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Preface

Full-3D seismic waveform inversion (F3DWI) refers to inversions that seek to min-
imize the discrepancies between the observed and synthetic seismic waveforms,
wiggle for wiggle, by solving the three-dimensional acoustic or (visco) elastic
wave equations. Its development is important both for the theoretical foundations
of modern quantitative seismology and for the practical applications of seismo-
logical methods in exploring the Earth’s interior. Driven by the rapid advances in
high-performance computing technology and efficient numerical methods for solv-
ing 3D wave equations, significant progresses in F3DWI have been made in the past
decade, especially in large-scale structural studies that use passive sources. This
book is derived from what I have learned in the past 10 years. F3DWI is by its
very nature both a theoretical and a practical subject. It requires a certain level of
understanding of the underlying mathematical formulation, a collection of paral-
lelized software tools and a certain amount of practice. In this book, I try to give an
integrated treatment of all three.

In Chap. 1, I give a brief introduction about the subject of this book and
some discussions that motivates the development of F3DWI. Throughout this
book, a parallelized finite-difference (visco)elastic wave-equation solver is used for
demonstration purposes. The mathematical formulation and detailed instructions
about how to set up and run this wave-equation solver for F3DWI purposes are
summarized in Chap. 2.

The theoretical framework for F3DWI developed in Chaps. 3–5 is quite general
and encompasses both the adjoint method (F3DT-AW), which back-propagates the
misfits from the receivers to image structures, and the scattering-integral method
(F3DT-SI), which sets up the Gauss-Newton normal equation by calculating and
storing the sensitivity (Fréchet) kernel for each misfit.

The derivation of F3DT-SI in our previous publications requires the use of the
reciprocity principle and the receiver-side Green’s tensor (RGT). In Chap. 3, I
generalize the formulation of F3DT-SI through adjoint analysis and show that the
requirement on reciprocity can be removed by replacing the RGT with the time-
reversed adjoint Green’s tensor. This result may open up the possibility of applying
the “scattering-integral-type” methods based on Green’s functions to a larger class
of inverse problems, in which the reciprocity principle may not hold. In Chap. 3, I
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also derive the adjoint representation theorem and its application in Chap. 5 simpli-
fies the derivation of the adjoint method for constructing the gradient of the objective
function and also the Hessian-vector product.

In our previous publications of F3DT-SI, the data sensitivity (Fréchet) kernels
were derived for the broadband cross-correlation delay time and amplitude misfits
with respect to isotropic, elastic model parameters. In Chap. 4, I extend the ker-
nel formulation to arbitrary misfits defined for individual receivers, receiver arrays,
pressure and rotational sensors. In Chap. 4, I also derive the kernels for anisotropy
and anelastic attenuation.

In Chap. 5, I examine both F3DT-SI and F3DT-AW in the context of numeri-
cal optimization. Possible extensions and some practical aspects of both types of
methods are discussed briefly. Some more detailed discussions about the practical
aspects can be found in Chap. 6, in which I give detailed descriptions about our 3D
model for the crustal structure in southern California, CVM-S4.26, as well as the
inversion that produced this model.

I started working on this model back in 2007 when I was a postdoc at the Lamont-
Doherty Earth Observatory (LDEO) of Columnbia University. After I moved to
University of Wyoming in 2008, I kept working on it by myself until En-Jui Lee
joined my research group in 2009. In the next 5–6 years, both En-Jui and I spent a
lot of time developing this model. As shown in Chaps. 2 and 6 and also in our jour-
nal publications, CVM-S4.26 can fit a quite extensive collection of seismograms
in southern California (more than 50,000 earthquake seismograms and ambient-
noise Green’s functions) from the first-arriving P-wave to about 30-sec after the
surface wave, almost wiggle by wiggle. CVM-S4.26 reveals small-scale crustal
heterogeneities that were not well imaged in previous crustal-scale tomography
studies. Some of those small-scale features in CVM-S4.26 are highly consistent with
geology and results from previous localized ray-theoretic travel-time tomography
studies. In Chap. 6, I show many cross-sections throughout the entire model and dis-
cuss possible correlations with other independent geologic and seismic evidences.
Materials in Chap. 6 complement our journal publications about this model.

Readers who are not particularly interested in the intricacies of the theoretical
aspects of F3DWI can skip the mathematical formulations and start with descrip-
tions of the software package, also named F3DWI. Those descriptions, instructions
and worked examples of F3DWI are grouped into sections with the title “Software”
throughout this book. I wrote most of the Fortran and C/C++ codes for F3DWI
when I was doing my postdoc at LDEO in 2006–2007. The parallel finite-difference
wave-equation solver, AWP-ODC, was provided by Yifeng Cui and Kim Olsen at
the Southern California Earthquake Center (SCEC). I modified it to work with the
rest of my kernel and inversion codes. During the development of CVM-S4.26,
I wrote a command-line user interface using python to simplify and streamline
the entire inversion process based on F3DWI. The scalable, parallel LSQR code,
SPLSQR, for solving very large sparse linear systems associated with the Gauss-
Newton normal equation in F3DT-SI was developed in collaboration with Liqiang
Wang and his students and collaborators at the Computer Science Department in
University of Wyoming. The software and other materials related to the book can
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be requested from http://pochenfullwave.ddns.net. Like many other research codes,
it takes some effort and practice to fully understand the behavior of these codes and
to be able to effectively utilize these codes in realistic applications. Your comments,
suggestions (of references), questions, corrections about the codes and the book are
very much appreciated and please email them to pochengeophysics@gmail.com or
pchen@uwyo.edu.

I would like to thank Tom Jordan, Li Zhao and Xiaofei Chen for teaching me so
many things about seismology and geophysics when I was a student. I would also
like to thank all my students, En-Jui Lee, Dawei Mu, Xiaofeng Zhang, Jing Xu, and
Wei Wang, for trusting in me and working with me. I would like to thank Jeroen
Tromp for opening my eyes to the adjoint method during the 2003 Caltech-USC
reading class on waveform tomography. The last chapter of this book benefited from
constructive discussions with Tom Jordan, David Okaya, John Platt, Ken Dueker
and Derek Schutt. I would like to thank all my collaborators in the past few years,
Phillip Maechling, Marine Denolle, Greg Beroza, Liqiang Wang, He Huang, John
Dennis, Youlin Chen, Zhiguo Xu, Daniel O’Connell, Pengcheng Liu and Satish Pul-
lammanappallil. The Department of Geology and Geophysics and the School of
Energy Resources (SER) at University of Wyoming have been very supportive on
my research. Grants from the NSF, USGS, AFRL, SCEC, SER, Anadarko, Fugro
Consultants Inc and Optim Software LLC are very much appreciated.

01/19/2015 Po Chen

http://pochenfullwave.ddns.net
http://pochengeophysics@gmail.com
http://pchen@uwyo.edu
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Chapter 1
Introduction

The subject of this book is the solution of the seismic inverse problem. The corre-
sponding “forward problem” deals with the solution of the seismic wave equation
(i.e., the elastodynamic equation with specified initial and boundary conditions).
In the forward problem, the mathematical models for the seismic sources and the
physical properties of the geological media are given and we solve the seismic
wave equation for the spatial-temporal evolution of the displacement-stress wave-
fields1. In the inverse problem, accurate knowledge about the seismic sources and
the geological media is usually unavailable and we try to make inferences about
them from discrete observations of the wavefields (i.e., seismograms and other types
of ground-motion observations). Techniques for constructing mathematical models
of the physical properties of the geological media using information extracted from
observed seismograms are often referred to as “seismic tomography”, which is the
emphasis of this book. For controlled-source seismic surveys, it is sometimes pos-
sible to build mathematical models of the seismic sources based on the procedures
used for generating the sources. For problems involving natural earthquakes, we
need to invert for earthquake source models, sometimes jointly with models of the
geological media, using observed seismograms. I will also discuss seismic source
inversion problems in this book.

A general method for solving seismic inverse problems, and also inverse prob-
lems in many other disciplines, is to take an iterative approach. In seismic tomogra-
phy we can initiate the iteration with an assumed model (i.e., the starting model) for
the geological media and solve the forward problem to obtain the model-predicted
(i.e., synthetic) observations. The assumed model is likely to be different from the
true model, therefore the synthetic observations are likely to be different from the
real observations. The discrepancies between the synthetic and the corresponding
real observations provide us some feedback that can be used to make corrections to
the assumed model. The corrected model can then be used as the reference model for
the next iteration and the process can be repeated until a pre-specified convergence

1 In practice, we may solve for the particle velocity wavefield instead of the displacement
wavefield.
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2 1 Introduction

criterion is met. Such an iterative approach is often formulated using the mathe-
matical optimization theory. We can define an objective function in terms of the
discrepancies between the synthetic and the corresponding real observations and we
search for an optimal model that can minimize the objective function. Depending
upon the particular optimization algorithm adopted for solving the inverse problem,
as well as the complexity of the inverse problem, the forward problem often needs
to be solved for many times through the entire optimization process. Therefore our
capability for solving the seismic inverse problem depends very much upon our
ability of solving the forward problem accurately and efficiently.

Our ability for solving the forward problem depends in turn upon the comput-
ing technology. In the past, when computers were slow (by modern standards),
techniques based on the seismic ray theory (e.g., Babich 1956, 1961; Červený
1972; Chapman 2002; Gjøystdal et al. 2002; Červený 2005) were in fact the only
practically applicable solutions for the seismic wave equation in three-dimensional
geological structure models2. Analytic or semi-analytic solutions developed
for one-dimensional geological structure models (e.g., Thomson 1950; Haskell
1953; Dunkin 1965; Fuchs and Muller 1971; Takeuchi and Saito 1972; Chap-
man 1973, 1978; Bouchon 1981; Harvey 1981; Kerry 1981; Saikia 1994; Wang
1999; Kawai et al. 2006; Kennett 2009) are usually not directly applicable to com-
plex two-dimensional or three-dimensional structural models. Unlike the analytic or
semi-analytic methods, which provide exact solutions of the elastodynamic equation
for one-dimensional models, the seismic ray method provides useful approximate
solutions of satisfactory accuracy for three-dimensional structural models. The ray
method has its own advantages and drawbacks. Its drawbacks have been motivat-
ing the development of full-3D modeling and inversion methods based on purely
numerical solutions of the elastodynamic equation in the past few decades.

1.1 Advantages of the Seismic Ray Method

The roots of the advantages, as well as the drawbacks, of the seismic ray theory
mainly lie in the asymptotic ray series representation of the seismic wavefield. The
formal ray series solution of the elastodynamic equation for the displacement wave-
field can be represented as an asymptotic series in inverse powers of the angular
frequency ω,

u(x, t) = exp {−iω [t − τ (x)]} ×
[

U(0)(x) + U(1)(x)

(−iω)
+ U(2)(x)

(−iω)2
+ · · ·

]
(1.1)

2 By “three-dimensional” I mean that the physical properties of the geological media vary with
three spatial coordinates. If the physical properties do not vary with one (two) spatial coordinate(s),
we often say that they are two-dimensional (one-dimensional) geological media. If we apply a
three-dimensional method on two-dimensional geological media, such a calculation is sometimes
called as 2.5-dimensional.
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Here x and t are spatial and temporal coordinates, τ (x) is the real-valued travel
time and U(k)(x), k = 0, 1, 2, . . . are complex-valued vectorial amplitude coeffi-
cients. If we fix the number of terms in the asymptotic expansion 1.1 (one usually
uses only the leading term or just the first few terms sometimes), the error of the
approximation can be made arbitrarily small, provided the angular frequency ω

being sufficiently high.
Inserting 1.1 into the elastodynamic equation yields a system of equations, which

includes the Eikonal equation for the travel time τ (x),

|∇τ (x)| = 1

v (x)
(1.2)

where v is the P- or S-wave velocity (depending upon the type of the wave that is
being solved), and successively the equations for the amplitude coefficients U(k)(x).
The Eikonal Eq. 1.2 can be solved very efficiently using the method of characteris-
tics, which provides not only the model-predicted travel-time observations but also
the trajectories in the structural model through which the energy propagates (i.e.,
the ray paths), an aspect highly important in ray-theoretic travel-time tomography.
The transport equation, which describes the zeroth-order amplitudes of the waves
U(0)(x), depends primarily upon the geometrical spreading effect, which can be eval-
uated very efficiently by solving the dynamic (or paraxial) ray tracing system (e.g.,
Chapman 2004). The dynamic ray tracing system is composed of a set of linear first-
order ordinary differential equations along the central ray and the computational cost
for solving this system is relatively low.

In addition to its computational efficiency, especially for three-dimensional struc-
tural models, the seismic ray method also has several other benefits. For instance,
in the seismic ray method, the wavefield is separated into individual elementary
waves. The set of rays belonging to a certain elementary wave corresponds to a
continuous range of initial conditions, which are often parametrized using the ray
parameters. The physical meaning of the ray parameters may vary. In the case of a
point source, the ray parameters may represent the initial slowness vector defined
in terms of the take-off angles from the source. Such separation of the wavefield
allows identification of individual waves and provides clear physical insight into the
wave propagation process, which can be very useful in solving inverse problems.

1.2 Drawbacks of the Seismic Ray Method

The limitations of the seismic ray method can also be attributed to the asymptotic ray
series representation 1.1 to some extent. The wavefield provided by the seismic ray
method contains only those waves that conform to the asymptotic series represen-
tation, which are mainly the far-field body waves. It does not include any near-field
terms, evanescent waves (e.g., surface waves, head waves) or diffracted waves. The
seismic ray method only provides a high-frequency approximation of the wavefield,
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which is, in principle, incomplete. The “high-frequency” requirement for the seis-
mic ray method is often translated into a “smoothness” constraint on the geological
structure model. The characteristic length of the structural heterogeneity must be
considerably larger than the dominant wavelength of the considered wave for the
seismic ray method to provide satisfactory accuracy.

The seismic ray method is capable of handling complex geological structure
models, but if the heterogeneity of the structural model exceeds a certain degree,
the rays may exhibit chaotic behavior (Keers et al. 1997). The rays with slightly
different initial conditions may diverge exponentially at large distances from the
source. The ray chaos makes two-point ray tracing practically impossible in overly
complex structural models. The exponential divergence of neighboring rays with
respect to the complexity of the structural model can be quantified using the Lya-
punov exponents, which can be estimated from the second-order derivatives of the
seismic velocity model prior to ray tracing (Klimeš 2002). For models with abnor-
mal Lyapunov exponents, smoothing of the model is needed to make it suitable for
ray tracing.

The seismic ray method may yield highly distorted solutions or fail to provide
a solution in certain singular regions or in certain singular directions in anisotropic
models. The singular regions may include shadow zones (i.e., the boundary between
illuminated and shadow regions), caustics (i.e., regions where the ray amplitude
becomes infinite) and critical regions where rays are tangential to material inter-
faces. In anisotropic models, the ray method may break down in certain singular
directions characterized by the coupling between the quasi-shear waves.

Some of the limitations of the zeroth-order seismic ray method can be alleviated,
at least in part, using various extensions of the ray method (e.g., Červený and Ravin-
dra 1971; Stamnes 1986; Thomson 1989; Ayzenberg et al. 2007; Kravtsov et al.
2011). These extensions are usually designed to remedy specific types of singu-
larities. For problems with many singularities or for regions with multiple types
of singularities, the ray method may become too cumbersome to apply. For sin-
gularities related to caustics, the Gaussian beam method provides a more general
extension of the ray method (e.g., Červený et al. 1982; Popov 1982). It can be shown
that by using infinitely broad Gaussian beams we recover the standard Maslov
method (Klimeš 1984), another general extension of the ray method (Chapman and
Drummond 1982; Thomson and Chapman 1985). These more general extensions of
the ray method are still built up on the high-frequency asymptotic solution of the
elastodynamic equation.

1.3 Numerical Solutions of the Seismic Wave Equation

In the past few decades seismologists have developed various numerical algo-
rithms to solve the elastodynamic equation. Those numerical algorithms include the
finite-difference, finite-element, pseudo-spectral, spectral-element, discontinuous-
Galerkin methods. Compared with the seismic ray method, these numerical solu-
tions can provide “complete” representations of the seismic wavefields in highly
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complex 3D geological structure models. Of course, these numerical solutions are
limited by the accuracy of the underlying numerical algorithms used for solving
the elastodynamic equation. Nevertheless, they should contain all possible waves
propagating in a given geological structure model and there is no inherent limit in
improving the accuracy of the numerical solutions in any frequency range or time
window in those numerical algorithms, given sufficient computational resources.
The computational cost for obtaining numerical solutions is significantly higher
than that for obtaining ray-theoretic solutions, especially for large models3 at high
frequencies. However, our computing capability has been increasing exponentially,
more than doubling every 2 years in the past 20 years (Fuller et al. 2011). The
computing industry marched from the first teraflop machine (1 TFLOP4) to the first
petaflop machine (1 PFLOP) in just 12 years and it is anticipated that the fastest
computer will have a peak performance of about 1 EFLOP in around 2020 (Service
2013). The progress in the computing technology has opened up the possibilities for
solving seismic inverse problems using numerical solutions of the three-dimensional
elastodynamic equation, an approach that is called “Full-3D seismic Waveform
Inversion (F3DWI)” in this book.

Among all the numerical algorithms that have been adopted to solve the seis-
mic wave equation, several algorithms have been developed more substantially than
others. In the 1970s and 1980s the finite-difference (FD) method was introduced to
simulate SH and P-SV waves on regular, staggered-grid, two-dimensional meshes
(Madariaga 1976; Virieux 1984, 1986). Extensions of the FD method to three spatial
dimensions and other curvilinear coordinates and to account for anisotropic, visco-
elastic material properties were carried out subsequently (e.g., Mora 1989; Igel et al.
1995; Tessmer 1995; Graves 1996; Moczo et al. 2002). The spatial derivatives in
the FD method is approximated through differencing schemes and their accuracy is
mainly controlled by the number of grid points required to accurately sample the
wavelength. The pseudo-spectral (PS) method with Chebychev or Legendre poly-
nomials (Carcione 1994; Tessmer and Kosloff 1994; Igel 1999) partially overcomes
some limitations of the FD method and can substantially improve the accuracy of
spatial derivatives. The PS method also has its drawbacks, mainly due to the global
character of its spatial derivative operator, which makes it relatively cumbersome
to account for irregular modeling geometries. And parallelizing the PS method on
modern distributed-memory computer clusters in an efficient and scalable way is
not as straightforward as parallelizing the FD method.

There are also numerical algorithms based on the weak (i.e., variational) form of
the elastodynamic equation. The finite-element (FE) method (Lysmer and Drake
1972; Bao et al. 1998) and the spectral-element (SE) method (Komatitsch and
Vilotte 1998; Komatitsch and Tromp 1999, 2002) have received wide attention in

3 By “large”, I mean that the propagation distance is much larger than the dominant wavelength.
4 1 GFLOP = 109 FLOPS (floating point operations per second), 1 TFLOP = 1012 FLOPS, 1
PFLOP = 1015 FLOPS, 1 EFLOP =1018 FLOPS.
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the seismic modeling community. An important advantage of the weak form repre-
sentation is that the free-surface boundary condition is naturally accounted for even
for highly irregular surface topography.

In the SE method, each element is mapped to a reference cube using the Jacobian
matrix. High-order Lagrange polynomial interpolants are used to represent functions
on the reference cube. The control points needed in defining the Lagrange poly-
nomials are chosen to be the classical Gauss-Lobatto-Legendre (GLL) quadrature
points. Any smooth 3D function can then be interpolated in a 3D hexahedral element
by triple products of Lagrange polynomials at the GLL points. The spatial deriva-
tives of any functions can be obtained by computing the derivatives of the Lagrange
polynomials and the integrals of any functions can be approximated using the GLL
integration quadrature. A direct consequence of using Lagrange interpolants and
GLL quadrature is that the resulting mass matrix of the system is diagonal and a
fully explicit time-marching scheme can be adopted.

The discontinuous-Galerkin (DG) method was adopted to solve the elastody-
namic equation very recently (Käser and Dumbser 2006; Dumbser and Käser 2006;
Käser et al. 2007; de la Puente et al. 2007; Dumbser et al. 2007b). The advantages
of the DG method can be summarized as follows.

• In three spatial dimensions, the DG method can achieve high-order accuracy
on fully unstructured tetrahedral meshes, which are usually easier to generate
than hexahedral meshes, especially for geological structure models with com-
plex geometries associated with topography, faults and other types of structural
discontinuities.

• Unlike conventional numerical schemes, which often adopt a relatively low-order
time-stepping method such as the Newmark scheme or a high-order, multi-stage
method that requires storing intermediate fields such as the Runge-Kutta method,
the DG method uses a high-order, single-step, explicit time integration scheme,
the Arbitrary high-order DERivatives (ADER) method (Toro 2009).

• The DG method allows for different polynomial degrees inside different elements
(i.e., p-adaptivity) and also different time-step lengths for different elements (i.e.,
local time stepping). In conventional global time-stepping schemes, the element
with the smallest time step length dictates its own time step length to all other
elements. In the local time-stepping scheme, each element can use a different
time-step length that is optimal according to its own local stability condition.
This is particularly advantageous for meshes with strongly degenerate elements
(i.e., slivers), as the time-step lengths for other elements are not restricted in any
way by the small time-step lengths of the badly-shaped elements.

• The DG method is particularly suitable for modeling wave propagation in het-
erogeneous fluid-solid environment. The Riemann solver used for computing the
numerical flux across element interfaces can automatically recognize disconti-
nuities in material properties across highly irregular fluid-solid interfaces (Käser
and Dumbser 2008). The acoustic fluid is characterized by simply setting the
shear modulus to zero. The DG method also accounts for the convection of the
fluid, which allows us to correctly model the effects of ocean currents on wave
propagation in complex acoustic environment.
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• The majority of the operators in the DG method are applied in an element-local
way, with weak nearest-neighbor coupling between elements through numeri-
cal flux functions. The resulting locality allows the DG method to achieve very
high parallel efficiency on single-instruction-multiple-data (SIMD) distributed-
memory parallel computers.

The primary disadvantage of the DG method is its high computational cost. Pre-
liminary results have shown that it is about 50–60 times more expensive than the
SE method (Dumbser et al. 2007b). However, some recent results have shown that
the DG method for solving the elastodynamic equation can be effectively acceler-
ated using graphic processing units (GPUs) (Mu et al. 2013a, b). Compared with the
CPU implementation, the GPU-CPU hybrid implementation can achieve a speedup
of about 28 times with a moderate-level optimization of the GPU memory access
pattern. This is highly encouraging because with the current computing capabil-
ity, the GPU-accelerated DG algorithm can already be adopted for solving F3DWI
problems of moderate size. With the continued development of the computing tech-
nology, the DG method will be applicable to much larger problems in the near
future.

Numerical algorithms for solving the elastodynamic equation are not limited to
those discussed above. I also mention the boundary-element method (BEM) (Bou-
chon and Sánchez-Sesma 2007), the finite-volume method (Dumbser et al. 2007a),
the variable- and discontinuous-grid finite-difference method (Aoi and Fujiwara
1999; Pitarka 1999), the hybrid finite-difference-finite-element method (Galis et al.
2008). Different numerical algorithms have different advantages and drawbacks.
For a more comprehensive review of the numerical algorithms used for solving the
elastodynamic problems, please refer to some of the more recent books (Dmowska
et al. 2006; Robertsson et al. 2012) and review articles (Takenaka et al. 1998; Moczo
et al. 2007; Igel et al. 2009) and the references therein.

1.4 A Brief History of HPC Technology

F3DWI was enabled by recent advances in high-performance computing (HPC). Its
wide adoption and continued development will depend upon sustained improvement
in HPC technology in the future. Understanding the pathway through which HPC
technology has been evolving will help us to design better F3DWI software that can
take the full advantage of new HPC systems in the future.

The demand for more computing power has periodically inspired major inno-
vations in HPC hardware. The famous Moore’s law predicts that the density of the
transistors would double every 2 years, a prediction that has been roughly consistent
with observations since the 1970s. However, to translate the exponential growth in
transistor density to exponential growth in actual computing power, which is often
measured in FLOPS (floating-point-operations-per-second), still requires additional
hardware innovations.
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In the 1970s and 1980s, the performance improvements were mainly obtained
from increasing the clock frequency (i.e., number of clock cycles per second) and
engineering more sophisticated instruction scheduling in a single processing core.
Many of the added transistors were used to double computer word sizes5, to increase
the amount of caches6 and to add major core-level features, such as additional
floating-point units, out-of-order execution of instructions7 and pipelining8. The
dominant programming model for this type of hardware was the single-threaded
sequential model. In the 1990s and early 2000s, the increasing number of transis-
tors were still used to add relatively incremental core-level features. At this stage,
the objective of the computing industry was to maximize the FLOPS of a single
core.

By around 2005, the industry was facing a number of engineering difficulties
associated with using a large number of transistors in a single core. One problem
was related to energy. The power consumption, as well as the need for dissipating the
heat, increases with clock frequency9. A second problem was that no more impor-
tant core-level features could be added. As a consequence, the clock speeds stayed
relatively constant at about 3 GHz or less and the core architecture was not changed
too much and was expected to become simpler. To effectively utilize the added tran-
sistors, a reasonable step was to put more processing cores onto the same chip. The
priority of the industry was shifted towards maximizing the FLOPS per unit area
of silicon. Today most processors have multiple cores. An important advantage of
the multi-core approach is that these cores are identical and have the same instruc-
tion set, therefore can be programmed using a relatively homogeneous programming
model within the confines of a single processor. Most of the manufacturers currently
implement the shared-memory model10 for multi-core processors and communi-
cation among different cores of the same processor can be implemented through
memory accesses to a same memory address. This type of architecture is often

5 A “word” is the smallest unit of data processed by the CPU. Modern processors usually have a
word size of 32-bit or 64-bit.
6 A CPU spends most of its time waiting for memory transactions (i.e., reading/writing data from/to
the main memory). The cache is a smaller, faster memory on the CPU which stores temporary
copies of frequently accessed main-memory data. The cache can help reduce the frequency of
memory transactions that have to leave the CPU, thereby improving overall CPU performance.
7 An out-of-order execution allows later instructions to be executed before the earlier ones as long
as there are no data dependencies among those instructions.
8 Each instruction is split into multiple steps and different steps from multiple instructions are
executed concurrently on different parts of the same processor. Pipelining is usually used together
with the superscalar design, which allows the processor to issue multiple instructions in a single
clock cycle.
9 P = C × V 2 × F , where P is power, C is the capacitance being switched per clock cycle
(proportional to the number of transistors whose inputs change), V is voltage, and F is the clock
frequency. In reality, the CPU power consumption is more complicated than what this formula
shows.
10 All cores on the same processor share a single view of the same memory space and can access
data stored in the memory through a single address space.
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called Symmetric Multi-processing (SMP), in which two or more identical cores
are connected to a single, shared main memory. All cores are controlled by a single
operating system instance, which treats all cores equally. Parallelism can be imple-
mented using well-established Application Programming Interfaces (APIs) such as
POSIX Threads (Butenhof 1997) and OpenMP (Rendell et al. 2013).

The computing power can also be increased by combining many processors using
a network. Each processor runs its own instance of an operating system in its own
private memory and communicates with each other by passing messages through a
high-speed Local Area Network (LAN). Such a system is often called a “distributed-
memory” system. Calculations can only operate on local data and if remote data
are needed, they must be transported over the network through “message-passing”.
Such a “computer cluster” can be built from inexpensive commodity components,
in which case the cluster is often called a Beowulf cluster (Becker et al. 1995).
The processors making up the cluster can be shared-memory multi-core proces-
sors, in which case the system is often called an SMP-cluster and each multi-core
processor in the cluster is called a node. The number of nodes in a supercomputer
has increased from a few thousands in the early 1990s to hundreds of thousands
today. In systems with a very large number of nodes, the speed and flexibility of
the interconnect become highly important. Many of the latest HPC systems, such
as the IBM Blue Gene series, the Cray XT series and Fujitsu’s K computer, use
multi-dimensional torus networks (Ajima et al. 2009) or other types of specialized
interconnect networks. Such systems are often called Massively Parallel Processing
(MPP) systems.

The de facto standard API for inter-node message exchanges is the Message Pass-
ing Interface (MPI), a collection of well-tested library routines for writing portable
message-passing parallel programs in a variety of computer languages (Gropp et al.
1999). The MPI library can also by used for passing messages among different cores
of the same SMP node, therefore a single-level, flat message-passing only program-
ming model is applicable to clusters of SMP nodes. If the MPI library can be made
SMP-aware11 (Träff 2003), such a programming model is both relatively simple
to implement and also capable of achieving high-performance on SMP-clusters.
Another option for programming SMP-clusters is to use a two-level parallel pro-
gramming model, in which POSIX Threads or OpenMP can be used for managing
intra-node multi-core parallelism and the inter-node message-passing is performed
through MPI (Smith and Bull 2001). Such a two-level programming model is more
difficult to implement since it requires mastering both the shared-memory and
the message-passing programming paradigms. In general this programming model
should give better performance on SMP-clusters, since it can adapt better to the
underlying hardware.

To increase the number of identical cores in a single processor to a very large
number also faces various engineering difficulties related to the effective utilization

11 Message-passing between different cores on the same processor can bypass the network, thereby
reducing network performance bottlenecks.
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of the ever increasing transistors. But a more pressing issue, especially when the
industry is moving towards Exascale, is energy efficiency. Tianhe-212, the world’s
fastest supercomputer at the time of writing, runs at 33.86 PFLOPS and consumes
24 megawatts (MW) of power, which amounts to about 1.4 GFLOPS per watt, a
substantial improvement in energy efficiency over previous-generation supercom-
puters. If an Exascale machine runs at the same efficiency, it would require 709 MW,
enough energy to power nearly one million homes. For Exascale HPC systems to be
viable, the energy efficiency needs to be improved by about 23 fold (Service 2013).
The priority of the industry has now shifted towards maximizing the FLOPS per
unit energy.

One approach that has been explored in Tianhe-2 and some other recent systems
such as Titan13 and Blue Waters14 is to use heterogeneous many-core nodes. The
different cores on the same node can be tailored to the particular calculations run
on them so that the energy consumption is minimized while the performance is
maximized. Hardware support can also be built into chips for adaptive control of
the clock frequency and the voltage to maximize energy efficiency (Rahman 2013).
At the current stage, examples of such specialized processing units, which are often
called co-processors or accelerators, include the Cell Broadband Engine, Graphic
Processing Units (GPUs), Field Programmable Gate Arrays (FPGAs) and the Intel
Xeon Phi. These specialized processors usually have simpler architecture, lower
power consumption and higher floating-point throughput performance than general-
purpose CPUs and are often used alongside general-purpose CPUs to improve the
energy efficiency of numerically intensive calculations in latest heterogeneous HPC
systems.

At the current stage, there is no general consensus about how to program het-
erogeneous HPC systems to achieve optimal overall performance. Despite the
success of the single-level, flat message-passing-only programming model, there
are growing evidences that future parallel software developers will have to address
the ever increasing node-level complexities by introducing another level of par-
allelism. Message-passing may continue to be the dominant model for managing
inter-node parallelism, but it may not be sufficient for driving all the different types
of cores on a single node for much longer. One possibility is to use threads for
intra-node parallelism in conjunction with MPI. However, POSIX Threads and
OpenMP, which have been widely adopted in programming homogeneous clus-
ters of SMP nodes, do not provide fine-grained control over thread placement,
scheduling and resource management, which are often needed in programming
heterogeneous processors. For heterogeneous nodes with many-core accelerators

12 Tianhe-2 is a hybrid supercomputer built using Intel Xeon E5 and Xeon Phi. Xeon Phil is a type
of co-processor built on the Intel Many Integrated Core (MIC) architecture.
13 Titan is a GPU-CPU hybrid supercomputer built by Cray at the Oak Ridge National Laboratory.
It ranks at the second place in the TOP500 benchmark at the time of writing.
14 Blue Waters is a GPU-CPU hybrid system built by Cray at the National Center for Supercom-
puting Applications (NCSA).
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such as GPUs, vendor-provided APIs, such as ATI Stream Software Development
Kit (Bayoumi et al. 2009) and NVIDIA Compute Unified Device Architecture
(CUDA) (Cook 2013), provide high-level instructions for the launching, organi-
zation, resource assignment and scheduling of thousands of threads. The emerging
industry standard Open Computing Language (OpenCL), which is a framework for
programming heterogeneous nodes consisting of multi-core CPUs, GPUs and other
types of co-processors (Gaster et al. 2013), specifies a parallel computing model
that is very close to CUDA. It is likely that new programming models will emerge
as the heterogeneous HPC hardware continues to evolve. A major design goal of our
F3DWI software in the future should be the portability and performance scalability
on heterogeneous HPC systems.
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Červený, V., & Ravindra, R. (1971). Theory of seismic head waves. University of Toronto Press.



12 1 Introduction
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Chapter 2
Anelastic Wave Propagation (AWP)

Among all the numerical methods for solving the 3D elastodynamic equation, the
finite-difference method is probably the most widely used. In this book, the numer-
ical wave-equation solver adopted for solving F3DWI problems is the Anelastic
Wave Propagation (AWP) code developed and maintained by Kim B. Olsen, Steven
M. Day and Yifeng Cui (ODC) (Olsen 1994; Olsen et al. 1995, 2003, 2006, Cui
et al. 2009). It implements the staggered-grid finite-difference scheme to solve the
three-dimensional velocity-stress elastodynamic equation. The scheme is fourth-
order accurate in space and second-order accurate in time. The AWP-ODC code
implements the traction-free boundary condition for the free surface and can use
either the Absorbing Boundary Conditions (ABC) of Cerjan (Cerjan et al. 1985) or
the Perfectly Matched Layers (PML) of Berenger (Berenger 1994; Marcinkovich
and Olsen 2003) for the four sides and the bottom of the computation domain. Rep-
resentations of the seismic sources can be included in the staggered-grid system
using the stress components for moment sources and/or the velocity components for
body-force sources.

The code is written in Fortran 77/90. Message passing is implemented using
MPI with domain decomposition. Each processor is responsible for updating the
velocity and stress fields on its own portion of the mesh and also for handling the
boundary conditions if some of its grid points are located on the external boundaries
of the modeling volume. Two-grid-point-thick ghost layers containing the Latest
velocity and stress fields are used for exchanging information with the neighboring
sub-meshes. Some very large-scale simulations may take several days to execute
therefore the AWP-ODC code includes checkpoint/restart capability. To ensure the
integrity of the simulation output, the AWP-ODC code generates MD5 checksums in
parallel for each mesh sub-array.

The accuracy of the AWP-ODC code has been extensively validated by
researchers at the Southern California Earthquake Center (SCEC) in the SCEC 3D
Numerical Simulation Code Validation Project (Day et al. 2001, 2003, 2005) using
a hierarchy of test problems ranging from simple point-source problems in half-
space or layered structural models (i.e., material properties are constant or vary only
with depth) to finite-rupture sources in complex 3D structural models. Five different
codes, including an earlier version of AWP-ODC, were compared in this validation
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project. Four of them were finite-difference codes (Larsen and Schultz 1995; Graves
1996; Pitarka 1999) and one was a finite-element code (Akcelik et al. 2003). The
validation was carried out mainly through cross-comparisons of the synthetic seis-
mograms generated by the different numerical codes. For half-space and layered
structural models, synthetic seismograms generated using a semi-analytic method
were also included in the comparisons.

The AWP-ODC code has been extensively optimized for performance improve-
ments on different types of HPC systems during the TeraShake project (Cui et al.
2009), an inter-disciplinary, collaborative project for simulating earthquake ruptures
and seismic wave propagation in Southern California using the NSF-funded Tera-
Grid HPC resources1. The result of those extensive optimization efforts is that the
AWP-ODC code can now easily scale to tens of thousands of processors with very
high parallel efficiency. In 2009 the AWP-ODC code was able to scale from 4096
to 40,960 cores with about 96 % parallel efficiency on the Blue Gene/L system at
the IBM TJ Watson Research Center in a strong scaling2 experiment that used about
32 billion grid points. The weak scaling3 performance was also nearly perfect for up
to 32,768 processors on the same system. In 2010, the AWP-ODC code was used for
simulating seismic wavefields generated by a hypothetical magnitude-8 earthquake
on southern San Andreas Fault4. The simulation was performed on 223,074 cores
on the Jaguar Cray XT5 system at the National Center for Computational Sciences
(NCCS) of the Oak Ridge National Laboratory in Tennessee and the AWP-ODC
code achieved 220 TFLOPS of sustained performance. This study was selected as
one of the year’s Gordon Bell Prize5 finalists. Recently, optimization effort on the
AWP-ODC code has been mainly focused on porting the code to GPUs and improv-
ing its efficiency on CPU-GPU hybrid heterogeneous HPC systems (Zhou et al.
2013).

1 The TeraGrid was a grid-computing infrastructure combining HPC resources at 11 different part-
ner sites. It was supported by the US National Science Foundation and operated from 2004 through
2011. The TeraGrid project was succeeded by the Extreme Science and Engineering Discovery
Environment (XSEDE), a partnership involving HPC resources from 17 institutions, which has
been supported by NSF since 2011.
2 The overall problem size is fixed and the total number of processors is increased. Therefore the
workload on each processor decreases with the number of processors.
3 The workload for each processor is constant and the overall problem size increases in proportion
with the number of processors.
4 The “M8” earthquake simulation was the largest earthquake simulation coordinated by SCEC. It
used a uniform mesh with 40-m grid spacing and the simulation volume was 810-km long, 405-
km wide and 85-km deep. The total number of finite-difference grid points used in this simulation
was about 436 billion. The full simulation took about 24 h and produced about 6 min of the 3D
wavefields in the modeling volume.
5 The Gordon Bell prize is awarded by the Association of Computing Machinery (ACM) each
year to recognize outstanding achievements in high-performance computing, especially in applying
HPC technology to science and engineering applications.
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2.1 Formulation

The AWP-ODC code solves the strong formulation6 of the velocity-stress equation
of motion

ρv̇ = ∇ · σ + f (2.1)

where ρ is the density, v̇ is the time derivative of the particle-velocity vector (i.e.,
particle acceleration), σ is the stress tensor and f is the body-force source. I use
the over-dot (i.e., Newton’s notation) to represent time derivatives in the following
equations. I have dropped the dependence on the spatial and temporal coordinates x
and t of the variables to clarify the basic physics. Written in index notation, Eq. 2.1
can be expressed as

ρv̇i = σij,j + fi (2.2)

where i, j, k = 1, 2, 3, repeated indices imply summation (i.e., Einstein conven-
tion), and σij,j is the divergence of the stress tensor

∑3
j=1 ∂σij /∂xj .

2.1.1 Elastic Media

For three-dimensional isotropic elastic media, the stress-strain relation used in the
code is

σ̇ij = λε̇kkδij + 2με̇ij − ṁij (2.3)

where λ and μ are the time-independent, but spatially-varying, Lamé parameters,

ε̇ij = 1

2

(
vi,j + vj,i

)
(2.4)

is the strain rate tensor, δij is the Kronecker delta, mij is the moment-density ten-
sor of any moment source and ṁij is its time derivative (i.e., moment-rate-density
tensor). The strain rate tensor ε̇ij is defined in terms of the spatial gradient of the
particle velocity vector ∂vi/∂xj and its transpose ∂vj /∂xi . Denoting the particle
displacement vector as u, the symmetric strain tensor ε can then be expressed as

ε = 1

2

[
∇u+ (∇u)T

]

=

⎡

⎢
⎢
⎢
⎣

∂u1
∂x1

1
2

(
∂u1
∂x2
+ ∂u2

∂x1

)
1
2

(
∂u1
∂x3
+ ∂u3

∂x1

)

1
2

(
∂u1
∂x2
+ ∂u2

∂x1

)
∂u2
∂x2

1
2

(
∂u2
∂x3
+ ∂u3

∂x2

)

1
2

(
∂u1
∂x3
+ ∂u3

∂x1

)
1
2

(
∂u2
∂x3
+ ∂u3

∂x2

)
∂u3
∂x3

⎤

⎥
⎥
⎥
⎦

. (2.5)

6 The solution we are seeking must be sufficiently smooth and have regular second-order spa-
tial derivatives. In the weak formulation, the solution we are seeking may have only first-order
derivatives (Evans 2010).
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This strain tensor will be playing an important role in constructing the Fréchet
kernels in Chap. 4.

2.1.2 Viscoelastic Media

For three-dimensional isotropic viscoelastic media, the stress-strain relation can be
defined as (Christensen 2003)

σij (t) = δij

∫ t

−∞
λ (t − τ ) ε̇kk (τ ) dτ + 2

∫ t

−∞
μ (t − τ ) ε̇ij (τ ) dτ (2.6)

where the Lamé parameters, λ (t) and μ (t), are time-dependent relaxation func-
tions. Here I have dropped the dependence on spatial coordinates x of the functions
to reduce clutter. A direct integration of Eq. 2.6 is numerically intractable due to
unrealistic requirements on computer memory and computing time, approximations
are therefore needed. The standard approach is to convert the convolutory stress-
strain relation Eq. 2.6 into a differential form, which can be numerically solved
more easily using the finite-difference method.

2.1.2.1 The Complex Modulus and its Approximation

To demonstrate the basic physics, I will use a simplified scalar notation and write a
scalar stress-strain relation analogous to Eq. 2.6

σ (t) =
∫ t

−∞
ψ (t − τ ) ε̇ (τ ) dτ = ψ (t) ∗ ε̇(t) (2.7)

where ∗ represents the temporal convolution. I will deal with the conversion back
to index notations for stress and strain tensors afterwards. Here the stress relaxation
function ψ(t) is the stress response to a unit Heaviside function in strain. In the
frequency domain, Eq. 2.7 can be expressed as

σ̂ (ω) = ψ̂(ω)(iω)ε̂(ω) = M̂(ω)ε̂(ω) (2.8)

where σ̂ , ψ̂ and ε̂ are Fourier transforms of the stress, the stress relaxation function
and the strain and ω is the angular frequency. Here I have introduced the frequency-
domain complex modulus

M̂(ω) = (iω)ψ̂(ω) (2.9)

which, in the time domain, can be expressed as

M(t) = ψ̇(t) (2.10)
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and corresponds to the stress response to the Dirac function in strain. The stress-
strain relation 2.8 can then be expressed as

σ (t) =M(t) ∗ ε(t) (2.11)

in the time domain. The anelastic attenuation factor or the seismic quality factor
Q(ω) is defined in terms of the complex modulus as

Q(ω) =
�
[
M̂(ω)

]

�
[
M̂(ω)

] = 1

tan 	 M̂(ω)
(2.12)

where 	 M̂(ω) is the phase of the complex modulus. For Eq. 2.8 to be causal, M̂(ω)
must satisfy the Kramers-Kronig relation7, therefore M̂(ω) is uniquely determined
by a given quality factor Q(ω) and vice versa. Observations have shown that Q(ω)
is nearly constant over the seismic frequency range (i.e., periods from about 0.01 s
to 1 h) (McDonal et al. 1958; Liu et al. 1976; Spencer 1981; Murphy III 1982). Our
goal is to find an approximation to the complex modulus M̂(ω) such that the quality
factor Q(ω) fits a given target frequency-dependence over a specified frequency
range and also the stress-strain relation Eq. 2.11 can be easily solved through a time-
domain finite-differencing scheme. An approximation that has been widely used in
the literature has the form

M̂(ω) = MU

(

1−
N∑

l=1

wl

1+ iωτl

)

(2.13)

where MU is the unrelaxed modulus, i.e.,

MU = lim
ω→∞ M̂(ω) = lim

t→0
ψ(t) (2.14)

and the two sets of parameters wl and τl (l = 1, 2, ..., N), as well as N , can be
chosen in such a way that the corresponding quality factor (considering Eq. 2.12),

Q(ω) =
1−∑N

l=1
wl

1+(ωτl )
2

∑N
l=1

wlωτl

1+(ωτl )
2

(2.15)

can adequately fit a target frequency-dependent model (Day and Minster 1984;
Emmerich and Korn 1987; Blanch et al. 1995; Liu and Archuleta 2006). The time-
domain expression for the approximate modulus 2.13 can be obtained through
inverse Fourier transform,

M(t) = MUδ(t)−MU

N∑

l=1

wl

τl

e−t/τlH (t), (2.16)

7 Causality implies that the complex function is analytic. The Kramers-Kronig relation indicates
that the real and imaginary parts of any analytic function are related through the Hilbert transform,
therefore the full function can be reconstructed by knowing just one of its parts. A corollary is that
an analytic function can be reconstructed by knowing only its phase.
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where δ(t) is the Dirac function and H (t) is the Heaviside function. Bring Eq. 2.16
into the stress-strain relation Eq. 2.11, we obtain

σ (t) = MUε(t)−MU

N∑

l=1

wl

τl

∫ t

−∞
ε(τ )e−(t−τ )/τldτ . (2.17)

Introduce the memory variables8,

ζl(t) = wl

τl

∫ t

−∞
ε(τ )e−(t−τ )/τldτ, (2.18)

the stress can be expressed as

σ (t) =MU

[

ε(t)−
N∑

l=1

ζl(t)

]

. (2.19)

Taking the time derivative on both sides of Eq. 2.18, we obtain

ζ̇l(t) = −wl

τ 2
l

∫ t

−∞
ε(τ )e−(t−τ )/τldτ + wl

τl

∫ +∞

−∞
Ḣ (t − τ )ε(τ )e−(t−τ )/τldτ

= − 1

τl

ζl(t)+ wl

τl

∫ +∞

−∞
δ(t − τ )ε(τ )e−(t−τ )/τldτ

= − 1

τl

ζl(t)+ wl

τl

ε(t).

Therefore the memory variables ζl(t) follow simple first-order ordinary differential
equations (ODEs)

τl ζ̇l(t)+ ζl(t) = wlε(t) (2.20)

which has a time-stepping solution (Day 1998; Liu and Archuleta 2006) given by
the first-order exponential integrator method9 (Certaine 1960; Pope 1963)

ζl

(
tn + �t

2

)
= e

−�t
τl ζ

(
tn − �t

2

)
+wl

[
1− e

−�t
τl

]
ε(tn) (2.21)

and also a finite-difference solution

ζl

(
tn + �t

2

)
=
(

τl

�t
− 1

2

)
ζl

(
tn − �t

2

)+ wlε(tn)

τl

�t
+ 1

2

(2.22)

8 In the literature these variables are also known as relaxation functions, anelastic functions,
internal variables, additional functions, etc.
9 To obtain Eq. 2.21, multiply both sides of Eq. 2.20 with et/τl and integrate over t from tn−�t/2
to tn +�t/2. The strain is approximated as a constant ε(t) ≈ ε(tn) over the integration interval.
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Fig. 2.1 Solution of the memory variable obtained using the exponential integrator method
Eq. 2.21 (solid lines) and that obtained using the finite-difference method Eq. 2.22 (dotted solid
lines) for different relaxation time τl . The initial condition is set as ζl (0) = 0, the weight coefficient
wl = 1, the strain is set to a constant ε = 1, the time-step length �t = 0.01 s.

where �t is the time-step length and tn = (n − 1)�t is the time of the nth time
step. In general, both solutions are consistent with each other. If we approximate
exp (−�t/τl) in Eq. 2.21 using its Padé approximant10

(1− 0.5�t/τl) / (1+ 0.5�t/τl) , (2.23)

we arrive at Eq. 2.22. For very small τl (i.e., the ODE is stiff11), the exponential
integrator solution 2.21 can alleviate some of the stiffness because part of the ODE
is integrated exactly (Cox and Matthews 2002). Comparisons of the two solutions
for a fixed �t and different τl are shown in Fig. 2.1. When τl is reduced to 0.002 s,

10 The Padé approximant provides an approximation of a function using rational functions and
often gives better accuracy than a truncated Taylor series (Baker and Graves-Morris 1996).
11 The solutions of some differential equations may contain both rapid-varying, transient modes
and longer-period slow modes. The numerical algorithms for solving such equations need to use
very small time steps to ensure numerical stability even after the rapid-varying, transient modes
are no longer visible in the solutions. Such differential equations are said to be stiff (Heath 2005).
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the finite-difference solution shows strong oscillation, while the exponential inte-
grator solution increases monotonically to 1. The oscillation in the finite-difference
solution can be reduced by decreasing �t , at the expense of higher computational
cost. In each time step, after the memory variables are updated using Eq. 2.21 or
2.22, the stress can then be updated using Eq. 2.19.

2.1.2.2 Physical Interpretation of the Approximate Modulus

The approximation in Eq. 2.13 can be understood in multiple ways. For example,
the 2N values of τl and wl can be related to the poles and residues of the rational
approximation for M̂(ω) (Day and Minster 1984). A more physical interpretation is
in terms of the Generalized Zener Body (GZB, i.e., the Standard Linear Solid model)
or the Generalized Maxwell Body (GMB-EK) rheological models. The GZB and
the GMB-EK models are equivalent to each other and one can be derived from the
other (Moczo and Kristek 2005). These generalized rheological models are based
on serial and parallel compositions of two simplest linear rheological models: the
Hooke body (i.e., the stress is proportional to the strain), which has the stress-strain
relation

σ̂H (ω) = MHε̂H (ω) (2.24)

and is often depicted as a spring, and the Stokes body (i.e., the stress is proportional
to the strain rate), which in the frequency domain has the stress-strain relation

σ̂S(ω) = iωηSε̂S(ω) (2.25)

and is often depicted as a dash pot. Here ηS is the time-independent viscosity. A
Maxwell body is a Hooke body connected in series with a Stokes body. The stress in
the Maxwell body σ̂M should be equal to that in its Hooke and Stokes components,
i.e.,

σ̂M = σ̂H = σ̂S (2.26)

and the strain ε̂M should be equal to the summation of the strain in its Hooke and
Stokes components, i.e.,

ε̂M = ε̂H + ε̂S = σ̂H

MH

+ σ̂S

iωηS

= MH + iωηS

iωηSMH

σ̂M (2.27)

therefore the effective modulus of a single Maxwell body in the frequency domain
M̂M can be expressed using the modulus of its Hooke component and the viscosity
of its Stokes component as

M̂M (ω) = iωηSMH

MH + iωηS

. (2.28)

A Generalized Maxwell Body (GMB) is N Maxwell bodies connected in parallel. A
GMB-EK body is N Maxwell bodies and a single Hooke body connected in parallel
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(Emmerich and Korn 1987). The stress in a GMB-EK body should be equal to the
summation of the stresses in all of its parallel components and the strain should be
equal to that in each of its individual parallel components. The effective modulus
for such a GMB-EK body is therefore

M̂(ω) = MH +
N∑

l=1

iωηlMl

Ml + iωηl

(2.29)

where Ml and ηl are the modulus and the viscosity of the Hooke body and the
Stokes body in the lth Maxwell body and MH is the modulus of the single Hooke
body that is connected in parallel with the N Maxwell bodies. The unrelaxed and
relaxed moduli for the GMB-EK body can therefore be derived using Eq. 2.29

MU = lim
ω→∞ M̂(ω) = MH +

N∑

l=1

Ml, (2.30)

MR = lim
ω→0

M̂(ω) = MH . (2.31)

If we introduce

�M = MU −MR =
N∑

l=1

Ml (2.32)

we can express the effective modulus of the GMB-EK body Eq. 2.29 using MU and
�M as

M̂(ω) = MU −�M +
N∑

l=1

iωηlMl

Ml + iωηl

= MU −�M

(
N∑

l=1

Ml

�M
−

N∑

l=1

Ml

�M

iωηl

Ml + iωηl

)

= MU −�M

N∑

l=1

Ml

�M

(
1− iωηl

Ml + iωηl

)

= MU

[

1− �M

MU

N∑

l=1

Ml

�M

(
1

1+ iωηl/Ml

)]

= MU

(

1−
N∑

l=1

Ml/MU

1+ iωηl/Ml

)

.

