-to-one

function. This fact is specially used when we consider inverse trigonometric functions.

Now, consider the graph of y ¼ f ðxÞ ¼ ffiffiffi
x

p
shown in Figure 14.1.

The function y ¼ ffiffiffi
x

p
is defined for all x� 0 and its range is y� 0. For each input x0, the

function f gives a single output y ¼ ffiffiffiffiffi
x0

p
. Since every non-negative y is the image of just one x

under this function, we can reverse the construction. That is, we can start with y� 0 and then go

over to the curve and down to x ¼ y2, on the x-axis. [This is indicated by the arrows starting

from y0 (on y-axis) and reaching (on to the x-axis) the point x ¼ y20]. This construction

in reverse defines the function g(y) ¼ y2, the inverse of f ðxÞ ¼ ffiffiffi
x

p
. Thus, the inverse of

y ¼ f ðxÞ ¼ ffiffiffi
x

p
is given by x ¼ g(y) ¼ y2 [or x ¼ f�1(y) ¼ y2].

Introduction to Differential Calculus: Systematic Studies with Engineering Applications for Beginners, First Edition.
Ulrich L. Rohde, G. C. Jain, Ajay K. Poddar, and Ajoy K. Ghosh.
� 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

(1) The term one-to-one function stands for a function which is one-one and onto (Chapter 2).
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Note (1): Each pair of inverse functions (here, f and g) behave opposite to each other in the

sense that one function undoes (i.e., reverses) what the other does. The algebraic description

of what we see in Figure 14.1 is that

gðf ðxÞÞ ¼ ð ffiffiffi
x

p Þ2 ¼ x

f ðgðyÞÞ ¼ ð ffiffiffi
y

p Þ2 ¼ y

)

Observe that, in the above equations f is the inverse of g. It must be noted that an inverse

function associates the same pair of elements, as in the original function, but with the object

and the image interchanged. In the inverse notation,

g ¼ f�1

Note (2): Not every function has an inverse, as in the case of y ¼ x2 (x 2 R).

Whenever a function

y ¼ f ðxÞ ð1Þ

has an inverse, we can write it as

x ¼ f�1ðyÞ ð2Þ

provided (1) can be solved for x uniquely.

Both the functions at (1) and (2), if they are defined, describe one and the same curve in the

xy-plane.

14.1.1

The independent variable for the function f is x, while for the function f�1 the independent

variable is y. If we wish to denote the argument in formula (ii) by x [i.e., if we wish to write

x ¼ f�1(y) in the form y ¼ f�1(x)] in a single coordinate system, we get two different graphs

which are symmetric about the line y ¼ x. They represent two mutually inverse functions.

The graphs of the two mutually inverse functions are given in Figure 14.2. The graph of a

function and its inverse are symmetric with respect to the line y ¼ x.

14.1.2 Distinguishing Geometrical Properties of One-to-One Functions

Weknow that a vertical line can intersect the graph of a function at one point only. For a one-to-

one function, it is also true that a horizontal line can intersect a graph in atmost one point. This is

y

x

0 x0

√
−
x0

y = √
−
x

y0

y0
2

FIGURE 14.1

418 INVERSE TRIGONOMETRIC FUNCTIONS AND THEIR DERIVATIVES



the situation for the one-to-one function defined by y ¼ x3 whose graph appears in Figure 14.3.

On the other hand, observe in Figure 14.4 that for the function defined by y ¼ x2, which is not

one-to-one, any horizontal line above the x-axis intersects the graph in two points. We have,

therefore, the following geometric test for determining if a function is one-to-one.

y

y = g(x) = x2

y = f(x) = √
–
x

√
–
a

√
–
a

a

a

0 x

y = x

FIGURE 14.2

y

y = x3

x

0

FIGURE 14.3
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14.1.3 Horizontal-Line Test

A function is one-to-one if and only if every horizontal line intersects the graph of a function in

at most one point.

Note (3): We use the terminology “inverse functions” only when referring to a function and

its inverse.

Note (4): The criterion that a function be one-to-one, in order to have an inverse may be very

hard to apply in a given situation, since it demands that we have complete knowledge of the

graph. A more practical criterion is that a function be strictly monotonic (i.e., either strictly

increasing or strictly decreasing). This is a practical result, because we have an easy way of

deciding if a function f is strictly monotonic. We simply examine the sign of f 0(x). If f 0(x)> 0

the function f is strictly increasing on its domain but if f 0(x)< 0, f is strictly decreasing. These

results are proved in Chapter 19a. Later on, in Chapter 20, it is proved that a strictly monotonic

function is one-to-one, showing that all such functions have inverses.

The six basic trigonometric functions (sin x, cos x, tan x, cot x, sec x, and cosec x of the real

variable x) are defined in Chapter 5. Since all these functions are periodic (and hence not one-

to-one), none of themhas an inverse.We can however, restrict the domains of these functions in

a way to allow for an inverse.

14.2 TRIGONOMETRIC FUNCTIONS (WITH RESTRICTED DOMAINS)

AND THEIR INVERSES

We begin with the sine function, y ¼ sin x, whose graph appears in Figure 14.5. Observe from

the figure that the sine function is strictly increasing on the interval �ð1=2Þp and ð1=2Þp½ �.
Consequently, from the horizontal-line test (see Section 14.1.3), the function f1, for which

f1ðxÞ ¼ sin x; x 2 � 1

2
p;

1

2
p

� �
ð3Þð2Þ

y

y = x2

x

0

FIGURE 14.4 Graph of a function which is not one-to-one.

(2) Later on in Chapter 19a, we will show that the function f1(x) is strictly increasing on �ð1=2Þp; ð1=2Þp½ �.
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is one-to-one, and hence it does have an inverse in this interval. The graph of f1(x) is sketched

in Figure 14.6. Its domain is �ð1=2Þp; ð1=2Þp½ � and its range is [�1, 1]. The inverse of this

function is called the inverse sine function.

14.2.1 Definition of the Inverse Sine Function

The inverse sine function, denoted by sin�1, is defined by

y ¼ sin�1x; if and only if; x ¼ sin y and y 2 � 1

2
p;

1

2
p

� �
:

Thedomainof sin�1x is the closed interval [�1, 1] and the range is the closed interval � 1
2
p; 1

2
p

� �
.

Illustration:

. sin�1ð�1Þ ¼ � 1
2
p, because sin � 1

2
p

� � ¼ �1:

. sin�1ð0Þ ¼ 0, because sin ð0Þ ¼ 0:

. sin�1 1
2

� � ¼ 1
6
p, because sin 1

6
p

� � ¼ 1
2
:

. sin�1 1ffiffi
2

p
	 


¼ 1
4
p, because sin 1

4
p

� � ¼ 1ffiffi
2

p :

. sin�1 � 1ffiffi
2

p
	 


¼ � 1
4
p, because sin � 1

4
p

� � ¼ � 1ffiffi
2

p :

. sin�1ð1Þ ¼ 1
2
p, because sin 1

2
p

� � ¼ 1:

y

y = sin x

x

0

1

–2π 2ππ–π π
–1

1
2
–

1
2
– π3

2
–−   π −   π3

2
–

FIGURE 14.5

 ⎤
 ⎦

y y

Domain restricted to 

f1 (x) = sin x,

y = sin x

–
2
π

π ≤ x ≤

–,

–
2
1–

π– 2
1– π

2
1–

π
2
1–

2
π– ⎡

 ⎣

2
− π—

2
π—

1

–1

0 xx

FIGURE 14.6
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Remark: In equation (3), the domain of f1(x) ¼ sin x is restricted to the closed interval

�ð1=2Þp; ð1=2Þp½ �, so that the function is strictly monotonic and therefore has an inverse

function. However, the sine function has a period of 2p and is (strictly) increasing on the other

intervals aswell, for instance, �ð5=2Þp; � ð3=2Þp½ � and ð3=2Þp; ð5=2Þp½ �. Also, the function is
strictly decreasing on certain closed intervals, in particular the intervals �ð3=2Þp; � ð1=2Þp½ �
and ð1=2Þp; ð3=2Þp½ �. Any one of these intervals could just as well be chosen for the domain of

the function f1 of equation (3). The choice of the interval �ð1=2Þp; ð1=2Þp½ �, however, is
customary because it is the largest interval containing the number 0, on which the function

is (strictly) monotonic.

Note (5): The use of the symbol “�1” to represent the inverse sine function makes it

necessary to denote the reciprocal of sin x by (sin x)�1, to avoid confusion.

A similar convention is applied when using any negative exponent with a trigonometric

function. For instance, 1=ðtan xÞ ¼ ðtan xÞ�1
, 1=ðcos2 xÞ ¼ ðcos xÞ�2

, and so on.

Note (6): The terminology arc sine is sometimes used in place of inverse sine, and the notation

arc sine is then used instead of sin�1x. This notation probably comes from the fact that, if t ¼ arc

sin u, then sin t ¼ u, and t units is the length of the arc on the unit circle for which the sine is u.

In this text, we shall be using the symbol “�1” (rather than the word arc) and thus writing

sin�1x, cos�1x, and so on (instead of arc sinx, arc cos x, etc.). (This symbol is consistent with

the general notation for inverse functions.)

We can sketch the graph of the inverse sine function by locating some points from values of

sin�1x such as those given in Table 14.1. The graph appears in Figure 14.7.

TABLE 14.1

x �1 �
ffiffiffi
3

p

2
� 1

2
0

1

2

ffiffiffi
3

p

2
1

sin�1x � 1

2
p � 1

3
p � 1

6
p 0

1

6
p

1

3
p

1

2
p

0

1–1

1––
2

y = sin–1x

y

x

π

1–
2 π

FIGURE 14.7
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From the definition of the inverse sine function (Section 14.2.1), we have

sin ðsin�1xÞ ¼ x for x in ½�1; 1�

sin�1ðsin yÞ ¼ y for y in �ð1=2Þp; ð1=2Þp½ �

Caution: Observe that, sin (sin�1x) ¼ x is valid for all real values of x, it must be noted that

sin�1(sin y) 6¼ y, if y is not in the interval �ð1=2Þp; ð1=2Þp½ �.

Example (2): Evaluate sin�1 sin 5
6
p

� �
Solution: First we use the fact that

sin
5

6
p

� �
¼ sin p� 1

6
p

� �
¼ sin

1

6
p

� �
¼ 1

2

sin�1 sin
5

6
p

� �
¼ sin�1 1

2

� �

We know that sin(1/6)p ¼ 1/2, it follows that sin�1(1/2) ¼ p/6

) sin�1 sin
5

6
p

� �
¼ p

6

Note that, sin�1 sin 1
6
p

� � 6¼ 5p
6
, since 5p

6
=2 � 1

2
p; 1

2
p

� �
.

Similarly, sin�1 sin 3
4
p

� � ¼ 1
4
p [we have sin�1 sin 3

4
p

� � ¼ sin�1 1
2

� � ¼ 1
4
p] and

sin�1 sin 7
4
p

� � ¼ � 1
4
p [we have sin�1 sin 7

4
p

� � ¼ sin�1 � 1ffiffi
2

p
	 


¼ � 1
4
p].

Example (3): Find

(a) cos sin�1 � 1
2

� �� �
(b) sin�1 cos 2

3
p

� �
Solution:

We know that the range of the inverse sine function is � 1
2
p; 1

2
p

� �
.

Further, sin�1 � 1
2

� �� � ¼ � 1
6
p

(a) cos sin�1 � 1
2

� �� � ¼ cos � 1
6
p

� � ¼
ffiffi
3

p
2

(b) sin�1 cos 2
3
p

� � ¼ sin�1 � 1
2

� � ¼ � 1
6
p

14.2.2 Derivative of the Inverse Sine Function

We now obtain the formula for the derivative of the inverse sine function by applying the rule

that deals with the differentiation of inverse functions. [Recall from Chapter 10, Rule 6 which

states as follows: if y ¼ f(x) is a derivable function of x such that the inverse function

x ¼ f�1(y) is defined and dy/dx, dx/dy both exist, then derivative of the inverse function is

given by dx/dy ¼ 1/(dy/dx), provided dy/dx 6¼ 0.]
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Let y ¼ sin�1x, which is equivalent to

x ¼ sin y and y 2 � 1

2
p;

1

2
p

� �
ð4Þ

Differentiating both the sides of this equation with respect to y, we obtain

dx

dy
¼ cos y and y is in � 1

2
p;

1

2
p

� �
ð5Þ

If y is in � 1
2
p; 1

2
p

� �
, cos y is non-negative.(3)

We know that;
dy

dx
¼ 1

dx=dy
¼ 1

cos y
ð6Þ

Here, we have to write the right-hand side in terms of x. Since, sin y ¼ x, we have

cos y ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2 y

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p

Of these two values for cos y, we should take cos y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
, since y lies between�ð1=2Þp

and ð1=2Þp.

) dy

dx
¼ d

dx
ðsin�1 xÞ ¼ 1

cos y
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p

) d

dx
ðsin�1 xÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p ð7Þ

Theorem (A): If u is a differentiable function of x,

d

dx
ðsin�1 uÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� u2
p � du

dx
ðby the Chain RuleÞ

Example (4): Find f 0(x), if f(x) ¼ sin�1x2

Solution: From Theorem (A),

f 0ðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðx2Þ2

q � 2x

¼ 2xffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x4

p Ans:

(3) Note that for y ¼ �(1/2)p, cos y ¼ 0, and so dy/dx ¼ 1/cos x is not defined. However, if y lies between �(1/2)p
and (1/2)p, then cos y is positive and so dy/dx ¼ 1/cos y is defined. Therefore, we consider y such that it lies between

�p/2 and p/2.
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14.3 THE INVERSE COSINE FUNCTION

To obtain the inverse cosine function, we proceed as we did with the inverse sine function.

We restrict the cosine to an interval on which the function is (strictly) monotonic. We

choose the interval [0, p] on which the cosine is decreasing, as shown by the graph of the

cosine in Figure 14.8.

Let us consider the function f2(x) defined by f2(x) ¼ cos x, x 2 [0, p].
The domain of f2(x) is the closed interval [0, p] and the range is the closed interval [�1, 1].

The graph of f2(x) appears in Figure 14.9. Because f2(x) is continuous and decreasing on

its domain, it has an inverse, which we now define.

14.3.1 Definition of the Inverse Cosine Function

The inverse cosine function, denoted by cos�1, is defined by y ¼ cos�1x, if and only if,

x ¼ cos y and y 2 [0, p]. The domain of cos�1 is the closed interval [�1, 1] and the range is the

closed interval [0, p](4).

y

x

01
2
–−π −   π3

2
–−   π5

2
–−   π

1
2

–1

1

–π 3
2
–π 5

2
–ππ 2π

y = cos x

–2π

FIGURE 14.8

1

1
2

π–
π

–1

f2(x) = cos x x∈[0, π]

0

FIGURE 14.9

(4) Note that, the domain of y ¼ cos�1x is the set of numbers x such that x ¼ cos y. But, the value cos y lies in the interval

[�1, 1]. Hence, domain of cos�1 is the interval [�1, 1] and range is [0, p].
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The graph of the inverse cosine function appears in Figure 14.10. From the definition of the

inverse cosine function (Section 14.3.1), we have

cos ðcos�1xÞ ¼ x; for x in ½�1; 1�
cos�1ðcos yÞ ¼ y; for y in ½0; p�

Note (7): Observe that there is again a restriction on y in order to have the equality.

cos�1ðcos yÞ ¼ y;

For example, because (3/4)p is in [0, p].

cos�1 cos
3

4
p

� �
¼ 3

4
p

However, cos�1 cos 5
4
p

� � ¼ cos�1 � 1ffiffi
2

p
	 


¼ 3
4
p, and

cos�1 cos
7

4
p

� �
¼ cos�1 1ffiffiffi

2
p
� �

¼ 1

4
p:

y

x

0

y = cos–1x

–1

1

1

2
–

π

π

FIGURE 14.10
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14.3.2 Formula for the Derivative of the Inverse Cosine Function

Let y ¼ cos�1x, which is equivalent to

x ¼ cos y and y 2 ½0; p� ð8Þ

Differentiating both sides with respect to y, we have

dx

dy
¼ �sin y; and y 2 0; p½ � ð9Þ

If y is in [0, p], sin y is non-negative, making the above term on the RHS negative

But;
dy

dx
¼ 1

dx=dy
¼ �1

sin y
ð10Þð5Þ

Here, we have to express the right-hand side in terms of x. Since cos y ¼ x, we have

sin y ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2 x

p
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p

Of these two values for sin y, we should take sin y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
, since y lies between 0 and p.

) dy

dx
¼ d

dx
ðcos�1 xÞ ¼ �1

sin y
¼ �1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p

) d

dx
ðcos�1xÞ ¼ �1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p ð11Þ

14.3.3 Important Identities Involving Inverse Trigonometric Functions

The following identities involving inverse trigonometric functions are very important.

(i) sin�1 xþ cos�1 x ¼ p
2

(ii) tan�1 xþ cot�1 x ¼ p
2

(iii) sec�1 xþ cosec�1 x ¼ p
2

Let us prove (i)

Let sin�1x ¼ t ð12Þ

) x ¼ sin t ¼ cos
p
2
� t

	 


) p
2
� t ¼ cos�1 x ð13Þ

Adding (12) and (13), we get

sin�1 xþ cos�1 x ¼ p
2

Similarly (ii) and (iii) can be proved.

(5) Refer to Chapter 10, Corollary to Rule 6, Page 303.
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Note (8): Now, using the identity at (i) above and the result,

d

dx
ðsin�1 xÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p

We will now show that,

d

dx
ðcos�1 xÞ ¼ �1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p

Consider the identity sin�1 xþ cos�1 x ¼ p
2

Differentiating both sides with respect to x, we get,

d

dx
ðsin�1 xÞ þ d

dx
ðcos�1 xÞ ¼ 0

) d

dx
ðcos�1 xÞ ¼ � d

dx
ðsin�1 xÞ

¼ �1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
�
Since;

d

dx
ðsin�1 xÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p

�
ðProvedÞ

Theorem (B): If u is a differentiable function of x, then

d

dx
ðcos�1 uÞ ¼ �1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� u2
p � du

dx

Example (5): Find dy
dx

if y ¼ cos�1e2x

Solution: Given y ¼ cos�1e2x,

We get, from theorem (B),

dy

dx
¼ �1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðe2xÞ2
q d

dx
ðe2xÞ

¼ �2e2xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðe2xÞ2

q ¼ �2e2xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e4x

p Ans:

14.4 THE INVERSE TANGENT FUNCTION

To develop the inverse tangent function, observe from the graph in Figure 14.11, that the

tangent function is continuous and (strictly) increasing on the open interval

�ð1=2Þp; ð1=2Þpð Þ. We restrict the tangent function to this interval, denote it by f3 and define

it by f3(x) ¼ tan x and �ð1=2Þp < x < ð1=2Þp.
The domain of f3(x) is the open interval �ð1=2Þp; ð1=2Þpð Þ and the range is the setR of real

numbers. The graph of f3(x) is given in Figure 14.12. This function has an inverse called the

inverse tangent function.
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14.4.1 Definition of the Inverse Tangent Function

The inverse tangent function, denoted by tan�1, is defined by y ¼ tan�1x, if and only if,

x ¼ tan y and�ð1=2Þp < y < ð1=2Þp. The domain of tan�1 is the setR of real numbers and the

range is the open interval �ð1=2Þp; ð1=2Þpð Þ. The graph of the inverse tangent function is

shown in Figure 14.13.

y

0

3

2

1

–2

–1
1
2
–1

2
––3

2
–– 3

2
–

y = tan x

π ππππ −π

–3

x

FIGURE 14.11

y

x

2

0

f3(x) = tan x

1

–1

–2

1
2
–– π 1

2
–π
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From the definition of inverse tangent function (Section 14.4.1), we have

tanðtan�1 xÞ ¼ x; for x inð�1; þ1Þ

tan�1ðtan yÞ ¼ y; for y in
�1

2
p;

1

2
p

� �

The restrictions on y are discussed through the following examples.

Example (6): tan�1 tan 1
4
p

� � ¼ 1
4
p and tan�1 tan � 1

4
p

� �� � ¼ � 1
4
p

However, tan�1 tan 3
4
p

� � ¼ tan�1ð�1Þ ¼ � 1
4
p and tan�1 tan 5

4
p

� � ¼ tan�1ð1Þ ¼ � 1
4
p.

14.4.2 Formula for the Derivative of the Inverse Tangent Function

Let y ¼ tan�1x. Then,

x ¼ tany and y is in � 1

2
p;

1

2
p

� �
ð14Þ

Differentiating both the sides of this equation, with respect to y, we obtain

dx

dy
¼ sec2y and y is in � 1

2
p;

1

2
p

� �
ð15Þ

From the identity sec2y ¼ 1þ tan2y, and replacing tan y by x, we have

sec2y ¼ 1þ x2

y

0 21

y = tan–1x, (      π <x <   π)

1
2
–

1
2
–

1
2
––

1
2
––

π

π

–1–2

x

FIGURE 14.13
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But;
dy

dx
¼ 1

ðdx=dyÞ

) dy

dx
¼ 1

1þ x2

Thus;
d

dx
ðtan�1xÞ ¼ 1

1þ x2
ð16Þ

The domain of the derivative of the inverse tangent function is the set R of real numbers.

Theorem (C): If u is a differentiable function of x,

d

dx
ðtan�1uÞ ¼ 1

1þ u2
� du
dx

Example (7): Find f 0(x), if f ðxÞ ¼ tan�1 1
xþ1

Solution: From Theorem (C),

f 0ðxÞ ¼ 1

1þ 1=ðxþ 1Þ2
	 
 � d

dx

1

1þ x

� �

or f 0ðxÞ ¼ 1

1þ 1=ðxþ 1Þ2
	 
 � �1

ð1þ xÞ2

¼ �1

ðxþ 1Þ2 þ 1
¼ �1

x2 þ 2xþ 2
Ans:

Example (8): Differentiate tan�1log x

Solution:
d

dx
tan�1ðlogxÞ� �¼ 1

1þðlogxÞ2 �
d

dx
ðlogxÞ

¼ 1

1þðlogxÞ2 �
1

x

¼ 1

x½1þðlogxÞ2� Ans:

14.5 DEFINITION OF THE INVERSE COTANGENT FUNCTION

To define the inverse cotangent function, we use the identity tan�1xþ cot�1x ¼ p/2, (see
Section 14.3.3) where x is any real number.

Definition: The inverse cotangent function, denoted by cot�1, is defined by

y ¼ cot�1x ¼ 1

2
p� tan�1xwhere x is any real number ð17Þ

The domain and the range of cot�1.(6)

(6) TheCalculus 7 of a Single Variable (Sixth Edition) byLouis Leithold (pp. 501–502), HarperCollins College Publishers.
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By definition, the domain of cot�1 is the set R of real numbers. To obtain the range, we write

the equation in the definition as

tan�1x ¼ 1

2
p� cot�1x ð18Þ

We know that; � 1

2
p < tan�1x <

1

2
p ð19Þ

Using (18) in (19), we get

� 1

2
p <

1

2
p� cot�1x <

1

2
p

Subtracting (1/2)p from each member, we get

�p < �cot�1x < 0

Now, multiplying each member by �1, we get

p > cot�1x > 0

Reversing the direction of inequality signs, we obtain

0 < cot�1x < p

The range of the inverse cotangent function is therefore the open interval (0, p). Its graph is

sketched in Figure 14.14.

Illustration:

(a) tan�1ð1Þ ¼ 1
4
p

(b) tan�1ð�1Þ ¼ � 1
4
p

(c) cot�1ð1Þ ¼ 1
2
p� tan�1ð1Þ ¼ 1

2
p� 1

4
p ¼ 1

4
p

(d) cot�1ð�1Þ ¼ 1
2
p� tan�1ð�1Þ ¼ 1

2
p� �1

4
p

� � ¼ 3
4
p

y

x

0

1
2
–

2–2 1

y = cot–1 x

–1

π

π

FIGURE 14.14
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14.5.1 Formula for the Derivative of cot�1x

From the definition of inverse cotangent function, we have

cot�1x ¼ 1

2
p� tan�1x;

Differentiating both sides with respect to x, we get

d

dx
cot�1x ¼ d

dx

1

2
p� tan�1x

� �

) d

dx
cot�1x
� � ¼ � 1

1þ x2
ð20Þ

Theorem (D): If u is a differentiable function of x,

d

dx
cot�1u
� � ¼ � 1

1þ u2
� du
dx

Before we define the inverse secant and the inverse cosecant functions, let us again look at the

graphs of basic trigonometric functions and the inverse trigonometric functions.

The graphs of six trigonometric functions are shown in Figure 14.15a–f. None of these

functions has an inverse, since a horizontal line y ¼ c may cross each graph at more points.

Now consider the six functions (f1–f6), which as graphs have heavily marked portions of

the six trigonometric functions in the same graph (Figure 14.15). (In fact, these portions of the

graph define the respective trigonometric functions with restricted domain.) Each of these

graphs represents a new function, which has the same range as the corresponding trigonometric

function, and each new function has an inverse.We call them the principal branches of the basic

trigonometric functions.

By abuse of terminology, the inverses of f1, f2, . . ., f6 are called the inverse trigonometric

functions, so that f�1
1 is the inverse sine, denoted by x ¼ sin�1y, f�1

2 is the inverse cosine,

denoted by x ¼ cos�1y, and so on. Similar notations are used for the remaining four inverse

trigonometric functions. The graphs of the inverse trigonometric functions as functions of

the independent variable x are shown in Figure 14.16.

Note (9):As can be seen from the graph of sec x and cosec x (Figure 14.15), it is impossible

to choose “branches” of these functions so that the inverse functions become continuous.

The branches of sec�1x and cosec�1x (Figure 14.16) are chosen to make the formulas for

the derivatives of these functions come out nicely, without ambiguity to sign. Now, the

derivatives of sec�1 x and cosec�1 x can easily be found just as we found the derivatives in

other cases.(7)

14.6 FORMULA FOR THE DERIVATIVE OF INVERSE SECANT FUNCTION

Let y ¼ sec�1x

) x ¼ sec y

(7) For more details, refer to Calculus with Analytic Geometry by John B. Fraleigh (p. 261), Addison-Wesley.
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y = sin x

2π

2

–2π π−π

−π—

2

2
1

0
–1
–2

π—

x

(a)

y

y = cos x

y = f2(x)
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3π
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y

π—
2

−π—
2
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1–1

x

0

π—
2
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1–1

y

x

0
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x
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−
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Differentiating with respect to y, we get

dx

dy
¼ sec y � tan y ¼ sec y

ffiffiffiffiffiffiffiffiffiffiffi
tan2 y

p

¼ sec y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sec2 y� 1

p
¼ x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p
dy

dx
¼ 1

ðdy=dxÞ ¼ 1

x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p

) dðsec�1xÞ
dx

¼ 1

x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p ; jxj > 1 ð21Þ

Theorem (E): If y is a differentiable function of x,

d

dx
ðsec�1uÞ ¼ 1

u
ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � 1

p � du
dx

; juj > 1

14.7 FORMULA FOR THE DERIVATIVE OF INVERSE COSECANT

FUNCTION

Let y ¼ cosec�1x

Then; x ¼ cosec y

Differentiating with respect to y, we get,

dx

dy
¼ �cosec y � cot y ¼ �cosec y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosec2y� 1

p

¼ �cosec y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosec2y� 1

p
¼ �x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p

Now;
dy

dx
¼ 1

ðdy=dxÞ ¼ �1

x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p ; jxj > 1

) dðcosec�1xÞ
dx

¼ �1

x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p ; jxj > 1 ð22Þ

Theorem (F): If u is a differentiable function of x,

d

dx
ðcosec�1uÞ ¼ �1

u
ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � 1

p � du
dx

; juj > 1

Table 14.2 summarizes the data that we should remember regarding inverse trigonometric

functions.
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From the theorems stated at (A)–(F) above, we know that if u is a function of independent

variable x, then wemay write the formulas for derivatives of inverse trigonometric functions of

u, using the chain rule.
d
dx
sin�1u ¼ 1

1�u2
� du
dx
, and so on. These results may also be written as

d

dx
sin�1 f ðxÞ½ � ¼ f 0ðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ½f ðxÞ�2
q ;

d

dx
cos�1 f ðxÞ½ � ¼ �f 0ðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ½f ðxÞ�2
q

d

dx
tan�1 f ðxÞ½ � ¼ f 0ðxÞ

1þ ½f ðxÞ�2 ; and so on:

These formulas are primarily important for evaluation of certain definite integrals. In fact, this is

the main reason for studying the calculus of inverse trigonometric functions.

14.8 IMPORTANT SETS OF RESULTS AND THEIR APPLICATIONS

The following sets of results [set (1) to set (5)] connecting trigonometric (circular) functions

and inverse trigonometric functions are useful in simplifying certain inverse trigonometric

functions for computing their derivatives.

In the above results (or formulas) it is assumed that we are dealingwith the principal branch

(es) of the functions and their appropriate domain(s). Their applications are given below:

Set (1) Set (2)

sin�1ðsinxÞ ¼ x

cos�1ðcosxÞ ¼ x

tan�1ðtanxÞ ¼ x

and so on:

2
6664

3
7775

sinðsin�1xÞ ¼ x

cosðcos�1xÞ ¼ x

tanðtan�1xÞ ¼ x

and so on:

2
6664

3
7775

TABLE 14.2

Function Domain Range Derivative

sin�1x [�1, 1] �p
2
;
p
2

h i 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p

cos�1x [�1, 1] 0;p½ � �1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p

tan�1x All x �p
2
< y <

p
2

1

1þ x2

cot�1x All x 0 < y < p
�1

1þ x2

sec�1x x��1 or x� 1 �p � y < �p
2
or 0 � y <

p
2

1

x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p

cosec�1x x��1 or x� 1 �p < y � �p
2
or 0 < y � p

2

�1

x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p

Source: Calculus with Analytic Geometry by John B. Fraleigh (p. 263), Addison-Wesley.
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Applications of set (1) and (2) (differentiate with respect to x).

y ¼ sin�1ðsin 5xÞ
Put 5x ¼ t ) y ¼ sin�1ðsin tÞ ¼ t

or y ¼ 5x ) dy

dx
¼ 5:

Set (3): We know that,

sin�1ðcos xÞ ¼ sin�1

�
sin

�
p
2
� x

��
¼ p

2
� x

cos�1ðsin xÞ ¼ cos�1

�
cos

�
p
2
� x

��
¼ p

2
� x

tan�1ðcot xÞ ¼ tan�1

�
tan

�
p
2
� x

��
¼ p

2
� x

and so on:

Application of set (3)

Let y ¼ sin�1½cos 3x�

) y ¼ sin�1 sin
p
2
� 3x

	 
h i
¼ p

2
� 3x

) dy

dx
¼ 0� 3 ¼ �3 Ans:

Set (4)

tan�1xþ tan�1y ¼ tan�1

�
xþ y

1� xy

�

tan�1x� tan�1y ¼ tan�1

�
x� y

1þ xy

�
2
66664

3
77775

These results are very useful as can be seen from the solved examples (it is proposed to prove

these results at the end of this chapter).

Note that the expression ððxþ yÞ=ð1� xyÞÞ can be converted to the form tan(pþ q) by

proper substitution and similarly ððx� yÞ=ð1þ xyÞÞ can be converted to the form tan(p� q).

Thus, in any expression of the type tan�1[f(x)], if it is possible to break up f(x) in any of the two

above forms, then the given function tan�1[f(x)] can be simplified for the purpose of the

differentiation as will be clear from the following solved examples.

Application of set (4)

(a) Let y ¼ tan�1

�
5x

1� 6x2

�
;

) y ¼ tan�1

�
3xþ 2x

1� ð3xÞ � ð2xÞ
�

¼ tan�1ð3xÞ þ tan�1ð2xÞ
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) dy

dx
¼ 1

1þ ð3xÞ2 � d

dx
ð3xÞ þ 1

1þ ð2xÞ2 � d

dx
ð2xÞ

¼ 3

1þ 9x2
þ 2

1þ 4x2
Ans:

(b) Let y ¼ tan�1 sin 7x� cos 7x

sin 7xþ cos 7x

� �

Dividing numerator and denominator by cos 7x.

) y ¼ tan�1

�
tan 7x� 1

tan 7xþ 1

�
¼ tan�1

�
tan 7x� 1

1þ tan 7x

�

¼ tan�1

�
tan 7x� tanðp=4Þ

1þ tan 7x � tanðp=4Þ
�

¼ tan�1

�
tan

�
7x� p

4

��
¼ 7x� p

4

) dy

dx
¼ 7 Ans:

ð8Þ

Set (5)

sin�1x ¼ cosec�1

�
1

x

�

cos�1x ¼ sec�1

�
1

x

�

tan�1x ¼ cot�1

�
1

x

�

cot�1x ¼ tan�1

�
1

x

�

sec�1x ¼ cos�1

�
1

x

�

cosec�1x ¼ sin�1

�
1

x

�

2
66666666666666666666666666664

3
77777777777777777777777777775

Application of set (5) (differentiate the following with respect to x).

(8) Here the expression inside the bracket can be simplified (using trigonometric identities) to the form tan�1(7x� (p/4)),
or else we may use the formula of set (4) to write the right-hand side as tan�1[tan(7x)]� tan�1[tan(p/4)] ¼ 7x� (p/4),
which can be easily differentiated.
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Example (9): Let y ¼ sin cosec�1 1
x

� �� �
) y ¼ sin ðsin�1xÞ ½Using set ð5Þ�

¼ x

) dy

dx
¼ 1

Example (10): Let y ¼ sec cos�1 2

5x

� �� �

) y ¼ sec

�
sec�1 5x

2

�
¼ 5x

2

) dy

dx
¼ 5

2
Ans:

Example (11): Let y ¼ cot�1 3� 2 tan x

2þ 3 tan x

� �

Note that, using the formula cot�1x ¼ tan�1 1
x

� �
,

we can write,

y ¼ tan�1 2þ 3 tan x

3� 2 tan x

� �

Observe that the expression on the right-hand side can be simplified if the denominator is

expressed in the form (1� k tan x). This can be done by dividing the numerator and

denominator by 3. We then get,

y ¼ tan�1

� ð2=3Þ þ tanx

1� ð2=3Þtanx
�

¼ tan�1

�
2

3

�
þ tan�1ðtanxÞ

�

) tan�1

�
aþ b

1� a � b
�

¼ tan�1aþ tan�1b

�

¼ tan�1

�
2

3

�
þ x

) dy

dx
¼ 0þ 1 ¼ 1 Ans:

Note (10): It is normally preferred to express cot�1x, sec�1x, and cosec�1x in the forms

tan�1t, cos�1t, and sin�1t, respectively, where t stands for (1/x).

Example (12): Let y ¼ cot�1

�
5þ 4x

5x� 4

�

¼ tan�1

�
5x� 4

5þ 4x

� �

)cot�1t ¼ tan�1 1

t

�
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Dividing numerator and denominator by 5, we get

y ¼ tan�1

�
x� ð4=5Þ
1þ ð4x=5Þ

�
¼ tan�1

�
x� ð4=5Þ

1þ x � ð4=5Þ
�

¼ tan�1x� tan�1

�
4

5

�

) dy

dx
¼ 1

1þ x2
� 0 ¼ 1

1þ x2
Ans:

14.9 APPLICATION OF TRIGONOMETRIC IDENTITIES

IN SIMPLIFICATION OF FUNCTIONS AND EVALUATION

OF DERIVATIVES OF FUNCTIONS INVOLVING INVERSE

TRIGONOMETRIC FUNCTIONS

Sometimes a simplification of the function makes the differentiation easier. It is useful to learn

themethods of manipulation on certain trigonometric expressions so that they can be expressed

in the desired form(s), which can in turn be simplified, using the relations given above [i.e.,

sets (1)–(5)]. Such simplifications are possible only in certain functions.

Example (13): Differentiate tan�1(sec xþ tan x)

Let y ¼ tan�1ðsec xþ tan xÞ ð23Þ

Consider, sec xþ tan x ¼ 1

cos x
þ sin x

cos x

¼ 1þ sin x

cos x
¼ cos2ðx=2Þ þ sin2ðx=2Þ þ 2sinðx=2Þcosðx=2Þ

cos2ðx=2Þ � sin2ðx=2Þ

¼ cosðx=2Þ þ sinðx=2Þ
cosðx=2Þ � sinðx=2Þ ¼ 1þ tanðx=2Þ

1� tanðx=2Þ ¼ tanðp=4Þ þ tanðx=2Þ
1� tanðp=4Þ � tanðx=2Þ ¼ tan

�
p
4
þ x

2

�

) y ¼ tan�1

�
tan

�
p
4
þ x

2

��

¼ p
4
þ x

2

) tan�1ðtanxÞ ¼ x
� �

dy

dx
¼ 1

2
Ans:
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Given below are some trigonometric functions with necessary simplifications, to help under-

stand the approach.

1. sinx

1þ cosx
¼ 2sinðx=2Þ � cosðx=2Þ

1þ 2cos2ðx=2Þ � 1
¼ tan

x

2

) tan�1

�
sinx

1þ cosx

�
¼ tan�1

	
tan

x

2



¼ x

2

cosx

1þ sinx
¼ sin ðp=2Þ � xð Þ

1þ cos ðp=2Þ � xð Þ

2. tan
1

2

�
p
2
� x

�
¼ tan

�
p
4
� x

2

�

) tan�1

�
sinx

1þ cosx

�
¼ tan�1

�
tan

�
p
4
� x

2

��
¼ p

4
� x

2

3.
1þ sinx

1� sinx
¼ sin2ðx=2Þ þ cos2ðx=2Þ þ 2 � sinðx=2Þ � cosðx=2Þ

sin2ðx=2Þ þ cos2ðx=2Þ � 2 � sinðx=2Þ � cosðx=2Þ

¼
�
cosðx=2Þ þ sinðx=2Þ
cosðx=2Þ � sinðx=2Þ

�2

) 1þ sinx

1� sinx
¼
�
1þ tanðx=2Þ
1� tanðx=2Þ

�2

¼
�
tan

�
p
4
þ x

2

��

)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sinx

1� sinx

s
¼ tan

�
p
4
þ x

2

�

) tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sinx

1� sinx

s
¼
�
p
4
þ x

2

�

4. ) tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cosx

1� cosx

r
¼ tan�1 tan�1 x

2

h i
¼ x

2

5. ) tan�1

�
1

secxþ tanx

�
¼ tan�1

�
cot

�
p
4
þ x

2

��

¼ tan�1

�
tan

�
p
4
� x

2

��
¼ p

4
� x

2

6. tan�1 secx� tanxð Þ ¼ 1� sinx

cosx
¼ 1� tanðx=2Þ

1þ tanðx=2Þ ¼ tan
p
4
� x

2
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7. ) tan�1

�
1

secx� tanx

�
¼ tan�1

�
cot

�
p
4
� x

2

��

¼ tan�1

�
tan

�
p
4
þ x

2

��
¼ p

4
þ x

2

8. cosecxþ cotx ¼ 1� cosx

sinx
¼ cot

x

2

) cot�1ðcosecxþ cotxÞ ¼ cot�1

�
cot

x

2

�
¼ x

2

And; tan�1ðcosecxþ cotxÞ ¼ tan�1

�
cot

x

2

�

¼ tan�1

�
tan

�
p
2
� x

2

��

¼ p
4
� x

2
Ans:

9.
1

cosecxþ cotx
¼ 1

cotðx=2Þ ¼ tan
x

2

10. cosecx� cotx ¼ 1� cosx

sinx
¼ tan

x

2

11.
1

cosecx� cotx
¼ 1

tanðx=2Þ ¼ cot
x

2
¼ tan

p
2
� x

2

	 


14.9.1 Evaluation of Derivatives of Inverse Trigonometric Functions by Making

Substitutions (Usually Trigonometric Substitutions)

Sometimes appropriate trigonometric substitutions can be made to simplify inverse trigono-

metric functions in order to compute their derivatives. The following trigonometric formulas

give us a clue regarding suitable substitutions. The expressions in question can be simplified

using the trigonometric formulas, and the sets of results [set (1)–(5)] given above.

Trigonometric Formulas

Examples of Inverse Trignometric

Functions for Simplification

[A] sin 2x ¼ 2 tanx

1þ tan2x
sin�1 4x

1þ 4x2

� �

[B] cos 2x ¼ 1� tan2x

1þ tan2x
cos�1 1� 4x2

1þ 4x2

� �

[C] tan 2x ¼ 2tanx

1� tan2x
cot�1 1� x2

2x

� �

tan�1 2ex

1� e2x

� �
[D] tanðx� yÞ ¼ tanx� tany

1� tanx:tany
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(Continued)

Trigonometric Formulas

Examples of Inverse Trignometric

Functions for Simplification

[d(i)] tan
p
4
þ x

	 

¼ 1þ tanx

1� tanx
tan�1 1þ x

1� x

� �

[d(ii)] tan
p
4
� x

	 

¼ 1� tanx

1þ tanx
tan�1 1� x

1þ x

� �

[E]

[e(i)] cos
p
2
� x

	 

¼ sin x, sin�1x(cosx)

[e(ii)] sin
p
2
� x

	 

¼ cosx, ¼ sin�1 sin

p
2
� x

	 
h i

and so on. ¼ p
2
� x

[F]

[f(i)] cos 2x ¼ cos2x� sin2x sin�1 1� 2x2ð Þ

[f(ii)] cos 2x ¼ 1� 2 sin2x sec�1

�
1

2x2 � 1

�

[f(iii)] cos 2x ¼ 2 cos2x� 1 cosec�1

�
1

2x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
�

[f(iv)] sin 2x ¼ 2 sin x cos x

[G] sin2xþ cos2x ¼ 1

[g(i)] sin2x ¼ 1� cos2x tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p

x

[g(ii)] cos2x ¼ 1� sin2x cos�1 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p

[g(iii)] sec2x ¼ 1þ tan2x sec�1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p

[g(iv)] cosec2 x ¼ 1þ cot2x cosec�1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p

x

 !

[h(i)] sin 3x ¼ 3 sinx� 4 sin3x cosec�1 1

3x� 4x3

� �

[h(ii)] cos 3x ¼ 4 cos3x� 3 cos x cos�1 4x3 � 3xð Þ

[h(iii)] tan 3x ¼ 3 tanx� tan3x

1� 3 tan2x
tan�1 3x� x3

1� 3x2

� �
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Given below are some solved examples, which indicate the usefulness of such substitutions.

Example (14): If y ¼ tan�1 1þ x

1� x

� �
; find

dy

dx

Solution: Put x ¼ tan t and 1 ¼ tan
p
4

) y ¼ tan�1

�
tanðp=4Þ þ tant

1� tanðp=4Þ � tant
�
¼ tan�1

�
tan

�
p
4
þ t

��

¼ p
4
þ t

y ¼ p
4
þ tan�1x: ð ) t ¼ tan�1xÞ

) dy

dx
¼ 1

1þ x2
Ans:

Example (15): If y ¼ cos�1 1� e2x

1þ e2x

� �
; find

dy

dx

Solution: We have, y ¼ cos�1 1� exð Þ2
1þ exð Þ2
" #

Put ex ¼ tan t ) t ¼ tan�1ex

) y ¼ cos�1

�
1� tan2t

1þ tan2t

�

¼ cos�1ðcos 2tÞ ¼ 2t ¼ 2 tan�1ex

) dy

dx
¼ 2

1þ exð Þ2 � d

dx
ex ¼ 2ex

1þ e2x
Ans:

Example (16):

y ¼ tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
 !

; find
dy

dx

Solution: We know that,

cos 2t ¼ 2 cos2t� 1

¼ 1� 2sin2t

ðiÞ ) cos2tþ 1 ¼ 2cos2t

ðiiÞ or 1� cos2t ¼ 2sin2t

)ð9Þ

(9) It is useful to remember these relations, and use them whenever similar expressions appear.
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In view of these relations, we put

x2 ¼ cos2t; so that 2t ¼ cos�1x2 or t ¼ 1

2
cos�1x2

) 1þ x2 ¼ 1þ cos2t ¼ 2cos2t

and 1� x2 ¼ 1� cos2t ¼ 2sin2t

) y ¼ tan�1

�
costþ sint

cost� sint

�

¼ tan�1

�
1þ tant

1� tant

�

¼ tan�1

�
tan

�
p
4
þ t

��
¼ p

4
þ t

) y ¼ p
4
þ 1

2
cos�1x2

�

) t ¼ 1

2
cos�1x2

�

) dy

dx
¼ 1

2

� �1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x4

p
�
� 2x ¼ �xffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x4
p Ans:

Example (17): Differentiate y ¼ tan�1
ffiffiffiffiffiffiffiffi
1þx2

p �1
x

	 

with respect to x.

Solution: We have, y ¼ tan�1
ffiffiffiffiffiffiffiffi
1þx2

p �1
x

	 

Consider the expression,

ffiffiffiffiffiffiffiffi
1þx2

p �1
x

¼ E (say)

Put; x ¼ tant

) t ¼ tan�1x

) E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2t

p � 1

tant
¼

ffiffiffiffiffiffiffiffiffiffi
sec2t

p
� 1

tant

¼ sect� 1

tant
¼ 1� cost

sint

¼ 2sin2ðt=2Þ
2sinðt=2Þ � cosðt=2Þ ¼ tan

t

2

y ¼ tan�1

�
tan

t

2

�
¼ t

2

¼ 1

2
tan�1x ) t ¼ tan�1x

� �

) dy

dx
¼ 1

2
� d

dx
tan�1x

¼ 1

2ð1þ x2Þ Ans:
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Example (18): Differentiate y ¼ sin�1 x
ffiffiffiffiffiffiffiffiffiffiffi
1� x

p � ffiffiffi
x

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p	 


or y ¼ sin�1 x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ffiffiffi

x
p� �2q

� ffiffiffi
x

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p� �
Put x ¼ sin A and

ffiffiffi
x

p ¼ sin B

) y ¼ sin�1 sinA
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2B

p
� sinB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2A

p	 

¼ sin�1 sinA � cosB� cosA � sinBð Þ
¼ sin�1 sin A� Bð Þ½ �
¼ A� B

¼ sin�1x� sin�1 ffiffiffi
x

p ) A ¼ sin�1x
� �

and B ¼ sin�1 ffiffiffi
x

p

) dy

dx
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ffiffiffi
x

pð Þ2
q d

ffiffiffi
x

pð Þ
dx

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p :

�
1

2
ffiffiffi
x

p
�

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p � 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� x2

p Ans:

Example (19): If y ¼ sin 2tan�1

ffiffiffiffiffiffiffiffiffiffiffi
1� x

1þ x

r� �
; find

dy

dx

Solution: We have, y ¼ sin 2tan�1

ffiffiffiffiffiffiffiffiffiffiffi
1� x

1þ x

r� �

If we put x ¼ cos t, then it can be shown that

ffiffiffiffiffiffiffiffiffiffiffi
1� x

1þ x

r
¼ tan

t

2

) y ¼ sin

�
2tan�1

�
tan

t

2

��

¼ sin

�
2 � t

2

�
¼ sin t

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2t

p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p ) cost ¼ x½ �
) dy

dx
¼ d

dx
1� x2
� �1=2

¼ 1

2
� 1� x2
� �1=2ð�2xÞ

¼ � xffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p Ans:

ð10Þ

(10) At this stage, if we use the relation x ¼ cos t, we get y ¼ sin(cos�1x).

dy
dx

¼ cos cos�1xð Þ: d
dx
cos�1x ¼ x: �1ffiffiffiffiffiffiffiffi

1�x2
p ¼ �xffiffiffiffiffiffiffiffi

1�x2
p .
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Example (20):

y ¼ sec�1

�
1þ 4x

1� 4x

�

) ¼ cos�1

�
1� 4x

1þ 4x

� �

)sec�1x ¼ cos�1

�
1

x

��

¼ cos�1

�
1� 2xð Þ2
1þ 2xð Þ2

�

Put 2x ¼ tan t ) t ¼ tan�12x ð1Þ

) y ¼ cos�1

�
1� tan2t

1þ tan2t

�

¼ cos�1ðcos2tÞ ¼ 2t

) y ¼ 2 tan�12x ½by using ð1Þ�
dy

dx
¼ 2

1þ ð2xÞ2 � d

dx
ð2xÞ

¼ 2

1þ 4x
� 2x � loge2

dy

dx
¼ 2xþ1

1þ 4x
loge2 Ans:

Exercise (1)

Differentiate the following with respect to x.

(1) tan�1

�
aþ x

1� ax

�
(2) tan�1

�
6x

1� 8x2

�

(3) tan�1

�
sinx

1þ cosx

�
(4) tan�1

�
cosxþ sinx

cosx� sinx

�

(5) tan�1

�
cosx

1þ sinx

�
(6) tan�1

�
1� cosx

sinx

�

(7) cos�1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cosx

2

s �
(8) cot�1

�
1� x

1þ x

�

(9) tan�1

�
1þ sinx

cosx

�
(10) tan�1

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sinx

1� sinx

s !

(11) tan�1

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cosx

1� cosx

s !
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Answers:

(1)
1

1þ x2
(2)

2

1þ 4x2
þ 4

1þ 16x2
(3)

1

2

(4) 1 (5) � 1

2
(6)

1

2

(7)
1

2
(8)

1

1þ x2
(9)

1

2

(10)
1

2
(11) � 1

2

Exercise (2)

Differentiate the following with respect to x.

(1) sin�1

�
xffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x2
p

�
(2) sin�1

�
2secx

1þ sec2x

�

(3) sin�1

�
xþ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x2
p ffiffiffi

2
p

�
(4) sin�1

�
2xþ1

1þ 4x

�

(5) cos�1

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x2
p

�
(6) cos�1

�
1� x2

1þ x2

�

(7) tan�1

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p

x

�
(8) tan�1

�
3x� x3

1þ 3x2

�

(9) sec�1

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p �
(10) sec�1

�
1þ x2

1� x2

�

(11) cosec�1

�
1

3x� 4x3

�
(12) cot�1

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p

x

�

Answers:

(1)
1

1þ x2
(2)

2sinx

1þ cos2x

(3)
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p (4)

2xþ1log2

1þ 4x

(5)
1

1þ x2
(6)

2

1þ x2
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(7)
�1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p (8)
3

1þ x2

(9)
1

1þ x2
(10)

2

1þ x2

(11) � 3ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p (12)
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p

Note (11): The inverse trigonometric functions discussed above are of a special type and as we

have seen, their derivatives can be computed using special methods involving substitution and/

or simplification. On the other hand, there can be any number of functions involving inverse

trigonometric functions whose derivatives are computed simply by applying the rules of

differentiation. Of course, substitution may also be useful as an intermediate step. Consider the

following examples.

(a) Let y ¼ x2 � cos�1x

Here, we have a product of two functions, and thereforewemust use the product rule

for derivatives.
dy

dx
¼ x2 � d

dx
cos�1xþ cos�1x � d

dx
x2

¼ x2 � �1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p þ cos�1x � ð2xÞ

) dy

dx
¼ 2x � cos�1x� x2ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p Ans:

(b) Let y ¼ sin�1x

x2 þ 1

Here we must use the quotient rule for derivatives.

(c) Let y ¼ sin(tan�1x)

Here we have to use the chain rule.

dy

dx
¼ cosðtan�1xÞ � d

dx
ðtan�1xÞ

) dy

dx
¼ cosðtan�1xÞ

1þ x2
Ans:

Exercise (3)

Differentiate the following with respect to x.

(1) y ¼ sin�1 ffiffiffi
x

p
(2) y ¼ sin�1ax

(3) y ¼ sin�1ð2xÞ (4) y ¼ cos�1
ffiffiffiffiffiffiffiffiffiffi
cosx

pð Þ

(5) y ¼ sin�1

�
x

a

�
(6)

tan�1x

1þ x2

(7) logðtan�1xÞ (8) sin�1 3xþ 2ð Þ
(9) cos�1x2
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Answers:

(1)
1

2
ffiffiffi
x

p ffiffiffiffiffiffiffiffiffiffiffi
1� x

p (2)
affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� a2x2
p

(3)
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4x2
p (4)

sinx

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cosx

p ffiffiffiffiffiffiffiffiffiffi
cosx

p

(5)
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � x2
p (6)

1� 2x tan�1x

1þ x2ð Þ2

(7)
1

1þ x2ð Þtan�1x
(8)

3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð3xþ 2Þ2

q

(9)
�2xffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
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15a Implicit Functions and Their
Differentiation

15a.1 INTRODUCTION

First, let us distinguish between explicit and implicit functions. Functions of the form, y¼ f(x), in

which y (alone) is directly expressed in terms of the function(s) ofx, are called explicit functions.

Example (1):

y¼ x2 þ 3x� 2; y¼ sin xþ 2ex

y¼ ðxþ 3Þ=ð1þ x2Þ; y¼ cos xþ logeð1þ x2Þ; and so on
ð1Þ

Not all functions, however, can be defined by equations of this type. For example, we cannot

solve the following equations for y (alone) in terms of the functions of x.

Examples (2):

x3 þ y3 ¼ 2xy; y5 þ 3y2 � 2x2 ¼ �4; x2 þ y2 ¼ 36;

sin y ¼ x sinðaþ yÞ; y3 þ 7y ¼ x3; and so on
ð2Þ

Such relations connecting x and y are called implicit relations. An implicit relation (in x and y)

may represent jointly two or more functions of x.

As an example, the relation x2þ y2¼ 36 jointly represents two functions:

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36� x2

p
and y ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36� x2

p
:

Remark: Every explicit function y¼ f(x) can also be expressed as an implicit function. For

example, we may write the above equation in the form y� f (x)¼ 0 and call it an implicit

function of x. Thus, the term explicit function and implicit function do not characterize the

nature of a function but merely the way a function is defined.(1)

(Implicit functions may be expressed in the form f¼ {(x, y)jy¼ f (x)}.)

Introduction to Differential Calculus: Systematic Studies with Engineering Applications for Beginners, First Edition.
Ulrich L. Rohde, G. C. Jain, Ajay K. Poddar, and Ajoy K. Ghosh.
� 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

(1) Differential and Integral Calculus by N. Piskunov (vol. I, p. 86), Mir Publishers Moscow, 1974.

15a-Differentiation technique for implicit functions and the method of logarithmic differentiation (For general

exponential functions and other expressions involving products, quotients and powers of functions)
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Note (1): In the case of an implicit function in the form, y� f(x)¼ 0, it is quite simple to

compute the derivative dy=dx since it is as good as if we are handling an explicit function.

Hence, here onwardwe shall consider the implicit functions such as those given in (II) above.(2)

Note (2): It is assumed that an implicit relation defines y as at least one differentiable function

of x.With this assumption, the derivate of ywith respect tox can be foundwithout transforming

it into the explicit form.

(This assumption is important since certain relations in x and y may not represent any

function. For example, the relation x2þ y2¼�36 does not represent any function.)

Note (3): The technique of implicit differentiation is based on the chain rule.

For example, consider the equation

y3 þ 7y ¼ x3 ð3Þð3Þ

Differentiating both the sides with respect to x, treating y as a function of x, we get (via the rule

for differentiating a composite function)

3y2
dy

dx
þ 7

dy

dx
¼ 3x2 ð4Þ

Now solving (4) for
dy

dx
, we get

dy

dx
ð3y2 þ 7Þ ¼ 3x2 ) dy

dx
¼ 3x2

3y2 þ 7

Note that, the above expression for dy=dx involves both x and y. If it is required to find the value
of the derivative of an implicit function for a given value of x, then we have to first find the

corresponding value of y, using the given relation (such as in 3). This will help in computing the

value of dy=dx(or the slope of the curve) at those points that lie on the graph of the given

equation.

For example, the point (2, 1) satisfies equation (3); hence, it must be on its graph. At (2, 1),

we have

dy

dx
¼ 3ð2Þ2

3ð1Þ2 þ 7
¼ 12

10
¼ 6

5

Thus, the slope of the curve at (2, 1) is 6=5.
On the other hand, if we have to find the gradient at the point (1, 1) of the curve

x2þ y2� 3xþ 4y� 3¼ 0, then it is a simpler situation. It can be seen that

dy=dx ¼ ð�2xþ 3Þ=ð2yþ 4Þ ¼ 1=6 at (1, 1).

(2) From this point of view, a relation likexy � yx¼ abmay also be looked upon as an implicit function; however, to compute

the derivative dy=dx in such cases, there is only one method available, namely, the logarithmic differentiation (to be

discussed later in this chapter). No other method is helpful.
(3) Note that, in this equation though all the terms involving y are on LHS, the value of y (alone) is not expressed in terms of

the functions of x, and hence it is an implicit function of our interest.
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Now, we ask the question: Is the method of implicit differentiation legitimate? Does it give

the right answer?We can give evidence for the correctness of the method through examples,

which can be solved in two ways.

Let us find dy=dx, if 4x2 y� 3y¼ x3� 1.

Method (1): Here, we have, y ¼ ðx2 � 1Þ=ð4x2 � 3Þ, which defines y explicitly.

We get,

dy

dx
¼ 4x4 � 9x2 þ 8x

ð4x2 � 3Þ2 ðby quotient ruleÞ ð5Þ

Method (2): (Implicit Differentiation)

Now, after using the product rule in the first term, we obtain

4x2
dy

dx
þ y � 8x� 3

dy

dx
¼ 3x2

) dy

dx
¼ 3x2 � 8xy

4x2 � 3

ð6Þ

This answer looks different from the one obtained at (5). However, if we substitute y¼ (x3� 1)/

(4x2� 3) in (6), we get the same expression for dy=dx, as in (5).

Thus, we observe that, if an equation in x and y determines a function y¼ f(x) and if this

function is differentiable, then the method of implicit differentiation will yield a correct

expression for dy=dx.
(Note the “two ifs” in this statement.)

15a.2 CLOSER LOOK AT THE DIFFICULTIES INVOLVED

The equation x2þ y2¼�1 has no solution and, therefore, does not determine a function.

On the other hand,

x2 þ y2 ¼ 25 ð7Þ

represents a circle with center at the origin and radius 5 units (Figure 15a.1). It does not

represent any function of x.

For each x in the open interval (�5, 5), there are two corresponding values of y, namely,

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25� x2

p
and y ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25� x2

p

They represent two functions, in the interval (�5, 5), given by

y ¼ f ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25� x2

p ð8aÞ

and y ¼ gðxÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25� x2

p ð8bÞ

Their graphs are the upper and lower semicircles, respectively, as shown below in Figures 15a.2a

and 15a.2b.
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It may be noted that both functions are differentiable in the open interval (�5, 5), but

not at x¼� 5 (since their graphs have vertical tangents at those (end) points. Let us find

their derivatives.

First, consider f ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25� x2

p
. It satisfies x2 þ f ðxÞ½ �2 ¼ 25, where

f ðxÞ ¼ y:

When we differentiate f (x) implicitly and solve for f 0(x), we obtain

2xþ 2f ðxÞf 0ðxÞ ¼ 0

) f 0ðxÞ ¼ �2x

2f ðxÞ ¼ � xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25� x2

p

y

x

x2 + y2 = (5)2 = 25

0

r = 5

FIGURE 15a.1

y

x

y = 25 – x2

r = 5

f (x) = 25 – x2

y

x

(a) (b)

r = 5

g(x) = – 25 – x2

y = – 25 – x2

FIGURE 15a.2
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A completely similar treatment of g(x) yields

g0ðxÞ ¼ �x

gðxÞ ¼
�x

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25� x2

p ¼ xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25� x2

p

For practical purposes, we can obtain both these results simultaneously by the implicit

differentiation of x2þ y2¼ 25. We get

2xþ 2y
dy

dx
¼ 0

) dy

dx
¼ �x

y
¼ �x=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25� x2

p
; if y ¼ f ðxÞ

�x=�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25� x2

p
; if y ¼ gðxÞ

�

It is enough to know that dy=dx ¼ �x=y. Suppose, we want to know the slope of the tangent

line to the circle x2þ y2¼ 25, when x¼ 3. The corresponding y-values are 4 and�4. The slope

at (3, 4) is �3=4, and that at (3, �4) is 3=4.

15a.2.1

Whenan equation of the form�(x, y)¼ 0 is differentiated implicitly,weget dy=dx in the formof

a quotient.At certain points (x, y) on the curve, the denominator of this quotient, representing

dy=dx,maybecome zero. In fact, these are the pointswhere the tangent line is vertical and hence

the slope of the curve (i.e., dy=dx) is not defined.(4)

Example (3): Let us find dy=dx, if y5þ 3y2� 2x2¼�4.

Differentiating both sides of the given equation “with respect to x” (using the chain rule), we

obtain

5y4
dy

dx
þ 6y

dy

dx
� 4x ¼ 0

We now solve for dy/dx, obtaining

dy

dx
¼ 4x

5y4 þ 6y

This formula gives dy=dx at any point (x, y) on the curve where the denominator 5y4þ 6y is

nonzero.

For example, it is easily seen that the point (2, 1) satisfies y5þ 3y2� 2x2¼�4, and therefore

it lies on the curve. Then

dy

dx

����
ð2;1Þ

¼ 4x

5y4 þ 6y

����
ð2;1Þ

¼ 8

11

(4) The subject of implicit functions leads to some other difficult technical questions, which are dealt with in Advanced

Calculus. The problems we study here have straightforward solutions. (For details, refer to Calculus with Analytic

Geometry (Fifth Edition) by Edwin J. Purcell and Dale Varberg (p. 135), Prentice-Hall Inc., New Jersey.)
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Two intersecting curves are said to be orthogonal to each other if the tangent lines at the point of

their intersection are perpendicular.

Example (4): Let us show that the curve y� x2¼ 0 is orthogonal to the curve x2þ 2y2¼ 3, at

the point (1, 1) of intersection.

Solution: The given curve is y¼ x2. The slope of the tangent line to this curve is given by

dy

dx
¼ 2x ) dy

dx

����
ð1; 1Þ

¼ 2 ¼ m1 ðsayÞ

The other curve is x2þ 2y2¼ 3.

Differentiating implicitly w.r.t. x, we get

2xþ 4y
dy

dx
¼ 0

) dy

dx
¼ �2x

4y
¼ �x

2y
) dy

dx

����
ð1; 1Þ

¼ �1

2
¼ � 1

2
¼ m2 ðsayÞ

Sincem1 �m2¼�1, the curve y¼ x2 is orthogonal to the curve x2þ 2y2¼ 3, at the point (1, 1),

of their intersection.

Remark: Whenever it is required to find the value of dy=dx at a particular point on given

curve, we can easily check that the point in question lies on the curve.

Use implicit differentiation to find the derivative of ywith respect to x, at the given point.(5)

(a) x2� y2¼ 1;
ffiffiffi
3

p
;

ffiffiffi
2

p� �
(b) x4þ xy3¼ 0; (� 1, 1)

(c) (2xþ y)5¼ 31� 1/x; (� 1, 4)

Note (4): Implicit differentiation is useful in computing related rates.

This topic is discussed in Chapter 18.

Example (5): If x3þ y3¼ 3axy, find dy/dx.

Solution: We have x3þ y3¼ 3axy.

Differentiating implicitly both the sides, w.r.t. x, we get

3x2 þ 3y2
dy

dx
¼ 3a

�
x
dy

dx
þ y � 1

�
¼ 3a x

dy

dx
þ 3a y

ð3y2 � 3axÞ dy

dx
¼ 3ay� 3x2

) dy

dx
¼ 3ðay� x2Þ

3ðy2 � axÞ ¼
ay� x2

y2 � ax
Ans:

(5) Calculus with Analytic Geometry (Alternate Edition) by Robert Ellis and Denny Gulick (pp. 151–155).
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Example (6): If xy¼ ex � y, show that dy=dx ¼ ðloge xÞ=ð1þ loge xÞ2.

Solution: We have xy¼ ex � y.

) x� y ¼ loge x
y ¼ y logex ðby definition of logarithmÞ

) x ¼ yþ y logex ¼ yð1þ logexÞ

) y ¼ x

ð1þ loge xÞ

Differentiating both the sides w.r.t. x, we get

dy

dx
¼ 1þ loge xð Þð1Þ � x 0þ 1=xð Þ

1þ logexð Þ2

¼ 1þ loge x� 1

1þ loge xð Þ2 ¼ loge x

1þ loge xð Þ2
Ans:

Exercise (1)

Q1. If xayb¼ (xþ y)a þ b, and ay 6¼ bx, prove that dy=dx ¼ y=x.

Q2. If sin y¼ x sin(aþ y), show that dy=dx ¼ sin2ðaþ yÞ=sin a.

Q3. If y¼ sin(xþ y), find dy=dx.

Ans.
cosðxþ yÞ

1� cosðxþ yÞ or
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p

Q4. If y¼ x ey, show that dy=dx ¼ y=xð1� yÞ.

Q5. Find the equation of the tangent line to the curve

y3� xy2þ cos xy¼ 2 at the point (0, 1).

Ans.
1

3
xþ 1

Q6. If x sin 2y¼ 2cos 2x, find dy=dx.

Ans.
2y sin 2xþ sin 2y

cos 2x� 2x cos 2y
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Q7. If tan (xþ y)þ tan(x� y)¼ 1, find dy=dx.

Ans.
sec2ðxþ yÞ þ sec2ðx� yÞ
sec2ðx� yÞ � sec2ðxþ yÞ

Q8. If sin y¼ x cos(aþ y), then prove that dy=dx ¼ cos2ðaþ yÞ=cos a.

Q9. If
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p
¼ aðx� yÞ, then prove that

dy

dx
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

1� x2

r

Q10. If x¼ y log(xy), then prove that dy=dx¼ðyðx� yÞÞ=ðxðxþ yÞÞ.

We give below the solutions of the first five problems.

Q1. If xayb¼ (xþ y)aþ b and ay 6¼ bx, prove that dy=dx ¼ y=x.

Solution: From the given relation, on taking logarithms, we have

a loge xþ b loge y ¼ ðaþ bÞlogeðxþ yÞ
Differentiating w.r.t. x, we get

a
1

x
þ b

1

y

dy

dx
¼ ðaþ bÞ 1

xþ y

�
1þ dy

dx

�

or
a

x
þ b

y

dy

dx
¼ aþ b

xþ y
þ ðaþ bÞ
ðxþ yÞ

dy

dx

or

	
b

y
� aþ b

xþ y



dy

dx
¼ aþ b

xþ y
� a

x

that is
bxþ by� ay� by

yðxþ yÞ
dy

dx
¼ axþ bx� ax� ay

xðxþ yÞ

or
bx� ay

yðxþ yÞ
dy

dx
¼ bx� ay

xðxþ yÞ ð9Þ

But it is given that ay 6¼ bx (i.e., bx� ay 6¼ 0).

) From (9), we get

1

y

dy

dx
¼ 1

x

or
dy

dx
¼ y

x
Ans:

Q2. If sin y¼ x sin(aþ y), show that dy=dx ¼ ðsin2ðaþ yÞÞ=sin a.

Solution: We have sin y¼ x sin(aþ y) (10)
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Differentiating implicitly both sides w.r.t. x, we get

cos y
dy

dx
¼ x cosðaþ yÞ dy

dx
þ sinðaþ yÞ

) cos y� x cosðaþ yÞ½ � dy
dx

¼ sinðaþ yÞ

) dy

dx
¼ sinðaþ yÞ

cos y� x cosðaþ yÞ ð11Þ

Now, observe that the above result contains xwhereas the desired result does not. Hence, we try

to remove x from the above result using (10) and get

dy

dx
¼ sinðaþ yÞ

cos y� ðsin yÞ
sinðaþ yÞ cosðaþ yÞ

¼ sin2ðaþ yÞ
sinðaþ yÞcos y� cosðaþ yÞsin y ¼

sin2ðaþ yÞ
sinðaþ y� yÞ

¼ sin2ðaþ yÞ
sin a

Method II: From (10), we get x ¼ sin y=sinðaþ yÞ.
Now, differentiating both sides w.r.t. x (by applying quotient rule to the RHS), we can easily

prove the desired result, as follows:

We get, 1 ¼
sinðaþ yÞcos y dy

dx
� sin y cosðaþ yÞ dy

dx

½sinðaþ yÞ�2

¼
dy

dx
½sinðaþ y� yÞ�
½sinðaþ yÞ�2

¼
dy

dx
sin a

sin2ðaþ yÞ

) dy

dx
¼ sin2ðaþ yÞ

sin a

Q3. If y¼ sin(xþ y), find dy
dx
.

Solution: Given y¼ sin(xþ y)

Differentiating both sides w.r.t. x, we get
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dy

dx
¼ cosðxþ yÞ d

dx
ðxþ yÞ

¼ cosðxþ yÞ
�
1þ dy

dx

�

) dy

dx
� cosðxþ yÞ dy

dx
¼ cosðxþ yÞ

or
dy

dx
1� cosðxþ yÞ½ � ¼ cosðxþ yÞ

) dy

dx
¼ cosðxþ yÞ

1� cosðxþ yÞ ð12Þ

Method II: Given, y¼ sin(xþ y)

) xþ y ¼ sin�1 y

Differentiating both sides w.r.t. x, we get

1þ dy

dx
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� y2
p dy

dx

ð6Þ

1 ¼
�

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p � 1

�
dy

dx
¼

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p �
dy

dx

) dy

dx
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p ð13Þ

Check that (12) and (13) are the same.

Q4. If y¼ x ey, show that dy=dx ¼ y=xð1� yÞ.

Solution: Given, y¼ x ey (14)

Differentiating both sides w.r.t. x, we get

dy

dx
¼ x

d

dx
eyð Þ þ ey

d

dx
xð Þ

¼ x ey
dy

dx
þ ey

) ð1� x eyÞ dy
dx

¼ ey

) dy

dx
¼ ey

1� x ey

(6) Derivatives of inverse trigonometric functions are discussed in Chapter 14.
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Now, observe that the term ey does not appear in the desired result. Hence, we eliminate it

using (14) and get

dy

dx
¼ y

x

1

1� y
¼ y

xð1� yÞ Ans:

Q5. Find the equation of the tangent line to the curve

y3 � xy2 þ cos xy ¼ 2 at the point ð0; 1Þ
Solution: Given y3� xy2þ cos xy¼ 2

Differentiating both sides implicitly w.r.t. x, we get

3y2
dy

dx
�
	
x � 2y dy

dx
þ y2



� sin xy

�
x
dy

dx
þ y

�
¼ 0

3y2
dy

dx
� 2xy

dy

dx
� y2 � x sin xy

dy

dx
� y sin xy ¼ 0

dy

dx
3y2 � 2xy� x sin xy
� � ¼ y2 þ y sin xy

) dy

dx
¼ y2 þ y sin xy

3y2 � 2xy� x sin xy

) dy

dx

����
ð0;1Þ

¼ 12 þ 0

3ð1Þ2 � 0� 0
¼ 1

3

Thus, the equation of the tangent line at (0, 1) is

y� 1 ¼ 1

3
ðx� 0Þ

or y ¼ 1

3
xþ 1 Ans:

15a.3 THE METHOD OF LOGARITHMIC DIFFERENTIATION

(For (complicated) functions such as general exponential functions and other expressions

involving products, quotients, and powers of functions.)

Recall that to find the derivative dðxnÞ=dx, we use the power rule:

d

dx
ðxnÞ ¼ nxn�1

Also, we get

d

dx
f ðxÞn½ � ¼ n½ f ðxÞ�n�1

f 0ðxÞ

using power rule and the chain rule.

But, we cannot use the power rule to find dðexÞ=dx. Thus, dðexÞ=dx 6¼ x � ex�1

THE METHOD OF LOGARITHMIC DIFFERENTIATION 463



Recall that, dðaxÞ=dx ¼ ax loge a, which is the differentiation formula for the exponential

function.

Thus, we get,

d

dx
ðexÞ ¼ ex loge e ¼ ex )loge e ¼ 1½ �

and
d

dx
a f ðxÞ
h i

¼ a f ðxÞ loge a � f 0ðxÞ

using differentiation formula for exponential function and the chain rule.

15a.3.1

Now, we ask the question; what can we write for dðxxÞ=dx?
Of course, it would be sheer nonsense to write dðxxÞ=dx ¼ x � xx�1.

It is for these types of functions, andmore generally for functions of the type y¼ [ f(x)]g(x),

where both f(x) and g(x) are differentiable functions of x, that we can use the technique of

logarithmic differentiation for computing their derivatives.

This technique is also used to simplify differentiation of many (complicated) functions

involving products, quotients, and powers of different functions.

We list below the right technique for differentiating each of the following forms of

functions:

½ f ðxÞ�n !Power rule

y ¼ a f ðxÞ !Differentiation formula for exponential functions

½ f ðxÞ�gðxÞ !Logarithmic differentiation

Remark: The technique of logarithmic differentiation is so powerful that it can be used for

each of these forms.

15a.4 PROCEDURE OF LOGARITHMIC DIFFERENTIATION

The procedure of logarithmic differentiation involves taking natural logarithm of each side of

the given equation. After simplifying (by using properties of logarithms), we differentiate both

sides w.r.t. x. The usefulness of the process is due to the fact that the differentiation of the

product of functions is reduced to that of a sum; of their quotients to that of a difference; and of

the general exponential to that of the product of simpler functions.

The following solved examples will illustrate the process of logarithmic differentiation.

First, we start with the differentiation of certain (complicated) function involving products,

quotients, and powers of functions.

Example (7): If y¼ e5x sin 2x cos x, find dy=dx.

We have, y¼ e5x sin 2x cos x

Taking the natural logarithm of both sides, we get

loge y ¼ loge e
5x þ loge sin 2xþ loge cos x
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Differentiating w.r.t. x, we get

1

y

dy

dx
¼ 1

e5x
d

dx
e5x
� �þ 1

sin 2x

d

dx
sin 2xð Þ þ 1

cos x

d

dx
cos xð Þ

¼ 1

e5x
e5x � 5þ 1

sin 2x
cos 2x � 2þ 1

cos x
�sin xð Þ

¼ 5þ 2 cot 2x� tan x

¼ ) dy

dx
¼ y 5þ 2 cot 2x� tan x½ �

¼ e5x sin 2x cos x 5þ 2 cot 2x� tan x½ � Ans:

Example (8): If y¼ e4x sin2x tan3x, find dy=dx.

