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1. Introduction 

Harold A. Mooney and Richard J. Hobbs 

At present there is enormous concern about the changes that are occurring 
on the surface of the earth and in the earth's atmosphere, primarily as a 
result of human activities. These changes, particularly in the atmosphere, 
have the potential for altering the earth's habitability. International pro­
grams unprecedented in scope, including the International Geosphere­
Biosphere Program, have been initiated to describe and understand these 
changes. The global change program will call for coordinated measure­
ments on a global scale of those interactive physical and biological pro­
cesses that regulate the earth system. The program will rely heavily on the 
emerging technology of remote sensing from airborne vehicles, particularly 
satellites. Satellites offer the potential of continuously viewing large seg­
ments of the earth's surface, thus documenting the changes that are occur­
ring. The task, however, is not only to document global change, which will 
be an enormous job, but also to understand the significance of these 
changes to the biosphere. Effects on the biosphere may cover all spatial 
scales from global to local. The possibility of measuring biosphere function 
remot~ly and continuously from satellite imagery must be explored quickly 
and thoroughly in order to meet the challenge of understanding the con­
sequences of global change. Initial guidelines and approaches are currently 
being formulated (Dyer and Crossley, 1986; JOI, 1984; NAS, 1986; 
Rasool, 1987). 

There are many conceptual and technical issues that must be resolved 
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before we can confidently monitor biosphere functioning. In July 1988 a 
joint U.S.-Australia workshop was held at the East-West Center, Hono­
lulu, Hawaii, funded under a bilateral agreement through the U.S. Na­
tional Science Foundation and the Australian Department of Industry, 
Technology and Commerce. Scientists from both countries met to address 
a number of specific problems, focusing on the kinds of functional prop­
erties that can now be monitored from aircraft and from space, the system 
generality of currently available sensing information, and, finally, the kinds 
of experiments, measurements, or sensors that will be required to improve 
our capability to measure continuously biosphere function. The aim of the 
meeting was to examine the monitoring of individual environmental factors 
driving biological processes (e.g., leaf area index, cover) and chemical fea­
tures of the biotic system (e.g., protein and lignin content) that control 
function. Further, we examined the remote sensing of the actual processes 
central to biosphere functioning; namely, the exchanges of carbon, water, 
and trace gases. Finally, the meeting tackled the-remote sensing of vegeta~ 
tion and landscape processes. In other words, we covered all levels of bio­
sphere functioning, from the remote sensing of the underlying mechanisms 
to the detection of structural changes at the vegetation and landscape 
levels. 

At present, imagery is available from a number of satellites that offer 
differing sampling frequencies (every 16 days for the current Landsat series 
versus daily for the National Oceanic and Atmospheric Administration 
(NOAA) Advanced Very High Resolution Radiometer (AVHRR) satel­
lite), differing swath widths (2700 km in the case of the NOAA satellite to 
only 60 km for the French National Space Program SPOT satellite), and 
differing sampling resolutions. Further, the spectral regions scanned differ, 
as does the availability of photographic modes. Finally, the length of re­
cord available varies from the Landsat series, which commenced in 1972, 
to a few years in the case of SPOT (Greegor, 1986). Future development, 
including the Earth Observing System (EOS), offer increasing diversity 
and volumes of data. 

The basis for assessments of the structure and function of biological fea­
tures of the earth's surface is the information contained in the reflectance 
of radiation of specific spectral regions. Pigments differentially absorb visi­
ble radiation, as does water in the short-wave infrared region. Reflectance 
in the near infrared is related to leaf structural characteristics. Thus spec­
tral information can yield correlative assessments of structural and func­
tional features of vegetation relating to these characteristics, such as plant 
productivity and stress status (Rock et al., 1986). Good correlations have 
been made between absorptance in various visible bands and phytoplank­
ton biomass and primary productivity. Developments utilizing satellite­
derived measures of surface sea temperature and wind-induced mixing 
hold promise of refining these correlations. As Perry (1986) has noted, 
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"Satellite remote sensing .... is the only tool that can provide information 
on marine primary production on a global scale." Recently, approaches 
have also been developed that have yielded good correlations between 
spectral information and regional-scale terrestrial primary productivity 
(Tucker et aI., 1985) and water balance (Sellers, 1985). In addition, satel­
lite imagery has been used for structural surveys of large areas of terrestrial 
vegetation (Roller and Colwell, 1986), including monitoring tropical forest 
clearing (Tucker et aI., 1984). 

The assessment of most of the phenomena described here is by correla­
tion, which in many cases may be unique to specific systems. This means 
that we will have a continuing need to relate remotely sensed data with 
ground- or ocean-based measurements. Also, and importantly, new experi­
ments must be performed that would alter independently structural and 
functional properties of various systems in conjunction with new sensor 
development (Greegor, 1986). In this regard, experiments are now in pro­
gress that are relating g-round-based with aircraft- and satellite-sensed 
measures of energy and water fluxes of selected ecosystems (Rasool and 
Bolle, 1984; Sellers et aI., this volume). 

In summary, the technology is now becoming available to make truly 
global assessments of the earth's changing structural and functional prop­
erties. Although the promise is great, considerably more work is needed to 
make this a reality. In this volume we aim to review current progress and 
point to new directions for the future. 
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2. Remote Sensing of Terrestrial Ecosystem 
Structure: An Ecologist's Pragmatic View 

R. Dean Graetz 

This chapter reviews the scientific concepts involved in the application of 
remote sensing technology to current and future problems in terrestrial 
ecology. The approach is pragmatic, being decisively user oriented, and is 
based on the proposition that currently available technology far exceeds 
the scientific capability of interpreting and applying it. For most terrestrial 
ecological problems of current and future concern, data types and volumes 
are not immediately limiting. Rather it is the understanding of the eco­
logical significance of what has already been acquired that fetters the 
wider, more constructive use of remote sensing technology. 

This situation must change! The problems that face ecologists are global 
in scale, yet require solutions and management that may be local or highly 
site specific. For example, there are global phenomena that involve the 
'commons' of atmosphere and ocean, such as the greenhouse effect, El 
Nino, and acid rain. These jostle for attention along with the rapidly pro­
liferating, small-scale problems of deforestation, soil erosion, and the like, 
which are locally severe and may in aggregate have global consequences. 

It therefore can be argued that global understanding is required to act 
rationally at local scales; that is, to address local-scale problems that may 
have global ramifications. Global understanding is an impossible task for 
the discipline of ecology to achieve without extensive and intensive use of 
remotely sensed data. Remote sensing is the tool to use because it provides 
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the only data sets that span the temporal and spatial scales of local systems 
aggregated to global systems. 

Ecologists have been remiss by their diminutive input to the develop­
ment and application of remote sensing to biosphere-scale problems. Too 
many data have been collected by those who are not operational users. 
Left in the hands of technocrats, remote sensing has frequently become an 
end in itself, rather than the powerful tool it can be. Given the current and 
widely disseminated capability to image the earth on a daily basis, few 
doubt the power of remote sensing. Yet in spite of this great power, the 
tool is blunt and the potential unrealized. The structure of this chapter is 
to indicate ways in which the tool can be sharpened. The prescription is not 
a technological "fix." Instead an increased input is required from field eco­
logists to the most critical stage in the use of remote sensing, the formula­
tion of realistic scene models. Second, a change is required in ecologists' 
world view, with critical appraisal of the consequences for ecological de­
scription and analysis of accepting remotely sensed data as the primary 
data set. 

Determining Future Requirements 

The requirements for assessment and monitoring the structure of terres­
trial ecosystems can be defined by four question: Why? What? Where? 
How? The methodology, the how, is the focus of this chapter, but it is best 
approached by considering the other three questions first. 

The Why 

Three widely accepted observations of the condition of the biosphere pro­
vide the motivation for global-scale studies. These are a recognition that 
biotic and abiotic components of the biosphere are inextricably linked, that 
human impacts on the earth now approach the global scale of biosphere 
processes, and that there are limits of habitability of the earth. This is the 
nature of the problem. It is global in scale with the overall objective of 
understanding the interactive role of the biosphere in global change. 

The Where 

Although the scale is ultimately global, the scope of the task varies greatly 
with geographic location. For example, one of the dominant issues of 
global change will be global habitability. Global habitability has several 
components, each of which is driven by forces with dissimilar response 
times and information requirements. The component of resource deple­
tion, for example, will be forced by a burgeoning human population geog­
raphically located in the tropics or sub tropics where we have the most ex­
tensive and rapid ecological transformation yet known on the earth. Of the 
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total world population of 5 billion, more than 60% live in the tropical and 
subtropical belts, where, through rapidly expanding subsistence land use, 
the earth's most productive ecosystems are being destroyed at an ever­
increasing rate. Therefore, the assessment and monitoring of tropical and 
subtropical terrestrial ecosystems are now of major concern to national and 
international agencies (Malingreau, 1986; Matson et aI., 1987; Matson and 
Holben, 1987). The difficulty of remotely sensing these cloud-covered 
landscapes is well known. 

The What 

The biosphere, or even terrestrial ecosystems, is a somewhat abstract con­
cept. Such concepts can be made more concrete by considering the space 
mission image of the earth, a blue-green planet laced with swirls of clouds. 
The planet is blue because 71 % of its surface area is ocean. At the global 
scale, the oceans are far more important than the land in the exchange of 
solar energy, the process that ultimately drives the atmospheric engine. 
Thereore, any studies of the terrestrial contribution to global climate 
change must be comparable to, and in sympathy with, those for the oceans. 

A closer examination of the green parts of the globe, the terrestrial 
ecosystems, reveals that they are not all green. In fact, it is only the forests 
and crops, approximately 25% of the land area, that are green. The land is 
only green where the projected foliage cover (PFC) of the vegetative cover 
is greater than 1. The remaining 75% of the earth's surface is covered by 
vegetation that is sparse and shows the color of the soil beneath. There­
fore, although the green, highly productive areas of the earth's surface are 
of considerable interest in studies of carbon budgets, global monitoring 
requires that remote sensing technology be applied to very large areas of 
the land surface where the vegetative cover may be either a relatively 
minor or a fluctuating component. However thin or variable, this film of 
vegetation is the driving force of all terrestrial biological processes and is 
the interface of 29% of the global surface with the atmosphere. 

The what, therefore, becomes the properties of vegetation that deter­
mine the exchange of energy and matter between terrestrial ecosystems 
and the atmosphere. 

The Vegetation Component of Ecosystems 

The characteristics of ecosystems are determined by the primary trophic 
level, the vegetation. Therefore vegetation can be taken as the functional, 
tangible equivalent of terrestrial ecosystems. Vegetation is the cover of 
plants in an area and can be characterized by three measures. The first is 
physiognomy, where the physiognomy of individual plants includes the 
attributes of leaf shape, growth form, phenology, and so on, and for 
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assemblages of plants is more usually called vegetation structure. Vegeta­
tion structure has micrometeorological significance because it determines 
the magnitude and direction of the exchange of matter, momentum, and 
radiation between the earth's surface and the atmosphere (Running, 1986; 
Sellers and Dorman, 1987; Wilson et aI., 1987; Taconet et aI., 1986). 

The second characteristic of vegetation is its dynamics. Vegetation 
changes in space in response to climatic and landscape factors, and, at any 
one location, alter in time. These temporal changes include the rhythmic 
phenological changes of growth and flowering, as well as the irregular, 
episodic alterations of disturbance (see Hobbs, this volume). 

Disturbance is an intrinsic determinant of vegetation structure and 
composition. All vegetation is shaped by the disturbance regime it expe­
riences. Disturbance regimes are the patterns of change and recovery that 
have characteristic impacts, frequencies, and spatial scales. For example, 
the time scales of disturbance may range from a storm (days), to the 
ploughing of crops (years), to clearing of forests (centuries); for example, 
see Nelson et a1. (1987). Spatial scales range from the fine grain of grass­
lands (square meters), to the gap dynamics of forests (hectares), to the 
extensive (105 ha) wildfires of tropical savannas (Matson et aI., 1987; Mat­
son and Holben, 1987). 

The disturbance regime and its consequence, the successional recovery, 
are an important characteristic of all plant communities because they de­
termines the structure and structural dynamics of vegetation. The biotic 
response to disturbance generates the observable vegetation patterns 
(Delcourt et aI., 1983). The space/time domains of these processes in, and 
properties of, vegetation are summarized as Figure 2.1. 

Experimental terrestrial ecology is limited to the space/time domains of 
human experience. Remote sensing in general, and aerial photography in 
particular, has not yet facilitated an understanding and mapping of vegeta­
tion patterns of the entire globe. Satellite remote sensing is the only data 
source that can be used to assess and monitor this basic renewable resource 
on time and space scales that are comparable to those of the human trans­
formation of the resource. 

The last relevant characteristic of vegetation is its taxonomic composi­
tion. The taxonomic description of vegetation is based on its phylogenetic 
or evolutionary affinities and has been the focus of botanical science for 
several centuries. Thus, a taxonomic description has importance because 
the name of any species is the key by which data on such characteristics as 
physiognomy, phenology, productivity, and longevity are stored. How­
ever, in this functional context, the traditional taxonomy, the phylogenetic 
affinities of vegetation, has little value and will probably prove a hindrance. 
In the problems facing ecologists, function is ali important and simplifica­
tion is needed. The myriad of species and community classifications must 
be grouped by functional equivalence in terms of response to disturbance, 
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Figure 2.1. A diagrammatic representation of the space/time domains of distur­
bance, biotic response, and the resultant observable patterns of vegetation. Most 
ecological research and understanding is crowded into the space/time domains 
scaled to human experience; the episodic or rhythmic cycles of disturbance and the 
biotic response are studied as population dynamics and mapped as communities. 
The larger- and longer-scaled phenomena have largely been inferred from palaeo 
studies. 

be it by humans, fire, or climatic change. Thus, of the three dimensions of 
vegetation discussed, structure and structural dynamics are fundamental 
for global-scale questions, with taxonomy the least important of the three. 

The Utility of Three Dimensions of Vegetation 

All three dimensions of vegetation description are applicable to global stu­
dies. For example, one of the principal effects of predicted climate change 
will be on vegetation. Potentially, this interaction will be reciprocal; 
climate:induced vegetation changes may well generate feedback on further 
climate change. The simplest approach would be to model vegetation as a 
structure less film of variable thickness across the continents. Such an 
approach might satisfactorily predict some processes-C02 exchange, for 
example-but it does not incorporate the dynamic properties of vegetation 
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that are critical to predicting the response of vegetation as a whole to 
change over time. 

Vegetation will not react as a unit to change or disturbance. Rather the 
outcome is the aggregate of reactions by component species. Ecological 
information is encoded, in part, in the physiological and taxonomic charac­
teristics of plants. To limited extents, these include tolerances of environ­
mental variables, or behavior in competitive conditions and under different 
disturbance regimes. For short-term or equilibrium conditions, it may be 
acceptable to model vegetation as a structureless green film of varying 
thickness. However, for longer term analysis, such as climate change, 
vegetation must be viewed as structured by differentially responsive ele­
ments. This view can be supported only by the inclusion of all three dimen­
sions of vegetation-structure, dynamics, and taxonomy. 

The Difficult Dimension: Taxonomy 

The remainder of this chapter concentrates on the use of remotely sensed 
data to assess and monitor vegetation structure and dynamics. Fortunately, 
although these are the most important dimensions of vegetation, they are 
also the two most amenable to measurement of remote sensing. In con­
trast, the taxonomic composition of vegetation has proved quite elusive 
and cannot be done on regional scales with any reliability using satellite 
data (e.g., Badhwar et aI., 1986a, 1986b). On continental scales, the use of 
spectral-temporal models of phenological behavior ("greening") does offer 
some hope of classifying broad-scale communities (Tucker et aI., 1985). 
Even the higher spatial resolution data sets of aerial photography are 
usually inadequate to determine botanical composition, and taxonomic de­
tail is most accurately determined by ground survey (e.g., van Gils and van 
Wijngaarden, 1984). It is possible, but unlikely, that newer space-borne 
sensors of high spectral and spatial resolution will dramatically improve the 
capability to determine botanical composition. Far greater promise is 
offered by the process of context modeling whereby the (structure and) 
taxonomy of vegetation is inferred from the context of other landscape 
variables such as soil type and elevation, modeled within a geographic in­
formation system (GIS) (Franklin et aI., 1986; Strahler, 1981). 

The GIS Imperative 

Remotely sensed data are not an end in themselves and should be more 
correctly regarded as just one data set within a GIS. It is important to note 
that remotely sensed data become the dynamic information about the bios­
phere, in contrast to the ancillary data sets, such as elevation and soils, 
which are static. Numerous studies have demonstrated the value of ancil­
lary data in increasing the information content of satellite data (Franklin et 
aI., 1986; Graetz et aI., 1986; Graetz and Pech, 1988; Pech et aI., 1986a, 
1986b; Strahler, 1981). 
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The Structure of Vegetation 

A Framework 

The key dimension of vegetation is structure. Over the decades, a wide 
variety of methods for describing and classifying vegetation structure have 
been developed (Mueller-Dombois 1984). The greatest difficulty in compil­
ing global data sets of vegetation is the diversity and disparity of the clas­
sification systems used (Mathews, 1983; Olson et aI., 1983). Because remote 
sensing is the only tool that ecologists have to work with on local to global 
scales, they must adapt their traditional methods of description and clas­
sification to be compatible with the nature of remotely sensed data. The 
first consequence of having to use remotely sensed data is the unfamiliar 
vertical perspective and scale of aggregation. 

A useful framework within which to classify structure is a two­
dimensional framework based on projected foliage cover (PFC or cover) 
and the life form of the tallest stratum; see Figure 2.2. This classification 
(e.g., Specht, 1981; Gillison and Walker, 1981; Walker and Hopkins, 
1984) captures both abundance (cover) and structure (vertical distribution 
of biomass) and is directly compatible with remote sensing because a major 
axis utilizes the vertical view. The description of any vegetation type is 
determined by its location within the two-dimensional space of cover and 
height and a further qualification by botanical composition (Figure 2.2). 
Other classifications (e.g., FAO, 1973; Olson et aI., 1983; van Gills and 
van Wijngaarden, 1984) are not readily transposed to the vertical perspec­
tive of satellite viewing. 

PROJECTED FOLIAGE COVER (%) OF TALLEST STRATUM 

r-----.------r-----T----~----~~ 

Figure 2.2. A very simple classification of vegetation based on the quantitative attri­
butes of projected foliage cover and height of the tallest stratum. Systematic de­
scriptive names could be assigned to any location within the table, for example, tall, 
open woodland. Further prescription could be attched by including a taxonomic 
tag, such as tall, open Acacia woodland. 
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STRUCTURE OF GLOBAL TERRESTRIAL 
VEGETATION 

Critical Divide 

Open Canopies (70%) Closed Canopies (30%) 

___ --+-- ..... TroPical forests (12%) 

Temperate forests (7%) 

Desert (27%) 

10 30 50 70 100 250 500 
LAI > 1 

Projected Foliage Cover (%) of Tallest 
Stratum 

1000 

Figure 2.3. The two-dimensional framework of vegetation structure with domains 
representing a simplified grouping of the world's vegetation. The figures in the 
domain are the relative proportions of terrestrial vegetation in each domain . 
[Derived from the data of Olson et "I. (1983).] 

The most important characteristic of the classification presented in Fi­
gure 2.2 is that this system uses two (structure and taxonomy) of the three 
dimensions of vegetation defined in the foregoing. Also, the location and 
thus identification of any vegetation structural type are determined by two 
variables, cover and height, both of which can be determined by remote 
sensing (e.g., Nelson et aI., 1988). 

There is convergence of vegetation structure. At climatically similar 
sites on different continents, unrelated taxonomic groups of plants con­
verge to similar morphologies and community structure. This is one of the 
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key findings of plant biogeography. Given that community structure repre­
sents an integrated response of physiology to climate, then it follows that 
there is functional equivalence underlying vegetation structure. A recog­
nition, grouping, and description of these functional equivalents-as 
vegetation functional types (VFTs), for example-would simplify the pro­
cess of relating remotely sensed data to vegetation structure. This argu­
ment conforms to a trend among plant ecologists to group like-functioning 
species into guilds or plant functional types (PITs). The emphasis is on 
function rather than taxonomy. Characteristics such as evergreen versus 
deciduous and C3 versus C4 metabolism have greater importance here than 
phylogenetic association. 

Based on the data provided by Olson et al. (1983), a distribution of 
global terrestrial vegetation within the two-dimensional classification of 
structural types is suggested (Figure 2.3). Apart from rain forests and 
crops, the largest proportion of vegetation has an open canopy; that is, 
the projected foliage covet is less than 100% (Table 2.1). Unfortunately, 
almost all of the remote sensing literature has dealt with crops that are 
man-made, dosed canopies. In contrast, there is relatively little collective 
experience in applying remote sensing techniques to the sparse grasslands, 
shrublands, and woodlands that together cover more than 60% of the land 
surface. 

The point at which the PFC is less than 1 determines the type of scene 
models appropriate to relating the spectral data and ecological variables. 
This dependency is twofold. First, where PFC> 1, the interaction of radia­
tion with plants (reflection, absorption, transmission) can be modeled as a 
simple one-dimensional (depth of canopy) process. Conversely, where the 
PFC is less than 1, the vegetation occupies discrete volumes in space and 

Table 2.1. Areas of Terrestrial Vegetation Types Divided Into Closed (PFC> 1) 
or Open (PFC < 1) categories. [From Olson et al (1983) 1 

Type 

Closed (LAI > 1) 
Tropical forest 
Temperate forest 
Cultivated cropland 

Open (LAI < 1) 
Bore~l forest 
Savanna 
Temperate grass-Iands/ 
shrub lands 
Tundra 
Desert 

Area 
(106 km2) 

15 
9 

15 

9 
23 

15 
9 

35 

130 

Proportion (%) 

12 
7 

12 

Subtotal- 30 

7 
18 

12 
7 

27 

Subtotal- 70 
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the interaction of radiation must be modeled as a two- or three­
dimensional process. Second, as the relative proportion of vegetation in 
the scene declines, so does the associated spectral signal compared with 
that of the soil surface. For these plant communities, the soil surface itself 
should be as much an object of attention as is the vegetation. The ecologi­
cal processes of vital importance to the functioning of sparse plant 
communities-the partitioning of rainfall and incoming radiation and the 
redistribution of water, organic matter, soil, and nutrients-all increasing­
ly occur at the soil surface. Some of these processes are dealt with by Pick­
up (this volume). The role of the soil surface relative to vegetation in the 
functioning in sparse communities needs to be assessed and the ability of 
remotely sensed data to capture these processes evaluated more fully. The 
sparse communities are important. The savannas and grasslands, like the 
tropical rain forests, are under increasing pressure from destructive land 
use. 

The Key Variables 

Cover, height, and taxonomy are the key variables by which to describe 
vegetation types. Of these, cover emerges as the key variable with which to 
characterize the structure of vegetation canopies, not only because the 
largest proportion of the global terrestrial vegetation occurs as open struc­
ture, but also because cover will be the prime determinant of the remotely 
sensed signal in the visible to near-infrared (IR) regions. It is in these wide­
ly used optical wave bands that the spectral contrast between vegetation 
and soil is the greatest; see Figure 2.4. Here, the relative cover of vegeta­
tion and that of the soil within the field of view of the sensor determine 
the signal strength. If this can be modeled, and the model inverted, then 
these wave bands can provide accurate estimates of the relative cover of 
vegetation and soil in sparse communities (e.g., Foran, 1987; Graetz and 
Pech, 1988; Pech et ai., 1986b). 

Cover can also be related to other vegetation structural parameters 
such as height, biomass, and density, and for a given structural vegetation 
type these allometric relationships are usually adequate. 

In the short term, much of the concern associated with global habitabil­
ity will be related to the diminution of the productive capacity of terrestrial 
ecosystems, desertification, deforestation, soil erosion, and so on, and the 
sustain ability of land use under a burgeoning human population. In the 
longer term, and in the unlikely event that the human population growth 
rate is checked, the cumulative influence of greenhouse-driven global 
climate change on human habitability may become of prime importance. 
Therefore, an ability to forecast the reciprocal interaction of climate 
change with the functioning of the biosphere generally, and with the ter­
restrial vegetation in particular, becomes an immediate and major objec­
tive. It follows that it is critical to be able to monitor vegetation structure 
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because it can be related to function. And it is the understanding of the 
functioning of the biosphere that is the ultimate goal. Therefore, with our 
concern for climate change we should concentrate on the attributes of 
structure that can be most closely tied to functioning-that is, to ecosystem 
processes-and on modeling the relationships of these with climate. 

The processes of particular interest in climate, and thus biosphere 
change, are the radiation, heat, mass, and momentum exchange with the 
atmosphere, and carbon storage in the biospheric and lithospheric pools. 
Most, but not all, of these exchange processes are between plant surfaces 
and the atmosphere, driven by the incoming energy from the sun and con­
trolled by both surface factors (stomata) and the structural characteristics 
of the canopy itself. Structural characteristics, such as albedo and aero­
dynamic roughness, determine the magnitude of the potential exchanges 
that can occur. Surface physiological factors, stomata, leaf orientation, 
and so forth respond to ambient environmental conditions and soil-water 
potential and act in sequence with the structural controls to reduce the 
potential to the actual. 

The relative importance of these two levels of control, structural versus 
physiological, is evident from the initial prerequisites of Global Circulation 
Models (GCMs). The parameters required for a vegetated land surface 
interacting with the atmosphere are measures of albedo (A), evapotrans­
piration (ET ) , surface roughness (20), and net CO2 flux in the case of 
Global Biosphere Models (GBMs). All of these parameters are deter­
mined by the structure of vegetation. More advanced modeling has in­
corporated the surface internal resistances to capture the "interactive" 
nature of the exchange of energy and matter; for example, the Biosphere 
Atmospheric Transfer System (BATS) model (Wilson et aI., 1987) and the 
Simple Biosphere (SiB) model (Sellers and Dorman, 1987). 

In summary, the capacity to assess and monitor the structure of terres­
trial vegetation using remote sensing is important because structure can be 
related to functioning, that is, to ecosystem processes that are ultimately 
aggregated up to the functioning of the biosphere-atmosphere-geosphere 
at global scales. However, it is important to go further and explore the 
nature of the relationships between structure and function to establish 
what the key variables are and how accurately they must be measured. 

Problems in the Collection and Interpretation of 
Remotely Sensed Data 

The foregoing argument is basic and has been expressed for at least a 
decade. Why, then, is it necessary to reiterate it here? In the past 20 years, 
there has been an enormous increase in scientific understanding of the 
functioning and behavior of the earth's surface through the application of 
remotely sensed data. In some areas of application (e.g., terrestrial hydro 1-
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ogy, oceanography), significant advances are still to be made as a result of 
new sensors, as in the microwave region, or of the availability of higher 
spatial- and, more important, temporal-resolution data sets. In contrast, for 
vegetated landscapes the spectrum of sensors has been thoroughly evalu­
ated and no breakthroughs as a result of technological innovation are 
likely. 

The basic life processes and functioning of plant canopies are best de­
tected and contrasted with the nonliving soil background in the visible and 
near- or mid-IR wave bands, the area of most research and development. 
Success in the use of microwave wavelengths has been slow in coming and 
application studies are relatively primitive. Combining microwave with 
optical wavelengths appears to offer more promise (Paris and Kwong, 
1988). 

Significant advances in remote sensing have come not through direct 
observation but rather by inference, utilizing mod~ls that relate the 
spectral-temporal or spectral-spatial behavior of land surfaces to such pro­
cesses as plant growth (Honey and Tapley, 1981; Pickup and Foran, 1987) 
or to such phenomena as soil erosion (Pickup, this volume). Innovative 
"lateral" thinking has been at a premium and there have been but few 
cases in the past decade or so. The most striking has been the application of 
data from the NOAA series of satellites to the assessment and monitoring 
of the productivity of terrestrial ecosystems by the NASA group led by 
C. J. Tucker. Utilizing the computation of a relatively simple but robust 
vegetation index, the normalized difference vegetation index or NDVI, 
and its demonstrated relationship to surface vegetation parameters (e.g., 
Holben et aI., 1980) and insensitivity to atmospheric conditions (Holben 
and Fraser, 1984), it has been possible to monitor the phenological be­
havior ofregions, such as the Sahel of Africa (Tucker et aI., 1986b), conti­
nents (Townshend and Justice, 1986), and global vegetation (Justice et aI., 
1985). By exploring the relationship between the vegetation index and the 
radiometric characteristics of canopies (Sellers, 1985, 1987), it has been 
possible to estimate the net aboveground primary productivity (NPP) of 
whole biomes (Goward et aI., 1985, 1987) and to map the vegetation types 
of entire continents (Tucker et aI., 1985). These and other contributions 
have catalyzed the widespread application of NOAA data. The contribu­
tion of these high temporal frequency, low spatial and spectral resolution 
data to the understanding of the functioning of the earth's surface has far 
exceeded that of the high spectral and spatial resolution but low temporal 
frequency Landsat MSS and TM data sets. 

Present Methods and Their Limitations 

Remote sensing is the process of extracting information from a data stream 
that involves the earth's surface, the atmosphere that lies between it and 
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the spacecraft, and the image-forming sensors on board the spacecraft. 
Information extraction can proceed only by the derivation and use of 
models to account for the transformations that take place at each of 
these three steps and at the processing stage (Strahler et aI., 1986). These 
modeling stages are absolutely critical to the information-extraction pro­
cess and are discussed at length. 

Image Processing Models 

Image processing models are those used to extract information from the 
data; that is, to "infer the order in the properties and distributions of 
matter and energy in the scene from a set of measurements comprising the 
image" (Strahler et aI., 1986). Explicitly or otherwise, scene inference re­
quires the construction and application of a remote sensing model that has 
three submodels: for the scene, for the atmosphere, and for the sensor. 
The central problem of information extraction or s~ene inference is a prob. 
lem of model inversion. 

Scene Models 

A scene model quantifies the relationships among the type, number, and 
spatial distribution of objects and backgrounds in a scene (pixel), and their 
interactions with radiation (reflectance, transmittance, emittance) and illu­
mination geometry; see Figure 2.5. The scene model quantifies the analyst's 
conceptual understanding of the target. For terrestrial vegetation, we can 
identify the two extremes of model type: the discrete model and the con­
tinuous model. The discrete model is intuitively the most appealing, con­
taining within each resolution cell discrete objects, such as trees, shrubs, 
and grasses, and backgrounds, such as soil, rocks, or snow. Because of 
similarities in electromagnetic properties (reflectance, radiative tempera­
ture, etc.), individual objects may be abstracted into a (usually) smaller 
number of scene elements of uniform properties, such as sunlit vegetation 
or shadowed soil. These elements have a spatial distribution within a 
resolution cell that can be statistically characterized (random, clumped, 
etc.) and, therefore, parameterized, as with texture models. 

In the real world, within the more commonly used electromagnetic wave 
bands, discrete scene models are complex; there are many classes of 
elements and several classes of backgrounds. The second characteristic of 
discrete scene models is resolution, the size of the elements relative to that 
of the resolution cell. Strahler et al. (1986) identify H- and L-resolution 
models. The H-resolution model is applicable where the elements of the 
scene are larger than the resolution cells; with the L-resolution model, the 
converse is true. L-resolution models can be regarded as a type of (con­
tinuous) mixture model where the proportions are functions of the sizes 
and shapes of the elements (vegetation) in the scene model and their rela­
tive densities within the resolution cell (Strahler et aI., 1986). 
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Figure 2.5. A schematic outline of the data flow of remote sensing and the four 
models that account for the transformations of the data stream. The scene model 
relates the interaction of objects (vegetation) and backgrounds (soils, etc.) with 
electromagnetic radiation, including the influence of illumination. The geometry of 
the scene is determined by the spatial patterning within the scene (pixel) and the 
complexity of the vegetation itself. The data stream is transformed by the atmo­
sphere and the sensors, for which models are also required. The analysis or image 
processing model can be one of two types; the option is determined by the relative 
size of the elements and the scene (pixel). A gradation in complexity of the scene is 
provided. The critical point, when PFC = 1, influences the type of scene model that 
needs to be constructed. 
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H-resolution models underlie the classification image processing mod­
els, that is, where the purpose is to assign a pixel to a class or otherwise 
label a pixel. Even though classification has been the dominant remote 
sensing model for nearly two decades, it has a much reduced role to play in 
the inference of vegetation structure. In an ideal system of the future, clas­
sification or H-resolution scene models will operate in a subservient role to 
L-resolution models. 

In contrast, the continuous scene model is suitable for resolution cells 
within which the objects need not be considered as separate. Instead, 
measurements of resolution cell can be modeled as being the sum of in­
teractions among the various classes of scene elements weighted by their 
relative concentrations, such as layered atmospheric absorption models. 
Where a scene can be modeled by proportions, it is called a mixture model, 
and these have considerable applications to the remote sensing of vegeta­
tion (McLachlan and Basford, 1988). Both of these scene models can be 
inverted to infer vegetation structure. By changing the spatial resolutiori 
(i.e., the size of the resolution cell), the same vegetated landscape can be 
described by either model. 

Atmosphere Models 

An atmospheric model must explain any transformation of the stream of 
electromagnetic radiation between the surface and the spacecraft. For 
most applications, it has been convenient, though not necessarily appropri­
ate, to ignore both atmosphere and sensor in the information-extraction 
process. The cost of this omission has been that the methodology and 
procedures used become site and time specific. They have no generality; 
processing parameters are not transferable. For other times or places, 
the entire procedure must be repeated. In some applications, such as clas­
sification, this cost is significantly less than for the development and incor­
poration of both atmosphere and sensor models in the analysis process. 

Sensor Models 

The sensor model quantifies how the radiation stream is converted into 
objective data and the two key parameters of this model are spatial and 
spectral resolution. Of the three 'models in the data-acquisition path, the 
sensor model has been regarded as a static engineering calibration and 
mostly of no concern to practitioners. This is not always the case. In some 
applications, where absolute values of a remotely sensed variable are re­
quired over a long time series, significant differences in sensor responses 
nave been found for the same craft between times (Musick, 1986; Suits et 
aI., 1988a) and between different craft at the same time (e.g., Gallo and 
Eidenshink, 1988). The interconversion of data from one spacecraft to 
another is also critical (Suits et aI., 1988b). Thus a requirement for accu-
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rate estimates of an absolute variable, such as temperature or reflectance, 
will also demand an equally accurate model of the influence of the atmo­
sphere at the time of acquisition to separate its contributions from those of 
the scene. 

The spectral resolution of the sensor-that is, which part of the electro­
magnetic spectrum and with which bandwidths-is a critical choice. Un­
forunately, the past two decades have been dominated by the "curse of 
spectroscopy;" a naive, simplistic view that the spectra of isolated pure 
samples are a sufficient guide to deciding not only on the spectral band­
width but also on the analysis model. The development of sensors with 
high spectral resolution without a concurrent development of scene models 
for analysis results in very limited qualitative results (e.g., Thomas and 
Ustin, 1987). 

Agriculturalists have found that even scenes of spatially homogeneous 
crops differed from the spectral behavior of a single l~af acquired in the 
laboratory, being strongly determined by scene-specific factors such as soil 
color, leaf moisture content, and canopy geometry (Curran and Wardley, 
1988). Crop canopy geometry is complex, volatile, and difficult to model, 
and yet crop canopies are man-made of annual grasses or forbs, designed 
to be uniform in space and time. By comparison, natural perennial vegeta­
tion appears to be almost intractable. Obviously, there are real limits to the 
accuracy of estimates of canopy variables of natural vegetation that can be 
derived from remotely sensed data. 

The question of spatial resolution has been more recently addressed by 
Woodcock and Strahler (1987) and Townshend and Justice (1988). In par­
ticular, Woodcock and Strahler (1987) demonstrate that the spatial resolu­
tion of the sensor determines which analysis pathways are appropriate for 
the scene inference required and they illustrate how the spatial structure of 
the scene itself can be extracted using an analysis technique based on the 
local variance within the image. Further theoretical and experimental 
studies in this spectral-spatial scene modeling have been explored by Jupp 
et al. (1988a, 1988b) and Woodcock et al. (1988a, 1988b). 

In summary, the analysis of all remotely sensed data involves models of 
the many processes wherein electromagnetic radiation is transformed (the 
scene, atmosphere, and sensor) and whereby inference is made about the 
scene from the image data (the image processing model). These models are 
an implicit part of the process but their importance has not always been 
recognized. This neglect is regarded as one of the major stumbling blocks 
to the further development and application of remote sensing technology 
to ecological problems at all scales. Without the explicit formulation and 
incorporation of scene models, application studies will continue to be left 
as a correlation table-statistically significant but functionally useless. 
Similarly, without explicit atmospheric models in the analysis, each ap­
plication study will be unique and not transferable. 
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All of the submodels comprising the overall image processing model are 
shown in Figure 2.5. This framework will be used to discuss the analysis of 
two ecosystem structural variables: cover and LAI. 

Vegetation Indices 

By far the most common strategy for relating remotely sensed data to 
vegetation canopies has been via the correlation of vegetation indices with 
such variables as cover and biomass. This simple empirical approach has 
initially yielded substantial understanding of the structure and dynamics of 
vegetation at all scales. The most striking advance has been the first de­
monstration of the close coupling of the greening of terrestrial vegetation 
and the fluctuations of global atmospheric CO2 (Tucker et aI., 1986a). 

The development and use of indices, with the normalized difference 
vegetation index (NDVI) being the most widely used, are an attempt to 
derive a robust index that contains a simplistic-scene spectral model (near­
IR-red) which is normalized (near-IR-red/near-IR+red), thereby includ­
ing a simple sensor model. The scene model is L-resolution and empirical 
relationships are derived by calibration of the index with spatially averaged 
or smeared variables such as LAI and biomass (Figure 2.5). 

However crude, the use of indices has permitted the remote assessment 
of canopy variables in crops and native grasslands (e.g., Aase et aI., 1986, 
1987; Wanjura and Hatfield, 1988) and the prediction of yields of crops 
(Wiegand et aI., 1986; Wiegand and Richardson, 1987). The widely used 
NDVI of visible and near-IR wavebands can be correlated with a micro­
wave equivalent (Becker and Choudhury, 1988) or transposed into the 
microwave region (Owe et aI., 1988). 

The limitations of the lack of scene models must be recognized in trying 
to empirically derive relationships among different sensors, scales, and 
target canopies. What is derived for NOAA satellite data and soybeans 
cannot be expected to apply to Landsat data and soybeans. The differences 
in spectral wave bands of the two spacecraft will have an effect (sensor 
model) but it will be secondary to the differences caused by disparities in 
the time of overpass (scene model). The same target canopy will, because 
of shadowing, have a very different spectral reflectance at 0930 hours, com­
pared with 1430 hours (Curran and Wardley, 1988). 

However valuable and utilitarian simple vegetation indices have been, 
it is unlikely that they will continue to be so in the future. Explicitly 
formulated scene models are required to facilitate the transfer of image 
processing models between spacecraft and between scales. 

The Estimation of Vegetative Cover 

The cover of vegetation in open, sparse communities is strongly correlated 
with brightness in most of the widely used visible and near-IR wave bands. 
Cover is the prime determinant of the spectral signal because of the con-
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Figure 2.6. A schematic diagram of how the image analysis pathways are currently 
determined by the complexity of the real world scene and how this complexity is 
captured by scene models. Empirical models (i.e., those that are calibrated by 
synchronous measurements from space and the ground) predominate, and the 
estimates of cover or biomass vary in specificity. Where possible, the inclusion 
of ancillary data via a GIS will expand the tange of variables thM can be derived 
from remotely sensed data. 

trast b~tween vegetation and soil (Figure 2.4). Typically, this is analyzed 
using an invertible L-resolution empirical model. The flow path for the 
estimation of plant cover, including LAI, from the scene to the image pro­
cessing model is represented in Figure 2.6. The complexity of the scene 
increases to a maximum just before canopy closure in response to increas­
ing numbers, shapes, and patterns of the vegetation and their interaction 
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with the background soil through shadowing. Past the critical point of 
canopy closure, the scene complexity rapidly declines as the interaction of 
radiation and vegetation approaches a simple one-dimensional system of 
absorption and reflection as a function of depth (LAI). The image analysis 
models that can be used differ on either side of the critical point. For LAI 
greater than 1, empirical regression models can be derived between canopy 
variables, such as LAI, and biomass, and reflectance or a vegetation index, 
either independently or sequentially. 

Unlike the simple variable cover, LAI is structurally a more specific 
variable for any plant community (Bartlett et aI., 1988). It is not, however, 
a very useful parameter since it is part of an idealized plane/parallel canopy 
model that holds in simple plant communities (Clevers, 1988). Indeed, it 
can be argued that LAI is really only meaningful in certain planophile crop 
canopies, and its use in these agricultural communities now seems super­
seded (Wiegand and Richardson, 1987). 

The geometrical structure of vegetation canopies, of which LAI is a 
primitive descriptor, determines their reflectance characteristics in the visi­
ble and near-IR range (Bartlett et aI., 1988; Curran and Wardley, 1988) 
and in the mid- and thermal-IR range (Williamson, 1988). This has been 
demonstrated for the widely different canopies of grassland (Asrar et aI., 
1986), forests (Peterson et aI., 1987; Badhwar et aI., 1986a, 1986b), and 
crops (Aase et aI., 1986, 1987). 

To the left of the critical divide where scene complexity is substantial, 
two approaches can be used. The most common one is to follow an empir­
ical, invertible calibration path. The simplest of these ignores (smears) the 
scene complexity entirely to derive relationships between cover and reflect­
ance (Figure 2.6). Examples of the use of such a simple correlative approach 
to estimate vegetation cover are for forests and woodlands (Peterson et aI., 
1986; Karaska et aI., 1986; Vujakovic, 1987; Walker et aI., 1986) and for 
sparse rangelands (Foran, 1987; Foran and Pickup, 1984). Foran (1987) 
included a sensor model (calibration to reflectance) and restricted observa­
tions to times at which atmospheric influence was minimal and constant 
between observations. 

Of the six satellite-based studies listed here, only those that developed 
an empirical relationship between cover and Landsat (MSS) data (e.g., 
Foran, 1987) are transferable to other situations. The others are both site 
and time specific and demonstrate only the correlation between the two 
variables. The relationship was not inverted nor was its adequacy as a pre­
dictor demonstrated by the computation of 95% confidence limits over a 
reasonable range of expected values. 

An alternative path is likewise empirical in that it relies on calibration 
by synchronous ground and satellite measurements. However, it uses a 
scene model that explicitly recognizes the contribution of the discrete ele­
ments to the reflectance of the overall scene (pixel) by inverting the model 
using mixture or multivariate calibration techniques (Figure 2.6). Such a 



2. Remote Sensing of Ecosystem Structure 25 

model has been used for rangeland vegetation by Pech et ai. (1986b). A 
simple intuitive application of this model based on the geometry of the 
Landsat MSS red/near-IR data space led to the development of indices of 
"cover" and "bare" that contained an empirical sensor and atmospheric 
model (Graetz et aI., 1986) and could be calibrated against ground 
measurements (Pech et aI., 1986a; Graetz and Pech, 1988). Pech et ai. 
(1986b) list the interactions that can occur between objects and back­
grounds within a scene. The importance of variations in shadows (Ranson 
and Doughtry, 1987) and spatial patchiness (Peterson et aI., 1987) has also 
been noted. Pech and Davis (1987) have extended mixture modeling and 
multivariate calibration to woodlands. 

The image processing path that utilizes the most explicit scene model is 
that labeled "deterministic" in Figure 2.6. Here the contributions of the 
size, shape, and spatial patterning of the scene elements are formulated in 
terms of their geometry and of the variance in reflectance that will be 
generated between adjacent scenes or pixels by the spatial patterning of 
the elements. Inversion of this model generates estimates of elements size, 
shape, and so forth. This geometric scene modeling has been pioneered by 
Li and Strahler (1985) and Franklin and Strahler (1988). Theoretically, 
this approach offers the greatest potential to extract information from re­
motely sensed data but in practice it seems that the intrinsic variability in 
soil background, object (tree, shrub, etc.) shape, and so on will impose 
restrictions. 

Spectral Is but One Dimension 

In almost all of the examples used herein, the scene models had only one 
dimension, the spectral dimension. The exception was the deterministic 
geometric scene models, which are based on the spectral variation in space; 
that is, they are spectral-spatial models (Pickup and Foran, 1987). Scene 
models that include the temporal dimension have been growing in number 
and power. In particular, the most famous, and the most basic, of these 
scene models was the tasseled cap, the spectral-temporal model of the 
phenological (greenness) development of crops that revolutionized the 
application and interpretation of Landsat data for agricultural land­
scapes. The explicit inclusion of the temporal dimension in the simple scene 
models changed the field of agricultural remote sensing almost overnight. 
Now these models of spectral trajectory through time are sufficiently well 
developed both to identify crops and to forecast yields on a global basis 
(Hall and Badhwar, 1987). So much information is carried in the spectral­
temporal domain that it overrides the noise provided by differing 
spacecraft sensors and atmospheres. Surprisingly, there has been compara­
tively little application or development of these scene models to natural 
vegetation and examples are few (Honey and Tapley, 1981; Tucker et aI., 
1985; Justice and Hiernaux, 1986). 



26 R.D. Graetz 

Calibration 

The synchronous acquisition of spectral and ecological data to calibrate 
scene, atmosphere, and sensor models is an essential part of remote sens­
ing. Current advances in radiometry and instrumentation are such that the 
technological aspects of data collection are no longer limiting. Sampling 
and experimental design remain the greatest challenge. A significant con­
tribution has been made in this area by Curran and co-workers (Curran 
and Williamson, 1985, 1986, 1987a, 1987b, 1987c). 

Conclusions 

Because of the depredations of the human population and the greenhouse­
driven climate change, assessment and monitoring of the biosphere now 
loom large in the priorities of mankind. Understanding the behavior of the 
biosphere and its interaction with the atmosphere is an ecological problem 
of some magnitude. It is not an impossible task, just difficult. To attack this 
problem, ecologists must arm themselves with tools commensurate to the 
task. The most powerful and readily available tool is remote sensing. Eco­
logists must come to grips with this tool, and the foremost question must 
be: "What are the consequences of having to use remotely sensed data 
as the basic data source for the terrestrial vegetation component of the 
biosphere?" 

The answer is a fundamental reorientation of the methodology of de­
scribing and classifying landscapes from the traditional lateral, oblique view 
to the vertical perspective of spacecraft. Ecologists must come to terms 
with the way in which data are collected by remote sensing systems. They 
require a working familiarity with the spectral, spatial, and temporal 
dimensions of current and future earth-observing systems. Above all, they 
must recast their ecological problems into these three dimensions of re­
mote sensing. 

The science of global ecology should not be overwhelmed by the tech­
nology of the remote sensing industry. Science, unlike technology, is still 
driven by fundamental questions, which, because they are basic, can be 
simply expressed. The questions for global ecology, as for any other prob­
lem, are: What do I want to kno'w and how well do I want to know it?" 

The difficult but challenging and exciting task is then to devise the scene 
models, the spectral, spectral-temporal, or spectral-spatial models, to 
answer these questions. 
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3. Measurements of Surface Soil Moisture 
and Temperature 

Thomas Schmugge 

The monitoring of the energy and moisture fluxes between the soil and the 
atmosphere as well as of the water budget of the root zone in the soil is 
recognized as important for applications ranging from the study of bio­
spheric processes at local scales (lOs of meters) to the modeling of atmo­
spheric behavior at regional scales (lOs of kilometers). To estimate these 
land surface fluxes, it is necessary to determine the following quantities: 

1. The energy driving forces, that is, the incident solar energy, surface 
albedo, and resulting net radiation. 

2. The moisture availability or status in the soil and the vegetation/soil 
interaction. 

3. The capacity of the atmosphere to absorb the flux, which depends on 
the surface air temperature, vapor pressure gradients, and surface winds. 

From remotely sensed data it is possible to estimate surface parameters 
related to the soil/vegetation system, such as vegetation indices and surface 
soil moisture; components of the radiation forcing, such as solar insolation 
and surface albedo; and indicators of the response to it or surface tempera­
ture. 

Measurement of the thermally emitted radiation at various wavelengths 
from the earth's surface can yield useful estimates of surface soil moisture 
and temperature. This radiation, which is emitted by any surface with a 
temperature above absolute zero, is described by the PlanckIBlackbody 
equation: 
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(1) 

where CI is 1.191 X 10-8 W/(m2 sr cm-4), C2 is 1.439 cm K, and k is the 
wave number (em-I). This gives the radiation for a perfect emitter or 
blackbody with an emissivity of one (e = 1). For real surfaces, e < 1. To 
estimate surface temperatures, radiation at wavelengths around 10 JLm 
(micrometers) is used because: 

1. The peak intensity of Equation (1) occurs in this region for terrestrial 
temperatures (=300 K). 

2. The atmosphere is relatively transparent in this region. 

Here the variations in the intensity of radiation are assumed to be primarily 
due to surface temperature variations. To estimate surface soil moisture, 
radiation at much longer wavelengths (lOs of centimeters) is used, and in 
this case, the changes in the intensity of the emiHed radiation are attribut~ 
able to the variation of the emissivity with the moisture content of the soil. 
This effect results from the large dielectric contrast between water and dry 
soils at these longer wavelengths. 

In this chapter we will discuss the basic principles for the remote sensing 
of these two parameters and give examples of measurement results. 

Thermal Infrared 

In Figure 3.1 we have plotted Equation 1 from 5 to 20 JLm for temperatures 
of 280,290, and 300 K (Kelvin) (7 to 27C), that is, the low range of terres­
trial temperatures. At these temperatures, the peak of the emission occurs 
in the 8- to-lO-JLm range of wavelength. In this figure we have also plotted 
the atmospheric transmission for cloud-free conditions calculated with the 
Lowtran-6 path radiance model (Kniezys et aI., 1983) for the U.S. standard 
mid-latitude summer atmosphere, assuming that the radiometer is at satel­
lite altitude. As can be seen, the atmosphere is also relatively transparent 
in the 8-to-12-JLm range, but that there is still a significant effect, that is, 
there is only 60 to 70% transmission, with a major dip at about 9.5 JLm as a 
result of ozone absorption. With the exception of this dip, water vapor is 
the dominant absorber in the 8~to-12-JLm window and is due to what is 
called the water vapor continuum and not any individual absorption lines. 
Thus the magnitude of the atmospheric effect will depend on the water 
vapor content of the intervening atmosphere for clear sky conditions. And 
this unknown or uncertain atmospheric contribution is one of the problems 
in the remote sensing of surface temperature. 

Several approaches have been developed for eliminating atmospheric 
effects in the estimation of sea surface temperature from space. Here the 
problem is simpler in that the temperature does not change rapidly with 
time and a week's worth of data can be used to estimate the surface 
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Figure 3.1. Calculated blackbody spectral radiance at three temperatures and 
atmospheric transmission for .the U.S. standard mid-latitude summer atmosphere. 

temperature. The technique used with the Advanced Very High Resolu­
tion Radiometer (AVHRR) data from the National Oceanic and Atmos­
pheric Administration (NOAA) series of satellites involves the differential 
water vapor absorption in the lO-to-13-JLm window, the so-called split­
window technique (McClain et al., 1983) . However, this assumes that the 
surface emissivity is constant over this spectral band, which, as we will see 
later, may not be the case for land surfaces (Price, 1984; Becker, 1987). 

Examples of multispectral observations in the 8-to-12-JLm region from 
an aircraft platform will be presented. These data were obtained with the 
National Aeronautics and Space Administration's (NASA) Thermal 
Infrared Multispectral Scanner (TIMS) during the HAPEX-MOBILHY 
experiment in 1986. The HAPEX-MOBILHY (Hydrologic Atmospheric 
Pilot Experiment-Modelisation du Bilan Hydrique) program is aimed at 
studying the hydrological budget and evaporation flux at the scale of a 
General Circulation Model (GCM) grid square, that is, 104 km2 (Andre et 
al., 1986, 1988) . The experiment was performed over a 100 by 100-km 
square in southwestern France in 1985 and 1986. As part of the program, 
several surface and subsurface networks were in operation from mid-1985 
to early 1987, to measure and monitor soil moisture, surface energy 
budget, and surface hydrology, as well as atmospheric parameters. During 
the spewcial observing period (SOP) from May 7 to July 15, 1986, additional 
intensive measurements were taken, including detailed measurements of 
atmospheric fluxes and remote sensing of surface properties, using two 
well-instrumented aircraft-the NCAR King-Air for flux measurements 
and the NASA C-130 for remote sensing observations. Results from the 
TIMS sensor on the latter aircraft will be discussed. 
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Thermal Infrared Multispectral Scanner (TIMS) 

The TIMS is a six-channel scanner operating on the NASA C-130 aircraft 
in the thermal infrared (IR) (8 to 12 /Lm) region of the electromagnetic 
spectrum. The channels are at the following wavelengths (in micrometers): 
8.2 to 8.6, 8.6 to 9.0, 9.0 to 9.4,9.4 to 10.2,10.2 to 11.2, and 11.2 to 12.2. 
The scan rate can be varied from 7.3 to 25 scans per second. The instan­
taneous field of view (IFOV) is 2.5 mrad; the detector analog signals are 
sampled every 2.08 mrad, yielding a scan of 638 pixels and covering 76.6 
degrees (Kahle and Abbott, 1986; Palluconi and Meeks, 1985). 

For calibration, the system is equipped with cold and warm reference 
sources or blackbodies, approximately covering the temperature range of 
the scene of interest and typically separated by 30 C. The temperatures of 
the references are known to better than 1 C (Palluconi and Meeks, 1985). 

The scanner responds to the incident radiance (W Im2sr cm -1) and not to 
the temperature directly. The brightness temperature is related to the inci­
dent radiance via the Planck equation for blackbody radiation. However, if 
the observed temperatures are close to the calibration temperatures, say 
within 10 or 15 C, the error arising from using a linear temperature calibra­
tion is less than 1 C and that approximation will be used here (Schmugge 
and Janssen, 1988). 

Sensitivity and Accuracy 

In order to get a better understanding of the sensitivity and accuracy of the 
thermal data, the temperatures of a small reservoir (Lac de L'Uby) were 
determined. A water surface was selected for reasons of constant emissiv­
ity and a small temperature range. This lake was chosen because it was 
covered on almost every flight, for a total of ten passes. The data used were 
always at nadir, from a more or less square area of 110 to 930 pixels. The 
average temperature in each channel was determined. In general, the 
range of digital values over the lake is two or three counts, or about 0.6 to 
1.0 C. 

The TIMS temperatures represent the detected radiance at the aircraft 
altitude. In order to convert this observation to the actual surface tempera­
ture, atmospheric effects must be taken into account. These primarily in­
clude the absorption and emission by the atmospheric gases, mainly water 
vapor for this portion of the spectrum. Since the relationship between 
radiance and temperature can be approximated as linear over narrow 
temperature ranges (Price, 1984), Equation 2 can be used to correct for 
these atmospheric effects. 

(2) 

Here, TIR is the temperature (degrees Kelvin) observed by the sensor, Ts 
is the surface temperature, Ta is the average air temperature for the atmo-
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spheric layer between the surface and the aircraft, and T is the transmittance 
of this layer for a specific channel. For all the days, nearby radio soundings 
released within one hour of the pass were used to determine the transmit­
tance and the air temperature. For calculating the average air temperature 
(Ta) the following equation was used: 

(3) 

in which Ti , Wi, and Zi are the temperature, water vapor content in kilo­
grams per cubic meter (kg m3), and layer thicknesses of the atIilosphere 
obtained from the radio soundings. This equation assumes that the prin­
cipal absorption is by water vapor and so the temperatures are weighted by 
the vapor content of the layer. LOWTRAN-6, an atmospheric path 
radiance model developed by the Air Force Geophysics Laboratory 
(Kniezys et aI., 1983), is used to calculate the transmittance for the differ­
ent channels. The values of T range from a low of 65% to a high of 91 % 
and they were the greatest for channels 3 and 5 and lowest for channell. 
The values were generally correlated with the water vapor content (W) in 
the atmosphere as seen in Figure 3.2, where we have plotted the variation 
of T versus the integrated water content for channels 1 (8.2 to 8.6 /-Lm), 5 
(10.2 to 11.2 /-Lm), and 6 (11.2 to 12.2 /-Lm) for the ten days on which we 
have coverage. The figure shows an approximate linear dependence of Ton 
Wand the large difference between channels 1 and 5. Channell is the most 
sensitive to the water vapor whereas channel 5 is one of the least sensitive, 
that is, most transparent. The TIMS channels 5 and 6 correspond approx­
imately to channels 4 and 5 of the A VHRR, and thus Figure 3.2 demon­
strates the differential sensitivity to water vapor that is used to compensate 
for the atmosphere in sea surface temperature determinations. 
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Figure 3.3. Water temperatures from TIMS for a small lake in HAPEX: (a) raw 
and atmosphere-corrected water surface temperatures for the six channels of TIMS 
on two days during HAPEX, and (b) raw and corrected temperatures for channel 5 
for nine days. 

Using Equation 2 and the calculated values of T, the observed tempera­
tures were corrected for the atmospheric effects. Because Ta was cooler 
than the lake surface, the effect of the correction is generally to increase 
the temperature for the water surface by about 0.7 to 2.9 C. The changes 
were the greatest for channell, which always had about a 10% lower trans-
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mittance than any other channel. Figure 3.3a presents plots of the raw and 
corrected temperatures for June 16 (day 167) and July 2 (day 183) as exam­
ples of the corrections. On day 167, Ta was 19 C, or about 3 C cooler that 
the water, and as a result the correction was small, less than 1 C. Also, the 
temperatures for the six channels were within 0.7 C of each other. On day 
183, the difference between Ta and the water was greater, 5 C, and the 
transmittance was lower so the correction was larger, about 2 C, and the 
agreement among the channels was not as good, with a 1.2 C range. 
Another feature is that the corrected temperatures for channell are usual­
ly significantly lower than those for the other channels, indicating that the 
Lowtran model is perhaps underestimating the atmospheric absorption for 
this channel. Figure 3.3b shows the variation of the water surface tempera­
ture before and after atmospheric correction for channel 5 for nine days 
between June 6 and July 2. The results show a more or less continuous 
increase with time, with the magnitude of the correction varying between 
0.3 C and about 1.5 C. Unfortunately, there were no·surface measure­
ments available to verify the accuracy of these surface temperature esti­
mates but the temperature trend is certainly in the proper direction. 

Spatial Variations 

For three days in June, the temperature distribution was determined for a 
47-ha oat field. The field is located in the northern test site of HAPEX near 
the village of Lubbon. Two sites are defined for analysis-site A, which 
covers approximately half of the oat field, and site B, a smaller part of the 
oat field with a relatively high crop density and which generally appeared 
healthier than the rest. The approximate area of site A is 23 ha and that of 
site B is 0.6 ha. On June 7, the oat plants were measured and found to be 
about 80 cm high and on June 20 the canopy cover was estimated at 80%, 
with heights ranging from 90 to 130 cm; the crop was in good condition. 

Multispectral data acquired by the NSOOI scanner at the same time were 
used to determine the vegetation index (VI) of the oat. 

VI = (reflective IR - R)/(refiective IR + R) (4) 

For the IR, the 0.767 to 0.910 JLm band is used and for the red (R), the 
0.633 to 0.697 JLm band is used. On June 16, the VI at site A ranged from 
0.12 to 0.63, while on June 23, the VI varied from 0.14 to 0.74. The large 
range in VI values indicates a nonhomogeneous crop cover for site A. At 
site B, the mean VIs on June 16 and 23 were 0.59 and 0.67, respectively, 
with a much smaller range of values. 

Figure 3.4(a) is a histogram of the surface temperatures in the oat field 
(site A), as given by the scanner and not corrected for atmospheric effects. 
Figure 3 .4(b) is the histogram for site B. In Table 3.1, the surface tempera­
tures for both sites on the three days are listed together with the wind 
speed (meters per second) and (surface) air temperature obtained from a 
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Figure 3.4. Histograms of TIMS channel 5 temperatures for the oat field at the 
central site of HAPEX: (a) for the larger portion of the field, and (b) for the small 
cool portion. Note that these temperatures were not corrected for atmospheric 
effects, so the high temperatures would actually be higher than the values shown. 
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Table 3.1. Surface Temperatures (C) of Sites A and B 

Ts Site A Ts Site B Wind Speed Tair 

Day Mean Range Mean Range at 3.2 m at Surface 

June 14 22.1 18.3/36.7 21.7 18.3/26.6 0.8 22.0 
June 16 32.2 25.1/48.0 21.7 25.5/36.2 3.5 28.5 
June 23 30.0 21.3/45.1 25.5 21.3/33.1 5.7 23.5 

surface flux station (ltier, 1982) that was placed in the oat field. The data 
are taken every 15 minutes and these values are valid for the time of the 
aircraft overpass. The temperature ranges for both sites A and B in the oat 
field are very large. As seen in Table 3.1, the temperature range for site A 
varies from 18.4 K on June 14 to 23.8 K on June 23. During this period, the 
canopy cover was estimated to be 80% but not very homogeneous from 
ground observations. On false color aerial photos, taken on June 16, most 
of the crop appeared healthy but there were portions with little green 
vegetation. Also, the VI as measured with the NS001 indicated a non­
homogeneous crop distribution. On June 16 (at around 10:30 a.m.), the 
soil surface temperature was measured and found to range from 42 to 45 C 
in a bare portion of the field. It can be concluded that the temperatures of 
the pixels do not always represent the temperature of the crop. In particu­
lar, for the cases where the canopy cover is not 100%, the soil surface 
influences the TIMS data, and the remotely sensed surface temperatures 
cannot be taken for crop temperatures. 