Compare with Eq. 2.13, the parameters wl and τl in Eq. 2.13 can be understood as

wl =Ml/MU, (2.33)
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τl = ηl/Ml, (2.34)

and in the literature τl and wl are often called the relaxation time and the weight
coefficient, respectively. The inverse of the relaxation time

ωl = 1/τl (2.35)

is called the relaxation frequency. Another widely used notation for the weight
coefficient is al , which is related to wl through

wl = al
�M

MU

. (2.36)

Considering Eqs. 2.32 and 2.33, we have

N∑

l=1

al = 1. (2.37)

Bring Eq. 2.36 into the approximate modulus Eq. 2.13 and the ODEs for the mem-
ory variables Eq. 2.20, we obtain another set of equations also widely used in the
literature

M̂(ω) = MU −�M

N∑

l=1

alωl

ωl + iω
, (2.38)

ζ̇l(t)+ ωlζl(t) = ωlal
�M

MU

ε(t). (2.39)

Here I have used the relaxation frequency ωl instead of the relaxation time τl in
Eqs. 2.38 and 2.39. The approximate modulus can also be expressed in terms of the
relaxed modulus MR . Since MU = MR +�M , considering Eq. 2.38, we have

M̂(ω) = MR +�M

(

1−
N∑

l=1

alωl

ωl + iω

)

.

Considering Eq. 2.37, we obtain (Emmerich and Korn 1987)

M̂(ω) = MR +�M

(
N∑

l=1

al −
N∑

l=1

alωl

ωl + iω

)

= MR +�M

N∑

l=1

ialω

ωl + iω
. (2.40)

Based on this notation, the inverse of the quality factor can be expressed as
(Emmerich and Korn 1987)

Q−1(ω) =
∑N

l=1 Yl
ω/ωl

1+(ω/ωl)
2

1+∑N
l=1 Yl

(ω/ωl)
2

1+(ω/ωl)
2

, (2.41)
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Fig. 2.2 Examples of the Debye function for ωl = 0.2π, 2π, 20π and Yl = 1.

where the weight coefficient Yl is related to al through

Yl = �M

MR

al . (2.42)

In the case that �M/MR � 1, we can approximate Q−1(ω) as

Q−1(ω) ≈
N∑

l=1

Yl
ω/ωl

1+ (ω/ωl)
2 , (2.43)

which is a summation of Debye functions (Emmerich and Korn 1987). The Debye
functions are symmetric on a logarithmic scale and centered at frequency ωl .
Examples of the Debye function are shown in Fig. 2.2.

A Zener body is composed of a Maxwell body and a Hooke body connected in
parallel. The GZB consists of N Zener bodies connected in parallel. An analysis
of Eq. 2.13 based on the GZB rheological model can also be carried out (Liu et al.
1976; Carcione 2007; Moczo et al. 2007).
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2.1.2.3 Isotropic Viscoelastic Media

For isotropic media, the stress-strain relation Eq. 2.6 can be partitioned into two
separate relations analogous to Eq. 2.19. Both the stress tensor and the strain tensor
can be decomposed into a volumetric component and a deviatoric component. For
the stress tensor, we have

σij = σ̄ δij + σ
′
ij (2.44)

where the volumetric stress12 is defined as

σ̄ = σkk/3 (2.45)

and the deviatoric stress is defined as

σ
′
ij = σij − δij σkk/3. (2.46)

The strain tensor can be decomposed in a similar way,

εij = ε̄δij + ε
′
ij (2.47)

where the volumetric strain is
ε̄ = εkk/3 (2.48)

and the deviatoric strain is

ε
′
ij = εij − δij εkk/3. (2.49)

Here repeated indices imply summation (i.e., Einstein convention). For elastic
isotropic media, the volumetric stress σ̄ and the volumetric strain ε̄ are related
through the bulk modulus κ

σ̄ = 3κε̄ = κεkk (2.50)

and the deviatoric stress σ
′
ij and the deviatoric strain ε

′
ij are related through the shear

modulus μ

σ
′
ij = 2με

′
ij . (2.51)

Analogous to Eq. 2.19, we can introduce two sets of memory variables ζ̄l and lζ
′
ij ,

σ̄ (t) = κU

[

εkk(t)−
N∑

l=1

ζ̄l(t)

]

, (2.52)

σ
′
ij (t) = 2μU

[

ε
′
ij (t)−

N∑

l=1

lζ
′
ij (t)

]

, (2.53)

12 The volumetric stress is also called the mean stress or the hydrostatic stress in the literature.
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where κU and μU are the unrelaxed bulk and shear muduli. Analogous to Eq. 2.39,
the ODEs that the memory variables must follow are

˙̄ζl + ωlζ̄l = ωlal
�κ

κU

εkk, (2.54)

l ζ̇
′
ij + ωl lζ

′
ij = ωlal

�μ

μU

ε
′
ij , (2.55)

where �κ = κU−κR, �μ = μU−μR and κR and μR are the relaxed bulk and shear
moduli respectively. Here the Einstein convention applies to the repeated index k,
but does not apply to the repeated index l.

In principle, the relaxation frequency ωl and the weight coefficient al in Eq. 2.54
do not need to be identical to those in Eq. 2.55, which means that the bulk and the
shear moduli do not need to follow the same frequency-dependence. However, if we
assume that they are identical (i.e., the bulk and the shear moduli follow the same
frequency-dependence), we can simplify the equations (Day and Bradley 2001).
Considering Eqs. 2.44, 2.52 and 2.53, we introduce a new set of memory variables

lξij = κU ζ̄l + 2μU lζ
′
ij . (2.56)

Multiplying Eq. 2.54 and 2.55 with κUδij and 2μU , respectively, and adding them
together, considering that the relaxation frequency ωl and the weight coefficient al in
Eqs. 2.54 and 2.55 are identical, we obtain the ODEs for the new memory variables
lξij as

l ξ̇ij + ωl lξij = ωlal

(
�κεkkδij + 2�με

′
ij

)
. (2.57)

Considering Eq. 2.49, we can re-write the ODEs in terms of the strain tensor εij as

l ξ̇ij + ωl lξij = ωlal

[(
�κ − 2

3
�μ

)
εkkδij + 2�μεij

]
. (2.58)

Considering Eqs. 2.44, 2.52 and 2.53, the stress tensor σij can be expressed in terms
of the new memory variables as

σij =
(

κU − 2μU

3

)
εkkδij + 2μUεij −

N∑

l=1

lξij . (2.59)

Analogous to the elastic stress-strain relation Eq. 2.3, we can write the stress rate in
terms of the strain rate as

σ̇ij = λU ε̇kkδij + 2μUε̇ij −
N∑

l=1

lζij , (2.60)

where λU = κU − 2μU/3 and the memory variables lζij = ˙
lξij . Considering

Eq. 2.58, the memory variables lζij must follow the ODEs

l ζ̇ij + ωl lζij = ωlal

[
�λε̇kkδij + 2�με̇ij

]
, (2.61)
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where �λ = �κ − 2�μ/3. Here the Einstein convention applies to the repeated
index k, but does not apply to the repeated index l.

The formulation for incorporating viscoelasticity into anisotropic media is more
involved and I refer to (Carcione and Cavallini 1994; Carcione 2007) for more
detailed discussion. At the current stage, the AWP-ODC code does not account for
anisotropy. It accounts for viscoelasticity in isotropic media using quality factors
Qp(ω) and Qs (ω), which approximate the frequency-independent Q model over a
broad frequency range.

2.1.2.4 Frequency-Independent Q

The relaxation time τl and the weight coefficient wl in Eq. 2.15 or the relaxation
frequency ωl and the weight coefficient Yl in Eq. 2.41 can be determined using
numerical optimization algorithms. In such algorithms, one searches for an opti-
mal set of τl and wl or ωl and Yl by minimizing the differences between the
Q(ω) model computed using Eq. 2.15 or 2.41 with a given target model Q̃(ω).
For many problems of practical interest, Q̃ is assumed to be frequency-independent
or varying slowly with frequency, although the power-law frequency-dependence
Q̃(ω) = Q0ω

γ is sometimes of interest (e.g., Müller 1983).
Considering the Debye function approximation of Q−1 in Eq. 2.43, in order to

obtain a Q−1 model that is fairly constant over a given frequency range [�1,�2],
a natural choice of the relaxation frequencies ωl is a logarithmically uniform dis-
tribution over [�1,�2] (Emmerich and Korn 1987). The distance between adjacent
Debye functions is then given by ωl/ωl−1, which should be constant for a log-
arithmically uniform distribution of ωl . The approximation can be improved by
increasing the number of relaxation frequencies inside [�1,�2], thereby reducing
ωl/ωl−1.

Once we have fixed the values for ωl , the weight coefficient Yl in Eq. 2.41 can
be determined by requiring Q−1 (ω̃m) = Q̃−1 (ω̃m) at a set of different frequencies
ω̃m, m = 1, 2, ...,K . The choice of ω̃m suggested in (Emmerich and Korn 1987) is
ω̃1 = ω1 and ω̃m+1 = ω̃m (ωl/ωl−1)

1/2, then K = 2N − 1. Considering Eq. 2.41,
the N weight coefficients Yl are constrained by 2N − 1 linear equations in the form
(Emmerich and Korn 1987)

N∑

l=1

ω̃m

[
ωl − Q̃−1 (ω̃m) ω̃m

]

ω2
l + ω̃2

m

Yl = Q̃−1 (ω̃m) , m = 1, 2, . . .K . (2.62)

This overdetermined linear system Eq. 2.62 can be solved using the least-squares
algorithm.

In the AWP-ODC code, a simple, yet not optimal, scheme is adopted to approxi-
mate the frequency-independent Q model (Day and Bradley 2001). The distribution
of the relaxation time τl is logarithmically uniform over the interval [τm, τM ],

ln τl = ln τm + 2l − 1

2N
(ln τM − ln τm) , (2.63)
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Fig. 2.3 Comparisons of the frequency-independent Q model obtained by solving Eq. 2.62 using
a least-squares method (solid lines) and the more simplistic approach of (Day and Bradley 2001)
(dash lines) for N = 3, 5, 8. The target Q model is set at Q̃−1 = 0.05.

where τm and τM are related to the Nyquist frequency ωNyquist and the total number
of time steps in the calculation Nt ,

τm = ω−1
Nyquist , τM = 5Ntω

−1
Nyquist . (2.64)

The weight coefficient al is chosen to be the constant 1/N . The resulting Q model
is nearly constant over the entire usable frequency range of the simulation (Day and
Bradley 2001). Figure 2.3 shows comparisons of the Q models obtained using this
simplistic approach with those obtained using the least-squares optimization method
for three different values of N . When N = 3, the separation between adjacent
Debye functions is too large compared with their width (Fig. 2.2), which results
in the oscillatory behavior of the Q models obtained using both methods. In the
AWP-ODC code, N is fixed at 8, which provides a model sufficiently accurate for
many applications.

In anelastic wave-propagation simulations, attenuation parameters are usually
given in terms of Qp and Qs instead of the differences between the unrelaxed and
relaxed moduli. Considering Eq. 2.15 or 2.41, once the Q model is determined, the
differences between the unrelaxed and the relaxed moduli �κ and �μ in the ODEs
for the memory variables in Eq. 2.61 can be replaced with Q−1

p and Q−1
s . For the



30 2 Anelastic Wave Propagation (AWP)

frequency-independent Q model, the ODEs for the memory variables in Eq. 2.61
can be written in terms of the unrelaxed moduli κU and μU and Q−1

p and Q−1
s

values at a given reference frequency ω0 (Day and Bradley 2001)

l
˙ζij + ωl lζij = ωlal

{
2μUASε̇ij

+
[(

κU + 4

3
μU

)
AP − 2μUAS

]
ε̇kkδij

}
, (2.65)

where the modulus relaxations AP and AS can be expressed as

AP ≡ �κ + 4�μ/3

κU + 4μU/3
= 2

π
Q−1

p0 ln
τM

τm

[
1− 2

π
Q−1

p0 (ln ω0τm)

]−1

, (2.66)

AS ≡ �μ

μU

= 2

π
Q−1

s0 ln
τM

τm

[
1− 2

π
Q−1

s0 (ln ω0τm)

]−1

. (2.67)

Here Qp0 and Qs0 are the Q values at the reference frequency ω0. The values for
τM and τm are given in Eq. 2.64.

The unrelaxed modulus can be determined from the phase velocity at a specified
reference frequency and the density. Introducing c0, the phase velocity at the ref-
erence frequency ω0, the modulus at the reference frequency can be represented as

M̂(ω0) = ρc2
0. (2.68)

Considering Eq. 2.13, the unrelaxed modulus can then be expressed as (Liu and
Archuleta 2006)

MU = ρc2
0

(

1−
N∑

l=1

wl

1+ iω0τl

)−1

. (2.69)

For c0 = β0, where β0 is the S-wave velocity at the reference frequency, we obtain

μU = ρβ2
0

(

1−
N∑

l=1

wl

1+ iω0τl

)−1

, (2.70)

and for c0 = α0, where α0 is the P-wave velocity at the reference frequency, we
have

κU + 4μU/3 = ρα2
0

(

1−
N∑

l=1

wl

1+ iω0τl

)−1

. (2.71)

In general, the wl and τl in Eq. 2.70 can be different from those in Eq. 2.71. In
practice, we usually do not have information about the reference frequency at which
the phase velocities are known. In such a case, we often assume ω0 = 2π .
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2.1.3 Discretization

The AWP-ODC code uses a uniform staggered grid, which results in an algorithmi-
cally simple and computationally efficient discretization scheme. In a conventional
uniform grid, different components of the field variables (i.e., the three-component
particle velocity and the 6-component stress) are all located at the same grid points.
In a staggered grid, different components of the particle velocity and the stress
tensor can be located at different grid points. To achieve the same numerical accu-
racy, the staggered grid requires eight times less memory and 10–16 times less
CPU time for 3D problems than schemes based on conventional grids (e.g., Moczo
et al. 2007). The fourth-order staggered-grid finite-difference scheme introduced in
(Virieux 1984, 1986) has been adopted by most finite-difference modelers and is
also adopted in AWP-ODC.

A schematic diagram of a unit cell inside the staggered grid used in the AWP-ODC
code is shown in Fig. 2.4. The edge length of a unit cell is h/2, however the grid
spacing of the mesh is still h. For instance, the distance between two adjacent v1
(black squares in Fig. 2.4) is h. Considering the scenario that v1 is located at a grid
point (I, J,K), where I, J,K are all integers (Fig. 2.4), then v2 is located at grid
point (I + 1/2, J + 1/2,K) and v3 at (I + 1/2, J,K + 1/2), the three diagonal
components of the stress tensor σ11, σ22, σ33 are located at (I + 1/2, J,K) and the
off-diagonal stress component σ12 at (I, J +1/2,K), σ13 at (I, J,K+1/2) and σ23
at (I + 1/2, J + 1/2,K + 1/2).

In order to update σ11 located at (I + 1/2, J,K) using Eq. 2.3, we need access
to v1,1, the first-order partial derivative of v1 with respect to x1, at grid point
(I + 1/2, J,K). We can approximate this partial derivative through a differenc-
ing scheme. For a fourth-order central differencing scheme, we need values of v1 at
grid points (I, J,K), (I + 1, J,K), (I − 1, J,K) and (I + 2, J,K) (Fig. 2.4). If we
denote the x1-coordinate of the grid point (I + 1/2, J,K) as x0, the x1-coordinates
of the four neighboring grid points are x0−h/2, x0+h/2, x0−3h/2 and x0+3h/2.
The first-order partial derivative of v1 with respect to x1 at x0 can be approximated
as a linear combination of v1 values at the four neighboring grid points as

v1,1 (x0) ≈ 1

h

{
a

[
v1

(
x0 + 3

2
h

)
− v1

(
x0 − 3

2
h

)]
+

b

[
v1

(
x0 + 1

2
h

)
− v1

(
x0 − 1

2
h

)]}
+O(h4). (2.72)

Here I have dropped the dependence on x2 and x3 coordinates to reduce clutter.
We can expand the v1 at the four neighboring grid points in Taylor series at x0 and
truncate to fourth order as

v1

(
x0 + 3

2
h

)
≈ v1 (x0)+ 3h

2
v
′
1 (x0)+ 9h2

8
v
′′
1 (x0)

+ 27h3

48
v
′′′
1 (x0)+O(h4), (2.73)
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Fig. 2.4 Geometry of the staggered grid and the locations of the different components of the par-
ticle velocity, the stress tensor and the memory variables used in AWP-ODC. The lower-right plot
shows a 3D array of unit cells. A unit cell is a cube with edge-length h/2, where h is the grid spac-
ing. A blow-up view of the four unit cells inside the dash-line box is shown in the upper-left plot.
The three black arrows on the lower-left cell indicate the coordinate system, in which the vertical
axis x3 points upward.
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v1

(
x0 − 3

2
h

)
≈ v1 (x0)− 3h

2
v
′
1 (x0)+ 9h2

8
v
′′
1 (x0)

− 27h3

48
v
′′′
1 (x0)+O(h4), (2.74)

v1

(
x0 + 1

2
h

)
≈ v1 (x0)+ h

2
v
′
1 (x0)+ h2

8
v
′′
1 (x0)

+ h3

48
v
′′′
1 (x0)+O(h4), (2.75)

v1

(
x0 − 1

2
h

)
≈ v1 (x0)− h

2
v
′
1 (x0)+ h2

8
v
′′
1 (x0)

− h3

48
v
′′′
1 (x0)+O(h4). (2.76)

Bring Eqs. 2.73–2.76 into Eq. 2.72, we obtain

v1,1 (x0) ≈ (3a + b) v
′
1 (x0)+ (27a + b) h2

24
v
′′′
1 (x0)+O(h4). (2.77)

For Eq. 2.72 to be fourth-order accurate, we require
{

3a + b = 1

27a + b = 0
, (2.78)

which has the solution {
a = − 1

24

b = 9
8

. (2.79)

Partial derivatives with respect to other coordinates and for other particle-velocity
and stress components are approximated in a similar way using the same fourth-
order central differencing scheme.

The time derivatives are approximated using a second-order central differencing
scheme in AWP-ODC. The particle-velocity fields at the (n+1/2)th time step, where
n is an integer, are computed using their values at the (n− 1/2)th time step and the
stress fields at the nth time step. And the stress fields at the (n + 1)th time step are
computed using their values at the nth time step and the particle-velocity fields at
the (n+ 1/2)th time step.

To incorporate viscoelasticity using Eqs. 2.60 and 2.61, we need to introduce
N memory variables, as well as the associated relaxation frequencies and weight
coefficients, for each stress component at all grid points. For a large number of relax-
ation mechanisms, for instance N = 8, the amount of computer memory required to
store them and also the computational time can be significant. The coarse-grained
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sampling of the memory variables, the relaxation frequencies and weight coeffi-
cients introduced in (Day 1998; Day and Bradley 2001) is adopted in AWP-ODC
to significantly reduce the computational costs associated with viscoelasticity. In
the coarse-grained sampling scheme, the distribution of the memory variables, the
relaxation frequencies and the weight coefficients has a spatial period of 2h. A
schematic diagram of the spatial distribution of the relaxation times for N = 8 is
shown in Fig. 2.4. The summation over all relaxation mechanisms at one grid point
in Eq. 2.60 can be accounted for by taking the memory variables from neighboring
positions with proper weighting. This coarse-grained spatial sampling scheme effec-
tively reduces the computational cost for 8 different relaxation mechanisms to that
of one relaxation mechanism. The numerical stability and accuracy of this sampling
scheme were carefully analyzed in (Graves and Day 2003). The implementation of
this scheme in the AWP-ODC code was tested and applied to derive empirical rela-
tions between S-wave velocity and Qs and empirical relations between Qs and Qp

in the Los Angeles Basin area in (Olsen et al. 2003).

2.1.4 Free-Surface Boundary

AWP-ODC only considers the planar free surface. Assuming the coordinate x3 is in
the vertical direction, the traction-free boundary condition for the free surface

σ · x̂3 =

⎡

⎢
⎢
⎣

σ13

σ23

σ33

⎤

⎥
⎥
⎦ = 0 (2.80)

is modeled using the stress imaging formulation13 (Levander 1988; Graves 1996)
in AWP-ODC. For the staggered grid adopted in AWP-ODC (Fig. 2.4), the particle
velocity and stress components that lie on the free surface are v3, σ13 and σ23, i.e.,
the components lying on the top of a unit cell. Suppose the free surface is the hor-
izontal plane located at vertical grid index K + 1/2 (Fig. 2.4), the stress imaging
formulation is implemented by setting

σ13|K+1/2 = σ23|K+1/2 = 0 (2.81)

and imposing the antisymmetry condition for σ33, which is located at vertical grid
indices K and K + 1

σ33|K+1 = −σ33|K . (2.82)

Here I have dropped the dependence of the stress field on horizontal coordinates to
reduce clutter. The stress components σ11, σ22 and σ12 are not needed above the free
surface.

13 The stress imaging formulation is sometimes called the zero-stress formulation in the literature.
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The relations among the different components of the particle velocity in the vicin-
ity of the free surface can be obtained based on the traction-free boundary condition
in Eq. 2.80 and the stress-strain relation. Considering Eq. 2.3, without the moment
source term, for i = 1 and j = 3

σ̇13|K+1/2 = μ
(
v1,3 + v3,1

) |K+1/2 = 0, (2.83)

we have
v1,3|K+1/2 = −v3,1|K+1/2, (2.84)

where v1,3 = ∂v1/∂x3 and v3,1 = ∂v3/∂x1. The partial derivatives in Eq. 2.84 can
be approximated using a second-order central differencing scheme. Considering the
grid point (I, J,K + 1/2) (Fig. 2.4), we have

v1|(I,J,K+1) − v1|(I,J,K)

h
≈ −v3|(I+1/2,J,K+1/2)− v3|(I−1/2,J,K+1/2)

h

re-arranging the terms, we obtain

v1|(I,J,K+1) ≈ v1|(I,J,K) − v3|(I+1/2,J,K+1/2)+ v3|(I−1/2,J,K+1/2). (2.85)

Considering
σ̇23|K+1/2 = μ

(
v2,3 + v3,2

) |K+1/2 = 0 (2.86)

at grid point (I + 1/2, J + 1/2,K + 1/2) we have

v2|(I+1/2,J+1/2,K+1) ≈ v2|(I+1/2,J+1/2,K)

− v3|(I+1/2,J+1,K+1/2)+ v3|(I+1/2,J,K+1/2). (2.87)

Considering

σ̇33|K+1/2 = (λ+ 2μ) v3,3|K+1/2 + λ
(
v1,1 + v2,2

) |K+1/2 = 0, (2.88)

at grid point (I + 1/2, J,K + 1/2), we have

v3|(I+1/2,J,K+3/2)− v3|(I+1/2,J,K−1/2)

2h
≈ − λ

λ+ 2μ
·

[
1

2

(
v1|(I+1,J,K) − v1|(I,J,K)

h
+ v1|(I+1,J,K+1) − v1|(I,J,K+1)

h

)

+1

2

(
v2|(I+1/2,J+1/2,K)− v2|(I+1/2,J−1/2,K)

h

+v2|(I+1/2,J+1/2,K+1)− v2|(I+1/2,J−1/2,K+1)

h

)]

and re-arrange terms we obtain

v3|(I+1/2,J,K+3/2) ≈ v3|(I+1/2,J,K−1/2) (2.89)
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− λ

λ+ 2μ

(
v1|(I+1,J,K) − v1|(I,J,K) + v1|(I+1,J,K+1) − v1|(I,J,K+1)

+v2|(I+1/2,J+1/2,K)− v2|(I+1/2,J−1/2,K)

+v2|(I+1/2,J+1/2,K+1)− v2|(I+1/2,J−1/2,K+1)
)
.

Equations 2.85, 2.87 and 2.89 together with Eqs. 2.81 and 2.82 allow us to compute
particle velocity components and stress components at grid points above the free
surface using the values below and on the free surface.

The differencing scheme adopted for the free-surface boundary condition is
second-order accurate. For the fourth-order scheme adopted for the interior, it is
usually sufficient to have 4–5 grid points per minimum wavelength to ensure suf-
ficient numerical accuracy. For the second-order scheme on the free-surface, we
may need 8–10 grid points per minimum wavelength. To accurately model surface
waves, which are particularly sensitive to the free-surface boundary, I usually use 9
grid points per minimum wavelength in simulations.

2.1.5 PML Boundary

The AWP-ODC code implements the perfectly-matched-layer (PML) for the 4 sides
and the bottom of the modeling domain. The PML implementation is based on
the split-field formulation, which was introduced for the electromagnetic wave
equation in (Berenger 1994, 1996) and later adopted for acoustic and elastody-
namic equations in (e.g., Chew and Liu 1996 Hastings et al. 1996 Liu and Tao
1997 Collino and Tsogka 2001 Marcinkovich and Olsen 2003). The details of the
implementation used in AWP-ODC, as well as careful tests on numerical stability and
performance comparisons with other types of absorbing boundary implementations,
are documented in (Marcinkovich and Olsen 2003).

The split-field formulation can be understood in terms of a generalization of
the real coordinates into complex space (e.g., Chew et al. 1997 Collino and Monk
1998 Teixeira and Chew 1999 Collino and Tsogka 2001). Suppose the PML lies
at 0 < x1 ≤ nb and the interior domain is located at x1 ≤ 0 (Fig. 2.5), we can
define a damping profile d(x1), which is zero in the interior domain and increases
monotonically to its maximum value d0 at x1 = nb. The thickness of the PML nb,
the maximum damping value d0 and the exact shape of the damping profile can be
chosen based on the application. In (Marcinkovich and Olsen 2003), the formula for
determining the maximum damping value d0 is

d0 = τβ

h

(
c1 + c2nb + c3n

2
b

)
, c1 = 8

15
, c2 = −3

100
, c3 = 1

1500
, (2.90)

where h is the grid spacing, β is a representative S-wave velocity value and τ is
a tuning coefficient that usually has a value between 3 and 4. We then introduce a
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Fig. 2.5 The PML damping profile as a function of the distance from the Interior domain-PML
interface located at x1 = 0. The width of the PML is nb and the maximum damping value d0
is reached at x1 = nb . The damping profile shown here was generated using the equation dI =
d0 (I/nb)

p (Marcinkovich and Olsen 2003), where I is the number of grid points counted from
the Interior domain-PML interface, p = 2 and the PML width is nb = 12.

complex coordinate x̃1 defined in terms of the damping profile, the real coordinate
x1 and the angular frequency ω

x̃1 = x1 − i

ω

∫ x1

0
d(l)dl. (2.91)

Based on this definition the partial derivative with respect to x̃1 can be related to the
partial derivative with respect to x1 using the chain rule

∂̃1 = 1

s
∂1 (2.92)

where the complex function s has the expression

s = 1+ d (x1)

iω
. (2.93)

The next step is to generalize the elastodynamic equation using the complex coor-
dinate x̃1 . In order to do that, we need to split the gradient operator ∇ into two
components, one parallel to x1 and the other perpendicular to x1,

∇ = x̂1∂1 + ∇||, (2.94)

where
∇|| = (I− x̂1x̂1

) ·∇ (2.95)

is the projection of the gradient operator onto the plane perpendicular to the x̂1 direc-
tion. Here I is the identity operator and x̂1 is the normal direction perpendicular to
the PML interface (Fig. 2.5). In the frequency domain, the elastodynamic equation
in the velocity-stress form Eqs. 2.2 and 2.3 can be written using the gradient operator
in its split form Eq. 2.94 as

iωρv̂ = x̂1∂1 · σ̂ +∇|| · σ̂ , (2.96)
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iωσ̂ = c:x̂1∂1v̂+ c:∇||v̂, (2.97)

where v̂ and σ̂ are Fourier transforms of the particle velocity field and the stress field,
c is the elastic tensor, the operator “:” represents double dot product14 and I have
dropped the source fields to reduce clutter. In a homogeneous medium, Eqs. 2.96
and 2.97 admit the plane wave solution of the form

A exp [−i (k1x1 + k2x2 + k3x3 − ωt)], (2.98)

where the vector k = [k1, k2, k3] is the wave vector15. If we generalize the ∂1
operator in Eqs. 2.96 and 2.97 using the ∂̃1 operator defined in Eq. 2.92, we obtain

iωρv̂ = x̂1 · ∂̃1σ̂ +∇|| · σ̂ , (2.99)

iωσ̂ = c:x̂1∂̃1v̂+ c:∇||v̂, (2.100)

which are identical to Eqs. 2.96 and 2.97 in the interior domain, since d = 0 and
s = 1 in the interior domain. In the PML, Eqs. 2.99 and 2.100 admit the plane-wave
solution of the form

A exp
[−i (k1x̃1 + k2x2 + k3x3 − ωt)

] = A exp

[
−k1

ω

∫ x1

0
d(l)dl

]
·

exp [−i (k · x− ωt)], (2.101)

which decays exponentially in the x1 direction. At the PML boundary x1 = 0, the
plane-wave solution in the form of Eq. 2.101 in the PML is identical to that in
the form of Eq. 2.98 in the interior domain for all incident angles and frequencies,
therefore no artificial reflections are generated at the PML boundary. The next step
is to bring Eq. 2.92 into Eqs. 2.99 and 2.100 and also split the particle velocity and
stress fields into two components

v̂ = v̂1 + v̂2, σ̂ = σ̂ 1 + σ̂ 2 (2.102)

such that they satisfy

iωρv̂1 = 1

s
x̂1 · ∂1σ̂ , iωρv̂2 = ∇|| · σ̂ , (2.103)

14 A:B = ∑i

∑
j Aij B̄ij , where complex matrices A and B have the same dimension, B̄ij is the

complex conjugate of Bij . For the fourth-order elastic tensor c, its double dot product with a real
second-order tensor φ can be calculated as c : φ =∑k

∑
l cijklφkl and the result is a second-order

tensor.
15 If the medium is isotropic, for the P wave we have A×k = 0 and |k| =ω/α, and for the S wave
we have A · k = 0 and |k| = ω/β, where α and β are the P- and S-wave velocities.
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iωσ̂ 1 = 1

s
c : x̂1∂1v̂, iωσ̂ 2 = c : ∇||v̂. (2.104)

Transforming Eqs. 2.103 and 2.104 back into the time domain, we obtain the
equations that can be solved using the finite-difference method

(∂t + d) ρv1 = x̂1 · ∂1σ , ρv̇2 = ∇|| · σ , (2.105)

(∂t + d) σ 1 = c : x̂1∂1v, σ̇ 2 = c : ∇||v. (2.106)

The same analysis can also be applied to other boundaries that are perpendicular to
the x2 and x3 axes.

Equation 2.101 shows that the attenuation is strongest for waves traveling per-
pendicular to the PML interface and much weaker for waves traveling at grazing
incidence angles to the PML interface (i.e., k1 ≈ 0 in Eq. 2.101). One drawback of
the split-field PML is that its absorption performance can become very poor when
many waves are traveling at grazing incidence, which is often the case if the simu-
lation domain is elongated in one direction and/or the source is located very close
to the boundary of the simulation domain. The convolutional PML (C-PML) or
complex frequency shifted PML (CFS-PML) approach solves this problem effec-
tively and also removes the requirement for splitting the fields (Roden and Gedney
2000; Bérenger 2002; Wrenger 2002; Drossaert and Giannopoulos 2007; Martin
et al. 2008a,b; Martin and Komatitsch 2009). In C-PML, the complex function s in
Eq. 2.93 is generalized to the form

s = c + d (x1)

e + iω
(2.107)

by including two more variables c ≥ 1 and e ≥ 0. For the special case c = 1
and e = 0, the generalized s function becomes identical to that in Eq. 2.93. Spatial
derivatives with respect to generalized coordinates inside the PML can be expressed
as

∂̃1 = 1

c
∂1 + ψ, (2.108)

where the memory variable ψ at each time step is updated through a recursive
convolution process. For waves traveling perpendicular to the PML interface, the
C-PML has similar performance as the split-field PML. For waves traveling at graz-
ing incidence angles, the C-PML can also strongly attenuate their energy. However,
the C-PML implementation has not yet been included into the AWP-ODC code at
the current stage.
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Fig. 2.6 The effective material model for two Hooke bodies connected in serial. M1 and M2 are
the moduli of the two different Hooke bodies in model 1. We seek an effective material model,
model 2, which is composed of two identical Hooke bodies with modulus MA connected in serial
and has the same stress-strain relation as model 1. The stress and strain in the two Hooke bodies in
model 1 are σ1 and ε1 and σ2 and ε2, respectively. The total stress and strain both in model 1 and
model 2 are σ and ε.

2.1.6 Internal Welded Material Interfaces

The formulation discussed so far is applicable to smoothly heterogeneous media16.
In realistic structural models of the Earth’s interior, the media may contain material
discontinuities, where density and/or elastic moduli may change discontinuously.
One approach for dealing with material discontinuities is to apply the usual finite-
difference scheme at grid points outside the discontinuities and then account for
wavefields at or near the discontinuities using proper boundary conditions (e.g.,
the continuity of stress and displacement across internal welded material inter-
faces) (e.g., Alterman and Karal 1968 Ilan et al. 1975 Ilan and Loewenthal 1976).
This type of approaches are often called homogeneous and are applicable when the
geometry of the material discontinuities is simple. For models with complex curved
material interfaces, this type of homogeneous approaches are highly cumbersome,
especially for finite-difference schemes based on uniform grids.

An alternative approach is to replace the structural model with material disconti-
nuities with a smoothly varying effective material model such that the application of
the usual finite-difference scheme on this smooth effective material model produces
the same wavefields as those obtained through applying the homogeneous approach
on the original model with material discontinuities. This type of approaches are
often called heterogeneous (e.g., Kelly et al. 1976 Muir et al.1992 Zahradník and
Priolo 1995 Graves 1996 Ohminato and Chouet 1997 Moczo et al. 2002).

The details about how to derive such an effective material model, as well as
careful validations of the resulting finite-difference scheme based on the effective
material model, is documented in (e.g., Moczo et al. 2002). Consider two differ-
ent homogeneous elastic bodies separated by a welded material interface, a simple
physical model analogous to this scenario is a model in which two different Hooke
bodies connected in serial (Fig. 2.6). For the serial connection, the stresses inside
the two Hooke bodies should be equal to each other and to the total stress (i.e., the

16 The characteristic length scale of the variations in the material properties is much larger than the
grid spacing.
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stress continuity boundary condition at the welded interface)

σ1 = σ2 = σ (2.109)

and the total strain should be equal to the sum of the strain in each Hooke body

ε1 + ε2 = ε. (2.110)

For model 1 in Fig. 2.6, the total stress and the total strain follow

ε = σ1

M1
+ σ2

M2
= σ

(
1

M1
+ 1

M2

)
(2.111)

and for the effective material model, model 2, we have

ε = σ
2

MA
. (2.112)

In order for model 1 and model 2 to have identical stress-strain relations, we must
have

2

MA
= 1

M1
+ 1

M2
,

MA = 2
1

M1
+ 1

M2

. (2.113)

Equation 2.113 indicates that the modulus of the effective material should be the
harmonic average of the moduli of the two different Hooke bodies M1 and M2.

To obtain the effective density model, we consider two particles with mass m1
and m2 moving together with the same acceleration a (i.e., continuity of displace-
ment boundary condition at the welded interface). The forces acting on the two
particles are F1 and F2, respectively. Therefore we have

F1 = m1a, F2 = m2a. (2.114)

The total force on the system is then

F = F1 + F2 = (m1 +m2) a. (2.115)

If we replace this system with two particles with the same mass mA,

F = 2mAa, (2.116)

in order to keep the total force F and the acceleration a unchanged, we must have

mA = m1 +m2

2
. (2.117)

Equation 2.117 indicates that the density of the effective material should be the
arithmetic average of the densities of the two different components.
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For three-dimensional isotropic media, similar analysis can be carried out for
the volumetric stress-strain relation Eq. 2.50 and the deviatoric stress-strain rela-
tion Eq. 2.51 and the effective bulk and shear moduli at a grid point are volume
harmonic averages of the bulk and shear moduli at neighboring grid points. The
effective density at a grid point is the volume arithmetic average of the densities
at neighboring grid points. Consider the effective bulk modulus κA

I+1/2,J,K at the
grid point (I + 1/2, J,K) (Fig. 2.4), we can define the volume integral with the
integration volume V κ

I+1/2,J,K centered at this grid point

∫∫∫

V κ
I+1/2,J,K

dV =
∫ xI+1

1

xI
1

∫ x
J+1/2
2

x
J−1/2
2

∫ x
K+1/2
3

x
K−1/2
3

dx1dx2dx3, (2.118)

where the integration bounds on the right-hand-side are x1, x2 and x3 coordinates
of boundaries of the integration volume. The effective bulk modulus can then be
computed as the volume harmonic average

κA
I+1/2,J,K =

[
1

h3

∫∫∫

V κ
I+1/2,J,K

1

κ (x)
dV

]−1

, (2.119)

where h is the grid spacing. In practice, the volume integral is approximated through
summation. The effective shear modulus can be evaluated in a similar way. Consider
the effective density ρA

I,J,K at grid point (I, J,K) (Fig. 2.4), the volume integral can
be defined as

∫∫∫

V
ρ
I,J,K

dV =
∫ x

I+1/2
1

x
I−1/2
1

∫ x
J+1/2
2

x
J−1/2
2

∫ x
K+1/2
3

x
K−1/2
3

dx1dx2dx3, (2.120)

where V
ρ
I,J,K is the integration volume. The effective density can then be computed

as the volume arithmetic average

ρA
I,J,K =

1

h3

∫∫∫

V
ρ
I,J,K

ρ(x)dV . (2.121)

Numerical tests on the stability and the accuracy of this heterogeneous scheme
were documented in (e.g., Moczo et al. 2002). This scheme is also adopted in the
AWP-ODC code. In AWP-ODC, the Lamé parameters are harmonically averaged and
the density is arithmetically averaged (Olsen et al. 2003).

2.1.7 Source Representation

Seismic sources can be included into the finite-difference scheme through either
adding body-force components to the corresponding velocity components in Eq. 2.2
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(e.g., Yomogida and Etgen 1993 Graves 1996) or subtracting moment tensor com-
ponents from the corresponding stress components in Eq. 2.3 (e.g., Coutant et al.
1995 Olsen et al. 1995). In AWP-ODC, a body-force source is automatically mul-
tiplied with the buoyancy (i.e., the inverse of the density) at the source location
before adding to the corresponding velocity component at the source location. For a
moment-rate source, the AWP-ODC code automatically normalizes it using the cell
volume h3, where h is the grid spacing, to obtain the moment-rate-density tensor
before subtracting it from the stress tensor at the source location.

2.2 Software

The software that is explained in this book, named F3DWI, can be compiled and
run on any typical Beowulf clusters, SMP clusters and MPP systems. The minimum
requirement is a system with at least one node that runs a certain distribution of
the Linux operating system and has the MPI library correctly installed. The system
used for running the half-space example in the following is a Linux box with one
AMD FX-8350 8-core processor running the Ubuntu 14.04 LTS operating system,
the MPI library is the MVAPICH217 developed and maintained at the Ohio State
University. The Fortran 77/90 and C/C++ compilers are from the GNU Compiler
Collection version 4.818.

For problems of larger sizes, systems with more nodes are needed. We carried
out most of the computations for the full-3D tomography of the crustal structure
in Southern California on the IBM Blue Gene/P system, named Intrepid, at the
Argonne Leadership Computing Facility (ALCF), Argonne National Laboratory.
One simulation used 4096 CPU cores for about 15 minutes of wall time and the full
inversion involved tens of thousands of simulations. The Blue Gene/P system has
now been replaced with the more advanced Blue Gene/Q system, named Mira, at
ALCF. The computational details of our inversion for southern California have been
documented in (Lee et al. 2014b).

The F3DWI software package is organized into three directories, src, bin and
py. The src directory contains a modified version of the AWP-ODC source codes
and also other Fortran 77/90, C/C++ source codes related to solving the seismic
source and structural inverse problems. The source codes need to be compiled using
the GNU make utility19 and examples of Makefiles for different systems we
have tested the codes on are also provided in the src directory. Once the source
codes are correctly compiled, the binary executables generated from those source
codes are automatically moved to the bin directory. All the binary executables
require input files and generate output files. In the py directory, there is a collection

17 http://mvapich.cse.ohio-state.edu
18 http://gcc.gnu.org/
19 http://www.gnu.org/software/make/

http://mvapich.cse.ohio-state.edu
http://gcc.gnu.org/
http://www.gnu.org/software/make/
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Fig. 2.7 The source-time-function described by Eq. 2.122 in the time domain (left) and its
amplitude spectrum in the frequency domain (right).

of python20 scripts, which can help users to generate the input files and process
the output files of the binary executables.

In this chapter, I will only discuss codes that are related to the forward wave-
propagation simulations. Codes for solving seismic inverse problems will be
explained in later chapters after the theoretical backgrounds of those codes have
been discussed.

I will use the simplest structural model, a uniform half-space with constant den-
sity, P- and S-wave velocities and a free surface, to demonstrate the basic steps
for running forward wave-propagation simulations. The material properties are
density ρ = 3000 kg/m3, P-wave velocity α = 6500 m/s and S-wave velocity
β = 3500 m/s. I will use an explosive point source with the source-time-function
given by

s(t) = exp

[
−c1

(
t − c2

2

)2
]

, (2.122)

where c1 = 60 and c2 = 0.65. This source-time-function and its amplitude spectrum
in the frequency domain are shown in Fig. 2.7. Both the source and the receiver
are buried at 24-km depth from the free surface and the source-receiver distance is
32.2 km. This half-space configuration was used in (Zhao et al. 2005) to benchmark
full-3D Fréchet kernels and will also be used in later chapters in this book.

The forward wave-propagation simulation is carried out by the binary executable
awp in the bin directory. The awp code requires a set of input files related to the

20 Python is a high-level programming language and is often used as a scripting language.
Python interpreters are available on almost every platform. Details about the Python language
can be found at https://www.python.org/ and http://en.wikipedia.org/wiki/Python_programming_
(language).

https://www.python.org/
http://en.wikipedia.org/wiki/Python_(programming_language)
http://en.wikipedia.org/wiki/Python_(programming_language)
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Fig. 2.8 The top view of the rectangular modeling region and the box coordinate system used in
the forward wave-propagation simulations. Left: the two vertices on the bottom lie at the same
longitude; right: an arbitrarily oriented rectangular modeling region. The directions of the x1 and
x2 axes are marked with arrows. The x3 axis points out of the page towards the viewer and forms
a right-hand system with x1 and x2.

mesh, the seismic structural model and the seismic source model. These input files
can be generated using other binary executables in the bin directory and also scripts
in the py directory. I will start with the mesh generation process and go through all
the necessary steps for preparing the input files in the following.

2.2.1 Mesh Generation

To correctly generate the rectangular uniform mesh required by awp, we first need
to understand the coordinate system used in the code and how it is mapped to a
geographic region. We assume the modeling region is sufficiently small, such that
the curvature of the Earth’s surface can be safely ignored. For a rectangular mod-
eling region on the surface of the Earth, we can number its four vertices clockwise
(Fig. 2.8). For the situation shown in Fig. 2.8 (left), the southwest vertex is numbered
as 1. For an arbitrarily oriented rectangle as shown in Fig. 2.8 (right), the southern-
most vertex is numbered as 1. The generic coordinate system used inside the awp
code, which I call the box coordinate, is defined using the four vertices. If the model-
ing volume has a vertical thickness of H meters, the origin of the coordinate system
lies at H meters below vertex 1 inside the Earth. The x1 axis points from the origin
towards the point lying H meters below vertex 4, the x2 axis points from the origin
towards the point lying H meters below vertex 2, the x3 axis points upwards from
the origin to the free surface and forms a right-hand Cartesian coordinate system
with x1 and x2.

Locations defined in longitude/latitude are first mapped to Cartesian coordinates
in Easting/Northing using the Universal Transverse Mercator (UTM) coordinate
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Fig. 2.9 The sub-meshes for the configuration with 2 MPI processes in each dimension. The x1, x2
and x3 axes of the box coordinate system are shown as three black arrows. The 3-number index of
each sub-mesh is shown in the parentheses in white. The sub-mesh with the index (1,1,0) is located
underneath the sub-mesh with the index (1,1,1) and is not visible from the viewing angle used in
this figure.

system21 and then transformed to the box coordinate used in awp. In UTM, the
globe is divided into 60 longitudinal zones starting at 180o W. Each longitudinal
zone is 6o wide. Within each longitudinal zone, the transverse mercator projection is
used to map locations in longitude/latitude to Cartesian coordinates defined in terms
of Easting and Northing in meters. For the Easting, the origin lies at 500,000 m west
of the central meridian of the longitudinal zone. The origin of the Northing is defined
at the equator for the northern hemisphere and at 10,000,000 m south of the equator
for the southern hemisphere. In F3DWI the conversion between longitude/latitude
and Easting/Northing is handled by the subroutine in utm_geo.f90 in the src
directory. The comment lines at the beginning of the source code give more details
about this code. The default behavior of this code is to keep the Northing origin in
the southern hemisphere at the equator instead of setting it at 10,000,000 m south
of equator, which gives negative Northing values for longitude/latitude locations in
the southern hemisphere. This definition gives a uniform scale across the equator.
To change this behavior, the north variable defined on line 34 of this code needs
to be changed to 10000000 and all the source codes need to be re-compiled.

The awp code was parallelized using a domain-decomposition approach. The
uniform mesh is divided into a number of sub-meshes of equal size and each MPI
process is responsible for all the calculations on a single sub-mesh. The total number
of MPI processes usually equals to the total number of CPU cores used in a simu-
lation. Each sub-mesh is index using 3 integers, which indicate its relative position
on the x1, x2 and x3 axes in the box coordinate (Fig. 2.9). If we have eight MPI
processes, we can divide the mesh into two sub-meshes in each dimension, as shown

21 Details about UTM can be found at http://www.dmap.co.uk/utmworld.htm and also on
Wikipedia.

http://www.dmap.co.uk/utmworld.htm
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Table 2.1 Format of the text input file for FD_GRID_XYZ_rect

Line number Description

1 Full path to the mesh output file named XYZGRD

2 UTM longitudinal zone number of the modeling region

3 Longitude and latitude of vertex 1 of the rectangular modeling region

4 Longitude and latitude of vertex 2 of the rectangular modeling region

5 Distance between vertex 1 and vertex 4 in meter

6 Vertical thickness of the modeling volume in meter

7 Grid spacing in meter

8 Number of sub-meshes (MPI processes) in each spatial dimension

/ home/ pochen / wrk /F3DWI /HS/VM/
11
−118.005738 33.690067
−118.030457 33.82023
47500
35500
200
2 2 2

Listing 2.1 An example input file for the mesh generation code on my Linux box.

in Fig. 2.9, or we can divide it into two sub-meshes in the x1 dimension and four
sub-meshes in the x2 dimension. There are different ways for evenly partitioning the
mesh among the MPI processes. To minimize the inter-process MPI communication
overhead, we often partition the mesh in a way such that the number of grid points
in every dimension of the sub-mesh is about the same22.

The binary executable for mesh generation is FD_GRID_XYZ_rect, which
is located in the bin directory. It requires a command-line text input file. The
format of the input file is listed in Table 2.1 and an example input file, named
FD_GRID_XYZ.in is shown in Listing 2.1.

22 Parallelization based on the domain-decomposition approach requires us to exchange stress
and particle velocity fields on the boundaries of the sub-meshes between neighboring MPI pro-
cesses. The communication overhead is therefore proportional to the number of grid points on the
boundaries of each sub-mesh. Suppose the number of grid points in each dimension of a sub-mesh
is NXT , NYT and NZT , the total number of grid points on the boundaries of each sub-mesh
is therefore S = 2 (NXT ×NYT + NXT ×NZT + NYT ×NZT ). The total number of grid
points of the whole sub-mesh is V = NXT ×NYT ×NZT . For a given V , we need to minimize
S in order to minimize the communication overhead. To minimize S, we can replace the NZT in
the expression for S with V/ (NXT ×NYT ) and set the first-order partial derivatives of S with
respect to NXT and NYT to zeros to obtain two equations for NXT and NYT . The solution of
these two equations gives NXT = NYT . The same analysis can also be applied to NXT and
NZT and the solution gives NXT = NZT . Therefore the minimum number of boundary grid
points of the sub-mesh for a given V is obtained when NXT = NYT = NZT (i.e., a cube-shaped
sub-mesh).
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In this example input file, the first line specifies that the mesh output file XYZGRD
will be stored under /home/pochen/wrk/F3DWI/HS/VM/. In the second line,
I specify that my target modeling area is inside the UTM longitudinal zone 11.
The next two lines are the longitude/latitude locations of vertex 1 and 2, which were
picked using Google Maps. The distance between vertex 1 and 4 is 47,500 m and the
vertical thickness of the modeling volume is 35,500 m. The grid spacing is 200 m.
The last line specifies that the mesh is partitioned into two sub-meshes in each
direction, therefore the total number of MPI processes needed for the simulation
is eight.