We have y¼ e4x sin2x tan3x

Taking the natural logarithms of both sides, we get

loge y ¼ loge e
4x þ loge sin

2xþ loge tan
3x

¼ 4xþ 2 loge sin xþ 3 loge tan x

Differentiating w.r.t. x, we get

1

y

dy

dx
¼ 4þ 2

1

sin x
cos xþ 3

1

tan x
sec2 x

¼ 4þ 2 cot xþ 3

sin x � cos x

) dy

dx
¼ y

	
4þ 2 cot xþ 3

sin x � cos x



¼ e4x sin2 x tan3 x

	
4þ 2cot xþ 3

sin x � cos x



Ans:

Example (9): If y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þxÞð2þxÞ
ð1�xÞð2�xÞ

q
, find dy

dx
.

Taking natural logarithm of both sides, we get

loge y ¼ 1

2
logeð1þ xÞð2þ xÞ � logeð1� xÞð2� xÞ½ �

¼ 1

2
logeð1þ xÞ þ logeð2þ xÞ � logeð1� xÞ � logeð2� xÞ½ �
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Differentiating w.r.t. x, we get

1

y

dy

dx
¼ 1

2

	
1

1þ x
þ 1

2þ x
� 1

1� x
ð�1Þ � 1

2� x
ð�1Þ




) dy

dx
¼ y

2

	
1

1þ x
þ 1

2þ x
þ 1

1� x
þ 1

2� x




¼ y

2

	 ð1� xÞ þ ð1þ xÞ
ð1þ xÞð1� xÞ þ ð2� xÞ þ ð2þ xÞ

ð2þ xÞð2� xÞ



ðImp:Þ

¼ y

2

	
2

1� x2
þ 4

4� x2




¼ y

	
1

1� x2
þ 2

4� x2




¼ y

	
4� x2 þ 2� 2x2

ð1� x2Þð4� x2Þ



¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ xÞð2þ xÞ
ð1� xÞð2� xÞ

s 	
6� 3x2

ð1� x2Þð4� x2Þ



Ans:

Now,we consider functions of the type [ f(x)]g(x). Here, it may bementioned that such functions

do not occur naturally. However, to demonstrate the power of technique of the logarithmic

differentiation, we solve the following examples.

Example (10): If y¼ 5tan x, find dy=dx.

We have y¼ 5tan x

Taking natural logarithm of each side, we get

loge y ¼ tan x � loge5

Differentiating w.r.t. x, we get

1

y

dy

dx
¼ sec2 x � loge5

) dy

dx
¼ y sec2 x � loge5½ �

¼ 5tan x sec2 x � loge5½ � Ans:
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Example (11): If y¼ xx, find dy=dx.

We have y¼ xx (7)

Taking the natural logarithm of each side, we obtain

loge y ¼ x loge x

Differentiating both sides w.r.t. x, we have

1

y

dy

dx
¼ x

�
1

x

�
þ loge xð Þð1Þ ¼ 1þ loge x

) dy

dx
¼ yð1þ loge xÞ ¼ xxð1þ loge xÞ Ans:

Example (12): If y ¼ xx
x

, find dy=dx.

We have y ¼ ðxÞxx

Taking the natural logarithm of each side, we get

loge y ¼ xx loge x

Differentiating both sides w.r.t. x, we get

1

y

dy

dx
¼ xx

d

dx
loge xþ loge x

d

dx
xxð Þ

¼ xx
1

x
þ loge x

d

dx
xxð Þ

¼ xx�1 þ loge x xxð1þ loge xÞ½ �
	

) d

dx
xxð Þ ¼ xxð1þ loge xÞ; from Example ð1Þ:




¼ xx�1 þxx loge xð1þ loge xÞ
) dy

dx
¼ y xx�1 þxx loge xð1þ loge xÞ½ � ¼ xx

x

xx�1þxx loge xð1þ loge xÞ½ �

Method II: If y ¼ xx
x

, find dy=dx.
We have

y ¼ ðxÞxx ð15Þ

Taking the natural logarithm of both sides, we get

loge y ¼ xx loge x ð16Þ

(7) Recall that ab ¼ elogea
b

, (a > 0).

¼ eblogea
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Taking logarithms again, we get

logeðloge yÞ ¼ x loge xþ logeðloge xÞ

Differentiating both sides w.r.t. x, we get

1

loge y

1

y

dy

dx
¼

�
x
1

x
þ loge xð1Þ

�
þ 1

loge x

1

x

) dy

dx
¼ y loge y

	
1þ loge xþ 1

x loge x




¼ xx
x � xx loge x

	
1þ loge xþ 1

x loge x




½using ð2Þ� Ans:

Example (13): If y ¼ ðxxÞx, then find dy=dx.

We have, y ¼ ðxxÞx ¼ xx �x ¼ xx
2

Taking natural logarithm of both sides, we get

loge y ¼ x2 loge x

Differentiating w.r.t. x, we get

1

y

dy

dx
¼ x2

1

x
þ ðloge xÞð2xÞ

¼ xþ 2x loge x

) dy

dx
¼ y xþ 2x loge x½ �

¼ xx
2 � x 1þ 2 loge x½ �

¼ xx
2þ1

1þ 2 loge x½ � Ans:

Example (14): If y¼ (logex)
x, find dy=dx.

We have y¼ (logex)
x

Taking natural logarithm of both the sides, we get

loge y ¼ x logeðloge xÞ
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Differentiating both sides w.r.t. x, we get

1

y

dy

dx
¼ x

d

dx
logeðloge xÞ½ � þ logeðloge xÞ

d

dx
ðxÞ

¼ x
1

logex

1

x
þ logeðloge xÞ � 1

¼ 1

loge x
þ logeðloge xÞ

) dy

dx
¼ y

	
1

loge x
þ logeðloge xÞ




¼ loge xð Þx
	

1

loge x
þ logeðloge xÞ



Ans:

Example (15): If y¼ (cos x)sin x, find dy=dx.

We have y¼ (cos x)sin x

Taking natural logarithm of both sides, we get

loge y ¼ sin x � loge cos x

Differentiating both sides w.r.t. x, we get

1

y

dy

dx
¼ sin x

	
1

cos x
ð�sin xÞ



þ ðloge cos xÞðcos xÞ

¼ � sin2 x

cos x
þ cos x � loge cos x

) dy

dx
¼ y

	
cos x � loge cos x� sin2 x

cos x




¼ ðcos xÞsin x

	
cos x � loge cos x� sin2 x

cos x



Ans:

Example (16): If y ¼ ðtan xÞloge x, find dy=dx.

We have, y ¼ ðtan xÞloge x

Taking natural logarithm of each side, we get

loge y ¼ loge x � loge ðtan xÞ
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Differentiating both sides w.r.t. x, we get

1

y

dy

dx
¼ logex

1

tan x
sec2xþ logeðtan xÞ

1

x

¼ logex
cos x

sin x

1

cos2x
þ loge ðtan xÞ

x

) dy

dx
¼ y

	
logex

sin x cos x
þ loge ðtan xÞ

x




¼ ðtan xÞlogex
	

logex

sin x cos x
þ loge ðtan xÞ

x



Ans:

Example (17): If y¼ (sin x)tan x, find dy=dx:

We have, y¼ (sin x)tan x

Taking the natural logarithm of each side, we get

loge y ¼ tan x � loge sin x
Differentiating both sides w.r.t. x, we have

1

y

dy

dx
¼ tan x

1

sin x
cos xþ loge sin x sec2 x

¼ 1þ sec2 x loge sin x

) dy

dx
¼ y 1þ sec2 x loge sin x½ � Ans:

Example (18): If y ¼ ðcos xÞloge x, find dy=dx:

We have y ¼ ðcos xÞloge x

Taking the natural logarithm of each side, we get

loge y ¼ loge x � logeðcos xÞ

Differentiating both sides w.r.t. x, we get

1

y

dy

dx
¼ loge x

1

cos x
ð�sin xÞ þ logeðcos xÞ

�
1

x

�

¼ loge xð�tan xÞ þ 1

x
logeðcos xÞ

¼
	
1

x
logeðcos xÞ � loge x tan x




) dy

dx
¼ y

	
1

x
logeðcos xÞ � loge x tan x




¼ ðcos xÞloge x
	
1

x
logeðcos xÞ � loge x tan x



Ans:

470 IMPLICIT FUNCTIONS AND THEIR DIFFERENTIATION



Example (19): xy � yx¼ 1, then prove that dy=dx ¼ �yðyþx loge yÞ
xðxþy loge xÞ .

Solution: Given

xy � yx ¼ 1

Taking natural logarithm of both sides, we get

logex
y þ logey

x ¼ log 1

or loge x
yþ loge y

x¼ 0 [ )log 1¼ 0]

) y loge xþ x log y ¼ 0

Differentiating w.r.t. x, we get

y
1

x
þ loge x

dy

dx
þ x

1

y

dy

dx
þ loge y � 1 ¼ 0

) loge xþ x

y

� �
dy

dx
¼ � loge yþ

y

x

 �

) y loge xþ x

y

� �
dy

dx
¼ � yþ x loge y

x

� �

) dy

dx
¼ �ðyþ x loge yÞ=x

ðxþ y loge xÞ=y

¼ yðy loge xþ xÞ
xðx loge yþ yÞ Ans:

Example (20): xyþ yx¼ ab, find dy=dx:

Solution: Given

xy þ yx ¼ ab

Putting u¼ xy and v¼ yx, we get

uþ v ¼ ab

) du

dx
þ dv

dx
¼ 0 ð17Þ

Now, consider u¼ xy

Taking natural logarithm of both sides, we get

loge u ¼ y loge x
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Differentiating both sides w.r.t x, we get

1

u

du

dx
¼ y

d

dx
loge xð Þ þ loge x

dðyÞ
dx

du

dx
¼ u

y

x
þ loge x

dy

dx

� �
¼ xy

y

x
þ loge x

dy

dx

� �
ð18Þ

Now, consider u¼ yx

Taking natural logarithm of both sides, we get

loge v ¼ x loge y

Differentiating both sides w.r.t x, we get

1

v

dv

dx
¼ x

d

dx
loge yð Þ þ loge y

dðxÞ
dx

dv

dx
¼ v

x

y

dy

dx
þ loge y

� �
¼ yx

x

y

dy

dx
þ loge y

� �
ð19Þ

Using (18) and (19) in (17), we get

xy
y

x
þ loge x

dy

dx

� �
þ yx

x

y

dy

dx
þ loge y

� �
¼ 0

) dy

dx
xy loge xþ yx

x

y

	 

¼ � xy

y

x
þ yx loge y

h i

) dy

dx
¼ xyðy=xÞ þ yx loge y

xy loge xþ yxðx=yÞ Ans:
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15b Parametric Functions and
Their Differentiation

15b.1 INTRODUCTION

Let a body bemoving in thex, y-plane, perhaps in the direction of the arrows on the curve shown

in Figure 15b.1. Suppose theCartesian coordinates (x, y) of its position at any time t are given by

the pair of equations

x ¼ f ðtÞ and y ¼ gðtÞ ð1Þ

Then, for every number t in the domain common to f and g, the body is at a point (f (t), g(t)) and

these points trace a plane curve c traveled by the body. Equation (1) is called a parametric

equation of c and the variable t is called a parameter.(1)

The curve c is also called the graph of the parametric equation (1).

15b.1.1 Definition

If a functional relationship between two variables is specified so that each variable is

determined separately as a function of one and the same auxiliary variable, we say that this

functional relationship is represented parametrically and call the auxiliary variable a

parameter.

It may be noted that the curve c represented by parametric equations need not be the graph

of a function. If the parameter t is eliminated from the pair of Equations (1), we obtain one

equation of the curve in x and y, of the form,

�ðx; yÞ ¼ 0 ð2Þ

called a Cartesian equation of the curve c.

If a plane curve is defined by an equation of the form y¼ f(x), where f is continuous, then its

parametric equationsmay be obtained by letting x¼ t and y¼ f(t), where t is in the domain of f.

Other substitutions for x may also give parametric equations of the curve provided x assumes

every value in the domain of f.

Introduction to Differential Calculus: Systematic Studies with Engineering Applications for Beginners, First Edition.
Ulrich L. Rohde, G. C. Jain, Ajay K. Poddar, and Ajoy K. Ghosh.
� 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

(1) The equation x¼ f(t) describes the motion on the x-axis of the x-projection, which always stays right under the main

body. Similarly, y ¼ g(t) gives the motion on the y-axis of the y-projection, which stays opposite the main body.

15b-Derivatives of functions in parametric forms. Derivative of one function w.r.t. another function and the method of

substitution
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Example (1): A parabola having the equation

y ¼ x2 ð3Þ

is also defined by parametric equations

x ¼ t and y ¼ t2 ð4aÞ

as well as by the parametric equations

x ¼ t3 and y ¼ t6 ð4bÞ

Note (1): The above observation suggests that we may write any number of parametric

equations for the parabola at (3) above. However, the parametric equations

x ¼ t2 and y ¼ t4 ð5Þ

define only the right-hand side of the parabola where x� 0.(2)

Let us try to find the parametric equations for the parabola y2¼ 4ax. From this equation, we

get y ¼ 2
ffiffiffiffiffiffi
ax

p
. Now to get the parametric equations in a simple form, we try to get rid of the

“square root” on the right-hand side. We put x¼ at2, which gives y¼ 2at. Thus, we get the

parametric equations as x¼ at2 and y¼ 2at.

Note (2): Every relation in x and y cannot be expressed in the form of parametric equations.

15b.1.2 What is a Parameter?

The termparameter is one that iswidely used inmathematics and in engineering and it isnot easy

togive adefinition that coversall its applications. If amovingpoint is tracing a curve, time“t” can

be taken as a parameter. In writing the equations of certain planar curves, parameter t represents

(2) Note that, by eliminating parameter t from equations (5), we get the Cartesian equation y¼x2 that is defined for all real

values of x and hence its graph consists of the parabola represented by (3), whereas the parametric equations at (5) define

only the right-hand side of the parabola. Also, note that this situation does not occur with the parametric equations at (4a)

and (4). (Why?)

y

x

0

y- projection 
Body

x = f(t)
y = g(t)

x- projectionl

FIGURE 15b.1 A curve indicating motion (of a body in a plane) represented by x¼ f(t) and y¼ g(t).

474 PARAMETRIC FUNCTIONS AND THEIR DIFFERENTIATION



the radian measure of the angle measured from the positive side of the x-axis to the line segment

from the origin to the point (x, y) on the graph. Another useful parameter is arc length.

However, a parameter need not have any physical significance. Any quantity that is

algebraically convenient can be used as a parameter. In such cases, the purpose of using

parametric representation is usually to simplify the algebra.Wemight think of parameter t as an

independent variable that controls the values of x and y.

A parameter can be described as a quantity (appearing in a formula) that can take different

values, and these values indicate different individual members of a family or different states

of a physical system. For example, a family of curves can be represented by the equation

F(x, y, a)¼ 0, where a is a parameter defining the different curves of the family. In fact, there

are curves that can be conveniently represented only by parametric equations. Thus, paramet-

ric functions are unavoidable in coordinate geometry and in calculus. (see the equation of a

cycloid in Example (5) below.) Let us now consider some examples.

Example (2): Circle

A circle with center at the coordinate origin and with radius “a” is defined by the relation:

x2 þ y2 ¼ a2 ð6aÞ

This relation is satisfied by every x and y, given by,

x ¼ a cos t

y ¼ a sin t

�
ð0 � t � 2pÞ ð6bÞ

for any value of t. The pair of equations (6b) are called parametric equations of the curve (6a)

and t is called a parameter.

Example (3): Find a Cartesian equation of the graph given by the parametric equations,

x¼ 2cos t and y¼ 2sin t, (0 � t � 2p) and sketch the graph.

Solution: To eliminate t from the two parametric equations, we square both sides of each

equation and add, which gives

x2 þ y2 ¼ 4 cos2 tþ 4 sin2 t ¼ 4

Thegraph of the equationx2þ y2¼ 4 is a circlewith center at the origin and radius 2.By letting t

take on all numbers in the closed interval [0, 2p], we obtain the entire circle starting at the point
(2, 0) and moving (along the circle) in the counterclockwise direction, as indicated in

Figure 15b.2. Note that, in this example, the parameter t represents the radian measure of

the anglemeasured from the positive side of the x-axis to the line segment from the origin to the

point P(x, y) on the circle, as indicated in Figure 15b.3.

Example (4): Ellipse

The equation of an ellipse

x2

a2
þ y2

b2
¼ 1 ð7aÞ
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is represented by the parametric equations,

x ¼ a cos t

y ¼ b sin t

�
ð0 � t � 2pÞ ð7bÞ

The equation of the curve (7a) is obtained by eliminating parameter t from the pair of equations

in (7b).

Example (5): Cycloid

The cycloid is a curve described by a pointM lying on the circumference of a circle if the circle

rolls upon a straight line without sliding. The equations

y

t
x

P(2 cos t, 2 sin)

x = 2 cos t
y = 2 sin t

0

2

–2

–2

2

FIGURE 15b.3

y

x

0

x2 + y2 = 4

2

–2

–2

2

FIGURE 15b.2
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x ¼ aðt� sin tÞ
y ¼ að1� cos tÞ

�
0 � t � 2p ð8aÞ

are the parametric equations of the cycloid, where “a” is the radius of the circle and t is a

parameter. As t varies between 0 and 2p, the point M (on the circle) describes one arc of the

cycloid. By eliminating parameter t from equation 6(A), we get x as a function of y directly,

given by

x ¼ 2p a� a cos�1

�
a� y

a

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðay� y2Þ

p� �
; pa � x � 2pa ð8bÞ

It will be noted that this is the simplest form in which the relation between x and y can be

expressed and that y cannot be expressed in terms of elementary functions of x.

Remark: Equation (8b) of the cycloid clearly shows that, in certain cases, it is more

convenient to use parametric equations for studying functions and curves rather than the

direct relationship of y and x.(3)

15b.2 THE DERIVATIVE OF A FUNCTION REPRESENTED

PARAMETRICALLY

We now prove the theorem that helps us find the derivatives of functions represented

parametrically.

Theorem: If x¼ f(t) and y¼ g(t) are differentiable functions of t, then(4)

dy

dx
¼ dy=dt

dx=dt
; if

dx

dt
6¼ 0ð4Þ

Proof: As t changes to tþ dt, let x change to xþ dx and y change to yþ dy.

) As dt! 0; dx! 0; and dy! 0 ð9Þ

(It means that at any stage dt 6¼ 0, dx 6¼ 0, and dy 6¼ 0.)

(3) Differential and Integral Calculus (Second Edition) by N. Piskunov (vol. I, pp. 100–101), Mir Publishers, 1974.

y

x

B

Cycloid

C

K
t

a
M

P0

(4) It is given that x¼ f(t) and y¼ g(t) are differentiable functions of t, and we assume that x¼ f(t) has an inverse, t¼ h(x),

which also has a derivative. Accordingly, y¼ g(t)¼ g(h(x)) is also a differentiable function because it is a composite of

differentiable functions. Now, the derivatives dy/dx, dy/dt, and dx/dt, all exist and, with dx/dt 6¼ 0, we may solve the

equation dy=dt ¼ ðdy=dxÞðdx=dtÞ for dy=dx; and obtain dy=dx ¼ ðdy=dtÞ=ðdx=dtÞ:
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Now, consider the algebraic identity

dy

dx
¼ dy=dt

dx=dt
ð )dt 6¼ 0 and dx 6¼ 0Þ

) lim
dt! 0

dy

dx
¼ lim

dt! 0

dy=dt

dx=dt
¼

lim
dt! 0

ðdy=dtÞ
lim
dt! 0

ðdx=dtÞ
ð10Þ

Now, since x¼ f(t) and y¼ g(t) are differentiable functions of t,

) lim
dt! 0

dy

dt
¼ dy

dt
and lim

dt! 0

dx

dt
¼ dx

dt
ð11Þ

Now, if dx=dt 6¼ 0, limit on RHS of (10) exists.

) limit on LHS. of (10) also exists ði:e:; lim
dt!

dy=dx existsÞ
But as dt ! 0, dy ! 0 and dx ! 0 (see (A) above)

) lim
dt! 0

dy

dx
¼ lim

dt! 0

dy

dx
¼ dy

dx
ð12Þ

Using (11) and (12) in (10), we get

dy

dx
¼ dy=dt

dx=dt
; provided

dx

dt
6¼ 0

� �
ð13Þ

Remark: The derived formula, dy=dx ¼ ðdy=dtÞ=ðdx=dtÞ; dx=dt 6¼ 0; permits us to calcu-

late the derivative dy=dx as a function of t, from the derivatives, dy=dt and dx=dt.
An important fact is that if a function is defined parametrically, as x¼ f(t), y¼ g(t), then we

can find dy=fx without having to find y as a function of x.

Now, let us consider some examples.

Example (6): If x¼ 2tþ 3, y¼ t2� 1, find the value of dy=dx at t¼ 6.

Also, find dy=dx as a function of x.

Solution: The result (13) gives dy=dx as a function of t:

dy

dx
¼ dy=dt

dx=dt
¼ 2t

2
¼ t

When t¼ 6, dy=dx ¼ 6.

Note (3): It may be noted that dy=dx is expressed in terms of the parameter onlywithout directly

involving the main variables x and y.

Example (7): If x¼ at2, y¼ 2at, find dy=dx.

We have,
dx

dt
¼ 2at;

dy

dt
¼ 2a

) dy

dx
¼ dy=dt

dx=dt
¼ 2a

2at
¼ 1

t
Ans:
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Example (8): Find dy=dx, if x¼ sin(loget), y¼ cos(loget)

We have

dx

dt
¼ cosðloge tÞ

d

dt
ðloge tÞ

¼ cosðloge tÞ
1

t

and

dy

dt
¼ �sinðloge tÞ

d

dt
ðloge tÞ

¼ �sinðloge tÞ
1

t

Now,

dy

dx
¼ dy=dt

dx=dt
¼ �sinðloge tÞð1=tÞ

cosðloge tÞð1=tÞ
¼ �tanðloge tÞ Ans:

Example (9): Find the slope of the tangent to the following cycloid at an arbitrary point

(0� t� 2p):

x ¼ aðt� sin tÞ
y ¼ að1� cos tÞ

�
ð14Þ

Solution: The slope of the tangent at any point of the curve (1) is equal to the value of the

derivative dy=dx for the value of parameter t at that point.

(See Example (5), on computation of speed.)

We know that,

dy

dx
¼ dy=dt

dx=dt

Now,

dx

dt
¼ að1� cos tÞ; dy

dt
¼ a 0� ð�sin tÞ½ � ¼ a sin t

) dy

dx
¼ a sin t

að1� cos tÞ ¼
sin t

1� cos t
¼ 2 sinðt=2Þcosðt=2Þ

2 sin2ðt=2Þ ¼ cot
t

2
¼ tan

p
2
� t

2

� 	
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Hence, the slope of the tangent to a cycloid at every point is equal to tan ðp=2Þ � ðt=2Þð Þ,where
t is the value of the parameter corresponding to that point.

15b.3 LINE OF APPROACH FOR COMPUTING THE SPEED OF A MOVING

PARTICLE

To compute the speed of a moving particle whose x, y-coordinates at any instant t are given by

the parametric equations:

x ¼ f ðtÞ; y ¼ gðtÞ

where t is the time parameter.

Suppose, a body is moving in the x–y plane. Let the x-coordinate of the body’s position at

time t be some function x¼ f(t), and the y-coordinate of its position be given by the function

y¼ g(t). At each instant t, the body is moving in the direction tangent to the curve of its

motion.

Suppose, it were possible to command the motion of the body, with the instruction

“stop curving and keep going in the same direction (as at the particular instant “t”) and at the

same speed (as at that instant)”; then the body would go off along a tangent line to the curve at

that point (or time instant). Now, if the body were to go off on the tangent line and keep the

same speed as it had at the instant t, then in one unit of time it would travel a distance jdx=dtj
in the x-direction and a distance jdy=dtj in the y-direction. Hence, the actual distance traveled
along the hypotenuse, in one unit of time, would then be

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðdx=dtÞ2 þ ðdy=dtÞ2�

q
. This

represents the magnitude of the speed along the tangent line to the curve at the instant “t”

under consideration (see Figure 15b.4).

To illustrate the above, consider the discussion in the following example.

Example (10): Let the position of a body in the plane at time t be given by x¼ t3� 3t,

y¼ 2t2þ 7t. Then, compute its speed and the slope of the curve traced by the body at t¼ 1,

t¼ 2.

Solution: At any instant t,

x-component of velocity ¼ dx

dt
¼ 3t2 � 3

| dx/dt |

| dy/dt |[  (dx/dt)2 + (dy/dt)2    ]

FIGURE 15b.4
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and

y-component of velocity ¼ dy

dt
¼ 4tþ 7

) t ¼ 1; dx=dt ¼ 3ð1Þ2 � 3 ¼ 0; and dy=dt ¼ 4ð1Þ þ 7 ¼ 11:

At t ¼ 2; dx=dt ¼ 3ð2Þ2 � 3 ¼ 9; and dy=dt ¼ 4ð2Þ þ 7 ¼ 15:

We have,

speed ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
dx

dt

�2

þ
�
dy

dt

�2
vuut

) speed ðat t ¼ 1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0Þ2 þ ð11Þ2

q
¼ 11

and

speed ðat t ¼ 2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð9Þ2 þ ð15Þ2

q
¼

ffiffiffiffiffiffiffiffi
306

p

Slope of curve

ðat t ¼ 1Þ
�

¼ dy

dx
¼ dy=dt

dx=dt
¼ 11

0

ð5Þ

Slope of curve

ðat t ¼ 2Þ
�

¼ dy

dx
¼ 15

9
¼ 5

3

Now; for t ¼ 1
x ¼ ð1Þ3 � 3ð1Þ ¼ �2

y ¼ 2ð1Þ2 þ 7ð1Þ ¼ 9




and for t ¼ 2
x ¼ ð2Þ3 � 3ð2Þ ¼ 2

y ¼ 2ð2Þ2 þ 7ð2Þ ¼ 22




Therefore, at the point (�2, 9) on the curve, the tangent line is vertical, whereas at the point

(2, 22) the tangent line makes an angle of tan�1(5/3) with the positive x-axis.

15b.4 MEANING OF dy/dx WITH REFERENCE TO THE CARTESIAN FORM

y ¼ f(x) AND PARAMETRIC FORMS x ¼ f(t), y ¼ g(t) OF THE FUNCTION

In the case of a function y¼ f(x), the derivative dy=dx represents the instantaneous rate of

change of y with respect to x. It also represents the slope of the curve [y¼ f(x)] at an arbitrary

point (x, y) on the curve.

However,when a function is expressed by parametric equations (such as x¼ f(t), y¼ g(t)),

then the notation dy=dx, though it represents the slope of the curve, for each value of t, it does
not represent the speed of the particle in any direction. This is so because in the parametric

representation of a function, the variations in x and y are controlled by an independent variable

(parameter) t.

(5) It means that the tangent line is vertical to x-axis, for t¼ 1. Also, note that slope of the curve (represented by parametric

equations) for any value of t need not represent the velocity (speed, in this case) of the moving object.
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The curve represented by parametric equations indicates the actual path of motion of the

particle,which need not be a straight line. Accordingly, dy=dx gives the rate of change of yw.r.t.
x (which represents the slope of the curve for different values of t, but it does not represent the

speed of the particle, in any direction).

In order to find the speed of the particle when equations are given in parametric form, we

must use the following formulas:(6)

Speed ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx

dt

� �2
þ dy

dt

� �2s

Acceleration ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2x

dt2

� �2
þ d2y

dt2

� �2s

Note (4): Whenever the equations of a curve are given parametrically, the Cartesian

coordinates of a point (on the curve) can be obtained, corresponding to each value of the

parameter “t”, as needed in the following example.

Example (11): Let us find the equation of the line normal to the curve given parametrically by

x ¼ t2 þ 1

y ¼ 2t3 � 6t

�
ð15Þ

at the point where t¼ 2.

Solution: To find the equation of the line, we need to know a point on the line and the slope of

the line.

Point: When t¼ 2, we get, x¼ 5 and y¼ 4, so the point on the curve is (5, 4).

Slope: The tangent line has slope,

dy

dx

����
t¼2

¼ dy=dt

dx=dt

����
t¼2

¼ 6t2 � 6

2t

����
t¼2

¼ 18

4
¼ 9

2

Therefore, the normal line has slope¼�2/9.

) Equation of the line, normal to the curve (15) at (5, 4) is given by

y� 4 ¼ � 2

9
ðx� 5Þ or 9yþ 2x ¼ 46 Ans:

It is important to realize that an innocent looking problem (as in Example (11)) requires

proper logical thinking for its solution. We will now show how the derivative of one function

with respect to another function can be obtained by treating the functions as parametric

equations.

(6) Calculus with Analytic Geometry by John B. Fraleigh (p. 86).
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15b.5 DERIVATIVE OF ONE FUNCTION WITH RESPECT TO THE OTHER

Let u¼ f(x) and n¼ g(x) be two differentiable functions of x. Then, we can easily compute the

derivatives du=dv, and treating x as a parameter.

Example (12): Differentiate loge(1þ x2) w.r.t. tan�1x.

Solution: Let u¼ loge(1þ x2) and v¼ tan�1x

) We have to find du=dv.
Now,

du

dx
¼ d

dx
logeð1þ x2Þ�  ¼ 1

1þ x2
2x ¼ 2x

1þ x2
and

dv

dx
¼ 1

1þ x2

) du

dv
¼ ðdu=dxÞ

ðdv=dxÞ ¼
2x=ð1þ x2Þ
1=ð1þ x2Þ

0
@

1
A ¼ 2x

1þ x2
1þ x2

1

¼ 2x Ans:

Example (13): Differentiate x � ex w.r.t. x � log x.

Solution: Let u¼ x � ex and v¼ x � loge x.

We have to find du=dv.
Now,

du

dx
¼ xðexÞ þ exð1Þ ¼ exðxþ 1Þ

and
dv

dx
¼ x

�
1

x

�
þ loge x � ð1Þ ¼ 1þ loge x

) du

dv
¼ du=dxð Þ

dv=dxð Þ ¼
exðxþ 1Þ
1þ loge x

Ans:

Example (14): Differentiate ex � cos x w.r.t. e�x � sin x.

Solution: Let u¼ ex � cos x and v¼ e�x � sin x.

Then, we have to find du=dv:
Now,

du

dx
¼ exð�sin xÞ þ cos xðexÞ ¼ exðcos x� sin xÞ

and
dv

dx
¼ e�xðcos xÞ þ sin x � ð�e�xÞ

¼ e�xðcos x� sin xÞ

) du

dv
¼ du=dxð Þ

dv=dxð Þ ¼
exðcos x� sin xÞ
e�xðcos x� sin xÞ ¼ e2x Ans:
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Example (15): Differentiate 7x w.r.t. logx 7.

Solution: Let u¼ 7x and v¼ logx 7.

Then, we have to find du=dv.
Now,

du

dx
¼ 7x loge 7 If t ¼ ax; then

dt

dx
¼ ax loge a

� �

Furthermore, v¼ logx 7 means xv¼ 7 (by definition of logarithm).(7)

) v loge x ¼ loge 7

Differentiating both sides w.r.t. x, we get

v
1

x
þ loge x

dv

dx
¼ 0

) dv

dx
¼ � v

x

1

loge x
¼ �logx 7

x loge x

¼ �1

x loge x log7 x

�

)logb a ¼ 1

loga b

�

Now,

du

dv
¼ du=dxð Þ

dv=dxð Þ ¼ 7x loge 7 � ð�x loge x log7 xÞ
¼ �x � 7x loge 7 loge x log7 e loge x ½ )log7 x ¼ loge x log7 e�
¼ �x7xðloge xÞ2ðSince; loge 7 log7 e ¼ 1Þ Ans:

15b.5.1 Method of Substitution (Usefulness of Trigonometric Identities)

In the process of differentiating one function with respect to another function, it is at times

more convenient to use the method of substitution employing trigonometric identities,

wherever applicable. This results in a change of parameter.

Example (16): Differentiate ex
2

w.r.t. x2.

Let u ¼ ex
2

and v¼ x2.

We have to find du=dv.

Solution: In u and v, we substitute x2¼ t, thus getting u¼ et and v¼ t.

(7) In calculus, we always express logarithm to the base “e”. The reason for this choice is the simplicity of the relation

dðlogexÞ=dx ¼ 1=x.
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(Here, the parameter x changes to parameter t.) Now,

du

dt
¼ et and

dv

dt
¼ 1 ) du

dv
¼ du=dtð Þ

dv=dtð Þ ¼
et

1
¼ et ¼ ex

2

Ans:

Example (17): Differentiate loge(1þ x2) w.r.t.
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
:

Let u ¼ logeð1þ x2Þ and v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
:ð8Þ

We have to find du=dv.

Solution: If we substitute 1þ x2¼ t, we get

u ¼ loge t and v ¼ ffiffi
t

p ¼ ðtÞ1=2

(Here, parameter x changes to parameter t.)

Now,

du

dt
¼ 1

t
and

dv

dt
¼ 1

2
tð Þ�1=2 ¼ 1

2
ffiffi
t

p

) du

dv
¼ du=dtð Þ

dv=dtð Þ ¼
1

t
� 1

2
ffiffi
t

p ¼ 1

t
� 2

ffiffi
t

p
1

¼ 2ffiffi
t

p ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p Ans:

Example (18): Differentiate tan�1 ð3x� x3Þ=ð1� 3xÞð Þ w.r.t. tan�1x.

Let u ¼ tan�1 ð3x� x3Þ=ð1� 3xÞð Þ and v¼ tan�1x.(9)

We have to find du=dv.

Solution:

Put x¼ tan t.

) u ¼ tan�1

�
3 tan t� tan3 t

1� 3 tan t

�
¼ tan�1ðtan 3tÞ ¼ 3t

and v ¼ tan�1ðtan tÞ ¼ t

) du

dv
¼ 3 and

dv

dt
¼ 1

) du

dv
¼ du=dtð Þ

dv=dtð Þ ¼
3

1
¼ 3 Ans:

(9) The expression ð3x� x3Þ=ð1� 3xÞ suggests to recall the trigonometric identity tan 3t ¼ ðð3 tan t� tan3tÞ=ð1� 3 tan tÞÞ
and the corresponding substitution (i.e.,x¼ tan t). If we do this, parameterxwill change to parameter t. Even otherwise, from

the equation v¼ tan�1x, we get x¼ tan v. By substituting x¼ tan v, we get u¼ tan�1(tan 3v)¼ 3v. From this relation, we get

du/dv¼ 3, which is the desired answer.
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Example (19):

If u ¼ cos�1 ð1� x2Þ=ð1þ x2Þð Þ and v ¼ tan�1 2x=ð1� x2Þð Þ; then find du=dv:

Solution: Put x¼ tan t.

) u ¼ cos�1 1� tan2 t

1þ tan2 t

� �
¼ cos�1ðcos 2tÞ ¼ 2t

and

v ¼ tan�1 2 tan t

1� tan2 t

� �
¼ tan�1ðtan 2tÞ ¼ 2t

) du

dt
¼ 2 and

dv

dt
¼ 2

Now,

du

dv
¼ du=dtð Þ

dv=dtð Þ ¼
2

2
¼ 1

) du

dv
¼ 1 Ans:

Exercise

Q1. Differentiate ex w.r.t.
ffiffiffi
x

p
.

Ans. 2
ffiffiffi
x

p
ex

Q2. Differentiate sin�1 ð1� xÞ=ð1þ xÞð Þ w.r.t. ffiffiffi
x

p
.

Ans.
�2

1þ x

Q3. Differentiate tan�1 � ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
� 1

�
=x

� 	
w.r.t. tan�1x.

Ans.
1

2

Q4. Differentiate sin�1x w.r.t. cos�1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
.

Ans. 1

Q5. Differentiate tan�1ð2x=ð1� x2ÞÞ w.r.t. sin�1ð2x=ð1þ x2ÞÞ.
Ans. 1
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16 Differentials “dy” and “dx”:
Meanings and Applications

16.1 INTRODUCTION

We now introduce the concept of the differential, which enables us to approximate changes in

function values, where the function is differentiable. Even though, the application of differ-

entials for approximating the function values is not very important in the age of technology

(since better tools are available), differentials are important as a convenient notational device

for the computation of antiderivatives, as we will learn later in Part II of this book.

For a differentiable function y¼ f(x), we have been using Leibnitz notation dy/dx to mean

the derivative of ywith respect to x. Although this notation has the appearance of a quotient, it is

treated as a single entity, since it is a symbol for the limit

lim
dx! 0

f ðxþ dxÞ � f ðxÞ
dx

¼ lim
dx! 0

dy

dx
¼ dy

dx
¼ f 0ðxÞ

if this limit exists. It is now proposed to give separate meanings to the symbols dy and dx.(1)

The concept of the differential of a function is closely related to the derivative of the

function. To understand this, refer to Figure 16.1. In this figure, an equation of a curve is y¼
f (x). The line PT is tangent to the curve atP(x, f(x)),Q is the point (xþDx, f (xþDx)), and the
directed distance MQ is

Dy ¼ f ðxþ DxÞ � f ðxÞ
which represents the actual change in the value of f, when x is changed to (xþDx).

In the following figure, Dx and Dy are both positive; however they could be negative. For a
small value of Dx, the slope of the secant line PQ and the slope of the tangent line at P are

approximately equal; so that we can write,

Dy
Dx

� f 0ðxÞ

or Dy � f 0ðxÞDx ð1Þ
The right-hand side of equation (1) is defined to be the differential of y.

We give the following definition.

Introduction to Differential Calculus: Systematic Studies with Engineering Applications for Beginners, First Edition.
Ulrich L. Rohde, G. C. Jain, Ajay K. Poddar, and Ajoy K. Ghosh.
� 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

(1) The symbols dy and dx should be understood as individual symbols and not as product(s) of d and y or d and x,

respectively.

16-The differentials dy, dx, and the derivative dy/dx as a ratio of differentials.
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16.1.1 Definition: Differential of the Dependent Variable y

Let the function f be defined by the equation y¼ f(x), then the differential of y is denoted by “dy”

[or df(x)], and is given by

dy ¼ f 0ðxÞDx ð2Þ
where x is in the domain of f 0 and Dx is an arbitrary increment to x.

Refer now to Figure 16.2, which is the same as Figure 16.1, except that the vertical distance

segmentMR is shown, where the directed line MR¼ dy. Observe that dy represents the change

in y along the tangent line to the graph of the equation y¼ f(x) at the point P(x, f(x)), when x is

changed by Dx.(2)

Note that, dy 6¼Dy, but for small values of Dx, dy is very close to Dy. Also, note that [with
reference to equation (2)] since variable x can be any number in the domain of f 0 and Dx can be
any number whatsoever, the differential dy or [df (x)] is a function of two variables x and Dx.

We now wish to define the differential of the independent variable or “dx”. To arrive at a

suitable definition consistent with the definition of dy, we consider the identity function denoted

by f(x)¼ x. For this function, f 0(x)¼ 1 and y¼ x. Thus, from (2), we get dy¼ 1�Dx, that is,
if y¼ x, then, dy¼Dx. For the identity function, we would want that dx be equal to dy.

This permits us to write Dx¼ dx. This reasoning leads us to the following definition.

16.1.2 Definition: Differential of the Independent Variable

If the function f is defined by the equation y¼ f(x), then the differential of x, denoted by dx is

given by

dx ¼ Dx

where x is any number in the domain of f 0 and Dx is an arbitrary increment of x. The relation

(2) can now be written as

y y = f(x)

(x + Δx, f(x + Δx)) Q f(x + Δx)

(x, f(x)) P

Δy

Δx

Δx

Δy

T

M

x

0
x x + Δx

f(x)

FIGURE 16.1

(2) Note that, the definition of differential does not involve the notion of the derivative, though the derivative f 0(x) appears
in the expression for the differential dy.
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dy ¼ f 0ðxÞdx ð3Þð3Þ

We treat (3) as the definition of the differential of y (i.e., the dependent variable). It tells us that,

knowing the derivative of a function y¼ f(x), we can readily find its differential. Further, by

dividing both sides of (3) by dx,we can, if we wish, interpret the derivative as a quotient of two

differentials.

dy

dx
¼ f 0ðxÞ; if dx 6¼ 0 ð4Þ

This representation of the derivative, as the ratio of two differentials, is extremely important

for mathematical analysis.

Remark (1): By defining the differential of a function, we have attached meanings to the

symbols “dy” and “dx”, and given a newmeaning to dy/dx (the derivative of ywith respect to x)

as a ratio of dy to dx, retaining the meaning of the symbol dy/dx in question.

Remark (2): In equation (3), dx being arbitrary, can have any (finite) magnitude big or small.

Also, since the magnitude of dy depends on two variables x and Dx, it can have any (finite)

magnitude. Thus, in equation (3), dy and dx need not be small.

However, ifwe thinkof dx and dy asbeing small, then the equation (3) proves to bevery useful

since it gives the approximate changes in function values, where the function is differentiable.

Note (1):When we introduced the notation dy/dx (for the derivative of y with respect to x), we

emphasized that dy and dx had not been given independentmeaning. But, nowwe can also treat

the symbol dy/dx as a ratio of two differentials. It is only when we think of differentials, that

we can write dy¼ f 0(x)dx. This permits us to write dy/dx¼ 3x2 in the form dy¼ 3x2 dx and

similarly dy/dx¼ cos x in the form dy¼ cos x dx, and so on.

y

(x + Δx, f (x + Δx)) Q

x + Δx

y = f (x)

(x, f (x,)) P

f (x + Δx)

Δy

Δx

Δx

Δy

dy dy

R

M

x

x
0

T

f(x)

FIGURE 16.2

(3) In this expression for dy, the derivative f 0(x) appears as the coefficient of dx, which is the differential of independent

variable. Hence, the derivative of a function is called the differential coefficient.

INTRODUCTION 489



16.1.3 Geometrical Interpretation of the Differential dy

Let y¼ f(x) be a differentiable function of x and consider a fixed value of x, say x0. Then, the

differential of f at x0 is given by

dy ¼ f 0ðx0Þdx ð5Þ

Note that, in this case, dy is a linear function of the single variable dx, f 0(x0) being a constant.
(4)

Also, if an increment dx is given to x0, the corresponding increment Dy in y, is given by

f ðx0 þ dxÞ � f ðx0Þ ¼ Dy

or f ðx0 þ dxÞ ¼ f ðx0Þ þ Dy

But, we know that, for small values of dx, Dy is very close to dy. Hence, replacing Dy by dy,
we can write,

f ðx0 þ dxÞ � f ðx0Þ þ dy

� f ðx0Þ þ f 0ðx0Þdx

Since, f is differentiable we may drop the subscript “0”, and write the above equation as

f ðxþ dxÞ � f ðxÞ þ f 0ðxÞdx ð6Þð5Þ

The relation (6) gives us an approximate value of f(xþ dx) in terms of fully known quantities

[i.e., f(x), f 0(x) and dx] where x is a number at which f is differentiable.We shall make use of

this equation to estimate values of functions that are difficult or impossible to obtain exactly.

The approximation given by this equation is most useful when f(x) and f 0(x) are easy to

compute. This will be clear from the solved examples which follow shortly.

Note that,when we approximate f(xþ dx) by f(x)þ dy,we are approximating the ordinate

of the point Q on the curve by the ordinate of the point R on the tangent line (see Figure 16.2).(6)

Note (2): One should not think that the increment Dy is always greater than dy. The situation

becomes clear from the Figure 16.3a and 16.3b. It may be noted fromFigure 16.3b thatDy< dy.

Note (3): It should also be noted that, if f 0(x)¼ 0 at a point x, the differential is equal to zero:

dy¼ 0. In this case, dy is not compared with the increment Dy of the function. Now, let us

compute the differentials of some functions:

(4) We know that the differential dy¼ f 0(x)dx is a function of two variables, x and dx, which are independent of each other,
since, in general, f 0(x) varies with x and the increment “dx” can be chosen arbitrarily.
(5) In a sufficiently small neighborhood of the point x, this replacement leads to small errors. A demerit of this formula is

that although we know that the relative error (Dy/y) tends to zero as dx ! 0, it does not provide any estimation of the error

for a numerical value of dx. This is natural, because the error depends on the nature of f. Of course, we canmeasure the error

for a given function and the givenvalue of dx. Here, it may bementioned that for all practical purposes the error is generally

found to be negligible, as will be seen in the solved examples.
(6) We know that tangent lines and derivatives are closely related. Since a straight line is simpler than curves, and since the

tangent line to a differentiable curve runs close to the curve near the point of tangency, the tangent line can provide a useful

approximation to the function values near the point of tangency. Equation (6) tells us that to approximate the value

f(xþ dx), we add the tangent line increment f 0(x)dx to the value of f(x). Thus, an approximation of f(xþ dx) given by (6)

is called a linear approximation. Of course, we can measure the error, but for all practical purposes it is found to be

negligible, as will be seen in the solved examples.However,we shall discuss the error and its estimation later in Chapter 22.
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Example (1):

(i) y¼ x3þ 5x2� 1

) dy ¼ Dx½x3 þ 5x2 � 1�Dx

(where Dx is the “derivative with respect to x”).

) dy ¼ ½3x2 þ 10x�Dx

Now, if x¼ 1 and Dx¼ 0.02, then dy¼ [3(1)2þ 10(1)(0.02)]¼ 0.26.

(ii) y¼ sin x

) dy ¼ dðsin xÞ
¼ Dx½sin x�Dx
¼ cos x �Dx

(iii) y¼ e3x

) dy ¼ dðe3xÞ ¼ Dx½e3x� �Dx ¼ 3e3x �Dx

(iv) Let y¼ f(x)¼ loge(x
2þ 1)

) dy ¼ d½f ðxÞ�
¼ d½logeðx2 þ 1Þ�
¼ Dx½logeðx2 þ 1Þ� �Dx

¼ 1

x2 þ 1
� 2x �Dx ¼ 2x �Dx

x2 þ 1

y

x

0

M (x,y)

M1

α

Δx

x x + Δx 

Δy
dy

T

N

(a)

y

x

x0

M1M

α

Δx

x + Δx 

Δy
dy

T

(b)

FIGURE 16.3 (a) Dy > dy, (b) Dy < dy.
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Example (2): Given y¼ 4x2� 3xþ 1, find Dy, dy and Dy� dy for

(a) any x and Dx
(b) x¼ 2, Dx¼ 0.1

(c) x¼ 2, Dx¼ 0.01

(d) x¼ 2, Dx¼ 0.001

Solution:

(a) We are given y¼ f(x)¼ 4x2� 3xþ 1

) Dy ¼ f ðxþ DxÞ � f ðxÞ
¼ 4ðxþ DxÞ2 � 3ðxþ DxÞ þ 1� ð4x2 � 3xþ 1Þ
¼ 4x2 þ 8x �Dxþ 4ðDxÞ2 � 3x� 3 �Dxþ 1� 4x2 þ 3x� 1

¼ ð8x� 3Þ �Dxþ 4 � ðDxÞ2

From the definition of the differential in equation (3) above, we have

dy ¼ f 0ðxÞdx ¼ ð8x� 3ÞDx ðsince dx ¼ DxÞ
Thus; Dy� dy ¼ 4ðDxÞ2

The results of the parts (b), (c), and (d) are given in the table below:

x Dx Dy dy Dy� dy

(b) 2 0.1 1.34 1.3 0.04

(c) 2 0.01 0.1304 0.13 0.0004

(d) 2 0.001 0.013004 0.013 0.000004

From the above table, we note that the closerDx is to zero, the smaller is the difference between

Dy and dy. Furthermore, observe that for each value ofDx, the corresponding value ofDy� dy is

smaller than the value of Dx. More generally, dy is an approximation of Dy when Dx is small,

and the approximation is of better accuracy than the size of Dx.

16.2 APPLYING DIFFERENTIALS TO APPROXIMATE CALCULATIONS

The application of the differential to approximate calculations is based on the replacement of

the increment.

) Dy ¼ f ðx0 þ dxÞ � f ðx0Þ

by the differential, dy [¼f 0(x0)dx], since for small values of dx we have Dy� dy. Therefore,

we write,

f ðx0 þ dxÞ � f ðx0Þ � dy ¼ f 0ðx0Þdx ð7Þ

Note that, even though the increment Dy may depend on dx in a complicated manner, the

differential dy can be easily obtained by differentiation.
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This approximate equality can be immediately used to solve the following problem.

Given the values of f(x0), f
0(x0), and dx, it is required to compute an approximation to the

value f(x0þ dx) of the function.

Relation (7) directly gives us the desired formula:

f ðx0 þ dxÞ � f ðx0Þ þ f 0ðx0Þdx
Let us consider some illustrative examples. (For brevity, we shall write x in place of x0 and

denote dx by h.)

(I) Consider the function y ¼ ffiffiffi
x

p

Its differential is dy ¼ 1

2
ffiffiffi
x

p dx

Hence;
ffiffiffiffiffiffiffiffiffiffiffi
xþ h

p � ffiffiffi
x

p þ h

2
ffiffiffi
x

p
. In particular, for x¼ 1, we obtain, ffiffiffiffiffiffiffiffiffiffiffi

1þ h
p

� 1þ h

2

. In the general case, for x¼ a2 (a> 0), we have,ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ h

p
� aþ h

2a

These approximate formulas are extremely simple and make it possible to compute

square roots with a sufficient accuracy when jhj is small compared to a2.

For instance, the application of these results yieldsffiffiffiffiffiffiffiffiffi
1:21

p
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 0:21
p � 1þ 0:21

ð2Þð1Þ ¼ 1:105

The exact value of the root is equal to 1.1.

To compute the root
ffiffiffiffiffiffiffiffi
408

p
we represent it in the form

ffiffiffiffiffiffiffiffi
408

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
202 þ 8

p
, and

thus obtain
ffiffiffiffiffiffiffiffi
408

p � 20þ ð8=ð2Þð20ÞÞ ¼ 20:2.
Now, let us take

ffiffiffiffiffiffiffiffi
390

p
. Here, it is convenient to put h¼�10, thenffiffiffiffiffiffiffiffi

390
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
202 � 10

p
� 20� 10

ð2Þð20Þ ¼ 19:75

. If y ¼ ffiffiffi
xn

p
, then,

dy

dx
¼ d

dx
ðxnÞ ¼ 1

n
ðxð1=nÞ�1Þ ¼ 1

n
x1=n � x�1 ¼ 1

n

ffiffiffi
xn

p
x

) dy ¼ 1

n

ffiffiffi
xn

p
x

� dx ¼ 1

n

ffiffiffi
xn

p
x

h ðreplacing dx by hÞ

)
ffiffiffiffiffiffiffiffiffiffiffi
xþ h

n
p

¼ ffiffiffi
xn

p þ 1

n

ffiffiffi
xn

p
x

� h ð8Þ

For x¼ 1, this yields the approximate formulaffiffiffiffiffiffiffiffiffiffiffi
1þ h

n
p

� 1þ h

n

. A more general formula is obtained for x¼ an (a> 0):

ffiffiffiffiffiffiffiffiffiffiffiffiffi
an þ h

n
p

� aþ h

n � an�1

ð7Þ

(7) This formula is obtained by putting x¼ an in equation (8).

APPLYING DIFFERENTIALS TO APPROXIMATE CALCULATIONS 493



Let the reader compute several roots with the aid of this formula and estimate the

accuracy achieved by finding more accurate values using the table of logarithms.

(II) Let us consider the function y¼ sin x. Its differential is dy¼ cos x dx, and therefore

sinðxþ hÞ � sin xþ h cos x

In particular, for x¼ 0, we derive the formula, sin h� h.

For example, we have sin p
180

� p
180

� 0:01745
That is, approximately, sin 1� ¼ 0.1745.(8)

This approximation is correct to the fifth decimal digit, that is, the error does not exceed

10�5. Let us compute sin 31�.

sin 31� � sin 30� þ p
180

cos 30�

� 0:5þ
ffiffiffi
3

p

2
� ð0:01745Þ

� 0:5150

The tabular value of sin 31� correct within 10�4 (i.e., the fourth place of the decimal)

is 0.5150. (The reader may account for the fact that we have obtained a major

approximation of sin 31�.)(9)

(III) Now, consider the function y¼ ln x. Here we have, dy ¼ ð1=xÞdx, and
. lnðxþ hÞ � ln xþ h

x

. In particular, for x¼ 1 this yields the formula ln(1þ h)� 1

Take the known value ln 781� 6.66058. To compute ln 782, we apply the above

formulas

ln 782 � 6:66058þ 1

781

� 6:66186

The tabular value of ln 782 correct within 10�5 is equal to 6.66185.

(We see that the error of our approximation is small. The reader may try to find out why

in this case we have also obtained a major approximation.)(10)

16.3 DIFFERENTIALS OF BASIC ELEMENTARY FUNCTIONS

Since the differential of a function is obtained as the product of the derivative by the differential

of the independent variable, we can readily write down the table of the differentials of all the

(8) Note that p
180

� 3:14
180

� 0:01745 On the other hand, p radians¼ 180�. Therefore sin p
180

¼ sin 180�
180

� �¼ sin 1�, and we

obtain, sin 1� � 0.01745.
(9) Later on, it will be found that using Taylor’s theorem (to be studied in Chapter 22) these results can be obtained more

easily and accurately.
(10) Today, in the age of technology, the application of differentials for approximating function values is not

very important (since with a pocket calculator, it is easy to find very accurate values of f(x0), f(x0þ dx), and

Dy¼ f(x0þ dx)� f(x0)). However, differentials are important as a convenient notational device for the computation of

antiderivatives as we will learn later in Part II of this book.
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basic elementary functions because their derivatives are known. For instance,

dðxnÞ ¼ nxn�1 dx

dðaxÞ ¼ ax ln a dx

dðln xÞ ¼ 1

x
dx

dðsin xÞ ¼ cos x dx; and so on:

16.3.1 Differentials of the Results of Arithmetical Operations on Functions

In accordance with the rules for finding derivatives (studied in Chapter 10), we can use the

derivative formulas to write down the corresponding differentials. For example, if u and v are

differentiable functions of x, then the formula

d

dx
ðuþ vÞ ¼ du

dx
þ dv

dx
ð9aÞ

after multiplying both the sides by dx becomes

dðuþ vÞ ¼ duþ dv ð9bÞ
which says that the differential of the function (uþ v) is the differential of the function u plus the

differential of the function v. It is still assumed that u and v are differentiable functions, but the

name of the independent variable no longer appears in the formula. We do not need to mention

it as long asweunderstand that (9b) is an abbreviation for (9a).We illustrate themajor rules in the

table below.

Derivative Rule Differential Rule

1.
dðcÞ
dx

¼ 0 d(c)¼ 0

2.
dðxnÞ
dx

¼ nxn�1 d(xn)¼ nxn�1 dx

3.
dðcuÞ
dx

¼ c
du

dx
d(cu)¼ c du

4.
dðuþ vÞ

dx
¼ du

dx
þ dv

dx
d(uþ v)¼ duþ dv

5.
dðuvÞ
dx

¼ u
dv

dx
þ v

du

dx
d(uv)¼ u dvþ v du

6.
dðu=vÞ
dx

¼ vðdu=dxÞ � uðdv=dxÞ
v2

d u
v

� � ¼ v du� u dv

v2

7.
dðunÞ
dx

¼ nun�1 du

dx
d(un)¼ nun�1 du

Warning: One must be careful to distinguish between derivatives and differentials. They are

not the same. When you writeDxy or dy/dx you are using a symbol for the derivative, but when

you write “dy” you are dealing with a differential.

Note (4): It should be noted that a differential on the left-hand side of an equation (say dy), also

calls for a differential usually dx on the right-hand side of the equation. Thus, we never have

dy¼ 3x2, but we have dy¼ 3x2 dx.
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16.3.2 Differential of a Composite Function

While the definition of dy assumes that x is an independent variable, that assumption is not

important. Let y¼ f(u) and u¼�(x) be two functions of their arguments possessing the

derivatives f 0(u) and �0(x) with respect to these arguments. If we put,

y ¼ f ðuÞ ¼ f ½�ðxÞ� ¼ FðxÞ ðsayÞ

then, by differentiating both sides with respect to x, we have

y0 ¼ F0ðxÞ ¼ f 0ðuÞ ��0ðxÞ ð10Þ

On multiplying both sides of this relation by dx, we get

y0 � dx ¼ f 0ðuÞ ��0ðxÞdx

or dy ¼ f 0ðuÞ � du ½since y0 � dx ¼ dy and �0ðxÞdx ¼ du�
Thus, the differential has the same form as if the magnitude u were an independent variable.

This can be stated as follows.

The differential of a function y¼ f(u) retains the same expression irrespective of whether its

argument u is an independent variable or a function of another variable.

This property is referred to as the invariance of the form of the differential.(11)

It is because of this property that we can write down the differential in one and the same

form irrespective of the nature of the argument of the function. The equality, dy¼ f 0(u)�du
implies

f 0ðuÞ ¼ dy

du

and hence in all the cases, this equation may be looked upon as follows:

The rate of change of a function relative to its argument is equal to the ratio of the differential

of the function to the differential of its argument.

Relation (10) can now be written as

dy

dx
¼ dy

du
� du
dx

ð11Þ

The right-hand side of equation (11) is obtained from the left-hand side by the simultaneous

multiplication and division of the former by du (if, of course, du 6¼ 0).

Hence, the arithmetical operations on differentials can be performed as if theywere ordinary

numbers.Here, lies the reason for the convenience of the representation of the derivative as the

ratio of the differentials. For instance, using this representation of derivatives we can readily

write down the differentiation rule for inverse of a function.

Dx y½ � ¼ dy

dx
¼ 1

dx=dy
¼ 1

Dy½x�

(11) Note that this important property of the differential follows from the differentiation rule for a function of a function.
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Remarks: Knowing the derivative of a function, we can find its differential and vice versa.

Hence, the existence of the derivative can be taken as the condition equivalent to the

differentiability of the function.(12)

From the geometrical point of view, this condition is equivalent to the existence of the tangent to

the curve y¼ f(x), not perpendicular to the x-axis.

Definition: Recall that, a function y¼ f(x) is said to be differentiable at a point x (in its

domain) if it possesses a derivative at that point. Further, if a function is differentiable at every

point in its domain (i.e., the derivative exists at every point in its domain) then it is called a

differentiable function.

Now, in view of the above discussion (about the differential of a function) we can give the

following definition:

A function y¼ f(x) is said to be differentiable at a point x, if it has a differential at that point.

Note (5): Any problem involving differentials, (say that of finding dy when y is given as a

function of x), may be handled either

(a) by finding dy/dx and multiplying by dx or

(b) by direct use of formulas on differentials.

Example (3): Given a function y ¼ sin
ffiffiffi
x

p
. Find dy.

Solution: Representing the given function as a composite function,

y ¼ sin u; u ¼ ffiffiffi
x

p

we find,
dy

dx
¼ cos u � du

dx
¼ cos

ffiffiffi
x

p � 1

2
ffiffiffi
x

p

) dy ¼ cos
ffiffiffi
x

p � 1

2
ffiffiffi
x

p dx

or, we write,

) dy ¼ cos u du; du ¼ ð ffiffiffi
x

p Þ0dx ¼ 1

2
ffiffiffi
x

p dx

) dy ¼ ðcos ffiffiffi
x

p Þ 1

2
ffiffiffi
x

p dx

� �

Note (6):The application of the differential of a function can also be appreciated by considering

nonuniform motion of a particle in a straight line. Let the law of motion be expressed

mathematically by

s ¼ f ðtÞ ð12Þ

where s is the distance traveled and t stands for the time taken. Then, the velocity of the particle

at any instant t1 is given by f
0(t1). If now an additional time Dt passes, let the particle cover an

(12) It is for this reason that the operations of finding the derivative and the differential of a function are called

differentiation.
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additional distance Ds. Since the motion is nonuniform, the dependence of Ds on Dt can be

complicated because the velocity of the particle varies all the time.

But if Dt is not large, the velocity will not change considerably during the period of time

from t1 to t1þDt. Therefore, the motion may be regarded as “almost uniform” during the

time interval Dt. Hence, in calculating the distance traveled, we shall not get a serious

error if we regard the motion as uniform with the constant velocity f 0(t1), from the instant

t1 to t1þDt.
Thus, the (approximate) distance traveled during the interval Dt is given by f 0(t1)�Dt.

This product, as we know, is called the differential of the distance function and is denoted by ds.

We write

ds ¼ f 0ðt1Þ �Dt ð13Þ

Of course, the real distance Ds traveled (during the interval t1 to t1þDt) differs from the

invented distance ds given in (13) above.

Itmust be clear that the accuracy of the formula (13) becomes greater asDt is decreased and
vice versa. Nevertheless, it is much easier to compute ds as a distance covered in uniform

motion than to evaluate the real distance Ds. This accounts for the fact that formula (13) is

often used even when Dt is not very small.

In all such cases, the replacement of a real change of a quantity by its differential reduces to

the transition from some nonuniform processes to the uniform ones. Such a replacement is

always based upon the fact that every process is “almost uniform” during a small interval

of time.

16.4 TWO INTERPRETATIONS OF THE NOTATION dy/dx

Leibniz used the suggestive notation dy/dx for the instantaneous rate of change of y with

respect to x. This notation suggests that the instantaneous rate comes from considering an

average rate (which is indeed a quotient) and computing its limit. Thus, dy/dx stands for

the limit,

lim
Dx! 0

Dy
Dx

¼ dy

dx
; provided the limit exists

Here, dy and dx do not have anymeaning if considered separately (since dy/dx is a single entity:

a symbol for the limit, which we call the derivative).

Our investigation suggests that

lim
Dx! 0

Dy
Dx

¼ dy

dx
; provided the limit exists

It would be wrong to interpret this limiting relation in the sense that Dy tends to dy and Dx to

dx, as Dx ! 0. The correct meaning is that the ratio of the increments Dy=Dx, as Dx ! 0,

tends to the limit denoted by dy/dx or the f 0(x). On the other hand, the differential of a function
y¼ f(x) is defined by

dy ¼ d½f ðxÞ� ¼ f 0ðxÞdx

where f 0(x) stands for the derivative of f at a point x and dx is an arbitrary number (dx 6¼ 0).

Dividing both sides by dx, we get dy/dx¼ f 0(x), (dx 6¼ 0).
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In this case, dy/dx stands for the ratio of two quantities namely dy and dx. In either case, we

get dy/dx¼ f 0(x), dx 6¼ 0.

Now, we can also say that the ratio of increments Dy=Dx tends to the ratio of differentials

dy/dx, as Dx ! 0.

16.5 INTEGRALS IN DIFFERENTIAL NOTATION

The notation of differentials allows us to express integrals in a shorthand that often proves

useful. For example, if u is a differentiable function of x, then the integral of du/dxwith respect

to x is sometimes written simply as the integral of du:

ð
du

dx
� dx ¼

ð
du

Thus, the integral of du is required to be evaluated as

ð
du ¼

ð
dðuÞ
dx

dx ¼ uþ c

or simply,
Ð
du ¼ uþ c

For instance, if u¼ sin x, then d(sin x)¼ cos x dx, and we can write

ð
dðsin xÞ ¼ sin xþ c

which is short for
Ð
cos x dx ¼ Ð d

dx
ðsin xÞdx ¼ sin xþ c.

Thus, for a given integral
Ð
f ðxÞdx, we have to express the differential f(x)dx in the form

(d/dx)F(x)dx (which also stands for d[F(x)]). Obviously, then (d/dx)F(x)¼ f(x). Whenever

f(x)dx is expressed in the form d[F(x)], we say that the integrand is expressed in the standard

form. Once this is done, we can immediately write down the antiderivative (or the indefinite

integral), F(x)þ c.

Solved Examples

Example (1): Find the approximate value of (4.01)3 correct to two decimal places.

Solution: We have

f ðxþ dxÞ � f ðxÞ þ f 0ðxÞ � dx ð14Þð13Þ

where dx is small.

) ðxþ dxÞ3 � x3 þ 3x2 � dx ð15Þ

We take x¼ 4 and dx¼ 0.01

(13) In all subsequent problems, we shall use this formula, which gives the approximate value of a differentiable function

f(x), at a point (xþ dx) close to x.
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Substituting these values in (15), we get,

ð4þ 0:01Þ3 � ð4Þ3 þ 3ð4Þ2 � ð0:01Þ
� 64þ ð48Þ � ð0:01Þ
� 64þ 0:48

� ð4:01Þ3 � 64:48 Ans:

Now, we must similarly compute (3.97)3.

Here, we take x¼ 4 and dx¼ 0.03

) ð3:97Þ3 ¼ ð4� 0:03Þ3
ð4� 0:03Þ3 � ð4Þ3 þ 3ð4Þ2 � ð�0:03Þ ½ )f ððxþ ð�dxÞÞ � f ðxÞ þ f 0ðxÞ � ð�dxÞ�

� 64þ ð48Þ ð�0:03Þ
� 64� 1:44

� 62:56

Example (5): Find an approximate value of
ffiffiffiffiffiffiffiffiffi
8:053

p

Solution: Consider the function

f ðxÞ ¼ ffiffiffi
x3

p ¼ ðxÞ1=3

) f0ðxÞ ¼ 1

3
x�2=3 ¼ 1

3x2=3

We have,

f ðxþ dxÞ � f ðxÞ þ f 0ðxÞ � dx; where dx is small

) ðxþ dxÞ1=3 � x1=3 þ 1

3x2=3
� dx ð16Þ

We take x¼ 8 and dx¼ 0.05

Substituting these rules in (16), we get

ð8þ 0:05Þ1=3 � ð8Þ1=3 þ 1

3ð8Þ2=3
ð0:05Þ

� 2þ 0:05

ð3Þð4Þ
� 2þ 0:00417

)
ffiffiffiffiffiffiffiffiffi
8:053

p � 2:00417

Now, if we wish to compute
ffiffiffiffiffiffiffiffiffi
7:953

p
, we getffiffiffiffiffiffiffiffiffi

7:953
p � 2� 0:00417 � 1:99583

Example (6): Estimate the value of sin 31�, assuming that 1� ¼ 0.0175 rad, and

cos 30� ¼ 0.8660.
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Solution: Let f(x)¼ sin x ) f 0(x)¼ cos x

We have, f(xþ dx)� f(x)þ f 0(x) � dx, where dx is small

) sinðxþ dxÞ � sin xþ cos x � dx ð17Þ

We take x ¼ 30� ¼ p
6
and dx ¼ 1� ¼ p

180
¼ 0:0175

Substituting in (17), we get,

sin 31� ¼ sinð30� þ 1�Þ
� sin 30� þ cos 30� � ð0:0175Þ
� sinðp=6Þ þ cosðp=6Þ � ð0:0175Þ
� 0:5þ ð0:8660Þ � ð0:0175Þ
� 0:5þ 0:015155

� 0:51516 Ans:

Note (7):Assuming that 1� ¼ 0.0175 rad and sin 45� ¼ 0.7071,we can easily estimate cos 46� or
cos 44�. (Remember that cos 45� ¼ sin 45� ¼ 0.7071.)

Let f ðxÞ ¼ cos x

) f 0ðxÞ ¼ �sin x

We have f(xþ dx)� f(x)þ f 0(x)dx

) cosðxþ dxÞ ¼ cos x� sin x � dx
) cosð45� þ 1�Þ � cos 45� � sin 45�ð0:0175Þ

� 0:7071� ð0:7071Þð0:0175Þ
� 0:7071� 0:01237

� 0:6947

and cosð45� � 1�Þ � 0:7071� ð0:7071Þð�0:0175Þ
� 0:7071þ 0:01237

� 0:71947

Example (7): Approximate sin 7p
36

Solution: Note that, 7p
36
¼ 6p

36
þ p

36
¼ p

6
þ p

36
. Thus, 7p

36
is close to p

6
.

Thus, we write sin 7p
36
¼ sin p

6
þ p

36

� �
Let p

6
¼ x and p

36
¼ dx

) sin
p
6
þ p
36

� �
¼ sinðxþ dxÞ

We have, f(xþ dx)� f(x)þ f 0(x) � dx

) sinðxþ dxÞ � sin xþ cos x � dx
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or sinðp=6þ p=36Þ � sinðp=6Þ þ cosðp=6Þ � ðp=36Þ
� 0:5þ ð ffiffiffi

3
p

=2Þ � ðp=36Þ
� 0:5þ 0:075575 ¼ 0:575575

Example (8): Find the value of f(x)¼ 2x3þ 7xþ 5, at x¼ 2.001.

Solution: Let f(x)¼ 2x3þ 7xþ 5

) f 0ðxÞ ¼ 6x2 þ 7

We have; f ðxþ dxÞ � f ðxÞ þ f 0ðxÞ � dx; where dx is small:

� ð2x3 þ 7xþ 5Þ þ ð6x2 þ 7Þ � dx
We take x¼ 2 and dx¼ 0.001

) f ð2:001Þ ¼ ½2ð2Þ3 þ 7ð2Þ þ 5� þ ½6ð2Þ2 þ 7�ð0:001Þ
¼ ð16þ 14þ 5Þ þ ð24þ 7Þð0:001Þ
¼ 35þ 0:031 ¼ 35:031 Ans:

Example (9): Find the approximate value of tan�1 (0.99).

Solution: Let f ðxÞ ¼ tan�1 x ) f 0ðxÞ ¼ 1

1þ x2

We know that,

) f ðxþ dxÞ � f ðxÞ þ f 0ðxÞ � dx; where dx is small

) tan�1ðxþ dxÞ � tan�1 xþ 1

1þ x2

� �
� ðdxÞ

We take x¼ 1 and dx¼�0.01

) tan�1ð1� 0:01Þ � tan�1ð1Þ þ 1

1þ ð1Þ2
 !

� ð�0:01Þ

� p
4
� 0:01

2

� p
4
� 0:005

� 0:7854� 0:005

� 0:780 Ans:

Note (8): Approximate value of tan�1(1.001) is given by

tan�1ð1þ 0:001Þ � tan�1ð1Þ þ 1

1þ 12

� �
ð0:001Þ

� p
4
þ 1

2
� ð0:001Þ

� 0:7854þ 0:0005

� 0:7855þ 0:0005

� 0:7860 Ans:
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Example (10): Find the approximate value of e1.002 taking e¼ 2.71828.

Solution: Let f(x)¼ ex, then we know that f 0(x)¼ ex

We have, f(xþ dx)� f(x)þ f 0(x)�dx, where dx is small

) exþdx � ex þ ex � dx

We take x¼ 1 and dx¼ 0.002

) e1:002 � e1 þ e1 � ð0:002Þ
� 2:71828þ ð2:71828Þð0:002Þ
� 2:71828þ 0:005437

� 2:7237 ðup to four decimal placesÞ

Example (11): Taking loge 10¼ 2.3026, find the approximate value of loge 101.

Solution: Let f ðxÞ ¼ loge x; ) f 0ðxÞ ¼ 1

x

We have, f(xþ dx)� f(x)þ f 0(x) � dx, where dx is small

) logeðxþ dxÞ � loge xþ 1

x
� ðdxÞ

We take x¼ 100 and dx¼ 1

) logeð100þ 1Þ � loge 100þ 1=100ð1Þ
� logeð10Þ2 þ 0:01

� 2ð2:3026Þ þ 0:01

� 4:6052þ 0:01

� 4:6152 Ans:

16.6 TO COMPUTE (APPROXIMATE) SMALL CHANGES AND SMALL

ERRORS CAUSED IN VARIOUS SITUATIONS

The measurements in physical experiments are not exact. A certain amount of error is always

present. Therefore, the measurements are in fact only approximations. Of course, these

approximate numbers [representing measurement(s) of various quantities] are very close to

their exact measurement(s).

The statement, y¼ f(x) means that for a measured value of x, we can calculate the

corresponding value of y. If a small error dx enters in the measurement of x, then evidently,

there will be an error in the calculation of the dependent variable y. These errors may be due to

inaccuracies/limitation(s) of measuring instruments or due to human errors, Besides, these

errors may be positive or negative in nature.(14)

(14) For example, in calculating the area of a given circle, if there is an error inmeasuring the radius x, then there is bound to

be an error in computing the area, y¼px2.
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The resulting error in y is given by dy¼ f(xþ dx)� f(x). If dx is very small, then

dy � f ðxÞ þ f 0ðxÞ � dx� f ðxÞ ½ )f ðxþ dxÞ � f ðxÞ þ f 0ðxÞ � dx�

or dy � f 0ðxÞ � dx ð18Þ
Thus, the two errors dx and dy are related by (18). This formula enables us to find

approximately the small change dy in y corresponding to small change dx in x. If dx is

treated as a small error in the measurement of x, then the formula (18) gives us the

corresponding error dy in calculating y.

16.6.1 Definitions: Absolute Error, Relative Error, and Percentage Error

If the error dy is calculated for a given value of x (say x¼ x1) it is called the absolute error.

The quantity dy/y is called the relative error. Sometimes, scientists are interested in the percent

error in the computation of a numerical quantity. The percentage error is given by

dy

y
� 100

				
				 ¼ jrelative error� 100jð15Þ

Let us see some examples:

Example (12): A spherical ball when new measures 3.00 cm in radius. What is the approx-

imate volume of metal lost after it wears down to r¼ 2.98 cm?

Solution: Volume of the spherical ball is given by, V ¼ ð4=3Þpr3.