For site B, the ranges of temperatures were from 8.3 to 11.8 C for the 
three days, which is still a fairly large temperature range for a crop consid­
ered to be healthy. On June 18, for this organic sandy soil, the gravimetric 
soil moisture ranged from 5% to 8% for depths down to 50 cm, indicating 
that a shortage of moisture may have been a cause of the high tempera­
tures. The histograms in Figure 3.4 indicate that there can be significant 
variations in surface temperatures for what had been considered a reason­
ably uniform field. Therefore, it would not be wise to extrapolate the flux 
measurements made in a healthy (cool) part of the field to the whole field 
without taking into account the variations in surface temperature using 
approaches such as those proposed by Nieuwenhuis et al. (1985), Sequin 
and Itier (1983), or Riou et al. (1988). 

Spectral Variations 

As we noted earlier, one of the problems in estimating land surface 
tempertltures using remotely sensed data is the spectral variation of land 
surface emissivity, particularly for bare soils or exposed rocks. For vegeta­
tion, with its multiple surfaces of an absorbing material, we would expect 
that its emissivity would be close to one and uniform. Palluconi in (1988) 
reporting at the first FIFE results workshop, verified this conclusion. 
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Figure 3.5. TlMS spectra for several surfaces from HAPEX showing the corrected 
temperatures for an oat and corn fields. The data for both fields have results from 
both a cold and a hot spot in each field. 

Figure 3.5 is an example of the difficulty that might be expected when 
bare soils are present in the field of view. These are data from several fields 
in the HAPEX experiment. For the cool portion of the oat field discussed 
earlier, there is essentially no variation in the surface temperature across 
the six channels. However, for the hot portion of an adjacent cornfield, 
there is a 6 or 7 C increase for channels 4, 5, and 6 over the lower three 
channels. This field was planted in corn but had much exposed soil between 
the rows of plants, which were separated by 1 m. These data were from an 
altitude of 1.5 km with an IFOV of =4 m, thus the individual rows were not 
resolved. This spectral variation arises from the absorption of IR radiation 
owing to the stretching vibrations of the silicon-oxygen bonds of the sili­
cates. These are the restrahlen bands and are most pronounced in quartz. 
Christianson et al. (1986) and Gillespie (1986) report variations in emissiv­
ity from <0.8 for channels 1,2, and 3 of TIMS to >0.9 for the higher three 
channels for quartzite and quartz sand. This is qualitatively the behavior 
observed in Figure 3.5 for fields that have much exposed soil. Because of 
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this strong spectral difference between the soil and vegetation, the TIMS 
data may be useful for estimating the amount of vegetation cover present. 

Since there was no difference observed in emissivity for channels 5 and 
6, these results indicate that it may be possible to use differential absorp­
tion by water vapor for these channels, seen in Figure 3.2, to compensate 
for atmospheric effects in surface temperature determinations for this 
region. 

Discussion 

In this section, we have presented results from aircraft observations of 
surface radiometric temperatures and briefly discussed their possible use. 
There are two major problem areas: atmospheric effects for converting the 
aircraft observation radiance to a surface radiant temperature and the un­
certainty of surface emissivity for converting the radiant temperature to a 
physical temperature. By using either the split-window approach or some 
ancillary knowledge of the atmospheric profiles, it should be possible to 
estimate the surface radiant temperature to an accuracy of 1 or 2 C (Price, 
1984). A possible problem with split-window technique is the variation of 
the surface emissivity with wavelength over the two bands. For vegetation, 
we have seen that there is litle or no emissivity variation, but for exposed 
soil, some variation was observed, however, not in the 1O-to-12-j.tm range. 
In general, this may be a problem. 

At present, there is a continuing source of thermal IR data from space, 
namely, the AVHRR instrument on board the NOAA polar orbiting satel­
lites. This sensor has two channels approximately equivalent to the TIMS 
channels 5 and 6 with a spatial resolution of 1 km. There are usually two 
satellites in orbit, one with an equator crossing of mid-morning (9:30) and 
the other at mid-afternoon (14:30). The latter time is near the maximum in 
surface temperature and, therefore, is the most useful for detecting mois­
ture stress in vegetation. There is almost daily coverage with this sensor. 

Microwave Sensing of Soil Moisture 

In the introduction, we noted that the emission of microwave radiation 
from a soil depends on its moisture content because of the large contrast 
between the dielectric constant of water (::::80) and that of dry soil (3.5). 
This arises from the ability of the electric dipole of the water molecule to 
align it§elf in response to the oscillating electric field in an electromagnetic 
wave. Figure 3.6 is a plot of the real and imaginary parts of the dielectric 
constant for water in the microwave portion of the spectrum. It shows a 
large value (::::80) of the real part at low frequencies, with a transition to a 
much smaller value at the high frequencies. At the higher frequencies, the 
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Figure 3.6. The real and imaginary 
parts of the dielectric constant for water 
in the microwave frequency range. 

fields oscillate so rapidly that the dipole of the water molecule cannot fol­
low, and thus its contribution to the dielectric constant decreases. For ice, 
the dielectric constant is large at low frequencies, but because of the tighter 
binding of the water molecule in the solid, the motion is inhibited at about 
104 Hz (hertz). As seen in Figure 3.6, for liquid water this reduction in the 
molecule's ability to rotate does not occur until about lO lD Hz. Since the 
first water added to a soil is tightly bound, its rotation will be inhibited in a 
fashion similar to the behavior in ice. 

The dielectric constant is of importance here because it describes the 
propagation characteristics of an electromagnetic wave in the medium. 
These characteristics include the velocity of propagation, the wavelength in 
the medium, and the absorption of energy in the medium. The square root 
of the dielectric constant is the index of refraction (n) for the material, and 
it is the contrast in n at the boundary between two media that determines 
the reflection and transmission coefficients of electromagnetic waves at 
such a boundary. 

In this chapter, we will consider the frequency range from 1 to 100 GHz 
(gigahertz) (1 GHz = 109 Hz; wavelengths between 30 and 0.3 cm) and 
show that frequencies below 5 or 6 GHz are most effective for soil moisture 
sensing. This variation of the soil's dielectric constant with moisture pro­
duces a variation in emissivity from 0.95 for dry soils to 0.6 or less for wet 
soils, with changes of a corresponding magnitude for the soil's reflectivity. 
These variations have been observed by both passive and active microwave 
sensors. The former are radiometers that observe the variations in the ther­
mal emission from the soil resulting from emissivity changes. The latter are 
radars that transmit a pulse of electromagnetic energy and then measure 
the backscattered return, which will be a function of the soil's reflectivity. 
This capability to sense soil moisture remotely is limited to a surface layer 
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about 5 cm thick, and is affected by surface properties such as roughness 
and vegetation cover. 

Dielectric Properties of Soils 

When water is mixed with soil, the dielectric constant of the mixture in­
creases dramatically from about 3 or 4 when dry to about 30 when wet. 
Figure 3.7 presents measurements for three soils ranging from a sandy loam 
to a heavy clay. These measurements were at a frequency of 1.42 GHz or a 
wavelength of 21 cm. Qualitatively, the behavior of the three soils is similar 
in that the real part of the dielectric varies from about 3 to greater than 20. 
However, it is clear that there are differences among the soils. All the soils 
have regions of slow increase and then, after a transition value, a region of 
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Figure 3.7. Laboratory measurements of the dielectric constant for three soils 
ranging from a light sand to a heavy clay at a frequency of 1.4 GHz 
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sharp increase. This flat region is a function of soil type, being wider for the 
heavier soils (Wang and Schmugge, 1980). The first water added to a soil is 
tightly bound to the soil surface and has dielectric properties somewhere 
between those of bound molecules in ice and those of the freely rotating 
molecules in the liquid. It is only after there are several layers of water on 
the particle surface that the water begins to behave like a liquid in terms of 
its dielectric properties and to produce a large change in the dielectric 
properties of wet soils. 

Dobson et al. (1985) have proposed a four-component dielectric mixing 
model that describes the soil-water system as a host medium of dry soil 
solids containing randomly distributed and oriented disk-shaped inclu­
sions of bound water, bulk water, and air. The separation of the soil water 
into bound and bulk components depends on the soil texture or more 
directly on the specific surface area of the soil. Such models allow the study 
of the sensitivity of a soil's dielectric properties on such things as density, 
texture, and salinity. For example, Figure 3.8(a) shows the dependence of 
the dielectric constant on density for a sandy loam soil. At zero soil mois­
ture, the differences among the three curves are due to the different 
amounts of parent material present at each density. The range of densitites 
shown produces a 15% to 20% spread of values in the real part for wet 
soils. The spread in the imaginary part is almost negligible. Figure 3.8(b) 
shows the sensitivity to specific surface or texture at a density of 1.3 g/c3 . 

The soils range from a loamy sand to a clay and exhibit the type of behavior 
shown in Figure 3.7, that is, the flat region at low soil moistures for the clay 
soil. 

Emissivity and Reflectivity 

The reflectivity and emissivity for a soil with a smooth surface can be calcu­
lated with the Fresnel equations from electromagnetic theory. The reflec­
tivity for the vertical polarization is: 

Rv = I [cos 0 - V(k - sin2 O)]/[cos 0 + V(k - sin2 O)J12 (5) 

and for the horizontal polarization the equation is: 

Rh = I [k cos 0 - V(k - sin2 O)]/[k cos 0 + V(k - sin2 0)]1 2 (6) 

where e is the incidence angle and k is the dielectric constant for the soil. 
The horizontal polarization has the electric field of the wave parallel to the 
soil surface and the vertical polarization has a component of the electric 
field perpendicular to the soil surface. The resulting emissivities are as fol­
lows: 

(7) 
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Figure 3.9. Calculations from the Fresnel equations of the emissivity for wet and 
dry sandy soils with smooth surfaces. The Brewster's angle for the dry soil is about 
58 degrees and for the wet soil is 78 degrees. 

Figure 3.9 is a plot of these equations for wet and dry soils. The plot shows 
that at nadir there is a decrease in the emissivity from 0.95 when dry to 0.6 
when wet. While eh decreases with e, the difference between the wet and 
dry emissivities remains about the same, indicating the sensitivity of eh to 
soil moisture independent of angle out to about 40 or 50°. In contrast, as a 
e increases, ev approaches 1 at what is called the Brewster's angle given by 

tan(}B = VK (8) 

Thus the curves for the wet and dry soils come together, indicating a loss of 
sensitivity. For this reason, the horizontal polarization is recommended for 
soil moisture sensing. 
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Microwave Radiometry 

A microwave radiometer measures the thermal emission from the surface 
and at these wavelengths the intensity of the observed radiation is pro­
portional to the product of the thermodynamic temperature of the soil and 
the surface emissivity (Rayleigh-Jeans approximation to the Planck radia­
tion law, Equation 1). This product is commonly called the brightness 
temperature (T B) and is given by the product of the emissivity and the soil 
temperature: 

(9) 

For a radiometer at some height above the ground, atmospheric effects 
must be included, yielding the equation 

TB = T(RTsky + (1- R)Tsoil + Tatm (10) 

where R is the surface reflectivity and T is the atmospheric transmission. 
This situation is represented schematically in Figure 3.10. The first term is 
the reflected sky brightness, which depends on the atmospheric conditions 
and frequency. For the frequencies of interest to us, Tsky = 5 to 10 K for 
the normal range of atmospheric conditions, with 3 K of it being the con­
stant cosmic background radiation. The third term is the direct atmospher­
ic contribution and, as noted, will be about 5 K. The atmospheric trans­
mission will typically be about 99% so we are left with the emission from 
the soil, that is, the second term as the main contributor to T B. Thus Equa­
tion 10 reduces to Equation 9. This is true for an isothermal soil; however, 

MICROWAVE 
RADIOMETER 

\ 1 

~SURFACE 
R( e, )..), TSURF 

------- 1 t \ 1 
H ,91 

d \J 
ATMOSPHERIC THERMAL EMISSION 

TRANSMISSIVITY FROM SURFACE 
I I 

T8 = T(H,8)[RTSKY + (l-R) TSURFJ+TATM (H,8) 
/ \ /' 

OBSERVED REFLECTED DIRECT ATMOSPHERIC 
BRIGHTNESS SKY BRIGHTNESS CONTRIBUTION 

TEMPERATURE 

Figure 3.10. Schematic of the sources of microwave radiation observed by a 
radiometer at a height h and an angle (). 
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when there are variations of soil temperature with depth, the factor eTsoil is 
replaced by the integral: 

o rO 
TB = e J T(z)a(z) J exp [-a(z')dz']dz 

-co z 
(11) 

where T(z) and a(z) are the temperature and absorptivity at the depth z in 
the soil. The latter depends on the mositure content at z. The integral 
essentially gives the intensity of the upwelling thermal radiation from the 
soil and is a weighted average of the soil temperature over the electro­
magnetic skin depth of the soil. The factor e, the emissivity ,gives the frac­
tion of this upwelling radiation that is transmitted into the air and it is this 
factor that shows the primary sensitivity to the soil moisture content. The 
critical factor is: What is the thickness of the layer at the surface whose 
dielectric properties determine the emissivity, e. It is this thickness that 
determines the soil moisture sampling depth for microwave sensors. An 
early theoretical study of the radiative transferina soil by Wilheit (1975) 
has shown that this depth is only of the order of a few tenths of a 
wavelength thick, or about 2 to 5 cm at the 21-cm wavelength. This result 
has been confirmed by the experimental work of Newton et al. (1982) and 
Wang (1987). 

In Newton's work, the dry down of a saturated field was observed with 
radiometers at three frequencies (1.4, 5, and 10.7 GHz) and the temporal 
variation of the microwave responses was compared with those observed 
for the soil moisture measured in 0- to 9-,0- to 5-, and 0- to 2-cm layers. It 
was found that the highest two frequencies indicate drying at a rate faster 
than that seen in the 0- to 2-cm layer whereas the 1.4-GHz results indicated 
that it is sensing a layer that is drying at a rate between those for the 0- to 2-
and 0- to 5-cm layers. The conclusion was that the higher two frequencies 
were sampling a layer thinner than 2 cm while the 1.4 GHz was sampling a 
layer whose thickness was between 2 and 5 cm. 

Wang's approach was to use a large number of field measurements of 
both the microwave emission and the soil moisture profile. Using Wilheit's 
model with the measured profiles, he calculated the expected emissivities 
and compared them with the soil moistures in several layers. By comparing 
these curves with measured emissivity variation with soil moisture, he con­
cluded that the l.4-GHz radiometer was responding to the moisture in a 
layer between 2 and 5 cm thick. 

Field Verification 

As part of a study of salinity effects on the soil's emissivity, Jackson and 
O'Neill (1987) made a careful series of field measurements over loamy 
sand soil having a smooth surface and compared the results with those 
expected from the dielectric constant models described above. The results 
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Figure 3.11. Observed and predicted relationships between emissIvity and 
volumetric soil moisture for a bare, smooth, no-salinity loamy sand soil at 1.4 GHz 
(L-band). [From Jackson and O'Neill (1987).] 

are shown in Figure 3.11. The emissivity ranges from 0.6 for the wet soil 
(=30% volumetric soil moisture) to 0.9 for the dry soil (=8%). The cal­
culations from the two models agree reasonably well with each other and 
with the data. Hence the basic sensitivity of microwave emissivity to soil 
moisture variations is well understood. and the basic theory is verified. 
Complications arise when such real factors as surface roughness and 
vegetative cover are added to the problem. 

Surface Roughness 

We have seen that the emissivity of a smooth surface can be calculated 
using the Fresnel equations (Equations 5 and 6); however, when the 
surface is rough, the situation is more complicated because the roughness 
decreases the reflectivity and thus increases the emissivity. This results 
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from the increased surface area that can emit radiation. There have been 
numerous attempts to calculate quantitatively the effects of roughness, but 
the efforts are hampered by the difficulty of experimentally quantifying the 
surface roughness. 

The magnitude ofthe effect is shown in Figure 3.12, which presents the 
results of field measurements at the 21-cm wavelength for three surface 
roughnesses classified as smooth, medium rough, and rough. These fields 
have surfaces with root mean square (rms) height variations of 0.92,2.6, 
and 4.3 cm, respectively. The range of TB between wet and dry conditions 
decreases from about 120 K for the smooth field to 40 K for the rough field. 
Using a simple model, Choudhury et al. (1979) have shown the increase in 
emissivity is given by: 

e = Ro[1- exp (-h)] (12) 

where Ro is the smooth surface reflectivity and h is an e-mpirically derived 
roughness parameter that is proportional to the rms height variations with 
h = 0 for a smooth surface. For dry fields Ro < 0.1, the effect ofroughness 
on the emissivity will be small, whereas for wet fields Ro = 0.4, the effect is 
larger and readily observable. Thus in Figure 3.12 there is little difference in 
T B for the dry field conditions while there is about a 60 K effect for the wet 
field. These resuls were for fields that were specially prepared for rough­
ness studies and represent the extremes of surface conditions, and thus it is 
expected that while relatively smooth surfaces do occur, the roughest con­
dition would rarely be encountered, except, for example, immediately 
after deep plowing. Figure 3.13 is an example of results for more normal 
conditions. These were data acquired from an aircraft platform at an alti­
tude of 300 m over a typical agricultural region in the great plains of the 
United States. The data were segregated according to a qualitative assess­
ment of roughness from ground photographs and it is seen that the range of 
variation attributable to roughness is small for these more typical condi­
tions. The regression slopes were not significantly altered by the roughness 
and there was an 8 K range in the intercepts from the smoothest to rough­
est. These fields covered the range of roughnesses that normally occur in 
an area that is mostly pastures or planted in small grains. These results 
point out that while roughness can have a very significant effect, its natural­
ly occurring range may not be as great as the extremes observed in the 
prepared plots for truck experiments. 

It is also possible to use supporting data from other sensors to correct 
for roughness effects. In analyzing a data set containing both 1.6-GHz 
scatterometer (radar) and 1.4-GHz radiometer data, Theis et al. (1986) 
observed that the influence of surface roughness on the radar backscatter 
(aO) was substantial at large incidence angles whereas the sensitivity of ~ 
to soil moisture was small at these angles. They plotted aO versus soil mois­
ture at a 40-degree incidence angle and determined the intercept or 0% 
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Figure 3.13. Scatter plot of T8 versus soil moisture for aircraft observations at the 
21-cm wavelength over a test site in Hand County, South Dakota. The data were 
segregated into three roughness categories based on ground photographs. [From 
Owe and Schmugge (1983).] 

soil moisture value of (To, which was then used to correct for roughness in 
. the radiometer data. Using this approach, they improved the correlation 
(R2) of TB with soil moisture from 0.69 to 0.95. Although conducted on 
only a limited data set, these encouraging results indicate the potential of 
multisensor techniques for improving microwave estimates of soil mois­
ture . 
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Vegetation Effects 

The simplest way to think of the effects of vegetation on the microwave 
emission from the soil is in terms of a cloud that can absorb and reemit 
radiation, that is, similar to the atmospheric situation. This assumes that 
scattering is negligible, which is true at the longer wavelengths. For a suf­
ficiently thick layer of vegetation, only the radiation from the vegetation 
itself will be observed. The brightness temperature above the canopy is 
given by: 

TBp = T v[l + (es -1) exp (-2T) + esp(TslT v-I) exp (-T)] (13) 

where T = lex sec () is the one-way canopy absorption factor or optical 
depth, I and ex are the thickness and absorptivity of the vegetation, p = h or 
v for the polarization index, and Ts and Tv are the temperatures of the soil 
and the vegetation (Jackson et al., 1982), respectively.-If we assume that 
the vegetation and soil temperatures are approximately equal, this equa­
tion reduces to 

(14) 

Since the temperatures are expressed in degrees Kelvin, the ratio TslT v 
typically will be within 1 or 2% of one. 

Kirdiashev et al. (1979) has expressed the optical depth as: 

T= }Lsec(8) ex Qmk" (15) 

where J.L is a plant shape parameter and Q is the dry biomass in units of 100 
kg/ha, k" is the imaginary part of the dielectric constant for water, and m 
is the gravimetric moisture content of the vegetation. Grouping the con­
stants together we get the following expression for T: 

(16) 

where W = Qm is the mass of water per unit area. Analyzing the data from 
a large number of field experiments, Mo .et al. (1982) found that 

T = O.115W (kg/m2) (17) 

with an r2 = 0.95 for conditions ranging from light grass (W = 0.5 kg/m2) to 
mature corn (W > 6 kg/m2). Using this result for T, the expected emissivity 
is plotted in Figure 3.14 for conditions ranging from bare soil to a light 
forest cover (W = 10 kg/m2). The bare soil slope is approximately that seen 
in Figure 3.11, whereas the slope shown in Figure 3.13 is slightly less than 
that shown for the grass curve. Figure 3.14 illustrates the decrease in soil 
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Figure 3.14. Plots of calculated emissivity versus soil moisture for a loamy sand soil 
with various amounts of vegetation cover. 

moisture sensitivity as the vegetation cover increases. The conclusion is 
that microwave sensors will be of little use for soil moisture sensing when 
the vegetation cover exceeds that of a mature corn crop, that is, W> 7 
kglm2. It is clear from Figure 3.14 that some estimate of the vegetation 
biomass covering the soil is necessary for soil moisture measurements to be 
made with a microwave radiometer. 

A possibility for doing this lies with the use of visible and near-IR reflec­
tance data, which are strongly dependent on vegetation conditions. In one 
such analysis, Theis et al. (1984) used the perpendicular vegetation index 
(PVI) calculated from visible and near-IR data as an estimator of plant 
biomass. The PVI, which is directly related to plant biomass, was used as a 
vegetation corrector in an algorithm to estimate soil moisture from 21-cm 
brightness temperature data. With this correction, the correlation between 
the microwave data and soil moisture improved from 0.09 to 0.75. Another 
example of this approach is the work done by Owe et al. (1988) in which 
the NDVI values calculated from the AVHRR sensor on the NOAA polar 
orbiting satellites were used to correct for vegetation in soil moisture esti­
mates made using the 18-GHz (A = 1.66 cm) data from the Scanning Mul­
tichannel Microwave Radiometer (SMMR) on the Nimbus-7 satellite. 
When their data were segregated according to NDVI values, the SMMR 
brightness temperatures accounted for about 70% of the observed soil 
moisture variability. They found that when NDVI > 0.4, the sensitivity of 
TB to soil moisture was gone. This is an encouraging result when one con­
siders that the wavelength used is an order of magnitude shorter than what 
was found to be optimum in field and aircraft experiments. These are in-
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dications of the promise that the use of multispectral data can greatly im­
prove our ability to estimate soil moisture remotely. 

An alternative approach is to consider the polarization differences at 
higher microwave frequencies. If we consider the difference between the 
vertical and horizontal polarizations in Equation 14, we get: 

(18) 

Thus the measurements of this difference can yield an estimate of the 
vegetation biomass. To make use of the T measured at the higher fre­
quencies, it is necessary to know how the dielectric properties of the 
vegetation change with frequency. Ulaby and EI-Reyes (1987) have de­
veloped a model for the dielectric properties of vegetative material and the 
dominant is the dielectric constant of water whose frequency dependence is 
known. Recent analysis of satellite radiometer data at 37 GHz by 
Choudhury et al. (1987) has shown a good relation between the polariza­
tion difference and large-scale vegetation parameters. 

Active Microwave Approaches 

An active microwave sensor or radar sends out a pulse of microwave radia­
tion and then measures the intensity of the radiation reflected back to it, as 
represented schematically in Figure 3.15. The intensity of this reflected 
signal is described by what is called the backscattering coefficient «(T0_ 

sigma zero). As sketched in Figure 3.15, the intensity of the return for a 
smooth surface is mostly reflected or scattered into the specular direction 
and some scattering source, such as surface roughness, is required to 
obtain significant intensity in the backscatter direction. This is represented 
in the lower-right-hand part of the Figure, showing that the backscattered 
intensity is at a maximum for the 0° incidence angle for the smooth surface 
whereas for the rough surface the return is more isotropic. 

One advantage of radar is that the energy in the received pulses can be 
angularly separated into the returns from different locations on the ground. 
Thus, if the radar is on board an aircraft, it is possible to produce a back­
scatter image of the ground as the aircraft flies along. If the coherent 
nature of radiation is utilized, it is possible to obtain very-high-resolution 
images from what are called synthetic aperture radars (SAR). The details 
of this technique are beyond the scope of this chapter and the reader is 
referred to the book by Ulaby et al. (1982-1986) on microwave remote 
sensing or to the chapter on the SAR in the Manual of Remote Sensing 
(Colwelf, 1983) for more information. 

Analogous to the optical reflectivity of terrain, (TO describes the scatter­
ing properties of the surface in the direction of the illuminating source. The 
scattering behavior of terrain is governed by the geometrical and dielectric 
properties of the surface (or volume) relative to the wave properties 
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(wavelength, polarization, and angle of incidence) of the incident radia­
tion. Since the dielectric properties of the soil are strong functions of its 
moisture content, aO will be dependent on the soil moisture of a surface 
layer whose thickness is determined by the properties of the soil at the 
wavelength of observation. This. thickness will be approximately the same 
for both active and passive microwave approaches, that is, of the order of a 
few tenths of a wavelength as discussed earlier. As with the passive micro­
wave case, the dependence of ao on soil moisture will be a function of 
surface roughness and vegetation. In general, it can be said that the active 
microwave response is more dependent on roughness and less on vegeta­
tion than the passive microwave response. A complete description of the 
current status of active microwave approaches for soil moisture sensing is 
given in the recent review by Dobson and Ulaby (1986). 
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Spacecraft Results 

The flights of microwave sensors on recent satellites, such as Skylab, Seasat, 
Nimbus 5,6, and 7, and SIR A and B flights of the shuttle, have provided 
opportunities to do case studies of the remote sensing of soil moisture. 
The S-194 instrument on Skylab was a nonscanning 1.42-GHz (21-cm) 
radiometer with a nO-km field of view. With such coarse spatial resolu­
tion, it is difficult to compare the sensor response directly with ground 
measurements. However, there have been several indirect comparisons. In 
one, Wang (1985) has compared the Skylab and Nimbus 7 SMMR bright­
ness temperatures at 6.6 and 10.7 GHz observed for several passes over the 
state of Texas in the United States with the Antecedent Precipitation Index 
(API), which is about the only moisture parameter available for compari­
son when retrospective analyses are performed. The data were for the 
same time of year, though separated by about ten years. He found that 
there was considerable sensitivity at all three frequencies to soil moisture/ 
API for sparsely vegetated high plains areas. However, for more heavily 
vegetated east Texas, only the 21-cm data still showed any sensitivity to soil 
moisture variations, thus indicating the greater effectiveness of the longer 
wavelengths for soil moisture in the presence of vegetation. 

The higher resolution of the SARs on Seasat and the shuttle afforded 
the opportunity to compare satellite observations directly with ground 
measurements. Blanchard and Chang (1983) did this for Seasat data over a 
test site in the Oklahoma panhandle. They compared the digitally proces­
sed Seasat if data with ground measurements of soil moisture for bare, 
alfalfa, and milo fields. They found a strong correlation of aO and soil mois­
ture with an r2 = 0.7. Working with the SIR-B data from October 1984, 
investigators working in California (Wang et aI., 1986) and in Illinois 
(Dobson and Ulaby, 1986) found stronger correlations (r2 > 0.8) for a 
variety of field conditions. However, all of these investigators found that 
there were such strong dependencies of aO on sur.h surface features as 
roughness and vegetation cover that it was difficult to extract soil moisture 
information from a single SAR observation. Most of these difficulties can 
be overcome by acquiring data on a number of dates, and at a number of 
angles or frequencies to aid in the extraction of the soil moisture informa­
tion. 

Discussion 

The results presented here are examples of the progress that has been 
made in improving our fundamental understanding of the use of micro­
wave sensors for the remote sensing of soil moisture. The next step in the 
process should be a demonstration of the capabilities of these sensors for 
determining surface soil moisture. An example of this type of result is 
given in Figure 3.16. Here, 1.4-GHz emissivities as measured from an air-
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Figure 3.16. Soil moisture contours for the top 5-cm layer derived from 21-cm 
microwave radiometric measurements: (a) on May 28, 1987, and (b) on June 4, 
1987. The data are from flights made at an altitude of 300m over two watersheds in 
the Konza prairie natural research area. [From Wang et al. (1989).] 

craft platform were used to estimate the 0- to 5-cm soil moisture for two 
watersheds in the Konza prairie as part of the FIFE experiment in 1987. A 
linear model based on a limited number of ground samples in both 1985 
and 1987 was used to convert the aircraft measurements of microwave 
emissivity to soil moisture. When this model was extended to a much larger 
,area, the rms agreement with independent soil measurements was better 
than 3% on a volumetric basis (Wang et al., 1989). Figure 3.16 is an exam­
ple of how microwave sensors can be used to map the spatial variations of 
soil moisture, which can be used in runoff forecast models or for the 
estimation of evapotranspiration. 
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As described here, microwave remote sensing techniques can provide 
estimates of the soil moisture content for a surface layer about 5 cm thick. 
This depth is shallow compared with the 1- to 2-m rooting depth of many 
crops. Estimating the root zone soil moisture from surface measurements 
has been studied using correlation techniques (Blanchard et aI., 1981) and 
modeling studies (Jackson, 1980), which assume a moisture profile in hy­
draulic equilibrium. The conclusion from both approaches was that, if the 
water content in the top 10 cm is known, the moisture content in the top 
meter can be calculated to within acceptable limits, and that the lowest 
errors were obtained when the surface water contents were measured just 
before dawn-when the moisture profile is the closest to equilibrium. 

Repetitive observations of the surface soil moisture can also be used to 
estimate soil properties. Camillo et ai. (1986) coupled moisture and energy 
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balance models with remotely sensed data of surface soil moisture to esti­
mate the soil's hydraulic conductivity and matric potential, and a soil tex­
ture parameter. The derived conductivities agreed with values measured 
with an infiltration ring. This is potentially a very useful technique for esti­
mating the soil's average hydraulic properties over large areas, as has been 
demonstrated using data from a helicopter-borne radar by Bernard et ai. 
(1986). 

Alternatively, knowledge of the surface layer moisture can be used to 
estimate moisture fluxes at the soil surface. These are of interest in them­
selves and can be used in moisture balance models to estimate the moisture 
in the profile. Barton (1978) in Australia used soil moistures as estimated 
from an airborne radiometer in a model to estimate the evapotranspiration 
from a a grassland. Bernard et ai. (1981) in France used a similar approach 
employing simulated radar backscatter data. In a follow-up paper, they 
verified the technique, using field measurements with a C-band radar sys­
tem (Prevot et aI., 1984). Both groups reportee considerable success in 
estimating evapotranspiration rates. 

Passive microwave remote sensing of soil moisture is at a threshold at 
the present time. Theoretical and experimental research over the past 10 to 
15 years has pretty much defined the capabilities of this approach. Briefly 
summarized, they are the ability to measure the moisture content of a sur­
face layer about 5 cm thick to a relative accuracy of 10% and 15%; the fact 
that the measurement can be made under all weather conditions and 
through light to moderate vegetation conditions, and the limiting case 
appears to be a mature corn crop; and the fact that the factors of surface 
roughness and soil texture will introduce uncertainties into the soil mois­
ture determinations that can be mostly accounted for with ancillary data. 
Before these systems are flown on spacecraft, it will be necessary to dem­
onstrate the utility of such a remotely sensed soil moisture measurement 
with further experiments of the type described above. It is always important 
to realize that remote sensing measurements will not provide as accurate or 
as deep a measurement of soil moisture as can be obtained by conventional 
in-situ measurements, but they do provide a means for getting repetitive 
measurements over a large area of the surface soil moisture condition and 
thus afford unique opportunity to obtain previously unattainable informa­
tion about the land surface. At the present time, there are no plans to fly 
microwave radiometers at wavelengths longer than 6 cm on the earth­
observing system (EOS), and thus there will be no sensor for optimum 
observations of soil moisture. 

Conclusions 

In this chapter, we have described the capabilities of thermal IR sensors to 
observe surface temperatures and of passive microwave sensors for esti-
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mating surface soil moisture conditions. The combined measurements or 
estimates of these parameters can be used with coupled moisture and ener­
gy balance models to describe the fluxes from the surface. Preliminary 
work along this approach has been described by Camillo et al. (1986) and 
Soares et a1. (1987). In the latter paper, remotely sensed measurements of 
temperature and soil moisture were used to derive regional estimates of the 
evapotranspiration flux. 

Clearly, one of the major advantages of microwave remote sensing is its 
ability to observe the land surface in almost any atmospheric condition and 
the fact that, if we truly wish to monitor the land surface for climate change 
studies under all conditions, it will be necessary to make use of this capa­
bility. 
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4. Estimating Terrestrial Primary Productivity by 
Combining Remote Sensing and 

Ecosystem Simulation 

Steven W. Running 

Beginning in 1972 with the launch of Landsat 1, estimation of terrestrial 
plant production has been one of the most important applications attempted 
of satellite remote sensing. Initial interest focused on the prediction of 
regional crop yields, such as wheat (Erickson, 1984). However, changing 
goals, hardware capabilities, and theory have produced a steady evolution 
in the approaches taken to calculate net primary production (NPP) of large 
areas. Interest has also expanded to calculating primary production of 
natural vegetation. The much wider array of topography, climate, canopy 
geometry, and life-cycle dynamics exhibited by natural vegetation make 
computation of primary production much more challenging than the rather 
controlled, organized field conditions of a crop. 

The necessity to quantify more accurately global terrestrial vegetation 
activity was emphasized by attempts in the late 1970s to calculate a global 
carbon budget. Although it was clear from the Mauna Loa CO2 concentra­
tion record that global atmospheric CO2 was increasing, the anthropomor­
phic sources did not seem to balance the ocean and terrestrial sinks (Bolin, 
1977; Woodwell et ai., 1983; Emmanuel et ai., 1984). More significantly, 
this problem underscored the lack of defensible measurements of terres­
trial primary production at global scales (Leith and Whittaker, 1975). 

More recently, attention has focused on the climate changes projected 
by recent Global Circulation Model (GCM) studies (Hansen et ai., 1981; 
DOE, 1985). Predictions of global temperature increases of 4° have been 
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challenged because the GCMs do not realistically define the land surface 
biological feedbacks (Dickinson, 1987; Sellers et al., 1986; Wilson et al., 
1987). It has become increasingly clear that merely classifying global 
vegetation is inadequate; quantitative estimates of energy/mass flux activ­
ity and NPP are needed to answer critical questions in global ecology. 

Beginning in 1979, a number of workshops were held by the U.S. 
National Aeronautics and Space Administration (NASA), the U.S. 
National Academy of Science (NAS), and other organizations specifically 
charged with developing a strategy to quantify biological activity of global 
terrestrial vegetation (NASA, 1983a, 1983b; NAS, 1986). The repeated 
conclusions of these workshops were (1) that a global biome classification 
was needed, as has now been done by Mathews (1983); (2) that satellite 
mapping of global vegetation was needed; and (3) that beyond classifica­
tion, the most important carbon cycle variable for quantifying biological 
activity in a comparable way across biomes was net primary production 
(NPP). Also, for global applications, NPP nee-ded to be monitored by 
satellites. 

This chapter will analyze two current methodologies being developed 
for estimation of primary production of natural vegetation, and argue for 
the necessity for using both methods to deal with this complexity. One, 
using AVHRRlNDVI (Advanced Very High Resolution Radiometer/ 
Normalized Difference Vegetation Index), is based on simple principles 
and is already globally applicable. The second, linking satellite data with 
ecosystem process models, holds promise for greater accuracy, but is more 
complex, and has only been implemented over 1,200 km2 . 

Estimates of Terrestrial NPP Using the A VHRRlNDVI 

C.J. Tucker at NASA Goddard Space Flight Center first recognized the 
potential for using A VHRR sensor on board the TIROS meteorological 
satellites to get daily images of the entire earth's terrestrial vegetation. The 
spatial scale, or pixel size of A VHRR is rather coarse, 1.1 km, but these 
low-density data were precisely the reason that processing total global im­
ages was computationally possible (Yates et al., 1986). With computer­
automated time compo siting of the data (a procedure where data for each 
day of, say, one week are read and the highest value retained and 
mapped), a cloud-free map of global vegetation was now made possible 
(Holben, 1986). The vegetation of Africa (Tucker et al., 1985), North 
America (Goward et al., 1985), and the entire world (Justice et al., 1985) 
was mapped. 

For this initial global work, the vegetation was "defined" as the normal­
ized difference vegetation index (NDVI), the algebraic combination of 
surface radiance in the red [0.58 to 0.68 /Lm] and near-infrared (NIR) 
(0.725 to 1.1 /Lm), given as: 
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(1) 

a dimensionless index between -1.0 and 1.0. The use of near-IR and red 
wavelength reflectances to characterize vegetation has had substantial 
development in the remote sensing disciplines (Tucker, 1979; Perry and 
Lautenschlager, 1984). However, with applications at continental to global 
scales, no direct interpretation of the NDVI against measured ground con­
ditions was possible. 

Direct validation of NDVI data is very difficult because although the 
AVHRR sensor has an optical resolution of 1.1 km, computer processing 
of the global NDVI data to date has always involved a spatial subsampling 
to reduce data volume (Tarpley et aI., 1984). For example, during 1985, 
the NOAAlNESS global vegetation index (GVI, a globally generated 
NDVI data set) was produced by subsampling four outof five pixels in one 
out of every three data lines of the raw A VHRR signal, producing an 
aggregated 4- by 4-km pixel; then randomly subsampling again, one 4- by 
4-km pixel out of each 15- by 15-km pixel array. This spatial subsampling 
ultimately meant that radiance data from less than 1 % of the true ground 
area were being used for the final GVI map. Consequently, any attempts to 
do field measurements corresponding to specific GVI data are nearly im­
possible. The latest regional-scale NDVI research is using raw local area 
coverage (LAC) 1.1-km data to avoid these ambiguities. 

Sellers (1985, 1987) derived an important interrelationship among leaf 
area index (LAI), absorbed photosynthetically active radiation (APAR), 
and NDVI that improves the utility of these biophysical variables. He 
found that under specified canopy properties, the AP AR was linearly re­
lated to NDVI and curvilinearly related to LAI, approaching asymptotical­
ly an LAI of 6 where virtually all incident short-wave radiation is absorbed 
by the canopy. Sellers showed that: 

APAR = [[LAI, ISR, Canopy geometry], (2) 

where ISR = incoming short-wave radiation, and that the A VHRR chan­
nels make: 

NDVI = [[APAR] = [[LA I] (3) 

Consequently, given a canopy of known structure and light scattering and 
absorbing properties, anyone measure of the canopy can be used inter­
changeably with the others with some algebraic manipulation of formulas. 
It must be recognized here that different biomes have radically different 
canopy structures and reflectance properties, and so can produce different 
NDVI while having identical LAIs. An NDVI of 0.5 may represent 
LAI = 3 in a forest but only 2.0 in a grassland. Accurate utilization of the 
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NDVI requires that the biome type be known so that the appropriate NDVI 
to LAI or APAR conversion can be made. Further, observational details 
such as the solar zenith angle, sensor look angle, background (soil) expo­
sure fraction, and extent of uncorrected atmospheric interference change 
the NDVI-LAI-APAR relationship significantly (Sellers, 1985, 1987). 

Relating NDVI, APAR, or LAI to NPP can be done using the logic 
developed by Monteith (1981) relating annual NPP of crops to the inte­
grated APAR absorbed over a growing season. 

NPP = f(2:APAR] * E (4) 

where € = energy-conversion efficiency, g/MJ. 
This seasonally integrated AP AR incorporates both meteorological 

conditions, primarily magnitude and seasonal duration of incoming solar 
radiation, and vegetation variables, the amoupt of leaf area and canopy 
radiation absorption characteristics-variables -that directly determine 
photosynthetic production of a plant. Given the functional equivalence 
shown in Equation 3, this logic can be translated to satellite applications: 

NPP = 2:NDVI * E (5) 

Goward et al. (1987) first related the .INDVI to NPP (Figure 4.1), and 
developed € factors converting annual AP AR energy in MJ to NPP in kilo­
grams per square meter for different biome types. Important to this logic is 
that a static NDVI or LAI is not used; instead, the annual integration of 
weekly composited NDVI, analogous to the integrated APAR, is applied. 
Seasonal integration of the weekly composites automatically reduces cloud 
contamination and improves climatic sensitivity of the relationship. 
Although the maximum NDVIs (or LAIs) of many biomes in many cli­
mates are rather similar, higher-productivity regions have substantially 
longer periods of active vegetation growth, reflected in larger integrated 
NDVI (Goward et aI., 1985; Goward, 1989). This time integration concept 
has proved important in accelerating the use of daily A VHRR data. If 
seven consecutive passes of Landsat data were composited, as is done with 
the weekly A VHRR data for cloud removal, only one composited image 
every 112 days would be obtained because of the 16-day repeat cycle of the 
Landsat orbit. Consequently, Landsat images are meaningful primarily as 
a single annual "snapshot" of the land surface. The ten times greater ex­
pense and 1,000 times greater data volume of the higher-resolution 30-m 
TM data also precludes use of multiple annual data sets for global studies. 

A critical caveat of the Monteith (1981) logic and the derivation of 
Sellers (1985, 1987) is that the vegetation is not water, temperature, or 
nutrient limited. For annual crops that are often irrigated, fertilized, and 
grow during the midsummer season, these are acceptable assumptions. 
However, natural, perennial vegetation is routinely water stressed, usually 
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Figure 4.1. Plot of biome-average !NDVI versus published mean biome net pri­
mary productivity rates for North America. [From Goward et al. (1985).] NDVI 
data were three-week composites of at least 90 points per biome. NPP data were 
from the literature. 

temperature limited at some point of each year, rarely has optimum 
nutrient availability, and often fixes substantial carbon during dormant 
periods while not visibly growing. Much of this variability can be subsumed 
in the € coefficient, which then incorporates both meteorological and 
biochemical components. We have developed a more explict formulation 
that separates meteorological from biochemical components, and so 
should be more generally applicable under a wide variety of conditions and 
biome types. 

NPP = t I T(u* NDVI) * E (6) 
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Figure 4.2. (a) Relation between surface temperature (Ts) and AVHRRlNDVI on 
July 14 and August 6 for a 20 by 25 pixel area of conifer forest in Montana. The 
change in slope from July 14 to August 6 results from 3 cm of rain on August 2 to 3. 
(b) The regression relationship between canopy resistance simulated by FOREST­
BGC and slope of the TsINDVI for eight days during the summer of 1985, suggest­
ing that the Ts/NDVI ratio from A VHRR can be used to quantify sensible/latent 
energy partitioning by a vegetated surface. [From Nemani and Running (1989b ).] 

where u= surface resistance, TsINDVI; t!T= temperature truncated 
NDVI time integration; and Ts = surface temperature, defined by 
A VHRR thermal channels 4 and 5. 

This equation offers a number of key improvements over Equation 5. 
First, Nemani and Running (1989b) defined u, a surface resistance factor, 
produced as TsINDVI, from AVHRR data over coniferous forests in Mon­
tana (Figure 4.2). We found that as water availability declined seasonally 
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with summer drought, the surface temperature (Ts) measured by A VHRR 
increased when normalized to NDVI. This effectively defines a Bowen 
ratio energy-partitioning factor between sensible and latent heat flux, and 
so explicitly represents the reduction in water flux as the surface becomes 
water limited. Because this change in surface resistance is primarily caused 
by leaf stomatal closure, this u factor should represent both H20 and CO2 

diffusion resistance. 
In order to implement this algorithm for u, a contiguous area with a 

range of NDVI and surface temperature is required. However, this con­
straint can actually be an aid in determining appropriate spatial aggrega­
tion limits for a landscape. An area large enough to provide this needed 
NDVI gradient can be defined as a minimum regional cell for certain re­
search requiring u. Similar logic was reported by Hope (1988), relating 
canopy resistance to satellite-derived surface temperature ratios. 

The t1:T notation refers to temperature-controlled time integration of 
seasonal NDVI, where the NDVI is not integrated ever periods when 
the surface temperature is below 0°, and physiological activity is minimal 
(Figure 4.3). Typically, 2.NDVI is either done for the entire year, or is 
arbitrarily truncated to certain dates, because the thermal channels are not 
concurrently processed (Goward et aI., 1985, 1987). Running and Nemani 
(1988) used temperature-truncated 2.NDVI but the temperature data were 
from an ancillary ground database. 

The E value, or efficiency factor, now can be used exclusively to define 
nutritionally related biochemical factors. For example, Mooney et ai. 
(1987) showed that photosynthetic capacity was directly proportional to 
leaf N concentration. E could be defined partially by leaf N%, which may 
be remotely sensible using high-resolution imaging spectrometry (Wess­
man et aI., 1988; Wessman, this volume). Also, separate E factors can be 
defined for different biomes with fundamentally different physiology, such 
as C3 and C4 plants. Note that, operationally, the only addition equation 6 
requires over the simple equation 5 is that surface temperatures be defined 
from the AVHRR channels 4 (10.5 to 11.5 ]Lm) and 5 (11.5 to 12.5 ]Lm). 
Nemani and Running (1989b) calculated these surface temperatures with 
the split-window technique of McClain (1980). So, ultimately, this for­
mulation can be implemented globally just as are the current NDVI maps. 

Ecosystem Modeling to Estimate NPP 

Although the A VHRRlNDVI has rapidly evolved into an indispensaible 
tool for monitoring global NPP, it is not satisfactory for all purposes. The 
2.NDVI, even with the improvements in Equation 6, still represents 
ecophysiological processes in only a simple empirical way, leaving it un­
suited for exploring sensitive feedbacks and multifactor controls on NPP in 
an explicit manner. Additionally, the 2.ND VI loses dynamic sensitivity 
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Figure 4.3. Sensitivity of the 1984 seasonal AVHRRlNDVI for defining 
temperature-limited growing season of forest vegetation and corresponding weekly 
simulations of photosynthesis and transpiration from FOREST-BGC in a boreal 
and subtropical climate. [From Running and Nemani (1988).] 
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when applied to biomes such as coniferous forests that provide a temporal­
ly inert remote sensing target. Consequently, a second approach is under 
development that is not constrained by these problems. This approach in­
corporates remote sensing of LAI with ecosystem simulation models. 

Satellite Estimation of LAI 

Although the NPP of grasslands, annual crops, and other seasonal biome 
types can be estimated by the time integration of observed developing 
biomass, for biome types such as forests, chapparal, and other evergreen 
broadleafs, permanent live biomass occupies the site continuously, causing 
annual NPP not to be visible from an orbiting satellite. For these biomes 
with continuous leaf display, a structural variable related to CO2 exchange 
and comparable across biomes was required. LAI (the projected leaf area 
per unit ground area) provides a measure of the plant organ most directly 
involved in energy, H20 and CO2 exchange. Characterization of vegeta­
tion in terms of LAI rather than species composition was considered a 
critical simplification for comparison of different terrestrial ecosystems 
wordwide. Ecosystem analyses conducted during the International Biolog­
ical Program of the 1970s had found strong correlations across biome 
types relating LAI to NPP (Gholz, 1982; Webb et aI., 1983). A functional 
balance between site water availability and LAI was also found (Grier and 
Running, 1977), and Jarvis and McNaughton (1986) showed how evapo­
transpiration (ET) is directly proportional to LAI. 

This logic isolated an initial specific task in global ecology-to develop a 
means of measuring LAI of natural vegetation by satellite. Remote sensing 
of LAI was first attempted for crops and grasslands, correlating spectral 
refIectances against direct measurement of vegetation LA!. Various com­
binations of near-IR and visible wavelengths have been used to estimate 
the LAI of wheat (Wigand et aI., 1979; Asrar et aI., 1984). However, for 
global applications, the complexities of natural, irregular canopies must be 
addressed. Running et ai. (1986) and Peterson et ai. (1987) first estimated 
the LAI of coniferous forests across an environmental gradient in Oregon 
using airborne Thematic Mapper Simulator data (Figure 4.4). A growing 
season site water balance ranging from +20 cm (surplus) on the Pacific 
coast to -80 cm water (deficit) in the interior desert produces a LAI range 
from 1 to 15, representing the global range of forest LA!. This work was 
extended to California, Montana, and Washington coniferous forests using 
Landsat TM data. Spanner et ai. (1989) found that the strong relationships 
between TM NIRIRED ratios and LAI in closed-canopy, pure conifer 
forests of Oregon can erode in forests with mixed deciduous canopy and/or 
soil surface exposed. 

Remote sensing of LAI was first tested with TM because the 30-m pixel 
size represented an area small enough to be directly measured on the 
ground. However, tests to A VHRR scale 1.1 km soon followed, because 
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Figure 4.4. (a) Relationship between projected LAI and the Landsat TM channels 
4/3 (NIRIRED) for coniferous forests across Oregon, at 30-m pixel scale. [From 
Peterson et al. (1987).] (b) Relationship between estimated LAI and the A VHRRI 
NDVI for conifer forests across Montana, at 1.1-km pixel scale. [From Nemani and 
Running (1989a).] 

this scale is more realistic for global application. One major advance for 
A VHRR scale LA! validation has been the development of a portable 
integrating radiometer that can accurately measure forest LA! over multi­
ple kilometer areas (Pierce and Running, 1988). Spanner et al. (1987) used 
the older method of measuring tree diameter or sapwood basal area and 
allometric equations to calculate plot LAI on conifer forest sites in 
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Washington, Oregon, and Montana. They found that the AVHRR NDVI 
correlated with LAI with a function asymptotic at LAI = 6, R2 = 0.76. In a 
more theoretical approach, Nemani and Running (1989a) used a hydrolo­
gic equilibrium theory to estimate LAI of 52 1.1-km conifer stands in Mon­
tana, ranging from LAI = 3 to LAI = 10. AVHRR correlated with these 
estimated LAI highly, R2 = 0.88 (Figure 4.4(b». 

A number of problems are inherent in these approaches to ground LAI 
measurement. Sapwood-based equations for LAI are sensitive to stand 
density and climatic variation, and so ideally should not be extrapolated 
too far from the original source (Hungerford, 1987). Optical measure­
ments require a light extinction coefficient to be either assumed or calcu­
lated, and there is variability in this canopy property across species, and 
definitely biomes (Jarvis and Leverenz, 1983; Pierce and Running, 1988). 
The remote sensing measurements entail an equal number of potential 
problems, including variability in canopy bidirectional reflectance prop­
erties, soil background exposure and reflectance, atmospheric transmissiv­
ity, sun illumination angle, and sensor look angle (Curran, 1983). 

Although we conclude that the LAI of conifer forests and grasslands can 
be measured by satellite at different spatial resolutions, this fundamental 
capability needs to be replicated in other biome types where canopy struc­
ture and bidirectional reflectance properties are radically different from the 
forests and grasslands studied to date. Also, it must be remembered that 
the proportionality between LAI and NPP or other canopy mass/energy 
flux is not constant. Biome level differences in biochemical energetics, 
climatic differences influencing water-use efficiency, and canopy differ­
ences in absolute light absorption efficiency are among the factors that 
must next be addressed to use LAI rationally as a precursor to calculation 
of important ecosystem processes. 

Integrating LAI Into Ecosystem Models 

If satellites can be used to estimate LAI regionally, the next step is to 
develop ecosystem process models designed to incorporate these remote 
sensing data. The FOREST-BGC model (Figure 4.5) is a process-level 
simulation that calculates the cycling of carbon, water, and nitrogen 
through forest ecosystems (Running and Coughlan, 1988). The model has 
mixed time resolutions, with hydrologic and canopy gas-exchange pro­
cesses computed daily and carbon and nitrogen cycle processes computed 
yearly. FOREST-BGC requires daily meteorological data: maximum­
minimum air temperature, dew point, incident short-wave radiation, and 
precipitation. The model calculates key hydrologic processes: snow melt; 
canopy interception and evaporation; transpiration; soil water content and 
outflow; carbon processes of photosynthesis, maintenence and growth 
respiration, carbon allocation, primary production, litterfall, and decom­
position; and nitrogen processes of deposition uptake, litterfall, miner­
alization, and leaching. 
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The model was designed to be particularly sensitive to LA! because LA! 
can be retrieved by satellite (Figure 4.4). The following processes are con­
trolled in part by LA!: snow melt, canopy interception and evaporation, 
transpiration, canopy light attenuation, photosynthesis, leaf maintenance 
respiration , litterfall, and leaf nitrogen turnover. 

This sensitivity of FOREST-BGC to varying LA! was tested by simulat­
ing annual hydrologic balances and net photosynthesis for hypothetical 
forests in seven contrasting climates of North America (Running and 
Coughlan, 1988). These sites encompassed a temperature-moisture gra­
dient from the cold, dry climate of Fairbanks, Alaska, with average July 
maximum-January minimum of 21 to -25 C and precipitation of 313 mm 
to Jacksonville, Florida, with temperatures of 31 to 4 C and precipitation of 
1,244 mm. The hydrologic partitioning among evaporation, transpiration, 
and soil outflow varied significantly across this climatic range. The re­
sponse to increases in LA! also varied; as the Jacksonville LA! went from 3 
to 9, transpiration dramatically increased at the expense of soil outflow. 
However, Fairbanks was so water limited that increasing LA! produced 
little additional transpiration (Running and Coughlan, 1988). A similar re­
sult occurred with annual net photosynthesis, whereas in Jacksonville, with 
mild temperatures and ample precipitation, increasing LAI from 3 to 9 
proportionally increased photosynthesis, whereas at Missoula, Montana, 
with a short growing season and 337-mm precipitation, little additional 
photosynthesis was possible (Figure 4.6). 

~.--------------------------. 

Jocksonv~e Madison Seattle Tucson 
Knoxvi~e Missculo Fairbanks 

~ 
l..PI = 3 -LAJ = 6 

~ 
LAJ = 9 

Figure 4.6. The annual forest photosynthesis at varying LAI (3, 6, 9) simulated by 
FOREST-BGC for seven sites of contrasting climate in North America. These re­
sults show the sensitivity to LAI designed into FOREST-BGC to optimize integra­
tion of remote sensing data from Figure 4.4. [From Running and Coughlan (1988) .] 
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An important point here is that simulations of these plant processes can 
be formally validated with conventional ecological measurements. LA! is a 
routinely measured canopy structural variable. Photosynthesis and tran­
spiration are measured most accurately by leaf cuvettes, leaving a challenge 
for whole-canopy extrapolation (Schulze et aI., 1985). Whole-plant 
measurements are possible though, using lysimeters that follow daily tran­
spiration mass loss by weight differences (Dunin and Aston, 1984), 
radioactive isotope trausport methods (Waring et aI., 1980), or potometers 
that volumetrically follow water loss (Knight et aI., 1981). NPP can be 
measured simply as incremental increase in dry biomass over time (Gholz, 
1982; Webb et aI., 1983). At one step removed from the vegetation itself, 
aircraft flux measurements can follow diurnal changes in near-surface CO2 

and H20 (Sellers et aI., 1988; Wofsy et aI., 1988). However, these atmo­
spheric measurements must be in conjunction with canopy measurements 
to provide any degree of mechanistic interpretation. 

Comparison of !NDVI with FOREST -BGC 

Goward et aI. (1985) related annual .INDVI to NPP of different biomes in 
North America, using NPP estimates from the literature (Figure 4.1). As 
an alternative means of "validating" the use of .INDVI as an estimate of 
NPP, we simulated annual NPP of a hypothetical forest on these same 
seven study sites, and correlated the results with the NOAA Global 
Vegetation Index for 1983-84 (Running and Nemani, 1988). Correlations 
of annual .INDVI across the seven sites were; R2 = 0.87 with annual photo­
synthesis, R2 = 0.77 with annual transpiration, and R2 = 0.72 for net pri­
mary production (Figure 4.7). Clearly, .INDVI captures much of the 
difference between these sites in ecosystem process rates. Likewise, these 
results suggest that the two methodologies for estimating NPP, as derived 
from .INDVI or from ecosystem process models, are responding similarly 
to the critical conditions that determine NPP of natural vegetation. 

Expansion of the FOREST-BGC estimates of NPP to the two­
dimensional space of a landscape required an additional computational 
step. All critical variables-the LAI, soil-water holding capacity, and 
meteorological conditions-must,be defined for each cell in the study area. 
To calculate these processes over a 28- by 55-km area of Montana required 
a geo-referenced data integration scheme (Figure 4.8). Data acquired from 
a variety of sources were used to drive a mountain microclimate simulator 
(MT-CLIM, Running et aI., 1987) that extrapolates point-measured 
meteorological data into complex topography. The resulting meteorologi­
cal data file was coupled with the other data files, including an A VHRR­
derived LAI estimate, ultimately to run FOREST-BGC more than 1,200 
times, for each l-km cell in the area (Running et aI., 1989). Ranges of 
estimated LAI (4 to 15), evapotranspiration (25 to 60 cm/yr) and NPP (5.7 



Figure 4.7. Relationship between !NDVI and FOREST-BGC simulations of 
annual photosynthesis, transpiration, and NPP for seven sites of contrasting climate 
in North America. These results were a test of the ability of the A VHRR !NDVI 
to infer canopy processes rates over broad regions. Abbreviations refer to the loca­
tions in Figure 4.6. [From Running and Nemani (1988).] 
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DATA INTEGRATION FLOWCHART 

PARAMETER SOURCE DERIVED INPUTS MODELS OUTPUT 

Vegetation Leaf area index 

Climate 

NOAA/AVHRR 

GOES/VISSR 
NOAA/NWS 
NOAA/NESS 

Temperature ET 
Solar radiation j 
Precipitation - MT-CLIM ---- ---FOREST-BGC[ 
Humidity 

Topography USGS Elevation 
Slope, Aspect PSN 

Soil s SCS Soil water 
holding capacity _______ ---1 

NOAA = National Oceanic and Atmospheric Administration 
AVHRR = Advanced Very High Resolution Radiometer 
GOES = Geostationary Orbiting Environmental Satellite 
VISSR = Visible and Infrared Spin Scan Radiometer 
NWS = National Weather Service 
NESS = National Earth Satellite Service 
USGS = United States Geological Survey 
SCS = Soil Conservation Service 
MT-CLIM = Mountain microclimate simulator 
FOREST-BGC = Forest ecosystem simulation model 
ET = Evapotranspiration 
PSN = Photosynthesis 

Figure 4.8. An organizational diagram showing the sources of raw climatic and 
biophysical data, derived data, and final simulations required for generating the 
regional map of forest NPP in Figure 4.9. [From Running et al. (1989).] 

to 14.2 T/ha/yr) across the study area follow expected trends both in magni­
tude and spatial pattern (Color Plate 1). 

We plan next to do an mDVI-generated estimate of NPP using equa­
tion 6 for the area in Color Plate 1 and compare it with the FOREST-BGC­
generated NPP map. However, it is unreasonable to attempt the data­
intensive computations illustrated in Figure 4.8 for l-km cells over the 
entire globe. Global circulation models define the earth's surface at best to 
O.S-degree grids, or about 50 by 50 km. We hypothesize, though, that 
mDVI computations could be calibrated against high-resolution com­
putations such as Figure 4.8 for areas representing important biomel 
climate types. The mDVI computations for each of these biome/climate 
types could then be extrapolated across that region with much greater con­
fidence. 

While it is important that the mDVI estimates of NPP can be im-
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plemented immediately, the benefit of FOREST-BGC simulations is that 
they allow the exploration of hypothetical situations that cannot be studied 
directly. For example, we explored the potential response of a forested 
region of Montana to the climate change being predicted for a doubling of 
atmospheric CO2, We used a simple climatic scenario of a 4-degree in­
crease in daily temperatures and a 10% increase in precipitation added 
evenly to a 1985 Missoula, Montana, data file, since current GCM results 
cannot be used reliably to define more exact regional scenarios (Grotch, 
1988). Ecosystem responses simulated included the increase in photosyn­
thesis rates produced by a steeper CO2 diffusion gradient, decreased leaf 
conductance produced by partial stomatal closure, and re-equilibrated 
LAI brought about by the change in water-use efficiency and site water 
balance from Nemani and Running (1988a). 

Results showed the higher temperatures dramatically lengthened the 
nonfreezing growing season in a cold climate such as in Montana from 67 to 
92 days, depending on the location, accelerated snow melt dramatically, 
and radically changed hydrologic partitioning to evapotranspiration versus 
soil water outflow. Photosynthetic production increased by 5 to 30% as 
improved water-use efficiency and longer growing seasons combined to 
accelerate net photosynthesis (Color Plate 1). However, the same simula­
tions for a hypothetical site in warm, wet Jacksonville, Florida, produced 
a decrease in annual photosynthesis, because the rising temperatures 
dramatically increased maintenence respiration losses while having pro­
portionally less effect on photosynthesis and leaf area. Obviously, this is 
only speculation, but the ecosystem model provides a tool for exploring 
various hypotheses quantitatively and directing future research that empir­
icallogic such as the l'NDVI cannot provide. 

Validation of Regional NPP Estimates 

Although our computational ability to estimate NPP has reached continen­
tal scales, validation still requires ground measurement. The spatial scale 
of direct, hands-on validation measurements for most key ecosystem pro­
cesses ends somewhere between the leaf and 1 km2, depending on the pro­
cess of interest. Beyond these scales, some means of defensible extrapola­
tion must be developed. It is suggested that a well-tested ecosystem process 
model provides the best vehicle for doing this extrapolation. Testing of an 
ecosystem process model can proceed in steps of progressive complexity 
that, upon completion, should provide a trustworthy means of connecting 
ground'data up to continental-scale products. 