On my Linux box, the binary executables are stored under the directory
/home/pochen/wrk/F3DWI/bin/. Suppose the text input file for the mesh
generation code FD_GRID_XYZ.in is under the current directory, I can run the
code in the terminal using the command

/home/pochen/wrk/F3DWI/bin/FD_GRID_XYZ_rect FD_GRID_XYZ.in

If the bin directory is added to the search path23, in the terminal I can omit the
full path to the binary executable and use the command

FD_GRID_XYZ_rect FD_GRID_XYZ.in

Two text output files will be generated by FD_GRID_XYZ_rect, a file named
box.dat under the current directory and the file XYZGRD under the directory
specified on the first line of FD_GRID_XYZ.in (Listing 2.1). In box.dat (List-
ing 2.2), the longitudes (left column) and latitudes (right column) of vertex 1–4 of
the rectangular modeling region are listed from line 1 to 4. The last line repeats
the longitude/latitude of vertex 1. This file can be used for drawing the rectangular
modeling region using the Generic Mapping Tools (GMT)24 (Wessel et al. 2013).
Figure 2.10, which was generated using GMT, shows the geographic area and the
target rectangular modeling region for the half-space example.

23 Under the bash shell, all directories listed in the PATH environment variable are automatically
searched for executables. The bin directory can be added to PATH by adding the line export
PATH=/home/pochen/wrk/F3DWI/bin:$PATH to the .bashrc or .bash_profile
file under the home directory.
24 The GMT is a set of command-line binary executables for generating and process-
ing figures related to geographic data sets. More detailed information can be found at
http://gmt.soest.hawaii.edu/.

http://gmt.soest.hawaii.edu/
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−118.00573799999999 33.690066999999999
−118.03045700000000 33.820230000000002
−117.52090189901836 33.890036719992096
−117.49629718561751 33.756393997202352
−118.00573799999999 33.690066999999999

Listing 2.2 The content of the box.dat output file.

Fig. 2.10 The geographic location of the half-space example. The black box shows the rectangular
modeling area and its four vertices are numbered. Black circle: epicenter of the seismic source;
black triangle: surface projection of the receiver; gray-scale background: topography.

Snippets of the output file XYZGRD for the half-space example are shown in
Listing 2.3. The first three lines specify the total number of grid points in each spa-
tial dimension, the total number of sub-meshes (i.e., MPI processes) in each spatial
dimension and the number of grid points in each spatial dimension of a sub-mesh.
The next four lines specify the UTM Easting (left column) and Northing (right
column) coordinates in meter for vertex 1–4 of the rectangular modeling region.
The rest of XYZGRD lists the grid numbers in the vertical direction and their cor-
responding depths in meter. In Listing 2.3 the grid number 180 is located at the
free surface with depth of 0 m and the grid number 1 is at 35,800 m below the
free surface (i.e., the depth of the origin of the box coordinate). The vertical thick-
ness of the modeling volume is slightly larger than the vertical thickness 35,500 m
specified in FD_GRID_XYZ.in (Listing 2.1) because FD_GRID_XYZ_rect has
adjusted the vertical thickness such that it is a multiple of the grid spacing spec-
ified in FD_GRID_XYZ.in and the total number of grid points in the vertical
direction is also a multiple of the number of sub-meshes in the vertical direction.
The distance between vertex 1 and 4 is also slightly extended from 47,500 m in
FD_GRID_XYZ.in (Listing 2.1) to 47800 m in XYZGRD for the same reason.

2.2.2 Structural Model

After the mesh is generated, we need to assign material properties to every grid point
in the mesh. For elastic media, we need three properties per grid point, the P- and
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240 76 180 ! Global g r i d numbers NX, NY, NZ
2 2 2 ! Chunks (# o f proc . ) i n X, Y, Z

120 38 90 ! Grid numbers per chunk NXT, NYT, NZT
406782.38411618437 3728040.2806620458
404578.62796418497 3742868.9354490079
451832.60788530414 3749891.5717200460
454036.36403730355 3735062.9169330839

180 −0.0000000000000000
179 −200.00000000000000
178 −400.00000000000000

.

.

.
3 −35400.000000000000
2 −35600.000000000000
1 −35800.000000000000

Listing 2.3 The first ten lines and the last three lines in the XYZGRD file.

S-wave velocities and the density. For viscoelastic media, we need two additional
properties per grid point, the attenuation quality factors Qp and Qs . For demon-
stration purposes, I list the C++ code named vm_hs_gen.cpp (Listing 2.4) for
assigning constant elastic material properties to the half-space mesh generated in
Sect. 2.2.1.

This code can be compiled in the terminal using the command

g++ -o vm_hs_gen vm_hs_gen.cpp

which will generate the executable vm_hs_gen in the current direc-
tory. After executing it by typing its name in the terminal, it will gen-
erate 8 different binary files named as HSGRD000000000, etc., under
/home/pochen/wrk/F3DWI/HS/VM/, which is the same directory for storing
the mesh output file XYZGRD on my Linux box. Each binary output file contains the
material properties for all grid points of a sub-mesh and the number of files equals
the number of sub-meshes.

Detailed discussions about the C/C++ programming language are beyond the
scope of this book. But we can understand the code without delving too much into
the language. The basic parameters about the mesh are defined on line 6–10 based
upon the information in XYZGRD. The total number of grid points in each spa-
tial dimension is specified on line 6 and the number of sub-meshes in each spatial
dimension is specified on line 7. The number of grid points in each dimension of
a sub-mesh is then computed on line 8–10. The constant P- and S-wave velocities
in m/s and the density in kg/m3 are defined on line 11 as four-byte floating point
numbers.

From line 13–15, we have a three-level nested loop, which allows us to loop
through every sub-mesh. The three iterators, ipx, ipy and ipz, range from zero
to the number of sub-meshes in each spatial dimension subtracting 1. Inside this



2.2 Software 51

1 #include <iostream >
2 #include <fstream >
3 #include <algor i thm >
4 using namespace std ;
5 i n t main ( ) {
6 const i n t NX=240, NY=76 , NZ=180;
7 const i n t NPX=2 , NPY=2 , NPZ=2;
8 i n t NXT=NX/NPX;
9 i n t NYT=NY/NPY;

10 i n t NZT=NZ/NPZ;
11 const f l o a t vp=6500.0 , vs =3500.0 , rho =3000.0;
12 char mdl_out [ 2 0 0 ] = { 0 } ;
13 for ( i n t i pz =0; ipz <NPZ; ipz ++) {
14 for ( i n t i py =0; ipy <NPY; ipy ++) {
15 for ( i n t i px =0; ipx <NPX; ipx ++) {
16 s p r i n t f ( mdl_out ,"/home/pochen/wrk/F3DWI/HS/VM/HSGRD%3.3d

%3.3d%3.3d" , ipx , ipy , i pz ) ;
17 FILE ∗bin_out ;
18 bin_out =fopen ( mdl_out ,"wb" ) ;
19 for ( i n t i z =−2; iz <=NZT+1; i z ++) {
20 for ( i n t i y =−2; iy <=NYT+1; i y ++) {
21 for ( i n t i x =−2; ix <=NXT+1; i x ++) {
22 i n t i xg =min (max(0 , i px ∗NXT+ i x ) ,NX−1) ;
23 i n t i yg =min (max(0 , i py ∗NYT+ i y ) ,NY−1) ;
24 i n t i zg =min (max(0 , i pz ∗NZT+ i z ) ,NZ−1) ;
25 f w r i t e (&vp , sizeof ( f l o a t ) ,1 , b in_out ) ;
26 f w r i t e (&vs , sizeof ( f l o a t ) ,1 , b in_out ) ;
27 f w r i t e (& rho , sizeof ( f l o a t ) ,1 , b in_out ) ;
28 } } }
29 f c l ose ( b in_out ) ;
30 } } }
31 cout << "constant Vp: " << vp << endl ;
32 cout << "constant Vs: " << vs << endl ;
33 cout << "constant Rho: " << rho << endl ;
34 return 0 ; }

Listing 2.4 C++ source code for generating the half-space structural model. The line numbers at
the beginning of each line in this and some other listings are not part of the file. They are added to
the listings to make it easier to reference specific lines in the text.

nested loop, the three-tuple (ipx, ipy, ipz) is actually the index of a sub-
mesh (Fig. 2.9). On line 16, the output file name mdl_out is constructed using this
sub-mesh index. The string %3.3d means that each number in the index tuple is
printed using three digits with zero-padding on the left. For example, the output file
for sub-mesh (0,1,1) will have a file name ending with the nine digits 000001001.
The full path of the output file and the prefix HSGRD are also printed into mdl_out.
After the file name is generated, we can open the file for writing binary data on
line 18.
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From line 19–21, we have another three-level nested loop, which allows us to
loop through every grid point of the sub-mesh (ipx, ipy, ipz). The range of
the iterators ix, iy and iz is from−2 to the number of grid points in each dimen-
sion of the sub-mesh plus 1. The reason for having two extra grid points on each end
of a dimension is that each MPI process needs some ghost layers on the boundaries
of its sub-mesh to store the information obtained from its neighbors in order to carry
out the finite-difference calculations on the interior grid points of its sub-mesh. For
the fourth-order differencing scheme discussed in Sect. 2.1.3, the ghost layers are 2
grid points thick. On line 25–27, I write the P- and S-wave velocities and the density
(must be written in this order) at the grid point (ix, iy, iz) in the sub-mesh
(ipx, ipy, ipz) as four-byte-long25 binary floating-point numbers into the
output file.

This code can be modified and extended in many different ways to account for
much more complex situations and to improve the efficiency. I mention a few in the
following.

• One obvious modification is that instead of hard-wiring the mesh information
into the code on line 6–10, we can read the mesh information directly from
XYZGRD.

• For viscoelastic media, we need to add two more lines between line 27 and line
28 to write Qp and Qs (must be written in this order) also as four-byte-long
binary floating-point numbers into the output file.

• The three integers, ixg, iyg and izg defined on line 22–24 are not used in the
current code, but these three lines allow us to convert the index of an arbitrary
grid point (ix, iy, iz) in the sub-mesh (ipx, ipy, ipz) to its index
in the full mesh of the whole modeling volume. We call (ixg, iyg, izg)
the global grid index of a grid point and (ix, iy, iz) its local grid index in
the sub-mesh (ipx, ipy, ipz). The global index can be used, for instance,
to locate and retrieve the correct material properties from a 3D structural model
defined on 3D arrays.

• For very large meshes, this code needs to be parallelized. The parallelization can
be based on domain-decomposition, i.e., each MPI process is responsible for one
or a few sub-meshes.

After all grid points in the full mesh have been assigned appropriate material prop-
erties, the code should print out the minimum S-wave velocity and the maximum
P-wave velocity in the full mesh, which will be used in the parameter file described
in Sect. 2.2.3. For the half-space model, this task is easily completed on line
31–32. For a large 3D structural model processed in parallel, we can first obtain the
minimum S-velocity and maximum P-velocity on each sub-mesh using conditional

25 The sizeof function used on line 25–27 returns the number of bytes for a given data type. On
most systems, the float data type is four-byte long. At the current stage the awp code only reads
binary material property files written in four-byte-long floating-point numbers.
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statements (e.g., if...else...) or operators (e.g., the ?: operator in C/C++)
and then obtain the minimum S-velocity and maximum P-velocity on the full mesh
by using the MPI reduction operations26.

2.2.3 Parameter File

The parameter file, a text file written in key-value pairs, stores the parameters that
will be used throughout the entire inversion project. The names of the keys and short
descriptions about their values are listed in Table 2.2 and the parameter file for the
half-space example, named param_HS.dat, is shown in Listing 2.5. The order of
the key-value pairs in the file can be arbitrary, but each key-value pair must occupy a
single line in the file and follow the format “key= value”, using “=” to separate the
key from the value. The key names cannot be changed and should be all in capital
letters.

The values for the keys BINDIR and SCRIPTDIR are the full paths to the bin
and the py directories of the F3DWI package on your system. A good practice
is to create a new work directory for each simulation/inversion project and assign
its full path to WRKDIR. For the half-space example, I have created a work direc-
tory named HS for storing all the files related to this project and its full path on
my Linux box is assigned to WRKDIR on line 3 of Listing 2.5. I often use a sub-
directory named JOBS under the work directory for storing some input/output files
and also some short scripts for interacting with the job scheduling system27. The
full path to the JOBS directory is assigned to the key JOBDIR. The parameter file
itself, param_HS.dat for the half-space example, is also stored under the JOBS
directory.

The full path of the mesh file XYZGRD is assigned to the key XYZGRD on line
5 (Listing 2.5). The coordinates used in the mesh file are defined in terms of the
UTM and the corresponding UTM longitudinal zone number is assigned to the key
UTMZONE on line 6 (Listing 2.5).

Basic information about the structural model is registered into the parameter
file on line 7–9 (Listing 2.5). The full path together with the prefix HSGRD of
the material property files (line 16 in Listing 2.4, Sect. 2.2.2) is assigned to the
key MEDIA. The minimum S- and maximum P-wave velocities in the structural

26 The MPI functions MPI_Reduce and MPI_Allreduce can combine the values provided in
the input buffer of each MPI process, using a specified operation, such as taking the minimum or
maximum, and return the combined value to the output buffer of either the root process (in the
case of MPI_Reduce) or all processes (in the case of MPI_Allreduce).
27 On large computing systems, the computational tasks (i.e., batch jobs) are allocated among the
available computing resources through a job scheduling software. One example is the Portable
Batch System (PBS) software. To interact with the job scheduling system (e.g., submit jobs, mon-
itor the progress of jobs, cancel previously submitted jobs), we often need to write short scripts.
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Table 2.2 Format of the parameter file for storing control parameters used in F3DWI

Key name Value description

BINDIR Full path to directory for storing the binary executables

SCRIPTDIR Full path to directory for storing the python scripts

WRKDIR Full path to the project work directory

JOBDIR Full path to the project job directory

XYZGRD Full path of the XYZGRD file

UTMZONE The UTM longitudinal zone number of the modeling region

MEDIA Full path and the prefix of the material property files

MINIMUM VELOCITY Minimum S-wave velocity in the structure model

MAXIMUM VELOCITY Maximum P-wave velocity in the structure model

SOURCE RECEIVER LIST Full path of a text file that stores a list of sources and
receivers used in the project

TMAX The maximum length of the synthetic seismograms in sec-
onds

DT The time-step length in seconds

CFL The CFL stability condition

USEPML 1: use the PML boundary condition (Sect. 2.1.5); 0: use the
absorbing boundary condition

PMLCOEF The tuning coefficient τ for PML (Eq. 2.90)

BOUNDARY NODE NUMBER The width of the PML nb (Fig. 2.5)

VISCO 1: viscoelastic material; 0: elastic material

SOURCE STENCIL SIZE
IN X

The number of grid points in the x1 dimension of a small
source-centered volume

SOURCE STENCIL SIZE
IN Y

The number of grid points in the x2 dimension of a small
source-centered volume

SOURCE STENCIL SIZE
IN Z

The number of grid points in the x3 dimension of a small
source-centered volume

NXSKP The decimation rate in x1

NYSKP The decimation rate in x2

NZSKP The decimation rate in x3

NTSKP The decimation rate in time

model are assigned to keys MINIMUM VELOCITY and MAXIMUM VELOCITY,
respectively.

On line 10 of Listing 2.5, the key SOURCE RECEIVER LIST is assigned the
full path of the text file describing the sources and receivers used in the project. The
details about this file are described in Sect. 2.2.4. This file can be generated after we
finish editing the parameter file and the content of this file can be changed anytime
if necessary.
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1 BINDIR = / home/ pochen / wrk /F3DWI / b in
2 SCRIPTDIR = / home/ pochen / wrk /F3DWI / py
3 WRKDIR = / home/ pochen / wrk /F3DWI /HS
4 JOBDIR = / home/ pochen / wrk /F3DWI /HS/JOBS
5 XYZGRD = / home/ pochen / wrk /F3DWI /HS/VM/XYZGRD
6 UTMZONE = 11
7 MEDIA = /home / pochen / wrk / F3DWI/HS/VM/HSGRD
8 MINIMUM VELOCITY = 3500.0
9 MAXIMUM VELOCITY = 6500.0

10 SOURCE RECEIVER LIST = / home/ pochen / wrk /F3DWI /HS/JOBS/ s r i n f o /
s r l s t

11 TMAX = 15.0
12 DT = 0.015
13 CFL = 0.9792
14 USEPML = 1
15 PMLCOEF = 3.5
16 BOUNDARY NODE NUMBER = 10
17 VISCO = 0
18 SOURCE STENCIL SIZE IN X = 1
19 SOURCE STENCIL SIZE IN Y = 1
20 SOURCE STENCIL SIZE IN Z = 2
21 NXSKP = 4
22 NYSKP = 4
23 NZSKP = 4
24 NTSKP = 2

Listing 2.5 The parameter file for the half-space example.

On line 11, the value for the key TMAX determines the maximum length in sec-
onds for the synthetic seismograms computed using awp. On line 12, the value for
DT specifies the time-step length in seconds. On line 13, the key CFL specifies the
Courant-Friedrichs-Lewy (CFL) stability condition28, which should have a value
smaller than 1. In F3DWI, the CFL condition is verified using the equation

αmax�t

h
< 0.5, (2.123)

where αmax is the maximum P-wave velocity assigned to key MAXIMUM VELOC-
ITY, �t is the time-step length assigned to key DT, h is the grid spacing of the
mesh, which can be obtained from the XYZGRD file assigned to the key XYZGRD. If
the value assigned to DT in the parameter file violates Eq. 2.123, a new value will
be computed using the formula

�t = 0.5h

αmax

CFL, (2.124)

28 The CFL condition is a necessary condition for an explicit time-integration scheme to be stable
(Courant et al. 1967). Roughly speaking, for a given mesh with grid spacing h, the time-step length
�t must be sufficiently small in order for the numerical scheme to be causal.



56 2 Anelastic Wave Propagation (AWP)

where CFL is the value assigned to the key CFL in the parameter file. Any script
in the py directory that uses the parameter file as one of its command-line inputs
will automatically modify the parameter file to replace an incorrect value assigned
to DT with the value computed using Eq. 2.124. If the value assigned to DT satisfies
Eq. 2.123, the value will be left unchanged.

Line 14–16 (Listing 2.5) are related to the use of the PML boundary condition
in awp. If the key USEPML is set to 1, the PML boundary condition as described
in Sect. 2.1.5 is used, otherwise, the absorbing boundary condition of Cerjan (Cer-
jan et al. 1985) is used instead. If USEPML is set to 0, the keys PMLCOEF and
BOUNDARY NODE NUMBER assigned on line 16–17 have no effect on the wave-
propagation simulations. If USEPML is set to 1, appropriate values of these two keys
can be chosen based on the descriptions in Sect. 2.1.5. The key PMLCOEF usually
has a value between 3 and 4 and the key BOUNDARY NODE NUMBER can have any
integer between 8 and 20.

For the half-space example, I will only consider elastic media and on line 17
of Listing 2.5, I set the key VISCO to 0. For wave-propagation simulations in vis-
coelastic media, the key VISCO should be set to 1 and the material properties at
every grid point should include P- and S-wave velocities, density and the attenua-
tion quality factors Qp and Qs , written as four-byte-long floating point numbers in
this order (e.g., line 25–27, Listing 2.4).

For seismic source parameter inversions (e.g., centroid moment tensor inver-
sions), the wavefields on a small volume surrounding the source need to be stored.
The three keys assigned on line 18–20 in Listing 2.5 define the dimensions of this
source-centered volume in the x1, x2 and x3 directions of the box coordinate. For
instance, if the key SOURCE STENCIL SIZE IN Z is assigned a value of 2, the
source-centered volume will have 5 grid points in the x3 direction with the point
source located at the middle and 2 grid points both above and below. For situations
involving multiple point sources, the same dimensions are applied to every source
in the source-receiver list file. If we do not plan to invert for seismic source parame-
ters, these three keys can be set to zeros. Seismic source parameter inversions using
F3DWI are discussed in Sects. 3.4 and 4.3.8.

For computing sensitivity (Fréchet) kernels used in full-3D tomography, we often
need to store the wavefield on a decimated mesh and at decimated time samples
to reduce the disk storage amount. I will discuss the details about Fréchet kernel
calculations in Chap. 4. On line 21–24 in Listing 2.5 I specify the decimation rate
in the three spatial dimensions and also the time dimension. For example, on line
21–23 in Listing 2.5 I have assigned the value 4 to the keys NXSKP, NYSKP and
NZSKP and the value 2 to the key NTSKP, which will request the awp code to write
out the wavefield at grid points whose x1, x2 and x3 indices are multiples of 4 (i.e.,
4, 8, 12,...) at those time steps that are multiples of 2 (i.e., 2, 4, 6,...) during the
wave-propagation simulation. The values assigned to NXSKP, NYSKP and NZSKP
do not need to be identical. The appropriate values for the spatial decimation rates
can be determined based on the desired spatial resolution of the Fréchet kernels. The
temporal decimation rate has effects on the accuracy of the kernel value at each grid
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1 0 IN .RC01 −1 −117.93578183557393 33.770387530932254 24.0
2 1 100001 −1 −117.59233339866256 33.815181833226426 24.0 1 1 1 1

0 0 0 / home/ pochen / wrk /F3DWI /HS/JOBS/ s r i n f o / src_hs . dat
3 2 IN .RC01.1 −1 −117.93578183557393 33.770387530932254 24.0 −2 1 0

0 / home/ pochen / wrk /F3DWI /HS/JOBS/ s r i n f o / imp_hs . dat
4 2 IN .RC01.2 1 40 40 60 −2 0 1 0 / home/ pochen / wrk /F3DWI /HS/JOBS/

s r i n f o / imp_hs . dat
5 2 IN .RC01.3 1 40 40 60 −2 0 0 1 / home/ pochen / wrk /F3DWI /HS/JOBS/

s r i n f o / imp_hs . dat
6 2 100001. adj 2 / home/ pochen / wrk /F3DWI /HS/JOBS/ s r i n f o /100001. adj
7 . . .

Listing 2.6 An example of the source-receiver file.

point and it is usually sufficient to have ten time samples per shortest period of the
synthetic seismogram.

2.2.4 Sources and Receivers

Two types of sources are considered in F3DWI, body-force sources specified as
force vectors and moment sources specified as moment tensors. Both types of
sources can have both spatial- and temporal-dependence. For moment sources, the
source-time function at a grid point specifies the moment-rate function ∂mij /∂t at
that grid point (Eq. 2.3). In some situations (e.g., calculations involving reciprocity)
we need to put sources at receiver locations and retrieve synthetic wavefields at
source locations. The distinction between sources and receivers starts to blur under
such circumstances, which is also reflected in the format of the source-receiver file.

2.2.4.1 File Format

A source-receiver list file for the half-space example is shown in Listing 2.6, which
includes a simple point receiver, a point moment source, three point body-force
sources and one finite source. Each source or receiver occupies a single line in the
file. The different columns of a line can be separated by any amount of spaces. This
source-receiver list file, named srlst, is stored under a sub-directory srinfo
inside the project JOBS directory (Line 10, Listing 2.5).

The format for a simple point receiver is shown on line 1. The first column is a
flag for indicating whether this line is for a source or a receiver. For a simple receiver
line, this source-receiver flag must be 0. The second column is a unique receiver ID,
which is composed of a seismic network ID, IN, and a station ID, RC01, separated
by a dot. The network ID and the station ID can have any number of characters. The
third column is a flag for indicating whether the receiver location specified in the
following three columns is in terms of longitude, latitude and depth or in terms of
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Table 2.3 The source-type flag on column 7 of the source-receiver list file, the description of the
source type and the meaning of the following columns

Flag Source description Following columns

1 Moment tensor in A&R format Mxx , Myy , Mzz, Mxy , Mxz, Myz

2 Focal mechanism in A&R format strike, dip, rake (degrees)

3 Moment tensor in x-East, y-North, z-Up Mxx , Myy , Mzz, Mxy , Mxz, Myz

4 Moment tensor in the box coordinate Mxx , Myy , Mzz, Mxy , Mxz, Myz

-1 Body-force vector in x-East, y-North, z-Up γx ,γy ,γz

-2 Body-force vector in the box coordinate γx ,γy ,γz

global grid indices in the box coordinate. For the former, the third column must be
−1 and for the latter, the third column must be 1. For the example shown in Listing
2.6, the third column is −1, therefore the next three columns specify the longitude,
latitude29 and the depth30 of the point receiver.

Line 2 in Listing 2.6 shows an example of a simple point source. The source-
receiver flag on the first column for a point source must be 1. The second column
is a unique source ID, which is 100001 in this example. Column 3–6 have the
same format as in line 1. Column 7 is a flag for indicating the type of the source
specified in the following columns. It can take 6 different values (Table 2.3), 1 for a
moment tensor in the A&R format31, 2 for a focal mechanism in the A&R format32,
3 for a moment tensor specified in the x-East, y-North, z-Up coordinate, 4 for a
moment tensor specified in the box coordinate, -1 for a body-force vector specified
in the coordinate: x-East, y-North, z-Up, -2 for a body-force vector specified in the
box coordinate. For body-force vectors, we need to specify the projections (i.e., the
cosine of the angle between the vector and the coordinate axis) of the body-force
vector on the three axes of the coordinate system, γx , γy and γz, in the following
three columns. For the example shown on line 2, the source-type flag on column 7 is
set to 1, therefore column 8–13 specify the A&R moment tensor in the order: Mxx ,
Myy , Mzz, Mxy , Mxz, Myz. The values shown on line 2 indicate that this source is
an explosive source (i.e., Mxx = Myy = Mzz = 1,Mxy = Mxz = Myz = 0).
Column 14 is the full path of the text file for storing the source-time function. If
the source-type flag on column 7 is set to 2, column 8–10 specify the A&R focal

29 In F3DWI, a geodetic location is specified using real-valued longitude and latitude in degrees,
the western hemisphere has negative longitude and the southern hemisphere has negative latitude.
30 The depth is specified in km and should always be larger than or equal to 0. The free-surface is
at 0 km depth.
31 The A&R moment tensor format is the format specified on page 112 in (Aki and Richards 2002).
Note that the coordinate system for this format (x: North, y: East, z: Down) is different from the
one used in F3DWI. Necessary coordinate transforms are done automatically in F3DWI.
32 The A&R focal mechanism format is the format specified on page 101 in (Aki and Richards
2002). The strike, dip and rake angles should be in degrees in the source-receiver file.
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1 1.0100000e+02 ! t o t a l number o f t ime samples
2 0.0000000e+00 ! beginning t ime
3 2.0000000e−02 ! t ime−sampling i n t e r v a l
4 1.7687185e+07 ! 1 s t sample
5 3.7669109e+07 ! 2nd sample
6 . . .

Listing 2.7 The first 5 lines in the example source-time function file.

mechanism, in the order: strike, dip and rake, and column 11 should be the full path
of the source-time-function file.

The source-time-function file specifies a uniformly sampled time series.
Listing 2.7 shows the first five lines of the source-time-function file on line 2 of List-
ing 2.6. The graphs of this time series (normalized by dividing the scalar moment)
in the time domain and its amplitude spectrum in the frequency domain are shown
in Fig. 2.7. Line 1–3 in Listing 2.7 specify the total number of time samples, the
beginning time of the first sample in seconds and the time-sampling interval in sec-
onds. The amplitude of the first time sample is on line 4, followed by the amplitudes
of the rest of the time samples. Note that the time-sampling interval specified on line
3 in Listing 2.7, 0.02 s, is different from the time-step length used in awp, which
is stored in key DT (Table 2.2; Line 12, Listing 2.5). The script proc_srlst.py
(Sect. 2.2.4.2) will re-sample it to the time-step length stored in DT by using the
cubic spline interpolation algorithm and generates source files that can be read by
awp.

Line 3–5 in Listing 2.6 specify three point body-force sources located at the same
location as the receiver IN.RC01. For a source that is applied at a receiver location,
the source-receiver flag on the first column must be 2. The source ID on the second
column is composed of the receiver ID and a suffix indicating the direction of the
body force. For example, on line 4, the suffix .2 indicates that the body force points
to the x2 direction of the box coordinate.

On line 3 in Listing 2.6, column 3–6 are identical to those on line 1. On lines 4
and 5, column 3 is set to 1, therefore column 4–6 should be global grid indices in the
box coordinate, which must be positive integers. F3DWI understands both formats.
If you prefer to use grid indices, there is a script geo2grd.py under the py direc-
tory that allows you to convert a list of geodetic locations into grid indices. This
script is essentially a wrapper around the binary executable geo2grd under the
bin directory. Suppose the py directory has been added to the search path (Footnote
23), this script can be used by typing the following command in the terminal

geo2grd.py param_HS.dat geo2grd.in 2 1 3 geo2grd.ou

The first command-line input is the name of the parameter file (Sect. 2.2.3; List-
ing 2.5); the second input is the name of a text input file containing a list of the
geodetic locations; the third to the fifth input are the column numbers inside the
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33.815181833226426 −117.59233339866256 24
33.770387530932254 −117.93578183557393 24
33.770387530932254 −117.93578183557393 0
33.815181833226426 −117.59233339866256 0

Listing 2.8 An example input file for geo2grd.py.

201 40 60 33.815181833226426 −117.59233339866256 24
40 40 60 33.770387530932254 −117.93578183557393 24
40 40 180 33.770387530932254 −117.93578183557393 0

201 40 180 33.815181833226426 −117.59233339866256 0

Listing 2.9 The output file generated by geo2grd.py.

text input file, geo2grd.in, for longitude, latitude and depth (Footnote 29, 30),
in this order; the sixth input is the name of the output file that will be generated by
this script. For all the file names used in this command, you will need to include the
full paths if they are not under the current directory. An example of the input file is
shown in Listing 2.8 and its corresponding output file is shown in Listing 2.9. The
global grid indices in the box coordinate for the four geodetic locations in the input
file are shown on column 1–3 in the output file. The conversion was done by find-
ing the grid point in the mesh that has the smallest distance from an input geodetic
location, therefore the maximum possible mislocation error in each direction is h/2,
where h is the grid spacing of the mesh.

The source-type flag on column 7 is set to -2 on line 3–5 in Listing 2.6, which
indicates that column 8–10 on these 3 lines specify body-force vectors in the box
coordinate. For example, on line 3, the vector defined on column 8–10, (1, 0,
0), specify a unit-length body-force vector pointing to the x1 direction and on lines
4 and 5, the vectors (0, 1, 0) and (0, 0, 1) specify unit-length body-forces
pointing to the x2 and x3 directions, respectively. Column 11 on these three lines
specifies the full path of a source-time-function file for these body-force sources.
The format of this source-time-function file is identical to that in Listing 2.7. The
graphs of this source-time function in the time domain and its amplitude spectrum in
the frequency domain are shown in Fig. 2.11. This source-time function was gener-
ated by applying a sixth-order Butterworth low-pass filter with the corner at 1.5 Hz
to a delta impulse signal. The wavefields generated by the three unit body-force
sources applied at the receiver IN.RC01 are examples of what we call receiver
Green’s tensors (RGTs), whose utility in solving seismic inverse problems will be
demonstrated in later chapters.

Line 6 in Listing 2.6 specifies a finite source that is composed of 2 point sources.
In this particular example, this finite source actually represents the adjoint source
field for the point moment source 100001 specified on line 2 of Listing 2.6. Details
about the adjoint source field will be discussed in later chapters. In terms of the for-
mat, the point sources making up the adjoint source field are all applied at receiver
locations, therefore the source-receiver flag on column 1 is set to 2. The source ID
on column 2 is set to the source ID of the point moment-source 100001 with the
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Fig. 2.11 The source-time function for the three body-force sources in the time domain (left) and
its amplitude spectrum in the frequency domain (right).

1 2 IN .RC01.1 1 40 40 60 −2 1 0 0 / home/ pochen / wrk /F3DWI /HS/SYN
/100001/ IN .RC01 . 1 . adj

2 2 SF .RC02.1 1 40 40 180 −2 1 0 0 / home/ pochen / wrk /F3DWI /HS/SYN
/100001/SF .RC02 . 1 . adj

Listing 2.10 An example of an adjoint-source-field file.

suffix .adj. The grid flag on column 3 is set to 2, which is the total number of point
sources making up this finite source. Column 4 specifies the full path of the file that
describes all the point sources in this adjoint source field. Listing 2.10 shows the
content of this file. This file has the same format as that shown in Listing 2.6. It
has two lines, the first line specifies a point body-force source applied at receiver
IN.RC01, pointing to the x1 direction and having a source-time-function file spec-
ified in the last column. The second line specifies another point body-force source
applied at a receiver named SF.RC02, also pointing to the x1 direction and having
a different source-time-function file specified in the last column.

2.2.4.2 File Processing

The source-receiver file needs to be processed by the script proc_srlst.py
in the py directory. This script is a wrapper around the binary executable
write_point_source in the bin directory. It processes the information stored
in the source-receiver file (e.g., the srlst file shown in Listing 2.6) and the asso-
ciated source-time-function files. It generates a set of source files, which have file
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1 0 IN .RC01 40 40 60
2 1 100001 201 40 60
3 2 IN .RC01.1 40 40 60
4 2 IN .RC01.2 40 40 60
5 2 IN .RC01.3 40 40 60
6 2 100001. adj_IN .RC01.1 40 40 60
7 2 100001. adj_SF .RC02.1 40 40 180

Listing 2.11 The output file srlst.grd generated by proc_srlst.py.

names with the suffix .src and will be read by awp, and also a text file with the
suffix .grd, which will be read by the script set_sr_grd.py (Sect. 2.2.5).

Assuming the py directory has been added to the search path (Footnote 23) and
the parameter file param_HS.dat is under the current directory33, I can type the
following command in the terminal,

proc_srlst.py param_HS.dat 1 6

The first command-line input is the parameter file (use the full path if it is not under
the current directory). This script will read the source-receiver file associated with
the key SOURCE RECEIVER LIST in the parameter file (Line 10, Listing 2.5).
The second and third command-line inputs indicate the range of lines inside the
source-receiver file that this script will process. For the command shown above,
the script proc_srlst.py will process line 1–6 in the srlst file shown in
Listing 2.6.

The output files are stored under the same directory as the srlst file, which
is under the srinfo sub-directory inside the project JOBS directory (Line 10,
Listing 2.5) on my Linux box. There is a text output file named srlst.grd, whose
content is shown in Listing 2.11. For point sources and receivers (e.g., Line 1–
5, Listing 2.6) the first two columns in srlst.grd are identical to those in the
corresponding source-receiver file, srlst. The following three columns are global
grid indices of the point source/receiver in the x1, x2 and x3 directions of the box
coordinate. Geodetic locations specified in longitude, latitude and depth in srlst
have been converted to grid indices. For the finite source shown on line 6 in Listing
2.6, information about the two point sources making up this finite source is listed
on lines 6 and 7 in Listing 2.11. The first column on these two lines is identical to
that in the corresponding adjoint-source-field file shown in Listing 2.10. The second
column is a new source ID composed of the point-source ID in the adjoint-source-
field file (Column 2, Listing 2.10) and a prefix given by the ID of the finite source,

33 We can execute any of the scripts in py and any sequential binary executables in bin from
inside the project JOBS directory, where the parameter file and other input/output files are stored.
In such a case, the current directory is the project JOBS directory.
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1 201 40 60 1
2 0.1768718E+08 0.1768718E+08 0.1768718E+08 0.0000000E+00

0.0000000E+00 −0.3927344E−08
3 0.3115688E+08 0.3115688E+08 0.3115688E+08 0.0000000E+00

0.0000000E+00 −0.6918216E−08
4 . . .

Listing 2.12 The source file for the point moment source 100001.

100001.adj_ (Column 2, Line 6, Listing 2.6). The following three columns on
line 6–7 in Listing 2.11 specify the grid indices of the two point sources associated
with the finite source, which are identical to those shown in Listing 2.10.

The output source files, which will be read by awp, are under the same directory
as the source-receiver file srlst (Line 10, Listing 2.5) and have file names com-
posed of the source/receiver ID shown on the second column of srlst (Listing
2.6) and the suffix .src. For the point moment source 100001, the first three lines
of the source file 100001.src are shown in Listing 2.12. Line 1 shows the global
grid indices of this point source (Column 3–5, Line 2, Listing 2.11) and the corre-
sponding source-type flag (Column 7, Line 2, Listing 2.6). Starting from line 2 in
Listing 2.12, column 1–6 show the time histories of the moment tensor components
in the order: Mxx , Myy , Mzz, Mxy , Mxz, Myz. The moment tensor listed here has
been transformed from the coordinate used in the A&R format to the box coordinate
and the time histories have been obtained by re-sampling the corresponding source-
time function (Listing 2.7) with a time-sampling interval given by the key DT in the
parameter file (Line 12, Listing 2.5). If the source-type flag is 2 (i.e., focal mecha-
nism specified using strike, dip and rake angles), the moment tensor used in the six
columns in Listing 2.12 will then be the one computed from the focal mechanism
using Equation (1) on page 112 in (Aki and Richards 2002) and then transformed to
the box coordinate. If the source-type flag is either−1 or−2, the first three columns
will list the time histories of the three components of the body-force vector in the x1,
x2 and x3 directions of the box coordinate and the next three columns will be set to
0 and be neglected by awp during the wave-propagation simulation. The source file
of a finite source is a concatenation of the source files of the individual point sources
making up the finite source. Snippets of the source file 100001.adj.src for the
adjoint source field 100001.adj (Listing 2.10) are shown in Listing 2.13. The
time histories of the body-force components for adjoint sources will be explained in
later chapters. On lines 1 and 4 in Listing 2.13, the source-type flags for both point
sources in this adjoint source field are −2 and the global grid indices are identical
to those listed on lines 6 and 7 in Listing 2.11. The source file shown in Listing
2.13 is actually the concatenation of two other source files under the same directory,
100001.adj_IN.RC01.1.src and 100001.adj_SF.RC02.1.src, both
of which were generated by proc_srlst.py.
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1 40 40 60 −2
2 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00

0.0000000E+00 0.0000000E+00
3 . . . r es t o f t ime h i s t o r i e s omi t ted
4 40 40 180 −2
5 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00

0.0000000E+00 0.0000000E+00
6 . . . r es t o f t ime h i s t o r i e s omi t ted

Listing 2.13 Snippets of the source file for the adjoint source 100001.adj.

2.2.5 Recording Grid Points

The synthetic wavefields at selected grid points can be recorded and written onto
the disk during wave-propagation simulations. In the py directory there are two
scripts, set_sr_grd.py and set_ker_grd.py, that allow us to register those
selected grid points with awp. These selected grid points are called the recording
grid points in the following. The script set_sr_grd.py registers the recording
grid points associated with the sources and receivers, which are often randomly
or non-uniformly distributed in the mesh. The script set_ker_grd.py registers
a set of recording grid points that are uniformly distributed throughout the mesh.
Fréchet kernels for tomography are often calculated and stored on those uniformly
distributed recording grid points.

The script set_sr_grd.py reads the source-receiver grid file, srlst.grd
(Listing 2.11), generated by proc_srlst.py, adds more recording grid points
according to the SOURCE STENCIL SIZE keys in the parameter file (Line 18–
20, Listing 2.5) around the sources whose source-receiver flags equal to 1 (Column
1, Listing 2.11), removes any duplicate recording grid points and then converts the
global grid indices into the corresponding local grid indices for each sub-mesh
(Sect. 2.2.2). For the half-space example, I can execute this script by typing the
following command in the terminal

set_sr_grd.py param_HS.dat

It takes the parameter file as its single command-line input. It generates a text out-
put file named srcbuffgrd.out under the same directory as the source-receiver
grid file srlst.grd (Line 10, Listing 2.5). For the half-space example, it also
generates eight output files with the prefix HSGRDRECRDM followed by the nine-
digit sub-mesh ID under the directory for storing the material property files (Line 7,
Listing 2.5). The number of such files equals to the number of sub-meshes defined
in XYZGRD (Sect. 2.2.1; Listing 2.3).

In the source-receiver grid file srlst.grd, only the point moment source
100001 has its source-receiver flag equal to 1 (Column 1, Line 2, Listing 2.11).
The script set_sr_grd.py calls another script srcbuffgrd.py in the py
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1 45 ! t o t a l number o f g r i d po i n t i n t h i s sub−mesh
2 81 2 60 ! l o c a l g r i d index o f the 1 s t po i n t
3 80 1 58 ! l o c a l g r i d index o f the 2nd po i n t
4 . . .

Listing 2.14 Snippets of the grid file for recording the wavefields at source/receiver locations.

directory to generate the small source-centered volume surrounding the source grid
point based on the values assigned to the SOURCE STENCIL SIZE keys in the
parameter file (Line 18–20, Listing 2.5). For this example, the small source-centered
volume has 5 grid points in the vertical direction (Line 20, Listing 2.5) (i.e., the
source grid point and 2 grid points both above and below the source grid point) and 3
grid points in each horizontal direction (Line 18–19, Listing 2.5), therefore the total
number of grid points in this volume is 45. The text output file srcbuffgrd.out
is only a list of the global grid indices of these 45 points. The total number of points
listed in srcbuffgrd.out should equal Sx × Sy × Sz×Ns , where Sx , Sy and Sz

are the number of grid points in each spatial dimension of the source-centered vol-
ume as specified by the SOURCE STENCIL SIZE keys and Ns is the total number
of point sources with the source-receiver flags on the first column equal to 1 in the
source-receiver grid file srlst.grd (Listing 2.11).

The script set_sr_grd.py combines the grid points in srcbuffgrd.out
with the grid points of other sources and receivers in srlst.grd whose source-
receiver flags on column 1 are either 0 or 2. The small source-centered vol-
umes for different sources may have overlaps if the sources are close to each
other. Some sources and receivers may have identical grid indices. In such cases,
set_sr_grd.py removes any duplicate grid points from the combined record-
ing grid point set such that every grid point in the final recording grid point set is
unique. It then converts the global grid indices of those recording grid points into
their corresponding local grid indices in the sub-meshes (Sect. 2.2.2) and writes out
the local grid indices of the recording grid points in each sub-mesh into a sepa-
rate file named using the sub-mesh index (Sect. 2.2.2). For example, the local grid
indices in the sub-mesh (1, 1, 0) (Fig. 2.9) are written into the recording grid file
HSGRDRECRDM001001000 under the directory for storing material property files,
which is specified by the key MEDIA in the parameter file (Line 7, Listing 2.5). The
first three lines in this recording grid file are shown in Listing 2.14. The total num-
ber of recording grid points in this sub-mesh is shown on the first line, followed by
the local grid indices of all those recording grid points. If a sub-mesh does not have
any recording grid points in it, the number 0 will be written into its corresponding
recording grid file.

The script set_ker_grd.py registers a set of uniformly distributed recording
grid points with awp. Those recording grid points are obtained by decimating the
mesh defined in XYZGRD (Sect. 2.2.1; Listing 2.3) according to the decimation rates
stored in key NXSKP, NYSKP and NZSKP in the parameter file (Table 2.2; Line
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21–23, Listing 2.5). It can be executed by typing the following command in the
terminal

set_ker_grd.py param_HS.dat

It takes the parameter file as its single command-line input. For the half-space
example, it generates eight output files with the prefix HSGRDREC followed by the
sub-mesh ID under the directory for storing material property files (Line 7, Listing
2.5). The format of these output files is identical to the format of the recording grid
files generated by set_sr_grd.py.

After executing set_sr_grd.py and set_ker_grd.py, there should be
25 files, including the mesh file XYZGRD, under the directory for storing mate-
rial property files. There should be 8 files named as HSGRDprocID, which
store the material properties on each sub-mesh (Sect. 2.2.2), 8 files named as
HSGRDRECRDMprocID, which store the recording grid points associated with
sources and receivers in each sub-mesh, and 8 files named as HSGRDRECproID,
which store the uniformly distributed recording grid points in each sub-mesh. Here
procID in the file names is the nine-digit sub-mesh ID. Since each sub-mesh cor-
responds to a unique MPI process during the wave-propagation simulations, the
sub-mesh ID can also be used as the unique process ID.

2.2.6 Wavefield Simulation

Wave-propagation simulations are carried out using awp, whose theoretical back-
ground has been summarized in Sect. 2.1. The awp code is also located in the
bin directory. But unlike other sequential binary executables in the same directory,
awp has been parallelized using MPI and the procedure for executing it is closely
tied with the MPI parallel job launcher and the job scheduling system (Footnote
27), such as the Portable Batch System (PBS)34, installed on your cluster. On my
Linux box, I have installed a version of the MPI library, called MVAPICH2 (Foot-
note 17), which comes with a parallel job launcher mpiexec35 installed under the
~/tools/mpi/bin directory. I do not have a job scheduling system installed on
my Linux box, so I will be using mpiexec in the terminal. On clusters with job
schedulers, it is often necessary to invoke the MPI job launcher inside a job script
and then submit the job script to the scheduler for execution (Footnote 34).

34 A good introduction to PBS can be found at http://hpc.sissa.it/pbs/pbs.html.
35 On your system, you may have different parallel job launchers, such as mpirun,
mpirun_rsh, mpirun.lsf, aprun, runjob. You may need to look into the user guide of
your cluster or consult with your system administrator.

http://hpc.sissa.it/pbs/pbs.html
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The script setup_awp.py in the py directory can help to set up the correct
environment for running awp. For the half-space example, I can execute it in the
terminal using the following command

setup_awp.py param_HS.dat FWF 2 5

The first command-line input is the parameter file (Table 2.2; Listing 2.5). The
second command-line input FWF stands for Forward Wave Field. In F3DWI, two
different types of wave-propagation simulations are considered, the forward sim-
ulation and the adjoint simulation. The details about the adjoint simulations will
be discussed in later chapters. To set up the environment for adjoint simulations,
the FWF on the second command-line input needs to be replaced with AWF, which
stands for Adjoint Wave Field. Lowercase letters, fwf and awf, also works. The
two numbers on the third and fourth command-line inputs give the range of the line
numbers inside the source-receiver list file srlst (Listing 2.6) for which the syn-
thetic wavefields will be computed using awp. Any lines for point receivers (i.e., the
source-receiver flag on column 1 of srlst equal to 0) within the line-number range
will be automatically skipped. The command above will create a directory named
FWF under the project work directory specified by key WRKDIR in the parameter
file (Line 3, Listing 2.5) and 4 sub-directories named using the source ID in srlst
(Column 2, Listing 2.6), 100001, IN.RC01.1, IN.RC01.2 and IN.RC01.3,
under the FWF directory. Under each source sub-directory, for instance the 100001
sub-directory under FWF, there are two sub-directories named output_ckp and
output_vlm for storing output files generated by awp. There are also a soft link
that points to the awp binary executable in the bin directory, a text file named
IN3D, which is an input file for awp, and a copy of the corresponding source file
generated by proc_srlst.py previously (Sect. 2.2.4.2) and then copied from
the source-receiver directory (Line 10, Listing 2.5) by setup_awp.py. The script
setup_awp.py calls another script write_IN3D.py under the py directory
to generate the IN3D file in each source sub-directory. The IN3D file summarizes
information about the mesh, full paths to the source and the structural model files
and a set of parameters that control the behavior of awp. In practice, I do not need
to edit this file manually.

If the source sub-directories already exist (e.g., generated during previous awp
runs), executing setup_awp.py for the same sources will clean up the content
inside those source sub-directories generated from previous runs and create new
environments based on the current parameter file and source-receiver configurations.

To run awp using the MPI parallel job launcher mpiexec installed on my Linux
box, I can type the following command in the terminal under a source sub-directory,
say FWF/100001,
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1 0.000E+00 0.000E+00 0.000E+00
2 0.000E+00 0.000E+00 0.000E+00
3 0.000E+00 0.000E+00 0.000E+00
. . .

999 0.508E−12 −0.393E−12 0.128E−12
1000 −0.121E−12 0.235E−12 0.327E−12
1001 0.521E−12 −0.421E−12 0.202E−13

Listing 2.15 Snippets of the CHKJ96PV file generated by awp during the example run.

~/tools/mpi/bin/mpiexec -n 8 -f ~/tools/mpi/share/my
hosts./awp

The first option -n specifies the total number of MPI processes to use, the second
option -f specifies the full path of a host file that lists the names of the machines
to use and the last command-line input to mpiexec is the full path of the parallel
binary executable awp. The number of sub-meshes for the half-space example is 8
(Listing 2.3), therefore I set the total number of MPI processes for the -n option
to 8. On my Linux box, the host file has a single line in it, fresnel:8, which
is the name of the host, fresnel, followed by a colon and then the number of
cores on that host. You can find the name of your machine by looking into the
/etc/hostname file on your system or consulting with your system adminis-
trator. Since there is a soft link to the awp in the bin directory under the current
directory, I can use this link for the last command-line input to mpiexec instead.
By default, awp will read the IN3D file under the current directory.

It takes about 2 min of wall time for the run to complete on my Linux box. After
the run finishes successfully, there should be two text files named CHKJ96PV and
CHKP96PV under the sub-directory output_ckp. These two files contain basic
information for quickly evaluating results of the run. The file CHKJ96PV contains
the time history of the particle velocity at the local grid index (nd+2, nd+2,
nd+2) of the sub-mesh (0, 0, 0), where nd is the number of grid points used
in the PML boundary (key BOUNDARY NODE NUMBER, Line 16, Listing 2.5). This
file can be used to check the stability of the PML boundary condition and also the
stability of the full finite-difference scheme during the run. The first three lines and
the last three lines inside CHKJ96PV are shown in Listing 2.15. Column 1 shows
the time step, column 2–4 show the particle velocity in the x1, x2 and x3 directions
of the box coordinate. If a simulation is unstable, the particle velocity listed in this
file may have unrealistically large amplitudes or become NaN (i.e., Not A Number).