The approximate change in computing volume of the spherical ball (due to wear of 0.02 cm in

its radius) is given by

dv � d

dr

� 4
3
pr3
�
� dr

� 4pr2 � dr ðhere r ¼ 3 cm and dr ¼ 0:02 cmÞ
� 4pð3Þ2 � ð0:02Þ
� 36pð0:02Þ ¼ 0:72p; taking p � 3:14

� 2:26 cm3 Ans:

Note (9): If we assume that the figures r1¼ 3.00 cm and r2¼ 2.98 cm are exact, then the exact

answer would be

dv � 4

3
p 32 � ð2:98Þ2
h i

� ð0:71521066 . . .Þp
� 2:26 cm3; correct to two decimal places:

(15) The percentage error has to be positive number irrespective of whether the error is positive or negative.
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Example (13): A spherical ball of wood of radius 150 cm is coated by a layer of paint. If

thickness of paint layer is 0.05 cm, find the volume of paint required.

Solution: The approximate volume of paint required is given by

dn � d

dr

�
4

3
pr3
�
� dr ¼ ð4pr2Þ � dr cm3

¼ 4pð150Þ2 � ð0:05Þ ¼ 4pð22; 500Þ � ð0:05Þ cm3

¼ 14137:167 cm3 ¼ 14:14 L ðapprox:Þ Ans:

Example (14): Ahemispherical dome of a temple has radius 5m from the inside. If the dome is

to be coated by a plastic material of 0.08 cm thickness, then find the volume of material used.

Solution: The approximate volume of plastic material required, is given by

dv � d

dr

1

2

4

3
pr3

� �2
4

3
5 � dr

� 2pr2 � dr ðHere r ¼ 5 m ¼ 500 cm and dr ¼ 0:08 cm:Þ
� 2pð500Þ2 � ð0:08Þ
� ð0:16Þð250; 000Þp cm3

� 125663:7 cm3

¼ 125:7 L ðapprox:Þ Ans:

Example (15): Find the volume of the metal of a hollow cylindrical shell of inner radius 2 cm

and thickness 0.1 cm and length 10 cm.

Solution: Let v¼ inner volume of the cylinder and dv¼ the volume of the metal used in the

hollow cylindrical shell of thickness 0.1 cm.

We have, v¼ pr2h

) dv � dv

dr
� dr

� ð2prhÞ � dr
� 40pð0:1Þ ð )r ¼ 2; h ¼ 10; and dr ¼ 0:1Þ
¼ 4p ¼ 12:57 cm3 Ans:

Example (16): If the diameter of a sphere is measured to be 20 cm and the error in the

measurement is 0.4 cm, find the error in the calculation of the surface area of the sphere.

Solution: Let surface area of the sphere be denoted by s.
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Then, s¼ 4pr2, where r is the radius of the sphere.

The error in measurement of the diameter of the sphere¼ 0.4 cm.

) The error in measurement of radius of the sphere¼ 0.2 cm.

Suppose ds is the error in the calculation of surface area of the sphere.

Then, we have,

ds � ds

dr
� dr ¼ ð8prÞ � dr ðdr ¼ 0:2 cmÞ

For r ¼ 10 cm; dr ¼ 0:2 cm )dia ¼ 20 cm; ) r ¼ 10 cm½ �

) ds � 8pð10Þ � ð0:2Þ ¼ 16p cm2 Ans:

Example (17): A right circular cone has a height of 7 cm and a base diameter of 5 cm. It is

found that the diameter is not correctly measured to the extent of 0.06 cm. Find the consequent

error in the calculated volume.

Solution: The volume of the right circular cone v ¼ ð1=3Þpr2h.

Height of the cone¼ 7 cm (it is assumed to be correctly measured)

Radius of the base¼ 2.5 cm

(This is not correct. There is an error of 0.03 cm in its measurement).

We have to find the consequent error dv in the calculation of the volume v (i.e., to find dv).
We have,

dv � dv

dr
� dr ¼ 2

3
prh

� �
� dr

)v ¼ 1

3
pr2h

) dv

dr
¼ 2

3
prh

2
66664

At r¼ 2.5 cm, dr¼ 0.03 cm. (Note that, h is constant¼ 7 cm.)

) dv � 2

3
pð2:5Þð7Þ � 0:03 cm3

� 35

100
p

� 0:35p cm3

� 1:09 ¼ 1:1 cm3 ðapproxÞ ½ )p ¼ 3:14� Ans:

Example (18): Find the approximate error in computing the surface area of a cube having an

edge of 3m, if an error of 2 cm is made in measuring the edge. Also, find the percentage error in

computing the surface area.

Solution: Suppose the edge of the cube is x m.

) Its surface area AðxÞ ¼ 6x2
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The error inmeasuring the edge is dx¼ 2 cm¼ 0.02m.We have to find the approximate error in

calculating the surface area of the cube. Suppose it is dA.

Then,

dA � dA

dx
� dx

� ð12xÞ � dx
� 12ð3Þ � ð0:02Þ
� 0:72 m2

Now, the percentage error in computing the surface area

¼ dA

A
� ð100Þ ¼ 0:72

6ð3Þ2 � 100

¼ 0:72

54
� 100 ¼ 72

54
¼ 4

3
¼ 1:33% Ans:

Example (19): If the radius of a spherical balloon increases by 0.1%, find approximately the

percentage error in computing the volume.

Solution: We have v ¼ 4
3
pr3

) dv � dv

dr
� dr ¼ 4pr2 � dr

Now, the percentage error in computing v is given by

dv

v
� 100 ¼ 4pr2 � dr

ð4=3Þpr3 � 100 ¼ 3

r
� 100 � dr ð19Þ

But, it is given that the radius increases by 0.1% (i.e., percentage of increase in r¼ 0.1)

or dr
r
� 100 ¼ 0:1

) dr ¼ ð0:1Þr
100

¼ r

1000

Put this value of dr in (19), we get

% error in computing v ¼ 3

r
� 100 � r

1000

� �
¼ 3

10
¼ 0:3% Ans:

Example (20): If there is an error of 0.3% in the measurement of the radius of a spherical

balloon, find the percentage error in the calculation of its volume.

Solution: Let x¼ radius of the sphere.

Then, its volume v ¼ 4
3
px3

) dn � dv

dx
� dx ¼ ð4px2Þ � dx ð20Þ
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) dv

dx
¼ 4px2


 �
ð21Þ

It is given that percentage error in x is 0.3.

) 100
dx

x
¼ 0:3

) error in xði:e:; dxÞ ¼ ð0:3Þ � x
100

ð22Þ

We have to compute: percentage error in calculating v [i.e., to compute the value of

ðdv=vÞ � 100ð Þ].
We have dv � dv

dx
� dx [see (20) above]

Multiplying both sides of (20) by 100
v
, we get,

) 100
dv

v
� 100

v
� dv
dx

� dx

) % error in v � 100

ð4=3Þpx3 � 4px
2

1
� ð0:3Þx

100

¼ 0:9% Ans:

Example (21): The time T of a complete oscillation of a simple pendulum of length “l ” is

given by T ¼ 2p
ffiffi
l
g

q
. If there is an error of 1.2% in the measurement of l, find the percentage

error in T.

Solution:

Given T ¼ 2p

ffiffiffi
l

g

s
¼ 2pffiffiffi

g
p

ffiffi
l

p
or T ¼ k

ffiffi
l

p
; where k is a constant ¼ 2pffiffiffi

g
p


 �

There is an error of 1.2% in the measurement of l.

) dl

l
� 100 ¼ 1:2

) dl ¼ ð1:2Þl
100

¼ 12 l

1000

We have to find % error in computing T i:e:; to compute dT
T
� 100

� �

We have;
dT

dl
� dT

dl
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) dT � dT

dl
� dl ¼ d

dl
k
ffiffi
l

ph i
� dl

¼ k � 1
2
� l�1=2 � dl

¼ k � 1

2
ffiffi
l

p � dl )T ¼ k
ffiffi
l

ph i

) dT

T
� 100 ¼ k

2
ffiffi
l

p � dl

 �

� 1

k
ffiffi
l

p

 �

� 100 )1
T
¼ 1

k
ffiffi
l

p

 �

¼ dl

2l
� 100 )dl ¼ 12 l

1000


 �

¼ 12 l

1000
� 1

2l
� 100 ¼ 6

10
¼ 0:6% Ans:

Note (10): Exercises are not given here. The reader may refer to standard books for good

exercises.
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17 Derivatives and Differentials
of Higher Orders

17.1 INTRODUCTION

We have studied several methods of finding derivatives of differentiable functions. If y¼ f(x) is

a differentiable function of x, then its derivative is denoted by

dy

dx
or f 0ðxÞ or y0 or y1

The notation f 0(x) suggests that the derivative of f(x) is also a function of x. If the function f 0(x)
is in turn differentiable, its derivative is called the second derivative (or the derivative of the

secondorder) of the original function f(x) and is denoted by f 00(x). This leads us to the concept of
the derivatives of higher orders.

f 00ðxÞ ¼ ½ f 0ðxÞ�0 ¼ limDx! 0

f 0ðxþ DxÞ � f 0ðxÞ
Dx

We write,

d

dx

dy

dx

� �
¼ d2y

dx2
or

dðf 0ðxÞÞ
dx

¼ f 00ðxÞ or y00 or y2

� �

Similarly, we can find the derivative of d2y/dx2provided it exists, and is denoted by d3y/dx3

[or f 000(x) or y000 or y3], called the third derivative of y¼ f(x) and so on.

17.1.1 Notations for Derivatives of y¼ f(x)

Order of Derivative Prime Notation (0) Leibniz Notation y-Notation D-Notation

1st y0 or f 0(x) dy/dx y1 Df

2nd y00 or f 00(x) d2y/dx2 y2 D2f

3rd yy000 or f 000(x) d3y/dx3 y3 D3f

4th yiv or f iv(x) d4y/dx4 y4 D4f
..
. ..

. ..
. ..

. ..
.

nth y(n) or f (n)(x) dny/dxn yn Dnf

Introduction to Differential Calculus: Systematic Studies with Engineering Applications for Beginners, First Edition.
Ulrich L. Rohde, G. C. Jain, Ajay K. Poddar, and Ajoy K. Ghosh.
� 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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Example (1): If y ¼ f ðxÞ ¼ 2x5 � x2 þ 3; then

y1 ¼ 10x4 � 2x; y2 ¼ 40x3 � 2; y3 ¼ 120x2;

y4 ¼ 240x; y5 ¼ 240; y6 ¼ 0; . . . ; yn ¼ 0

Note that, for a polynomial function f(x) of degree 5, f (n)(x)¼ 0 for n� 6. More generally,

the (nþ 1)th and all higher derivatives of any polynomial of degree n are equal to 0.

However, there are functions [like sin x, cos x, ex, logex, and their extended forms, [that

is, sin(axþ b), cos(axþ b), eax, loge(axþ b), or more general ones like sin( f(x)), e f(x), and

loga( f(x))] that can be differentiated any number of times and f (n)(x) is never 0.

The most important derivatives in physical applications are the first and the second, and

these have different special meanings. For example, if x represents time and y the distance, then

dy/dx represents velocity v. In this case, the rate of change of velocity, that is, dv/dx (¼d2y/dx2)

is called the acceleration.

Also, the second-order derivative has other special interpretations, depending on the

meaning of the related variables x and y. When the relation between x and y is graphed, then

one interpretation of d2y/dx2 is associated with the curvature of the graph.

Note (1): The generation of successive derivatives is not merely free creation of the curious

mind. A railroad engineer has to employ second derivatives to calculate the curvature of the line

he constructs. He needs a precise measure of the curvature to find the exact degree of banking

required to prevent trains from overturning.

An automobile designer utilizes the third derivative in order to test the ride quality of the car

he designs and the structural engineer has even to go to the fourth derivative in order to measure

the elasticity of the beam and the strength of the columns. Besides, we will later see that the

derivatives of higher orders are needed to expand functions (to the desired degree of accuracy)

in the form of polynomials.

Example (2): Let us find the nth derivatives of the following:

(i) xn, (ii) ex, (iii) ax, (iv) sin x, (v) cos x, (vi) 1/x, (vii) logex

Solutions:

(i) Let y¼ xn.

) y1 ¼ nxn�1; y2 ¼ nðn� 1Þxn�2; y3 ¼ nðn� 1Þðn� 2Þxn�3;

y4 ¼ nðn� 1Þðn� 2Þðn� 3Þxn�4; and so on

) yn ¼ nðn� 1Þðn� 2Þðn� 3Þ . . . 2 � 1 � xn�n

¼ nðn� 1Þðn� 2Þðn� 3Þ . . . 2 � 1
¼ n! Ans:

Remark: ynþ1¼ 0 (since, yn¼ n!¼ constant)
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(ii) Let y¼ ex.

) y1 ¼ ex; y2 ¼ ex; y3 ¼ ex; and so on

) yn ¼ ex Ans:

(iii) Let y¼ ax.

) y1 ¼ ax logea ¼ ax � k

where k¼ logea¼ constant.

) y2 ¼ k � ax logea ¼ k2 � ax

y3 ¼ k3 � ax; and so on

) yn ¼ kn � ax ¼ ðlogeaÞn � ax Ans:

(iv) Let y¼ sin x.

) y1 ¼ cos x ¼ sin
� p
2
þ x

� �

)sin
� p
2
þ �

�
¼ cos �

�

) y2 ¼ cos
� p
2
þ x

�
¼ sin

�
p
2
þ
� p
2
þ x

��
¼ sin

�
2 � p

2
þ x

�

y3 ¼ cos
�
2 � p

2
þ x

�
¼ sin

�
p
2
þ
�
2 � p

2
þ x

��

¼ sin
�
3 � p

2
þ x

�

) yn ¼ sin
�
n � p

2
þ x

�
Ans:

(v) Let y¼ cos x.

) dy

dx
¼ y1 ¼ �sinx ¼ cos

p
2
þ x

� � )cos p
2
þ �

� �
¼ �sin �

h i

Now, it is easy to show that,

yn ¼ cos n � p
2
þ x

� �
Ans:
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(vi) Let y ¼ ð1=xÞ ¼ x�1.

) y1 ¼ �1 � x�2 ¼ ð�1Þ
x2

y2 ¼ ð�1Þð�2Þx�3 ¼ ð�1Þ2 � 1 � 2
x3

¼ ð�1Þ2 � 2!
x3

y3 ¼ ð�1Þð�2Þð�3Þ � x�4 ¼ ð�1Þ3 � 1 � 2 � 3
x4

¼ ð�1Þ3 � 3!
x4

..

.

) yn ¼ ð�1Þn � n!
xnþ1

Ans:

(vii) Let y¼ logex.

) y1 ¼ 1

x
¼ x�1

) y2 ¼ ð�1Þx�2 ¼ ð�1Þ
x2

y3 ¼ ð�1Þð�2Þ � x�3 ¼ ð�1Þ22!
x3

..

.

) yn ¼ ð�1Þð�2Þð�3Þ . . . ð�nþ 1Þ
xn

¼ ð�1Þn�1ðn� 1Þ!
xn

[Compare this result with the nth derivative of 1/x at (vi).]

Note (2): The higher derivatives with respect to the extended forms of the above functions

are given below at (1)–(9). The reader may easily prove these results. It is useful to remember

them since they will be needed for solving problems.

1. Let y¼ (axþ b)r, r2R.

Then, yn¼ r(r� 1)(r� 2) . . . (r� nþ 1)an(axþ b)r�n

This result is true for every real value of r.

2. Let y¼ (axþ b)r, r2N.

Then,

yn ¼ r!anðaxþ bÞr�n

ðr� nÞ! ; ðn < rÞ

where r is a positive integer.

3. Let y¼ (axþ b)n, n2N.

Then,

yn ¼ n!anðaxþ bÞn� n

ðn� nÞ! ; ðn ¼ rÞ

yn ¼ n!an

)ðaxþ bÞ0 ¼ 1

and 0! ¼ 1

" #
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4. Let y ¼ 1

ðaxþbÞ¼ðaxþbÞ�1.

Then,

y1 ¼ ð�1Þ � a � ðaxþ bÞ�2

y2 ¼ ð�1Þð�2Þ � a2 � ðaxþ bÞ�3

y3 ¼ ð�1Þð�2Þð�3Þ � a3 � ðaxþ bÞ�4

..

.

yn ¼ ð�1Þnn!anðaxþ bÞ�ðnþ1Þ

yn ¼ ð�1Þnn!an
ðaxþ bÞnþ1

5. Let y¼ log (axþ b).

Then,

yn ¼ ð�1Þn�1ðn� 1Þ!an
ðaxþ bÞn

6. Let y¼ eax.

Then,
yn ¼ eax � an

yn ¼ aneax

7. Let y¼ akx

Then, yn ¼ akx � knðlogeaÞk

yn ¼ kn � akx � ðlogeaÞk
ð1Þ

8. If y ¼ sinðaxþ bÞ; yn ¼ an sin

�
axþ bþ n � p

2

�

If y ¼ sin ax; yn ¼ an sin

�
axþ n � p

2

�

If y ¼ sin x; yn ¼ sin

�
xþ n � p

2

�

9. If y ¼ cosðaxþ bÞ; yn ¼ an cos

�
axþ bþ n � p

2

�

If y ¼ cos ax; yn ¼ an cos

�
axþ n � p

2

�

If y ¼ cos x; yn ¼ sin

�
xþ n � p

2

�

(1) Examples: If

(i) y ¼ 73x; yn ¼ 73x � ð3Þn � ðloge7Þ3

(ii) y ¼ 511x; yn ¼ 511xð11Þnðloge5Þ11

(iii) y ¼ e7x; yn ¼ e7x � ð7Þn � ðlogeeÞ7
¼ e7x � ð7Þnð )logee ¼ 1Þ
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17.2 DERIVATIVES OF HIGHER ORDERS: IMPLICIT FUNCTIONS

If y is an implicit function, its higher derivatives are found by differentiating the required

number of times the equation connecting x and y, bearing in mind that y and all its derivatives

are functions of the independent variable x.

For example, the second derivative of the function y specified by the equation

x2 þ y2 ¼ 1 ð1Þ

is found by differentiating equation (i) twice. We get 2xþ 2yy0 ¼ 0 or

xþ yy0 ¼ 0 ð2Þ

and (x0)þ yy00 þ y0y0 ¼ 0 or

1þ ðy0Þ2 þ yy00 ¼ 0 ð3Þ

But y0 ¼ �ðx=yÞ and y00 ¼ �ð1þ ðy0Þ2Þ=y.

) y00 ¼ � 1þ �ðx=yÞð Þ2
y

¼ � x2 þ y2

y3
¼ � 1

y3
using ð1Þ½ �

17.3 DERIVATIVES OF HIGHER ORDERS: PARAMETRIC FUNCTIONS

In order to find a derivatived of higher orderd of a function specified by parametric equations,we

differentiate the expression of the preceding derivative considering it as a composite function of

the independent variable.

Let x¼�(t) and y¼ f(t). Then, we have,

dy

dx
¼ f 0ðtÞ

�0ðtÞ ¼
ðdy=dtÞ
ðdx=dtÞ

where dx/dt 6¼ 0. Also, the function x¼�(t) has an inverse function t¼��1(x).

Furthermore,

y00 ¼ d

dx

�
f 0ðtÞ
�0ðtÞ

�
¼ d

dt

�
f 0ðtÞ
�0ðtÞ

�
� dt
dx

�
using the property;

dy

dx
¼ dy

dt
:
dt

dx

�

¼ �0ðtÞf 00ðtÞ � f 0ðtÞ ��00ðtÞ�
�0ðtÞ

�2 � dt
dx

From the inverse function t¼��1(x), we obtain

dt

dx
¼ 1

�0ðxÞ
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and arrive at the expression

y00 ¼ �0ðtÞf 00ðtÞ � f 0ðtÞ ��00ðtÞ
�0ðtÞ½ �3

The differentiation of the last relation with respect to x leads to the expression for the third

derivative, and so on.

Example (3): Let us find the derivatives y0 and y00 of the function specified by the equations

x¼ a cos t and y¼ b sin t.

Solution: On differentiating, we obtain

dx

dt
¼ �a sin t;

d2x

d2t
¼ �a cos t

dy

dt
¼ b cos t;

d2y

d2t
¼ �b sin t

) y0 ¼ dy

dx
¼ b cos t

�a sin t
¼ � b

a
cot t

�

)dy
dx

¼ dy

dt
� dt
dx

¼ dy

dt
=
dx

dt

�

y00 ¼ d

dx

� dy

dx

�
¼ ð�a sin tÞð�b sin tÞ � ðb cos tÞð�a cos tÞ

ð�a sin tÞ2 �
� dt

dx

�

¼ ab sin2 tþ ab cos2 t

a2 sin2 t
� 1

ð�a sin tÞ ¼ � b

a2 sin3 t

) y0 ¼ � b

a
cot t

y00 ¼ � b

a2 sin3 t
Ans:

17.4 DERIVATIVES OF HIGHER ORDERS: PRODUCT OF TWO FUNCTIONS

(LEIBNIZ FORMULA)

It helps us to find the nth derivative of the product of two functions. Let u(x) and v(x) be

functions of x, possessing derivatives of nth order, and y¼ u�v. Then,

yn ¼ ðuvÞn ¼ nC0unv0 þ nC1un�1v1 þ nC2un�2v2 þ � � � þ nCrun�rvr þ � � � þ nCnu0vn

where,

nCr ¼
n!

ðn� rÞ!r!

This formula can be formally obtained if we take Newton’s binomial formula for

the expansion of (uþ v)n and then replace the powers of u and v by the derivatives of the
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corresponding orders of u and v (and put u0¼ u, v0¼ v). Here, we do not present the general

proof of this formula and confine ourselves to considering some examples of its application.(2)

Note (3): When one of the functions in the above theorem is of the form xm, then we should

choose it as (the second function) v, and the other as (the first function) u, because xm shall have

only m derivatives (and not more).

Note (4): From the expression for nCr, we get

nC1¼ n

nC2 ¼
nðn� 1Þ

2!
¼ nðn� 1Þ

1 � 2

nC3 ¼
nðn� 1Þðn� 2Þ

3!
¼ nðn� 1Þðn� 2Þ

1 � 2 � 3 ; and so on

Example (4): If y¼ eaxx2, find yn.

Solution: u0 ¼ eax; v0 ¼ x2

u1 ¼ aeax; v1 ¼ 2x

u2 ¼ a2eax; v2 ¼ 2

un ¼ aneax; v3 ¼ 0 ¼ v4 ¼ v5 ¼ � � �

yn ¼ aneaxx2 þ nan�1eax2xþ nðn� 1Þ
1 � 2 an�2eax � 2

or yn ¼ eax½anx2 þ 2nan�1xþ nðn� 1Þan�2� Ans:

Example (5): Let us compute the 100th derivative of the function y¼ x2 sin x.

We have

y100 ¼ ðsin x � x2Þ100
¼ ðsin xÞ100 � x2 þ 100C1ðsin xÞ99ð2xÞþ 100C2ðsin xÞ98ð2Þ

¼ ðsin xÞ100 � x2 þ 200xðsin xÞ99 þ
100 � 99

2
ðsin xÞ98ð2Þ

All the subsequent terms are omitted here since they are identically equal to zero. Consequently,

y100 ¼ x2 sin
�
xþ 100

p
2

�
þ 200x sin

�
xþ 99

p
2

�
þ 9900 sin

�
xþ 98

p
2

�ð3Þ

¼ x2 sin x� 200x cos x� 9900 sin x Ans:

(2) A rigorous proof of Leibniz formula may be carried out by the method of complete mathematical induction [i.e., by

proving that if this formula holds for nth order, it will also hold for the order (nþ 1)].
(3) We know that sin½xþ ð2nÞ � ðp=2Þ� ¼ sin x and sin½xþ ð2nþ 1Þ � ðp=2Þ� ¼ cos x.
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Example (6): Differentiate n times the equation

x2
d2y

dx2
þ x

dy

dx
þ y ¼ 0

Here, each term is differentiated n times.

Solution: Dnðy2x2Þ ¼ ynþ2x
2þnC1ynþ1ð2xÞþnC2ynð2Þ

Dnðy2x2Þ ¼ x2ynþ2 þ nð2xÞynþ1 þ nðn� 1Þ
2!

ð2Þ � yn ð4Þ

Dnðy1xÞ ¼ x � ynþ1 þ n � yn ð5Þ

DnðyÞ ¼ þyn ð6Þ
Adding (4), (5), and (6), we get

0 ¼ x2 � ynþ2 þ ð2nþ 1Þ � ynþ1 þ ½nðn� 1Þ þ nþ 1�yn
0 ¼ x2 � ynþ2 þ ð2nþ 1Þ � ynþ1 þ ½n2 þ 1�yn

Example (7): If y¼ sin(m sin�1x), then prove ð1� x2Þ � xy1 þm2y ¼ 0 and deduce that

ð1� x2Þynþ2 � ð2nþ 1Þ � ynþ1 � ðn2 �m2Þyn ¼ 0

Solution: We have y¼ sin(m sin�1x) (7)

y1 ¼ cosðm sin�1xÞ � mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� x2Þp

or
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
� y1 ¼m cosðm sin�1xÞ

or ð1� x2Þ � y21 ¼m2 cos2ðm sin�1xÞ ðon squaring both the sidesÞ
¼m2½1� sin2ðm � sin�1xÞ� ½since cos2� ¼ 1� sin2��
¼m2½1� y2�
) 1� x2 � y21 ¼ m2 ½1� y2� ð18Þ

Differentiating both the sides of (18) with respect to x,

ð1� x2Þ2y1y2 þ y21ð�2xÞ ¼ m2½�2yy1�

or

ð1� x2Þy2ð2y1Þ � xð2y21Þ ¼ �m2 � yð2y1Þ
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Canceling the factor (2y1) from both the sides, we get

ð1� x2Þy2 � xy1 þm2y ¼ 0 ð9Þ ðProvedÞ

Now, in order to prove the second relation, we shall differentiate each term of equation (9) n

times by Leibniz theorem.

Dnð1 � x2Þy2 ¼ ynþ2ð1� x2Þ þ nynþ1ð�2xÞ þ nðn� 1Þ
2!

ynð�2Þ

¼ ynþ2ð1� x2Þ � nynþ1ð2xÞ � yn � nðn� 1Þ ð10Þ

Dnð�xy1Þ ¼ ynþ1ð�xÞþnC1ynð�1Þ
¼ �xynþ1 � nyn ð11Þ

Dnðm2yÞ ¼ m2yn ð12Þ

Adding (10), (11), and (12), we get

0 ¼ ð1� x2Þynþ2 þ ð�2xn� xÞynþ1 þ ½�nðn� 1Þ � nþm2�yn

or ð1� x2Þynþ2 � ð2nþ 1Þynþ1 � ðn2 �m2Þyn ¼ 0 ð4Þ ðProvedÞ

The following results can be easily proved:

If y¼ eax � sin bx, then,

yn ¼ ða2 þ b2Þn=2 sinðbxþ naÞ � eax

where a¼ tan�1(b/a).

If y¼ eax sin(bxþ c), then

yn ¼ ða2 þ b2Þn=2 sinðbxþ cþ naÞ � eax

where, a¼ tan�1(b/a).

In particular, if y¼ ex sin x (here a¼ 1, b¼ 1, c¼ 0), then

yn ¼ ð12 þ 12Þn=2 sinðxþ naÞ � ex

¼ 2n=2 � ex � sinðxþ n tan�1 1=1Þ

¼ 2n=2 � ex � sinðxþ n � p=4Þ
Similarly, if y¼ ex cos x, then

yn ¼ 2n=2 � ex � cosðxþ n � p=4Þ
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Now, if y¼ e2x � sin x (here a¼ 2, b¼ 1, c¼ 0), then

yn ¼ ð22 þ 12Þn=2 sinðxþ naÞ
¼ 5n=2 sin

�
xþ n tan�1 1

2

�
If y¼ eax � cos bx, then

yn ¼ ða2 þ b2Þn=2 cosðbxþ naÞeax

where a¼ tan�1(b/a).

If y¼ eax cos(bxþ c), then

yn ¼ ða2 þ b2Þn=2 � cosðbxþ cþ naÞ � eax

where a¼ tan�1(b/a).

Note (5):The followingmaterial is given here to satisfy the natural curiosity about differentials

of higher orders. The reader may find it useful later on.

17.5 DIFFERENTIALS OF HIGHER ORDERS

Consider a function y¼ f(x), where x is the independent variable. The differential of this

function is denoted by

dy ¼ f 0ðxÞdx

which depends on two arguments, namely, the independent variable x and its differential dx.

Here, it is important to remember that the differential dx of the independent variable x is a

magnitude independent of x: for any given value of x, the value of dx can be chosen quite

arbitrarily.(4)

It means that dy must be looked upon as a function of x alone and that we have the right to

speak of the differential of this function. The differential of the differential of a function, that is,

d[df(x)], is called the second differential (or the differential of the second order) of the function

f(x) and denoted by

d2y :

d2y ¼ dðdyÞ

By virtue of the general definition of a differential, we have,

d2y ¼ ½ f 0ðxÞdx�0dx

(4) In otherwords, the differential f 0(x)dx is a function ofx, but only the first factor [i.e., f 0(x)] can depend onx. The second
factor dx is an increment of the independent variable x and y is independent of the value of the variable dx.
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which is a function of x (for an arbitrary but fixed value of dx independent of x). Since dx is

independent of x, dx is taken outside the sign of the derivative upon differentiation, and we get

d2y ¼ f 00ðxÞðdxÞ2

Note (6):When writing the degree of differential, it is common to drop the brackets; in place of

(dx)2, we write dx2, and so on.

) d2y ¼ f 00ðxÞdx2

Note (7):To unify the terminology, we call the differential df(x) [¼ f 0(x)dx] of the function f(x)
the differential of the first order (or the first differential).

Similarly, the third differential (or the third-order differential) of a function is the differential

of its second differential.

d3y ¼ dðd2yÞ ¼ ½f 00ðxÞdx2�dx ¼ f 000ðxÞdx3

Analogously, for the differential of the nth order, we arrive at the formula

dny ¼ f ðnÞðxÞdxn

where dxn is the nth power of dx. Thus, the differential of nth order is equal to the product of the

nth derivative with respect to the independent variable by the nth power of the differential of

the independent variable.

We have seen (in Chapter 16) that, if y¼ f(x), then dy¼ f 0(x)dx irrespective of whether the

argument x is an independent variable or a function of another argument. [Recall that if y¼ f(u),

where u¼�(x), then dy¼ f 0(u)�0(x)dx¼ f 0(u)du]. In the general case, this property (i.e., the

invariance property of the first derivative) is not possessed by the differentials of higher orders.

Indeed, suppose that x is no longer an independent variable as before, but a function of a new

independent variable t [i.e.,x¼�(t)]. Then, dx also becomes function of t, and therefore it is not

allowable to regard dx as a constant when the first differential is differentiated. This leads to a

new expression of d2y different from the one above. Computing the differential of dy by

applying the differentiation rule for a product, we find

d2y ¼ d½f 0ðxÞdx�

Now, treating f0(x)dx as a product of functions, we get,

d2y ¼ d½f 0ðxÞ�dxþ f 0ðxÞdðdxÞ
¼ ½ f 00ðxÞ�dxþ f 0ðxÞd2x
¼ f 00ðxÞdx2 þ f 0ðxÞd2xð5Þ

Observe that there appears the additional term f0(x)d2x. If x is an independent variable, the

first term is retained but the second one vanishes, since,

d2x ¼ ðxÞ00dx2 ¼ 0 � dx2 ¼ 0

(5) We must distinguish between the terms dx2 and d2x:

dx2 ¼ ðdxÞðdxÞ; d2x ¼ ðxÞ00dx2 ¼ 0 � dx2
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The expression for the third differential in the case when x depends on t is still more

complicated. Thus, when finding a higher order differential, we take into account the nature of

the function and distinguish between the cases when it is an independent variable or depends on

some other variable.(6)

17.6 RATE OF CHANGE OF A FUNCTION AND RELATED RATES

In Chapter 9, we have discussed at length the concept of rate of change of a function

y [¼ f(x)] with respect to the independent variable x and invented the definition of derivative

of a function. There, we have clarified the distinction between the average rate of change and the

instantaneous rate (or the actual rate) of change of a function. Also, wewere convinced through

examples that in certain situations, the instantaneous rate of change ismore significant than the

average rate of change of a function.

In calculus, we are fundamentally concernedwith the actual rate of change of a functionwith

respect to the change in the variable on which it depends.

Furthermore, if both x and y are varying with t (i.e., both x and y are functions of t), then

dy

dt
¼ dy

dx
� dx
dt

ðby chain ruleÞ

¼ f 0ðxÞ � dx
dt

Thus, the rate of change of one variable can be calculated if the rate of change of the other

(related) variable is known.

For example, when a spherical balloon is inflated, its radius r, volume v, and surface area s

grow simultaneously with time t. Thus, r, v, and s are all functions of t, but each of them could

also be considered as a function of any one of the remaining variables, since all of them are

interrelated. One might be interested in computing the following:

dr

dt
¼ rate of increase of radius per unit increase in time

ðat the instant when say r ¼ 8 cmÞ

ds

dt
¼ rate of increase of surface area per unit increase in time

ðat the instant when say r ¼ 6 cmÞ
dv

dt
¼ rate of increase of volume per unit increase in time

ðat the instant when say r ¼ 10 cmÞ
ds

dr
¼ rate of increase of surface area per unit increase in radius

ðat the instant when say r ¼ 25 cmÞ
dv

dr
¼ rate of increase of volume per unit increase in radius

ðat the instant when say r ¼ 25 cmÞ

(6) Mathematical Analysis (English translation) by A.F. Bermant and I.G. Aramanovich (pp. 155–173), Mir Publishers,

Moscow, 1975.
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The d-notation helps us remember which rate of change we are interested in. In many rate-

of-change problems, we can find the time rate of change of a quantityQ if we know the time rate

of change of one or more related quantities.

Let us consider some examples.

Example (8): If a spherical balloon is inflated at the rate of 10 cm3/s, how fast is the radius of

the balloon increasing when the radius is 5 cm.

Solution: Let V¼ volume of the (spherical) balloon.

dv

dt
¼ 10 cm3=s ð13Þ

The (geometrical) relation connecting the variable is

v ¼ 4

3
pr3

) dv

dr
¼ 4pr2 ð14Þ

To compute ðdr=dtÞ at r¼ 5.

How do we compute this?

To compute the desired rate, we may consider either the rate whose value is known (here it is

dv/dt) or the rate that is obtained from the relation connecting the variables (here it is dv/dr).

Furthermore, to compute the desired rate, we write

dv

dt
¼ dv

dr
� dr
dt

ðby chain ruleÞ

Observe that dr/dt appears in this relation, so that we get

dr

dt
¼ dv=dt

dv=dr

or

dv

dr
¼ dv

dt
� dt
dr

ðby chain ruleÞ

Observe that, in this relation, dr/dt does not appear, but dt/dr appears. However, in view of

this definition of derivative as a ratio of differentials, we can write

dr

dt
¼ dv=dt

dv=dr
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which is the same expression as obtained above. Now we get

dr

dt
¼ 10

4pr2

) dr

dt

				
r¼5

¼ 10

4pr2

				
r¼5

¼ 10

4pð5Þ2 ¼
1

10p

Therefore, when the radius is 5 cm, the radius is increasing at the rate of 1
10p cm/s Ans.

Note (8): It is necessary to write down the units of the rate computed.

Remark: Note that for radius¼ 10 cm, dr/dt¼ 1/40p. It may be observed here that the balloon

is inflated at a constant rate (10 cm3/s), but the rate at which its radius increases is not constant.

In fact, dr/dt keeps on decreasing with time (why?).

In the related rate problems, all thevariables are interrelated and so are their time rates. If two

ormore equations connect thevariables involved, thenwe can compute the desired rates (e.g., in

this case, dv/dr, ds/dr, and dv/ds) by obtaining the required rate(s) from the right equation.

The important step is to connect the available rate(s) suitably so that the desired rate gets into

the relation. Then, by using the available data and the derived data, we can easily compute the

desired rate.

Example (9): If v denotes the volume of a sphere and s its surface area, find the rate of change

of v with respect to s, when the radius of the sphere is 2 cm.

Solution: Let r¼ radius (of the sphere),

v ¼ volume of the sphere ¼ 4

3
pr3 ð15Þ

and s ¼ surface area of the sphere ¼ 4pr2 ð16Þ
To find dv=ds, when r¼ 2 cm.

We have,

dv

dr
¼ 4pr2 from ð15Þ½ �

and
ds

dr
¼ 8pr from ð16Þ½ �

Now;
dv

ds
¼ dv=dr

ds=dr
¼ 4pr2

8pr
¼ r

2

) dv

ds

				
at r¼2

¼ r

2

				
at r¼2

¼ 2

2
¼ 1 cm3=cm2 Ans:

Example (10): An edge of a variable cube is increasing at the rate of 3 cm/s. How fast is the

volume of the cube increasing when the edge is 10 cm long?
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Solution: Let edge of the (variable) cube¼ x cm.

) Volume of the cube v ¼ x3 ð17Þ

Given dx/dt¼ 3 cm/s.

To find

dv

dt
; when x ¼ 10 cm ð18Þ

From (17), we easily get

dv

dx
¼ 3x2 ð19Þ

Now,

dv

dx
¼ dv

dt
� dt
dx

¼ dv=dt

dx=dt

) dv

dt
¼ dv

dx
� dx
dt

) dv

dt
¼ ð3x2Þ � ð3Þ

) dv

dt

					
at x¼10

¼ 3ð10Þ2 � 3 by using ð18Þ and ð19Þ½ �

¼ 900 cm3=s Ans:

Example (11): The radius of a spherical balloon increases at the rate of 4 cm/s. Find the rate at

which its volume increases when its radius is 5 cm.

Solution: Let r¼ radius (of the spherical balloon) and

v ¼ volume ¼ 4

3
pr3 ð20Þ

Also,

dr

dt
¼ 4 cm=s ð21Þ

To find dv/dt when r¼ 5.

Note that from (20), we easily get the following rate:

dv

dr
¼ 4pr2 ð22Þ
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Now, to get dv/dt, we write

dv

dr
¼ dv

dt
� dt
dr

¼ dv=dt

dr=dt

) dv

dt
¼ dv

dr
� dr
dt

¼ ð4pr2Þ � ð4Þ

) dv

dt

				
r¼5

¼ 4pð5Þ2 � ð4Þ ¼ 400p cm3=s Ans:

Example (12): A stone is dropped into a quiet lake and waves move in circles at a speed of

4 cm/s. At the instant when the radius of the circular wave is 10 cm, how fast is the enclosed area

increasing?

Solution: Let r¼ radius of a circle and A¼ area of the circle.

A ¼ pr2 ð23Þ
Given

dr

dt
¼ 4 cm=s ð24Þ

To find dA/dt when r¼ 10 cm.

From (23), we get

dA

dr
¼ 2pr ð25Þ

We write

dA

dr
¼ dA

dt
� dt
dr

) dA

dt
¼ dA

dr
� dr
dt

) dA

dt
¼ ð2prÞ � ð4Þ �

)dA
dr

¼ 2pr

dr

dt
¼ 4 ðgivenÞ

2
66664

or
dA

dt
¼ 8pr

) dA

dt

				
r¼10

¼ 2pð10Þ � ð4Þ ¼ 80p cm2=s Ans:ð7Þ

The enclosed area is increasing at the rate of 80p cm2/s when r¼ 10 cm.

(7) We solve this equation for dA/dt, using the fact that dt/dr¼ 1/(dr/dt).
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Note (9): At r¼ 15 cm, dA/dt¼ 120p cm2/s and at r¼ 5 cm, dA/dt¼ 40p cm2/s.

Example (13): If the volume of a sphere increases at the rate of 25 cm3/s, find the rate of

increase of its surface area at the instant when its radius is 10 cm.

Solution: Let r¼ radius of the (changing) sphere at any instant.

) Volume of sphere v ¼ 4

3
pr3 ð26Þ

and

surface area s ¼ 4pr2 ð27Þ

Given

dv

dt
¼ 25 cm3=s ð28Þ

To find ds/dt when r¼ 10 cm.

From (26) and (27), we get

dv

dr
¼ 4pr2 from ð26Þ½ � ð29Þ

and
ds

dr
¼ 8pr from ð27Þ½ � ð30Þ

To compute ds/dt, we write

ds

dr
¼ ds

dt
� dt
dr

) ds

dt
¼ ds

dr
� dr
dt

) ds

dt
¼ 8pr � dr

dt
ð31Þ

Now, we are required to find the value of dr/dt, which we can find by using only (26)

(why?).(8)

dv

dt
¼ dv

dr
� dr
dt

¼ 4pr2 � dr
dt

) 25 ¼ 4pr2 � dr
dt

ð32Þ

(8) It is given that (dv/dt)¼ 25 cm3/s. Now (dv/dt)¼ (dv/dr)�(dr/dt) [where (dv/dr)¼ 4pr2].
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dr

dt
¼ 25

4pr2

) ds

dt
¼ 2

r
� ð25Þ ¼ 50

r
cm2=s

ds

dt

				
r¼10

¼ 5 cm2=s Ans:

Example (14): Sand is pouring from a pipe at the rate of 10m3/s. The falling sand forms a

cone on the ground in such a way that the height of the cone is always twice the radius of the

base. Find the rate at which the height of the sand cone is increasing when sand in the pile is

8 m high.

Solution: Given

dv

dt
¼ 10 m3=s ð33Þ

Height of the sand cone h ¼ 2r ðalwaysÞ ð34Þ

Volume of cone v ¼ 1

3
pr2h ¼ 1

3
p
� h

2

�2

� h

¼ 1

12
ph3

ð35Þ

To find dh/dt when h¼ 8 m.

From (35), we get

dv

dh
¼ 3

12
ph2 ¼ 1

4
ph2 ð36Þ

Note that, thevalue of dv/dt is given at (33). Hence,we express this rate in away such that the

desired rate dh/dt gets involved in the relation.

We write,

dv

dt
¼ dv

dh
� dh
dt

¼
� 1

4
ph2

�
� dh
dt

�

)dv
dh

¼ 1

4
ph2

�

or 10 ¼ 1

4
ph2 � dh

dt

�

)dv
dt

¼ 10 m3=s

�

) dh

dt
¼ 40

ph2

) dh

dt

				
at h¼8

¼ 40

pð8Þ2 ¼
5

8p
m=s Ans:

The units of the final result must be mentioned carefully.
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Example (15): Aman of height 2mwalks on a level road at a (uniform) speed of 5 km/h, away

from a lamppost 6 m high. Find the rate at which the length of his shadow is increasing.

Solution: The figure given below reflects the situation stated in the problem.

L (Lamp)

G (Ground) (Shadow)N P

sx

M (Man)
6 m

2 m

Let x¼ distance between the lamppost and the man at any given instant t.

Then, s¼ length of the shadow of the man at the instant t.

Here, it is important to note that the length s of the shadow is related to the distance x from

the lamppost. Hence, we must express the length s in terms of the length x. Also, note that we

have dx=dt ¼ 5 km/h and we have to find ds=dt. Since the trianglesGPL and NPM are similar,

we have

NP

GP
¼ NM

GL

or
s

xþ s
¼ 2

6
¼ 1

3

or 3s ¼ xþ s or 2s ¼ x

) 2
ds

dt
¼ dx

dt

ds

dt
¼ 5

2

)dx
dt

¼ 5

� �

Thus, the length of the shadow increases at the rate of 2:5 km=h Ans.

Example (16): The height of an inverted cone is 10 cm and radius of its circular base is 5 cm.

Water is poured into it at the rate of 1.5 cm3/s. Find the rate atwhich the level ofwater in the cone

is rising when the depth is 4 cm.

Solution: At any time t, let the height of water level¼ h and radius of cone at h¼ r. We have

r

h
¼ 5

10
¼ 1

2
) r ¼ h

2
ð37Þ
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Line of approach:

(i) When water is poured into the cone at the (constant) rate of 1.5 cm3/s, we can say that

the rate of increase in volume of water in the cone is

ðdv=dtÞ ¼ 1:5 ¼ ð15=10Þ ¼ ð3=2Þ cm3=s:

(ii) We have to find the rate at which the level of water in the cone is rising when h¼ 4 cm,

that is, to find dh/dt when h¼ 4.

(iii) Let V¼ volume of water in the cone at any instant t.

10 cm

h cm

radius 5 cm

) V ¼ 1

3
pr2h ¼ p

3

� h

2

�
h ¼ p

12
h3

Since the value of

dV

dt
¼ ph2

4

dh

dt
ð38Þ

) dh

dt
¼ )dV

dt
¼ 3

2

2
4

3
5

) dh

dt
ðat h ¼ 4Þ ¼ 4

3

2
� 1

p � 16 ¼ 3

8p
cm=s

) Rate of increase of water level ¼ 3=8p cm=s Ans:
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Example (17): A ladder 5m long is leaning against a wall. The bottom of the ladder is pulled

along the ground away from the wall at the rate of 2m/s. How fast is its height on the wall

decreasing when the foot of the ladder is 4 m away from the wall?

Solution: At any time t, let

(i) the bottom of the ladder be at a distance x m from the wall and

(ii) the height at which the top of the ladder touches the wall be y m.

Then,

x2 þ y2 ¼ ð5Þ2 ¼ 25 ð39Þ

T (Top)

5 my

xG B (Bottom)

FIGURE 17.1

T

B
4 m

5 m

y

FIGURE 17.2

532 DERIVATIVES AND DIFFERENTIALS OF HIGHER ORDERS



Note that

(a) Bottom B of the ladder is pulled away along the ground at the rate of 2m/s.

) dx

dt
¼ 2 ð40Þ

(b) When the bottom B is 4m away from the wall, we have

y2 þ 42 ¼ 52

y2 ¼ 25� 16 ¼ 9

) y ¼ 3 m

(c) We have to find dy/dt when y¼ 3 and x¼ 4.

From (39) we have

2x
dx

dt
þ 2y

dy

dt
¼ 0; or

dy

dt
¼ � x

y

dx

dt

�
where

dx

dt
¼ 2

�

) dy

dt
¼ � 4

3
� ð2Þ ¼ � 8

3

Therefore, the end of the ladder comes down at the rate of �ð8=3Þm=s.
[Negative sign in �ð8=3Þ tells that upper end of the ladder slides downward.]

Important Note (10):

In the preceding example, it is essential to draw Figure 17.1 that represents the situation at any

instant. If we had tried to find the rate of slippage from Figure 17.2 that represents the situation

only at a particular time t1, then we would not have been able to obtain a relationship between

the rates dx/dt and dy/dt. In particular, x does not appear in this figure. However, this figure is

needed to find the value of y for the givenvalue ofx at the time t1. These related values ofx and y

are then used in part c.

The procedure for solving related rate problems includes the following steps:

Step (1): Write down the available information in a convenient order.

(i) Decide what rates of change are given and express these data in Leibniz notation:

dv/dt¼ 50 cm3/s or dx/dt¼ 3m/s and so on.

(ii) Write down, if any geometric relation connects the variables involved.

Examples: V¼ (4/3)pr3, or S¼ 4pr2, or x2þ y2¼ 64, and so on.

(iii) Write down the derivatives of the quantities involved with respect to the relevant

independent variable(s).

Example 18:
dv

dr
¼ 4pr2;

ds

dr
¼ 8pr

2xþ 2y
dy

dx
¼ 0 ) dy

dx
¼ � x

y

(iv) Decide what rate of change is desired and express it in Leibniz notation.

To find dh/dt at h¼ 5, dy/dt when y¼ 3, and so on.
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Step (2): If necessary, drawa picture and express the available details therein. Such a figuremay

be needed for correcting the variables involved [refer to solved examples (9) and (10)] [note

down what changes and what does not].

Step (3): Express the given rate of change from step (1.i) in the form of a product of rates of

change (applying the chain rule) ensuring that the desired rate of change appears in the relation.

For example, suppose we are given the value of dv/dt and we have to compute dr/dt when

r¼ 5. Then we express

dv

dt
¼ dv

dr
� dr
dt

ðby chain ruleÞ ð41Þ

Here, dv/dt is given and the expression for dv/dr is available from step (1.iii). Hence,

equation (41) can be solved for dr/dt and its value can be computed for any value of r.

Note (11): Sometimes, it may happen that we have to compute the rate ds/dr, whereas relation

(41) involves the rate dr/ds, which is the reciprocal of the desired rate. In such cases, we can

express it in the desired form by transferring it to the other side of the equation and solve the

equation for the desired rate.

Note (12):We may also express the relation from step (1.iii) in a suitable form, (applying the

chain rule) ensuring that the desired rate appears in the relation. Then, by using the available

information, we can obtain the desired rate.

Exercises

(1) The edge of a cube is increasing at the rate of 5 cm/s. How fast is the volume of the cube

increasing when the edge is 12 cm long?

Ans. 2160 cm3/s

(2)Astone is dropped into a quiet lake andwavesmove outwards in circles at the speedof 4 cm/s.

At the instant when the radius of the circular wave is 10 cm, how fast is the enclosed area

increasing?

Ans. 80p cm2/s

(3) A man 1.8 m high walks away from a lamppost at the rate of 1.2m/s. If the height of the

lamppost is 4.5m, find the following:

(i) The rate at which the length of his shadow increases.

Ans. 0.8m/s

(ii) The rate at which the tip of shadow is moving.

Ans. 2m/s

(4) Sand is poured from a pipe at the rate of 12 cm3/s. The falling sand forms a cone on the

ground in such a way that the height of the cone is always one-sixth of the radius of base.

Find how fast the height of the sand cone is increasing when the height is 4 cm.

Ans.
1

48p
cm=s
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18 Applications of Derivatives
in Studying Motion in
a Straight Line

18.1 INTRODUCTION

Various problems in kinematics can be solvedwith the use of the derivative. Let a particle move

along a straight line so that its distance s from some fixed point is a function of time.

We express this by writing,

s ¼ f ðtÞ

Then, the velocity v ¼ ds=dt and the acceleration “a” ¼ d2s=dt2.
One particular example of motion in a straight line is the motion of a falling body under

gravity. The acceleration of a falling body due to gravity has been calculated as g ¼ 32 ft/s2 or

9.8m/s2, towards, the center of Earth. In this chapter, we will use differentiation to compute

velocity and acceleration of a moving object in some practical situations.

18.2 MOTION IN A STRAIGHT LINE

Example (1): A particle is moving in a straight line according to the formula s ¼ 4t3 þ 2t2,

where s is the distance traveled in meters and t is in seconds. Find the velocity and acceleration

of the particle after 4 s.

Solution: Given,

s ¼ 4t3 þ 2t2 ð1Þ

Velocity; v ¼ ds

dt
¼ 12t2 þ 4t ð2Þ

Acceleration; a ¼ dv

dt
¼ 24tþ 4 ð3Þ

(Note that v and a are both functions of t.)

Introduction to Differential Calculus: Systematic Studies with Engineering Applications for Beginners, First Edition.
Ulrich L. Rohde, G. C. Jain, Ajay K. Poddar, and Ajoy K. Ghosh.
� 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

Applications of derivates 18-Motion in a straight line (including motion under gravity), circular motion and angular

velocity. Applications in geometry.
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Velocity, when t ¼ 4 s, is obtained from equation (2) by putting t ¼ 4. We get,

Vð4Þ ¼ 12ð4Þ2 þ 4ð4Þ ¼ 192þ 16 ¼ 208 m=s

Acceleration, when t ¼ 4 s, is obtained from equation (3) and by putting t ¼ 4 we get

að4Þ ¼ 24ð4Þ þ 4 ¼ 100 m=s2

Thus,

v ¼ 208 m=s

and a ¼ 100 m=s2 Ans:

Example (2): A particle is moving in a straight line according to the formula s ¼
t3 � 9t2 þ 3tþ 1, where s is measured in meters and t in seconds. When the velocity is

�24m/s, find the acceleration.

Solution: We have

s ¼ t3 � 9t2 þ 3tþ 1 ð4Þ

) The velocity v is given by

v ¼ ds

dt
¼ 3t2 � 18tþ 3 ð5Þ

If v is equal to (�24), we have

) 3t2 � 18tþ 3 ¼ �24

) 3t2 � 18tþ 27 ¼ 0

or t2 � 6tþ 9 ¼ 0

or ðt� 3Þ2 ¼ 0

) t ¼ 3 s

Thus, we get that the velocity is �24m/s at t ¼ 3 s. Now we have to find the acceleration of

the particle at t ¼ 3 s. The acceleration is given by,

a ¼ dv

dt
¼ d

dt

ds

dt

� �
¼ d2s

dt2
¼ 6t� 18 ¼ 6ðt� 3Þ

) At t ¼ 3 s; að3Þ ¼ 6ð3� 3Þ ¼ 0 m=s2 Ans:

536 APPLICATIONS OF DERIVATIVES IN STUDYING MOTION IN A STRAIGHT LINE



Example (3): The distance s in meters described by a particle in t seconds is given by

s ¼ Aet þ ðB=etÞ. Show that the acceleration of the particle at time t is equal to the distance

traveled by it up to time t.

Solution: We have,

s ¼ Aet þ ðB=etÞ ¼ Aet þ Be�t ð6Þ

Differentiating both sides of (6) w.r.t. t,

ds

dt
¼ Aet � Be�t ð7Þ

Differentiating once again, we get

Acceleration ¼ d2s

dt2
¼ Aet þ Be�t ð8Þ

Comparing (6) and (8), we observe that

d2s

dt2
¼ s

In other words, the numerical value of acceleration at time t is the same as the number

representing the distance traveled up to the instant t.

Example (4): A particle moves in a straight line such that s ¼ A cos(Kt þ �). Find the

velocity at any time t and show that the acceleration “a” is proportional to s.

Solution: We have, s ¼ A cos(Kt þ �).

) v ¼ ds

dt
¼ �KA sinðKtþ �Þ

and

a ¼ dv

dt
¼ �K2A cosðKtþ �Þ ¼ �K2s

Thus, a / (�)s [ )K2 is a constant].

Such a motion in which the acceleration is proportional to the displacement and is directed in

its opposite direction is termed simple harmonic motion. It is a to-and-fro motion about a

central point and is always directed toward the central point.

Exercise (1):

Q1 Aparticle is moving in a straight line. If the law ofmotion is s ¼ t3 � 6t2 þ 9t� 4, where

s is measured in meters, then find

(i) its displacement and acceleration when velocity is 0m/s.

(ii) its displacement and velocity when acceleration is 0m/s2.
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Ans.

(i) Displacement(s) ¼ 0, Acceleration ¼ 6m/s

(ii) Displacement ¼ �2m, Velocity ¼ �3m/s

Q2 Aparticle is moving in a straight line, where its position s inmeters is a function of time t in

seconds, given by s ¼ t3 þ at2 þ btþ c, where a, b, c are constants.

It is known that at t ¼ 1 s, the position of the particle is given by s ¼ 7m, velocity is

7m/s, and acceleration is 12m/s2. Find the values of a, b, c.

Ans. a ¼ 3, b ¼ �2, c ¼ 5

18.2.1 Motion Under Gravity

Motion of a falling body under gravity is a particular instance of motion in a straight line. The

acceleration of the falling body due to gravity is called the acceleration due to gravity and is

generally denoted by “g”.(1)

Example (5): A stone is thrown vertically upward. It moves according to the formula

s ¼ 490t � 4.9t2, where s is in centimeters and t in seconds. Find the maximum height

attained by the stone.

Solution: We have

s ¼ 490t� 4:9t2 ð9Þ

) ds

dt
¼ 490� 9:8t ð10Þ

At the maximum height, the velocity of the stone will be zero.

That is,
ds

dt
¼ 0

or 490� 9:8t ¼ 0

) 9:8t ¼ 490

) t ¼ 490

9:8
¼ 50 s

Hence, putting t ¼ 50 s in (9), we get

maximumheight s ¼ 490� 50� 4:9ð50Þ2
¼ 24,500� 12,250 ¼ 12,250 m Ans:

(1) It is useful to recall the following formulas for free fall near the Earth’s surface:

(1) s ¼ 0:5 gt2, s ¼ distance, t ¼ time, g ¼ gravitational constant

(2) s ¼ 16 gt2, s ¼ feet, t ¼ seconds, g ¼ 32 ft/s2

(3) s ¼ 490t2, s ¼ centimeters, t ¼ seconds, g ¼ 980 cm/s2

(4) s ¼ 4:9t2, s ¼ meters, t ¼ seconds, g ¼ 9.8m/s2
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Example (6): Aball is thrownvertically upward. The height of the ball from the ground after t

seconds is h feet, given by the equation h ¼ 80t� 16t2. Find

(i) the time interval when it reaches the ground.

(ii) its velocities after (a) 1 s and (b) 3 s. Discuss about the signs of these velocities.

(iii) the velocity by which the ball was thrown.

(iv) the time when the ball was just at rest.

Solution: We have,

h ¼ 80t� 16t2 ð11Þ

) Velocity; v ¼ dh

dt
¼ 80� 32t ð12Þ

(i) It reaches the ground where h ¼ 0.

) From equation (11), we get

0 ¼ 80t� 16t2

That is, 16t (t � 5) ¼ 0

) t ¼ 0 s or t ¼ 5 s

Note (1): The value t ¼ 0 s shows that initially the ball was on the ground.

Once the ball is thrown up, it must come back on the ground after 5 s. Ans.

(ii) (a) When t ¼ 1 s, we get from equation (12)

v ¼ 80� 32ð1Þ ¼ 48 ft=s Ans:

(b) when t ¼ 3 s; v ¼ 80� 96 ¼ �16 ft=s Ans:

Explanation for negative sign of velocity at (b) above.

The positive sign in velocity shows that the ball is going upward, while the negative sign shows

that the ball is falling down (which is the motion in the opposite direction).

(iii) Initially when the ball was thrown up, t ¼ 0 s.

Therefore, by equation (12), we have

v ¼ 80� 32ð0Þ ¼ 80 ft=s Ans:

(iv) When the ball just comes to rest, v ¼ 0. Hence, by equation (12) we get

0¼ 80� 32t

) t ¼ 80

32
¼ 2:5 s Ans:
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18.3 ANGULAR VELOCITY

This is another important concept. When a particle moves along the circumference of a circle,

the central angle �, measured from some fixed direction, is a function of time t.

Definition: We define angular velocity v as the rate of change of � with respect to time t

and write,

v ¼ d�

dt

Likewise, angular acceleration a is denoted by

a ¼ d

dt

d�

dt

� �
¼ d2�

dt2

ð2Þ

Example (7): Aparticle Pmoves around the circumference of the circlewith constant angular

velocity. Find vx, vy, ax and ay.

Solution: Let the equation of the circle be given in parametric form as follows:

x ¼ r cos �; y ¼ r sin �

Then; vx ¼ �r sin �
d�

dt
¼ �rv sin � Ans:

vy ¼ r cos �
d�

dt
¼ rv cos � Ans:

ax ¼ d

dt
ðvxÞ ¼ d

dt
�rv sin �½ � ¼ �rv

d

dt
ðsin �Þ

¼ �rv cos �
d�

dt
¼ �rv2cos � Ans:

and

ay ¼ d

dt
ðrv cos �Þ ¼ �rv2sin � Ans:

18.4 APPLICATIONS OF DIFFERENTIATION IN GEOMETRY

(a) Slope: We have seen in Chapter 9 that the slope of the tangent line to the curve y ¼ f(x) at

any point (x, f(x)) is given by

y0 ¼ f 0ðxÞ ¼ dy

dx
¼ m ¼ tan a;

where a is the angle of inclination of the tangent line.

(2) We also speak of angular velocity and angular acceleration of a vector OP drawn from the origin O to a point P as P

moves along a curve. However, we shall not discuss about it at this point.
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(b) The equations of a tangent and of a normal to the curve:

Let us consider a curve whose equation is

y ¼ f ðxÞ

On this curve, we take a point M(x1, y1) (Figure 18.1) and write the equation of the

tangent line to the given curve at the point M, assuming that this tangent line is not

parallel to the axis of ordinate. We write its equation in the point-slope form, by

expressing the slope m of the tangent line at M. We have

y� y1

x� x1
¼ m

) y� y1 ¼ mðx� x1Þ

This is the equation of a straight line with slope m and passing through the point M

(x1, y1) (Figure 18.1). For the tangent line in question, m ¼ f 0ðxÞ is evaluated at

the point (x1, y1), so that we have (the numerical value) m ¼ f 0ðx1Þ. Thus, the
equation of the tangent at (x1, y1) is given by

y� y1 ¼ f 0ðx1Þ ðx� x1Þ ð13Þ

Now, let us consider the equation of the normal at M(x1; y1)

Definition: The normal to a curve, at a given point, is a straight line passing through the given

point and perpendicular to the tangent at that point.

From the definition of a normal, it follows that its slope ¼ ð�1=mÞ ¼ �1=f 0ðx1Þ.
Hence, the equation of a normal to the curve y ¼ f(x) at a point M(x1; y1) (Figure 18.1)

is given by

y� y1 ¼ � 1

m
ðx� x1Þ

¼ � 1

f 0ðx1Þ ðx� x1Þ
ð14Þ

y

0

Q

P

α R

M (x1, y1)

y = f (x)

x

y1

x1

FIGURE 18.1
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Example (8): Find (a) the equation of the tangent and (b) the equation of the normal to the

curve y2 ¼ 5x� 1 at the point (1, �2).

Solution: The equation of the tangent will be of the form

ðyþ 2Þ ¼ mðx� 1Þ

where m ¼ y0 evaluated at (1, �2).

We have,

y2 ¼ 5x� 1

) 2y y0 ¼ 5

) y0 ¼ 5

2y
¼ 5

2ð�2Þ ¼ � 5

4

Hence, the equation to the normal becomes

yþ 2 ¼ � 5

4
ðx� 1Þ

yþ 2 ¼ 4

5
ðx� 1Þ Ans:

18.4.1 More Definitions

(Refer to Figure 18.1 for the following definitions.)

(i) T ¼ length of the tangent (i.e., the length of segment QM of the tangent between the

point of tangency and the x-axis).

(ii) ST ¼ length of the subtangent (i.e., the segment QP, which is the projection of the

tangent on x-axis).

(iii) N ¼ length of the normal (i.e., the segment MR is called the length of the normal).

(iv) SN ¼ length of the subnormal (i.e., the segment RP, which is the projection of the

normal RM on x-axis).

Let us find the quantities T, ST, N, and SN for the curve y ¼ f(x) with reference to the point

M(x1; y1) on the curve. From Figure 18.1, it will be seen that,

QP ¼ y1cotaj j ¼ y1

tana

��� ��� ¼ y1

y01

����
����

Therefore,

ST ¼ y1

y01

����
���� ¼ y1

m

��� ���
(Here, m ¼ y01, which stands for the derivative y0, evaluated at (x1; y1), and this will be

applicable all throughout the text.)
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and T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MP2 þ QP2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y21 þ y21=y

02
1

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y21ðy021 =y021 Þ þ ðy21=y021 Þ

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy21=y021 Þðy021 þ 1Þ

q

¼
���� y1y01

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y021 þ 1

q ���� ¼
���� y1m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

p ���� ) ffiffiffiffiffi
x2

p
¼ xj j

h i

Further, it is clear from Figure 18.1 that

PR ¼ SN ¼ y1tan aj j ¼ y1y
0
1j j ¼ y1mj j

(Note that ffPMR ¼ a (why?))

) In right-angled triangle MPR, tan a ¼ PR=y1.

And so,

SN ¼ y1y
0
1j j ¼ y1mj j

Now,

MR ¼ N ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MP2 þ PR2

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y12 þ ðy1y01Þ2

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y12 þ y12y01

2
p

¼ y1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y01

2
p��� ��� ¼ y1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

p�� ��
It is convenient to remember the above formulas in the following order:

ST ¼
���� y1y01

���� ¼
���� y1m

����
SN ¼ y1y

0
1j j ¼ y1mj j

T ¼
���� y1y01

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y021 þ 1

q ���� ¼
���� y1m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

p ����
N ¼ jy1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y01

2
p

j ¼ jy1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

p j

where m stands for y0[or dy=dx], evaluated at the point of tangency (and in case of parametric

curves it stands for the given value of the parameter).

Note (2): These formulas are derived on the assumption that y1 > 0; y01 > 0. However, they

hold in the general case as well.

Example (9): Find the lengths of the tangent and the subnormal to the curve

y ¼ x5 � 2xþ 3 at ð1; 2Þ
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Solution: We have,

y ¼ x5 � 2xþ 3

y0 ¼ 5x4 � 2

Hence, m ¼ y0 ¼ f 0ð1Þ ¼ 5ð1Þ4 � 2 ¼ 3

Length of the tangent ¼ T ¼ y1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

p

m

�����
����� ¼

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð3Þ2

q
3

������
������ ¼ 2

3

ffiffiffiffiffi
10

p

And length of the subnormal ¼ SN ¼ m y1j j ¼ 3� 2 ¼ 6

Example (10): Find

(i) the equations of the tangent and the normal;

(ii) the lengths of the tangent and the subtangent; and

(iii) the lengths of the normal and subnormal for the ellipse.

x ¼ a cost; y ¼ b sin t ð15Þ

at the point M(x1, y1) for which t ¼ p=4 (see Figure 18.2).

Solution: From equation (15), we find,

dx

dt
¼ �a sin t;

dy

dt
¼ b cos t

) dy

dx
¼ dy=dt

dx=dt
¼ � b

a
cot t

Therefore,

dy

dx

� �
t¼ p=4

¼ � b

a

)cot p
4
¼ 1

h i

y

M

Q

x

R P0

FIGURE 18.2
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Tofind the coordinates of the point of tangency, that is,M(x, y), we put t ¼ p=4 in equation (15)
and obtain

x ¼ a cos
p
4
¼ affiffiffi

2
p denote it by x1½ �

and y ¼ b sin
p
4
¼ bffiffiffi

2
p denote it by y1½ �

) The equation of the tangent at M(x1, y1) is given by

y� y1 ¼ � b

a
ðx� x1Þ

�
)

�
dy

dx

�
¼ � b

a

�

or y� bffiffiffi
2

p ¼ � b

a
x� affiffiffi

2
p

� �

or y� bffiffiffi
2

p ¼ � bx

a
þ bffiffiffi

2
p

) yþ bx

a
¼ ffiffiffi

2
p

b

) ayþ bx ¼ ffiffiffi
2

p
ab

or bxþ ay�
ffiffiffi
2

p
ab ¼ 0

The equation of the normal is

y� bffiffiffi
2

p ¼ a

b

�
x� affiffiffi

2
p

�

or y� ax

b
¼ bffiffiffi

2
p � a2

b
ffiffiffi
2

p

Multiplying both sides by b
ffiffiffi
2

p
, we get

yb
ffiffiffi
2

p � ax
ffiffiffi
2

p ¼ b2 � a2

or
ffiffiffi
2

p ðby� axÞ ¼ b2 � a2

or � ðax� byÞ ffiffiffi
2

p ¼ �a2 þ b2

or ðax� byÞ ffiffiffi
2

p � a2 þ b2 ¼ 0

The lengths of the subtangent and subnormal

ST ¼ y1

y01

����
���� ¼ y1

m

��� ���
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where m stands for y01 or the derivative dy=dx (obtained from the given parametric equations

x ¼ a cos t, y ¼ b sin t), and evaluated at t ¼ p=4.

ST ¼
���� b=

ffiffiffi
2

p

�b=a

���� ¼ affiffiffi
2

p ¼
ffiffiffi
2

p
a

2

SN ¼ y1y
0
1j j ¼ y1mj j ¼ bffiffiffi

2
p

�
� b

a

�
¼ b2ffiffiffi

2
p

a

The lengths of the tangent and the normal are

T ¼
���� y1y01

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y021 þ 1

q ���� ¼
���� y1m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

p ���� ¼
���� b=

ffiffiffi
2

p

�b=a

����
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
� b

a

�2
s

¼ �affiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

a2

s������
������ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p ffiffiffi
2

p

N ¼
���y1 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y01
2

p ��� ¼
���y1 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þm2
p ���

¼ bffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
� b

a

�2
s������

������
¼

���� b

a
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p ����

18.4.2 Angle Between Two Curves

The angle between two curves will be the angle between the tangents at the point of their

intersection. Accordingly, this angle is given by the formula,

tan �12 ¼ m2 �m1

1þm1m2

ð16Þ

where m1 and m2 are, respectively, the slopes of the curves (1) and (2), at the point of their

intersection, and �12 is the angle measured counterclockwise, from the tangent to the curve 1 to

the tangent to curve 2 (see Figure 18.3).

Note (3): In Chapter 4, we have shown that the angle � between two nonvertical lines is

given by

tan � ¼ m2 �m1

1þm1m2

where m1 and m2 are, respectively, the slopes of the lines l1 and l2.

Once the point of intersection of two curves is known, the derivatives f 01ðxÞ and f 02ðxÞ,
evaluated at that point will give m1 and m2 for the equation (16).
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Example (11): Find the angles at which the following curves intersect in the first quadrant

(i) x2 þ y2 ¼ 9 and (ii) y2 ¼ 8x

Solution: The point of intersection is determined by solving the two equations simultaneously.

This yields,

x2 þ 8x� 9 ¼ 0

or x2 þ 9x� x� 9 ¼ 0

or xðxþ 9Þ � 1ðxþ 9Þ ¼ 0

or ðxþ 9Þ ðx� 1Þ ¼ 0

) x ¼ 1;�9

Note (4): The point of intersection in the first quadrant is obtained by putting x ¼ 1 (in any

of the equations) and getting y ¼ � 2
ffiffiffi
2

p
, of which y ¼ 2

ffiffiffi
2

p
is needed for us. Therefore,

the point of intersection in question has the coordinates (1, 2
ffiffiffi
2

p
).

Now, differentiating (i), we get

2xþ 2y � y0 ¼ 0

) y0 ¼ � x

y
) m1 ¼ � 1

2
ffiffiffi
2

p ¼ �
ffiffiffi
2

p

4

And by differentiating (ii), we get

2y � y0 ¼ 8 ) y0 ¼ 4

y
) m2 ¼ 4

2
ffiffiffi
2

p ¼ 4
ffiffiffi
2

p

4
¼

ffiffiffi
2

p

0

2

1

θ12

x

y

FIGURE 18.3
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Therefore,

tan �12 ¼ m2 �m1

1þm1m2

¼
ffiffiffi
2

p þ ffiffiffiffiffiffiffiffi
2=4

p
1þ � ffiffiffi

2
p

=4
� 	 ffiffiffi

2
p ¼ 5

ffiffiffi
2

p
=4

1=2
¼ 5

2

ffiffiffi
2

p

and the angle of intersection is given by �12 ¼ tan�1ð5=2Þ ffiffiffi
2

p
.

Example (12): Show that

(i) x2 � xyþ y2 � 3 ¼ 0 and

(ii) xþ y ¼ 0; intersect at right angles.

Solution: The points of intersection are readily found to be (1, –1) and (–1, 1).

For (i), 2x� ðxy0 þ y � 1Þ þ 2yy0 ¼ 0

2x� yþ y0ð2y� xÞ ¼ 0

) y0 ¼ �ð2x� yÞ
2y� x

¼ 2x� y

x� 2y

and at either point, m1 ¼ 1.

For (ii), y0 ¼ –1 so that we have m2 ¼ –1. Since m1 ¼ �1=m2, hence the angle of

intersection is 90�, that is, the tangent lines (and hence the curves) intersect at right angles.

(Note that tan �12 ¼ ðm2 �m1Þ=ð1þm1m2Þ ¼ ð�1� 1Þ=ð1þ ð�1ÞÞ ¼ �2=0:Þ

18.5 SLOPE OF A CURVE IN POLAR COORDINATES

We know that in rectangular coordinates dy=dx represents the slope of the curve y ¼ f(x), but

in polar coordinates dr=d� does not represent the slope of the curve.

r ¼ f ð�Þ ð17Þ

It merely represents the rate of change of the radius vector r with respect to angle �. In order
to determine the slope of the curve r ¼ f ð�Þ, we use the following relations between

rectangular coordinates (x, y) and polar coordinates ðr; �Þ. These are

x ¼ r cos �

y ¼ r sin �



ð18Þ

Equation (18) is a parametric equation of the given curve, the parameter being the polar angle �.
(Note that r is a function of �.)

If we denote by w the angle formed by the tangent to the curve at some pointMðr; �Þ with
the positive x-axis, we will have,

tan w ¼ dy=d�

dx=d�

Now,
dx

d�
¼ dr

d�
cos �� r sin �
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and

dy

d�
¼ dr

d�
sin �þ r cos � from equation ð2Þ½ �

) Slope ¼ dy

dx
¼ ðdr=d�Þsin �þ r cos �

ðdr=d�Þcos �� r sin �
¼ r0 sin �þ r cos �

r0 cos �� r sin �

Dividing the numerator and denominator both by r0 cos �, we get,

Slope ¼ tan �þ r=r0

1� tan � ðr=r0Þ ; where r0 ¼ dr

d�
ð19Þ

With this formula we can readily find the slope of the curve whose equation is given in the

polar coordinates.

Example: Find the slope of the curve r ¼ 2� cos �:

(a) At any point (b) at � ¼ p=4:

Solution: The given curve is

r ¼ 2� cos � ð20Þ

(a) We know that slope of the curve (1) at any point is given by

Slope ¼ tan �þ r=r0

1� tan � ðr=r0Þ ð21Þ

We have r0 ¼ sin � [from (20)].

Now,

tan �þ r

r0
¼ tan �þ 2� cos �

sin �

and

1� tan �
r

r0
¼ 1� tan �

2� cos �

sin �

) Slope ¼ sin � tan �þ 2� cos �

2ðsin �� tan �Þ Ans: ð22Þ

(b) Slope of the curve at the point where polar angle � ¼ p=4 is obtained by putting

� ¼ p=4 in (19).