Initially, a model can be tested by individual components. Using 
FOREST-BGC as an example, simulations of processes like seasonal soil 
moisture depletion and leaf water stress have been tested in a strict pre­
dicted versus observed mode (Running, 1984; Nemani and Running, 
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1989a). Recognize that the successful simulations of certain key integrating 
variables like soil moisture depletion implicitly validate many components 
of the complete site hydrologic balance. Soil moisture cannot be simulated 
accurately if such functions as snow melt, canopy interception, or tran­
spiration are in error. Although one can argue that internal offsetting 
errors could produce artifically correct results, this is not likely; if the 
model is tested under a range of conditions, the offsetting errors would 
not always be proportional. 

Next, simulations can be tested in a relative, comparative way. Con­
sidering the simulation results in Figure 4.6, we know that Jacksonville, 
should have higher annual photosynthesis than Missoula, A model's ability 
to produce accurately a relative ranking of ecosystem carbon balances in 
contrasting sites, as partially done in Figure 4.6, provides another level of 
model testing and "validation." 

Ultimate validation requires simulation of the variable of interest com­
pared with direct ground measurement across a range of conditions. For 
example, we could define an experiment where, for the seven forest sites in 
Figure 4.6, we would simulate NPP under control conditions and fertilized 
and/or irrigated conditions. This would represent virtually a complete 
range of the temperature, water, nutrient, and radiation conditions known 
to control forest NPP. If the FOREST-BGC model could accurately simu­
late the magnitude of NPP under this complete range of conditions, it is 
suggested that the ecosystem process model would then be a trustworthy 
tool for extrapolating NPP estimates within the multivariate space in which 
it was validated. It could then provide an important intermediate link be­
tween the small-scale but ultimately accurate ground measurements and 
the regional to continental scales needed. This is not meant to suggest that 
the FOREST-BGC model is ready for this herculean test, but rather that 
ecosystem process models may be considered an integral component of our 
attempts to validate ecosystem processes at large scales. 

A number of spatially integrating measurement systems are under de­
velopment that may allow direct measurement of vegetation gas-exchange 
rates at intermediate scales. These systems include aircraft-mounted trace 
gas monitors, micrometeorological methods such as eddy correlation, and 
long-path Fourier transform IR spectroscopy. 

For the ground measurements that still will be required, intelligent plan­
ning and organization may be most important. Preclassification of com­
puted homogeneous areas may allow directed sampling, rather than a 
near-impossible random sample. A world network of permanent research 
stations routinely measuring NPP in a comparative way has been suggested 
as part of the International Geosphere-Biosphere Program (IGBP). The 
Long-Term Ecological Research (LTER) network in the United States is a 
good example of using existing organized data sources rather than an ex­
pensive new program. 
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Conclusions 

Clearly, there is a necessity for a hierarchy of estimates of NPP for global 
ecological research. While the simplicity of the 4'NDVI logic allows 
immediate global implementation, mechanistic modeling, such as by 
FOREST-BGC is required in every major biome type to calibrate the 
NDVI and E conversion efficiencies, and to explore hypothetical scenarios 
that cannot be studied otherwise. These mechanistic models must ultimate­
ly be validated against direct ground measurements. For maximum 
efficiency, coordinated utilization of existing ecological research stations 
for field NPP data will provide best results. 

Acknowledgments 

Much of the research in this chapter was supported by research grant 
#NAGW-252 from the National Aeronautics and Space Administration, 
Earth Sciences and Applications Division. 

References 

Asrar, G., Fuchs, M., Kanemasu, E.T., Hatfield, J.L. (1984). Estimating absorbed 
photosynthetic radiation and leaf area index from spectral reflectance in wheat. 
Agron. 1. 76: 300-306. 

Bolin, B. (1977). Changes of land biota and their importance for the carbon cycle. 
Science 196:613-615. 

Curran, P.J. (1983). Multispectral remote sensing for the estimation of green leaf 
area index. Philosoph. Trans. Roy. Soc. London 309:257-270. 

Dickinson, R.E. (1987). Evapotranspiration in global climate models. Adv. Space 
Res. 7: 17-26. 

DOE. (1985). Projecting the Climatic Effects of Increasing Carbon Dioxide. In 
M.e. MacCracken and F.M. Luther (ed.). U.S. Dept. of Energy DOE/ER-0237 
Washington, De. 

Dunin, F.R., and Aston, A.R. (1984). The development and proving of models of 
large scale evapotranspiration: An Australian study. Agric. Water Manag. 
8:305-323. 

Emmanuel, W.R., Killough, G.G., Post, W.M. and Shugart, H.H. (1984). Model­
ing terrestrial ecosystems in the global carbon cycle with shifts in carbon storage 
capacity by land-use change. Ecology 65: 970-983. 

Erickson, J.D. (1984). The LACIE experiment in satellite aided monitoring of 
global crop production. pp. 191-220. In G.M. Woodwell (ed.), SCOPE 23: The 
Role of Terrestrial Vegetation in the Global Carbon Cycle. Wiley, NY. 

Gholz, H.L. (1982). Environmental limits on aboveground net primary production, 
leaf area, and biomass in vegetation zones of the Pacific Northwest. Ecology 
63: 469-48l. 

Goward, S.N. (1989). Satellite bioclimatology. 1. CUm. 2:710-720. 
Goward~ S.N., Kerber, A., Dye, D.G., and Kalb, V. (1987). Comparison of North 

and South American biomes from A VHRR observations. Geocarto 2: 27-40. 
Goward, S.N., Tucker, e.J., and Dye, D.G. (1985). North American vegetation 

patterns observed with the NOAA-7 advanced very high resolution radiometer. 
Vegetatio 64: 3-14. 



84 S.W. Running 

Grier, C.c., and Running, S.W. (1977). Leaf area of mature northwestern conifer­
ous forests: relation to site water balance. Ecology 58: 893-899. 

Grotch, S.L. (1988). Regional Intercomparisons of General Circulation Model Pre­
dictions and Historical Climate Data. U.S. Dept. of Energy DOE/NBB-0084, 
Washington, DC. 

Hansen, J., Johson, D., Lacis, A., Lebedeff, S., Lee, P., Rind, D., and Russell, G. 
(1981). Climate impact of increasing atmospheric carbon dioxide. Science 
213: 957-966. 

Holben, B.N. (1986). Characteristics of maximum value composite images from 
temporal AVHRR data. Int. J. Remote Sens. 7: 1417-1434. 

Hope, A.S., (1988). Estimation of wheat canopy resistance using combined re­
motely sensed spectral reflectance and thermal observations. Remote Sens. En­
vir. 24: 369-383. 

Hungerford, R.D. (1987). Estimation of foliage area in dense Montana lodgepole 
pine stands. Canad. J. Forest Res. 17:320-324. 

Jarvis, P. G., and Leverenz, J. W. (1983). Productivity of temperate, deciduous and 
evergreen forests. In Physiological Plant Ecology, Vol. 12D: Ecosystem Proces­
ses: Mineral Cycling, Productivity and Man's Influence. Springer-Verlag, NY. 

Jarvis, P.G., and McNaughton, K.G. (1986). Stomatal control of transpiration. 
Scaling up from leaf to region. Adv. Ecolog. Res. 15: 1-49. 

Justice, c., Townshend, J., Holben, B., and Tucker, C. (1985). Analysis of the 
phenology of global vegetation using meteorological satellite data. Int. J. Re­
mote Sens. 6: 1271-1318. 

Knight, D.H., Fahey, T.J., Running, S.W., Harrison, A.T., and Wallance, L.L. 
(1981). Transpiration from 100-yr-old lodgepole pine forests estimated with 
whole-tree potometers. Ecology 62: 717-726. 

Leith, H., and Whittaker, R.H. (eds.) (1975). Primary Productivity of the Bio­
sphere. Springer-Verlag, NY. 

Matthews, E. (1983). Global vegetation and land use: new high-resolution data 
bases for climate studies. J. Clim. Appl. Meteorol. 22: 474-500. 

McClain, E.P. (1980). Multiple atmospheric window techniques for satellite de­
rived sea surface temperatures. pp. 73-85. In J.F.R. Grower (ed.), Oceanogra­
phy from Space. Plenum Press, NY. 

Monteith, J.L. (1981). Climatic variation and the growth of crops. Quart. J. Roy. 
Meteorol. Soc. 107: 749-774. 

Mooney, H.A., Ferrar, P.J., and Slatyer, R.O. (1987). Photosynthetic capacity 
and carbon allocation patterns in diverse growth forms of eucalyptus. Oecologia 
36 : 103-111. 

NAS (Nat. Acad. Sci.). (1986). Remote Sensing of the Biosphere. Report of the 
Committee on Planetary Biology. Nat. Acad. Press, Washington, DC. 

NASA (Nat. Aeronaut. and Space Admin). (1983a). Global Biology Research 
Program. MR Ramble (ed.), NASA Tech. Memo. 85629, Washington, DC. 

NASA (Nat. Aeronaut. and Space Admin). (1983b). Land-Related Global Habit­
ability Science Issues. NASA Tech. Memo. 85841, Washington, DC. 

Nemani, R., and Running, S.W. (1989a). Testing a theoretical climate-soil-leaf 
area hydrologic equilibrium of forests using satellite data and ecosystem simula­
tion. Agric. Forest Meteorol. 44:245-260. 

Nemani, R., and Running, S.W. (1989b). Estimating regional surface resistance 
to evapotranspiration from NDVI and Thermal-IR A VHRR data. J. Appl. 
Meteorol. 28: 276-284. 

Perry, C.R., and Lautenschlager, L.F. (1984). Functional equivalence of spectral 
vegetation indices. Remote Sens. Envir. 14: 169-182. 

Peterson. D.L., Spanner, M.A., Running, S.W., and Teuber, K.B. (1987). Rela-



4. Remote Sensing of Terrestrial Primary Productivity 85 

tionship of thematic mapper simulator data to leaf area index of temperate con­
iferous forests. Remote Sens. Envir. 22: 323-34l. 

Pierce, L.L., and Running, S.W., (1988). Rapid estimation of coniferous forest leaf 
area index using a portable integrating radiometer. Ecology 69: 1762-1767. 

Running, S.W. (1984). Microclimate control of forest productivity: analysis by 
computer simulation of annual photosynthesis/transpiration balance in different 
environments. Agric. Forest Meteorol. 32: 267-288. 

Running, S.W., and Coughlan, J.e. (1988). A general model of forest ecosystem 
processes for regional applications. I. Hydrologic balance, canopy gas exchange 
and primary production processes. Ecol. Model. 42: 125-154. 

Running, S.W., and Nemani, R.R. (1988). Relating seasonal patterns of the 
A VHRR vegetation index to simulated photosynthesis and transpiration of 
forests in different climates. Remote Sens. Envir. 24: 347-367. 

Running, S.W., Nemani, R.R., and Hungerford, R.D. (1987). Extrapolation of 
synoptic meteorological data in mountainous terrain, and its use for simulating 
forest evapotranspiration and photosynthesis. Canad. J. Forest Res. 17:472-
483. 

Running, S.W., Nemani, R.R., Peterson, D.L., Band, L.E., Potts, D.F., Pierce, 
L.L., and Spanner, M.A. (1989). Mapping regional forest evapotranspiration 
and photosynthesis by coupling satellite data with ecosystem simulation. Ecolo­
gy 70: 1090-110l. 

Running, S.W., Peterson, D.L., Spanner, M.A., and Teuber, K.B. (1986). Re­
mote sensing of coniferous forest leaf area. Ecology 67: 273-276. 

Schulze, E.D., Cermak, J., Matyssek, R., Penka, M., Zimmerman, R., Vasicek, 
F., Gries, W., and Kucera, J. (1985). Canopy transpiration and water fluxes in 
the xylem of the trunk of Larix and Picea trees-a comparison of xylem flow, 
porometer and cuvette measurements. Oecologia (Berlin) 66: 475-483. 

Sellers, P.J. (1985). Canopy reflectance, photosynthesis and transpiration. Int. J. 
Remote Sens. 6: 1335-1372. 

Sellers, P.J. (1987). Canopy reflectance, photosynthesis and transpiration. II. The 
role of biophysics in the linearity of their interdependence. Remote Sens. Envir. 
21: 143-183. 

Sellers, P.J., Hall, F.G., Asrar, G., Strebel, D.E., and Murphy, R.E. (1988). The 
first ISLSCP field experiment (FIFE). Bull. Amer. Meteorol. Soc. 69:22-28. 

Sellers, P.J., Mintz, Y., Sud, Y.C., and Dalcher, A. (1986). A simple biosphere 
model (SiB) for use with general circulation models. J. Atmos. Sci. 43: 505-531. 

Spanner, M.A., Peterson, D.L., Running, S.W., and Pierce, L. (1987). The rela­
tionship of A VHRR data to the leaf area index of western coniferous forests. 
pp. 358-360. In Space Life Sciences Symposium: Three Decades of Life Sciences 
Research in Space. Nat. Aeron. and Space Admin., Washington, DC, June 21-
26. 

Spanner, M.A., Pierce, L.L., Peterson, D.L., and Running, S.W. (1989). Remote 
sensing of temperate coniferous forest leaf area index: The influence of canopy 
closure, understory vegetation and background reflectance. Int. J. Remote Sens. 
(in press) 

Tarpley, J.D., Schneider, S.R., and Money, R.L. (1984). Global vegetation indices 
from the NOAA-7 meteorological satellite. J. CUm. Appl. Meteorol. 23:491-
494. 

Tucker, e.J. (1979). Red and photographic infrared linear combinations for moni­
toring vegetation. Remote Sens. Envir. 8: 127-150. 

Tucker, C.J., Townshend, J.R.G., and Goff, T.E. (1985). African land cover clas­
sification using satellite data. Science 227: 369-374. 

Tucker, e.J., Vanpraet, e., Boerwinkle, E., and Gaston, A. (1984). Satellite re-



86 S.W. Running 

mote sensing of total dry matter accumulation in the Senegalese Sahel. Remote 
Sens. Envir 13: 461-474. 

Waring, R.H., Whitehead, D., and Jarvis, P.G. (1980). Comparison of an isotopic 
method and the Penman-Monteith equation for estimating transpiration of Scots 
pine. Canad. J. Forest Res. 10:555-558. 

Webb, W.L., Lauenroth, W.K., Szareck, S.R., and Kinerson, R.S. (1983). Prim­
ary production and abiotic controls in forests, grasslands, and desert ecosystems 
in the United States. Ecology 64: 134-151. 

Wessman, c.A., Aber, J.D., Peterson, D.L., and Melillo, J.M. (1988). Remote 
sensing of canopy chemistry and nitrogen cycling in temperate forest eco­
systems. Nature 335: 154-156. 

Wiegand, c.L., Richardson, A.J., and Kanemasu, E.T. (1979). Leaf area index 
estimates for wheat from Landsat and their implications for evapotranspiration 
and crop modeling. Agron. J. 71: 336-342. 

Wilson, M.F., Henderson-Sellers, A., and Dickinson, R.E. (1987). Sensitivity of 
Biosphere-Atmosphere-Transfer Scheme (BATS) to the inclusion of variable 
soil characteristics. J. Clim. Appl. Meteorol. 26:341-363. 

Wofsy, S.C., Harriss, R.C., and Kaplan, W.A. (1988). Carbon dioxide in the 
atmosphere over the Amazon Basin. J. Geophys.-Res. 93: 1377-1388. 

Woodwell, G.M., Hobbie, J.E., Houghton, R.A., Melillo,. J.M., Moore, B., 
Peterson, B.J., and Shaver, G.R. (1983). Global deforestation: Contribution to 
atmospheric carbon dioxide. Science 222: 1081-1086. 

Yates, H.W., Strong, A., McGinnis, D., and Tarpley, D. (1986). Terrestrial 
observations from NOAA operational satellites. Science 231 :463-470. 



5. Remote Sensing of Litter and Soil Organic Matter 
Decomposition in Forest Ecosystems 

John D. Aber, Carol A. Wessman, David L. Peterson, 
Jerry M. Melillo, and James H. Fownes 

Remote sensing is increasingly recognized as an important tool for land­
scape or regional estimation of ecosystem function, and for determination 
of biosphere-atmosphere interactions. Existing remote sensing systems 
have been used to monitor the seasonal phenology of standing green 
biomass and its production on a continental scale (Tucker et al., 1985); to 
measure changes in forest canopy leaf area index over large environmental 
gradients (Spanner et al., 1984, Running et al., 1986, Peterson et al., 
1987); to track deforestation in tropical regions (Woodwell et al., 1986), 
and for the detection of ecosystem stress and forest decline (Rock et al., 
1986). These approaches have relied on the detection of large structural 
changes in canopy properties that relate directly to processes controlling 
net primary productivity. 

Decomposition of litter and soil organic matter is the complementary 
process to primary production, and can playa major role in controlling 
long-term ecosystem function through regulation of nutrient availability. 
Estimation of decomposition rates by remote sensing could provide in­
formation on the spatial variability of this process at scales relevant to 
regional-scale research. Can the decomposition process be measured in 
any meaningful way by remote sensing, and by parameters that do not also 
relate to rates of net primary productivity? 

The purpose of this chapter is to present a brief review of the factors 
controlling decomposition in forest ecosystems, and then to discuss the 
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potential for estimating rates of decay by remote sensing. We will present, 
as an example, a recent attempt to measure key forest canopy chemistry 
parameters, and to predict from them rates of nitrogen cycling. Results will 
be used to suggest the nature of ultimate controls of nutrient cycling 
through decomposition in forest ecosystems, and how those rates might be 
predicted by remote sensing. 

Decomposition of Fresh Litter 

Few processes have received more study in forest ecosystems than the 
decay of fresh litter, particularly foliar litter. Combinations of a few key 
parameters, usually nitrogen and lignin content, have been found to 
predict both weight loss and nutrient dynamics for a very wide range of 
litter types. 

For example, Melillo et al. (1982) showed that the ratio of lignin to 
nitrogen in fresh foliar litter predicted initial rates of weight loss for six 
northern hardwood species. Similar analyses applied to a study of different 
foliar litters in North Carolina (Cromack, 1973) yielded similar results 
(Figure 5.1). Aber et al. (1980) showed that the relationship between car­
bon and nitrogen dynamics in most litter decay studies could be expressed 
as an inverse linear relationship between percent weight remaining and the 
nitrogen concentration in that remaining material (Figure 5.2). Melillo et 
al. (1982) then showed that the slope of this relationship was a function of 
the lignin content of the foliage. Further analysis (Aber and Melillo, 1982) 
produced a generalized relationship for total nitrogen immobilized in the 
first year of decomposition as a function of both initial lignin and initial 
nitrogen concentration (controlling both rate of decay and carbon-nitrogen 
interactions) . 

Decay rates of fresh litter also show a strong relationship with climate. 
Meentemeyer (1978) and Meentemeyer and Berg (1986) have used data 
sets from several sites to develop multiple regression equations that predict 
early litter decay rates as a function of litter quality (lignin content) and 
climate (summarized as actual evaportranspiration, AET). 

These results suggest that estimates of foliar litter decay rates could be 
made from remote sensing data if lignin and nitrogen content of produced 
litter could be predicted with some accuracy. A confounding process here 
is retranslocation: the movement of nutrients, particularly nitrogen, out of 
foliage and into twigs during senescence (Ryan and Bormann, 1982; Flana­
gan and Van Cleve, 1983). This causes litter nitrogen content to be very 
different from that of green leaves, and requires, in turn, either that re­
mote sensing data be acquired very near the end of the senescence process, 
or that litter nitrogen be predictable from some characteristic of green 
foliage that can be estimated by remote sensing. 
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Figure 5.1. Decomposition 
rates for several different spe­
cies of leaf litter as a function 
of their initial lignin to nitro­
gen ratio. Differences in rates 
between New Hampshire and 
North Carolina litters reflects 
differences in climate between 
sites. [Melillo et al. (1982).] 
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Figure 5.2. Example of inverse linear relationship between percent original weight 
remaining and nitrogen concentration in remaining material commonly found in 
decomposing foliar litter. These data are for red pine needle litter placed in forests 
in Alaska, Massachusetts, New Mexico, Wisconsin, Indiana, and Georgia. 
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Soil Organic Matter Decomposition 

In stark contrast with litter decay studies, our ability to predict the decay 
rate and nutrient release from soil organic matter is very poor. Soil organic 
matter can be chemically fractionated in several ways related to molecular 
size, nitrogen content, chemical structure, and particle density (e.g., 
Schnitzer, 1978; Stevenson, 1985; Spycher et aI., 1983), and yet no algor­
ithm has been presented for predicting carbon or nitrogen release from 
organic matter as a function of these fractions. All estimates of soil organic 
matter decay involve some form of direct measurement under laboratory 
or field conditions. Computer models of soil organic matter dynamics 
generally treat this compartment as having one to three conceptually sepa­
rated components that vary only in estimated turnover rate (Parton et aI., 
1988; Aber et aI., 1982; Pastor and Post, 1986). The relative amount of 
material entering each compartment may be a function of the initial che­
mical quality of litter. 

While litter and humus decay are clearly similar processes, there has 
been very little work that links the two. Litter decay work has concentrated 
on biochemical characteristics controlling microbial processing, whereas 
soil organic matter research has focused on characterizing the type of com­
pounds present and on theories of humus formation. 

Recent efforts have used long-term litter decomposition to attempt to 
bridge the gap between litter and humus decay research. These studies 
have looked at continuous changes in organic fractions through time or 
through soil horizons (e.g., Berg and Agren, 1984; Berg et aI., 1982). At 
least two characteristics of decaying organic matter show continuous 
changes from the litter to humus stages. 

The first is the inverse-linear relationship between weight loss and ni­
trogen concentration, which holds through 75 to 80% of initial weight lost 
(e.g., Figure 5.2). A cross-site experiment has also demonstrated that the 
slope of this relationship is not altered by climate, although the rate of 
decay is (Melillo et aI., 1988). 

A second continuous change is in the ratio of lignin to cellulose, ex­
pressed as the ligno-cellulose index (LCI, lignin/[Iignin + cellulose]). This 
increases continuously during decay as cellulose decays more rapidly than 
lignin. Long-term studies suggest that the decay rate of organic matter 
slows dramatically once the LCI reaches approximately 0.7, and that the 
inverse linear relationship between carbon and nitrogen dynamics breaks 
down at this point as well (Melillo et aI., 1988; McClaugherty and Berg, 
1987; Melillo, unpublished). 

Long-term litter decay studies provide insight into the dynamics of the 
most rapidly decaying fraction of soil organic matter. That these dynamics 
are an extension of early litter decay processes suggests that long-term 
litter decay dynamics may be predictable from litter chemistry. Yet the 
fraction of total nutrient release in forest ecosystems that comes from this 
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"old litter" and the fraction that comes from "humus" (older material with 
an LeI greater than about 0.7) remain unclear. If chemical fractionation 
and prediction of humus dynamics are not well known in the field, what are 
the chances that they can be predicted by remote sensing? 

Prediction of Nitrogen Mineralization by 
Remote Sensing-a Case Study 

Nitrogen mineralization from soil organic matter is a crucial by-product of 
the decay process. Nitrogen is generally the most limiting nutrient in 
temperate forest ecosystems, and continued primary production depends 
on a continuous supply of mineral nitrogen from decayed soil organic 
matter. Remote sensing of the mineralization process itself is not a realistic 
possibility. The estimation of nitrogen mineralization by remote sensing 
will, then, require that some strong, causal relationship exist between char­
acteristics of forest ecosystems that are accessible to remote sensing tech­
nology and the factors controlling the decay process. We have explored 
this possibility using experimental high-spectral-resolution imaging spec­
trometers currently under development through the National Aeronautics 
and Space Administration (NASA). 

The goal of this study was to determine whether differences in the lignin 
and nitrogen content of whole canopies from a diverse set of well-studied 
forest ecosystems could be detected and predicted using spectral reflec­
tance data from imaging spectrometers, and whether those differences re­
lated to field measured rates of nitrogen mineralization. Results were also 
compared with data on soil texture and net primary productivity (above 
ground) to identify other ecosystem characteristics that might be related to 
canopy chemistry and nitrogen mineralization. 

This study was made possible by the availability of 18 previously studied 
stands in the University of Wisconsin Arboretum in Madison and on Black­
hawk Island near Wisconsin Dells (Wessman et al., 1988; Nadelhoffer et 
al., 1983; Pastor et al., 1984). The Blackhawk Island sites represent a set of 
mature, undisturbed stands that show a remarkable correlation between 
soil type and vegetation (Pastor et al., 1982). In contrast, most of the 
Arboretum sites are restored ecosystems in which vegetation has been 
manipulated to attempt reconstruction of particular forest types (Jordan et 
al., 1987). Dominant species in these stands included red and sugar maple; 
red, white and black oak; red and white pine; black cherry, and basswood. 
The use of both mature and disturbed sites allowed testing of the generality 
of the relationships derived. 

All of the stands used had been previously characterized for annual ni­
trogen mineralization rate using the on-site incubation technique for total 
above-ground productivity and for soil characteristics, including soil tex­
ture (Pastor et al., 1982, 1984; Nadelhoffer et al., 1983, 1985; Lennon et 
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aI., 1985). Nitrogen mineralization rates for Blackhawk Island sites used 
here are somewhat higher than reported by Pastor et al. (1984) because of 
the inclusion of measured rates for the 0- to lO-cm layer in mineral soil. 

Total canopy chemistry was determined in each stand by combining 
analyses of green foliar lignin and nitrogen content with measured rates of 
foliage litter fall, multiplied by a measured foliar retention time for the 
pine species. 

Near-infrared (IR) reflectance of whole canopies for 18 of our sites was 
measured in August, 1985 using the Airborne Imaging Spectrometer (AIS, 
Goetz et aI., 1985) mounted on a NASA C-130 aircraft. Developed at the 
Jet Propulsion Laboratory for NASA, the AIS is an experimental in­
strument using 32- by 32-element mercury cadmium telluride arrays to 
measure reflected solar radiance in 32 wavelength bands for 32 picture 
elements (pixels) simultaneously. As the aircraft advances the equivalent 
of one pixel in ground distance, four grating positions are used to record 
reflectance in 128 wavelength bands. Data used in this paper were collected 
for 128 wavelength bands between 1.2 and 2.4 /Lm (micrometers). It was 
discovered during data quality analysis that values obtained above 1.6 /Lm 
were subject to second-order contamination from shorter wavelengths, re­
stricting this analysis to the region between 1.2 and 1.6 /Lm. For a more 
detailed discussion of the remote sensing techniques, see Wessman et al. 
(1987) and Peterson et al. (1988). 

Spectra were averaged from a three-by-three pixel area covering each of 
the study sites sampled in 1985 (pixel size was roughly 11 by 11 m, study 
site plots were 30 by 30 m). 

Variation in Canopy Characteristics and Ecosystem Function 

The several canopy and ecosystem parameters measured in all stands show 
quite different degrees of variability (Figure 5.3). A fivefold range in nit­
rogen mineralization rates is translated into less than a twofold range in 
total canopy nitrogen content. This small range results from higher foliar 
biomass in the pine stands being offset by lower nitrogen concentration 
compared with hardwood stands (Appendix 1). In contrast, pine foliage is 
high in lignin content relative to most hardwood species, such that total 
lignin content of canopies varies nearly ninefold. Total lignin content with­
in the hardwood stands alone is also more variable than total nitrogen con­
tent, because of large differences in lignin concentration between oaks and 
maples (Appendix 1). Above-ground NPP varies only threefold across the 
sites, also less than nitrogen mineralization, suggesting a decline in 
nitrogen-use efficiency (Vitousek, 1982) with increasing nitrogen miner­
alization. 

Remote Sensing of Total Canopy Chemistry 

Results of the remote sensing analyses have been presented in detail else­
where (Wessman et al., 1987, 1988a). Using a three-wavelength model 
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Figure 5.3. Variation in canopy and ecosystem parameters for stands used in this 
step. All data are expressed as a percentage of the lowest value for that parameter. 
Data on net annual nitrogen mineralization, NNP, and above-ground live biomass 
are from Nade1hoffer et al. (1983, 1985), Pastor et al. (1984), and Lennon (1985). 

based on first-order derivative spectra, a strong correlation was obtained 
hetween measured lignin concentration in whole canopies and near-IR 
reflectance as measured by the AIS (Figure 5.4). This analysis includes 
both disturbed and undisturbed stands. 

Prediction of nitrogen content or concentration in whole canopies was 
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Figure 5.4. Measured lignin concentration in whole canopies compared with con­
centration as predicted by multiple regression using first derivative of reflectance at 
three wavelengths (1256, 1555, 1311 nm) extracted from spectra acquired with the 
Airborne Imaging Spectrometer (AIS) (n = 18, R2 = 0.85). [Wessman et al. (1988a).] 
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less successful (Wessman et aI., 1987), mainly because of the narrow range 
of values measured in the field. Because of this, further discussion in this 
chapter will be limited to canopy lignin concentrations. 

Canopy lignin concentrations were available for three stands measured 
in 1984 that were not used in the above analysis. The standard error of 
prediction for these three stands using 1984 field data and 1985 AIS data 
was 1.6% lignin (11% of the mean value of 15.0% lignin for this three 
stands, Wessman et aI., 1988a). 

Relationships Between Canopy Lignin Concentration and 
Ecosystem Parameters 

There is a very strong inverse relationship between field-measured, whole­
canopy lignin concentration and measured rates of net annual nitrogen 
mineralization (Figure 5.5). Using only undisturbed stands on Blackhawk 
Island, the relationship is particularly strong (82 = 0.99, n = 7, P < 0.0001, 
SEE = 3.19). Adding the Arboretum stands, which are in different stages of 
recovery from human use, the correlation is less strong (R2 = 0.21, n = 14, 
p = 0.0347, SEE = 30.1), largely because of a single outlier. Removing this 
one point yields again a strong correlation (R2 = 0.78, n = 13, p < 0.0001, 
SEE = 15.3). 
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Figure 5.5. Relationship between field-measured whole canopy lignin concentra­
tion and field-measured rates of net annual nitrogen mineralization (filled 
triangles = undisturbed sites, Blackhawk Island; open triangles = disturbed and 
restored sites, Arboretum. Line is best fit to Blackhawk Island data.). 
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Figure 5.7. Measured relationship between soil texture (percent silt + clay) and net 
annual nitrogen mineralization. (Filled triangles = Blackhawk Island, open 
triangles = Arboretum. Line represents best fit to Blackhawk Island values 
R2 = 0.82, P = 0.002). 

We have used a two-step model to predict net annual nitrogen miner­
alization for all of Blackhawk Island from AIS data (Wessman et ai, 
1988a). First, AIS data are used to estimate the percent foliar lignin for 
each pixel within the O.75-km2 study area. Patterns in this scene corres­
pond very well with known patterns of species distribution (Pastor et aI., 
1982) and measured species foliar lignin values (Appendix 1). Second, net 
annual nitrogen mineralization is estimated from canopy lignin concentra­
tion using the regression above (Figure 5.5) for undisturbed stands only. 
Validation of these estimates using four stands on Blackhawk Island not 
included in the regression analysis, but for which net nitrogen mineraliza­
tion has been measured, indicates a standard error of prediction of 7.5 kg 
N· ha-1'yr- 1 (n = 4, mean = 74.25; Wessman et aI., 1988a). 

In previous papers, we have shown that a strong relationship exists be­
tween nitrogen mineralization and total above-ground NPP for different 
subsets of sites (Nadelhoffer et aI., 1985; Pastor et aI., 1984; Lennon et aI., 
1985). Combining data from all studies, the relationship becomes even 
stronger, but genus specific (Figure 5.6(a)). Thus the relationship of the 
remotely sensed variable, lignin concentration, with NPP, is weaker than 
with nitrogen mineralization (Figure 5.6 (b)). 

There is also a strong relationship between nitrogen mineralization and 
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soil texture (a surrogate for water-holding capacity in the deep, stone-free 
soils of the study sites) for the undisturbed sites only. It does not apply to 
the disturbed sites (Figure 5.7; Nadelhoffer et aI., 1983; Pastor et aI., 1982, 
1984). This results in no relationship between canopy lignin and soil tex­
ture for the full set of stand. 

Implications of These Results for General Predictability of 
Organic Matter Decay Rates and Ecosystem Function 

Correlational analyses of this type always raise the question of causation 
versus chance correlation. To what extent can the results be extended to 
other systems? How generally can rates of nitrogen mineralization (and to 
some extent soil organic matter decay) be predicted from foliar lignin con­
centration? These questions can be posed, to some extent, in two ways: (1) 
Statistically-what part of the potential universe of forests are included in 
the analysis? (2) Theoretically-is there a theoreticar underpinning that 
suggests these relationships should occur? 

Statistically, the accurate prediction of lignin concentration for canopies 
of very different species composition and foliar morphology and chemisty 
suggests that the remote sensing results are generalizable, at least across 
temperate forest ecosystems. However, theoretical support for this rela­
tionship is lacking, as the near-IR absorption spectrum for lignin, a large, 
amorphous aromatic polymer with variable structure, is not yet well de­
fined. However, we have recently succeeded in developing an algorithm 
for predicting lignin content of dried, ground foliage using near-IR reflec­
tance characteristics (Wessman et aI., 1988b). Still, it is possible that some 
other canopy component or characteristic both is strongly related to total 
lignin content and is responsible for the differences in derivative reflec­
tance spectra found in this analysis. 

The diversity of forest types used in this analysis also suggests that the 
relationship between canopy lignin concentration and nitrogen mineraliza­
tion rates is generalizable. In this case, there is a theoretical basis for the 
relationship in that leaf litter is a major component of total biomass and 
nutrient inputs to forest soils, and the lignin content of litter is an impor­
tant determinant of rates of litter decay and nitrogen release (Berg and 
Agren, 1984; Berg et aI., 1982; Melillo et aI., 1982; Aber and Melillo, 
1982). 

However, the single major outlier, a sugar maple plantation established 
on an old field in the Arboretum, indicates that the relationship between 
canopy lignin and nitrogen mineralization is not one of immediate cause 
and effect. Chemical analyses of foliage collected across the full range of 
nitrogen mineralization rates showed no detectable changes in lignin con­
tent for leaves of a particular species (Fownes,1985). Changes in nitrogen 
concentration were also small and nonsignificant for individual species. 
Thus foliar chemistry within a species is not drastically altered in response 
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to nitrogen mineralization (compare the results of fertilization experi­
ments, e.g., Turner, 1977; Safford et aI., 1977; Miller et aI., 1981; Weet­
man and Fournier, 1984). This suggests that species replacement will have 
to occur for canopy chemistry to adjust to altered nitrogen mineralization 
rates. This also suggests an interesting question: Does the lignin content of 
the array of species that comes to dominate a disturbed site reflect the 
nitrogen mineralization rate on that site? 

Similarly, nitrogen mineralization rates do not change immediately in 
response to foliar lignin concentrations. It appears that 50 years of occupa­
tion of an old field site by sugar maple has not altered the nitrogen miner­
alization rate significantly, in spite of a precipitation input rate of 8 kg 
inorganic N· ha -1. yr- 1 (N adelhoffer et aI., 1985) and rapid decay and 
incorporation of foliar litter into the soil. This may be due to long-term 
replenishment of soil humus lost during years of cultivation. The question 
of rates of change in nitrogen mineralization within forest soils is one that 
deserves further attention. 

The tight four-way relationship among foliar lignin, soil texture, species 
occurrence, and NPP for the undisturbed sites supports both theoretical­
physiological (Mooney and Gulmon, 1982; Coley et ai., 1985) and model­
ing (Pastor and Post, 1986) research that suggests that water availability is 
a prime determinant of the inherent productive capacity of a site, and hence 
controls realizable NPP, species composition, and concentrations of second­
ary compounds, such as lignin, in foliage. It further supports the idea that 
the equilibrium rate of nitrogen cycling achieved is controlled proximally 
by the nitrogen content and decay rate of litter, and ultimately by the 
fundamental productive capacity of the site, in these stands determined by 
water-retention capacity. And finally, it suggests that the adjustment be­
tween site and species in terms of bringing foliar chemistry in line with 
nitrogen availability does occur within the successional lifetime of a forest. 

Both the NPP and soil-texture analyses imply that relationships between 
remote sensing data and ecosystem processes will become less precise the 
further removed the predicted process is from direct interactions with 
canopy chemistry. Canopy lignin content and nitrogen mineralization are 
coupled through effects of lignin on decomposition. Relationships with 
NPP and soil texture depend on more complex, long-term interactions and 
are therefore "noisier" and less likely to apply to disturbed sites. 

We conclude that remote sensing of important canopy chemical features 
is feasible. Predicting rates of important ecosystem processes from remote­
ly sensed data is less certain, and depends on strong correlations between 
canopy variables and the process of interest. Our results suggest that those 
correlations will become less predictive for processes that are not func­
tionally related to the measured canopy variables. With regard to rates of 
organic matter decay, it appears that the tight coupling of canopy chemis­
try with nitrogen mineralization may allow a generalized predictive ability 
at least for this close surrogate of decomposition. 
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Appendix 1 

Sampling of green foliage chemistry as part of this project yielded a good 
deal of information regarding the variation in nitrogen and lignin content, 
and also weight-to area ratios by species with height. The following table 
summarizes those results. In general, lignin and nitrogen concentrations 
did not change significantly or consistently with height, although weight-to­
area ratios did. 
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6. Water and Energy Exchange 

Robert E. Dickinson 

The goal of obtaining water and energy exchange on continental scales 
from remote sensing is fundamental to the questions not only of ecosystem 
functioning but also of land climate processes and regional hydrology. A 
general conceptual framework is described here for carrying out this work. 
Progress up to now has been limited for several reasons: the current sens­
ing systems are probably inadequate for the task, the information content 
of potential future systems has not been adequately characterized by 
modeling sensitivity studies, and the linked remote sensing and modeling 
infrastructure has not yet been developed that is needed to carry out this 
activity. 

An optimum approach to water and energy exchange at the land surface 
involves combining several kinds of observations with an appropriate mod­
eling framework. Observations known ,to contain information about water 
and energy fluxes are radiative skin temperatures over the diurnal cycle; 
rainfall (with as much spatial and temporal detail as possible over continen­
tal scale areas); divergence of moisture flux in an atmospheric column; 
descriptions of the surface vegetation cover in terms of parameters that 
affect evapotranspiration and surface albedo, and likewise for soils and 
terrain in terms of their effects on surface hydrology; any direct measures 
of soil moisture that are possible such as can be inferred from microwave 
emissivities; all the observations needed for an atmospheric model to pro­
vide adequately surface air temperatures, winds, and relative humidity; 
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and adequate information on atmospheric cloud, aerosol, and humidity 
structure to estimate surface incident solar and longwave radiation. 

Partial approaches to estimating surface water and energy fluxes are 
possible by using subsets of the above information and that is what has 
been done up to now, as reviewed in the following sections. An integrated 
approach using General Circulation Models (GCMs) linked to remote 
sensing would be expedited by use of the same physical process algorithms 
for both model and remote sensing. For pedagogical reasons, this chapter 
introduces simplified versions of algorithms suitable for this purpose. 

The Skin-Temperature Method 

Skin temperature is the surface temperature inferred from thermal emis­
sion. It will generally be some average of canopy and soil temperature, 
according to the source of emission. The simplest version of using skin 
temperature to infer surface energy fluxes is the application of a hand-held 
radiometer and air thermometer to measure the difference in temperature 
between a canopy and surface air. As a canopy becomes more water stres­
sed, it becomes warmer as a result of the decrease in evaporative cooling. 
Thus, although the canopy air temperature difference is most directly de­
pendent on evapotranspiration, it can be correlated with crop water stress, 
leaf water potential, or soil moisture, according to what related local site 
measurements have been made (e.g., Idso et al., 1975; Idso and Ehler, 
1976, 1977; Jackson and Reginato, 1976; Jackson, 1985; Ehler et al., 1978). 
This empirical approach has been developed for use with satellite data 
(e.g., Seguin and Itier, 1983). 

The bare-soil version of the use of skin temperature in remote sensing 
has been known as "the thermal inertia method." In the absence of air and 
water, only radiative heating is present and so the diurnal variation of 
temperature depends only on the thermal conductivity and specific heat of 
the soil or rock (e.g., as applied to Mars by Sinton and Strong, 1960). This 
approach has also caught the attention of terrestrial geologists (e.g., 
Kahle, 1977; Price, 1977; Watson and Hummer-Miller, 1981). We simply 
show what might be inferred from the thermal inertia approach using the 
force restore approximation for surface soil temperature (e.g., Deardorff, 
1978; Dickinson, 1988), which is now commonly used in GCMs. This 
approximation is based on replacing the temperature conduction term at 
the surface, depending on the vertical temperature gradient, by surface 
temperature and its time derivative with factors chosen so that the latter 
two terms are equivalent to the conductive term for sinusoidal forcing. For 
this purpose, Tg = surface soil temperature, v = 217186,400 is the diurnal 
frequency in S-1, A = thermal conductivity of the top 0.1 m or so of the soil, 
and D = (2A1vc)1I2, the penetration depth, where c = volumetric specific 
heat. Then according to this approximation: 



6. Water and Energy Exchange 107 

- - -g + T = Q(t) A [ 1 aT 1 
D IJ at g 

(1) 

where Q(t) = surface heat input, assumed to be largely diurnal. The ampli­
tude of the diurnal wave is evidently proportional to the amplitude of Q 
and is inversely proportional to (.\c) 112. The principle of the thermal initial 
approach is to measure Tg , so that for given Q, the product Ac is deter­
mined. The latter depend on the surface composition and on soil moisture. 
Generally, D = 0.1 m, and A lies between 1 and 2 W m- I K-l, so a diurnal 
range of Tg of 20 K requires a range of Q of about 300 Wm-2 . 

Equation 1 is readily generalized to a more accurate treatment of the 
soil thermal diffusion. However, its usefulness without further information 
is limited by the neglect of vegetation, and even worse, by the dependence 
of Q on sensible heat and evaporative fluxes, denoted Hand E, respective­
ly, which depend strongly on the difference between Tg and the overlying 
air temperature Ta , and that between the mixing ratio of water at the soil 
surface qg and in the overlying air qg. Using Pa = air density, Cp = specific 
heat of air, these fluxes are written: 

(2) 

(3) 

The terms rH and rE are resistances, inversely proportional to the strength 
of the surface wind. These are determined from boundary layer theory as a 
function of the height of the atmospheric variables, surface roughness, and 
atmospheric stability. For conditions of neutral atmospheric stability and a 
wet surface: 

(4a) 

where U is the atmospheric wind and 

(In zlz )2 c= 0 

k2 
(4b) 

is the inverse "drag coefficient." The term z is the level at which the atmo­
spheric variables are provided, measured from the "zero-displacement" 
level of the canopy, k = 0.4 is the Von Karman constant, and Zo is the 
roughness parameter. Typically, z is between 1 and 10 m and Zo ranges 
from 0.01 m to 1 m, going from smooth to very rough land surfaces. Hence 
C ranges from about 30 for rough surfaces to 300 for smooth land surfaces 
(and up to 700 for very smooth surfaces such as water.). 
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Methods to include the sensible and latent heat flux given surface atmo­
spheric observations, have been developed, for example, by Soer (1980), 
Hechinger et al. (1982), Camillo et al. (1983), and Van de Griend et al. 
(1975). The latter two papers emphasize the need to model the variation of 
soil moisture as well as surface temperature and fluxes. 

The qg in Equation 3 is usually calculated as the saturated mixing ratio 
at Tg , so that if the surface is not saturated, the resistance rE = rH plus an 
additional term that depends on the rate of moisture diffusion to the sur­
face and hence on soil moisture (e.g., Choudhury and Monteith, 1988). 
Carlson et aI., (1981) (see also, Carlson, 1986; Flores and Carlson, 1987) 
eliminate the need for surface observations by introducing a planetary 
boundary layer model that is integrated forward in time from radiosonde 
soundings. They set 

(5) 

wherers is rE for a saturated surface and M is called the "moisture availa­
bility" or the "wetness factor." The term Q in Equation 1 is defined as: 

(6) 

where RN = net radiation (absorbed solar - net thermal infrared [IR] loss) 
and L = latent heat of vaporization. With a thermal diffusion version of 
Equation 1, Carlson et al. used the diurnal variation of surface skin 
temperature (i.e., the temperature inferred from satellite radiances) to in­
fer moisture availability M, assuming Equation 5. 

This moisture availability approach has provided a useful observation­
ally based representation of evapotranspiration for use in mesoscale 
models. However, because it does not necessarily mimic the physics of 
either soil evaporation or canopy transpiration very well, its extrapolation 
of evapotranspiration to times when observational skin temperature data 
are not available may be inaccurate. Furthermore, the soil thermal diffu­
sion and inferred thermal inertia become irrelevant for surfaces largely 
shaded by vegetation. Wetzel et al. (1984) and Wetzel and Woodward 
(1987) have developed a variation on the moisture availability approach 
using the morning rise of skin temperature obtained from the GOES ther­
mal channel. They argue for an empirical relationship equivalent to 
M = W 2/E, where W is a measure of soil moisture content. They validate 
their estimates of day-to-day variation of W with an antecedent rainfall 
index (described in next section). Diak et al. (1986) compared surface 
temperatures for a mesoscale model and using various approaches with 
GOES inferred skin temperatures. They note that Bowen ratios are in­
sensitive to M except for low values, 0.1 or less. 

For terrestrial applications, the thermal inertia method depends on the 
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fluxes of latent and sensible heat to the atmosphere, as expressed by Equa­
tions 1 and 5. Indeed, for most situations, the variation of surface tempera­
ture, depending on E and H, is relatively insensitive to the likely variation 
of thermal inertia compared with that of surface roughness, surface winds, 
and soil moisture. Many GCMs, in particular the standard models of the 
Geophysical Fluid Dynamics Laboratory (GFDL) and the National Center 
for Atmospheric Research (NCAR), that average over the diurnal cycle, 
neglect soil thermal inertia and assume instantaneous energy balance; that 
is, Q = O. If we make these assumptions, we can get a simple expression for 
the difference between air and skin temperature. Assuming a wet surface, 
we take 

(7) 

where qas is atmospheric water vapor mixing ratio at saturation. Then, 
from Equations 2 and 3 and H + LE = R N , we have 

(Tg - Ta) = (RN - LEo) 
a 

(8a) 

taking 

a = pa( Cp + Laq/aT) (8b) 
rH rE 

Eo = Pa (qas - qa) (8c) 
rE 

The term Eo corresponds to the component of evaporation driven by dry­
ness of the air (vapor-pressure deficit). For nonwet surfaces, the models 
multiply the wet surface qg - qa of Equation 7 by a wetness factor M, which 
can be included in the definition of rE by Equation 5. In Equation 8, rH 

(given the surface roughness) and the vapor pressure deficit depend only 
on atmospheric conditions. With these and RN as given, the values of 
Tg - Ta depend only on the water flux resistance, rE, or conversely, a 
measurement of Tg - Ta will determine rEo After this inversion, Equations 
2 and 3 are used to obtain the surface fluxes of sensible and latent heat. The 
term Laq'/ aT ranges from the value of Cp at 7 C to 5 x Cp at 35 C. For 
cooler temperatures, and for greater roughness (i.e., smaller rH), it is evi­
dent from Equations 8a and 8b that the first term in a may be comparable 
to, or even larger, than the second, making it more difficult to infer rE from 
the surface-air temperature difference. 

A canopy model approach using satellite data to infer surface water and 
energy exchange has been developed by Taconet et al. (1986a, 1986b) (see 
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Figure 6.1. Schematic redrafted from Taconet et al. (1986a) of application of 
satellite-derived skin temperature to infer evapotranspiration and soil moisture. 
[Reproduced with permission of the American Meteorological Society.J 

also Serafini, 1987). It corresponds to the energy balance approach just 
described except that rE in Equation 8b must include, in addition to the 
aerodynamic resistance (4a), a canopy resistance r c representing the inte­
grated effect of the stomatal resistance of individual leaves. Taconet et al. 
worked with 1400 L T thermal channel data from the Advanced Very High 
Resolution Radiometer (A VHRR) of the NOAA-7 polar orbiter, but in a 
more recent study have also considered diurnal cycle data from the 
METEOSAT geostationary satellite. The basis of their procedure as illus­
trated in Figure 6.1 is as follows: The satellite data provide the midday 
peak (or diurnal variation) of surface skin temperature. A joint canopy/soil 
model is integrated in time, driven by measured net radiation, atmospheric 
temperatures, water vapor deficit, and winds. This model calculates soil 
moisture, evapotranspiration, and canopy temperature. The satellite­
measured skin temperature is used in such an approach to infer the canopy 
resistance on the basis of surface energy balance, as described above. This 
procedure thus also yields surface evapotranspiration and sensible heat 
fluxes, and soil moisture from an assumed relationship between stomatal 
resistance and soil moisture. 
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Figure 6.2. Comparison by Taconet et al. (1986b) of satellite-derived estimates of 
and sensible energy fluxes with surface measurements. [Reproduced with permis­
sion of the American Meteorological Society.] 

Taconet's model requires data on surface winds, atmospheric tempera­
ture, and humidity over a diurnal cycle. These were obtained using one of 
two approaches. First, averages of local ,surface measurements were used. 
Second, a planetary boundary layer model was initialized by measurements 
from the nearest radiosonde stations and integrated over the diurnal cycle 
to provide the needed surface atmospheric terms. The latter was found to 
give more satisfactory results. For validation, she compared her results 
with local measurements of sensible heat flux (as shown in Figure 6.2) and 
of soil moisture. 

That skin temperature procedure is also sensitive to the prescribed 
atmospheric winds and temperatures is seen from Equations 4 and 8. Tar-
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pley (1988) shows for sites in Kansas that variations in wind have an effect 
comparable to that of variations in soil moisture on the morning increase of 
skin temperature inferred from the GOES thermal channel. Under ideal 
conditions-that is rc» rH but rc« (L8q)8T)rHICp-we can neglect 
aerodynamic resistance terms as well as the sensible heat flux. The solution 
for Tc from Equation 8, with Tg replaced by canopy temperature Tc, then 
simplifies to 

(9) 

which shows that, at best, the relative error in Tc will be proportional to the 
relative error in estimating the canopy air-temperature difference and air 
relative humidity and that of the inverse of net radiation. Midday condi­
tions in a warm climate would seem optimum for estimating rc according to 
Equation 9. For example, with Tc = 35 C, Tc - T,,= 8 C, RN= 800 W m~2, 
and relative humidity of 0.5, Equation 9 would give Tc = 100 s m- I , typical 
of a well-watered canopy, with the temperature and humidity differences 
contributing approximately equally to Tc' 

To the extent that H« LE and that heat storage is negligible, as 
assumed for Equation 9, LE can be obtained directly from RN ; see Equa­
tion 6. The generally close correspondence between LE and RN under 
well-watered conditions has suggested direct use of RN to define potential 
evapotranspiration. This has long been done by Budyko in the Soviet 
Union. The most popular such approach has been that of Priestly and 
Taylor (1972). Specification of incident solar radiation over large areas re­
quires the application of satellite remote sensing. See Diak and Gautier 
(1983), Pinker and Ewing (1986), Darnell et al. (1988), and Sellers et al. 
(1988) for currently available algorithms. 

The temperature accuracies required to estimate rc adequately may be 
difficult to achieve over large areas because of variations in surface emis­
sivities, the need to correct satellite-inferred surface temperatures for atmo­
spheric water vapor emission, and the likely presence of thin or sparse cloud 
cover and continental aerosol even on days ascertained to be cloud-free. 
Also, the effective canopy temperature determining sensible and latent 
heat fluxes will in general not be the same as the effective radiative temper­
ature. A more fundamental limitation of the approach, as applied, is its 
restriction to completely clear days, which may be as little as 10% of the 
total time. A lack of prescription of vegetation cover properties, such as 
leaf area index (LAI) and aerodynamic roughness, over large areas 
may also limit the application of these procedures. Taller vegetation will 
normally have a smaller air canopy temperature difference, since Equation 
8 will usually not simplify to Equation 9 and TH, which becomes smaller 
with taller vegetation, will increase the magnitude of 0' in Equation 8. 
Hence the method may be more difficult to apply in forests. 
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The Rainfall Approach 

A very important factor in determining evapotranspiration not only instan­
taneously but especially over weeks or longer is the incident rainfall. An 
early approach to estimating evapotranspiration based on rainfall is that 
of Thornthwaite and Mather (1955), most recently used in modified form 
by Willmott et al. (1985) to generate a global climatology of evapotran­
spiration (shown in Figure 6.3), and by Walsh et al. (1985) to examine how 
much of the variability of monthly surface temperatures that is uncorre­
lated with atmospheric 700-mb (millibar) heights is correlated with soil 
moisture and snow cover. The basic principle of using rainfall to estimate 
evapotranspiration is that of water balance. All implementations have used 
crude models for estimating evapotranspiration and runoff, usually on a 
monthly basis because of the greater accessibility of monthly rainfall data. 
According to the Thornthwaite method, runoff occurs only when monthly 
precipitation P exceeds "potential evapotranspiration,'; Eo, a quantity esti­
mated by correlating monthly surface air temperature with lysimeter data. 
Under excess P, it is assumed that 

R = P - [E + (w* - w) 1 2::0 (10) 

whereas when P < Eo 

E= P+ M(Eo - P) 

where the wetness factor M depends on the soil moisture w relative to the 
bucket capacity w* and where R is runoff. In principle, the rainfall 
approach can take much smaller time steps than monthly, and use remotely 
sensed, as well as local, rain-gauge measurements. Essentially the same 
approach is currently used but with short (approximately one-half hour) 
time steps in most GCMs (e.g., Manabe, 1969) and referred to as a "buck­
et model." Pinker and Corio (1987) and Corio and Pinker (1987) have 
applied a variation of this method developed by Lettau that uses measured 
solar incident radiation and rainfall to estimate the monthly evapotran­
spiration over Kansas. The main limitation of the method is its crude 
empirically based description of evapotranspiration and runoff, which be­
come increasingly unrealistic on shorter time scales and cannot be safely 
applied to climates differing from those for which they were derived. Thus 
the Thornthwaite bucket model approach is probably especially suspect for 
tall vegetation and tropical conditions and for describing the diurnal cycle 
of evapotranspiration. Use of more physically based models for evapo­
transpiration and runoff that could be calculated on a shorter time step 
(daily or over diurnal cycle) would make this approach more robust and 
reliable. 
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Figure 6.3. Annual mean and interannual variability of global evapotranspiration 
as inferred by Willmott et al. (1985). [Reproduced with permission of the Royal 
Meteorological Society.J 
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An even simpler and more empirical approach to the use of rainfall to 
infer soil moisture is the antecedent precipitation method (Blanchard, 
1981; Choudhury and Blanchard, 1983). This method essentially assumes 
that the rainfall is a random forcing defining a first-order Markov process, 
that is, 

(11) 

where the subscripts refer to a particular day, API is the antecedent pre­
cipitation index, and K is a regression coefficient. Equation 11 is mathe­
matically equivalent to a finite difference version of a very simple bucket 
model, that is, 

(12) 

where 

.:it 
T=---

(1- K) 

with Llt the interval of time over which Equation 11 is applied (usually one 
day). Equation 12 neglects runoff and assumes that evapotranspiration 
depends only on the soil water Wand the time scale T. Choudhury and 
Blanchard have used the Manabe (1969) bucket model to estimate values 
of K lying between 0.9 and 0.99 or, equivalently, T lying between 10 and 
100 days. More recently, Delworth and Manabe (1988) fitted soil moisture 
decay time scales to a 50-year GCM simulation, as illustrated in Figure 6.4. 

One of the practical objectives of determining soil moisture is to estab­
lish the presence and severity of drought. The most widely used index for 
this purpose is the Palmer Drought Severity Index (PDSI), as reviewed by 
Alley (1984). Conceptually, it uses potential evapotranspiration from the 
Thornthwaite approach and other considerations to compute the difference 
between actual precipitation and that "climatologically appropriate for ex­
isting conditions." A weighted measure of this precipitation is used to force 
an equation equivalent to Equation 11 with K = 0.897, and to keep track of 
three separate indexes, "wet spell becoming established," "drought be­
coming established," and "wet spell or drought that has become estab­
lished," which are reinitialized to zero under appropriate conditions. The 
large number of rules governing these procedures cannot be summarized 
here, eJitcept to quote Alley (1984): "The methodology used to normalize 
the values of PDSI is based on very limited comparisons and is only weakly 
justified on a physical or statistical basis." Karl (1986) has found statistical­
ly significant correlations between the PDSI and subsequent seasonal and 
monthly mean temperatures in the United States and calls for improved 
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60· 60· 

Figure 6.4. Time scale of soil moisture loss from Delworth and Manabe (1988). 
Units are months. [Reproduced with permission of th~ American Meteorological 
Society. ] 

estimates of evapotranspiration for seasonal and monthly weather fore­
casting. 

One key issue in application of a rainfall-based method to evapotran­
spiration is the quality of the measurement of rainfall. Because of the large 
spatial variability of rainfall, the conventional rain gauges are inherently 
inaccurate except in high-density networks. Thus the need for quantitative 
measurement of rainfall suggests the development of spatially averaging 
remote sensing techniques. Weather radars have been developed as a tool 
to do this from the ground (e.g., Austin, 1987). Up to now, satellite remote 
sensing of rainfall (e.g., Griffith, 1987; Simpson et aI., 1988a) has largely 
used correlations of precipitation with cloud-covered area and cloud-top 
emission temperature, with some limited attempts to use passive micro­
wave instruments. The TRMM project (Simpson et aI., 1988b) is intended 
to provide large improvements in satellite capabilities, including radar to 
measure rainfall in the tropics. 

The Atmospheric Water Vapor Divergence Method 

Large-scale atmospheric circulation patterns act to redistribute horizontal­
ly water vapor and thermal energy carried by the air. On the global scale, 
the large radiative imbalance observed by satellites at the top of the atmo­
sphere, that is, net absorption in equatorial latitudes and net radiative loss 
at high latitudes, is maintained by atmospheric transport of latent and 
thermal energy, and to a lesser extent by ocean circulations . The atmo­
spheric energy transport, dominated by water vapor outside of the winter 
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polar regions, is the source of energy for atmospheric winds. Since the 
horizontal transport of water is such an important feature of the general 
circulation, its detailed patterns have long been inferred from observed 
winds and water vapor mixing ratios. The basic atmospheric conservation 
law constraining surface fluxes of water vapor is that the difference be­
tween surface evaporation E and precipitation P is 

(13) 

where p is atmospheric density, C the horizontal wind, q the mixing ratio of 
atmospheric water vapor (i.e., pq is the water vapor density), and z is 
altitude. Since the atmosphere can carry, at most, 0.05 m of water, the 
second term representing change of atmospheric storage is negligible for 
averages of a month or longer. 

Equation 13 in principle applies at a point, but in practice it is not prac­
tical to apply except as an average over a region that is large enough to 
contain a reasonable network of wind and water vapor observations from 
the surface up to at least 5 km. These observations have traditionally been 
supplied by meteorological radiosondes, but other surface and remote 
sensing approaches from the surface and space to measure atmospheric 
water vapor and winds are becoming available. 

Rasmusson (1968) showed that reliable time means, monthly or longer, 
of E - P over North America could be obtained from Equation 13 using 
wind and water vapor data from radiosonde stations, provided an area 2 by 
106 km2 or larger was considered. Figure 6.5, from that study, illustrates 
the inferred seasonal change of soil moisture over the eastern and central 
United States and southern Canada. Kellogg and Zhao (1988) have used 
the analysis of E - P by Rasmusson as a test of the reality of the seasonal 
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Figure 6.5. Mean monthly surface water storage (i.e., E - P with sign reversed) 
computed by Rasmusson (1968) from the divergence of atmospheric water vapor 
flux. [Reproduced with permission of the American Meteorological Society.] 
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cycle of soil moisture over North America in the various GCMs that have 
projected climate change from doubling of carbon dioxide. 

Bryan and Oort (1984) have applied the atmospheric flux approach 
globally with ten years of data. The computed E - P averaged over all 
continents was apparently of low accuracy (e.g., of positive sign over mid­
latitudes). However, application of the 1979 FGGE data, produced by 
four-dimensional data assimilation techniques, gave reasonable agreement 
with Baumgartner and Reichel's (1975) global data based on the Thorn­
thwaite approach. 

Other recent studies (Peixoto and Oart, 1983; Savijarvi, 1988) have 
used the radiosonde station data approach but have concentrated on the 
global aspects of the atmospheric hydrological cycle rather than on the 
implications for continental soil moisture. The advantages of four­
dimensional data assimilation could be achieved by use of the data sets for 
atmospheric moisture and winds generated at numerical weather predic­
tion centers (in particular the U.S. National Meteorological Center (NMC) 
and the European Centre for Medium-range Weather Forecasts 
(ECMWF). These data are generated by assimilating the observed station 
data along with other correlated sources of information, such as satellite 
radiances and global model predictions, to obtain an optimum estimate 
(e.g., DiMego, 1988). Such an approach forms the foundation for initializ­
ing winds and temperatures in the forecast models. However, the useful­
ness of their moisture analyses is still questionable (Nogues-Paegle and 
Daley, 1988). Trenberth et al. (1987) report that the analyzed relative 
humidity from ECMWF dropped on the average 22% on May 1, 1985, as a 
result of changes in the prediction model, the database being unchanged. 