The content of the output file CHKP96PV is shown in Listing 2.16. Line 1 shows
the result of the CFL stability test (Equation 2.123). If the last number on this
line is larger than 0.5, the simulation is unstable and you will have NaN inside the
CHKJ96PV file. But this situation is unlikely to happen because any of the scripts
in the py directory that I have discussed so far can automatically adjust the time
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1 STABILITY CRITERIA .5 > CMAX∗DT/DX = 0.4875000E+00
2 # OF X NODES PER PROC 120
3 # OF Y NODES PER PROC 38
4 # OF Z NODES PER PROC 90
5 # OF TIME STEPS 1001
6 DISCRETIZATION IN SPACE 200.0000
7 DISCRETIZATION IN TIME 0.0150
8 PML COEFFICIENT 3.500
9 HIGHEST P−VELOCITY ENCOUNTERED 6500.00

10 LOWEST P−VELOCITY ENCOUNTERED 6500.00
11 HIGHEST S−VELOCITY ENCOUNTERED 3500.00
12 LOWEST S−VELOCITY ENCOUNTERED 3500.00
13 HIGHEST DENSITY ENCOUNTERED 3000.00
14 LOWEST DENSITY ENCOUNTERED 3000.00
15 ABC CONDITION, PML=1 OR CERJAN=0: 1
16 FD SCHEME, VISCO=1 OR ELASTIC=0: 0
17 Q FREQUENCY BAND, LOW, CENTER, HIGH: 0.50000E−02 0.87500 1.7500

Listing 2.16 Content of the CHKP96PV file generated by awp during the example run.

step length stored in key DT (Line 12, Listing 2.5) using Eq. 2.124 to satisfy the
CFL stability condition. Line 2 to 7 show the basic information about the mesh and
the discretization in space and time. The PML tuning coefficient (τ in Eq. 2.90,
key PMLCOEF on Line 15, Listing 2.5) is shown on line 8. Line 9–14 show the
highest and lowest P- and S-wave velocities and density inside the structural model.
The lowest S-wave velocity and the highest P-wave velocity should be similar to
those specified by key MINIMUM VELOCITY and MAXIMUM VELOCITY (Line
8–9, Listing 2.5). Line 15 is simply a flag for indicating if the PML or the absorb-
ing boundary condition is used, which should be identical to the value associated
with key USEPML (Line 14, Listing 2.5). Line 16 is another flag for indicating if
viscoelasticity is accounted for during the simulation and should have a value iden-
tical to that associated with key VISCO (Line 17, Listing 2.5). Line 17 lists the low,
central and high frequencies of the frequency band for the frequency-independent
Q approximation (Sect. 2.1.2.4). For elastic simulations (i.e., the flag on line 16 is
0), numbers listed on line 17 do not have any effects on the simulation.

In the sub-directory output_vlm, there are two groups of binary output files.
The group of files named as SX96PVRDMprocID store the spatial-temporal wave-
fields at the recording grid points associated with sources and receivers registered
by the script set_sr_grd.py and the group of files named as SX96PVprocID
store the spatial-temporal wavefields at the uniformly-distributed recording grid
points registered by the script set_ker_grd.py. Here procID is the 9-digit
sub-mesh (process) ID. At each recording grid point, the 9-tuple that contains the
six components of the symmetric strain tensor and the three components of the
particle velocity in the box coordinate

(ε11, ε22, ε33, 2ε12, 2ε13, 2ε23, v1, v2, v3) (2.125)
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is stored at the time steps decimated according to the temporal decimation
rate specified by key NTSKP (Line 24, Listing 2.5). Each number is stored
as a four-byte-long binary floating-point number. For the recording grid file
HSGRDRECRDM001001000 shown in Listing 2.14, which has 45 recording grid
points, the corresponding binary wavefield output file SX96PVRDM001001000,
which contains the wavefields on these 45 recording grid points at 500 time steps,
should be 810,000-byte long36.

The three off-diagonal components of the symmetric strain tensor defined in
Eq. 2.5 are multiplied by 2 in Eq. 2.125. The three off-diagonal components
2ε12, 2ε13, 2ε23 are sometimes called the engineering shear strain and they rep-
resent the changes in the angles of two originally orthogonal lines before and after
the deformation. The strain and velocity fields, as ordered in Eq. 2.125, will be used
in constructing the Fréchet kernels in Chap. 4.

For the half-space example, wave-propagation simulations for the source sub-
directories IN.RC01.1, IN.RC01.2 and IN.RC01.3 under the FWF directory
can be carried out using the same procedure as that for the source sub-directory
100001. Synthetic wavefields generated by awp inside these three source direc-
tories are examples of receiver-side Green’s tensors (RGTs) since the three point
body-force sources are applied at the location of the receiver IN.RC01 and the
directions of the three body-force vectors are orthogonal to each other. The RGTs
are low-pass filtered by the Butterworth filter (Fig. 2.11) that is used as the
source-time function for these three orthogonal point body-force sources.

2.2.7 Synthetic Seismograms

Two scripts in the py directory, fwf2syn.py and rgt2syn.py, are provided
for extracting synthetic seismograms from the binary output files generated by
awp. The script fwf2syn.py is merely a wrapper around the binary executables
rdstat and rotate_syn in the bin directory. It reads the binary wavefield out-
put files generated by awp at specified receiver grid locations by calling rdstat
and then rotates the two horizontal components of the particle-velocity vector into
the East-North and Radial-Transverse directions by calling rotate_syn. For the
half-space example, I can use the following command in the terminal

fwf2syn.py param_HS.dat 2 2 1 1

36 9 components × 45 grid points × 500 time steps × 4 bytes = 810000 bytes. You can verify
the exact byte size of the file by typing the command ls -l SX96PVRDM001001000 in the
terminal.
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The first command-line input is the the parameter file. The second and third
command-line inputs specify the line-number range inside the source-receiver file
srlst (Line 10, Listing 2.5; Listing 2.6) for sources that awp has generated
synthetic wavefields for. The fourth and fifth command-line inputs specify the
line-number range inside srlst for receivers at which we would like to extract
synthetic seismograms. I would like to extract synthetic seismograms for the source
100001 (Line 2, Listing 2.6) at the receiver IN.RC01 (Line 1, Listing 2.6),
therefore the second and third command-line inputs are both 2 and the fourth
and fifth command-line inputs are both 1. The script generates a directory SYN
under the project work directory (Line 3, Listing 2.5) and a source sub-directory
100001 under SYN. Inside the source sub-directory 100001, there are four text
files, rdstat.in, IN.RC01.rtin, IN.RC01 and IN.RC01.rot. The text
files rdstat.in and IN.RC01.rtin are input files for the binary executables
rdstat and rotate_syn, respectively. The script fwf2syn.py has generated
them automatically and used them when calling the two binary executables. The text
file IN.RC01 contains the time histories of the six components of the strain (col-
umn 1–6) and the three components of the particle velocity (column 7–9) in the box
coordinate at the receiver IN.RC01. The ordering of the columns in this file follows
that shown in Eq. 2.125 and the number of time samples (i.e., the number of lines in
the file) is identical to the number of time steps decimated according the decimation
rate specified in key NTSKP (Line 24, Listing 2.5). The text file IN.RC01.rot has
7 columns and contains the time histories of the particle velocity vector in the x1, x2
and x3 directions of the box coordinate (column 1–3), the East and North directions
(column 4–5) and the Radial and Transverse directions (column 6–7). The number
of time samples has been decimated in the same way as in the strain-particle-velocity
output file IN.RC01. If the receiver and the point source are aligned in the vertical
direction (e.g., the receiver is located at exactly the same longitude and latitude as
the point source), the Radial and Transverse components are undefined and will not
be computed. If the source has finite spatial dimensions (i.e., not a point source), the
Radial and Transverse components are not computed either.

The script rgt2syn.py is a wrapper of three binary executables in bin,
rdstat, rgt2syn and rotate_syn. It calculates synthetic seismograms from
RGTs by applying the reciprocity principle, which will be discussed in detail in
Sects. 3.3.2, 3.4.2 and 3.4.3. For the half-space example, I can run this script using
the following command in the terminal

rgt2syn.py param_HS.dat 3 5 2 2

The first command-line input is the parameter file. The second and third
command-line inputs specify the line-number range in the source-receiver file
srlst (Line 10, Listing 2.5; Listing 2.6) for the unit body-force sources
applied at receiver locations. The fourth and fifth command-line inputs specify
the line-number range in srlst for the sources that I am computing synthetic



72 2 Anelastic Wave Propagation (AWP)

seismograms for. In this case, the three orthogonal unit body-force sources act-
ing at the receiver IN.RC01 are on line 3–5 in srlst and I am computing
synthetic seismograms for the source 100001, which is on line 2 in srlst,
therefore the second and third command-line inputs are three and five, respec-
tively, and the fourth and fifth command-line inputs are both 2. The script will
generate three source sub-directories under SYN, IN.RC01.1, IN.RC01.2 and
IN.RC01.3 for the three body-force sources. Under each source sub-directory,
there are two text input files, rdstat.in and rgt2syn_100001.in, which
were generated by rgt2syn.py automatically and used as input files when
rgt2syn.py calls the binary executables rdstat and rgt2syn, respectively.
There are two text output files under each source sub-directory, 100001 and
100001.syn. The text file 100001 contains the time histories of the strain
and particle velocity components in the box coordinate at the grid location of
the source 100001. The text files 100001.syn in the source sub-directories
IN.RC01.1, IN.RC01.2 and IN.RC01.3 contain the particle-velocity syn-
thetic seismograms generated by the source 100001 and recorded at the receiver
IN.RC01 in the x1, x2 and x3 directions of the box coordinate, respectively. If
the synthetic seismograms for the two horizontal components in the box coor-
dinate (i.e., the 100001.syn file in source sub-directories IN.RC01.1 and
IN.RC01.2 under SYN) are available, such as in the example here, rgt2syn.py
will attempt to rotate them into the East-North and Radial-Transverse directions. In
such a case, rgt2syn.py will generate three more text files in the source sub-
directory 100001 under SYN, IN.RC01.rgt.box, IN.RC01.rgt.rtin and
IN.RC01.rgt.rot. The file IN.RC01.rgt.box has three columns, which are
identical to the 100001.syn file in the three source sub-directories IN.RC01.1,
IN.RC01.2 and IN.RC01.3, respectively. The IN.RC01.3 sub-directory is
allowed to be absent for the rotation operation, in which case IN.RC01.rgt.box
will have only two columns corresponding to the two horizontal components of
the particle-velocity in the box coordinate. The text file IN.RC01.rgt.rtin
is used as the input to the binary executable rgt2syn. The text output file
IN.RC01.rgt.rot has the same format as the output file IN.RC01.rot gen-
erated by fwf2syn.py. If the vertical component of the particle-velocity synthetic
seismogram is missing (i.e., the source sub-directory IN.RC01.3 does not exist),
the file IN.RC01.rgt.rot will have 6 columns instead of 7, with the compo-
nents in the x1 and x2 directions of the box coordinate (column 1–2) followed by
those in the East and North directions (column 3–4) and those in the Radial and
Transverse directions (column 5–6). If any of the two horizontal components of the
particle velocity in the box coordinate is missing, rgt2syn.pywill not attempt to
rotate the horizontal-component synthetic seismograms.

The synthetic seismograms in the output file IN.RC01.rgt.rot and those
in the output file IN.RC01.rot in the source sub-directory 100001 under SYN
should satisfy reciprocity (Sect. 3.4.3). However, I note that the source-time function
of the body-force sources (Last Column, Line 3–5, Listing 2.6; Fig. 2.11) used for
computing the RGTs is different from the source-time function of the point moment
source 100001 (Last Column, Line 2, Listing 2.6; Fig. 2.7), therefore the synthet-
ics in IN.RC01.rgt.rot, which were computed from the RGTs by applying
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the reciprocity principle, are different from those in IN.RC01.rot, which were
extracted from the forward wavefield generated by the source100001 and recorded
at the receiver IN.RC01. If I convolve the synthetics in IN.RC01.rot with the
source-time function of the body-force sources (Fig. 2.11), which is equivalent to
filtering those synthetics using the low-pass Butterworth filter, and convolve the syn-
thetics in IN.RC01.rgt.rot with the source-time function of the point moment
source 100001 (Fig. 2.7), the two sets of synthetics after the convolution operations
should be identical to each other, which is indeed the case, as shown in Fig. 2.12.
The theoretical backgrounds of this numerical experiment will be discussed in
Sects. 3.3.2, 3.4.2 and 3.4.3.

For the half-space example, both the source and the receiver lie at 24-km depth
beneath the free-surface. Because the source-receiver path is parallel to the x1
axis of the box coordinate and the Radial direction points from the source toward
the receiver (Fig. 2.10), the Radial-component synthetic seismogram equals the
x1-component synthetic seismogram multiplying −1 (Fig. 2.12). The Transverse
direction is parallel to the x2 axis of the box coordinate and is 90o clockwise from
the Radial direction (Fig. 2.10), therefore the Transverse-component synthetic seis-
mogram is identical to the x2-component synthetic seismogram (Fig. 2.12). Because
the point moment source 100001 has an explosive source mechanism (Column
8–13, Line 2, Listing 2.6), the direct P-wave arriving at about 5 s on the Radial
component has positive polarity (Fig. 2.12). The wave arriving at about 9 s on the
Radial component is the pP-wave (Fig. 2.12), which is the P-wave reflected once
at the free surface. The wave arriving at about 12.5 s on the Radial component is
the pS-wave (Fig. 2.12), which is the P-to-S converted wave caused by the free sur-
face. I will compute the sensitivity (Fréchet) kernels of these three waves on the x1
component in Chap. 4.

2.2.8 Half-Space Example Summary

The complete sequence of the terminal commands I have used so far for the half-
space example can be summarized into a shell script, hs_syn.csh, which is
shown in Listing 2.17. This script assumes that the bin and the py directories under
F3DWI have been added to the search path (Footnote 23). The two shell variables
MPIEXEC and HOSTS defined on line 2–3 in Listing 2.17 store the full paths to the
MPI parallel job launcher and the host file on my Linux box (Sect. 2.2.6). You may
need to change these two shell variables based on your system configuration. The
input file for the mesh generator FD_GRID_XYZ.in (Listing 2.1), the C++ source
code for generating the structural model files vm_hs_gen.cpp (Listing 2.4) and
the parameter file param_HS.dat (Listing 2.5) are all located under the project
JOBS directory. The source-receiver file srlst (Listing 2.6), the two source-time-
function files src_hs.dat (Fig. 2.7; Listing 2.7) and imp_hs.dat (Fig. 2.11)
and the adjoint-source-field file 100001.adj (Listing 2.10) used in srlst are all
stored inside the srinfo sub-directory under the project JOBS directory (Line 10,
Listing 2.5).
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Fig. 2.12 Verifying the reciprocity principle for the half-space example. Thin black solid lines:
synthetics in IN.RC01.rgt.rot after the convolution with the source-time function shown in
Fig. 2.7; thick gray dash-lines: synthetics in IN.RC01.rot after the convolution with the source-
time function shown in Fig. 2.11; horizontal axis: time in seconds; vertical axis: particle velocity in
m/s. From left to right, top to bottom, the sub-plots (a)–(g) show synthetics in the x1, x2 directions
of the box coordinate, the East and North directions, the Radial and Transverse directions and the
vertical direction.
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1 # ! / b in / csh
2 set MPIEXEC=/home / pochen / t oo l s / mpi / b in / mpiexec
3 set HOSTS=/home / pochen / t oo l s / mpi / share / myhosts
4
5 echo "Changing to the JOBS directory..."
6 cd /home / pochen / wrk /F3DWI /HS/JOBS
7
8 echo "Generating the mesh..."
9 mkdir ~/ wrk / F3DWI/HS/VM

10 FD_GRID_XYZ_rect FD_GRID_XYZ . i n
11
12 echo "Generating the structure model files..."
13 g++ −o vm_hs_gen vm_hs_gen . cpp
14 vm_hs_gen
15
16 echo "Processing the source-receiver file..."
17 p r o c _ s r l s t . py param_HS . dat 1 6
18
19 echo "Register recording grid points..."
20 set_sr_grd . py param_HS . dat
21 set_ker_grd . py param_HS . dat
22
23 echo "Set up the running environment for awp..."
24 setup_awp . py param_HS . dat FWF 2 5
25
26 echo "Running awp for 100001, IN.RC01.1, IN.RC01.2 and IN.RC01.3"
27 cd . . / FWF/100001
28 $MPIEXEC −n 8 − f $HOSTS . / awp
29
30 cd . . / IN .RC01.1
31 $MPIEXEC −n 8 − f $HOSTS . / awp
32
33 cd . . / IN .RC01.2
34 $MPIEXEC −n 8 − f $HOSTS . / awp
35
36 cd . . / IN .RC01.3
37 $MPIEXEC −n 8 − f $HOSTS . / awp
38
39 cd . . / . . / JOBS
40
41 echo "Getting synthetics from the wavefield of 100001 at IN.RC01"
42 fwf2syn . py param_HS . dat 2 2 1 1
43
44 echo "Computing synthetics from the RGTs of IN.RC01.? for 100001"
45 rg t2syn . py param_HS . dat 3 5 2 2

Listing 2.17 Content of the shell script that summarizes the half-space example.
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On line 6 in Listing 2.17, I change to the project JOBS directory. Sequential
binary executables and scripts in the following are executed from inside the JOBS
directory. On line 9, I generate a new directory VM under the project work directory
for storing the mesh output file XYZGRD, which will be generated by the binary
executable FD_GRID_XYZ_rec on line 10 (Sect. 2.2.1), and also the structural
model files, which will be generated by the binary executable vm_hs_gen on
line 14 (Sect. 2.2.2). The full path of the VM directory should be consistent with
that on the first line of FD_GRID_XYZ.in (Listing 2.1) and key XYZGRD and
MEDIA in the parameter file (Lines 5 and 7, Listing 2.5). I process the first six lines
in the source-receiver file srlst using the script proc_srlst.py on line 17
(Sect. 2.2.4.2), register the recording grid points associated with the sources and
the receivers using the script set_sr_grd.py on line 20 and register the uni-
formly distributed recording grid points using the script set_ker_grd.py on
line 21 (Sect. 2.2.5). I set up the correct awp running environment for the point
moment source 100001 and the three orthogonal body-force sources at the receiver
IN.RC01 using the script setup_awp.py on line 24 (Sect. 2.2.6). On line 27–
37, I run awp from inside each source sub-directory under FWF (Sect. 2.2.6). On
line 39, I go back to the project JOBS directory. Particle-velocity synthetic seis-
mograms are extracted from the forward wavefield of the point moment source
100001 at the receiver IN.RC01 and rotated to the East-North and Radial-
Transverse directions using the script fwf2syn.py on line 42 (Sect. 2.2.7). The
synthetic seismograms are written into the text file IN.RC01.rot inside the
source sub-directory 100001, which is located inside the SYN directory under the
project work directory (Line 3, Listing 2.5). On line 45, I compute the same set
of particle-velocity synthetic seismograms of the point moment source 100001
from the RGTs of the receiver IN.RC01 by applying the reciprocity principle
using the script rgt2syn.py (Sect. 2.2.7). The synthetic seismograms are writ-
ten into the text file IN.RC01.rgt.rot under the same directory as the text
file IN.RC01.rot. Note that synthetics in IN.RC01.rot are still different
from those in IN.RC01.rgt.rot due to differences in the source-time func-
tions in the two files src_hs.dat and imp_hs.dat. After I convolve the
synthetics in IN.RC01.rot with the source-time function in imp_hs.dat and
convolve the synthetics in IN.RC01.rgt.rot with the source-time function in
src_hs.dat, the two sets of synthetic seismograms are identical as shown in
Fig. 2.12. The MATLAB script reciprocity_hs.m for computing the convo-
lutions and generating Fig. 2.12 is included in the mfiles sub-directory in the
F3DWI package. Theoretical background for reciprocity and the RGT calculations
are explained in Sects. 3.3.2 and 3.4.2.

Because the inputs and outputs of one command in Listing 2.17 are closely
tied with those of the proceeding and the following commands, if you change the
inputs to one command at some point, you may need to re-execute all the following
commands in order for the changes to take effect through all the calculations.
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2.3 Application

Southern California is one region where seismic hazard is high (e.g., Jackson
1996 Field et al. 2009) and the subsurface seismic structure is complex. Computer
simulations based on realistic seismic structural models have shown that three-
dimensional structural heterogeneities, in particular, sedimentary basins, can have
significant effects on the subsurface propagation of seismic waves and the amplifica-
tion of ground motions (e.g., Gao et al. 1996; Graves et al. 1998; Davis et al. 2000).
The effects of realistic 3D seismic structural models can be incorporated into prob-
abilistic seismic hazard estimations and ground-motion forecasts in an accurate and
computationally efficient way using physics-based seismic hazard analysis tools,
such as the CyberShake computational platform (Graves et al. 2011) provided by the
Southern California Earthquake Center (SCEC). An important challenge now lies in
improving the accuracy of the seismic structural models used in those physics-based
seismic hazard analysis tools.

2.3.1 SCEC Community Velocity Models (CVMs)

In the past twenty years, researchers in SCEC created two 3D seismic structural
models for Southern California based on geological and geophysical observa-
tions. These two models are named Community Velocity Model-SCEC (CVM-S)
and Community Velocity Model-Harvard (CVM-H). CVM-S was constructed by
embedding rule-based seismic velocity models of major basins in Southern Califor-
nia (Magistrale et al. 1996) within a background seismic velocity model determined
from regional seismic travel-time tomography (Hauksson 2000; Magistrale et al.
2000). It was later improved by adding geotechnical layers on top of the basins, a
laterally varying Moho depth determined from receiver function studies (Zhu and
Kanamori 2000), an upper-mantle seismic velocity model (Kohler et al. 2003) and
models for the Salton Trough region and the San Bernardino Valley region. The
latest version of this model is referred to as CVM-S4.

CVM-H was also constructed by embedding high-resolution basin structural
models within the regional seismic travel-time tomography model of (Hauksson
2000). In CVM-H, the basin models were mainly determined using a large number
of sonic logs and seismic reflection profiles from the oil industry (Süss and Shaw
2003). It includes a geotechnical layer based on the Vs30 map of (Ely et al. 2010),
the Moho interface of (Yan and Clayton 2007) and an upper-mantle structural model
determined through finite-frequency teleseismic surface wave tomography (Prindle
and Tanimoto 2006). Most notably, the crustal structure in CVM-H was improved
through 16 iterations of full-3D tomography based on the adjoint-wavefield method
(F3DT-AW) (Tape et al. 2009, 2010). The latest official release was in November
2011, named CVM-H11.9.
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Studies in the Los Angeles Basin region (Chen et al. 2007) showed that synthetic
seismograms computed using either CVM-S or CVM-H provided substantially bet-
ter fit to observed seismograms than synthetics computed using either a laterally
homogeneous 1D seismic velocity model (Hadley and Kanamori 1977) or a set of
path-averaged 1D models. In the Los Angeles Basin region, CVM-H provided a
slightly better fit to the observed P-waves than CVM-S, while CVM-S provided
a slightly better fit to the observed S-waves than CVM-H. Full-3D tomography
(F3DT) was applied to improve the crustal structure of CVM-S in the Los Ange-
les Basin region in (Chen et al. 2007). The improved model was named LAF3D.
Synthetic seismograms computed using LAF3D provided substantially better fit to
observed waveforms at frequencies up to 1.2 Hz than those computed using the 3D
starting model CVM-S. The inversion extended the area of the Los Angeles Basin
and increased the velocities inside the basin, which brought the basin structure more
into agreement with that in CVM-H.

CVM-S4.26 is the latest official release of the CVM-S series. It includes
improvements made through 26 iterations of our F3DT inversion procedure. Our
F3DT used CVM-S4 as the starting model and successively improved the fit to data
sets that eventually included more than 550,000 waveform misfit measurements at
frequencies up to 0.2 Hz, obtained from more than 38,000 earthquake seismograms
and 12,000 ambient-noise Green’s functions. The size of our final data set is compa-
rable to the largest used in global tomographic studies (e.g., Kustowski et al. 2008).
Among the 26 iterations, 18 iterations were based on the adjoint-wavefield method
(F3DT-AW) and 8 iterations were based on the scattering-integral method (F3DT-
SI). The details of these two methods will be explained in later chapters. In each
iteration, synthetic seismograms for the updated structural model were calculated
using awp (Sect. 2.2) and misfit measurements were made between the observed
waveforms and the synthetics, accounting for the nonlinearity of the inversion. High
structural resolution was obtained by using misfit measurements that can capture
subtle differences in the waveforms. The result is CVM-S4.26, a 3D seismic struc-
tural model with unprecedented resolution of crustal features throughout Southern
California. Synthetic seismograms computed using CVM-S4.26 show substantially
better fit to low-frequency (≤0.2 Hz) observed seismograms than those computed
using our starting model CVM-S4 and those computed using CVM-H11.9. Quanti-
tative results have shown that CVM-S4.26 is the most accurate model in predicting
low-frequency (≤0.2 Hz) observed seismograms among the three SCEC CVMs.
Details of CVM-S4.26 and our F3DT inversion procedure have been documented in
(Lee et al. 2014a, b) and will be discussed in Chap. 6.

2.3.2 Earthquake Source Models

We compared the low-frequency seismograms observed in two recent earthquakes
in the Los Angeles area, 17 Mar 2014 Encino (Mw4.4) and 29 Mar 2014 La Habra
(Mw5.1), with the synthetic seismograms computed using CVM-S4.26, CVM-S4
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Table 2.4 Our revised CMT solutions for the Encino earthquake and the La Habra earthquake.
The centroid location is specified by the longitude and the latitude in degrees and the depth in km.
The source mechanism is specified by the strike, dip and rake angles in degrees

Event Centroid time Centroid location Mw Strike/Dip/Rake

Encino 03/17/2014 13:25:36.85 −118.492(o), 34.139(o), 9.0(km) 4.42 101/60/27

La Habra 03/29/2014 04:09:42.97 −117.930(o), 33.922(o), 5.0(km) 5.12 134/55/155

and CVM-H11.9. Note that because the seismograms from these two recent earth-
quakes were not used to derive the three CVMs, they provide prospective tests of
the three CVMs’ capabilities in predicting low-frequency observed waveforms.

Both the Encino earthquake and the La Habra earthquake were well recorded by
three-component broadband seismic stations of the California Integrated Seismic
Network (CISN). We used more than 900 seismograms from both earthquakes for
our waveform prediction test. CISN routinely determines focal mechanisms from
first motions and the centroid-moment tensors (CMTs) using synthetic Green’s
functions computed in the 1D crustal velocity model of (Dreger and Helmberger
1993). The CISN source-mechanism inversions were discussed in (e.g., Clinton
et al. 2006 Hutton et al. 2010).

We revised the CISN CMT solutions for the two earthquakes by applying our fast
reciprocity-based inversion algorithm documented in (Lee et al. 2011). Table 2.4
shows our revised CMT solutions for the two earthquakes. Details about our CMT
inversion algorithm will be discussed in later chapters. Our revised CMT solutions
for both earthquakes improved the waveform fits for all three CVMs. For the Encino
earthquake, our centroid location is about 0.9 km shallower than the CISN hypocen-
ter and 1 km deeper than the CISN CMT location. Our centroid time is about the
same as the CISN origin time. For the La Habra earthquake, our centroid location
is at the same depth as the CISN CMT solution, which is about 2.5 km shallower
than the CISN hypocenter. Our centroid time is nearly 1 s later than the CISN ori-
gin time, which might be due to the finite source duration of this larger event. Our
revised A&R focal mechanisms for both earthquakes (Footnote 32) are generally
consistent with those determined by CISN.

2.3.3 Validation of SCEC CVMs

We computed synthetic seismograms for the Encino earthquake and the La Habra
earthquake using CVM-S4.26, CVM-S4 and CVM-H11.9. The procedure is similar
to that used in our half-space example (Sect. 2.2). Our modeling volume (Fig. 2.13),
which is about 768-km long, 496-km wide and 50-km thick, is discretized using a
uniform mesh with 500-m grid spacing and about 152 million grid points. The full
mesh is partitioned into 8192 sub-meshes with 32, 64 and 4 sub-meshes in the x1,
x2 and x3 directions of the box coordinate, respectively.
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Fig. 2.13 Black box: our modeling domain; black triangles: three-component broadband stations
used in our validation study; beach balls: source mechanisms for the Encino earthquake (smaller
beach ball) and the La Habra earthquake (larger beach ball); gray solid lines: major faults; gray-
scale background: topography.

Material properties were assigned to each grid point using the corresponding
values in one of the CVMs. The minimum S-wave velocity is clamped to about
900 m/s in the three CVMs. Therefore our mesh gives about 9 grid points per
minimum wavelength at our highest target frequency of 0.2 Hz. For the fourth-
order scheme used in awp, 4–5 grid points per minimum wavelength are usually
sufficient for modeling body waves accurately and 8–10 grid points per minimum
wavelength are usually needed for modeling surface waves accurately (Sect. 2.1.4).
The maximum P-wave velocity in our modeling volume is about 8200 m/s in the
three CVMs. Considering the CFL stability condition (Eq. 2.123), we used a time-
step length of 0.03 s in our simulations. The length of the synthetic seismogram
is 180 s and the total number of time steps is 6000. The source models were our
revised CMT solutions shown in Table 2.4. We used a sixth-order Butterworth band-
pass filter with corners at 0.02 and 0.2 Hz as our filter for both earthquakes. On
the IBM Blue Gene/Q system at the Argonne Leadership Computing Facility, each
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Fig. 2.14 Examples of observed and synthetic seismograms for the Encino earthquake. Black solid
lines: synthetic seismograms; gray solid lines: observed seismograms. In the sub-plot for each
station, left column: CVM-S4.26 synthetics; center column: CVM-S4 synthetics; right column:
CVM-H11.9 synthetics; top row: radial components; center row: transverse components; bottom
row: vertical components. In the map, beach ball: source mechanism of the earthquake at its epi-
center; black triangles: stations whose seismograms are shown; gray and black solid lines: faults
and coast lines.

wave-propagation simulation using awp took about 5 min of wall time on 8192
cores.

Observed velocity seismograms of the two earthquakes were downloaded from
the Southern California Earthquake Data Center (SCEDC). Instrument responses
were removed. Horizontal-component seismograms were rotated into the radial and
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Fig. 2.15 Examples of observed and synthetic seismograms for the La Habra earthquake. The
format is identical to that in Fig. 2.14.
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Fig. 2.16 Histograms of the RWMs for all synthetics (top row), radial-component synthetics (sec-
ond row from top), transverse-component synthetics (third row from top) and vertical-component
synthetics (bottom row) computed using CVM-S4.26 (left column), CVM-S4 (center column)
and CVM-H11.9 (right column). Vertical black dash lines: locations of the RWM median values
(mRWMs).

the transverse components. The mean and the linear trend of each seismogram were
removed and a Hanning taper was then applied. We then filtered each observed seis-
mogram using the same Butterworth filter that is used for the synthetics. Examples
of the observed seismograms and the corresponding synthetic seismograms com-
puted using CVM-S4.26, CVM-S4 and CVM-H11.9 for the Encino earthquake and
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the La Habra earthquake are shown in Figs. 2.14 and 2.15, respectively. In general,
synthetic seismograms computed using CVM-S4.26 provided substantially better fit
to observed seismograms than those computed using CVM-S4 and CVM-H11.9.

We can quantify the differences between an observed seismogram s(t) and its
corresponding synthetic seismogram v(t) using the relative waveform misfit (RWM)
(e.g., Zhu and Helmberger 1996 Tape et al.2010),

RWM =
∫ t1
t0

[s(t)− v(t)]2 dt
√∫ t1

t0
[s(t)]2 dt

∫ t1
t0

[v(t)]2 dt

, (2.126)

where the integration time window [t0, t1] includes the segment from the first arrival
to the end of the main surface wave. Histograms of the RWMs computed for all the
seismograms of the Encino and the La Habra earthquakes are shown in Fig. 2.16.
If we use the median value of the RWMs (mRWM) as a measure of the overall fit
to observed seismograms, CVM-S4.26 has much smaller mRWMs than CVM-S4
and CVM-H11.9. On average, CVM-H11.9 has a smaller mRWM than CVM-S4.
However, the transverse-component mRWM of CVM-H11.9 is substantially larger
than the mRWMs of the other two components, which means that the fits on trans-
verse components are substantially worse than the fits on the other two components
for CVM-H11.9. In (Tape et al. 2010), this observation was attributed to significant
crustal anisotropy, which is not included in CVM-H11.9. Our study does not support
this explanation, as CVM-S4.26, which is also isotropic, can fit all 3 components of
the observed seismograms equally well.

We can compute a station misfit by averaging the RWMs over all components
at that station and over both earthquakes. We can also compute a component-
dependent station misfit by averaging the RWMs of each component at that station
over both earthquakes. Spatial distributions of the station misfits of the three CVMs
are shown in Fig. 2.17. Compared with CVM-S4 and CVM-H11.9, CVM-S4.26 has
much better fits in the Mojave, southern Sierra Nevada and southern San Joaquin
Valley, Basin and Ranges and Salton Trough. For CVM-H11.9, the fits on the trans-
verse component are much worse than the fits on the other two components in the
Mojave and Basin and Ranges.

A more detailed analysis of the seismograms from the Encino and the La Habra
earthquakes and a more thorough discussion of the differences among the three
CVMs, including careful comparisons with active-source refraction tomography
models, have been documented in (Lee et al. 2014a).
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Fig. 2.17 Spatial distributions of station misfits for all synthetics (top row), radial-component
synthetics (second row from top), transverse-component synthetics (third row from top) and
vertical-component synthetics (bottom row) computed using CVM-S4.26 (left column), CVM-S4
(center column) and CVM-H11.9 (right column). Sizes of the black circles are proportional to the
station misfits and the component-dependent station misfits and a scale is shown on the top-right
corner of each sub-plot. The circles are centered at station locations.
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Chapter 3
Green’s Functions

The theory of Green’s functions is one of the most elegant pieces of machinery
for solving both the forward problem, often defined in terms of differential equa-
tions coupled with initial and/or boundary conditions, and also the inverse problem,
which often requires evaluations of functional derivatives. For the forward problem,
the Green’s function provides the inverse of the differential operator. In solving
the inverse problem, the functional derivatives can often be expressed conveniently
using the Green’s function. In this book, I also use Green’s functions extensively in
developing a theory of F3DWI. In practice, approximations of Green’s functions in
three-dimensional earth structural models can be computed by solving the elasto-
dynamic equation using various numerical algorithms, such as the finite-difference
method discussed in Chap. 2.

3.1 Mathematical Preliminary

Before discussing the details of Green’s functions, we will need some mathematical
preparations. In the following, I will collect some of the important mathematical
results that are useful to our discussion on F3DWI. In-depth studies on those math-
ematical results can be found in e.g., (Zeidler 1995; Axler 1997; Hassani 1999).
I will not use the Einstein summation convention in equations of this chapter. All
summations over indices are written out explicitly using

∑
, which might make it

easier to convert the equations to computer codes if some readers are interested in
developing F3DWI codes.

3.1.1 Vector Spaces

Mathematical objects are often organized into spaces. A vector space V is a collec-
tion of objects called vectors, denoted by |a〉 , |b〉 , |x〉 , |y〉1 and so on, that can be

1 Here I use the bra 〈 | and ket | 〉 notation invented by Dirac for vectors.
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added together and multiplied by real or complex scalars. The sum of two vectors
|a〉 and |b〉 in V corresponds to a vector |a〉 + |b〉, also in V , and has the properties

|a〉 + |b〉 = |b〉 + |a〉 ,
|a〉 + (|b〉 + |c〉) = (|a〉 + |b〉)+ |c〉 .

There exists a unique zero vector |0〉 ∈ V such that

|x〉 + |0〉 = |x〉 for any |x〉 ∈ V .

For any |x〉 ∈ V there exists a unique vector− |x〉 ∈ V such that

|x〉 + (− |x〉) = |0〉 .

For any complex number α, also called a scalar, and any vector |x〉 ∈ V , the scalar
multiplication α |x〉 ∈ V and has the properties

α (β |x〉) = (αβ) |x〉 ,
1 |x〉 = |x〉 .

The multiplication with scalars is distributive for the vectors and also the scalars,
that is,

α (|x〉 + |y〉) = α |x〉 + α |y〉 ,
(α + β) |x〉 = α |x〉 + β |x〉 .

A subspace W of a vector space V is a non-empty subset of V and must also be
a vector space in its own right, i.e., if ∀ |x〉 , |y〉 ∈ W , then ∀α, β ∈ C, α |x〉+
β |y〉 ∈W , where C is the space of complex numbers.

For example, it can be verified that C is a vector space, but the space of real num-
bers R is not a vector space according to the definition above. However, if we restrict
the scalars in the multiplication to real numbers, i.e., ∀α, β ∈ R, then both R and
C are vector spaces and R is a subspace of C. This example shows the importance
of identifying the properties of the scalars used in the multiplication when defining
vector spaces. If the scalars belong to C, the vector space V is called a complex
vector space or a vector space over C. If the scalars belong to R, V is called a real
vector space or a vector space over R. In the previous example, R is a vector space
over R, but not a vector space over C; C is a vector space over R, and also a vector
space over C.

3.1.2 Inner Product

The inner product is a rule that associates a scalar with two vectors. We can denote
this association as f : V × V → C and it has the properties
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f (|x〉 , |y〉) = f ∗ (|y〉 , |x〉) ,

f (|x〉 , α |y〉 + β |z〉) = αf (|x〉 , |y〉)+ βf (|x〉 , |z〉) ,∀α, β ∈ C,

f (|x〉 , |x〉) � 0, and f (|x〉 , |x〉) = 0 if and only if |x〉 = |0〉 .

The “∗” in the first property denotes complex conjugation. The second property
indicates that the inner product f is linear in its second argument. The last property
is called the positive definite property of the inner product and it is often used to
define the length of a vector in V .

To understand why the complex conjugation in the first property is needed, let’s
suppose that we can remove it and we have f (|x〉 , |y〉) = f (|y〉 , |x〉), which
indicates that the inner product f is symmetric. Since f is linear in its second
argument, this symmetry indicates that f is also linear in its first argument. Con-
sider a nonzero vector |x〉, we can compute the inner product of i |x〉 with itself,
f (i |x〉 , i |x〉), where i is the imaginary unit. The linearity in both of its arguments
indicates that f (i |x〉 , i |x〉) = i2f (|x〉 , |x〉) = −f (|x〉 , |x〉). Since |x〉 is nonzero,
i |x〉 is nonzero too. The third property indicates that either the left-hand-side or the
right-hand-side of this equation must be negative, which is inconsistent with the pos-
itive definite property. If we introduce complex conjugation in the first property, we
then have f (i |x〉 , i |x〉) = if (i |x〉 , |x〉) = if ∗ (|x〉 , i |x〉) = −i2f ∗ (|x〉 , |x〉) =
f ∗ (|x〉 , |x〉) = f (|x〉 , |x〉). The inconsistency is then removed.

Using the Dirac notation, the inner product of two vectors |x〉 , |y〉 ∈ V is denoted
as 〈x | y〉 ∈ C and the three properties can be expressed as

〈x | y〉 = 〈y | x〉∗ , (3.1)

〈x | αy + βz〉 = α 〈x | y〉 + β 〈x | z〉 , (3.2)

〈x | x〉 ≥ 0 and 〈x | x〉 = 0 if and only if |x〉 = |0〉 . (3.3)

The inner product is linear in the second vector, i.e., the vector in the ket, as shown
in Eq. 3.2, but not linear in the first vector, i.e., the vector in the bra. Consider the
inner product 〈αx + βy | z〉, using Eq. 3.1, we have

〈αx + βy | z〉 = 〈z | αx + βy〉∗ .

Using Eq. 3.2 and considering Eq. 3.1, we have

〈αx + βy | z〉 = 〈z |αx + βy〉∗
= α∗ 〈z | x〉∗ + β∗ 〈z | y〉∗
= α∗ 〈x | z〉 + β∗ 〈y | z〉 . (3.4)

Because of the extra complex conjugation operation on the scalars α, β ∈ C in
Eq. 3.4, the inner product on a complex vector space is not linear in its first vector,
but called sesquilinear or antilinear. A vector space equipped with an inner product
is called an inner product space.
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As an example of one of the most widely used inner products, let’s consider two
vectors |x〉 , |y〉 ∈ C

n, where C
n is the set of all complex n-tuples, with |x〉 =

(x1, x2, . . . , xn) and |y〉 = (y1, y2, . . . , yn), we have an inner product defined on
Cn as

〈x | y〉 ≡ x∗1y1 + x∗2y2 + . . .+ x∗nyn =
n∑

i=1

x∗i yi . (3.5)

It can be verified that this inner product satisfies all the properties listed in
Eq. 3.1–3.3. If we represent |y〉 ∈ Cn as a column vector,

|y〉 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

y1

y2
...

yn

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

and 〈x| as a row vector,
〈x| = (x∗1 , x∗2 , . . . , x∗n

)
,

then Eq. 3.5 can be written as the matrix multiplication

〈x | y〉 = (x∗1 , x∗2 , . . . , x∗n
)

⎛

⎜
⎜
⎜
⎜
⎜
⎝

y1

y2
...

yn

⎞

⎟
⎟
⎟
⎟
⎟
⎠
=

n∑

i=1

x∗i yi . (3.6)

The inner product defined in Eqs. 3.5 and 3.6 is sometimes called the natural inner
product for Cn.

The norm or length of a vector |x〉 in an inner product space is defined as

‖x‖ = √〈x | x〉. (3.7)

It can be shown that the norm induced from the inner product, Eq. 3.7, has the
following properties,

‖0‖ = 0,

‖x‖ ≥ 0, and ‖x‖ = 0 if and only if |x〉 = |0〉 ,
‖αx‖ = |α| ‖x‖ , ∀α ∈ C,

‖x + y‖ ≤ ‖x‖ + ‖y‖ .

A vector space equipped with a norm is called a normed linear space. An inner
product space is a normed space, but the converse may not be true.

A set of vectors |a1〉 , |a2〉 , . . . , |an〉 are linearly independent if for any αi ∈ C,
the relation

∑n
i=1 αi |ai〉 = 0 implies αi = 0 for all i. If every vector in V can be
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represented as a linear combination of vectors in a set S, we say S spans V . A basis
of a vector space V is a set of linearly independent vectors that spans V . The number
of vectors n in a basis of the vector space V is the dimension of V . If n is finite, V is
call finite-dimensional; otherwise, it is called infinite-dimensional. Two vectors, |x〉
and |y〉, are orthogonal if their inner product is zero, i.e., 〈x | y〉 = 0. If the length
of a vector |e〉 is 1, i.e., 〈e | e〉 = 1, |e〉 is called a normal vector or a normalized
vector. An orthonormal basis B = {|ei〉}ni=1 is a basis in which every vector is a
normal vector and any two different vectors are orthogonal to each other, i.e.,

〈
ei

∣
∣ ej

〉 = δij ≡
{

1 if i = j

0 if i 	= j
, (3.8)

where δij is called the Kronecker delta. An example of orthonormal bases is the
standard basis of Cn (or Rn) defined as

|e1〉 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1

0

0
...

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, |e2〉 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

1

0
...

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, . . . , |en〉 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

0

0
...

1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (3.9)

It can be verified that this basis is orthonormal under the natural inner product of Cn

as defined in Eq. 3.5. We can express an arbitrary vector |x〉 ∈ Cn in the standard
basis as

|x〉 =
n∑

i=1

xi |ei〉 , (3.10)

where the scalar coefficients xi, i = 1, 2, . . . , n can be evaluated using the inner
product with each of the basis vectors

∣
∣ej

〉
, j = 1, 2, . . . , n,

〈
ej

∣
∣ x
〉 =
〈

ej

∣
∣
∣
∣
∣

n∑

i=1

xi |ei〉
〉

=
n∑

i=1

xi

〈
ej

∣
∣ ei

〉 =
n∑

i=1

xiδij = xj . (3.11)

In Eq. 3.11 above, I have used the linearity of the inner product in its second vector
(i.e., Eq. 3.2) at the second equality and used Eq. 3.8 at the third equality.

We can convert any basis into an orthonormal basis using a process called
Gram-Schmidt orthonormalization. The Gram-Schmidt process is neatly illustrated
through a 3D animation on its Wikipedia page2, together with references.

A useful inequality for inner product spaces, known as the Cauchy-Schwarz
inequality, states that

| 〈x | y〉 |2 ≤ ‖x‖2 ‖y‖2 . (3.12)

2 http://en.wikipedia.org/wiki/Gram-Schmidt_process.

http://en.wikipedia.org/wiki/Gram-Schmidt_process
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The equality in Eq. 3.12 holds when |x〉 is proportional to |y〉 (i.e., |x〉 = α |y〉
and α is a scalar). In two- or three-dimensional Euclidean spaces, the inner product
〈x | y〉 = ||x|| · ||y|| · cos θ , where θ is the angle between |x〉 and |y〉, and the
Cauchy-Schwarz inequality is equivalent to the fact that cos θ ≤ 1 and equality
holds when θ = 0 (i.e., |x〉 and |y〉 are parallel to each other). The Cauchy-Schwarz
inequality, Eq. 3.12, is applicable to inner product spaces of both finite and infinite
dimensions. The proof is short (e.g., Axler 1997) and I include it here to illustrate
the connection with geometrical operations in Euclidean spaces. We assume that |x〉
and |y〉 are nonzero vectors (if one of them is |0〉, Eq. 3.12 holds trivially). We can
construct a new vector

|z〉 = |y〉 − 〈x | y〉〈x | x〉 |x〉 , (3.13)

and take the inner product with |y〉 on both sides to obtain

〈y | z〉 = 〈y | y〉 − 〈x | y〉 〈y | x〉〈x | x〉 = 〈y | y〉 − 〈x | y〉 〈x | y〉
∗

〈x | x〉
= 〈y | y〉 − |〈x | y〉|

2

〈x | x〉 , (3.14)

where I have used Eq. 3.1 at the second equality. If we take the inner product with
|x〉 on both sides of Eq. 3.13, we have

〈x | z〉 = 0, (3.15)

which shows that |x〉 and |z〉 are orthogonal to each other. If we take the inner
product with |z〉 on both sides of Eq. 3.13, considering Eq. 3.15, we have

〈z | z〉 = 〈z | y〉 ⇒ 〈y | z〉 = 〈z | z〉 . (3.16)

Bring the equality 〈y | z〉 = 〈z | z〉into Eq. 3.14, we have

〈z | z〉 = 〈y | y〉 − |〈x | y〉|
2

〈x | x〉
⇒ 0 ≤ ‖z‖2 = ‖y‖2 − |〈x | y〉|

2

‖x‖2 . (3.17)

Re-arranging Eq. 3.17 gives the Cauchy-Schwarz inequality, Eq. 3.12. Comparing
with geometrical operations in Euclidean spaces, the second term on the right-hand-
side (RHS) of Eq. 3.13 is actually the projection of vector |y〉 in the direction of
vector |x〉. By subtracting this projection from |y〉 on the RHS of Eq. 3.13, we
have obtained a vector, |z〉, that is on a plane perpendicular (i.e., orthogonal) to |x〉,
therefore we have Eq. 3.15. Equation 3.13 can be considered as decomposing |y〉
into two perpendicular components, i.e.,

|y〉 = |z〉 + 〈x | y〉〈x | x〉 |x〉 . (3.18)
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In Euclidean geometry, the Pythagorean theorem states that

‖y‖2 = ‖z‖2 +
∥
∥
∥
∥
〈x | y〉
〈x | x〉 |x〉

∥
∥
∥
∥

2

= ‖z‖2 + |〈x | y〉|
2

‖x‖2
, (3.19)

which is identical to Eq. 3.17 after re-arranging the terms. In fact, the Pythagorean
theorem is applicable on general inner product spaces.

3.1.3 Linear Transformations

A transformation is a mapping that brings a vector in a vector space V to a vec-
tor in another vector space W . A linear transformation is a mapping, denoted as
T :V → W , where V and W are both complex vector spaces, V is the domain and
W is the codomain, such that,

T (α |x〉 + β |y〉) = αT (|x〉)+ βT (|y〉) , ∀α, β ∈ C,∀ |x〉 , |y〉 ∈ V . (3.20)

The action of a linear transformation on a vector can be written without the paren-
theses, i.e., T (|x〉) ≡ T |x〉. The set of all linear transformations from V to W is
often denoted as L (V,W), which is also a vector space when equipped with the
following addition and scalar multiplication

(T1 + T2) (|x〉) = T1 |x〉 + T2 |x〉 ,
(αT1) (|x〉) = α (T1 |x〉) ,

∀T1, T2 ∈ L (V,W) ,∀α ∈ C,∀ |x〉 ∈ V .

The set of vectors in V that are mapped to the zero vector in W by the transforma-
tion T are called the kernel (not to be confused with the Fréchet kernel in Chap. 4)
or null space of T and is often denoted as ker T. It can be verified that ker T is a
subspace of V . It can also be verified that the range of the linear transformation,
T (V), forms a subspace of W .

A special case of a linear transformation occurs when W = C, i.e., the codomain
of the mapping happens to be the space of one-dimensional vectors (i.e., scalars). In
such a case, the linear transformation is called a linear functional and the space of
linear functionals is often denoted as L (V,C). It can be verified that L (V,C) is a
vector space. We call L (V,C) the dual space of V and denote it as V∗3.

Given a basis in V , B = {|ei〉}ni=1, it is possible to construct a corresponding
basis for the dual space V∗, which we call the dual basis of B and denote it as
B∗ = {fi}ni=1. The linear functionals fi ∈ V∗ satisfy the relations

fi
∣
∣ej

〉 = δij , (3.21)

3 When applied on a vector space, the superscript “∗” does not denote complex conjugation, but
represents the corresponding dual space.
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where δij is the Kronecker delta. Equation 3.21 has a different meaning from
Eq. 3.8. In Eq. 3.8, |ei〉 ,

∣
∣ej

〉 ∈ V , while in Eq. 3.21, fi ∈ V∗, ∣∣ej

〉 ∈ V .
The inner product defined in Sect. 3.1.2 can be associated with linear functionals.