) Slope at � ¼ p
4

� �

¼
ffiffiffi
2

p
=2þ 2ð� ffiffiffi

2
p

=2Þffiffiffi
2

p � 2
¼ 2ffiffiffi

2
p � 2

Ans:
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18.5.1

An important angle to consider is the angle m between the radius vector and the tangent

measured counter clockwise from the radius vector to the tangent.

Now,

slope ¼ tan w ¼ tan ð�þ mÞ ¼ tan �þ tan m

1þ tan � tanm
ð23Þ

Comparing (19) and (23), we find,

tan m ¼ r

r0
ð24Þ

18.5.2

The geometricmeaning of the derivative of the radius vector rwith respect to the polar angle �
[r0 ¼ dr=d�] (See Calculus by Thomas/Finney, Fig10.37, Page 592, where the angleymust be

identified as m.).
From equation (24) we have tan m ¼ r=r0 or r0 ¼ r cot m.
Thus, the derivative of the radius vector with respect to the polar angle r0 ¼ dr=d�ð Þ is

equal to the length of the radius vector multiplied by the cotangent of the angle m between the

radius vector and the tangent to the curve at the given point.

18.5.3 The Angle Between Two Curves in Polar Coordinates

In view of the definition of the angle m, discussed above, the angle between two curves is given
by �12 ¼ tanðm1 � m2Þ, where �12 the angle measured counterclockwise from curve (1) to

curve (2) is given by

�12 ¼ tan m2 � tan m1

1þ tan m2 tan m1

ð25Þ

Formula (24) is used to evaluate tanm1and tanm2.
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19a Increasing and Decreasing
Functions and the Sign
of the First Derivative

19a.1 INTRODUCTION

In Chapter 6, we have discussed increasing and decreasing functions on an interval. The

distinction between an increasing and nondecreasing function, and that between decreasing

and nonincreasing function are also clarified there.(1)

In this section, we shall discuss the increasing and the decreasing portions of the graph and

the point(s) at which the increasing (or decreasing) portion of the graph enters into the

decreasing (or increasing) portion. For convenience, we revise the definitions of increasing

(decreasing) functions as introduced in Chapter 6.

Definition: A function y¼ f(x) is said to be increasing on an interval I if to greater values of

x 2 I there correspond greater values of the function. Similarly, a function is said to be

decreasing on I, if to greater values of x there correspond smaller values of the function.

Analytically, we can define increasing and decreasing functions as follows:

19a.1.1 Increasing and Decreasing Functions on Interval “I”

Definition: Let I be an open interval, contained in the domain of a real-valued function. Then,

f is said to be

(a) increasing on I, if x1< x2 in I ) f(x1)< f(x2) for all x1, x2 2 I.

(b) decreasing on I, if x1< x2 in I ) f(x1)> f(x2) for all x1, x2 2 I.

Note (1): From the above definitions, it is clear that by the term increasing function, we mean

the strictly increasing function and, similarly, the termdecreasing function stands for the strictly

decreasing function.

Applications of derivatives 19a-Increasing and decreasing functions, and the sign of the first derivative horizontal

tangents and local maximum/minimum values of functions Concavity, points of inflection, and the sign of the second

derivative.

Introduction to Differential Calculus: Systematic Studies with Engineering Applications for Beginners, First Edition.
Ulrich L. Rohde, G. C. Jain, Ajay K. Poddar, and Ajoy K. Ghosh.
� 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

(1) Recall that when the graph of a function has a horizontal portion, added to an increasing (or decreasing) function, it

becomes a nondecreasing (or nonincreasing) function.
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Note (2): It must be noted that the notion of increasing and decreasing functions are always

defined in terms of increasingx. Thus, aswemove from left to right along the graph of a function,

. in the case of an increasing function, the height of the graph continuously increases, and

. in the case of a decreasing function, the height of the graph continuously decreases.

19a.1.2

In this chapter, we will use differentiation to find out whether a function is increasing or

decreasing or neither.

The derivative of a function y¼ f(x) is the rate at which y changes with respect to x. It defines

the slope of the function’s graph at x and allows us to estimate how much y changes when we

change x by a small amount. These concepts were discussed in Chapter 16. However, it is useful

to revise the process of computing approximate changes in the value of a function y¼ f(x) when

the independent variablex is changed by an small amount. The following examplemakes it clear.

Example (1): Consider the function,

y ¼ x3 ð1Þ
so that we have,

y0 ¼ 3x2 ð2Þ
Equation (2) tells us that at x¼ 1, y0 ¼ 3(1)2¼ 3 and similarly at x ¼2, y0 ¼ 3(2)2¼ 12.

These calculations tell us that if we change the value of x by a small amount, say 0.2 units at

x¼ 1, then the value of y [¼x3] will approximately change three times, that is, by 0.6 units. In

other words, the height of the graph will be more (approximately) by 0.6 units at the point

x¼ 1.2 than at the pointx¼ 1. Similarly, the height of the graph at the pointx¼ 2.2will bemore

by 2.4 units (i.e., 12 times of 0.2) than at x¼ 2.0, and so on.

19a.1.3

If a function y¼ f(x) has a derivative at a point x0, then we know that f is a continuous at x0.

Accordingly, if a function has a derivative over an interval, then it is continuous over the

interval. In other words, the graph of a differentiable function is without any break.

We can gain even more information about the graph of a differentiable function if we know

where its derivative is positive, negative, or zero. We shall also see where the graph is rising, is

falling, and has a horizontal tangent.(2)

19a.1.4

Refer to Figure 19a.1 showing the graph of a function f for all x in the closed interval [x1, x7] on

which f(x) is continuous. This figure shows that as a pointmoves along the curve fromA toB, the

function values increase as x increases, and that as a point moves along the curve from B to C,

the function values decrease as x increases. We say, then, that f(x) is increasing on the closed

interval [x1, x2] and that f(x) is decreasing on the closed interval [x2, x3].

(2) In this section, we shall learn how the sign of the first derivative helps in deciding the increasing (or decreasing)

nature of a function. Later on, the signs of the first and the second derivatives will be used in determining extremevalues

(i.e., maximum and minimum values) of functions. In fact, the signs of the first and the second derivatives together tell

us how the graph of a function is shaped.
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Thus, the function of Figure 19a.1 is increasing on the closed intervals [x1, x2]; [x3, x4];

[x5, x6]; [x6, x7]; [x5, x7] and it is decreasing on the closed intervals [x2, x3]; [x4, x5]. Let us see

what is happening geometrically.

We observe that when the slope of the tangent line (to the curve) is positive, the function is

increasing, and when it is negative, the function is decreasing. We know that the slope of the

tangent line to the curve y¼ f(x) at a point is represented by the derivative f 0(x). Our observation
tells us that when f 0(x)> 0, the function is increasing as x increases; and when f 0(x)< 0, the

function is decreasing as x increases. Later on, we shall prove that these conclusions (drawn

from our observations) are true. We also observe the following:

(i) At the point(s) of transition (between the rising and falling portions of the curve), there

is a horizontal tangent line that means f 0(x)¼ 0 at such points. In Figure 19a.1, these

points (on the curve) are B(x2, y2), C(x3, y3), and E(x5, y5).

(ii) At the point of transition D(x4, y4), no unique tangent line exists (we say that the

derivative does not exist at x4). Note that the point D on the graph is a sharp point

(or corner point).

(iii) At the pointF(x6, y6), the horizontal tangent line exists,we say that the rate of change of

the function at x¼ x6 is zero, but it is not a transition point of the curve, since the

function increases throughout the interval [x5, x7] as x increases and the pointF(x6, x6)

lies in this interval.

FromFigure 19a.1, we have gained useful information about the increasing/decreasing portions

of the graph, points of transition, and the existence of horizontal tangent lines at certain points

on the graph of a function. Now consider the following examples:

Example (2): The function y¼ x2 decreases on (�1, 0), where y0 ¼ 2x< 0. It increases on

(0,1), where y0 ¼ 2x> 0. At x¼ 0, the point of transition y0 ¼ 0, and the curve has a horizontal

tangent (Figure 19a.2).

Example (3): The function f(x)¼ tan x increases on �ðp=2Þ; ðp=2Þð Þ and ðp=2Þ; ð3p=2Þð Þ,
where f 0(x)¼ sec2x¼ð1=cos2xÞ > 0. The graph of y¼ tan x increases on

�ðp=2Þ < x < ðp=2Þ and on ðp=2Þ < x < ð3p=2Þ (Figure 19a.3).

D(x4, y4)

B(x2, y2)
E(x5, y5)

F(x6, y6)

G(x7, y7)

y = f (x)
y

x

0

C(x3, y3)
A(x1, y1)

x = x1 x = x7

FIGURE 19a.1
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On these intervals, the function does not decrease anywhere. Thus, the graph of this function

does not have a transition point. (Note that, f is not defined at x¼ p/2, but this fact is not
important here.)

Example (4): The function y¼ 1=x2 increases from left to right on (�1, 0), where

y0¼ ð�2=x3Þ > 0 and decreases from left to right on (0, 1), where y0¼ ð�2=x3Þ < 0.

The derivative y0 (¼ð�2=x3Þ) is not defined at x¼ 0, which is the point of transition.

Furthermore, note that the point of transition (x¼ 0) does not lie on the graph of y¼1/x2. In

fact, the function of y ¼ 1=x2 itself is not defined at x¼ 0 (Figure 19a.4).

Note (2):The above examples show that a functionmay increase over one interval and decrease

over another. They also suggest that we can speak of a function increasing or decreasing at

a point.

y
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1 2
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0
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Remark: It is clear that if a function is increasing (or decreasing) in an interval, then it is

definitely increasing (or decreasing) at every point in that interval. However, it is useful to

clarify (through a simple definition) what it means when we say that a function is increasing

(or decreasing) at a point x0 in the domain of the function.

19a.1.5

Definition: A function f(x) is said to be increasing at a point x¼ x0, if there exists a

neighborhood (x0 � d, x0þ d) of x0 such that f(x)< f(x0) whenever x< x0, and f(x)> f(x0)

whenever x> x0 (Figure 19a.5).

Analogously, a function f(x) is said to be decreasing at a point x¼ x0, if given some

neighborhood of x0, f(x)> f(x0) whenever x< x0, and f(x)< f(x0) whenever x> x0.

In Chapter 20, it is proved that if y¼ f(x) is differentiable with f 0(x)> 0 at every point of an

interval I, then f(x) increases on I. Similarly, if f 0(x)< 0 at every point of I, then f(x) decreases

on I.

For the time being, we assume these results and record them as the first derivative test for rise

and fall.
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19a.2 THE FIRST DERIVATIVE TEST FOR RISE AND FALL

Suppose that y¼ f(x) has a derivative at every point x of an interval I. Then,

ðiÞ f ðxÞ increases on I; if f 0ðxÞ > 0 for all x in I

ðiiÞ f ðxÞ decreaseson I; if f 0ðxÞ < 0 for all x in I

�ð3Þ

In geometric terms, the first derivative test says that a differentiable function increaseswhere the

tangent to its graph has a positive slope and decreases where the tangent to its graph has a

negative slope.

(This permits us to judge the increasing or decreasing nature of a function by the sign of its

derivative.)

Remark: The first derivative test gives us the sufficient condition for a function to increase

(or decrease) in an interval. It is worthmentioning that if f(x) increases on [a, b], then it does not

follow f 0(x)> 0 everywhere in (a, b) as is clear from the following example:

Example (5): The function f(x)¼ x3 increases on [�1, 1]. However, the derivative f 0(x)¼ 3x2

equals the value 0 at x¼ 0. Similarly, the function g(x)¼�x3 is a decreasing function on

[�1, 1] with g0(x)¼�3x2, which equals the value 0 at x¼ 0. [Note that this function increases

even at the point x¼ 0, where f 0(x)¼ 0.]

The following theorem specifies the sufficient conditions for a function to be increasing or

decreasing at a point.

19a.2.1

Theorem: Let f(x) have a derivative f 0(x0) at x0. If f 0(x0)> 0, then f(x) increases at x0, and if

f 0(x0)< 0, then f(x) decreases at x0.

Proof:

Let f 0(x0)> 0. Then, by definition of the derivative, we have, x02 (x0� h, x0þ h), for all h2R.

lim
h! 0

f ðx0 þ hÞ � f ðx0Þ
h

> 0

This means that, there exists d > 0, such that for all h;
f ðx0 þ hÞ � f ðx0Þ

h
> 0, whenever

0 < hj j < d

It follows that, if 0 < hj j < d, then h and ½f ðx0 þ hÞ � f ðx0Þ� are of the same sign.

Thus, if h< 0, then ½f ðx0 þ hÞ � f ðx0Þ� < 0, that is, f ðx0 þ hÞ < f ðx0Þ, and if h> 0, then

½f ðx0 þ hÞ � f ðx0Þ� > 0, that is, f ðx0 þ hÞ > f ðx0Þ.
By definition, this means that f(x) increases at x0. Using similar reasoning, we can show that

if f 0(x0)< 0, then f(x) decreases at x0. (Proved)

Note (4): The conditions specified in the above theorem are not necessary. Note that the

function shown in Figure 19a.6 increases at x¼ 0; however, the derivative of this function does

not exist at x¼ 0. [Also see the example f(x)¼ x3 discussed above.]

(3) We shall use these results in our further discussion and drawmany useful conclusions. These facts are proved in Chapter

20 under an application of Lagrange’s Mean Value Theorem as hinted above.
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The function f(x)¼ x3 increases at x¼ 0, and its derivative f 0(x)¼ 3x2 vanishes at x¼ 0

(Figure 19a.7).

Note (5):Wehave seen that a functionmay increase over one interval and decrease over another.

Such intervals are called the intervals of monotonicity, and our interest lies in finding these

intervals for a given function.

19a.3 INTERVALS OF INCREASE AND DECREASE (INTERVALS

OF MONOTONICITY)

An interval on which the function increases is called the interval of increase, and an interval on

which the function decreases is called its interval of decrease. For simple functions, whose

0

y

x

y = f (x)

FIGURE 19a.6

y

x

0

y = x3

FIGURE 19a.7
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graphs are known, these intervals of monotonicity are easily determined. Later on, some

techniques will be developed that will make it possible to find the intervals on which a function

is monotonic, without requiring to construct its graph. Consider the following example:

Example (6): Determine the domain of increase and decrease of the function y¼ x4.

Solution: The derivative of y is given by y0 ¼ 4x3: for x> 0, we have y0 > 0 and the function

increases; for x< 0, we have y0 < 0 and the function decreases (Figure 19a.8).

19a.3.1 Sign of a Continuous Function f(x)

Let y¼ f(x) be a continuous function. By the sign of f(x), at any point x¼ a in its domain, we

mean the sign of the value f(a) provided f(a) 6¼ 0. If f(a) 6¼ 0, then either f(x)> 0 or f(x)< 0.

Our interest lies in solving the inequalities f 0(x)> 0 and f 0(x)< 0, which will give us the

intervals on which f(x) increases and those onwhich f(x) decreases, respectively. Now, we shall

show how our intuitive knowledge of continuity can be applied to solve a quadratic inequality

and other inequalities. But first, we must provide a framework on which to build our technique.

Consider the graph of a continuous function y¼ f(x) (Figure 19a.9). There is a relationship

between the (real) roots of the equation f(x)¼ 0 and the points where the graph of y¼ f(x)meets

the x-axis. These points are called the x-intercepts of the graph. If the graph of f has an intercept

(r, 0), then f(r)¼ 0 and so r is a root of the equation f(x)¼ 0.

y
y = x4

Function decreasingFunction decreasing

x

0

ϕϕ

FIGURE 19a.8
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(r2, 0)

(r3, 0)(r1, 0)
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Hence, from the graph of y¼ f(x) in Figure 19a.9, we conclude that r1, r2, and r3 are roots

of the equation f(x)¼ 0. On the other hand, if r is any real root of the equation f(x)¼ 0, then

f(r)¼ 0 and hence (r, 0) lies on the graph of f. It means that all real roots of the equation f(x)¼ 0

can be represented by the points where the graph of f meets the x-axis.

19a.3.2 Procedure to Solve an Inequality Involving a Polynomial

Now, suppose we have to solve the quadratic inequality x2þ 3x � 4> 0.

We put f(x)¼ x2þ 3x� 4¼ (xþ 4)(x� 1).

Since f(x) is a polynomial, it is continuous everywhere. The roots of the equation f(x)¼ 0

are (�4) and 1. Hence, the graph of f(x) has x-intercepts (�4, 0) and (1, 0). These roots (or to

be more precise the x-intercepts) determine three intervals on the real line: (�1,�4), (�4, 1),

and (1, 1) (Figures 19a.10 and 19a.11).

Consider the interval (�1, �4). Since f is continuous on this interval, we claim that

throughout this interval either f(x)> 0 or f(x)< 0.(4)

We prove this indirectly as follows:

Suppose f(x) did indeed change sign in the interval (�1, �4). Then, by continuity of f,

there would be a point in (�1, �4) where the graph would intersect the x-axis. Suppose this

point is c. Then, c would be a root of the equation f(x)¼ 0, so that we should get f(c)¼ 0.

This cannot occur since there is no root of the equation x2þ 3x� 4¼ 0 that is less than�4.

Hence, f(x) must be (strictly) positive or (strictly) negative on (�1,�4) as well as on the other

intervals.

Thus, to determine the sign of f(x) on any interval, it is sufficient to determine its sign at any

point in the interval. This permits us to select any convenient point in the interval to find the sign

of f(x).

y

f(x) = x2 + 3x – 4

–4

25
4

—–

1

x

FIGURE 19a.10

(4) The statement f(x1)> 0 tells us that the point (x1, f(x1)) is above thex-axis. Similarly, the statement f(x2)< 0 tells us that

the point (x2, f(x2)) is below the x-axis.
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For instance,�5 is in (�1,�4). Therefore, for f(x)¼ x2þ 3x� 4, we get f(�5)¼ (�5)2þ
3(�5) � 4¼ 6> 0. Thus, f(x)> 0 on (�1, �4). Since 0 is in (�4, 1) and f(0)¼�4< 0,

f(x)< 0 on (�4, 1).

Similarly, 3 is in (1, 1) and f(3)¼ 14> 0. Therefore, f(x)> 0 on (1, 1) (Figure 19a.12).

Therefore, we get f(x)¼ x2þ 3x� 4> 0 for x< –4 and for x> 1

(This is the solution of the inequality x2þ 3x� 4> 0. One must realize the importance of

the role played by the concept of continuity.)

Let us review what we have learnt. If we consider a polynomial function, y¼ f(x), then the

roots of the equation f(x)¼ 0 (say x1, x2, x3) represent points on the x-axis. These points

determine the intervals (�1, x1), (x1, x2), (x2, x3), (x3,1) on the real line. If a is any point on

an interval and f(a)> 0, then the graph of the function must be above the x-axis in that interval.

Similarly, if f(b)< 0 in an interval, then the graph of the function must be below the x-axis in

that interval.

Every polynomial function is continuous and differentiable. Now, our interest lies in

differentiable functions whose graphs are definitely continuous. Also, we know that f 0(x)
represents the slope of the tangent line at any point (x, f(x)) of the graph. Therefore, the sign of

the first derivative f 0(x) tells us all that we need to know about where the curve rises andwhere it

falls. The roots of the equation f 0(x)¼ 0 can help us to determine the intervals on which

f 0(x)> 0 and those on which f 0(x)< 0.

The intervals on which f 0(x)> 0, the function f(x) increases, and the intervals on which

f 0(x)< 0, the function decreases.

For any differentiable function, we can find (using the first derivative test) the intervals on

which the function f(x) increases (or decreases), since the first derivative test is applicable to

any differentiable function.

19a.3.3 Practical Method for Finding Intervals of Monotonicity

Example (7): Now, let us use the above technique to determine the intervals in which the

function f(x)¼ 2x3� 3x2� 36xþ 7 is (a) increasing and (b) decreasing.

Solution: f ðxÞ ¼ 2x3 � 3x2 � 36xþ 7

) f 0ðxÞ ¼ 6x2 � 6x� 36

¼ 6ðx2 � x� 6Þ

f(x) > 0

f(x) < 0

(x0, 0)

–4

FIGURE 19a.11

f (x) > 0 f (x) < 0 f (x) > 0

1–4

FIGURE 19a.12
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Putting f 0(x)¼ 0, we get 6(x � 3)(xþ 2)¼ 0. Therefore, x¼ 3 and x¼�2 are the roots of

f 0(x)¼ 0.

The points x¼�2 and x¼ 3 divide the real line into three disjoint intervals, namely,

(�1,�2), (�2, 3), (3,1). In each interval, the sign of f 0(x) is determined by the signs of the

factors of f 0(x).
We have f 0(x)¼ 6(x � 3)(xþ 2). Now observe the following:

(i) (�3) is in (�1, �2)

) f 0ð�3Þ ¼ 6ð�Þ ð�Þ ¼ ðþÞ and so f 0ðxÞ > 0 on ð�1;�2Þ

Therefore, f(x) is increasing on (�1, �2).

(ii) 0 is in (�2, 3)

) f 0ð0Þ ¼ 6ð�ÞðþÞ ¼ ð�Þ and so f 0ðxÞ < 0 on ð�2; 3Þ

Therefore, f(x) is decreasing on (�2, 3).

(iii) 4 is in (3, 1)

) f 0ð4Þ ¼ 6ðþÞðþÞ ¼ ðþÞ and so f 0ðxÞ > 0 on ð3;1Þ

Therefore, f(x) is increasing on (3, 1).

Remark: Note that, it is not necessary that we actually evaluate f 0(�3), f 0(0), or f 0(4). To find
the sign of f 0 (x), we factorize f 0(x) and find the sign of each factor. The sign of f 0(x) is then
obtained by using rules of algebra.

Now, let us investigate the behavior of exponential, trigonometric and logarithmic functions.

Example (8): Prove that the exponential function ex is increasing throughout its domain, in

this case R.

Solution: We know that ðd=dxÞ exð Þ ¼ ex. We also know that,

ex ¼ 1þ xþ ðx2=2!Þ þ ðx3=3!Þ þ � � � .

(i) When x is positive, ex is positive, because

ex ¼ 1þ xþ x2

2!
þ x3

3!
þ � � � > 1

(ii) When x is negative, ex is positive

) ex ¼ 1

e�x
¼ 1

a positive number
> 0

(iii) When x is 0, ex¼ 1> 0 (Figure 19a.13).

Therefore, ex is positive for all values of x.

Since ðd=dxÞ exð Þ¼ ex is always positive, it follows that ex is an increasing function

throughout R.
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Example (9): Prove that the function sin x is increasing in the interval (0, p/2) and decreasing
in the interval (p/2, p).

Solution: ðd=dxÞ sin xð Þ ¼ cos x

We know that cos x is positive on (0, p/2) and negative on (p/2, p). Therefore, sin x is

increasing on (0, p/2) and decreasing on (p/2, p).

Remark: If we consider the entire interval (0, p), sin x is neither increasing nor decreasing.

Example (10): Consider the function f ðxÞ ¼ x2 � xþ 1, 0< x< 1. We have,

f 0ðxÞ ¼ 2x� 1 ¼ 2 x � 1

2

� �

Observe that for x> 1/2, f 0(x) is positive, but if x< 1/2, then f 0 (x) is negative. Therefore, on
the interval (1/2, 1), f(x) is increasing, whereas on the interval (0, 1/2), it is decreasing. If we

consider the entire interval (0, 1), f(x) is neither increasing nor decreasing.

Example (11): Separate the intervals in which f ðxÞ ¼ x3 � 6x2 þ 9xþ 5 is increasing or

decreasing.

Solution: We have f ðxÞ ¼ x3 � 6x2 þ 9xþ 5

) f 0ðxÞ ¼ 3x2 � 12xþ 9

¼ 3ðx2 � 4xþ 3Þ
¼ 3ðx� 1Þ ðx� 3Þ

y

x

0

y = ex

1

FIGURE 19a.13
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We solve f 0(x)¼ 0.

) f 0ðxÞ ¼ 3ðx� 1Þ ðx� 3Þ ¼ 0

) x ¼ 1 and x ¼ 3

These points determine three intervals as (�1, 1), (1, 3), and (3,1) on the real line.We discuss

the behavior of f(x) in these intervals separately. Observe the following:

(i) 1/2 is in (�1, 1)

) f 0ð1=2Þ ¼ 3ð�Þð�Þ ¼ ðþÞ and so f 0ðxÞ > 0 on ð�1; 1Þ

Therefore, f(x) is increasing on (�1, 1).

(ii) 2 is in (1, 3)

) f 0ð2Þ ¼ 3ðþÞð�Þ ¼ ð�Þ and so f 0ðxÞ < 0 on ð1; 3Þ

Therefore, f(x) is decreasing on (1, 3).

(iii) 4 is in (3, 1)

) f 0ð4Þ ¼ 3ðþÞðþÞ ¼ ðþÞ and so f 0ðxÞ > 0 on ð3;1Þ

Therefore, f(x) is increasing on (3, 1).

Note that, the set of values of x for which f(x) is increasing is (�1, 1) [ (3, 1).

Also, the set of values of x for which f(x) is decreasing is (1, 3). Ans.

Example (12): Show that the function f(x)¼ 3x3 � 3x2þ xþ 25 is increasing on R.

Solution: We have, f ðxÞ ¼ 3x3 � 3x2 þ xþ 25.

) f 0ðxÞ ¼ 9x2 � 6xþ 1 ¼ ð3x� 1Þ2

Note that, f 0(x) is a perfect square.At x¼ 1/3, f 0(x)¼ 0, but for all other values of x, f 0(x)> 0.

Geometrically, it means that slope of f at each point is positive except at (1/3, f(1/3)), where

tangent line is horizontal [since f 0(1/3)¼ 0 ]. As f 0(x) does not change sign on the whole real

line, it follows that f(x) increases throughout R.

Note (6): It is easy to show that the logarithmic function (i.e., y¼ log x) is an increasing

function, wherever it is defined. Try this.

Example (13): Prove that, x� 1 > log x > ðx � 1Þ=x; 8 x > 1.

Solution: We shall do this in two steps:

(i) x� 1 > log x 8 x > 1

(ii) log x >
x� 1

x
8 x > 1
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(i) Let f ðxÞ ¼ ðx� 1Þ � log x (3)(5)

) f 0ðxÞ ¼ 1� 1

x

Now, for x> 1, (1/x)< 1.

) 1� 1

x
> 0

) f 0ðxÞ ¼ 1� 1

x
> 0; 8 x > 1

Therefore, f(x) is increasing at every x> 1.

Next, observe that

f ð1Þ ¼ ð1� 1Þ � log 1 ¼ 0� 0 ¼ 0 from equation ð3Þ

Thus, f(x) is increasing for x> 1 and that f(1)¼ 0.

It follows that, f(x)> 0, 8 x> 1.

) ðx� 1Þ � log x > 0: ) ðx� 1Þ > log x ð4Þ

(ii) Now, let

gðxÞ ¼ log x� x � 1

x

¼ log x� ð1� 1

x
Þ ¼ log x� 1þ 1

x

ð5Þ

) g0ðxÞ ¼ 1

x
� 1

x2
¼ x� 1

x2

Observe that, for every x> 1,

x � 1

x2
> 0

) g0ðxÞ ¼ x� 1

x2
> 0; 8 x > 1

Therefore, g(x) is increasing at every x> 1.

But,

gð1Þ ¼ log 1� 1� 1

1
¼ 0� 0 ¼ 0

(5) We will show that f(x)¼ (x� 1)� log x> 0, so that (x� 1)> log x.
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Thus, g(x) is increasing for x> 1 and that g(1)¼ 0.

It follows that, g(x)> 0, 8 x> 1.

) gðxÞ ¼ log x� x � 1

x
> 0; 8 x > 1

) log x >
x � 1

x
; 8 x > 1 ð6Þ

From equations (4) and (6), we have

1� x > log x >
x � 1

x
; 8 x > 1: Ans:

Example (14): Show that, log x< x � 1 for 0< x< 1.

Solution: Let f(x)¼ (x � 1) � log x, for 0< x< 1.

) f 0ðxÞ ¼ 1� 0� 1

x
¼ 1� 1

x
; for 0 < x < 1

Since x< 1, (1/x)> 1.

) f 0ðxÞ ¼ 1� 1
x
< 0; for 0 < x < 1

Therefore, f is decreasing for 0< x< 1.

) x < 1 ) f ðxÞ > f ð1Þ

But f(1)¼ (1�1)�log 1¼ 0 [ log 1¼ 0].

) x < 1 ) f ðxÞ > 0

) ðx� 1Þ � log x > 0

) x� 1 > log x

) log x < x� 1; for 0 < x < 1: Ans:

19a.4 HORIZONTAL TANGENTS WITH A LOCAL MAXIMUM/MINIMUM

Consider the graph of a differentiable function y¼ f(x) shown in Figure 19a.14.We observe that

the function increases on (a, c), where f 0(x)> 0, decreases on (c, d ), where f 0(x)< 0, and

increases again on (d, b). The points of transition P and Q on the curve (at x¼ c and x¼ d,

respectively) are marked by horizontal tangents.

If the derivative f 0 of a function y¼ f(x) is continuous, then f 0 can go from negative to

positive values only by going through 0. (This is a consequence of the Intermediate Value

Theorem for continuous functions stated in Chapter 8.)

The statement f 0(x)¼ 0 tells us that the slope of the tangent line at the transition point is 0,

which means that at such a transition point, the graph of f has a horizontal tangent.

If f 0 changes continuously from positive to negative values as x passes from left to right

through a point P, then the value of f at c is a local maximum value of f as shown in

Figure 19a.14.
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That is, f(c) is the largest value the function takes on in the immediate neighborhood ofx¼ c.

Similarly, if f 0 changes from negative to positive values as x passes from left to right through a

point d, then the value of f atQ is a local minimum value of f. That is, f(d) is the smallest value f

takes in the immediate neighborhood of x¼ d.(6)

19a.4.1 A Horizontal Tangent Without a Maximum or a Minimum

Suppose y¼ f(x) has a continuous derivative f 0 that changes sign as x passes through a point c,

then we know that f 0(c)¼ 0. However, a change in sign does not always occur when the

derivative is zero. The curve may cross its horizontal tangent and keep on rising, as happens in

the graph of y¼ x3 at (0, 0) of (Figure 19a.7).

Similarly, the curve may cross its horizontal tangent and keep on falling, as y¼�x3 does at

(0, 0). Neither function has a local maximum value or a local minimum value at x¼ 0, through

f 0(0)¼ 0. This situation arises because the function y¼ x3 increases on the entire x-axis, and

yet the first derivative y0 ¼ 3x2 is 0 at x¼ 0. Since the first derivative does not change sign as x

passes through the point 0, a local maximumdoes not exist at x¼ 0. For the same reason, a local

minimum does not exist for the function y¼�x3 at x¼ 0.

19a.4.2 A Local Maximum or Minimum Without a Horizontal Tangent

We give below an example of a function that is continuous on the interval on which it rises and

falls, but the derivative fails to exist at the point of transition. In other words, a maximum or

minimum may exist at a point (of transition) without a horizontal tangent.

Example (15): The function y¼ jxj decreases on (�1, 0), where y0 ¼�1, and increases on

(0,1) where y0 ¼ 1. This function has no derivative at x¼ 0. The transition from negative slope

to positive slope (i.e., from falling to rising) takes place at a point x¼ 0, where the derivative

fails to exist (Figure 19a.15).

Note (7): We have seen in Example (4) (on page 554) that the function y¼ 1/x2 rises on the

interval (�1, 0), and falls on the interval (0, 1). These intervals are separated by the point

++ ++−−

f increasing

f increasing

f decreasing
x = c

x = dQ

ba c d

P

f ' = 0, local maximum

f ' = 0,
local minimum

f ' > 0
Positive slope

f ' > 0
Positive slope

f ' < 0
Negative slope

FIGURE 19a.14

(6) Wewill givemore formal definitions of local maximum and local minimumwhenwewill study the theory ofmaximum

and minimum values of functions in Chapter 19b.
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x¼ 0 that is the transition point. But, this point does not lie on the curve y¼ 1/x2 (or that this

function is not continuous at x¼ 0). Since the function y¼ 1/x2 is not continuous at the point of

transition (x¼ 0), the local maximum value of f does not exist at x¼ 0.

19a.5 CONCAVITY, POINTS OF INFLECTION, AND THE SIGN OF THE

SECOND DERIVATIVE

Just as the first derivative gives information about the behavior of a function and its graph,

so does the second derivative. In fact, the first and the second derivatives together tell us how the

graph of a function is shaped.

Definition: Concave Up and Concave Down: The graph of a differentiable function y¼ f(x)

is concave down on an interval where y0 decreases, and concave up on an interval where y0

increases. But how do we check this?

If a function y¼ f(x) has a second derivative aswell as a first, we can apply the first derivative

test to the (derived) function f 0(¼ y0) as follows:

At any point in an interval, if y00 < 0, then y0 decreases, and if y00 > 0, then y0 increases in that
interval.

We therefore have a test that we can apply to the formula y¼ f(x) to determine the concavity of

its graph. This test is called the second derivative test for concavity.

19a.5.1 The Second Derivative Test for Concavity

The graph of y¼ f(x) is concave down on an interval where y00 < 0 and concave up on an interval

where y00 > 0.

The idea is that if y00 < 0, then y0 decreases as x increases and the tangent turns clockwise

(Figure 19a.16a). Conversely, if y00 > 0, then y0 increases as x increases and the tangent turns

counterclockwise (Figure 19a.16b).(7)

We have the following definitions:

y

5

5

f (x) = |x|

–5

x

0

FIGURE 19a.15

(7) It is easy to imagine that if y0 is decreasing (i.e., the slope is decreasing), then the tangent will turn clockwise so that the
graphwill be concave down. Similarly, if y0 is increasing, then the tangent will turn counterclockwise, so that the graphwill
be concave up.
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19a.5.1.1 Definition of Concave Upward (at a Point) The graph of a function f is said to be

concave upward at the point (c, f(c)), if f 0(c) exists and if there is an open interval I containing c
such that for all values ofx 6¼ c in I, the point (x, f(x)) on the graph is above the tangent line to the

graph at (c, f(c)) (Figure 19a.17a).

19a.5.1.2 Definition of Concave Downward (at a Point) The graph of a function f is said to

be concave downward at the point (c, f(c)), if f 0(c) exists and if there is an open interval I

containing c such that for all values of x 6¼ c in I, the point (x, f(x)) on the graph is below the

tangent line to the graph at (c, f(c)) (Figure 19a.17b).

Example (16): Considering the function defined by f(x)¼ x2, f 0(x)¼ 2x and f 00(x)¼ 2.

Thus, f 00(x)> 0 for all x. Furthermore, because the graph of f, appearing in Figure 19a.18a,

is above all of its tangent lines, the graph is concave upward at all of its points.(8)

y

x

0

y = sin x

2 π1

1

–1

y

4

3

2

1

2

y = x2, –2 ≤ x ≤ 2

1–1–2

x

(a) (b)

0

FIGURE 19a.16 (a) Concave down. The tangent turns clockwise as x increases; y0 is decreasing. (b) The
tangent turns counterclockwise as x increases; y0 is increasing.

(c, f(c))

c

(c, f(c))

c

(a) (b)

FIGURE 19a.17 (a) A portion of the graph of a function f. Concave upward at the point (c, f(c)). (b) A

portion of the graph of a function f. Concave downward at the point (c, f(c)).

(8) The conclusion that fmust always be concave up tells us that the graph of y¼ x2 must be as shown in Figure 19.18c and

not as in Figure 19.18d, for in that situation there are intervals on which the curve is concave down. Thus, the concept of

concavity is very useful in sketching curves.
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Example (17): If g is a function defined by g(x)¼�x2, then g0(x)¼�2x and g00(x)¼�2.

Hence, g00(x)< 0 for all x. Also, because the graph of g, shown in Figure 19a.18b is below all its

tangent lines, it is concave downward at all of its points.

Example (18): Consider the curve y¼ f(x)¼ sin x, 0< x< p. We have f 0(x)¼ cos x and

f 00(x)¼� sin x.

Note that, for any x in (0, p), f 00(x)< 0. Therefore, the curve f is concave down over the interval

(0, p).

19a.5.2 Point of Inflection

A point on a curve y¼ f(x) where concavity changes from up to down or vice versa is called a

point of inflection. See Figure 19a.19a and b for the point(s) of inflection on the curve.

In view of the above discussion, a point of inflection on a (twice-differentiable) curve is a

pointwhere y00 is positive on one side and negative on the other. If y00 is continuous, it implies that

y00 must be 0 at a point of inflection.

Example (19): The curve y¼ x3 has a point of inflection at x¼ 0, where y00 ¼ 6x, changes

sign, as x increases from negative to positive values (Figure 19a.19c).

f (x) = x2

y

0

x

g (x) = –x2

y

0 x

(a) (b)

x

y

x

(c) (d)

y

FIGURE 19a.18
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Remark: There are functions for which the condition y00 ¼ 0 does not confirm the existence

of a point of inflection, as can be seen in Example (5). Besides, a point of inflection on a

graph may occur where y00 fails to exists, as in Example (6).

Example (20): See Figure 19a.20. The curve y¼ x4 has no point of inflection at x¼ 0 even

though y00 ¼ 12x2 is 0 there. The second derivative does not change sign at x¼ 0 (in fact, y00 is
never negative). The curve is concave up over the entire x-axis because y0 ¼ 4x3 is an increasing

function on (�1, 1).

Note (8): In the above example, the second derivative test for concavity is not satisfied (note that

y00 ¼ 12x2 is positive for all x 6¼ 0). It follows that the condition y00 ¼ 0 is a sufficient condition,

it is not a necessary one.

Note (9):Most points of inflection occur at those pointswhere f 00(x)¼ 0, but a point of inflection

may occur where f 00(x) is undefined, as Example (20) shows.

Example (21): In Figure 19a.21, the curve y¼ x1/3 has a point of inflection at x¼ 0 even

though the second derivative does not exist here. To see this, let us calculate y00 atx 6¼ 0.We have

y¼ x1/3, y0 ¼ ð1=3Þx�ð2=3Þ, y00 ¼ �ð2=9Þx�ð5=3Þ.

c c

(c)(b)(a)

y

x

0

y = x3

FIGURE 19a.19

y

y = x4

x

0 1

1

2

–1

FIGURE 19a.20 The graph of y¼ x4 has no inflection point at the origin even though y00(0)¼ 0.
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For x< 0, f 00(x)> 0, so that the curve is concave up and f 0(x) is increasing. On the other hand,
for x> 0, f 00(x)< 0, so that the curve is concave down and f 0(x) is decreasing. Thus, concavity
changes as x passes through 0.

Therefore, the point (0, 0) is a point of inflection. However, f 00(x) does not exist at x¼ 0.

Note that as x! 0, f 00(x)!1. Yet the curve is concave up for x< 0 (where y00 > 0 and y0 is
increasing) and concave down for x> 0 (where y00 < 0 and y0 is decreasing).

Note (10): It is important to understand clearly that a point of inflection separates a concave

down arc from a concave up arc (or vice versa) of a curve. Of course, it is possible that the

function under considerationmay not be differentiable at the point of inflection, as we have seen

in Example (21).

(Note that the tangent line is vertical at x¼ 0.) Nowwe are in a position to give the following

definition.

19a.5.3 Definition of a Point of Inflection

The point (c, f(c)) is a point of inflection of the graph of the function f if the graph has a tangent

line and if there exists an open interval I containing c, such that, if x is in I, then either

(i) f 00(x)< 0 if x< c, and f 00(x)> 0 if x> c, or

(ii) f 00(x)> 0 if x< c and f 00(x)< 0 if x> c.

The existence of a point of inflection on different curves is indicated in Figure 19a.22.

Figure 19a.22a illustrates a point of inflection where the sense of concavity changes from

downward to upward at the point of inflection.

In Figure 19a.22b, the sense of concavity changes from upward to downward at the point of

inflection.

Figure 19a.22c gives another illustration, where the sense of concavity changes from

downward to upward at the point of inflection.

Note that, in Figure 19a.22c, the graph has a horizontal tangent line at the point of inflection.

Figure 19a.22d illustrates a point of inflection where the sense of concavity changes from

upward to downward at the point of inflection. Note that in Figure 19a.22d, the graph has a

vertical tangent line at the point of inflection.

Remark: A crucial part of the definition of the point of inflection is that the graph must have a

tangent line. This will be clear from the following example.

y

3

0

y = √ ̄x

x

FIGURE 19a.21
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Example (22): Consider the function f defined by

f ðxÞ ¼ 4� x2; if x � 1

2þ x2; if 1 < x

�

The graph of f appears in Figure 19a.23.

f ðxÞ ¼ 4� x2; if x � 1

2þ x2; if 1 < x

�

c c

(a) (b)

y

0

x

y = x3

y

0

x

(c) (d)

3
y = √

–
x

FIGURE 19a.22

572 INCREASING AND DECREASING FUNCTIONS AND THE SIGN OF THE FIRST DERIVATIVE



Observe that,

f 00ðxÞ ¼ �2; if x < 1

f 00ðxÞ ¼ 2; if x > 1

Thus, at the point (1, 3) on the graph, the sense of concavity changes fromdownward to upward.

However, (1, 3) is not a point of inflection because the graph does not have a tangent line.

Example (23): Let us discuss concavity and inflection points for the curve y¼ f(x)¼
x3 � 3x2þ 2.

Solution: We have f 0(x)¼ 3x2 � 6x and f 00(x)¼ 6x � 6¼ 6(x�1).

Now, for f 00(x)¼ 0, we get,
6ðx� 1Þ ¼ 0

) x ¼ 1

We note that if x< 1, then,

6ðx� 1Þ < 0; that is; f 00ðxÞ < 0

Therefore, the curve is concave down, if x< 1.

Next, if x> 1, then,

6ðx� 1Þ > 0; that is; f 00ðxÞ > 0

Therefore, the curve is concave up, if x> 1.

Since the concavity changes as x increases through 1, the point (1, 0) is an inflection point on

the curve.

Note (11): Standard textbooks may be referred to for exercises.

y

x

0 1

3

FIGURE 19a.23
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19b Maximum and Minimum
Values of a Function

19b.1 INTRODUCTION

An important application of derivatives is to determine where a function attains its maximum

andminimum values. The value of a function f at x ¼ x0, denoted by f(x0), is represented by the

height of its graph at x0. Thus, maximum and minimum values of a function are most easily

imagined in terms of the graph of a function.

A function f has a maximum at the point x1, if the value of the function at the point x1 [i.e.,

f(x1)] is greater than its values at all points of a certain (small) interval containing the point x1.

Similarly, we say that a function has aminimum at the point x2, if the value of the function at the

point x2 [i.e., f(x2)] is less than its values at all points of a certain (small) interval containing

the point x2.

In connection with the above definitions of maximum and minimum values of a function,

note the following points carefully:

. One should not think that the maximum and minimum of a function are its respective

largest and smallest values over the given interval. At a point of maximum, a function has

the largest value only in comparisonwith those values that it has at all points sufficiently

close to the point ofmaximum, and the smallest value only in comparisonwith those that it

has at all points sufficiently close to the minimum point.

. The above discussion suggests that it is more appropriate to identify the maximum and

minimum of a function by the terms localmaximum and localminimum, respectively. The

term local extremum stands to mean either the local maximum or the local minimum

value of the function. (The terms maxima, minima, and extrema are the plurals of

maximum, minimum, and extremum values, respectively.)

To illustrate, consider the Figure 19b.1. Here is a function y ¼ f(x) defined on the interval

[a, b],which atx ¼ x1 andx ¼ x3 has amaximum, atx ¼ x2 andx ¼ x4 has aminimum,

but theminimum of the function at x ¼ x4 is greater than the maximum of the function

at x ¼ x1.

At this stage, we introduce the following terms and concepts that will be frequently used in this

chapter.

Introduction to Differential Calculus: Systematic Studies with Engineering Applications for Beginners, First Edition.
Ulrich L. Rohde, G. C. Jain, Ajay K. Poddar, and Ajoy K. Ghosh.
� 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

Applications of Derivatives 19b-Maxima and minima: theory and problems (Investigating functions with the aid of

derivatives for finding extremum values of a function, and the extreme value theorem)
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. Absolute Maximum (Minimum) of a Function: In Figure 19b.1, note that at x ¼ b, the

value of the function is greater than any maximum of the function on the interval [a, b].

Thus, the greatest value of the function occurs at x ¼ b, and similarly, the smallest value

occurs atx ¼ x2.We say that the absolutemaximum of f is f(b) and the absoluteminimum

is f(x2).

. The Points of Extreme Values of a Function: The points like x1, x2, x3, x4, and b at which

the extreme values of the function f occur, are called the points of extremum (or extreme)

values of the function. Note that, a function defined on an interval can reachmaximumand

minimum values only for the points that lie within the given interval.(1)

Our interest lies in finding the points of extreme values of a continuous function by

using the concept of the derivative. Once such points are known, it is easy to compute the

extreme values of the function and then select the absolute extreme values, which have

practical applications, as will be clear from some solved examples.

In the case of some functions, it is not difficult to find the points of extrema without

using calculus, but it will be seen that in general it is not possible to find the extremevalues

without applying differential calculus.(2)

The knowledge of such points is very useful in sketching the graph of a given function.

Besides, these extreme values have many practical applications in widely varying areas

such as engineering and various sciences, and so on.

19b.2 RELATIVE EXTREME VALUES OF A FUNCTION

The term relative extreme values is frequently used, to stand for local extremevalues (including

the absolute extreme values), in a broader sense, This is due to the fact that all extreme values of

a function can be easily compared for relatively smaller or larger values.

19b.2.1 Classification of Relative Extreme Values of a Function

In Figure 19b.2, we indicate how maxima and minima are classified. The reader may note how

the term “relative extreme value” is more general than the term “local extreme value”.

0 a x1 x2 x3 x4 b

y

x

FIGURE 19b.1

(1) Later on, we will show (through examples) that an open interval may not have any point of extremum.
(2) If it were possible to draw easily the graph of any function accurately then we could easily find the extreme values of the

function without using differential calculus. But, we know that this is not so simple.
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(Shortly, it will be seen how the term “relative extreme value” is more useful than the term

“local extreme value”.)

19b.2.1.1 Definition: Point of Relative Maximum A function f is said to have a relative

(or local) maximum at x ¼ c, if,

f ðxÞ � f ðcÞ

for all values of x in some open interval about c.

If c is an end point of the domain of f, the interval is to be half open, containing c as the

end point. The interval might be small or it might be large, but no value of the function in

the interval (under consideration) is greater than f(c). Note that, it is only at x ¼ c where

f(x) ¼ f(c). [Even when c is an end point of the interval, we have lim
x! c

f ðxÞ ¼ f ðcÞ.]

19b.2.1.2 Definition: Point of Relative Minimum A function f is said to have a relative

(or local) minimum at x ¼ c, if,

f ðcÞ � f ðxÞ

for all values of x in some open interval about c (or half open interval with c as an end point).

Note: Theword relative (or local) is used to distinguish such a point from the point of absolute

maximum (or absoluteminimum). The precise definition of absolute extremawill be given later

in the chapter.

We now give the following simplified definitions:

(i) Definition of a Relative Maximum Value of a Function: The function f has a relative

maximum value at the point “c”, if there exists some number h> 0, such that,

f ðcÞ > f ðxÞ; for all x 2 ðc� h; cþ hÞ ð1Þ

The value f(c) is called the relative (or local) maximum value of f.

Absolute maximum.
No greater value of f.
Also a relative maximum.

Relative minimum.
No smaller value of f nearby.

Relative maximum.
No greater value of f nearby.

Relative maximum.
No greater value of f nearby.

y = f(x)

a c b

x

Absolute minimum.
No smaller value of f.

Also a relative minimum.

FIGURE 19b.2 Classification of relative extreme values of a function.

RELATIVE EXTREME VALUES OF A FUNCTION 577



Figures 19b.3a and 19b.3b show a portion of the graph of a function having a relative

maximum value.

(ii) Definition of a Relative Minimum Value of a Function: The function f has a relative

minimum value at the point “c”, if there exists some number h> 0, such that,

f ðcÞ < f ðxÞ; for all x 2 ðc� h; cþ hÞ ð2Þ

The value f(c), in this case, is called the relative (or local) minimum value of f.

Figures 19b.4a and 19b.4b show a portion of the graph of a function having a relative

minimum value.

a c b

(b)(a)

x

a c b

x

FIGURE 19b.3

a c b

(b)(a)

x

a c b

x

FIGURE 19b.4
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Note: From the definitions at (i) and (ii) above, it must be clear that in the case of a relative

maximum (or minimum) of a function f, the function must be defined in some open interval

(c � h, c þ h), wherein, the strict inequalities (1) and (2) must hold.

Remark (1): Note that the above inequalities (1) and (2) will be satisfied even when f is not

continuous atx ¼ c, but f(c) is defined. Such a relative extremevalue is called “strictmaximum

(minimum) value at a point”.

19b.2.1.3 Definition: Strict Maximum (Minimum) Value A function f is said to have a

strict maximum (minimum) at the point x ¼ c, if there holds the strict inequality,

f ðxÞ < f ðcÞ ½f ðxÞ > f ðcÞ�

for all values of x in some open interval (c � h, c þ h).

[Here, we do not assume that f(x) is continuous at x ¼ c.]

Example (1): Consider the function,

f ðxÞ ¼ x2 for x 6¼ 0

1 for x ¼ 0

�

Note that, this function f is not continuous at x ¼ 0, but it has a relative maximum value

at x ¼ 0 (more precisely, f has a strict maximum value). Here, we can define f(x) in a

way such that it has any desired maximum (or minimum) value at x ¼ 0 (Figure 19b.5).

[Of course, in the case of a continuous function, such extreme value(s) cannot be

chosen.]

Remark (2): When speaking of an extremum at a point x0, we usually mean strict extremum

at x0, irrespective of whether the function is continuous at x0 or not. The only important

y

x

y = f(x)

0

1

FIGURE 19b.5
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requirement is that the value f(x0) should be defined and be finite. [Note that strict maximum

(minimum) is also a relative maximum (minimum).](3)

The following theorem is used to locate the possible points (numbers) at which a function may

have relative extreme values.

19b.3 THEOREM A

If (i) f(x) exists for all values of x in the open interval (a, b), (ii) f has a relative extremum at c,

where a< c< b, and (iii) f 0(c) exists, then f 0(c) ¼ 0.

We differ the proof of this theorem for the time being, but let us see what it says, and what it

does not say.

In geometric terms, the theorem states that, if f has a relative extremum at c, and if f 0(c)
exists, then the graph of f must have a horizontal tangent line at the point x ¼ c.

(Observe that this situation prevails for the graphs in Figures 19b.3a and 19b.4a.)

Caution: Note carefully what the theorem says:

It says that f 0(c) ¼ 0 at all those interior points “c” where f has a relative maximum or

minimum and f 0(c) exists.

. The theorem does not say what happens if a relative maximum or minimum occurs at a

point c where f 0(c) is not defined [i.e., either f 0(c) is infinite or the point (c, f (c)) on the

graph is a sharp point such that no unique tangent line can be drawn at that point].

. Also, it does not say that f must have a relative maximum or minimum at every point “c”

where f 0(c) ¼ 0.

19b.3.1

The converse of theorem (A) does not hold.

It cannot be said that there definitely exists a relative extremum for every value at which the

derivative vanishes.

Example (2): The function y ¼ f(x) ¼ x3, whose graph appears in Figure 19b.6, has a

derivative equal to zero, at x ¼ 0.

ðy0Þx¼ 0 ¼ ð3x2Þx¼ 0 ¼ 0

But at this point, the function has neither a relative maximum nor a relative minimum. Indeed,

no matter how close the point x is to zero, we will always have

x3 < 0; when x < 0

x3 > 0; when x > 0

This is the example of a continuous function that has derivative at each point in its domain.

(3) It must be noted that the term “relative extremum” is used for the following two comparisons:

(i) For comparing the values of function within a small neighbourhood of the point of extremum.

(ii) For comparing themaximum (orminimum) values of the function to select the absolute maximum (orminimum)

values of the function.
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Example (3): The function y ¼ jxj has no derivative at the point x ¼ 0 (at this point the curve

does not have a definite tangent line), but the function has a relative minimum at this point:

y ¼ 0 when x ¼ 0. Note that, for any other point x different from zero, we have y> 0

(Figure 19b.7).

Example (4): Let the function f be defined by

f ðxÞ ¼ 2x� 1 if x � 3

8� x if 3 < x

�

The graph of this function appears in Figure 19b.8, showing that f has a relative maximum

value at x ¼ 3.

y

x

0

y = x3

FIGURE 19b.6
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y = |x|

0

x

f(x) = |x|

FIGURE 19b.7
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The derivative from the left of x ¼ 3 is given by f 0(x) ¼ 2 [note that f 0 �ð3Þ ¼ 2], and the

derivative from the right of x ¼ 3 is f 0(x) ¼ � 1 [note that f 0 þð3Þ ¼ � 1]. Therefore we

conclude that f 0(3) does not exist, but still a relative maximum exists at x ¼ 3.

Note (3): It is possible that a function f can be defined at a number c where f 0(c) does not
exist and yet f may not have a relative extremum there. The following example gives such

a function.

Example (5): The function y ¼ ffiffiffi
x3

p ¼ x1=3 does not have a derivative at x ¼ 0. Since the

derivative y0 ¼ f 0ðxÞ ¼ ð1=3Þx� 2=3 approaches infinity as x ! 0, we say that f 0(x) does not
exist at x ¼ 0.

The domain of f is the set of all real numbers. Figure 19b.9 shows the graph of the function.

At this point the function has neither a relative maximum nor a relative minimum. This is

also clear from the fact that f(0) ¼ 0, f(x)< 0 for x< 0 and f(x)> 0 for x> 0.

Example (6): Figure 19b.10 shows the graph of y ¼ f(x) ¼ x2/3, on [� 2, 3].
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y =
3

FIGURE 19b.9
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FIGURE 19b.8
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The derivative y0 ¼ f 0ðxÞ ¼ ð2=3Þx� 1=3 ¼ 2=3
ffiffiffi
x3

p
does not exist at x ¼ 0, where y has

its minimum value of zero. [Observe that, the curve has a vertical tangent at (0, 0), because

limx! 0 f
0ðxÞ ¼ 1.]

A function can have aminimum value at a point where its derivative does not exist. Oneway

this can happen is shown here, where the curve has a vertical tangent at x ¼ 0. Another way is

shown in Figure 19b.7, where jxj has no tangent at all atx ¼ 0.Again, in Figure 19b.8, a relative

maximum occurs at x ¼ 3, where f 0(x) does not exist.

Remark (1): Example (5) shows that when a maximum or minimum occurs at the end of a

curve, that exists only over a limited interval, the derivative need not vanish at such a point.

Remark (2): The Examples (2), (3), (4), and (5) demonstrate why the condition “f 0(c) exists,”
must be included in the hypothesis of Theorem A.

In summary, then, if a function f is defined at a number c, a necessary condition for f to have

a relative extremum there is that f 0(c) ¼ 0 or f 0(c) does not exist. But, this condition is not

sufficient as we have seen in the above examples. Before we discuss sufficient conditions for

existence of a relative extrema, it is important to define the following terms.

19b.3.2 Definition of Critical Points of f(x)

If c is a number in the domain of the function f, and if either f 0(c) ¼ 0 or f 0(c) does not exist,
then c is a critical point of f.

Thus, critical points include the roots of the equation f 0(x) ¼ 0, and the numbers where

f 0(x) does not exist. (In particular, the numbers “c” where limx! c f
0ðxÞ! �1 must be

carefully checked for extreme values.) Note that, for the function f ðxÞ ¼ x2=3, the derivative

f 0ðxÞ ¼ ð2=3Þx� 1=3 does not exist at x ¼ 0, but f(x) has its minimum value of zero at x ¼ 0

(see Figure 19b.10). In fact, the curve has a vertical tangent at (0, 0). On the other hand, a

different situation exists for the function, f ðxÞ ¼ x1=3. Note that, here again, there is a vertical

tangent at (0, 0) [meaning that f 0(x) does not exist there], but no extremum exists at x ¼ 0

(see Example 4, Figure 19b.9).

Relative
maximum

Absolute maximum:
also a relative maximum

Absolute minimum:
also a relative minimum

–2 –1 1

1

2

2

3

x

y
y = x2/3, –2 ≤ x ≤  3

FIGURE 19b.10
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19b.3.3 Stationary Point(s) of f(x)

The pointswhere f 0(x) ¼ 0 are called the stationary points of f(x), since the derivative f 0(x) that
stands for the rate of change of the function f(x) (at such points) is zero. (A stationary point

is a critical point but does not necessarily have a relative extrema.) Note the difference in

terminology: a point of extremum of a function is a point lying on the axis along which the

independent variables runs, while a point of inflection (discussed in earlier chapter) is a point

lying on the curve itself.(4)

Note (4): From what has been said we conclude that every critical point of a function need not

have a relative extremum. However, if at some point the function attains a relative extremum

then this point is definitely critical. Therefore, to find the relative extrema of a functionwemust

proceed as follows:

Find all the critical points, and then, investigate separately each critical point, to find out

whether the function will have relative maximum (or a minimum) at that point.

Investigation of a function at critical points is based on the following theorem.

19b.4 THEOREM B: SUFFICIENT CONDITIONS FOR THE EXISTENCE

OF A RELATIVE EXTREMA—IN TERMS OF THE FIRST DERIVATIVE

Let there be a function f(x) continuous on some interval containing a critical point x1
and differentiable at all points of the interval, with the exception, possibly, of the point

x1 itself.

. If when moving from left to right through this point the derivative changes sign from plus

to minus, then, at x ¼ x1, the function has a relative maximum.

. But, if when moving through the point x1 from left to right, the derivative changes sign

from minus to plus, the function has a relative minimum at x ¼ x1.

In other words,

if ðaÞ f 0ðxÞ > 0 when x < x1 and

f 0ðxÞ < 0 when x > x1

�

then at x1 the function has a relative maximum; but

if ðbÞ f 0ðxÞ < 0 when x < x1 and

f 0ðxÞ > 0 when x > x1

�

then at x1 the function has a relative minimum.

Note that, the conditions (a) and (b)must be fulfilled for all values of x that are sufficiently

close to x1 (i.e., at all points of some sufficiently small neighborhood of the critical point x1).

Also, the theorem demands that f 0(x) may not exist at x ¼ x1 but f must be continuous at x1.

(4) Formore details, refer toMathematical Analysis byA.F. Bermant and I.G.Aramanovich (pp. 202–203),Mir Publishers.
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Proof: Let f 0ðxÞ > 0 for x< x1. This means that on the left of the point x1, there is an interval

of increase of the function f(x) adjoining the point x1.

If f 0ðxÞ < 0 for x< x1, then on the right of the point x1, there is an interval of decrease

of the function adjoining the point x1. Consequently, x1 is a point of (relative) maximum

(Figure 19b.11).

Other cases, when the derivative changes its sign from negative to positive as x passes

through the point x1 from left to right, are investigated quite similarly.(5)

In other words, if the derivative f 0ðxÞ changes sign as x passes through the point x1 (from

left to right), the point x1 is a point of relative extremum (Figure 19b.12). (If the derivative

changes sign from positive to negative there is a relative maximum at the point x1; if it changes

from negative to positive it is relative minimum at the point x1.)
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(5) The theorem can also be proved by applying Lagrange’s mean value theorem (introduced later in Chapter 20). Such a

proof is very simple. [See Differential and Integral Calculus, Vol. 1 by Piskunove (p. 162), Mir Publishers.]
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It is clear that if the derivative f 0ðxÞ does not change sign as x passes through the point x1,

there is no relative extremumat the point x1. This can be seen from the behavior of the function

y ¼ x3 in the vicinity of the point x ¼ 0. Earlier, we have already discussed about this function

(Figure 19b.6), however, we again give the graph of this function with extra supporting

information for more clarity (Figure 19b.13).

Remark (3): For the sufficient conditions given by Theorem B to be satisfied, it is important

that the function f(x) be continuous at x ¼ x1. It is important to note that if it is only known that

the derivative changes sign at a point, it is impossible to judge upon the existence of a (relative)

extremum, because it is necessary to know additionally that the function is continuous at that

point itself.

For instance, take the function y ¼ ð1=x2Þ. Its derivative y ¼ �ð2=x3Þ changes sign as

x passes through the point x ¼ 0:

y0 > 0 for x < 0 and y0 < 0 for x > 0

Consequently, the function increases on the left of x ¼ 0 and decrease on the right of x ¼ 0.

At the same time x ¼ 0 is not a point of relative maximum of the function since 0 is not in the

domain of “f ”. It has an infinite discontinuity at that point (see Figure 19b.14).

y
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19b.4.1 Scheme for Investigating Functions by Means of the Sufficient Condition

for (Relative) Extremum in Terms of the First Derivative

The proceeding section permits us to formulate a rule for testing a differentiable function,

y ¼ f(x), for relative maximum and minimum.

(1) Find the first derivative of the function, that is, f 0ðxÞ.
(2) Find the critical values of the argument x. To do this:

(a) Equate the first derivative to zero and find the real roots of the equation f 0ðxÞ ¼ 0.

(b) Find the values of x at which the derivative f 0ðxÞ is not defined.
(3) Let these critical points [obtained from (a) and (b)] be denoted, in an increasing order, as

x1 < x2 < � � � < xn

We split the interval [a, b], in which the function is considered, into the subintervals.

ða; x1Þ; ðx1; x2Þ; . . . ; ðxn� 1; xnÞ; ðxn; bÞ
In Chapter 19a, we have seen that the sign of f 0ðxÞ remains unchanged in each such

subinterval. In other words, the sign of the derivative in each such subinterval may be

either positive or negative. Thus, these subintervals are the intervals of monotonicity of

the function. The sign of the derivative in each subinterval specifies the character of

variation of the function in each subinterval.

It is now sufficient to investigate the sign of the derivative on left and right of each

critical point xi. The specification of the change of sign of the derivative (as x passes

through the point xi from left to right) indicates which of these points give a relative

maximum are and which points give a relative minimum.

Note (5): It may also turn out that some of the points xi are not points of (relative) extremum.

This is the casewhen the derivative has the same sign in two adjoining subintervals separated by

the point xi (for instance, for the function y ¼ x3 the point x ¼ 0 belongs to this type).

(4) The substitution of the critical valuesx ¼ xi into f(x) yields the corresponding values of

the function:

f ðx1Þ < f ðx2Þ < � � � < f ðxnÞ

each of which need not be a relative extremum. This gives us the following table of

possible cases:

Sign of Derivative f 0ðxÞ When Passing

Through Critical Point x1

x< x1 x ¼ x1 x>x1 Character of Critical Point

þ f 0ðx1Þ ¼ 0 or f 0ðx1Þ is
not defined

� Point of relative maximum

� f 0ðx1Þ ¼ 0 or f 0ðx1Þ is
not defined

þ Point of relative minimum

þ f 0ðx1Þ ¼ 0 or f 0ðx1Þ is
not defined

þ Neither a relative maximum nor a

relative minimum. (Function

increases throughout)

� f 0ðx1Þ ¼ 0 or f 0ðx1Þ is
not defined

� Neither a relative maximum nor a

relative minimum. (Function

decreases throughout)
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Note (6): It is possible to establish another sufficient test for relative extremumwith the aid of

the second derivative f 00ðxÞ of the function f(x) under investigation. It will be found that the

second derivative test (stated below) sometimes proves simpler and more convenient than the

one in the foregoing section.

In what follows we assume that in a neighborhood of a given point x1 the function f(x)

itself and its first and second derivatives are continuous.

19b.5 SUFFICIENT CONDITION FOR RELATIVE EXTREMUM (IN TERMS

OF THE SECOND DERIVATIVE)

Theorem C: If the first derivative vanishes at the point x1 [ f
0ðx1Þ ¼ 0] while the second

derivative is different from zero [ f 00ðx1Þ 6¼ 0], then x1 is a point of relative extremum.(6)

Furthermore, if f 00ðx1Þ < 0, the point x1 is a point of relative maximum, if f 00ðx1Þ > 0, the

point x1 is a point of relative minimum.

Proof: Let f 0ðx1Þ ¼ 0 and f 00ðx1Þ > 0.

By the hypothesis, the second derivative is continuous, and therefore its sign is retained in a

neighborhood of the point x1. It follows that the function f
0ðx1Þ increases in this neighborhood

because its derivative ð f 0ðx1ÞÞ0 ¼ f 00ðx1Þ is positive (by assumption).

Further, since f 0ðx1Þ ¼ 0, the derivative f 0ðx1Þ assumes values less than f 0ðx1Þ ¼ 0 on the

left of the point x1 and is therefore negative:

f 0ðx1Þ < 0 for x < x1

Similarly, on the right of the point x1, its values are greater than f 0ðx1Þ ¼ 0, that is, its values

are positive:

f 0ðx1Þ > 0 for x > x1

Hence, as x passes through the point x1 from left to right, the function f 0ðx1Þ changes sign from
negative to positive and therefore, according to the foregoing test for extremum (in terms of the

first derivative), x1 is a point of relative minimum of the function f(x).

An analogous arguments shows that, if f 00ðx1Þ < 0 the function f 0ðxÞ decreases and changes
its sign from positive to negative as x passes through the point x1, means that x1 is a point of

relative maximum of the function f(x).

Remark (1): If both f 0ðx1Þ ¼ 0 and f 00ðx1Þ ¼ 0, the second derivative test is inapplicable,

and one should resort to the first derivative test. For instance, consider the following examples

which will make this clear.

(6) It follows that the second derivative test for relative extremum is applicable to a function f, if f(x1), f
0ðx1Þ and f 00ðx1Þ are

continuous at x ¼ x1, and f 00ðx1Þ 6¼ 0.
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Example (7): Test for (relative) maximum and minimum the functions

y ¼ x4 and y ¼ x3

Solution: The first and the second derivatives of the function y ¼ x4 turn into zero at the point

x ¼ 0. Therefore, the second derivative test is inapplicable while the first test indicates that

there is a (relative) minimum at that point, since the derivative y0 ¼ 4x3 changes sign from

negative to positive as x passes through the origin, from left to right.

At the same time, the function y ¼ x3 whose first and second derivatives also vanish at the point

x ¼ 0, has no relative extremum at the origin. This is so, because its first derivative does not

change sign as x passes through the point x ¼ 0.

Example (8): Test the following function for (relative) maximum and minimum

f ðxÞ ¼ 1� x4

Solution:

(1) Find the critical points:

f 0ðxÞ ¼ � 4x3

� 4x3 ¼ 0 gives x ¼ 0

(2) Determine the sign of the second derivative at x ¼ 0.

f 00ðxÞ ¼ � 12x2

Now; ½ f 00ðxÞ�x¼ 0 ¼ 0

It is thus impossible here to determine the character of the critical point by means of the

sign of the second derivative (Figure 19b.15).

y

0

l

x

y = 1 – x4

FIGURE 19b.15
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(3) Investigate the character of the critical point by the first derivative test

½ f 0ðxÞ�x<0 > 0; ½ f 0ðxÞ�x>0 < 0

Consequently, atx ¼ 0, the function has a (relative)maximum, namely ½ f 0ðxÞ�x¼ 0 ¼ 1.

Remark (2): Whenever the second derivative test is applicable, it proves extremely conve-

nient, since, it does not require the determination of the sign of the function f 0ðxÞ at points
different from the point at which the given function is tested for relative extremum, and this

makes it possible to judge upon the existence of the relative extremum by the sign of the

function f 00ðxÞ at the same point.

Now, we give below two examples in which it is tedious to obtain f 00ðxÞ or inconvenient to
calculate it. In such cases, checking the change of sign of f 0ðxÞ gives a quicker result in

classifying the critical values.

Example (9): Show that the function

x5 � 5x4 þ 5x3 � 1

has a maximum when x ¼ 1, a minimum when x ¼ 3, and neither when x ¼ 0.

Solution: Let y ¼ f(x) ¼ x5 � 5x4 þ 5x3 � 1

) dy

dx
¼ f 0ðxÞ ¼ 5x4 � 20x3 þ 15x2

¼ 5x2ðx2 � 4xþ 3Þ
¼ 5x2½x2 � 3x� xþ 3�
¼ 5x2½xðx� 3Þ� 1ðx� 3Þ�
¼ 5x2ðx� 3Þðx� 1Þ ð3Þ

and f 00ðxÞ ¼ 20x3 � 60x2 þ 30x

¼ 10x½2x2 � 6xþ 3� ð4Þ

For critical values of f(x), we must have dy=dx ¼ f 0ðxÞ ¼ 0.

That is, 5x2(x � 3) (x � 1) ¼ 0, which gives x ¼ 0, 1, and 3 (i.e., the critical values) at

which f(x) may have possible maxima or minima or neither.

When x ¼ 1, we have from (4),

f 00ðxÞ ¼ 10½2� 6þ 3� ¼ � 10 < 0

) f ðxÞ is maximum for x ¼ 1

When x ¼ 3, we have

f 00ðxÞ ¼ 10ð3Þ½2ð3Þ2 � 6ð3Þþ 3

¼ 30½18� 18þ 3� ¼ 90 > 0

) f ðxÞ is minimum for x ¼ 3

Finally, when x ¼ 0, we get

f 00ðxÞ ¼ 10xð2x2 � 6xþ 3Þ ¼ 0

590 MAXIMUM AND MINIMUM VALUES OF A FUNCTION



Hence, the test fails. Therefore, we use the first derivative test [i.e., to findwhether f 0ðxÞ changes
sign as x increases through x ¼ 0].

We have f 0ðxÞ ¼ 5x2ðx� 1Þðx� 3Þ
when x is slightly less than zero, we have from (3),

f 0ðxÞ ¼ ð5Þðþ Þð� Þð� Þ ¼ þ

and when x is slightly greater than zero,

f 0ðxÞ ¼ ð5Þðþ Þð� Þð� Þ ¼ þ

Thus, we observe that f 0ðxÞ does not change sign as x increases through 0. Hence, the function

f(x) is neither maximum nor minimum at x ¼ 0.

) The critical valuex ¼ 0 isapoint of inflection on the curve, its coordinates being (0, � 1).

Note (7): The maximum and minimum values of the function, on putting x ¼ 1 and x ¼ 3,

respectively, in f(x) ¼ x5 � 5x4 þ 5x3 � 1, are 0 and � 28. One might check and convince

himself that f(x) cannot have value greater than zero and less than � 28 for any value of x.

Example (10): Show that the function

f ðxÞ ¼ ðxþ 1Þ2
ðxþ 3Þ3

has a maximum value 2/27 and a minimum value zero.

Solution: Let y ¼ f ðxÞ ¼ ðxþ 1Þ2
ðxþ 3Þ3

To find dy/dx ¼ f 0(x), it is convenient to take logarithms first.

Thus, loge y ¼ 2 loge (x þ 1) � 3 loge (x þ 3)

Differentiating both sides w.r.t. x, we get

1

y
� dy
dx

¼ 2

xþ 1
� 3

xþ 3

¼ 2ðxþ 3Þ� 3ðxþ 1Þ
ðxþ 1Þðxþ 3Þ ¼ ð3� xÞ

ðxþ 1Þðxþ 3Þ

) dy

dx
¼ y � ð3� xÞ

ðxþ 1Þðxþ 3Þ ¼ ðxþ 1Þ2
ðxþ 3Þ3 � ð3� xÞ

ðxþ 1Þðxþ 3Þ

¼ ðxþ 1Þð3� xÞ
ðxþ 3Þ4 ð5Þ

Now, observe that it is tedious to obtain d2y=dx2 ¼ f 00ðxÞ. Therefore, we choose to check the
change of sign of f 0(x), as x increases through the critical values [i.e., x ¼ � 1, x ¼ 3, which

are in the domain of f 0(x)]. Note that dy/dx ¼ 0, when x ¼ � 1, 3.

First, consider x ¼ � 1
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when x is slightly less than � 1, we see from (1), that

dy

dx
¼ ðxþ 1Þð3� xÞ

ðxþ 3Þ4 ¼ ð� Þðþ Þ
þ ¼ �

and when x is slightly greater than � 1, then

dy

dx
¼ ðþ Þðþ Þ

þ ¼ þ

Thus, dy/dx changes sign from negative to positive as x increases through � 1.

) y ¼ f(x) is minimum for x ¼ � 1, and this minimum value obtained by putting

x ¼ � 1 in the expression for y ¼ f(x), is zero.

Next, consider x ¼ 3

when x is slightly less than 3, we have, from (5)

dy

dx
¼ ðxþ 1Þð3� xÞ

ðxþ 3Þ4 ¼ ðþ Þðþ Þ
þ ¼ þ

and when x is slightly greater than 3, we get

dy

dx
¼ ðþ Þð� Þ

þ ¼ �

so that dy/dx changes sign from positive to negative as x increases through 3.

) y ¼ f(x) is maximum for x ¼ 3 and its maximum value, on putting x ¼ 3 in the

expression for y, is

ð3þ 1Þ2
ð3þ 3Þ3 ¼ 2� 2� 2� 2

6� 6� 6
¼ 2

27
Ans:

Note (7): In the above example, the derivative dy=dx ¼ ððxþ 1Þð3� xÞÞ=ðxþ 3Þ4 is not

defined at x ¼ � 3, hence x ¼ � 3 is a critical value thatmust be investigated for existence of

extrema. But we also observe that the function y ¼ ðxþ 1Þ2=ðxþ 3Þ3 is not continuous at

x ¼ � 3, since, y is not defined for x ¼ � 3. In other words, x ¼ � 3 is not in the domain

of the function and so this point is not to be considered for extreme values.

Example (11): We will show that the maximum value of (1/x)x is e1/e.