The Vegetation Index Approach 

Vegetation, because of its chloroplasts, absorbs much more solar radiation 
at visible (i.e., less than 0.7 micrometer) than at near-IR wavelengths. 
Vegetation indexes constructed on the basis of this property (e.g., the 
NDVI parameter of the AVHRR sensor, c.f., Running, this volume, 
Chapter 4) can indicate the amount of green leaf material present. Micro­
wave at 37 GHz also appears to be sensitive to the water, and perhaps 
structure, of canopy foliage (Choudhury, et aI., 1987). Tucker and 
Choudhury (1987) have compared the two methods as means of detecting 
drought and Becker and Choudhury (1988) have theoretically examined 
both and have shown how they are related. They suggested that, at low 
values of vegetation cover, the microwave will be more sensitive than 
NDVI to changing vegetation cover. Running and Nemani (1988) have 
shown a good correlation between modeled annual transpiration with only 
meteorological inputs allowed to vary and annual integrated NDVI. This 
correlation suggests the plausible conclusion that where there is less soil 
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moisture to transpire, vegetation will be more sparse (e.g., Eagleson, 1982; 
Woodward, 1987) but could be determined in part by the dependence of 
both measured quantities on the length of the growing season. Nemani and 
Running (1989) show a close correlation for Montana conifers between 
LAI and simulated seasonal transpiration, the latter largely controlled for 
their study sites by the amount of water retained in the soil at spring snow 
melt. Their observations show that excluding stands of larch (a unique 
deciduous conifer), the NOVI obtained from Landsat and from A VHRR is 
related to the LAI of the individual sites. 

Sellers (1985) has provided an analytic framework for relatingvegeta­
tion index measurements to canopy water flux. The crux of his approach is 
to apply a reasonably accurate two-stream model for radiative transfer in a 
canopy to obtaining analytic solutions for canopy albedo, canopy resistance, 
and photosynthesis. These properties are related through the radiative 
transfer model to fundamental leaf light level properttes, in particular, a 
leaf scattering model, and models for leaf stomatal resistance and photo­
synthesis. Sellers constructs a vegetation index from the difference between 
broad-band visible and near-IR canopy albedos. This index differs from 
those based on satellite data in that the latter refer to narrow wavelength 
bands and bidirectional reflectances, that is, reflected radiation viewed 
from a single direction. 

Sellers shows theoretically that a remotely sensed vegetation index can 
be used to specify canopy resistance under the following conditions: 

1. The leaf stomatal properties are known. 
2. There is complete canopy cover, or alternatively, the optical properties 

of the underlying soil and the fraction of exposed soil are known. 
3. The foliage is all green, or alternatively, the fraction of nongreen foliage 

and its optical properties are known. 
4. The vegetation is not water or temperature stressed. 

These conditions in total are too restrictive for the approach to be readi­
ly applicable for relating measured NOVI to evapotranspiration. However, 
the basic principle involved is clear. As NOVI increases, and hence also 
the canopies' leaf area index, the canopies' resistance to transpiration 
decreases. At low values of leaf area index, the stomatal resistance of indi­
vidual leaves will be maximum and both NOVI and canopy conductance 
(inverse of resistance) will vary linearly with leaf area index. At large 
values of leaf area index, both NOVI and canopy conductance become 
insensitive to leaf area index as heavily shaded leaves contribute little to 
either (Sellers, 1985; Choudhury, 1987). Hence NOVI and canopy con­
ductance under well-watered conditions maintain a near-linear propor­
tionality to each other even at large leaf area index (Sellers, 1985; Hope 
et ai., 1986; Hope, 1988). 

The assumption of no water stress (water stress would increase rc) is 
contrasted with the skin temperature approach, which should work best 
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when the canopy is water stressed, the only condition for which the skin 
temperature approach offers the possibility of a quantitative estimate of 
soil moisture through its control of re-

In summary, the NDVI is now fairly well validated as a measure of 
seasonal greenness of grasslands in tropical conditions. It should be cap­
able of establishing springtime development of canopies and autumn leaf 
drop for mid-latitude crops and deciduous forests, and, at least under some 
conditions, the LAI during the growing season, but probably not short­
term water stress in the absence of leaf drop or senesence. The NDVI helps 
constrain the specification of the maximum canopy capacity to transpire 
water, but considerable additional information is required before actual 
transpiration can be calculated. Application of NDVI or some other such 
vegetation index to specify seasonal variations of vegetation green leaf 
area (or other such parameter) could significantly improve global model­
ing of evapotranspiration, provided modeling of evapotranspiration ade­
quately included the role of vegetation canopies.' -

It is still difficult to interpret in detail the NDVI obtained from satellites 
because of several difficulties. Because of resolution that is very coarse 
compared with the scale of individual plants, there can be considerable 
nonlinearities from spatial heterogeneities. Contributing factors include 
variability of vegetation cover, leaf optical properties, stems, and 
branches. Sun and viewing angles and atmospheric structure must be 
considered for quantitative consideration of land characteristics. 

Direct Measurements of Soil Moisture 

Passive and active microwave signals contain considerable information on 
the moisture contained in the near-surface soil layers (Schmugge, 1987). 
Corrections are needed for soil roughness and vegetation cover and little 
or no signal is transmitted through thick canopies (Schmugge, this volume, 
Chapter 3). Eagleman and Lin (1976) reported a correlation of 0.96 
between soil moisture estimated from a version of the Thornthwaite 
approach at 118 stations in Texas, New Mexico, and Kansas and soil mois­
ture inferred from the 1.4-GHz radiometer on Skylab. Blanchard et al. 
(1981) have reported good correlations between data from the 19-GHz 
ESMR microwave radiometer on Nimbus 5 and an antecedent precipita­
tion index and Choudhury and Golus (1988) have reported good correla­
tions for the 6-GHz band on the Nimbus-7 SMMR instrument. Schmugge 
(this volume, Chapter 4) reviews other spacecraft results. Jackson and 
O'Neill (1987) discuss some conditions under which quantitative applica­
tion of microwave data to infer soil moisture may be difficult. Little or no 
information can be gained from forested areas. Large amounts of thatch 
from unburned and ungrazed glassland may obscure the soil moisture sig­
nal (Schmugge et ai., 1988). On the other hand, for regions of sparse and/ 
or short vegetation, microwave emissions can provide a powerful approach 
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for obtaining the moisture of the upper soil layers (0.01 to 0.05 m). This 
information, obtained from remote sensing and used to adjust the soil 
moisture in a detailed surface model, could give large improvements in 
estimates of evapotranspiration globally over much of the land area. Local 
application of this approach with a bare soil model has been demonstrated 
by Prevot et ai. (1984). 

Use of Soil and Terrain Information and Spatial Variability 

Versions of the standard rainfall water budget approach (reviewed earlier) 
have frequently been employed to provide useful models for river basin 
runoff through tuning of model parameters to bring predicted runoff into 
agreement with observed hydrographs (i.e., the time series of river or 
stream flow). Gleick (1986) argues for the use of such models in evaluating 
the hydrological impacts of climate change. However, the empirical basis 
of such models makes them inapplicable on a global basis. 

In principle, a knowledge of rainfall and runoff completely determines 
evapotranspiration. Thus physically based models of runoff are needed as 
part of a general approach to evapotranspiration. A key issue is how to 
represent the role of terrain, that is, the distribution of slopes and, to a 
lesser extent, the soil cover, in promoting the basin runoff. The develop­
ment of physically based models of runoff emphasizing terrain effects is 
currently a research priority of the hydrological community (e.g., Band, 
1986; Sivapalan et aI., 1987; Beven et aI., 1988; Wood et aI., 1988). 

Besides soil and terrain, the spatial and temporal patterns of rainfall are 
important determinants of runoff and, by inference, evapotranspiration. 
Much of the spatial variability is on scales small compared with the resolu­
tion of atmospheric models and needs to be represented statistically (e.g., 
Rodriguez-Iturbe, 1986; Bell, 1987) and parameterized in the models as a 
sub grid scale process. Spatial variability of rainfall imposes spatial variabil­
ity of soil moisture that can have major effects on large-scale evapotran­
spiration (Wetzel and Chang, 1988). 

The Combined Method 

The proposed combined method is an extension of the systems that are 
used numerically for numerical weather forecasting (e.g., Bengtsson et aI., 
1980; SJIlith et aI., 1988; Bengtsson and Shukla, 1988). It consists of inte­
grating in time a three-dimensional atmospheric model coupled to a model 
for land surface processes. The atmospheric model optimally combines 
predicted fields of wind, temperature, and moisture with observations of 
these fields as provided by radiosonde, satellite soundings (reviewed by 
Isaacs et aI., 1986), and other instrumental systems using principles 
summarized below. Currently, such systems are least successful with the 
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moisture fields (e.g., see Nogues-Paegle and Daley, 1988). Further ob­
servations of cloud cover, evapotranspiration, and rainfall could pre­
sumably improve this aspect of the models, as would better model param­
eterizations of the hydrological cycle and higher vertical resolution of the 
moisture analyses in the planetary boundary layer. The variables from 
the atmospheric models to be combined with observations for calculating 
surface evapotranspiration are solar and long-wave radiation incident at 
the surface, precipitation and surface winds, temperature, and humidity. 
Besides the precipitation and humidity fields, the modeled surface solar 
radiation may be questionable at present because of its dependence on 
possibly inadequately simulated cloud and aerosol properties. 

In addition to the atmospheric model, the proposed method requires a 
realistic model of land surface processes, treating the role of soils and plant 
canopies in surface evapotranspiration and runoff with adequate realism. 
Perhaps future improved versions of the SiB model (Sellers et al., 1986) or 
the BATs model (Dickinson, 1984, Dickinson it aI., 1986; e.g., Figure 6.6) 
or other such approaches involving both vegetation and soil processes 
(e.g., Choudhury and Monteith, 1988) will serve this function. Significant 
defects of current treatments are the neglect of slope effects on runoff and 
of the subgrid scale distribution of rainfall in model hydrology. 

A complete global system as visualized here for determining evapotran­
spiration from remote sensing could not be provided by small individual 
research groups, because of the intensive data transfers and model comput­
ing required. Rather, it most logically would eventually be implemented by 
extension of the current operational weather services (e.g., NMC or 
ECMWF), which, in any case, will require such a system to exploit, for 
their weather-forecasting applications, the improved scientific understand­
ing and observational capabilities of the hydrological cycle expected to 
evolve over the next decade. Besides providing the short-term surface in­
teractions needed to improve forecasting, a natural by-product would be a 
means to afford a physically based definition of drought much superior to 
the current Palmer index. 

Development of the optimum procedures for combining model and 
observational data will require considerable further efforts. All that can be 
presented here are some of the elementary concepts behind such an 
approach. To combine two estimates of a given parameter, for example, PI 
and P2 , to estimate, for example, precipitation P, one would use 

P = (WIPI + WZP2) 

(WI + W2 ) 

where WI and W2 are weights: 

(14) 

(15) 



6. Water and Energy Exchange 

C'" 
/ PRECIPITATION "'" c- c ~'-) 

/:)/:) 

LEAF 
DRIP 

SURFACE 
RUNOFF 

PERCOLA 

/:) 

, GROUNDWATER RUNOFF 

ALBEDO 

Figure 6.6. Conceptualization of the BATs model [Dickinson et al. (1986)]. 
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where 0"12 and O"i are measures of the uncertainty of the estimates, for 
example, variances if some statistical means of estimating a variance is 
available. Thus, in the absence of observations, the best estimates are 
those provided by the models. Where and when observations are available, 
they are combined with the model fields according to the relative confi­
dence assigned the observational and model results and constrained by the 
appropriate model equations. Sources of error in model and observational 
results need to be adequately characterized to carry out this synthesis. 
Also, attention must be given to time and space continuity; that is, the 
correlation of a variable at a given point with itself over some domain of 
influence in time and space is used to extrapolate point observations to 
provide information over this domain. 

Figures 6.7 through 6.10 give examples of some of the information now 
furnished by the BATs surface model coupled to the NCAR Community 
Climate Model that might become part of such a global system. These 
figures all represent a blowup over North America of one-month July aver-

Figure 6.7. Surface hydrological and energy fluxes for a July using the BATs sur­
face package (Dickinson et aI., 1986) coupled to the NCAR Community Climate 
Model: (a) evapotranspiration, (b) sensible heat fluxes in W m- 2 , (c) rainfall in mm 
d- I, and (d) water vapor mixing ratio at a pressure of 0.991 of surface, in units of 
g kg-I. 
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Figure 6.8. As in Figure 7, but four measures of day-night temperature difference: 
(a) the difference between average daytime and average nighttime canopy tempera­
ture; (b) the difference between average daytime and average nighttime skin 
temperature (combining canopy and ground temperatures according to their expo­
sure to space); (c) the difference between average daytime and average nighttime 
air temperature , corresponding to that measured under Stevenson screen condi­
tions; and (d) the same as (c) except determined by selecting the maximum daytime 
values and minimum nighttime values. 

ages taken from a recent three-year annual cycle simulation. Figure 6.7 
illustrates the model simulation of surface (1) water flux, (2) sensible heat 
energy fluxes, (3) the corresponding monthly rainfall, and (4) the water 
vapor mixing ratio over the lowest model level (approximately 70 m above 
the surface). Figure 6.8 illustrates four different possible measures of day­
night surface temperature variation. Which is best to consider from ob­
servational or physical grounds is yet to be established. Figure 6.9 shows 
surface and top of the atmosphere radiative fluxes. Figure 6.10 shows a 
"normafized vegetation index," as defined in Sellers (1985). All the figures 
present a pattern consistent with a dry, nearly cloud-free southwestern 
United States and a secondary region of seasonal aridity centered at 60N, 
105W in central Canada. The latter is exaggerated compared with reality; 
that is, there is a defect in the model. The wettest parts of the model over 

(b) 

(d) 
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Figure 6.9. Net radiation quantities: (a) net solar radiation absorbed at the surface, 
(b) net thermal IR emitted from the surface, (c) thermal IR emitted from the top of 
the atmosphere, and (d) integrated albedo at the top of the atmosphere. All quanti­
tites are in units of W m-2 except (d), which is dimensionless. 

this domain are seen to be the southeastern United States and northwest­
ern United States/Canada. Unfortunately, the broad-band albedo defini­
tions of visible and near-IR fluxes do not distinguish very well in the model 
between vegetation and soils so that the resulting pattern is determined 
primarily by the atmospheric water vapor removal of the near infrared 
fluxes. 

The system for a model-based approach to remote sensing of evapo­
transpiration is sketched in Figure 6.11. Especially important are model 
variables that are integrated forward in time, for example, soil moisture 
and soil temperature, which are referred to as "prognostic" variables. The 
combination of a time and space stream of observational and model data to 
adjust the values of model prognostic variables is known as "four-dimen­
sional data assimilation." 

In such a system, rainfall would be provided to the land surface models 
on an instantaneous basis using such an optimum combination of the mea­
sured rainfall and that provided by the atmospheric model. The rainfall is 

(d 
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Figure 6.10. "Vegetation index" defined as the difference between reflected broad­
band near-IR and visible radiation at the surface divided by their sum. 

partitioned by the land model into soil moisture, interception, and surface 
runoff, and the soil moisture is removed by evapotranspiration or infiltra­
tion to below the root zone. 

The interception and evapotranspiration would depend on atmospheric 
conditions and on net surface radiation provided by the atmospheric model, 
with its could cover parameters adjusted on the basis of observed cloud cover 
information, as inferred from satellite-measured long-wave and reflected 
solar radiation. One important parameter of the surface model would 
be day-night skin temperature differences, which may be available only 
during clear-sky conditions. Model estimates of soil moisture would be 
adjusted as described above to force the model values of skin tempera­
ture when they can be observed to agree more closely with satellite data. 
Additional adjustment of surface layer soil moisture to agree better with 
microwave measurements could be especially important during cloudy 
conditions. 

A major difficulty is the linking of the various models and data flows so 
that they work without degradation by any and all sources of error that 
creep into the operation of such complex systems. Much research and de­
velopment work is needed to determine how best to combine the highly 
redundant but individually "noisy" model inputs. 

Some versions of the approach just described are essential to provide 
global estimates of evapotranspiration and sensible heat fluxes with ade­
quate accuracy. They would provide these estimates on a daily to inter-
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Figure 6.11. Schematic of the proposed combined method using models and re­
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annual basis, and in doing so not only would quantify the hydrological 
functioning of land ecosystems, but also would improve our understand­
ing of the information content of the models and observing systems. 
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7. Evaluation of Canopy Biochemistry 

Carol A. Wessman 

The mass and energy exchanges within an ecosystem ultimately define the 
efficiency of photosynthetic processes and system productivity. The man­
ner in which these exchanges occur is largely determined by the plant 
canopy, the major interface with the atmosphere. The rate at which they 
occur is modified by the integrated effects of environmental conditions 
such as climate and moisture and nutrient availability (Mooney and Gul­
mon, 1982; Van Cleve et aI., 1983; Coley et aI., 1985). Accordingly, car­
bon gain, nutrient flux, and heat exchange within a given environment will 
influence (and be influenced by) adaptations of canopy morphology and 
foliar biochemistry. 

Subtle changes in ecosystem functioning may be expressed in the canopy 
biochemistry as a result of altered carbon allocation patterns, metabolic 
processes, and nutrient availability. Relative concentrations of carbo­
hydrates and nitrogenous compounds in plant tissue often reflect the 
partitioning of carbon resources between roots and shoots (Lainson and 
Thornley, 1982; Chapin et aI., 1987). Foliar nitrogen concentration fre­
quently increases with increased nitrogen availability (Vitousek et aI., 1982; 
Binkley and Reid, 1985; Birk and Vitousek, 1986), whereas reduction 
in nitrogen supply promotes increased secondary wall thickening and 
lignification (Gartlan et aI., 1980; Waring et aI., 1985; Chapin et aI., 1986). 
Storage carbohydrates such as starch, and defensive compounds, such as 
polyphenols and fibers, also vary predictably with resource availability 
(Mooney and Gulmon, 1982; Bryant et aI., 1983; Coley et aI., 1985). 
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Ecosystem carbon and nitrogen cycles are mutually linked because the 
quality (organic chemical composition) and quantity of litter supplied by 
the canopy modulate the processes of decomposition, mineralization, and 
nitrification (Fogel and Cromack, 1977; Meentemeyer, 1978; Melillo et ai., 
1982; Pastor and Post, 1986; Aber et ai., this volume). These processes, in 
turn, strongly regulate system productivity through their influence on ni­
trogen availability (Vitousek, 1982; Nadelhoffer et ai., 1983; Pastor et ai., 
1984). Significant changes in foliar lignin to nitrogen ratios may indicate 
corresponding changes in decomposition rates affecting nutrient cycling 
and trace gas fluxes (Delwich et ai., 1978; Vitousek, 1983; Goodroad and 
Keeney, 1984). 

The capability to detect changes in canopy biochemistry using remote 
sensing would provide a means of assessing spatial extent and variation of 
carbon/nutrient sources and sinks crucial to understanding gas exchange 
between vegetation and the atmosphere. Present knowledge is limited to 
small-scale, site-specific studies. Research in analytical chemistry has dem­
onstrated that concentrations of constituents within organic mixtures can 
be evaluated from near-infrared (IR) reflectance spectra of those mixtures 
(Wetzel, 1983; Weyer, 1985). These procedures have been successfully 
extended to laboratory evaluation of foliar material (Marten el ai., 1985; 
Card et ai., 1988; Wessman et ai., 1988a). With the advent of imaging 
spectrometry (the acquisition of contiguous, narrow-band spectral mea­
surements in an image format), research has focused on the application 
of spectroscopy principles to remotely sensed data in the effort to resolve 
information on subtle spectral features relevant to ecosystem functioning. 

The potential to estimate canopy constituents remotely rests on (1) the 
influence of individual or functional groups of foliar constituents on the 
overall canopy reflectance curve, and (2) the development of high spectral 
resolution instruments that will measure the reflectance signal at sufficient 
detail and quality to document subtle changes in spectral shape and allow 
reduction of environmentaUsensor effects using spectral analysis tech­
niques. This chapter describes the present state of knowledge regarding 
spectral properties of vegetation, the spectral analysis of organic mixtures, 
and the role future instruments may play in our assessment of canopy 
chemistry. 

Spectral Properties of Vegetation 

The Visible Region (400 to 700 nm) 

Absorption by photosynthetic pigments (chlorophyll, xanthophyll, and 
carotene) dominates the visible wavelengths. Each of the pigments has 
absorption maxima in the 300 to 500 nm region; however, only chlorophyll 
absorbs in the red wavelengths (Salisbury and Ross, 1969). Principal 
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Figure 7.l. (a) Absorption spectra of chlorophylls a and b dissolved in diethyl 
ether, and (b) absorption spectra of f3-carotene in hexane and lutein (a xantho­
phyll) in ethanol. The absorption constant equals the absorbance (optical density) 
given by a solution at a concentration of 1 gil with a thickness (light path length) of 
1 cm. [From Salisbury and Ross (1969). Reproduced with permission.] 
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absorption peaks of extracted chlorophyll a occur at 430 and 660 nm and 
those of chlorophyll bat 455 and 640 nm (Figure 7.1). When measured in 
vivo, these peaks shift approximately 20 nm toward the longer wavelengths 
owing to the difference in refractive indices between the extract solvent 
and leaf water (Mackinney, 1938; Setak et aI., 1971). Changes in chlor­
ophyll concentration with phenological development produce apparent 
spectral shifts (on the order of 5 to 20 nm) of the absorption edge near 700 
nm (Gates et aI., 1965; Horler et aI., 1983). Environmental stresses that 
result in chlorophyll loss cause narrowing of the absorption band in the red 
region and a shift of the red edge to shorter wavelengths. This so-called 
"blue shift" has been reported for studies of vegetation exposed to heavy 
metal stress (Collins, 1978; Chang and Collins, 1983), ozone (Ustin and 
Curtiss, 1988; Westman and Price, 1988), and acidic deposition (Rock et 
aI., 1988). 

The relationship between leaf reflectance in the visible region and leaf 
chlorophyll and nitrogen concentrations has been-demonstrated by a num­
ber of researchers (Thomas and Oerther, 1972; Thomas and Gausman, 
1977; Tsay et aI., 1982; Everitt et aI., 1985; Nelson et aI., 1986). Systematic 
changes in multispectral crop reflectance are associated with phenological 
development over the growing season (Collins, 1978; Pinter et aI., 1981; 
Kollenkark et aI., 1982; Hinzman et aI., 1986). Studies of spectral response 
to nitrogen fertilization of corn, wheat, and grass pasture have successfully 
distinguished nitrogen application levels by measuring broad-band canopy 
reflectance (Walburg et aI., 1982; Richardson et aI., 1983; Hinzman et aI., 
1986). The effects of moisture stress and nutrient deficiencies on canopy 
reflectance are profound, but have not yet been fully quantified. Nitrogen 
deficiencies will be most evident in the visible region owing to nitrogen's 
close affiliation with chlorophyll. While moderate- to high-level moisture 
stress should be readily evident in the IR region, low-level stress may in­
fluence chlorophyll state, thereby affecting visible reflectance. 

The Short-Wave IR Region, SWIR (700 to 2,500 nm) 

Reflectance characteristics of vegetation in the region from 700 to 2,500 nm 
can be generalized as exhibiting high reflectance in the near IR (700 to 
1,300 nm) and high absorption it) the middle IR (1,300 to 2,500 nm). The 
near-IR wavelengths are greatly influenced by cellular structure and refrac­
tive index discontinuities within the leaf (Knipling, 1970; Gausman, 1977). 
Minor water absorption features near 960 and 1,200 nm vary significantly 
in shape and depth and may be related to both cellular arrangement within 
the leaf and hydration state (Gates, 1970; Gausman et aI., 1978; Goetz et 
aI., 1983). The mid-IR region is dominated by leaf water absorption (Gates 
et aI., 1965, Knipling, 1970) and has been related to plant water status 
through indices combining these and near-IR bands (Tucker, 1980; Hunt et 
aI., 1987). The region intermediate to the water absorption maxima at 
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1,450 and 1,940 nm may be strongly influenced by cell structure, morphol­
ogy, and tissue constituents (Kleman and Fagerlund, 1987; Wessman et aI., 
1988a). 

Near-IR spectroscopy (NIRS) demonstrates that this spectral region 
(comparable to the SWIR as defined in this chapter) contains quantitative 
information on constituents within organic mixtures (Marten et aI., 1985; 
Weyer, 1985; McDonald, 1986). NIRS analysis relies on high instrumental 
signal-to-noise ratios and wavelength reproducibility, one or both of which 
are difficult conditions to meet in remote sensing instrumentation. More­
over, NIRS techniques follow a highly regimented treatment of foliar samples 
whereby oven drying and grinding decrease moisture effects and produce 
uniform particle size. In situ canopy reflectance, on the other hand, has 
high variablity resulting from environmental and sensor effects, which may 
introduce enough noise to limit interpretation of the SWIR signal. 

Nevertheless, advances in NIRS have simulated work with whole leaf 
reflectance that promises improved understanding of foliar optical charac­
teristics. The approach suggests that, whereas constituent spectra may not 
be immediately apparent in the composite spectrum, they are decidedly 
important factors in its shape. Remotely sensed measurements of vegeta­
tion canopy reflectance will certainly not be as sensitive as those of a 
laboratory spectrophotometer to foliar chemical constituents, but, if 
sampled at sufficient spectral detail, can indicate those constituents that 
strongly influence the shape of the spectra. 

While there are no major absorption features aside from those of water 
in the SWIR region, the spectra of organic compounds in this region are a 
mixture of harmonic overtones and combinations! that are mainly caused 
by stretching and bending vibrations2 of strong molecular bonds between 
atoms of low weight (Wetzel, 1983; Weyer, 1985). The molecular function­
al groups contributing to this region are primarily limited to C-H, O-H, 
and N-H, whose fundamental absorption bands are no higher than 5,000 
to 8,000 nm, depending on their intensity. Overtones are specific to each 
component of an organic compound and are, with combination bands, 
more sensitive to changes in the environment of the absorbing molecules 

1 When IR radiation is absorbed by a molecule, individual bonds will vibrate in a 
manner similar to a simple harmonic oscillator. However, unlike ideal oscillators, 
molecular vibrations can undergo transitions between more than one energy level. 
These transitions give rise to the overtone absorption bands at approximately 1/2, 
1/3, 1/4, .... , and so on, the wavelength of the fundamental absorption, depend­
ing on the energy separation between levels. Another type of overtone, called a 
"combination band", occurs when a single photon has the precise amount of energy 
to excite two vibrations at once. The energy of the combination band is the sum of 
the two independent absorptions. 
2Polyatomic molecules exhibit two distinct types of vibration. Bending vibrations 
occur when atoms move in or out of plane relative to the molecule. Stretching 
vibrations occur as lengthening and shortening movement along the bond. 
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Figure 7.2. Absorption of five biochemical compounds found in leaves plotted as 
In(lIR) where R is the reflectance acquired from pure powdered material in a spec­
trophotometer. (Samples were run at the NASA Ames Research Center; data 
courtesy of D. Card and D.L. Peterson; milled wood enzyme lignin sample cour­
tesy of John Obst, U.S. Dep. Agric. Forest Products Laboratory, Madison, WI.) 

than the fundamental of the same vibration. Slight disturbances in the 
bonding scheme will produce only small changes in the fundamental band 
while absorption bands in the SWIR region will experience large shifts in 
frequency and amplitude. 

Extractions of important foliar constituents (primarily in an agricultural 
context) have been spectrally characterized (Rotolo, 1979; Wetzel, 1983; 
Weyer, 1985). Carbohydrate absorption spectra are well represented by 
the starch spectrum, which has a strong O-H combination band at 2,100 
nm, an O-H stretch first overtone at 1,460 nm, and a C-H stretch com­
bination band at 2,330 nm (Figure 7.2; Weyer, 1985). Absorption by cellu­
lose closely follows that of starch with an O-H stretch first overtone at 
1,490 nm, a C-H stretch first overtone and an O-H stretch combination 
band at 1,780 nm, an O-H stretch second overtone at 1,820, and an O-H 
stretch overtone at 2,270 nm. Protein has an N-H stretch first overtone at 
1,510 nm; a series of N-H combination bands at 1,980, 2,060 and 2,180 
nm; and a C-H bend second overtone at 2,300 nm. The first overtone of 
the aromatic C-H absorptions (e .g., lignin) is near 1,685 nm and the 
second is at 1,143 nm. Combination bands occur near 1,420 to 1,450,2,150, 
and 2,460 nm. 

Water has an important combination band at approximately 1,940 nm, 
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Figure 7.3. Absorption spectrum of liquid water at 20 C. [After Curcio and Petty 
(1951).] 

an O-H stretch first overtone at 1,450 nm, weaker combination bands near 
1,200 nm, and an O-H stretch second overtone at 960 nm (Figure 7.3; 
Curcio and Petty, 1951; Weyer, 1985). The strength of absorption in the 
1,450 and 1,940 nm bands dominates broad-band reflectance in the 1,300 to 
2,500 nm region (Gates et aI., 1965; Knipling, 1970; Tucker, 1980). 
Changes in leaf moisture content relate strongly to shifts in reflectance 
amplitude within this region (Olson, 1967; Rohde and Olson, 1971; Gaus­
man et aI., 1978) and can complicate analyses for other constituents. Vari­
able moisture content in NIR spectroscopy samples produces less than 
optimum results in lysine (Rubenthaler and Bruinsma, 1978) and protein 
(Winch and Major, 1981) predictions using untransformed reflectance 
data. NIR predictions of acid detergent fiber (ADF) in sorghum over­
estimate actual ADF concentrations as moisture content increases, but a 
second derivative transformation of the reflectance data offsets the curve 
displacement (Fales and Cummins, 1982). 

The nature of absorptions in the SWIR are weak and complex since they 
consist of overlapping overtone and combination bands. Yet, the origins of 
the observed vibrations are limited. Study of the fine-scale structure of 
laboratory reflectance spectra using analytical techniques such as deriva-
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tive spectroscopy, curve fitting, and spectral mixing will provide informa­
tion on leaf optical properties. Knowledge of absorption characteristics of 
major leaf constituents (e.g., cellulose, starch and protein) or their effec­
tive combinations (e.g., cellulose + starch) may permit remote assessment 
of canopy level concentrations. 

Spectral Analysis of Organic Mixtures 

In spectrophotometry, the ratio of incident flux intensity 10 before entering 
a sample to that of the light flux I after leaving the sample is determined. 
According to Beer-Lambert's law, which states that concentration is pro­
portional to the logarithm of transmittance [and which for plants is highly 
correlated with reflectance (c.f. Tucker and Garratt, 1977)], the following 
relationship holds: 

(1) 

where 1110 is the measured response, C is the concentration of the sample, t 
is the path length, and a is the absorption coefficient at wavelength A. 
Beer-Lamberts's law describes pure absorption and serves as an adequate 
model for spectrophotometer data acquired in the laboratory. However, it 
does not include the appropriate scattering and absorption coefficients 
necessary when modeling radiation propagating through a canopy (Fuk­
shansky, 1981; Horler et aI., 1983). Scattering caused by the architecture of 
the canopy, as well as the internal structure of each leaf, will lead to in­
creased optical depth and, as a result, increased absorption (Willstatter 
and Stoll, 1913; Gates et aI., 1965). Pure scattering will linearly attenuate 
light with depth, unlike the exponential effect of absorption (Fukshansky, 
1981). Additional complications in the relationship between foliar consti­
tuent concentrations and canopy reflectance will result from background 
spectral contributions, atmospheric effects, and sun-sensor geometry. 

The spectral behavior of mixtures, either of single surfaces with inherent 
complexity (e.g., a leaf) or of a complex of many surfaces (e.g., a land­
scape), is a function of the type and quantity of reflecting components and 
their relative influence on the ,measured response. Absorption bands 
caused by electronic transitions and bond vibrations may assist in identify­
ing concentrations of foliar constituents using local (derivatives) or global 
(curve-fitting) analyses of laboratory-acquired spectral data (e.g., Card et 
aI., 1988; Wessman et aI., 1988a). Such information, uncomplicated by the 
atmosphere and illumination geometry, can be used to interpret more com­
plex spectral mixtures acquired with airborne and satellite sensors. Track­
ing spectral features in reflectance measurements made in the laboratory 
up to those made at the pixel level should provide some indication of the 
transfer of spectral information across scales. 
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Derivative Spectrometry 

Derivative spectrometry is commonly employed to resolve or enhance 
absorption features that are masked by interfering background absorptions 
and/or by noise (Tal sky et aI., 1978; Dixit and Ram, 1985). The technique 
aids in separating overlapping bands and isolating shoulders and weak sig­
nals from unwanted background. For a constant intensity 10 over the whole 
wavelength range (as measured by a spectrophotometer), the first deriva­
tive of Equation 1 is obtained as: 

(d/ldA) = _ Ct( dO:) 
I dA 

(2) 

and will be linearly proportional to concentration (Tal sky et al., 1978). The 
sensitivity of the measurements will be high in inflection areas. The second 
derivative reads as: 

((PlIdA2) 

/ 
(3) 

where direct proportionality to concentration exists only if da/dA equals 
zero. If d2a/dA2 has an extremum value, then sensitivity is very high. 

Key properties of derivative spectra are that (1) broad bands are sup­
pressed relative to sharper bands to an extent that increases with derivative 
order (Figure 7.4), and (2) overlapping bands are resolved even if the 
shoulders are formed by band maxima separated by less than the largest 
half-width (Figure 7.5). Higher-order derivatives will also eliminate back­
ground functions of higher-order and shape complexity (Tal sky et aI., 
1978). Thus resolution is improved by the sharpening of signals. However, 
derivative spectra are only useful if features of component spectra are 
separable from neighboring features by a certain fraction of their average 
width, "Iij: 

Yij = D.S( "Ii + "I) (4) 

where "I is the full width of the feature at half-height. Higher-order deriva­
tives are required to increase band narrowing and, hence, separability. 
Noise will increase by a factor of ten with each increase in order unless 
special measures are taken to improve the signal. 

Derivative transformations can be applied to remotely sensed data to 
reduce baseline shifts (albedo variations) resulting from surface topogra­
phy, illumination conditions, and/or lack of appropriate calibration in­
formation (Dixit and Ram, 1981; Wessman et aI., 1987). Derivative spec­
tra from laboratory- and field-acquired measurements are useful for the 
characterization of shifts in the chlorophyll absorption edge (Horler et aI., 
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Figure 7.4. Relative amplitudes 
of two coincident Gaussian bands 
(bandwidth ratio 1: 3) in the zero, 
second, and fourth derivative 
orders , illustrating the progres­
sive suppression of the broader 
band. S is the resultant ampli­
tude. [After Dixit and Ram 
(1985), p. 319.] 

1983; Lichtenthaler et aI., 1987; Schmuck et aI., 1987; Rock et aI., 1988; 
Us tin and Curtiss, 1988). A derivative transformation of Airborne Imaging 
Spectrometer (AIS) imagery over temperate deciduous and coniferous 
forests reduces apparent brightness differences attributable to canopy 
architecture and shifts in albedo between flight lines (Wessman et aI., 
1989). Correlative analysis of the transformed spectral data and canopy 
lignin concentrations suggests that absorption characteristics of lignin or a 
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Figure 7.5. (a) Superposition of two unequal Gaussian curves and (b) differentia­
tion of the two curves: fundamental curve and first to fourth derivatives . [After 
Talsky et al. (1978), p. 787. Reprinted by permission.] 

closely associated canopy property influences reflectance in a predictable 
fashion (Wessman et al., 1988b). 

Spectral Mixtures and Curve Fitting 

Spectral decomposition techniques have often been applied to mixture spec­
tra in t!te effort to separate overlapping bands of the component spectra. 
These techniques have involved fitting Gaussian or Lorentzian curves by a 
least-squares criterion in order to determine the number and frequency of 
the bands contributing to the mixture spectrum (Fraser and Suzuki , 1969; 
Gold et al., 1976). Such standard curve-fitting routines tend to break down 
because the correct number of constituent bands is required to model 
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accurately the mixture spectra and the absorption bands of many organics 
are not Gaussian or Lorentzian. Alternative mixture modeling approaches 
successfully reproduce the mixture spectrum when the spectra of all pure 
components are known and combine linearly (Blackburn, 1965; Antoon et 
aL, 1977). Essentially, these models are multivariate applications of the 
Beer-Lambert law and assume the absence of nonlinear effects. A model 
that linearly combines selected pure foliar constituent spectra (e.g., cellu­
lose, starch, protein, lignin, water) multiplied by their concentration within 
a given leaf successfully simulates a whole-leaf reflectance spectrum (D. 
Card, personal communication). The model is easily inverted and demon­
strates that interfering absorption features are separable (dependent on 
noise level) despite significant differences in leaf constituent absorption 
coefficients. 

Unfortunately, pure component spectra frequently are not available, 
and may not even be representative of constituent spectra under the in­
fluence of the mixture's matrix effects. Problems· with pure components are 
incurred when (1) the component spectra are not pure; (2) the components 
vary between samples, for example, types of protein; (3) the effect of an 
extraction procedure on the spectral characteristics of a component is un­
known; and (4) the component spectrum changes with concentration level 
(Hruschka and Norris, 1982). In fact, changes in symmetry, chemisorption, 
physisorption, and hydrogen bonding cause most mixture spectra to be 
nonlinear combinations of their components (Figure 7.6; Honigs et aI., 
1984). Consequently, methods that address the nature of matrix inter­
actions may be more representative of component structure and con­
centration than those utilizing linear combinations of pure component 
spectra. 

Multivariate techniques for mixture analysis have been developed that 
do not require reference (pure) spectra. These methods rely on the multi­
variable nature of the data to determine quantitatively one or more vari­
ables (i.e., foliar constituent concentrations) from measured values of two 
or more predicting variables (i.e., spectral reflectance values). Most multi­
variate methods attempt to model how the chemical constituent influences 
the spectrum and assume (Naes and Martens, 1987): 

X~g(C) +E (5) 

where g defines the mathematical model, E is the residual, and X = {xid: 
matrix of spectral data for I samples and K wavelengths, and C = {Gij}: 
matrix of chemical data for I samples and J chemical constituents. 

Beer's law thus can be expressed as: 

X=CK+E (6) 
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Figure 7.6. An absorbance 
spectrum of pure H20 and re­
constructed spectrum of mois­
ture in wheat. Broadening of 
1.45 and 1.94 JLm bands is in­
dicative of variations in hy­
drogen bonding caused by the 
protein matrix. [From Honigs 
et al. (1984), p. 321.] 
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where K is the matrix of unit spectra. From known data for C and X, the 
K-matrix is estimated from calibration with reference spectra. Concentra­
tions for new samples are then predicted by fitting their data X to K by 
some mathematical projection procedure . 

Traditionally, the model is inverted to define the chemical constituents 
as a function of the spectral variables plus noise: 

C =h(X) + F (7) 

where h is the model function and F is the residual. Multiple linear and 
stepwise regression methods give direct estimates of h. Interfering factors, 
such as other constituents and systematic errors, are compensated for, and 
not modeled, in this method. 

The use of factor analysis combines all the chemical and instrumental 
variables into a few factor or latent variables that express independent 
sources of variability within the data (Malinowski and Howery, 1980). In 
terms of the models described above , a low-dimensional table of factor 
scores, T, models both X and C as (Naes and Marten, 1987): 

X=g(T)+E 
C = h(T) +F 

(8) 

where g and h define the relation (commonly defined as linear) between 
the variables and the scores. The important point is that C is function of T, 
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which describes some variation in X, but C is independent of E, the error in 
X. Factor analysis has been used to analytically extract and quantify the 
concentration of component spectra in complex organic mixture spectra 
measured in the laboratory (Knorr and Futrell, 1979; Windig and Meuze­
laaL 1984) and cotton canopy reflectance as measured in the field (Huete, 
1986). 

Techniques of decomposing spectra have been applied to remotely 
sensed imagery to determine how many linearly independent sources of 
variation (called end-members) exist in spectral mixtures, the mixing mod­
el required (linear, nonlinear or a combination), and the spectral regions 
optimal for discriminating end-members (Adams and Adams, 1984; Smith 
et aI., 1985; Adams et aI., 1986). End-members are taken from spatially 
contiguous areas that share the same set of end-members. They can be 
derived in primarily three ways: (1) as "pure" members from groups of 
pixels containing only one material; (2) as intersections that result from 
two units sharing a single end-member; and (3)- by determination of pixels 
at major vertices of the convex hull defined by the image data (Curtiss and 
Boardman, 1988). Each surface can be considered to contain at least two 
end-members, representing fully illuminated and shaded conditions, there­
by defining the continuum of possible reflectances of a surface on a spectral 
mixing line. For n spectral end-members, mixing is described within an 
(n - 1) dimensional volume. 

First-order mixing models have been found to describe adequately soil­
plant spectral interactions within a canopy (Huete, 1986, 1987; Ustin and 
Curtiss, 1988). The separation of soil influences from the vegetation spec­
tral response using decomposition techniques provides a "cleaner" vegeta­
tion signal for characterization of plant canopy spectral properties. Com­
parisons of decomposed spectra from remote sensing image data with 
laboratory-acquired end-members representing chemical/biophysiological 
range extremes may direct analyses of foliar spectral characteristic con­
tributions to canopy reflectance. The end-member concept has been ap­
plied in a laboratory setting by Hruschka and Norris (1982), who approxi­
mated the near-IR reflectance spectra of ground wheat samples by a linear 
combination of spectra representing the range of known chemical data. 
The approximation satisfied a least-squares criterion. Coefficients of these 
linear combinations were then correlated with the protein and moisture 
content of the wheat samples. The use of sample spectra as mixture compo­
nents improved standard errors from correlations of curve-fit coefficients 
with chemical data over those generated when pure constituent spectra 
were used as components. 

Use of the full spectral range to explore the makeup of mixture spectra 
will aid in defining the influential constituents. Laboratory spectrophotom­
eter measurements simplify the analysis to those properties primarily re­
lated to leaf optical characteristics. However, the fine structure of a leaf 
spectrum as measured in the laboratory is insufficient to account for the 
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reflectance of plant canopies. Attenuation and multiple scattering of radia­
tion within a plant canopy, as well as the influence of soil, shadow, and 
other background spectral properties, complicate the vegetation response. 
These factors must be addressed in order to understand fully the integrated 
response of whole canopies. Advances in analytical chemistry and their 
successful application to quantitative foliar analysis indicate that we can, at 
the very least, improve our understanding of the mechanisms of reflectance 
by leaves. Should these principles translate in their complete or reduced 
form to canopy and pixel levels, opportunities will be available for unprec­
edented ecosystem monitoring. 

Current and Potential Use of Imaging Spectrometry 

The nature of absorptions within organic mixtures are weak and complex 
since they consist of overlapping overtone and comblmHion bands. The 
origins of the observed vibrations are limited and they are all associated 
with primary constituents of vegetation. Knowledge of absorption charac­
teristics of each of the major leaf constituents (e.g., cellulose, starch, and 
protein) may permit remote assessment of canopy-level concentrations if 
high spectral resolution reflectance information is acquired. Direct assess­
ment of low-level constituents is unlikely; chances increase with the 
predominant materials such as cellulose, lignin, and protein. It may be 
necessary to create a simpler taxonomy of constituents and their effective 
spectral and ecological combinations. For example, structural materials 
such as cellulose and lignin may influence the canopy spectrum in such 
similar ways as to be indifferentiable. Nonetheless, an estimate of their 
combined concentration may be very useful for large-scale ecological ap­
plications. High spectral resolution measurements will be needed to study 
characteristics of the canopy reflectance curve and to better separate back­
ground factors from the vegetation response. 

The potential to estimate canopy chemistry relies to a great extent on 
the development of imaging spectrometer systems. Broad-band sensors 
provide adquate contrast between the near-IR plateau and chlorophyll 
absorption wells, but information is lost in the integration over broad spec­
tral regions. Research has shown, primarily through correlative means and 
with varying degrees of success, strong relationships between broad-band 
canopy reflectance and vegetation parameters such as absorbed photo­
synthetically active radiation (APAR) (Asrar et aI., 1984; Hatfield et aI., 
1984); leaf area index (LAI) (Asrar et aI., 1986; Peterson et aI., 1988); and 
water content (Tucker, 1980; Hunt et aI., 1987). In each of these studies, 
the normalized difference (NDVI) and other vegetation indices are 
affected by illumination conditions, background reflectance, sun-sensor 
geometry, and so on. The contiguous, narrow spectral measurements made 
by imaging spectrometers can be mathematically transformed to reduce 
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and/or separate multiple-order effects that are a background to the spec­
trum of interest. The additional wavebands provided by a spectrometer are 
requisite for the application of spectral decomposition techniques when 
more than two to three reflecting components exist in a remotely sensed 
landscape (Huete and Jackson, 1987). 

Recent work by Sellers (1985, 1987) theoretically develops the associa­
tion between canopy reflectance and biophysical quantities using simple 
reflectance, photosynthesis, and resistance models. Sellers (1985) demon­
strates that plant canopy reflectance data are indicative of instantaneous 
limiting biophysical rates (photosynthesis, transpiration) rather than any 
state (biomass, LAI) associated with the canopy. The close connection of 
photosynthetically active radiation absorbed by the leaf to the chlorophyll 
density, which can be estimated remotely, leads to near-linear rela­
tionships among canopy properties of AP AR, photosynthetic capacity 
(Pc), and minimum canopy resistance (rc), and the simple ratio vegetation 
index (SR), and more curvilinear relationships-with the normalized differ­
ence vegetation index (NDVI). However, large differences in daily net 
photosynthesis between C3 and C4 physiological groups (Brown, 1978; 
Osmond et aI., 1982) may create ambiguities in photosynthetic estimates 
from vegetation indices (Choudhury, 1987). Studies of landscape varia­
tions in nitrogen use efficiency within tall- and shortgrass prairie suggests 
that natural heterogeneity and management effects can introduce substan­
tial noise into calculations based on NDVI (D. Schimel, personal com­
munication). High correlations between photosynthetic capacity and plant 
nitrogen couple plant biochemistry to biophysical exchange. A parameter 
relating NDVI-like indices to flux will be correlated to nitrogen-use 
efficiency (net carbon assimilated per unit of nitrogen), to the extent that 
chlorophyll density is correlated to nitrogen content (Schimel et aI., 1988); 
typically 75% of plant nitrogen is contained in the chloroplasts (Chapin et 
aI., 1987). Contiguous, high spectral resolution measurements may provide 
more accurate estimates of chlorophyll density, canopy nitrogen concen­
trations, and, as a consequence, the related biophysical rates. 

The technology to acquire high spectral resolution images is limited to 
only a few airborne systems (e.g., the Airborne Visible/Infrared Imaging 
Spectrometer, AVIRIS). These will provide the prototype data for pro­
posed instruments on the Earth Observing System (Eos), an orbiting plat­
form of sensors designed to provide continuous remotely sensed data at 
regional to global scales. The High Resolution Imaging Spectrometer 
(HIRIS) will acquire 192 contiguous bands of spectral information at 10-
nm spectral and 30-m spatial resolution. High spectral resolution in the 
range of 0.4 to 2.4 /Lm will permit consideration of spectral shape and 
detail. With the high data rates generated from such resolution, HIRIS 
imagery will be used to target areas of specific interest and can serve to 
monitor slowly varying ecosystem parameters (e .g., nitrogen content) over 
the growing season. HIRIS will act as the intermediate stage in a hierar-
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chical arrangement of imaging spectrometers (e.g., AVIRIS, HIRIS, 
MODIS). 

The MODerate resolution Imaging Spectrometer (MODIS) will mea­
sure numerous spectral bands between 0.4 and 12 /Lm at spectral resolu­
tions of 10 nm and greater and with spatial resolutions of 500 and 1,000 m. 
High-frequency temporal information can be acquired by MODIS as a con­
sequence of its lower data rates. The acquisition of temporal variability in 
intercepted PAR, from which maximum canopy photosynthesis and mini­
mum canopy resistance can be estimated, can provide a phenological time 
series on a regional basis. HIRIS can be used to characterize spatial 
variability not captured by MODIS and can, in turn, be used for analysis of 
spectral mixtures at the spatial scales provided by both sensors. 

We already recognize the need for temporal and spatial information on 
biospheric functioning, and the prohibitive logistics of acquiring such in­
formation other than through the use of remote sensing technology. 
Moreover, we recognize tbat patterns of regional and'"global interactions 
will most likely be imperceptible from our present vantage point. Current 
assessments of global primary productivity using remote sensing (e.g., 
Justice et al., 1986; Tucker et al., 1986) will increase in usefulness as 
we become more capable of utilizing such information for modeling 
and monitoring global-level processes. Estimates of canopy biochemistry 
through direct assessment of spectral reflectance features or inferred through 
relationships with other factors contributing to canopy reflectance (e.g., 
water content) will provide further insights into the nature of biosphere 
function response to environmental change. 
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8. Remote Sensing and Trace Gas Fluxes 

Pamela A. Matson and Peter M. Vitousek 

Most of the chapters in this volume emphasize the dynamics of energy, 
water, and carbon at the surface of the earth. These are major processes in 
the metabolism of the planet, and it is reasonable to expect that thermal 
and optical remote sensing could detect at least energy transformations 
rather directly. Although their overall magnitude is smaller, fluxes of trace 
gases represent another important interaction between the biosphere and 
atmosphere. At present, these fluxes cannot be directly measured remote­
ly, but we suggest that current remote sensing approaches are nonetheless 
useful in the analysis of trace gas flux, and that remote sensing techniques 
that are now under development will make a still greater contribution. 

The major trace gases of interest include methane (CH4), carbon mon­
oxide (CO), nonmethane hydrocarbons (NMHC), nitrous oxide (N20), 
other oxides of nitrogen (NOx), ammonia (NH3), and various sulfur­
containing trace gases (Mooney et aI., 1987). They are important for two 
major reasons. First, most have significant effects in the atmosphere. The 
longer lived gases, CH4 and N20, are greenhouse gases that are much more 
efficient absorbers per molecule than is CO2 . Their concentrations are 
demonstrably increasing in the troposphere, very rapidly in the case of 
CH4 . They are now less important overall than is CO2 (because of their 
lower concentrations), but their relative importance is increasing. On the 
other hand, the more reactive gases play major roles in the chemistry 
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of the troposphere; in particular, NMHC and NOx interact in the forma­
tion of tropospheric ozone (03), the most serious air pollutant globally. 

Second, trace gas fluxes provide information on ecosystem function. 
While trace gas fluxes are spatially and temporally variable, they arise from 
relatively well-defined biological processes within terrestrial ecosystems. 
Most of those processes are not simply correlated with energy capture, but 
rather reflect interactions of the major biogeochemical cycles. The pres­
ence and magnitude of trace gas fluxes therefore can provide insight into 
the metabolism of terrestrial ecosystems. Indeed, to the extent that trace 
gas fluxes from biosphere to atmosphere can be measured accurately, we 
believe that such measurements will drive and constrain our understanding 
of terrestrial biogeochemistry in the same way that the "watershed eco­
system approach" (Likens et al., 1977; Bormann and Likens, 1979) has 
guided the current generation of ecosystem studies. 

Ultimately, remote measurements are essential to the development of 
regional estimates of trace gas flux; there will never be enough chamber or . 
cuvette measurements to account for the notorious spatial and temporal 
variability in flux (Keller et al., 1983, 1986). Our purpose here is to illus­
trate ways in which remote sensing can be used now to assist in measure­
ments of trace gas emissions from terrestrial ecosystems, and to discuss 
ways in which techniques that are currently under development may be­
come applicable. We separate the major approaches to utilizing remote 
sensing into five major categories-remote classification of ecosystems and 
measurement of flux on the ground in each type; remote estimation of the 
driving variables for models of trace gas flux; ground-based systems for 
remote, direct measurements of flux; direct aircraft-based systems; and 
direct satellite-based systems-and, where possible, give examples, possi­
bilities, and/or limitations of each. 

Classification-Based Estimates 

The least adventurous way to use remote sensing in developing estimates 
of trace gas flux is to classify ecosystems into functionally different units that 
can be distinguished remotely, then to measure fluxes of trace gases on the 
ground in each of those units, and, finally, to make an areal estimate of flux 
by multiplying the cover of each type (sensed remotely) by the flux from 
that type. Where classifications are based on characteristics that are the 
same factors that control trace gas flux (i.e., hydrology, soil fertility), this 
approach should yield results that are much better than those obtained by 
assuming that a particular site is "representative" of a region, or those 
obtained by sampling a number of available sites and taking an average. 

Despite the availability of the methodology, this straightforward use of 
remote sensing to estimate trace gas flux is more widely discussed than 
practiced. Matson et al. (submitted) recently used this approach to calcu-
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Figure 8.1. Spatial distribution of annual nitrous oxide flux in sagebrush steppe 
based on vegetation classification and ground-based measurements. Brightest shad­
ing has highest fluxes. 

late nitrous oxide fluxes from Wyoming sagebrush-steppe ecosystems. Dif­
ferences in vegetation there are caused by landscape position and winter 
snow depth; they are highly correlated with rates of production and nit­
rogen cycling. Reiners et al. (in press) made a supervised classification of 
the vegetation in a 15 x 15-km area using Landsat Thematic Mapper (TM) 
data. Matson et al. (submitted) then measured nitrous oxide flux over a 
two-year period from the major vegetation types within the scene. The 
product of the classification and the fluxes is an areal estimate of flux from 
the shrub-steppe landscape (Figure 8.1); it illustrates that one vegetation 
type (Artemesia tridentata var. vaseyana), which covers around 15% of the 
area in this particular image, is responsible for over 35% of nitrous oxide 
flux. Bartlett et al. (submitted) used a similar approach to estimate 
methane fluxes from the Everglades. The region was stratified into major 
wetland types remotely (using TM), and fluxes within representatives of 
each of the major types were measured through an annual cycle. 

This approach can also be applied to evaluating the effects of human 
disturbance on trace gas fluxes. Matson et al. (in press) made ground­
based measurements of nitrous oxide fluxes from an area of tropical forest 
near Manaus, Brazil, in the intensive study area of the aircraft-based Ama­
zon Boundary Layer Experiment (ABLE). They found wide variation in 
nitrous oxide fluxes among intact forests that differed in soil fertility (Mat­
son and Vitousek 1987) and, more important, greatly elevated fluxes from 
pastures that had been cleared from primary forest (Luizao et al ., in press). 
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They estimated that the 11 % of the intensively sampled area that was in 
pasture accounted for more than 40% of nitrous oxide fluxes from the area 
(Matson et al., in press). 

Overall, this approach has a number of strengths. First, it makes use of 
the variation among ecosystems in the development of areal flux estimates, 
rather than basing estimates on "representative" sites or attempting to 
account for real variations by simply averaging many ground-based esti­
mates. Second, it draws attention to the most active sites of flux-sites that 
are more important than most in atmosphere-biosphere exchange, and that 
therefore may be more susceptible to disruption. Finally, estimates that are 
based on accurately characterized differences among ecosystems can be 
more reasonably extrapolated beyond the immediate sites in which they 
were collected. For example, areal fluxes of nitrous oxide from regions of 
Amazonia with greater or lesser deforestation than the ABLE intensive 
study area can be estimated using classification-based approaches. The 
approach also has limitations; classifications that do _not reflect characteris­
tics that also affect trace gas fluxes may not be useful beyond very narrow 
limits, and the enormous spatial and temporal variability in trace gas fluxes 
within a class must still be sampled on the ground, almost invariably inade­
quately. Most important, the approach cannot account for year-to-year 
variation in trace gas flux and its controls within a site or type. 

Remote Sensing for Driving Variables of Models 

A second approach is to use remote sensing to drive biogeochemical mod­
els of terrestrial ecosystems, which, in turn, predict fluxes of trace gases. 
Trace gas production is biologically controlled; it is driven by variations 
in temperature, moisture, light absorption (for some gases such as non­
methane hydrocarbons), and the chemical characteristics of substrates. To 
the extent that these can be determined remotely, ecosystem-level models 
of the processes controlling trace gas flux can be parameterized and run on 
the basis of information obtained from remote sensing. 

In theory, this approach encompasses a wide range of possibilities, from 
classifications of terrestrial ecosystems that are based on characteristics 
known to be related to trace gas flux, through successional models that use 
remote sensing to locate and track disturbances, to process-level models 
that use remotely sensed information to initialize and update whole-system 
simulation models. In practice, there are a number of excellent, detailed 
models of terrestrial biogeochemistry in operation (McGill et aI., 1981; 
Parton et aI., 1988b), and substantial effort is going into adapting for 
remotely sensed driving variables. For example, the Century model of 
grassland productivity, nutrient cycling, and soil development (Parton et 
al., 1988b) makes use of information on climate and soil parent material to 
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examine grasslands on a continental scale. It has been modified to predict 
fluxes of nitrogen-containing trace gases (Parton et aI., 1988a,b; Schimel et 
aI., in press); modifications that incorporate some remote sensing inputs 
have also been carried out (Reiners et aI., in press). The Century model's 
dimatic forcing functions are potentially adapted to remote sensing inputs, 
but the information on soils that it requires still must be obtained by 
another pathway. Eventually, remotely sensed canopy chemistry may be 
used to calculate such soil characteristics indirectly (Wessman, this 
volume), or perhaps an alternative formulation that is driven or modified 
by canopy rather than soil properties (Running, this volume) will be more 
useful. 

Overall, the strengths of this approach are that it builds upon a long­
developing understanding of the biogeochemical regulation of trace gas 
flux, that it is dynamic in the sense that a change in forcing functions (from 
day to day or year to year) can yield a reasonable change in trace gas flux, 
and that it can be applied on spatial scales beyond immediate study areas. 
A current disadvantage is that the existing models largely look at eco­
systems from the bottom up (using soils as a starting point) rather than 
from the top down, and a large amount of work will be necessary in order 
to revise existing models or to develop new ones that thoroughly incorpo­
rate a top-down perspective (one based on vegetation canopies, which can 
be seen remotely). 

Ground-Based Approaches 

A number of ground-based techniques can be used to determine the con­
centrations or fluxes of trace gases; these indude tower-based eddy cor­
relations systems (Baldocci et aI., 1988), light detection and ranging (lidar) 
laser systems (Sachse et aI., 1988), the multipass tunable diode laser 
system, and Fourier transform infrared (FTIR) spectroscopy (Gosz et 
aI., 1988). We will not discuss these approaches in detail, in part because 
several of the techniques are also utilized in aircraft-based sampling. 

The ground-based systems have a number of different advantages. Some 
can be used to estimate several trace gases simultaneously (FTIR, multiple­
pass tunable diode laser), others (such as lidar) can be used to calculate 
concentration gradients of particular gases remotely, and still others (eddy 
correlation methods) can be used to calculate whole-system fluxes of par­
ticular gases. The last two are particularly useful in that they allow estima­
tion of trace gas fluxes without the often-confounding effects of chambers 
or other enclosures. All of the ground-based remote techniques are 
relatively expensive to purchase and maintain, and in operation they are 
generally confined to a single point. Therefore, they are not as useful for 
regional or global estimates of flux as are similar aircraft-based sensors. 
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Aircraft-Based Remote Sensing 

We believe that aircraft-based systems currently offer the greatest potential 
for the application of remote sensing to estimating fluxes of trace gases. 
Aircraft have the mobility and flexibility to sample important areas at the 
appropriate time, and a number of new and exciting sensors are now 
mounted on aircraft. 

A number of aircraft-based systems are in operation. One approach is 
based on treating the planetary boundary layer (PBL), the layer of the 
troposphere in contact with the surface, as a chamber within which changes 
in trace gas concentrations can be measured (Harriss et al., 1988; Matson 
and Harriss, 1988). The National Aeronautics and Space Administration 
(NASA) Global Troposphere Experiment (GTE), a program concerned 
with the regulation of tropospheric trace gas concentrations, has carried 
out field campaigns using this approach over the warm tropical ocean 
(Atlantic Boundary Layer Experiment or ABLE 1), central Amazonia 
during the dry (ABLE 2A) and wet (ABLE 2B) season, and arctic Alaska 
(ABLE 3). The program uses an ultraviolet lidar system mounted on a 
Lockheed Electra (a four-engine propeller aircraft) to measure the struc­
ture of the atmosphere, particularly the diurnal dynamics of the planetary 
boundary layer. The lidar measures the return of laser light scattered by 
aerosols (Browell et al., 1988); in this way, aerosol profiles are measured 
five times a second for each 1S-m increment from the aircraft to the sur­
face, with real-time data displayed on the aircraft. The planetary boundary 
layer is relatively aerosol rich, so its dynamics can be detected readily. 
Vertical profiles of many trace gas concentrations are then determined with 
reference to atmospheric structure by on-board analytical instruments 
(Gregory et al., 1986; Harriss et al., 1988). 