If we consider the second vector (i.e., the vector in the ket) as the input to the inner
product transformation defined using the vector in the bra, then this transformation
maps the vector space V to C. We can verify that it is a linear functional by using
the linearity in the second vector of the inner product, Eq. 3.2. In fact, for any vector
|x〉 in V , we can define such a linear functional, which we denote as 〈x|, and we can
introduce the notation

(|x〉)† ≡ 〈x| , (3.22)

where the superscript † means the dual of. Considering that the inner product defined
in Sect. 3.1.2 is sesquilinear in the first vector, we speculate that the duality opera-
tion is also sesquilinear. To verify this, let’s consider the linear combination of two
vectors

|z〉 = α |x〉 + β |y〉 ,∀ |x〉 , |y〉 ∈ V,∀α, β ∈ C.

We can take the inner product of |z〉 with an arbitrary vector |f 〉 ∈ V . Considering
the linearity in the second vector, Eq. 3.2, we have

〈f | z〉 = α 〈f | x〉 + β 〈f | y〉 .

We can complex conjugate both sides of this equation. Considering Eq. 3.1, we have

LHS = 〈f | z〉∗ = 〈z | f 〉 ,
RHS = α∗ 〈x |f 〉 + β∗ 〈y | f 〉 = (α∗ 〈x| + β∗ 〈y|) |f 〉 .

Since the LHS must equal to the RHS for any |f 〉 ∈ V , we must have

|z〉† ≡ 〈z| = α∗ 〈x| + β∗ 〈y| . (3.23)

Because the complex scalars in the linear combination must be complex conjugated
in Eq. 3.23, the duality operation is sesquilinear.

Let’s use the natural inner product for Cn, Eq. 3.6, as an example. For a vector
|x〉 ∈ Cn, we can represent it as a column vector

|x〉 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

x1

x2
...

xn

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (3.24)

Considering Eq. 3.6, the inner product of |x〉 with an arbitrary vector

|y〉 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

y1

y2
...

yn

⎞

⎟
⎟
⎟
⎟
⎟
⎠
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can then be expressed as,

〈y | x〉 =
n∑

i=1

y∗i xi . (3.25)

We now complex conjugate both sides of Eq. 3.25. Considering Eq. 3.1, we obtain

LHS =〈y | x〉∗ = 〈x | y〉 , (3.26)

RHS =
(

n∑

i=1

y∗i xi

)∗
=

n∑

i=1

x∗i yi =
(
x∗1 , x∗2 , . . . , x∗n

)

⎛

⎜
⎜
⎜
⎜
⎜
⎝

y1

y2
...

yn

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(3.27)

Since the LHS must equal to the RHS and vector |y〉 is arbitrary, Eqs. 3.26 and 3.27
suggest that

(|x〉)† ≡ 〈x| = (x∗1 , x∗2 , . . . , x∗n
)

. (3.28)

Comparing with Eq. 3.24, Eq. 3.28 shows that the dual of a column vector in Cn is
a row vector with its elements complex conjugated.

For the standard basis of Cn, B = {|ei〉}ni=1, where the vectors |ei〉 are repre-
sented as column vectors in Eq. 3.9, the corresponding standard dual basis is often
denoted as B∗ = {〈ej

∣
∣}n

j=1, where
〈
ej

∣
∣ are row vectors,

〈e1| = (1, 0, 0, . . . , 0) , 〈e2| = (0, 1, 0, . . . , 0) , . . . , 〈en| = (0, 0, 0, . . . , 1) .
(3.29)

Using a basis vector
∣
∣ej

〉
and the corresponding dual basis vector

〈
ej

∣
∣, we can

construct a projection operator

Pj =
∣
∣ej

〉 〈
ej

∣
∣ . (3.30)

To understand how a projection operator works, let’s apply it to an arbitrary vector
|x〉 ∈ Cn. Considering the expansion in Eq. 3.10, we have

Pj |x〉 = Pj

(
n∑

i=1

xi |ei〉
)

=
n∑

i=1

xi

(
Pj |ei〉

)

=
n∑

i=1

xi

∣
∣ej

〉 〈
ej

∣
∣ ei

〉 =
n∑

i=1

xi

∣
∣ej

〉
δij = xj

∣
∣ej

〉
. (3.31)

If we introduce an identity transform 1, such that

1 |x〉 = |x〉 ,∀ |x〉 ∈ C
n, (3.32)
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then we have

1 |x〉 =
n∑

j=1

xj

∣
∣ej

〉 =
n∑

j=1

Pj |x〉 =
⎛

⎝
n∑

j=1

Pj

⎞

⎠ |x〉 , (3.33)

where I have used Eq. 3.10 at the first equality, Eq. 3.31 at the second equality. Since
|x〉 is arbitrary, we must have

n∑

j=1

Pj =
n∑

j=1

∣
∣ej

〉 〈
ej

∣
∣ = 1. (3.34)

Equation 3.34 is known as the completeness relation. If we choose the first l < n

basis vectors in B and construct the projection operator P(l) =∑l
j=1

∣
∣ej

〉 〈
ej

∣
∣, then

Pl projects an arbitrary vector into the subspace spanned by the first l basis vectors
in B.

The linear transformation T ∈ L (V,W) also has its dual, often denoted as
T∗ :W∗ → V∗ and defined as

(
T∗g
) |x〉 = g (T |x〉) ,∀ |x〉 ∈ V, g ∈W∗. (3.35)

In the literature, the dual T∗ is also called the transpose (Trèves 1967) of T. The
linear functional T∗g ∈ V∗ is called the pullback of g along T. If the vector spaces V
and W are both equipped with inner products as defined in Sect. 3.1.2, the transpose
is characterized by the identity

〈f | (T |x〉) = (〈f |T∗) |x〉 ,∀ |x〉 ∈ V,∀ 〈f | ∈W∗. (3.36)

Note that the inner product on the LHS of Eq. 3.36 is for W , while the inner product
on the RHS of Eq. 3.36 is for V .

As an example, let’s consider V = Cn andW = Cm and the linear transformation
T is represented by the real m × n matrix A. For a column vector |x〉 ∈ C

n, T |x〉
can be represented as the matrix-vector multiplication

yi =
n∑

j=1

Aij xj ,

where Aij and xj are elements of the matrix A and the vector |x〉, respectively. The
result is a column vector |y〉 ∈ Cm with its elements given by yi . For a row-vector
〈f | ∈ (Cm)∗, the LHS of Eq. 3.36 gives

LHS = 〈f | y〉 =
m∑

i=1

f ∗i yi =
m∑

i=1

n∑

j=1

f ∗i Aij xj , (3.37)

where fi, i = 1, 2, . . . ,m are elements of 〈f | and ∗ represents complex conjuga-
tion. The transpose T∗ can then be represented as AT , the transpose of the matrix A,
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with its elements given by Aji (i = 1, 2 . . . , m; j = 1, 2, . . . , n). Alternatively, we
can also represent T∗ using the same matrix A but acting on the right of row vectors,
i.e., 〈f |T∗, rather than acting on the left of column vectors like T does, i.e., T |x〉.
The result of 〈f |T∗ can be represented as

zj =
m∑

i=1

fiAij ,

where zj , j = 1, 2, . . . , n are elements of 〈z| ∈ (Cn)∗. Considering our assumption
that A is real, the RHS of Eq. 3.36 can be expressed as

RHS = 〈z | x〉 =
n∑

j=1

z∗j xj =
n∑

j=1

m∑

i=1

f ∗i Aij xj . (3.38)

Comparing with Eq. 3.37, the LHS is identical to the RHS, therefore we have veri-
fied the identity 3.36. Note that in the second equality in Eq. 3.37, the inner product
is for Cm, therefore the summation index i is from 1 to m; while in the second equal-
ity in Eq. 3.38, the inner product is for Cn, therefore the summation index j is from
1 to n.

An extension of the example above is to allow the matrix A to be complex. In
such a case, the transpose T∗ can no longer be represented as AT for the identity
3.36 to hold. In addition to taking the transpose of A, we also need to take the
complex conjugate of every element in A. The resulting matrix, often denoted as A†,
is often called the conjugate transpose, or the Hermitian transpose, or the Hermitian
conjugate, or the adjoint matrix of A. When T∗ is represented by A†, the identity
3.36 holds for complex A.

3.1.4 Hilbert Spaces

The mathematical results we have discussed so far are mainly demonstrated using
examples of finite-dimensional vector spaces. Many important applications, such as
those involving functions f :R→ C, require us to extend those results to infinite-
dimensional vector spaces. Such an extension is not trivial and requires some
additional machinery. To understand the differences between finite-dimensional and
infinite-dimensional vector spaces, let’s use the inner product defined in Eq. 3.5 as
an example. For finite-dimensional vector spaces, the sum involves only a finite
number of terms; while for infinite-dimensional vector spaces the sum involves
an infinite number of terms and we have to investigate the convergence of such
an infinite sum before we can extend the definition of the inner product to
infinite-dimensional vector spaces.

One useful apparatus for studying convergence is the concept of Cauchy
sequences, which are sequences whose members become arbitrarily close to each
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other once we go far enough into the sequences. Formally, if an infinite sequence of
vectors {|ai〉}∞i=1 in a normed vector space satisfies

lim
i→∞,j→∞

∥
∥ai − aj

∥
∥ = 0,

then this sequence is a Cauchy sequence. The usefulness of the Cauchy sequence
lies in the fact that it allows us to test convergence without knowing what the limit
of the sequence might be.

For a normed vector space V , if every Cauchy sequence in V converges to a vec-
tor in V , we say V is a complete vector space. For example, every Cauchy sequence
in R converges to a limit in R with respect to the absolute value norm ‖a‖ = |a|,
therefore R is complete (for a proof, see e.g., Schröder 2008). It can be shown that
every Cauchy sequence in C converges to a limit in C with respect to the norm
‖α‖ =

√
(�α)2 + (�α)2, where �α and �α are the real and imaginary parts of

α ∈ C, therefore C is complete. The space of rational numbers Q is not com-
plete. Consider the sequence defined by a0 = 1, an+1 = (an + 2/an) /2, which is a
Cauchy sequence and is inside Q, the limit of this sequence is the irrational number√

2 /∈ Q.
It can be shown that every finite-dimensional inner product space is complete

with respect to the norm induced by its inner product (i.e., Eq. 3.7). Suppose V
is a finite-dimensional vector space with dimension n and {|ai〉}∞i=1 is a Cauchy
sequence with |ai〉 ∈ V . We can express |ai〉 and

∣
∣aj

〉
using an orthonormal basis

B = {|ek〉}nk=1,

|ai〉 =
n∑

k=1

αi
k |ek〉 ,

∣
∣aj

〉 =
n∑

k=1

α
j
k |ek〉 ,

where the superscripts i and j on the scalar coefficients are vector indices, not expo-
nents and αi

k, α
j
k ∈ C. The norm of the difference |ai〉 −

∣
∣aj

〉
can be expressed

as
∥
∥ai − aj

∥
∥2 = 〈(ai − aj

) ∣∣ (ai − aj

)〉

=
∥
∥
∥
∥
∥

n∑

k=1

(
αi

k − α
j
k

)
|ek〉
∥
∥
∥
∥
∥

2

=
n∑

k=1

∣
∣
∣αi

k − α
j
k

∣
∣
∣
2
, (3.39)

where I have used the orthonormal property of |ek〉, Eq. 3.8, in the last equality.
Because {|ai〉}∞i=1 is assumed to be a Cauchy sequence, the LHS of Eq. 3.39 goes to
0 as i and j approach infinity. The summation on the RHS of Eq. 3.39 involve non-

negative terms
∣
∣
∣αi

k − α
j
k

∣
∣
∣
2
, therefore we must have

∣
∣
∣αi

k − α
j
k

∣
∣
∣→ 0 as i, j →∞ for

all k, which shows that the sequence
{
αi

k

}∞
i=1 is a Cauchy sequence. Because C is

complete, the limit of this Cauchy sequence αk ≡ limi→∞ αi
k must be inside C. If

we construct a vector using the limits αk, k = 1, 2, . . . , n,

|a〉 =
n∑

k=1

αk |ek〉 , (3.40)
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we have |a〉 ∈ V , because V is a vector space and |a〉 is expressed as a linear
combination of vectors inside V . We can also show that |a〉 constructed in Eq. 3.40
is the limit of {|ai〉}∞i=1,

lim
i→∞‖a − ai‖2 = lim

i→∞

n∑

k=1

∣
∣
∣αk − αi

k

∣
∣
∣
2 =

n∑

k=1

lim
i→∞

∣
∣
∣αk − αi

k

∣
∣
∣
2 = 0.

We have shown that an arbitrary Cauchy sequence {|ai〉}∞i=1 in V converges to a
vector |a〉 that also lies inside V , therefore an arbitrary finite-dimensional vector
space is complete.

The proof of completeness for finite-dimensional vector spaces cannot be directly
extended to infinite-dimensional vector spaces. The problem lies in Eq. 3.40. The
definition of vector spaces, including both finite- and infinite-dimensional cases,
only guarantees that a linear combination of a finite number of vectors in V still lies
in V . When n goes to infinity, not all vector spaces contain the limits of infinite sums.
The infinite-dimensional vector spaces that do contain those limits are therefore of
special interest. Formally, if an inner product space H is complete with respect to
the norm induced by the inner product, we call H a Hilbert space. In principle,
all finite-dimensional vector spaces are Hilbert spaces according to this definition.
However, when we talk about Hilbert spaces, we often imply that the vector spaces
are infinite-dimensional.

If we confine ourselves to a Hilbert space H, we can re-visit Eq. 3.40 with n

replaced by ∞. We now consider the set of infinite sequence B = {|ek〉}∞k=1 of
orthonormal vectors with |ek〉 ∈ H for all k. Whether B forms a basis of H requires
some additional considerations, as we will discuss later. We can take a vector of
finite length |a〉 ∈ H and compute its inner product with the orthonormal vectors
|ek〉,

αk = 〈ek | a〉 . (3.41)

Using these scalars αk , we can construct a sequence of vectors {|an〉}∞n=1 with

|an〉 =
n∑

k=1

αk |ek〉 , (3.42)

and we can show that this sequence converges to |a〉 ∈ H. To show that this
sequence converges, we take the inner product with |a〉 on both sides of Eq. 3.42
and obtain

〈a | an〉 =
n∑

k=1

αk 〈a | ek〉 =
n∑

k=1

αk 〈ek | a〉∗ =
n∑

k=1

αkα
∗
k =

n∑

k=1

|αk|2 , (3.43)

where I have used Eq. 3.1 at the second equality and Eq. 3.41 at the third equality.
The Cauchy-Schwarz inequality, Eq. 3.12, gives

| 〈a | an〉 |2 ≤ ‖a‖2 ‖an‖2 . (3.44)
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Because vectors |ek〉 are orthonormal, considering Eq. 3.42, we have

‖an‖2 =
n∑

k=1

|αk |2 . (3.45)

Bring Eqs. 3.43 and 3.45 into the Cauchy-Schwarz inequality, Eq. 3.44, we obtain

‖an‖2 =
n∑

k=1

|αk|2 ≤ ‖a‖ . (3.46)

Since |a〉 has finite length by assumption, the length of |an〉 is finite for n → ∞,
therefore the vector sequence {|an〉}∞n=1 converges.

In order to show that {|an〉}∞n=1 converges to |a〉, we need to impose an additional
condition on the set of orthonormal vectors B = {|ek〉}∞k=1. We require that the
only vector in H that is orthogonal to all the |ek〉 in B is the zero vector. A set of
orthonormal vectors satisfying this condition is called complete and forms a basis
of H. To show that {|an〉}∞n=1 converges to |a〉, we construct the vector

|f 〉 ≡ |a〉 − |a∞〉 = |a〉 −
∞∑

k=1

αk |ek〉 (3.47)

and take the inner product with |ei〉 on both sides for i = 1, 2, . . . ,∞. Considering
Eq. 3.41, we have

〈ei | f 〉 = 〈ei | a〉 −
∞∑

k=1

〈ei | ek〉 αk = αi −
∞∑

k=1

δikαk = αi − αi = 0. (3.48)

Since we have Eq. 3.48 for i = 1, 2, . . . ,∞, vector |f 〉 is therefore orthogonal to
all vectors in B. If B is complete, we have |f 〉 = |0〉, therefore

|a〉 =
∞∑

k=1

αk |ek〉 (3.49)

and the sequence {|an〉}∞n=1 converges to |a〉 ∈ H.
Within the confinement of Hilbert spaces, the results and techniques we have

developed in Sects. 3.1.1–3.1.3 can be safely applied. Several identities are use-
ful in the following discussions. Bring Eq. 3.41 into Eq. 3.49 and use the identity
transform defined in Eq. 3.32, we have

1 |a〉 = |a〉 =
∞∑

k=1

|ek〉 〈ek|a〉 =
( ∞∑

k=1

|ek〉 〈ek |
)

|a〉 . (3.50)

Since Eq. 3.50 holds for all |a〉 ∈ H, we must have

1 =
∞∑

k=1

|ek〉 〈ek| , (3.51)
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which is analogous to Eq. 3.34 and is the completeness relation in H. For two
arbitrary vectors |f 〉 , |g〉 ∈ H, we have their inner product

〈g|f 〉 = 〈g| 1 |f 〉 = 〈g|
( ∞∑

k=1

|ek〉 〈ek |
)

|f 〉 =
∞∑

k=1

〈g|ek〉 〈ek|f 〉 , (3.52)

where I have used Eq. 3.51 at the second equality. Equation 3.52 is comparable to
the finite-dimensional case in Eq. 3.5, if we take into account Eqs. 3.11 and 3.1. If
we replace |g〉 with |f 〉 in Eq. 3.52, we obtain an identity for the norm of |f 〉 in H.

3.1.5 Functions As Vectors

Once we allow the number of dimensions of a vector space to be infinite, most func-
tions we encounter in realistic applications can be considered as vectors in suitably
chosen Hilbert spaces. To establish a direct connection between vectors and func-
tions, we need to establish the concept of a counting set. For a finite-dimensional
vector space with dimension n, the components fi of a vector |f 〉 with respect to a
basis, say B = {|ei〉}ni=1, can be considered as values of a function f with its domain
given by the finite set {1, 2, . . . , n}. The function values can be denoted as f (i) with
i = 1, 2, . . . , n and we have f (i) ≡ fi = 〈ei | f 〉 (Eq. 3.11). If we allow the count-
ing set to be a continuum, i.e., R, and change the counting index from i ∈ N (N is
the set of natural numbers) to x ∈ R, for a vector |f 〉 ∈ H, its components with
respect to the infinite basis B = {|ex〉}x∈R can then be denoted as f (x) and we can
express them as

f (x) = 〈ex |f 〉 . (3.53)

The values of a function f (x), x ∈ R can be considered as components of the
vector |f 〉 ∈ H with respect to the basis B = {|ex〉}x∈R, therefore we have a corre-
spondence between functions and vectors. We will see in Sect. 3.1.6 that the basis
vectors |ex〉 ∈ H that can give rise to Eq. 3.53 have connections with the Dirac delta
function.

Consider ∀ |f 〉 , |g〉 ∈ H, their inner product is given by Eq. 3.52. If we replace
the index k ∈ N with the continuous index x ∈ R in Eq. 3.52, the summation over k

needs to be replaced with the integration over x and we obtain

〈g|f 〉 =
∫ ∞

−∞
〈g|ex〉 〈ex |f 〉 dx =

∫ ∞

−∞
g∗(x)f (x)dx, (3.54)

where I have used Eqs. 3.53 and 3.1 at the second equality. Equation 3.54 gives a
definition for the inner product between functions. In certain applications, we may
introduce a strictly positive, real-valued, continuous weight function w(x) and define
the inner product as

〈g|f 〉 =
∫ ∞

−∞
〈g|ex〉 〈ex |f 〉w(x)dx =

∫ ∞

−∞
g∗(x)f (x)w(x)dx. (3.55)
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If we fix w(x) = 1 in Eq. 3.55, we recover Eq. 3.54. It can be verified that the inner
product defined in Eq. 3.55 satisfies all the properties of a general inner product
described in Eqs. 3.1–3.3.

An important class of functions, which are used widely in many applications, is
the space of square-integrable functions defined on a finite interval, [a, b]. These
functions satisfy

‖f ‖2 = 〈f |f 〉 =
∫ b

a

f ∗(x)f (x)w(x)dx =
∫ b

a

|f (x)|2w(x)dx < ∞, (3.56)

and the space of such functions is often denoted as L2
w(a, b). The Riesz-Fischer

theorem states that L2
w(a, b) is complete, therefore a Hilbert space (for a proof,

see e.g., MacCluer 2008). We will focus on this function space in our following
discussions4.

For arbitrary f, g ∈ L2
w(a, b), Eq. 3.55 can also be written as

〈g|f 〉 = 〈g|
(∫ b

a

|ex〉w(x) 〈ex | dx

)
|f 〉 ,

which suggests the identity

1 =
∫ b

a

|ex〉w(x) 〈ex | dx. (3.57)

Equation 3.57 is the extension of the completeness relation in Eq. 3.51 to the
continuous index case. Using Eq. 3.57, we can write

|f 〉 = 1 |f 〉 =
(∫ b

a

|ex〉w(x) 〈ex | dx

)
|f 〉 =

∫ b

a

|ex〉w(x) 〈ex |f 〉 dx

=
∫ b

a

f (x)w(x) |ex〉 dx, (3.58)

where we have used Eq. 3.53 in the last equality. Equation 3.58 is the extension of
the expansion formula, Eq. 3.49, to the continuous index case.

3.1.6 Dirac Delta Function

If we take the inner product with |ex ′ 〉 , a ≤ x ′ ≤ b on both sides of Eq. 3.58, we
obtain

〈ex ′ |f 〉 = f (x ′) =
∫ b

a

f (x)w(x) 〈ex ′|ex〉 dx, (3.59)

4 It can be shown that all infinite-dimensional complete inner product spaces are isomorphic to
L2

w(a, b) (e.g., Friedman 1970), therefore all Hilbert spaces are “alike”.
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where I have used Eq. 3.53 at the first equality. We can break the integral on the
RHS of Eq. 3.59 into three pieces,

f (x ′) =
∫ x ′−ε

a

f (x)w(x) 〈ex ′ |ex〉 dx +
∫ x ′+ε

x ′−ε

f (x)w(x) 〈ex ′ |ex〉 dx

+
∫ b

x ′+ε

f (x)w(x) 〈ex ′|ex〉 dx. (3.60)

If we let ε → 0, the second term on the RHS can be approximated as

∫ x ′+ε

x ′−ε

f (x)w(x) 〈ex ′ |ex〉 dx ≈ f (x ′)
∫ x ′+ε

x ′−ε

w(x) 〈ex ′ |ex〉 dx. (3.61)

The function f (x) can be arbitrary. Suppose we pick a function such that f (x ′) = 0,
considering Eq. 3.60–3.61, we have

f (x ′) = lim
ε→0

[∫ x ′−ε

a

f (x)w(x) 〈ex ′|ex〉 dx

]

+ lim
ε→0

[∫ x ′+ε

x ′−ε

w(x) 〈ex ′ |ex〉 dx

]

f (x ′)

+ lim
ε→0

[∫ b

x ′+ε

f (x)w(x) 〈ex ′|ex〉 dx

]
(3.62)

⇒ 0 = lim
ε→0

[∫ x ′−ε

a

f (x)w(x) 〈ex ′|ex〉 dx

]

+ 0

+ lim
ε→0

[∫ b

x ′+ε

f (x)w(x) 〈ex ′|ex〉 dx

]
. (3.63)

Since f (x) can still be arbitrary on [a, x ′ − ε) ∪ (x ′ + ε, b], to satisfy Eq. 3.63 we
must have

w(x) 〈ex ′ |ex〉 = 0,∀x 	= x ′, x ∈ [a, b]. (3.64)

We now consider functions satisfying f (x ′) 	= 0. Equation 3.64 allows us to re-write
Eq. 3.60 as

f (x ′) = lim
ε→0

[∫ x ′+ε

x ′−ε

f (x)w(x) 〈ex ′ |ex〉 dx

]

= f (x ′) lim
ε→0

[∫ x ′+ε

x ′−ε

w(x) 〈ex ′ |ex〉 dx

]

⇒ 1 = lim
ε→0

[∫ x ′+ε

x ′−ε

w(x) 〈ex ′ |ex〉 dx

]

=
∫ b

a

w(x) 〈ex ′ |ex〉 dx. (3.65)

In the last equality in Eq. 3.65, I have used Eq. 3.64 again. Considering Eq. 3.64,
the only point that contributes to the integral on the RHS of Eq. 3.65 is at x =
x ′. We can break the integral on the RHS of Eq. 3.65 into 3 pieces [a, x ′ − ε)∪
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[x ′ − ε, x ′ + ε] ∪ (x ′ + ε, b] and let ε → 0. The intervals [a, x ′ − ε) ∪ (x ′ + ε, b]
do not contribute to the integral, therefore we have

1 = lim
ε→0

[∫ x ′+ε

x ′−ε

w(x) 〈ex ′ |ex〉 dx

]

= w(x ′) 〈ex ′ |ex ′〉 lim
ε→0

2ε

⇒ w(x ′) 〈ex ′ |ex ′ 〉 = lim
ε→0

1

2ε
=∞. (3.66)

If we define the Dirac delta function as

δ(x − x ′) = w(x) 〈ex ′ |ex〉 , (3.67)

then we have the following properties
∫ b

a

f (x)δ(x − x ′)dx = f (x ′),∀x, x ′ ∈ [a, b], (3.68)

δ(x − x ′) =
{
∞, x = x ′

0, x 	= x ′
,∀x, x ′ ∈ [a, b], (3.69)

∫ b

a

δ(x − x ′)dx = 1,∀x, x ′ ∈ [a, b]. (3.70)

Equation 3.68 is also known as the sifting property of the Dirac delta function.
Equation 3.69 shows that the Dirac delta function is not a function in the traditional
sense. We can re-write the definition in Eq. 3.67 as

〈ex ′ |ex〉 = δ(x − x ′)
w(x)

, (3.71)

which is the extension of the orthonormal condition, Eq. 3.8, to the continuous index
case.

The argument of the Dirac delta function can be generalized to a function g(x),
which we assume to have continuous derivatives g′(x) on [a, b]. Suppose the equa-
tion g(x) = 0 has a root at x = x0 ∈ [a, b], make the change of variable y = g(x),
we can write the integral as

∫ b

a

f (x)δ (g(x)) dx =
∫ b

a

f (x)δ(y)
dy

|g′(x)| =
f (x0)

|g′(x0)| , if g′(x0) 	= 0. (3.72)

If g(x) has n roots xi ∈ [a, b], i = 1, 2, . . . , n, using the same derivation for each
root we can generalize Eq. 3.72 to

∫ b

a

f (x)δ (g(x)) dx =
n∑

i=1

f (xi)

|g′(xi)| , if g′(xi) 	= 0. (3.73)
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Equation 3.73 can be used to define

δ (g(x)) =
n∑

i=1

δ(x − xi)

|g′(xi)| , g′(xi) 	= 0. (3.74)

A special case is when g(x) = cx, where c is a scalar, and we have

δ(cx) = δ(x)

|c| . (3.75)

If we fix c = −1, Eq. 3.75 states

δ(− x) = δ(x), (3.76)

which shows that the Dirac delta function is an even function.
The derivatives of the Dirac delta function are not functions in the traditional

sense either. The first-order derivative can be computed as

∫ b

a

f (x)δ′(x − x ′)dx = f (x)δ(x − x ′)
∣
∣x=b

x=a
−
∫ b

a

f ′(x)δ(x − x ′)dx

= −f ′(x ′), ∀x ′ ∈ (a, b), (3.77)

where I have applied integration-by-parts at the first equality. Higher-order deriva-
tives of the Dirac delta function can be evaluated by repeated application of
integration-by-parts,

∫ b

a

f (x)δ(n)(x − x ′)dx = (− 1)nf (n)(x ′), ∀x ′ ∈ (a, b), (3.78)

where the superscript (n) denotes the order of the derivative while the superscript n

is an exponent. In fact, in most applications, these unconventional functions appear
inside an integral, which allows us to describe their behavior indirectly using their
actions inside the integral on well-behaved conventional functions. A distribution
or generalized function φ is a continuous linear functional that maps compactly
supported, infinitely differentiable test functions f to a scalar defined as

φ[f ] =
∫ ∞

−∞
φ(x)f (x)dx. (3.79)

Another notation commonly used in place of φ[f ] is 〈φ, f 〉. Note that this nota-
tion is different from the Dirac bra-ket notation for vectors and inner products. An
example of a compactly supported, infinitely differentiable test function is

f (x) =
{

e
− 1

1−x2 , |x| < 1

0, otherwise
. (3.80)
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It can be verified that this function has continuous derivatives of all orders at all
x ∈ R. It is nonzero on the finite interval (− 1, 1), therefore is also compactly
supported. The space of test functions is often denoted as C∞c (R).

Because the distribution is linear with respect to the test functions, we have

〈φ, αf + βg〉 = α 〈φ, f 〉 + β 〈φ, g〉 ,∀α, β ∈ C,∀f, g ∈ C∞c (R). (3.81)

The set of all such linear functionals also forms a vector space over R, therefore if
φ1 and φ2 are two distributions, we have

〈αφ1 + βφ2, f 〉 = α 〈φ1, f 〉 + β 〈φ2, f 〉 ,∀α, β ∈ R,∀f ∈ C∞c (R). (3.82)

The derivative of a distribution φ is another distribution, denoted as φ′, defined by

〈
φ′, f

〉 = − 〈φ, f ′
〉
,∀f ∈ C∞c (R). (3.83)

Higher-order derivatives of a distribution can be derived from Eq. 3.83. Because the
derivatives on the test function are well defined for all orders, the derivatives of a
distribution are also well defined for all orders.

For the Dirac delta function, the corresponding distribution is

δ[f ] =
∫ ∞

−∞
δ(x)f (x)dx = f (0) (3.84)

for every test function f (x). For the Dirac delta function δ(x−x ′), the corresponding
distribution is defined as

δx ′[f ] =
∫ ∞

−∞
δ(x − x ′)f (x)dx = f (x ′). (3.85)

Similarly, for δ′(x − x ′), the corresponding distribution is

δ′x ′[f ] =
∫ ∞

−∞
δ′(x − x ′)f (x)dx

= f (x)δ(x − x ′)
∣
∣∞−∞ −

∫ ∞

−∞
f ′(x)δ(x − x ′)dx

= −f ′(x ′). (3.86)

Note that because the test function f (x) is compact (i.e., nonzero on a finite set,
therefore f (±∞) = 0), the term f (x)δ(x−x ′)|∞−∞ is always 0 even when the Dirac
delta function δ(x − x ′) is replace with other functions that are nonzero at infinity.
We can also obtain the same result by applying Eq. 3.83 directly.
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3.1.7 Fourier Transforms

As an example, we apply the machinery we have developed in Sects. 3.1.4–3.1.6 to
gain more insight into the Fourier transform pair defined as

f̂ (ξ ) = 1√
2π

∫ ∞

−∞
e−iξxf (x)dx, (3.87)

f (x) = 1√
2π

∫ ∞

−∞
eiξxf̂ (ξ )dξ . (3.88)

Equation 3.88 can be written in vector form as

〈ex |f 〉 = f (x) =
∫ ∞

−∞
〈ex |êξ 〉 〈êξ |f̂ 〉 dξ

= 〈ex |
(∫ ∞

−∞
|êξ 〉 〈êξ | dξ

)
|f̂ 〉 , (3.89)

where we have introduced the definition

〈ex |êξ 〉 = eiξx

√
2π

, (3.90)

〈êξ |f̂ 〉 = 〈êξ |f 〉 = f̂ (ξ ) =
∫ ∞

−∞
e−iξx

√
2π

f (x)dx. (3.91)

The first equality in Eq. 3.91 implies the identity

|f̂ 〉 = |f 〉 , (3.92)

which is counter-intuitive at first glance because f̂ (ξ ) and f (x) are clearly different
functions. However, this identity is nevertheless correct in the context of vector rep-
resentations of functions, because both |f 〉 and |f̂ 〉 represent the same vector and
the two different functions f (x) and f̂ (ξ ) are the coefficients of the same vector
with respect to two different orthonormal bases {|ex〉}x∈R and

{|êξ 〉
}
ξ∈R. To claim

{|êξ 〉
}
ξ∈R is an orthonormal basis, it must be complete. Considering the fact that

|f 〉 is arbitrary, Eq. 3.89 implies

1 =
∫ ∞

−∞
|êξ 〉 〈êξ | dξ, (3.93)

which shows that
{|êξ 〉

}
ξ∈R satisfies the continuous version of the completeness

relation in H, Eq. 3.57, with the weighting function w(x) = 1. To show that{|êξ 〉
}
ξ∈R satisfies the continuous version of the orthonormal condition, Eq. 3.71,

we compute the inner product
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〈êξ |êξ ′ 〉 = 〈êξ | 1 |êξ ′〉 = 〈êξ |
(∫ ∞

−∞
|ex〉 〈ex | dx

)
|êξ ′ 〉 =

∫ ∞

−∞
〈êξ |ex〉 〈ex |êξ ′ 〉 dx

= 1

2π

∫ ∞

−∞
eix(ξ ′−ξ )dx = δ(ξ − ξ ′), (3.94)

where I have used the completeness of
{|ex〉x∈R

}
, Eq. 3.57, at the second equality

and Eq. 3.90 at the fourth equality.
To prove the last equality in Eq. 3.94, consider the limit

lim
T→∞

1

2π

∫ T

−T

eix(ξ ′−ξ )dx = lim
T→∞

1

2π

eix(ξ ′−ξ )

i(ξ ′ − ξ )

∣
∣
∣
∣
∣

T

−T

= lim
T→∞

T

π

[
sin T (ξ ′ − ξ )

T (ξ ′ − ξ )

]
.

The function inside the square bracket is known as the sinc function (Prudnikov
1986), which has the limit of 1 as ξ ′ → ξ . Therefore we have

lim
ξ ′→ξ

lim
T→∞

T

π

[
sin T (ξ ′ − ξ )

T (ξ ′ − ξ )

]
= lim

T→∞
T

π
= ∞.

The width of the sinc function is given roughly by the distance between the points
at which the sinc function drops from 1 to 0, i.e., T (ξ ′ − ξ ) = ±π , or

ξ ′ − ξ = 2π

T
,

which approaches 0 as T → ∞. Using methods from complex analysis, it can be
shown that ∫ ∞

−∞
T

π

[
sin T (ξ ′ − ξ )

T (ξ ′ − ξ )

]
dξ ′ = 1.

These properties, when compared with Eqs. 3.68–3.70, suggest that

δ(ξ ′ − ξ ) = lim
T→∞

T

π

[
sin T (ξ ′ − ξ )

T (ξ ′ − ξ )

]
= 1

2π

∫ ∞

−∞
eix(ξ ′−ξ )dx. (3.95)

In fact, the Dirac delta function can be defined as the limits of not only the sinc
function but also a range of other functions, such as the Gaussian and the box-car
functions (e.g., Hassani 2008).

The analysis above shows that an arbitrary abstract vector |f 〉 can be represented
using its coefficients with respect to {|ex〉}x∈R, f (x) = 〈ex |f 〉, or its coefficients
with respect to

{|êξ 〉
}
ξ∈R, f̂ (ξ ) = 〈êξ |f 〉. Both representations are completely

equivalent and we can choose the representation that is most convenient for a given
application.

We can apply the same analysis to the n-dimensional Fourier transform pair

f̂ (ξ ) = 1

(2π)n/2

∫
e−iξ ·xf (x)dnx, (3.96)

f (x) = 1

(2π)n/2

∫
eiξ ·xf̂ (ξ )dnξ, (3.97)
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with the inner product

〈ex|êξ 〉 = eiξ ·x

(2π)n/2 . (3.98)

Here x, ξ ∈ Rn and the dot product ξ · x = ∑n
i=1 ξixi has the usual Euclidean

geometric definition.
Consider two functions f (t) and g(t), which can be expressed using Eq. 3.88 as

f (t) = 1√
2π

∫ ∞

−∞
eiξ t f̂ (ξ )dξ, (3.99)

g(t) = 1√
2π

∫ ∞

−∞
eiξ ′t ĝ(ξ ′)dξ ′. (3.100)

The inner product of f (t) and g(t) can be expressed as
∫ ∞

−∞
g∗(t)f (t)dt = 1

2π

∫ ∞

−∞
dt

[∫ ∞

−∞
e−iξ ′t ĝ∗(ξ ′)dξ ′

] [∫ ∞

−∞
eiξ t f̂ (ξ )dξ

]

= 1

2π

∫ ∞

−∞
dξ ′
∫ ∞

−∞
dξ ĝ∗(ξ ′)f̂ (ξ )

[∫ ∞

−∞
ei(ξ−ξ ′)t dt

]

=
∫ ∞

−∞
dξ ′
∫ ∞

−∞
dξ ĝ∗(ξ ′)f̂ (ξ )δ(ξ − ξ ′)

=
∫ ∞

−∞
ĝ∗(ξ )f̂ (ξ )dξ, (3.101)

where I have used Eq. 3.95 at the third equality and Eq. 3.68 at the fourth equality.
Equation 3.101 is known as the Parseval theorem.

3.1.8 Operator Algebra

A vector space equipped with a vector-vector multiplication is call an algebra.
Note that the vector-vector multiplication we are discussing here is different from
the scalar-vector multiplication used in defining vector spaces (Sect. 3.1.1). In
Sect. 3.1.3, it is shown that the set of linear transformations L(V,W) forms a vector
space and linear transformations are vectors in this space. We can define a mul-
tiplication on this vector space through the composition of linear transformations.
Suppose we have two linear transformations, T1 :U → V and T2 :V → W , then
the multiplication T2T1 :U →W can be defined as

T2T1 |x〉 = T2 (T1 |x〉) ,∀ |x〉 ∈ U . (3.102)

This definition involves three vector spaces, T1 ∈ L(U,V), T2 ∈ L(V,W) and
T2T1 ∈ L(U,W). If we let U = V = W , the three spaces all become L(V,V),
which we abbreviate as L(V). A linear transformation T ∈ L(V) is called a linear
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operator and the space L(V) is the algebra of linear operators. Note that in general
operator multiplications are not commutative, i.e., T1T2 	= T2T1,∀T1, T2 ∈ L(V).

Once we have a multiplication defined, we can discuss the inverse of the operator
T, which is denoted as T−1 and satisfies the condition

T−1T = TT−1 = 1. (3.103)

Not all linear operators have inverses. If T1 and T2 are both invertible, then T1T2 is
also invertible and has the inverse

(T1T2)
−1 = T−1

2 T−1
1 . (3.104)

The powers of an operator T can be defined through induction

Tn = Tn−1T = TTn−1,∀n ∈ N and T0 = 1. (3.105)

Negative powers of T can be defined in terms of T−1,

T−n =
(

T−1
)n

,∀n ∈ N, (3.106)

as long as T is invertible. For any two integers m and n, we have

TmTn = Tm+n, (3.107)

(
Tm
)n = Tmn. (3.108)

When m = −n, Eq. 3.107 and T0 = 1 imply that the inverse of Tn is T−n. The
powers of T can be generalized to include all real numbers using the spectral theory
of operators (e.g., Kubrusly 2012).

In Sect. 3.1.3, some concepts about linear transformations were demonstrated
using matrices. The procedure can be formalized for finite-dimensional vector
spaces. Suppose we are trying to solve an abstract operator equation

T |g〉 = |f 〉 (3.109)

for |g〉 in the n-dimensional vector space V . We can choose an orthonormal basis
B = {|ej 〉

}n
j=1 for V . Considering the completeness relation, Eq. 3.34, the LHS of

Eq. 3.109 can be written as

T |g〉 = T1 |g〉 = T
n∑

j=1

|ej 〉 〈ej |g〉 =
n∑

j=1

T |ej 〉 〈ej |g〉 . (3.110)

Bring Eq. 3.110 back into Eq. 3.109 and take the inner product with |ei〉,
i = 1, 2, . . . , n on both sides of Eq. 3.109, we obtain

n∑

j=1

〈ei |T |ej 〉 〈ej |g〉 = 〈ei |f 〉, i = 1, 2, . . . , n. (3.111)
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If we define the elements of the matrix as

Aij ≡ 〈ei |T |ej 〉 , (3.112)

and the elements of vectors

gj ≡ 〈ej |g〉 , fi ≡ 〈ei |f 〉 , (3.113)

we obtain the matrix-vector representation of the abstract operator equation

n∑

j=1

Aijgj = fi, (3.114)

which can be solved for the coefficients of vector |g〉 with respect to the basis B.
In finite-dimensional vector spaces, we can establish a one-to-one correspondence
between operators and matrices, therefore operator algebra is essentially matrix
algebra.

The same procedure can also be applied to the infinite-dimensional, continuous
index case using the basis B = {|ex〉}x∈R. Different vectors from this basis can
be distinguished using different subscript, such as |ex〉, |ey〉, x, y ∈ R. Using the
continuous version of the completeness relation, Eq. 3.57, the operator Eq. 3.109
can be written as

∫ b

a

〈ex |T |ey〉w(y) 〈ey |g〉 dy = 〈ex |f 〉

⇒
∫ b

a

A(x, y)w(y)g(y)dy = f (x), (3.115)

which is an integral equation with its integration kernel given by

A(x, y) ≡ 〈ex |T |ey〉 . (3.116)

When we generalized finite-dimensional vector spaces to infinite-dimensional vec-
tor spaces in Sect. 3.1.4, we were concerned about the convergence, limits and
completeness in infinite dimensions. Even though the analogy between matrices
and integration kernels is obvious, we have similar concerns when we try to replace
the matrix Aij with the integration kernel A(x, y).

A class of operators that are highly useful in practical applications are bounded
operators. Suppose H1 and H2 are two Hilbert spaces equipped with the norm ‖ ‖1
and ‖ ‖2, respectively, and T ∈ L(H1,H2), the norm of T can be defined as

‖T‖ = max

{‖Tx‖2

‖x‖1
, |x〉 ∈ H1 and |x〉 	= |0〉

}
. (3.117)

The denominator ‖x‖1 in the definition makes the norm of T independent of the
vector length. Alternatively, the norm can equivalently be defined as

‖T‖ = max {‖Tx‖2 , ‖x‖1 ≤ 1}. (3.118)
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If ‖T‖ < ∞, we call T a bounded linear transformation. A bounded linear
transformation from a Hilbert space to itself is call a bounded operator. A direct
consequence of this definition is

‖Tx‖2 ≤ ‖T‖ ‖x‖1 ,∀ |x〉 ∈ H1. (3.119)

The space of bounded operators is often denoted as B(H). It can be verified that
B(H) is a subspace of L(H). In Eq. 3.119, if we replace |x〉 with |x〉 − |y〉, we have

‖Tx − Ty‖2 ≤ ‖T‖ ‖x − y‖1 . (3.120)

Since ‖T‖ is finite, if |x〉 and |y〉 are arbitrarily close to each other in H1, T |x〉
and T |y〉 are arbitrarily close to each other in H2, which means that all bounded
operators are continuous.

We can apply the definition of the operator norm, Eq. 3.117, to the product of
two operators ∀T1, T2 ∈ L(H). The norm of the product T2T1 can be written as

‖T2T1‖ = max

{‖T2T1x‖
‖x‖ , |x〉 ∈ H, |x〉 	= |0〉

}

= max

{‖T2T1x‖
‖T1x‖

‖T1x‖
‖x‖ , |x〉 ∈ H, |x〉 	= |0〉 	= T1 |x〉

}

≤ max

{‖T2 (T1 |x〉)‖
‖T1x‖ , T1 |x〉 	= |0〉

}
max

{‖T1x‖
‖x‖ , |x〉 	= |0〉

}

= max

{‖T2 (T1 |x〉)‖
‖T1x‖ , T1 |x〉 	= |0〉

}
‖T1‖ .

Note that in the first term of the RHS, the vector T1 |x〉 is in the range of operator
T1, which is a subspace of H. If we include all vectors in H into our scan for
maximality, we may find a larger number. Therefore we have

max

{‖T2 (T1 |x〉)‖
‖T1x‖ , T1 |x〉 	= |0〉

}

≤ max

{‖T2y‖
‖y‖ , |y〉 ∈ H, |y〉 	= |0〉

}
= ‖T2‖ .

Therefore we have shown that

‖T2T1‖ ≤ ‖T2‖ ‖T1‖ . (3.121)

A direct consequence of Eq. 3.121 is
∥
∥Tn

∥
∥ ≤ ‖T‖n . (3.122)

Using Eq. 3.122, we can show that the series
∑∞

n=0 Tn converges if ‖T‖ ≤ 1. The
norm of this series can be expressed as

∥
∥
∥
∥
∥

∞∑

n=0

Tn

∥
∥
∥
∥
∥
≤

∞∑

n=0

∥
∥Tn

∥
∥ ≤

∞∑

n=0

‖T‖n = 1

1− ‖T‖ , (3.123)
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which is finite for T ∈ B(H), ‖T‖ ≤ 1. In the last equality in Eq. 3.123, we used
the property of a geometric series because ‖T‖ is merely a scalar. In fact, we can
show that this series converges to the inverse of the operator 1 − T. Let’s consider
the operator product

(1− T)

∞∑

n=0

Tn = (1− T)

(

lim
l→∞

l∑

n=0

Tn

)

= lim
l→∞ (1− T)

l∑

n=0

Tn

= lim
l→∞

(
l∑

n=0

Tn −
l+1∑

n=1

Tn

)

= lim
l→∞

(
1− Tl+1

)
= 1.

The last equality holds because liml→∞
∥
∥Tl+1

∥
∥ ≤ liml→∞ ‖T‖l+1 = 0 if ‖T‖ < 1

and the operator with 0 norm is the zero operator. Considering the definition of the
operator inverse, Eq. 3.103, we therefore have

(1− T)−1 =
∞∑

n=0

Tn, if T ∈ B and ‖T‖ < 1. (3.124)

Equation 3.124 can be generalized to the operator T/α, α ∈ C and we have

(α1− T)−1 = α−1
∞∑

n=0

(
T
α

)n

, if T ∈ B and ‖T‖ < |α|. (3.125)

Consider two operators T1, T2 ∈ B(H), if T1 is invertible and T2 satisfies the
relation

‖T1 − T2‖ <
1

∥
∥
∥T−1

1

∥
∥
∥

(3.126)

then T2 is also invertible. To show this, consider P ≡ T−1
1 (T1 − T2), its norm is

‖P‖ ≤
∥
∥
∥T−1

1

∥
∥
∥ ‖T1 − T2‖ <

∥
∥
∥T−1

1

∥
∥
∥

1
∥
∥
∥T−1

1

∥
∥
∥
= 1,

therefore the operator 1− P is invertible considering Eq. 3.124. The operator 1− P
can be expressed as

1− P = 1− T−1
1 (T1 − T2) = 1− 1+ T−1

1 T2 = T−1
1 T2,

therefore the operator Q ≡ T−1
1 T2 is invertible. Since we have T2 = T1Q and both

T1 and Q are invertible, considering Eq. 3.104, T2 must also be invertible. The LHS
in Eq. 3.126 is actually a measure of the “distance” between two operators. The fact
that T2 is invertible means that operators that are sufficiently “close” to an invertible
operator are also invertible.
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In Sect. 3.1.3, the dual of a linear transformation and the concept of the adjoint
matrix in finite-dimensional vector spaces were introduced. For a linear operator
T ∈ B(H), its adjoint or Hermitian conjugate, often denoted as T†, is defined by
the relation

〈f |T |g〉∗ = 〈g|T† |f 〉 ,∀ |f 〉 , |g〉 ∈ H,∀T ∈ B(H), (3.127)

which can also be written equivalently as

〈Tg|f 〉 = 〈g|T†f 〉 ,∀ |f 〉 , |g〉 ∈ H,∀T ∈ B(H). (3.128)

It can be verified that for arbitrary S, T ∈ B(H) and α ∈ C, the adjoint satisfies the
following properties

(αT)† = α∗T†, (3.129)

(S+ T)† = S† + T†, (3.130)

(ST)† = T†S†, (3.131)

(
T†
)† = T. (3.132)

An operator T is called self-adjoint or Hermitian if

T† = T, (3.133)

and called anti-self-adjoint or anti-Hermitian if

T† = −T. (3.134)

It can be verified that any operator T can be decomposed into a self-adjoint operator

H = 1

2

(
T+ T†

)
(3.135)

plus an anti-self-adjoint operator

A = 1

2

(
T− T†

)
(3.136)

and we have the decomposition

T = H+ A. (3.137)

If T is self-adjoint, we can show that 〈f |Tf 〉 is real for any |f 〉 ∈ H. In fact the
complex conjugate of 〈f |Tf 〉 can be written as

〈f |Tf 〉∗ = 〈Tf |f 〉 = 〈f |T†f 〉 = 〈f |Tf 〉 , (3.138)
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where I have used Eq. 3.1 at the first equality, Eq. 3.128 at the second equality and
Eq. 3.133 at the last equality. Conversely, we can show that if 〈f |Tf 〉 is real for any
f ∈ H, then T is self-adjoint. If 〈f |Tf 〉 is real, then we have

〈f |Tf 〉 = 〈f |Tf 〉∗ = 〈Tf |f 〉 = 〈f |T†f 〉
⇒ 〈f |

(
T− T†

)
f 〉 = 0,∀f ∈ H⇒ T = T†.

If T is self-adjoint and 〈f |Tf 〉 ≥ 0,∀ |f 〉 ∈ H, we call T a positive operator. If a
positive operator T satisfies the extra condition that 〈f |Tf 〉 = 0 implies |f 〉 = |0〉,
then T is called a positive definite operator.

The norm of the adjoint operator T† satisfies the identity
∥
∥
∥T†
∥
∥
∥ = ‖T‖ . (3.139)

To verify this identity, consider the inner product 〈Tf |Tf 〉 for |f 〉 ∈ H and
‖f ‖ ≤ 1,

‖Tf ‖2 = 〈Tf |Tf 〉 = 〈f |T†Tf 〉 ≤ ‖f ‖
∥
∥
∥T†Tf

∥
∥
∥ ≤ ‖f ‖2

∥
∥
∥T†T

∥
∥
∥

≤
∥
∥
∥T†T

∥
∥
∥ ≤

∥
∥
∥T†
∥
∥
∥ ‖T‖ .