Solution: Let y ¼ (1/x)x

) loge y ¼ x logeð1=xÞ ¼ x logeðxÞ� 1

¼ � x loge x

) 1

y
� dy
dx

¼ � x � 1
x
þ loge x

2
4

3
5

¼ � ½1þ loge x�
) dy

dx
¼ � y 1þ loge x½ �

or
dy

dx
¼ � 1

x

0
@

1
A

x

ð1þ loge xÞ ð6Þ
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Equating dy/dx to zero, we obtain (1 þ loge x) ¼ 0

) loge x ¼ � 1 ) x ¼ e� 1 ¼ 1=e

Note that 1/e is a positive number less than 1.

(Now we have to investigate the critical value x ¼ 1/e for existence of extreme value.)

When x is slightly less than 1/e (which means that the value of loge x is slightly toward

� 2 from � 1), ð1þ loge xÞ < 0 and we have, from (6)

dy

dx
¼ � 1

x

� �x

ð1þ loge xÞ ¼ ð� Þðþ Þð� Þ ¼ þ

and when x is slightly greater than 1/e (the value of loge x is slightly toward 0 from � 1),

ð1þ loge xÞ > 0 and we have,

dy

dx
¼ � 1

x

� �x

1þ loge xð Þ ¼ ð� Þðþ Þðþ Þ ¼ �

Thus, dy/dx changes sign from positive to negative as x increases through the value 1/e. Hence

y is maximum for x ¼ 1/e, and this maximum value is given by

1

1=e

� �1=e

¼ e1=e Ans:

19b.6 MAXIMUM AND MINIMUM OF A FUNCTION ON THE WHOLE

INTERVAL (ABSOLUTE MAXIMUM AND ABSOLUTE MINIMUM VALUES)

We are frequently concerned with a function defined on a given interval, and wewish to find the

largest or smallest value of the function on the interval. These intervals can be either closed,

open, or closed on one end and open at the other. We now give the precise definitions of the

absolute extreme values of a function.

(a) Definition of an AbsoluteMaximumValue on an Interval: The function f has an absolute

maximum value on an interval if there is some number c in the interval such that

f ðcÞ � f ðxÞ; for all x in the interval

The number f(c) is then the absolute maximum value of f on the interval.

(b) Definition of an AbsoluteMinimumValue on an Interval: The function f has an absolute

minimum value on an interval if there is some number c in the interval such that

f ðcÞ � f ðxÞ; for all x in the interval

The number f(c) is then the absolute minimum value of f on the interval. (If a function

has either an absolute maximum value or an absolute minimum value on an interval,

then the function is said to have an absolute extremum on that interval.)

A function may or may not have an absolute extremum on a particular interval. In

each of the following examples, a function and an interval are given, and we find the

absolute extrema of the function on the interval, if there is any.
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Example (12): Consider the function defined by f(x) ¼ 2x

The graph of f on [1, 4) is sketched in Figure 19b.16, This function has the minimum value

of 2 on [1, 4). There is no maximum value of f on [1, 4) because limx! 4 f ðxÞ ¼ 8, but f(x) is

always less than 8 on the interval.

On the other hand, let us imagine the graph of the function

f ðxÞ ¼ 2x for 1 < x � 4

It has the maximum value of 8 on (1, 4] but there is no minimum value of the function. Again,

the function f(x) ¼ 2x defined on (1, 4) has neither maximum value nor minimum value.

Example (13): Consider the function defined by f(x) ¼ � x2

The graph of f on (� 3, 2) appears in Figure 19b.17. This function has an absolutemaximum

value on (� 3, 2). There is no absolute minimum value of f on (� 3, 2] because

limx! � 3þ ¼ � 9 but f(x) is always greater than � 9 on the given interval. Of course, there

is relative minimum value of � 4 at x ¼ 2.

Note that, in this example a relative minimum occurs at an end points of the interval.

Example (14): Consider the function defined by f(x) ¼ x2, x2 [0, 1)

This function has the absolute minimum value of 0, at x ¼ 0.

It does not have the absolute maximum value, since the function can attain any positive

value. (Here, f is defined on an unbounded interval.)

8

2

41

f(x) = 2x, for 1 ≤ x < 4

0

y

x

FIGURE 19b.16
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Further, the function,

f ðxÞ ¼ x2 1 � x < 3

has the absolute minimum value at 1, but there is no absolute maximum value. (Why?)On the

other hand, the function,

f ðxÞ ¼ x2 1 � x � 3

has both the absolute minimum value of 1 at x ¼ 1 and the absolute maximum value of 9 at

x ¼ 3.

In contrast, consider the function,

f ðxÞ ¼ x2 for 1 � x < 3

5 for x ¼ 3

�

Here, f has the absolute minimum value of 1 at x ¼ 1, but there is no absolute maximum

value. (Why?)

Note that, forx ¼ 3, f(x) ¼ 5; but there are infinitelymany points less than 3, in the interval

[1, 3], for which f(x)> 5. However, it is not possible to choose a single point at which f has the

maximum value. Also, note that this function is defined on the closed interval [1, 3], but it is

discontinuous at x ¼ 3, which is an end point of the interval.

–3

–9

–4

2

y

0 x

f(x) = –x2, x ∈ (–3, 2)

FIGURE 19b.17
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Remark: This example shows that a function defined on a closed interval may not

attain the absolute extremum, if it is discontinuous, anywhere in the interval—including

the end point. On the other hand, there are examples showing that a discontinuous function

defined on an open interval may have both an absolute maximum and an absolute minimum

value.

The above examples suggest that we can bemuchmore precise about possible extreme values if

the function f is continuous and the domain S is a closed interval. The extreme value theorem

answers the existence question for some of the problems that come up in practice.

19b.6.1 The Extreme Value Theorem

If the function f is continuous on the closed interval [a, b], then f has an absolute maximum

value and an absolute minimum value on [a, b].(7)

Note the key words; f is required to be continuous and the set S is required to be a closed

interval.

Remark: The extreme value theorem states that the continuity of a function on a closed

interval is a sufficient condition to guarantee that the function has both an absolute maximum

value and an absolute minimum value on the interval. However, it is not a necessary condition.

For example, the function whose graph appears in Figure 19b.18, has an absolute maximum

value at x ¼ c and an absolute minimum value at x ¼ d, even through the function is

discontinuous on the open interval (� 1, 1).

An absolute extremum of a function continuous on a closed interval must be either a relative

extremum or a function value at an end point of the interval.

(7) Though this theorem is intuitively obvious, a rigorous proof is quite difficult. The proof of this theorem can be found in

an advanced calculus text. One such reference isCalculus with Analytic Geometry (Alternate Edition) by Robert Ellis and

Denny Gulik, HBT Publication.

–1 c 10

d x

y

FIGURE 19b.18
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Since a necessary condition for a function to have a relative extremum at a number “c” is

for c to be a critical number, the absolute maximum value and the absolute minimum value

of continuous function f on a closed interval [a, b] can be determined by the following

procedure:

(1) Find the function values at the critical numbers of f on (a, b).

(2) Find the values f(a) and f(b).

(3) The largest of the values from steps 1 and 2 is the absolute maximum value, and the

smallest of the values is the absolute minimum value.

Exercise (1)

Q1. Test for maximum and minimum of the function y ¼ x6

Ans. The function has minimum at x ¼ 0.

Q2. Test for maximum and minimum of the function y ¼ (x � 1)3

Ans. The function has neither a maximum nor a minimum.

Q3. To find the greatest and the least values of x3 � 18x2 þ 96x, in the interval [0, 9]

Ans. The greatest value ¼ 160 and the least value ¼ 0.

Q4. To find the greatest and the least values of 3x4 � 2x3 � 6x2 þ 6x þ 1 in the interval [0, 2]

Ans. The greatest value ¼ 21, and the least value ¼ 1.

Q5. Prove that xx has minimum value at x ¼ 1/e, and the minimum value is (1/e)1/e

Q6. Find the maximum value of logx
x

Ans. Maximum value ¼ 1/e.

Q7. Prove that the maximum value of sin x þ cos x is
ffiffiffi
2

p

It is possible to give a step-by-step procedure for solving word problems concerning

maximum and minimum. Of these steps the most important step is to express the quantity

(to be maximized or minimized) as a function f of the other quantity. We now proceed to

discuss such applied problems.

19b.7 APPLICATIONS OF MAXIMA AND MINIMA TECHNIQUES IN

SOLVING CERTAIN PROBLEMS INVOLVING THE DETERMINATION

OF THE GREATEST AND THE LEAST VALUES

By using techniques that we learnt (for finding where a function attains its maximum and

minimum (i.e., extreme) values), we can examine situations in science, business, and

economics that require determining the value of a variable, which will maximize or minimize

a function.
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In examining such situations, we are concernedwith the problems inwhich the solution is an

absolute extremum of a function.

Of course, the extreme value theorem assures us that a function continuous on a closed

interval [a, b] has both an absolute maximum value and an absolute minimum value on the

interval.

However, we have seen the graph of a function (Figure 19b.18), which has an absolute

maximum value at x ¼ c and an absolute minimum value at x ¼ d, even though the function is

discontinuous on the open interval (� 1, 1). It is important to remember that the greatest value

M (the least valuem) of the function on the interval [a, b] is either one of its relative maximum

(minimum) values or an end point value. Some of the possible cases are shown inFigure 19b.19.

It is also clear that when a function y ¼ f(x) is monotonic, in a closed interval [a, b], its

greatest value is f(b) and the least value is f(a), if the function increases and conversely, the

greatest value is f(a) and the least value is f(b), if the function decreases.

It often occurs that a given function has only one point of extremum in an interval. In this

case, the value of the function at that point is the greatest (an absolute maximum) on the interval

in the case of relative maximum, and the least (an absolute minimum) in the case of relative

minimum. Thus, we can deal with applications involving absolute extremum, even when the

extreme value theorem cannot be employed. The following theorem is sometimes useful to

determine if a relative extremum is an absolute extremum.

Theorem D: Suppose the function f is continuous on the interval I containing the number c.

If f(c) is a relative extremum of f on I and c is the only number in I for which f has a relative

extremum, then f(c) is an absolute extremum of f on I.(8)

Suppose there are twomagnitude connected by a functional relationship, and it is required to

find the value of one of them (belonging to an interval that can be finite or infinite) forwhich the

othermagnitude assumes its least or greatest value among all the possible values. To solve such

a problem we must find the expression of the function describing the relationship between the

magnitudes in question and then determine the least or the greatest value of this function on the

given interval.

Example (15): Let us determine the least length l of the fence enclosing a rectangular plot of

land with given area s adjoining a wall.

Solution: Denoting by x one of the sides of the rectangular plot of land with given area s

adjoining a wall (see Figure 19b.20) we readily obtain,

s ¼ xðl� 2xÞ where l ¼ 2xþ s=x ð7Þ

The problem now reduces to finding the least value of this function as x ranges from 0 to 1.

m

a a a a a

x

b b b b b

m m m m
M M M M M

FIGURE 19b.19

(8) We accept this theorem without proof. For proof of Theorem “D”, refer to The Calculus � 7 of a Single Variable by

Louis Lethold (p. 288), Harper Collins.
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Note from (7) that l ! 1 for both x ! 0 and x ! 1, the least value of the function l must

be among the minimum values of l, for some x in the interval (0, 1).

We find the derivative,

dl

dx
¼ 2� s

x2

Now, dl=dx ¼ 0 gives 2� s=x2 ¼ 0 or x ¼ ffiffiffiffiffiffiffi
s=2

p
It follows that in the interval in question there is only one stationary point x ¼ ffiffiffiffiffiffiffi

s=2
p

at which the function has an extremum.

Now, the second derivative,

d2l=dx2 ¼ 2s=x3 is positive, for any positive value of x, we get that I has theminimum value at

x ¼ ffiffiffiffiffiffiffi
s=2

p
, and it is given by

lmin ¼ 2

ffiffiffi
s

2

r
þ sffiffiffiffiffiffiffi

s=2
p ¼ sþ sffiffiffiffiffiffiffi

s=2
p ¼ 2sffiffiffiffiffiffiffi

s=2
p ¼ 2

ffiffiffiffiffi
2s

p

This relation tells us that the length of any fence enclosing a rectangular plot of landwith a given

area s adjoining awall cannot be less than 2
ffiffiffiffiffi
2s

p
, and it is equal to this onlywhen the smaller side

of the rectangle (which is equal to x ¼ ffiffiffiffiffiffiffi
s=2

p ¼ ð1=2Þ ffiffiffiffiffi
2s

p
) is half the greater side [which is

equal to (l � 2x) ¼ (2
ffiffiffiffiffi
2s

p � 2ð1=2Þ ffiffiffiffiffi
2s

p ¼ ffiffiffiffiffi
2s

p
)].

Thus, in these circumstances, the most economical fence is the one whose greater side is

twice the smaller one.

Example (16): Divide a positive integer N into two parts such that their product is maximum.

Solution: Let one part of N be x

) The other part ¼ ðN� xÞ

Let the product of these parts be denoted by y. Then, we have

y ¼ xðN � xÞ
¼ Nx� x2

) dy

dx
¼ N� 2x

ð8Þ

Now, dy=dx ¼ 0 gives N � 2x ¼ 0

) x ¼ N=2

x s x

l–2x

FIGURE 19b.20
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Thus, y is extremum for x ¼ N/2.We check the sign change of dy=dx when x passes through

N/2 from the left to right.Whenx is (slightly) less thanN/2, we have from (1), dy=dx is positive.
When x is slightly more than N/2, we have dy=dx is negative. Thus, the sign of dy=dx changes

from positive to negative. Therefore, y has maximum value when x ¼ N/2.

[If desired, second-derivative test could be done. Note that d2y=dx2 ¼ � 2 (which is a

negative number). Hence, y has a maximum value when x ¼ N/2.]

Remark: Product of two equal parts of a positive integer (these equal parts may be positive

integers or positive rational numbers) gives the maximum product.

Note (8): If it is desired to partition a given positive number into any number of equal parts, then

the largest product is obtained when each part is as close as possible to e (e ¼ 2.718)

(see Chapter 13a for the properties of the number “e”).

Example (17): An agency agreed to conduct a tour for a group of 50 people at a rate of Rs.

400/- each. In order to secure more tourists, the agency agreed to deduct Rs. 5/- from the cost of

the trip, for each additional person joining the group. What number of tourists would give the

agency maximum gross receipts? (It was specified that 75 was the upper practical limit for

the size of the group).

Solution: Just imagine that four people were to join the group, the reduction in the cost of the

tour per person would be Rs. 20/-. If 10 people joined, the reduction in cost per person would be

Rs. 50/- (for the entire group).

If we represent byx the number of additional tourists, the reductionwill be Rs. 5x per person

[so that cost of the tour for each person would be Rs. (400 � 5x)].

Thus; cost of tour ðfor each personÞ ¼ Rs: ð400� 5xÞ
and Number of tourists ¼ 50þ x

) Gross receipts of the company ¼ ð400� 5xÞð50þ xÞ
Let us denote the gross receipts by the symbol y:

) y ¼ Rs: ð400� 5xÞð50þ xÞ
or y ¼ 2000� 250xþ 400x� 5x2

y ¼ 2000þ 150x� 5x2 ðIt is desired that y should be maximum:Þ
To find the maximum gross receipt, we use the technique of finding the derivative and

equating the result to zero.

dy

dx
¼ 150� 10x

150� 10x ¼ 0

10x ¼ 150

) x ¼ 15

Thus; for x ¼ 15; ywill have extremum value for y:
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Now, there are two methods to check whether x ¼ 15 will give maximum or minimum

receipts. One is to check the change of sign of dy/dx when x increases through the number 15,

and the other is to check whether d2y/dx2is negative or positive.

If x is slightly less that 15, the sign of dy/dx is positive and for x more than15, dy/dx is

negative. Thus, the sign of dy/dx changes from positive to negative at x ¼ 15. Thus, ywill have

a maximum value for x ¼ 15. (Also d2y/dx2 ¼ � 10 that is negative. Hence, y has maximum

value at x ¼ 15.)

Thus, with any of the above techniques, it is easily shown that for x ¼ 15, y has the

maximum value. Accordingly, if there are 15 additional tourists then the gross receipts will be

maximum. Thus, the number of tourists in the group should be 65.

Note (10): Check the above conclusion by varying the number of tourists and computing the

gross receipts.

Example (18): If two real numbers x and y are such that x> 0 and xy ¼ 1, then find the

minimum value of x þ y.

Solution: It is given that

xy ¼ 1; x > 0 ð9Þ

) y ¼ 1

x
ðobviously; y > 0Þ

Let f ðxÞ ¼ xþ y ð10Þ

or f ðxÞ ¼ xþ 1

x
ð11Þ

) f 0ðxÞ ¼ 1� 1

x2
ð12Þ

and f 00ðxÞ ¼ 0þ 2x� 3 ¼ 2

x3
ð13Þ

For f(x) to be minimum, f(x) ¼ 0

) 1� 1

x2
¼ 0 from ð12Þ½ �

) 1

x2
¼ 1

) x2 ¼ 1 ) x ¼ þ 1; � 1

But x> 0 given, therefore x ¼ � 1 is not acceptable.

Putting x ¼ 1 in equation (13), we get

f 00ðxÞ ¼ 2

13
¼ 2; which is positive

Hence, f(x) isminimum at x ¼ 1 and theminimumvalue of f(x) is obtained from equation (11).

f ð1Þ ¼ 1þ 1

1
¼ 2 Ans:
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Example (19): A manufacturer of baby food wishes to package his product in cylindrical

metal cans, each ofwhich has to contain a certainvolumeV0 of baby food. Let us find the ratio of

the height of the can to its radius, in order to minimize the amount of metal, assuming that the

ends and side (i.e., cylindrical portion of the can) are made from metal of the same thickness.

Solution: We wish to find a relationship between the height and the base radius of the right-

circular can in order for the total surface area to be an absolute minimum for a fixed volume.

Therefore, we consider the volume V0 of the can a constant.

Let radius of the can ¼ r; ðr > 0Þ
and height of the can ¼ h; ðh > 0Þ

Then, volume of baby food container in each can is given by

V0 ¼ pr2h ð14Þ

and the surface area of circular portion ¼ 2prh
Now, the total surface area of can consists of two circular disks at the ends and the cylindrical

portion.

) The total surface area of each can given by

S ¼ 2pr2 þ 2prh ð15Þ
Because V0 is constant, we could solve equation (14) for either r or h, in terms of the other and

substitute in (15), which will give us S as a function of one variable.

From ð14Þ; we get h ¼ V0

pr2
ð16Þ

) S ¼ 2pr2 þ 2pr
V0

pr2

S ¼ 2pr2 þ 2 � V0

r

or S ¼ 2pr2 þ 2 � V0

r

ð17Þ

Now, for S to be minimum, we obtain from (17), and equate it to zero.

ds

dr
¼ 4pr� 2V0

r2

or
ds

dr
¼ 2 2pr� V0

r2

0
@

1
A

Now;
ds

dr
¼ 0; gives 2pr ¼ V0

r2

) r3 ¼ V0

2p

ð18Þ
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Step (1): The manufacturer wishes to minimize the surface area S of the can.

Step (2): We have found that the surface area of each can is given by equation (15)

Note that, r and h are not independent of each other. Since we have chosen r as the independent

variable, then S depends on r; also, h depends on r. We have found only one candidate in

equation (18), that is, the value of rwhich is related to h, and our interest lies in ratio h/r, which

should make ds/dr zero.(9)

Recall from equation (16) that

h ¼ V0

pr2

) h

r
¼ V0

pr3
¼ V0

pðV0=2pÞ ) r3 ¼ V0

2p

� �

h

r
¼ V0

p
� 2p

V0

¼ 2 Ans:

Note (11): This example illustrates the practical importance of extremum problems. For a

cylindrical can of minimal surface area and containing a given volume, we should have h ¼ 2r,

that is, its height should equal the diameter.

Example (20): A square sheet of tin, “a” cm on a side, is to be used tomake an open top box by

cutting a small square of tin from each corner and bending up the sides. How large a square

should be cut from each corner so that the box has as large a volume as possible?

Solution:

Let the side of the square cut from each corner be x cm. Then, the volume of the (open) box in

cubic centimeter is given by (Figure 19b.21)

vðxÞ ¼ xða� 2xÞ2; 0 � 2x � a

i:e:; vðxÞ ¼ xða� 2xÞ2; 0 � x � a=2
ð19Þð10Þ

[Note (12): It is clear from (1) that v(x) ¼ 0, when x ¼ 0 or when x ¼ a/2, therefore,

maximum volume of v(x) must occur at a value of x between 0 and a/2.]

The function in (19) has a derivative at every such point, and hence the extremum occurs at

an interior point of [0, a/2] where v0(x) ¼ 0.

From equation (1), we get,

vðxÞ ¼ a2x� 4ax2 þ 4x3

) v0ðxÞ ¼ a2 � 8axþ 12x2 ½12a2 ¼ ð� 6aÞ � ð � 2aÞ
¼ a2 � 6ax� 2axþ 12x2

¼ aða� 6xÞ� 2xða� 6xÞ
¼ ða� 6xÞða� 2xÞ

so that y0 ¼ 0 when x ¼ a/6 or x ¼ a/2.

(9) Note that, the equation (18) (i.e., r3 ¼ V0=2p) helps in deciding the relation between h and r.
(10) The restrictions placed on the length x in equation (14) are due to the fact that one can neither cut a negative amount of

material from a corner nor cut away more than the total amount present.
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Of these, only x ¼ a/6 lies in the interior of [0, a/2]. Therefore, the maximum or minimum

occurs at x ¼ a/6.

Now, by checking the sign change of y0 (when x increases through a/6) or by finding the sign
of y0 0 (a/6), it can be easily shown that y has maximum value for x ¼ a/6.

Thus, each corner square should have dimensions a/6 by a/6 to produce a box of maximum

volume. Ans.

Remark: Note that we have solved a general problem formaking boxes of maximum volume,

from any given square sheet.

Exercise (2)

Q1. The sum of two positive numbers is 20. Find the numbers

(i) if their product if maximum;

(ii) if the sum of their squares is minimum.

Ans. x ¼ 10 and y ¼ 10.

Q2. Show that the perimeter of the rectangle of given area is minimum if it is a square.

Q3.Divide 100 into two parts such that the sum of the twice of first part and square of second is

minimum.

Ans. 99, 1.

Q4. The two sides of a rectangle are 2x and (!5 � 2x) units, respectively. For what value of x,

the area of rectangle will be maximum?

Ans.
14

4

Q5. Find the two positive numbers whose product is 64 and sum is minimum

Ans. 8, 8.

Q6.Awire of length 28m is to be cut into two pieces, one of the piece is to bemade into a square

and the other into a circle. Where should the wire be cut so that the combined area is

minimum?

Ans. 112=ðpþ 4Þ from one end. Hence length from second end ¼ 28p=ðpþ 4Þ.

x x

xx

x

x
x

x

a – 2x

a – 2x

a – 2x

a – 2x

FIGURE 19b.21
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20 Rolle’s Theorem and the
Mean Value Theorem (MVT)

20.1 INTRODUCTION

One of the most important theorems in calculus is the Mean Value Theorem (MVT), which is

used to prove many theorems of both differential and integral calculus, as well as other

subjects, such as numerical analysis. MVT is said to be the midwife of calculus—not very

attractive or glamorous by itself, but often helping to deliver other theorems that are of major

significance. The proof of the Mean-Value Theorem is based on a special case of it known

as Rolle’s Theorem, which we discuss first.

TheFrenchmathematicianMichelRolle (1652–1719) proved that if f is a function continuous

on a closed interval [a, b] and differentiable on the open interval (a, b), and if f(a) and f(b)

both equal zero, then there is at least one number c between a and b at which f 0(c) ¼ 0.

In the statement of this theorem, there are three conditions, which must be satisfied for the

theorem to hold. By way of illustrations, we shall show that all the three conditions in Rolle’s

theorem are important and if they are violated, the theorem may not hold.(1)

First, let us see what this means geometrically. Figure 20.1 shows the graph of a function f

satisfying the conditions in the preceding paragraph.

We see intuitively that there is at least one point on the curve between the points (a, 0) and

(b, 0) at which the tangent line is parallel to the x-axis; that is, the slope of the tangent line is

zero. This situation is illustrated in this figure at the point P.

Note that, the x-coordinate of P is c such that f 0(c) ¼ 0.

Note (1): The function, whose graph appears in Figure 20.1, is not only differentiable on

the open interval (a, b) but is also differentiable at the end points of the interval. However,

the intuitive feeling that f should be differentiable at the end points is not necessary

for the graph to have a horizontal tangent line at some point in the interval. Figure 20.2

illustrates this.

Introduction to Differential Calculus: Systematic Studies with Engineering Applications for Beginners, First Edition.
Ulrich L. Rohde, G. C. Jain, Ajay K. Poddar, and Ajoy K. Ghosh.
� 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

(1) Some authors state Rolle’s Theorem by relaxing the condition (iii) to read it as f(a) ¼ f(b), thus not requiring that both

f(a) and f(b) should be necessarily zero. In fact, the condition f(a) ¼ f(b) is more general than the condition f(a) ¼
f(b) ¼ 0. Thus, while verifyingwhether Rolle’s theorem is applicable for a specific function, it is enough to checkwhether

f(a) ¼ f(b), instead of requiring f(a) ¼ f(b) ¼ 0.

Applications of derivatives: 20-Rolle’s theorem and mean value theorem (MVT)
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We see in Figure 20.2 that the function is not differentiable at a and b; however, there is a

horizontal tangent line at the point where x ¼ c, and c is between a and b.(2)

Note (2): It is necessary that the function should be continuous at the end points of the interval

to guarantee a horizontal tangent line at an interior point. Figure 20.3 shows the graph of a

function continuous on the interval (a, b) but discontinuous at b. Observe that, the function is

differentiable on the open interval (a, b), and the function values are zero at both a and b.

However, there is no point at which the graph has a horizontal tangent line.

Note (3): The condition that f(x) be differentiable in (a, b) is reasonable because the conclusion

of Rolle’s theorem is about the vanishing of the derivative.(3)

Note (4):The condition f(a) ¼ f(b) cannot be eliminated fromRolle’s Theorem. For example, if

f(x) ¼ x, then f 0(x) ¼ 1, for all x, in any open interval (a, b). This implies that f 0(c) 6¼ 0 for all c

in (a, b). Thus, without meeting the condition f(a) ¼ f(b), we cannot conclude that f 0(c) ¼ 0 at

some c in (a, b). In fact, the conclusion of Rolle’s Theorem is applicable to a curve that rises and

falls smoothly.

y

ca0

P

b

x

FIGURE 20.1

ca0

x

y

b

FIGURE 20.2

(2) An example of this type is given by the function y ¼ f ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
, in the interval [�1, 1]. This function represents

the upper half of a circle, with its center at the origin and having radius 1. Observe that f(�1) ¼ f(1) ¼ 0, f is continuous in

[�1, 1] and the derivative f 0ðxÞ ¼ x=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
exists in (�1, 1), though it does not exist at the end points of the interval

[�1, 1]. We have f 0(0) ¼ 0 and “0” lies in the interval (�1, 1). Thus, Rolle’s theorem is valid in this case. Note that,

differentiability at the end points of the closed interval is not needed.
(3) From this assumption it follows that f is continuous in (a, b). But, it must be remembered that the continuity of the

function f at both the end points a and b of the interval [a, b] is also necessary and that this requirement cannot be dropped, as

already emphasized in the Note (2) above.
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Apoint on a continuous curvewhere the derivative does not exist is called a slopeless point. This

can happen under two situations:

(i) The graph of f has a vertical tangent line at some point c in (a, b) (Figure 20.4).

(ii) The graph of f has a sharp turn (or corner) at some point c in (a, b) (Figure 20.5).

If a function f is not differentiate at some point in (a, b) then theremay not be anypointx in (a, b)

at which f 0(x) ¼ 0.

Note (5): Rolle’s Theorem guarantees only the existence of at least one point c in (a, b) for

which f 0(c) ¼ 0. Of course, there may be more such points in (a, b), for which the derivative

of f is zero. This is illustrated geometrically in Figure 20.6.

c

f is not differentiable at c ∈ (a, b).
f is continuous at c.

(c, f(c))

FIGURE 20.4

y

a b

x

0

FIGURE 20.3

INTRODUCTION 607



Observe that there is a horizontal tangent line at the point where x ¼ c1 and also at the point

x ¼ c2, such that f 0(c1) ¼ 0 and f 0(c2) ¼ 0. The theorem does not define the location of c in

(a, b) but states that c must lie somewhere within (a, b).

Now, we state and prove Rolle’s Theorem.

20.2 ROLLE’S THEOREM (A THEOREM ON THE ROOTS

OF A DERIVATIVE)

Let f be a function such that

(i) it is continuous on the closed interval [a, b];

(ii) it is differentiable on the open interval (a, b); and

(iii) it vanishes at the end points x ¼ a and x ¼ b [i.e., f(a) ¼ 0 and f(b) ¼ 0]. Then

there is a number c in the open interval (a, b), such that f 0(c) ¼ 0.

[The number c is called a root of the function �(x) if �(c) ¼ 0.]

Proof: Since the function f(x) is continuous on the interval [a, b], it has a maximum M and

a minimum m on that interval. We consider two cases.

c

(c, f(c))

f is not differentiable at c ∈ (a, b).
f is continuous at c.

FIGURE 20.5

y

y = f (x)

f (a)=
= f (b)

a bc1 c20

x

FIGURE 20.6
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Case (1): IfM ¼ m, the function f(x) is constant, which means that for all values of x, it has a

constant value f(x) ¼ m. But then at any point of the interval f 0(x) ¼ 0, and the theorem is

proved.

Case (2): SupposeM 6¼m. Then at least one of these numbers is not equal to zero. For the sake

of definiteness, let us assume that M> 0 and that the function takes on its maximum value at

x ¼ c, so that f(c) ¼ M. Here, it is important to note that c is not equal either to a or to b, since

it is given that f(a) ¼ 0, f(b) ¼ 0. Since f(c) is the maximum value of the function, it follows

that f(c þ h)� f(c)� 0, under both situations when h> 0 and when h< 0.

Accordingly, we get the following inequalities.

If h is positive, we have,

f ðcþ hÞ � f ðcÞ
h

� 0

On the other hand, if h is negative,

f ðcþ hÞ � f ðcÞ
h

� 0

But, f is differentiable in (a, b), which means that the derivative at x ¼ c exists.

Therefore, upon passing to the limit as h ! 0, we get

lim
h! 0

f ðcþ hÞ � f ðcÞ
h

¼ f 0ðcÞ � 0 ðwhen h > 0Þ ð1Þ

and lim
h! 0

f ðcþ hÞ � f ðcÞ
h

¼ f 0ðcÞ � 0 ðwhen h < 0Þ ð2Þ

But, f 0(c) is unique. This is possible if f 0(c) ¼ 0, which we get on comparing (1) and (2).

Consequently, there is a point c inside the interval [a, b] at which the derivative f 0(x) ¼ 0. This

establishes the theorem.

Note (6): The converse of Rolle’s Theorem is not true. That is, if a function f defined on [a, b] is

such that f 0(c) ¼ 0, with a< c< b, then we cannot conclude that the conditions (i), (ii,) and

(iii) of the theorem must hold.

Now, we consider some examples to understand Rolle’s Theorem better.

Example (1): Given f(x) ¼ 4x3� 9x. Verify that the three conditions of the hypothesis of

Rolle’s Theorem are satisfied for each of the following intervals:

� 3

2
; 0

� �
; 0;

3

2

� �
; and � 3

2
;
3

2

� �

Then find a suitable choice for c in each of these intervals for which f 0(c) ¼ 0.

Solution: Given
f ðxÞ ¼ 4x3 � 9x

) f 0ðxÞ ¼ 12x2 � 9

Because f 0(x) exists for all values of x, f is differentiable on (�1,1). Thus, conditions (i) and

(ii) of Rolle’s Theorem hold on any interval. To determine the intervals on which the condition
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(iii) holds, we find the values of x for which f(x) ¼ 0. If f(x) ¼ 0, it means that

4x x2 � 9

4

� �
¼ 0

) x ¼ 0; x ¼ � 3

2

That is; x ¼ � 3

2
; x ¼ 0; x ¼ 3

2

Therefore, at a ¼ �ð3=2Þ and b ¼ 0, we have f(x) ¼ 0. Therefore, Rolle’s Theorem holds

on �ð3=2Þ; 0½ �. Similarly Rolle’s Theorem holds on 0; ð3=2Þ½ � and �ð3=2Þ; ð3=2Þ½ �. To find

suitable values for c, we set f 0(x) ¼ 0 and get

12x2 � 9 ¼ 0 ) 4x2 � 3 ¼ 0

) x ¼ � 1

2

ffiffiffi
3

p

Therefore, in the interval �ð3=2Þ; 0½ � a suitable choice for c is �ð1=2Þ ffiffiffi
3

p
. In the interval

0; ð3=2Þ½ �, we take c ¼ 1
2

ffiffiffi
3

p
. In the interval �ð3=2Þ; ð3=2Þ½ � there are two possibilities for c:

either �ð1=2Þ ffiffiffi
3

p
or ð1=2Þ ffiffiffi

3
p

.

Example (2): Consider the continuous function

y ¼ f ðxÞ ¼
ffiffiffiffiffi
x2

3
p

¼ x2=3; x 2 ½�1; 1�

It assumes equal values at the end points of the interval [�1, 1]. However, its derivative

f 0ðxÞ ¼ 2=3
ffiffiffiffiffi
x2

3
p

does not vanish anywhere. In this example, the condition of differentiability

is violated at the pointx ¼ 0,which lies in the interval (�1, 1). Note that, the derivative does not

exist at x ¼ 0 (since there is a vertical tangent at x ¼ 0). (See Figure (20.8)).

Example (3): Verify the conditions of Rolle’s Theorem for the function

f(x) ¼ log (x2 þ 2)� log 3 on [�1, 1], and find the value of c where the derivative vanishes.

Solution:

(i) Since logarithmic function and a constant function both are continuous functions,

hence their sum given by

f ðxÞ ¼ logðx2 þ 2Þ � log 3

is continuous on [�1, 1].

(ii) f 0ðxÞ ¼ ð1=ðx2 þ 2ÞÞ � ð2xÞ ¼ 2x=ðx2 þ 2Þ, which exists for all x. Thus, the func-

tion f(x) is differentiable in the open interval (�1, 1).

(iii) f ð�1Þ ¼ logð1þ 2Þ � log 3 ¼ 0 and

f ð1Þ ¼ logð1þ 2Þ � log 3 ¼ 0

) f ð�1Þ ¼ f ð1Þ
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Thus, f(x) satisfies all the conditions of Rolle’s Theorem.

) There must exist at least one value “c” of x, in (�1, 1) for which f 0(c) ¼ 0.

Now f 0ðcÞ ¼ 2c

c2 þ 2
¼ 0 ) c ¼ 0 2 ð�1; 1Þ

Hence, Rolle’s Theorem is verified for the given function. Ans.

Example (4): Verify the conditions of Rolle’s Theorem for the function y ¼ f ðxÞ ¼ e1�x2 ,

x« [�1, 1] and find c for which f 0(c) ¼ 0.

Solution:

(i) The function f ðxÞ ¼ e1�x2 is an exponential function of x and hence it is continuous on

[�1, 1].

(ii) f 0ðxÞ ¼ �2x � e1�x2 , which exists in the open interval (�1, 1).

(iii) f(�1) ¼ e0 ¼ 1, and f(1) ¼ e0 ¼ 1. Thus, f(�1) ¼ f(1).

Since f(x) satisfies all the conditions of Rolle’s Theorem, theremust exist at least one value c of

x in (�1, 1), for which f 0(c) ¼ 0.

We have, f 0ðcÞ ¼ �2ðcÞ � e1�c2

¼ �2c � e1�c2

Hence, f 0(c) ¼ 0 ! c ¼ 0

Observe that, the number c ¼ 0 lies in the open interval (�1, 1).

Hence, Rolle’s Theorem is verified for the given function. Ans.

Example (5): Discuss whether Rolle’s Theorem is applicable for the function y ¼ f(x) ¼ jxj
on [�1, 1].

Solution: We have f(x) ¼ jxj, x« [�1 1]. In the given interval,

by definition f ðxÞ ¼ xj j ¼ x if 0 � x � 1 i:e:; x 2 ½0; 1�
�x if � 1 � x < 0 x 2 ½�1; 0Þ

�

Now; f 0ð0Þ ¼ lim
x! 0

f ðxÞ � f ð0Þ
x� 0

¼ lim
x! 0

jxj � 0

x� 0
¼ lim

x! 0

jxj
x

) f 0ð0Þ ¼ 1ðx > 0Þ
¼ �1ðx < 0Þ

We note that

(i) f(x) is continuous in the closed interval [�1, 1]

(ii) f 0ðxÞ ¼ 1 if x 2 ð0; 1�
�1 if x 2 ½�1; 0Þ

�

Thus, f 0(x) does not exist at x ¼ 0.

(iii)
f ð�1Þ ¼ �ð�1Þ ¼ 1; and f ð1Þ ¼ 1

) f ð�1Þ ¼ f ð1Þ ¼ 1
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Observe f(x) is not differentiable at x ¼ 0 in the open interval (�1, 1). Thus, function jxj does
not satisfy the condition (ii) of the Rolle’s Theorem. Hence, the conclusion of Rolle’s Theorem

is not applicable for jxj. Therefore, there is no point c in (�1, 1) at which f 0(c) ¼ 0.

Example (6): Verify the conditions of Rolle’s Theorem for the function

f ðxÞ ¼ sin xþ cos x� 1 on ½0; p=2�
Solution:

(i) The function f(x) ¼ sin x þ cos x� 1 is continuous on the [0, p/2].
(ii) f 0(x) ¼ cos x� sin x. Obviously, f 0(x) exists in the open interval [0, p/2].
(iii) f ð0Þ ¼ 0þ 1� 1 ¼ 0

and f ðp=2Þ ¼ 1þ 0� 1 ¼ 0

Thus, f(0) ¼ f(p/2)

Thus, all the three conditions of Rolle’s Theorem are satisfied. Accordingly, there must exist at

least one value c of x in the open interval (0, p/2), at which f 0(c) ¼ 0.

Now; f 0ðcÞ ¼ cos c� sin c ¼ 0

) cos c ¼ sin c ) tan c ¼ 1

) c ¼ p=4 Ans:

Example (7): Consider the function

y ¼ f ðxÞ ¼ x for 0 � x < 1

0 for x ¼ 1

�

Observe that, for the given interval [0, 1], f(0) ¼ 0 and f(1) ¼ 0. Also, f(x) is differentiable at

every point in (0, 1). It is clearly seen that f 0(x) ¼ 1 at all the points of the interval (0, 1), but

there is no point in (0, 1) at which it turns into zero, because this function is discontinuous at the

end point (x ¼ 1) of the interval [0, 1]. This example also emphasizes the requirement of

continuity at the end points of the closed interval. [Now refer to Note (2) and Figure 20.3.]

20.2.1 Geometric Conclusion of Rolle’s Theorem

Rolle’s Theorem says (geometrically) that a curve that rises and falls (without any breaks or

slopeless points) must have leveled off in the mean time.

20.2.2 Dynamic Face to Rolle’s Theorem

When a ball is thrown up vertically at instant t ¼ a (say), and returns at t ¼ b, there is an instant

c, between a and b at which the ball stops momentarily, that is, it has zero velocity.

20.2.3 A Useful Interpretation of Rolle’s Theorem

Rolle’s theorem gives us the fact that if a polynomial has n distinct zeros, its derivative has at

least n� 1 distinct zeros.
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Consider a polynomial equation f(x) ¼ 0 where f(x) satisfies the conditions of Rolle’s

Theorem, and let x1, x2, x3, . . ., xn be the roots of the equation. Then, by Rolle’s Theorem,

the equation f 0(x) ¼ 0 has the roots c1, c2, c3, . . ., cn�1, one or more of which lie in between the

roots of f(x) ¼ 0, that is, x1< c1< x2< c2< x3 � � � < xn�1< cn�1< xn.

[We studied maxima and minima (exterma) of a function in earlier Chapter 19b and found

that c1, c2, c3, . . ., cn�1 are the points of relative extrema.]

20.3 INTRODUCTION TO THE MEAN VALUE THEOREM

If y ¼ f(x) is continuous at each point of [a, b] and differentiable at each point of (a, b), then

there is at least one number c between a and b, at which,

f 0ðcÞ ¼ f ðbÞ � f ðaÞ
b� a

[From the statement of the MVT, note that, it is not necessary for the function “f ” to be

differentiable at the end points x ¼ a and x ¼ b.] As mentioned earlier, the proof of the MVT

is based on Rolle’s Theorem, which is powerful in its own right and is a special case of the

MVT as we will see.

TheMVT has only two conditions that are in commonwith those of Rolle’s theorem, which

has an additional condition f(a) ¼ f(b) to be satisfied. The MVT does not require the condition

f(a) ¼ f(b) to be satisfied. With its two conditions, it asserts the existence of a number c

(somewhere) in (a, b) at which

f 0ðcÞ ¼ f ðbÞ � f ðaÞ
b� a

We know that the condition f(a) ¼ f(b) cannot be dropped from Rolle’s Theorem. Note that, if

f(a) ¼ f(b) ¼ 0, then the end points of the graph must lie on the x-axis (see Figure 20.1).

However, if f(a) ¼ f(b) 6¼ 0, then the end points of the graph are on some line which is parallel

to x-axis (see Figure 20.7). Thus, when all the conditions of the Rolle’s Theorem are satisfied,

x

bca

f(a) = f(b) 

y = f(x) 

0 1

1

y

FIGURE 20.7
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we can conclude that somewhere on the graph, the tangent line is parallel to the x-axis (see

Figure 20.7).

The MVT states that, if the line joining the end points of a (smooth) curve is not parallel to

the x-axis [since, f(a) 6¼ f(b)], then there is at least one point on the curve where the tangent

line is parallel to the line joining the points (a, f(a)) and (b, f(b)) on the curve. Suppose, we call

the line joining any two points of the curve as a chord of the curve. Then, our improved

statement of the Mean Value Theorem reads as under:

Given a chord of a smooth curve, there is at least one point on the curve where the tangent

line is parallel to this chord (see Figures 20.9 and 20.10).

To be more specific, consider a function, y ¼ f(x), and let A(a, f(a)) and B(b, f(b)) be two

points on its graph,which rises and falls, without anybreaks or slopeless points.Wemay assume

that a< b. Then, the MVTasserts the existence of a number c, (a< c< b) such that the tangent

at (c, f(c)) to the graph of f, is parallel to the chord joining A(a, f(a)) and B(b, f(b)). To

visualize this we make use of coordinate geometry.

We know that two nonvertical lines are parallel if and only if they have the same slope.

Here, the slope of the line joining the points A(a, f(a)) and B(b, f(b)) is given by

ðf ðbÞ � f ðaÞÞ=ðb� aÞ. Also, the slope of the tangent at the point (c, f(c)) is given by f 0(c).
If this tangent line is to be parallel to the chord AB, then

f 0ðcÞ ¼ f ðbÞ � f ðaÞ
b� a

x

0

y

y = x2/3

(1, 1)(–1, 1)

1–1

1

FIGURE 20.8

y

x

bca

A(a, f(a))

B(b, f(b))

0

FIGURE 20.9
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TheMVT states that such a number c necessarily exists in (a, b). We now state theMean Value

Theorem and prove it using Rolle’s Theorem.

20.3.1 The Mean Value Theorem

Let f be a function, such that,

(i) It is continuous on the closed interval [a, b].

(ii) It is differentiable on the open interval (a, b).

Then, there is a number “c” in the open interval (a, b), such that,

f 0ðcÞ ¼ f ðbÞ � f ðaÞ
b� a

ð3Þ

Proof: Consider the number Q, defined by the equation

f ðbÞ � f ðaÞ
b� a

¼ Q ð4Þ

We will show that Q ¼ f 0(c), c 2 (a, b).

From the equation (4), we get,

f ðbÞ � f ðaÞ ¼ Qðb� aÞ ð5AÞ

or f ðbÞ � f ðaÞ � Qðb� aÞ ¼ 0 ð5BÞ
We introduce an auxiliary function F that allows us to simplify the proof by using Rolle’s

Theorem. To obtain this auxiliary function, we write x for b in equation (5B), and denote the

expression on left-hand side by F(x).

FðxÞ ¼ f ðxÞ � f ðaÞ � Qðx� aÞ ð6Þ
It is easy to show that the function F(x) satisfies all the conditions of Rolle’s Theorem.

(i) F(x) is continuous on [a, b] since it is the sum of f and a linear function, both of which

are continuous there.

b

x

a c1 c2

y

y = f`(x)

1

(b,  f(b))

(a,  f(a))

0

FIGURE 20.10
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(ii) F(x) is differentiable on (a, b), because f is differentiable on (a, b).

(iii) F(a) ¼ 0 and F(b) ¼ 0 [using (5B)].

Therefore, by Rolle’s Theorem, there is a number “c” in the open interval (a, b), such that,

F0ðcÞ ¼ 0 ð7Þ
Now, from equation (6), we have

FðxÞ ¼ f ðxÞ � f ðaÞ � xQþ aQ

) F0ðxÞ ¼ f 0ðxÞ � Q ½for all x 2 ða; bÞ�
) F0ðcÞ ¼ f 0ðcÞ � Q ½since c 2 ða; bÞ�

or 0 ¼ f 0ðcÞ � Q ½using ð7Þ�
) Q ¼ f 0ðcÞ

or
f ðbÞ � f ðaÞ

b� a
¼ f 0ðcÞ

This establishes the theorem.

Note (7): The Mean Value Theorem discussed above is due to J.L. Lagrange (1736–1813), an

outstanding FrenchMathematician and astronomer, hence it is also known as Lagrange’sMean

Value Theorem.

20.3.2 The Geometric Significance of the Function F(x)

We write the equation of the chord AB (Figure 20.11), taking into account that its slope is

ðf ðbÞ � f ðaÞÞ=ðb� aÞ ¼ Q, and that it passes through the point (a, f(a)):

y� f ðaÞ ¼ Qðx� aÞ

y

c

x

f(b)

y = f(b)

f(a)

a

A

N

M
B

c x b

α α

FIGURE 20.11
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which gives,

y ¼ f ðaÞ þ Qðx� aÞ

But FðxÞ ¼ f ðxÞ � ½f ðaÞ þ Qðx� aÞ�

Thus, for each value of x, F(x) is equal to the difference between the ordinates of the curve

y ¼ f(x) and the chord y ¼ f(a) þ Q(x� a), for points with the same abscissa. In other words,

F(x) represents the length of the segment MN for each x 2 [a, b].

Now, we consider some examples on MVT.

Example (8): Let f ðxÞ ¼ 1

3
x3 þ 2x. Find a number c in (0, 3) such that f 0ðcÞ ¼ f ð3Þ � f ð0Þ

3� 0

Solution: We have f ð3Þ ¼ 1

3
ð3Þ3 þ 2ð3Þ ¼ 15 and f(0) ¼ 0.

) f ð3Þ � f ð0Þ
3� 0

¼ 15� 0

3� 0
¼ 5

We search for a number c in (0, 3) such that f 0(c) ¼ 5. But, f 0(x) ¼ x2 þ 2.

Thus, c must satisfy f 0(c) ¼ c2 þ 2 ¼ 5.

Therefore, c2 ¼ 3, so that c ¼ � ffiffiffi
3

p
. But, c must be in (0, 3), we therefore conclude that

c ¼ ffiffiffi
3

p
. Ans.

Example (9): Test whether Lagrange’s MVT holds for f(x) ¼ x� x3 in the interval (�2, 1)

and if so, find the appropriate value of c.

Solution: Here, a ¼ �2, b ¼ 1 and f(x) ¼ x� x3.

) f ðaÞ ¼ f ð�2Þ ¼ �2� ð�8Þ ¼ 6; f ðbÞ ¼ f ð1Þ ¼ 0

) f ðbÞ � f ðaÞ
b� a

¼ 0� 6

1� ð�2Þ ¼ �2 ð8Þ

Now; f 0ðxÞ ¼ 1� 3x2 ð9Þ

If the MVT holds for the given function, then the number c must satisfy the equation,

I � 3x2 ¼ �2

) 3c2 ¼ 3 c ¼ 1 or � 1

Here, c ¼ �1 lies within (�2, 1).

) LMVT holds for the given function. Ans.

20.3.3 A Closer Look at the Mean Value Theorem

The Mean Value Theorem (Lagrange’s Theorem), proved above, involves first derivatives.

Hence, it is called the MVT for first derivatives. In fact, it is known as the Fundamental Mean
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Value Theorem and is one of the most powerful tools in calculus. It is employed very often in

proving other important theorems.(4)

The conclusions of the MVT are intuitively appealing and its hypotheses are naturally

expected. Further, its applications will be found marvelously tangible (i.e., fitting

with experience). The student will find in the MVT, an ever present tool just waiting to be

applied, both in proving theorems and in solving problems.

The adjective “mean” carries both the notions “between” and “average”, each of which

gives a significant clue to the basic idea in the theorem. What the MVT does, is single out a

derivative value that plays the role of an average derivative value, and this derivative value is

attained at a point strictly between the end points of the interval domain of the function.

Consider a continuous function,

f : ½a; b�!R

which is differentiable at every point of the open interval (a, b).(5)

What the MVT does is to identify the difference quotient ðf ðbÞ � f ðaÞÞ=ðb� aÞ with the

derivative f 0(x) evaluated at a point (say) c, lying strictly between a and b.

That is,

ð1Þ f ðbÞ � f ðaÞ
b� a

¼ f 0ðcÞ
or equivalently

ð2Þ f ðbÞ � f ðaÞ ¼ f 0ðcÞðb� aÞ

9>>=
>>; where a < c < b

It must be clearly understood once and for all that the location of c is not really pinpointed;

we only know that it lies somewhere inside an open interval (a, b). But, the interesting fact is

the mere knowledge that c is a mean point (i.e., it lies strictly between the end points of the

interval) shows the real power behind the theorem and its applications. Of course, the exact

location of c can be found in some cases (as we have seen in some solved examples) but in

general, it is never needed in any application.

Many important concepts inmathematics are based onExistence Theorems, theMVT being

one of them. Some other examples of existence theorems are the Intermediate Value Theorem

(IVT) and Extreme Value Theorem (EVT), both pertaining to continuous functions defined on

closed and bounded intervals. Without going into the proof of these theorems, we indicate why

the property each guarantees is practically useful.

(I) Intermediate Value Theorem [Already introduced in Chapter 8, but again repeated

here for ready reference]: Let f be continuous on the closed and bounded interval

[a, b] and let y be any number between f(a) and f(b). Then, there exists a number c

between a and b for which f(c) ¼ y.

(4) There is another MVT for second derivatives that generalizes the MVT for first derivative and sets the stage for further

generalization, namely, Taylor’s Theorem, one of the most remarkable achievements in mathematics. Here, it may be

emphasized that the method and the steps in proving the above LMVT, using Rolle’s Theorem, is very important since

similar steps are required to be taken to establish the MVTs for higher derivatives, using the MVT for first derivatives.

Besides, there is a theorem known as Generalized Mean Value Theorem (Cauchy’s Theorem) that is useful for

evaluating limits of indeterminant forms [ i.e., the limit(s) of ratios of two functions f(x) and�(x) approaching the forms of

the type 0=0; 1=1 as x ! 0 (or x ! 1)].
(5) In other words, the graph of f is tied to the end points (a, f(a)) and (b, f(b)) and has neither breaks nor slopeless points

(in particular, no sharp points) anywhere between a and b (see Figure 20.12).
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The IVT says that, if f is continuous on [a, b], then the range of f contains not just f(a)

and f(b) but everything in between. This means that the graph of a continuous function

f is unbroken. In other words, it means that enroute from (a, f(a)) to (b, f(b)), the

graph of f crosses every horizontal line at one (or more number of points) between

y ¼ f(a) and y ¼ f(b).

(II) Extreme Value Theorem: Let f be continuous on the closed and bounded interval [a, b].

Then, f assumes both a maximum value and a minimum value somewhere on [a, b].

The EVT guarantees that, if f is continuous on the closed interval [a, b], then f

attains both a maximum and a minimum somewhere therein.

[Both hypotheses of theEVT—that f be continuous and that the interval be closed are

necessary. If either fails, f need not assume a maximum or a minimum.]

Note (8): Each of these existence theorems guarantees the existence of at least one point in the

domain with some desirable property. Neither theorem states where in [a, b] these points may

fall or how many (such points) there may be. It will be found that these theorems, (besides

having theoretical importance) have a lot of practical utility.

20.3.4 Some Aspects of the Conclusion of the MVT Expressed by its Formulas

(a) Geometric Aspect: In view of the formula ðf ðbÞ � f ðaÞÞ=ðb� aÞ ¼ f 0ðcÞ, the slope of
the extreme chord of a graph is attained by the tangent line at some mean point on

the graph.(6)

Example (10): Find the tangent line to the graph of f(x) ¼ x3, which is parallel to the chord

joining (1, 1) to (2, 8) and has its point of contact between the given points.

y

x

bca

(c, f (c))

(b, f (b))

Extreme chord

0

(a, f (a))

FIGURE 20.12

(6) That is in the family of all tangent lineswhose points of contact lie between two given points on the curve, there is at least

one tangent line parallel to the chord joining the two given points.
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Solution: Slope of the chord joining (1, 1) and (2, 8) is given by,

f ð2Þ � f ð1Þ
2� 1

¼ 23 � 13

2� 1
¼ 7

Also, f 0(x) ¼ 3x2.

If c is the point in the interval (1, 2) for which f 0(c) ¼ 7, then we have 3c2 ¼ 7 or

c ¼ �ð ffiffiffi
7

p
=

ffiffiffi
3

p Þ ¼ �ðð ffiffiffi
7

p � ffiffiffi
3

p Þ=3Þ ¼ �ð ffiffiffiffiffi
21

p
=3Þ of which only c ¼ ð ffiffiffiffiffi

21
p

=3Þ«ð1; 2Þ.
) the desired point of contact is ð1=3Þ � ffiffiffiffiffi

21
p

; ð7=9Þ � ffiffiffiffiffi
21

p� 	
, so that the tangent line is

ðx; yÞ: y ¼ 7 x� ð1=3Þ ffiffiffiffiffi
21

p� 	þ ð7=9Þ ffiffiffiffiffi
21

p
 �
: Ans:

(b) Kinematic Aspect: Let f(x) be a position function (of a moving object) with the time

interval [a, b] as its domain. Then, f0(x) is the velocity function and f 0(c) is a mean

velocity, if c « (a, b).

Thus, the equality at the formula f(b)� f(a) ¼ f 0(c)(b� a) says that the displace-

ment f(b)� f(a) can be obtained as a product f 0(c)�(b� a), where f 0(c) is the mean

velocity and (b� a) is the time interval.(7)

Example (11): A vehicle has a quadratic position function f(t) ¼ at2 þ bt þ d, where

a, b, and d are any real numbers. Show that over any interval of motion, the average velocity

is attained at the mid point.

Solution: Let [t1, t2] be any time interval of motion. Suppose c is the instant in this interval

at which f 0(t) is average, then we have

f ðt2Þ � f ðt1Þ
t2 � t1

¼ f 0ðcÞ

or
a t22 � t21
� 	þ b t2 � t1ð Þ

t2 � t1
¼ 2acþ b; where f 0ðtÞ ¼ 2aþ b½ �

or aðt2 þ t1Þ þ b ¼ 2acþ b

or c ¼ 1

2
t2 þ t1ð Þ Ans:

(c) Formula of Finite Increments: The relation, f(b)� f(a) ¼ f 0(c)(b� a), c2 (a, b), in the

Mean Value Theorem is known as the formula of increments. It states that the

increment of a differentiable function on an interval is equal to the product of

the derivative of the function at an intermediate point by the increment of the

independent variable.

The formula of finite increments makes it possible to find the exact expression for

the increment of a function in terms of the increment of the argument and the value

of the derivative at an interior point of the interval. It has significant theoretical

importance and lies in the foundation of the proofs of a number of important theorems.

(7) In other words, if an objectmoveswith varying velocity, then duringmotion of the object, a velocity is attained, which if

it is applied as a uniform velocity (which is a constant velocity) for the same time interval, then the same displacement will

be achieved.

Thus, if a car traveled 120 km in 2 h, then it must have traveled 60 km/h at some instant during motion. Of course, it is

assumed that the car traveled throughout the interval.
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Note (9): It is important that the reader thinks of theMVTwhenever he sees a difference

of functional values. That is, whenever the difference f(b) � f(a) turns up, the reader

should think of replacing it by the product f 0(c) (b � a) with the knowledge that c lies

strictly between a and b.

(d) From the equation,

f ðbÞ � f ðaÞ ¼ f 0ðcÞðb� aÞ ð10AÞ
in the MVT, where c 2 (a, b), we get,

f ðbÞ ¼ f ðaÞ þ f 0ðcÞðb� aÞ ð10BÞ

Here, the functional value f(a) may be looked upon as an approximation for f(b) with the

error measured by a mean-derivative multiple of the deviation of b from a.(8)

If we think of b as an independent variable on [a, b], we can write (10B) in the form

f ðxÞ ¼ f ðaÞ þ f 0ðcÞðx� aÞ ð10CÞ
valid for the interval [a, x], with c2 (a, x). The right-hand side of (10C) looks like the linear

approximation of f near a.

If f 0(x) is continuous and c is close to a (as it will have to be if x is close to a), then, f 0(c)
is close to f 0(a), and (10C) gives

f ðxÞ � f ðaÞ þ f 0ðaÞðx� aÞ ð10DÞ

which is the linear approximation of f near a.

Note (10): InChapter 16,we produced and used linearizationswithout knowing exactly how

good they were. Now, with an extended version of the MVT for the second derivative (to be

studied later in Chapter 22), we shall see that the error in (10D) is proportional to (x� a)2.

Therefore, if (x� a) is small the error will be very small.(9)

20.3.5 Alternate Form of the MVT

For the closed interval [a, b], if we write b ¼ a þ h (where h is a positive number) then the

above interval becomes [a, a þ h] where h denotes the length of the interval and we have

h ¼ b� a.

Also, the number c lies between a and a þ h, so that we write

a < c < aþ h

or 0 < c� a < h

or 0 <
c� a

h
< 1

or 0 < � < 1 where � ¼ c� a

h

) c ¼ aþ �hð10Þ

(8) Equation (10B) may also be looked upon as f(a þ h) ¼ f(a) þ f 0(c)�h, where b ¼ (a þ h).
(9) Later on, when we extend the Mean Value Theorem to Taylor’s formula, we will be able to express f(x) by extremely

accurate polynomial approximations for a large class of functions that have derivatives of all orders.
(10) The number c that lies between a and (a þ h) is greater than a by some fraction of h. Here, � is a proper fraction (i.e.,

0<� < 1) and so we get c ¼ a þ �h.
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Substituting this value of c in ðf ðbÞ � f ðaÞÞ=ðb� aÞ ¼ f 0ðcÞ, we get
f ðbÞ ¼ f ðaÞ þ ðb� aÞf 0ðaþ �hÞ

or f ðaþ hÞ ¼ f ðaÞ þ h � f 0ðaþ �hÞ

which is an alternate form of the MVT.

20.4 SOME APPLICATIONS OF THE MEAN VALUE THEOREM

The Mean Value Theorem is one of the most important results in Calculus. It is employed very

often in proving other important theorems that may or may not be related to one another.

In Chapter 19a, we stated as the first derivative test for rise and fall, the fact that, a

differentiable f(x) increases on intervals where f 0(x)> 0 and decreases on intervals where

f 0(x)< 0. This fact can now be deduced from the Mean Value Theorem in the following way.

(I) Monotonicity Theorem: Suppose that f is continuous on [a, b] and differentiable on

(a, b). If f 0(x)> 0 throughout (a, b), then f is an increasing function on [a, b]. If f 0(x)< 0

throughout (a, b), then f is decreasing on [a, b].

In either case, f is one to one.

Proof: Let x1 and x2 be any two numbers in [a, b] such that x1< x2.

Applying the MVT to f on [x1, x2],

f ðx2Þ � f ðx1Þ
x2 � x1

¼ f 0ðcÞ

for some c between x1 and x2

or f ðx2Þ � f ðx1Þ ¼ f 0ðcÞðx2 � x1Þ ð11Þ

The sign of the right-hand side of (11) is the same as the sign of f 0(c), because (x2� x1) is

positive.

Therefore, f(x2)> f(x1), if f
0(x) is positive on (a, b), that is, f is increasing, and f(x2)< f(x1)

if f 0(x) is negative on (a, b), that is, f is decreasing.

In either case, x1 6¼ x2 implies that f(x1) 6¼ f(x2), so f is one to one. Hence proved.

(II) Constant Function Theorem: Let f be continuous on a closed interval [a, b].

If f 0(x) ¼ 0 for each point x of (a, b), then f is constant on [a, b].

Proof: Let x1 and x2 be arbitrary numbers in [a, b], with x1< x2. By the MVT, there is a

number c in (x1, x2), such that,

f ðx2Þ � f ðx1Þ
x2 � x1

¼ f 0ðcÞ ð12Þ

By assumption, f 0(c) ¼ 0, and thus (12) reduces to

f ðx2Þ � f ðx1Þ ¼ 0

) f ðx2Þ ¼ f ðx1Þ
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Since x1 and x2 are arbitrary, it follows that f assigns the same value at any two points in

[a, b], so f is constant on [a, b]. (Proved)

Note (11): The above theorem states that the only functions whose derivatives are equal to zero

throughout an interval, are the functions that are constant on that interval. The most significant

result implied by the above theorem is the following theorem, which gives the structure of

functions having the same derivatives over an interval.

(III) Constant Difference Theorem: Let f and g be continuous on a closed interval [a, b].

If f 0(x) ¼ g0(x), for each point x of (a, b), then f(x)� g(x) is constant on [a, b]. In

other words, there is a constant C such that f(x) ¼ g(x) þ C, for all x in [a, b].

Proof: We define a function �(x) ¼ f(x)� g(x), x«[a, b](11)

Differentiating both sides, we get,

�0ðxÞ ¼ ½ f ðxÞ � gðxÞ�0
¼ f 0ðxÞ � g0ðxÞ on ða; bÞ

But, it is given that f 0(x) ¼ g0(x) for all x in (a, b).

) we get f 0ðxÞ ¼ 0

) By the constant function theorem, it follows that,

�ðxÞ ¼ �ðx1Þ ¼ �ðx2Þ ¼ � � � ¼ CðsayÞ for all x1; x2 in ½a; b�:
) f ðxÞ � gðxÞ ¼ C or f ðxÞ ¼ gðxÞC: ðProvedÞ

Note (12): The above theorem says that the only way two functions can have identical rates of

change on an interval is that their values should differ by some fixed constant on the interval.

For example, we know that for f(x) ¼ x3, f 0ðxÞ ¼ 3x2.

Therefore, if g(x) is any differentiable functionwhose rate of changewith respect to x is 3x2,

that is, if dg(x)/dx¼ 3x2 then g(x) ¼ x3 þ C, for some constant C.

In determining that g(x) ¼ x3 þ C, we say that we have determined g up to a constant.

If f is a function defined on an interval I, then any functionF such thatF0(x) ¼ f(x), for each

x in I is called an antiderivative of f (since f is the derivative of F on I).

Thus, on any given interval, x5 is an antiderivative of 5x4, x2 is an antiderivative of 2x, sin x

is an antiderivative of cos x, and e2x is an antiderivative of (1/2)e2x.

Once we know a single antiderivative F of a given function f, then all other antiderivatives

can be ascertained by adding constants to F. It follows that on any interval I, the only

antiderivatives of 3x2 are the functions of the form x3 þ C, the only antiderivatives of cos x are

functions of the form sin x þ C, and so on.

Techniques for determining functions from their rates of change are extremely important in

science and engineering. These techniques are discussed in Part II of this book.

Exercise

Verify the conditions of Rolle’s Theorem for the following functions on their respective

intervals and find c, if any, for which f 0(c) ¼ 0.

(11) The key to the proof is to show that the difference function �(x) ¼ f(x)� g(x) has derivative equal to zero on (a, b).
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Q1. y ¼ f ðxÞ ¼ x3 � 4xð�1 < x < þ1Þ.

Q2. y ¼ f ðxÞ ¼ x2ð1� xÞ2 in ½0; 1�.

Q3. y ¼ f ðxÞ ¼ 1�
ffiffiffiffiffi
x2

3
p

¼ 1� x2=3.

Q4. It is given that for the function y ¼ f(x) ¼ x3� 6x2 þ ax þ b on [1,3]. Rolle’s Theorem

holds with c ¼ 2þ ð1= ffiffiffi
3

p Þ. Find the values of a and b.

Q5. On the curve y ¼ x2, find a point at which the tangent is parallel to the chord joining (0, 0)

and (1, 1).

Q6. Verify MVT for the function f(x) ¼ (x� 1) (x� 2) (x� 3) in [0, 4].

Q7. Find a point on the graph of y ¼ x3, where the tangent is parallel to the chord joining (1, 1)

and (3, 27).

Q8. By use of MVT prove that jtan�1x2� tan�1x1j � jx2� x1j8 x1, x2.

Q9. Using MVT prove that x=ð1þ xÞ < lnð1þ xÞ < x; x > �1.

Note (13): The solutions to these problems are available in Appendix C.
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21 The Generalized Mean Value
Theorem (Cauchy’s MVT),
L’ Hospital’s Rule, and their
Applications

21.1 INTRODUCTION

Themeanvalue theorem (MVT), also known asLagrange’smeanvalue theorem (LMVT), is the

fundamental mean value theorem that deals with a single function f(x). Augustin L. Cauchy

discovered another mean value theorem that uses two functions, f(x) and �(x), instead of one.
It is known as the generalized mean value theorem, which is elegantly used in proving a

rule, known as L’Hospital’s rule, which extends our ability to calculate limits. We state and

prove the generalized mean value theorem.

21.2 GENERALIZED MEAN VALUE THEOREM (CAUCHY’S MVT)

Theorem: If f(x) and �(x) are two functions such that

(i) f(x) and �(x) are continuous on the closed interval [a, b];

(ii) f(x) and �(x) are differentiable on the open interval (a, b);

(iii) for all x in the open interval (a, b), �0(x) 6¼ 0

then, there exists a number c2 (a, b), such that,

f ðbÞ� f ðaÞ
�ðbÞ��ðaÞ ¼

f 0ðcÞ
�0ðcÞ ð1Þ

Proof: Let us denote by Q, the number ð f ðbÞ� f ðaÞÞ=ð�ðbÞ��ðaÞÞ, so that we have

f ðbÞ� f ðaÞ
�ðbÞ��ðaÞ ¼ Q ð2AÞ

Now, we show that, �(b)��(a) 6¼ 0, that is, �(b) 6¼�(a).
Assume �(b)¼�(a). Note that, with this assumption, � satisfies all the conditions of Rolle’s

theorem. Hence, there exists some number c in (a, b), such that �0ðcÞ¼ 0.

Introduction to Differential Calculus: Systematic Studies with Engineering Applications for Beginners, First Edition.
Ulrich L. Rohde, G. C. Jain, Ajay K. Poddar, and Ajoy K. Ghosh.
� 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

Further applications of derivatives: 21-The generalized mean value theorem (Cauchy’s MVT), L’ Hospital’s rule and
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But, condition (iii) of the hypothesis of the theorem demands that, for all x in (a, b),

�0ðxÞ 6¼ 0. Therefore, the above assumption leads to a contradiction. Hence, the assumption

�(b)¼�(a) is false. Consequently, �(b)��(a) 6¼ 0.(1)

From (2A), we get,

f ðbÞ� f ðaÞ�Q½�ðbÞ��ðaÞ� ¼ 0 ð2BÞ

Let us construct an auxiliary function F(x) defined by(2)

FðxÞ ¼ f ðxÞ� f ðaÞ�Q½�ðxÞ��ðaÞ� ð3Þ

Observe that,

1. FðaÞ ¼ 0 and FðbÞ ¼ 0

(Note that, F(a)¼ 0 from the definition of the function F(x) and F(b)¼ 0 from the

definition of the numberQ. When wewrite b for x in (3), F(b) becomes the LHS of (2B),

which equals zero.)

2. F(x) is continuous on [a, b] since f(x) and �(x) both are continuous on [a, b].

3. F(x) has a derivativeF 0(x) at every point in (a, b), since every term on the right-hand side

of (3) has a derivative in (a, b). Thus, the function F(x) satisfies all the hypotheses of

Rolle’s theorem on the interval [a, b]. We, therefore, conclude that there exists a number

x¼ c between a and b such that F 0(c)¼ 0.

By differentiating (3) both sides, we get,

F0ðxÞ ¼ f 0ðxÞ�Q�0ðxÞ;

) F0ðcÞ ¼ f 0ðcÞ�Q�0ðcÞ ¼ 0; ½since F0ðcÞ ¼ 0�

) Q ¼ f 0ðcÞ
�0ðcÞ ; c 2 ða; bÞ

By substituting the value of Q in equation (2A), we get,

f ðbÞ� f ðaÞ
�ðbÞ��ðaÞ ¼ f 0ðcÞ

�0ðcÞ

which is the desired formula.

Note (1): Observe that, if we take �(x)¼ x, then, we have �(b)¼ b, �(a)¼ a and �0(x)¼ 1.

Using these values in the above formula, it may be noted that the conclusion of Cauchy’s MVT

(1) We get the same conclusion by applying LMVT to � as follows: Because � satisfies both conditions in the hypothesis

of LMVT, there is a number c in (a, b) such that �0(c)¼ [�(b)�� (a)]/(b� a). But, if �(b)¼�(a), (by assumption) we get

�0(c)¼ 0, which contradicts the condition (iii) of Cauchy’sMVT.Hence, �(b)��(a) 6¼ 0. [Recall that, Rolle’s Theorem is

a special case of LMVT.]
(2) Note that, the auxiliary function F(x) has been obtained by replacing b by x in (2B). It means that we are treating b as an

independent variable, with c as a point lying in between a and x. This is justified, since both f(x) and g(x) are continuous on

[a, b], which means that x can vary from a to any b2 [a, b]. This permits us to replace b by x. Later on, it will be noted that

we use the same understanding while extending the MVT to Taylor’s formula in Chapter 22.
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becomes the conclusion of Lagrange’s MVT. Thus, Lagrange’s MVT is a special case of

Cauchy’s MVT. This justifies the name, generalized, mean value theorem.

Note (2): Cauchy’s MVT cannot be proved by a simple term-by-term division of the relations

expressing LMVT for the functions f and �, since in this case we would get (after canceling out
(b� a)) the formula

f ðbÞ� f ðaÞ
�ðbÞ��ðaÞ ¼ f 0ðc1Þ

�0ðc2Þ
in which a< c�1< b and a< c�2< b.

This is obviously not the result of Cauchy’s MVT (since, generally, c1 6¼ c2).

21.2.1 Geometrical Interpretation of Cauchy’s MVT

Now, we will show that Cauchy’s MVT can be given the same geometrical interpretation as in

the case of Lagrange’s MVT. For this purpose, let us consider a curve in the x–y plane with

parametric equations, x¼�(t) and y¼ f(t). As the parameter t runs through the interval, say

[t1, t2], the variable point (x, y) describes a curve in the x–y plane, whose initial and final points

are, respectively, (�(t1), f(t1)) and (�(t2), f(t2)).
The slope of the chord connecting these points is given by the ratio:

f ðt2Þ� f ðt1Þ
�ðt2Þ��ðt1Þ

The derivative of y (regarded as a parametrically represented function of x) with respect to x

is given by,

dy

dx
¼ dy=dt

dx=dt
¼ f 0ðtÞ

�0ðtÞ
Consequently, we get,

f ðt2Þ� f ðt1Þ
�ðt2Þ��ðt1Þ ¼ f 0ðcÞ

�0ðcÞ ; ðt1 < c < t2Þ

Note that, the LHS of this equation expresses the slope of the chord subtending an arc, whereas

the RHS represents the slope of the tangent line drawn at some intermediate point c of the arc.

Note (3):Rolle’s theorem, themeanvalue theorem (i.e., Lagrange’sMVT), and the generalized

MVT (i.e.. Cauchy’sMVT) imply that there exists some “middle point” c2 (a, b) atwhich some

of the named relations are true. For this reason, all these theorems are collectively named the

mean value theorems for derivatives.

21.3 INDETERMINATE FORMS AND L’HOSPITAL’S RULE

In Chapter 7, we stated the quotient rule for computing limits:

lim
x!x0

f ðxÞ
gðxÞ ¼

lim
x!x0

f ðxÞ
lim
x!x0

gðxÞ
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provided the limits on the right-hand side exist and lim
x!x0

gðxÞ 6¼ 0. However, there are

examples of quotient functions that have a limit, even though

lim
x!x0

gðxÞ ¼ 0:

Perhaps the simplest example of such a function is x=x, with x ! 0. Thus, we have,

(i) lim
x! 0

x

x
¼ 1

(ii) Another example of this type is

lim
x! 2

x2 � 3xþ 2

x2 þ x� 6
¼ lim

x! 2

ðx� 2Þðx� 1Þ
ðx� 2Þðxþ 3Þ

¼ lim
x! 2

x� 1

xþ 3
¼ 1

5

(iii) A less trivial example is

lim
x! 0

sin x

x
¼ 1

While the limits at (i) and (ii) are computed by cancellation of factors, you may recall that an

intricate geometric argument led to the conclusion at (iii) above.

Note that, all these limits have a common feature. In each case, a quotient is involved in

which both numerator and denominator have 0 as their limits.

In all these cases, the quotient rule does not apply since it requires that the limit of the

denominator be different from 0. However, as we have seen, these limits may exist. Of course,

we cannot use the quotient rule cannot determine them.