The results of the Amazonian dry season field campaign (ABLE 2A) 
have been published as a collection of papers in the 1988 Journal of Geo­
physical Research. A typical daytime flight during this study period involved 
a takeoff shortly after sunrise and a climb to near 4,000 m in altitude, 
followed by vertical profiles, during which on-board investigators could 
measure vertical distribution of trace gas concentrations within the free 
troposphere and the planetary boundary layer using in situ instruments 
and, in the case of ozone, a differential absorption lidar (DIAL) system. 
As the boundary layer developed through the morning (Figure 8.2), the 
measured volume of the boundary layer was used to account for changes in 
the concentrations of any chemical species attributable to mixing with the 
free troposphere. Any additional change then represented advection, reac­
tion, or flux to or from the surface. In a very large, undisturbed system 
such as upland Amazonian forests far from rivers or human activity, hori­
zontal advection probably averages out, while chemical reactions can be 
accounted for by models of tropospheric chemical reactions, at least for the 
less reactive species. Accordingly, atmosphere/surface exchange (of some 
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Figure 8.2. Representative flight plan for profile sampling in the planetary bound­
ary layer. [From Matson and Harriss (1988).] 

species, under some conditions) can be measured directly on spatial scales 
from tens to thousands of square kilometers. 

In the Amazon, this system was used to measure carbon dioxide ex­
change between large areas of undisturbed forest and the atmosphere 
(Wofsyet aI., 1988). The spatial and temporal distributions of a number of 
other trace gases, including carbon monoxide, nitric oxide, and dimethyl 
sulfide (Sachse et aI., 1988; Andreae and Andreae, 1988), were also mea­
sured in this way. Additionally, lidar was used to identify haze layers 
resulting from biomass burning, and the influence of biomass burning 
on atmospheric chemistry at a distance from source areas was determined 
(the sources were subsequently traced by satellite-based remote sensing) 
(Andreae et aI., 1988). 

The strengths of this overall approach are, first, that it allows direct 
measurements of trace gas fluxes on spatial scales between those accessible 
to an investigator on the ground and those involved in Global Circulation 
Models (GCMs). As such, aircraft-based measurements can provide a 
check on both local flux measurements and calculations based on global 
circulation. Moreover, as lidar systems are developed to measure addition­
al gases (C02 , CO, CH4 , N20, NH4), the approach will become in­
creasingly useful. This approach has the weakness that it is directly applic­
able only to situations in which the planetary boundary layer is stable, and 
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where horizontal advection within the boundary layer can be accounted 
for. Even in less stable or less homogeneous circumstances, the approach is 
useful in that coarse-scale movements of air masses (and their chemistry) 
can be traced, and areas of convection indentified and sampled. However, 
it cannot then be used to measure atmosphere-biosphere fluxes directly. 

Where the planetary boundary layer cannot be treated as a chamber, 
aircraft-based eddy correlation systems (Desjardins et aI., 1982; Sellers 
et ai., 1988; Sellers, this volume) can be used to measure atmosphere­
biosphere exchange. The eddy-correlation approach is discussed in Sel­
lers (this volume), and it will not be described in detail here. For its ap­
plication to trace gases, the development of rapid-response tunable diode 
laser systems has allowed measurements of many trace gases to be carried 
out with sufficient speed and precision for eddy-correlation estimates of 
flux. 

Eddy correlation from aircraft is widely applicable to determining trace 
gas fluxes, at least for the chemically more stable or better-known species 
for which conservation of mass (or known rates of reaction) can be 
assumed. Moreover, the combination of aircraft-based lidar and eddy­
correlation systems offers considerably more promise than either tech­
nique alone; lidar can be used to determine the coarse-scale structure of 
the atmosphere (and its chemistry) and to direct sampling, while eddy cor­
relation can be used for finer-scale flux measurements. 

Satellite-Based Flux Measurements 

While satellite-based remote sensing is now extremely useful for deriving 
correlates of trace gas flux and drivers for models of trace gas flux, it cannot 
be used to measure fluxes directly. Perhaps the closest approach to direct 
measurements of flux has come from the total ozone mapping system 
(TOMS) measurements of integrated ozone concentrations. Although 
most of the total signal is contributed by stratospheric ozone, the quantity 
of stratospheric ozone varies little (spatially) over tropical regins. It may be 
possible to interpret variation in the TOMS signal as reflecting variation in 
tropospheric ozone. This ozone is produced chemically within the tropo­
sphere, but over the tropics its production is generally limited by NOx 

supply (from biomass burning, soil emissions, and lightning) (Jacob and 
Wofsy, 1988); hence it may be possible to estimate NOx flux from remote 
ozone measurements. 

Ultimately, satellite-based lidar (or other) systems may allow a broader 
application of remote sensing to the measurement of trace gas flux-but 
for the immediate future (including the planned Earth Observing System, 
or Eos), satellite-based remote sensing will likely contribute indirectly 
by providing reasonable classifications, driving variables for models, and 
global circulation patterns rather than by direct measurements of concen­
trations of flux. 
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Conclusions 

To understand the magnitude and regulation of trace gas fluxes, we need a 
combination of process-level understanding of the mechanisms involved, 
models of different spatial and temporal scales that can be driven with 
remotely sensed data, regional measurements of flux, and the global per­
spective provided by long-term observations and GCMs. Clearly, the 
alternative approaches to determining trace gas fluxes outlined in this 
chapter are complementary, not competitive; they also complement 
ground-based sampling of the mechanisms regulating flux, long-term 
observations of atmospheric chemistry, and the further development of 
GCMs. The research community now has incomplete but useful informa­
tion about the processes that produce many (not all) of the important trace 
gases. We know a good deal about their consequences in the atmosphere. 
We also have good models of nutrient cycling that, in some cases, include 
predictions of trace gas flux, and we have long-term measurements of the 
tropospheric concentrations of the long lived gases in a few sites. However, 
most of the existing biogeochemical models were not developed for use 
with remote sensing. As such models are developed, the ability to measure 
the structure of terrestrial ecosystems and canopy chemistry with remote 
sensing (Sader, 1987; Wessman et al., 1988; Wessman, this volume) will 
greatly increase their applicability. Additionally, regional-level flux mea­
surements are almost wholly lacking, yet they are essential if we hope to 
scale up information from flux measurements in chambers or from towers, 
and apply it on regional and global scales. Both the application of ex­
perimental sensors that can drive ecosystem models and the measurement 
of regional trace gas fluxes will require a much greater utilization of 
aircraft-based sampling than has hitherto been true of ecological studies. 
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9. Satellite Remote Sensing and Field Experiments 

Piers J. Sellers, F.G. Hall, D.E. Strebel, G. Asrar, 
and R.E. Murphy 

The past few years have seen an increasing pressure brought to bear on 
biologists to apply their research efforts to larger spatial scales. The 
motivation for this pressure has scientific as well as sociopolitical roots. 
First, from the science viewpoint, it has become apparent that satellite­
based and atmospheric observing techniques can allow researchers a dif­
ferent view of biospheric functioning by spatially integrating the effects of 
biospheric states and fluxes, respectively, at moderate cost; see, for exam­
ple, the studies of Tucker et al. (1986), Goward et al. (1985), Justice et al. 
(1985), Fung et al. (1987), Goward and Dye (1987), and Houghton (1987). 
The new opportunities opened up by the use of these techniques compel 
the whole biological community to use a new means of studying life on the 
earth. Second, from the sociopolitical viewpoint, there is a growing percep­
tion in public and government circles tqat the global environment is chang­
ing, partly as a result of man's industrial and agricultural activities. The 
mechanisms of global change are only just beginning to be investigated and 
understood, see Rotty (1983), Trabalka (1985), and the review of Schlesin­
ger and Mitchell (1987), but biospheric processes may playa strong role in 

This chapter is based in part on Sellers, P.l., Hall, F.G., Asrar, G., Strebel, D.E., 
and Murphy, R.E. (1988). The first ISLSCP field experiment (FIFE). Bull. Amer. 
Mefeoro!. Soc. 69(1):22-27. Adapted with permission of the American Meteoro­
logical Society. 
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any developing scenario. Of particular relevance is the so-called "green­
house effect" (Schlesinger and Mitchell, 1987; Hansen et aI., 1981), which 
hypothesizes that the build up of anthropogenically generated CO2 in the 
atmosphere may bring about a warming in the troposphere and a cooling of 
the stratosphere. (To date, however, none of the greenhouse effect simula­
tions performed with numerical models of the earth's atmosphere have 
addressed the direct effects of increased CO2 or temperature on the phy­
siology of the terrestial biota). In any case, more and better information 
is needed about global change so that its effects can be anticipated or 
avoided. Together, these two pressures have motivated a large number of 
biologists to realign their research efforts toward the study of large-scale 
processes and atmosphere-biosphere interactions. 

Modeling Biosphere-Atmosphere Interactions 

The study of land surface biota on global and regional scales automatically 
implies a study of the interactions between the biosphere and the atmo­
spheric environment. Figure 9.1 shows the temporal and spatial domains of 
various biological and meteorological phenomena, from which it can be 
seen that the preferred areas of research for biologists and meteorologists 
do not match in terms of time and space scales. Biologists have had their 
greatest successes in the study of small-space-scale, short-time-scale 
phenomena-for example, photosynthesis and physiology-with propor­
tionately fewer solid gains at larger scales. Meteorologists, on the other 
hand, have accomplished most in the regional to global space domain over 
time periods ranging from a few hours to days; for example, the use of 
geophysical fluid dynamical theory to describe the planetary atmospheric 
circulation has resulted in the routine prediction of global weather to pro­
vide forecasts that are usable out to several days. In the description of 
processes acting on smaller space scales, such as turbulence, or larger time 
scales, such as atmospheric chemistry, there have been successes but com­
prehensive theories have yet to be widely accepted. 

The mismatch of scales between the biological and meteorolgical com­
munities had brought about a clean division of biosphere-atmosphere mod­
eling studies into two distinct categories. The first is the modeling of pre­
dominantly biophysical interactions between the terrestrial surface and the 
atmosphere (e.g., Dickinson, 1984; Sellers et aI., 1986), where the prin­
cipal objective is to simulate realistically the biological, physical, and 
dynamical processes that govern the motion of the atmosphere and 
thereby calculate the time evolution of the three-dimensional fields of 
temperature, humidity, wind speed, radiative flux divergence, and preci­
pitation; in short, to simulate the global weather or climate starting from 
some specified initial condition. The primary tool for this kind of study is 
the atmospheric General Circulation Model (GCM), which incorporates 
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tion, and momentum between the surface and atmosphere. In operation, the dyna­
mic atmospheric model applies forcings of temperature T, humidity q , wind speed 
u, insolation S, downward long-wave radiation L wd , and precipitation P. The 
biophysical surface model uses these forcings to calculate the returning fluxes of 
reflected short-wave radiation as, sem;ible heat flux H, latent heat flux AE, upward 
long-wave flux EaT:, and shear stress or aerodynamic drag T. These fluxes affect the 
subsequent dynamic development of the atmosphere and thus the future forcings. 
(b) Ecosystem dynamics models. The atmospheric condition is usually prescribed 
from climate records or GCM output. The meteorological forcings of T, q, u, S, 
!,:wd , and P are then used to determine survival and growth rates of a species mix­
ture via a series of physiological models. The results of these calculations affect 
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(b) 

the primitive equations describing the motion of the atmosphere in terms 
of fluid dynamics, and mathematical descriptions of the important one­
dimensional physical processes-radiative heating, convection, turbulent 
transport, and latent and sensible heating-which transfer heat, mass, and 
momentum throughout the atmospheric column. An essential component 
of such a model is a correct description of the radiation, momentum, and 
sensible and latent heat fluxes at the surface-atmosphere interface as these 
may significantly contribute to the internal heating and the drag force 
exerted on the lower atmosphere. 

Over the oceans, the modeling of these fluxes is fairly straightforward, 
provided the sea-surface temperature (SST) field is known from observa­
tion or calculated from an ocean circulation model. For the land, however, 
the problem is more complex; recent work has shown that the partitioning 
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of absorbed energy at the terrestrial surface may be a strong function of the 
type, density, and health ofthe vegetation there; see Sato et al. (1989). In 
particular, the vegetation's stomatal resistance seems to playa large role in 
limiting land-surface evapotranspiration rates and hence has a direct feed­
back effect on the calculated precipitation rates over continental interiors 
during the summer, as a significant fraction of evaporated moisture may be 
recirculated back to the land surface as rainfall. More details on the results 
and potential of such modeling studies are given in a later chapter but it is 
worth pointing out at this stage that all such modeling approaches assume 
quasi-stationarity in the vegetation's community composition and structure 
(CCS); see Figure 9.2a. Thus, for any given simulation run, the spatial 
distribution of species, or some crude analog thereof, is assumed to be 
invariant with time. This is hardly a constraint on the modeling studies 
which can be addressed with such models, as computer power currently 
limits simulation runs to periods of a few years or decades at most, too 
short a time for significant changes in CCS to develop or have any effect in 
any case. 

The second category of biosphere-atmosphere model addresses the 
issue of successive changes in CCS over periods of decades to millennia, 
illustrated in Figure 9.2b. These models, referred to here as ecosystem 
dynamics models, simulate the time evolution of CCS within a region start­
ing from some initial conditions and forced by a time series of atmospheric 
conditions; temperature, humidity, precipitation, and so on (Shugart et aI., 
1973). Generally speaking, these models regard the atmosphere purely as a 
source of applied forcing and do not consider any feedback effects from the 
surface back to the atomsphere. As can be seen from Figure 9.2, therefore, 
biosphere-atmosphere modeling efforts are divided roughly into those that 
deal with a dynamic atmosphere and a prescribed field of CCS (Figure 
9.2a); and those that deal with a prescribed atmospheric condition, or 
climate, and a dynamic CCS (Figure 9.2b). The distinction is made all the 
sharper by considering the simulation time step typically employed in each 
type of model; the GCMs usually operate on a time step of the order of 
several minutes whereas ecosystem succession models employ time steps of 
a few weeks to months. As yet, few direct or indirect connections have 
been made between the two classes of models, although some efforts have 
been made to use the simulated. climate generated by GCMs initialized 
with higher, usually doubled, atmospheric CO2 concentrations to force 
biogeochemical-cycle models, (Parton et aI., 1987), and to explore the 
possible changes in biome distribution due to atmospheric warming effects, 
(Solomon, 1986). 

The Role of Remote Sensing 

Satellite remote sensing can playa significant role in the investigation of 
biosphere-atmosphere interactions, for both biophysical models and eco-
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system succession models. Both categories of model require observations 
for initialization and for validation, and in the case of biophysical models, 
the requirements demanded of an observational system are fairly extreme. 
To be truly useful, the observational system must satisfy the following 
criteria: 

1. It should provide information on the thermodynamic, biological, and 
hydrological state of the land surface. 

2. It should be capable of providing global coverage at high temporal and 
spatial resolutions; that is, several times a day and around 1 km, respec­
tively. 

3. It should utilize a consistent observational/interpretational technique 
everywhere. 

4. It should be relatively economic. 

Only satellite remote sensing coupled with interp~etational algorithms 
can satisfy all of the above criteria. As yet, however, the processing of raw 
sensor counts, the initial output from the satellite instruments, into useful 
parameters for land surface studies is in a fairly primitive stage (Sellers et 
aI., 1988b). This is so because each of the processing steps-calibration, 
atmospheric-geometric correction, radiance-to-parameter calculation, and 
parameter-to-biophysical-quantity calculation-has its own problems and 
uncertainties, all of which add up to degrade the value of the final product. 
These problems are briefly discussed as follows: 

1. Calibration: To convert the digital counts to radiance values, the 
calibration of the satellite sensor must be known to a fairly high preci­
sion. In fact, many sensors are launched without calibration and all sen­
sors are subject to some drift in calibration once in orbit. 

2. Atmospheric-geometric correction: The effects of atmospheric attenua­
tion, reflection, and emission must be accounted for; this is often done 
with numerical multilayer atmospheric radiative transfer models (e.g., 
Wiscombe et aI., 1984). Additionally, the radiation field at the surface 
and within the atmosphere is often highly anisotropic, thus necessitating 
a full treatment of the effects of sun-target-sensor geometry. Detection 
and elimination of cloud-contaminated fields is often extremely difficult. 

3. Radiance-to-parameter calculation: Once these first two problems have 
been dealt with, the scientist is left with an estimate of a spectral direc­
tional radiance, emittance or reflectance from the surface. This must 
then be interpreted into a physical parameter, such as surface tempera­
ture, green leaf area index (LAI), or near-surface soil moisture. 

4. Parameter-to-biophysical-quantity calculation: The derivation of the 
physical parameter itself may be the final objective. Often, however, 
the scientist desires to use a combination or a time series of these 
parameters to derive another biophysical quantity. For example, a time 
series of surface temperature measurements may be used to calculate 
the diurnal surface energy balance and thence the corresponding time 
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series of sensible and latent heat fluxes from the surface; see Becker et 
al. (1988) in the review of Sellers et al. (1988b). As another example, 
near-infrared surface reflectances, which are closely correlated with 
green vegetation density, are time integrated to provide an estimate of 
total net primary productivity over a specified period (Goward et al., 
1985). 

A schematic of this data-processing chain is shown in Figure 9.3, 
together with the problems and uncertainties associated with each step. As 
yet, we have few cases where the raw data have been processed all the way 
through to a final product and this compared with a direct observation at 
the appropriate scale. 

The Need for Experiments 

There have been many theoretical studies that demonstrate the utility of 
satellite data for the study of land-surface processes. As discussed above, 
however, the actual utility or potential of these data is largely unknown as 
the products of a full and rigorous processing of the satellite data have 
seldom been compared with simultaneous and appropriate validation 
measurements. The key word here is "appropriate," as this implies a spa­
tial scale consistent with the satellite sensor resolution, which is normally 
on the order of tens of meters to a few kilometers, and plainly much larger 
than the sites or plots associated with most in situ biological research. In 
conducting experiments involving remotely sensed data, scientists there­
fore have to address the following issues: 

1. Scale. The in-situ validation measurements have to be carried out at a 
scale comparable to that of the products derived from the remotely 
sensed data; that is, they have to be conducted at roughly the same scale 
as the satellite sensor resolution. This alone has serious implications as 
the means must be found to transfer biological understanding and ex­
pertise from the customary meter scale to much larger scales. This pro­
cess of upscale integration requires innovations in both modeling and 
measurement techniques. 

2. Simultaneity. Many of the biophysical parameters of interest exhibit 
substantial rates of change over a diurnal cycle; for example, surface 
temperature, or evapotranspiration rate. Clearly, validation measure­
ments must be precisely timed to coincide with the time of acquisition of 
the satellite data. 

3. Ancillary measurements. Figure 9.3 and the accompanying text list four 
steps in processing the satellite data to a biophysical quantity: calibra­
tion, atmospheric-geometric correction, radiance-to-parameter calcula­
tion, and parameter-to-biophysical-quantity calculation. Ancillary 
measurements must be carried out to address the first two steps if the 
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Figure 9.3 . Basic processing steps required to convert satellite data to biophysical 
quantities. 

potential of the satellite data is to be fully realized. For calibration pur­
poses, observations should be taken over a test site of known reflec­
tance properties (Slater et aI., 1986), and for the atmospheric correction 
step, measurements of the temperature , humidity, and aerosol profiles 
should be made over the test site at the time of satellite data acquisition. 
These measurements are ancillary to the main validation measurements 
made at or near the surface but are nonetheless vital for the interpreta­
tion of the satellite data. 

These requirements for large-scale, simultaneous surface validation 
measurements combined within an intensive ancillary measurement effort 
represent substantial scientific and financial investments that act as power­
ful disincentives to actually carrying out such field experiments. Neverthe­
less, they must be done if we are ever to make use of the satellite data in a 
quantitative and scientifically defensible way. It can also be argued that 
when the cost of executing such experiments is scaled against the cost of 
the satellite observation systems, the return on the investment can be seen 
to represent good value. 

Up to now, we have discussed large-scale experiments in the abstract: 
what they are, why they are needed, and roughly what is involved in con­
straining their design . In the next section, we review one such field experi-
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ment, the First ISLSCpI Field Experiment (FIFE). FIFE was primarily 
concerned with the use of satellite data to calculate land-surface energy 
and mass balances and therefore falls within the first category of biophysi­
cal experiments we have discussed; see Sellers et al. (1988a). For an exam­
ple of a long-time scale ecosystem dynamics study, the reader is referred to 
the forest dynamics modeling effort of Hall et al. (1987), which investi­
gated change within a forested landscape over a period of several years. 

The First ISLSCP Field Experiment (FIFE) 

Theoretical Background 

The experiment was designed to determine the extent to which satellite 
data and modeling could yield information on the energy and mass balance 
of a vegetated land surface. An explicit recognition of the role of veget~­
tion in the land-surface energy balance was central to the design and execu­
tion of the experiment. 

The simplest realistic treatments of land-surface-atmosphere inter­
actions, as used in GCMs, deal with the radiation balance first and the 
partitioning of the absorbed energy second. 

The surface radiation balance may be written as: 

Rn = S(l-a) + LWd - E<T Ts4 (1) 

where Rn = net radiation, Wm-2 ; S = total surface insolation, Wm-2 ; a = 
broad-band surface albedo; LWd = downwelling (from sky to surface) long­
wave radiation, Wm- 2 ; Ts = surface temperature, K; e = surface emissiv­
ity; and (J' = Stefan-Boltzman constant, Wm-2 K-4. 

The absorbed radiation, Rn , is then partitioned into the following flux 
terms: 

Rn = G + Ps + H + 'AE (2) 

where G = ground heat flux, Wm-2 ; Ps = energy for photosynthesis, 
Wm- 2 ; H = sensible heat flux, Wm-2 ; XE = latent heat flux, Wm- 2 ; E = 

evaporation rate, kg m -2 S-I; and A = latent heat of vaporization, J kg-I. 
Generally speaking, the energy absorbed for photosynthesis , P" is of 

the order of 1 % or less of Rn and the ground heat flux term, G, is usually 
less than 10% of Rn when averaged over a diurnal cycle. This means that 
the bulk of the absorbed energy is partitioned into the sensible, H, and 
latent, AE, heat fluxes, which are returned to the atmosphere by turbulent 

lISLSCP (International Satellite Land Surface Climatology Project) is sponsored 
by the World Meteorological Organization (WMO), the Internation Commission 
of Scientific Unions (ICSU), and the United Nations' Environmental Program. 
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diffusion. The ratio of H to '!I.E is of particular importance to atmospheric 
processes as it has substantial effects on the timing and location of the 
internal heating of the atmosphere. 

The partitioning of absorbed energy into H, 'AE, and G may be de­
scribed by three equations: 

(3) 

where Ts = surface temperature, K; Ta = air temperature at reference 
height z" K; p,cp = density, specific heat of air; kg m-3 , J Kg-I K-I; and 
'a = aerodynamic resistance between the surface and reference height z" 
sm- I ; 

[e* [Tsl- eal pCp 
'AE= -

'a + 'surf 'Y 
(4) 

where e* (Ts) = saturated vapor pressure at surface temperature, Ts, kPa; 
'Y = psychrometric constant, kPa K-I; ea = air vapor pressure at Zn mb; 
and 'surf = surface resistance to vapor transfer, s m -I; and 

G = f[ dJrs] , w] (5) 

where W = soil wetness. 
A schematic of this transfer scheme is shown in Figure 9.4. Equations 

(3) and (4) are comparable to the Ohm's law description of electrical cur­
rent flow where 

Figure 9.4. Schematic of simple bio­
physical heat flux resistance model. 
Note that the source for sensible 
heat flu~, H, is the surface skin at 
temperature, Ts. For the latent heat 
flux, i.E, the source for vapor is con­
ceptualized as the saturated plant in­
terior with a vapor pressure of 
e * (Ts). 

V 
1=-

R 
(6) 
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(Where I = current, amperes; V = potential difference, volts; and R 
resistance, ohms) in that the fluxes Hand AE are equivalent to the current 
I; and the top and bottom lines on the right-hand sides of Equations (3) 
and (4) are equivalent to the voltage drop V and the resistance R respec­
tively. The relative sizes of the resistance terms 'a and 'surf clearly control 
the ratio H to AE. 'a, the aerodynamic resistance, is usually described using 
an eddy diffusion model, whereby: 

f Z, 1 
, = -dz 

a surface K h ." 
(7) 

where K h .,. = eddy diffusion coefficient for heat and water vapor transfer, 
m 2 S-I. 

Monteith (1973) explains in detail how Equation (7) may be solved with 
some simple assumptions about how turbulent transport operates close to 
the surface. When the sensible heat flux is relatively small (i.e., near­
neutral conditions), this procedure yields 

(8) 

where U r = wind speed at Zn m S-I; ZO = roughness length of the surface, 
meters; and k = von Karman's constant, = 0.41. 

From Equation (8), we can see that transfer from the surface to the 
atmosphere will be most efficient when the surface is rough, that is, when 
Zo is large, and when the wind speed is high. The surface resistance term is 
a biophysical concept (Monteith, 1973); it can be thought of as the inte­
grated impedance to the release of moisture from within the soil or plant 
tissues to the adjacent external air layer. In vegetated areas, the major 
component of 'surf is the stomatal resistance of plant leaves to the diffusion 
of saturated water vapor from the mesophyll to the leaf boundary layer. In 
nature, many plants seem to control their stomatal functioning so as to 
maximize their assimilation rates for a minimal loss of water vapor, and to 
achieve this, the stomatal functioning is sensitive to variations in the photo­
synthetically active radiation (PAR) flux, 0.4 to 0.7 /Lm (micrometers), the 
leaf temperature, the humidity of the surrounding air, and the moisture 
content of the leaves, itself a function of evaporation rate and soil moisture 
content (Farquhar and Sharkey, 1982; Jarvis, 1976). 

The set of Equations (1) through (8) forms the basis of many biophysical 
models of the surface energy balance, including the descriptions of Dickin­
son (1984) and Sellers et a1. (1986). Table 9.1 outlines procedures for esti­
mating terms in the radiation and energy balances from remotely sensed 
data. These are discussed in more detail below. 

First, satellite data may be used to estimate different components of the 
surface radiation balance, see Equation (1). In principle, the insolation S, 
the surface albedo a, the downward long-wave flux L wd , and the surface 
temperature Ts , and hence long-wave loss, may be calculated from existing 
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Table 9.1. Procedure for Calculating Surface Energy Balance from Satellite Data. 
Derivations of Numbered Equations Are Described in the Text 

Derived Quantity 

Insolation S 

Albedo, a 

Upward long-wave flux, 
eaTt surface tem­
perature, Ts 

Downward long-wave 
flux, LWd 

Satellite Observation 

Radiation Balance 
TOA reflectances* 

TOA reflectances 

TOA emission, 
sounder profiling 

Sounder profiling 

[Net radiation: Rn = S(I- a) + LWd - wTt] 

Vegetation state, 
SVI 

Surface temperature, 
Ts 

Soil moisture, W 

Surface State 

Vegetation indexes 
from TOA, IN, Iv 
radiances 

TOA emission 
sounder profiling 

Microwave brightness 
temperature, TB 

Calculating Surface Heat Fluxes 

[Energy balance: Rn = H + AE + G + Ps] 

I. AE = Rn - H - G - Ps 
Equations 1, 2, 3, and 5 

II. AE = J(T" SVI, W) 
Equations 4,9, and 10 

*TOA = top of the atmosphere. 

Satellite 

GOES, NOAA, 
Meteosat 

GOES, NOAA, 
Meteosat 

GOES, NOAA, 
Meteosat 

NOAA 

(1) 

NOAA,SPOT, 
Landsat 

GOES, NOAA, 
Meteosat 

Nimbus-7 

(2) 

satellite radiometers and sounders; see Diak and Gautier (1983), Dedieu et 
al. (1987), Morcrette and Deschamps (1986), and Price (1986), respective­
ly, or a summary of all methods in Sellers et al. (1988b). By inserting these 
estimates in Equation (1), we obtain an estimate of the net radiation Rn by 
summntion. 

Once Rn has been estimated it may be partitioned into its component 
heat fluxes using indirect modeling methods that utilize remotely sensed 
data; see the review of Becker et al. (1988). Two methodologies are com­
monly proposed. In the first, a satellite-based measurement of Ts is com-
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bined with estimates of Ta and Ya obtained from meteorological data or 
models to solve Equation (3) to yield H. This and an estimate of G based 
on a time series of Ts observations and some simple thermal diffusion mod­
eling [see Equation (5)], are subtracted from Rn in Equation (2) to yield an 
estimate of AE. However, this method has been found to be fairly sensitive 
to uncertainties in the terms on the right-hand side of Equation 3 (Abdel­
laoui et a!., 1986). In the second method, Equation (4) is solved using 
estimates of ea and r a obtained from meteorology, Ts from thermal IR 
satellite data, and an estimate of Ysurf from either vegetation index observa­
tions (Tucker et aI., 1981) or soil moisture measurements from microwave 
observations (Njoku and Patel, 1986). 

The vegetation index observations offer particular promise. Theoretical 
(Sellers, 1985, 1987; Hope, 1987) and empirical (Asrar et aI., 1984; Tucker 
et aI., 1981) investigations have shown that the ratio of the above-canopy 
near-IR and visible reflectances is almost linearly related to the fraction of 
photosynthetically active radiation absorbed by the plant canopy (APAR). 
Theoretical work indicates that AP AR is in turn related to the area­
averaged canopy photosynthetic capacity, P:" which is correlated with the 
minimum canopy resistance, r;; see Figure 9.5. 

Thus, 

and 

IN 
r*a­

C Iv 

(9a) 

(9b) 

where r; = minimum canopy resistance as determined by PAR flux, s m -1; 
f( T),f( De),f( !/II) = stress terms that act to increase canopy resistance due 
to the effects of temperature, vapor pressure deficit, or leaf water poten­
tial, respectively-O::::; f(x) ::::; 1; and IN, Iv = upwelling radiances (or sen­
sor counts) observed in near-IR (0.7 to 1.1/Lm) and visible (0.4 to 0.7 /Lm) 
wave bands, respectively; W m-2 sr-l. 

In sparsely vegetated regions, an estimate of the near-surface soil mois­
ture content might also be interpreted into a value of Ysurf. Thus, 

(10) 

where W = soil wetness and T B = brightness temperature as observed in 
the microwave region, (0.1 to 50 cm), K. 

The theoretical bases for most of the above methods have been widely 
known for many years, but very few quantitative tests have been carried 
out under field conditions. The aim of the FIFE project was to collect the 
satellite observations, the ancillary data, and estimates of the surface fluxes 
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Figure 9.5. Simulated relationship between spectral vegetation indices, SVI, 
stress-free canopy photosynthetic rate Po and canopy resistance rc- Simulation was 
conducted for a maize canopy. The SVls are defined as follows: 

See Equation (9) in text. 

S· I . IN imp e ratlO = -
IN 

Nomalized difference = IN - Iv 
IN + Iv 
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and surface biophysical states to allow a thorough evaluation of all of 
these methods with the eventual objective of calculating the surface 
energy balance from satellite and meteorological data. 

Experiment Design 

Three important issues framed the design of FIFE: 

• The size of the site 
• The location of the site 
• The duration of the observational effort 

The Size of the Site 

Two conflicting criteria constrained the size of the site. It was desirable to 
have as small a site as possible to allow a cop.centration of the surface 
measurement network and thereby accurate validation of the models. On 
the other hand, the site had to be large enough to be observable from orbit 
so that a number of pixels could be placed within its boundaries with con­
fidence. Additionally, it was decided at an early stage to make use of air­
borne eddy-correlation equipment, which implies a minimum length 
scale of 15 km; this is roughly ten times the size of the length scale of the 
larger planetary boundary eddies that transport the fluxes away from the 
surface and thus represents a minimal representative sample of these 
turbulent structures. The site was thus designed around an intensive sur­
face observational network located within a square 15 km on a side. 

The Location of the Site 

As FIFE represented the first effort of its kind, it was decided that the 
experiment location should favor a conservative experimental approach, 
particularly with respect to sampling density. The following criteria were 
put forward to define the site selection: 

• Surface homogeneity. As far as possible, the site was to have uniform 
vegetation and moderate terrain throughout its area. 

• Grassland. Measurement of fluxes and radiances over forests is tech­
nically difficult to say the least: towers and special platforms have to be 
erected on site and surface anisotropic effects can be fairly extreme. For 
purely practical purposes, grassland areas are easier to work on. 

• Strong seasonal cycle. A mid-continent site with a strong seasonal cycle 
was preferable to allow a wide range of physiological and climatic condi­
tions to be observed. 

• Logistics. The site had to be in the United States and had to be close to 
an academic institution capable of supplying scientific and technical site 
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support. Also, it was highly desirable to have airfields close by for basing 
the research aircraft . 

• Research archive. It was desirable that the site had been the subject of 
previous research efforts. The resulting archive would be valuable for 
the detailed experiment design. 

A grassland area in Nebraska and an area including the Konza Prairie 
reserve and adjacent pastures in Kansas were listed for the study. The 
Konza Prairie site was eventually chosen as the logistic support available in 
the area was optimum. 

Color Plate 2 shows how close the site and airfields are to the fown of 
Manhattan, Kansas, where accommodations and technicaUadministrative 
support provided by Kansas State University were available. 

The Duration of the Observational Effort 

Clearly, an annual cycle .is the minimum duration 'required for some 
aspects of the observational effort, to allow an understanding of changes 
induced by different climatic and physiological conditions. However, it was 
impractical to monitor the swiftly changing biophysical variables, such as 
surface temperature, surface heat fluxes, and upwelling radiances, over 
such a long period. The site observations were therefore split into two 
categories: a semicontinuous monitoring effort and a series of intensive field 
campaigns (IFCs). These are discussed in the following. 

The monitoring effort was charged with the collection of the satellite 
and meteorological data necessary to drive the biophysical models de­
scribed in the previous section, with only a few validation measurements 
included where appropriate. These measurements were also to provide an 
outline of the phenological and climatic conditions at the site through­
out the year. The slowly changing variables of soil moisture and some 
biophysical properties, such as LAI, and biomass, were monitored 
throughout the complete year of 1987 and continue at the time of writing. 
Additionally, some 16 Portable Automatic Mesonet (PAM) stations or the 
equivalent were distributed about the site to measure meteorological vari­
ables, including incoming and reflected radiation, air temperature, vapor 
pressure, wind speed, soil temperature, and precipitation every 15 
minutes. Throughout the year, satellite'data were collected over the site 
whenever viewing conditions permitted. At the time of the satellite over­
passes, sun photometer observations were taken to permit atmospheric 
correction of the data. 

The IFCs were directed at taking the detailed, labor-intensive, and dif­
ficult measurements necessary for validating the satellite data products 
over a range of spatial scales. Specifically, time series of flux measurements 
and biophysical state variables were to be obtained, with particular em­
phasis on the times of the satellite overpasses. The research aircraft were 
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committed to the site during the IFCs to carry out two essential tasks: to 
make radiometric measurements, some of which would be compared with 
satellite data, and to make estimates of heat, mass and momentum fluxes 
over the site. The measurements included: 

• Radiance observations. Airborne and surface platforms were used to 
measure the upwelling radiation reflected and emitted by the surface, 
both to compare with contemporaneous satellite observations and to 
explore the relationship between radiances and surface conditions. 

• Flux observations. Three aircraft and 16 surface platforms were used to 
measure the diurnal variation of the sensible and latent fluxes at the 
surface and within the boundary layer. Carbon dioxide flux was also 
measured using a variety of techniques. 

• Biophysical observations. A whole range of detailed biophysical 
observations were made to validate parameter-to-radiance models and 
to understand the biophysical controls on' the latent heat and CO2 

fluxes. Measurements of stomatal and canopy resistance, leaf chloro­
phyll content, leaf water potential, trace gas flux, and many replicates of 
biometric measurements were made. 

• Ancillary measurements. Laser equipment, radiosondes, sun photo­
meters, and spectrometers were all used to provide the data necessary 
for processing and interpreting the satellite and aircraft-based radiance 
data. 

Obviously, all of this involves a considerable amount of resources and 
effort that could not be held in place for extended periods. Four IFCs were 
therefore proposed, each of 12 to 16 days' duration, during which these 
intensive observations were to be made. The IFCs were timed to coincide 
with the cardinal phases of the vegetation development, see Figure 9.6: 

IFC-l; green-up 
IFC-2; peak greenness 
IFC-3; dry-down 
IFC-4; senescence 

May 26 to June 6 
June 25 to July 11 
August 6 to August 21 
October 5 to October 16 

During each IFC, four or five aircraft and some 150 people were work­
ing at or near the site. 

The fine detail of the experimental design followed from the need to 
cover a wide range of time and space scales. The site was stratified accord­
ing to treatment and slope; the stratification was moderately complex as 
the grassland is maintained in a shrub-free state by managed burning of the 
vegetation in April-May at intervals of one to a few years. The final stra­
tification plan allowed the science team to distribute the 16 automatic 
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Figure 9.6. Annual cycle of the normalized-difference vegetation index (NDVI) as 
observed at Konza Prairie using a hand-held radiometer. The NDVI is an indicator 
of the area-averaged photosynthetic capacity of the vegetated surface. Timings of 
the intensive field campaigns (IFCs) are shown. 

weather stations and the 20-odd flux measurement rigs around the site in 
such a way as to obtain reasonable estimates of the mean and within-site 
variability of conditions over the entire (15 km2) area. This stratification 
also provided the basis for the soil moisture and biometric observations. 

Coordinating the Measurement Program 

Having decided on the size and location of the test site and the timing of 
the observing periods, the operations planning of FIFE was directed at 
achieving the following goals. 

A. The simultaneous acquisition of satellite, atmospheric, and surface data 

FIFE aimed to provide a data set that would allow direct comparison 
between the satellite observations and (near)-surface parameters and pro­
cesses. The following data were acquired to achieve this objective: 

1. Satellite data. National Oceanic and Atmospheric Administration 
(NOAA)-9, NOAA-lO, Systeme Probatoire d'Observation de la Terre 
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(SPOT), Landsat, Geostationary Orbiting Environmental Satellite 
(GOES). 

2. Airborne radiometric data. Data from a range of airborne remote­
sensing instruments flown over the site during the satellite overpasses to 
ensure that cloud-free spectral data were acquired and to study the 
effect of the atmosphere on the radiometric signal. 

3. Surface-near-surface fluxes. Measurements of latent (evapotranspira­
tion) and sensible heat, CO2, and momentum fluxes at and above the 
surface. 

4. Surface-near-surface states. Measurements of meteorological and 
atmospheric optical, thermal, and biophysical properties of the surface, 
and the physical and chemical properties and water content of the soil. 

B. Multiscale observations of biophysical parameters and processes con­
trolling energy and mass exchange at the surface and how these are man­
ifested in "satellite-resolution" radiometric data" 

To achieve this second objective, an active effort was made to acquire 
data over a range of spatial scales. These data are currently being used to 
test various methods of interpreting small-scale processes (e.g., photo­
synthesis, transpiration, scattering of light by leaves) up to the scale of 
satellite pixels of various resolutions. Two issues must be tackled as a direct 
consequence of this objective. The first is that data must be acquired in 
order to validate integration procedures; the second is that the effects of 
coarsening resolution on radiometric data must be studied explicitly. In 
this sense, the focus of FIFE is directly bound to the problem of studying 
processes and states over a range of scales, from individual plant leaves up 
to the entire site. The following data-acquisition strategy was proposed to 
achieve this objective: 

1. Radiometric data. These data were collected at the leaf (1 cm2) , canopy 
(1 m2), flux-station (102 to 104 m2), and satellite-resolution (102 m2 , 103 

m2 , 104 m2, 64 km2) scales using a range of ground-based, airborne, and 
satellite instruments. 

2. Flux data. These data were collected at leaf, canopy, and flux-station 
scales as defined above and also at scales comparable to the whole site 
(i.e., [10 to 20 km]2). Porometers, closed flux meters, and Bowen ratio, 
surface and airborne eddy-correlation, sound direction and ranging 
(SODAR), and light direction and ranging (LIDAR) equipment were 
utilized to perform these tasks. Fluxes of heat, water vapor, and CO2 
were studied at all scales while momentum flux was observed on the 
flux-station scale and at larger scales. 

3. Biophysical data. Biophysical data (vegetation physiological, physical, 
and optical properties; soil physical and chemical properties; soil mois­
ture, etc.) were acquired. These data will be used to check the prognos­
tic variables in various simulation models of surface processes. It is ex-
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pected that they will playa vital role in validating the various spatial­
integration techniques used to estimate area-averaged quantities. 

C. The provision of integrated analysis through a highly responsive central 
data system 

A key element of the overall strategy was to design a data system that 
would provide centralized storage of and cooperative access to all of the 
data collected during the experiment. The goals of the FIFE Information 
System (FIS) are, first, to capture and preserve the data and, second, to 
provide convenient access to the data as rapidly as possible. The database 
is located at NASA/Goddard Space Flight Center, with electronic com­
munication links to investigators' "home" locations and the experimental 
site. A database-management system provides on-line access to a com­
plete data inventory and all single-point (nonimage) data. In addition, user 
support staff is available to preprocess and distribute copies of images and 
other large data sets. From the outset, it was considered imperative to have 
the information-system effort directed on a day-to-day basis by a scientist 
involved in the experiment, supported by scientists drawn from the differ­
ent disciplines contributing to the data collection and processing effort. 
The FIS design has been, and continues to be, flexible and evolutionary. 
The FIFE scientists continue to work with the FIS staff to specify data 
system needs and processing priorities and to review the system design. As 
investigators use the system and work with its products, new requirements 
emerge and the system is modified. 

Experiment Execution 

The monitoring effort started on the site in May 1987 and continues today. 
During the IFCs, the surface flux rigs and detailed radiometric measure­
ment and atmospheric sounding equipment (including balloons, SODAR 
and LIDAR) were moved into the site. Seven aircraft participated in FIFE 
(see Figure 9.7), but five had major roles in the day-to-day execution of the 
experiment. These were the following: 

1. The NASA C-130. This aircraft is equipped with two scanners that 
collect visible, near-IR, and thermal-IR data over a total of 14 
wavelength bands. From its operating height of 16,000 feet above 
ground level (agl) (4.84 km), the aircraft could "cover" the entire site 
twice with about 30% overlap using six flight lines. This series of 
observations routinely provides multiple-view-angle measurements of 
surface radiance. The aircraft is also equipped with a sun photometer 
(for atmospheric corrections); a pointable, linear-array, high-spectral­
resolution radiometer; and a microwave radiometer for soil-moisture 
mapping. 

2. Three flux (measurement) aircraft. The National Center for Atmospher­
ic Research (NCAR) King Air and the University of Wyoming King Air 
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Aircraft 

NASA ER-2 

NASA C- 130 E 

NCAR King Air 

/I 
NAE Twin Otter 

U- Wy King Air 

NASA Helicopter 

NOAA Aerocommander .... 111i10 ..... ' .. 

Primary 
Instruments 

AVIRIS,OCS 

TMS, TIMS, ASAS, PBMR 

Gust Probe 

Gust Probe 

Gust Probe, X- Band SLAR 

MMR, C-Bandscatt 

Gamma Ray 

Figure 9.7. Aircraft and airborne instruments involved in FIFE. ER-2: Advanced 
Very High Resolution Imaging Spectrometer (A VIRIS) and Ocean Color Scanner 
(OCS). The instruments were used to obtain short-wave reflectances (0.3 to 2.6 
/-Lm) over the site on two occasions. C-J30: Thematic Mapper Simulator (TMS), 
Thermal Imaging Multichannel Spectrometer (TIMS), and Advanced Solid-State 
Array (ASAS) Sensor were used to obtain high-resolution , visible, near-IR, and 
thermal data over the site with spatial resolutions of around 10 to 20 m. The push­
broom microwave radiometer (PBMR) was used in soil-moisture surveys. NCAR 
King Air: Flux aircraft equipped for measuring sensible and latent heat flux and 
momentum flux (gust probe) . NAE Twin Otter: Equipped like NCAR King Air 
with additional instrumentation to measure CO2 flux. U- Wy King Air: Equipped 
like NCAR King Air with x-band Sideways-Looking Airborne Radar (SLAR) for 
soil-moisture surveys. NASA Helicopter: Multichannel Radiometer (MMR) for 
visible, near-IR, and thermal observations. Cband scatterometer for soil moisture 
studies. NOAA Aerocommander: Gamma-ray equipment for soil-moisture sur­
veys . 
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Color Plate 1. A map of simulated forest NPP for a 1,200-km2 area of Montana 
under; first, current conditions, and, second, the response projected given 2x 
atmospheric CO2 with a +4-degree air temperature and + 10% precipitation and 
incorporating physiological responses changing water-use efficiency and ecosystem 
LAI. 
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Color Plate 2. SPOT image of the FIFE site near Manhattan, Kansas, taken at 
1200 GMT on March 20, 1987. The corner coordinates of the site are as follows: 

North West 
Corner Northing Easting latitude* longitude* 

Northwest 4,333,000 706,000 390724 963702 
Northeast 4,333,000 722,000 390710 962556 
Southeast 4,317,000 722,000 385832 962615 
Southwest 4,317,000 706,000 385846 963719 

* Based on Clarke (1866) ellipsoid. 



Color Plates v 

Color Plate 3. Changes in vegetation cover in the Entire Creek area of central 
Australia over the period 1980 to 1983 determined from Landsat using the index of 
Pickup and Nelson (1984). The upper image shows conditions in 1980, and the 
lower image is for 1983. The colors purple, blue, green, yellow, and red represent 
progressively smaller percentages of vegetation cover. 
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• 

Color Plate 4. Patterns of trampling by cattle in a large arid-zone paddock esti­
mated from animal behavior models calibrated using vegetation cover changes 
derived from Landsat band 5. The colors purple, blue, green, yellow, and red 
represent an increasing number of cattle passing through each grid cell. 



Color Plates VII 

Color Plate 5. Effects of an increase in erosion intensity on spatial patterns of 
erosion and deposition in a 230-km2 area of arid central Australia. Red represents 
erosion, the yellow and green areas are relatively stable, and blue and purple indi­
cate deposition of increasing intensity. The upper image indicates the state of the 
area in 1972. The lower image is an erosion forecast using a prototype derived from 
an area of extreme erosion. 
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are equipped to measure turbulent fluxes of momentum, sensible heat, 
and latent heat using eddy-correlation equipment. The National Re­
search Council of Canada (NRC) contributed its similarly equipped 
Twin Otter to FIFE for three IFCs. The Twin Otter also has the unique 
capability of measuring CO2 fluxes (area-averaged photosynthesis 
minus respiration). Usually, two flux aircraft were available during an 
IFC to allow full coverage of the diurnally changing conditions and also 
to permit intercomparison among instruments on the different aircraft. 

3. The NASA H-I (Huey) helicopter. The H-1 is equipped with a point­
able radiometer that records visible, near-IR, and thermal IR radiation 
reflected or emitted from the surface. A C-band scatterometer is used 
for soil-moisture surveys. The helicopter's hovering capability provides 
precisely located nadir and multi angle radiometric data on a nearly 
simultaneous basis over large areas. 

The surface meteorological and flux stations operated more or less con­
tinuously during IFCs, as did the atmospheric-sounding programs, soil­
moisture and biophysical surveys, and surface radiometry efforts. 

The deployment of aircraft during the IFCs sometimes followed a range 
of idiosyncratic schemes, but three broad plans involving coordinated ac­
tivities by aircraft and ground teams were followed repetitively. These co­
ordinated mission plans (CMPs) were as follows: 

CMP-I: Diurnal Cycle Observations 

This involved several subsatellite flights by the C-130 and helicopter and 
two or three flights by flux measurement aircraft; see Figure 9.8. The aim 
of CMP-1 was to collect data to allow the calculation of the surface radia­
tion and energy balances. Typically, a CMP-1 involved eight to ten aircraft 
missions and resulted in continuous 24-hour (or 48-hour) operations by 
scientists and aircrew. The aircraft were deployed as shown in Figure 9.8, 
with the following aims: (1) Acquisition of radiometric data to compare 
with the simultaneously acquired satellite and surface radiometric data to 
compare with the simultaneously acquired satellite and surface radiometric 
data. In the course of this effort, multi angle data were acquired from which 
the surface bidirectional-reflectance-di:stribution function (BRDF) can be 
reconstructed. (2) Acquisition of airborne (area-averaged) estimates of the 
fluxes to compare with the measurements produced by the combined sur­
face networks and estimates derived from the satellite and airborne 
radiometric data. The experiment objectives required that, in order to de­
scribe adequately the biological and physical dynamics of the diurnal cycle, 
three or four C-130 flights, two or three "flux-aircraft" flights, and two 
helicopter flights had to be coordinated with each other and with satellite 
overpasses within a given 24-hour period. 
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• Photometry 

• Simultaneous Radiometric, Energy/Mass Balance 
Observations at and Above Surface Over Diurnal Cycle 

• Coordination With Satellite Overpass 

Figure 9.8. Flights and surface activities conducted during intensive field cam­
paigns, diurnal cycle (CMP-1). 

CMP-2: Combined Radiometric Mission 

Essentially, this involved subsatellite flights with the C-130 and the heli­
copter, and ground-based instrumentation to allow comparison between 
satellite observations and the instantaneous surface condition; see Figure 
9.9. 

CMP-3: Soil-Moisture Survey 

The C-130, the helicopter, the radar-equipped University of Wyoming 
King Air, and the radar-equipped NOAA aircraft were used to conduct 
soil moisture surveys over the entire site in conjunction with ground-based 
validation efforts; Figure 9.10. 

Table 9.2 shows the number of CMPs conducted during each IFC (note 
that a CMP-1 can consist of several CMP-2s). Clearly, IFC-1 and IFC-3 
were very successful in having a large number of CMP-1s and other mis­
sions completed. In IFC-2 and IFC-4, bad weather conditions and instru­
ment failures prevented many flights from being carried out. 

Figure 9.11 shows the situation at the time of a satellite overpass 
(NOAA-9) on June 4, 1987, near the end of IFC-I. The local time is 
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Figure 9.9. Flights and surface activities conducted during intensive field cam­
paigns, multiscale simultaneous radiometric observations (CMP-2). 
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194 P.J. Sellers et al. 

Table 9.2. Individual Aircraft Mission and Combined Mission Plan (CMP) Sum-
maries for Each IFe. For the Aircraft Missions, the First Figure Refers to the 
Number of Data Flights, the Second to the Number of Hours Flown 

IFC-l IFC-2 IFC-3 IFC-4 Total 

C-130 14/32 16/44 21156 10/26 611158 

Flux aircraft 
8/28 11143 22/48 16/50 57/169 

Helicopter 
12/36 12/20 17/23 10/30 51/109 

NOAA 
AeroCommander 3/96 6/16 9/25 

CMP-1 3 1 3 1 10 

CMP-2 10 12 14 8 44 

CMP-3 4 4 ~ 2 13 

15: 17 and the NOAA-9 Advanced Very High Resolution Radiometer 
(A VHRR) instrument is collecting data with a surface resolution of 1 km 
over the site as surface photometry, balloons, and SODAR probe the 
atmospheric optical, thermal, and physical properties. The C-130 is com­
pleting a flight line at 16,000 feet (agl) while acquiring reflectance and 
emittance data with its scanners at a surface resolution of about 10 m by 
10 m. A sun-tracking photometer mounted on top of the C-130 monitors the 
optical thickness of the atmosphere from 16,000 feet on up. The helicopter 
is acquiring detailed radiometric data from 1,000 feet (agl) over a pre­
selected site while scientists on the surface take radiometric (BRDF, emit­
tance, etc.) and biophysical (chlorophyll density, photosynthesis, leaf tran­
spiration, etc.) observations. The NCAR King Air is in the process of 
flying an "L-shaped" flight pattern at about 500 feet (agl) along the two 
downwind sides of the site while taking eddy-correlation data to estimate 
area-averaged surface fluxes. At the time, over 100 people (scientists, re­
search assistants, air-crew technicians) were working on, near, or above 
the FIFE site. 

In total, nearly 180 data missions were flown by FIFE aircraft over 
the site, amounting to over 450 hours of flying time. The satellite data 
acquired over the site during 1987 are estimated to be as follows: 5,000 
GOES images, 1,000 NOAA (AVHRR) images, 30 SPOT images, and 
five Landsat scenes. Individual investigator data are anticipated to be both 
diverse and voluminous. 

The FIFE Information System began processing satellite and meteorolog­
ical data well before IFC-l. An inventory of these data and some histori­
cal point data sets were on-line and accessible from the experiment site 
during IFC-l. Automatic Meteorological Station data and the various 
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Figure 9.11. Situation at the FIFE site at 1517, June 4,1987 (NOAA-9 overpass) . 
(1) Surface-flux stations and automatic meteorological stations monitor surface 
and near-surface fluxes and near-surface meteorological conditions. (2) NOAA-9 
satellite scans the site at 1-km resolution. (3) NASA C-130 traverses the site at 
16,000 feet agl taking scanner and sun photometer data. (4) The helicopter hovers 
above preselected site at 1,000 feet agl and acquires radiometric data. (5) NCAR 
King Air collects eddy correlation data at 500 feet agl. The data-acquisition activi­
ties are discussed in the text. 

types of support data from IFC-1 were available by the start of IFC-2. By 
the end of IFC-3, a full user interface was in place and standard data sets 
from IFC-1 were available in addition to the on-line data. As the data 
collection was completed, investigators began to send their data to the FIS 
to be assimilated and available for the analysis phase of the experiment. 

Analysis of the Data 

The FIFE data set is currently being analyzed by about 50 scientists and 
research staff and a review of preliminary results should be available before 
the end of 1989. 

In one respect, the project is entering its most critical phase. The data 
have been collected and the observational effort has been completed with­
out serious mishap. At this point, most of the participating scientists are 
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Figure 9.12. Flowchart showing development of FIFE project in analysis phase. 
(1) Satellite data, meteorological data, and IFC data (observations taken during 
IFCs) are loaded into the FIFE information system following data-quality checks. 
(2) Biophysical models and remote sensing algorithms are combined to calculate 
surface fields of heat and mass fluxes and radiances in simulations. The satellite 
data and meteorological data are used to drive the models. (3) The simulations are 
compared with the directly equivalent IFC data. Discrepancies lead to the improve­
ment of models and algorithms. 

working at their home institutions on the particular aspects of the data­
acquisition effort for which they were primarily responsible; in other 
words, they are completing the boxes marked "satellite data," "meteoro­
logical data," and "IFC data" in Figure 9.12. However, the success of the 
project can only really be judged when the first two elements are combined 
with models to produce calculations to match the IFC data, that is, when 
the satellite data are fully processed, combined with other data, and com­
pared with equivalent field observations. This stage will require the active 
cooperation of many scientists from different disciplines and the applica­
tion of existing and novel models and concepts to sometimes unfamiliar 
scales and applications. The ultimate success of the project can only be 
assessed after this stage of the research effort has been completed. 

Implications for the Future 

FIFE is a relatively complex, interdisciplinary, and resource-intensive ex­
periment aimed directly at studying biological controls on the climate sys­
tem and how we can observe them from orbit. It is complex because it 
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requires studies at all scales (from the leaf scale to the "satellite-pixel" 
scale); it is interdisciplinary because we need simultaneous measurements 
of heat, radiation, and mass fluxes and the associated biophysical states 
from satellite, airborne, and surface platforms; and it is necessarily re­
source intensive because of the large number of surface stations and air­
craft required to cover a site big enough to be observable from orbit. 
However, the resulting data set is now available from a single combined 
repository and it is unique for all the reasons previously stated. For the first 
time, the data will exist that will allow scientists to test models and algor­
ithms on scales consistent with satellite observations but with enough sup­
porting data on finer scales to test the validity of various spatial aggregation 
techniques. These techniques, which are intimately bound up with the 
"scale problem," have to be mastered if we are to use satellites for land­
surface-climatological studies in a biophysically defensible way. In this re­
spect, FIFE could serve as a useful model for future eCQlogical and climato­
logical remote sensing experiments. 

The results of FIFE will also have some immediate and practical con­
sequences. The specification of the planned Earth Observing System 
(EOS) and its associated data system, which is a satellite-based effort 
targeted squarely at understanding earth systems science problems related 
to atmospheric-oceanic-biospheric interactions, is not yet complete. The 
experience of FIFE should be highly relevant to EOS in terms of specify­
ing scientific objectives, instrument design, orbit configurations, data­
handling procedures, analysis techniques, and validation procedures. For 
example, the planning and results of FIFE to date have emphasized the 
need for the following attributes of a satellite-based earth science effort: 
high-temporal resolution, a range of spatial resolutions, and pointable sen­
sors. 

In FIFE, the NOAA series of satellites and GOES were used to provide 
a moderate-temporal-resolution, coarse-spatial-resolution data set with 
SPOT and aircraft data providing the high-spatial-resolution, point able­
instrument capability. The 18-day overpass frequency of Landsat (which 
combines fine spatial and spectral-resolution data with poor temporal re­
solution) has proved to be marginally useful for bioclimatological applica­
tions; out of five Landsat overpasses during FIFE IFCs, three occurred 
when the site was covered in a continuous cloud layer and a fourth when 
conditions were partially cloudy and the C-130 scanner was inoperable. By 
contrast, NOAA-9, NOAA-lO, and SPOT have been underflown on 
numerous occasions and their data make up a semi continuous record of 
surface conditions. From this, it can be concluded that the ideal remote­
sensing system should not compromise the requirement of high time re­
solution by placing undue emphasis on spatial resolution or instruments of 
marginal utility. 

The interdisciplinary nature of FIFE has compelled the participating 
scientists to contribute the knowledge of their own discipline toward 
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sometimes unfamiliar scientific areas and a hugely increased range of 
scales. An integrated data system is a key factor in making this interdisci­
plinary, multiscale research feasible. As a result, FIFE has created the 
environment for discussion of all aspects of the land-surface component of 
EOS and will provide a data set to test hypotheses. 

Concluding Remarks 

The need for experiments to validate remote sensing hypotheses is more 
likely to increase rather than decrease in the next few years. There is 
already a wide gap between the potential of currently available data and its 
utilization by the scientific community and operational organizations that 
require such data for routine applications. This gap exists in spite of the 
apparent benefits to be gained from remote sensing, mainly because of the 
uncertainties and errors involved in interpreting the raw sensor counts all 
the way through to surface or atmospheric parameters. Some of these un­
certainties are due to technical problems, such as calibration; some are the 
consequence of our incomplete understanding, such as the atmospheric­
geometric correction problem; and some are just there because their solu­
tion requires the intense cooperation of scientists from a range of disci­
plines working within unfamiliar scale domains. This last problem, which is 
arguably the most difficult to overcome, requires that many different indi­
viduals be organized and motivated toward a common goal. In this respect, 
field experiments offer not only a technical solution to the problem of inter­
preting satellite data, but also a forum for scientists to bring their indi­
vidual skills to a difficult problem that is, by definition, interdisciplinary. 

The advent of the EOS project, which has the goal of investigating the 
entire earth system using a large arsenal of novel sensors, presents the 
biological community with some daunting challenges and some hard 
choices. Perhaps the greatest challenge is to determine which quantities 
should be measured and with what precision. Once this question has been 
settled, the need will be to determine a combination of sensors, operational 
modes, and algorithms to obtain these quantities, at which point the need 
for field experiments will become more pressing. Over the next few years, 
therefore, we can expect to see a series of field validation efforts using 
airborne prototype instruments combined with surface equipment to deter­
mine the final inventory of research instruments for EOS. It is hoped that 
these efforts will carry biologists over the gap that lies between their cur­
rent status as hopeful theoreticians and that of confident, practicing scien­
tists working in the global domain. 
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10. Remote Sensing of Spatial and Temporal 
Dynamics of Vegetation 

Richard J. Hobbs 

Most of the world's vegetation is in a state of flux at a variety of spatial and 
temporal scales. Plant growth and reproductive patterns respond to sea­
sonal fluctuations in climate. Yearly climatic variations are also responsible 
for differences in species growth and establishment patterns, leading to 
changes in species composition and distributions. Over long periods of 
time, directional vegetational changes may occur through succession. 
Vegetation changes may take place at extremely small scales, for instance, 
in canopy gaps created by the death of individual trees (Shugart and West, 
1981; Runkle, 1985), or over larger scales where vegetation responds to 
such disturbances as fires or floods. Species distributions may change rapid­
ly in response to episodic events (e.g., Hobbs and Mooney, 1989), or over 
longer periods in response to climatic shifts (e.g., Davis, 1986; Delcourt 
and Delcourt, 1987). Evidence of past vegetational changes resulting from 
changes in climate during glaciation cycles reinforce the view that major 
vegetational shifts are possible. 

If man-induced global climatic changes occur as predicted (e.g., Broeker, 
1987: Bolin et al., 1987), large changes in vegetation are likely, and it is 
important that we have the ability to measure such changes and to develop 
predictive models of future change. The Earth System Sciences Committee 
(1988) recently stated: "Of particular long term concern are changes in 
vegetation cover, soil moisture, and biome extent, productivity and nu-
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trient cycling. None of these is satisfactorily measurable on a global scale at 
this time, and a concerted effort is needed to remedy this situation." This 
chapter examines the role of remote sensing in the study of vegetation 
dynamics. As techniques of studying vegetation using remote sensing have 
been covered elsewhere in this volume, problems associated with detecting 
change are the focus here. First, types of vegetation change are looked at, 
and then how remote sensing can be used to delineate different vegetation 
types or communities is considered. Finally, ways of detecting vege­
tation changes using remotely-sensed data and the related problems are 
examined. 

Patterns of Change 

The fact that vegetation is changing at a variety of spatial and temporal 
scales makes it essential that we take into account variability at one scale 
when trying to interpret changes at another. 