Here I used the Cauchy-Schwarz inequality (Eq. 3.12) at the first inequality in the
equation above, used Eq. 3.119 at the second inequality and Eq. 3.121 at the last
inequality. Considering the alternative definition of the operator norm, Eq. 3.118,
we have ‖T‖2 ≤ ∥

∥T†
∥
∥ ‖T‖ ⇒ ‖T‖ ≤ ∥

∥T†
∥
∥. If we replace T with T† in the

derivation above and use Eq. 3.132, we can arrive at
∥
∥T†
∥
∥ ≤ ‖T‖. Therefore the

identity in Eq. 3.139 must hold.
In this very brief discussion about linear operators, I have neglected many impor-

tant topics, such as the spectral theory of operators, which is concerned with the
“diagonalization” of operators and generalization of eigenvalues and eigenvectors.
For readers who are interested in this subject and its applications, I refer to (DeVito
1990; Sunder 1997; Kubrusly 2012).

3.1.9 Fréchet Derivative

In calculus, the definition of the derivative for real valued functions, f :R→ R is

f ′(x) = lim
h→0

f (x + h)− f (x)

h
, (3.140)

if the limit exists. In seismic inverse problems, the independent “variable” is usually
not x ∈ R, but some function m(x) that might belong to a certain Hilbert space.
We therefore need to extend the notion of differentiation to general normed vector
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spaces. The reason for requiring a norm is that it is indispensable in discussing
continuity. The derivative defined on general normed vector spaces is often called
the Fréchet derivative.

If the limit in Eq. 3.140 exists, we can define a function of h as

φ(h) =
{

f (x+h)−f (x)
h

− f ′(x), h 	= 0

0 h = 0
. (3.141)

It can be verified that φ(h) is a continuous function of h everywhere, including the
point h = 0. We therefore have the equation

f (x + h) = f (x)+ f ′(x)h+ hφ(h). (3.142)

We can now generalize Eq. 3.142 to normed vector spaces. Suppose V and W are
vector spaces equipped with the norm ‖ ‖V and ‖ ‖W and f :V ⊃ U →W , we say
f is differentiable at |x〉 ∈ U if there exists a linear transformation, often denoted
as Df (|x〉) ∈ L(V,W), and also a continuous function φ( |h〉 ), |h〉 ∈ V with
φ(|0〉 ) = 0, such that the equation

f ( |x〉 + |h〉 ) = f ( |x〉 )+ [Df (|x〉)] |h〉 + ‖h‖V φ( |h〉 ) (3.143)

holds for all |h〉 in an open neighborhood of |0〉 ∈ V . The linear transformation
Df (|x〉) ∈ L(V,W) is called the Fréchet derivative of f at |x〉. An equivalent
definition that resembles Eq. 3.140 is

lim‖h‖V→0

∥
∥f (|x〉 + |h〉)− f (|x〉)− [Df (|x〉)] |h〉∥∥W

‖h‖V
= 0, |x〉 ∈ U . (3.144)

If f is differentiable at |x〉, the action of its Fréchet derivative on an arbitrary
vector |h〉 can be computed as

[
Df (|x〉)] |h〉 = lim

α→0

f (|x〉 + α |h〉)− f (|x〉)
α

, α ∈ R. (3.145)

To show that Eq. 3.145 is correct, let’s assume α > 0 is sufficiently small so that
α |h〉 is in the neighborhood of |0〉. By Eq. 3.143, we have

f (|x〉 + α |h〉) = f (|x〉)+ [Df (|x〉)] (α |h〉)+ ‖αh‖ φ (α |h〉)
= f (|x〉)+ α

[
Df (|x〉)] |h〉 + α ‖h‖φ (α |h〉)

⇒ [
Df (|x〉)] |h〉 = f (|x〉 + α |h〉)− f (|x〉)

α
− ‖h‖φ (α |h〉) ,

where I have used the linearity of Df (|x〉) at the second equality. If we let α → 0
on both sides, the LHS does not depend on α, therefore can be treated as a constant.
The term φ (α |h〉) on the RHS goes to 0 because φ (0 |h〉) = 0, therefore Eq. 3.145
holds for α > 0. The argument for α < 0 is similar.
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The reader may recognize that the RHS in Eq. 3.145 resembles the directional
derivative in calculus. In fact, the derivative defined using the RHS of Eq. 3.145 is
an extension of the directional derivative to general vector spaces and is often called
the Gâteaux derivative. Our argument above has shown that if the Fréchet derivative
exists at |x〉, the Gâteaux derivative also exists at |x〉 and the two derivatives coin-
cide. However, the converse is not true in general. Because the Gâteaux derivative is
allowed to be nonlinear while the Fréchet derivative must be linear, it is possible to
have a function that has a nonlinear Gâteaux derivative at a point and does not have
a linear Fréchet derivative at the same point.

If we express |x〉 using a basis B = {|ei〉}ni=1, where n can be ∞ for a Hilbert
space, |x〉 = ∑n

i=1 xi |ei〉, the function f can then be written as f (x1, x2, . . . , xn).
Equation 3.145 allows us to obtain a representation of the linear transformation
Df (|x〉) with respect to this basis. In Eq. 3.145, we can choose |h〉 = |ej 〉 , j =
1, 2, . . . , n and we have

[
Df (|x〉)] |h〉 = [Df (|x〉)] |ej 〉

= lim
α→0

f (x1, x2, . . . , xj + α, . . . , xn)− f (x1, x2, . . . , xj , . . . , xn)

α

= ∂f

∂xj

, j = 1, 2, . . . , n, (3.146)

which is identical to the partial derivative of f with respect to xj if the function is
f :Rn ⊃ U → R and the basis is the standard basis on Rn given by Eq. 3.9. If we
express ∀ |h〉 ∈ Rn as column vectors, then Df (|x〉) ∈ (Rn)∗ can be expressed as
row vectors with its elements given by ∂f/∂xj , i.e.,

Df (|x〉) =
(

∂f

∂x1
,

∂f

∂x2
, . . . ,

∂f

∂xn

)
. (3.147)

The reader may identify the RHS of Eq. 3.147 with the definition of the gradient
∇f in calculus. In fact, the action of the linear transformation Df (|x〉) on a vector
|h〉 is identical to taking the inner product between ∇f and |h〉,

[
Df (|x〉)] |h〉 = 〈∇f |h〉 =

n∑

i=1

∂f

∂xi

hi . (3.148)

For the continuous-index case, the summation over i in Eq. 3.148 needs to be
replaced with an integral in the form of Eq. 3.55.

If f :Rn → Rm, we can write f = (f1, f2, . . . , fm) with respect to the standard
basis in Rm and apply the same process to each component fi, i = 1, 2, . . . ,m.
With respect to the standard basis, the linear transformation Df (|x〉) is now
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represented by an m× n matrix with its elements given by ∂fi/∂xj , i.e.,

Df (|x〉) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
...

. . .
...

∂fm

∂x1

∂fm

∂x2
· · · ∂fm

∂xn

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (3.149)

The reader may identify the RHS of Eq. 3.149 with the Jacobian matrix in calculus.
If |x〉 belongs to an infinite-dimensional Hilbert space, e.g., the space of square-
integrable functions L2

w(a, b) (Eq. 3.56), the same process can be applied to obtain
a representation of the Fréchet derivative with respect to a basis for this Hilbert
space, e.g., B = {|ex〉}x∈R for the continuous-index case.

Suppose we have two functions f, g :V ⊃ U → W and both are differentiable
at |x〉 ∈ U , it can be verified that the function αf + βg :V ⊃ U → W,∀α, β ∈ C

is also differentiable at |x〉 and its Fréchet derivative is given by

D (αf + βg) (|x〉) = αDf (|x〉)+ βDg (|x〉) . (3.150)

If ∀f, g are continuous functions, Eq. 3.150 indicates that the set of all differen-
tiable functions forms a subspace of all continuous functions. If the point-wise
multiplication is defined at |x〉, for example, if f, g :Rn → R, the point-wise mul-
tiplication f (|x〉) · g(|x〉) is defined for R × R, then we can define the function
f · g :V ⊃ U →W and the Fréchet derivative of f · g is

D (f · g) (|x〉) = g (|x〉) Df (|x〉)+ f (|x〉) Dg (|x〉) . (3.151)

In calculus, there exists a similar relation known as the product rule or the Leib-
niz rule. The chain rule in calculus can also be generalized to Fréchet derivatives.
Suppose f :U → V is differentiable at |x〉 ∈ U and g :V → W is differen-
tiable at f (|x〉) ∈ V , then the composition of the two functions, often denoted
as g ◦ f :U →W , is differentiable at |x〉 and its Fréchet derivative is given by

D (g ◦ f ) (|x〉) = Dg (f (|x〉)) ◦ Df (|x〉) . (3.152)

Higher-order Fréchet derivatives are multi-linear transformations. I illustrate the
concept with an example. For a function f :Rn ⊃ U → R, its first-order Fréchet
derivative Df is a linear transformation applied on |h〉 ∈ Rn as shown in Eqs. 3.147
and 3.148. Its second-order Fréchet derivative, often denoted as D2f , is a bi-linear
transform applied on the 2-tuple (|h〉)(2) = (|h〉, |h〉), and with respect to the
standard basis on Rn has the matrix representation

D2f = H =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂2f

∂x2
1

∂2f
∂x2∂x1

· · · ∂2f
∂xn∂x1

∂2f
∂x1∂x2

∂2f

∂x2
2
· · · ∂2f

∂xn∂x2

...
...

. . .
...

∂2f
∂x1∂xn

∂2f
∂x2∂xn

· · · ∂2f

∂x2
n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (3.153)
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which is called the Hessian matrix of f at |x〉. If we represent |h〉 using a col-
umn vector h, the action of the second-order Fréchet derivative on the 2-tuple
(|h〉)(2), denoted as

[
D2f (|x〉)] (|h〉, |h〉), is then represented as the linear alge-

bra operation hTHh, where hT is the transpose of the column vector h. Written

in index form, we have hTHh = ∑n
i=1
∑n

j=1 hi
∂2f

∂xi∂xj
hj . The third-order Fréchet

derivative is a tri-linear transformation and when applied to the 3-tuple (|h〉)(3) =
(|h〉 , |h〉 , |h〉) produces the summation

∑n
i=1
∑n

j=1
∑n

k=1
∂3f

∂xi∂xj ∂xk
hihj hk . The

Fréchet derivatives of higher-orders can be constructed in a similar way.
Using Fréchet derivatives we can generalize the Taylor expansion to vector

spaces. Suppose the function f :V ⊃ U → W has continuous Fréchet derivatives
of all orders, denote by (|h〉)(q) the q-tuple (|h〉 , |h〉 , . . . , |h〉), then we have

f (|x〉 + |h〉) = f (|x〉)
0! +

[
Df (|x〉)] |h〉

1! +
[
D2f (|x〉)] (|h〉)(2)

2! + · · ·

+
[
Dqf (|x〉)] (|h〉)(q)

q! + · · · . (3.154)

For f :Rn ⊃ U → R, with respect to the standard basis of Rn Eq. 3.154 can be
written as

f (|x〉 + |h〉) = f (|x〉)+
n∑

i=1

∂f

∂xi

hi + 1

2!
n∑

i=1

n∑

j=1

∂2f

∂xi∂xj

hihj

+ 1

3!
n∑

i=1

n∑

j=1

n∑

k=1

∂3f

∂xi∂xj∂xk

hihjhk + · · · . (3.155)

In calculus, we can find the stationary points of a function (i.e., minima, maxima
and saddle points) by looking where the first-order derivative is zero and the type
of the stationary point is indicated by the second-order derivative at those stationary
points. With Fréchet derivatives we can now extend a similar procedure to general
normed vector spaces.

3.2 The Adjoint of a Differential Operator

For solving seismic inverse problems, we are interested in the description of
mechanical waves propagating inside a volume with a bounded surface. Depending
upon the type of the material through which the wave propagates, the fundamental
laws of physics of mechanical wave propagation are described by different types of
wave equations, which are partial differential equations (PDEs).

Differential equations are usually accompanied by initial and/or boundary condi-
tions, which restrict the functions that the differential operator can act upon. The
domain of a linear differential operator Lx, often denoted as D(Lx), provides a
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natural setting for encoding not only the initial/boundary conditions but also other
restrictions, such as the smoothness requirements, of the functions on which the
differential operator acts.

Suppose we have two linear differential operators Lx and L†
x, which for two

arbitrary functions u, v ∈ D (Lx) ∩D
(

L†
x

)
satisfy the relation

v∗Lx [u]− u
(

L†
x [v]

)∗ = ∇ ·Q [u, v∗
]
, (3.156)

then L†
x is called the formal adjoint of Lx. The reason for using “formal” here is

because we have not specified the domain of L†
x yet. If L†

x = Lx, then we say that
Lx is formally self-adjoint. If L†

x = Lx and the domains of Lx and L†
x satisfy the

relation D
(

L†
x

)
⊃ D (Lx), we say that Lx is symmetric or Hermitian. If in addition

to L†
x = Lx we also have D

(
L†

x

)
= D (Lx), then Lx is said to be self-adjoint. The

RHS of Eq. 3.156 is sometimes called the surface term and Q
[
u, v∗

]
is called the

conjunct of the functions u and v∗. The RHS of Eq. 3.156 is the divergence of the
conjunct and in n-dimensions we have

∇ ·Q ≡
n∑

i=1

∂Qi

∂xi

[
u, v∗

]
. (3.157)

If the physical problem is defined over a closed manifold Ω ⊂ R
n with its boundary

denoted as ∂Ω, we can integrate both sides of Eq. 3.156 over Ω, using the divergence
theorem on the RHS, we obtain

∫

Ω

{
v∗Lx [u]− u

(
L†

x [v]
)∗}

dV (x) =
∫

∂Ω

Q · ênda, (3.158)

where dV (x) is a volume measure of the n-dimensional volume Ω, ên is the
n-dimensional unit vector normal to ∂Ω and da is a surface measure of the
n-dimensional surface ∂Ω. The LHS of Eq. 3.158 can be expressed in terms of
the inner product in Eq. 3.55 with the weighting function w (x) = 1,

〈v|Lu〉 − 〈L†v|u〉 =
∫

∂Ω

Q · ênda, (3.159)

which can also be written equivalently as

〈v|L |u〉 − 〈u|L† |v〉∗ =
∫

∂Ω

Q · ênda. (3.160)

Equations 3.156, 3.158 and 3.160 are equivalent forms of the generalized Green’s
identity. If the surface term on the RHS of Eq. 3.160 is zero, we recover the defini-
tion of the adjoint operator in Eq. 3.127. From the definitions above we can see that
the adjoint of a differential operator depends on the definition of the inner product
as well as the differential operator itself.
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The evaluation of the adjoint of a differential operator and the domain of the
adjoint can be separated into two steps. In the first step, we compute the formal
adjoint and the surface term through integration-by-parts. In the second step, we
require the surface term to be zero, which gives us a set of adjoint initial/bound-
ary conditions coupled with the formal adjoint operator. In Sects. 3.2.1–3.2.5, I
will construct the formal adjoint operators and the surface terms for ordinary differ-
ential operators, partial differential operators, scalar wave equations, the gradient,
divergence and curl operators commonly used in vector calculus and the anisotropic
viscoelastic wave equation. In Sect. 3.2.6 I will examine the adjoint initial/boundary
conditions.

3.2.1 Ordinary Differential Operators

As an example, let’s consider the differential operator Lx = d
dx

applied on functions
defined on the interval [0, 1]. The inner product 〈v|Lu〉 on the LHS of Eq. 3.159 can
be expressed as

〈v|Lu〉 =
∫ 1

0
v∗(x)

du(x)

dx
dx.

Integration by parts yields

〈v|Lu〉 =
∫ 1

0
v∗(x)

du(x)

dx
dx = v∗(x)u(x)

∣
∣
∣10 −

∫ 1

0

dv∗(x)

dx
u(x)dx.

The last term on the RHS is actually an inner product. If we define the formal adjoint
of Lx as

L†
x = −

d

dx
(3.161)

we then have
〈v|Lu〉 − 〈L†v|u〉 = v∗(x)u(x)

∣
∣x=1
x=0 .

Comparing with Eq. 3.159, for this one-dimensional problem the surface term is
then given by

∫

∂Ω

Q · ênda = Q
[
u, v∗

]∣∣
x=1 − Q

[
u, v∗

]∣∣
x=0 = v∗(1)u(1)− v∗(0)u(0).

Comparing with Eq. 3.134, since we have L†
x = −Lx, we can say that the differen-

tial operator Lx = d
dx

is formally anti-self-adjoint, or formally anti-Hermitian, or
formally skew-adjoint.

As a second example, let’s consider the differential operator Lx = d2

dx2 applied
on functions defined on the interval [0, 1]. The inner product 〈v|Lu〉 on the LHS of
Eq. 3.159 can be expressed as

〈v|Lu〉 =
∫ 1

0
v∗(x)

d2u(x)

dx2 dx.
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Integration by parts once yields

〈v|Lu〉 =
∫ 1

0
v∗(x)

d2u(x)

dx2 dx = v∗(x)
du(x)

dx

∣
∣
∣
∣

x=1

x=0
−
∫ 1

0

dv∗(x)

dx

du(x)

dx
dx.

Integration by parts once more on the last term of the RHS yields

〈v|Lu〉 = v∗(x)
du(x)

dx

∣
∣
∣
∣

x=1

x=0
− dv∗(x)

dx
u(x)

∣
∣
∣
∣

x=1

x=0
+
∫ 1

0

d2v∗(x)

dx2 u(x)dx.

If we define the formal adjoint of Lx = d2

dx2 as

L†
x =

d2

dx2 (3.162)

we then have

〈v|Lu〉 − 〈L†v|u〉 = v∗(x)
du(x)

dx

∣
∣
∣
∣

x=1

x=0
− dv∗(x)

dx
u(x)

∣
∣
∣
∣

x=1

x=0

and the surface term is given by

∫

∂V

Q · ênda = Q
[
u, v∗

]∣∣x=1
x=0 =

[
v∗(x)

du(x)

dx
− dv∗(x)

dx
u(x)

]∣∣
∣
∣

x=1

x=0

= v∗(x)
du(x)

dx

∣
∣
∣
∣

x=1

x=0
− dv∗(x)

dx
u(x)

∣
∣
∣
∣

x=1

x=0
. (3.163)

Since we have L†
x = Lx, we can say that the different operator Lx = d2

dx2 is formally
self-adjoint.

We now consider a general second-order ordinary differential operator of the
form

Lx = a(x)
d2

dx2 + b(x)
d

dx
+ c(x). (3.164)

The inner product 〈v|Lu〉 can be expressed as

〈v|Lu〉 =
∫ 1

0
v∗(x)

[
a(x)

d2u(x)

dx2 + b(x)
du(x)

dx
+ c(x)u(x)

]
dx.

Integration by parts once yields

〈v|Lu〉 =
[
a(x)v∗(x)

du(x)

dx
+ b(x)v∗(x)u(x)

]∣∣
∣
∣

x=1

x=0

+
∫ 1

0

{

−d
[
a(x)v∗(x)

]

dx

du(x)

dx
− d

[
b(x)v∗(x)

]

dx
u(x)+ c(x)v∗(x)u(x)

}

dx.
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Integration by parts once more yields

〈v|Lu〉 =
[

a(x)v∗(x)
du(x)

dx
+ b(x)v∗(x)u(x)− d

[
a(x)v∗(x)

]

dx
u(x)

]∣∣
∣
∣
∣

x=1

x=0

+
∫ 1

0

{
d2
[
a∗(x)v(x)

]

dx2 − d
[
b∗(x)v(x)

]

dx
+ c∗(x)v(x)

}∗
u(x)dx.

If we define the formal adjoint of Lx as

L†
x [v(x)] = d2

[
a∗(x)v(x)

]

dx2 − d
[
b∗(x)v(x)

]

dx
+ c∗(x)v(x), (3.165)

then we have

〈v|Lu〉 − 〈L†v|u〉 =
[

av∗ du

dx
+ bv∗u− d

[
av∗
]

dx
u

]∣∣
∣
∣
∣

x=1

x=0

. (3.166)

Suppose we would like to have L†
x = Lx, apply both L†

x and Lx on an arbitrary u(x),
we obtain

a
d2u

dx2
+b

du

dx
+c = a∗ d2u

dx2
+
(

2
da∗

dx
− b∗

)
du

dx
+
(

d2a∗

dx2
− db∗

dx
+ c∗

)
u. (3.167)

Since u(x) is arbitrary, we therefore must have

a = a∗, b = 2
da∗

dx
− b∗, c = d2a∗

dx2
− db∗

dx
+ c∗ (3.168)

in order for Lx to be formally self-adjoint. Equation 3.168 indicates that the coef-
ficient a(x) must be real for Lx to be formally self-adjoint. If we assume that both
b(x) and c(x) are also real, Eq. 3.168 indicates that b = da/dx. If we introduce
two real functions p(x) and q(x) so that a = p, b = dp/dx and c = q , then the
second-order ordinary differential operator in Eq. 3.164 can be written as

Lx [u(x)] = d

dx

[
p(x)

du(x)

dx

]
+ q(x)u(x), (3.169)

which is known as the Sturm-Liouville operator. Therefore all Sturm-Liouville
operators are formally self-adjoint.

3.2.2 Partial Differential Operators

A general linear second-order partial differential operator in n-dimension can be
written as

Lx [u(x)] =
n∑

i=1

n∑

j=1

aij
∂2u

∂xi∂xj

+
n∑

i=1

bi
∂u

∂xi

+ cu, (3.170)
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where x = (x1, x2, . . . , xn) ∈ Ω ⊂ Rn and the coefficients
{
aij

}
, {bi} , c are all

functions of x. For the general partial differential operator, it is more straightforward
to work with Eq. 3.156 directly to obtain its adjoint.

The adjoint of a typical first-order term in Eq. 3.170 can be computed by
multiplying with v∗ and applying the product rule for derivatives, i.e.,

v∗bi

∂u

∂xi
= ∂ (v∗biu)

∂xi
− ∂ (biv

∗)
∂xi

u

⇒ v∗bi
∂u

∂xi

−
[

−∂
(
b∗i v
)

∂xi

]∗
u = ∂ (v∗biu)

∂xi

. (3.171)

Therefore the contribution of a typical first-order term to the formal adjoint is given
by

−∂
(
b∗i v
)

∂xi

(3.172)

and its contribution to the surface term is given by

∂ (v∗biu)

∂xi

. (3.173)

The same procedure can also be applied to a typical second-order term in Eq. 3.170
and we obtain

v∗aij
∂2u

∂xi∂xj

= v∗aij
∂

∂xi

(
∂u

∂xj

)
= ∂

∂xi

(
v∗aij

∂u

∂xj

)
− ∂

(
aij v

∗)

∂xi

∂u

∂xj

. (3.174)

Applying the product rule on the last term in Eq. 3.174, we obtain

−∂
(
aij v

∗)

∂xi

∂u

∂xj

= − ∂

∂xj

[
∂
(
aij v

∗)

∂xi

u

]

+ ∂2
(
aij v

∗)

∂xi∂xj

u. (3.175)

Bring Eq. 3.175 back into equation 3.174, we obtain

v∗aij
∂2u

∂xi∂xj

= ∂

∂xi

(
v∗aij

∂u

∂xj

)
− ∂

∂xj

[
∂
(
aij v

∗)

∂xi

u

]

+ ∂2
(
aij v

∗)

∂xi∂xj

u, (3.176)

which can be re-arranged to give

v∗aij
∂2u

∂xi∂xj

−
⎡

⎣
∂2
(
a∗ij v

)

∂xi∂xj

⎤

⎦

∗

u

= ∂

∂xi

(
v∗aij

∂u

∂xj

)
− ∂

∂xj

[
∂
(
aij v

∗)

∂xi

u

]

. (3.177)
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Therefore the contribution of a typical second-order term to the formal adjoint is
given by

∂2
(
a∗ij v

)

∂xi∂xj

, (3.178)

and its contribution to the surface term is given by

∂

∂xi

(
v∗aij

∂u

∂xj

)
− ∂

∂xj

[
∂
(
aij v

∗)

∂xi

u

]

. (3.179)

Combining Eqs. 3.172 and 3.178, the formal adjoint of Lx in Eq. 3.170 can be
expressed as

L†
x [v(x)] =

n∑

i=1

n∑

j=1

∂2
(
a∗ij v

)

∂xi∂xj

−
n∑

i=1

∂
(
b∗i v
)

∂xi

+ c∗v, (3.180)

which can be viewed as the generalization of Eq. 3.165 to n-dimension. Combining
Eqs. 3.173 and 3.179, the surface term can be written as

n∑

i=1

n∑

j=1

{
∂

∂xi

(
v∗aij

∂u

∂xj

)
− ∂

∂xj

[
∂
(
aij v

∗)

∂xi

u

]}

+
n∑

i=1

∂ (v∗biu)

∂xi

=
n∑

i=1

∂

∂xi

⎡

⎣
n∑

j=1

(
v∗aij

∂u

∂xj

)
⎤

⎦−
n∑

j=1

∂

∂xj

n∑

i=1

[
∂
(
aij v

∗)

∂xi

u

]

+
n∑

i=1

∂ (v∗biu)

∂xi

= ∇ ·Q, (3.181)

where explicit expressions of Q can be obtained by comparing Eq. 3.181 with
Eq. 3.157.

3.2.3 Scalar Wave Equations

Consider the scalar wave-equation operator

Lx,t [u(x, t)] =
[

∂2

∂x2
− 1

α2(x)

∂2

∂t2

]
u(x, t), (3.182)

where α(x) is a positive real function representing the speed of the scalar wave. It is
a partial differential operator with two dimensions, a spatial dimension x and a time
dimension t . If we set the spatial dimension as the first dimension, i.e., x1 = x, and
the time dimension as the second dimension, x2 = t , comparing with Eq. 3.170, we
have a11 = 1, a22 = −1/α2(x), a12 = a21 = 0, b1 = b2 = 0 and c = 0. Bring
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these values into Eq. 3.180, we obtain the formal adjoint of the scalar wave equation
operator

L†
x,t [v(x, t)] = ∂2 (1 · v)

∂x2
1

+
∂2
[
− 1

α2(x1)
v
]

∂x2
2

=
[

∂2

∂x2
1

− 1

α2(x1)

∂2

∂x2
2

]

v(x1, x2)

=
[

∂2

∂x2
− 1

α2(x)

∂2

∂t2

]
v(x, t). (3.183)

Comparing with Eq. 3.182, we have L†
x,t = Lx,t , therefore the scalar wave-equation

operator is formally self-adjoint. The surface term can be obtained from Eq. 3.181
and we have

∇ ·Q = ∂

∂x

(
v∗ ∂u

∂x
− u

∂v∗

∂x

)
− 1

α2(x)

∂

∂t

(
v∗ ∂u

∂t
− u

∂v∗

∂t

)
. (3.184)

Comparing with Eq. 3.157, the conjunct Q can be expressed as a column vector with
2 elements

Q =
⎡

⎣
v∗ ∂u

∂x
− u∂v∗

∂x

− 1
α2(x)

(
v∗ ∂u

∂t
− u∂v∗

∂t

)

⎤

⎦ . (3.185)

We now consider the scalar wave-equation operator in 3 spatial dimensions

Lx,t [u(x, t)] =
[
∇2 − 1

α2(x)

∂2

∂t2

]
u(x, t), (3.186)

where x = (x1, x2, x3) ∈ V ⊂ R3 and ∇2 = ∂2

∂x2
1
+ ∂2

∂x2
2
+ ∂2

∂x2
3

. If we identify the

time dimension t = x4, then we have

aij =

⎧
⎪⎨

⎪⎩

1, i = j = 1, 2, 3

− 1
α2(x)

, i = j = 4

0, i 	= j

, bi = 0 (i = 1, 2, 3, 4) , c = 0. (3.187)

Bring Eq. 3.187 into Eq 3.180, we obtain the formal adjoint of the scalar wave-
equatioin operator in 3 spatial dimensions

L†
x [v (x, t)] =

[
3∑

i=1

∂2

∂x2
i

− 1

α2(x)

∂2

∂x2
4

]

v(x, x4)

=
[
∇2 − 1

α2(x)

∂2

∂t2

]
v(x, t). (3.188)
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Comparing with Eq. 3.186, we have L†
x,t = Lx,t , therefore the scalar wave-equation

operator in 3 spatial dimensions is also formally self-adjoint. The corresponding
surface term can be obtained by bringing Eq. 3.187 into Eq. 3.181 and we have

∇ ·Q =
3∑

i=1

∂

∂xi

(
v∗ ∂u

∂xi

− ∂v∗

∂xi

u

)
− 1

α2 (x)

∂

∂t

(
v∗ ∂u

∂t
− ∂v∗

∂t
u

)
. (3.189)

Comparing with Eq. 3.157, the components of the conjunct Q can be expressed as

Qi =
{

v∗ ∂u
∂xi
− ∂v∗

∂xi
u, i = 1, 2, 3

− 1
α2(x)

(
v∗ ∂u

∂t
− ∂v∗

∂t
u
)

, i = 4
. (3.190)

Note that if we use the integral form of the generalized Green’s identity in Eq. 3.158,
the integration volume Ω is 4-dimensional with 3 spatial dimensions and one time
dimension and when applying the divergence theorem on the RHS, the boundary
∂Ω is a 4-dimensional hypersurface.

3.2.4 Gradient, Divergence and Curl

Let’s now consider the gradient∇, the divergence∇· and the curl∇× operators and
their formal adjoint operators in three spatial dimensions.

For the gradient operator ∇, consider a scalar-valued function u(x) and a
vector-valued function v(x) = [v1(x), v2(x), v3(x)]T with x = (x1, x2, x3) ∈
V ⊂ R

3. We can compute the Euclidean dot product between the two column
vectors v∗ and ∇u as

v∗ · ∇u = v∗1
∂u

∂x1
+ v∗2

∂u

∂x2
+ v∗3

∂u

∂x3

= ∂
(
v∗1u
)

∂x1
− ∂v∗1

∂x1
u+ ∂

(
v∗2u
)

∂x2
− ∂v∗2

∂x2
u+ ∂

(
v∗3u
)

∂x3
− ∂v∗3

∂x3
u

= −
(

∂v∗1
∂x1

+ ∂v∗2
∂x2

+ ∂v∗3
∂x3

)
u+

[
∂
(
v∗1u
)

∂x1
+ ∂

(
v∗2u
)

∂x2
+ ∂

(
v∗3u
)

∂x3

]

= − (∇ · v∗)u+∇ ·Q, (3.191)

where the conjunct is defined as

Q = (v∗1u, v∗2u, v∗3u
)T . (3.192)

Re-arranging Eq. 3.191, we obtain

v∗ · ∇u− [(−∇ · v∗) u] = ∇ ·Q. (3.193)
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Therefore the formal adjoint of the gradient operator ∇ is −∇·, i.e., the minus
divergence operator.

For the divergence operator ∇·, we consider a vector-valued function u(x) =
[u1(x), u2(x), u3(x)]T and a scalar-valued function v(x). We can compute

v∗∇ · u = v∗
(

∂u1

∂x1
+ ∂u2

∂x2
+ ∂u3

∂x3

)
= v∗ ∂u1

∂x1
+ v∗ ∂u2

∂x2
+ v∗ ∂u3

∂x3

= ∂ (v∗u1)

∂x1
− ∂v∗

∂x1
u1 + ∂ (v∗u2)

∂x2
− ∂v∗

∂x2
u2 + ∂ (v∗u3)

∂x3
− ∂v∗

∂x3
u3

= (−∇v∗
) · u+∇ ·Q, (3.194)

where the conjunct is defined as

Q = (v∗u1, v
∗u2, v

∗u3
)T

. (3.195)

Re-arranging Eq. 3.194, we obtain

v∗∇ · u− (−∇v∗
) · u = ∇ ·Q. (3.196)

Therefore the formal adjoint of the divergence operator ∇· is −∇, i.e., the minus
gradient operator.

For the curl operator ∇×, we consider two vector-valued functions u(x) =
[u1(x), u2(x), u3(x)]T and v(x) = [v1(x), v2(x), v3(x)]T . We can compute the
Euclidean dot product

v∗ · (∇ × u) = v∗1
(

∂u3

∂x2
− ∂u2

∂x3

)
+ v∗2

(
∂u1

∂x3
− ∂u3

∂x1

)
+ v∗3

(
∂u2

∂x1
− ∂u1

∂x2

)

=
(

∂v∗3
∂x2

− ∂v∗2
∂x3

)
u1 +

(
∂v∗1
∂x3

− ∂v∗3
∂x1

)
u2 +

(
∂v∗2
∂x1

− ∂v∗1
∂x2

)
u3

+ ∂
(
v∗3u2 − v∗2u3

)

∂x1
+ ∂

(
v∗1u3 − v∗3u1

)

∂x2
+ ∂

(
v∗2u1 − v∗1u2

)

∂x3

= (∇ × v∗
) · u+∇ ·Q, (3.197)

where the conjunct is defined as

Q = (v∗3u2 − v∗2u3, v
∗
1u3 − v∗3u1, v

∗
2u1 − v∗1u2

)T . (3.198)

Re-arranging Eq. 3.197, we obtain

v∗ · (∇ × u)− (∇ × v∗
) · u = ∇ ·Q. (3.199)

Therefore the formal adjoint of the curl operator ∇× is still ∇×, i.e., the curl
operator is formally self-adjoint.
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3.2.5 Viscoelastic Equation of Motion

The viscoelastic media considered in Sect. 2.1.2 is isotropic. We can extend our
analysis to anisotropic viscoelastic media with the stress-strain relation defined as

σij (x, t) =
3∑

k=1

3∑

l=1

∫ +∞

−∞
dτΨijkl(x, t − τ )εkl(x, τ ), (3.200)

where Ψijkl is the rate-of-relaxation function, x ∈ V ⊂ R
3, V is the region occupied

by the material, and t, τ ∈ R. The rate-of-relaxation function is assumed to have the
symmetries

Ψijkl = Ψij lk = Ψjikl = Ψklij , (3.201)

and is causal, i.e.,
Ψijkl(t) = 0 for t < 0. (3.202)

The anisotropic viscoelastic wave-equation operator in displacement u (x, t) can
then be written as

Lx,t [u (x, t)] = ρ (x)
∂2u (x, t)

∂t2

−∇ ·
∫ +∞

−∞
dτΨ (x, t − τ ) :∇u (x, τ ) , (3.203)

which can also be written in the index form as

Lx,t [u (x, t)]i = ρ (x)
∂2ui (x, t)

∂t2

−
3∑

j,k,l=1

∂

∂xj

[∫ +∞

−∞
dτΨijkl (x, t − τ )

∂uk (x, τ )

∂xl

]
. (3.204)

The dual is then defined by a vector-valued function v (x, t) of space and time5. The
inner product involves the Euclidean dot product between two vectors, the spatial
integration over V and the temporal integration over a certain duration, say [0, T ],
i.e.,

〈v|Lu〉 =
∫ T

0
dt

∫

V

dV (x)
3∑

i=1

v∗i (x, t) Lx,t [u (x, t)]i , (3.205)

where Lx,t [u (x, t)]i is given by Eq. 3.204. We now can apply the same techniques
we have been using in Sect. 3.2.1–3.2.4 to construct the adjoint of Lx,t , together
with the surface term.

5 Here v does not represent the particle velocity field.
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Let’s consider the first term on the RHS of Eq. 3.204. Integration by parts twice
with respect to time yields

∫ T

0
dt

∫

V

dV

3∑

i=1

v∗i (x, t) ρ (x)
∂2ui (x, t)

∂t2

=
∫

V

dVρ (x)

3∑

i=1

[∫ T

0
v∗i (x, t)

∂2ui (x, t)

∂t2
dt

]

=
∫

V

dVρ (x)

3∑

i=1

{[
v∗i

∂ui

∂t
− ∂v∗i

∂t
ui

]∣∣
∣
∣

T

0
+
∫ T

0

∂2v∗i
∂t2 uidt

}

=
∫

V

dVρ (x)

3∑

i=1

[
v∗i

∂ui

∂t
− ∂v∗i

∂t
ui

]∣∣
∣
∣

T

0
+
∫ T

0
dt

∫

V

dV

3∑

i=1

ρ (x)
∂2v∗i
∂t2 ui,

which can be re-written as

∫ T

0
dt

∫

V

dV

3∑

i=1

v∗i ρ (x)
∂2ui

∂t2 −
∫ T

0
dt

∫

V

dV

3∑

i=1

ρ (x)
∂2v∗i
∂t2 ui

=
∫

V

dVρ (x)

3∑

i=1

[
v∗i

∂ui

∂t
− ∂v∗i

∂t
ui

]∣∣
∣
∣

T

0
. (3.206)

Therefore the contribution of the first term on the RHS of Eq. 3.204 to the formal
adjoint is

ρ(x)
∂2v∗i
∂t2

(3.207)

and its contribution to the surface term is

∫

V

dVρ (x)

3∑

i=1

[
v∗i

∂ui

∂t
− ∂v∗i

∂t
ui

]∣∣
∣
∣

T

0
. (3.208)

We now consider the second term on the RHS of Eq. 3.204. Take the inner product
with v(x, t), we obtain

−
∫ T

0
dt

∫

V

dV

3∑

i,j,k,l=1

v∗i (x, t)
∂

∂xj

[∫ +∞

−∞
dτΨijkl (x, t − τ )

∂uk (x, τ )

∂xl

]

= −
∫ T

0
dt

∫

V

dV

3∑

i,j,k,l=1

∂

∂xj

[
v∗i (x, t)

∫ +∞

−∞
dτΨijkl (x, t − τ )

∂uk (x, τ )

∂xl

]

+
∫ T

0
dt

∫

V

dV

3∑

i,j,k,l=1

∂v∗i (x, t)

∂xj

[∫ +∞

−∞
dτΨijkl (x, t − τ )

∂uk (x, τ )

∂xl

]
.
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The first term on the RHS is a contribution to the surface term, let’s denote it as Q1,

Q1 = −
∫ T

0
dt

∫

V

dV

3∑

i,j,k,l=1

∂

∂xj

[
v∗i (x, t)

∫ +∞

−∞
dτΨijkl (x, t − τ )

∂uk (x, τ )

∂xl

]
. (3.209)

By splitting the integral
∫ +∞
−∞ dτ into 3 pieces, the second term on the RHS, denoted

as A in the following, can be re-written as

A =
∫

V

dV

3∑

i,j,k,l=1

∫ +∞

−∞
dτ

∫ T

0
dt

∂uk (x, τ )

∂xl

∂v∗i (x, t)

∂xj

Ψijkl (x, t − τ )

=
∫

V

dV

3∑

i,j,k,l=1

(∫ 0

−∞
dτ +

∫ T

0
dτ +

∫ +∞

T

dτ

)∫ T

0
dt

∂uk (x, τ )

∂xl

∂v∗i (x, t)

∂xj

Ψijkl (x, t − τ ) .

Considering the causality condition of the rate-of-relaxation function, Eq. 3.202, the
contribution from the integral

∫ +∞
T dτ is zero. Therefore we can express A as

A =
∫

V

dV

3∑

i,j,k,l=1

∫ 0

−∞
dτ

∫ T

0
dt

∂uk (x, τ )

∂xl

∂v∗i (x, t)

∂xj
Ψijkl (x, t − τ )

+
∫

V

dV

3∑

i,j,k,l=1

∫ T

0
dτ

∫ T

0
dt

∂uk (x, τ )

∂xl

∂v∗i (x, t)

∂xj

Ψijkl (x, t − τ ) .

The first term on the RHS is a contribution to the surface term and we denote it as
Q2,

Q2 =
∫ T

0
dt

∫

V

dV

3∑

i,j,k,l=1

∂v∗i (x, t)

∂xj

∫ 0

−∞
dτ

∂uk (x, τ )

∂xl

Ψijkl (x, t − τ ) . (3.210)

By re-writing the integral
∫ T

0 dt , the second term on the RHS of the expression for
A, denoted as B in the following, can be re-written as

B =
∫

V

dV

3∑

i,j,k,l=1

∫ T

0
dτ

∫ T

0
dt

∂uk (x, τ )

∂xl

∂v∗i (x, t)

∂xj

Ψijkl (x, t − τ )
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=
∫

V

dV

3∑

i,j,k,l=1

∫ T

0
dτ

(∫ +∞

−∞
dt −

∫ 0

−∞
dt −

∫ +∞

T

dt

)

∂uk (x, τ )

∂xl

∂v∗i (x, t)

∂xj
Ψijkl (x, t − τ ) .

Considering the causality condition, Eq. 3.202, the contribution from the integral∫ 0
−∞ dt is zero. Therefore we can write B as

B =
∫

V

dV

3∑

i,j,k,l=1

∫ T

0
dτ

∫ +∞

−∞
dt

∂uk (x, τ )

∂xl

∂v∗i (x, t)

∂xj

Ψijkl (x, t − τ )

−
∫

V

dV

3∑

i,j,k,l=1

∫ T

0
dτ

∫ +∞

T

dt
∂uk (x, τ )

∂xl

∂v∗i (x, t)

∂xj

Ψijkl (x, t − τ ) .

The second term on the RHS is a contribution to the surface term and we denote it
as Q3,

Q3 = −
∫

V

dV

3∑

i,j,k,l=1

∫ T

0
dτ

∫ +∞

T

dt
∂uk (x, τ )

∂xl

∂v∗i (x, t)

∂xj

Ψijkl (x, t − τ ) .

If we introduce an anti-causal rate-of-relaxation function

Ψ′ijkl (x, τ − t) ≡ Ψijkl (x, t − τ ) , (3.211)

exchange the role of τ and t and use the symmetries in Eq. 3.201, we can re-write
Q3 as

Q3 = −
∫ T

0
dt

∫

V

dV

3∑

i,j,k,l=1

∂ui (x, t)

∂xj

∫ +∞

T

dτ
∂v∗k (x, τ )

∂xl

Ψ′ijkl (x, t − τ ) . (3.212)

The first term on the RHS of the expression for B, denoted as C in the following,
can be expressed as

C =
∫

V

dV

3∑

i,j,k,l=1

∫ T

0
dτ

∂uk (x, τ )

∂xl

∫ +∞

−∞
dtΨijkl (x, t − τ )

∂v∗i (x, t)

∂xj

=
∫

V

dV

3∑

i,j,k,l=1

∫ T

0
dτ

∂

∂xl

[
uk (x, τ )

∫ +∞

−∞
dtΨijkl (x, t − τ )

∂v∗i (x, t)

∂xj

]

−
∫

V

dV

3∑

i,j,k,l=1

∫ T

0
dτuk (x, τ )

∂

∂xl

[∫ +∞

−∞
dtΨijkl (x, t − τ )

∂v∗i (x, t)

∂xj

]
.
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Considering the symmetry conditions of the rate-of-relaxation function in Eq. 3.201,
we can re-write C as

C =
∫

V

dV

3∑

i,j,k,l=1

∫ T

0
dτ

∂

∂xj

[
ui (x, τ )

∫ +∞

−∞
dtΨijkl (x, t − τ )

∂v∗k (x, t)

∂xl

]

−
∫

V

dV

3∑

i,j,k,l=1

∫ T

0
dτui (x, τ )

∂

∂xj

[∫ +∞

−∞
dtΨijkl (x, t − τ )

∂v∗k (x, t)

∂xl

]
.

Using the anti-causal rate-of-relaxation function in Eq. 3.211 and exchanging τ and
t , we can re-write C as

C =
∫

V

dV

3∑

i,j,k,l=1

∫ T

0
dt

∂

∂xj

[
ui (x, t)

∫ +∞

−∞
dτΨ′ijkl (x, t − τ )

∂v∗k (x, τ )

∂xl

]

−
∫

V

dV

3∑

i,j,k,l=1

∫ T

0
dtui (x, t)

∂

∂xj

[∫ +∞

−∞
dτΨ′ijkl (x, t − τ )

∂v∗k (x, τ )

∂xl

]
.

The first term on the RHS is a contribution to the surface term and we denote it as
Q4,

Q4 =
∫ T

0
dt

∫

V

dV

3∑

i,j,k,l=1

∂

∂xj

[
ui (x, t)

∫ +∞

−∞
dτΨ′ijkl (x, t − τ )

∂v∗k (x, τ )

∂xl

]
. (3.213)

The second term on the RHS of the expression for C is a contribution to the formal
adjoint. Therefore the contribution of the second term on the RHS of Eq. 3.204 to
the formal adjoint is

−
3∑

j,k,l=1

∂

∂xj

[∫ +∞

−∞
dτΨ′ijkl (x, t − τ )

∂v∗k (x, τ )

∂xl

]
, (3.214)

and its contribution to the surface term is given by Q1 +Q2 +Q3 +Q4.
Combining Eqs. 3.207 and 3.214, the formal adjoint of the anisotropic viscoelas-

tic wave-equation operator is given by

L†
x,t [v (x, t)]i = ρ(x)

∂2vi

∂t2

−
3∑

j,k,l=1

∂

∂xj

[∫ +∞

−∞
dτΨ′ijkl (x, t − τ )

∂vk (x, τ )

∂xl

]
. (3.215)
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The formal adjoint is almost identical to the anisotropic viscoelastic wave-equation
operator in Eq. 3.204, except that the causal rate-of-relaxation function Ψijkl in
Eq. 3.204 has been replaced with the anti-causal rate-of-relaxation function Ψ′ijkl

defined in Eq. 3.211.
The surface term can be obtained by combining Eq. 3.208 and Q1 +Q2 +Q3 +

Q4. In order to highlight the similarities among the different terms, the order of the
summation in Eq. 3.216 in the following is actually Q4 + Q1 + Q2 + Q3. In Q1
(Eq. 3.209) and Q4 (Eq. 3.213), the expression

∑3
j=1

∂
∂xj

is a divergence operator

and we can apply the divergence theorem to replace the volume integral
∫
V

dV with
the surface integral

∫
∂V da, where da is a measure of the boundary ∂V . If we denote

the normal direction on ∂V as n̂(x) or as n̂j (x) in the index form, the surface term
can be written as

∫

V

dV (x) ρ (x)

3∑

i=1

[
v∗i

∂ui

∂t
− ∂v∗i

∂t
ui

]∣∣
∣
∣

t=T

t=0
(3.216)

+
∫ T

0
dt

∫

∂V

da

3∑

i,j,k,l=1

n̂j (x)

[
ui (x, t)

∫ +∞

−∞
dτΨ′ijkl (x, t − τ )

∂v∗k (x, τ )

∂xl

]

−
∫ T

0
dt

∫

∂V

da

3∑

i,j,k,l=1

n̂j (x)

[
v∗i (x, t)

∫ +∞

−∞
dτΨijkl (x, t − τ )

∂uk (x, τ )

∂xl

]

+
∫ T

0
dt

∫

V

dV

3∑

i,j,k,l=1

∂v∗i (x, t)

∂xj

∫ 0

−∞
dτ

∂uk (x, τ )

∂xl
Ψijkl (x, t − τ )

−
∫ T

0
dt

∫

V

dV

3∑

i,j,k,l=1

∂ui (x, t)

∂xj

∫ +∞

T

dτ
∂v∗k (x, τ )

∂xl

Ψ′ijkl (x, t − τ ) .

Readers can verify that the formal adjoint in Eq. 3.215 and the surface term in
Eq. 3.216 derived here for the anisotropic viscoelastic wave-equation operator are
identical to those documented in e.g., (Tarantola 1988).

3.2.6 Adjoint Initial and Boundary Conditions

After we have obtained the formal adjoint of a differential operator, the second step
is to derive the adjoint initial/boundary conditions by requiring the surface term to
be zero. I still start with ordinary differential operators, as they are simpler and also
useful for illustrating many of the basic techniques.
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3.2.6.1 ODE

For ordinary differential operators applied on functions defined on a finite interval,
say [0, 1], some common types of boundary conditions are

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u(0) = 0, u(1) = 0; Dirichlet
du
dx

(0) = 0, du
dx

(1) = 0; Neumann

u(0) = u(1), du
dx

(0) = du
dx

(1); periodic

α0u(0)+ β0
du
dx

(0) = 0, α1u(1)+ β1
du
dx

(1) = 0; general unmixed,

(3.217)

where α0, α1, β0 and β1 in the general unmixed boundary condition are scalars. Note
that boundary conditions usually involve one condition imposed on the solution at
each endpoint of the finite interval. In initial conditions, we impose two conditions
at one of the endpoints, e.g.,

⎧
⎨

⎩

u(0) = 0, du
dx

(0) = 0; initial conditions,

u(1) = 0, du
dx

(1) = 0; final conditions.
(3.218)

If we consider the independent variable x ∈ [0, 1] as time, the conditions at x = 0
can be called initial conditions and the conditions imposed at x = 1 can be called
final conditions.

In both Eqs. 3.217 and 3.218, the right-hand-sides of the conditions are all zeros.
Such conditions are called homogeneous conditions. In practical applications, the
right-hand-sides of the initial/boundary conditions are not always zeros, in which
case we say that the initial/boundary conditions are inhomogeneous. As we will
see in Sect. 3.3, the solutions of differential equations coupled with inhomoge-
neous initial/boundary conditions can be expressed using Green’s functions that
satisfy the same differential equations coupled with the corresponding homoge-
neous initial/boundary conditions. Therefore in the following I will only consider
homogeneous conditions.