Note that, except for canceling factors, where possible,we have so far no systematicmethod

for evaluating limits of quotients in which both the numerator and the denominator have “0”

as their limits.

L’Hospital’s rule provides an extremely simple and convenient method for evaluating the

limits of such quotients.

21.3.1 Indeterminate Form 0/0 and Evaluating its Limit

Let the functions f(x) and g(x) be defined in a neighborhood of a point x¼ x0 and let f(x0)¼ 0¼
g(x0). Then the ratio f ðxÞ=gðxÞis not defined for x¼ x0, but may have a very definite meaning

for values of x 6¼ x0.Hence, we can raise the question of searching for the limit of this ratio as

x! x0. Evaluating limit(s) of this type is usually known as evaluating indeterminate form of

the type 0=0.(3)

This form gives an explicit connection between derivatives and limits that lead to

the indeterminate form 0=0. This rule stands in two forms, namely, the “first form” and the

“stronger form”, both discovered independently. While the first form follows from a simple

(3) There are seven Indeterminate Forms viz. 0
0
, 11, 0.1, 1�1, o0,10 and 11. All these forms can be brought to the

indeterminate form, 0/0, by suitable arrangement and so we shall first discuss this form. [Later on, it will be shown why

other possible symbols like 0
1,

1
0
, 1 þ 1, 1 � 1, 01 and 11 cannot be considered as indeterminate forms.]
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observation, the stronger form is based on Cauchy’s MVT. The first form states as given in the

following theorem.

21.3.2 Theorem

Suppose that f and g satisfy the following conditions:

(i) f(a)¼ g(a)¼ 0

(ii) f 0 (a) and g0(a) exist, and that

(iii) g0(a) 6¼ 0 then,

lim
x! a

f ðxÞ
gðxÞ ¼ lim

x! a

f 0ðxÞ
g0ðxÞ

Thus, if f and g satisfy certain condition (as stated above), then lim
x! a

f ðxÞ=gðxÞ equals the ratio
f 0ðaÞ=g0ðaÞ of derivatives, where g0(a) 6¼ 0.

Remark: Since nothing is said about the location of “a” in the domain (common interval) of f

and g, we conclude that it can be anywhere in the interval. Now the question is:What can we do

about the limit limx! a f ðxÞ=gðxÞ if in the ratio f 0ðaÞ=g0ðaÞ; g0ðaÞ ¼ 0?(4)

We get the answer to this question from the “stronger form” of L’Hospital’s rule.

21.3.3 Statement of the Stronger Form of L’Hospital’s Rule

Roughly speaking, the stronger form of L’Hospital’s rule says if f(a)¼ g(a)¼ 0, then,

lim
x! a

f ðxÞ
gðxÞ ¼ lim

x! a

f 0ðxÞ
g0ðxÞ

provided the derivatives and limit on the right-hand side exist.

Note (4): In fact, it is a stronger form of the rule we call L’Hospital’s rule for evaluating the

limit in the indeterminate form 0=0. It says that whenever the rule gives 0=0, we can apply it
again, repeating the process until we get a different result. (It will be found that this rule is

useful in determining limits of all types of indeterminate forms.)

Here, we restate that the proof of L’Hospital’s rule is based on Cauchy’s MVT (that we have

already proved) and that this rule cannot be proved from the “first form”.

At a glance, both the formsmight appear identical, but the distinction between the two can be

easily observed. Though our interest lies only in the “stronger form” of the rule, it is useful to

observe and enjoy the approach leading to the proof of the first form of the rule and then study

carefully the stronger form.

Recall that derivatives (at a point) are calculated using the limit

f ðaÞ ¼ lim
x! a

f ðxÞ� f ðaÞ
x� a

ð4Þ

Also, note that this limit always produces the indeterminate form 0=0.

(4) For example, consider the limit lim
x! 0

ðx� sin xÞ=x3 ¼ lim
x! 0

ðx� sin xÞ0=ðx3Þ0 ¼ lim
x! 0

ð1� cos xÞ=ð3x2Þ ¼ 0jx¼ 0.

The first form of L’Hospital’s rule does not tell us what the limit is because the derivative of g(x)¼x3 is zero at x¼ 0.
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From the limit at (4), we get an idea to use derivatives to calculate limits that lead to

indeterminate forms 0/0.

For example, consider lim
x! 0

sin x=x. Note that lim
x! 0

sin x¼ sin 0¼ 0.

) lim
x! 0

sin x

x
¼ lim

x! 0

sin x� sin0

x� 0

¼ d

dx
ðsin xÞjx¼ 0

¼ cos 0 ¼ 1

Now, we state and prove both forms of L’Hospital’s rule.

21.4 L’HOSPITAL’S RULE (FIRST FORM)

Suppose that f and g satisfy the following conditions:

(i) f(a)¼ g(a)¼ 0

(ii) f 0(a) and g0(a) exist, and that

(iii) g0(a) 6¼ 0 then,

lim
x! a

f ðxÞ
gðxÞ ¼ f 0ðaÞ

g0ðaÞ

Proof: Working backward, from f 0(a) and g0(a), which are themselves limits, we have

f 0ðaÞ
g0ðaÞ ¼

lim
x! a

ðf ðxÞ� f ðaÞÞ=ðx� aÞ
lim
x! a

ðgðxÞ� gðaÞÞ=ðx� aÞ ¼ lim
x! a

f ðxÞ� f ðaÞ
gðxÞ� gðaÞ ¼ lim

x! a

f ðxÞ� 0

gðxÞ� 0
¼ lim

x! a

f ðxÞ
gðxÞ

Therefore, we have,

lim
x! a

f ðxÞ
gðxÞ ¼ f 0ðaÞ

g0ðaÞ ð5Þ

provided that f 0(a) and g0(a) exist and that g0(a) 6¼ 0.

Note (5): Having observed the limitation of the first form, we give below the statement of

the stronger form of L’Hospital’s rule. Here, we wish to analyze the statement in detail so that

whenever we restate it as a theorem, its proof can be easily understood. (This approach is

important since its proof depends on Cauchy’s MVT, demanding careful attention.)

21.4.1 Theorem: L’Hospital’s Rule (Stronger Form)

Suppose that f(x0)¼ g(x0)¼ 0 and that the functions f and g are both differentiable on an

open interval (a, b) that contains the point x0.
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Suppose also, that g0(x) 6¼ 0 at every point in (a, b), except possibly at x0. Then,

lim
x!x0

f ðxÞ
g xð Þ ¼ lim

x!x0

f 0ðxÞ
g0 xð Þ

provided the limit on the right-hand side exists.

Before providing the proof of this theorem, the following points (from the hypotheses) must

be carefully noted:

(i) The function f and g both are differentiable on someopen interval (a,b),which contains

a point x0, and that f(x0)¼ g(x0)¼ 0.

(ii) The point x0 can be anywhere in (a, b).

(iii) g0(x) 6¼ 0 at every point in (a, b), except possibly at x0.

(iv) The existence of lim
x!x0

f 0ðxÞ=g0ðxÞimplies that both f 0(x) and g0(x) exist in at least a

small interval (x0, x], wherein g0(x) 6¼ 0.

Since f 0(x) and g0(x) both exist in (x0, x], it follows that f and g both are continuous
in this interval, but we do not know whether they are continuous at x0. (This

observation is important.)

(v) L’Hospital’s theorem says nothing about the limits of f(x) and g(x) as x! x0, but

the values f(x0) and g(x0) are given to be zero. This suggests that by defining

lim
x!xþ

0

f ðxÞ ¼ 0 and lim
x! xþ

0

gðxÞ ¼ 0 we can make both f and g (right) continuous at

x0.This step is very important sincewe can now say that both these functions satisfy the

hypotheses of Cauchy’s MVT on the closed interval [x0, x].

(Whenever we say that a function is continuous on a closed interval [a, b], we mean that it is

continuous in the open interval (a, b), right continuous at a and left continuous at b.)

Note (6): Applying the same logic, as in step (v) above, we can make f and g satisfy the

hypotheses of Cauchy’s MVT on the closed interval [x, x0].

Remark: Observe that the functions f and g satisfying the conditions of L’Hospital’s theorem

can be made to satisfy the conditions of Cauchy’s MVT, by defining (or redefining) them

suitably so that they become continuous at any point x02 (a, b), where g0(x0) could vanish

though g0(x) 6¼ 0 at any other point in (a, b).(5)

Also, note that this way of defining f and g does not affect the limit, lim
x!x0

f ðxÞ=gðxÞfor the
reason given at (v) above.

Now,we are in a position to proveL’Hospital’s rule (stronger form), but before attempting to

prove it, we illustrate it through the following solved examples.

Example (1): Use L’Hospital’s rule to show that

lim
x! 0

sin x

x
¼ 1 and lim

x! 0

1� cos x

x
¼ 0

Solution: Recall that weworked pretty hard to demonstrate these two facts in Chapter 11. After

noting that both limits have the 0=0 form, we can now establish the desired results in two lines.

(5) It must be clear that, at most, the value g0(x0) could be equal to zero, but for any other point x 2 (a, b), g0(x) 6¼ 0.
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By L’Hospital’s rule,

lim
x! 0

sin x

x
¼ lim

x! 0

ðsin xÞ0
ðxÞ0 ¼ lim

x! 0

cos x

1
¼ 1

lim
x! 0

1� cos x

x
¼ lim

x! 0

ð1� cos xÞ0
ðxÞ0 ¼ lim

x! 0

sin x

1
¼ 0

Example (2): Find lim
x! 2

ðx2 � 3xþ 2Þ=ðx2 þ x� 6Þ.

Solution: This limit has the 0=0 form, so by L’Hospital’s rule,

lim
x! 2

x2 � 3xþ 2

x2 þ x� 6
¼ lim

x! 2

2x� 3

2xþ 1
¼ 1

5
Ans:

Recall that this limit was handled earlier by the method of factoring.

Of course, we get the same answer either way.

Example (3): Find lim
x! 0

tan 2x=logeð1þ xÞ:

Solution: Both the numerator and the denominator have limit 0. Hence,

lim
x! 0

tan 2x

loge 1þ xð Þ ¼ lim
x! 0

2sec2 2x

1= 1þ xð Þ ¼ 2

1
¼ 2 Ans:

Caution: Note that, to apply L’Hospital’s rule to f/g, we divide the derivative of f by the

derivative of g. Do not fall into the trap of taking the derivative of the ratio f=g. The quotient
to use is f 0=g0, not f=gð Þ0.

Now we proceed to prove L’Hospital’s theorem.

21.5 L’HOSPITAL’S THEOREM (FOR EVALUATING LIMITS(S) OF THE

INDETERMINATE FORM 0/0.)

Theorem: Suppose that,

f ðx0Þ ¼ gðx0Þ ¼ 0

and that the functions f and g are both differentiable on an open interval (a, b) that contains

point x0.

Suppose also that g0(x) 6¼ 0 at every point in (a, b), except possibly at x0. Then,

lim
x! x0

f ðxÞ
gðxÞ ¼ lim

x!x0

f 0ðxÞ
g0ðxÞ ð6Þ

provided the limit on the right-hand side exists.

(To prove the theorem, we must find a closed interval in (a, b) on which both the functions f

and g are continuous.)
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Proof: We first establish equation (6) for the case x! xþ
0 . The method needs almost no

change to apply to x! x�
0 , and the combination of these two cases establishes the result.

It is given that f 0(x) and g0(x) exist on (a, b) and that g0(x) 6¼ 0, at every point in (a, b), except

possibly at x02 (a, b). Of course, the location of x0 (in (a, b)) is not known.

Suppose that x lies to the right of x0 (so that a< x0< x< b). Then, g0(x) 6¼ 0 on (x0, x].

Since f 0(x) and g0(x) exist on (a, b), it follows that f and g are both continuous on (x0, x].

But, it is also given that f(x0)¼ 0 and g(x0)¼ 0. Hence, f and g both can be made (right)

continuous at x0 by defining

lim
x!xþ

0

f ðxÞ ¼ 0 and lim
x!xþ

0

gðxÞ ¼ 0ð6Þ

This permits us to say that the functions f and g both satisfy the hypotheses of Cauchy’s MVT

on the closed interval [x0, x]. This produces a number c between x0 and x such that

f 0ðcÞ
g0ðcÞ ¼ f ðxÞ� f ðx0Þ

gðxÞ� gðx0Þ ð7Þ

But f(x0)¼ g(x0)¼ 0, so that,

f 0ðcÞ
g0ðcÞ ¼ f ðxÞ

gðxÞ ð8Þ

As x approaches x0, c approaches x0 because it lies between x and x0.

Therefore,

lim
x!xþ

0

f ðxÞ
gðxÞ ¼ lim

c!xþ
0

f 0ðcÞ
g0ðcÞ ¼ lim

x!xþ
0

f 0ðxÞ
g0ðxÞ ð9Þ

This establishes L’Hospital’s rule for the case where x approaches x0 from the right. The case

where x approaches x0 from the left is proved by applyingCauchy’sMVTon the closed interval

[x, x0], x< x0.

Finally, by combining these two cases, we get the desired result:

lim
x!x0

f ðxÞ
gðxÞ ¼ lim

x!x0

f 0ðxÞ
g0 xð Þ

�
ð10Þ

provided the limit on the right-hand side exists.

Proved

Remark (1): The conclusion of L’Hospital’s rule (for 0=0 forms) is that

lim
x!x0

f ðxÞ
gðxÞ ¼ lim

x!x0

f 0ðxÞ
g0ðxÞ

provided lim
x!x0

f 0ðxÞ
g0ðxÞ exists

�
ð11Þ

(6) Note that, in this waywe simplymake f and g right continuous at x0 in [x0, x]. In any case, these definitions do not affect

the limit lim
x!x0

f ðxÞ=gðxÞ since the limit does not depend on whether f and g are defined at x0.
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The statement (11) (representing L’Hospital’s rule above) allows, under some specific con-

ditions (whichmust be satisfied by f and g), to replace a limit of a quotient of functions by a limit

of a quotient of their derivatives, which is sometimes easier to compute.(7)

Remark (2): Just because we have an elegant rule does not mean that we should use it

indiscriminately. L’Hospital’s rule does not apply when either the numerator or the denom-

inator has a finite nonzero limit. Hence, we apply L’Hospital’s rule as long as we still get the

form 0=0 at x¼ x0. To make sure at every stage whether the rule applies, we reflect our

observation on the right-hand side of each step to indicate whether the expression is in the

form [0=0], [still 0=0], or [not 0=0], as indicated in the following solved examples. To find

lim
x!x0

f ðxÞ=gðxÞ, by L’Hospital’s rule, we proceed to differentiate f(x) and g(x) as long as

we still get the form 0=0 at x¼ x0. We stop differentiating when either the numerator or the

denominator has a nonzero limit. L’Hospital’s rule does not apply when either the numerator or

the denominator has a finite nonzero limit.

Example (4): Find lim
x! 0

ðx� sin xÞ=x3:

Solution: lim
x! 0

x� sin x

x3
This is in the form

0

0

� �� �

¼ lim
x! 0

1� cos x

3x2
still

0

0

� �

¼ lim
x! 0

sin x

6x
still

0

0

� �
¼ lim

x! 0

cos x

6

(At this stage, we stop differentiation and evaluate the limit.)

) lim
x! 0

cos x

6
¼ 1

6
Ans:

Example (5): Find lim
x! 0

ð1� cos xÞ=ðx2 þ 3xÞ:

Solution: lim
x! 0

1� cos x

x2 þ 3x
¼ lim

x! 0

ð1� cos xÞ0
ðx2 þ 3xÞ0

¼ lim
x! 0

sin x

2xþ 3

�
not

0

0

�

(At this stage, we stop differentiation and evaluate the limit.)

¼ 0

3
¼ 0 ðRightÞ

(7) In practice, the functions we deal with (in this book) satisfy the hypotheses of L ‘Hospital’s Rule.
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If we continue to differentiate in an attempt to apply L’Hospital’s rule once more, we get the

wrong result as follows:

lim
x! 0

1� cos x

x2 þ 3x
¼ lim

x! 0

sin x

2xþ 3
¼ lim

x! 0

cos x

2
¼ 1

2

which is wrong.

Note (7): In applying L’Hospital’s rule, we may reach a point where one of the derivatives is

zero at x¼ x0 and the other is not.Then, the limit of the fraction is either zero as in Example (5)

or infinity as in Examples (6) and (7).

Example (6):

lim
x! 0

sin x

x2
0

0

� �

lim
x! 0

sin xð Þ0
x2ð Þ0 ¼ lim

x! 0

cos x

2x
¼ 1

Example (7):

lim
x! 0

1� cos x

x� sin x
;

�
0

0

�

lim
x! 0

sin x

1� cos x
;

�
0

0

�

lim
x! 0

cos x

sin x
¼ 1

Remark (3): Recall that, we have alreadydefined infinity “1” as a limit (inChapter 7b) though

it does not represent a real number. Accordingly, in view of Remark (2), L’Hospital’s rule

remains valid when the ratio of the derivatives tends to infinity, as we have seen in Examples (6)

and (7). In other words, if lim
x!x0

f 0ðxÞ=g0ðxÞ ¼ 1, then it follows that lim
x!x0

f ðxÞ= gðxÞ ¼ 1.

It is easy to justify this. If lim
x!x0

g0ðxÞ ¼ 0, but lim
x! x0

f 0ðxÞ 6¼ 0, then the theorem is

applicable to the reciprocal ratio gðxÞ=f ðxÞ, which tends to 0 as x ! x0. Hence, the ratio

f ðxÞ=gðxÞ tends to infinity.

Remark (4): L’Hospital’s rule lim
x!x0

f ðxÞ=gðxÞ ¼ lim
x!x0

f 0ðxÞ=g0ðxÞ holds also for the case

where the functions f(x) and g(x) are not defined at x¼ x0, but lim
x!x0

f ðxÞ ¼ 0; lim
x!x0

gðxÞ ¼ 0:

In order to reduce this case to the earlier considered case, we redefine the functions f(x)

and g(x) at point x¼ x0, so that they become continuous at point x0. To do this, it is sufficient to

put f ðx0Þ ¼ lim
x!x0

f ðxÞ ¼ 0; gðx0Þ ¼ lim
x!x0

gðxÞ ¼ 0:

Note that redefining f andg in thiswaydoes not affect the limit lim
x!x0

f ðxÞ=gðxÞ;(since the limit

(at x ! x0) does not depend on whether the functions f(x) and g(x) are defined at x¼ x0).

Note (8): L’Hospital’s rule (for 0=0 form) is also applicable if lim
x!1 f ðxÞ ¼ 0 and

lim
x!1 gðxÞ ¼ 0:

Indeed, putting x¼ 1/t, we see that t ! 0 as x ! 1 and therefore from the statement

lim
x!1 f ðxÞ ¼ 0, it follows that lim

t! 0
f ð1=tÞ ¼ 0 and similarly from the statement

lim
x!1 gðxÞ ¼ 0 we get lim

t! 0
gð1=tÞ ¼ 0:
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Applying the L’Hospital’s rule to the ratio f ð1=tÞ=gð1=tÞ, we find

lim
x!1

f ðxÞ
gðxÞ ¼ lim

t! 0

f ð1=tÞ
gð1=tÞ ¼ lim

t! 0

f 0ð1=tÞð� 1=t2Þ
g0ð1=tÞð� 1=t2Þ ¼ lim

t! 0

f 0ð1=tÞ
g0ð1=tÞ ¼ lim

x!1
f 0ðxÞ
g0ðxÞ

which is what we wanted to prove.

Example (8): Evaluate lim
x!1 sinðk=xÞ=ð1=xÞ.

lim
x!1

sinðk=xÞ
1=x

¼ lim
x!1

k cosðk=xÞð� 1=x2Þ
� 1=x2

¼ lim
x!1 k cos

k

x
¼ k Ans:

(If, for x ! x0 (or for x ! 1), both f(x) and g(x) simultaneously tend to infinity, then

L’Hospital’s rule remains valid, but the proof becomes more sophisticated and we do not treat

it here.)

Thus, L’Hospital’s rule is extended to state as follows:

If lim
x!1 f ðxÞ ¼ 1, lim

x!1 gðxÞ ¼ 1, and lim
x!1 f 0ðxÞ=g0ðxÞ exist, then lim

x!1
f ðxÞ
gðxÞ

¼ lim
x!1

f 0ðxÞ
g0ðxÞ

Warning: L’Hospital’s rule can be applied only when an indeterminate form is reduced to the

form 0=0 or 1=1 (since it is proved only for these forms). We therefore emphasize that

L’Hospital’s rule must not be applied to compute lim
x! a

f ðxÞ=gðxÞ unless the quotient

f ðaÞ=gðaÞis an indeterminate form 0=0 or 1=1. To illustrate note that

lim
x! 0

x2

cos x
¼ 0

1
¼ 0

In this case, the limit of the denominator is 1, which is a nonzero real number. Hence, we cannot

apply L’Hospital’s rule in this case (see Remark (2)). If we apply the rule in such cases, the

result may be incorrect. Let us see what happens if we apply L’Hospital’s rule in this case:

lim
x! 0

x2

cos x
¼ lim

x! 0

2x

� sin x
¼ lim

x! 0

2

� cos x
¼ 2

� 1
¼ �2

which is wrong.

Note (9):When L’Hospital’s rule is used repeatedly, it is advisable to perform beforehand all

possible simplifications of the given expression, for instance, to cancel the common factors and

to use the limits already known.

Example (9):

lim
x! 0

ffiffiffiffiffiffiffiffiffiffiffi
1þ x

p � 1�ðx=2Þ
x2

�
0

0

�

¼ lim
x! 0

ð1=2Þð1þ xÞ� 1=2 � 1=2

2x

�
still

0

0

�

¼ lim
x! 0

ð� 1=4Þð1þ xÞ� 3=2

2
¼ � 1

8
Ans:
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Example (10):

L ¼ lim
x! 0

1
1þ x2

1ffiffiffiffiffiffiffiffiffi
1� x2

p�
1

cos2x

�� cos x

�
0

0

�
d

dx
1� cos xþ x sin x½ � ¼ sin xþ x cos xþ cos x

¼ 2 sin xþ x cos x

¼ lim
x! 0

2 sin xþ xcosx

sin x

�
0

0

�

d

dx
2 sin xþ x cos x½ � ¼ 2 cos xþ x sin xþ cos x

¼ 3 cos x� x sin x

¼ lim
x! 0

3 cos x� x sin x

cos x
¼ 3 Ans:

Example (11):

lim
x! 0

tan� 1 x� sin� 1 x

tan x� sin x

0

0

� �

Solution: Let the above limit be denoted by L, then by applying L’Hospital’s rule we get

L ¼ lim
x! 0

ð1=1þ x2Þ� 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p

ð1=cos2 xÞ� cos x

0

0

� �
ð12Þ

In order to express this limit in simplified form, it is useful to consider the Numerator (Nr) and

the Denominator (Dr) in the expression (12) as follows:

Nr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
�ð1þ x2Þ

ð1þ x2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
� 1� x2

ð1þ x2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p and

Dr ¼ 1� cos3 x

cos2 x
¼ ð1� cos xÞð1þ cos xþ cos2 xÞ

cos2 x

) L ¼ lim
x! 0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
� 1� x2

1� cos x

cos2 x

ð1þ cos xþ cos2 xÞð1þ x2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p

In this expression, note that the limit of the second factor is 1/3; therefore, on applying

L’Hospital’s rule to the first factor, we get,

L ¼ 1

3
lim
x! 0

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
� 1� x2Þ0

ð1� cos xÞ0 ¼ 1

3
lim
x! 0

ð1=2Þð1� x2Þ� 1=2ð2xÞ� 2x

sin x
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L ¼ 1

3
lim
x! 0

ð� 2x=2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
Þ� 2x

sin x
¼ � 1

3
lim
x! 0

x ð1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
Þþ 2

� 	
sin x

¼ � 1

3
lim
x! 0

x

sin x



1

1� x2
þ 2

�
¼



� 1

3

�
� 1 � ð1þ 2Þ ¼ � 1 Ans:

Note (10): Evaluating indeterminate forms of the type 1=1, 1 � 0, and 1 � 1.

Sometimes, when we try to evaluate a limit as x! a (by substituting x¼ a), we get an

ambiguous expression like 1=1, 1 � 0, or 1�1, instead of 0=0.
In more advanced books, it is proved that L’Hospital’s rule applies both to the indeter-

minate form1=1 and to 0=0. Shortly, we will show that expressions such as1 � 0 (or 0 � 1)

and 1 � 1 can be easily expressed in the form 1=1 or 0=0.
(As for the remaining indeterminate forms, we shall show, through solved examples, how

they can be brought to these forms.)

21.6 EVALUATING INDETERMINATE FORM OF THE TYPE 1/1

We now consider the question of the limit of a ratio of functions f(x) and g(x) approaching

infinity as x ! a (or as x ! 1).

Theorem: Let the functions f(x) and g(x) be continuous and differentiable for all x 6¼ a in the

neighborhood of the point a and the derivative g0(x) does not vanish. Furthermore, let

lim
x! a

f ðxÞ ¼ 1, lim
x! a

gðxÞ ¼ 1, and let there be a limit lim
x! a

f 0ðxÞ=g0ðxÞ ¼ L, which may

be either a finite number or �1 or þ1, then there is a limit lim
x! a

f ðxÞ=gðxÞ, and

lim
x! a

f ðxÞ
gðxÞ ¼ lim

x! a

f 0ðxÞ
g0ðxÞ ¼ Lð8Þ

(In the notation x ! a, “a” may be either finite or infinite.)

Note (11):A rigorous proof of the above theorem is quite difficult, but there is an intuitive way

of seeing that the result has to be true. It is important to analyze and assign some logical

meaning to the symbol 1=1.

Imagine that f(t) and g(t) represent the positions of two cars on t-axis at time t. These two

cars (the f-car and the g-car) are on an endless journey with respective velocities f 0(t) and g0(t).
Now, if lim

x!1 f 0ðtÞ=g0ðtÞ ¼ L, then ultimately the f-car travels about L times as fast as

the g-car. It is therefore reasonable to say that in the long run, the f-car will travel about L times

(the distance) as what is traveled by the g-car; that is, lim
x!1 f ðtÞ=gðtÞ ¼ L. Thus, a meaning has

been assigned to the expression 1=1 ¼ L, wherein L may be finite or infinite.

We do not call this a proof, but it gives a logical meaning to the limit of a ratio of functions,

which take the form 1=1:

(8) The proof of this theorem is available in Differential and Integral Calculus by N. Piskunove (vol. I, 140–143), Mir

Publishers, Moscow, 1974.
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Example: (12):

lim
x!p=2

tan x

tan 3x

�1
1

�

¼ lim
x!p=2

sec2 x

3sec2 3x
¼ lim

x!p=2

1=cos2 x

3=cos2 3x

�
Still

1
1

�

¼ lim
x!p=2

1

3

cos2 3x

cos2 x

�
Still

1
1

�

¼ lim
x!p=2

1

3

2cos 3x � ð � sin 3xÞ � 3
2cos xð� sin xÞ

¼ lim
x!p=2

1

3

2 � 3 � cos 3x sin 3x

2cos x sin x

¼ lim
x!p=2

cos 3x

cos x
lim

x!p=2

sin 3x

sin x

�
note that lim

x!p=2

cos 3x

cos x
is of the form

0

0

�

¼ lim
x!p=2

� 3sin 3x

� sin x

ð� 1Þ
ð1Þ

�

) sin3
p
2
¼ � 1 and sin p=2 ¼ 1

�

¼ 3
ð� 1Þ
ð1Þ

ð� 1Þ
ð1Þ ¼ 3 Ans:

Example (13):

lim
x!1

ax2 þ b

cx2 � d

�1
1

�

¼ lim
x!1

2ax

2cx
¼ a

c
Ans:

Example (14): Find lim
x!1 ex=x:

lim
x!1

ex

x
¼ lim

x!1
ðexÞ0
ðxÞ0 ¼ lim

x!1
ex

1
¼ 1 Ans:

Example (15):

lim
x!1

x

ex

This is of the form 1=1½ �.
Applying L’Hospital’s rule, we get

lim
x!1

x

ex
¼ lim

x!1
1

ex
¼ 0
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Note (12): Generally, for any integer n> 0

lim
x!1

xn

ex
¼ lim

x!1
nxn� 1

ex

¼ lim
x!1

nðn� 1Þðn� 2Þ . . . 1
ex

¼ 0

Obviously, for any real number k> 0, lim
x!1 xk=ex ¼ 0:

Example (16): Show that, if a is any positive real number, then,

lim
x!1

ln x

xa
¼ 0

Solution: Both ln x andxa tend to1 as x ! 1. Hence, by the application of L’Hospital’s rule,

lim
x!1

ln x

xa

�1
1

�

¼ lim
x!1

1=x

axa� 1
¼ lim

x!1
1

axa
¼ 0 Proved

Remark (5): Examples (15) and (16) imply something that is worth mentioning. In Exam-

ple (15) for large x, ex grows faster than any constant power of x, while in Example (16) ln x

grows slower than any constant power of x.

For example, ex grows faster than x100, and ln x grows slower than
ffiffiffi
x100

p
.

The following chart offers additional illustration indicating how some common functions

grow.(9)

x 10 100 1000

ln x 2.3 4.6 6.9ffiffiffi
x

p
3.2 10 31.6

x ln x 23 46.1 6908

x2 100 10,000 106

ex 104 1043 10434

Example (17): Find lim
x!1 ex=x2: This is of the form 1=1½ �.

Solution:

lim
x!1

ex

x2
¼ lim

x!1
ex

2x

�
Still

1
1

�

¼ lim
x!1

ex

2
¼ 1

) lim
x!1

ex

x2
¼ 1 Ans:

(9) Onemay check that e10� 22026¼ 2 (11013)� 2.104. For convenience, wemaywrite, e10� 104. Similarly, e100� 10 43

and e1000 � 10 243. These approximate values give us an idea about how fast the function ex grows.
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Example (18):

lim
x!1

x� 2x2

3x2 þ 5x

� �1
1

�

¼ lim
x!1

1� 4x

6xþ 5

�
still

�1
1

�

¼ lim
x!1

� 4

6
¼ 2

3
Ans:

Remark (6): Once again, note that the formulas

lim
x!x0

f ðxÞ
gðxÞ ¼ lim

x!x0

f 0ðxÞ
g0ðxÞ ð13Þ

and

lim
x!1

f ðxÞ
gðxÞ ¼ lim

x!1
f 0ðxÞ
g0ðxÞ ð14Þ

hold only if the limit on the right-hand side (which may be finite or infinite) exists. It may

happen that the limit on the left exists, while there is no existing limit on the right. If this

happens, we say that L’Hospital’s rule is not applicable to such a ratio.

Example (19):

lim
x!1

xþ sin x

x
;

1
1
h i

Indeed,

lim
x!1 1þ sin x

x


 �
¼ 1

In view of Remark (6), we should not apply L’Hospital’s rule in this case.

On the other hand, if we apply the rule to this ratio, the ratio of derivatives, on simplification

gives,

ðxþ sin xÞ0
ðxÞ0 ¼ 1þ cos x

1
¼ 1þ cos x

and therefore, we get,

lim
x!1

xþ sin x

x
¼ lim

x!1ð1þ cos xÞ

which does not approach any limit. It constantly oscillates between 0 and 2.

Note that, this example does not contradict L’Hospital’s rule. Simply, L’Hospital’s rule is not

applicable to this case as mentioned above. Another example of this type follows.
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Example (20): Let f(x)¼ x2 sin 1/x and g(x)¼ x. Then,

lim
x! 0

f ðxÞ
gðxÞ ¼ lim

x! 0

x2 sinð1=xÞ
x

;

�
0

0

�

¼ lim
x! 0

x sin



1

x

�
¼ 0

On the other hand, the quotient of derivatives

f 0ðxÞ
g0ðxÞ ¼ x2 cos



1

x

�

� 1

x2

�
þ 2x sin



1

x

�

or
f 0ðxÞ
g0ðxÞ ¼ 2x sin



1

x

�
� cos

1

x

has no limit as x ! 0.

Note (13): The two examples (19) and (20), given above, tell us that from the existence of

lim
x!x0

f ðxÞ=gðxÞit does not necessarily follow that lim
x!x0

f 0ðxÞ=g0ðxÞ exists. Of course, there are
examples in which lim

x!x0
f ðxÞ=gðxÞ and lim

x!x0
f 0ðxÞ=g0ðxÞ, both give the same answer, as in the

next two examples.

Example (21):

lim
x! 0

x� 2x2

3x2 þ 5x
¼ lim

x! 0

1� 4x

6xþ 5
¼ 1

5
Ans:

Example (22):

lim
x!1

x� 2x2

3x2 þ 5x
¼ lim

x!1
1� 4x

6xþ 5

�1
1

�

¼ lim
x!1

� 4

6
¼ � 2

3
Ans:

Note (14): If the conditions of L’Hospital’s theorem are satisfied on the interval (a� d, a) (or on
(a, a þ d)), then L’Hospital’s rule is applicable to computation of the limit of f ðxÞ=gðxÞ as
x ! a� (or as x ! aþ ). In the following two examples, we consider such one-sided limits.

Example (23):

lim
x! 0þ

ln sin ax

ln sin bx

��1
�1

�

¼ lim
x! 0þ

ðln sin axÞ0
ðln sin bxÞ0

¼ lim
x! 0þ

a cos ax
sin ax
b cos bx
sin bx

¼ a

b
lim

x! 0þ

�
cos ax

cos bx

sin bx

sin ax

�

¼ lim
x! 0þ

�
cos ax

cos bx

sin bx

b

a

sin ax

�

¼ 1:1:1 ½a > 0; b > 0�
¼ 1 Ans:
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Example (24):

lim
x! 0þ

ln x

1=x

� �1
1

�

¼ lim
x! 0þ

ðln xÞ0
ð1=xÞ0 ¼ lim

x! 0þ

1=x

� 1=x2
¼ lim

x! 0þ
ð� xÞ ¼ 0 Ans:

Remark (7): Even if L’Hospital’s rule applies, it may not help us, as examples (25) and (26)

suggest (of course, with a proper understanding and approach such problems can be easily

solved).

Example (25): Find lim
x!1 e� x=x� 1:

Solution:

lim
x!1

e�x

x� 1

�
0

0

�

¼ lim
x!1

� e� x

� x� 2
¼ lim

x!1
e� x

x� 2
¼ . . .

Clearly, we are only complicating the problem.

A better approach is to do a bit of algebra first, as follows:

lim
x!1

e� x

x� 1
¼ lim

x!1
x

ex
;

�1
1

�

¼ lim
x!1

ðxÞ0
ðexÞ0 ¼ lim

x!1
1

ex
¼ 0 Ans:

Which form is more convenient 0=0 or 1=1?

We know that L’Hospital’s rule applies to indeterminate forms of the type 0=0 and1=1.

Also, we can easily convert form 0=0 to 1=1 and vice versa. We may choose any of these

forms, depending on which is easier to handle as far as the differentiation is concerned.

Example (26): Find lim
x! 0þ

ln x=cot x:

Solution: As x ! 0þ , ln x ! �1 and cot x !1. So L’Hospital’s rule applies.

lim
x! 0þ

ln x

cot x
¼ lim

x! 0þ

ln xð Þ0
cot xð Þ0 ¼ lim

x! 0þ

1=x

� cosec2 x

� �
;

1
�1

h i

This is still indeterminate as it stands, but it may be observed that if we apply L’Hospitals rule

again, it will onlymake things worse.On the other hand, if we rewrite the bracketed expression

as follows, the situation is simplified.

1=x

� cosec2 x
¼ � sin2 x

x
¼ �sin x

sin x

x
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Thus,

lim
x! 0þ

ln x

cot x
¼ lim

x! 0þ
� sin x

sin x

x

� �
¼ ð0Þ � 1 ¼ 0 Ans:

L’Hospital’s rule consists of several versions on the theme of using derivatives to evaluate limits

of quotients. However, it is useful to have an overall view of the L’Hospital’s rule, stated in

simplified language in the next section.

21.7 MOST GENERAL STATEMENT OF L’HOSPITAL’S THEOREM

Theorem: Let f(x) and g(x) be two functions tending simultaneously to zero or infinity as

x ! u (or as x ! 1). If the ratio of their derivatives has a limit (finite or infinite), the ratio of

the functions possesses a limit that is equal to the limit of the ratio of the derivatives:

lim
x! u

f ðxÞ
gðxÞ ¼ lim

x! u

f 0ðxÞ
g0ðxÞ

Here, u may stand for a, a�, aþ, �1, or þ1.

Note (15): (Historical Note) L’Hospital’s rule should actually be called “Bernoulli’s rule”

because it appears in a correspondence from Johann Bernoulli to L’Hospital. L’Hospital and

Bernoulli had made an agreement under which L’Hospital paid Bernoulli a monthly fee for

solutions to certain problems, with the understanding that Bernoulli would tell no one of the

arrangement. As a result, the rule described in the above theorem first appeared in L’Hospitals

1696 treatise. It was only recently discovered that the rule, its proof, and relevant examples all

appeared in a 1694 letter from Bernoulli to L’Hospital.

21.8 MEANING OF INDETERMINATE FORMS

Certain limit problems have been classified as indeterminate forms. In fact, the term indeter-

minate form is used to say that the result is not obvious. We classify them as follows:

(i) Indeterminate Limit Problems of the Form 0=0 and � 1=1
(Quotient Forms): Consider the Limits,

lim
x! 1

x� 1ð Þ2
x� 1

¼ 0; lim
x! 1

2 x� 1ð Þ2
x� 1

¼ 2; and lim
x! 1

x� 1ð Þ2
x� 1ð Þ4 ¼ 1

These examples show that one could define 0=0 to be 0, 2, or 1 with equal

justification. It is for this reason that one does not attempt to define 0=0. This
expression is an example of an indeterminate form (see Chapter 1).

Next, consider the limit problems in the form 1=1:

lim
x! 2þ

1= x� 2ð Þ
2= x� 2ð Þ ¼ 1

2
and lim

x! 2þ

1= x� 2ð Þ
3= x� 2ð Þ2 ¼ 0
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where both numerator and denominator in each limit approach1 as x approaches 2.

These examples suggest that we should consider1=1 to be an indeterminate form.

Note that 0=1 is not an indeterminate form, for if lim
x! a

f ðxÞ ¼ 0;

lim
x! a

gðxÞ ¼ 1, then lim
x! a

f ðxÞ=gðxÞ ¼ 0:

Also, 2=0 is not an indeterminate form, for if lim
x! a

f ðxÞ ¼ 2 and lim
x! a

gðxÞ ¼ 0,

then lim
x! a

f ðxÞ=gðxÞis always undefined, and the quotient f ðxÞ=gðxÞ becomes large in

absolute value as x approaches a. Thus, 0=1 and1=0, are both not indeterminate

forms.

(ii) Indeterminate Limit Problems in Product Forms [0 � 1 or1 � 0]: Consider the limits

lim
x! 1þ

ðx� 1Þ½3=gðxÞ� ¼ 3 and lim
x! 1þ

½2=ðx� 1Þ�ðx� 1Þ2 ¼ 0.

These examples show that we should consider 0 � 1 (or1 � 0) to be an indeterminate

form.

Note that the product (1 � 1) is not an indeterminate product form (why ?).

(iii) Indeterminate Sum and Difference [(� 1) þ 1 (or 1�1)]: Consider the limits

lim
x! aþ

1

x� að Þ �
1

x� að Þ

 �

¼ lim
x! aþ

1� 1

x� að Þ
� �

¼ 0

and

lim
x!aþ

1

x�a
� 1þ2a�2x

x�a


 �
¼ lim

x!aþ

1

x�a
� 1

x�a
þ 2ða�xÞ

x�a


 �
¼ lim

x!aþ

2ðx�aÞ
x�að Þ

� �
¼ 2

These examples show that �(1)þ1 and 1�1 should be considered to be of

indeterminate form.

Note that, the sum 1 þ 1 is not an indeterminate form (why?).

(iv) The Indeterminate Exponential Forms [0 � 0, 1 �1, 1�1, 1� 0]: Indeterminate

exponential forms arise from expressions of the type lim
x! a

f ðxÞgðxÞ:
Recall that we have defined the exponential rsfor all s only r> 0.

Hence, we assume that f(x)> 0 for x 6¼ a.

Since the logarithm function is continuous and is the inverse of the exponential

function, we see that,

lim
x! a

ln f ðxÞgðxÞ
h i

¼ b ) ln lim
x! a

f ðxÞgðxÞ
h i

so that we can write lim
x! a

f ðxÞgðxÞ ¼ eb:

(Recall that ln x (¼ logex)¼ b means eb¼ x.)

Note that, the exponential forms 01 and11are not indeterminate exponential forms (why?).

Remark (8): We have seen that the following seven symbols, (1) 0=0, (2)1=1, (3) 0 � 1,

(4) 1�1, (5) 00, (6) 10, and (7) 11, represent indeterminate forms. Though there are

many other possibilities symbolized by, for example, 0=1,1=0,1 þ 1,1 �1, 01, and

11, they are not indeterminate forms because in all these cases the result is easily guessed
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without any confusion. (This is so because in all these cases the forces are in collusion, not in

competition.)

Consider the following example pertaining to the exponential form.

Example (27): Find lim
x! 0þ

sin xcot x:

Solution: We might call this 01 form, but it is not an indeterminate form. Note that, sin x is

approaching zero, and raising it to the exponent cot x, an increasing large number, serves to

make it approach zero faster. Thus,

lim
x! 0þ

sin xcot x ¼ 0

21.9 FINDING LIMITS INVOLVING VARIOUS INDETERMINATE FORMS

(BY EXPRESSING THEM IN THE FORM 0/0 OR 1/1)

A limit corresponding to an indeterminate form is usually computed by trying to convert the

problem to a limit corresponding to the indeterminate quotient form 0=0 or1=1. Once this

is done, we can usually determine the correct limit. Of course, there may be unusual situations

as in Examples (25) and (26).

Note (16): There is a helpful way to remember how to convert a 0 � 1-type problem to a

0=0-type problem. We write,

0 �1 ¼ 0

1=1 ¼ 0

0

(Note that, the above statement is mathematically wrong, but it is quite helpful if we agree to

remember it in this way. Similarly, the statement1=1 ¼ ð1=1Þ=ð1=1Þ ¼ 0=0 enables us
to convert a 1=1-type problem to a 0=0-type problem. Now, we proceed to solve some

problems, wherein conversion to the form 0=0 or 1=1 is involved.

21.9.1 Indeterminate Product Forms

Example (28): The limit limx!1 x sinð1=xÞ leads to the form1 � 0, but we can change it to
the form 0/0 by writing x¼ 1/t and letting t ! 0. Thus, we have,

lim
x!1 x sin

1

x
¼ lim

t! 0

1

t
sin t 1� 0½ �

¼ lim
t! 0

sin t

t

�
0

0

�

) By applying L Hospital s rule, we get,

L ¼ lim
t! 0

cos t

1
¼ 1 Ans:

Example (29) Find lim
x! 0þ

x loge x:

Solution: Observe that lim
x! 0þ

x ¼ 0 and lim
x! 0þ

loge x ¼ �1:

Therefore, the given limit is of the form 0 � (�1).
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However, we can transform it into the indeterminate form 1=1 by rewriting,

lim
x! 0þ

x loge x ¼ lim
x! 0þ

logex

1=x

This is of the form �1=1½ �.
) By applying L’Hospital’s rule, we get,

lim
x! 0þ

loge x

1=x
¼ lim

x! 0þ

1=x

� 1=x2
¼ lim

x! 0þ
�


x2

x

�

¼ lim
x! 0þ

ð� xÞ ¼ 0

) lim
x! 0þ

x loge x ¼ 0 Ans:

Example (30): Find lim
x! p=2

tan x ln sin xð Þ.

Solution: We have,

lim
x!p=2

ln sin x ¼ 0 ) lim
x!p=2

sin x ¼ 1

� �

and

lim
x!p=2

tan x ¼ 1

Therefore, the given limit (L, say) is of the form 0 � 1. We can rewrite it in the form 0=0 by

simply changing tan x to 1/cot x. Thus,

lim
x!p=2

tan x ln sin xð Þ ¼ lim
x!p=2

ln sin x

cot x
This is of the form

0

0

� �

By applying L’Hospital’s rule, we get,

L ¼ lim
x!p=2

ð1=sin xÞcos x
� cosec2 x

¼ lim
x!p=2

ð� cos x sin xÞ ¼ 0

21.9.2 Indeterminate Sum and Difference Form

Now, we consider the type (1�1).

Example (31): Find lim
x! 0

½ð1=sin xÞ� ð1=xÞ�.

Solution: If x ! 0þ , then sin x ! 0þ and 1=sin x! þ1, while 1=x! þ1. The ex-

pression ½ 1=sin xð Þ� 1=xð Þ� formally becomes þ1� (þ1), which is indeterminate. On

the other hand, if x ! 0�, then 1=sin x! �1 and 1=x! �1, so that 1=sin xð Þ� 1=xð Þ
becomes �1 þ1, which is also indeterminate.

We may also write,

1

sin x


 �
� 1

x


 �
¼ x� sin x

x sin x

which is of the form 0=0.
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Thus,

lim
x! 0



1

sin x
� 1

x

�
¼ lim

x! 0

x� sin x

x sin x

�
0

0

�

¼ lim
x! 0

1� cos x

x cos xþ sin x

�
still

0

0

�

¼ lim
x! 0

sin x

� x sin xþ 2cos x
¼ 0 Ans:

21.9.3 Indeterminate Exponential Forms

Now, we consider the indeterminate forms 00, 10, and 11.

The trick for these forms is to not consider the original expression, but rather, its logarithm.

We first take the logarithm of the given expression and then determine the limit of that

logarithm. Finally, from this limit, we find the limit of the original function, which is allowable

because of the continuity of the logarithmic function.

Instead of the detailed theoretical analysis of the techniques used for evaluating such limits,

we show through examples how this reduction is performed practically.

Example (32): Find lim
x! 0þ

xx:(10)

Solution: The given limit has the indeterminate form 00.

Let y¼ xx.

(In order to find the lim
x! 0þ

xx, we first take the logarithmof thegiven expression, as suggested

above.)

Taking logarithms on both sides, we get

lim
x! 0þ

ln y ¼ lim
x! 0þ

ln xx

¼ lim
x! 0þ

x ln x½ �

This has the form [0(�1)].

¼ lim
x! 0þ

ln x

1=x

� � �1
1

h i
By applying L’Hospital’s rule, we get

lim
x! 0þ

ln y ¼ lim
x! 0þ

�
1=x

� 1=x2

�
¼ lim

x! 0þ
ð� xÞ ¼ 0

But we have to find lim y not lim (ln y). Also, we know that lim (ln y)¼ ln (lim y). Therefore, we

write, ln (lim y)¼ 0.

In other words, it means that,

lim y ¼ e0 ¼ 1

(10) It is reasonable that we consider only a one-sided limit, when x! 0 through positive values of x.
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or

lim
x! 0þ

xx ¼ 1 Ans:

Example (33): Show that lim
x!1 ð1Þþ ð1=xÞð Þx ¼ e.

Solution: As in Example 5, we first find the limit of the logarithm of the expression on the left.

In other words, we are finding a number b such that

lim
x!1 ln 1þ 1

x


 �x

¼ b

(Our answer for the original limit will be eb.) We find that,

lim
x!1 ln 1þ 1

x


 �x

¼ lim
x!1 x ln 1þ 1

x


 �
¼ lim

x!1
ln 1þ 1=xð Þ

1=x

This expression is now prepared for applying L’Hospital’s rule because

lim
x!1 ln 1þ 1

x


 �
¼ 0 ¼ lim

x!1
1

x

As a result,

lim
x!1

ln 1þ 1=xð Þ
1=x

¼ lim
x!1

½1=ð1þ 1=xÞ�ð� 1=x2Þ
� 1=x

¼ lim
x!1

1

1þ 1=x
¼ 1

1þ 0
¼ 1

Thus, b¼ 1, so that,

lim
x!1 1þ 1

x


 �x

¼ eb ¼ e1 ¼ e

Remark: By applying L’Hospital’s rule, we get

lim
x!1 1þ 1

x


 �x

¼ e

Thus, e could also be defined by means of the above limit, as is done in some textbooks.

Exercise

Q1. Find lim
x! 1

ðx=x� 1Þ� ð1=loge xÞð Þ: Ans:
1

2

Q2. lim
x! 0

xn loge x Ans: 0

Q3. lim
x! 0

cos x1=x
2

Ans: 1=
ffiffiffi
e

p

Q4. lim
x! 0

ðcot xÞ1=loge x Ans: 1=e

Q5. Find lim
x!ðp =2Þ�

ðtan xÞcos x: Ans: 1
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Q6. Find lim
x! 0þ

ðxþ 1Þcot x: Ans: e

We give below the solution to the above exercise for the convenience of the readers.

Q1. Find lim
x! 1

ðx=x� 1Þ� ð1=loge xÞð Þ; ½1�1�:

Solution: lim
x! 1



x

x� 1
� 1

loge x

�

¼ lim
x! 1

x loge x� xþ 1

ðx� 1Þloge x
;

�
0

0

�

ðx loge x� xþ 1Þ0 ¼ x
1

x
þ loge x� 1 ¼ loge x

ðx� 1Þloge x½ �0 ¼ x� 1

x
þ loge x ¼ 1� 1

x
þ loge x

¼ lim
x! 1

loge x

ðx� 1Þ=xþ loge x
¼ lim

x! 1

1=x

1=x2 þ 1=x
¼ 1

2
Ans:

Q2. lim
x! 0

xn loge x ½0 � ð �1Þ�

Solution: ¼ lim
x! 0

loge x

1=xn

� �1
1

�

¼ lim
x! 0

1=x

� n=xnþ 1

¼ lim
x! 0

� xn

n
¼ 0

) lim
x! 0

xn loge x ¼ 0 Ans:

Q3. To find lim
x! 0

cos xð Þ1=x2 11½ �:

Solution: Let lim
x! 0

cos xð Þ1=x2 ¼ A:

Taking the logarithm, we get

loge lim
x! 0

ðcos xÞ1=x2
� �

¼ loge A

or loge A ¼ lim
x! 0

logeðcos xÞ1=x
2

h ið11Þ

¼ lim
x! 0

logeðcos xÞ
x2

;

�
0

0

�

(11) This is permitted because of the continuity of the logarithmic function.
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Now, applying L’Hospital’s rule, we get,

loge A ¼ lim
x! 0

ð1=cosxÞð� sin xÞ
2x

¼ lim
x! 0

� tan x

2x

�
still

0

0

�

¼ lim
x! 0

� 1=cos2 x

2
¼ � 1

2

) A ¼ e� 1=2 ¼ 1=
ffiffiffi
e

p

or lim
x! 0

ðcos xÞ1=x2 ¼ 1=
ffiffiffi
e

p
Ans:

Q4. To find lim
x! 0

ðcot xÞ1=loge x 10
� 

:

Solution: Let lim
x! 0

ðcot xÞ1=loge x ¼ A:

Taking the logarithm, we get,

loge lim
x! 0

ðcot xÞ1=loge x
� �

¼ loge A

or loge A ¼ lim
x! 0

logeðcot xÞ1=loge x
h i

¼ lim
x! 0

�
logeðcot xÞ

loge x

�
;

� 1
�1

�

By applying L’Hospital’s rule, we get,

loge A ¼ lim
x! 0

ð1=cot xÞð� cosec2 xÞ
1=x

¼ lim
x! 0

�



1

cot x

�

1

sin2 x

�

1=x

¼ lim
x! 0

� x

cos x sin x

�
0

0

�

¼ lim
x! 0

� 1

cos x cos xþ sin xð� sin xÞ ¼ lim
x! 0

� sin x=cos x � 1=sin2 x� �
1=x

) loge A ¼ lim
x! 0

� 1

cos2x� sin2x
¼ � 1

) A ¼ e� 1 ¼ 1=e

) lim
x! 0

ðcot xÞ1=loge x ¼ 1=e Ans:

Q5. Find lim
x!ðp =2Þ�

ðtan xÞcos x:

Solution: This has the indeterminate form 10.
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Put y ¼ ðtan xÞcos x:
) ln y ¼ cos x ln tan x

¼ ln tan x

sec x

Then,

lim
x!ðp=2Þ�

y ¼ lim
x!ðp=2Þ�

ln tan x

sec x

¼ lim
x!ðp=2Þ�

ð1=tan xÞsec2 x
sec x tan x

¼ lim
x!ðp=2Þ�

sec x

tan2 x

¼ lim
x!ðp=2Þ�

cos x

sin2 x
¼ 0

Therefore,

lim
x!ðp=2Þ�

y ¼ e0 ¼ 1 Ans:

Q6. Find lim
x! 0þ

ðxþ 1Þcot x:

Solution: This takes the indeterminate form.

Let y ¼ ðxþ 1Þ cot x

) ln y ¼ cot x lnðxþ 1Þ

By applying L’Hospital’s rule for the 0=0 form,

lim
x! 0þ

ln y ¼ lim
x! 0þ

lnð1þ xÞ
tan x

¼ lim
x! 0þ

½1=ð1þ xÞ�
sec2 x

¼ 1

Thus, limx! 0þ ln y¼ 1, [where y¼ (x þ 1)cot x]

Our interest lies in computing lim
x! 0þ

ln y [not lim
x! 0

ln y].

Now,

lim
x! 0þ

ln y ¼ ln½ lim
x! 0þ

lny�

) We write ln½ lim
x! 0þ

ln y� ¼ 1

) lim
x! 0þ

y ¼ e1 ¼ e Ans:
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22 Extending the Mean Value
Theorem to Taylor’s Formula:
Taylor Polynomials for Certain
Functions

22.1 INTRODUCTION

In Chapter 20, we have introduced the Mean Value Theorem, which says that if a function f is

continuous on an interval [a, b] and differentiable on (a, b), then,

f ðbÞ � f ðaÞ
b� a

¼ f 0ðcÞ ð1AÞ

or f ðbÞ ¼ f ðaÞ þ f 0ðcÞ � ðb� aÞ ð1BÞ
for some c between a and b.

Here, f(b) is expressed in terms of f(a) and f 0(c), (b� a) being the length of the interval

(a, b). Since x can vary from a to any value b =2 [a, b], we may think of b as an independent

variable. This permits us to replace b by x and rewrite (1B) in the following form.

f ðxÞ ¼ f ðaÞ þ f 0ðcÞðx� aÞ ð1CÞ

In this new formula (1C), we think ofx as an independent variable on [a, b] and the number c lies

in the interval between a and x. (The equation of the Mean Value Theorem is often stated in

this form.)

Note (1): The right-hand side of (1C) looks like the linear approximation of f near a. If f 0 is
continuous and c is close to a (as it will have to be ifx is close to a), then f 0(c) is close to f 0(a) and
(1C) gives,

f ðxÞ � f ðaÞ þ f 0ðaÞðx� aÞ ð1DÞ

which is the linear approximation of f near a.

Introduction to Differential Calculus: Systematic Studies with Engineering Applications for Beginners, First Edition.
Ulrich L. Rohde, G. C. Jain, Ajay K. Poddar, and Ajoy K. Ghosh.
� 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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We have studied linear approximations in Chapter 16 without knowing how good they

were. Now, with an extended version of MVT for second derivative(s), we shall see that

the error in (1D) is proportional to (x� a)2. Therefore, if (x� a) is small, the error will be

very small.

Note (2): At this stage, the reader may read the proof of MVT and note carefully how the

auxiliary function F(x) is defined there. In the process of extending the MVT for second

derivative(s) (which generalizes the MVT for the first derivative(s) and sets the stage for

further generalization), it is important to study carefully the steps involved in the proof.

In particular, the way of defining the auxiliary function F(x) (which satisfies the hypotheses

of Rolle’s Theorem) is important. Now, we proceed to state and prove the MVT for second

derivatives.

22.2 THE MEAN VALUE THEOREM FOR SECOND DERIVATIVES:

THE FIRST EXTENDED MVT

Let f be a (real) function defined on [a, b], such that,

(i) f and f 0 are continuous on [a, b] (from the statement f 0 is continuous on [a, b], it follows
that f 0 exists on [a, b]).

(ii) f 0 is differentiable on (a, b).

Then, there exists a number c2 between a and b, such that,

f ðbÞ ¼ f ðaÞ þ f 0ðaÞðb� aÞ þ f 00ðc2Þ
2

ðb� aÞ2 ð2AÞ

Proof: Let a number K be defined by

f ðbÞ ¼ f ðaÞ þ f 0ðaÞðb� aÞ þ Kðb� aÞ2 ð2BÞ

or f ðbÞ � f ðaÞ � f 0ðaÞðb� aÞ � Kðb� aÞ2 ¼ 0 ð2CÞ

Note (3): The significance of equation (2A) is not the fact that some number K satisfies the

equation (2B), but the fact that the value of K defined by (2B) is actually given by

K ¼ f 00ðc2Þ
2

ð3Þ

for some point c2 in the interval between a and b.

Therefore, given thatK is the number that satisfies (2B),wewill show that Kmust satisfy (3)

for some number c2 between a and b.

Note (4): Now, our interest lies in obtaining a function f(x), which must satisfy equation (2B).

Since, the independent variablex varies in [a, b], we can say thatx varies from a to anypoint b in
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[a, b]. This is equivalent to looking at b as an independent variable in [a, b]. Accordingly,

equation (2B) says that when x¼ b we can write (2B) in the following form:

f ðxÞ ¼ f ðaÞ þ f 0ðaÞðx� aÞ þ Kðx� aÞ2 ð4Þ

Note that, when x¼ b, the function f(x) and the function f(a)þ f 0(a) (x� a)þK(x� a)2 have

the same value [see equation (2B)].(1)

Also, these two functions have the same value when x¼ a [namely, f(a)], as can be easily

checked.

We now define a new function F(x), being the difference of the above two functions. Then,

generally F(x) must be different from zero, for all values of x, other than x¼ a and x¼ b. This

also means that F(x) is not, constant function. Thus,

FðxÞ¼ f ðxÞ � ½ f ðaÞ þ f 0ðaÞðx� aÞ þ Kðx� aÞ2�
¼ f ðxÞ � f ðaÞ � f 0ðaÞðx� aÞ � Kðx� aÞ2

ð5Þ

is different from zero.

Now, observe that,

(a) F(x) is continuous on [a, b], (because f, (x� a) and (x� a)2 are continuous on [a, b]),

(b) F(x) is differentiable on (a, b) for the same reason, and

(c)
FðaÞ ¼ 0 ½by ð4Þ�
FðbÞ ¼ 0 ½by ð2CÞ�

)
(2)

Thus, the function F(x) satisfies all the conditions of Rolle’s Theorem on the interval [a, b].

Therefore, F0(x)¼ 0 at some point c1 between a and b. Thus, we have,

F0ðc1Þ ¼ 0; a < c1 < b ð6Þ

Now, from equation (5), we obtain the derivative,

F0ðxÞ ¼ f 0ðxÞ � f 0ðaÞ � 2Kðx� aÞ ð7Þ

and for x¼ c1, we get,

F0ðc1Þ ¼ f 0ðc1Þ � f 0ðaÞ � 2Kðc1 � aÞ ¼ 0 ½using ð6Þ�

Next, we observe that the function F0(x) satisfies all the hypotheses of Rolle’s Theorem on the

interval [a, c1] as follows:

. F0(c1)¼ 0 [from (6)],

. F0(a)¼ 0 [from (7)],

. F0(x) is continuous on [a, c1] and differentiable on (a, c1), because both f 0(x) and (x� a)

are.

(1) In fact, this is so because we have defined f(x) based on requirement of equation (2B).
(2) Note that, F(a)¼ 0 is a result of cancellation of differences in (5), while F(b)¼ 0 follows from (2C) due to the way K

is defined.
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Therefore, the derivative F00(x) must be zero at some point c2, between a and c1 (and hence

between a and b).

Now, by differentiating (7) we get,

F00ðxÞ ¼ f 00ðxÞ � 2K; and for x ¼ c2; we get

0 ¼ f 00ðc2Þ � 2K ½ )F00ðxÞ ¼ 0 at some point c2 2 ða; c1Þ�

) K ¼ F00ðc2Þ
2

Substituting this value of K in (2B), we get the result that we wanted to prove.

22.2.1 Linear Approximations

We are now in a position to calculate the error in the linear approximation defined at equation

(1D). We begin by regarding b as an independent variable in equation (2A) (as indicated in the

note above) and rewriting this equation in the following form

f ðxÞ ¼ f ðaÞ þ f 0ðx� aÞ þ f 00ðc2Þ
2

� ðx� aÞ2 . . . ð8Þð3Þ

with the understanding that c2 lies in between a and x.

From equation (1D) we get the linear approximation

f ðxÞ � f ðaÞ þ f 0ðaÞðx� aÞ; ð9Þ

valid on the interval from a to x with an error of

e1ðxÞ ¼ f 00ðc2Þ
2

� ðx� aÞ2 ð10Þ

If f 00 is continuous on the closed interval from a to x, then it has a maximum value on the

interval and e1(x) satisfies the inequality

je1ðxÞj � maxj f 00j
2

ðx� aÞ2 ð11Þ

where max refers to the interval joining a and x.

This inequality gives an upper bound for the error on the interval from a to x that is of

practical value in many cases. To get more accuracy in a linear approximation, we add a

quadratic term, as given in equation (8).

(3) This equation holds for x< a as well as for x> a. [Since the proof and the theorem remain valid if one refers to “the

interval with end points a and b” rather than explicitly to [a, b] or (a, b).Calculus and Analytic Geometry (Sixth Edition) by

Thomas/Finney, Remark at page 239.]

For more details refer to Calculus and Analytic Geometry (Sixth Edition) by Thomas/Finney.
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22.2.2 Quadratic Approximations

We can get a good estimate of the error in quadratic approximations by extending the Mean

Value Theorem one step further in the following way.

22.2.3 The Mean Value Theorem for Third Derivatives: The Second

Extended MVT

Theorem: If f, f 0, and f 00 are continuous on [a, b] and f 00 is also differentiable on (a, b), then

there exists a number c3 between a and b for which

f ðbÞ ¼ f ðaÞ þ f 0ðaÞðb� aÞ þ f 00ðaÞ
2

ðb� aÞ2 þ f 000ðc3Þ
6

ðb� aÞ3 ð12Þ

[For the proof of this theorem, refer to Calculus and Analytic Geometry (Sixth Edition)

by Thomas/Finney.]

In applications, we usually write this equation with x in place of b, i.e., we write,

f ðxÞ ¼ f ðaÞ þ f 0ðaÞðx� aÞ þ f 00ðaÞ
2

ðx� aÞ2 þ f 000ðc3Þ
6

ðx� aÞ3 ð13Þ

with the understanding that c3 lies between a and x.

From (13), we get the quadratic approximation,

f ðxÞ � f ðaÞ þ f 0ðaÞðx� aÞ þ f 00ðaÞ
2

ðx� aÞ2 ð14Þ

valid on the interval between a and x.(4)

Note that, the first two terms on the right-hand side of (14) give the standard linear

approximation of f. To get the quadratic approximation, we have only to add the quadratic term

without changing the linear part.

If f 000ðxÞ is continuous on the closed interval from a to x, then it has a maximum value on

the interval, and we can write,

je2ðxÞj � max
f 000ðxÞ
6

����
����ðx� aÞ3 ð15Þ

The extended mean value theorems are special cases of a theorem called Taylor’s Theorem,

which holds for any natural number n. The most convenient statement of the theorem for our

purpose is the following theorem.

(4) In the quadratic approximation (14), the error is given by e2ðxÞ ¼ f 000 ðc3Þ
6

ðx� aÞ3 ¼ f 000 ðc3Þ
3! ðx� aÞ3, which is the fourth

term on the right-hand side of (13).
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22.3 TAYLOR’S THEOREM

If f and its first n derivatives f 0, f 00, . . .. . ., f (n) are continuous on [a, b] and if f (n) is differentiable
on (a, b), then there exists a number cnþ1 between a and b such that

f ðbÞ ¼ f ðaÞ þ f 0ðaÞðb� aÞ þ f 00ðaÞ
2!

ðb� aÞ2 þ f 000ðaÞ
3!

ðb� aÞ3 þ . . .þ f ðnÞðaÞ
n!

ðb� aÞn

þ f ðnþ1Þðcnþ1Þ
ðnþ 1Þ! ðb� aÞnþ1 ð16Þ

Equation (16) provides extremely accurate polynomial approximations for a large class of

functions that have derivatives of all orders. (We do not prove this theorem.)

Note (5): Through Taylor’s Theorem, calculus provides a remarkably powerful and general

method of estimating the values of certain differentiable functions with any prescribed degree

of accuracy.

22.4 POLYNOMIAL APPROXIMATIONS AND TAYLOR’S FORMULA

While values of polynomial functions can be found by performing a finite number of additions

and multiplications, other functions such as the exponential, logarithmic, and trigonometric

functions cannot be evaluated as easily. We show in this section that many such functions can

be approximated by polynomials, and that the polynomial instead of the original function,

can be used for computations when the difference between the actual function value and the

polynomial approximation is sufficiently small. Various methods can be employed to approx-

imate a given function by polynomials. One of the most widely used involves Taylor’s Formula

[equation (16)].

We shall consider the functions ex, logex (i.e., ln x), sin x, cos x, which occur frequently.

Their values are available in mathematical tables. Also, many calculators and computers have

been programmed to produce their values on demand.Where do the values in the tables come

from? By and large these numbers come from calculating partial sums of power series, which

are in fact polynomials. We, therefore, begin with the definition of a Power Series.

22.4.1 Definition: Power Series

A power series is a functional series of the following form:

f ðxÞ ¼ a0 þ a1ðx� x0Þ þ a2ðx� x0Þ2 þ a3ðx� x0Þ3 þ . . .þ anðx� x0Þn þ . . .

whose terms are the products of constant factors a0, a1, a2, . . ., an,. . . by integral powers of the
difference (x� x0).

The constants a0, a1, a2, . . ., an. . .. . . are called the coefficients of the power series. Unless
otherwise stated, the coefficients will be assumed to be real. In particular, if x0¼ 0, the power

series is arranged in ascending powers of x:

f ðxÞ ¼ a0 þ a1xþ a2x
2 þ a3x

3 þ . . .þ anx
n þ . . . ð17Þ
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We shall confine ourselves to studying series of the type (17) because any power series can be

brought to this type with the aid of the substitution, x� x0¼X.

Note: For the sake of convenience, we shall call an�xn the nth term of the power series (17),

although it occupies the (nþ 1)th place. The constant term a0 of the series will be referred to

as its zeroth term.

The simplest example of the power series is the geometric series:

1þ xþ x2 þ . . .þ xn þ . . .

The whole theory of power series is based on the following fundamental theorem.

Abel’s Theorem: If the power series (17) converges at a point x0 6¼ 0, it is absolutely

convergent in the interval (�jx0j, jx0j), that is, for every value of x satisfying the condition

jxj< jx0j.

22.4.2 Definition: Interval of Convergence

The numberR such that power series (17) is convergent for allx satisfying the condition jxj<R,

and divergent for all x satisfying the inequality jxj>R is called the radius of convergence of the

power series. The interval (�R, R) is referred to as the interval of convergence.

22.4.3 Properties of Power Series (Without Proof)

1. The sum of a power series is a continuous function in the interval of convergence of the

series; that is, the function

sðxÞ ¼ a0 þ a1xþ a2x
2 þ . . . an � xn þ . . . ð�R < x < RÞ is continuous:ð5Þ

2. A power series can be integrated term wise within its interval of convergence. The new

(integrated) series possesses the same radius of convergence as the original series.

3. Every power series is infinitely term wise differentiable inside its interval of conver-

gence. The radii of convergence of the differentiated series remain the same as that of

the original series.

Now, we show how a power series can arise when we wish to approximate a function

y ¼ f ðxÞ ð18Þ

by a sequence of the polynomials fn(x) of the form

fnðxÞ ¼ a0 þ a1xþ a2x
2 þ . . .þ anx

n ð19Þ

(5) The geometric series: 1þ xþ x2þ . . .þxnþ . . . converges for jxj< 1, to the rational function, f ðxÞ ¼ 1=ð1� xÞ,
which represents the sumof geometric series. The function 1=ð1� xÞ is defined and is continuous everywhere except at the
point x¼ 1 but it only serves as the sum of the series for jxj< 1. For jxj � 1, the series is divergent and it is senseless to

speak of its sum.
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If a function f(x) can be represented as the sum of a power series, we say that it is expanded into

the power series. The existence of such an expansion is extremely important since it makes it

possible to replace (approximately) the given function by the sum of the first several terms of

the power series, which is in fact a polynomial.

The computation of the values of the given function then reduces to the computation of the

values of the polynomial, which can be achieved with the aid of the simplest arithmetical

operations.

We immediately face the following questions:

. What does it mean for a function f to approximate another function g?

. How can we choose a “good” polynomial approximation?

. How are derivatives involved?

We shall be interested, at least at first, in making the approximation for the values of x near 0,

because we want the term anx
n to decrease as n increases. Hence, we focus our attention on a

portion of the curve y¼ f(x) near the point A(0, f(0)), as shown in Figure 22.1.

(1) The graph of the polynomial f0(x)¼ a0 of degree zero will pass through (0, f(0)) if we

take

a0 ¼ f ð0Þ:

(2) The graph of the polynomial f1(x)¼ a0þ a1x will pass through (0, f(0)) and have the

same slope as the given curve at that point, if we choose,

a0 ¼ f ð0Þ and a1 ¼ f 0ð0Þ:

(3) The graph of the polynomial f2(x)¼ a0þ a1xþ a2x
2, will pass through (0, f(0)) and

have the same first and second derivative as the given curve at that point,

if a0 ¼ f ð0Þ; a1 ¼ f 0ð0Þ; and a2 ¼ f 00ð0Þ
2

y = f(x)

0

A (0, f(0))
y = a0

y = a0 + a1x

y = a0 + a1x +
a2
2

2x-

FIGURE 22.1
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(4) In general, the polynomial,

fnðxÞ ¼ a0 þ a1xþ a2x
2 þ . . .þ anx

n

which we choose to approximate y¼ f(x) near x¼ 0, is the one whose graph passes

through (0, f(0)) and whose first n derivatives match the derivatives of f(x) at x¼ 0.

The constant, linear, and quadratic approximations (which are respectively of zeroth-, first-,

and second-order approximations) may be looked upon as “made to order” approximations

to f. In each case, the “order” refers to the number of derivatives of f with which a

particular approximation agrees at 0. An even better agreement is possible if polynomials

of degree 3, 4, and higher are used to approximate f.

Suppose we take the nth degree polynomial fn(x) [given at equation (4) above] to

approximate y¼ f(x) near x¼ 0. Then, our task is to find the coefficients a0 to an. This is

surprisingly easy. The key idea is that the coefficients ai are closely related to the derivatives

of fn(x) at x¼ 0. To match the derivative of fn(x) to those of y¼ f(x) at x¼ 0, we equate

the corresponding derivatives at x¼ 0, and obtain the values of a0, a1, . . ., an in terms of the

derivatives of y¼ f(x).

To see how this may be done, we write down the polynomial fn(x) and its derivatives as

follows:

fnðxÞ ¼ a0 þ a1xþ a2x
2 þ a3x

3 þ . . . . . .þ anx
n

f 0nðxÞ¼ a1 þ 2a2xþ 3a3x
2 þ . . . . . .þ nanx

n�1

f 00nðxÞ ¼ 2a2 þ 3 � 2a3xþ . . . . . .þ nðn� 1Þanxn�2

f
ðnÞ
n ðxÞ ¼ nðn� 1Þðn� 2Þ . . . ð1Þ � an ¼ ðn!Þan:

But the first n derivatives of the (approximating) polynomial fn(x) is required to match with the

corresponding derivatives of the given function y¼ f(x) at x¼ 0. Therefore, we put x¼ 0 in

fnðxÞ; f 0nðxÞ; . . . ; f ðnÞn ðxÞ, and equate their values respectively with f 0(0), f 00(0), . . ., f (n)(0).
We obtain,

fnð0Þ ¼ a0 ¼ f ð0Þ
f 0nð0Þ ¼ a1 ¼ f 0ð0Þ

f 00nð0Þ ¼ 2a2 ¼ f 00ð0Þ ) a2 ¼ f 00ð0Þ
2!

f 000nð0Þ ¼ 3 � 2a3 ¼ f 000ð0Þ ) a3 ¼ f 000ð0Þ
3!

f
ðnÞ
n ð0Þ ¼ n! an ¼ f ðnÞð0Þ ) an ¼ f ðnÞð0Þ

n!

Thus, the required polynomial, which approximates f(x) at x¼ 0 is given by

fnðxÞ ¼ f ð0Þ þ f 0ð0Þxþ f 00ð0Þ
2!

x2 þ f 000ð0Þ
3!

x3 þ . . .þ f ðnÞð0Þ
n!

xn ð20Þ
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The polynomial at (20) is called the nth degree Taylor polynomial of f at x¼ 0, after the name of

the English mathematician Brook Taylor (1685–1731), the author of an early calculus book

(published in 1717).

Here onwards, we shall denote the Taylor polynomial by Pn(x) instead of fn(x). Thus,

the Taylor polynomial approximating the given function y¼ f(x) at x¼ 0, given at (20) above

will be written as:

PnðxÞ ¼ f ð0Þ þ f 0ð0Þxþ f 00ð0Þ
2!

x2 þ f 000ð0Þ
3!

x3 þ . . .þ f ðnÞð0Þ
n!

xn ð21Þ

Remark: In a Taylor polynomial [Pn(x)] of degree n, all Taylor polynomials of degree 0 to n

appear and thus there can be at most (nþ 1) terms.

Note (7): The advantages of approximating a function f(x) with a polynomial g(x) are given

below:

. If f is complicated, poorly understood or otherwise inconvenient, then it is useful to

replace f with a simpler, better-behaved, and better-understood polynomial g.