The types of variability that have to be considered are: 

1. Seasonal response 
2. Interannual variability 
3. Directional vegetation change, which may be caused by; 

a. Intrinsic vegetation processes (i.e., succession) 
b. Land-use and other human-induced changes 
c. Changes in global climatic patterns 

Seasonal Variations 

While the radiation climate varies diurnally and seasonally (owing to differ­
ences in angle of illumination and atmospheric variations), so too does the 
vegetation. Of particular interest here are phenological patterns over the 
course of a year. Many plant communities have distinct seasonal peaks of 
growth and flowering activity (e.g., Bell and Stephens, 1984; Mooney et al. 
1986) that can markedly affect spectral reflectance (e.g., Warren and 
Hutchinson, 1984). Different components of the vegetation often grow at 
different times of year and this also affects the overall reflectance of the 
community. Examination of year-to-year variability therefore must take 
seasonal changes into account. An extreme example of this is an annual 
grassland where live vegetation is present for only part of the year. The 
change in spectral reflectance between summer and winter may be much 
greater than that caused by any directional change in vegetation. On the 
other hand, seasonal variations can be used to differentiate between her­
baceous and woody vegetation or among different woody vegetation types 
with different phenological patterns. 
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Interannual Variability 

Interannual variability in vegetation takes place as a result of climatic 
variability and its effects on germination and growth. Thus large variations 
in vegetation composition and growth are seen in arid and semiarid areas 
where rainfall is sporadic and the response of vegetation to such rainfall is 
rapid (e.g., Walker, 1979; Ayyad 1981; Griffin and Friedel, 1985). Nation­
al Oceanic and Atmospheric Administration (NOAA) Advanded Very 
High Resolution Radiometer (A VHRR) data have been used to document 
interannual variation in vegetation in sub-Saharan Africa (Tucker, 1986, 
Tucker et al., 1986). Such data allow entire ecological zones to be moni­
tored, but can also be used for more localized interannual comparisons. 
Yearly variations in vegetation can take the form of changes in the spatial 
distribution of plant growth, as in Tucker et al. (1986), or may involve 
differences in species dominance from year to year, such as in California 
grasslands (Pitt and Heady, 1978). Again, such interannual variations may 
result in large changes in spectral reflectance but not indicate any direction­
al change in the vegetation. 

Directional Vegetation Changes 

Directional change indicates a progressive or irreversible change in the 
vegetation that results from something other than annual climatic variabil­
ity. This can be viewed as a change in vegetation at one particular spot or 
as a change in the vegetation pattern owing to boundary shifts. The defini­
tion of what constitutes directional change depends on the scales of 
observation; for instance, the vegetation in a particular forest canopy gap 
may be undergoing directional change over a period of a few years, where­
as the forest as a whole remains fairly static in terms of overall composi­
tion. Similarly, although the forest may appear to be fairly static when 
viewed over years or decades, it can in fact be seen to have changed 
markedly when looked at over hundreds or thousands of years. In fact, 
vegetation change often takes place over relatively long periods, which 
makes it difficult to obtain good data that will document such change. One 
must then resort to indirect methods of data acquisition, making use of 
historical and stratigraphic records (e.g., Davis, 1986; Hamburg and 
Cogbill, 1988). Only in certain cases can change be observed directly, be­
cause of the availability of permanent recording sites, or because of the 
rapidity with which change occurs. Examples of long-term study plots in­
clude those of Watt (1981) and the Rothampstead grassland plots (Silver­
town, 1980, Tilman, 1982). Rapid vegetation change is seen where there is 
a rapid response to changes in climate, level of herbivory, or management 
regime, or where there is a response to episodic climatic extremes. Hobbs 
and Mooney (1989) have reviewed the effects of such episodic events on 
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Figure 10.2. Typical vegetation reflectance curve, with A VHRR and Landsat MSS 
and TM bands superimposed. [Modified by permission of the publisher from Rock 
et al. (1986), BioScience 36, 439-45. Copyright 1986 by American Institute of Bio­
logical Sciences.] 

istics of the area, but for local land management purposes, more detail is 
required. 

Figure 10.2 illustrates a typical vegetation reflectance curve (Goetz et 
al., 1983; Rock et al., 1986). Strong absorption by the photosynthetic pig­
ments occurs at around 0.48 and 0.68 /Lm, while reflectance of green light 
is evident at 0.52 to 0.6 /Lm. Strong reflectance in the region of 0.75 to 
1.3 /Lm, or the near-infrared (IR), is characteristic of healthy leaf tissue, 
and the slope and position of the sharp rise in reflectance between the 
visible and near-IR have been directly correlated with leaf chlorophyl con­
centrations (Horler et al., 1980, 1983; Rock et al., 1986). Reflectance 
values in the 1.65 /Lm and 2.2 /Lm regions can provide an accurate indica­
tion of leaf water content (Rohde and Olson, 1971; Tucker, 1980). The 
techniques and problems involved with measuring and interpreting re­
motely sensed data in these various spectral regions have been discussed by 
other contributers to this volume and will not be explored further here. 
Rather this chapter will concentrate on particular problems associated with 
detecting vegetation change. 

Of particular importance in considering vegetation mapping has been 
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tivity, and "health." There has been much work that shows that remote 
sensing can quite accurately determine some or all of these characteristics 
for many vegetation types (Botkin et ai., 1984; Committee on Planetary 
Biology, 1986). This has been done on a variety of scales, ranging from 
global or continental, using NOAA A VHRR data (Townshend and Tuck­
er, 1984; Goward et ai., 1985; Tucker et ai., 1985a; Clark et ai., 1986; 
Yates et ai., 1986; Dregne and Tucker 1988) down to regional and local, 
using Landsat Multi-Spectral Scanner (MSS) and Thematic Mapper (TM) 
data, and SPOT and airborne scanners (e.g., Saxon and Dudzinski, 1984; 
Morton, 1986; Ustin et ai., 1986). Further developments include the use of 
radar (Synthetic Aperture Radar, Shuttle Imaging Radar, e.g., Green, 
1986), which has the advantage of being able to penetrate cloud cover. 

The resolution required depends on the type of problem being tackled. 
For large-scale (continental and global) investigations the A VHRR pro­
vides the only viable source of data in terms of data-handling problems. 
Finer-resolution data furnish more detlliled information for smaller-scale 
studies but the area that can be handled is limited by data storage and 
processing and cost. Different types of vegetation and different situations 
will require a variety of approaches. For instance, a single A VHRR data 
cell in the Western Australian wheat belt is likely to contain 20 to 30 differ­
ent vegetation types in dozens of native vegetation remnants surrounded 
by agricultural land (e.g., Hobbs et ai., 1989). The AVHRR pixel would 
not register any of this detail and Landsat MSS or TM data would be re­
quired to resolve the native vegetation mosaics. From a global perspective, 
the A VHRR data provide an accurate-enough assessment of the character-
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Figure 10.2. Typical vegetation reflectance curve, with AVHRR and Landsat MSS 
and TM bands superimposed. [Modified by permission of the publisher from Rock 
et al. (1986), BioScience 36, 439-45. Copyright 1986 by American Institute of Bio­
logical Sciences.] 

istics of the area, but for local land management purposes, more detail is 
required. 

Figure 10.2 illustrates a typical vegetation reflectance curve (Goetz et 
al., 1983; Rock et aI., 1986). Strong absorption by the photosynthetic pig­
ments occurs at around 0.48 and 0.68 fLm, while reflectance of green light 
is evident at 0.52 to 0.6 fLm. Strong reflectance in the region of 0.75 to 
1.3 fLm, or the near-infrared (IR), is characteristic of healthy leaf tissue, 
and the slope and position of the sharp rise in reflectance between the 
visible and near-IR have been directly correlated with leaf chlorophyl con­
centrations (Horler et aI., 1980, 1983; Rock et aI., 1986). Reflectance 
values in the 1.65 fLm and 2.2 fLm regions can provide an accurate indica­
tion of leaf water content (Rohde and Olson, 1971; Tucker, 1980). The 
techniques and problems involved with measuring and interpreting re­
motely sensed data in these various spectral regions have been discussed by 
other contributers to this volume and will not be explored further here. 
Rather this chapter will concentrate on particular problems associated with 
detecting vegetation change. 

Of particular importance in considering vegetation mapping has been 
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the development of vegetation or greenness indices such as the normal­
ized difference vegetation index or NDVI (see Perry and Lanternschla­
ger, 1984). This is a normalized ratio between the visible and near-IR 
spectral bands that enhances vegetation and reduces variations caused by 
changes in irradiance, which varies as a function of solar elevation. Photo­
synthetically active vegetation reflects less radiation in the visible range 
than in the near-IR range, and thus higher index values indicate where 
more green vegetation is present. Comparisons of NDVIs from different 
times can yield information on variations in vegetation productivity and 
condition (e.g., Goward et al. 1985; Tucker et aI., 1985b; Roller and Col­
well, 1986; Towhshend and Justice, 1986). However, the index represents 
only a relatively crude measure of "color" of the land surface, and the 
relationship between the index and actual changes in vegetation is still 
being assessed. Particularly important in this respect are large-scale experi­
ments such as those set up under the International Satellite Land Surface 
Climatology Project (ISLSCP). 

More complex techniques of plant community recognition and mapping 
are available that use all of the spectral data derived from satellites rather 
than an index derived from a subset of the data. Such techniques involve 
the determination of a 'spectral signature' for each community and the 
statistical analysis of multispectral data (e.g., Walker et aI., 1986; Yool et 
aI., 1986). Our work in western Australia has shown that Landsat MSS 
data can be used effectively to classify and map relatively complex vegeta­
tion patterns, at least to a broad degree of community separation (Hobbs 
et aI., 1989). The analysis first determines spectral classes (Richards and 
Kelly, 1984) by the selection of relatively homogeneous training areas and 
their subsequent ordination. Spectral classes are then derived from the 
ordination and all pixels allocated to a spectral class based on the probabil­
ity of membership of each class. However, classification requires a skilled 
interpreter/classifier and still produces SUbjective results. 

The technique used by Hobbs et al. (1989) was able to separate the 
broad structural vegetation types (i.e., woodland, mallee, dense shrub­
land, and heath), and also was able to distinguish heath regenerating after 
disturbance from the equivalent undisturbed community. It could not, 
however, distinguish different types of woodland or different dominant 
species. From the point of view of recognizing vegetation change, there­
fore, only relatively large structural changes (e.g., change from savanna to 
woodland) would be detectable. Jupp et aI., (1986) and Walker et aI., 
(1986), on the other hand, have been able to detect a gradient of woodland 
structure from recently cleared areas through various stages of regenera­
tion to intact woodland. This indicates good potential for remote sensing of 
woodland dynamics. Similarly, Weaver (1987) has shown that airborne 
Thematic Mapper data can be used to distinguish different stages of heath­
land canopy development. There are a number of complicating factors that 
have to be recognized, however. In addition to the problems of variations 
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in solar angles, shadows, and plant phenology raised earlier (e.g., Wardley 
et ai., 1987), terrain is also important. For instance Walsh (1987) has 
shown that the same forest type may have quite a different spectral re­
sponse on a shallow than on a steep slope. Sing (1987) has also found that, 
while some tropical vegetation types are separable using Landsat MSS 
data, others are not, owing to the similarity of cover types. Types that were 
not separable included shifting cultivation versus grassland and scrub ver­
sus forest. Similarly, Adomeit et ai. (1981) could not separate different 
vegetation types in eastern Australia using Landsat MSS data. Clearly, the 
detection of vegetation change in these situations would be difficult without 
more satisfactory separation of vegetation types. 

Utilizing all the spectral information available from Landsat data may 
not always be advantageous. For instance, under rangeland conditions 
where vegetation is very sparse (usually less than 25% cover) and there is 
a constant soil color, there is a high spectral redundancy and four-band 
Landsat MSS data effectively become two band, that is, red and near-IR 
(Graetz, 1987). Pixels are then spatially integrated averages of varying 
proportions of separate landscape components, such as bare soil, litter, 
and shrubs. While these components have distinct spectral signatures when 
analyzed separately (Figure 10.3), classification of mixtures based on spec­
tral classes may not be possible (e.g., Graetz et ai., 1983). In such cases, 
simple models to relate satellite data to measured proportions on the 
ground may be more appropriate (Pech et ai., 1986a, 1986b; Pech and 
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Davis, 1987; Graetz, 1987). Detection of differences is thus possible by 
estimating the proportion (or percent cover) of each component in each 
pixel. More subtle differences (e.g., in shrub cover) may therefore be de­
tectible using these methods than would be possible using classification 
techniques. 

Can We Detect Vegetation Change? 

Remote sensing has been used successfully to detect large-scale vegetation 
changes brought about through deforestation (Malingreau and Tucker, 
1988) or forest fires (Malingreau et al., 1985). Both studies used A VHRR 
data, the first utilizing only the 3.5- to 3.9-J-Lm thermal channel, and the 
second utilizing the NDVI to recognize the incidence of fires (Figure 10.4). 
Such techniques provide a series of images or index values that can be 
compared visually or used to derive statistics on extent of change. Further 
examples include the studies of Tucker et al. (1985b), who investigated the 
changes in vegetation in sub-Saharan Africa over a number of years. In 
many cases, a straightforward estimate of changes in leaf area index (LAI) 
may provide the information required to document vegetation change and 
concomitant changes in ecosystem processes. Further information on 
changes in vegetation characteristics are also possible, however. 

Detailed investigations of particular components of reflectance curves 
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Figure 10.4. Changes in the normalized difference vegetation index (NDVI) of 
tropical forest in East Kalimantan, as derived from A VHRR data, showing the 
incidence of forest fires. [Reprinted by permission of the publisher from Maling­
reau et al. (1985) Ambia 14: 314-321. Copyright 1985 by Swedish Academy of 
Sciences.] 
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(as in Figure 10.2) are now being used to detect forest decline suspected to 
be the result of air pollution. Airborne spectral measurements have indi­
cated that forest damage can be characterized by changes in the visible, 
near-, and short-wave IR, and by a shift of the "red edge" toward shorter 
wavelengths (Rock et aI., 1988; Herrmann et aI., 1988). Short-wave IR 
data can also be used to detect various levels of water stress in vegetation 
(Rock et aI., 1986). There is thus potential for assessing the health of 
vegetation remotely and establishing areas where existing vegetation may 
be under stress and where future change is likely. 

Methods of statistical analysis have been developed to investigate local­
ized vegetation changes. Jensen and Toll (1982) and Sing (1983) have 
presented a method of change detection by image differencing in which 
spatially registered images are subtracted to produce a further image that 
represents the change between the two images. This method involves 
determining a threshold boundary between change and no-change pixels 
based on comparison of the subtracted pixel value with a statistical distri­
bution. Pickup (this volume) has discussed problems associated with dif­
ferencing techniques. Wickware and Howarth (1981) and Christensen et 
al. (1988) derived independent classifications of data from two recording 
dates and then evaluated these for change using a postclassification cross­
tabulation technique. Other methods have been explored by Weismiller et 
al. (1977), although they found the postclassification technique the most 
successful. There are a number of problems associated with the use of 
these techniques. These relate, first, to the separation of true vegetation 
change from phenological change or change in atmospheric conditions be­
tween recording dates, and, second, to problems of misclassification and 
registration errors (Wickware and Howarth, 1981). Registration errors 
can be minimized (Christensen et aI., 1988), but classification problems 
remain. 

Principal components analysis and transformation have been used to 
enhance regions of change in multi temporal Landsat data and to remove 
some of the problems of separating real change from background radiation 
and atmospheric differences (Byrne et aI., 1980; Richards, 1984, 1986; 
Fung and LeDrew, 1987). Principal components analysis of data from two 
dates results in the gross differences between dates associated with overall 
radiation and atmospheric chang~s being displayed along the first principal 
component and changes in land cover being displayed along the second and 
higher components (Figure 10.5). Subsequent pixel classification on the 
basis of higher-order components can then be used to provide maps of 
vegetation change between the two recording dates (e.g., Richards, 1984). 
In this way, confusion of spectral signatures between dynamic and static 
cover types can be avoided. The technique is valuable for dealing with 
small areas, but is scene dependent (Fung and LeDrew, 1987). 

Image differencing, principal components analysis, and other spectral 
techniques look at pixels without reference to their neighbors. Vegetation 
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change can often involve large changes in spatial pattern but small changes 
in the spectral response of individual pixels. Little use has so far been made 
of spatial variability or texture in assessing vegetation change. Recently, 
however, Foran (1988) has found it useful in arid landscapes, especially 
where spectral change is small. Pickup and Chewings (1986, 1988) have 
examined the spatial changes in arid vegetation associated with erosion. 
Frank (1984) has also used local variance analysis as a classification aid. 

Change detection requires data collected over a certain time period. 
Often vegetation change is relatively gradual, and the remote sensing rec­
ord is relatively short. Ecology has suffered from a paucity of long-term 
studies in the past (e.g., Taylor, 1934; Hobbs and Mooney, 1989), and it is 
essential that we now make sure that adequate long-term data are collected 
both on the ground and remotely. In this respect, it is important that data 
continue to be collected in a standard manner and in a format such that 
they remain compatible with earlier data. This is not necessarily as easy as 
it sounds and, for instance, although the Landsat series have been in opera­
tion since 1972, the satellites have not provided exactly compatible 
measurements (e.g., Chaudhury, 1985). The usefulness of current technol­
ogy for monitoring purposes has also been questioned recently because of 
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the lack of reliable imagery, especially in tropical areas where cloud cover 
is frequent (Currey et al., 1987). Similarly, the Earth System Sciences 
Committee (1988) has stated: "The database for documenting even present 
patterns (of land use) on a global basis, let alone future changes, is totally 
inadequate, both because of inadequate or distorted coverage and because 
of a lack of uniform standards for reporting." They suggest that global 
coverage is probably not possible because of data managment and proces­
sing problems. They suggest, instead the establishment of a sample of indi­
vidual scenes that can be revisited at intervals and subjected to a consistent 
classification scheme. Thus although we must seek advances in instru­
mentation, we must also seek long-term consistency in data collection. The 
choice of scenes to be monitored should be based on an initial screening to 
detect areas where rapid change is likely, either through land-use changes 
or through changes in global climate. 

Conclusions 

The major problems involved with the detection of vegetation change us­
ing remote sensing can be summarized as follows: 

1. In what aspects of vegetation change are we interested? Short-term phe­
nological and interannual changes have to be taken into account before 
longer-term changes can be detected. Similarly, large-scale changes re­
quire different techniques of detection than changes at smaller spatial 
scales. The requirement for finer-resolution data has to be traded off 
against the increased data storage and handling required. 

2. How can we best distinguish different types of vegetation at any given 
time? The existing technology provides a basis for assessing different 
aspects of the vegetation, ranging from overall productivity to levels of 
water or pollution stress. We also have methods available that can clas­
sify different types of vegetation present at a broad structural level. We 
need to be able to do this on a global scale in order to obtain reliable 
estimates of biome extent that will act as a baseline for change detec­
tion. At a finer scale, sensor resolution must be matched against the 
spatial scale of the vegetation mosiac under examination. Mixed pixels 
can become a problem, especially in sparse vegetation types. 

3. How can we detect change from one time to the next? Change detection 
involves comparisons of data from different times. This requires, first, 
the availability of compatible data sets collected over a long enough 
time period, and, second, the availability of methods of comparison. 
Our success in detecting future vegetation change therefore depends on 
our ability to maintain data continuity and to develop methods of pro­
cessing and interpreting the data once we have them. The development 
of adequate statistical techniques for detecting change is an important 
priority. A further priority is the establishment of selected areas for 
long-term monitoring; these should include areas where change is most 
likely to occur. 
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11. Remote Sensing of Landscape Processes 

Geoff Pickup 

Landforms, through their effects on climate, hydrology, soils, and vegeta­
tion, determine much of the spatial variability in biosphere functioning. 
Landform characteristics are the product of geological structure coupled 
with tectonic and climatic history and, at the larger spatial scales, change 
only slowly (Table 11.1). They are, therefore, usually treated as constant 
over the time intervals during which ecosystems experience and respond to 
change. At smaller spatial scales, the pace of change accelerates and the 
surficial characteristics of a landform may be modified quite rapidly. This 
produces a mosaic of surfaces that are either gaining or losing sediment or 
remaining stable. These surfaces have different ages, sediment characteris­
tics, and disturbance regimes. They may also respond to shifts in climate or 
other controlling variables at rates similar to those of the ecosystems that 
occupy them. Landscape and ecosystem ,processes may then become linked 
either directly or through feedback mechanisms. 

The most important of the linkages between landscape and ecosystem 
occurs via the soil. Even small changes in landform behavior can involve 
significant modification or redistribution of the soil layer. This affects the 
pattern of infiltration, moisture storage and runoff, as well as the distribu­
tion of nutrients. Significant changes in vegetation may then take place that 
feed back to the landform process, intensifying or moderating it. 

Changes in the surficial characteristics of landforms will be an important 
consequence of the man-induced global climatic shifts that have been fore-
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Table 11.1. Classification of Geomorphic Features by Scale [Modified after Baker 
(1986).] 

Spatial Creation Persistence 
Scale Time Time 
(km2) Characteristic Units (Years) (Years) 

107 Continents, ocean basins 107 to 109 108 to 109 

106 Physiographic provinces, shields 107 108 

104 Medium-scale tectonic units 106 to 107 107 to 108 

(sedimentary basins, mountain mas-
sifs, domal uplifts) 

103 Smaller tectonic units (fault blocks, 106 to 107 107 

troughs, sedimentary subbasins, in-
dividual mountain ranges) 

102 to 103 Large scale erosion/depositional units 105 to 106 106 

(deltas, major valleys, piedmonts) 

10 to 102 Medium-scale depositional units or 103 to 104 104 to 105 
landforms (ridges, terraces, dune 
fields) 

10-1 to 10 Larger geomorphic process units 10 to 103 103 to 105 
(hill slopes, floodplains) 

10-5 to 10-1 Medium-scale geomorphic process 10-1 to 102 10 to 103 

units (gullies, fans, areas of sheet 
erosion, stream channels) 

cast (e.g., Allison and Peck, 1987; Wasson and Clark, 1987). The rate and 
extent of these changes will not be uniform so their effect on ecosystem 
processes will be variable both spatially and temporally. There will also be 
significant economic consequences as snowpack size and duration shift, as 
patterns of soil erosion change, as new areas are affected by silting, as river 
flood plains become more or less prone to inundation, and as slopes in 
areas with increased rainfall besome less stable. 

This chapter descibes how remote sensing technology may be used to 
describe, explain, and predict some of the geomorphic changes that may 
affect biological activity at a time scale of tens to hundreds of years. It 
begins with a consideration of the different types of remotely sensed data 
and how those data can be related to landscape properties. Few of these 
properties can be measured directly but remotely sensed data can often 
provide useful surrogate information on both properties and processes. 
Deriving these surrogates, however, may require consideration of spatial 
or temporal variability in the data rather than the single-scene approach 
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now common. Landscape change may be sporadic and spatially discon­
tinuous, making it difficult to understand. The chapter continues with a 
discussion of some of the models of change that are widely accepted by 
geomorphologists. These are equilibrium-based and describe the rela­
tionships between landforms and the fluctuating climatic conditions that 
control their properties. Once an understanding of landscape change is 
available, it may become possible to predict future change. The chapter 
concludes with a discussion of progress in predicting soil erosion, which is 
currently one of the most active areas of research attempting to harness 
remote sensing to the prediction of landscape change. Consideration is also 
given to the problem of scale because, while most our knowledge of these 
processes is point based, predictions of future change need to be at the 
regional level to be useful. Remote sensing is gradually overcoming the 
first barrier to regional prediction, namely, that of data. The next barrier is 
the development of process models that operate at the regional scale. 

Remote Sensing of Landscape Properties 

The Remote Sensing Process 

Remote sensing involves measurement in the electromagnetic spectrum us­
ing instruments on satellites or aircraft to characterize the land, atmo­
sphere, or ocean. The most common form of remote sensing is aerial pho­
tography, whereby information on reflected light in the visible range of 
the spectrum is stored on film. It is also possible to acquire information in 
the near-infrared (NIR) using special types of film. 

Another common form of remote sensing uses multispectral scanners 
mounted on satellites that operate in the visible and NIR range and collect 
information in a series of spectral windows. Multispectral scanners with a 
57 by 79 m resolution have been in use since 1972 on the Landsat series of 
satellites. Higher-resolution data (30 by 30 m) extending into the middle 
infrared (MIR) are becoming available from the Landsat Thematic Map­
per (TM) while the (SPOT) HRV offers a 20 by 20 m resolution in spectral 
windows similar to those of the Landsat Multi-Spectral Scanner (MSS) and 
10 m in panchromatic mode. 

Multispectral scanners do not provide information on landscape charac­
teristics per se. However, because reflectance in different ranges in the 
spectrum differs with such factors as soil and rock color and mineralogy or 
vegetation type and phenology, terrestrial radiance is frequently a surro­
gate m.easure of landscape properties. Ground features may then be char­
acterized and discriminated by their combined response in several spectral 
windows. The relationship between spectral response and ground charac­
teristics is made complex, however, by the fact that the individual pixels 
contain a mixture of surfaces. Relating a spectral "signature" to a landform 
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characteristic, therefore, usually requires ground verification or skilled in­
terpretation. 

Remote sensing is not restricted to the visible, NIR, and MIR regions of 
the spectrum. Landsat TM and a number of meteorological satellites also 
measure the thermal energy emitted by the earth's surface, which is a 
function of surface temperature. Thermal data have been used in many 
applications, including estimation of soil moisture, geological mapping, 
and identification of landforms buried by thin desert sand sheets. Their 
principal use, however, is meteorological. 

So far, only limited use has been made of microwave sensors. These 
respond to the dielectric properties of the earth's surface, which are strong­
ly related to soil moisture content (e.g., Owe et aI., 1988). Active micro­
wave (radar) and passive microwave instruments have been used on both 
satellites and aircraft. At present, the available passive microwave data 
mostly come from low-resolution meteorological satellites and are more 
suitable for climatological use than for landform studies. Higher-resolution 
microwave sensors proposed for satellites of the 1990s (e.g., NASA, 
1987a) may change this and, when used with suitable hydrologic models, 
could greatly improve estimates of runoff for the prediction of erosion at 
the drainage basin scale. 

Active microwave data in the form of synthetic aperture radar (SAR) 
will become more significant in the 1990s with the launch of the ERS-1 and 
Radarsat satellites. Multiband SAR shows great potential for characteriz­
ing both terrain and vegetation through its roughness properties (NASA, 
1987b). Radar altimeters perform best over water where there is less 
variability in backscatter, but may also provide topographic data over land 
(NASA, 1987c). Indeed, successful topographic mapping has already been 
carried out using stereo radar data acquired from aircraft (Mercer and Kir­
by, 1987). 

There is growing interest in the use of aircraft-mounted scanners for 
high-resolution remote sensing. At present, however, much of the work is 
experimental and this facility is not widely available. At the simplest and 
cheapest level, video cameras may be used as sensors in the visible and 
NIR range of the spectrum with the collected information stored on 
videotape for subsequent digitizing (Everitt et aI., 1987). Thermal and 
MIR cameras are also becoming available although sensor lag is a problem. 
At a more sophisticated level, scanners and high-resolution spectrometers 
are in use. These instruments offer a range of spectral windows that may be 
changed at will. Laser altimeters mounted in aircraft can also provide high­
resolution information on elevation. Aircraft charter and instrument rental 
are, however, sufficiently expensive to deny these facilities to many. 

Determining Landscape Properties 

Landforms are routinely mapped from air photographs, producing subjec­
tive results that vary with the skill of the interpreter and the type and quali-
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ty of the photography. Remotely sensed data from satellites can be proces­
sed digitally to produce repeatable results quickly over very large areas. 
There is, however, stilI a subjective element in that the interpreter has to 
identify or provide information on the spectral characteristics of land­
scapes. Satellite-based data also have the disadvantage of being collected 
at a much lower spatial resolution than conventional air photography and 
so some features may be obscured. Remote sensing satellites provide three 
types of information that can be used to assess landscape behavior: 

1. The radiance or emittance of the earth's surface on a pixel-by-pixel 
basis. 

2. The spatial variability of radiance or emittance from which spatial pat­
terns may be detected. 

3. Patterns of change through time if information is acquired from several 
passes of the satellite. 

Comparatively little use is made of spatial and temporaivariability because 
of the added cost and complexity of processing. This is unfortunate be­
cause spatial and temporal data contain information that greatly increase 
the potential of remote sensing in landform studies (e.g., Pickup and 
Chewings, 1988a). 

Information on landscape properties derived by remote sensing may be 
used in three ways: 

• To describe the surface properties of landforms. 
• To derive information on variables such as slope or vegetation cover 

that influence the rate at which landform processes operate. 
• To describe the state of a landscape in terms of some evolutionary pro­

cess such as the extent of erosion. 

A range of landform surface properties can be potentially determined 
from remotely sensed data. For example, many minerals have distinctive 
spectral signatures, although the ability to recognize and differentiate be­
tween those signatures is closely related to the number of spectral bands 
available (e.g., Evans, 1988). It is also possible to identify differences in 
surface roughness using synthetic aperture radar data (NASA, 1987b). 
Sometimes, surface properties provide a clear unambiguous signature in­
dicating dominance of a particular characteristic. More often, however, 
composite signatures occur, suggesting the presence of more complex 
structures. It may then become necessary to disentangle particular land­
scape properties using statistical techniques. The surface characteristics are 
normally used to infer the operation of a set of geomorphic processes. 
Occasionally, however, the frequent coverage provided by remote sensing 
satellites makes it possible to observe those processes in action, particular­
ly if they operate at a large scale. These opportunities are rare because 
when things are happening in fluvial environments, for example, the land­
scape is usually obscured by cloud. This problem is now being overcome 
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because sensors in the microwave region have the ability to penetrate 
cloud. 

Estimation of vegetation cover from satellite data is a common opera­
tion (e.g., Foran, 1988) but the derivation of slope has been restricted, for 
practical purposes, by the coarse resolution of satellite-mounted sensors and 
lack of stereo cover. SPOT HRV data overcome this problem and recent 
tests indicate that contour lines with a 20-m interval can be produced 
routinely (Rodriguez et aI., 1988). There is even potential for the auto­
matic production of digital terrain models by correlation with accuracies in 
the 10-m class. 

Statistical measures describing landscape characteristics abound in 
geomorphology but have not been widely adapted to remote sensing data. 
Differences in terrain attributed to geology have been described by texture 
measures (e.g., Weska et aI., 1976). Erosion severity in arid areas has been 
linked to scene variance and spatial autocorrelation (Frank, 1984; Pickup 
and Chewings, 1988a). The field of fractals as,· landscape descriptors also 
offers exciting possibilities (e.g., Mark and Aronson, 1984). 

Process Domains 

Most studies of landform behavior that use remotely sensed data involve 
the transformation, enhancement, and classification of imagery into land­
scape units. Visual interpretation and manual subdivision frequently pro­
duce better results in this process than digital methods because landscape 
units show a great deal of internal diversity. This diversity is rarely de­
scribed successfully by texture measures because it varies in alignment and 
occurs at a range of spatial frequencies. 

One approach to landscape classification is to divide an area into process 
domains (Millington et aI., 1987). These are discrete areas or types of land­
form with similar characteristics that share a common history and whose 
behavior is shaped by a particular set of processes or events of a certain 
frequency. The concept is useful because it allows geomorphologists to 
break up complex landscapes into simpler units for which behavioral 
models can be derived. 

An example of the process domain approach is to divide a river valley 
into channels, floodplains, and hill slopes. River channels change relatively 
quickly and, in some climates, are adjusted to events of moderate magni­
tude and frequency (Wolman and Miller, 1960; Wolman and Gerson, 
1978). Floodplains change more slowly and may take thousands of years to 
adjust because the volume of sediment required to change them significant­
ly is greater than the short-term supply. Some floodplains may respond 
only to catastrophic events (Nanson and Erskine, 1988) and may remain 
out of equilibrium with the current climate for very long periods. Hill 
slopes may not change significantly for thousands of years. A landscape 
thus might be thought of as an assemblage of landforms adjusted to events 
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of different frequency and displaying different amounts of lag in their re­
sponse to environmental change. Those parts of the landscape that, by 
virtue of their location, can be modified only by rare events will display 
strong lag effects and may never fully adjust to climatic change. Other parts 
of the landscape that act as conduits for water and sediment will respond to 
change more quickly and, while they can be modified radically by large 
events, on average will be more closely adjusted to the moderate ones. 
These will show the effects of climatic change first. 

The division of landscapes into a set of process domains is usually more 
complex than this and raises the question of scale. Process geomorpholo­
gists have traditionally measured landform behavior for short periods at a 
few points in the landscape or at many points in restricted locations be­
cause of the logistic difficulties of acquiring data for larger areas. Their 
models and outlook are biased toward short-term microscale processes and 
they lack the synoptic view. There are, however, meso- and macroscale 
processes at work, and at these scales, the results of point-based and local­
ized studies frequently provide more noise than signal when it comes to 
determining what is going on in the landscape. They have also made it 
difficult for geomorphologists to recognize, comprehend, and accept the 
effects of macroscale processes. 

Remote sensing is particularly useful in providing information on large­
scale processes and allowing geomorphologists to "think big." Indeed, 
where geomorphologists have been unable to carry out process studies 
directly and have had to rely on remote sensing alone for their data, land­
forms tend to be explained in terms of processes operating at the regional 
level. A case in point is Baker's (1983) use of cataclysmic flooding to ex­
plain Martian channel systems up to 100 km wide and 2,000 km in length. 
Terrestrial macroprocesses have also left their traces. The Lake Missoula 
floods in the Columbia River basin in the late Pleistocene involved dis­
charges of about 21 million m3 S-l and flow depths of 100 m (Baker, 1978) 
and their effects even extended to the abyssal sea floor. The magnitude of 
these events and the landforms they created can be appreciated only from 
satellite images. Less spectacular but still of regional importance are the 
huge changes that occurred in the channels of the Riverine Plain in south­
eastern Australia (Schumm, 1968) with the onset and retreat of glaciation 
and its associated effects on discharge. The impact of enormous floods on 
arid landscapes has also been detected on the floodplains and alluvial fans 
of central Australia. 

Remote sensing allows geomorphologists to change scales either by data 
resampling or by the use of sensors with differing resolution. The behavior 
of a whole system often is marked by features that are not apparent when 
only a part of it is studied. These features may show the effects of cata­
strophic events or of more gradual underlying trends produced by tectonic 
activity or underlying geology. Changes in scale allow a hierarchy of pro­
cess domains to be identified, with the effects of mesoscale processes 
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embedded in and influenced by events at the macroscale. Few geomor­
phologists have taken advantage of these features but once they do, some 
unexpected landscape-generating events and processes are likely to be 
revealed. 

Remote Sensing of Landscape Change 

Conceptual Models of Landscape Behavior 

Landscapes are made up of assemblages of individual landforms. Thus 
when a landscape responds to a change in a controlling variable such as 
climate, the result is the combined response of a whole array of individual 
landforms. Landscape-level changes therefore can be highly complex be­
cause the rate of change varies across the landscape and individual land­
forms do not always respond in the same way: There may also be lags in 
landform response to the extent that landform adjustment to short-term 
climatic change is rarely completed across the whole landscape. These fac­
tors make it difficult when records are short to distinguish between land­
form changes that are fluctuations about a stable mean condition adjusted 
to a particular climate and those that represent long-term change. It is 
useful, therefore, to begin by considering the variability associated with 
equilibrium conditions before considering what happens when a control­
ling variable changes. It is also important to understand the associated tem­
poral and spatial patterns of landscape response since these may sometimes 
be detected by remote sensing techniques. 

Equilibrium is frequently treated as a static condition in which the prop­
erties of a system remain constant as long as the controlling variable does 
not change. Few landforms exhibit this property and four types of equilib­
rium behavior (Figure 11.1) are commonly recognized at a given time scale 
(Chorley and Kennedy, 1971). Steady-state equilibrium is found in those 
parts of the landscape where the long-term supply of sediment is equal to 
the rate of removal. However, because both supply and removal are episod­
ic and related to individual events such as storms or floods whose magni­
tude and frequency can vary, there will be significant fluctuations about the 
mean condition. Dynamic equilibrium exists where the long-term sediment 
supply is smaller than the potential rate of removal and the deficit is made 
up by erosion, a condition often occurring in the headwaters of a stream. 
Alternatively, it may be the condition in sediment sinks such as deltas 
where sediment supply is greater than removal. Thus fluctuations occur 
about a mean condition representing episodic change, but there is also a 
trend. A third type of behavior is metastable equilibrium. Here, the land­
form may occupy one of several states, all of which are equally stable. 
Normally, landform characteristics fluctuate about one of these states but, 
if an event large enough to push behavior across the threshold condition 
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Figure 11.1. Some types of equilibrium behavior in geomorphic systems. Each 
graph shows behavior through time at a point. There will also be distinct patterns of 
spatial variability. [From Chorley and Kennedy (1971) and Nanson and Erskine 
(1988). Reproduced with the permission of Academic Press.] 

between states occurs, stability will be restored when the landform occu­
pies one of the alternative states. Gravel-bed rivers sometimes show this 
tendency, some reaches being braided whereas others only have a single 
channel. Dynamic metastable equilibrium exists when a landform is cap­
able of shifting between alternative states but the long-term mean of each 
state displays a trend. 

When there is a step change, as opposed to a short-term fluctuation, in 
one of the controlling variables, landforms may respond fully, partially, or 
not at all. If the landform responds fully, then once initial lag effects have 
been overcome, it will move to a new equilibrium condition. Partial adjust­
ment takes place when there is a strong lag effect or when the change in the 
controlling variable is not of sufficient duration to allow the new equilib­
rium to be fully established before the controlling variable changes yet 
again. An example of partial adjustment is shown in Figure 11.2 for a river 
channel assuming a static equilibrium response model (i.e., no fluctuations 
about the equilibrium condition). The horizontal dotted lines represent 
the equilibrium bed elevations in a channel cross section at a number of 
constant flows. The solid line represents the actual position of the bed over 
time. At any given flow, the bed is moving toward the equilibrium bed 
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Figure 11.2. Geomorphic response to fluctuations in a controlling variable such as 
climate (see text for explanation). 

elevation for that flow. This trend is illustrated for several different flows 
by the heavy dotted lines. The equilibrium bed elevation may never be 
reached because the flow changes and the bed is continuously seeking a 
new equilibrium position. 

The no-change condition is seen when the shift in climate is not of suf­
ficient duration to overcome lag effects or great enough to produce events 
which exceed the erosion threshold of a particular landform. This happens 
quite frequently with short-term fluctuations in climate even though they 
are substantial. It can also occur in those parts of the landscape that are 
shaped only by the largest event such as great floods . Because of the raritv 
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of these events, they may not be experienced within the time frame of 
short-term climatic change. An example might be the 1,OOO-year return 
period flood, which has a low probability of occurrence during a climatic 
fluctuation taking place over, say, a 50-year period. 

Unless a sequence of catastrophic events is involved, the effects of 
climatic change on landforms may take decades, or even centuries, to 
emerge. Even then, because of lags in landform response, only the most 
active parts of the landscape may change sufficiently to allow detection. An 
example of this process comes from southeastern Australia, where short­
term climatic variability is the norm. Examination of flood records suggests 
that, since 1799, there have been three separate periods when large floods 
were relatively frequent (Figure 11.3) and two intervening periods when 
flood flows were much smaller (Riley, 1981). Warner (1987b ) has described 
these periods as flood-dominated regimes (FDRs) and drought-dominated 
regimes (DDRs). The differences between FDRs and DDRs last three to 
five decades and are such that floods of a given freque"ncy vary in magni­
tude by factors of two to four. The last of these shifts has been studied in 
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Figure 11.3. Short-term climatic fluctuations in eastern Australia as shown by stage 
heights in Lake George and the flood record of the Hawkesbury River at Windsor, 
N.S. W. Lake levels smooth variations in rainfall and show a series of wet and dry 
periods. Flood occurrences illustrate increasing frequency of large events as aver­
age rainfall becomes greater. [From Riley (1981). Reproduced with permission of 
the American Water Resources Association.) 
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some detail (Pickup, 1976; Erskine and Bell, 1982; Warner, 1987a) and a 
consistent pattern emerges. 

The response to successive FDRs and DDRs is closely related to both 
vegetation response and flood magnitude. In the dry period, the loss of 
cover from hill slopes results in a substantial increase in sediment delivery 
to channels. Flows are not sufficient to remove this material which is quick­
ly vegetated and stabilized, gradually choking the smaller channels. Larger 
channels respond by deposition on the banks, which reduces their size 
and their capacity to transport bedload (Nanson and Erskine, 1988). In the 
wet period, hill slopes revegetate, partly cutting off the supply of sediment, 
while increased flow in both major and minor channels scours out the 
accumulated sediment and enlarges them. There are, however, spatial 
variations in the pattern of response that are still not properly understood 
(Warner, 1987a). 

Approaches to Change Detection from Remotely Sensed Data 

Detection of change usually begins with an attempt to identify differences 
between sets of imagery acquired at different times. However, the exis­
tence of a difference does not always mean that there has been a change as 
there are many other sources of variation in imagery. This section de­
scribes some of the reasons for this variation and identifies ways of dealing 
with it. It also examines some of the limitations of remotely sensed data. 

The most valuable source of information on landscape change comes 
from aerial photography. In Australia, this photography spans periods of 
30 to 50 years and has been acquired for both routine mapping and special 
projects. It is particularly important because the period involved coincides 
with change from a DDR to an FDR in many areas. 

Comparing aerial photography acquired at different times poses special 
problems which can make it difficult to distinguish real from apparent 
change. Differences in sun angle at the time of acquisition, film type, 
photographic processing, and photograph age combine to produce com­
plex relationships between true color or grayness and the tone of the im­
age. These relationships can vary between the edge and the center of each 
photograph. Considerable skill therefore is required in visual air photo 
interpretation and changes in sp~tial pattern or texture are used as much as 
brightness for change detection. 

The advent of low-cost digitizing equipment in the form of scanners, 
video cameras, and frame grabbers will greatly improve air photo inter­
pretation. Spatially variable image correction procedures can be applied 
and brightness levels can be adjusted by histogram equalization or by 
modifying the range of pixel values between light and dark target areas. 
Color images may be converted to monochrome either by the use of 
monochrome cameras or by adding red, green, and blue signals together. 
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The ability to identify changes in landform behavior from satellite-based 
remotely sensed data is limited by the lack of archived data and the spectral 
and spatial resolution of the sensor involved. Landsat MSS data have been 
available since 1972 but the spatial resolution of the MSS is low, data are 
coarsely quantized, and the signal-to-noise ratio is relatively low. Land­
scape changes thus must be substantial and occur over large areas to be 
distinguishable. SPOT HRV and Landsat TM data have a higher resolu­
tion and accuracy but have only been available for a short time and so are 
still of limited value for detecting change. 

Change detection involves subtracting one data set from another to de­
termine what diffierences exist. If the two data sets are not comparable, 
which is frequently the case, two main types of radiometric correction may 
be needed. First, if the data are acquired at different times of the year, the 
amount of incoming, and thus reflected, solar radiation will not be the 
same. This problem can be partly overcome by the normal cosine correction 
procedure. This does not allow for differences in the "amount of shadow 
associated with changes in solar position and the effects of the atmosphere. 
Such differen<:es may be partly compensated for by band ratioing or by 
recalibrating radiance data based on stable target areas but they can never 
be fully removed. The answer is to acquire data at or close to the same time 
each year, thereby ensuring the same scene illumination. A second correc­
tion procedure is needed when comparing data collected by different satel­
lites. Since 1972, there have been five satellites in the Landsat series and 
each MSS has had slightly different response characteristics. A good way of 
standardizing among the different Landsats is to use the physical radiance 
values rather than the cailbrated data normally available (Robinove, 
1982). It is also important to carry out the normal radiometric correction 
procedures of destriping and, if necessary, coherent noise removal (Land­
sats 4) so that observed changes over time are real and not just artifacts of 
sensor noise. 

The need for geometric correction arises because there are small varia­
tions in the alignment of each satellite over time and differences in the 
spatial distortions produced by each MSS. There are also substantial differ­
ences between the orbits of Landsats 1, 2, and 3 and those of Landsat 4 and 
5. It is, therefore, rarely possible to achieve a perfect pixel for pixel overlay 
even with data acquired from the same satellite. Rectification procedures 
that allow data from one image to be resampled to fit over another can 
reduce spatial errors to less than one pixel but can never remove them 
entirely. It is therefore best when subtracting one rectified image from 
another to use some form of spatial averaging to reduce local variability 
resulting from imperfect overlaying. Fully rectified imagery based on map 
coordinates can now be bought, which makes monitoring much simpler. 

Even when standardized radiometric data are used, there may still be 
difficulties in separating real and apparent landscape change. These arise 
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because changes in vegetation cover and greenness may vary from season 
to season. In the arid zone, for example, vegetation cover may routinely 
vary by 50% or more depending on rainfall. There may also be substantial 
differences in the spatial pattern of change from one rainfall event to 
another (Foran, 1988). Thus it is necessary to have data for a long enough 
period to filter out short-term variability when detecting true landscape 
change. 

Some authors have used short-cut methods to change detection that in­
volve principal components analysis of sequential images (e.g., Byrne et 
ai., 1980; Millington et aI., 1987). When this analysis is undertaken, gross 
changes attributable to differences in incoming radiation arId atmospheric 
effects are contained in component one. Minor differences associated with 
changes in the land surface, and so on, are identified with the higher-order 
components. This technique is only approximate and it is customary to 
reject values below a certain threshold in the higher-order components. 
Information is also lost as to the band in which th~ change has occurred. It 
may be, therefore; unsuitable for detecting the subtle variations often 
associated with landscape change. 

In spite of the difficulties involved in standardizing remotely sensed 
information for change detection, a number of studies have successfully 
used Landsat MSS data to identify changes in landform characteristics. 
Most of these successes have come from areas where change is relatively 
rapid or where soil and sediment reflectance is not confounded by the 
effects of vegetation. In the Nile delta, for example, Klemas and Abdel­
Kader (1982) have found that it is possible to monitor coastal erosion, 
sediment transport, and changes to lakes using unenhanced Landsat MSS 
products. The effects of vegetation are not always a problem. In arid cen­
tral Australia, Pickup and Chewings (1988a) have identified erosion and 
deposition at a number of sites using MSS data sets acquired ten to 12 years 
apart. However, they used changes in vegetation cover and greenness 
associated with the redistribution of water and sediment to indicate erosion 
and deposition rather than detecting it directly. Their approach could not 
be used in areas where the relationship between plant cover and erosion 
status was not strong. 

Landsat TM probably offers the highest potential for detecting land­
scape change once a long-term archived data set accumulates. This poten­
tial arises because of the larger number of spectral bands and higher spatial 
resolution that make it possible to detect relatively localized changes in 
surface mineralogy. Once again, however, short-term changes in vegeta­
tion cover can make it difficult to distinguish longer-term changes resulting 
from erosion and deposition. For example, Millington et al. (1987) have 
shown that TM data can be used to detect change in north African playa 
basins but the best results come from the unvegetated playas themselves. 
Activity in neighboring rivers and on alluvial fans is less easy to identify 
and even more difficult to separate from seasonal vegetation differences. 
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Using Landscape Process Models with Remotely Sensed Data 

Models and Their Limitations 

Ideally, a distributed model of sedimentation processes in a landscape 
should describe four elements of behavior: 

1. Spatial and temporal variations in the sediment transport capacity of the 
system. 

2. Spatial and temporal variations in the supply of sediment that is avail­
able for transport. 

3. The pattern of sediment redistribution that results where transport 
capacity and available load differ. 

4. The change in sediment supply or transport capacity at a point when 
sediment is eroded or deposited and system geometry or other charac­
teristics are affected. 

None of the currently available models meet this ideal. Most have been 
developed to predict sediment yield at a single point such as a drainage 
basin outlet (e.g. Moore, 1984) so they do not provide adequate descrip­
tions of behavior across the landscape. Instead, the variability within a 
basin is represented by splitting subareas into a series of lumped parameter 
compartment models linked by water and sediment routing procedures. 
These compartment models involve a great deal of spatial averaging and 
frequently represent spatially variable activity as a point process. This 
approach is necessary because the data required for modeling may not be 
available at all locations within a drainage basin, some processes may not 
be amenable to measurement at the landscape scale, and the information 
required to test model behavior at many locations simultaneously cannot 
be collected. The result is that even the best models contain empirical rela­
tionships or parameters that have to be calibrated by comparing observed 
and modeled behavior using optimization techniques (e.g., Borah et aI., 
1981). 

Some progress is now being made in the development of distributed 
process models on small drainage basins that provide detailed information 
on the spatial variability of sediment transport rates. These models operate 
by calculating surface runoff from rainfall on a highly localized basis and 
then estimating the sediment transport rate from runoff, local slope, and 
sediment properties. 

At the drainage basin scale, the response of runoff to rainfall is highly 
dependent on the location and size of saturated source areas that act as 
runoff~producing zones (Moore et aI., 1986). These areas expand and con­
tract as the catchment is progressively wetted or dries up. Variations in 
wetness within a basin are closely related to local slope, the hydraulic prop­
erties of the soil profile, and the degree of convergence of the local 
topography. O'Loughlin (1986) has used these characteristics to produce a 
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three-dimensional saturation zone model, which, when coupled with a 
digital terrain model, is capable of describing the location of the runoff 
producing zones. O'Loughlin's model has since been coupled with a sedi­
ment transport model that allows for the divergence or convergence of 
topography to produce estimates of erosion and deposition in three­
dimensional terrain (Moore and Burch, 1986a). This model has not been 
tested since it assumes that the rate of sediment transport is determined by 
transport capacity whereas in practice, it is often more closely related to 
supply. The patterns of erosion and deposition produced by the model are, 
however, realistic in appearance. 

Three-dimensional erosion models offer potential for the prediction of 
landscape change but their use is limited by lack of data on terrain charac­
teristics and for model testing. Remote sensing may provide some of these 
data and a number of groups are now attempting to couple watershed 
runoff and sediment models with data from satellites (e.g., Peterson et aI., 
1987). Areas currently in use or under development include the determina­
tion of catchment characteristics and sediment availability from MSS, TM, 
or HRV data. Areas with future potential are rainfall-runoff models, which 
use soil moisture data from microwave sensors, and the mapping of 
topography using stereo imagery and radar altimeters. The remainder of 
this section concentrates on the possibility of deriving information on sedi­
ment availability from remotely sensed data. 

Sediment Availability 

The supply of sediment within a drainage basin is normally much less than 
the amount that erosional processes such as wind, rain splash, and runoff 
are capable of transporting. The imbalance occurs because the surface is 
protected by vegetation and the individual soil particles are bound up as 
soil aggregates. Erosive forces must exceed a threshold to remove vegeta­
tion or break up aggregates before transport can begin. This only happens 
in a few locations and over limited periods-hence the ability to accumu­
late a soil layer even though soil-forming processes operate very slowly. 

Changes in sediment supply arise when there is a change in vegetation 
cover or in the rate at which soil aggregates are broken down. Many factors 
can produce these changes but they frequently occur in response to short­
to long-term fluctuations in rainfall and land-use practices. Remote sensing 
has proved to be very effective in monitoring some of these changes, partic­
ularly when they happen rapidly and involve large areas (e.g., Graetz et 
aI., 1986). Color Plate 3 provides an example of this in which vegetation 
.cover changes in response to both rainfall and grazing activity. The upper 
image shows an area of arid central Australia in 1980 in which vegetation 
cover varies substantially across the landscape. The lower image is for 1983 
and shows the effects of different land-use practices. Cattle concentrate 
their activities around water points to which they must return at regular 
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intervals to drink. The high level of activity in these areas results in a reduc­
tion in vegetation cover. One paddock at the lower right is being used 
heavily, and the grazing effect has extended beyond the water points to 
affect most of the paddock. The red areas therefore might be used to indi­
cate zones with high sediment availability. These images show that remote 
sensing can be used to provide information on both spatial and temporal 
variability. The question is then whether existing predictive models are 
capable of handling that information. 

Physically based procedures for predicting changes in sediment in sup­
ply in response to changes in vegetation cover or land-use practice are not 
available so it is normal to develop empirical relationships based on plot 
experiments that are extrapolated to similar areas. In the United States, 
this procedure is well developed for crop lands and soil erosion potential is 
routinely estimated using Wischmeier and Smith's (1978) Universal Soil 
Loss Equation (USLE): 

A =R'K'L'S'C'P 

where A is potential soil erosion (tons/acre/year), R is a precipitation fac­
tor, K is a soil erodibility factor, L is a slope length factor, S is a slope 
steepness factor, C is a cropping practices factor, and P is a management 
practices factor. 

When the database is sufficient to provide estimates of these factors, 
remotely sensed data and classification procedures have been used to iden­
tify soil, cover, and land-use types (e.g., Niemann et ai., 1987). Appropri­
ate values of K, C, and P may then be assigned to particular areas. The 
USLE, being empirical, is not suitable for many areas because the data to 
use it are not available. Physically based procedures are under develop­
ment (e.g., Moss et ai., 1979, 1980; Moore and Burch, 1986b) but they 
have only been applied to a few soil types, making it still necessary to rely 
on erosion plot data in many areas. 

Estimation of sediment supply from small plots is an acceptable proce­
dure in agricultural areas where the landscape is divided into small, rel­
atively homogeneous fields in which vegetation or crop type and manage­
ment practice are uniform. Natural landscapes are more diverse, making 
plot-based measurements difficult to extrapolate to larger areas. Thus, 
while attempts have been made to estimate sediment yield using the 
USLE, they have not been particularly successful unless an empirical cor­
rection factor known as the sediment delivery ratio is used. New methods 
are needed to estimate the amount and spatial distribution of sediment 
supply in natural landscapes and to determine the processes that influence 
it. 

Little work has been done on the distribution of sediment supply be­
cause of the difficulties of measurement. Sediment yield is normally mea­
sured by sampling the suspended load in streamflow at a gauging station at 
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the basin outlet. These data make it possible to compare basins in terms of 
average vegetation cover, average slope, and so on, but do not allow for 
spatial variability. They also result from the interaction of sediment supply 
and transport capacity rather than sediment supply alone. 

An area of research that may help in deriving the regional pattern of 
sediment supply in grazing lands is based on animal distribution models. 
Grazing animals remove vegetation cover and break up soil aggregates, 
making the soil more liable to erosion. These animals do not use an area 
uniformly but instead concentrate their activity in particular areas. In the 
arid zone, for example, cattle concentrate on water points and more palat­
able vegetation communities (e.g., Hodder and Low, 1978) whereas sheep 
distribution is also affected by proximity to camping sites (Stafford Smith, 
1988). Some progress has been made in modeling the distribution of animal 
activities (Senft et aI., 1983) and recently Pickup and Chewings (1988b) 
have been able to derive a suitable model from remotely sensed data. Their 
approach uses a convection-diffusion analogy- to determine the average 
distribution of animals in a particular vegetation type coupled with a 
stochastic process to generate local variability. The parameters of the mod­
el have to be fitted from observed cattle distributions, but the change in 
Landsat band 5 above a particular threshold over a period of time can be a 
useful surrogate since it is closely related to percent vegetation cover 
(Foran and Pickup, 1984). The threshold level is set by plotting a curve 
showing changes in band 5 against distance from water. This curve shows a 
decline away from water owing to grazing effects but it eventually stabi­
lizes at a level that represents the amount of change that can be related to 
natural conditions. Once the grazing distribution is known, the extent of 
trampling may be generated from it by routing animals along the shortest 
path to water and counting the number passing through each grid cell (Col­
or Plate 4). 

Modeling Landscape Change Directly from Remotely Sensed Data 

Conceptual Basis 

Distributed process models that predict sediment transport, erosion, and 
deposition from the pattern of water flow in an area may be suitable for 
small drainage basins but have achieved little success in predicting change 
at the landscape scale. The problem arises because errors in the estimation 
of flow, sediment supply, or transport rate that inevitably arise at particular 
locations propagate through the model. This affects behavior at other loca­
tions, compounding the original error. Real trends in erosion and deposi­
tion are then submerged by model-generated errors. These errors may be 
very large. All models use sediment transport equations of dubious re­
liability. Where these equations have been tested, calculated sediment 
transport rates may deviate from observed rates by factors of three or more 
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(e.g., Alonso et aI., 1981). Errors in both the timing and the magnitude of 
the flow rates used to calculate sediment transport may also be seen. No 
data are available describing these errors throughout a catchment but there 
are many examples showing model performance at a few points. In virtual­
ly every case, even after the best models have been calibrated against 
observed catchment behaviour, errors remain, especially at peak flow 
(e.g., Moore et aI., 1986). 

An alternative approach is to model the patterns of the sediment flows 
alone using observed sediment movement in the landscape. This method is 
particularly suited to remotely sensed data from arid areas where differ­
ences in vegetation cover are closely linked to patterns of erosion and 
deposition (e.g., Pickup and Nelson, 1984) and may be detected using 
Landsat MSS. It may also be suitable for use with Landsat TM whose finer 
resolution and additional spectral bands make it possible to identify soil 
surface changes associated with erosion and deposition. This is especially 
true in flat areas where erosion and deposition redisttibute soil as a thin 
veneer over a relatively large area. In steeper areas, changes tend to be 
more confined to smaller areas such as channels and involve more vertical 
loss or accumulation of sediment, which is less easy to detect. 

The sediment flow approach is based on the idea that, at the regional 
scale, sediment is not entrained and transported smoothly down a system 
or in time as most models suggest. Instead, it is supplied discontinuously 
from a number of points or distributed sources and transported intermit­
tently, often spending long periods in storage before remobilization. There 
is, however, some order. Each time a sediment transport event occurs, 
eroded material moves in scour-transport-fill (STF) sequence (Figure 
11.4) with erosion and sediment entrainment at the upper end of the se­
quence, deposition at the lower end, and a transfer zone in between in which 
sediment transport capacity and sediment supply are roughly balanced. 
These STF sequences are intrinsic to the process of sediment transport 
from a restricted source area in unsteady flow. Water travels faster than 
most of the sediment it carries so the flood wave tends to overtake the 
sediment wave, resulting in deposition. Sediment transport may also de­
crease downslope in arid areas as runoff is lost by infiltration. If deposits 
are large enough or become stabilized by vegetation, they can reduce flow 
velocity, producing further deposition .. The STF sequence then becomes 
fixed or self-enhancing (Pickup, 1988a). Alternatively, it may not be stabi­
lized at all and be destroyed in the next flood event. 

The STF sequences can develop at a variety of spatial scales over a 
period of time. When flows are small or the rate of erosion is low, they are 
likely to occur as low-amplitude, high-spatial-frequency features (Pickup 
and Chewings, 1988a). This produces a buffered landscape in which sedi­
ment is unlikely to travel far before it is trapped by one of the vegetated 
deposition areas even when a large flow occurs. If large flows occur fre­
quently or erosion rates are high, the STF sequences will be much larger 
and sediment will travel longer distances before deposition occurs. 
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Scour or Production Zone 

Transfer Zone 

-- .... - - ... ---------
Fill Zone or Sink 

Transport capacity Transport capacity Transport capacity 

>- -< 
sediment supply sediment supply sediment supply 

Figure 11.4. A scour-transport-fill sequence. [From Pickup (1988a). Reproduced 
with the permission of Academic Press.] 

Over time, a distinctive pattern of STF sequences may develop in a 
landscape. Some will take place in response to topographic variations as 
sediment is shed from convex slopes and accumulates in concavities. 
Others may develop because certain areas consistently lose soil as a result 
of natural erodibility or the presence of an erosion-producing activity. Not 
all STF sequences will be active simultaneously. Some may result from 
very large events and may only operate when those events recur. Others, 
particularly the smaller ones, may be active during high-frequency events, 
only to be partly destroyed or nonoperational during the extremes. What­
ever their behavior, they describe and integrate continuing processes of 
sediment redistribution in an area and form a basis for predicting future 
development. 

The STF sequence concept has proved particularly useful in developing 
models of landscape behavior for the floodplains, alluvial fans, and alluvial 
footslopes of arid central Australia. These landscapes may be divided into 
inactive areas, where little change is occurring, and active areas, where 
there is obvious recent erosion and deposition. Active areas consist of a 
mosaic of overlaid and interlocking erosion cells of various sizes that are 
the two-dimensional equivalent of a set of STF sequences. Each cell con­
sists of a source or scour zone, a transfer zone, and a sink, although some 
~ells may have been captured by others. It is also possible for small cells to 
be partly subsumed by larger ones. As erosion intensifies, the mosaic 
changes its characteristics. Source zones expand, transfer zones may be 
converted into source zones, and sinks expand as more material accumu­
lates. The largest erosion cells expand at the expense of the smaller ones 
until the landscape consists almost entirely of large cells. 
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Model Implementation 

STF sequences have been directly modeled from Landsat MSS data in fiat 
arid landscapes characterized by erosion cell behavior. This is possible be­
cause erosion results in a decrease in the greenness and amount of vegeta­
tion cover whereas deposition increases them. Many vegetation indices are 
sensitive to such changes, including the stability index of Pickup and Nel­
son (1984), which filters out the effects of differences in soil and vegetation 
color. It also expresses the state of the landscape as a single variable with 
erosion at one end of the scale, stability in the middle, and deposition at 
the other end. This allows mapping of the main STF sequences. A change 
in the behavior of a sequence may then be represented by changing its 
geometry to allow for elongation, contraction, breakup into smaller se­
quences, or variation in intensity. 