Consider the second-order differential operator Lx = d2

dx2 , whose formal adjoint
and surface term have been derived in Eqs. 3.162 and 3.163 in Sect. 3.2.1. Suppose
u(x) satisfies the general unmixed boundary condition in Eq. 3.217, therefore we
can express du

dx
(0) with u(0) and du

dx
(1) with u(1) as

du

dx
(0) = −α0

β0
u(0),

du

dx
(1) = −α1

β1
u(1). (3.219)

Bring Eq. 3.219 into the surface term in Eq. 3.163, set the surface term to zero and
re-arrange the terms we obtain

[
α0

β0
v∗(0)+ dv∗

dx
(0)

]
u(0)−

[
α1

β1
v∗(1)+ dv∗

dx
(1)

]
u(1) = 0, (3.220)
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which holds for arbitrary u(x) if and only if

α0

β0
v∗(0)+ dv∗

dx
(0) = 0 and

α1

β1
v∗(1)+ dv∗

dx
(1) = 0. (3.221)

Equation 3.221 can be re-written as

α0v
∗(0)+ β0

dv∗

dx
(0) = 0 and α1v

∗(1)+ β1
dv∗

dx
(1) = 0. (3.222)

The boundary conditions on v∗(x) in Eq. 3.222, which is the adjoint boundary con-
dition, is identical to the general unmixed boundary condition on u(x) in Eq. 3.217,

therefore we have D(L†
x
) = D (Lx). Since Lx = d2

dx2 is formally self-adjoint, as

shown in Sect. 3.2.1, and now we also have D(L†
x
) = D (Lx), we can conclude that

Lx = d2

dx2 coupled with the general unmixed boundary condition in Eq. 3.217 is

self-adjoint. It can be verified that Lx = d2

dx2 coupled with the Dirichlet, Neumann
or the periodic boundary conditions in Eq. 3.217 is also self-adjoint.

Suppose we replace the general unmixed boundary condition in Eq. 3.217 with
the mixed boundary condition

α0u(0)+ β0
du

dx
(1) = 0 and α1u(1)+ β1

du

dx
(0) = 0; (3.223)

apply the same procedure and we obtain the corresponding adjoint boundary
condition

α0v
∗(1)− β0

dv∗

dx
(0) = 0 and α1v

∗(0)− β1
dv∗

dx
(1) = 0, (3.224)

which is different from the mixed boundary condition in Eq. 3.223. Therefore the

operator Lx = d2

dx2 coupled with the mixed boundary condition in Eq. 3.223 is not
self-adjoint.

For the initial conditions in Eq. 3.218, the surface term in Eq. 3.163 can be
expressed as

v∗(1)
du

dx
(1)− dv∗

dx
(1)u(1) = 0, (3.225)

which holds for arbitrary u(x) if and only if

v∗(1) = 0 and
dv∗

dx
(1) = 0. (3.226)

So the final conditions in Eq. 3.218 are the adjoint of the initial conditions. Since

the final conditions are different from the initial conditions, the operator Lx = d2

dx2

coupled with the initial conditions in Eq. 3.218 is not self-adjoint.
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We now consider the general second-order ordinary differential operator given
by Eq. 3.164 coupled with boundary conditions of the form

R1 [u] ≡ α11u(0)+ α12
du

dx
(0)+ β11u(1)+ β12

du

dx
(1) = 0,

R2 [u] ≡ α21u(0)+ α22
du

dx
(0)+ β21u(1)+ β22

du

dx
(1) = 0, (3.227)

where we assume that the vectors (α11, α12, β11, β12) and (α21, α22, β21, β22) are
linearly independent. The most general form of the conjunct for a second-order
ordinary differential operator is

Q
[
u, v∗

] = q11(x)u(x)v∗(x)+ q12(x)u(x)
dv∗

dx
(x)

+q21(x)
du

dx
(x)v∗(x)+ q22(x)

du

dx
(x)

dv∗

dx
(x). (3.228)

For the surface term given in Eq. 3.166, we have q11(x) = b(x)− da
dx

(x), q12(x) =
−a(x), q21(x) = a(x) and q22(x) = 0. The boundary conditions in Eq. 3.227 can be
written in matrix form as

(
R1 [u]

R2 [u]

)

=
(

A B
)
(

u0

u1

)

= 0, (3.229)

where the sub-matrices are

A ≡
(

α11 α12

α21 α22

)

, B ≡
(

β11 β12

β21 β22

)

,

u0 ≡
(

u(0)
du
dx

(0)

)

, u1 ≡
(

u(1)
du
dx

(1)

)

. (3.230)

Since the two vectors (α11, α12, β11, β12) and (α21, α22, β21, β22) are linearly inde-
pendent, the 2 × 4 matrix

(
A B

)
has a rank of 2, which means that the matrix

(
A B

)
has a 2× 2 sub-matrix that is invertible. Let’s assume that the sub-matrix B

is invertible. If it is not, we can always re-arrange the terms in Eq. 3.227 to make it
invertible. We can also re-write the conjunct in Eq. 3.228 in the matrix form

Q
[
u, v∗

]
(x) = uT

x Qxv∗x, (3.231)

where the matrices are defined as

Qx ≡
(

q11(x) q12(x)

q21(x) q22(x)

)

, ux ≡
(

u(x)
du
dx

(x)

)

, v∗x ≡
(

v∗(x)
dv∗
dx

(x)

)

. (3.232)

To make the surface term become zero, we must have

uT
1 Q1v∗1 − uT

0 Q0v∗0 = 0. (3.233)
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Fig. 3.1 The boundaries of the space-time domain for functions satisfying the scalar wave-equation
defined in Eq. 3.182 and the normal directions on each boundary of the space-time domain.

Since matrix B is assumed to be invertible, we can express u1 in terms of u0 by
solving Eq. 3.229,

u1 = −B−1Au0 ⇒ uT
1 = −uT

0 AT
(

BT
)−1

. (3.234)

Bring Eq. 3.234 into Eq. 3.233, we obtain

−uT
0 AT

(
BT
)−1

Q1v∗1 = uT
0 Q0v∗0

⇒ uT
0

[
Q0v∗0 + AT

(
BT
)−1

Q1v∗1
]
= 0, (3.235)

which holds for arbitrary uT
0 if and only if

Q0v∗0 + AT
(

BT
)−1

Q1v∗1 = 0. (3.236)

Equation 3.236 does not depend upon u(x) or its derivative and is the adjoint
boundary condition for the general boundary condition in Eq. 3.227.

3.2.6.2 Scalar Wave Equations

We now consider the scalar wave-equation operator defined by Eq. 3.182 acting on
functions defined on x ∈ [0, 1] and t ∈ [0, 1]. The conjunct for this operator is given
in Eq. 3.185. The boundaries of this two-dimensional, space-time domain is shown
in Fig. 3.1, in which the horizontal axis is the space dimension and the vertical axis
is the time dimension. The normal directions on the four boundaries of the space-
time area are marked with arrows. Considering Eq. 3.185, at the boundary t = 0,
the Euclidean dot product between the conjunct and the normal direction is

Q · ên =
⎡

⎣
v∗ ∂u

∂x
− u∂v∗

∂x

− 1
α2(x)

(
v∗ ∂u

∂t
− u∂v∗

∂t

)

⎤

⎦ ·
[

0

−1

]

= 1

α2(x)

(
v∗

∂u

∂t
− u

∂v∗

∂t

)∣∣
∣
∣
t=0
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and at the boundary t = 1, the dot product is

Q · ên =
⎡

⎣
v∗ ∂u

∂x
− u∂v∗

∂x

− 1
α2(x)

(
v∗ ∂u

∂t
− u∂v∗

∂t

)

⎤

⎦ ·
[

0

1

]

= − 1

α2(x)

(
v∗ ∂u

∂t
− u

∂v∗

∂t

)∣∣
∣
∣
t=1

.

At the boundary x = 0, the dot product is

Q · ên =
⎡

⎣
v∗ ∂u

∂x
− u∂v∗

∂x

− 1
α2(x)

(
v∗ ∂u

∂t
− u∂v∗

∂t

)

⎤

⎦ ·
[
−1

0

]

=
(
−v∗ ∂u

∂x
+ u

∂v∗

∂x

)∣∣
∣
∣
x=0

and at the boundary x = 1, the dot product is

Q · ên =
⎡

⎣
v∗ ∂u

∂x
− u∂v∗

∂x

− 1
α2(x)

(
v∗ ∂u

∂t
− u∂v∗

∂t

)

⎤

⎦ ·
[

1

0

]

=
(

v∗ ∂u

∂x
− u

∂v∗

∂x

)∣∣
∣
∣
x=1

.

The surface term can therefore be expressed as
∫

∂Ω

Q · ênda =
∫ 1

0
dx

1

α2(x)

[(
v∗ ∂u

∂t
− u

∂v∗

∂t

)∣∣
∣
∣
t=0
−
(

v∗ ∂u

∂t
− u

∂v∗

∂t

)∣∣
∣
∣
t=1

]

+
∫ 1

0
dt

[(
−v∗

∂u

∂x
+ u

∂v∗

∂x

)∣∣
∣
∣
x=0

+
(

v∗
∂u

∂x
− u

∂v∗

∂x

)∣∣
∣
∣
x=1

]
. (3.237)

Considering the quiescent past initial conditions for u(x, t), i.e.,

u(x, t) = 0,
∂u

∂t
(x, t) = 0,∀t ≤ 0 (3.238)

and the Dirichlet boundary condition for u(x, t), i.e.,

u(0, t) = 0, u(1, t) = 0, (3.239)

the surface term in Eq. 3.237 becomes zero for arbitrary u(x, t) if and only if v∗(x, t)
satisfies the quiescent future final conditions

v∗(x, t) = 0,
∂v∗

∂t
(x, t) = 0,∀t ≥ 1 (3.240)

and also the Dirichlet boundary condition

v∗(0, t) = 0, v∗(1, t) = 0. (3.241)

If instead of the Dirichlet boundary condition, u(x, t) satisfies the Neumann
boundary condition

∂u

∂x
(0, t) = 0,

∂u

∂x
(1, t) = 0, (3.242)
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then the surface term is zero for arbitrary u(x, t) if and only if v∗(x, t) also satisfies
the Neumann boundary condition

∂v∗

∂x
(0, t) = 0,

∂v∗

∂x
(1, t) = 0. (3.243)

A similar analysis can also be applied to the scalar wave-equation operator defined
in Eq. 3.186, whose formal adjoint and conjunct are given in Eqs. 3.188 and 3.190.
Suppose the spatial volume of the physical domain is given by V ⊂ R3 and the tem-
poral duration is given by [0, T ]. We denote the normal direction on the boundary
of the spatial volume ∂V as n(x). Considering that the first 3 elements in the con-
junct vector in Eq. 3.190 can be expressed as v∗∇u− u∇v∗, where ∇ is the spatial
gradient operator in R3, we can express the surface term as
∫

∂Ω

Q · ênda =
∫

V

dV
1

α2(x)

[(
v∗ ∂u

∂t
− u

∂v∗

∂t

)∣∣
∣
∣
t=0
−
(

v∗ ∂u

∂t
− u

∂v∗

∂t

)∣∣
∣
∣
t=T

]

+
∫ T

0
dt

∫

∂V

da(x)
(
v∗∇u− u∇v∗

) · n(x). (3.244)

The second term on the RHS of Eq. 3.244 can be expressed as
∫ T

0
dt

∫

∂V

da(x)
(
v∗∇u− u∇v∗

) · n(x)

=
∫ T

0
dt

∫

∂V

da(x)

(
v∗ ∂u

∂n
− ∂v∗

∂n
u

)
, (3.245)

where ∂/∂n is the directional derivative along n(x), the normal direction of ∂V .
Using Eq. 3.244, we can verify that if u(x, t) satisfies the quiescent past initial
conditions, i.e.,

u(x, t) = 0,
∂u

∂t
(x, t) = 0,∀t ≤ 0 (3.246)

v∗(x, t) satisfies the quiescent future final conditions, i.e.,

v∗(x, t) = 0,
∂v∗

∂t
(x, t) = 0,∀t ≥ T . (3.247)

Using Eq. 3.245, we can verify that if u(x, t) satisfies the Dirichlet boundary
condition, i.e.,

u(x, t) = 0, ∀x ∈ ∂V, (3.248)

v∗(x, t) also satisfies the Dirichlet boundary condition, i.e.,

v∗(x, t) = 0, ∀x ∈ ∂V . (3.249)

If u(x, t) satisfies the Neumann boundary condition, i.e.,

∂u

∂n
(x, t) = 0, ∀x ∈ ∂V, (3.250)

v∗(x, t) also satisfies the Neumann boundary condition, i.e.,

∂v∗

∂n
(x, t) = 0, ∀x ∈ ∂V . (3.251)
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3.2.6.3 Anisotropic Viscoelastic Wave Equation

We now consider the anisotropic viscoelastic wave-equation operator defined in
Eq. 3.203, whose formal adjoint and surface term are given in Eqs. 3.215 and 3.216.
Suppose ui(x, t) satisfies the quiescent past initial conditions, i.e.,

ui(x, t) = 0,
∂ui

∂t
(x, t) = 0,∀t ≤ 0, (3.252)

and also the free-surface boundary condition, i.e.,

3∑

j,k,l=1

n̂j (x)
∫ +∞

−∞
dτΨijkl (x, t − τ )

∂uk

∂xl

(x, τ ) = 0,∀x ∈ ∂V . (3.253)

Considering the quiescent past initial condition for ui(x, t) (Eq. 3.252), the first term
in Eq. 3.216 is zero for arbitrary ui(x, t) if and only if v∗i (x, t) satisfies the quiescent
future final conditions, i.e.,

v∗i (x, t) = 0,
∂v∗i
∂t

(x, t) = 0,∀t ≥ T . (3.254)

A direct consequence of the quiescent past initial conditions and the quiescent future
final conditions is that the last two terms in Eq. 3.216 become zeros. The free-surface
boundary condition for ui(x, t) in Eq. 3.253 makes the third term in Eq. 3.216 zero.
Therefore the surface term is zero for arbitrary ui(x, t) if and only if v∗i (x, t) satisfies
the free-surface condition defined using the anti-causal rate-of-relaxation function
Ψ′ijkl(x, t),

3∑

j,k,l=1

n̂j (x)
∫ +∞

−∞
dτΨ′ijkl (x, t − τ )

∂v∗k
∂xl

(x, τ ) = 0,∀x ∈ ∂V . (3.255)

If we replace the free-surface boundary condition for ui(x, t) with the rigidity
condition, i.e.,

ui (x, t) = 0,∀x ∈ ∂V, (3.256)

we can verify that the corresponding adjoint boundary condition is

v∗i (x, t) = 0,∀x ∈ ∂V . (3.257)

After we have obtained both the formal adjoint of the differential operator and also
the adjoint initial/boundary conditions, the full adjoint problem is then completely
specified.

At the beginning of Sect. 3.2, I mentioned that whether a differential operator
is self-adjoint or not depends not only on the formal adjoint operator L†

x but also

on its domain D
(

L†
x

)
. If in addition to Lx = L†

x, the adjoint initial/boundary con-

ditions for L†
x are identical to the initial/boundary conditions for Lx, then we have

D
(

L†
x

)
= D (Lx) and we say that Lx is self-adjoint.
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3.3 Properties of Green’s Functions

Consider a linear differential equation expressed as

Lx [u] = f (x) , (3.258)

where Lx is a linear differential operator and x ∈ Ω ⊂ Rn. In the abstract Dirac
notation, we can write Eq. 3.258 as

L |u〉 = |f 〉 . (3.259)

Suppose the linear operator L has an inverse, L−1, we can then define the operator

G ≡ L−1, (3.260)

and we have
|u〉 = L−1 |f 〉 = G |f 〉 . (3.261)

For the continuous-index case, we can choose the basis B = {|ex〉}x∈Ω⊂Rn

(Sect. 3.1.5). Take the inner product with |ex〉 on both sides of Eq. 3.261 and insert
the completeness relation 1 = ∫

Ω
|ey〉w(y) 〈ey| dV (y) between G and |f 〉, where

dV is a measure of the manifold Ω ⊂ Rn, we obtain

u (x) =
∫

Ω

G(x, y)w(y)f (y)dV (y). (3.262)

Therefore the inverse of a differential operator can be expressed as an integral oper-
ator with its integration kernel given by the Green’s function of the differential
operator G(x, y).

Considering Eqs. 3.260 and 3.71, we have

LG = 1 (3.263)

⇒ 〈ex|L1G |ey〉 = 〈ex|ey〉 = δ(x− y)

w(x)
(3.264)

Replacing 1 with the completeness relation
∫ |ex′ 〉w(x′) 〈ex′ | dnx ′ in Eq. 3.264, we

obtain
∫
〈ex|L |ex′ 〉w(x′) 〈ex′ |G |ey〉 dnx ′ = δ(x− y)

w(x)
,

⇒
∫

L(x, x′)w(x′)G(x′, y)dnx ′ = δ(x− y)

w(x)
. (3.265)

Using Eqs. 3.115 and 3.258, we can verify that for linear differential operators, we
have

L(x, x′) = δ(x− x′)
w(x′)

Lx. (3.266)
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Bring Eq. 3.266 into Eq. 3.265, we obtain the differential equation satisfied by the
Green’s function

LxG(x, y) = δ (x− y)

w (x)
. (3.267)

Comparing with Eq. 3.258, the Green’s function is the solution of the differen-
tial equation with the RHS replaced by the Dirac delta function, if we assume
w(x) = 1. Differential operators are usually accompanied by initial/boundary condi-
tions, therefore we also require the Green’s function to satisfy those initial/boundary
conditions, i.e., G(x, y) ∈ D (Lx). Since the Dirac delta function is a generalized
function or a distribution (Sect. 3.1.6), the Green’s function can also be understood
in the distributional sense.

If we bring the representation of u(x) in Eq. 3.262 into the LHS of Eq. 3.258,
considering Eq. 3.267, we have

Lxu(x) =
∫ [

LxG(x, y)
]
w(y)f (y)dny

=
∫

δ (x− y)

w (x)
w(y)f (y)dny = f (x), (3.268)

which shows that Eq. 3.262 indeed gives a solution to the differential Eq. 3.258.
In general, linear differential operators are not bounded operators, such as those

discussed in Sect. 3.1.8. However, the inverse of a linear differential operator,
which can be expressed as an integral operator with its integration kernel given
by the Green’s function, is usually bounded. We can therefore study properties of
unbounded linear differential operators by using their bounded inverses.

3.3.1 Adjoint Green’s Functions

We can also study the Green’s function for the adjoint differential operator L†
x cou-

pled with the adjoint initial/boundary conditions. If we denote this Green’s function

as G†(x, y) ∈ D
(

L†
x

)
, we have

L†
xG

† (x, y) = δ (x− y)

w (x)
, (3.269)

and we call G†(x, y) the adjoint Green’s function. In the generalized Green’s iden-
tity, Eq. 3.158, we can replace v(x, y) with G†(x, y). Since the surface term is zero
by the construction of the adjoint system, we have

∫

Ω

w(x)
[
G† (x, y)

]∗
Lx [u] dV (x)

=
∫

Ω

w(x)u(x)
(

L†
x

[
G†
])∗

dV (x), (3.270)
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where we have generalized the inner product by including the weighting function
w(x). Considering Eqs. 3.258 and 3.269, Eq. 3.270 can be re-written as

∫

Ω

w(x)
[
G† (x, y)

]∗
f (x)dV (x) =

∫

Ω

u(x)δ (x− y) dV (x) = u(y). (3.271)

If we exchange x and y in Eq. 3.271, we obtain

u(x) =
∫

Ω

[
G† (y, x)

]∗
w(y)f (y)dV (y). (3.272)

Suppose we have
L†

x [v] = h (x) . (3.273)

If we replace u(x) with G(x, y) in the Green’s identity, Eq. 3.158, we obtain
∫

Ω

w(x)v∗(x)Lx [G] dV (x) =
∫

Ω

w(x)G(x, y)
(

L†
x [v]

)∗
dV (x),

considering Eqs. 3.267 and 3.273, we have
∫

Ω

v∗(x)δ (x− y) dV (x) =
∫

Ω

w(x)G(x, y)h∗(x)dV (x)

⇒ v∗(y) =
∫

Ω

w(x)G(x, y)h∗(x)dV (x)

⇒ v(y) =
∫

Ω

G∗(x, y)w(x)h(x)dV (x)

⇒ v(x) =
∫

Ω

G∗(y, x)w(y)h(y)dV (y). (3.274)

Equations 3.272 and 3.274 may appear counter-intuitive at first glance, because
unlike Eq. 3.262, which relates solutions of Lx [u] = f (x) to the Green’s function
G(x, y), these two equations relate solutions of Lx [u] = f (x) to the adjoint Green’s
function G†(x, y) and solutions of L†

x[v] = h(x) to the Green’s function G(x, y).
To understand Eqs. 3.272 and 3.274, we substitute G(z, y) for u(z) and G†(z, x) for
v(z) in Eq. 3.158 and we obtain

∫

Ω

w(z)
[
G†(z, x)

]∗
Lz
[
G (z, y)

]
dV (z)

=
∫

Ω

w(z)G(z, y)
(

L†
z

[
G†(z, x)

])∗
dV (z).

Considering Eqs. 3.267 and 3.269, we obtain

G(x, y) =
[
G† (y, x)

]∗ ⇔ G†(x, y) = G∗(y, x). (3.275)

Bring Eq. 3.275 into Eq. 3.272, we recover Eq. 3.262. Bring Eq. 3.275 into
Eq. 3.274, we obtain

v(x) =
∫

Ω

G†(x, y)w(y)h(y)dV (y). (3.276)
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Note that Eq. 3.275 is not the reciprocity relation as derived in e.g., (Aki and
Richards 2002; Dahlen and Tromp 1998). Equation 3.275 is a relation between G

and G† while the reciprocity relation is a symmetry condition on G alone.

3.3.2 Reciprocity

Suppose Lx is self-adjoint, i.e., Lx = L†
x,D (Lx) = D

(
L†

x

)
, then we have

G(y, x) = G†(y, x). (3.277)

Bring Eq. 3.277 into Eq. 3.275, we obtain

G(x, y) =
[
G† (y, x)

]∗ = G∗ (y, x) . (3.278)

Equation 3.278 is often called the reciprocity relation. As shown above, the reci-
procity relation is a consequence of the self-adjointness of the differential operator.
If the coefficients of Lx are real, then G is a real function and we have G∗ = G and
Eq. 3.278 can be expressed as

G(x, y) = G(y, x). (3.279)

The reciprocity relations in Eqs. 3.278 and 3.279 are often used in problems
involving scalar wave equations in exploration seismology.

3.3.2.1 Scalar Wave-Equation Operator

Consider the scalar wave-equation operator Ly,τ given in Eq. 3.186 and its formal

adjoint L†
y,τ given in Eq. 3.188. The Green’s function G(y, τ ;x′, t ′) and the adjoint

Green’s function G†(y, τ ;x′, t ′) satisfy the equations

Ly,τ

[
G(y, τ ;x′, t ′)

] = δ(y− x′)δ(τ − t ′), (3.280)

L†
y,τ

[
G†(y, τ ;x, t)

]
= δ(y− x)δ(τ − t), (3.281)

and the homogeneous initial/boundary conditions (Eqs. 3.246 and 3.248) and the
homogeneous adjoint initial/boundary conditions (Eqs. 3.247 and 3.249). Note that
here I am using “;” instead of “,” to separate the spatial-temporal coordinates of the
source from those of the wavefield inside the Green’s functions. Bring the Green’s
function and the adjoint Green’s function into the generalized Green’s identity
(Eq. 3.159) with the surface term set to zero, we obtain
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∫ T

0
dτ

∫

V

dV (y)
[
G†(y, τ ;x, t)

]∗
Ly,τ

[
G(y, τ ;x′, t ′)

]

=
∫ T

0
dτ

∫

V

dV (y)G(y, τ ;x′, t ′)L†
y,τ

[
G†(y, τ ;x, t)

]

⇒
∫ T

0
dτ

∫

V

dV (y)
[
G†(y, τ ;x, t)

]∗
δ(y− x′)δ(τ − t ′)

=
∫ T

0
dτ

∫

V

dV (y)G(y, τ ;x′, t ′)δ(y− x)δ(τ − t)

⇒
[
G†(x′, t ′;x, t)

]∗ = G(x, t;x′, t ′). (3.282)

Note that Eq. 3.282 is not the reciprocity relation. If the coefficients of the scalar
wave equation are real, both G† and G are real functions and we have

G†(x′, t ′;x, t) = G(x, t;x′, t ′). (3.283)

The Green’s function and the adjoint Green’s function are translation-invariant in
time since the material property α(x) does not vary with time. Therefore we can
re-write Eq. 3.283 as

G†(x′, t ′ − t;x, 0) = G(x, t − t ′;x′, 0). (3.284)

If we replace t − t ′ with τ , we have

G†(x′,−τ ;x, 0) = G(x, τ ;x′, 0). (3.285)

If we apply Fourier transform on both sides of Eq. 3.285 to convert the time
dimension τ to the frequency dimension Ω, we obtain

[
Ĝ†(x′, ω;x)

]∗ = Ĝ(x, ω;x′), (3.286)

where Ĝ† and Ĝ are Fourier transforms of G† and G, respectively. The conjugation
∗ on Ĝ† on the LHS of Eq. 3.286 is due to the minus sign in front of τ in the LHS
of Eq. 3.285.

Although the scalar wave-equation operator is formally self-adjoint, i.e., Ly,τ =
L†

y,τ , the initial conditions (Eq. 3.246) and the corresponding adjoint initial condi-
tions (Eq. 3.247) are different, therefore the scalar wave-equation operator is not
self-adjoint. However, if we reverse the direction of the time axis in the adjoint
system by introducing

t̃ = T − t, (3.287)

and substitute t for T − t̃ , the adjoint system becomes identical to the forward sys-
tem. The formal adjoint operator in Eq. 3.188 and the adjoint boundary condition
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in Eq. 3.249 are both invariant under time-reversal. The adjoint initial (final) condi-
tions in Eq. 3.247 become identical to the initial conditions in Eq. 3.246. To verify
this point, we replace t with T − t̃ in Eq. 3.247 and obtain

v∗(x, T − t̃) = 0,
∂v∗

∂t̃
(x, T − t̃) = 0,∀t̃ ≤ 0. (3.288)

If we introduce the function

ṽ(x, t̃) ≡ v(x, T − t̃), (3.289)

Eq. 3.288 then becomes

ṽ∗(x, t̃) = 0,
∂ṽ∗

∂t̃
(x, t̃) = 0,∀t̃ ≤ 0, (3.290)

which is identical to the initial conditions in Eq. 3.246. A direct consequence of this
self-adjointness after time-reversal is that we have

G†(x′, t ′;x, t) = G(x′, T − t ′;x, T − t). (3.291)

Bring Eq. 3.291 into Eq. 3.283, we obtain

G(x′, T − t ′;x, T − t) = G(x, t;x′, t ′). (3.292)

Considering that the Green’s function is translation-invariant in time, we can re-
write Eq. 3.292 as

G(x′, t − t ′;x, 0) = G(x, t − t ′;x′, 0), (3.293)

which is the reciprocity relation of the scalar wave equation in the time domain.

3.3.2.2 Anisotropic Viscoelastic Wave-Equation Operator

We now consider the Green’s function for the anisotropic viscoelastic wave-
equation operator defined in Eq. 3.204. The Green’s function of the wave-equation
operator Gpi

(
y, τ ;x′, t ′

)
and the adjoint Green’s function of the adjoint wave-

equation operator G
†
pj (y, τ ;x, t) satisfy the equations

Ly,τ

[
G
(
y, τ ;x′, t ′

)]
pi
= δpiδ

(
y− x′

)
δ
(
τ − t ′

)
, (3.294)

L†
y,τ

[
G† (y, τ ;x, t)

]

pj
= δpj δ (y− x) δ (τ − t) , (3.295)

where Ly,τ and L†
y,τ are the anisotropic viscoelastic wave-equation operator defined

in Eq. 3.204 and its formal adjoint given in Eq. 3.215, δpi and δpj are the Kronecker
delta and δ( ) represents the Dirac delta function. Bring the Green’s function and the
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adjoint Green’s function into the generalized Green’s identity with the surface term
set to zero, we obtain

∫ T

0
dτ

∫

V

dV (y)
3∑

p=1

[
G

†
pj (y, τ ;x, t)

]∗
Ly,τ

[
G
(
y, τ ;x′, t ′

)]
pi

=
∫ T

0
dτ

∫

V

dV (y)
3∑

p=1

Gpi

(
y, τ ;x′, t ′

)
L†

y,τ

[
G† (y, τ ;x, t)

]

pj
,

considering Eqs. 3.294 and 3.295, we have

∫ T

0
dτ

∫

V

dV (y)
3∑

p=1

[
G

†
pj (y, τ ;x, t)

]∗
δpiδ

(
y− x′

)
δ
(
τ − t ′

)

=
∫ T

0
dτ

∫

V

dV (y)
3∑

p=1

Gpi

(
y, τ ;x′, t ′

)
δpjδ (y− x) δ (τ − t)

⇒
[
G

†
ij

(
x′, t ′;x, t

)]∗ = Gji

(
x, t;x′, t ′

)
. (3.296)

Since the coefficients of the wave-equation operator and its formal adjoint are real
in most seismic applications, G and G† are real functions, therefore we have

G
†
ij

(
x′, t ′;x, t

) = Gji

(
x, t;x′, t ′

)
. (3.297)

Equation 3.296 is analogous to Eq. 3.275. Equations 3.296 and 3.297 are not the
reciprocity relation.

The anisotropic viscoelastic wave-equation operator is not self-adjoint. However,
if we reverse the direction of the time axis by introducing

t̃ = T − t, (3.298)

and replace t with T − t̃ in the formal adjoint (Eq. 3.215) and the adjoint ini-
tial/boundary conditions (Eqs. 3.254, 3.255 or 3.257), the adjoint problem becomes
identical to the forward problem. Let’s first consider the adjoint initial conditions
(i.e., the final conditions). Replacing t with T − t̃ in Eq. 3.255, we obtain

v∗i
(
x, T − t̃

) = 0,
∂v∗i
∂ t̃

(
x, T − t̃

) = 0,∀t̃ ≤ 0. (3.299)

If we introduce a new function

ṽi

(
x, t̃
) = vi

(
x, T − t̃

)
, (3.300)

we then have

ṽ∗i
(
x, t̃
) = 0,

∂ṽ∗i
∂ t̃

(
x, t̃
) = 0,∀t̃ ≤ 0 (3.301)
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which are identical to the quiescent past initial conditions in Eq. 3.252. Let’s now
consider the adjoint free-surface boundary condition in Eq. 3.255. Replacing t with
T − t̃ in Eq. 3.255, we obtain

3∑

j,k,l=1

n̂j (x)
∫ +∞

−∞
dτΨ′ijkl

(
x, T − t̃ − τ

) ∂v∗k
∂xl

(x, τ ) = 0,∀x ∈ ∂V .

Replacing the anti-causal rate-of-relaxation function Ψ′ijkl with the causal rate-of-
relaxation function Ψijkl using Eq. 3.211, we have

3∑

j,k,l=1

n̂j (x)
∫ +∞

−∞
dτΨijkl

(
x, t̃ − (T − τ )

) ∂v∗k
∂xl

(x, τ ) = 0,∀x ∈ ∂V .

Introducing a new variable τ̃ = T − τ , we then have

3∑

j,k,l=1

n̂j (x)
∫ +∞

−∞
dτ̃Ψijkl

(
x, t̃ − τ̃

) ∂v∗k
∂xl

(x, T − τ̃ ) = 0,∀x ∈ ∂V .

Using the definition of ṽi in Eq. 3.300, we obtain

3∑

j,k,l=1

n̂j (x)
∫ +∞

−∞
dτ̃Ψijkl

(
x, t̃ − τ̃

) ∂ṽ∗k
∂xl

(x, τ̃ ) = 0,∀x ∈ ∂V, (3.302)

which is identical to the free-surface boundary condition in Eq. 3.253. Reversing
the direction of the time axis for the adjoint boundary condition in Eq. 3.257 is
straightforward.

Let’s now consider the formal adjoint in Eq. 3.215. Replacing t with T − t̃ , we
obtain

L†
x,t̃

[
v
(
x, T − t̃

)]
i
= ρ(x)

∂2vi

(
x, T − t̃

)

∂t̃2

−
3∑

j,k,l=1

∂

∂xj

[∫ +∞

−∞
dτΨ′ijkl

(
x, T − t̃ − τ

) ∂vk (x, τ )

∂xl

]
.

Replacing Ψ′ijkl with Ψijkl in the second term on the RHS and substituting T − τ

with τ̃ , we obtain

L†
x,t̃

[
v
(
x, T − t̃

)]
i
= ρ(x)

∂2vi

(
x, T − t̃

)

∂t̃2

−
3∑

j,k,l=1

∂

∂xj

[∫ +∞

−∞
dτ̃Ψijkl

(
x, t̃ − τ̃

) ∂vk (x, T − τ̃ )

∂xl

]
.
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Using the definition in Eq. 3.300, we obtain

L†
x,t̃

[
ṽ
(
x, t̃
)]

i
= ρ(x)

∂2ṽi

(
x, t̃
)

∂t̃2

−
3∑

j,k,l=1

∂

∂xj

[∫ +∞

−∞
dτ̃Ψijkl

(
x, t̃ − τ̃

) ∂ṽk (x, τ̃ )

∂xl

]
, (3.303)

which is identical to Eq. 3.204.
The analysis above shows that the adjoint anisotropic viscoelastic wave-equation

operator becomes identical to the forward problem after reversing the direction of
the time axis. A direct consequence is that we have

G
†
ij

(
x′, t ′;x, t

) = Gij

(
x′, T − t ′;x, T − t

)
. (3.304)

It can be verified that the anisotropic viscoelastic wave-equation operator in
Eq. 3.204 is translation-invariant in time. We therefore can re-write the RHS of
Eq. 3.304 as

Gij

(
x′, T − t ′;x, T − t

) = Gij

(
x′, t − t ′;x, 0

)
. (3.305)

Considering Eq. 3.297, we obtain

Gij

(
x′, t − t ′;x, 0

) = Gji

(
x, t;x′, t ′

)

⇒ Gij

(
x′, t − t ′;x, 0

) = Gji

(
x, t − t ′;x′, 0

)
, (3.306)

which is the reciprocity relation for the Green’s function of the anisotropic vis-
coelastic wave-equation operator (e.g., Aki and Richards 2002; Dahlen and Tromp
1998).

The derivation above shows that the requirements for obtaining the reciprocity
relations (Eqs. 3.278 and 3.306) are more stringent than those for obtaining
Eqs. 3.275 and 3.296. To obtain the reciprocity relation in Eq. 3.278, the differ-

ential operator must be self-adjoint, i.e., L†
x = Lx and D

(
L†

x

)
= D (Lx). To obtain

the reciprocity relation in Eq. 3.306, the formal adjoint operator and the adjoint
initial/boundary conditions must be identical to the forward operator and its accom-
panying initial/boundary conditions after reversing the direction of the time axis
and the forward problem must be translation-invariant in time. On the other hand,
Eqs. 3.275 and 3.296 hold automatically because of the way in which the Green’s
functions and the corresponding adjoint Green’s functions are constructed. In some
situations where the reciprocity relations may not hold, it may still be possible to
resort to Eqs. 3.275 and 3.296.

3.3.3 Inhomogeneous Initial/Boundary Conditions

By construction, the Green’s function and the adjoint Green’s function satisfy
homogeneous initial/boundary conditions and homogeneous adjoint initial/bound-
ary conditions, respectively. However, solutions of differential equations coupled



3.3 Properties of Green’s Functions 155

with inhomogeneous initial/boundary conditions can still be represented using those
Green’s functions obtained from homogeneous initial/boundary conditions. The
foundation of this representation is the generalized Green’s identity (Eqs. 3.156,
3.158 and 3.160).

3.3.3.1 General 2nd-Order ODE

Consider the general second-order ordinary differential equation Lx given by 3.164
and the general homogeneous boundary conditions in Eq. 3.227 or 3.229. Suppose
that the solution u(x) satisfies the differential equation

Lx [u(x)] = f (x), (3.307)

and also the inhomogeneous boundary condition given by

(
R1 [u]

R2 [u]

)

=
(

A B
)
(

u0

u1

)

= w, and w 	= 0. (3.308)

In the generalized Green’s identity (Eq. 3.158), we can substitute v(x) = G†(x, y)
and obtain

∫ 1

0
w(x)

[
G†(x, y)

]∗
Lx [u(x)] dx −

∫ 1

0
w(x)

{
L†

x

[
G†(x, y)

]}∗
u(x)dx

= Q
[
u,
(
G†
)∗]∣∣
∣
x=1

x=0
, (3.309)

where we have generalized the inner product by including the weighting function
w(x). Because u(x) does not satisfy the homogeneous boundary condition, the sur-
face term on the RHS of Eq. 3.309 is therefore nonzero in general. Considering
Eqs. 3.307 and 3.269, we can re-write Eq. 3.309 as

u(y) =
∫ 1

0
w(x)

[
G†(x, y)

]∗
f (x)dx − Q

[
u,
(
G†
)∗]∣∣
∣
x=1

x=0
. (3.310)

Considering Eq. 3.275, we have

u(y) =
∫ 1

0
w(x)G(y, x)f (x)dx − Q

[
u,
(
G†
)∗]∣∣
∣
x=1

x=0
. (3.311)

Considering the general form of the conjunct given in Eq. 3.231, the surface term
on the RHS of Eq. 3.311 can be expressed as

Q
[
u,
(
G†
)∗]∣∣
∣
x=1

x=0
= uT

1 Q1g∗1 − uT
0 Q0g∗0, (3.312)
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where the vector g(x, y) is given by

g(x, y) ≡
[

G†(x, y)
dG†

dx
(x, y)

]

, (3.313)

and g1 = g(1, y), g0 = g(0, y). By solving Eq. 3.308 for u1, we obtain

uT
1 = wT

(
BT
)−1 − uT

0 AT
(

BT
)−1

. (3.314)

Bring Eq. 3.314 into Eq. 3.312, we obtain

Q
[
u,
(
G†
)∗]∣∣
∣
x=1

x=0
= wT

(
BT
)−1

Q1g∗1

−uT
0

[
AT
(

BT
)−1

Q1g∗1 +Q0g∗0
]

. (3.315)

Because G† satisfies the homogeneous adjoint boundary condition in Eq. 3.236, the
term in the square bracket on the RHS of Eq. 3.315 is therefore zero. Bring Eq. 3.315
back into Eq. 3.311, we obtain

u(y) =
∫ 1

0
w(x)G(y, x)f (x)dx − wT

(
BT
)−1

Q1g∗1

=
∫ 1

0
w(x)G(y, x)f (x)dx − wT

(
BT
)−1

Q1

[
G†(1, y)
dG†

dx
(1, y)

]∗

=
∫ 1

0
w(x)G(y, x)f (x)dx − wT

(
BT
)−1

Q1

[
G(y, 1)

dG
dx

(y, x)
∣
∣
x=1

]

, (3.316)

where I have used Eq. 3.275 in the last equality. Equation 3.316 shows that the
solution of the general second-order ordinary differential equation coupled with the
inhomogeneous boundary conditions (Eq. 3.308) can be represented entirely using
the Green’s function and its derivative with respect to the second argument.

3.3.3.2 Representation Theorem

A similar analysis can be applied to the anisotropic viscoelastic wave-equation oper-
ator Lx,t given in Eq. 3.204. Suppose that the space-time wavefield ui(x, t) satisfies
the equation

Lx,t [u (x, t)]i = fi (x, t)−
3∑

j=1

∂mij (x, t)

∂xj

, (3.317)

where fi (x, t) is the body-force source and mij (x, t) is the moment density tensor
of any moment sources existing inside the spatial volume V and we assume that it
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is zero on the boundary of V , i.e., mij (x, t) = 0,∀x ∈ ∂V . Note that the minus sign
in front of the second term on the RHS of Eq. 3.317 is consistent with Eq. 2.3. On
the boundary ∂V , ui(x, t) satisfies the inhomogeneous boundary condition

3∑

j,k,l=1

n̂j (x)

[∫ +∞

−∞
dτΨijkl (x, t − τ )

∂uk (x, τ )

∂xl

]

= Ti(x, t),∀x ∈ � ⊆ ∂V, (3.318)

where n̂j (x) is the normal direction on ∂V . The initial conditions for ui(x, t) are
also inhomogeneous, i.e.,

ui(x, t) = ai(x, t),
∂ui

∂t
(x, t) = bi(x, t),∀t ≤ 0. (3.319)

In the generalized Green’s identity (Eq. 3.159), we choose

vj (x′, t ′) = G
†
ji

(
x′, t ′;x, t

)
, (3.320)

which satisfies the equation

L†
x′,t ′
[
G† (x′, t ′;x, t

)]

ji
= δjiδ

(
x′ − x

)
δ
(
t ′ − t

)
, (3.321)

and the homogeneous adjoint initial/boundary conditions (Eqs. 3.254, 3.255). The
inner product 〈L†v|u〉 in the generalized Green’s identity (Eq. 3.159) can then be
expressed as

∫ T

0
dt ′
∫

V

dV (x′)
3∑

j=1

{
L†

x′,t ′
[
G† (x′, t ′;x, t

)]

ji

}∗
uj (x′, t ′)

=
∫ T

0
dt ′
∫

V

dV (x′)
3∑

j=1

δjiδ
(
x′ − x

)
δ
(
t ′ − t

)
uj (x′, t ′) = ui (x, t) . (3.322)

Considering Eq. 3.317, the inner product 〈v|Lu〉 in Eq. 3.159 can be expressed as

∫ T

0
dt ′
∫

V

dV (x′)
3∑

j=1

[
G

†
ji

(
x′, t ′;x, t

)]∗
Lx′,t ′

[
u
(
x′, t ′

)]
j

=
∫ T

0
dt ′
∫

V

dV (x′)
3∑

j=1

[
G

†
ji

(
x′, t ′;x, t

)]∗
fj (x′, t ′)

−
∫ T

0
dt ′
∫

V

dV (x′)
3∑

j=1

[
G

†
ji

(
x′, t ′;x, t

)]∗ 3∑

k=1

∂mjk(x′, t ′)
∂x ′k

. (3.323)
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The second term on the RHS of Eq. 3.323 can be expressed as

−
∫ T

0
dt ′
∫

V

dV (x′)
3∑

j=1

[
G

†
ji

(
x′, t ′;x, t

)]∗ 3∑

k=1

∂mjk(x′, t ′)
∂x ′k

= −
∫ T

0
dt ′
∫

V

dV (x′)
3∑

k=1

∂

∂x ′k

⎧
⎨

⎩

3∑

j=1

[
G

†
ji

(
x′, t ′;x, t

)]∗
mjk(x′, t ′)

⎫
⎬

⎭

+
∫ T

0
dt ′
∫

V

dV (x′)
3∑

j,k=1

∂
[
G

†
ji

(
x′, t ′;x, t

)]∗

∂x ′k
mjk(x′, t ′).

Apply the divergence theorem on the first term of the RHS, we obtain

−
∫ T

0
dt ′
∫

V

dV (x′)
3∑

k=1

∂

∂x ′k

⎧
⎨

⎩

3∑

j=1

[
G

†
ji

(
x′, t ′;x, t

)]∗
mjk(x′, t ′)

⎫
⎬

⎭

= −
∫ T

0
dt ′
∫

∂V

da
(
x′
) 3∑

j,k=1

n̂k(x′)
[
G

†
ji

(
x′, t ′;x, t

)]∗
mjk(x′, t ′) = 0,

where I have used the assumption that mjk is zero on the boundary ∂V . Therefore
the inner product 〈v|Lu〉 can be expressed as

∫ T

0
dt ′
∫

V

dV (x′)
3∑

j=1

[
G

†
ji

(
x′, t ′;x, t

)]∗
Lx′,t ′

[
u
(
x′, t ′

)]
j

=
∫ T

0
dt ′
∫

V

dV (x′)
3∑

j=1

[
G

†
ji

(
x′, t ′;x, t

)]∗
fj (x′, t ′)

+
∫ T

0
dt ′
∫

V

dV (x′)
3∑

j,k=1

∂
[
G

†
ji

(
x′, t ′;x, t

)]∗

∂x ′k
mjk(x′, t ′). (3.324)

Because ui(x, t) satisfies inhomogeneous initial/boundary conditions, the surface
term in Eq. 3.216 is not zero. However, because G

†
ji satisfies the homogeneous

adjoint initial/boundary conditions, the second and the fifth terms in the surface
term (Eq. 3.216) are zeros and the first term is also zero at t = T . After removing
terms that are zeros, the surface term is

−
∫

V

dV (x′)ρ(x′)
3∑

j=1

[
G

†
ji

(
x′, 0;x, t

)]∗
bj (x′, 0)

+
∫

V

dV (x′)ρ(x′)
3∑

j=1

∂
(
G

†
ji

)∗

∂t ′
(
x′, 0;x, t

)
aj (x′, 0)
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−
∫ T

0
dt ′
∫

�

da(x′)
3∑

j=1

[
G

†
ji

(
x′, t ′;x, t

)]∗
Tj

(
x′, t ′

)

+
∫ T

0
dt ′
∫

V

dV (x′)
3∑

j,k,l,m=1

⎧
⎪⎨

⎪⎩

∂
[
G

†
ji

(
x′, t ′;x, t

)]∗

∂x ′k
∫ 0

−∞
dτ

∂al

(
x′, τ

)

∂xm

Ψjklm

(
x′, t ′ − τ

)
}

, (3.325)

where I have used the inhomogeneous initial conditions (Eq. 3.319) in the first term,
the second term and the last term, used the inhomogeneous boundary condition
(Eq. 3.318) in the third term.

Bring the surface term (Eq. 3.325) and expressions for the two inner products
(Eqs. 3.322 and 3.324) into the generalized Green’s identity (Eq. 3.159), considering
Eq. 3.296, we obtain an expression for ui (x, t) in terms of the Green’s function
Gij (x, t;x′, t ′),

ui(x, t) =
∫ T

0
dt ′
∫

V

dV (x′)
3∑

j=1

Gij (x, t;x′, t ′)fj (x′, t ′)

+
∫ T

0
dt ′
∫

V

dV (x′)
3∑

j,k=1

∂Gij (x, t;x′, t ′)
∂x ′k

mjk(x′, t ′)

+
∫ T

0
dt ′
∫

�

da(x′)
3∑

j=1

Gij (x, t;x′, t ′)Tj

(
x′, t ′

)

+
∫

V

dV (x′)ρ(x′)
3∑

j=1

[

Gij (x, t;x′, t ′)bj (x′, 0)− ∂Gij

(
x, t;x′, 0

)

∂t ′
aj (x′, 0)

]

−
∫ T

0
dt ′
∫

V

dV (x′)
3∑

j,k,l,m=1

{
∂Gij (x, t;x′, t ′)

∂x ′k
∫ 0

−∞
dτ

∂al

(
x′, τ

)

∂xm

Ψjklm

(
x′, t ′ − τ

)
}

. (3.326)

Equation 3.326 is also known as the representation theorem (e.g., Tarantola 1988;
Dahlen and Tromp 1998; Aki and Richards 2002). As noted in (Tarantola 1988),
the last term on the RHS of Eq. 3.326 represents the effect of the stress caused by
the deformation before t = 0. If ui(x, t) satisfies the quiescent past homogeneous
initial conditions, the last two terms in Eq. 3.326 disappear. If ui (x, t) satisfies the
free-surface boundary condition (i.e., Tj (x′, t ′) = 0,∀x′ ∈ ∂V ), the third term in
Eq. 3.326 disappears. The first term in Eq. 3.326 gives the displacement generated
by body-force sources fj (x′, t ′). The second term in Eq. 3.326 gives the displace-
ment generated by moment (stress) sources mjk(x′, t ′) inside the volume and is
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often used for representing displacement caused by earthquake sources e.g., slip on
a buried fault, stress glut (Backus and Mulcahy 1976a, b).