. Polynomial functions are simple, convenient, well understood, and easy to use, so it is

natural to use them to approximate more complicated functions.

Example (1): Let f(x)¼ ex. Find a formula for the nth Taylor polynomial of f. Also, find

Pn(1) and compute P5(1).

Solution: The given function and its derivatives are

f ðxÞ ¼ ex ) f ð0Þ ¼ e0 ¼ 1

f 0ðxÞ ¼ ex ) f 0ð0Þ ¼ e0 ¼ 1

f 00ðxÞ¼ ex ) f 00ð0Þ ¼ e0 ¼ 1

f ðnÞðxÞ ¼ ex ) f nð0Þ ¼ e0 ¼ 1

) f ð0Þ ¼ 1; f 0ð0Þ ¼ 1; f 00ð0Þ ¼ 1; . . . . . . ; f ðnÞð0Þ ¼ 1

Using the formula for Pn(x), we get,

PnðxÞ¼ f ð0Þ þ f 0ð0Þxþ f 00ð0Þ
2!

x2 þ . . . . . .
f ðnÞð0Þ
n!

xn

¼ 1þ xþ x2

2!
þ x3

3!
þ . . . . . .þ xn

n!

The graph of the function y¼ ex and graphs of three approximating polynomials,

(A) a straight line 1þ x

(B) a parabola 1þ xþ x2

2

(C) a cubic curve 1þ xþ x2

2
þ x3

6

are shown in Figure 22.2.
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For x¼ 1,

Pnð1Þ ¼ 1þ 1þ 12

2!
þ 13

3!
þ . . . . . .þ 1n

n!
¼ e

[Note that, f(x)¼ ex�Pn(x) ) f ð1Þ ¼ e � Pnð1Þ]
For n¼ 5 (i.e., by considering first six terms) we obtain, for x¼ 1

P5ð1Þ ¼ 1þ 1þ 1

2!
þ 1

3!
þ 1

4!
þ 1

5!
¼ 2:71667:

Since Pn(x) represents an approximation to f(x)¼ ex, we should examine how well P5(1)

approximates f(1)¼ e. The value of e is 2.71828 (accurate to six digits) and P5(1)� 2.71667.

So P5(1) approximates e with an error of about 0.00161.

Example (2): Let f(x)¼ loge(1þ x). Find a formula for the nth Taylor polynomial of f(x), and

then calculate P6(1).

Solution: First, we calculate the derivatives of the function f(x) and compute their values at

x¼ 0:

f ðxÞ ¼ logeð1þ xÞ ) f ð0Þ ¼ 0

f 0ðxÞ ¼ 1

1þ x
) f 0ð0Þ ¼ 1

y

C

B

A

P0(0, 1)

x

3.0

2.5

2.0

1.5

1.0

0.5

–0.5 0.5 1.0

y = ex

–1.0 0

FIGURE 22.2
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f 00ðxÞ ¼ �1

1þ xð Þ2 ) f 00ð0Þ ¼ �1

f ð3ÞðxÞ ¼ ð�1Þð�2Þ
1þ xð Þ3 ¼ ð�1Þ22!

ð1þ xÞ3 ) f ð3Þð0Þ ¼ 2!

f ð4ÞðxÞ ¼ ð�1Þ33!
1þ xð Þ4 ) f ð4Þð0Þ ¼ �3!

In general, for k� 1,

f ðkÞðxÞ ¼ ð�1Þk�1ðk � 1Þ!
ð1þ xÞk

) f ðkÞð0Þ ¼ ð�1Þk�1ðk � 1Þ!

Consequently,

PnðxÞ¼ f ð0Þ þ f 0ð0Þxþ f 00ð0Þ
2!

x2 þ f ð3Þð0Þ
3!

x3 þ . . . . . .þ f ðnÞð0Þ
n!

xn

¼ 0þ x� 1

2!
x2 þ 2!

3!
x3 þ . . .þ ð�1Þn�1 � ðn� 1Þ!

n!

¼ x� x2

2
þ x3

3
� x4

4
þ . . .þ ð�1Þn�1

n
xn

We conclude that

P6ð1Þ ¼ 1� 1

2
þ 1

3
� 1

4
þ 1

5
� 1

6
¼ 37

60
� 0:616667

We expect Pn(x) to approximate f(x).

Since, the value of f(1)¼ loge2¼ 0.693147 (accurate to six digits), and P6(1)¼ 0.616667,

we find that P6(1) approximates loge2 with an error of about 0.07648.

Example (3): Let f ðxÞ ¼ 1
1�x

. Find a formula for the nth Taylor polynomial of f, and

compute Pn(2).

Solution: The derivatives of f and their values at x¼ 0 are obtained as follows:

We have; f ðxÞ ¼ 1

12x
¼ ð1� xÞ�1 ) f ð0Þ ¼ 1

f 0ðxÞ ¼ ð�1Þð1� xÞ�2ð�1Þ ¼ 1

ð1� xÞ2 ) f 0ð0Þ ¼ 1

f 00ðxÞ ¼ ð�2Þð1� xÞ�3ð�1Þ ¼ 2!

1� xð Þ3 ) f 00ð0Þ ¼ 2!
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f ð3ÞðxÞ ¼ 3!

ð1� xÞ4 ) f ð3Þð0Þ ¼ 3!

In general,

f ðkÞðxÞ ¼ k!

ð1� xÞkþ1
) f ðkÞð0Þ ¼ k!

As a result,

PnðxÞ¼ f ð0Þ þ f 0ð0Þxþ f 00ð0Þ
2!

x2 þ f ð3Þð0Þ
3!

x3 þ . . . . . .þ f ðnÞð0Þ
n!

xn

¼ 1þ xþ x2 þ . . .þ xn:

)Pnð2Þ ¼ 1þ 2þ 22 þ . . .þ 2n:

Example (4): Let f(x)¼ cos x. Find a formula for the nth Taylor polynomial of f at x¼ 0.

Solution: The cosine and its derivatives are

f ðxÞ ¼ cos x; f 0ðxÞ ¼ �sin x

f 00ðxÞ ¼ �cos x; f ð3ÞðxÞ ¼ sin x

f ð2kÞðxÞ ¼ ð�1Þk cos x; f ð2kþ1ÞðxÞ ¼ ð�1Þkþ1
sin x

But, when x¼ 0, the cosines are 1 and the sines are 0, so that,

f ð2kÞð0Þ ¼ ð�1Þk; f ð2kþ1Þð0Þ ¼ 0

Thus, f(0)¼ 1, f 0(0)¼ 0

f 00ð0Þ ¼ �1; f ð3Þð0Þ ¼ 0

f ð4Þð0Þ ¼ 1; f ð5Þð0Þ ¼ 0

f ð6Þð0Þ ¼ �1; f ð7Þð0Þ ¼ 0 and so on:

The Taylor polynomials for f(x)¼ cos x have only even powered terms. Thus, for n¼ 2k, we

have

P2kðxÞ¼ f ð0Þx0 þ f 2ð Þð0Þ
2!

x2 þ f 4ð Þð0Þ
4!

x4 þ f 6ð Þð0Þ
6!

x6 þ . . .þ f ð2nÞð0Þ
n!

x2n

¼ 1� x2

2!
þ x4

4!
� x6

6!
þ . . .þ �1ð Þk x2k

ð2nÞ!

We have, cosx � 1� x2

2!
þ x4

4!
� x6

6!
þ x8

8!
. . ., in the vicinity of the point x¼ 0.
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Figure 22.3 shows the graph of function y¼ cos x and those of approximating polynomials

y¼ 1, y ¼ 1� ðx2=2!Þ, and y ¼ 1� ðx2=2!Þ þ ðx4=24Þ in the neighborhood of origin.

Example (5): Let f(x)¼ sin x. Find a formula for the nth Taylor polynomial of f at x¼ 0.

Solution: It is easy to show that the Taylor polynomial for y¼ sin x has only odd powered terms.

In the neighborhood of the origin, we have,

sin x � x� x3

3!
þ x5

5!
� x7

7!
þ x9

9!

Figure 22.4 illustrates the graph of the function y¼ sin x and the graphs of the approximating

Taylor polynomials y¼ x, y ¼ x� ðx3=6Þ, and y ¼ x� ðx3=6Þ þ ðx5=120Þ.

22.4.4 The Maclaurin Series for f(x)

The degrees of the Taylor polynomials of a given function f(x) are limited by the degree of

differentiability of the function at x¼ 0. But, if f(x) has derivatives of all orders at the origin,

then it is natural to ask whether for a fixed value of x, the values of these approximating

polynomials converge to f(x) as n ! 1?

y

y=1

y=cos x

1
2

y=1– x2+ x4

2

y=1–

π ππ

1
2

x2

+1

0

–1

1 2 3 4 5

x
3
2

1
24

FIGURE 22.3

y
y=x

y=sin x

y=x–

y=x– x31
6

+1

–1

0 1 2 3 4 5

x

x3+ x51
6

1
120

π
π2 π

2
3

FIGURE 22.4
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Now, these (approximating) polynomials are precisely the partial sums of a series, known as

the Maclaurin series for f(x), given by

f ð0Þ þ f 0ð0Þxþ f 00ð0Þ
2!

x2 þ . . .þ f ðnÞð0Þ
n!

xn þ . . . ð22Þ

Thus, the question just posed is equivalent to asking whether the Maclaurin series for f

converges to f(x) as a sum? It certainly has the correct value f(0), at x¼ 0, but how far away

from x¼ 0 may we go and still have convergence? And if the series does converge away from

x¼ 0, does it still converge to f(x)?

The graphs in Figures 22.2–22.4 are encouraging, and it can be shown that normally a

Maclaurin series converges to its function in an interval about the origin. For many functions,

this interval is the entire x-axis.

22.5 FROM MACLAURIN SERIES TO TAYLOR SERIES

Now, suppose we are interested in approximating a function f(x) near a point x¼ a (instead of

near a pointx¼ 0) in an interval I, thenwewrite our approximating polynomialPn(x) in powers

of (x� a), as follows:

PnðxÞ ¼ a0 þ a1ðx� aÞ þ a2ðx� aÞ2 þ . . .þ anðx� aÞn ð23Þ

where the constants a0, a1, a2, . . ., an are to be determined. Obviously, the function f(x) is

assumed to have all derivatives upto the (nþ 1)th order (inclusive) in the interval I.

Since the polynomial Pn(x) and its first n derivatives must agreewith the given function f(x)

and its corresponding derivatives at x¼ a, the following conditions should be satisfied:

PnðaÞ ¼ f ðaÞ
P0

nðaÞ ¼ f 0ðaÞ
P00

n ðaÞ ¼ f 00ðaÞ . . .

P
ðnÞ
n ðaÞ ¼ f ðnÞðaÞ

9>>>>>>>=
>>>>>>>;

ð24Þ

Let us first find the derivative of Pn(x)

P0
nðxÞ ¼ a1 þ 2a2ðx� aÞ þ 3a3ðx� aÞ2 þ . . .þ nanðx� aÞn�1

P00
nðxÞ ¼ 2 � 1a2 þ 3 � 2a3ðx� aÞ þ . . .þ nðn� 1Þanðx� aÞn�2

P
ð3Þ
n ðxÞ ¼ 3 � 2 � 1a3 þ . . .þ nðn� 1Þðn� 2Þanðx� aÞn�3 . . .

P
ðnÞ
n ðxÞ ¼ nðn� 1Þðn� 2Þ . . . 2 � 1an

9>>>>>>>=
>>>>>>>;

ð25Þ
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Putting x¼ a, in equations (23) and (25), we get

PnðaÞ ¼ a0 ¼ f ðaÞ ½Using ð23Þ and ð24Þ�
P0

nðaÞ ¼ a1 ¼ f 0ðaÞ
P00

nðaÞ ¼ 2!a2 ¼ f 00ðaÞ
P
ð3Þ
n ðaÞ ¼ 3!a3 ¼ f ð3ÞðaÞ . . .

P
ðnÞ
n ðaÞ ¼ n! ¼ f nðaÞ

½Using ð24Þ and ð25Þ�

9>>>>>>>>=
>>>>>>>>;

) a0 ¼ f ðaÞ; a1 ¼ f 0ðaÞ; a2 ¼ 1

2!
f 00ðaÞ

a3 ¼ 1

3!
f ð3ÞðaÞ; . . . 1

n!
fnðaÞ:

9>>>=
>>>;

Substituting in (23), the values of a0, a1, a2, . . ., an, we get the required polynomial:

PnðxÞ ¼ f ðaÞþ ðx� aÞ
1!

f 0ðaÞ þ ðx� aÞ2
2!

f 00ðaÞþ ðx� aÞ3
3!

f ð3ÞðaÞþ . . .
ðx� aÞn

n!
f ðnÞðaÞ ð24Þ

The right-hand side of (24) represents an approximation of f near “a” by the Taylor polynomial

Pn(x). It is called the Taylor series expansion of f about a. There are two things to notice here:

First is that the Maclaurin series are Taylor series with a¼ 0 and

Second, a function cannot have a Taylor series expansion about x¼ a, unless it has finite

derivatives of all orders at x¼ a.

For instance, f(x)¼ logex does not have a Maclaurin series expansion, since the function

itself, (to say nothing of its derivatives), does not have a finite value atx¼ 0.On the other hand,

it does have a Taylor series expansion in powers of (x� 1), since logex and all its derivatives

are finite at x¼ 1.

Note: In Examples (1) and (2) the value of the Taylor polynomial provided a reasonable

approximation to the corresponding value of the given function. Indeed, we found that if

f(x)¼ ex, then

f ð1Þ � P5ð1Þj j ¼ e� P5ð1Þj j � 0:00161

and if f(x)¼ loge(1þ x), then

f ð1Þ � P6ð1Þj j ¼ loge2� P6ð1Þj j � 0:07648

By contrast, if f(x)¼ 1/(1�x) [as in Example (3)], then for n� 1,

f ð2Þ � Pnð2Þj j ¼
���� 1

1� 2
� 1þ 2þ 22 þ . . .þ 2n
� �����

¼ �1� 1þ 2þ 22 þ . . .þ 2n
� ��� ��

� 2n
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Consequently Pn(2) is not reasonably close to f(2) for any value of n. In fact, the larger n

becomes, the worse Pn(2) approximates f(2).

22.6 TAYLOR’S FORMULA FOR POLYNOMIALS

Consider the nth degree polynomial

f ðxÞ ¼ a0 þ a1xþ a2x
2 þ a3x

3 þ . . . . . .þ anx
n

where a0, a1, a2, a3, . . ., an are constant coefficients. We can express f(x) as the expansion in

powers of (x� a), with some coefficients, where “a” is an arbitrary number. We know that the

Taylor polynomial Pn(x) approximating f(x) at x¼ a is given by

f ðxÞ ¼ PnðxÞ ¼ f ðaÞ þ ðx� aÞ
1!

f 0ðaÞ þ ðx� aÞ2
2!

f 00ðaÞ þ ðx� aÞ3
3!

f ð3ÞðaÞ

þ . . .þ ðx� aÞn
n!

f ðnÞðaÞ ð27Þ

The expression on the right-hand side of (27) is called Taylor’s formula for the polynomial f(x).

Note that, this formula is a partial sum of a series

f ðaÞ þ ðx� aÞ
1!

f 0ðaÞ þ ðx� aÞ2
2!

f 00ðaÞ þ ðx� aÞ3
3!

f ð3ÞðaÞ þ . . .
ðx� aÞ

n!
f ðnÞðaÞ þ . . .

called Taylor series expansion of f about x¼ a.

If we put a¼ 0 in (27), we get the Taylor polynomial Pn(x) approximating f(x) at x¼ 0, we

write,

f ðxÞ ¼ PnðxÞ ¼ f ð0Þ þ f 0ð0Þxþ f 00ð0Þ
2!

x2 þ . . . . . .
f ðnÞð0Þ
n!

xn ð28Þ

The expression on the right-hand side of (28) [which is a specific case of Taylor’s formula

for f(x)] is called Maclaurin’s formula for f(x). Note that, this formula is a partial sum of a

series

f ð0Þ þ f 0ð0Þxþ f 00ð0Þ
2!

x2 þ . . . . . .
f ðnÞð0Þ
n!

xn þ . . .

called Maclaurin series for f(x) about x¼ 0.

Example (6): Expand the polynomial

f ðxÞ ¼ x2 � 3xþ 2 in powers of x and in power of x� 1:
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Solution: Applying Maclaurin’s formula, we get,

f ðxÞ ¼ x2 � 3xþ 2 ) f ð0Þ ¼ 2

f 0ðxÞ ¼ 2x� 3 ) f 0ð0Þ ¼ �3

f 00ðxÞ ¼ 2 ) f 00ð0Þ ¼ 2

and f ðxÞ ¼ 2� 3

1!
xþ 2

2!
x2

¼ 2� 3xþ x2

Thus, the expansion of f(x) in powers of x is identical to f(x) itself.

To expand f(x) in powers of (x� 1), we apply Taylor’s formula and get

f ðxÞ ¼ x2 � 3xþ 2 ) f ð1Þ ¼ 0

f 0ðxÞ ¼ 2x� 3 ) f 0ð0Þ ¼ �1

f 00ðxÞ ¼ 2 ) f 00ð0Þ ¼ 2

and f ðxÞ ¼ 0� 1ðx� 1Þ þ 2

2!
ðx� 1Þ2

¼ �ðx� 1Þ þ ðx� 1Þ2

Notice that Taylor’s formula gives the value of f(x) at any point x, provided that the values of

f(x) and all its derivatives at some point a are known.

Example (7): Express the polynomial

f ðxÞ ¼ 2x3 � 9x2 þ 11x� 1

as a polynomial in (x� 2).

Solution: We wish to write f(x) in the form (B) with a¼ 2, and to do so we must compute the

derivatives of f at 2:

f ðxÞ ¼ 2x3 � 9x2 þ 11x� 1

) f ð2Þ¼ 2 � 8� 9 � 4þ 11 � 2� 1

¼ 16� 36þ 22� 1 ¼ 1

f 0ðxÞ ¼ 6x2 � 18xþ 11 ) f 0ð2Þ ¼ �1

f 00ðxÞ ¼ 12x� 18 ) f 00ð2Þ ¼ 6

f ð3ÞðxÞ ¼ 12 ) f ð3Þð2Þ ¼ 12

f ðnÞðxÞ ¼ 0 for n � 4 ) f ðnÞð2Þ ¼ 0 for n � 4:

670 EXTENDING THE MEAN VALUE THEOREM TO TAYLOR’S FORMULA



We know that

f ðxÞ¼ f ðaÞ þ f 0ðaÞ
1!

ðx� aÞ þ f 00ðaÞ
2!

ðx� aÞ2

þ f ð3ÞðaÞ
3!

ðx� aÞ3; where a ¼ 2

) f ðxÞ¼ 1þ ð�1Þðx� 2Þ þ 6

2!
ðx� 2Þ2 þ 12

3!
ðx� 2Þ3

¼ 1� ðx� 2Þ þ 3ðx� 2Þ2 þ 2ðx� 2Þ3

Although the form of the polynomial just obtained looks quite different from the given

polynomial, both polynomials represent the same function.

Example (8): Arrange

7þ ðxþ 2Þ þ 3ðxþ 2Þ3 þ ðxþ 2Þ4 � ðxþ 2Þ5 in powers of x:

Solution:

Let f ðxÞ ¼ 7þ ðxþ 2Þ þ 3ðxþ 2Þ3 þ ðxþ 2Þ4 � ðxþ 2Þ5

) f 0ðxÞ ¼ 1þ 9ðxþ 2Þ2 þ 4ðxþ 2Þ3 � 5ðxþ 2Þ4

) f 00ðxÞ ¼ 18ðxþ 2Þ þ 12ðxþ 2Þ2 � 20ðxþ 2Þ3

f ð3ÞðxÞ ¼ 18þ 24ðxþ 2Þ � 60ðxþ 2Þ2

f ð4ÞðxÞ ¼ 24� 120ðxþ 2Þ
f ð5ÞðxÞ ¼ �120

f ðnÞðxÞ ¼ 0; for n � 6

) f ð0Þ ¼ 7þ 2þ 24þ 16� 32 ¼ 17

f 0ð0Þ ¼ �11; f 00ð0Þ ¼ �76

f ð3Þð0Þ ¼ �174; f ð4Þð0Þ ¼ �216

f ð5Þð0Þ ¼ �120; f ð6Þð0Þ ¼ 0; and so on:

Hence,

f ðxÞ ¼ f ð0Þ þ x f 0ð0Þ þ x2

2!
f 00ð0Þ þ x3

3!
f ð3Þð0Þ

þ x4

4!
f ð4Þð0Þ þ x5

5!
f ð5Þð0Þ

¼ 17þ xð�11Þ þ x2

2!
ð�76Þ þ x3

3!
ð�174Þ

þ x4

4!
ð�216Þ þ x5

5!
ð�120Þ

¼ 17� 11x� 38x2 � 29x3 � 9x4 � x5 Ans:
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22.7 TAYLOR’S FORMULA FOR ARBITRARY FUNCTIONS

Now, consider a non-polynomial function, f(x) defined at x¼ a and which has finite

derivatives of all orders at x¼ a (Figure 22.5).

Let us denote by Rn(x) the difference between the values of the given function f(x) and the

constructed polynomial Pn(x), that is:

RnðxÞ ¼ f ðxÞ � PnðxÞ;
) f ðxÞ ¼ PnðxÞ þ RnðxÞ

or, in the expanded form,

f ðxÞ ¼ f ðaÞ þ ðx� aÞ
1!

f 0ðaÞ þ ðx� aÞ2
2!

f 00ðaÞ

þ . . .þ ðx� aÞn
n!

f ðnÞðaÞ þ RnðxÞ
ð29Þ

Rn(x) is called the remainder.

The value ofRn(x) tells us howwellPn(x) approximates f(x). The smallerRn(x) is, the better

Pn(x) approximates f(x). For those values of x, for which the remainder Rn(x) is small, the

polynomial Pn(x) yields an approximate representation of the function f(x).

Thus, formula (29) enables one to replace the function y¼ f(x) by the polynomial y¼Pn(x),

to an appropriate degree of accuracy assessed by the value of the remainder Rn(x).

Our next problem is to evaluate the quantity Rn(x) for various values of x. Let us write the

remainder in the following form

RnðxÞ ¼ ðx� aÞnþ1

ðnþ 1Þ QðxÞ ð30Þ

f (x)

y

0 a x

x

y = f(x)

Rn(x)

y=Pn(x)

Pn(x)

FIGURE 22.5
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where Q(x) is a certain function to be defined, and accordingly we rewrite (29).

f ðxÞ ¼ f ðaÞ þ ðx� aÞ
1!

f 0ðaÞ þ ðx� aÞ2
2!

f 00ðaÞ þ ðx� aÞ3
3!

f ð3ÞðaÞ

þ . . .þ ðx� aÞn
n!

f ðnÞðaÞ þ ðx� aÞnþ1

ðnþ 1Þ! QðxÞ ð31Þ

For fixed x and a, the function Q(x) has a definite value. Let us denote it by Q. Let us further

examine the auxiliary function of t (t lying between a and x):

FðtÞ ¼ f ðxÞ � f ðtÞ � ðx� tÞ
1!

f 0ðtÞ � ðx� tÞ2
2!

f 00ðtÞ � ðx� tÞ3
3!

f ð3ÞðtÞ

� . . .� ðx� tÞn
n!

f ðnÞðtÞ � ðx� tÞnþ1

ðnþ 1Þ! Q ð32Þ

whereQhas the value defined by the relation (31); herewe consider a andx to be definite (fixed)

numbers.

We find the derivative F0ðtÞ (with respect to t) from equation (32)(6)

F0ðtÞ ¼ �f 0ðtÞ þ f 0ðtÞ � ðx� tÞ
1

� f 00ðtÞ þ 2ðx� tÞ
2!

� f 00ðtÞ � ðx� tÞ2
2!

f 000ðtÞ

þ . . .� ðx� tÞn�1

ðn� 1Þ! f nðtÞ þ nðx� tÞn�1

n!
f nðtÞ

� ðx� tÞn
n!

f ðnþ1ÞðtÞ þ ðnþ 1Þðx� tÞn
ðnþ 1Þ! Q

ð33Þ

Note that, except the last two terms, all the terms on the right-hand side of (33) get

cancelled.

(6) Derivative of a few terms from (32) are worked out below:

�
"
x� t

1
f 0ðtÞ

#0
¼ �

"
x� t

1
� f 00ðtÞ þ f 0ðtÞð�1Þ

#
¼ f 0ðtÞ � x� t

1
f 00ðtÞ

�
"
ðx� tÞ2

2!
f 00ðtÞ

#0
¼ �

"
ðx� tÞ2

2!
� f 000ðtÞ þ 2ðx� tÞð�1Þ

2!
f 00ðtÞ

#
¼ 2ðx� tÞ

2!
� f 00ðtÞ � ðx� tÞ2

2!
f 000ðtÞ

�
"
ðx� tÞn

n!
f nðtÞ

#0
¼ �

"
nðx� tÞn�1ð�1Þ

n!
f nðtÞ þ ðx� tÞn

n!
f nþ1ðtÞ

#
¼ ðx� tÞn�1

ðn� 1Þ! f nðtÞ � ðx� tÞn
n!

f nþ1ðtÞ

�
"
ðx� tÞnþ1

ðnþ 1Þ! Q

#0
¼ �

"
ðnþ 1Þðx� tÞnð�1Þ

ðnþ 1Þ! Q

#
¼ ðx� tÞn

n!
Q� ðx� tÞnþ1

nþ 1!
� ð0Þ

"

) d

dt
ðQÞ ¼ 0

#
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) On cancelling, we get,

F0ðtÞ ¼ � ðx� tÞn
n!

f ðnþ1ÞðtÞ þ ðx� tÞn
ðnÞ! Q ð34Þ

Thus, the function F(t) [at (32) above] has a derivative at all points t lying near the point with

abscissa a (a� t� x), when a< x, and a� t� x when a> x.

It will be further noted that, on the basis of (31),

FðxÞ ¼ 0

FðaÞ ¼ 0

�
ð7Þ

Therefore, Rolle’s Theorem is applicable to the function F(t) and consequently, there exists a

value t¼ c lying between a and x such that F0ðcÞ ¼ 0.

Therefore, on the basis of relation (34), we get,

�ðx� cÞn
n!

f ðnþ1ÞðcÞ þ ðx� cÞn
ðnÞ! Q ¼ 0

and from this, we get,

Q ¼ f ðnþ1ÞðcÞ

Substituting this expression into (30), we get,

RnðxÞ ¼ ðx� aÞnþ1

ðnþ 1Þ f ðnþ1ÞðcÞ

This is the Lagrange form of the remainder.

Since c lies between x and a, it may be represented in the following form.

c ¼ aþ �ðx� aÞ

where � is a number lying between 0 and 1, (i.e., 0<�< 1).(8)

Then, the formula of the remainder takes the following form.

RnðxÞ ¼ ðx� aÞnþ1

ðnþ 1Þ! f ðnþ1Þ aþ �ðx� aÞ½ �

The formula is called Taylor’s formula of the (arbitrary) function f(x).

f ðxÞ ¼ f ðaÞ þ ðx� aÞ
1!

f 0ðaÞ þ ðx� aÞ2
2!

f 00ðaÞ þ ðx� aÞ3
3!

f ð3ÞðaÞ

þ . . .þ ðx� aÞn
n!

f ðnÞðaÞ þ ðx� aÞnþ1

ðnþ 1Þ! aþ �ðx� aÞ½ �
ð35Þ

(7) Note that F(x)¼ f(x)� [expansion for f(x) on the right-hand side of (31)]¼ 0 and similarly F(a)¼ 0.
(8) See Chapter 20, alternate form of MVT.
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If in Taylor’s formula, we put a¼ 0, we will have,

f ðxÞ ¼ f ð0Þ þ x

1!
f 0ð0Þ þ x2

2!
f 00ð0Þ þ . . .þ xn

n!
f ðnÞð0Þ þ xnþ1

ðnþ 1Þ! f
ðnþ1Þð� xÞ ð36Þ

where � lies between 0 and 1. This special case of Taylor’s formula is called Maclaurin’s

formula.

Note (9): For applications of the above formulas, refer to standard books.

It can be easily shown that,

RnðxÞ ¼ ðx� aÞnþ1

ðnþ 1Þ f ðnþ1ÞðCnþ1Þ ð37Þ

where, Cnþ1 [¼ t (say)] is a point lying between a and x.(9)

Note (10): We can use Taylor’s formula to achieve approximations with a prescribed accuracy.

Note (11): Note that Lagrange’s form of remainder Rn(x) cannot be used for the exact

computation of the value of Rn(x) since the exact location of the point Cnþ1 (between a and

x) at which the (nþ 1)th derivative is taken, is unknown.

Remark: In approximating e and loge2, it is seen that the error introduced could be made as

small as we wished, by picking n sufficiently large. By taking larger values of n means adding

up more numbers in the nth Taylor polynomial.(10)

This suggests the possibility of attaching a meaning to an infinite series (which is the sum

of an infinite number of numbers). In fact, this can be done, and we will find that e and loge2

can be not only approximated, but also represented by a sum of an infinite collection of

numbers. It is even possible to create entirely new functions through the process of summing

infinite collections of numbers. This demands study of convergence of sequence and series of

numbers and that of functions.

In general, we are interested in the possibility of expressing a function f (x) as a power

series

X1
n¼0

Cnðx� aÞn ð38Þ

in powers of (x� a), where “a” can be any fixed number.

(9) For details, refer toDifferential and Integral Calculus (Vol. I, SecondEdition) byN. Piskunov,Mir Publishers,Moscow,

English translation 1974 (pp. 145–148).
(10) Calculus with Analytic Geometry (Alternate Edition) by Robert Ellis and Denny Gulick, HBJ Publication, 1988

[Examples (4) and (5) (pp. 502–503) approximating e with an error less than 0.001 and loge2 with an error less than 0.1,

respectively.]
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In particular, if f has derivatives of all orders at a, we call

X1
n¼0

f ðnÞðaÞ
n!

ðx� aÞn ð39Þ

the Taylor series of f about the number a.(11)

The nth Taylor polynomial Pn(x) of f about a is defined by

PnðxÞ ¼ f ðaÞ þ f 0ðaÞðx� aÞ þ f 00ðaÞ
2!

ðx� aÞ2 þ . . .þ f ðnÞðaÞ
n!

ðx� aÞn

Note: Key condition for expanding a function into Taylor’s series is discussed in Mathematical

Analysis by A.F. Bermant and I.G. Aramanovich. (By Mir Publishers, Moscow), Page 676.

(11) If a¼ 0, the Taylor series becomes
P1

n¼0 f
ðnÞð0Þ xn

n! , which we have already discussed in detail and which is frequently

called a Maclaurin series, after the Scottish mathematician Colin Maclaurin (1698–1746).
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23 Hyperbolic Functions and
Their Properties

23.1 INTRODUCTION

Certain special combinations of exand e�x appear so often in both mathematics and science

that they are given special names.

Definitions: The functions

sinh x ¼ ex � e�x

2
ð1Þ

cosh x ¼ ex þ e�x

2
ð2Þ

are respectively, called the hyperbolic sine and hyperbolic cosine.

The terminology suggests that hyperbolic functions must have some connection with trigono-

metric (circular) functions. In fact, there is. It may not be clear at the moment why these names

are appropriate, but it will become apparent aswe proceed further. Recall that, the trigonometric

(circular) functions are intimately related to the unit circle, x2þ y2¼ 1 (Figure 23.1a) on which

any point (x, y) is represented by the parametric equations, x¼ cost, y¼ sint. In parallel

fashion, the parametric equations x¼ cosh t, y¼ sinh t describe the right branch of the unit

hyperbola x2� y2¼ 1 [which is the special case of the hyperbola ððx2=a2Þ � ðy2=b2ÞÞ ¼ 1]

(Figure 23.1b).Moreover, in both cases, the parameter t is related to the shaded area S by t¼ 2S,

though this is not obvious in the second case.

Certain Similarities in Formulae

1. There are six basic hyperbolic functions, just as there are six basic trigonometric

functions. The other four hyperbolic functions are defined in the terms of the hyperbolic

sine and hyperbolic cosine.

Definitions: The functions

tanhx ¼ sinh x

cosh x
¼ ex � e�x

ex þ e�x
ð3Þ

Introduction to Differential Calculus: Systematic Studies with Engineering Applications for Beginners, First Edition.
Ulrich L. Rohde, G. C. Jain, Ajay K. Poddar, and Ajoy K. Ghosh.
� 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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coth x ¼ cosh x

sinh x
¼ ex þ e�x

ex � e�x
ð4Þ

sech x ¼ 1

cosh x
ð5Þ

cosech x ¼ 1

sinh x
ð6Þ

are respectively called the hyperbolic tangent, the hyperbolic cotangent, the hyperbolic

secant, and the hyperbolic cosecant.

Remark: It is because of the definitions of sinh x and cosh x that we use the termino-

logy of circular functions in defining hyperbolic functions.

2. Hyperbolic functions are connected by a number of algebraic relations similar to those

connecting trigonometric functions. In particular, the fundamental identity for the

hyperbolic functions is

cosh 2x� sinh 2x ¼ 1 ð7Þ

To verify it, we write

cosh2 x� sinh2 x ¼
�
ex þ e�x

2

�2
�
�
ex � e�x

2

�2

¼ 1

4
e2x þ e�2x þ 2
� �� e2x þ e�2x � 2

� �� �
¼ 1

(This should be compared with the trigonometric result, cos2 xþsin2 x¼ 1.)

y

x

(a) (b)

0–1 P

AS
sinh t

cosh t
M

y

0

x2 + y2 =1 x2 – y2 =1

P A

M

sin t

cos t

xt
s

1

FIGURE 23.1
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Similarly, it can be shown that,

cosh2 xþ sinh2 x ¼ cosh 2x ð8Þ

(This is analogous to cos2x – sin2 x¼ cos 2x.)

In fact, any formula for circular functions has its counterpart in hyperbolic functions. It will be

noticed that in the above two cases there is a difference in the signs used, and this applies only to

sinh 2x. In any formula connecting circular functions of general angles, the corresponding

formulae for hyperbolic functions can be obtained by applying the following rule.

If in any formula connecting cos x, sin x, and tan x, the term sin2 x appears (or is implied,

as in the case of tan2x), thenwe replace sin x by i sinh x, tanx by i tanh x (where i¼ ffiffiffiffiffiffiffi�1
p

); cos x

by cosh x, and simplify the expression to obtain the corresponding hyperbolic formula.

Remember that, the product of two sines such as sin x � siny in a formula, will be replaced

by (i sinhx) � (i sinh y)¼�sinh x � sinh y to obtain the corresponding formula of hyperbolic

functions. Thus, sec2x¼ 1þ tan2x, becomes

sech2 x ¼ 1þ i tanh xð Þ2 ¼ 1� tanh2 x ð9Þ

and cos x� yð Þ¼ cos x cos y � sin x siny becomes

cosh x� yð Þ ¼ cosh x cosh y� sinh x sinh y ð10Þ

Further, sin x� yð Þ ¼ sinx cos y � cos x sin y becomes

sinh x� yð Þ ¼ sinh x cosh y� cosh x sinh y ð11Þ

If y is replaced by x in these identities we obtain,

cosh 2x ¼ cosh2 xþ sinh2 x ð12Þ

sinh 2x ¼ 2 sinh x � cosh x ð13Þ

Note (1): From the definitions (1) and (2), we can obtain

cosh xþ sinh x ¼ ex ð14Þ

cosh x� sinh x ¼ e�x ð15Þ
It is, therefore, apparent that any combination of the exponentials exand e�xcan be replaced by

a combination of sinh x and cosh x and conversely.

Let us verify the formula,

coshðxþ yÞ ¼ cosh x � cosh yþ sinh x � sinh y

By definition, we have the left-hand side as,

cosðxþ yÞ ¼ exþy þ e�x�y

2

� �
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Now, consider the right-hand side,

coshx � coshyþ sinhx � sinhy ¼ exþe�x

2
� e

yþ e�y

2
þex�e�x

2
� e

y� e�y

2

¼ 1

4
exþyþe�xþyþex�yþe�x�yþexþy�e�xþy� ex�yþe�x�y½ �

¼ 2 exþyþe�x�y½ �
4

¼ exþyþe�x�y

2
¼ coshðxþ yÞ¼L:H:S:

The important hyperbolic and the corresponding trigonometric formulae are listed below.

Hyperbolic Functions Circular Functions

cosh 2x � sinh 2x¼ 1 cos2xþ sin2 x¼ 1

sinh 2x¼ 2 sinh xþ cosh x sin2x¼ 2 sin x � cos x
cosh 2x¼ cosh 2xþ sinh 2x cos 2x¼ cos2x � sin2x

sech2x¼ 1 � tanh2x sec2x¼ 1þ tan2x

cosech2x¼ coth2x �1 cosec2x¼ cot2xþ 1

sinh(x� y)¼ sinh x � cosh y� cosh x � sinh y sin(x� y)¼ sin x � cos y� cos x � sin y

cosh(x� y)¼ cosh x � cosh y� sinh x � sinh y cos(x� y)¼ cos x � cos y� sin x � sin y

Note (2): Hyperbolic functions are defined in terms of exponential functions. This is very

different from the way we defined trigonometric functions. However, if you study complex

analysis, you will discover that trigonometric functions can also be defined in terms of

exponential functions of a complex variable. Now, we shall discuss the striking connections

between the two sets of functions.(1)

23.2 RELATION BETWEEN EXPONENTIAL AND TRIGONOMETRIC

FUNCTIONS

The following expansions were obtained in the chapter(s) shown against each:

(i) ex¼ 1þ xþ x2

2!
þ x3

3!
þ :::::::::::: þ xn

n!
þ :::::: (see Chapter 13)

(ii) sin x¼ x� x3

3!
þ x5

5!
� :::::::::::: þ ð�1Þn�1 x2n�1

ð2n� 1Þ!þ :::::: (see Chapter 22)

(iii) cos x¼ 1� x2

2!
þ x4

4!
� :::::::::::: þ ð�1Þn�1 x2n�2

ð2n� 2Þ!þ :::::: (see Chapter 22)

It can be shown that these series converge for all values of x, real or complex. Indeed when

x¼aþ ib, these series will serve as definitions of eaþib, sin(aþ ib), and cos(aþ ib),

respectively.

(1) For details, any book on advance trigonometry (i.e., Trigonometry of Complex Variables) should be consulted.
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(iv) For x¼ i�, a purely imaginary number (i) becomes

ei� ¼ 1þ i�� �2

2!
� i

�3

3!
þ �4

4!
þ :::::::::;

since i ¼ ffiffiffiffiffiffiffi�1
p

; i2 ¼ �1; i3 ¼ �i; i4 ¼ 1; and so on.

(v) Multiplying (ii) by i and writing � for x, we get,

i sin � ¼ i�� i
�3

3!
þ �5

5!
� :::::::::;

(vi) For x¼ �, (iii) becomes

cos� ¼ 1� �2

2!
þ �4

4!
� :::::::::;

(vii) By adding (v) and (vi), we get (iv). Thus, we have,

ei� ¼ cos�þ i sin �

This is a remarkable relation and is generally known as Euler’s Identity. It exhibits a

very simple connection between sin �, cos �, and ei�. Evidently,

e�i� ¼ cosð��Þ þ i sinð��Þ; or

(viii) e�i� ¼ cos�� i sin �
Solving (vii) and (viii) simultaneously for sin � and cos �, we get

(ix) sin � ¼ ei� � e�i�

2i

	
or sin x ¼ eix � e�ix

2i




(x) cos� ¼ ei� þ e�i�

2

	
or cosx ¼ eix þ e�ix

2




These relations are very important in advanced mathematics. Also, (ix) and (x) could be used

as definitions of sin � and cos �.

Note (3): Inmanybranches of appliedmathematics, there are functions very similar to the right-

hand side of (ix) and (x) above, which are of definite importance. These are ððex � e�xÞ=2Þ and
ððex þ e�xÞ=2Þ, where the exponents are real.

These simple combinations of the exponential functions are called the “hyperbolic sine of

the variable x”, and the “hyperbolic cosine of the variable x” and denoted by sinh x and cosh x,

respectively. That is, by definition,

sinh x ¼ ex � e�x

2
and cosh x ¼ ex þ e�x

2

Recall thatwe started this chapterwith these definitions. In order tomake clear the reference to a

hyperbola in these definitions, it may bementioned that a trigonometry of hyperbolic functions,

comparable to that of the circular functions has been developed.
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It is easy to show that,

sinh x ¼ 1

i
sin ix and cosh x ¼ cos ix; where i ¼

ffiffiffiffiffiffiffi
�1

p
:

In the relation

sin x ¼eix � e�ix

2i
, replacing x by ix, we get sin ix¼ e�x � ex

2i
¼� ex � e�x

2i
¼ i

ex � e�x

2

) sin ix ¼ i sinh x or sinhx ¼ 1

i
sin ix

Note (4): We know that e�x is positive, therefore the equation, cosh x – sinh x¼ e�x [i.e.,

equation (ix)] shows that cosh x is always greater than sinh x. But, for large values of x, e�x is

small and cosh x � sinh x.

23.3 SIMILARITIES AND DIFFERENCES IN THE BEHAVIOR

OF HYPERBOLIC AND CIRCULAR FUNCTIONS

The graphs of hyperbolic cosine and hyperbolic sine are shown in Figure 23.2. At x¼ 0, cosh

x¼ 1, and sinh x¼ 0. Note that these value are same as in the case of corresponding

trigonometric functions, at x¼ 0. Therefore, all the hyperbolic functions have the same values

at 0 that the corresponding trigonometric functions have.

Further, note that,

sinhð�xÞ ¼ e�x � ex

2
¼ � ex � e�x

2
¼ �sinh x

coshð�xÞ ¼ e�x þ ex

2
¼ ex þ e�x

2
¼ cosh x

Thus, hyperbolic sine is an odd function and the hyperbolic cosine is an even function. So the

graph of sinh x is symmetric with respect to the origin and that of cosh x is symmetric about

the y-axis. Here again the hyperbolic functions behave like the ordinary trigonometric (or

circular) functions (see Figure 23.2).

Of course, there are major differences between hyperbolic and circular functions. For

example,

(i) The functions sinh x, cosh x, and tanh x are obviously defined for all values of x. But,

the function coth x is defined everywhere, except at the point x¼ 0 (Figure 23.3).

On the other hand, the circular function tan x is defined everywhere except at the

points x¼ (2kþ 1)(p/2), (k¼ 0, �1, �2, . . .). Similarly the function cot x is defined

everywhere except at the points x¼ kp, (k ¼0, �1, �2, . . .).

(ii) The circular functions are periodic, sin(xþ2p)¼ sin x, tan(xþp)¼ tan x, and so on.

But, hyperbolic functions are not periodic.

(iii) Both differ in the range of values they assume.

sin x varies between �1 and þ1, i.e., it oscillates.

sinh x varies from �1 to þ1, i.e., it steadily increases.
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cos x varies from �1 to þ1, i.e., it oscillates.

cosh x varies from þ1 to 1 to þ1.

tan x varies from �1 to þ1.

tanh x varies from �1 to þ1 (Figure 23.4). Also see Note (6), given later.

jsec xj is never less than 1 )cos xj j � 1½ �
sech x is never greater than 1, and is always positive (see Figure 23.5).

(iv) Another difference lies in the behavior of the functions as x!�1.Wecan say nothing

very specific about the behavior of the circular functions sin x, cos x, tan x, and so on

for large values of x. But the hyperbolic functions behave very much like ðexÞ=2,
ðe�xÞ=2, unity or zero, as explained below.

For x large and positive:

cosh x � sinh x � 1

2
ex

tanh x � coth x � 1 sech x � cosech x � 2e�x � 0

x

0

1

y 
=

 s
in

h 
xy 

=
 c

os
h 

x

y

y =
e
x1

2—
y =

e -x
1

2
—

FIGURE 23.2
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For x negative and xj j large:

cosh x � sinh x � � ex � e�x

2
� 1

2
e�x

tanhx � coth x � ex þ e�x

ex � e�x
� �1

sech x � �cosechx � � 2

ex � e�x
� 2ex � 0

y

y = coth x

1

–1

x

0

FIGURE 23.3

y

x

y = 1

10 2

y = tanh x

3 4–1–2–3–4

y = –1

FIGURE 23.4
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Note (5): The hyperbolic functions are not included in the class of basic elementary functions,

but we discuss them here since they are important for applications.

23.4 DERIVATIVES OF HYPERBOLIC FUNCTIONS

The formulas for the derivatives of the hyperbolic sine and hyperbolic cosine functions are

obtained by considering their definitions (i) and (ii), and differentiating the expressions

involving exponential functions. Thus,

d

dx
sinh xð Þ ¼ d

dx

�
ex � e�x

2

�
¼ ex þ e�x

2
¼ cosh x

and
d

dx
cosh xð Þ ¼ d

dx

�
ex þ e�x

2

�
¼ ex � e�x

2
¼ sinh x

From these formulas and the chain rule we have the following theorem.

Theorem (A): If u is a differentiable function of x,

d

dx
sinh uð Þ ¼ cosh u � du

dx

d

dx
cosh uð Þ ¼ sinh u � du

dx

The derivative of tanh xmay be found from the exponential definition or we may use the above

result(s) (i.e., the derivatives of sinhx and cosh x).

Let y¼ tanh x¼ sinh x

cosh x

d

dx
tanh xð Þ ¼ d

dx

�
sinh x

cosh x

�

¼ cosh x � cosh x� sinh x � sinh x
cosh2 x

¼ cosh2 x � � sinh 2 x

cosh2 x

¼ 1

cosh2 x
¼ sech2 x )cosh2 x� sinh 2 x ¼ 1

� �

y = sech xy = 1

x

y

0 1–1

–1

1

y = sech x

FIGURE 23.5
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The formulas for the derivatives of the remaining three hyperbolic functions are

d

dx
cothxð Þ ¼ �cosec h2 x

d

dx
sech xð Þ ¼ �sech x � tanh x

d

dx
cosech xð Þ ¼ �cosech x � coth x

From these formulas and the chain rule, we have the following theorem.

Theorem (B): If u is a differentiable function of x,

d

dx
tanh uð Þ ¼ sech2 u

du

dx

d

dx
coth uð Þ ¼ �cosec h2 u

du

dx

d

dx
sech uð Þ ¼ �sech u � tanh u � du

dx

d

dx
cosec h uð Þ ¼ �cosec h u � coth u � du

dx

23.5 CURVES OF HYPERBOLIC FUNCTIONS

The curves of cosh x and sinh x in Figure 23.2 should be examined again with the assistance of

their differential coefficients.

1. y ¼ cosh x ¼ ex þ e�x

2

dy

dx
¼ ex � e�x

2
¼ sinh x; and

d2y

dx2
¼ ex þ e�x

2
¼ cosh x

Note that dy/dx vanishes onlywhen x¼0. There is, therefore, a turning point on the curve

(see Figure 23.6). Also, since dy/dx (¼sinh x) is negative before this point and positive

after, while ðd2yÞ=ðdx2Þ is positive, the point x¼0 is a minimum. There is no other

turning point and no point of inflexion. The curve of cosh x is an important one. It is

called the catenary, and is the curve formed by a uniform flexible chain which hangs

freely with its ends fixed.

686 HYPERBOLIC FUNCTIONS AND THEIR PROPERTIES



2. y¼ sinh x.

dy

dx
¼ cosh x;

d2y

dx2
¼ sinh x

Note that dy/dx is always positive and does not vanish. Consequently, sinh x is

always increasing and has no turning point.Whenx¼0, ðd2yÞ=ðdx2Þ ¼ 0, and is negative

before and positive after. Therefore, there is a point of inflexion when x¼ 0; since dy/dx

(i.e., cosh x)¼ 1.

When x¼ 0, the gradient at 0 is unity and the slope is p/4 (Figure 23.7).

3. y¼ tanh x � dy

dx
¼ sech2x.

Since sech2x is always positive, tanh x is always increasing between�1 andþ1. Also

since sinh x and cosh x are always continuous and cosh x never vanishes, tanh xmust be

a continuous function.

Note (6): The expression for tanh x can be written in the form:

tanhx ¼ e2x � 1

e2x þ 1
¼ 1� 2

e2x þ 1

From this form, it is evident that while x increases from �1 to 0, e2x increases from 0 to 1.

) 1� 2

e2x þ 1
or tanh x increases from�1 to 0:

Similarly, while x increases from 0 toþ1, tanh x increases from0 to 1. The curve therefore has

the lines y¼�1 as its asymptotes which are shown in Figure 23.8.

y

x

0

4

3

2

1

21–1–2

y = cosh x

FIGURE 23.6

CURVES OF HYPERBOLIC FUNCTIONS 687



Note (7):Observe that the derivatives of the hyperbolic sine, cosine, and tangent all have a plus

sign, whereas those for the derivatives of the hyperbolic cotangent, secant, and cosecant all

have a minus sign. Otherwise, the formulas are similar to the corresponding ones for the

derivatives of the trigonometric functions.(2)

y

x

0 1 2–1

1

–2

–1

–2

–3

–4

2

4

3

y = sinh x

FIGURE 23.7

y

x

y = 1

y = –1

0 1 2 3 4–1–2–3–4

FIGURE 23.8 y ¼ tanh x

(2) Recall that in the case of circular functions, the derivatives of cofunctions (i.e., cos x, cot x, and cosec x) are with

negative sign.
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23.6 THE INDEFINITE INTEGRAL FORMULAS FOR HYPERBOLIC

FUNCTIONS(3)

The indefinite integration formulas for hyperbolic functions from the corresponding differ-

entiation formulas. ð
sinh u du ¼ cosh uþ cð
cosh u du ¼ sinh uþ cð
sech2u du ¼ tanh uþ cð

cosec h2 u du ¼ �coth uþ cð
secu tanh u du ¼ �sech uþ cð

cosech u � coth u du ¼ �cosech uþ c

23.7 INVERSE HYPERBOLIC FUNCTIONS

(i) InverseHyperbolic Sine Function. From the graph of the hyperbolic sine in Figure 23.7,

observe that a horizontal line intersects the graph in at most one point. The hyperbolic

sine is, therefore one-to-one. Furthermore, the hyperbolic sine is continuous and

increasing on its domain. Thus, this function has an inverse that we now define.

Definition (A): The inverse hyperbolic sine function denoted by sinh�1x, is defined as

follows:

y¼ sinh�1x, if and only if, x¼ sinh y, where y is any real number (Figure 23.9).

y

2

1

–1

–2

321–1–2–3

x

0

y = sinh–1 x

FIGURE 23.9

(3) In fact, this material belongs to Part II of the book. However, it is included here to convey that the techniques applied to

integrate hyperbolic functions are similar to those used for trigonometric (circular) functions.
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Both, the domain and range of sinh�1x, are the set R of real numbers. From the

definition (A),

sinhðsinh�1xÞ ¼ x and sinh�1ðsinh yÞ ¼ y:

(ii) Inverse Hyperbolic Cosine Function. From the graph of the hyperbolic cosine in

Figure 23.6, notice that a horizontal line, y¼ k where k> 1, will intersect the graph

in two points. Thus, cosh is not one-to-one and does not have an inverse. However, as in

the case of inverse trigonometric functions, we restrict the domain and define a new

function F as follows:

FðxÞ ¼ cosh x; x 	 0 ðFigures 23:10 and 23:11Þ:

y

x

3

2

1

1 20

y = cosh x, x > 0

FIGURE 23.10

y

x

2

1

1 2 3 40

y = cosh–1 x

FIGURE 23.11
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The domain of this function is the interval [0, þ1) and the range is the interval

[1, þ1). Because F is continuous and increasing on its domain, it has an inverse,

called the inverse hyperbolic cosine function.

Definition (B): The inverse hyperbolic cosine function denoted by cosh�1x, is defined

as follows:

y ¼ cosh�1x; if and only if; x ¼ cosh y; where y 	 0:

The domain of cosh�1x is in the interval [1, þ1) and the range is in the interval

[0, þ1). From the definition (B),

coshðcosh�1xÞ ¼ x if x 	 1 and cosh�1ðcosh yÞ if y 	 0:

(iii) Inverse Hyperbolic Tangent Function. As with the hyperbolic sine, a horizontal line

intersects the graph of the hyperbolic tangent (Figure 23.8) in at most one point.

Therefore, the hyperbolic tangent function is one-to-one and has an inverse.

Definition (C): The inverse hyperbolic tangent function denoted by tanh�1x is defined

as follows:

y¼ tanh�1x, if and only if, x¼ tanh y, where y is any real number.

The domain of the inverse hyperbolic tangent function is the interval (�1, 1) and the

range is the set R of real numbers. The graph of tanh�1x appears in Figure 23.12.

(iv) Inverse Hyperbolic Cotangent Function. In this case, a horizontal line intersects the

graph of the hyperbolic cotangent function in at most one point. Hence, this function is

one-to-one and has an inverse. For convenience, the graphs of both y¼ coth x and

y¼ coth�1x are given in Figures 23.13a and 23.13b. The domain of the inverse hyper-

bolic cotangent function is (�1, 1)[ (1, þ1) and the range is (�1, 0)[ (0, þ1).

Note (8):The inverse hyperbolic secant and inverse hyperbolic cosecant functions are not

discussed here, since they are seldom used.

23.7.1 Logarithm Equivalents of the Inverse Hyperbolic Functions

Since the hyperbolic functions are defined in terms of ex and e�x, it is not too surprising that the

inverse hyperbolic functions can be expressed in terms of the natural logarithm. Following

are these expressions for the four inverse hyperbolic functions we have discussed.

sinh�1x ¼ logeðxþ
ffiffiffiffiffiffiffiffiffi
x2þ

p
1Þ; x 2 R ð16Þ

cosh�1 ¼ logeðxþ
ffiffiffiffiffiffiffiffiffi
x2�

p
1Þ; x 	 1 ð17Þ

tanh�1x ¼ 1

2
loge

1þ x

1� x
; jxj < 1 ð18Þ

coth�1x ¼ 1

2
loge

xþ 1

x� 1
; jxj > 1 ð19Þ
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To prove sinh�1x¼ loge(x þ ffiffiffiffiffiffiffiffiffi
x2þp

1), x 2 R

Let y¼ sinh�1x

) From definition (A)

x ¼ sinh y

or x ¼ ey � e�y

2

2x ¼ ey � 1

ey

) e2y � 2x � ey � 1 ¼ 0 or ðeyÞ2 � 2xey � 1 ¼ 0

x = –1 x = 1

0 1

y

x

–1

–1

–3

–2

2

1

3

y = tanh–1 x

FIGURE 23.12
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Solving this equation for ey by using the quadratic formula, we get,

ey ¼ 2x�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4x2 þ 4

p

2

) ey ¼ x� ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1

p

We can reject the minus sign in this equation because ey> 0 for all y, while x� ffiffiffiffiffiffiffiffiffi
x2þp

1 is less

than zero for all x. Therefore,

y ¼ logeðxþ ffiffiffiffiffiffiffiffiffi
x2þp

1Þ;
But; y ¼ sinh�1x; which means that;

y ¼ sinh�1x ¼ logeðxþ ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1

p Þ

Other formulas can be proved similarly.

Example (1): Express each of the following in terms of a natural logarithm

(a) sinh�12

(b) tanh�1 � 4

5

� �

Solution: (a) We have

sinh�1x ¼ logeðxþ ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1

p Þ
) sinh�12 ¼ logeð2þ

ffiffiffi
5

p Þ Ans:

y

y = coth x

(a)

x

–2

–2

–1

–1

1

1

2

2

0

y = coth–1x

(b)

y

x

3

3

2

2
1

1 –1

–1

–2

–2

–3

–3

0

FIGURE 23.13
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(b) tanh�1 � 4

5

� �

We have, tanh�1x¼ 1

2
loge

1þ x

1� x
, xj j < 1

Note that, x¼� 4

5
and � 4

5

����
���� < 1

) tan h�1x ¼ 1

2
loge

1� ð4=5Þ
1þ ð4=5Þ

¼ 1

2
loge

�
1=5

9=5

�
¼ 1

2
loge

�
1

9

�
¼ 1

2
loge

�
1

9

�

¼ 1

2
loge3

�2 ¼ �loge3 Ans:

To prove tanh�1x ¼1

2
loge

1þ x

1� x
, xj j < 1

Let y¼ tanh�1x

x ¼ tanh y; where xj j < 1ði:e:; x lies between�1 and þ1Þ

) x ¼ ey � e�y

ey þ e�y
¼ e2y � 1

e2y þ 1

) x e2y þ 1ð Þ ¼ e2y � 1

or xe2y þ x ¼ e2y � 1

or e2yðx� 1Þ ¼ �ðxþ 1Þ

or e2y ¼ �ðxþ 1Þ
ðx� 1Þ ¼

1þ x

1� x

) 2y ¼ loge
1þ x

1� x

or y ¼ 1

2
loge

1þ x

1� x
; xj j < 1

23.7.2 Differentiation of Inverse Hyperbolic Functions

Inverse hyperbolic functions correspond to inverse circular functions, and their derivatives are

found by similar methods.

(i) Derivative of sinh�1x

Method (1): Let y¼ sinh�1x

Then x¼ sinh y
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) dx

dy
¼ cosh y

) dy

dx
¼ 1

cosh y
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ sinh 2y
p

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p or
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ 1
p Ans:

Method (2): By using the logarithm equivalents, we can compute the derivative of

sinh�1 x as follows:

) d

dx
sinh�1x
� � ¼ d

dx
loge xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1

p� 

¼ 1

xþ ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1

p � d

dx
xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1

p� 

¼ 1

xþ ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1

p �
�
1þ 1

2
� 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ 1
p � 2x

�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1

p þ xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1 xþ ffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ 1
p� �q ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ 1
p Ans:

(ii) Derivative of cosh�1 x

Let y¼ cosh�1 x. Using the same method as above, we get,

dy

dx
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � 1
p

(iii) Derivative of tanh�1x

If y¼ tanh�1x

x ¼ tanh y

) dx

dy
¼ sec2y

and
dy

dx
¼ 1

sec2y
¼ 1

1� tanh2y
¼ 1

1� x2

The differential coefficient of the reciprocals of the above can be found by the same methods.

They are,

y ¼ sech�1x;
dy

dx
¼ � 1

x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p

y ¼ cosech�1x;
dy

dx
¼ � 1

x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p

y ¼ coth�1x;
dy

dx
¼ � 1

x2 � 1

INVERSE HYPERBOLIC FUNCTIONS 695



The derivatives of all the hyperbolic functions and their corresponding inverse functions are

given in Table 23.1.

From these formulas and the chain rule, we can obtain the following results.

If u is a differentiable function of x

.
d

dx
sinh�1u
� � ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ 1
p � du

dx
ð20Þ

.
d

dx
cosh�1u
� � ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 � 1
p � du

dx
; u > 1 ð21Þ

.
d

dx
tanh�1u
� � ¼ 1

1� u2
� du

dx
; uj j < 1 ð22Þ

.
d

dx
coth�1u
� � ¼ 1

1� u2
� du

dx
; uj j > 1 ð23Þ

Later on, the following forms will be found to be important.

1. y¼ sinh�1x

a
dy

dx
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðx2=a2Þp � 1

a
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ x2
p or

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ a2

p

2. If y¼ cosh�1x

a
dy

dx
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � a2
p

3. If y¼ tanh�1x
a

dy

dx
¼ a

a2 � x2

Logarithm equivalents

sinh�1 x

a
¼ log

�
xþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ a2
p

a

�

TABLE 23.1

Functions Derivatives Functions Derivatives

sinh x cosh x sinh�1x
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x2
p

cosh x sinh x cosh�1x
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � 1
p ;x > 1

tanh x sech2x tanh�1x
1

1� x2
; xj j < 1

coth x �cosech2x coth�1x � 1

x2 � 1
; xj j > 1

sech x �sech x � tanh x sech�1x � 1

x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p ; 0 < x < 1

cosech x �cosech x � coth x cosech�1x � 1

x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
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cosh�1 x

a
¼ log

�
xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � a2

p

a

�

tanh�1 x

a
¼ 1

2
log

�
aþ x

a� x

�

Example (2): Find dy/dx if y¼ tanh�1(cos 2x).

Solution: We have,

d

dx
tanh�1u
� � ¼ 1

1� u2
� du

dx
; where u ¼ cos2x

) dy

dx
¼ 1

1� cos2 2x
� ð�2 sin 2xÞ

¼ ð�2 sin 2xÞ
sin2 2x

¼ �2

sin 2x
¼ 2 cosec2x Ans:

Example (3): Find dy/dx, if y¼ sinh�1(tan x).

Solution:

d

dx
ðsinh�1ðtan xÞÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tan2 xþ 1
p � d

dx
ðtan xÞ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan2 xþ 1

p � sec2 x ¼ sec 2 x

secxj j ¼ secxj j Ans:

From the formulas for the derivatives of the inverse hyperbolic functions given inTable 23.1, we

obtain integration formulas, as follows:

ð
duffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ 1

p ¼ sinh�1uþ c ð24Þ

ð
duffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � 1

p ¼ cosh�1uþ c ð25Þ

ð
du

1� u2
¼ tanh�1uþ c for uj j < 1

coth�1uþ c for uj j > 1

� �
ð26Þ

ð
du

u
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2

p ¼ �sech�1 uj j þ c ð27Þ
ð

du

u
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p ¼ �cosec h�1 uj j þ c ð28Þ

Note (9): From Table 23.1, observe that tanh�1x and coth�1x have algebraically identical

derivatives, but the domain of tanh�1x is jxj <1 while the domain of coth�1x is jxj >1.
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Hence, there are two expressions in the formula (26). Further note that

1

1� u2
¼ 1=2

1� u
þ 1=2

1þ u

) We can write, ð
du

1� u2
¼ � 1

2
loge 1� uj j þ 1

2
loge 1þ uj j þ c

)
ð

du

1� u2
¼ 1

2
loge

1þ u

1� u

����
����þ c

This is an alternative to (26).

Note (10): The main application of inverse hyperbolic functions is in connection with

integration, where the following formulas are used.

(I)

ð
duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ a2
p ¼ sinh�1 u

a
þ c ¼ logeðuþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ a2

p
þ c if a > 0

(II)

ð
duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 � a2
p ¼ cosh�1 u

a
þ c ¼ logeðuþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � a2

p
þ c if u > a > 0

(III)

ð
duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � u2
p ¼

1

a
tanh�1 u

a
þ c for uj j < a

1

a
coth�1 u

a
þ c for uj j > a

8>>><
>>>:

¼ 1

2a
loge

���� aþ u

a� u

����þ c if u 6¼ a and a 6¼ 0

These formulas can be proved by computing the derivatives of the right-hand side and obtaining

the integral. We demonstrate the procedure by proving (I) from note 10.

Proof of (I):

d

dx

�
sinh�1 u

a

�
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðu=aÞ2 þ 1

q � 1

a

¼
ffiffiffiffiffi
a2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ a2

p � 1

a
and because a > 0;

ffiffiffiffiffi
a2

p
¼ a; thus

d

dx
sinh�1 u

a

� 
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ a2
p

To obtain the natural logarithm representation, we use formula (1) page 696.

We have,

sinh�1x ¼ logeðxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1

p
Þ; x 2 R
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) sinh�1 u

a
¼ loge

u

a
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u

a

0
@

1
A

2

þ 1

vuuut
0
B@

1
CA

¼ loge

�
u

a
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ a2

p

a

�

¼ loge uþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ a2

p� �� logea

Therefore,

sinh�1 u

a
þ c ¼ loge uþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ a2
p� �� logeaþ c

¼ loge uþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ a2

p� �þ c1

where c1¼ c�logea.

In Part II of this book, you will learn various techniques to evaluate the integrals. The formulas

(I), (II), and (III) above, give alternate representations of the integral in question. When

evaluating an integral in which one of these forms occurs, the inverse hyperbolic represen-

tationmay be easier to use and is sometimes less cumbersome to write. However, in the case of

definite integrals, wherein numerical value(s) are obtained, the logarithmic form of the integral

may be found more useful.

23.8 JUSTIFICATION FOR CALLING sinh AND cosh AS HYPERBOLIC

FUNCTIONS JUST AS sine AND cosine ARE CALLED TRIGONOMETRIC

CIRCULAR FUNCTIONS

Recall from trigonometry course (or seeChapter 5) that if t is the angle formed by thex-axis and

a line from the origin to the point P(x, y) on the unit circle, then

sint ¼ y and cost ¼ xðsee Figure 23:14Þ:

y

At

P(cos t, sin t)

10

x

FIGURE 23.14
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Now refer to Figure 23.15, where t is any real number. The point P(cosh t, sinh t) is on the unit

hyperbola because

cosh2 t� sinh2 t ¼ 1:

Observe that, because cosh t is never less than 1, all points (cosh t, sinh t) are on the right

branch of the hyperbola. We now show how the areas of the shaded regions in Figures 23.14

and 23.15 are related. We know that the area of a circular sector of radius r units and a central

angle of radian measure t is given byð1=2Þr2t square units. Therefore, the area of the circular
sector in Figure 23.14 is ð1=2Þt square units, since r¼ 1. The sector AOP in Figure 23.15 is the

region bounded by the x-axis, the line OP and the arc AP of the unit hyperbola.

Let the area of sector AOP¼A1 square units, the area of sector OBP¼A2 square units, and

the area of sector ABP¼A3 square units.

Then; A1 ¼ A2 � A3 ð29Þ

From the formula for determining the area of a triangle

A2 ¼ 1

2
cosh t � sinh t ð30Þ

We find A3 by integration

A3 ¼
ðt
0

sinh udðcosh uÞ

¼
ðt
0

sinh 2u du

y

P (cosh t, sinh t)

(cosh 0, sinh 0)

O A

B x

FIGURE 23.15
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¼ 1

2

ðt
0

ðcosh 2u� 1Þdu

¼ 1

2

�
sin2u

2
� u

������
t

0

¼
�
1

4
sinh 2u� 1

2
u

������
t

0

Therefore,

A3 ¼ 1

2
cosh t � sinh t� 1

2
t

A3 ¼ A2 � 1

2
t using ðiiÞ½ �

) A3 � A2 ¼ 1

2
t or A1 ¼ 1

2
t ) A3 � A2 ¼ A1½ �

Thus, themeasure of the area of circular sectorAOP of Figure 23.14 and themeasure of the area

of the sector AOP of Figure 23.15 is in each case, one-half of the value of the parameter

associatedwith the pointP. For the unit circle, the parameter t is the radianmeasure of the angle

AOP. The parameter t for the unit hyperbola is not interpreted as the measure of an angle; the

term hyperbolic radian, however, is sometimes used in connection with t.

Note (11): For exercises, refer to standard books.
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APPENDIX A (Related To Chapter-2)
Elementary Set Theory

A.1 INTRODUCTION

Set theory is the basis of modern mathematics. The great German mathematician George

Cantor (1845–1918) is regarded as the father of set theory. He developed, utilized, and stressed

the concept of sets in the study of mathematics.

The dictionary meanings of theword set are collection, class, family, aggregate, group, and

so on. But there can be collections (or sets) that cannot be identified uniquely. For example,

consider a set of rich people. From a dictionary point of view, it may be acceptable to use the

statement set of rich people for a group of peoplewho appear to be rich, but from amathematical

point of view we must define a rich person so that one can be identified (without confusion)

whether he (or she) is rich. From this point of view, the word set is not a well-defined term. It is

for this reason that set is considered to be an undefined term in mathematics.

To have a meaningful discussion about sets, it is necessary to be able to identify the

collection (or the set) without any confusion. This demands that there must be a rule that should

guide us in identifying the elements of the set under consideration so that one can decide

whether a given object belongs to the set under consideration. (Such a rule may specify a

property which a single object does or does not have).

Thus, from the point of view of mathematics, we agree to say that a set is a well-defined

collection of objects. (Note that, we have not attempted to define the word set).

A few examples of sets are given below:

(i) Set of natural numbers.

(ii) Set of roots of the equation, x2� 7xþ 6 ¼ 0.

(iii) A set consisting of primeminister of India, capital of theUnited States, natural numbers

1–10, Taj Mahal and alphabets a–c.

In all these collections, we can identify each object precisely and hence they represent sets.

On the other hand, honest people, clever students, handsome boys and beautiful girls, and so on

are relative terms and it is not possible to identify them for want of their proper definitions.

Hence, they do not form sets in language of mathematics. Now, we introduce the following

terminology to understand the elementary set theory.

Introduction to Differential Calculus: Systematic Studies with Engineering Applications for Beginners, First Edition.
Ulrich L. Rohde, G. C. Jain, Ajay K. Poddar, and A. K. Ghosh.
� 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

Appendix A Elementary Set Theory: (The language of sets as the back-bone of modern mathematics)

703



A.2 ELEMENTS OF A SET

The objects that belong to a set are called elements or members of the set. The elements of a set

need not be related to one another in any obvious way, except that they happen to be put

together (see example (iii) above).

A.3 SET NOTATIONS

The sets are usually denoted by the capital letters A, B, C,D, . . ., X, Y, Z and their elements are

denoted by small letters a, b, c, d, . . ., x, y, z.
If a particular elementxbelongs to setA, wewritex2A. If two elementsx and y belong to set

A, we shall write x, y2A. However, if an element x does not belong to set B,wewrite x =2B.We

use curly brackets to enclose the elements of a set. For example, consider the setC given below:

C ¼ fAll positive even numbersg
¼ f2; 4; 6; 8; 10; . . .g; here 8 2 B; 5 =2B

¼ fxjx is a positive even numberg

The symbol “j” is used to read “such that”.

Each element in a set is separated from the other by a comma.

A.4 SPECIFYING SETS

If the elements of a set do not have any property in common, then it becomes necessary to list all

the elements of the set. On the other hand, if the elements of the set have some property in

common, then it is up to our requirement whether to list the elements of the set or else use the

other method to identify correctly the elements of the set. Thus, there are two methods of

specifying sets:

(i) Roster Method or Listing Method or Tabulation Method: In this method, a set is

represented by listing all its elements within braces {}, as shown above. Again, set C of

vowels will be written as

C ¼ fa; e; i; o; ug
(ii) Rule Method or Set Builder Method: In this method, we state one or more characteristic

properties of the elements so that one is able to decide whether a given object is an

element of the set. Thus, if D is a set such that its elements x satisfy the property P(x),

then we write D ¼ {x jx satisfies P(x)}.

Examples:

A ¼ {xjx is even integer} ¼ {. . ., �4, �2, 0, 2, 4, 6, . . .}

B ¼ {xjx is odd number less than 11} ¼ {1,2,3,5,7,9}

C ¼ The set of roots of the equation x3� 6x2þ 11x� 6 ¼ 0

¼ {xjx3� 6x2þ 11x� 6 ¼ 0}

Now, since the roots of the equation x3 � 6x2 þ 11x � 6 ¼ 0 are 1, 2, and 3, we may write

C ¼ {1, 2, 3}.
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Note: Sets that we use in mathematics are usually collections of numbers, points, planes, lines,

and so on, and we shall be concerned with such sets only.

A.5 SINGLETON SET (OR UNIT SET)

A set that contains only one element is called singleton. Thus, {a}, {5} are singleton sets.

Let A ¼ {xjxþ 5 ¼ 5}. Here, from xþ 5 ¼ 5, we get x ¼ 0. Thus, the set A contains only

the element 0. Hence, A ¼ {0}, which is singleton set.

A.6 THE NULL SET OR THE EMPTY SET

It is possible to characterize a set by a property that would permit no objects to be in the set.

For example, the set of all real roots of the polynomial equation, x2þ 1 ¼ 0. The set that has

no members is called the empty set or the null set and it is denoted by the symbol � or {}.

Remark: Here, it may be noted that in different contexts, there can be different null sets.

Hence, all null sets are not the same. However, all null sets are denoted by the same symbol.

Since there is only one null set (in each context), we call it the null set instead of a null set.

Note: We must distinguish between � and {�}. Although set � is a null set (i.e., it contains no

element), the set {�} is a singleton whose one element is the empty set �. Similarly, {0} is a

singleton.

There are many relations among sets, as given below.

A.7 THE CARDINAL NUMBER OF A SET

If a set A contains finite number of elements n, we denote the cardinal number of set A by n(A).

In other words, n(A) stands for the number of elements in a finite set.

Examples: Consider the following sets:

(i) A ¼ {1, 3, 5, 7, 9, 11, 13}

(ii) B ¼ {a, e, i, o, u}

(iii) C ¼ {2, 3, 5, 7, 11, 13, 17, 19}

Thus, n(A) ¼ 7, n(B) ¼ 5, and n(C) ¼ 8 represent the cardinal numbers of the above sets.

In Chapter 2, we have already introduced the concept of infinite sets (both countable and

uncountable). (A set is infinite if it is not finite.) Some examples of infinite sets are as follows:

(i) N ¼ {1, 2, 3, 4, . . .}.

(ii) D ¼ {1, 4, 9, 16, . . .}.

(iii) R ¼ Set of all real numbers.

(iv) S ¼ Set of all points in a plane.

The cardinal number of countable infinite set, N ¼ {1, 2, 3, 4, . . .} (or any other set that is

equivalent toN), is denoted by the symbol@0 (read aleph-null). The symbol “c” is used to denote
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the cardinal number of an uncountable infinite set, like the set of all real numbers or the set of

points in an open interval or the set of points in a plane.

Remark: The cardinal number of the empty set is zero. We write n(�) ¼ 0.

A.8 SUBSET OF A SET

If two sets A and B are such that every element of A is also an element of set B, then A is called

a subset of B. Thus, set A is a subset of B if

x 2 A ) x 2 B

(Here, the symbol ) stands for implies that.)