Modifying the geometry of a single STF sequence is a simple process, as 
Figure 11.5 indicates. It is more difficult in the case of.erosion cell mosaics 
where the landscape is made up of a complex array of two-dimensional 
overlaid sequences of different sizes. Some success has been achieved, 
however, using stochastically based image texture generation procedures 
(Pickup and Chewings, 1988a). 

A model of erosion cell mosaic behavior can be constructed by repro-

o Change in Mean 

E 

Change in Variance 

o -- ...... 
...... " 

E 

D I CO"" ~-,. 
----""~ ...... - ...... _-

E 
I 

Figure 11.5. Schematic diagram showing how changes in a simple STF sequence 
may be represented by shifts in mean, variance, and the (J parameter, which con­
trols the level of spatial interaction. E denotes erosion, whereas D is deposition. 
[From Pickup (1988a). Reproduced with the permission of Academic Press.] 
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ducing four types of change in the soil stability index values for an area. 
First, the mean may change. Second, the number of pixels in stable, 
eroded, and depositional states may change, affecting variance. Third, the 
individual areas of erosion and deposition may spread, contract, or be 
broken up into smaller patches, producing changes in the spatial autocor­
relation function of the stability index. Fourth, new erosion cells may de­
velop. There is, however, a great deal of continuity in erosion cell mosaic 
behavior so the development of new cells is limited. This makes it possible 
to forecast change in the soil stability index values by modifying existing 
patterns in the landscape. Modeling of changes in spatial dependency and 
in the frequency distribution of soil stability index values is all that is 
needed to produce an adequate forecast. 

The model used in the forecasting procedure is a simultaneous autore­
gressive (SAR) process and may be written as: 

Yes) = L 8r Y(s + r) + VpW(S) 
'EN 

where YeS) is the soil stability index value at location s; s refers to a pair of 
x,y grid coordinates; r indicates the coordinates of a member of the neigh­
borhood set, N, around location s; 8r are the model weighting parameters; 
p is the variance of the noise series; and w(s) is a sequence of random 
variates with zero mean and unit variance. Methods for fitting the model 
are described by Kashyap and Chellappa (1983). 

A version of this model that appears to describe erosion cell mosaic 
behavior well is the first-order, eight-neighborhood version (Pickup and 
Chewings, 1988): 

Y ij = 61Yi-Lj + 62Yi+1.j + 63Yi.j-l + 64Yi.j+l 

+ 6SYi-Lj-l + 66Yi-Lj+l + 67Yi+.j+l 

+ 6gYi+Lj-l + V PWij + Y 

where i and j are grid coordinates and y values are deviations about the 
mean. The model behaves like a two-dimensional diffusion process and 
operates by reducing or enhancing high-frequency spatial variability. It can 
represent three of the four types of change needed to model different states 
of an eroding or recovering system. Changes in the overall system state are 
represented by shifts in the mean. Changes in the variance of the stability 
index and the spread or breakup of patches within the mosaic are handled 
by the 8 and p parameters. The w(s) series contains information on the 
location of erosion and deposition and is known as the underlying pattern 
series. 

The modeling procedure relies on the continuity over time and space 
that exists in erosion cell behavior and uses the landscape to forecast itself. 
The underlying pattern series represents the latent pattern of erosion and 
deposition in an area while the mean, variance, and 8 parameters describe 
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the extent of erosion. As the landscape becomes more eroded, a variance is 
imposed, scaling the underlying pattern series. This scaling is represented 
by the p parameter. Spatial dependency is also imposed as an erosion cell 
mosaic develops by intensifying very weak features in the underlying pat­
tern series. This structure is controlled by the () parameters. 

Modeling landscape behavior as erosion intensifies uses the assumption 
that a landscape Y in a particular state of erosion can be related to an 
underlying pattern series, w, by a linear filter, Al (Pickup, 1988b) such 
that: 

The same landscape in a more eroded state, Y2 is related to w by 

Given estimates of Al and A 2 , and assuming that w does not change over 
time, the more eroded state may be forecast as: 

where the symbol A indicates an estimate. The linear filters, Al and A2 are 
SAR models obtained using the fitting procedures described above. The 
estimate of Al is derived by fitting an appropriate model to YI and W is 
calculated by inverse filtering. The A2 model is an unknown but can be 
obtained by using landscapes that are similar to Y I but are in a more eroded 
condition as prototypes. Once such a prototype is identified, A2 is esti­
mated by the normal SAR model-fitting procedure. Color Plate 5 shows an 
example of the modeling process. 

The approach appears simple but tests show that it is capable of produc­
ing reasonable forecasts of change for large areas with very complex pat­
terns of erosion and deposition (Pickup and Chewings, 1988a). It seems to 
work because the underlying pattern series contains most of the infor­
mation on the likely pattern of soil movement. Also, because the model 
parameters used to generate a more eroded condition are derived from a 
similar or neighboring area, they contain the averaged response of the land­
scape, bypassing the need for detailed simulation over a sequence of time 
and distance steps that process-based models require. 

The advantage of the method is its simplicity. Because model parameter 
estimates are derived from a prototype, they already embody the response 
of a particular landscape to change. The prototype therefore must be 
selected with care, or an unrealistic forecast could result. The problems of 
the method are that it uses a single average model for a whole landscape 
when several different ones could be more appropriate. It is also incapable 
of forecasting erosion patterns that are not already latent in the landscape, 
such as the erosion zones around new stock watering points. The ability to 
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introduce new erosion patterns remains a problem although some progress 
is now being made by inserting structures or trends into images using the 
grazing distribution models described in a previous section. 

Conclusions 

The enormous increase in the quantity, resolution, and type of remotely 
sensed data from both satellite and aircraft-mounted sensors planned for 
the 1990s poses new challenges in the study of landscape processes. 
Geomorphologists have relied on air photographs ever since they have 
been available but have been slow in taking up the use of satellite data. 
This problem is being rectified as low cost personal-computer-based image­
processing facilities make the basic hardware and software available and as 
the speed and capacity of these machines increase. The difficulty now is 
that models and concepts lag behind data availaiJility. 

Most attempts to model landscape processes using remotely sensed data 
are likely to use existing so-called physically based models. While the per­
formance of these models can be expected to improve with better data, 
their limitations will become increasingly apparent and a limit will be 
quickly reached. This will occur because such models rely on point-based 
relationships and attempt to reproduce large-scale system behavior as the 
sum of a whole set of localized behaviours. Synergistic effects are neglected 
and the problems of extrapolating from the point to the region with equa­
tions that are not fully accurate even at the point will mUltiply. New models 
thus are required that will describe the behavior of whole systems, incor­
porating processes that operate at a variety of scales. 

It is difficult to predict where these models will corne from. One possibil­
ity is the field of image modeling where the classical statistical approaches 
are now giving way to methods based on scale-dependent processes (e.g., 
Lovejoy and Schertzer, 1985). Whatever the source, some radical changes 
are needed in our approach to landscape behavior if the potential offered 
by remotely sensed data is to be fully realized. 
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12. Synoptic-Scale Hydrological and Biogeochemical 
Cycles in the Amazon River Basin: A Modeling and 

Remote Sensing Perspective 

Jeffrey E. Richey, John B. Adams, and 
Reynaldo L. Victoria 

Deforestation of tropical river basins is one of the primary variables in 
global change scenarios. The overall hydrological problem for these basins 
could be summarized as: "How would extensive land-use change modify 
the routing of water and its chemical load from precipitation input through 
the drainage system back to the atmosphere and to the ocean?" Studies of 
catchment behavior for the Amazon and for other great world rivers not 
only are important regionally, but would be compatible in scale with gener­
al circulation models (Dooge, 1982) for extrapolation of local changes to 
global effects. 

The application of remote sensing to river basin processes would seem 
to have particular potential in these difficult environments. Intensive field 
campaigns, such as the First ISLSCP (International Satellite Land Surface 
Climatology Program) Field Experiment (Sellers et aI., this volume) and 
the Hydrologic-Atmospheric Pilot Experiments (Andre et aI., 1986), have 
coordinated ground measurements, aircraft, and remote sensor experi­
ments to quantify water and energy fluxes for relatively uniform and ac­
cessible environments. Schultz (1988) has reviewed the application of re­
mote sensing techniques to specific problems in hydrology. However, there 
has been little progress to date on studies of large-scale catchment behavior 
for tropical basins. Problems of scale and vast area, sparseness of records, 
logistic realities and difficulty of access for ground measurements, dense 
vegetation and frequent heavy cloud cover, and lack of suitable scientific 
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constructs constrain not only remote sensing but any integrative analysis as 
well. 

Given the rapidity of land-use change, it is essential to launch basin­
level studies of hydrological and biogeochemical properties in the tropics 
immediately. Such an analysis must optimize the resources, knowledge, 
and logistic support currently available. In this chapter, we develop a re­
search strategy combining field- and remotely sensed data with modeling 
for determining the fluxes of water and elements in the Amazon River 
basin on synoptic scales (catchment and regional space scales of 100 to 500 
km and time scales of 10 to 15 days). We believe that existing information, 
in particular remote sensing data, are sufficient to implement the strategy 
now. Though the concept is developed for the Amazon basin, it is intended 
to be transferrable to other large basins. 

An Analytical Perspective for Large Drainage Basins 

The Amazon basin is the largest contiguous stand of tropical rain forest 
and savannah in the world, 6 million square kilometers, consisting of sever­
al major physiographic zones, each with characteristic geology, soils, land­
scape, climate, and vegetation (Figure 12.1). The rain forest is being re­
placed with degraded scrub at the rate of 20,000 km2/yr (1987 estimate, A. 
Setzer personal communication). 

It is convenient to think of basin-scale biogeochemical and water cycles 
as a combined problem in regional water balances and subsequent down­
stream routing (Figure 12.2). Then the balance of water at any site and 
time can described by 

R=P-ET±SM (1) 

where P is precipitation, R is the effective runoff, ET is actual evapotran­
spiration, and SM is change in soil moisture and groundwater storage. The 
research problem is to evaluate Equation (1). Issues that must be ad­
dressed include: 

1. What are the distributions and their variability of the components of the 
hydrological and biogeochemical cycles in the different sectors of the 
drainage basin across space and time scales? 

2. What are the surface properties (vegetation, soils, topography) in spe­
cific regions, and how will they change over time? 

3. How do properties of soil, vegetation, and topography influence the 
processes controlling water and element fluxes? Any ability to "predict" 
change requires a physical, not just statistical, understanding of routing 
properties. 

4. What are the consequent exchanges of water and energy between the 
land surface and the atmosphere? 
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Figure 12.1. The Amazon basin (note the location of major tributaries for later 
reference) . 
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Figure 12.3. Schematic of hierarchy of scales in hydrological responses between 
detailed local sites and aggregated regional responses. [Adapted from Patterns to 
Processes, NASA Eos Science Steering Committee Report , Vol. II , p.73.] 

A Regional Water Balance Perspective 

The first problem in solving Equation (1) for a large drainage basin such as 
the Amazon is to establish the hierarchy of time and space scales at which 
the processes that control the fluxes of interest are operable (Figure 12.3). 
Hydrological and ecological modelers have traditionally focused most of 
their attention on Equation (1) at the very small to moderate spatial scales 
of square meters to several hectares. In theory, water flow at a site can be 
described in terms of physical properties based on the equations of fluid 
mechanics representing the conservation of mass and linear momentum. 
Application of a strict physical approach to modeling, even at these scales , 
is difficult because the mechanisms driving the hydrological process are 
incompletely understood, and may be difficult to express mathematically . 
Systems models, which are conc.eptual to the extent that their structure is 
based on the aggregate physical pathways describing water movement in a 
catchment (e.g, Crawford and Linsley, 1966; Johanson et aI., 1984) , are 
more common in practice. However, the actual transfer functions repre­
senting these aggregate pathways are primarily based on a black-box 

"approach that is fine-tuned for specific applications. 
The integrated effect of small-scale cycling mayor may not influence 

cycling at larger temporal or spatial scales. The question of how spatially to 
average the hydrological parameters of mesoscale areas when their com­
ponent parameters are spatially variable and not well characterized at a 
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smaller scale is one that has drawn the attention of many investigators 
(e.g., Eagleson, 1978; Brutsaert et aI., 1985; Klemes, 1983). Heterogeneity 
of the environment with regard to overland flow variables, catchment char­
acteristics, measurement problems, and differences in response between 
smaller and larger catchments makes it difficult to extrapolate from one site 
to larger areas (Pilgrim et aI., 1982; Beven, 1983; Dooge, 1982). 

Early efforts in very-large-scale, or global, hydrology emphasized the 
estimation of global water balances (e.g., Budyko and Drozdov, 1953). The 
advent of General Circulation Models (GCMs) has offered the possibility 
of introducing the dynamics of the forcing function (precipitation) into 
global-scale hydrological models. Key interfaces between surface and 
atmospheric hydrological processes in GCMs occur on the catchment and 
regional space scales of 100 to 500 km and time scales of 10 to 15 days. 
Most applications of GCMs have treated the rainfall-runoff transformation 
at only the crudest level, although a new generation of models has a more 
realistic treatment of the transformations. 

Application to the Amazon: The Database 

The second problem in defining Equation (1) for a particular drainage 
basin is actually to assemble appropriate data and then interpret the data. 
For the Amazon, ongoing projects and the literature represent important 
sources of data. Research on the hydrology and meteorology of the Ama­
zon has been conducted since the mid-1970s by the Instituto Nacional de 
Pesquisas da Amazonia (INPA, Manaus), the Centro de Energia Nuclear 
na Agricultura (CENA, Piracicaba), and the Instituto de Pesquisas Espa­
dais (INPE, Sao Jose dos Campos). 

Brazil is the second largest user of Landsat outside of the United States; 
INPE maintains a receiving station in Cuiaba. INPE has had Multi­
Spectral Scanner (MSS) data over the Amazon available since the early 
1970s and thematic mapper (TM) data since 1983, and is starting to collect 
Systeme Probatoire d'Observation de la Terre (SPOT) data. Advanced 
Very High Resolution Radiometer (AVHRR) data are available over 
much of the basin, as are data from the Geostationary Operational En­
vironmental Satellites (GOES). Radambrasil (1972) completed a side­
looking radar survey of geomorphology" vegetation, and soils. 

As the "backbone" for large-scale hydrological analyses, the Depart­
mento Nacional de Aguas e Energia Eletrica (DNAEE, Brasilia) main­
tains a gauging network of 600 precipitation, river stage, and meteoro­
logical (solar radiance, surface temperature, humidity, wind) stations 
throughout the basin. In the Madeira subbasin, these gauges are typically 
less than 200 km apart. Daily records of at least a ten-year duration are 
available for most stations, and longer records exist for specific stations. In 
addition, the ministry has compiled annual and monthly averages for the 
ten-year period. 
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CAMREX (Carbon in the Amazon River Experiment), a joint project 
of the University of Washington (Seattle), INPA, and CENA, has exten­
sive data on river discharge and chemistry, and will be expanding this work 
in the area of main stem-floodplain exchanges. The International Atomic 
Energy Agency (IAEA) Amazonia I project of INPA, CENA, and INPE 
emphasizes local basin and regional water routing tied to potential effects 
of deforestation. It is currently compiling data on soil types and associated 
nutrient and hydrological properties, and is establishing a basin-wide net­
work for sampling the 180 of water vapor, precipitation, and runoff. 

Actual site-specific studies of hydrological processes in the Amazon are 
few. Several "model basin" studies have attempted to quantify the evapo­
transpiration and the fraction of rainfall intercepted by the forest canopy of 
the terre firme Amazon forest by water balance methods (Franken et al., 
1982; Leopoldo et aI., 1982). INPA, through the IAEA program, is start­
ing a field-scale experiment for characterizing runoff processes at both a 
natural and a deforested site. Determining the effects of precipitation in­
tensity on the type of runoff process, on infiltration, and on resulting soil 
moisture at both sites is planned. Water stress-foliage relations are being 
investigated across a gradient from cleared land into forest as part of this 
project. 

Annual evapotranspiration (ET) has been calculated by energy budget 
methods (Villa Nova et ai. 1976), and has been measured more precisely at 
a natural forest site near Manaus by a combined team of INPE, INPA, and 
the Institute of Hydrology (U.K.) (Shuttlesworth et aI., 1984). From such 
field experiments, runoff type and rates as a function of precipitation and 
vegetative cover for use in a mesoscale representation could be determined 
for specific sites. The National Aeronautics and Space Administration 
(NASA)/INPE Amazon Boundary Layer Experiments 2A and 2B pro­
vided linkages between local regional climatology and gas fluxes. 

Application to the Amazon 

From the information available for the Amazon, we can begin to solve 
Equation (1). Condensational energy release from convective precipitation 
is of sufficient magnitude to influence global weather and climatic patterns. 
Atmospheric water vapor over tl1e Amazon basin comes primarily from the 
Atlantic, with water vapor from the Pacific excluded by the Andes (Salati 
et aI., 1979; Lettau et aI., 1979). Approximately 50% of rainfall is recycled 
via ET from the forest (Villa Nova et aI., 1976; Salati et aI., 1979; Lettau et 
aI., 1979). Water vapor export to the south has been suggested by Oliveira 
(1986) and James and Anderson (1984), and we have found 180 of water 
vapor in Brasilia characteristic of Amazon vapor (R. Victoria, unpublished 
data). Such a transport would appear to be very important in determining 
the weather of the central part of the continent; if so, deforestation could 
have a significant impact on climate to the south of the Amazon itself. 
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A pronounced difference in wet and dry seasons between the northern 
and southern sides of the basin is caused by the slow seasonal migration of 
the continental convective bands over tropical South America. The most 
important synoptic scale (rain-producing) systems in the Amazon may be 
sea breeze lines, which sometimes propagate inland all the way to the 
Andes. The secondary maximum of precipitation in the southern Amazon 
probably can be accounted for by the interaction of cold fronts with con­
vective precipitation. More than 3,500 mm yr- I of precipitation falls in the 
northwest lowlands, decreasing to less than 2,000 mm yr- I in the extreme 
northeastern and southern parts of the basin, and then increasing to over 
3,000 mm yr- I along the coast from the Guaianas to Para, and up to 7,000 
mm yr- I at sites on the east side of the Andes (Salati et aI., 1979). South of 
the equator there is a distinct dry period from June to August, whereas 
north of the equator the dry period lasts from January to March. 

The mean precipitation of 2,500 mm yr- I results in an average discharge 
of about 200,000 m3 S-I, or 20% of the world's runoff to the oceans. The 
most striking feature in the discharge regime of the main stem of the Ama­
zon River in comparison with other, smaller rivers is not only the magni­
tude of the flux, but also its relative uniformity over the annual cycle; 
Figure 12.4 (Richey et aI., 1990a). The predominant variability at inter­
annual time scales in the Amazon hydro graph is coupled, at least in part, to 
variations in the El Nino-Southern Oscillation cycle (Richey et aI., 1989). 
Current knowledge of the biogeochemistry of the river system comes pri­
marily from CAMREX (Richey et aI., 1980, 1986, 1990b; Devol et aI., 
1987; Hedges et aI., 1986). The biogeochemistry of carbon in the main 
stem carries signals of drainage basin processes operative at several dif­
ferent time and space scales. Variations in discharge and concentrations 
of dissolved and particulate materials in transport occur on a relatively 
damped and predictable basis, with changes taking place over several 
weeks and tens to hundreds of kilometers. Concentrations of particulate 
organic carbon (POC) range from 6 mg liter-I upriver to 2 mg liter- 1 down­
river in the main stem and from 6 mg liter-I in the Rio Madeira to less 
than 1 mg liter- 1 in the Rio Negro. Dissolved organic carbon (DOC) aver­
ages 4 to 6 mg liter- 1 in the main stem and up to 12 mg liter-I in the Rio 
Negro. Upriver dissolved inorganic carbon concentrations of about 1,200 
JLM are diluted by tributaries and floodplain drainage to 600 JLM at the site 
most downriver. This intermediate signal, however, also appears to be 
affected by processes operating on very different scales. The chemical com­
positions of the bulk organic matter in transport appear to be established 
on a decade basis or longer over large areas of the Andean and tributary 
basins '(and perhaps on the floodplain). The maximum residence time of 
fine POC is less than 600 years and of DOC less than 150 years, whereas 
coarse POC is essentially contemporary. Conversely, the level and dyna­
mics of in situ oxidation indicate that there is also a "fast-dynamic" signal, 
where the relevant scale parameters are hours to days over distances of 
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several kilometers or less. Evasion of CO2 , invasion of O2 , and in situ 
oxidation were of comparable magnitude, 3 to 8 /Lmol m-2 S-I. Export of 
total organic carbon (TOC) from the Amazon is 36.1 Tg yr-I. 

A River Basin Analytical Strategy 

The above review of the information available for the Amazon and consid­
eration of the components of Eq. 1 indicate that it is indeed feasible to 
continue. To account for scaling and the realities of the data currently and 
potentially available, we have chosen the strategy of defining regional, 
aggregated water and energy balances concurrent with modeling of more 
detailed site-specific processes (Figure 12.5). The objective is to calculate 

REGIONAL BALANCE 

Precip Network--.... P(t) 
RS (OLR Index) j-
Meteor Network ( ) [( )] 
RS (ET) --.... ET(t) R t = H P t 

Runoff Network~ R(t) 

River Chemistry 
RS (Sediment) --.... C(t) 

MODELING 

Ground measure 

RS (Calibration~ SiB ---l"~ Water/Energy 

LAND SURFACE 

Repeat AVHRR --.... Veg (index) 

Data (soils.topog) > .. Surface Descrip 

RS (structure) --.... Veg Struct 

REMOTE HYDRO 

RS ("Status") ~ Canopy Spectra 

(Ground measure) > .. Hydro (remote) 
RS (AVHRR) --.... Tuned Veg Indices 

Scaled Hydro-BGC 

MOSAICS OF CHANGING 
BASIN PROCESSES 

Predicted Hydro-BGC 

Figure 12.5. Overall research strategy, combining regional balances, linkages be­
tween hydrology (hydro) and biogeochemistry (BGC), local balances derived from 
modeling and experiments, description of the land surface, and scaling of hydro­
logical processes using remote sensing (RS). 
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the time- and space-averaged balances of water and energy as a function of 
vegetation, soils, and topography for sub drainages of the basin. 

The aggregated empirical approach provides boundary conditions on 
extrapolations from more detailed studies and modeling at local sites. 
Remote sensing furnishes the basis for extending local observations to 
regional scales. The critical test of the essentially independent approaches 
will be to determine their convergence. With water fluxes described, it 
will be possible to link hydrologic and biogeochemical cycles. Results 
should be expressed on the basis of pixel resolution, based on some under­
standing of subpixel processes, both from hydrological and spectral per­
spectives. 

The Regional Model: R(t) = H[P(t)] 

To provide overall constraints on water and energy fluxes using data that 
are realistic to obtain, the plan starts at the regional scale, with river dis­
charge (runoff) and then precipitation at the major tributary level (105 to 
106 km2). The relation between precipitation inputs and runoff outputs can 
be examined generally via: 

R(t) = H[P(t)] (2) 

where H represents the operator(s) transforming inputs to outputs. Then 
ET can be constrained annually as the difference between P and R, arid 
examined in more spatial and temporal detail via regional applications by 
energy calculations. If the distributions of P, R, H, and ET could be done 
with sufficient precision, insight into the regional distributions of soil mois­
ture would be possible. 

Regional Runoff 

River stage records, the data from which discharge is calculated, are 
among the most complete and the most accurate data available for remote 
basins. Hence calculation of R provides the strongest constraints on the 
overall budget analysis (e.g., Figure 12.4). The flow patterns of water in 
river channels can then be described with routing models, which account 
for inputs from the upstream reach, primary gauged tributaries, local un­
gauged tributaries and channels, exchanges with the floodplain, and ex­
ports to the next downriver reach (Richey et al., 1990a). 

An important requirement in describing the discharge regime for a large 
river is to account for the time sequence of the inundation of floodplains. 
This information is important not only for water routing but also for 
estimation of the extent of biogenic gas fluxes; floodplains are an important 
source of methane to the troposphere. Remote sensing has direct applica­
tions to this problem. We have mapped floodplain inundation patterns for 
different water levels using brightness differences between MSS images 
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taken of the same locale over time (J. Adams, unpublished data). I. Fung 
(unpublished data) has found seasonal differences in polarization of micro­
wave data over the entire floodplain that correlate to river stage. These 
types of data, combined with the mass balance routing models, may make 
it possible to calculate the storage capacity of the main channel and flood­
plain at different discharges. 

Regional Precipitation: Synoptic Analyses 

Precipitation patterns can be determined by analyses of the data from rain­
gauge networks. Together with the analyses of these data, other synoptic 
analyses in the atmosphere can be done by making use of the operational 
daily analyses from, for example, the European Center for Medium Range 
Weather Forecast (ECMWF) and radiosonde data. 

Because of the well-known sparseness of precipitation data in these re­
gions, it is necessary to improve the methods for obtaining such informa­
tion from satellite data. Relation of satellite observations to the rain-gauge 
network can be considered through the use of the proxy precipitation rec­
ords derived from measurements of outgoing long-wave radiation (OLR) 
obtained from GOES or A VHRR. Through comparison of these data with 
the precipitation network data, it might be possible to improve current 
algorithms; e.g., Richard and Arkin (1981). The Tropical Rainfall Mission 
(TRMM) could provide valuable data. 

H: The Rainfall-Runoff Operator 

The lag between precipitation and observed stream discharge, as repre­
sented by H [Equation (2)] is a result of the passage of water through 
vegetation and the soil column to the atmosphere and to the drainage net­
work and the routing of that water through the stream channels to the 
measuring points. Some indication of the lag between precipitation and 
discharge may suggest the dominant runoff processes occurring in the 
basin, if the distance between gauging stations is close enough. 

Several possibilities exist for examining aggregated rainfall-runoff re­
sponses. The lag between peak precipitation and maximum discharge can 
be calculated empirically for station pairs in the same basin that represent 
reference topography and canopy cover .. In the Amazon, the lag between 
the observation of a water mass tracer, 8180, in precipitation and its subse­
quent appearance in a river channel is of the order of four to eight weeks 
and can be traced (Mortatti et aI., 1986; Richey et aI., 1990a; Goncalves, 
1979; Clarke, 1982). 

The possible use of geomorphic information to determine the most crit­
ical processes governing the rainfall-runoff response of large rivers de­
serves attention. In particular, stream order and subbasin shape may be 
used to characterize both the type of runoff occurring in a subbasin and the 
lag time between maximum precipitation intensity and peak flow in up-
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stream tributaries (where runoff peaks are not substantially attenuated 
by the channel). Drainage network structure in remote areas is readily 
mapped by remote sensing. 

Geomorphic unit hydro graph (GUH) theory (Rodriguez-Iturbe and 
Valdes, 1979), which is based primarily on drainage network structure, is 
potentially applicable to this problem. Although the rainfall-runoff compo­
nent of GUH models is essentially probabilistic (that is, the most common 
application has been to predict flood frequency distributions rather than 
the characteristics of a particular runoff hydrograph), GUH theory has 
shown some promise for estimating runoff response for large, complex 
catchments where runoff is governed primarily by the channel network. It 
has been applied with some apparent success to the Mamon River in cen­
tral Venezuela (Rodriguez-Iturbe et al., 1982; Valdes et al., 1979). One 
advantage of the GUH approach is that there are few or no site-specific 
parameters to be estimated from prior rainfall-runoff records. 

Regional Evapotranspiration and Soil Moisture 

Evapotranspiration is a much more stable process than precipitation (e.g., 
it is less variable over time, and variations arise over a longer time period). 
Methods for determining evaporation locally at a point using micromete­
orologic data are available, but have not been useful or practical for 
application at the basin scale, Most rainfall-runoff models treat evapo­
ration as a function of potential evaporation, which, in turn, is based on a 
bulk transfer coefficient and a reduction factor. These methods of calculat­
ing evaporation depend on a knowledge of soil moisture that can vary 
greatly over relatively small distances. A mesoscale representation of this 
process, therefore, must incorporate information about the spatial variabil­
ity of soil moisture, as well as its mean value. 

Regional potential ET can be calculated using the climatological data 
(insolation, humidity, temperature, wind speed) available from the 
meteorological network employing the Monteith (1973) method adapted to 
a tropical forest (Villa Nova et. al., 1976). Based on detailed eddy correla­
tion methods, Shuttlesworth et al. (1988) have modified the empirical 
(bulk) formulation fitted for the micrometeorological data and have shown 
that this model yields results within 15 to 20% of the actual fluxes, and 
describes the seasonal cycle. Given the variability in the base climatologi­
cal data, it is not always possible to calculate ET even on a monthly basis 
for all years. In some cases where data are limited, it may be necessary to 
calculate the monthly or annual means, and to derive the distribution of 
these averages from theoretical considerations (e.g., Eagleson, 1978). 

Fixed station data are not extensive enough to characterize the spatial 
variability of ET in the same way that the precipitation data can be used to 
characterize the spatial variability of the precipitation process. A signif-



12. Synoptic-Scale Cycles in the Amazon 261 

icant problem is to determine the actual mesoscale distribution of the 
energy terms from which ET is calculated as a function of vegetation type. 
Remote sensing of the radiances corresponding to these energy terms may 
be the best way to do this. Within the likely evolution of the capability for 
detecting these terms over remote basins, however, the challenge is large. 
For example, at the present time it is not possible to measure soil moisture 
under dense tropical forest canopies using remote sensing. The problems 
of remote sensing of ET and soil moisture are reviewed elsewhere in this 
volume. 

Modeling: From Local to Regional 

A better understanding of the small-scale processes and their relation to 
vegetative cover represented in the lag phenomenon discussed above is 
necessary before the runoff process can be parameterized at the mesoscale. 

Surface Hydrology in General Circulation Models 

Driven by the need to improve the representation of the land surface pro­
cesses in GeMs, models of these interactions have been developed recent­
ly which take into account morphological and physiological characteristics 
of the vegetation as well as physical characteristics of the soil. These in­
clude the Biosphere-Atmosphere Transfer Scheme (BATS) of Dickinson 
and Henderson-Sellers (1988) and the Simple Biosphere Model (SiB) of 
Sellers et al. (1986). 

The transfer of sensible heat and water vapor between the canopy/ 
ground and the atmosphere is modeled using the "resistance analogue" 
concept (Monteith, 1973). However, the characteristics of each major type 
of vegetation/soil are taken explicitly into consideration in the calculations, 
while the morphological properties of the vegetation are taken into 
account in the calculations of the transfer of momentum between the 
canopy and atmosphere (the drag exerted by the vegetation on the atmo­
sphere) as well as in the calculations of surface albedo. Of paramount im­
portance for the transfer of water vapor from the soil to the atmosphere is 
the stomatal resistance that, by and large, controls this transfer. Another 
important factor in the transfer of water vapor from the canopy is the 
evaporation of precipitation water intercepted in the canopy (interception 
loss). SiB and BATS explicitly calculate this loss, as well as a simplified 
formulation of the soil water balance, including runoff. Given the prop­
erties of vegetation and soils and soil moisture, plus wind speed, air 
temperature and humidity at a reference level above the canopy, visible 
and near-infrared (rR) incoming solar radiation, and precipitation, these 
models can be used to calculate the fluxes of vapor more accurately than 
models that use simple energy balance formulations. 
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Model Application to the Amazon 

The BATS model has been used to begin to assess the effects of Amazon 
deforestation on the atmosphere (Dickinson and Henderson-Sellers, 
1988). Application of the SiB to the Amazon is in its initial phase (P. Sellers 
and C. Nobre, unpublished data). For application of the SiB or BATS­
type models to the Amazon, the models have to be calibrated with 
measurements of air temperature and humidity above the canopy, pre­
cipitation and downward fluxes of solar and near-IR radiation, and wind 
speed for typical ecosystems (terra firme forests, igapo forest, campina 
forest, floodplain vegetation, and vegetation of areas under use such as 
grass). 

How a physical model developed for a particular set of conditions can be 
used to scale to larger areas, until ultimately direct comparisons with the 
independently calculated regional water balances can be made, is a chal­
lenge. Site-specific calibrations, which in themselves require field work of 
almost heroic effort, still do not address the prol5lem of parameterization 
over larger areas. The long-term challenge for remote sensing is to be able 
to measure the parameters required to calibrate these models directly. 

Once mean properties of vegetation and soil are known for a typical 
catchment area in the Amazon, climatological series of the precipitation 
and atmospheric parameters could be input into one-dimensional versions 
of these models to calculate the time evolution of ET, runoff, and soil 
moisture. Given a historical sequence of input data, these models can be 
integrated in time to give the variation in ET, soil moisture, and runoff. 

Sensitivity analyses could then be used to determine which basin-scale 
processes control the large-scale dynamics. Categories of variables to be 
aggregated include spatial invariant variables (solar radiation), surface­
condition-dependent variables (infiltration, reflected radiation), and 
surface-dependent time-invariant variables (soil properties) (Jackson, 
1985). These processes would be singled out for more detailed modeling 
and, to the extent possible and necessary, enhanced data collection. 
Studies of the sensitivity of the model calculations can be done for different 
vegetation/soil types of the Amazon and for different scenarios of land use, 
given the same input data. 

From Local to Regional Hydrology with Remote Sensing 

A central issue in our research scheme is how to scale from the regional 
water balances (which can be defined unambiguously) down to spatial and 
temporal scales at which a knowledge of actual processes, as represented 
DY the physical-scale model, can be represented. Superimposed on the hy­
drological and chemical problem is the scaling inherent in going from 
remote detection of properties on the scale of the l-km pixel, which is 
practical for large areas and is characteristic of A VHRR (or Eos-era 
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MODIS and HMMR), down to pixels on scales of 10 to 100 m (MSS, TM, 
SPOT, and Eos-era HIRIS, or SAR). 

Given the nature of the canopy, it would be difficult to separate out 
individual terms of the water budget for detection. Rather, a more produc­
tive approach may be to ask the question, "Is there a characteristic spectral 
signature from the canopy indicative of the hydrological condition (as de­
termined by ground measurements) of a site?" 

We are currently investigating this problem using Landsat MSS and TM 
data. Our preliminary results indicate that by using a spectral mixing model 
that accounts for subpixel scale heterogeneity, we are able to measure the 
fraction of the forest canopy that has lost green leaves. This defoliated 
fraction of the forest increases in area during the dry season in the terra 
firme and increases in the floodplain when the forest is flooded. In the 
future, the lO-nm spectral resolution of HIRIS will allow measurement of 
subtle shifts in the depths and widths of water and chlorophyll absorption 
bands in green biomass. During dry seasons, it may be possible to detect 
changes in these absorption bands as a function of water stress by calibrat­
ing to ground stations. Leaf area index (LAI) would also be expected to 
decrease during dry seasons, thereby decreasing ET. Improved measures 
of LAI from Landsat and HIRIS will be made possible by using a spectral 
mixing model that accounts for the fractions of green vegetation, stem and 
branch biomass, soil, and shade (Adams et ai., 1989). As the amount of 
deforestation increased, it would be increasingly important to account for 
soil exposed at the subpixel scale. 

New results from the NASA A VIRIS aircraft images suggest that it may 
be possible to make direct measurements of water vapor in and over 
vegetation canopies using narrow bandpasses centered in the weak water 
bands (e.g., at 960 nm). This suggests the possibility of using HIRIS in 
conjunction with thermal data (TIGER/ITER) to image the water vapor 
concentration associated with Amazon vegetation. By calibrating such im­
ages at ground stations, it may be possible to understand better the spatial 
and seasonal changes in ET at the 30-m pixel scale and to extrapolate to the 
MODIS scale. 

Subpixel mixing at the l-km scale is not well understood at present. It is 
also scene dependent. If spectral mixing at the 30-m scale using TM and 
HIRIS can be understood in terms of processes observed at ground sta­
tions, the same spectral end-members could be used with MODIS data on 
a regional scale. We are currently studying scaling from Landsat TM to 
AVHRR for the Amazon; however, the waveleqgths of AVHRR limit the 
use of spectral mixing models. 

In this fashion, a spectral model can be developed to relate hydrological 
properties to canopy-and thus site-water status. Then the hydrological 
status for larger areas could be predicted by applying the model to a de­
tailed vegetation description for that area (as represented in a Geographic 
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Information System model). Results would be compared with the scaled­
process hydrology calculations resulting from the comparison of the re­
gional balances with the scaled physical model. 

Coupling of Hydrological and Biogeochemical Cycles 

The Riverine Perspective 

Runoff is important not only as an output from land but also as the trans­
port medium for sediment and nutrients. The concentration of major ions 
in the tributaries, and subsequently in the main stem, is strongly influenced 
by the weathering regimes in the respective catchments. Superimposed on 
these patterns are the effects of nutrient cycling by the vegetation. Outflow 
from a tributary thus represents the net result of the hydrological and 
biogeochemical transformations occurring in its drainage basin. The main 
channel of the Amazon then represents an integration of all that took place 
upstream in the respective catchments. 

Results to date of CAMREX show characteristic differences in the pat­
terns of discharge, sediment and nutrient concentrations, and geochemical 
tracers among the different tributaries. To link observed patterns of river 
chemistry to terrestrial processes, we can start by considering the relative 
fluxes of inorganic and organic components from the respective tributaries. 
For example, to compare drainage basins of different sizes, Richey and 
Ribeiro (1987) computed the area-normalized flux of water and nitrate for 
the major tributaries. Clearly, such analyses must take into consideration 
differences in nutrient supply via geochemical weathering (sensu Stallard 
and Edmond, 1983); the challenge is separating the biological from purely 
geochemical signals. 

The organic composition associated with total suspended sediments re­
mains relatively constant for a particular site (Hedges et aI., 1986; Richey 
et aI., 1990b). The ability to be able to determine basin-wide sediment 
concentrations yields critical information not only on sediment transport/ 
erosion but also on links to biogeochemical cycles. 

We have used MSS images of the Amazon to map changes in the near­
surface turbidity in channel and floodplain environments (see Color Plate 
6). Field work near Manaus during similar flow conditions has verified the 
general turbidity patterns observed in the MSS image (J. Richey and L. 
Mertes, unpublished data). The mixing model approach used (Adams et 
aI., 1989) can be employed to calibrate and estimate the actual changes in 
surface turbidity across the floodplain. The calibration of the MSS Landsat 
scenes can use semiempirical methods to calculate the surface turbidity 
visible in the images. Non-linear regressions between Landsat signals and 
near-surface turbidity measurements can have correlations as high as 98%. 

The modeling and MSS-based determination of sediments could be 
expanded to all major tributaries. Model development could be expanded 
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to relate sediment changes to topography and landuse change. The appli­
cation of TM, and ultimately HIRIS, data to finer-scale determinations 
of sediment concentration, and possibly direct assessment of chemical 
parameters (e.g., highly colored humic materials), could be explored. 

The Terrestrial Perspective 

Research currently being developed elsewhere that emphasizes the direct 
application of remote sensing to such biospheric processes as decomposi­
tion, primary production, and biogenic gas exchange could be incorpo­
rated. This information is summarized elsewhere in this volume. 

Define Basin Structure: GIS Model Setup 

The long-term intent is to be able to track the time rate of change of 
vegetation in the basin at several levels of resolution, including (1) the 
presence/absence of primary forest; (2) the relative distribution of primary 
forest, regrowth, savannah, and scrub; and (3) the canopy architecture 
associated with the different vegetation communities. Then the objective is 
to relate properties of the hydrological and biogeochemical cycles to these 
properties. 

Given the multisource, complex data requirements and modeling inter­
faces needed, a Geographic Information System (GIS)-based model is a 
logical technology to express such a model. The "region" represented by 
each grid is defined for progressively finer resolution by the drainage net­
work, starting at the major tributary basin level (105 to 106 km2) and pro­
ceeding to local basins (103 km2). 

For initial setup, existing data sets for topography (RADAM), vegeta­
tion cover, and soils can be used. Vegetation maps from composite 
A VHRR images, tuned with Landsat, represent the type of feasible work 
required to update the model description. The vegetation description could 
be upgraded by assembling composite A VHRR images over the entire 
basin. Increased resolution of canopy structure could be investigated by 
application of mixing models with Landsat TM combined with field 
measurements (J. Adams, unpublished data). 

Presentation 

Potential output products of this research plan might include: 

1. Mass balance summaries of hydrological and biogeochemical param­
eters by grid area of the Amazon basin, including precipitation, ET, 
river discharge, meteorological variables, biomass, soils, topography, 
and riverborn sediments and elements. 

2. Basic data going into the mass balance calculations. 
3. Color-coded mosaics of these data assembled for local regions, and ulti­

mately for the basin. 
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The requirements of this research plan include access to a series of three­
dimensional fields derived from model output, geographic information sys­
tems, and near-simultaneous observations of the earth from the current 
and next generation of satellites; that is, global data sets. Virtually all such 
data. particularly satellite images, must be processed using specialized 
computer facilities designed for computations on large arrays, the results of 
which are presented in image form. These images may be maps of various 
types, or photographic images where tones or colors are keyed to specific 
parameters. 

Few laboratories in the country are equipped to process large satellite 
images or mosaics of images. For example, most university laboratories 
cannot store, process, and read out a full Landsat TM scene without first 
subdividing the data and reassembling the images. It is even more difficult 
to assemble multiple scenes or other types of data covering large areas 
without adequate equipment and facilities. 

The research approach described here relies on a multidisciplinary 
approach to describing drainage-basin-scale hydrological and biogeochem­
ical cycles in the Amazon basin. As stated above, we believe that the 
expertise and technology currently exist to make significant progress on a 
problem of global importance. 
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13. Remote Sensing of Marine Photosynthesis 

John S. Parslow and Graham P. Harris 

The oceans occupy 70% of the earth's surface, and estimates of their con­
tribution to global photosynthesis range from 10% to 50% (Perry, 1986) or 
20 to 50 X 1015 g C y-l (McCarthy, 1984; Martin et aI., 1987). Photosyn­
thesis in the oceans is of interest as the basis of marine food chains (Ryther, 
1969) and for its role in global biogeochemical cycles (e.g., Sundquist, 
1985). The nature and dynamics of marine producers differ markedly from 
those of their terrestrial counterparts. The pool of living plant carbon in 
the oceans is small (about 0.5 to 5.0 gC m-2) and consists principally of 
microscopic unicellular organisms that turn over rapidly, on time scales of 
the order of days (Harris, 1980a). These turnover rates are thought to be 
controlled primarily by light and nutrient limitation. Because of the low 
biomass concentrations, estimates of photosynthetic rates have been based 
primarily on the measurement of rates of incorporation of 14C-Iabeled iso­
topes in incubations (Harris, 1984). While there has been a long-standing 
discussion of the interpretation of these data (Peterson 1980; Harris, 1984), 
debate has recently intensified with the development of alternative meth­
odologies (e.g., Shulenberger and Reid, 1981; Jenkins and Goldman, 
1985). Evidence of the importance of extremely small cells (picoplankton) 
(Johnson and Sieburth, 1979, 1982; Platt and Li, 1986) and of incubation 
artifacts such as metal contamination (Fitzwater et aI., 1982) has cast furth­
er doubt on the large historical set of marine primary production estimates. 

Biological oceanographers also face an extremely difficult sampling 
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problem. The rapid turnover rates of phytoplankton mean that biomass 
and photosynthetic rates can change completely over periods of a few days 
(Harris, 1980a). Spatial patchiness and advection further complicate the 
interpretation of point samples (Harris and Griffiths, 1987). There is al­
ways a temptation to extrapolate from point samples to surrounding re­
gions, especially in the open ocean where there may be no obvious sign of 
horizontal spatial structure. Remote sensing has transformed our picture of 
the oceans by directly revealing mesoscale variation in sea-surface temper­
ature and chlorophyll. 

Thus in trying to resolve methodological inconsistencies, biological 
oceanographers have to contend with an inadequate sampling of spatial 
and temporal variation in biomass and productivity (Harris and Griffiths, 
1987). It is not clear to what extent discrepancies between point samples 
represent real variation, nor is it obvious how to compare point samples 
with estimates (e.g., oxygen utilization and particle traps) that integrate 
over space and/or time, but may involve othecassumptions concerning 
horizontal and vertical transport. Given these problems, the variation in 
global production estimates is not surprising. Recent evidence suggests 
that fluxes of direct significance to climate change may be even more de­
pendent on intermittent events, and subject to greater uncertainty as a 
result of sampling problems, than has previously been suspected. Remote 
sensing is vital to resolving the spatial and temporal variation, but extrapo­
lating from remotely sensed variables to fluxes will always depend on link­
ing remote measurements to estimates of in situ processes. The challenges 
involved in designing a sampling program to improve this link remain con­
siderable, as this chapter will discuss. 

Marine photosynthesis and climate change are potentially causally link­
ed at a range of scales. At scales of a few years to tens of years, changes in 
ocean and atmospheric circulation associated with climate change can be 
expected to change the spatial and temporal distribution of marine photo­
synthesis, with implications for marine food chains and commercial fisher­
ies. At the same time, it has been suggested that marine photosynthesis 
and the burial of carbon in marine sediments may playa major role in 
long-term (scales of thousands of years) fluctuations in atmospheric CO2 

and global temperatures (McElroy, 1983). Remote sensing can playa 
monitoring role, allowing us to detect changes in the distribution of phyto­
plankton biomass that are not apparent in point samples. It can be used to 
improve estimates of fluxes among key pools, including atmospheric CO2. 

Finally, it may be used to test models that couple physical, chemical, and 
biological processes at a regional or global level. 

This chapter begins with a discussion of the remotely sensed parameters 
that may be relevant to marine photosynthesis. It then reviews simple mod­
els that link parameters that may be observed remotely (predominantly 
surface pigment concentrations) to in situ photosynthetic rates. Finally, the 
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link between photosynthesis, other flux estimates, and climate change is 
discussed. 

Remote Sensing 

This section will concentrate on the remote sensing of the oceans in the 
visible region of the spectrum to obtain estimates of phytoplankton pig­
ment concentrations and other constituents. Other variables, such as solar 
irradiance at the surface, sea-surface temperature, wind speed, sea-surface 
height, and surface roughness, can be estimated from satellite. These may 
directly affect photosynthetic rates, or may force or reflect physical proces­
ses controlling mixing and advection. This chapter will not discuss the 
measurement techniques for these variables, but will refer to their applica­
tion later. 

The reflectance spectrum of the oceans is now understood quite well in 
terms of the scattering and absorption of light by various constituents with­
in the water column. Pure water has an absorption minimum in the 
blue, strong absorption in the red, and increased scattering at short wave­
lengths, so that the upwelling radiance from very clear oligotrophic water 
is heavily dominated by wavelengths of less then 500 nm. Chlorophyll, 
with its strong absorption peak in the blue (440 nm) and absorption mini­
mum in the green (550 nm), tends to reduce the ratio of blue to green light, 
and this is the basis of current techniques for estimating chlorophyll con­
tent. The spectrum, and blue-green ratios in particular, are also affected 
by other constituents such as dissolved organics (yellow substance) and 
nonphototrophic particulates. The empirical relationships currently used 
to estimate pigment concentrations rely on the fact that these other con­
stituents tend to covary with chlorophyll, at least in open ocean (so-called 
Case I) waters (Gordon and Morel, 1983). 

The upwelling radiance in the red tends to increase with chlorophyll 
content, as the increased backscattering from particulates outweighs the 
increased absorption. Upwelling radiance spectra also contain a contribu­
tion near 685 nm owing to passive solar fluorescence (Gower and Borstad, 
1981; Topliss, 1985). Although this peak is very small in magnitude, it is 
more tightly coupled to living phytoplaf).kton than other spectral features. 
It may also reveal aspects of the physiological state of phytoplankton in the 
surface layer (Topliss and Platt, 1986), a possibility that will be discussed 
later. 

To date, experience in the remote sensing of phytoplankton from space 
has come primarily from the Coastal Zone Color Scanner (CZCS) carried 
by Nimbus-7. This experimental sensor operated from 1978 to 1986 and 
measured upwelling radiance in four narrow visible bands at 443,520,550, 
and 670 nm, one broad near-infrared (IR) band, and one thermal IR band, 
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with a surface resolution of about 0.8 km. There is now a large body of 
literature on the processing of CZCS data to obtain estimates of phyto­
plankton pigment concentration and the diffuse attenuation coefficient 
(e.g., Gordon and Morel, 1983; Sturm, 1983; Robinson, 1985). This pro­
cessing occurs in three stages: 

1. The use of calibration data to convert raw counts to radiance. 
2. The removal of atmospheric effects (primarily aerosol and Rayleigh 

scattering) to obtain water leaving radiance. 
3. The use of empirical relationships to estimate pigment (chlorophyll-a 

plus phaeopigment) concentrations from blue-green radiance or 
reflectance ratios. 

This is not the place for an exhaustive review but some important les­
sons with implications for future sensors have been learned. Calibration is 
particularly important (Gordon, 1987), as most of the signal (80 to 90%) 
must be removed as theoretically calculated ~ayleigh radiation. A slmv 
drift in the sensitivity of CZCS has had to be corrected by assuming that 
the reflectance of certain oligotrophic ocean areas is constant in some sta­
tistical sense (Gordon et aI., 1983). Setting aside questions of accuracy, this 
is hardly a desirable basis for monitoring response to climate change. 

The removal of aerosol scattering is particularly difficult and currently 
depends on assumptions about the shape of reflectance spectra and 
assumptions of horizontal homogeneity in aerosol scattering spectra (Gor­
don and Clark, 1980a; Gordon and Morel, 1983). Plans for future sensors 
include improved spectral resolution and extensions into the near-IR. It is 
hoped that this will allow aerosol correction over a greater variety of water 
types. 

The restriction of accurate estimates of pigment concentration to Case I 
waters may not be of particular significance to studies of global oceanic 
production. However, the near-shore waters may be the dominant sites of 
some important processes, such as carbon burial in sediments (Walsh, 
1984). Given better spectral resolution, it may be possible to use more 
sophisticated reflectance models and to derive more robust concentration 
estimates for a number of independently varying constituents (Gordon et 
aI., 1988). These models should have greater applicability in near-shore 
waters. 

The ocean reflectance depends primarily on optical properties within 
one extinction depth (Gordon and Clark, 1980b), and pigment estimates 
from reflectance correspond roughly to this layer. Chlorophyll and 
phaeopigment both contribute to absorption, and best empirical correla­
tions have been obtained with their sum, which is generally referred to as 
CK (mg m-3). Typical estimated errors in Case I waters are of the order of 
20% to 40%, although discrepancies between empirical relationships from 
different regions may exceed this level (Gordon and Morel, 1983). An 
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empirical relationship has also been used to estimate the diffuse attenua­
tion coefficient K from band ratios (Austin and Petzold, 1981). 

Pigment Concentration and Photosynthesis 

Statistical Approaches 

Given that the basic remotely sensed variable is pigment concentration CK 
in the surface waters (i.e., depth z < K-l), the problem is to relate this to 
photosynthetic rate and other fluxes or biomass variables of interest. In 
point samples from a particular depth, the ratio of photosynthetic rate to 
chlorophyll content, known as the assimilation number or photosynthetic 
capacity (Harris, 1978), is commonly measured using 14C incorporation 
and extracted chlorophyll-a. However, the variable of interest here is the 
depth-integrated primary production PT (mg C m-2 d-1), determined by 
vertical profiles of phytoplankton biomass and assimilation number, which 
depend in turn on associated vertical profiles of physical and chemical con­
ditions. Additional assumptions and approximations, based on historical 
experience and theoretical development (Harris, 1978), are required to 
make this connection between CK and PT' 

The simplest approach is to look for a direct empirical relationship be­
tween PT and CK' By combining data from cruises ranging from the Arctic 
through the subtropical gyres to the Peruvian upwelling, Eppley et al. 
(1985) obtained a log-log plot showing a reasonably linear relationship 
over several orders of magnitude, with PT = 1,000 C~·5 (mg C m-2 d-1). 
The scatter within and between cruises about this line corresponds to an 
uncertainty of about one order of magnitude. According to this rela­
tionship, the ratio PT/CK declines as CK increases. An explanation for this 
behavior will become apparent shortly. Eppley et al. found a slight season­
al effect, and strong regional differences in the ratio PT/CK, but these seem 
likely to be due primarily to differences in CK, given the strong non­
linearity. 

A sequence of papers has attempted to analyze the factors controlling 
PT in the southern Californian bight (Smith and Eppley, 1982; Smith et aI., 
1982; Eppley et aI., 1985). Early results (Smith and Eppley, 1982) showed 
that 65% of the variance in PT could be explained by a regression of 
10g(PT) on a temperature anomaly and day length. Smith et al. (1982) 
found that the same variables explained the same percentage of the 
variance in PT/CK' In the data considered by Eppley et al. (1985), a regres­
sion of 10g(PT/cK) on 10g(cK), temperature anomaly and day length 
yielded an r2 of 0.56. Regression r2 values do not necessarily give a good 
indication of the prediction errors. Eppley et al. (1985) did test the predic­
tive value of their regression on several cruises excluded from the regres­
sion calculations. The results were fairly sobering: the regression line ex-
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plained only 18% of the variance for these cruises, although errors were 
dominated by one anomalous cruise. 

One might conjecture that at least part of the variability in the rela­
tionship between PT and CK is attributable to variability in the ratio of 
surface biomass to depth-averaged biomass. Smith and Baker (1978) in­
vestigated the relationship between the average chlorophyll concentration 
<C> (mg m-3) in the euphotic zone (above the 1 % light depth) and sur­
face chlorophyll CK, using data from a variety of locations. A log-log re­
gression yielded 

<c> = 0.95 C~·788, with a r2 of 0.91 

Brown et al. (1985) found a similar trend using data obtained in the North 
Atlantic, with 

<c> = 1.10 C~·89 

Note that <C> tends to exceed CK when the latter is low, whereas the situa­
tion is reversed when CK is high. In oligotrophic areas where CK is small, 
there is commonly a pronounced subsurface chlorophyll maximum (e.g., 
Venrick et aI., 1973), whereas in eutrophic waters with high biomass, max­
imum concentrations are found close to the surface. 

Light Dependence and Depth Integration 

The nonlinearity in the relationship between <C> and CK is too weak to 
explain the strong nonlinearity in PT/CK' The latter is more readily ex­
plained by a consideration of the dependence of photosynthesis on light 
intensity I (E m-2 h- 1) (E = Einstein). For a given phytoplankton cul­
ture exposed to different light intensities, photosynthetic rates normally 
increase linearly at low light intensities, saturate at higher light intensities, 
and possibly decrease at still higher intensities (for reviews see Harris, 
1978, 1980b; Kirk, 1983). The portion of the curve that does not involve 
photoinhibition can be described by any two of three parameters: the 
initial slope a(mg C mg Chla- i E-I m2) (Chla = Chlorophyll-a), the max­
imum assimilation number Pm ax (mg C mg Chla- i h- 1), and h (E m-2 

h- 1), which equals Pmaxla. Various mathematical forms have been pro­
posed for the P versus I curve: a good review can be found in Jassby and 
Platt (1976). 

Given the depth dependence of Chla, light intensity, and appropriate P 
versus I parameters, it is possible in principle to calculate PT (mg C m-2 

h-1) by integrating over depth. There have been many papers on this 
theme, including Tailing (1957), Steele (1962), Harris (1978), and Ban­
nister (1979). The integration can be performed analytically, and simple 
formulae for PT obtained, under the simplifying assumptions that the 
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chlorophyll-a concentration c, the diffuse attenuation coefficient K, and the 
P versus I parameters are constant over the euphotic zone. The light in­
tensity at depth z is then Iz = I"e- K .z , where I" is surface irradiance. For 
example, using Smith's (1936) formula: 

p= Pmax 1 
Uk + J2)O.5 

integration gives: 

P _ <c>P max In(J* + (1 + 1*2)05) 
T- K 

where J* = I,jIK (Platt, 1986). Arguing that J* is large, TaIling (1957) 
approximated this by: 

PT = <c>Pmax In(2 J*)/K 

Alternatively, using Steele's (1962) formula, 

P= ale-11eh 

which includes photoinhibition, one obtains 

P _ <c>Pmax e (1- e-I*le) 
T- K 

An additional complication is provided by the diurnal cycle in 10 , We are 
primarily interested here in daily areal production PTin mg C m-2 d- i . We 
could use a P versus I curve from daily incubations, so that I and I" repre­
sent daily average irradiance, and multiply the above formulas by day 
length. Alternatively, we could use an "instantaneous" P versus I curve 
and integrate the expressions over time, given Io(t) (TaIling, 1970). There 
are potential problems in both approaches. Diurnal changes in photo­
synthetic parameters have long been documented (e.g, Yentsch and 
Ryther, 1957a, Harris, 1978), so that a single short-term P versus I curve 
may not be applicable throughout the day. On the other hand, if cells in 
situ are mixed through a range of depths, they may not be exposed to very 
high light intensities for prolonged periods, and saturation or photoinhibi­
tion in long-term incubations at shallow depths may be misleading (Harris 
and Piccinin, 1977; Marra, 1978). 

The K Effect 

There is one common feature of these simple models that is worth com­
ment: PT is inversely proportional to the diffuse attenuation coefficient K. 
This in itself can account for a major part of the nonlinear relationship 
between PT and CK described by Eppley et al. (1985). Phytoplankton are 
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responsible for a significant but varying proportion of light attenuation. If 
they accounted for a fixed proportion (K proportional to <c», then PT 

would be independent of <c>. In practice, the relationship between K and 
c is affected by the absorption and scattering attributable to pure water and 
to constituents that vary in a nonlinear way with pigment concentration 
(Smith and Baker, 1978). An old relationship attributable to Riley (1956) 
is: 

K = 0.04 + 0.0088<c> + 0.054<c>2/3 

Using this relationship, a plot of log[ <c>1 K] versus log[ <c>] is only 
mildly nonlinear for <c> between 0.1 and 10 mg m-3 , and has an average 
slope of 0.57. If one includes the relationship between <c> and CK found by 
Brown et al. (1985), the formulas predict that PTshould be proportional to 
CKO. 51 over a similar range. These simple models explain Eppley et al. 's 
(1985) empirical regression surprisingly well. (Note that the power law will 
break down, and integrated production will saturate, at very high values of 
<c>; see Takahashi and Parsons, 1972). 

Two Approximations 

The point of using the simple models is not to derive the empirical regres­
sion, but to explain some of the scatter about it. Their usefulness will de­
pend on the extent to which variations in 10 , a, and P max can be predicted. 
Two approximations have been proposed to reduce these requirements. 
Tailing (1957) and others (e.g., Harris et aI., 1980) have argued that 
1* = IolIK tends to have a constant value around 5 and that P T is relatively 
insensitive to changes in 1* . All three formulas then agree that 
P T = <c> P max2.3IK, and only one parameter need be estimated, assum­
ing <c> and K can be remotely sensed. In contrast, Platt (1986) has sug­
gested that saturation should be ignored, leading to the approximation 
P T = alolK.The error involved in ignoring saturation, when diurnal varia­
tion in 10 is taken into account, is estimated to be about 50% when 1* = 5. 
(Both arguments calculate 1* with respect to maximum or noon values of 
10') The second approximation requires that 10 be known, but if I" can be 
calculated from remotely sensed cloud cover (Gautier et aI., 1980; Bishop 
and Marra, 1984), then only one parameter must be estimated. 

Tailing's approximation (PT = 2.3 P max <c>1 K) was used by Harris et al. 
(1980) to consider Great Lakes data, and also by Eppley et al. (1987) for 
data in the eastern tropical Pacific. Harris et al. (1980) plotted PT versus 
P max <c>IK and observed slopes ranging from 1. 75 to 2.47 over three years 
and two locations. The variation in PT about a line of slope 2.3 was about 
±50%. Values of P max in this eutrophic environment were low, ranging 
from <0.5 to about 3.0 mg C mg Chla- 1 h- 1, depended rather weakly on 
temperature, and showed a stronger dependence on changes in the ratio of 
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euphotic zone depth Ze to mixing zone depth Zm. However, variations in 
P max for a given euphotic zone depth exceeded 1 mg C mg Chla -I h -I. 
Eppley et al. (1987) regressed PT/CK on P max/K using data collected in the 
eastern tropical Pacific in 1967 to 1968. The regression line had a slope of 
2.3, and explained 71 % of the variance. 

These studies suggest that the P max approximation is useful in the field, 
when P max is measured using incubations. In order to use this approxima­
tion for remotely sensed data, we must be able to predict P max. This is the 
most commonly measured photosynthetic parameter, and there is a very 
large set of accumulated field and laboratory measurements showing a 
wide range of values. A recent review (Kelly, 1989) reports values ranging 
from 0.2 to 20 mg C mg Chla- I h- I . Recent studies have tended to report 
higher values: the review by Parsons and Takahashi (1973) reported only 
one study with values exceeding 8 mg C mg Chla- I h- I , whereas eight of 
the papers cited in Kelly's review reported values exceeding this figure. 
Kelly notes that values reported for terrestrial plants rarely exceed 4 mg C 
mg Chla- I h- I and questions the high values being reported for phyto­
plankton. Possible methodological problems are discussed in the following. 

Why should P max vary so widely? Physiological changes in Pm ax are 
known to result from adaptation to different light and nutrient regimes. A 
primary mechanism of adaptation in phytoplankton involves changes in the 
C: Chla ratio, 0 (Jorgansen, 1969; Laws and Bannister, 1980). It is the 
specific growth rate fL(h- I ), which is important to phytoplankton popula­
tion dynamics; this is related to assimilation number by: 

P(I) 
p.,=---r 

o 
where r is the carbon-specific respiration rate. Within certain constraints, 
changes in I may be compensated for by changes in 0, especially if the 
growth rate is controlled by other limiting factors, such as nutrient supply. 
Whether P max will also change depends on the rate-limiting step for P max' 

and the nature of changes in chlorophyll per cell. For example, if the rate­
limiting step lies in the electron transport chain, and a decrease in 0 is 
brought about by increases in the photosynthetic unit (PSU) number, P max 

will not change (Prezelin, 1981). However, if the rate-limiting step lies in 
the dark reaction, and enzyme concentrations can vary independently of 
chlorophyll content, large variations in P max can result. 

Platt (1986) has tested the alternative linear approximation directly, us­
ing eight data sets from different regions of the North Atlantic, and regres­
sing PT/CT on 10 • Here, CT is the total depth-integrated chlorophyll (mg 
m-2),which is related to <c> by CT = <C> Ze, where Ze is the depth of the 
euphotic zone. By taking Ze as the 1 % light depth or 4.6/K, one obtains 
CT = <c>4.6/K. The linear approximation then becomes: 
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or, in Platt's formulation, 

with w = aI4.6. The regressions using the North Atlantic data were general­
ly significant, explaining 60% to 86% of the variance, with values of!/J 
ranging from 0.31 to 0.66 (mg C mg Chla- I E-I m2). These correspond 
to values of a ranging from 1.4 to 3.0 (same units). In the Bedford Basin, 
directly measured values of a, divided by 4.6, exceeded the calculated 
value of !/J by more than two times. Platt (1986) attributed the major part of 
this discrepancy to the error involved in ignoring light saturation, as 
observed values of]* were about 5. Platt et ai. (1988) consider this approx­
imation further, examining errors associated with the assumption of verti­
cal homogeneity as well as the effects of light saturation. 

The linear approximation also appears to be potentially useful, but we 
must again consider our capacity to predict a. A survey of some recently 
published results from both field and laboratory studies yielded values of a 
ranging from 0.3 to 15, with most in the range 1 to 10 mg C mg Chla-1 
E-1 m2 . There is evidence of phylogenetic and physiological variation in 
a, which is often analyzed as the product of two parameters: an absorption 
coefficient kc (m2 mg Chla-1) and a maximum quantum efficiency cPm (mol 
C fixed (E absorbed)-I). Measured values of kc range between 0.005 and 
0.021 (Harris, 1978; Kirk, 1983). Variations in the ratio of ancillary pig­
ments to Chla, in the spectrum of incident light, and in the packaging of 
chlorophyll within the cell, can all affect kc (Harris, 1978, Falkowski et aI., 
1985; Morel et aI., 1987; Sathyendranath et aI., 1987). The theoretical 
maximum for cPm is 0.1 to 0.125, but observed values range from 0.02 to 
0.11 (e.g., Falkowski et aI., 1985; Cleveland and Perry, 1987; Sathyendra­
nath et aI., 1987). There appears to be a tendency for stressed cells to have 
low values of cPm, suggesting that entire photosynthetic units may be inacti­
vated. Taking kc = 0.02 m2 mg Chla -1 and cPm = 0.10 gives an upper bound 
for a of 20 mg C mg Chla--1 E-I m2 , which exceeds the observed values 
by some margin. 

The reported values of a vary far more widely than the relatively re­
stricted range of !/J values reported by Platt (1986). It is not clear whether a 
is more conservative in the ocean than laboratory studies suggest, or 
whether there are compensating effects owing to depth integration, or 
whether the data set analyzed by Platt is completely representative. It is 
also worth remembering that the !/J values reported by Platt are themselves 
averages over cruises or regional data sets. The extent of variations in !/J 
among individual stations was not reported. 

Topliss and Platt (1986) have reported an inverse correlation between 
a and the fluorescence efficiency 1] (E emitted/E absorbed) in observa­
tions from the North Atlantic. They have suggested that it may be possible 
to measure 1] remotely by measuring the fluorescence peak in upwelling 



13. Remote Sensing of Marine Photosynthesis 279 

radiation near 685 nm, and hence to predict some of the variation in a. The 
inverse relationship between a and 1] presumably reflects an inverse rela­
tionship between 4>m and 1], which suggests an alternative approach to de­
termining PT remotely. The reflectance spectrum that is actually measured 
is affected by phytoplankton in so far as they absorb and scatter light. The 
current empirical formulas for estimating CK do not discriminate scattering 
and absorption by phytoplankton and other constituents. If this becomes 
possible with better spectral resolution and more sophisticated reflectance 
models (e.g., Gordon et ai., 1988), remote sensing may provide estimates 
of kc ' CK directly. It may then be more useful to write the linear approxima­
tion as 

PT = cPm(kc cK)Io 
K 

at least to the extent that 4>m is more predictable than a. If Topliss and 
Platt's (1986) results can be shown to apply widely, ifmay be possible to 
use the fluorescence peak to estimate 4>m. 

Adaptation to Environmental Fluctuations 

A steady-state continuous culture in the laboratory under fixed conditions 
of light and nutrient availability may exhibit a reproducible P versus 
I curve with fixed values of a and P max' One can study a number of such 
cultures and observe the dependence of these parameters on light and nu­
trient conditions under steady-state conditions. However, natural popula­
tions may never experience steady-state conditions of this kind (Harris, 
1980a). Vertical mixing, diurnal variations in light intensity, and episodic 
inputs of nutrients across themodines or from zooplankton excretion all 
provide perturbations on a variety of time scales (Harris, 1980a, 1986). 
Laboratory studies suggest that perturbations may produce larger changes 
in photosynthetic parameters than a range of steady-state conditions. In 
chemostats and turbidostats at a wide range of nutrient-limited and light­
limited growth rates, changes in P max and a at steady-state can be relatively 
small (Parslow and Harrison, unpublished data). However, depression of 
P max (and a) is widely observed on a diurnal basis in natural populations 
(Yentsch and Ryther, 1957), and in batch cultures entering senescence 
(e.g., Cleveland and Perry, 1987). A reasonable interpretation is that ex­
treme fluctuations in P max and a arise from imbalances between different 
rate-limiting steps, resulting from a failure or lag in physiological adapta­
tion. 

In a variable environment, the P versus I parameters become variables 
that change on time scales ranging from minutes to days or weeks. At short 
time scales, the exposure of cells to high light intensities for a few minutes 
may yield very different P max values than exposure over periods of hours or 
days (Harris, 1973; Harris and Piccinin, 1977; Marra, 1978). Cells are also 
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faced by diurnal changes in light intensity, and day-to-day changes in 10 , 

mixing rates, and nutrient supply rates (Harris, 1980a). From this point of 
view, the prediction of PT requires a dynamic model of adaptation at 
appropriate time scales as well as knowledge of the environmental driving 
variables. 

The choice between the two approximate models discussed above is 
partly related to adaptation time scales. The P max model assumes that 
physiological or community adaptation leads to values of lo/h around 5. 
If this adaptation occurs on time scales that are short compared with day­
to-day fluctuations in fo and Zm, then we would expect little fluctuation in 
lo/h. If lo/h equaled 5 exactly, the P max and a formulas would disagree 
by exactly a factor of 2.17, which represents the error incurred in the 
a formula in neglecting light saturation. This could be corrected for by 
dividing by 2.17; that is, 

p = aloc 
T 2.17K 

(This correction would approximately remove the discrepancy between 
a/4.6 and fJ- reported by Platt (1986) for the Bedford Basin.) At the other 
extreme, if adaptation is slow compared with day-to-day fluctuations in 10, 
the P max model will fail to explain the significant short-term variation in P T 

that will be predicted by the corrected a model. In practice, adaptation 
time scales are typically of the order of one to several days (Harris et al., 
1983) so that the real situation is likely to lie somewhere between these two 
extremes. It is conceivable that regional differences in the success of the 
models may reflect differences in the amount of short-term variance in 10 , 

K, and the depth of the mixed layer Zm. It is also worth remembering that 
some data sets may be biased toward high 10 . 

Given phylogenetic variation in photosynthetic parameters (Ryther, 
1956; Harris, 1986), changes in phytoplankton community composition in 
response to environmental perturbation may be of equal or greater impor­
tance in determining primary production rates (Harris et al., 1983; Harris, 
1986). The important driving variables are fluctuations in 10 , K, and Zm, 

which together determine the recent light history of the populations in sur­
face waters. These parameters are linked through the "critical depth" con­
cept of Sverdrup (1953) because respiration continues throughout the 
mixed layer and photosynthetic gains must exceed respiratory losses if the 
populations are to grow and survive. There is evidence of compensatory 
changes in hand P max in populations in surface waters (Harris, 1978) in 
response to changes in 10 and Zm. 

Nutrient Limitation 

Phytoplankton growth is thought to be nutrient limited over large areas of 
the ocean, including the extensive subtropical gyres. In these oligotrophic 
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waters, chlorophyll concentrations are very low and this limits PT , 

although somewhat countered by the correspondingly low values of K. The 
P versus I models treat light dependence explicitly and nutrient depen­
dence implicitly, in so far as it affects the parameters P max and cx. Early 
field data suggested that phytoplankton in these waters grew slowly and 
had low P max values. More recent measurements have produced higher 
P max values and claims that growth rates are relatively high (McCarthy and 
Goldman, 1979). 

There are a number of serious methodological problems in oligotrophic 
waters. Incubation artifacts such as metal contamination (Fitzwater et aI., 
1982) and damage to fragile cells during collection or filtering (Harris et 
ai., 1989) can lead to underestimates of photosynthetic rates. There is a 
problem of separating phototrophs and heterotrophs with overlapping size 
ranges, exacerbated by high apparent dark uptake rates of 14C (Harris et 
aI., 1989). While the subtropical gyres historically were regarded as con­
stant environments, there has been increasing attentibnto perturbations 
on time scales from seconds to months. The extent to which field data from 
different times and/or locations can or should be compared is increasingly 
questioned. 

The capacity of remote sensing to resolve some of these sampling prob­
lems is discussed in the following. However, until the methodological prob­
lems for captive water bodies are overcome, the resulting uncertainties 
about photosynthetic rates must extend to remote sensing estimates. 

Marine Photosynthesis, Carbon Flux, and Climate Change 

So far, we have discussed the problem of estimating depth-integrated pri­
mary production, PT. Climate modelers are primarily interested in marine 
primary production as a way of transferring carbon out of the surface layers 
of the ocean, where it exchanges relatively freely with the atmosphere, into 
the deep ocean or sediments. Several carbon fluxes can be considered, 
including transfer out of the euphotic zone, transfer into deep water, and 
burial in sediments. All are important, but on different time scales, ranging 
from the seasonal to the interglacial. 

Much of the carbon fixed within the euphotic zone is consumed and 
respired there, and the flux of organic carbon out of the zone can be 
thought of as net community production. This flux has been assumed to 
consist primarily of particulate detrital material, and it can then be mea­
sured directly using particle traps (e.g., Karl and Knauer, 1984; Martin et 
aI., 1987; Pace et aI., 1987). An alternative approach has been based on an 
assumption of nitrogen balance within the euphotic zone. Phytoplankton 
take up ammonia and urea, supplied by recycling of organic nitrogen with­
in the euphotic zone and nitrate that has been mixed into the euphotic zone 
from below. The flux of particulate organic carbon out of the euphotic zone 
involves an associated flux of particulate organic nitrogen that must, in 



282 1.S. Parslow and G.P. Harris 

turn, be replaced by inorganic nitrogen (nitrate) from below. The fraction 
F of photosynthesis based on nitrate uptake has been called "new produc­
tion" and assumed to equal the fraction exported (Eppley and Peterson, 
1979). 

Incubations using the stable isotope 15 N can be utilized to estimate Fin 
the field (Dugdale and Goering, 1967). These field data suggest a system­
atic variation in F with total primary production, summarized by Eppley 
and Peterson (1979) in the empirical relation: 

F= {0.0025 PT 
0.5 

PT < 200 mg C m-2 d- 1 

PT > 200 mg C m-2 d-1 

This relationship is consistent with a classical view of oligotrophic com­
munities as tightly coupled assemblages of small phototrophs and hetero­
trophs with efficient recycling of carbon and nitrogen. These communities 
are contrasted with eutrophic or bloom communities consisting of large 
producers and consumers, weakly coupled in time, that produce a large 
flux of organic material in the form of senescent cells and fecal pellets. 

From a remote sensing point of view, this empirical relation between F 
and Pr seems ideal, allowing an immediate jump from photosynthesis to 
carbon flux. However, the classical view of new production in oligotrophic 
systems has recently been challenged. A seasonal oxygen maximum that 
accumulates within the euphotic zone has been argued to represent net 
carbon fixation of as much as 50 g C m-2 y-l (Jenkins and Goldman, 
1985). This should equal the vertical organic carbon flux, if organic carbon 
does not accumulate. This interpretation is supported by apparent oxygen 
utilization rates at greater depths (Jenkins, 1982). As these waters were 
historically believed to support total primary production rates of less than 
50 g C m-2 y-l, the oxygen data and interpretation have aroused some 
debate (e.g., Platt and Harrison, 1986; Reid and Schulenberger, 1986). 
Even given higher recent estimates of total primary production of 100 to 
150 g C m -2 y-l, they still represent F values of 30 to 50%, compared with 
historical estimates of about 10% for these waters (Eppley and Peterson, 
1979). 

These discrepancies may be explained by new mixing models that pre­
dict higher average nitrate fluxes across the pycnocline as a result of intense 
mixing events that are intermittent in space and time (Klein and Coste, 
1984). According to this explanation, the major part of the carbon flux out 
of oligotrophic surface waters is due to occasional blooms, with decoupled 
grazing and low recycling, which have been undersampled by traditional 
field programs. The classical relation between F and Pr may still hold local­
ly, but cannot be applied to spatial and temporal averages. Alternatively, it 
has been suggested that classical results have paid insufficient attention to 
the vertical structure of the water column, and in particular to the deeper 
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portion of the euphotic zone, where new production may be proportionally 
much higher (Altabet, 1988). 

Remote sensing may contribute to improved estimates of carbon flux by 
providing improved spatial and temporal resolution. However, this resolu­
tion seems likely to be limited to approximately 1 km and one day in the 
open ocean under ideal conditions; compositing to avoid cloud may hide or 
blur the events of interest (Denman and Abbott, 1988). The horizontal and 
temporal dimensions of the postulated intermittent mixing events are not 
clear. Moreover, a mixing event can be detected remotely only by some 
surface expression, either in chlorophyll or a physical parameter. It is en­
tirely possible that the nutrient input and biological response are restricted 
to subsurface layers. Research is required to establish how much remote 
sensing can contribute to carbon flux measurements, especially since fluxes 
of carbon to the deep ocean or sediments are likely to be even more strong­
ly dominated by episodic events. 

Effects of Climate Change on Marine Photosynthesis 

One would not expect any direct effect of increased CO2 levels on marine 
photosynthesis: dissolved inorganic carbon (DIC) in the oceans is thought 
to be saturating. The response will depend instead on indirect effects on 
atmospheric and oceanic physics. Some (highly speculative) scenarios may 
be useful. The Pacific equatorial upwelling represents an important zone of 
total and new production, contributing as much as 20% or more of global 
new production according to Chavez and Barber (1987). Production in this 
zone is already known to be climate sensitive, being severely diminished in 
EI Nino years. Climate changes could lead to a long-term increase or re­
duction in production. 

One would expect the spring bloom in high-latitude regions to represent 
a significant source of new production. The lack of a spring bloom in the 
subarctic Pacific (Heinrich, 1962) has been the subject of continuing in­
terest. Present interest focuses on the role of microzooplankton grazers 
(Frost, 1987) and possible iron limitation (Martin and Fitzwater, 1988). 
However, the importance of the relatively shallow winter halocline re­
mains unclear (Evans and Parslow, 1985),. It seems possible that changes in 
ocean circulation could produce a spring bloom in this region, or result in 
the failure of the spring bloom in the North Atlantic. 

The subtropical convergence in the southern hemisphere has been im­
plicated as an important CO2 sink (Pearman and Hyson, 1986). It appears 
to be a highly productive region (Harris et al., 1987, 1988), and CZCS 
images suggest a permanent band of elevated chlorophyll (G. Feldman, 
personal communication). The satellite images also show a strong north­
south seasonal movement of the high-chlorophyll zone. It is not clear what 
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the effects of large-scale climate change might be, but fluctuations in zonal 
westerlies south of Australia, associated with the southern oscillation index 
(SOl), are known to produce strong interannual variations in the position 
of the front and in recruitment to commercial fisheries (Harris et aI., 1988). 

In most cases, monitoring of surface chlorophyll may be sufficient to 
detect regional effects of the kind discussed here. It is true in marine sys­
tems, as elsewhere, that apparent effects of climate change can only be 
judged significant against an adequate baseline picture of spatial and sea­
sonal patterns and 'normal' levels of interannual variability. The historical 
CZCS data, and the data provided by the ocean color satellites of the 
1990s, can make a vital contribution to this baseline. 

Conclusions 

It appears to be increasingly accepted that incubation of point samples at 
discrete stations cannot be used as a basis for reliable and accurate esti­
mates of regional fluxes. If important processes in the ocean are intermit­
tent and patchy, the kind of spatial and temporal coverage offered by satel­
lites is essential. However, satellites cannot be used to measure fluxes such 
as photosynthetic rates directly. We are then faced with the need to relate 
the variables that can be measured, especially surface pigment concentra­
tions CK, to fluxes of interest, such as PT. This review has shown that, while 
some of the variability in the ratio PT/CK can be explained simply by varia­
tion in K, there is a large residual variance that reflects physiological and 
phylogenetic variation, driven by fluctuations in the physical and chemical 
environment. This residual variance may be reduced somewhat by the use 
of regional or seasonal parameters, but a large part is due to fluctuations on 
the same spatial and temporal scales as CK or PT itself. 

It should be possible to use other remotely sensed data such as sea­
surface temperature, solar irradiance, surface roughness, and wind speed 
to help predict PT/CK (and other flux ratios). This is essentially a modeling 
problem, whether it is tackled using simple empirical models or more com­
plex realistic models. Both physical and biological processes will have to be 
addressed. As the process models must be based on data acquired from 
ship-based studies, sampling strategies must be designed using remote 
sensing to sample as full a range of environmental variation as possible. 
The difficulties involved should not be underestimated: a large number of 
intensive regional research programs will be required. 

The amount of effort and the type of measurements required will de­
pend on the time and space scales at which predictive ability is sought. 
Experience has shown the problems of bias in scaling up from sparse data: 
estimates of seasonal or annual production are better based on such tech­
niques as oxygen balance and sediment traps which average over space or 
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time. As in any modeling program that aims at prediction, success will 
depend on constant and conservative appraisal of the assumptions and un­
certainties associated with theoretical and empirical components. Many of 
the empirical studies cited have emphasized the proportion of the variance 
explained. For prediction, it is more important to know the magnitude of 
the residual variance. 

It is interesting to compare the problems of estimating biological fluxes 
in marine and terrestrial ecosystems. The problems of scaling up from phys­
iological studies of individual leaves, through a wide range of spatial scales 
and biological structures, to the scales appropriate to remote sensing or 
climate modeling are more obvious in terrestrial systems. The problem of 
relating remotely sensed data to plant biomass may be more difficult in 
terrestrial systems, but terrestrial structures tend to change more slowly, 
allowing some separation in time scales between structure and function. In 
the oceans, biomass changes rapidly and the obvious appeal of remote 
sensing is its ability to resolve these changes. However,-aS" emphasized ear­
lier, environmental forcing changes the relationship between biomass and 
fluxes on similar space and time scales. 

There is a lesson for marine scientists in the terrestrial use of biophysical 
models of water and energy exchange to link remotely sensed data to those 
parameters (e.g., vapor pressure deficit) that directly control terrestrial 
photosynthesis. In the ocean, a three-dimensional mesoscale model of 
upper-layer physics, driven by remotely sensed insolation, wind stress, and 
sea surface height and tested by comparing predictions of sea-surface 
temperature with observations, may provide the vertical structure and nu­
trient fluxes needed to determine photosynthetic parameters. A combined 
biological and physical model could be tested by comparing both sea­
surface temperature and surface pigment with remote observations. 

The estimation of fluxes would be just a component, rather than the 
ultimate goal, of models of the type just discussed. In fact, we should be 
wary of any attempt to reduce biological oceanography or remote sensing 
to the estimation of particular regional or global fluxes. The scenarios dis­
cussed suggest possible changes in spatial and temporal biomass and flux 
distributions resulting from climate change. The problem is to detect such 
changes against a noisy background of fluctuations on a range of time and 
space scales. There is a clear need to use existing archives (e.g., CZCS) to 
establish baseline patterns of short-term, seasonal and interannual variabil­
ity in biomass (and a need to develop statistical techniques to deal with 
such large, patchy, high-dimensional data sets). 

Static estimates of fluxes are also of little use in the prediction of climate 
change; which is currently based on general circulation models with very 
coarse spatial resolution. These models require process submodels to pre­
dict fluxes of energy, carbon dioxide, and so on in response to climatic 
driving variables. In the oceans, this will require coupled atmosphere-
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ocean circulation models with the biology included. One way forward may 
be to develop the diagnostic, mesoscale models discussed above, and then 
integrate these with global, prognostic climate models. 
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14. Analysis of Remotely Sensed Data 

Jeremy F. Wallace and Norm Campbell 

The prospects for obtaining new information on a global scale rest on suit­
able access to, and organization and processing of, immense volumes of 
remotely sensed and other data. This chapter addresses the issue of 
processing high-dimensional spectral data for extraction of information 
on surface conditions or processes. The second part of the chapter 
describes some statistical methods and developments relevant to the use of 
remotely sensed data for estimates of surface condition or classification. 

Remotely Sensed Data and Information Content 

Existing and future remotely sensed data present new opportunities, and 
also new problems, for research workers. The effective application of re­
mote sensing to measurements of global processes will require that research­
ers come to terms with the nature of the data, and with the huge volumes 
of data that will be available. The challenge is considerable in such areas as 
database storage, integration, and processing for a required purpose. 

Historical data records from existing instruments are enormous, and ex­
periences with applications of these data indicate the magnitude of the 
global monitoring task. It is already the case that the technology for data 
collection far exceeds the capacity to collect relevant ground data, and to 
integrate and process the data. The instruments proposed for the Earth 
Observing System (EOS) and other platforms will supply data in volumes 
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that are orders of magnitude greater than those now available. There is 
reason to hope that, buried within these masses of digits, there will be 
information of a scale and quality relevant to the understanding of global 
processes and climate. In fact, remote sensing provides the only prospect 
for obtaining measurements of some processes on the required scale. 

If the information is to be obtained, it is essential that the data handling 
and analysis methods be suited to the nature of the data and the problems. 
Otherwise, we are likely to see repeated the disappointments of some of 
the early Landsat processing experiences. Spectacular broad-scale visual 
displays are readily produced from remotely sensed image data. However, 
extraction of reliable numerical estimates of surface processes and condi­
tions is not straightforward. The Landsat Multi-Spectral Scanner (MSS) 
scanner was designed to monitor vegetation, and lists of indices for green­
ness and vegetative vigour have been proposed for MSS data. Yet in crop 
studies, none has proved to be an accurate indicator of crop performance 
over broad areas across seasons. Good correlations cannot be assumed 
with harder-to-measure processes such as photosynthetic activity. For the 
modeling and monitoring of biosphere processes, reliable numerical esti­
mates are required. Estimates of variability are also required for the con­
fident detection of trends or change. 

High-Dimensional Data 

The notable feature of remotely sensed spectral data is that the data are 
multidimensional; that is, the observation on a ground unit (pixel) is multi­
valued, the values being the reftectances in the available spectral bands. 
Each pass of the various instruments may record more values-a single 
pass of the High Resolution Imaging Spectrometer (HIRIS) will record 128 
bands. Data of this spectral resolution may be considered a continuous 
spectral curve rather than discrete band measurements. 

The observations may become very high dimensional indeed with the 
integration of data sources, and over a temporal sequence. It is this feature 
of the data, together with the scale of coverage, that provides the oppor­
tunity to derive measures which would otherwise be impossible and at the 
same time provides the challenge for data organization and analysis (see 
Figure 14.1). 

Human perception is accustomed to two-dimensional representations 
such as maps, graphs, and scatterplots. Powers of discrimination and pat­
tern detection are high for such figures. In higher dimensions, this is cer­
tainly not the case. It is conventional to present summaries of the data as 
two-dimensional figures, and tempting to believe that the chosen repre­
sentation is meaningful and adequate. Temporal trends or spectral 
responses of pixels may be displayed in a limited way on graphs. Single­
valued functions may be displayed on map figures as colors. Familiar repre­
sentations are one-dimensional indices using color- or grey-level density 



14. Analysis of Remotely Sensed Data 

Sate llite Spectral signa l 

time 1 time 2 

Earth 

time T 

SPECTRAL 
DATA 

DA TA INTEGRATION, 

REGISTRATION, SCALING 

ANALYSIS 

SUMMARY 

INFORMA TION 

Spatial patterns 
of condition 

Temporal patterns 

293 

Figure 14.1. Schematic diagram of high-dimensional data-assembly, analysis, 
and reduction. 

slicing, and classification maps of separable classes. A simple measure such 
as surface temperature at one fixed time can be well represented on a figure 
of this type. It is, however, unlikely that the full information in some high­
dimensional spectral-temporal sequence can be so represented. Yet this 
naive assumption is not uncommon when the use of remote sensing is con­
sidered. 

The Role of Analysis 

The role of analysis in any application should be to examine the available 
data, to quantify the data's relevance to the problem, and to reduce the 
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relevant information to an interpretable form, either numerical or picto­
rial. The role of the researcher is then to assemble data of a suitable scale 
and quality. The data set may include more than just remotely sensed data. 
These points are discussed further in the following, and one possible analy­
sis strategy is outlined. 

Qualitative or Quantitative Analysis? 

There are two distinct approaches to data reduction and representation. 
The first relies on image interpretation and is largely qualitative or descrip­
tive. The second approach, which includes the various classification metho­
dologies, uses statistical methods to quantify the information in the data, 
and relationships with ground-measured quantities. 

The qualitative approach has been more widely used in remote sensing 
applications to date. The display of standard false color images is a typical 
example of the approach. In general, the anafyst displays some bands or 
indices that are believed to be relevant (e.g., theoretical vegetation indices 
or particular ratios of Thematic Mapper (TM) bands for geological in­
formation). Discernible differences and similarities on the images pro­
duced are assumed to be meaningful; the approach relies on the power of 
the human eye to perceive patterns and relationships on images. This im­
age interpretation can be extremely effective in some contexts, such as the 
detection of geological structure. The normalized difference vegetation in­
dex (NDVI) images of Tucker et al. (1985) are an effective example in the 
ecological field. The images have a very high descriptive value because of 
the eye's ability to interpolate and find patterns. However, at a global 
scale, the predictive value of such an approach is generally poor or un­
known; the relationships between the indices and the ground data on a 
pixel basis are often tenuous. 

In the quantitative approach, the numerical data values on individual 
pixels are analyzed to describe and quantify relationships and clustering in 
the spectral space and their associations with ground data. The simplest 
examples of such methods are two-dimensional scatterplots of pixel band 
values. Various more sophisticated classification approaches have been put 
forward (e.g., Schowengerdt, 1983; Richards, 1984, 1986; Swain and 
Davis, 1978; Swain et aI., 1981). The numerical classification approach, 
which is time consuming and often raises difficulties with data variation, 
has been criticized on these grounds. It is our view that where predictive 
measures are to be obtained from the data, there is no alternative to a 
numerical approach. If variation is a problem in the data, then it will cer­
tainly affect any standard index display. The essential advantage of quan­
titative methods is that the structure and variation in the data are revealed. 
If a standard index is adequate for the purpose, then an appropriate statis­
tical analysis will establish this. If, however, the relationship is more com­
plex, then a suitable classifier or combination or indices may be derived. 
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Statistical discrimination procedures allow assessment and comparison of 
data sets for applications. The essential notion is that the distribution of 
sample data may be used to attach confidence levels to spectrally separable 
classes and, where calibration data are available at least, to measurements 
extracted from the data. These techniques will be essential in the context 
of measuring or detecting subtle phenomena from the various high­
dimensional data sets that are becoming available. 

Database Storage 
It is not intended here to discuss the organization of the primary archival 
database storage. This is a specialized and formidable task when the spa­
tial, and especially temporal, dimensions are considered. However, the 
importance of this basic data organization cannot be overstated. It will not 
be sufficient to have records of single passes of various instruments avail­
able separately on tape or other media; this acts to discourage innovative 
uses of the data as a whole. Flexibility of storage and access are crucial to 
successful exploration of the data and subsequent applications. Research 
workers must have access to the data, the means to integrate data sources 
at any desired scale, and analysis procedures to establish whether the re­
motely sensed data are measuring the quantity of interest. The difficulties 
and solutions to the database problems of the First ISLSCP Field Experi­
ment (FIFE) project (Sellers et aI., 1988; this volume) may provide a 
model for the larger world. The structure for storage and distribution of 
the data on a national and international level will be significant in affecting 
user access. 

Potential users now have the opportunity to consider the type and scale 
of data they might require. Experience in collaborative projects has shown 
that user access to image processing and analysis procedures is essential for 
gaining most information from the data. For research work and data ex­
ploration, it is essential that data be available for small areas at an afford­
able price. 

Scale 
The question of scale is critical at the data collection and processing stages. 
Expectations of what information the data may carry clearly depend on 
spatial, spectral and temporal resolution: For a lucid exposition with many 
references, see Townshend and Justice (1988). 

The spatial resolutions of instruments vary considerably, and mixed 
pixels present problems at any scale. The measured spectral data are the 
integrated responses over a surface area. If the pixel is small and 
homogeneous, it may be reasonable to expect that the signature of some 
feature (e.g., vegetative vigor, leaf area index) will match predictions from 
laboratory spectra. This will not be the case when the pixel contains mix­
tures of classes in unknown proportions. Mixed pixels are to be expected 
when the pixel size is large or neighborhoods of pixels are scaled up to 
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larger units. Some efforts have been made to deduce mixture information 
from spectral data in particular contexts (Graetz and Gentle. 1982; Pech et 
al., 1986; Jupp et al., 1986). 

The "snapshot" nature of satellite imagery raises questions in measuring 
dynamic processes on the temporal scale. The data user is unlikely to have 
any control over the frequency or time of day of satellite overpasses or over 
the presence of clouds. For monitoring change and trends, multidate imag­
ery is required. Processing of registered multitemporal imagery should give 
better results than separate processing of individual passes. In particular, 
multi temporal data should provide better information on mixed pixels 
where the components respond differently over time. 

Information Value of the Data 

It remains to be established by experiment whether remotely sensed data 
can measure the states or fluxes of interest. Tbe FIFE project (Sellers. et 
al., 1988; this volume) provides a major opportunity to relate exhaustively 
measured climate and atmospheric parameters to remotely sensed data 
from many instruments with a range of spatial and temporal resolutions. 
The analyses of these data, in attempting to define suitable temporal, spec­
tral, and spatial scales to measure the processes, should be a model for the 
analysis of global data. They should also indicate which of the processes 
and states might be measurable with existing and planned instruments. The 
environment of this experiment is a fairly uniform grassland; it will be 
necessary to verify or recalculate the relationships in other environments, 
and to attempt to gain comparable information over the oceans. 

Analysis of Existing Data 

Existing data may also carry significant information. It has been mentioned 
elsewhere in this volume that there is an urgent need to attempt to use 
these data in current climate models. It is appropriate that analysis efforts 
now should be directed to these existing data and to data from ex­
perimental projects. The methods described in the section following may 
be directed to the discovery of indices or classifiers of interest for these 
data. Success implies confidence for use on a broader scale or extension to 
the new data sources. Landsat .MSS data date from 1972 and could be 
examined to provide indications of surface changes since that date. 

The applications of existing data provide indicators of approaches for 
new problems and data sets. The experience is cautionary for those with 
high expectations for the new data. Landsat MSS and TM sensors are de­
signed to detect vegetation and soil information, and undoubtedly there is 
information in these data relevant to global ecology. Applications of ex­
isting data have generally not taken into account the full information in the 
spectral-temporal record, relying in the main on image interpretation or 
classifications of single-pass data. Extraction of information on global 
states and dynamic processes will require processing methods for the in-
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tegration and selection of suitable data sources, and then reduction of the 
data to indices or classifiers that measure the desired quantities to an 
acceptable level of accuracy. 

Powerful descriptive images have been produced, but there is a lack of 
convincing numerical results or predictions. Classification methods have 
proved too time consuming or complex, whereas theoretical and empirical 
indices failed to give reliable results on a broad scale. Failure to obtain the 
right data, and to understand the nature of the data, may often be responsi­
ble rather than any inadequacy of the data themselves. When appropriate 
methods are applied, the information in these data may be surprisingly 
good. In a recent vegetation-mapping study, for example, multitemporal 
MSS data gave adequate results, whereas single-image data proved in­
adequate (Hobbs et al., 1989). Where numerical estimates are required, 
there is no short cut; discrimination needs to be established and variation 
taken into account. It is possible that signal variation problems are ex-
aggerated by high spatial resolution. ' 

Preprocessing to larger pixel size and temporal averaging may provide 
data that are better behaved and more suitable for large-scale measure­
ments. The Advanced Very High Resolution Radiometer (AVHRR)­
derived NDVI images (Tucker et al., 1985) display the power of this 
approach for illustration of states on a continental scale. The theoretical 
association with vegetation vigor makes the images of change particularly 
useful. Yet it is not clear what the numerical value of this index actually 
tells us about the vegetation on the pixel. When it is known that some bare 
soils may give an NDVI value of 0.3 (1. Norman, personal communica­
tion), it is clear that the raw value of this index is of little use as a numerical 
measure for photosynthesis or any other vegetative function. Change in the 
NDVI may be better correlated with change in vegetative function, but this 
should be established before it is used as such, or a better classifier of the 
function must be sought. 

In fact, as previously observed, no one-dimensional index can be ex­
pected to summarize the information in the multidimensional spectral data 
space. Adequate indices and classifiers may be found for different pur­
poses, and researchers need access to the data and appropriate analysis 
methods to establish these measures for their particular problems. The fol­
lowing sections give details of procedures that can be applied to the general 
class of problems known as cover class mapping. 

Statistical Methods for Cover Class Mapping 
Using Remotely Sensed Data 

This section discusses some statistical considerations and developments in 
the use of remotely sensed spectral data for cover class mapping. This is the 
general class of problems where the numerical values of the data are used 
to identify states in the sampled pixels. The particular methodology out-
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lined is based on experiences gained within the CSIRO Division of 
Mathematics and Statistics, which has an established research project on 
the analysis of remotely sensed image data. Other quantitative methodolo­
gies exist and have been applied; see, for example, Schowengerdt (1983), 
Richards (1984), and Swain and Davis (1978). Supervised classification 
algorithms incorporate procedures analogous to those described in the fol­
lowing. The general aim is to provide statistically based reduction of the 
data to useful summary information. It is desirable that the discrimination 
procedure describes the data structure and that the allocation routines take 
into account the data structure and variation. 

In resource assessment and monitoring, the most common applications 
concern cover class mapping-either the assignment of a class label to each 
pixel, or the detection of particular classes within the image. Suitable dis­
crimination and classification procedures can help to quantify the relevance 
of a data set to the problem. For example, the effect of adopting simplified 
discriminant indices or reducing the number of spectral bands can be calcu~ 
lated. It is our view that there is a lot of information to be gained from the 
application of relatively sophisticated statistical techniques to remotely 
sensed data in detailed area studies. The trend to make satellite image data 
available in smaller units is encouraging, as is the availability of low-cost 
image processing and analysis systems. In Western Australia, several col­
laborative studies have been carried out using software now running on the 
Commodore Amiga computer. These studies include the mapping of saline 
areas in agricultural districts and native vegetation communities (using 
multi temporal Landsat MSS data), the mapping and monitoring of forest 
clearing in catchment areas (TM data), and a preliminary investigation into 
the mapping of waterlogged soils (airborne MSS data). 

Remotely Sensed Data 

Remotely sensed data are typically digital counts arising from reflected (or 
emitted) energy in different regions of the spectrum. Each set of values 
corresponds with a nominal ground area. The sampling is usually on a reg­
ular grid with adjacent (or overlapping) ground units. For a statistician, 
these data may be considered a multivariate integer response with some 
special features. The data values are related spectrally owing to correla­
tions of reflectance values in regions of the spectrum. Spatial correlation is 
also likely to be introduced by the characteristics of the sensors and atmo­
spheric transmission. Moreover, the size of cover classes relative to pixel 
size often results in neighborhood information that can be used to improve 
the information on a central pixel. 

Ground Data 

Experience has shown that, while there are huge volumes of satellite data 
available, the collection of accurate ground data is a real problem. Even 
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where aerial photographs and ground records are available, photointerpre­
tation of classes and registration to a pixel grid are not trivial exercises. 
This problem is critical when mapping transient or dynamic phenomena, 
and should not be underestimated in the context of establishing rela­
tionships between remotely sensed data and climatic and biological pro­
cesses. 

A Strategy for Cover Class Mapping 

A general strategy for cover class mapping has evolved from research and 
collaborative studies. As mentioned above, alternative approaches exist 
but the components of these are generally analogous to those described 
here. The process is concerned with class definition and allocation in the 
spectral data space. The results will be meaningful if the spectral classes 
correspond to useful ground cover classes. In principle, however, the 
stages described here can be carried out without reference to ground data, 
and ground class labels assigned only at the final stage. 

The initial stage is to produce color composite displays of the data. 
From these and available ground information, training classes are selected. 
These training areas should be spectrally homogeneous and spatially con­
tiguous. The training class data are used to estimate the location and dis­
persion of the class in the spectral space. For these class parameters to be 
well estimated, the number of pixels in each training class should be several 
times the number of bands used in the allocation procedure. It is better to 
choose too many rather than too few training areas. 

Discriminant analysis [canonical variate analysis-see for example, 
Anderson, (1958)] can be used to provide information on the clustering 
and separation of classes in the spectral data space. Alternative indices 
may be derived and data sources compared. Ordination of the training 
class data is carried out and the means displayed on the first few canonical 
axes. The canonical roots indicate the overall degree of separation and the 
number of dimensions. It is possible here to direct the analysis to contrasts 
of particular interest, to test the effects of reducing the set of bands and of 
adopting simplified discriminant indices. 

The results of the ordination are used to define spectral classes for the 
allocation procedure. Clustered training areas are grouped, with a subset 
chosen to represent the spectral class. Optimal selection of such a subset is 
a problem; at present, the choice is made using locations on the canonical 
variate plots, in conjunction with known ground data. It is also debated 
whether the spectral class is best represented by the data from the separate 
training areas or by the combined cluster of data. 

The definition of spectral classes is followed by an allocation procedure. 
Pixels are assigned probabilities of class membership according to their 
relative and absolute closeness to the spectral classes (Campbell, 1984). 
These results may be displayed in various ways. It is only at this stage that 
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ground labels need be assigned to the spectral classes. Several spectral 
classes may be needed to define a ground type, or different cover types may 
be inseparable in the spectral space. 

The whole procedure allows for iterative refinement. Regions that are 
wrongly allocated or atypical of all known classes can be used to define 
further spectral classes, and the process repeated until the results are satis­
factory. 

Discriminant Analysis and Spectral Indices 

Successful mapping of cover classes depends on the spectral data providing 
separation between classes. Ideally, we hope that the training site data will 
form discrete clusters corresponding to the cover classes of interest. The 
locations of these clusters provide the basis for subsequent classification 
and allocation procedures. In practice, the spectral data may afford good 
separation between some cover types (e. g., bushland and crop) and over~ 
lap between others (e.g., crop types). Canonical variate analysis is an 
ordination procedure that can be used to measure the spectral separation 
between sites and to display the locations of the training site data in spec­
tral space. 

The linear combination of bands that best discriminates between several 
classes is that which maximizes the ratio of between-class variation to 
within-class variation. This ratio is called the canonical root and the asso­
ciated linear discriminator is called the canonical vector. This analysis is 
not new; for a general exposition see Anderson (1958). Estimates of 
means and variances and discriminant functions will be improved if robust 
analysis procedures are applied to downweight outlying pixel values 
(Campbell, 1982). 

Successive canonical vectors are chosen to maximize this ratio, subject 
to the variate scores being uncorrelated with those already chosen. The 
associated canonical roots form a decreasing sequence; their sum measures 
the overall separation between classes and the individual values the pro­
portion accounted for by the successive vectors. These values summarize 
the adequacy of the data to separate the classes and the essential dimen­
sionality of the class separation. For example, in a recent vegetation­
mapping study using multitemporal Landsat MSS data (eight bands) with 
43 training classes, the first three canonical roots were, respectively, 34.6, 
6.4, and 3.8 from a total of 45.6. These three dimensions account for 96% 
of the overall class separation (Hobbs et aI., 1989). 

It is often possible and instructive to produce simplified discriminant 
indices with little effect on class separation. The well-known greenness in­
dex of Kauth and Thomas (1976) is derived from Landsat MSS data with 
the coefficients -0.282, -0.660, 0.577, 0.388. A simple contrast of bands 
may do as well. The effect of reducing the set of bands can also be calcu­
lated. In the study mentioned, adequate discriminant information was re-
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tained using six bands with integer weights. Significant information was 
lost, however, when the data set was reduced to a single overpass. When 
this type of analysis is directed to particular class contrasts, insight into the 
nature of the spectral separation can be gained. 

It is possible that a one-dimensional index will prove adequate to order 
the data for some applications. More commonly, the ordination reveals 
that higher dimensions are required to separate classes of interest and a 
classification approach is then appropriate. 

Spectral-Temporal Indices 

For monitoring purposes, the explanation and extension of results can be 
simplified if the discriminating vectors can be constrained (without signif­
icant loss of information) to a form in which the coefficients of the data 
bands are in the same proportion within each overpass. The interpretation 
then concerns the relative weightings for bands and times. In an unpub­
lished study on the discrimination between crop and pasture using mul­
titemporal MSS data, the optimal discriminator gave a canonical root of 
5.97. A simplified spectral-temporal index retained most of the separation 
(canonical root 5.58). The greenness index performed poorly in compari­
son, giving a canonical root of 2.08. The optimal index, and even the dis­
criminating bands, were shown to vary with local cultural conditions 
across farm boundaries (Campbell, unpublished data). The message from 
such analyses is clear-indices derived from one analysis may be quite 
inappropriate in a different context. 

Allocation Procedures and Assessment of Results 

Allocation results are generally presented in the form of a map of class 
labeled pixels. Accuracy assessments are difficult on a broad scale; on test 
areas accuracy is most often summarized by the proportion of pixels cor­
rectly labeled in comparison with a 'true' map. Schowengerdt (1983) gives 
a good introduction to allocation methods; see also Richards (1986). Using 
pixel data only, the maximum likelihood classifier based on multivariate 
Gaussian densities is generally reported to give the best results. In this 
procedure, the relative (posterior) probability of membership is calcu­
lated for each known class, and the pixel is labeled as belonging to the class 
for which this value is the greatest. Such a summary is adequate only if 
all classes are well separated and each pixel falls clearly into a known 
class. This is rarely the case in practice. It is also not always relevant to 
produce only a maximum likelihood map, and it may be of interest to 
locate pixels with even a low probability of membership in certain classes 
(e.g., saline land, erosion cells). 

It is preferable to retain for each pixel two sets of indices: the relative 
probabilities of membership and the typicality probabilities of belonging to 
the known spectral classes. [For a detailed explanation of these measures, 
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see Campbell (1984).] These values may be displayed in various ways to 
assess the completeness and adequacy of the allocation results. 

In practice, three types of display have been found to be particularly 
useful. Assignment of class probabilities to the red, green, and blue guns 
allows equivocally labeled pixels to be readily identified as mixed colors in 
the display. For a single class, the confidence of allocation is well summa­
rized by a display of the probability index in blue, and typicality in the 
other colors; pixels that have high probability and typicality for the class 
will be white in this display, and blue indicates that the pixel is close rela­
tive to the other known classes, but atypical of the training class data. The 
maximum likelihood class label display is modified by the application of a 
typicality threshold; pixels that are atypical of all known classes are then 
displayed in black. Side-by-side displays of the original image data and the 
allocation results allow ready identification of areas that are allocated 
equivocally or are atypical. These areas may be chosen as training sites for 
iterative refinement of the classification. 

It should be clear that if the discrimination (i.e., separation) between 
classes in the spectral space is poor, then allocation is a futile exercise. It is 
necessary to seek more or better data. Multitemporal data have been 
found to be essential in collaborative studies for vegetation and crop map­
ping. 

Neighborhood Models and Allocation 

Where the size of cover classes is large relative to the ground pixel size, 
there is contextual information in neighboring pixels that may be used to 
improve the information on a central pixel, and hence overall classifica­
tion accuracy. There has been considerable interest in recent years in 
methodologies for incorporation of this neighbor information. For a re­
view, see for example Nagy (1984). 

The general methodology is to iterate the allocation process. After the 
initial classification, the posterior probabilities are recalculated using local 
prior weights. The weights depend on the labels of the neighboring pixels, 
and the associations in the initial allocation; normally a three-by-three 
neighborhood is used. 

Improvements to be expected from such methods will depend on the 
ground geometry of the spectral classes. Where large areas of spectrally 
close classes are found (e.g., fields of different crops), considerable overall 
improvement may result. The improvements also depend on the initial 
classification being reasonably accurate. Updating from a poor initial clas­
'Sification may actually reduce overall accuracy. In an example using MSS 
data for the classification of crop, pasture,and bush areas, incorporation of 
neighbor information improved overall accuracy of maximum-likelihood 
labels from 80.7% to 94.5%. Greater improvements have been reported by 
Di Zenzo et al. (1987), who compare alternative updating approaches. 
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General conditions for the applicability of these algorithms are not 
known. It may be difficult to establish that appropriate conditions for the 
use of these techniques do apply in monitoring large-scale processes. It 
may be found also that any gains in accuracy are small in relation to the 
precision required. Again, the appropriate analysis methods and data 
sources should be tested for the applications. 

Conclusions 

Suitable data organization and analysis tecnhiques are essential to the ex­
traction of information from high-dimensional remotely sensed data. The 
volumes of data are tremendous. The primary database organization must 
allow for integration and registration of data sources and flexibility of user 
access to the data. 

Data users face the problem of reduction of the dat~douseful numerical 
or pictorial summaries. They will require access to suitable candidate data 
sets and numerical processing methods to calculate and assess indices or 
classifiers of the data. Qualitative image interpretations of uncalibrated 
index displays have a role in indicating patterns and variations in the data 
and, by implication, variations in surface condition. However, the limi­
tations of this approach in the predictive numerical context should be 
understood. 

Where numerical estimates of processes are required on a continental 
scale, they should wait for the establishment by suitable analysis of optimal 
indices and error estimates. In any new application, it is appropriate ini­
tially to focus intensive analysis efforts on relatively small and well-known 
areas, examining possibly very complex data sets. By reduction and com­
parison, suitable data sets and classifiers may be selected, if they exist. 
Extension to broader scales may then be implemented. It is an implicit 
requirement of this process that research workers must have access to suit­
able statistical image processing systems, and to data sets integrated over 
suitable spatial and temporal scales. 
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15. Remote Sensing of Biosphere Functioning: 
Concluding Remarks 

Richard J. Hobbs and Harold A. Mooney 

This volume was concerned with two distinct areas: 

1. Remote sensing of metabolic processes and the determination of what 
drives changes in global metabolism 

2. Remote sensing of changes in biosphere structure (vegetation and land­
scape dynamics). 

Global climatic change is likely to result in changes in both metabolism 
and structure. Most of the early chapters centered on the use of remote 
sensing to estimate rates at the metabolic level, whereas the later chapters 
dealt with the detection of structural change. Some consideration was 
given to how these two levels could be linked, but it became apparent that 
both cannot be modeled simultaneously because of time-scale differences. 
There is a clear shift in domain from plant production to population and 
community dynamics. Modeling of metabolic responses assumes that 
vegetation boundaries remain the same (i.e., are unaffected by changing 
climatic conditions), whereas structural models assume that there will be 
boundary shifts. Clearly, both levels are required, since structural changes 
will feed back into metabolic processes (e.g., through changing carbon 
stores with changing vegetation boundaries). However, the conclusion is 
that attempts to produce linked models would prove ineffective. 

Current Global Circulation Models (GCMs) involve two stages when 
dealing with vegetation. Stage 1 determines the present distribution of 
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vegetation types (i.e., requires current vegetation structure), and stage 2 
determines the physiological characteristics of each type. At present, the 
estimates of the distribution of major vegetation types and of current meta­
bolism in these types are very crude and require considerable refinement 
before metabolic changes can be modeled. This points to a clear role for 
remote sensing in the development of more accurate estimates of global 
metabolism to aid in the prediction of future changes. 

In the development of remote sensing techniques to evaluate biosphere 
function, there has not been an extensive utilization of experimental tech­
niques, especially for forests. These approaches could, however, greatly 
clarify signal interpretation. For example, structural features of forest sys­
tems can be separated from chemical or environmental features by ex­
perimental manipulations such as irrigation and fertilization. 

There is a need for more First ISLSCP Field Experiment (FIFE)-type 
experiments that integrate ground-based, aircraft, and satellite measure­
ments. While such experiments are required in "different systems, there is 
also some merit in continuing integrated measurements over the original 
site. This would allow detection of structural cf. metabolic changes. 

There is a great need for long-term observations to monitor biospheric 
changes. Remote sensing technology presents a great opportunity to col­
lect long-term data, but requires consistency of data collection and com­
patibility between successive generations of sensors. Long-term observa­
tions also require specific questions to specify the design of the system that 
will use the data. Long-term satellite data must also be matched with long­
term ground data for continued truthing. This could be achieved by the 
accumulation of satellite data over Long Term Ecological Research Sites, 
or over the Biosphere Reserves proposed under International Geosphere­
Biosphere Program. 

Although there is continuing development of more sophisticated sensors 
and more data are becoming available, current technologies still have a lot 
to offer. It can be argued, in fact, that the available technology exceeds the 
scientific capability of interpreting and applying it. There are also probably 
many more applications for existing data than have been so far realized. 
The main problems in many cases therefore do not lie in data acquisition, 
but in data analysis and interpretation. 
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(IGBP), 1, 82, 306 
International Satellite Land Surface Climatolo­

gy Project (ISLSCP), 178-198, 209, 
249 

J 
Jet Propulsion Laboratory, 92 

L 
Landsat Multi-Spectral Scanner (MSS), 207, 

209, 210, 223, 232-233, 234, 239, 
240, 253, 263, 264, 265, 292, 296, 
300, 302 

Landsat series, 2, 17, 24, 25, 65, 68, 212, 
213, 223, 233, 253, 292 

Landsat Thematic Mapper (TM), 159, 207, 
209, 223, 224, 233, 234, 239, 253, 
263, 265, 266, 294, 296 

Landscape processes, 221 - 244 
landscape change, 228-234 
landscape properties, 223 - 226 
process domains, 226-228 
using models, 235 - 244 

Layered atmospheric absorption models, 
20 

Leaching, 75 
Leaf area index (LAI), 22, 23, 24, 67-68, 

211 
integrating into ecosystem models, 75-

78 
satellite estimation of, 73 - 75 

Leaf orientation, 16 
Leaf stomatal closure, 71 
Lettau, 113 
Lignin, 88, 92 

cellulose and, 90 
in whole canopies, 93 - 98, 101 - 103 

Ligno-cellulose index (LCI), 90 
Litter, decomposition of, 87, 88 - 89 
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Litterfall, 75, 77 
Lockheed Electra, 162 
Long-Term Ecological Research (LTER), 

82 
Long-Term Ecological Research Sites, 306 
L-resolution model, 18, 20 
Lysimeters, 78 

M 
Manabe bucket model, 115 
Manual of Remote Sensing (Colwell), 55 
Marine photosynthesis, 269 - 286 

effects of climate change on, 283 - 284 
pigment concentration and, 273-283 
remote sensing, 271- 273 

Metal contamination, 269, 281 
Methane, 157, 159 
Microwave, 17, 224 

radiometry, 47-48 
sensing, of soil moisture, 41 - 61 

Middle infrared (MIR), 223, 224 
Mineralization, 75 
Mixture model, 20 
Moderate resolution Imaging Spectrometer 

(MODIS), 151, 263 
Moisture availability, 108 
Multispectral scanners, 223 
Munday, 264 

N 
NAS (National Academy of Science), 66 
NASA (National Aeronautics and Space Ad-

ministration), 17, 33, 66, 91, 92 
AVIRIS,263 
C-130, 33, 34, 189 
Global Troposphere Experiment (GTE), 162 
Goddard Space Flight Center, 66, 189 
H-1 helicopter, 191 

NASA-Ames Research Center, 99 
National Center for Atmospheric Research 

(NCAR), 33, 109, 124 
King Air, 189, 191 

National Oceanic and Atmospheric Adminis­
tration (NOAA), see NOAA 

National Research Council of Canada (NRC), 
191 

National Science Foundation, 266 
Near-infrared (IR) surface reflectances, 176, 

208, 223, 224 
Near-IR spectroscopy (NIRS), 139 
Net primary productivity (NPP), 17, 65, 87 

estimating, 65-83 
ecosystem modeling, 71- 78 

NDVI and forest BGC compared, 78-81 
using AVHRRINDVI, 66-71 
validating regional estimates, 81- 82 

nitrogen mineralization and, 97, 98 
Nimbus 5, 57 
Nimbus 6, 57 
Nimbus 7, 57, 120, 271 
Nitrogen 

fresh litter decomposition and, 88, 90 
in whole canopies, 101-103 

Nitrogen mineralization, prediction by remote 
sensing, 91-98 

Nitrous oxide, 157, 159, 160 
NOAA, 2, 33 

-7 polar orbiter, 110 
Advanced Very High Resolution Radio­

meter (AVHRR), 110, 194,205, 
207 

global vegetation index (GVI), 67, 78 
satellites, 17, 54 

Nonmethane hydrocarbons, 157 
Normalized difference vegetation index 

(NDVI), 17,22,54,66-71, 118, 

o 

119, 120, 149, 150, 209, 211, 294, 
297 

Oceans, 269 
remote sensing of, 271- 273 
see also Marine photosynthesis 

Optical wavelengths, 17 
Organic mixtures, spectral analysis of, 142-

149 
Ormsby, J., 199 
Ozone, 164 

tropospheric, 158 

p 
Palmer Drought Severity Index (PDSI), 

115 
Parameter-to-biophysical-quantity calculation, 

175-176 
Perpendicular vegetation index (PVI) , 54 
Phaeopigment, 272 
Photosynthesis, 75, 77, 78 

marine, 259-286; see also Marine photo-
synthesis 

Phytoplankton, 270, 271, 275-276, 279 
Planck/Blackbody equation, 31- 32 
Planetary boundary layer (PBL), 162 
Plant canopies, 13, 14, 17 

biochemistry, 135 - 151 
Pollution, vegetation changes and, 206 



Index 311 

Potometers, 78 
Process domains, 226-228 
Prognostic variables, 126 
Projected foliage cover (PFC) , 7, II 

Q 
Qualitative analysis, vs. quantitative, 294-

295 
Quantitative analysis, vs. qualitative, 294-

295 

R 
Radambrasil, 253 
Radarsat satellites, 224 
Radiance-to-parameter calculation, 175 
Radiation 

interaction with plants, 13-14 
scene models and, 18 

Radioactive isotope transport methods, 78 
Radiosonde station data approach, 118 
Rainfall approach, to water and energy ex-

change, 113-116 
Reflectance, of radiation, 2 
Reflectivity, of soil, 44, 46 
Remote sensing 

Amazon River Basin, 249-266 
of canopy biochemistry, 135 - 151 
data analysis, 291-303 
landscape processes, 221 - 244 
of litter and soil organic matter decomposi-

tion, 87-98 
marine photosynthesis, 269 - 286 
present methods and limitations, 17 - 26 
problems in data collection and interpreta-

tion, 16-17 
of spatial and temporal dynamics of vegeta­

tion, 203-214 
of terrestrial primary productivity, 65-

83 
trace gas fluxes and, 158-165 
water and energy exchange, 105-129 

Resistance analogue concept, 261 
Resolution, of discrete scene models, 18 
Resource depletion, 6 
Restrahlen bands, 40 
Retranslocation, 88 
Rothampstead grassland plots, 205 
Runoff, 121, 264 

S 
Sahel, Africa, 17 
Satellite-based remote sensing 

field experiments and, 169-198 
of trace gas flux, 164-165 

Savannahs, 8, 14 
Scanning Multichannel Microwave Radiometer 

(SMMR),54 
Scattering behavior, of terrain, 55 - 56 
Scene inference, 18 
Scene models, 18, 20, 25 
Scour-transport-fill (STF) sequence, 239-

241 
Sea surface temperature, estimation, 32-

33 
Seasat, 57 
Seasonal variations, in vegetation, 204 
Sea-surface temperature (SST) field, 172 
Sediment, availability, 236-238 
Senescence, 88 
Sensor look angle, 6~. 

Sensor models, 20-22 
Shadows, variations in, 25 
Simple Biosphere Model (SiB), 16, 122, 261, 

262 
SIR A, 57 
SIR B, 57 
Skin-temperature method, 106-112 
Skylab, 57 
Snow melt, 75, 77 
Soil 

dielectric constant, 41, 42 
dielectric properties, 43 - 44 
emissivity and reflectivity, 44, 46 
landform behavior and, 221 

Soil erosion, 5, 14, 17 
Soil moisture 

direct measurements of, 120-121 
see also Surface soil moisture and tempera­

ture measurement 
Soil organic matter, decomposition of, 87, 

90-91 
Soil temperature, see Surface soil moisture 

and temperature measurement 
Soil texture, nitrogen mineralization and, 97, 

98 
Soil water content and outflow, 75 
Solar insolation, 31 
Solar zenith angle, 68 
Southern oscillation index (SOl), 284 
Spatial patchiness, 25 
Spatial resolution, 20, 21 
Spectral analysis, of organic mixtures, 142-

149 
Spectral resolution, 20, 21 
Spectral variations, of land surface emissivity, 

39-41 
Spectral-spatial scene models, 25 
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Spectrometry 
derivative, 143-145 
imaging, current and potential uses, 149-

151 
Spectrophotometry, 142 
Split-window technique, 33, 41, 71 
SPOT, 2, 197, 207, 223, 226, 233 
Stomata, 16 
Subtropics, 6, 7 
Successional recovery, 8 
Surface albedo, 31 
Surface resistance factor, 70 - 71 
Surface roughness, 49-52 
Surface soil moisture and temperature 

measurement, 31- 61 
microwave sensing, 41- 61 
thermal infrared, 32-41 
see also Soil moisture 

Synoptic scales, 250 
Synthetic aperture radar (SAR), 55, 224, 

225 

T 
Tasseled cap scene models, 25 
Taxonomy, of vegetation, 8-9, 10 
Temperature, global, 65-66 
Terrestrial primary productivity, remote sens­

ing of, 65 - 83 
Thematic Mapper (TM), 159, 207, 209, 223, 

224, 233, 239, 253, 263, 265, 266, 
294,296 

Thematic Mapper Simulator data, 73 
Thermal inertia method, 106, 108-109 
Thermal Infrared Multispectral Scanner 

(TIMS) , 33-41 
Thermal infrared sensing, of surface tempera­

ture, 32-41 
TIROS meteorological satellites, 66 
Total ozone mapping system (TOMS), 

164 
Trace gas fluxes, 157-165 

aircraft-based remote sensing, 162-164 . 
classification-based estimates, 158-160 
ground-based approaches, 161 
remote sensing for driving variables of 

models, 160-161 
satellite-based flux measurements, 164 

Transpiration, 75, 77, 78 
Tropical Rainfall Mission (TRM), 116, 

259 
Tropical river basins, 249 
Tropics, 6, 7 
Tropospheric ozone, 158 
Ts, 71 

TsINDVI,70 
Twin Otter, 191 

U 
U.S. National Academy of Science (NAS), 66 
U.S. National Aeronautics and Space Ad-

ministration, see NASA 
U.S. National Science Foundation, 2 
Universal Soil Loss Equation (USLE), 237 
University of Washington, Seattle, 254 
University of Wisconsin, College of Agricul-

ture and Life Sciences, 99 
University of Wisconsin Arboretum, 91, 94, 

97 
University of Wyoming King Air, 189, 191 

V 
Vegetation 

community composition and structure 
(CCS), 172 

detecting change in, 211 - 214 
detecting differences in, 206- 211 
dynamics, 8 
effects on microwave emission, 53-55 
patterns of change, 204-206 
physiognomy, 7 - 8 
spectral properties of, 136 - 142 
structure, 8, 11-16 
taxonomic composition, 8-9 

Vegetation functional types (VFTs) , 13 
Vegetation index approach, to water and ener-

gy exchange, 118-120 
Vegetation indices, 22 
Vegetative cover, estimation of, 22-25 
Venezuela, 260 
Vertical distribution of biomass, 11 

W 
Water, dielectric constant, 41-42, 55 
Water and energy exchange, 105-129 

atmospheric water vapor divergence 
method, 117-118 

combined method, 121-129 
direct measurements of soil moisture, 120-

121 
rainfall approach, 113 - 116 
skin-temperature method, 106-112 
use of soil and terrain formation, 121 
use of spatial variability, 121 
vegetation index approach, 118 - 120 

Water site availability, LA! and, 73 
Water vapor continuum, 32 
Wetness factor, 108 
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