Symbolically, we write this relationship as A � B and read as A is a subset of B or A is

contained in B.(1)

Example: Let A ¼ {1, 2, 3} and B ¼ {1, 2, 3, 4}. Then clearly A � B. Again, let D ¼
{2, 4, 6, 8} and E ¼ {2, 8, 4, 6}. Then, D � E. Also note that E � D.

Remark: Observe that in the term subset, the possibility that both the sets may be equal is

included. Thus, every set is a subset of itself.

If set A is not a subset of set B, we write A6�B.

A.9 EQUALITY OF SETS

Definition (1): We say that two sets are equal if they contain precisely the same elements.

Again in view of the definition of subset of a set (which includes the possibility of their

equality), we give the following definition.

Definition (2): Two sets A and B are equal iff A � B and B � A.

In other words, we say that A ¼ B, if every element of set A is an element of set B and every

element of set B is an element of set A. The equality of sets A and B may be written in the

following symbolic form:

x 2 A , x 2 B:

The symbol , stands for “implies and is implied by” or “if and only if” or “iff”.

Note: Importance of Definition (2)

We draw the following two important conclusions from Definition (2):

(i) A set does not change if we change the order in which its elements are tabulated.

(ii) A set does not change if one or more of its elements are repeated.

(1) If A� B, then B is called the superset of A and symbolically we write it as B� A and read it as B is a superset of A or B

contains A.
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For example, consider the following sets:

A ¼ f1; 7; 3; 2g B ¼ f7; 3; 1; 2; 3g
According to Definition (2), we have A ¼ B.

(In general, we never write a set in which its elements are repeated.)

A.10 PROPER SUBSET

Consider a set A that is a subset of set B (i.e., A � B).

If there is at least one element of B that is not in A, then A is called a proper subset of B, and

we write A � B.

Example: IfA ¼ {1, 2, 3} and B ¼ {1, 2, 3, 5, 6}, then A� B. IfA is not a proper subset ofB,

we write A 6� B. This will be the situation when there is at least one element x 2 A, but x =2 B.

For example, consider A ¼ {1, 2, 3} and

B ¼ {1, 2, 4, 5, 6}. Here, 3 2 A but 3 =2 B. Hence, A 6� B.

Remark: The null set� is taken as a subset of every set. Thus, every set has at least two subsets:
the set itself and the null set.

A.11 COMPARABILITY OF SETS

Two sets can be compared if one of them is subset of the other. Two sets A and B are said to be

comparable if A� B or B� A. If A 6� B or B 6� A, then A and B are said to be noncomparable

or incomparable.

Example: The setsA ¼ {1, 2} andB ¼ {1, 2, 3} are comparable asA�B. On the other hand,

the sets A ¼ {1, 2, 3} and B ¼ {2, 3, 4} are incomparable.

(The symbols � and � in set theory may be compared with the order relations � and � in

arithmetic.)

A.12 SET OF SETS

A set may itself be sometimes an element of another set. A set whose elements are set(s) is

called set of sets. For example, A ¼ {�, {1, 2},{3}} is a set of sets. An important set of sets

is the power set defined below.

A.13 POWER SET

If S is any set, then the family of all the subsets of S is called the power set of S and denoted

by P(S).

Example: Let S ¼ {1, 2, 3}. Then,P(S) ¼ {�, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

It can be shown that if a set S has n elements, then P(S) has 2n elements.
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Remark: The power set of� is {�} and it has 20 ¼ 1 element. The power set of {0} is {{0},�}
and it has 21 ¼ 2 elements.

A.14 UNIVERSAL SET U

In any discussion about sets, all the sets under consideration are to be the subsets of a particular

set. Such a set is called the universal set or universe of discourse. It is denoted by U.

Examples:

(i) In the discussion concerning the set of odd numbers, the set of even numbers, the set of

prime numbers, the set of composite numbers, the set of factors, and so on, the universal

set is the set of natural numbers.

(ii) The set of all real numbers is the universal set in the discussion of subsets of rational and

irrational numbers.

Explanation: The statement there is no number whose square is 8 is valid if the discussion

is limited to the set of integers or the set of rational numbers, but it is invalid if the universal

set is the set of all real numbers.

A.15 OPERATIONS ON SETS

In arithmetic, the elementary operations of addition, subtraction,multiplication, and division

are used to make new numbers out of old numbers, that is, to combine two numbers to create

third. Similarly, in elementary set theory, there are binary operations on sets that generate

new sets.(2)

Remark: It will be noted that these operations have many of the algebraic properties of

ordinary addition and multiplication of numbers, although conceptually these operations are

quite different from those of numbers.

A.16 THE UNION (LOGICAL SUM) OF TWO SETS A AND B

It is the set consisting of precisely those elements that belong to either A or B or both A and B.

In symbols, A [ B ¼ {xjx 2 A or B or both}.

Example: Let A ¼ {1, 2, 3} and B ¼ {2, 3, 5, 6}. Then A [ B ¼ {1, 2, 3, 5, 6}. Obviously,

then A [ � ¼ A. Similarly, if C ¼ {7, 8, 9} and D ¼ {7, 8, 9, 10}, then C [ D ¼ D.

(2) A binary operation defined on sets is a rule, affecting every two setsA andB, that states themanner inwhich a third setC

is to be derived from A and B. The set C is usually (but not always) different from A and B.

The binary operations (on sets) are union, intersection, and complementation, which correspond, more or less, to the

arithmetic operations of addition, multiplication, and subtraction, respectively.
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A.17 THE INTERSECTION (LOGICAL PRODUCT) OF TWO SETS A AND B

It is the set of all those elements that belong to both A and B.

In symbols, A \ B ¼ {xjx 2 A and x 2 B}.

Examples: Let A ¼ {1, 2, 3}, B ¼ {2, 3, 5, 6}, and C ¼ {5, 7, 8}. Then, A \ B ¼ {2, 3},

B \ C ¼ {5}, and A \ C ¼ �.

A.18 DISJOINT SETS

Two sets A and B are said to be disjoint sets if they do not have any element in common.

Let A ¼ {1, 2, 3} and B ¼ {5, 8, 13}. Then, A and B are disjoint sets.

Note: If sets A and B are disjoint, then A \ B ¼ �, and conversely.

A.19 DIFFERENCE OF TWO SETS A AND B

The difference of two sets A and B in that order is the set of elements that belong to A but that

do not belong to B. We denote the difference of A and B by the set A – B, and read it as “A

difference B.”

Thus, A –B ¼ {xjx 2 A, but x =2 B}.

Example: Let A ¼ {1, 2, 3, 4} and B ¼ {1, 3, 5, 6,}. Then, A – B ¼ {2, 4}. Also note that

B – A ¼ {5, 6}. Thus, A – B 6¼ B – A.

Remark: In the definition of (A – B), it is not necessary that B should be a subset of A. Thus,

A – B is the set of those elements of A that are not in B.

A.20 COMPLEMENT OF A SET

If we consider the difference of setsU andA (whereU is the universal set), then this difference is

denoted by A0 or Ac and it is called the complement of A in U.

Thus, the complement of a given setA (with respect to the universal setU) is the difference of

the universal set U and A, in that order, and is denoted by A0 or Ac. We write

A0 ¼ U � A ¼ xjx 2 U; but x =2 Af g
Clearly; ðA0Þ0 ¼ U � A0 ¼ U � ðU � AÞ ¼ A

�0 ¼ U � � ¼ U

Acordingly; U0 ¼ U � U ¼ �

Example: Let N ¼ {1, 2, 3, 4, . . .} ¼ U and A ¼ {1, 3, 5, 7, . . .}, then A0 ¼ {2, 4, 6, 8, . . .}.

Remark: Complement of a set is basically the difference of the two sets, of which first set is

the universal set U and the other set is a proper subset of U.
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APPENDIX B (Related To Chapter-4)

B.1 INTRODUCTION

We know that coordinate geometry (in two variables) deals with the study of geometric objects

(i.e., points, lines, curves, and areas) in a plane using algebra. We are familiar with the

representation of real numbers on the number line. It was the French philosopher and

mathematician Rene Descartes (1596–1650) who introduced the analytic approach in the

study of geometry by using algebra. This was achieved by representing points in the plane by

ordered pairs of real numbers, called Cartesian coordinates, named after Rene Descartes.(1)

B.1.1

It is important to understand how the introduction of Cartesian coordinates allows us to use

numbers and their arithmetic as a tool in studying geometry. It is also important to remember

that this coordinate system allows us to draw the geometric pictures of algebraic equations

that illustrate a great deal of numerical work.(2)

In Chapter 4, we have studied that the algebraic equations represent lines and curves. There

we also introduced the concept of inclination of a line and its relation with the slope of the line.

(We know that inclination of a line relates trigonometric functions with the slope of the line).

In fact, the concept of slope is one of the central concepts in calculus. In our study of

calculus, an important concept to be learnt is the slope of a curve at any point on it. For this

purpose,we extend the concept of slope of a line and use it to define the slope of a curve at a point

by applying the concept of limit. It will be observed that the subject of calculus is dominated all

throughout by the concept of slope of a curve at a point.

Of course, at this stage, it is difficult to visualize:How the slope of the curve can be defined?

It is reasonable to think of a tangent line at a point of the curve and take the slope of this tangent

line as the slope of the curve at that point. This is exactly what is done. But, to give the definition

of a tangent to a curve at a point is not simple. It demands the knowledge of limit concept

(which is introduced in Chapter 7a), and subsequently applied in defining a tangent to a curve in

Chapter 9 that deals with the concept of derivatives.

Curves represented by second-degree algebraic equations in two variables and their identification: translation of axes

Introduction to Differential Calculus: Systematic Studies with Engineering Applications for Beginners, First Edition.
Ulrich L. Rohde, G. C. Jain, Ajay K. Poddar, and A. K. Ghosh.
� 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

(1) Another French mathematician Pierre de Fermat (1601–1665) is also credited with the invention of coordinate

geometry. His work was known after his death. Both Descartes and Fermat introduced two perpendicular lines called axes

and agreed to represent any pointP in the plane by an ordered pair (x, y), and denoted the pointP asP(x, y). In this notation,

x and y represent the directed distances (or signed distances) from the y- and x-axes, respectively.

(2) Here, itmay bementioned that, every equation need not represent a curve. For example, the equationx2 þ y2¼�5 does

not represent a curve.
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Now, it must be clear that the graph of an algebraic equation is the geometric picture of the

equation. Thus, calculus can help us in studying the properties of curves (represented by

equations) by operating on the given equations. This indicates how coordinate geometry plays

an important role in the foundation and development of calculus.(3)

B.1.2 From Lines to the Curves - The Conic Sections

When we speak of an equation of a line l, we mean an equation in the form

y ¼ mxþ b

where m is the slope of the line and b stands for its intercept with the y-axis.

This is an equation of degree one in two variables. Also, we have studied other useful forms

of the equation of a line. The general equation of first degree in x and y is given by

AxþByþC ¼ 0

where A and B are not zero, simultaneously. (This equation covers all the lines, including

vertical lines.)

B.2

Now, we shall study the curves represented by second degree equations in two variables. Our

interest lies in identifying those second degree equations that represent conic sections. Themost

general equation of second degree in two variables is

Ax2 þBxyþCy2 þDxþEyþF ¼ 0 ðwhere A 6¼ 0; B 6¼ 0Þ ð1Þ

(Note that, irrespective of whether C¼ 0 or C 6¼ 0, Equation (1) will remain second degree

equation in two variables.)

Our interest lies in the special case of the Equation (1),which does not contain the term Bxy

(i.e., B¼ 0). Thus, it remains to consider only those second degree equations that have just one

second degree term and those that contain two second degree terms.

B.2.1 Equations with Just One Second Degree Term

Such equations represent curves known as parabolas. It will also be seen that there are certain

limiting forms (of such equations) that do not represent parabola(s), but something different.(4)

(3) The subject of coordinate geometry is very vast in itself and must be studied separately. We will discuss here only the

necessary parts of the subject needed for our purpose.
(4) Note that, the following equations represent parabolas:

(i) y2¼ 8x (ii) x2¼ 12y (iii) x2¼ 4ay, a 6¼ 0 (iv) y2 þ 2x� 4y þ 3¼ 0 (v) y2 þ 2x þ 3¼ 0

(vi) y¼x2� 2x þ 3 (vii) x2¼ y þ 3

However, the following equations do not represent parabolas:

(a) y2¼ 4 (It represents a pair of parallel lines.)

(b) y2¼ 0 (It represents a pair of coincident lines, that is, a single line.)

(c) y2¼�1 (It represents an empty set.)
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B.2.2 Curves Represented by Equations That Have Two Second Degree Terms

Circles, ellipses, and hyperbolas are the curves whose equations have two second degree terms.

Thus, we will be considering the algebraic equations of the form

Ax2 þCy2 þDxþEyþF ¼ 0 ð2Þ

whereAandCboth are not zero. (Observe that ifA¼ 0 orC¼ 0, thenEquation (2)will reduce to

the equation of a parabola.) Again, it will be noted that there are certain limiting forms of

Equation (2), which represent something different, other than the curves mentioned above.

Note: Parabola(s), ellipse(s), and hyperbola(s) are known as conic sections (ormore commonly

conics), because they can be obtained by the intersection of a double napped right circular cone

by a plane.

B.3 THE IDEA OF A DOUBLE NAPPED RIGHT

CIRCULAR CONE AND CONICS

Let l be a fixed vertical line andm be another line intersecting it at a fixed pointV and inclined to

it at an angle a (Figure B.1).

Suppose we rotate the line m around the line l in such a way that the angle a remains

constant, then the surface so generated is a double napped right circular hollow cone. From now

on, it will be referred to as the cone, extending indefinitely far in both directions (Figure B.2).

Definitions:

. The point V is called the vertex.

. The line l is the axis of the cone.

l

m

V

α

FIGURE B.1
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. The rotating line m is called a generator of the cone.

. The vertex separates the cone into two parts called nappes.

Remark: Note that a generator of the cone is a line lying in the cone and that all generators of

a cone contain the point V.

B.4 CONIC SECTION: DEFINITIONS

If we take the section of a cone by a plane, then the points common to the plane and the cone

form the conic section (or the conic). The conic sections are classified according to the different

positions of the plane with respect to the cone. It will be seen that though a point, a pair of

coincident lines, a pair of intersecting lines, and a circle represent conic sections, they are

treated separately. A conic section generally refers to a parabola, an ellipse, or a hyperbola. We

start with the parabola.

(a) Parabola: If the cutting plane is parallel to the generator, the section is a parabola

(Figure B.3).

(b) Ellipse: An ellipse is obtained as a conic section if the cutting plane is parallel to no

generator, in which case the cutting plane intersects each generator (Figure B.4).

Generator

Generator

Upper nappe

Lower nappe

VertexV

FIGURE B.2
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Note:A circle is a special case of the ellipse. A circle is formed if the cutting plane intersecting

each generator is also perpendicular to the axis of the cone (Figure B.5).

(Though a circle represents a conic section, it is not studied under conics. It is treated

separately.)

Note: The intersection of a conewith the cutting planemay take place either at the vertex of the

cone or at any other part of the nappe, belowor above the vertex. If the intersection is a circle, an

ellipse, or a parabola, the plane cuts entirely across one nappe of the cone.What happens if a

plane intersects both the nappes?

(a) (b)

FIGURE B.4 Ellipse.

(a) (b)

FIGURE B.3 Parabola.
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(c) Hyperbola: When the cutting plane intersects both nappes of a cone, the conic section

obtained is a hyperbola.

In this case, the cutting plane is parallel to the axis of the cone (Figure B.6).

B.4.1 Degenerated Conic Sections

When the plane cuts at the vertex of the cone, we have the following degenerate cases of conic

sections:

(i) The degenerate case of an ellipse, a point, is obtained as a conic section if the cutting

plane contains the vertex but does not contain a generator (Figure B.7).

(a) (b)

FIGURE B.6 Hyperbola.

(a) (b)

FIGURE B.5 Circle.
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(ii) A pair of coincident lines, if the plane passes through the vertex and contains a

generator (i.e., the plane touches the cone). It is the degenerated case of a parabola

(Figure B.8).

(iii) If the cutting plane contains the vertex of the cone and two generators, we obtain the

degenerate case of a hyperbola in the form of two intersecting lines (Figure B.9).

Remark: Though a point, a pair of coincident lines, a pair of intersecting lines, and a circle

represent conic sections, they are treated separately. A conic section generally refers to a

parabola, an ellipse, or a hyperbola.

B.4.2 Importance of Conic Sections

The study of properties of conics is very important in geometry, mechanics, physics, and

astronomy, such as design of telescopes and antennas, reflectors in flash lights, and automobile

headlights.

(a) (b)

FIGURE B.8 Pair of coincident lines.

(a) (b)

FIGURE B.7 Point.
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The path of a projectile is a parabola, if motion is considered to be in a plane and air

resistance is neglected. All the planets, namely, Mercury, Venus, Earth, Mars, and others, move

around the sun in elliptical orbits with the sun at a focus. Indeed, these curves are important

tools for the present-day exploration of outer space and also for research into the behavior of

atomic particles.

We know that the conic sections are plane curves. (Why?) Therefore, it is desirable to use

equivalent definitions that refer only to the plane in which the curve lies and refer to special

points and lines in this plane, called foci (plural of focus), and directrix.

B.5 CONICS

Now we define a conic.

Definition: Suppose l is a fixed line and F (or S) is a fixed point not on the line. Then,

the locus of a point P (in the plane of l and F) such that the distance of P from the fixed

point F (or S) has a fixed ratio e to its distance from the fixed line l is called a conic

(or a conic section). By such a distance of P from l, we mean the length of the

perpendicular line segment from P to the line l (Figure B.10).The fixed point is called

the focus, the fixed line is called the directrix, and the fixed ratio is called the eccentricity of

the conic.

If e< 1, the conic is called an ellipse.

If e¼ 1, the conic is called a parabola.

If e> 1, the conic is called a hyperbola.

The property defining the conic is called the focus–directrix property. It should also be

remembered that para means equality, ellipsis means deficiency, and hyper means

excess.

(a) (b)

FIGURE B.9 Two intersecting lines.
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B.6

Now, we shall follow a (special) method in defining the standard equations of conics (i.e., a

parabola, an ellipse, and a hyperbola) to get their equations in the simplest form. In thismethod,

we choose the axes (not the curves) in a special way so that the equation of each conic section is

as simple as possible. (Even if we do not choose the origin and the axes conveniently, wewould

still get the equation(s) of the curves, but they would not be as simple.)

B.6.1 Parabola

Definition: A parabola is the set of all points in a plane that are equidistant from a fixed line

and a fixed point (not on the line) in the plane.

The fixed line is called the directrix of the parabola and the fixed point F is called the focus

(Figures B.11 and B.12).

Directrix

B3

B2

F
Focus

P1F = P1B1

l

P2F = P2B2

P3F = P3B3

B1

P1

P2

P3

FIGURE B.11

y

P

l

x

0

Q

PQ

FIGURE B.10
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. A line though the focus and perpendicular to the directrix is called the axis of the

parabola.

. The point of intersection of parabola with the axis is called the vertex of the parabola.

B.6.1.1 Standard Equations of Parabola The equation of a parabola is simplest if the

vertex is at the origin and the axis of symmetry is along the x-axis or y-axis. The four possible

such orientations of parabola are shown in Figure B.13.

In each figure, F stands for the focus.

Note: Here, we do not give the proof of the equations of any conic. For this purpose, any

standard book on coordinate geometry may be referred to.

x

y

O F(a,0)

y2 = 4ax (a > 0)

x 
=

 –
n

(a)

F (–a,0)

y

O

x

y2 = –4ax (a > 0)

x 
=

 +
 a

(b)

FIGURE B.13 (a) y2¼ 4ax, (a> 0). (b) y2¼� 4ax, (a> 0). (c) x2¼ 4ay, (a> 0).

(d) x2¼� 4ay, (a> 0).

Directrix

Vertex

Focus Axis

FIGURE B.12
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Note:

(1) The standard equations of parabolas have focus on one of the coordinate axes, vertex at

the origin, and the directrix is parallel to the other coordinate axis.

(2) From the standard equations of parabolas, we have the following observations:

. Aparabola is symmetricwith respect to the axis of the parabola. If the equation has a y2

term, then the axis of symmetry is along the x-axis and if the equation has a x2 term,

then the axis of symmetry is along the y-axis.

. When the axis of symmetry is along the x-axis, the parabola opens

(a) to the right, if the coefficient of x is positive; and

(b) to the left, if the coefficient of x is negative.

. When the axis of symmetry is along the y-axis, the parabola opens

(c) upward, if the coefficient of y is positive, and

(d) downward, if the coefficient of y is negative.

B.6.1.2 Latus Rectum

Definition: Latus rectumof parabola is a line segment perpendicular to the axis of the parabola

through the focus and whose end points lie on the parabola.(Figure B.14).

(It can be easily checked that the length of the latus rectum of the parabola, y2¼ 4ax, is 4a.)

B.6.2 Ellipse

Definition: Anellipse is the set of all points in a plane, the sumofwhose distances from the two

fixed points in the plane is a constant.

The two fixed points are called the foci (plural of focus) of the ellipse (Figure B.15).

y

O

x

F (0,a)

y = –a

x2 = 4ay (a > 0)

(c)

y

y = a

x

(d)

O

x2 = –4ay (a > 0)

F (0,–a)

FIGURE B.13 Continued
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Note: The constant that is the sum of the distances of a point on the ellipse from the two fixed

points is always greater than the distance between the two fixed points.

. The midpoint of the line segment joining the foci is called the center of the ellipse.

. The line segment through the foci of the ellipse is called the major axis and the line

segment through the center and perpendicular to the major axis is called theminor axis

(Figure B.16a).

. The end points of the major axis are called the vertices of the ellipse. (Figure B.16a).

. We denote the length of themajor axis by 2a, the length of theminor axis by 2b, and the

distance between the foci by 2c. Thus, the length of the semimajor axis is a and semiminor

axis is b (Figure B.16b).

B.6.2.1 Relationship Between Semimajor and Semiminor Axes The relationship between

semimajor axis a and semiminor axis b (a> b) and the distance of the focus from the center of

the ellipse c is shown in Figure B.17.

From this figure, it is easy to show that

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ c2

p
and c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p

Focus
F1

Focus
F2

P1

P2 P3

FIGURE B.15 P1F1 þ P1F2¼P2F1 þ P2F2¼P3F1 þ P3F2

Latus rectum

FocusO
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FIGURE B.14
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FIGURE B.17

B.6.2.2 Special Cases of an Ellipse From the relation connecting a, b, and c, we have the

equation c2¼ a2� b2.

If we keep a fixed and vary c from O to a, the resulting ellipse will vary in shape (see

Figure B.17). Two cases arise:
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Case (1): When c¼ 0, both foci merge together with the center of the ellipse and a2¼ b2

(i.e., a¼ b) and so the ellipse becomes the circle.

Thus, a circle is a special case of an ellipse (Figure B.18a).

Case (2): When c¼ a, then b¼ 0.

The ellipse reduces to line segment F1F2 joining the two foci (Figure B.18b)

B.6.2.3 StandardEquations of anEllipse The equation of an ellipse is simplest if the center

of the ellipse is the origin.

The two such possible orientations are shown in Figure B.19.

Note: The standard equations of ellipses have center at the origin and the major and minor

axes are coordinate axes.

From the standard equations of ellipses (Figure B.19a and b), we have the following

observations:

(i) Ellipse is symmetric with respect to both the coordinate axes (and origin) since if

(x, y) is a point on the ellipse, then (�x, y), (x,�y), and (�x,�y) are also points on the

A B

C P (x,y)

(0,a)

(0,–c)

(–b,0)

(0,–a)
(a) (b)

(0,c)

(b,0)

F1(– c,0) O

O

F2(c,0)

y

y

D

x

x

FIGURE B.19 (a)
x2

a2
þ y2

b2
¼ 1. (b)

x2

b2
þ y2

a2
¼ 1

F1 = F2

F1

a a

F2

a

(a) (b)

b

FIGURE B.18
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ellipse. (We have used this property of symmetry in Chapter 8a of Part II, where we

compute the area enclosed by an ellipse.)

(ii) The foci always lie on the major axes. The major axis can be determined by finding the

intercepts on the axes of symmetry. That is, major axis is along the x-axis if the

coefficient of x2 has the larger denominator and is along the y-axis if the coefficient of y2

has the larger denominator.

B.6.2.4 Latus Rectum

Definition: Latus rectum of an ellipse is a line segment perpendicular to the major axis

through any of the foci and whose end points lie on the ellipse (Figure B.20).

It is easy to show that the length of the latus rectum of the ellipse

ðx2=a2Þþ ðy2=b2Þ ¼ 1 is ðb2=aÞ. (Recall that b¼ semiminor axis and a¼ semimajor axis.)

B.6.3 Hyperbola

Definition: A hyperbola is the set of all points in a plane, the difference of whose distances

from two fixed points in the plane is a constant.

. The term difference that is used in the definition means the distance to the farther point

minus the distance to the closer point.

. The fixed points are called the foci of the hyperbola.

. The midpoint of the line segment joining the foci is called the center of the hyperbola.

. The line through the foci is called the transverse axis and the line through the center and

perpendicular to the transverse axis is called the conjugate axis (Figure B.21).

. The points at which the hyperbola intersects the transverse axis are called the vertices of

the hyperbola.

y

x

A

B

C

D

Latus rectum

F1 F2O

FIGURE B.20
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. Wedenote the distance between the two foci by 2c, the distance between two vertices (i.e.,

length of the transverse axis) by 2a, andwe define the quantity b as b¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2

p
. Also, 2b

is the length of the conjugate axis. (Figure B.22).

B.6.3.1 Standard Equations of Hyperbola The equation of a hyperbola is simplest if the

center of the hyperbola is at the origin and the foci are on the x-axis or y-axis.

The two such possible orientations are shown in Figure B.23.

Note: The standard equations of hyperbolas have transverse and conjugate axes as the

coordinate axes and the center at the origin.

From the standard equations of hyperbolas (Figure B.23a and b), we have the following

observations:

(i) Hyperbola is symmetric with respect to both the axes (and origin), since if (x, y) is a

point on the hyperbola, then (�x, y), (x, �y), and (�x, �y) are also points on the

hyperbola.

(ii) The foci are always on the transverse axis. It is the positive term whose denominator

gives the transverse axis.

For instance, ðx2=9Þ � ðy2=16Þ ¼ 1 has transverse axis along x-axis of length 6 units (since

a¼ 3 units), while ðy2=9Þ � ðx2=16Þ ¼ 1 has transverse axis along y-axis of length 10 units.

F1 F2
A

O B

y

x

a

b c
2c

2a

FIGURE B.22
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P2
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Focus
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FIGURE B.21 P1F2�P1F1¼P2F2�P2F1¼P3F1�P3F2
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B.6.3.2 Latus Rectum (of Hyperbola) Latus rectum of hyperbola is a line segment

perpendicular to the transverse axis through any of the foci and whose end points lie on the

hyperbola.

It is easy to show that the length of the latus rectum in a hyperbola is 2b2=a.

B.7 TRANSLATION OF AXES (OR SHIFT OF ORIGIN)

The shape of a graph is not changed by the position of the coordinate axes, but its equation is

changed. Graphing an equation is frequently made easier by changing from one set of axes to

another. Sincewemay select the coordinate axes aswe please, we generally do so in such away

that the equations will be as simple as possible.

Consider an equation that is given with reference to a set of axes. We may wish to find a

simpler equation of its graphs (or we may wish to find if the given equation represents a known

curve. In particular, we will be interested to identify the given equation as a conic or its

degenerate form). If these different axes are chosen parallel to the given ones, we say that there

has been a translation of axes.

Definition: In theCartesian coordinate system, ifwe shift the origin to a newpoint, in the same

plane, and take the newaxes parallel to the original axes, through this newpoint, thenwe say that

the new axes are obtained from the old axes, by translation.

When we choose new axes in the plane by translation, every point will have two sets of

coordinates, the old ones (x, y) relative to the x- and y-axes and the new ones (u, n), relative to
the new axes, say the u- and v-axes. It is proposed to obtain the relation between the coordinates

of a point in two systems of coordinate axes. (It is logical and convenient to assume that in both

the sets of axes, the positive numbers lie on the same side of the origin.)

Let (h, k) be the old coordinates of the new origin (Figure B.24). By inspection, we see that,

x ¼ uþ h and y ¼ vþ k ðiÞ

(–c,0) (–a,0)

O

O

0
(a,0) (c,0)

(0, a)

(0, c)

(0, –a)

(0, –c)

(a) (b)

y

y

x

x

FIGURE B.23 (a)
x2

a2
� y2

b2
¼ 1. (b)

x2

a2
� y2

b2
¼ 1.
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or equivalently

u ¼ x� h and v ¼ y� k ðiiÞ

Equations (i) and (ii) are called the equations of transformation. So, if the origin is shifted

to (h, k) from (0, 0) (in the old set of axes), the new coordinates of a point P(x, y) will be

(x� h, y� k).

Example (1): Let us find the new coordinates of P(�6, 5) after a translation of axes to a new

origin at (2, �4).

Solution: Here h¼ 2 and k¼� 4. It follows that

u ¼ x� h ¼ �6� 2 ¼ �8

v ¼ y� k ¼ 5� ð�4Þ ¼ 9

Hence, the new coordinates are (�8, 9).

Example (2): The origin is shifted to the points (2, 1). Obtain the equation of the curve in the

new frame whose equation in the original form is given by

x2 þ y2 � 4x� 2y� 20 ¼ 0:

Solution: Let the new coordinates of a point be (u, v). The equations of transformation are

x¼ u þ h, y¼ v þ k. Here, (h, k)¼ (2, 1)

) x ¼ uþ 2 and y ¼ vþ 1

y v

x

(h, k)

P(x, y)
P(u, v)

u

FIGURE B.24

728 APPENDIX B (RELATED TO CHAPTER-4)



Substituting for x and y in the given equation, we get

ðuþ 2Þ2 þðvþ 1Þ2 � 4ðuþ 2Þ � 2ðvþ 1Þ � 20 ¼ 0

) u2 þ 4uþ 4þ v2 þ 2vþ 1� 4u� 8� 2v� 2� 20 ¼ 0

) u2 þ v2 þ 4u� 4uþ 2v� 2v� 25 ¼ 0

) u2 þ v2 ¼ 25

It is customary to write (x, y) in place of (u, v) when the transformed equation is obtained.

) The transformed equation is x2 þ y2¼ 25.(5)

(The applications and usefulness of the process of translation of axes will be discussed at

length later.)

Note (1): An ellipse is called a central conic in contrast to a parabola, which has no center

because it has only one vertex.

Note (2): For an ellipse a> b, it follows that for the ellipse having the equation

ðx2=25Þþ ðy2=16Þ ¼ 1, the principal axis is the x-axis. (Note that a2¼ 25 and b2¼ 16, so a¼ 5

and b¼ 4 (Figure B.25a)). Next, the ellipse having the equation ðx2=16Þþ ðy2=25Þ ¼ 1 has its

principal axis on the y-axis (Figure B.25b).

Note (3): Suppose the center of an ellipse is at the point (h, k) rather than at the origin, and the

principal axis is parallel to one of the coordinate axes. Then, by translation of axes, we have the

following standard forms of the equations of an ellipse:

ðx� hÞ2
a2

þ ðy� hÞ2
b2

¼ 1 ða > bÞ ðIÞ

if the principal axis is horizontal.
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y

FIGURE B.25 (a)
x2

25
þ y2

16
¼ 1. (b)

x2

16
þ y2

25
¼ 1.

(5) This equation represents a circle with center (2, 1) and radius 5. Of course, the coordinates of the center are with

reference to the original axes.

Note: In this particular case, we know the name of the curve, but this may not be the situation, always.
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ðy� kÞ2
a2

þ ðx� hÞ2
b2

¼ 1 ða > bÞ ðIIÞ

if the principal axis is vertical.

(Recall that the foci always lie on the major axis. Furthermore, the major axis is along the

x-axis if the coefficient of x2 has the larger denominator and it is along the y-axis if the

coefficient of y2 has the larger denominator.)

Note (4): In the standard equation of an ellipse, we know that a> b. On the other hand, for a

hyperbola there is no general inequality involving a and b. For instance, in the

hyperbolaðx2=9Þ � ðy2=16Þ ¼ 1, a¼ 3 and b¼ 4, so a< b. But in the hyperbola,

ðx2=21Þ � ðy2=4Þ ¼ 1, a ¼ ffiffiffiffiffi
21

p
and b¼ 2 so that a> b.

Note (5): The graphs of the hyperbolas ðx2=9Þ � ðy2=16Þ ¼ 1 and ðy2=9Þ � ðx2=16Þ ¼ 1 are

shown in Figure B.26.

In the equation of hyperbola, a may equal b, in which case the hyperbola is equilateral.

Definition: A hyperbola in which a¼ b is called an equilateral hyperbola.

(It is of the form x2� y2¼ a2).

Definition: An equilateral hyperbola having the equation x2� y2¼ 1 is called the unit

hyperbola. A convenient device can be used to obtain equations of the asymptotes of the

hyperbola. For instance, for the hyperbola ðx2=a2Þ � ðy2=b2Þ ¼ 1, we replace the right side by

zero and obtain ðx2=a2Þ � ðy2=b2Þ ¼ 0. Upon factorizing, this equation becomes

½ðx=aÞ � ðy=bÞ�½ðx=aÞþ ðy=bÞ� ¼ 0, which is equivalent to the two equations

ðx=aÞ � ðy=bÞ ¼ 0 and ðx=aÞþ ðy=bÞ ¼ 0,y¼ (b/a)x and y¼�(b/a)x

These are the equations of the asymptotes of the given hyperbola.

(It can be proved that if the equation of a hyperbola is ðx2=a2Þ � ðy2=b2Þ ¼ k, then the

equations of the asymptotes are also given by ðx2=a2Þ � ðy2=b2Þ ¼ 0).

Definition: A hyperbola whose asymptotes are at right angles to each other is called a

rectangular hyperbola.

(a) (b) 
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Remark: An equilateral hyperbola (i.e., x2� y2¼ a2) is a rectangular hyperbola.

(Note that the asymptotes of this equilateral hyperbola are y¼�x. Obviously, the asymptotes

are at right angles to each other and they are equally inclined to the axes.)

Note (6): If the center of the hyperbola is at (h, k), then an equation of the hyperbola is of the

following form:

x� hð Þ2
a2

� y� kð Þ2
b2

¼ 1 ð1Þ

if the principal axis is horizontal.

y� kð Þ2
a2

� x� hð Þ2
b2

¼ 1 ð2Þ

if the principal axis is vertical.

B.7.1 Applications and Usefulness of the Process of Translation of Axes

We know that a given second degree equation in x and y of the form

Ax2 þCy2 þDxþEyþF ¼ 0 ðA 6¼ 0; C 6¼ 0Þ

may represent a circle, an ellipse, a hyperbola, or their degenerate forms. Our interest lies in

identifying the curve represented by the given equation. This demands that we should be able to

express the given equation to a recognizable form. But how can we do this? Let us discuss.

Weknow that the equation of a circlewith center at the point (h,k) and the radius r is given by

(x� h)2 þ (y� k)2¼ r2. Similarly, we can write down the equations of ellipse(s) and those of

hyperbola(s) with their centers at a point (h, k), other than the origin. Let us consider particular

equations of these curves for any given (h, k).

(i) The equation (x� 3)2 þ (y� 1)2¼ 52 represents a circle with center at the point (3, 1)

and radius 5 units. On opening the brackets, the above equation becomes

x2 þ y2 � 6x� 2y� 15 ¼ 0 ðAÞ

(ii) The equation ðxþ 3Þ2=64 þ ðy� 4Þ2=100¼ 1 represents an ellipse whose center is at

(�3, 4). On opening the brackets, the above equation becomes

25x2 þ 16y2 þ 150x� 128y� 1119 ¼ 0 ðBÞ

(iii) The equation ðyþ 2Þ2=9�ðx� 1Þ2=4¼ 1 represents a hyperbola whose center is at

(�2, 1). On opening the brackets, the above equation becomes

9x2 � 4y2 � 18x� 16yþ 29 ¼ 0 ðCÞ

It is important to remember that a conic section generally refers to a parabola, an ellipse, or a

hyperbola. A conic section may be represented by an algebraic equation of second degree. We

ask an important question:
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Is the graph of the equation of the form Ax2 þ Cy2 þ Dx þ Ey þ F¼ 0, always represent

a conic?

The answer is no, unless we admit certain limiting forms. The table below indicated the

possibilities with a sample equation of each.

Conics Limiting Forms

1. (AC¼ 0)

Parabola: y2¼ 4x

A pair of parallel lines: y2¼ 4

Single line: y2¼ 0

Empty set: y2¼�1

2. (AC> 0)

Ellipse:
x2

9
þ y2

4
¼ 1

Circle: x2 þ y2¼ 4

Point: 2x2 þ y2¼ 0 .
Empty set: 2x2 þ y2¼�1

3. (AC< 0)

Hyperbola:
x2

9
� y2

4
¼ 1

A pair of intersecting

lines: x2� y2¼ 0

Note: It must be clear that in case of an ellipse the coefficients A and C have the same sign, so

thatAC> 0. (We have also seen this in Equation (B) above. Also, for a circle (which is a special

case of an ellipse), A and C are same so that AC> 0). In case of a hyperbola, A and C have

opposite sign so that AC< 0. As regards parabola, its equation must have only one second

degree term. It follows that we have to drop eitherAx2 orCy2. In otherwords, we have to choose

either A¼ 0 or C¼ 0, which means AC¼ 0.

Thus, a point, a pair of intersecting lines, a pair of coincident lines, and a circle represent

limiting form of conic sections. (Recall that we have already discussed earlier about these

possibilities.) Our interest lies in being able to express the given second degree equations in a

recognizable form (of a conic) so that its graph can be sketched conveniently.

Now, we ask the question:

Given a complicated second degree equation (in x and y), how dowe knowwhat translation

will simplify the equation and bring it to a recognizable form?

A familiar process called completing the square provides the answer. In particular, we use

this process to eliminate the first degree terms of any expression of the following form:

Ax2 þCy2 þDxþEyþF ¼ 0 ðA 6¼ 0; C 6¼ 0Þ
Example (3): Make a translation that will eliminate the first degree terms of

4x2 þ 9y2 þ 8x� 90y þ 193¼ 0 and use this information to identify the curve.

Solution: Consider the given equation:

4x2 þ 9y2 þ 8x� 90yþ 193 ¼ 0

) 4ðx2 þ 2xþ _Þþ 9ðy2 � 10yþ _Þ ¼ �193

) 4ðx2 þ 2xþ 1Þþ 9ðy2 � 10yþ 25Þ ¼ �193þ 4þ 225

) 4ðxþ 1Þ2 þ 9ðy� 5Þ2 ¼ 36

) ðxþ 1Þ2
9

þ ðy� 5Þ2
4

¼ 1

732 APPENDIX B (RELATED TO CHAPTER-4)



The translation u¼ x þ 1 and v¼ y� 5 transforms this to ðu2=9Þþ ðv2=4Þ ¼ 1, which is the

standard form of a horizontal ellipse.

Example (4): Find the new equation of the curve 3x2 þ 2y2� 12x þ 4y þ 8¼ 0, when the

origin is shifted to the points (2, �1).

Solution: We have (h, k)¼ (2, �1)

) x ¼ uþ h ¼ uþ 2; and y ¼ vþ k ¼ v� 1

) The given equation transforms into

3ðuþ 2Þ2 þ 2ðv� 1Þ2 � 12ðuþ 2Þþ 4ðv� 1Þþ 8 ¼ 0

that is,

3ðu2 þ 4uþ 4Þþ 2ðv2 � 2vþ 1Þ � 12ðuþ 2Þþ 4ðv� 1Þþ 8 ¼ 0

that is,

3u2 þ 12uþ 12þ 2v2 � 4vþ 2� 12u� 24þ 4v� 4þ 8

that is,

3u2 þ 2v2 � 6 ¼ 0 or 3u2 þ 2v2 ¼ 6

The transformed equation is 3x2 þ 2y2¼ 6 or ðx2=2Þþ ðy2=3Þ ¼ 1

This equation is recognized as the equation of an ellipse.

Example (5): Show that the graph of the equation 4x2 þ 9y2 þ 8x� 90y þ 193¼ 0 is an

ellipse.

Solution: Consider the given equation

4x2 þ 9y2 þ 8x� 90yþ 193 ¼ 0

) 4ðx2 þ 2xþ _Þþ 9ðy2 � 10yþ _Þ ¼ �193

) 4ðx2 þ 2xþ 1Þþ 9ðy2 � 10yþ 25Þ ¼ �193þ 4þ 225

) 4ðxþ 1Þ2 þ 9ðy� 5Þ2 ¼ 36

) ðx þ 1Þ2
9

þ ðy� 5Þ2
4

¼ 1

This equation represents an ellipse.

Example (6): Consider the equation 6x2 þ 9y2� 24x� 54y þ 115 ¼ 0.

We write this equation as 6(x2� 4x) þ 9(y2� 6y)¼�115.

Completing the squares in x and y, we get

6ðx2 � 4xþ 4Þþ 9ðy2 � 6yþ 9Þ ¼ �115þ 24þ 81
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or

6ðx� 2Þ2 þ 9ðy� 3Þ2 ¼ �10

Because the right-hand side of this equation is negative and the left-hand side is nonnegative for

all points (x, y), the graph is the empty set.

Example (7): Consider the equation 6x2 þ 9y2� 24x� 54y þ 105¼ 0.

We write this equation as 6(x� 2)2 þ 9(y� 3)2¼ 0.

Its graph are the points (2, 3).We can prove in general that the graph of any equation of the form

(Q) is either an ellipse, a point, or the empty set.

(When the graph is a point or the empty set, it is said to be degenerate.)

Example (8): The equation 4x2� 12y2 þ 24x þ 96y� 156¼ 0 can be written as

4(x2 þ 6x)� 12(y2� 8y)¼ 156 and upon completing the square in x and y, we have

4ðx2 þ 6xþ 9Þ � 12ðy2 � 8yþ 16Þ ¼ 156þ 36� 192

4ðxþ 3Þ2 � 12ðy� 4Þ2 ¼ 0

ðxþ 3Þ2 � 3ðy� 4Þ2 ¼ 0

ðxþ 3Þ � ffiffiffi
3

p ðy� 4Þ� � ðxþ 3Þþ ffiffiffi
3

p ðy� 4Þ� � ¼ 0

) xþ 3� ffiffiffi
3

p ðy� 4Þ ¼ 0 and xþ 3þ ffiffiffi
3

p ðy� 4Þ ¼ 0

These are the equations of two lines through the points (�3, 4)
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APPENDIX C (Related To Chapter-20)

EXERCISE

Verify the conditions of Rolle’s theorem for the following functions on respective intervals and

find c, if any, for which f 0(c) ¼ 0.

Q.(1): The polynomial function

y ¼ f ðxÞ ¼ x3 � 4x

is continuous and differentiable for all x, �1< x<þ1.

We have, f(x) ¼ x3� 4x ¼ x (x2� 4).

So if we take a ¼ �2 and b ¼ þ 2, then the conditions of Rolle’s theorem are satisfied,

since f(�2) ¼ 0 and f(þ2) ¼ 0. Thus, the derivative f 0(x) ¼ 3x2� 4,must be zero at least once

between �2 and 2. In fact, we can find this by solving f 0(x) ¼ 0, that is, 3x2� 4 ¼ 0.

We get,

x ¼ c1 ¼ 2ffiffiffi
3

p ¼ 2
ffiffiffi
3

p

3
and x ¼ c2 ¼ � 2ffiffiffi

3
p ¼ � 2

ffiffiffi
3

p

3
Ans.

Q.(2): Verify Rolle’s theorem for f(x) ¼ x2(1� x)2 in [0,1].

Solution: Here, f(0) ¼ f(1) ¼ 0 and f(x) satisfies the conditions of Rolle’s theorem.

f 0ðxÞ ¼ x2 ½2 ð1� xÞ ð�1Þ� þ 2xð1� xÞ2
¼ �2x2 ð1� xÞ þ 2xð1� xÞ2
¼ 2xð1� xÞ ½�xþ ð1� xÞ�
¼ 2xð1� xÞ ð1� 2xÞ

) f 0ðxÞ ¼ 0; when x ¼ 0; x ¼ 1; x ¼ 1

2

Here, x ¼ c ¼ 1/2 lies in (0, 1), for which f 0(c) ¼ 0. Ans.
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Q.(3): Consider the function

y ¼ f ðxÞ ¼ 1�
ffiffiffiffiffi
x2

3
p

¼ 1� x2=3

This function is continuous on the interval [�1, 1], and vanishes at the end points of the interval

[ f(�1) ¼ 0 and f(1) ¼ 0].

Q.(4): It is given that for the function f(x) ¼ x3� 6x2þ axþ b on [1,3]. Rolle’s theorem holds

with c ¼ 2þð1= ffiffiffi
3

p Þ. Find the values of a and b.

Solution:

f ðxÞ ¼ x3 � 6x2 þ axþ b

f 0ðxÞ ¼ 3x2 � 12xþ a

Since Rolle’s theorem holds for f(x), we have f 0(c) ¼ 3c2� 12cþ a,

where c ¼ (1, 3). Putting f 0(c) ¼ 0, we have

3c2 � 12cþ a ¼ 0

) c ¼ 12� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
144� 12a

p

6

)¼ 12� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36� 3a

p

6

)¼ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36� 3a

p

3

Here, c ¼ 2� ðð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36� 3a

p Þ=3Þ is not applicable.

) 2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36� 3a

p

3
¼ 2þ 1ffiffiffi

3
p

)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36� 3a

p

3
¼ 1ffiffiffi

3
p

)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36� 3a

p
¼

ffiffiffi
3

p

) 36� 3a ¼ 3 or a ¼ 11

Hence, the function becomes

f ðxÞ ¼ x3 � 6x2 þ 11xþ b

Now f(1) ¼ 1� 6þ 11þ b ¼ 6þ b. (Similarly, f(3) ¼ 6þ b.)

But Rolle’s theorem holds. So, f(1) ¼ 0.

) 6þ b ¼ 0

) b ¼ �6: Ans:
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Q.(5):On the curve y ¼ x2, find a point at which the tangent is parallel to the chord joining

(0, 0) and (1, 1).

Solution: The slope of the chord is

f ðbÞ � f ðaÞ
b� a

¼ 1� 0

1� 0
¼ 1

The derivative is dy/dx ¼ 2x.

We want x such that 2x ¼ 1.

Thus, x ¼ 1/2. We note that 1/2 is in the open interval (0, 1), as required in the MVT.

The corresponding point on the curve is (1/2, 1/4). Ans.

Q.(6): Verify LMVT for the function

f(x) ¼ (x� 1)(x� 2)(x� 3) in [0, 4]

Solution:

f ðxÞ ¼ ðx� 1Þ ðx� 2Þ ðx� 3Þ
¼ x3 � 6x2 þ 11x� 6

Since f(x) is a polynomial, it is continuous on [0,4] and differentiable in (0, 4).

Also, f 0(x) ¼ 3x2� 12xþ 11.

Now, f(4) ¼ (4 – 1)(4 – 2)(4 – 3) ¼ 3� 2� 1 ¼ 6

And f(0) ¼ (�1)(�2)(�3) ¼ �6

By Lagrange’s MVT, we have

f ðbÞ � f ðaÞ
b � a

¼ f 0ðcÞ

f ð4Þ � f ð0Þ
4 � 0

¼ 3c2 � 12cþ 11

or
6� ð�6Þ

4
¼ 3c2 � 12cþ 11

or 3c2 � 12cþ 8 ¼ 0

c ¼ 12� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
144� 4ð3Þ � ð8Þp

6

¼ 12� ffiffiffiffiffi
48

p

6
¼ 12� 4

ffiffiffi
3

p

6

¼ 2� 2
ffiffiffi
3

p

3

Both these values lie in (0, 4). Hence, LMVT is verified. Ans.
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Q.(7): Find a point on the graph of y ¼ x3, where the tangent is parallel to the chord joining

(1, 1) and (3, 27).

Solution: f(x) ¼ x3

This function is continuous on [1, 3] and differentiable in (1, 3).(1)

Also, f 0(x) ¼ 3x2

Slope of the chord is given by

f ðbÞ � f ðaÞ
b� a

¼ f ð4Þ � f ð0Þ
4� 0

¼ 43 � 0

4� 0
¼ 64

4
¼ 16

) By LMVT; we have;

16 ¼ 3c2

) c ¼ �
ffiffiffiffiffi
16

3

r
¼ �4

ffiffiffi
3

p

3

Note that; the value

c ¼ 4
ffiffiffi
3

p

3
2 ð1; 3Þ Ans:

(1) Observe that the two points on the curve are (1, 1) and (3, 27). Hence, we are concerned only with the closed interval

[1, 3], though the function f(x) ¼ x3 is defined for all x.
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INDEX

Abel’s theorem, 659

Absolute extreme values, 576

Absolute maximum (minimum) of function, 575

Absolute values

function, definition, 132

inequalities used in calculus, 50–51

properties of, 51–54

Acceleration, due to gravity, 538

Acute reference triangle, 108

Algebra

definition of, 3

of derivatives, 275

of infinity, 38–39

as a language for thinking, 7–9

language of, 5

ordinary, 41

as shorthand of mathematics, 10–11

Algebraic functions

asymptotes, 191–195

computing limits methods, 177

evaluating limits methods, 178–186

direct method, 178

factorization method, 178–180

method of simplification, 183–185

rationalization method, 183–185

standard limit in solving special type of

problems, applications, 180–183

infinite limits, 190–191

limit at infinity, 187–190

definition of, 187–190

Allied angles, 111–114, 112

Analytic geometry, 64

Angle

degree measure of, 99–100

of inclination, 540

of magnitude and sign, 101–102

in quadrant, 111

in standard position, 98

between two lines, 92–93

Angle of inclination of line, 71

inclination and slope of line, relation

between, 74–75

slope (or gradient) of nonvertical line, 72–74

Angular acceleration, 540

Angular velocity

definition of, 540

Antilogarithm, 353–354

of a negative number, 355

Applications

of differentiation in geometry, 540–548

of the «, d definition of limit, 163–165

of the function ex, 390–394

of the laws of exponents, 342

of logarithms, 350

of maxima and minima techniques, 597–604

of trigonometric identities in simplification

of, 441–443

Applying differentials, to approximate

calculations, 492–494

Approximating polynomial, 667

Arbitrary constants, 4

Arc lengths, positive and negative, 102–103

Arithmetic, 1, 41

definition of, 3

Asymptotes, 191–195

definition of, 192

horizontal asymptotes, 192

oblique asymptotes, 192–195

vertical asymptotes, 192

Auxiliary function, 673

Average speed, definition of, 248

Basic elementary functions. See Elementary

functions

Bijective function, 27

Binary operations, 41

Binomial expansion, 14

Binomial theorem, 363
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Boundary conditions, 396, 397

Bounded function, 326–328

Cardinal number of a set, 32–33

Cartesian coordinates, 64, 122, 125, 126, 473

system, 94

Cartesian equation, 473

Cartesian product of sets, 19–20

Cauchy’s MVT, 625–627, 629, 630, 633

geometrical interpretation of, 627

hypotheses of, 631

Chain rule, 278, 291–292, 298–299, 303,

319, 389, 424, 437, 450, 463, 534, 685,

686, 696

extension of, 292–294

Change of base, 348–349

antilogarithm, 350

application of logarithms, 350

Circular functions, 680, 682

similarities and differences of, 682–685

trigonometric, 677

vs. hyperbolic functions, 682–685

Codomain, 23, 25–27

Cofunctions, 320

Combinatorial coefficients, 15

Combining functions, 132–137

power functions, 136

root functions, 136–137

simple algebraic functions, and

combinations, 135–136

sums, differences, products, and quotients of

functions, 133–134

Common logarithm, 336–337, 359

advantages of, 346–348

of a (positive) number, 351–353

Comparing sets, without counting their

elements, 32

Completeness property of real numbers, 59

Composite function

definition of, 139

domain of, 139–141

Composite numbers, 3–4, 42

Computing derivatives

basic trigonometric limits and their applications

in, 307–323

by chain rule, 295

usefulness of trigonometric identities, 300–302

Computing limits, 166, 168

of algebraic functions, methods for, 177–195

of exponential and logarithmic functions,

methods for, 401–415

Concavity, second derivative test for, 567–569

Concept of “function.” See Fractions “f ”

Concept of logarithm of a positive real

number, 339

Constant difference theorem, 623

Constant function, 135, 167

degree of, 135

theorem, 622

Continuity

on an interval, 224–225

concept, of function, 197

continuous functions, properties of,

226–233

definition of, 204–214

function definition of, 207–209

intuitive definition of, 201–204

one-sided limit to one-sided, applications, 224

removable and irremovable discontinuities of

functions, 211–214

terms of limit, point of discontinuity, 211

trigonometric, exponential, and logarithmic

functions, 215–224

Continuous variable, 4

Coordinate geometry, 64

Coprime numbers, 4, 42

Cosine function, 308

Coterminal angles, 107

trigonometric ratios, 111

Countable sets, 36

Counting numbers, 41

Cubic function, 135

Cubic polynomial, 7

Curve

angle between two, 546–548

Cartesian equation of, 473

concave down, 571, 573

concave up, 570, 573

cubic, 662

cycloid, 476

for exponential decay, 393

for exponential growth, 393

of hyperbolic functions, 686–688

slope in polar coordinates, 548–550

Decay, 390, 392, 393, 395, 397, 399

Decreasing functions, 146, 147

Degree of a polynomial, 5

Denseness, property of, 55

Dependent variables, 24, 30, 131, 235, 246, 251,

254, 379, 488, 489

Derivatives

of composite function, 290–299

constant rule for, 281–282

definition of, 556

of differentiable functions, 511
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dy/dx, with reference to the Cartesian

form, 481–482

of extended forms of basic trigonometric

functions, 320

first derivative test for rise and fall, 556

function, 236

function f(x), definition of, 275

of functions, represented

parametrically, 477–481

higher order

implicit functions, 516

Leibniz formula, 517–521

parametric functions, 516–517

with respect to extended forms, 514

increasing and decreasing functions, 551

intervals of increase and decrease, 557

of inverse functions, 302–305

of one function with respect to the

other, 483–484

method of substitution, 484–486

of product of two functions, 281–284

of quotient, 278

of two functions, 284–286

rule, 495

second-order, 512, 516

of some basic elementary function, 279

of sum (difference) of functions, 280

third-order, 512

Die away factor e�kt, 395

Difference quotient, 277

Differentiable function, 257, 552

Differential equation, solution for, 394–395

time constant, 395–399

Differential of dependent variable y, 488

Differential of the independent variable, 488–489

Differential rule, 495

Differentials of basic elementary

functions, 494–495

arithmetical operations on functions, 495

composite function, 496–498

Differentials, of higher orders, 521–523

rate of change of function, 523–534

Differentiation, 256

closed interval, 552

continuous function, 552

increasing and decreasing functions, 552

open interval, 551

Differentiation, in geometry, 540–548

angle between two curves, 546–548

length of the normal, 542

length of the subnormal, 542

length of the subtangent, 542

length of the tangent, 542

polar coordinates

angle between two curves, 550

slope of curve, 548–550

Differentiation rules, 305

Directed angles, 98

Dirichlet function, 142, 148, 201

Discontinuity

classification of, 214–215

points of, 197

Distance formula, 69–70

Distinct functions, 142

Diving board function, 157, 158

Division algorithm (or procedure) for

polynomials, 6

Division by zero, 16–17

Division of numbers, 343

Domain, 23–25, 130, 134, 225, 437, 558, 691, 697

of composite function, 139

natural, 130, 132, 198, 203, 256

and ranges of trigonometric functions, 111, 130

of relation, 21

restricted, 420, 433

Elementary functions, 147, 148, 201, 210, 264,

276, 278, 477

differentials of, 494–495

examples of, 148

Elementary set theory, 19

Equality of ordered pairs, 20

Equation of a nonvertical line

in the intercept form, 87–88

Equation of tangent, 541

Equations of a line, 83

point–slope form, 84–85

slope–intercept form, 85–86

two-point, 86–87

x-axis, y-axis, and the lines parallel to the

axes, 83–84

Equivalent sets, definition of, 33

Errors, 503–509

absolute, 504

percentage, 504, 506–508

relative, 490, 504

Euclidean geometry, 63

Euler’s identity, 681

Evaluating limits methods, 178–186

direct method, 178

factorization method, 178–180

method of simplification, 183–185

rationalization method, 183–185

standard limit in solving special type of

problems, applications, 180–183

Even function, 143
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Even numbers, 3

EVT. See Extreme value theorem (EVT)

Explicit functions, 453, 454

Exponential decay, 395

Exponential functions, 148, 362

finding the derivative of, 381–382

standard limit of, 216

Exponential rate of growth, 383–385, 390, 392

Exponential series, 364–365

methods to obtain, 365–369

Expressions, and identities in algebra, 12–15

Expression 2x, 362

Extreme value theorem (EVT), 228, 596, 598,

618, 619

Factorization

method, 178–179

of a polynomial, 6

Factors of a polynomial, 6

Finite set, definition of, 33

Fixed number, 310

Formal differentiation, 279

Formulas, 130, 482

for derivatives of basic trigonometric

functions, 319

for derivatives of hyperbolic functions, 685, 689

for free fall near the earth’s surface, 249, 538

using the chain rule, 437

Fractions “f ”

complex, 2

to decimals, 1

improper fraction, 2

proper fraction, 2

simple, common, or vulgar fraction, 2

unit fraction, 2

Functions, 20, 24, 129. See also Combining

functions; Composite function; Constant

function; Hiccup function; Hyperbolic

functions; Identity function; Implicit

functions; Increasing functions; Inverse

function f�1; Trigonometric functions

alternative definition of, 21–23

average rate to actual rate, 237–238

codomain, 23

composition of, 137–141

definition of, 130, 197

dependent and independent variables, 130–132

derivative as rate function, definition of, 239

differentiability and continuity, 257, 264–270

discontinuous/continuous, 197

domain, 23, 130

elementary/nonelementary, 147–148

equality of, 142

even and odd functions, 143–144

exponential and logarithmic functions,

derivatives of, 264

historical notes, 272–274

idea of derivative of, 235

image, 23

important observations, 142–143

increasing and decreasing, 144–147

increment ratio, 246

instantaneous rate of change, 239–245

instantaneous velocity, problem of, 246–247

as machine, 129–130

modes of expressing, 24–25

monotonic, 145

neither increasing nor decreasing, 145–147

notation for increment, 246

observations, 271–272

physical meaning of derivative, 270

raising function to power, 137

range of, 23

rule for, 131

special, 132

trigonometric, derivatives of, 263

types of, 25–28

Fundamental laws, of logarithms, 345

Fundamental trigonometric identities, 117

General exponential function, 276

General linear equation, 88–89

General logarithmic function, 375–376

graphs of logarithmic functions, 376

graphs of mutually inverse functions, 377–378

observations from graphs, 376–377

Geometrical interpretation, 48

of differential dy, 490–492

Geometrical progression, 393

Geometrical relationship, 377–378

Graph of equation in R2, 77

Graphs of exponential function(s), 373–374

notation, 375

two-dimensional Cartesian frame, 373

Greatest common divisor (G.C.D.), 4

Greatest lower bound (g.l.b.)

definition of, 60–61

Greatest value, of function, 576

Guessed number, 163

Hiccup function, 157

Highest common factor (H.C.F.), 4

Hindu–Arabic numerals, 1

Horizontal asymptote, 362

Horizontal-line test, 420

Horizontal tangents
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with local maximum/minimum, 565–566

without maximum/minimum, 566–567

Hyperbolic cosine, 677, 681, 682

Hyperbolic functions, 143, 677, 680, 682

curves of, 686–688

derivatives of, 685–686

fundamental identity for, 678

indefinite integral formulas for, 689

inverse, 689–699

differentiation of, 694–699

logarithm equivalents of, 691–694

similarities and differences of, 682–685

sinh and cosh, 699–701

trigonometry of, 681

vs. circular functions, 682–685

Hyperbolic radian, 701

Hyperbolic secant, 678

Hyperbolic sine, 677, 682

odd function, 682

variables, 681

Hyperbolic tangent, 678

Idealization of the function f(t), 394

Identity function, 133, 135, 375, 488

Imaginary number, 681

Implicit differentiation, 454, 455

difficulties, 455–463

equation �(x, y)¼0, 457–459

equation x2þ y2¼�1, 455–457

method of logarithmic differentiation

examples illustrating process, 464–472

to find the derivative d(xn)/dx, 463–464

to simplify differentiation, 464

using power rule and the chain rule, 463–464

technique of, 454–455

Implicit functions, 453, 454

Increasing functions

graphs of, 144, 147

Independent variables, 24, 30, 130, 584

Indeterminate exponential forms, 645

Indeterminate form, 646

Indeterminate limit problems, 645

Index of the radical, 340

Induction, 9–10

Infinite discontinuity, 212, 213, 215, 229, 585

Infinite set, definition of, 34–35

Infinity

algebra of, 38–39

good and bad uses of, 195

limit at, 187

notion of, 37–38

size of, 38

Instantaneous acceleration, 254

Instantaneous rates, 254, 271

Integrals in differential notation, 499–503

Intermediate value theorem (IVT), 225–226,

618–619

Intermediate zero theorem, 226

Interpretations of the notation dy/dx, 498–499

Intervals

absolute value inequalities, definition of, 49–50

bounded and unbounded, 47

of convergence, 659

of monotonicity, 557, 558, 560

usefulness of, 47

Inverse circular functions, 694

Inverse cosecant function

applications, 438–441

formula for derivative, 436–437

Inverse cosine function, 425

definition of, 425–426

formula for the derivative of, 427–428

Inverse cotangent function, 431

definition of, 431–432

formula for derivative of cot�1x, 433–434

graph, 432

Inverse function f�1, 29–32, 137, 420

derivatives of, 302–305

Inverse hyperbolic cosine function, 690–691

Inverse hyperbolic cotangent function, 691

Inverse hyperbolic functions, 694, 697

Inverse hyperbolic sine function, 689

Inverse secant function, 433

formula for derivative of, 433–436

Inverse tangent function, 428

definition of, 429–430

formula for derivative of, 430–431

Inverse trigonometric functions, 148, 276,

417–418, 437, 441–443

Irrational numbers, 41, 392

set of, 2, 43

Jump discontinuity, 212

Lagrange form, 674

Lagrange’s mean value theorem (LMVT), 625,

626, 627. See also Mean value

theorem (MVT)

Laws of exponents, 340, 341–342

applications, 342

Least common multiple (L.C.M.), 4

Least upper bound (l.u.b.)

definition of, 60

Leibniz notation, 291, 487, 511, 532, 533

Leibniz rule, 283

Lengths of tangent and normal, 546
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L’hospital’s rule, 628–632, 634, 644, 648

based on Cauchy’s MVT, 629–630

first form, 630

indeterminate forms, 627–630

Johann Bernoulli, 644

stronger form, 629–632

L’hospital’s theorem, 629, 632–638

evaluating indeterminate of type form, 638–644

Limit concept

algebra of limits, 168

extension to, 175–176

finding, simpler and powerful rules for, 166–168

of function, 149

informal discussion, 151–152

intuitive meaning of, 153–163

«, d definition, 161

formal definition, 160

geometric interpretation, 161–163

precise definition, formulating, 160

rigorous study, 160

main limit theorem, applications of, 171–172

preliminary analysis, 164, 165

rigorous definitions of, 187–190

rules, 311

squeeze theorem/sandwich theorem, 175

substitution rule, 172–174

testing, 163–174

theorem, 168–171, 177

substitution, 174

of the type (I), 328–332

of the type (II), 332–335

useful notations, 149–151

Limits, indeterminate forms, 646

indeterminate exponential forms, 648–649

indeterminate product forms, 646–647

indeterminate sum and difference

form, 647–648

Limits of exponential, and logarithmic

functions, 335–336, 401

limits based on the standard limit, evaluation

of, 410–415

methods for computing, 401

basic limits, 403–410

laws of logarithms, 402–403

logarithms, 401–402

Linear approximation, 490, 621, 653, 654,

656, 657

Linear function, 29, 133, 135, 246, 313, 320,

490, 615

Local extreme value, 576

Local extremum, 575

Local maximum, 565–567, 575, 577

Local minimum, 566, 575, 577, 578

Locus, 77

and equation, 78

obtain the equation of, 79–82

points not on, 82

points on, 82

Logarithm, definition of, 344

Logarithmic functions, 148, 276, 385, 563

finding derivative of, 379–381

Logarithmic rate of growth, 392

Logarithm method of calculation, 355–357

Logarithm(s) to the bases 10 and e, comparison of

properties

common logarithms, 369

of (positive) number, characteristic of, 370

natural logarithms, 369–370

naturalness of natural logarithms, 370

Maclaurin series, 667

expansion of, 668

Maclaurin’s formula, 669, 675

Main limit theorem

applications of, 171–172

constant multiple rule, 168

product rule, 168

quotient rule, 168–169

substitution rule, 172–174

sum rule, 168

Mantissa as positive number, 346

Mantissa, method of finding, 352–353

Mantissa of logarithm, 346

Many–one function, 26

Maxima and minima techniques, applications

of, 597–604

problems, expression of function, 598–604

theorem, 598

Maximum and minimum of a function on whole

interval, 593–596

extreme value theorem, 596–597

Mean value theorem (MVT), 605, 625, 653. See

also Cauchy’s MVT; Lagrange’s mean

value theorem (LMVT)

alternate form of, 621–622

applications of, 622–623

continuous function, 618

finite increments, 620

geometric aspect, 619

geometric significance of function F(x),

616–617

hypotheses, 618

Kinematic aspect, 620

Lagrange’s theorem, 616, 617

linear approximations, 656

nonvertical lines, 614

quadratic approximations, 657

Rolle’s theorem, 605, 615
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for second derivatives, 654–657

to Taylor’s formula, 653

for third derivatives, 657

Measure of an angle, 98–99

Monomial, 5

Monotonicity theorem, 622

Motion in straight line, derivatives, 535–539

acceleration, 535

under gravity, 538–539

velocity, 536

Multiplication of numbers, 342

MVT. See Mean value theorem (MVT)

Naperian logarithms, 344, 371

Natural decay, 395

Natural domain, 130, 132, 197, 198

of derivative, 256

Natural logarithms, 336–337, 344, 359

Natural numbers, 1, 3, 41, 42

Negative logarithm, method of expression, 346

Negative numbers, 41

Negative rational numbers as exponents, 341

Neighborhood of a point, 54

definition of, 54

deleted neighborhood, 54–55

right and left neighborhood, 54

useful statement, 55

Nonelementary functions, 277

examples of, 148

Nonincreasing functions

graphs of, 145, 146

Nonpolynomial function, 672

Nonstrict inequality, 144

Notations, 177, 343–344

in algebra, 11–12

of f ’(x), 511

Notion

of an instant, 247

of continuity, 204

of directed distance, 66–69

of even and odd functions, 114–115

of infinity, 37–38

of limit, 149, 209, 235

of a tangent, 241

Numerical function concept, 129, 131, 258

Odd function, 114, 143, 144, 682

Odd numbers, 3, 42

One-sided limits, 175–176

One-to-one functions, 25, 418

distinguishing geometrical properties, 418–420

Onto function, 25–27

Operations involving negative numbers, 15–16

Operator of differentiation, 277

Ordered pairs, 19

Organic rate of growing, 392

Origin of e, 359–362

compound interest, 360–361

problems, 371–372

simple interest, 360

true compound interest, 361

Parabola, 473, 474, 662

Parallel lines, 89–90

Parameter, 474

circle, 475

cycloid, 476–477

definition of, 474–475

ellipse, 475–476

Parametric equations, 473, 474, 548

definition of, 473–474

Period of a periodic function, 115

Plane and Cartesian coordinates, 65–66

Plane curve, 473

Point of inflection, 569

definition of, 571

Point of intersection, 547

Point of relative maximum, 577

Point of relative minimum, 577–579

Point of tangency, 541

coordinates of, 545

Point–slope form of the equation of a line, 84

Points of extreme values of a function, 576

Polar coordinates, 93, 94, 95, 122, 126, 549

rectangular coordinates, relations, 548

Polynomial approximations, 658, 660, 669–671

for arbitrary functions, 672–676

definition of, 658–659

Maclaurin series for f(x), 666–669

power series, properties of, 659–666

Polynomial equations, 7, 29, 613

solutions/roots, 7

Polynomial function, 114, 133, 135, 174, 228, 246,

512, 560, 658, 662

Polynomials

behave like integers, 6

degree of, 5

equations and their solutions, 7

value and zeros of, 6–7

Positive integers, 1

Positive numbers, 41

Positive rational numbers as exponents, 341

Power functions, 136, 147, 276

derivative, 259

vs. exponential, 362

Power rule, 287, 298

of differentiation for negative powers,

286–290
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Power series

coefficient of, 658

continuous function, 659

Prime numbers, 3–4, 42

Properties of e, 365

Pythagorean identities, 117

Pythagorean theorem, 69

Quadrantal angles, 111

Quadratic approximations, 657, 661

Quadratic function, 135

Quadratic inequality, 558, 559

Quadratic polynomial, 7

Quotient rule, 174

Radian measure, 320–321

of an angle, 100–101

relation between degree and, 103–104

Radical symbol, 340

Range, 130

Rational expression, 6

Rational functions, 135, 174

Rationalization, 171, 185, 186

Rational numbers, set of, 1, 2, 41, 43, 44, 59, 142,

341, 600

Ratio sin x/x, 308

Real numbers, 310

algebraic properties of, 44–45

completeness property of, 55

axiom of greatest lower bound, 59–60

axiom of least upper bound, 59

bounded subsets, 56

greatest lower bound (g.l.b.) of a set, 57–59

least upper bound (l.u.b.) of a set, 57

unbounded subsets, 56–57

definition of, 44

of absolute value of, 47–48

geometrical picture of, 44

inequalities, 45–47

relation between radian measure and, 104–105

set of, 2–3, 43

system, 1

Real-valued function, 551

Rectangular Cartesian coordinates

and polar coordinates of point, relation

between, 95–96

Relations, 20. See also Geometrical relationship

between differentiability of a function and

continuity, 264

domain of, 21

between exponential and trigonometric

functions, 680–682

between the slopes of (nonvertical) lines, 90–92

Relative extreme values, 576

classification, 577

of function, 576

Remainder theorem, 6

Rolle’s theorem, 605, 606, 626, 627, 674

auxiliary function, 615

converse of, 609

dynamic face to, 612

geometric conclusion of, 612

hypotheses of, 655

useful interpretation of, 612–613

Root functions, 136–137

cube root function, 136

nth root function, 136

square root function, 136

Sandwich theorem, 175, 310, 311–314, 327

Section formula, 70–71

Set of integers, 1

Signed length, 66–69

Signum function, 158, 212

Simplification, 174, 183–185

application of trigonometric identities in, 441

inverse trignometric functions for, 443–444

Sine function, 308

Single function, 142

Slope and intercepts of the line, 89

Slope, definition of, 76

Slope less point, 607, 608

Slope of the tangent line, 540

Slopes of (nonvertical) lines, 72, 73

perpendicular to one another, 90–92

Squeeze theorem, 175

Squeezing theorem, 175, 311

Standard limit, 179, 385–386

applications of, 180–183

different exponential functions, derivatives

of, 389–390

exponential function ax, derivative of, 386–388

logarithmic function logax, derivative

of, 388–390

Standard limits, 325, 326

Stirling’s formula, 372

Straight angle, 102

Strict maximum (minimum) value, 579

Substitution rule, 172–174, 307, 322, 323

Symbols “f ” and “f(x)”, distinction

between, 23–24

Taylor polynomials, 653, 662, 668

Taylor series expansion, 668, 669

Taylor’s formula, 621, 658, 669, 674, 675

Taylor’s theorem, 363, 657, 658
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Theorems

definition of critical points of f(x), 583

function relative extreme values, 579–580

relative extremum, sufficient condition

for, 584–586, 588

scheme for investigating functions, 586–587

in terms of second derivative, 588–593

in terms of the first derivative, 584–586

for value at derivative vanishes, 580–583

stationary point(s) of f(x), 584

Time constant, 395

Transcendental functions, 143

Triangle inequality, 52

Trigonometric equations, 115–120

Trigonometric formulae, 680

complex variable, 680

exponential, relation, 680–682

Trigonometric functions, 120, 143, 148,

276, 420

derivatives by making substitution, evaluation

of, 443–451

derivatives of, 314

alternative simpler methods, 317–322

of sin x and cos x, 314–316

of tan x, 316–317

domains and ranges of, 111

evaluate sin�1, 423

graphs of, 115

and inverses, 420–421

inverse sine function, 421–423

derivative of, 423–425

line values of, 127–128

with necessary simplifications, 442–443

properties of, 114

notion of even functions, 114

notion of odd function, 114

notion of periodic function, 115

standard limit of, 215

in terms of sin u and cos u, 107

Trigonometric identities, 115–120, 116,

310, 484

application of, 441

in computing derivatives, 300–302

Trigonometric limits, 321

Trigonometric ratios, 105–107, 121

of an angle of large measure, 111

angle u in standard position, 106

approach for calculating values of sin u and

cos u, 107–109

coterminal angles, 107, 111

ranges of sin u and cos u, 109–111

two angles of opposite sign but of equal

magnitude, 109

Trigonometry, 97

revising useful concept in, 120–126

Uncountable set, 36

Unusual function, 142

Value, of a polynomial, 6–7

Value of e, 362–364

Variables, 2, 4, 24, 30, 130–132, 362

algebraic equation, 76–77

Whole numbers, 1, 42

Zero angle, 102

Zeros of a polynomial, 6–7
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