3.3.3.3 Adjoint Representation Theorem

The same analysis can also be applied to the adjoint system. Suppose the space-time
adjoint wavefield u

†
i (x, t) satisfies the adjoint anisotropic viscoelastic wave equation

L†
x,t

[
u† (x, t)

]

i
= f

†
i (x, t)−

3∑

j=1

∂m
†
ij (x, t)

∂xj

, (3.327)

where the adjoint operator L†
x,t is given by Eq. 3.215, f

†
i (x, t) is the adjoint body-

force source field and m
†
ij (x, t) is the adjoint moment density source field. And we

assume that u
†
i (x, t) satisfies the inhomogeneous adjoint initial/boundary conditions

(Eqs. 3.254 and 3.255),

3∑

j,k,l=1

n̂j (x)
∫ +∞

−∞
dτΨ′ijkl (x, t − τ )

∂u
†
k

∂xl

(x, τ )

= T
†
i (x, t),∀x ∈ � ⊆ ∂V,

(3.328)

u
†
i (x, t) = a

†
i (x, t),

∂u
†
i

∂t
(x, t) = b

†
i (x, t),∀t ≥ T . (3.329)

Here we have assumed that all functions are real and dropped the complex con-
jugation ∗ on the adjoint wavefield. We only consider the inhomogeneous adjoint
free-surface boundary condition in Eq. 3.255 here. In the generalized Green’s
identity, Eq. 3.159, we choose

uj (x′, t ′) = Gji(x′, t ′;x, t), (3.330)

which satisfies the equation

Lx′,t ′
[
G
(
x′, t ′;x, t

)]
ji
= δjiδ(x′ − x)δ(t − t ′), (3.331)

and the homogeneous initial/boundary conditions (Eqs. 3.252, 3.253). The inner
product 〈v|Lu〉 in the generalized Green’s identity (Eq. 3.159) can be expressed as

∫ T

0
dt ′
∫

V

dV (x′)
3∑

j=1

u
†
j (x′, t ′)

{
Lx′,t ′

[
G
(
x′, t ′;x, t

)]
ji

}

=
∫ T

0
dt ′
∫

V

dV (x′)
3∑

j=1

u
†
j (x′, t ′)δjiδ

(
x′ − x

)
δ
(
t ′ − t

) = u
†
i (x, t) . (3.332)
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Considering Eq. 3.327, the inner product 〈L†v|u〉 in the generalized Green’s identity
(Eq. 3.159) can be expressed as

∫ T

0
dt ′
∫

V

dV (x′)
3∑

j=1

L†
x′,t ′
[
u† (x′, t ′

)]

j
Gji

(
x′, t ′;x, t

)

=
∫ T

0
dt ′
∫

V

dV (x′)
3∑

j=1

f
†
j

(
x′, t ′

)
Gji

(
x′, t ′;x, t

)

−
∫ T

0
dt ′
∫

V

dV (x′)
3∑

j=1

[
3∑

k=1

∂m
†
jk(x′, t ′)
∂x ′k

]

Gji

(
x′, t ′;x, t

)
,

which, after applying the divergence theorem, can be re-written as

〈L†v|u〉 =
∫ T

0
dt ′
∫

V

dV (x′)
3∑

j=1

f
†
j

(
x′, t ′

)
Gji

(
x′, t ′;x, t

)

+
∫ T

0
dt ′
∫

V

dV (x′)
3∑

j,k=1

m
†
jk(x′, t ′)

∂Gji

(
x′, t ′;x, t

)

∂x ′k
. (3.333)

Because the adjoint wavefield u
†
i (x, t) satisfies the inhomogeneous adjoint ini-

tial/boundary conditions, the surface term in the generalized Green’s identity
(Eq. 3.216) is not zero. Because the Green’s function Gji (x′, t ′;x, t) satisfies the
homogeneous initial/boundary conditions, the first term is zero at t = 0 and the
third term and the fourth term are zero. After removing the zero terms, the surface
term in Eq. 3.216 becomes

∫

V

dV
(
x′
)
ρ
(
x′
) 3∑

j=1

a
†
j (x′, T )

∂Gji

∂t
(x′, T ;x, t)

−
∫

V

dV
(
x′
)
ρ
(
x′
) 3∑

j=1

b
†
j (x′, T )Gji(x′, T ;x, t)

+
∫ T

0
dt ′
∫

∂V

da(x′)
3∑

j=1

Gji

(
x′, t ′;x, t

)
T

†
j (x′, t ′)

−
∫ T

0
dt ′
∫

V

dV (x′)
3∑

j,k,l,m=1

{
∂Gji

(
x′, t ′;x, t

)

∂x ′k
∫ +∞

T

dτ
∂a

†
l

(
x′, τ

)

∂x ′m
Ψ′jklm

(
x′, t ′ − τ

)
}

. (3.334)

Bring Eqs. 3.332, 3.333 and 3.334 into the generalized Green’s identity (Eq. 3.159)
and apply Eq. 3.297, we obtain the representation of u

†
i (x, t) in terms of the adjoint

Green’s tensor,
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u
†
i (x, t) =

∫ T

0
dt ′
∫

V

dV (x′)
3∑

j=1

f
†
j

(
x′, t ′

)
G

†
ij

(
x, t;x′, t ′

)

+
∫ T

0
dt ′
∫

V

dV (x′)
3∑

j,k=1

m
†
jk(x′, t ′)

∂G
†
ij

(
x, t;x′, t ′

)

∂x ′k

+
∫ T

0
dt ′
∫

∂V

da(x′)
3∑

j=1

G
†
ij

(
x, t;x′, t ′

)
T

†
j (x′, t ′)

+
∫

V

dV
(
x′
)
ρ
(
x′
) 3∑

j=1

[

a
†
j (x′, T )

∂G
†
ij

∂t
(x, t;x′, T )− b

†
j (x′, T )G†

ij (x, t;x′, T )

]

−
∫ T

0
dt ′
∫

V

dV (x′)
3∑

j,k,l,m=1

{
∂G

†
ij

(
x, t;x′, t ′

)

∂x ′k
∫ +∞

T

dτ
∂a

†
l

(
x′, τ

)

∂x ′m
Ψ′jklm

(
x′, t ′ − τ

)
}

. (3.335)

Equation 3.335 is analogous to the representation theorem in Eq. 3.326, except that
it is a representation of the adjoint wavefield u

†
i (x, t) in terms of the adjoint Green’s

tensor G
†
ij

(
x, t; x′, t ′

)
. We may call Eq. 3.335 the adjoint representation theorem

and its utility in solving the inverse problem will be discussed in Chap. 5.
The derivations above have shown that the representation theorem and the

adjoint representation theorem are consequences of the generalized Green’s identity
applied to the case of inhomogeneous initial/boundary conditions and inhomo-
geneous adjoint initial/boundary conditions. Solutions of differential equations
coupled with inhomogeneous initial/boundary conditions can be represented using
Green’s functions obtained from the differential equations accompanied by homoge-
neous initial/boundary conditions. Comparing Eqs. 3.316 and 3.326 with Eq. 3.262
and comparing Eq. 3.335 with Eq. 3.276, we can see that the effect of inhomoge-
neous initial/boundary conditions is to introduce a few extra terms into the solution
of the corresponding homogeneous problem.

3.4 Receiver Green’s Tensor (RGT)

In Sect. 2.2.7 and Fig. 2.12, I have shown a comparison between synthetic seis-
mograms computed by solving the forward isotropic viscoelastic wave equation
in a half-space structural model and those computed from the receiver Green’s
tensors (RGTs) by applying the reciprocity relation and Fig. 2.12 shows that the
synthetics computed using both methods are identical. The foundation of comput-
ing synthetic seismograms using RGTs and reciprocity is the representation theorem
in Eq. 3.326. If ui (x, t) satisfies the quiescent past homogeneous initial conditions,
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the free-surface boundary condition and the body-force sources are zero, Eq. 3.326
can be simplified to

ui(x, t) =
∫ T

0
dt ′
∫

V

dV (x′)
3∑

j,k=1

∂Gij (x, t;x′, t ′)
∂x ′k

mjk(x′, t ′). (3.336)

Since Gij (x, t;x′, t ′) is translation-invariant in time, we can re-write Eq. 3.336 as

ui(x, t) =
∫ T

0
dt ′
∫

V

dV (x′)
3∑

j,k=1

∂Gij (x, t − t ′;x′, 0)

∂x ′k
mjk(x′, t ′)

=
∫

V

dV (x′)
3∑

j,k=1

∂Gij (x, t;x′, 0)

∂x ′k
∗mjk(x′, t), (3.337)

where “∗” denotes the temporal convolution operation. If we apply the reciprocity
relation in Eqs. 3.306 to 3.337, we obtain

ui(x, t) =
∫

V

dV (x′)
3∑

j,k=1

∂Gji(x′, t;x, 0)

∂x ′k
∗mjk(x′, t). (3.338)

For a given receiver location xr , the synthetic displacement seismogram ui(xr , t)
due to the moment source mjk(x′, t) can be represented as

ui(xr , t) =
∫

V

dV (x′)
3∑

j,k=1

∂Gji(x′, t;xr , 0)

∂x ′k
∗mjk(x′, t)

=
∫

V

dV (x)
3∑

j,k=1

∂Gji(x, t;xr , 0)

∂xk

∗mjk(x, t), (3.339)

where I have replaced the source coordinate x′ with x in the second equality. For a
spatial point source located at xs , i.e.,

mjk(x, t) = Mjk(t)δ(x− xs), (3.340)

Eq. 3.339 can be written as

ui(xr , t) =
3∑

j,k=1

∂Gji

∂xk
(xs, t;xr , 0) ∗Mjk(t). (3.341)

The Fréchet derivative of the waveform ui(xr , t) with respect to the moment source
mjk(x, t) can be obtained by applying Eq. 3.145. We consider the action of the
Fréchet derivative Dui(xr , t) on δm(x, t), or δmjk(x, t) in index notation, whose
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norm is sufficiently small so that it is in the neighborhood of the zero moment
source. Using Eq. 3.339, we obtain

[Dui(xr , t)] δm = lim
α→0⎧

⎨

⎩

∫

V

dV (x)
3∑

j,k=1

∂Gji(x, t;xr , 0)

∂xk

∗ [mjk(x, t)+ αδmjk(x, t)
]

−
∫

V

dV (x)
3∑

j,k=1

∂Gji(x, t;xr , 0)

∂xk

∗mjk(x, t)

⎫
⎬

⎭
/α

= lim
α→0

⎡

⎣
∫

V

dV (x)
3∑

j,k=1

∂Gji(x, t;xr , 0)

∂xk

∗ αδmjk(x, t)

⎤

⎦ /α

=
∫

dτ

∫

V

dV (x)
3∑

j,k=1

∂Gji(x, t − τ ;xr , 0)

∂xk

δmjk(x, τ ). (3.342)

Equation 3.342 shows that the Fréchet derivative Dui(xr , t) is an integral operator
and its integration kernel, which is called the Fréchet kernel, is given by ∂Gji(x, t−
τ ;xr , 0)/∂xk.

The Green’s function Gji (x, t;xr , 0), as a spatial-temporal displacement field of
x and t , can be computed by placing a unit body-force pointing in the direction êi at
the receiver location xr and is named “receiver Green tensor (RGT)” in (Lee et al.
2011).

3.4.1 Time-Reversed Adjoint Green’s Tensor

An alternative to using the reciprocity relation in Eq. 3.306 is to use the relation
between the Green’s function and the adjoint Green’s function in Eq. 3.297. Bring
Eq. 3.297 into Eq. 3.336, we obtain

ui(x, t) =
∫ T

0
dt ′
∫

V

dV (x′)
3∑

j,k=1

∂G
†
ji(x

′, t ′;x, t)

∂x ′k
mjk(x′, t ′). (3.343)

It can be verified that the adjoint Green’s tensor is also translation-invariant in time
and we have

G
†
ji (x

′, t ′;x, t) = G
†
ji (x

′, t ′ − t;x, 0). (3.344)

If we define the time-reversed adjoint Green’s function

G
‡
ji (x

′, t − t ′;x, 0) ≡ G
†
ji (x

′, t ′ − t;x, 0), (3.345)
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for a given receiver location x = xr , Eq. 3.343 can be re-written as

ui(xr , t) =
∫ T

0
dt ′
∫

V

dV (x′)
3∑

j,k=1

∂G
‡
ji(x

′, t − t ′;xr , 0)

∂x ′k
mjk(x′, t ′).

=
∫

V

dV (x′)
3∑

j,k=1

∂G
‡
ji(x

′, t;xr , 0)

∂x ′k
∗mjk(x′, t)

=
∫

V

dV (x)
3∑

j,k=1

∂G
‡
ji(x, t;xr , 0)

∂xk

∗mjk(x, t), (3.346)

where I have replaced the source coordinate x′ with x in the last equality. The time-
reversed adjoint Green’s tensor G

‡
ji(x, t;xr , 0) can be computed by placing a unit

body-force at the receiver location and solving the adjoint anisotropic viscoelastic
wave equation (Eq. 3.215) coupled with the adjoint initial/boundary conditions (e.g.,
Eqs. 3.254, 3.255) backward in time. This calculation is stable because the anti-
causal rate-of-relaxation function in the adjoint operator and the adjoint free-surface
boundary condition becomes causal after time-reversal.

As pointed out in the end of Sect. 3.3.2, the requirement for obtaining the reci-
procity in Eq. 3.306 is more stringent than the requirement for obtaining Eq. 3.297.
In obtaining the representation theorem in Eq. 3.326 and also in the alternative
derivation given above I only used Eqs. 3.296 and 3.297 and did not use the reci-
procity relation anywhere through the derivation. The time-reversed adjoint Green’s
tensor (Eq. 3.345) has similar benefits as the RGT (Sect. 3.4.2) and this alterna-
tive approach does not require the self-adjointness of the wave-equation operator,
either before or after time-reversal, and may still be applicable when the reciprocity
relation does not hold.

3.4.2 Receiver-Side Strain Green’s Tensor (RSGT)

In practice, we compute and store the spatial gradient of the displacement
∂Gji(x, t;xr , 0)/∂xk instead of the displacement Gji(x, t;xr , 0). Since the spatial
gradient of the displacement field is the strain field, in (Zhao et al. 2006) we called
∂Gji(x, t;xr , 0)/∂xk the “receiver-side strain Green’s tensor (RSGT)”. In many
seismic wave-propagation simulation codes, including AWP-ODC, the strain is com-
puted as an intermediate variable during the calculation of the stress field, or it
can be obtained by converting the stress field using constitutive relations. For the
isotropic elastic case, we have the constitutive relation

ε = 1

2μ
σ − λ

2μ (3λ+ 2μ)
trσ I, (3.347)

where ε and σ are strain and stress tensors, trσ = σ11 + σ22 + σ33 denotes the
trace of the stress tensor, λ and μ are Lamé parameters and I is the identity matrix.
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The amount of addition CPU time needed for obtaining the RSGT during the wave-
propagation simulation is negligible. If we are interested in the vertical-component
synthetic seismograms at a receiver u3(xr , t), we only need one finite-difference
simulation for a unit body-force source pointing in the vertical direction at the
receiver location to obtain the strain field ∂Gj3(x, t;xr , 0)/∂xk. If we are interested
in horizontal-component synthetic seismograms also, we need two more simula-
tions with two unit body-force sources at the receiver location pointing in the
two orthogonal horizontal directions of the spatial Cartesian coordinate to obtain
∂Gj1(x, t;xr , 0)/∂xk and ∂Gj2(x, t;xr , 0)/∂xk.

In most applications, we are interested in the synthetic seismograms within a
certain frequency band. We can convolve a filter, whose time-domain expression
is h(t), on both sides of Eq. 3.339, the filtered synthetic seismogram, denoted as
ǔi(xr , t), can be expressed as

ǔi(xr , t) = h(t) ∗ ui (xr, t)

=
∫

V

dV (x)
3∑

j,k=1

∂
[
h ∗Gji

]

∂xk

(x, t;xr , 0) ∗mjk(x, t)

=
∫

V

dV (x)
3∑

j,k=1

∂Ǧji

∂xk

(x, t;xr , 0) ∗mjk(x, t), (3.348)

where the filtered RSGT

∂Ǧji

∂xk

(x, t;xr , 0) = h(t) ∗ ∂Gji

∂xk

(x, t;xr , 0) = ∂
[
h ∗Gji

]

∂xk

(x, t;xr , 0) (3.349)

can be computed by using h(t) as the source-time function of the body-forces acting
at the receiver location. This operation is actually equivalent to using the first term
on the RHS of the representation theorem (Eq. 3.326). For a point source located at
xs (Eq. 3.340), we have

ǔi(xr , t) =
3∑

j,k=1

∂Ǧji

∂xk

(xs, t;xr , 0) ∗Mjk(t). (3.350)

The synthetic seismograms ǔi(xr , t) computed using Eqs. 3.348 or 3.350 are
already filtered using h(t), because h(t) has already been convolved into the RSGTs
(Eq. 3.349).

The advantage of computing synthetics using RSGTs by applying the reciprocity
principle is that the number of forward wave-propagation simulations needed is
independent of the number of seismic sources. This technique is particularly suit-
able when the number of seismic sources is significantly larger than the number
of receivers. The RSGTs completely capture wave-propagation effects in complex
three-dimensional earth structural models. And once the RSGTs for all receivers are
computed and stored, no more expensive wave-propagation simulations are needed
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in order to generate synthetics at those receivers for any sources lying inside the
modeling volume.

In practice, it is usually unnecessary to store the RSGTs at all grid points used
in the finite-difference simulations. It is often adequate to store the RSGTs at grid
points on or close to pre-existing faults, since the majority of the earthquakes occur
on and around pre-existing faults. This RSGT-based seismogram synthesis tech-
nique has been adopted by the Southern California Earthquake Center (SCEC) in its
CyberShake platform (Graves et al. 2011), a physics-based seismic hazard analysis
platform in which synthetic seismograms from hundreds and thousands of potential
earthquake ruptures within a certain distance from a given site are computed and
analyzed to give a ground-motion estimate at the site. Using the RSGTs and the
reciprocity principle, only three wave-propagation simulations are needed for each
site.

The RSGT-based technique also makes (near-)real-time seismic source parame-
ter inversions in three-dimensional earth structural models feasible. Since synthetic
seismograms for different source models can be simply calculated by extracting
the RSGTs from a pre-computed and archived RSGT database for all receivers and
applying Eq. 3.339, we can easily compare synthetic waveforms for different source
models with observed waveforms and search for the optimal source model. Such
a searching algorithm can be easily parallelized on distributed-memory computer
clusters with minimal inter-processor communication overhead. In inversions for
centroid moment tensors (CMT) (e.g., Zhao et al. 2006; Lee et al. 2011) or finite
moment tensors (FMT) (Chen et al. 2005), the total number of unknown source
parameters ranges from 8 to 20, which allows us to adopt grid-search algorithms
or stochastic optimization algorithms such as the genetic algorithm (Goldberg
1989), simulated annealing (Kirkpatrick et al. 1983) and particle swarm algorithms
(Kennedy 2010) to search for global optimal solutions. In (Lee et al. 2011), we have
developed a hierarchical grid-search algorithm based on Bayesian inference that can
provide not only the optimal CMT solution but also estimates of the uncertainties in
the solution.

In inversions for fault-slip distributions (FSD), the total number of unknown
source parameters can easily exceed 100 depending upon the parameterization
and kinematic assumptions. In such situations, grid-search or stochastic optimiza-
tion algorithms may not be suitable and we may resort to gradient-based iterative
optimization algorithms. If we represent a finite source using the moment den-
sity function mjk(x, t), Eq. 3.342 shows that the RSGT is actually the Fréchet
kernel (Chap. 4) of the waveform with respect to the moment density function,
which allows us to develop highly efficient gradient- or Hessian-based optimization
algorithms for FSD inversions.

A potential disadvantage of RSGT-based source parameter inversions is that the
disk storage cost can be high and the storage needs to be constantly on-line for
rapid access. Traditional HPC platforms such as distributed-memory computer clus-
ters are usually shared by many users and suffer from long delays in acquiring
resources. The emerging Cloud computing platforms provide users with abundant
storage capacity and allow users to quickly acquire and release large amounts of
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computational resources on-demand with minimal scheduling overheads. In (Chen
et al. 2013) we have successfully implemented a numerically efficient and also
cost-effective synthetic seismogram generator based on Eq. 3.339 using the Win-
dows Azure Cloud Application Framework and obtained highly encouraging overall
performance.

3.4.3 RSGTs in the Half-Space Example

In Sect. 2.2 I gave examples on how to compute RSGTs and how to obtain synthetic
seismograms from RSGTs using the software F3DWI. In this section, I give a brief
summary on the calculations that are directly linked to RSGTs using the half-space
example.

To compute the RSGTs, we need to specify the location xr (e.g., Eq. 3.339) at
which the three orthogonal unit body-force sources are applied. This location does
not have to be a receiver location, but in source-parameter inversions and in tomog-
raphy we usually use RSGTs computed for specific receivers. In the CyberShake
calculations (Graves et al. 2010), the body-force sources are applied at sites at which
we would like to obtain seismic hazard estimates and may not correspond to receiver
locations. In the source-receiver file (Listing 2.6), the first column should be set to
2 if we are applying the body-forces at a receiver location, and 1 if the location is
not a receiver location. If we are interested in the RSGT of only one direction, say
∂Gj3(x, t;xr , 0)/∂xk, which is needed if we are only interested in using vertical-
component synthetic seismograms, we only need to specify one body-force source
line in the source-receiver file. If we are interested in using horizontal-component
synthetics, we must compute the full RSGT, which requires three orthogonal body-
forces and therefore three body-force source lines in the source-receiver file. In
Listing 2.6, line 3–5, I specified three body-force sources at the location of the
receiver IN.RC01. The source IDs for these three body-force sources on the sec-
ond column of Listing 2.6 are constructed by appending the receiver ID with “.”
followed by a number indicating the direction of the body force. Other naming con-
ventions can also be adopted here. Columns 3–6 on Line 3–5 of Listing 2.6 specify
the location, either in terms of the global grid indices on column 4–6 if column 3
is 1, or in terms of geographic coordinates (i.e., longitude, latitude in degrees and
depth in km) on column 4–6 if column 3 is -1. Since we are specifying body-force
sources in the box coordinate, column 7 must be set to -2. The direction of the
body force is specified on column 8–10. If the body force points to the x1 direction
of the box coordinate, column 8–10 must be set to 1 0 0; if the body force points
to the x2 direction of the box coordinate, column 8–10 must be set to 0 1 0; if the
body force points to the x3 direction, column 8–10 must be set to 0 0 1. Column
11 specifies the full-path file name for the source-time function of the body-force
source.

The next step is to specify the locations x (e.g., Eq. 3.339) at which we would
like to record the strain fields. The script set_ker_grd.py can produce a uni-
form mesh decimated according to the numbers specified by the keywords NXSKP,
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NYSKP and NZSKP in the parameter file (Listing 2.5, Table 2.2). This script gener-
ates the local grid indices of the recording grid points in each sub-mesh and store
them in the files named as HSGRDRECprocID inside the directory specified by the
MEDIA keyword (Listing 2.5, Table 2.2). Here procID is a 9-digit number used
for identifying the sub-meshes (Sect. 2.2.2). The script set_sr_grd.py can gen-
erate nonuniformly-distributed recording grid points based on the source-receiver
list (Listing 2.6) and also the numbers specified by the three SOURCE STENCIL
SIZE keywords in the parameter file (Listing 2.5, Table 2.2). One way of adding
additional recording grid points is to modify the source-receiver list by adding
receivers at any locations of your choice. The format of a receiver line is specified
in Sect. 2.2.4.1. A second way of adding nonuniformly-distributed recording points
is to add source lines into the source-receiver list. If we would like to perform CMT
inversions, we can add a source line (with the first column set to 1) specified using
the reference CMT solution and set the source-stencil sizes in the parameter file to
values larger than the estimated location errors in the reference CMT solution. The
output files of this script are named as HSGRDRECRDMprocID and are also stored
under the directory specified by the MEIDA keyword in the parameter file.

After setting up the correct directory structure for each source in the source-
receiver list using the script setup_awp.py and executing the parallel wave-
propagation simulation code awp we obtain two groups of binary output files
inside the output_vlm sub-directory under each source directory. One group of
the binary output files are named as SX96PVprocID and store the 6-component
strain and the 3-component particle velocity at recording grid points specified by
set_ker_grd.py. The other group of the binary output files are named as
SX96PVRDMprocID and store the strain and particle velocity at recording grid
points specified by the script set_sr_grd.py. The ordering of the binary data at
each recording grid point and each recording time step is given in Eq. 2.125. These
two sets of binary output files contain the RSGTs that can be used for computing
synthetic seismograms, for source-parameter inversion and for tomography.

The script rgt2syn.py allows us to compute synthetic seismograms from the
RSGTs for point sources using Eq. 3.350. Note that the RSGTs generated by awp
have been filtered by the source-time function of the body-force sources applied at
the receiver, i.e., the imp_hs.dat file (Listing 2.6, Fig. 2.11), and this source-time
function was denoted as h(t) in Eq. 3.349. Suppose the point moment source also
has a source-time function, denoted as s(t), i.e.,

Mjk(t) = M̂jks(t), (3.351)

then Eq. 3.350 can be re-written as

ǔi(xr , t) = s(t) ∗
⎡

⎣
3∑

j,k=1

∂Ǧji

∂xk

(xs, t;xr , 0)M̂jk

⎤

⎦ . (3.352)

The script rgt2syn.py does not perform the convolution with the source-time
function of the point moment source s(t). It only produces the synthetics corre-
sponding to the part inside the square bracket on the RHS of Eq. 3.352. When
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generating Fig. 2.12, inside the MATLAB script reciprocity_hs.m, I explic-
itly convolved the synthetics generated by rgt2syn.py with the source-time
function of the point moment source s(t) stored in the file src_hs.dat (Listing
2.6, Fig. 2.7) and then plotted them in Fig. 2.12 as thin black solid lines. The synthet-
ics generated through the forward simulation by running awp in the source directory
100001 already have the source-time function of the point moment source s(t)
built in, because the file src_hs.dat was used by the script proc_srlst.py
for generating the source file 100001.src, which was read by awp. However, the
forward synthetics were not filtered by h(t), which was built into the RSGT syn-
thetics. Therefore inside the MATLAB script reciprocity_hs.m, I explicitly
convolved the forward synthetics with h(t) stored in imp_hs.dat and then plotted
them in Fig. 2.12 as thick gray dash lines.

In Figure 3.2, I repeat the same experiment using the 29 Mar 2014 La
Habra (Mw5.1) earthquake and the three-dimensional structural model CVM-S4.26
(Sect. 2.3.3). The source-time function h(t) used for computing the RSGTs is a
band-pass Butterworth filter with corners at 0.02 Hz and 0.2 Hz and is identical to
the source-time function used in the forward simulation s(t). In this case the two
sets of synthetics are identical to each other without additional convolution oper-
ations. More examples of numerical validations of the reciprocity principle using
three-dimensional earth structure models can be found in e.g., (Zhao et al. 2006;
Chen et al. 2007).

Back to the half-space example, suppose we would like to compute the RSGTs
for two more receivers, both of which are located on the free surface and are named
SF.RC02 and SF.RC03, and we would like to extend the source stencil sizes to
5 in the vertical direction (x3) and to 3 in the two horizontal directions (x1 and
x2), and we would also like to change the decimation rate of the uniform recording
grid in the x1 and x3 directions to 2. The locations of the two added receivers, as
well as locations of the receiver IN.RC01 and the source 100001, are shown in
Figure 3.3.

The first step is to add the three orthogonal body-force sources at SF.RC02 and
SF.RC03 into the source-receiver list (Listing 2.6). These six source lines (List-
ing 3.1) can be placed anywhere inside the source-receiver list. I placed them at the
beginning of the file. We also need to add two more receiver lines for these two
receivers. The updated source-receiver list is shown in Listing 3.1. The second step
is to modify the parameter file shown in Listing 2.5. We need to change the numbers
on line 18-20 from 1 1 2 to 3 3 5 and change the numbers on lines 21 and 23
from 4 to 2. The last 7 lines in the modified parameter file is shown in Listing 3.2.
After making these changes, we need to run the following commands in the terminal

proc_srlst.py param_HS.dat 1 13
set_sr_grd.py param_HS.dat
set_ker_grd.py param_HS.dat
setup_awp.py param_HS.dat FWF 1 10
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Fig. 3.2 Comparisons of vertical (top row), radial (center row) and transverse (bottom row) syn-
thetic velocity seismograms for the La Habra earthquake (Sect. 2.3.3) to the station CLC (left
column) and BOR (right column) calculated by forward finite-difference simulation (thick gray
dash lines) and by reciprocity using the RSGTs for CLC and BOR (thin black solid lines).
The seismic structural model used in the forward simulations and the RSGT calculations is the
three-dimensional CVM-S4.26 (Sect. 2.3.3). Figure 2.15 shows the source-receiver paths.
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Fig. 3.3 A cross-section view of the recording grid points perpendicular to the source-receiver
plane iy=40. The explosive point source 100001 (black circle) is located at global grid index
(ix, iy, iz) = (210, 40, 60), the receiver IN.RC01 (black triangle) is located at
global grid index (40, 40, 60), the receiver SF.RC02 (black triangle) is at (40, 40,
180) and the receiver SF.RC03 (black triangle) is at (210, 40, 180). Both SF.RC02 and
SF.RC03 are located at the free surface. Locations marked with “+” are recording grid points gen-
erated by set_ker_grd.py. Locations marked with “×” are recording grid points generated by
set_sr_grd.py. The “×” markers at the source and receiver locations are covered by the black
circle and the black triangles, therefore not visible. The “×” markers for recording grid points of
the source stencil can be seen around the hypocenter of 100001.

to re-build the correct running environment using the modified source-receiver list
and the parameter file. The next step is to run awp inside each source sub-directory
under the FWF directory in the same way that I have shown in Sect. 2.2.6 and in
Listing 2.17. After the wavefield simulations are completed, we can generate the
forward synthetics and the RSGT synthetics using the following commands in the
terminal

fwf2syn.py param_HS.dat 10 10 11 13
rgt2syn.py param_HS.dat 1 9 10 10
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1 2 SF .RC02.1 1 40 40 180 −2 1 0 0 / home/ pochen / wrk /F3DWI /HS/JOBS
/ s r i n f o / imp_hs . dat

2 2 SF .RC02.2 1 40 40 180 −2 0 1 0 / home/ pochen / wrk /F3DWI /HS/JOBS
/ s r i n f o / imp_hs . dat

3 2 SF .RC02.3 1 40 40 180 −2 0 0 1 / home/ pochen / wrk /F3DWI /HS/JOBS
/ s r i n f o / imp_hs . dat

4 2 SF .RC03.1 1 201 40 180 −2 1 0 0 / home/ pochen / wrk /F3DWI /HS/JOBS
/ s r i n f o / imp_hs . dat

5 2 SF .RC03.2 1 201 40 180 −2 0 1 0 / home/ pochen / wrk /F3DWI /HS/JOBS
/ s r i n f o / imp_hs . dat

6 2 SF .RC03.3 1 201 40 180 −2 0 0 1 / home/ pochen / wrk /F3DWI /HS/JOBS
/ s r i n f o / imp_hs . dat

7 2 IN .RC01.1 1 40 40 60 −2 1 0 0 / home/ pochen / wrk /F3DWI /HS/JOBS
/ s r i n f o / imp_hs . dat

8 2 IN .RC01.2 1 40 40 60 −2 0 1 0 / home/ pochen / wrk /F3DWI /HS/JOBS
/ s r i n f o / imp_hs . dat

9 2 IN .RC01.3 1 40 40 60 −2 0 0 1 / home/ pochen / wrk /F3DWI /HS/JOBS
/ s r i n f o / imp_hs . dat

10 1 100001 −1 −117.59233339866256 33.815181833226426 24.0 1 1 1
1 0 0 0 / home/ pochen / wrk / F3DWI/HS/JOBS/ s r i n f o / src_hs . dat

11 0 SF .RC02 1 40 40 180
12 0 SF .RC03 1 201 40 180
13 0 IN .RC01 1 40 40 60

Listing 3.1 The modified source-receiver list for the half-space example. The source lines for the
6 body-force sources at the 2 surface receivers are on line 1–6. The 2 receiver lines for the 2 surface
receivers are on line 11–12.

1 SOURCE STENCIL SIZE IN X = 3
2 SOURCE STENCIL SIZE IN Y = 3
3 SOURCE STENCIL SIZE IN Z = 5
4 NXSKP = 2
5 NYSKP = 4
6 NZSKP = 2
7 NTSKP = 2

Listing 3.2 The last 7 lines of the modified parameter file shown in Listing 2.5. Other lines are
identical to those shown in Listing 2.5.

and the synthetics generated by both scripts are stored in the 100001 sub-directory
under the SYN directory. Synthetics generated by the forward simulations are named
as rID.rot, where rID is the receiver ID, and the synthetics generated using
RSGTs by applying the reciprocity relation is named as rID.rgt.rot. The
synthetic seismograms for the receiver SF.RC02 are shown in Fig. 3.4 and the
synthetics for the receiver SF.RC03 are shown in Fig. 3.5. Note that the receiver
SF.RC03 is located right on top of the source 100001, therefore we cannot rotate
the two horizontal components into the radial and the transverse directions and
Fig. 3.5 shows only 5 different components.

The RSGTs provide the Fréchet kernel of the waveform with respect to seismic
source parameters. The Fréchet kernel of the waveform with respect to structural
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Fig. 3.4 Synthetic seismograms generated through the forward simulation and by using RSGTs.
The source is 100001 and the receiver is SF.RC02. The format of this figure is identical to the
format of Fig. 2.12.

parameters can also be obtained by using RSGTs, which is the topic of the next
section.

3.5 Born Series

Green’s functions allow us to convert differential equations into integral equations,
which makes the problem amenable to solution techniques developed for integral
equations.
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Fig. 3.5 Synthetics for receiver SF.RC03. The format of this figure is identical to the format of
Fig. 2.12.

Integral equations are classified into two major categories. If the limits of the
integration are constants, the integral equation is called a Fredholm equation; oth-
erwise, the integral equation is called a Volterra equation. If the unknown function
does not appear outside of the integral, the integral equation is of the first kind; oth-
erwise, it is of the second kind. Suppose g(x) is the unknown function, function f (x)
is given, the integration kernel is given by K(x, y) and a and b are two constants,
an example of the Fredholm equation of the first kind is

∫ b

a

K(x, y)g(y)dy = f (x), (3.353)

an example of the Fredholm equation of the second kind is

g(x)−
∫ b

a

K(x, y)g(y)dy = f (x), (3.354)
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an example of the Volterra equation of the first kind is
∫ x

a

K(x, y)g(y)dy = f (x), (3.355)

and an example of the Volterra equation of the second kind is

g(x)−
∫ x

a

K(x, y)g(y)dy = f (x). (3.356)

For the purpose of this section, we are particularly interested in the Fredholm
equation of the second kind.

In the vector form, Eq. 3.354 can be written as

(1−K) |g〉 = |f 〉 , (3.357)

and its solution can be expressed as

|g〉 = (1−K)−1 |f 〉 . (3.358)

Using the representation of (1−K)−1 given in Eq. 3.124, the solution in Eq. 3.358
can be expressed as

|g〉 =
∞∑

n=0

Kn |f 〉 , if ‖K‖ < 1, (3.359)

which is also known as the Neumann series solution (Arfken and Weber 2005).
Written in function form, Eq. 3.359 can be expressed as

g(x) = f (x)+
∫ b

a

K(x, y)f (y)dy +
∫ b

a

∫ b

a

K(x, y1)K(y1, y2)f (y2)dy2dy1+

· · · +
∫ b

a

· · ·
∫ b

a

K(x, y1) · · ·K(yn−1, yn)f (yn)dyndyn−1 · · · dy1 + · · · (3.360)

and the series converges if

‖K‖2 =
∫ b

a

∫ b

a

|K(x, y)|2 dxdy < 1. (3.361)

The same procedure can also be generalized to multi-dimensional functions f (x),
g(x) and the integration kernel K(x, y), where x, y ∈ Rm,m ≥ 1.

3.5.1 The Scalar Wave Equation

Consider the scalar wave equation operator given in Eq. 3.186,

Lx,t [u (x, t)] =
[
∇2 − 1

α2 (x)

∂2

∂t2

]
u (x, t) = f (x, t), (3.362)
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where f (x, t) is a source term, and also the scalar wave equation operator defined
by a reference velocity α̃(x),

L̃x,t

[
ũ (x, t)

] =
[
∇2 − 1

α̃2(x)

∂2

∂t2

]
ũ (x, t) = f (x, t). (3.363)

We assume that both u(x, t) and ũ(x, t) satisfy homogeneous initial/boundary con-
ditions. If the initial/boundary conditions are inhomogeneous, we only need to add
some terms to the solution as discussed in Sect. 3.3.3. We define the scattered
wavefield as

Δu(x, t) ≡ u(x, t)− ũ(x, t), (3.364)

and we have
u(x, t) = ũ(x, t)+Δu(x, t). (3.365)

We also define the refractive index at location x as

r(x) ≡ α̃(x)

α(x)
. (3.366)

Using Eq. 3.366, we can re-write Lx,t in Eq. 3.362 as

Lx,t = L̃x,t − r2(x)− 1

α̃2(x)

∂2

∂t2
. (3.367)

Bring Eqs. 3.367 and 3.365 into Eq. 3.362, considering Eq. 3.363, we obtain

L̃x,t [Δu (x, t)] = r2(x)− 1

α̃2(x)

∂2u

∂t2 (x, t). (3.368)

We therefore can represent the scattered wavefield using the Green’s function for
L̃x,t , denoted at G̃(x, t;x′, t ′) in the following,

Δu (x, t) =
∫

V

dV (x′)
∫ T

0
dt ′G̃(x, t;x′, t ′) r

2(x′)− 1

α̃2(x′)
∂2u

∂t ′2
(x′, t ′)

=
∫

V

dV (x′)
∫ T

0
dt ′G̃(x, t − t ′;x′, 0)

r2(x′)− 1

α̃2(x′)
∂2u

∂t ′2
(x′, t ′)

=
∫

V

dV (x′) r
2(x′)− 1

α̃2(x′)
G̃(x, t;x′, 0) ∗ ∂2u

∂t2 (x′, t), (3.369)

where I have used the translation-invariance in time of the Green’s function (because
the material property does not vary with time) at the second equality. Using
Eq. 3.364, we can re-write Eq. 3.369 as

u(x, t) = ũ(x, t)+
∫

V

dV (x′)
r2(x′)− 1

α̃2(x′)
G̃(x, t;x′, 0) ∗ ∂2u

∂t2 (x′, t), (3.370)
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which is in the form of the Fredholm integral equation of the second kind (Eq. 3.354)
for the unknown function u(x, t). If we apply Fourier transform on both sides of
Eq. 3.370 to convert the time coordinate t to the angular frequency ω, we obtain

û(x, ω) = ˆ̃u(x, ω)

+
∫

V

dV (x′) ˆ̃G(x, ω;x′)
[
1− r2(x′)

]
k̃2(x′)û(x′, ω). (3.371)

Here we have introduced the wave-number in the reference media

k̃(x) ≡ ω

α̃(x)
= 2π

λ̃(x)
, (3.372)

and λ̃(x) is the wavelength in the reference media. If we introduce

o(x, ω) ≡ r2(x)k̃2(x), (3.373)

õ(x, ω) ≡ k̃2(x), (3.374)

Δo(x, ω) ≡ õ− o = k̃2(x)− r2(x)k̃2(x), (3.375)

using Eq. 3.359 with the integration kernel

K(x, x′, ω) = ˆ̃
G(x, ω;x′)Δo(x′, ω), (3.376)

we obtain

û(x, ω) = ˆ̃u(x, ω) (3.377)

+
∫

V

dV (x′) ˆ̃G(x, ω;x′)Δo(x′, ω) ˆ̃u(x′, ω)

+
∫

V

dV (x′2)

{
ˆ̃
G(x, ω;x′2)Δo(x′2, ω)

[∫

V

dV (x′1) ˆ̃G(x′2, ω;x′1)Δo(x′1, ω) ˆ̃u(x′1, ω)

]}
+ · · · .

Converting to the time domain, Eq. 3.377 can be expressed as

u(x, t) = ũ(x, t) (3.378)

+
∫

V

dV (x′)
r2(x′)− 1

α̃2(x′)
∂2G̃

∂t2 (x, t;x′, 0) ∗ ũ(x′, t)

+
∫

V

dV (x′2)

{
r2(x′2)− 1

α̃2(x′)
∂2G̃

∂t2 (x, t;x′2, 0) ∗
[∫

V

dV (x′1)
r2(x′1)− 1

α̃2(x′)
∂2G̃

∂t2
(x′2, t;x′1, 0) ∗ ũ(x′1, t)

]}

+ · · · .
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Fig. 3.6 The contributions to the full propagation from the source xs to the receiver x in the media
α(x) from the zeroth-order (left), first-order (center) and second-order (right) scattering terms. Left:
free propagation from the source to the receiver in the reference media α̃; center: a free propagation
from the source to a scatterer located at x′ in the reference media and a free propagation from the
scatterer to the receiver in the reference media; right: free propagations in the reference media that
involve two scatterers located at x′1 and x′2. Locations of the source and the receiver are shown as
black dots and locations of the scatterers are shown as gray dots.

Equations 3.377 and 3.378 are the Born series in the frequency domain and in the
time domain, respectively, for the scalar wave equation given in Eq. 3.362.

Equation 3.377 (or 3.378) has an intuitive interpretation due to Richard Feynman.
Suppose the seismogram û(x, ω) is generated by a point source located at xs and

recorded at receiver location x. The Green’s function ˆ̃
G(x, ω;x′) can be considered

as a propagator from x′ to x in the reference media with velocity α̃(x). The first
term on the RHS of Eq. 3.377 is simply a free propagation from the source xs to
the receiver x in the reference media (Fig. 3.6a). The second term on the RHS of
Eq. 3.377 can be understood as a summation of all waves that have been scattered
once. The diagram for one of such single-scattered waves is shown in Fig. 3.6b. It
involves a free propagation from the source xs to the scatterer at x′ in the reference
media, which is given by ˆ̃u(x′, ω) in the second term, an interaction with the scatterer
at x′, which is given by Δo(x′, ω) in the second term, and a free propagation from

x′ to the receiver at x in the reference media, which is given by ˆ̃
G(x, ω;x′) in the

second term. The integral in the second term is over all scattering locations x′ in
the volume V . The third term on the RHS of Eq. 3.377 is a summation of all the
waves that have been scattered twice. One of such double-scattered waves is shown
in Fig. 3.6c. The wave propagates in the reference media from the source to the first
scatterer at x′1, which is represented by ˆ̃u(x′1, ω) in the third term, interacts with the
scatterer at x′1, which is Δo(x′1, ω), propagates from the first scatterer to the second

scatterer at x′2 in the reference media, which is represented by ˆ̃G(x′2, ω;x′1), interacts
with the second scatterer, Δo(x′2, ω), then propagates from x′2 to the receiver x in the

reference media, which is represented by ˆ̃G(x, ω;x′2) in the third term. The integrals
in the third term are over all first-scattering positions x′1 and all second-scattering
positions x′2. The fourth term on the RHS of Eq. 3.377, which is not shown, is a
summation of all triple-scattered waves and the nth term is a summation of all the
waves that have been scattered n− 1 times. Although Feynman’s interpretation was
originally applied to quantum electrodynamics (e.g., Arfken and Weber 2005), it is
also applicable in many other areas including our discussion here on the Born series
of mechanical waves.
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3.5.1.1 Born Kernel

Comparing Eq. 3.377 with Eq. 3.154, we can see that the Born series has the form
of the Taylor expansion of the waveform with respect to o(x, ω) (Eq. 3.373) at the
reference õ(x, ω) (Eq. 3.374). Since the Taylor expansion is unique, the Fréchet
derivatives of the waveform with respect to o(x, ω) can be directly read off from the
Born series. For a fixed receiver location x = xr and a fixed frequency ω = ωi , the
action of the first-order Fréchet derivative Dû(xr , ωi ) on −δo(x, ωi) = o(x, ωi) −
õ(x, ωi), whose norm is sufficiently small so that it is in the neighborhood of zero,
can be directly read off from the second term on the RHS of Eq. 3.377,

[
Dû(xr , ωi )

]
[−δo(x, ωi)]

=
∫

V

dV (x′)
{ [
− ˆ̃G(xr , ωi ;x′) ˆ̃u(x′, ωi )

] [−δo(x′, ωi )
]
}
, (3.379)

where the integration kernel

KB(x|xr, ωi ) = − ˆ̃G(xr, ωi ;x) ˆ̃u(x′, ωi ) (3.380)

is often called the Born kernel. In Eq. 3.380 I have replaced x′ with x and separated
the independent variable x from the “parameters” xr and ωi using “|”. Here I use
the notation δo to represent an arbitrary small perturbation to the reference model
õ, while the notation Δo (Eq. 3.375) represents the (finite) difference between the
actual and the reference structural models. Note that the Born kernel has a different
expression from the Fredholm integration kernel given in Eq. 3.376.

The action of the second-order Fréchet derivative D2û(xr , ωi ) on the 2-tuple
(−δo(x, ωi),−δo(x, ωi)) can be read off from the third term on the RHS of
Eq. 3.377,

[
D2û(xr , ωi )

]
(−δo(x, ωi),−δo(x, ωi))

= 2
∫

V

dV (x′2)
∫

V

dV (x′1)

{ ˆ̃
G(xr , ωi ;x′2) ˆ̃G(x′2, ωi ;x′1) ˆ̃u(x′1, ωi )

[−δo(x′1, ωi )
] [−δo(x′2, ωi )

]
}

. (3.381)

For the time-domain Born series in Eq. 3.378, we introduce

δR(x) ≡ R(x)− R̃(x) = r2(x)

α̃2(x)
− 1

α̃2(x)
. (3.382)

Then Eq. 3.378 gives the Taylor expansion of the time-domain waveform with
respect to R(x) at the reference R̃(x). For a fixed receiver location x = xr and a
fixed time t = ti , the action of the first-order Fréchet derivative Du(xr , ti ) on δR(x)
can be read off from the second term on the RHS of Eq. 3.378,
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[Du(xr , ti )] δR(x)

=
∫

V

dV (x′)
[∫

dτ
∂2G̃

∂t2 (xr , ti − τ ;x′, 0)ũ(x′, τ )

]

δR(x′) (3.383)

=
∫

V

dV (x′)
[∫

dτG̃(xr , ti − τ ;x′, 0)
∂2ũ

∂t2 (x′, τ )

]
δR(x′) (3.384)

=
∫

V

dV (x′)
[∫

dτ
∂G̃

∂t
(xr, ti − τ ;x′, 0)

∂ũ

∂t
(x′, τ )

]

δR(x′). (3.385)

Note that the expressions on 3.383, 3.384 and 3.385 are all equivalent and the time-
domain Born kernel is given by the terms inside the square brackets. Here I use the
expression on 3.383 and the time-domain Born kernel with respect to R(x) at the
reference R̃(x) can be expressed as

KB(x|xr, ti ) =
∫

dτ
∂2G̃

∂t2 (xr , ti − τ ;x, 0)ũ(x, τ ), (3.386)

where I have replaced x′ with x.
The action of the second-order Fréchet derivative D2u(xr , ti ) on the 2-tuple

(δR(x), δR(x)) can be read off from the third term on the RHS of Eq. 3.378,
[
D2u(xr , ti )

]
(δR(x), δR(x)) = 2

∫

V

dV (x′2)
∫

V

dV (x′1)

{∫
dtδ(t − ti )

[
∂2G̃

∂t2 (xr , t;x′2, 0) ∗ ∂2G̃

∂t2 (x′2, t;x′1, 0) ∗ ũ(x′1, t)
]

δR(x′1)δR(x′2)

}
. (3.387)

To construct the Born kernel in Eqs. 3.380 or 3.386 we need access to both the for-
ward wavefield from the source to all the scatterers ˆ̃u(x, ωi) and also the Green’s

function from all the scatterers to the receiver ˆ̃G(xr , ωi ;x). The forward wavefieldˆ̃u(x, ωi) can be generated easily through one wave-propagation simulation from

the source. To generate the Green’s function ˆ̃
G(xr, ωi ;x), the number of wave-

propagation simulations is the same as the number of scatterers, which is effectively
the number of recording grid points in the finite-difference mesh (Sect. 2.2.5). The
computational cost would be prohibitive if we adopt such a brute-force approach,
especially when the reference structural model α̃(x) is three-dimensional in space
and we have to resort to the finite-difference or other numerical techniques to solve
the wave equation.

The technique implemented in (Zhao et al. 2005, 2006) and later named the
scattering-integral (SI) method in (Chen et al. 2007a, b) is to use the reciprocity

relation (Eq. 3.293) to replace ˆ̃
G(xr, ωi ;x) in the Born kernel with ˆ̃

G(x, ωi ;xr ).
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The Green’s function ˆ̃
G(x, ωi ;xr ) is the RGT (Sect. 3.4) and requires only one

wave-propagation simulation from the receiver at xr to all the scatterers.
An alternative to using the reciprocity relation is to use Eq. 3.286 to replace

ˆ̃
G(xr , ωi ;x) in the Born kernel with

[ ˆ̃
G†(x, ωi ;xr )

]∗
, which corresponds to the

time-reversed6 adjoint Green’s function (Sect. 3.4.1) and can be generated through
one adjoint wave-propagation simulation from the receiver xr to all the scatterers
by solving the adjoint scalar wave equation (Eq. 3.188) coupled with the adjoint
initial/boundary conditions (Eqs. 3.247, 3.249 or 3.251).

For a given data set including Ns sources and Nr receivers, the total number of
wave-propagation simulations (including the adjoint wave-propagation simulations
if the alternative approach is adopted) needed to construct the Born kernels for all
source-receiver paires is Ns + Nr .

Consider the three-dimensional whole-space structural model with constant wave
velocity α̃(x) = c0, whose Green’s function can be obtained by solving Eq. 3.363
analytically and is given by (e.g., Aki and Richards 2002)

ˆ̃
G(x, ω;xr ) = −e−iω|x−xr |/c0

4π |x− xr | , (3.388)

in the frequency domain and by

G̃(x, t;xr ) = −δ(t − |x− xr | /c0)

4π |x− xr | (3.389)

in the time domain. Here |x− xr | represents the Euclidean distance between loca-
tion x and location xr and the origin time of the Dirac delta source is set at t = 0.
Note that the differences between Eq. 3.389 above and Eq. 4.3 in (Aki and Richards
2002) are due to differences in the definition of the scalar wave equation, Eq. 3.186
above and Eq. 4.2 in (Aki and Richards 2002), and also the sign of the Dirac delta
source. We assume that the forward wavefield in the reference media is generated
by the source δ(x− xs)S(t) and we have

ˆ̃u(x, ω) = −e−iω|x−xs |/c0

4π |x− xs | Ŝ(ω), (3.390)

ũ(x, t) = −S(t − |x− xs | /c0)

4π |x− xs | , (3.391)

where Ŝ(ω) is the Fourier transform of S(t). Bring Eqs. 3.388 and 3.390 into
Eq. 3.380, we obtain the frequency-domain Born kernel for the whole-space
structural model

KB(x|xr , xs, ωi ) = − e−iωi(|x−xr |+|x−xs |)/c0

(4π)2 |x− xr | |x− xs | Ŝ(ωi). (3.392)

6 Conjugation in the frequency domain is equivalent to reversing the direction of the time axis in
the time domain.
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Fig. 3.7 Cross-section views of the frequency-domain Born kernels for the whole-space structural
model. Left column: imaginary part of the kernel; right column: real part of the kernel. Top row:
the kernel at 5 Hz; bottom row: the kernel at 10 Hz. Black star: source location; black triangle:
receiver location. The wave velocity α̃ = 6.0 km/s. The source is located at coordinate (4 km,
0 km, 5 km) and the receiver is located at coordinate (11 km, 0 km, 5 km). The cross-section
views are perpendicular to the source-receiver x − z plane. Gray scale shows the value (darker:
positive; lighter: negative) of the real or imaginary part of the kernel at every spatial location x on
the cross-section.

In Fig. 3.7, I have plotted examples of the real and imaginary parts of
KB(x|xr, xs , ωi ) at two different frequencies. Bring Eqs. 3.389 and 3.391 into
Eq. 3.386, we obtain the time-domain Born kernel for the whole-space model,

KB(x|xr , xs, ti ) = S̈ (ti − (|x− xr | + |x− xs |) /c0)

(4π)2 |x− xr | |x− xs | , (3.393)

where S̈(t) is the second-order time derivative of S(t). Examples of the time-domain
Born kernel KB(x|xr, xs, ti ) for four different ti values are shown in Fig. 3.8.
The whole-space Born kernels shown here were named the Born wavepaths in
(Woodward 1992) and they have utilities in diffraction tomography, which have
been discussed extensively in the literature. For general three-dimensional refer-
ence structural models, we cannot use Eqs. 3.392 or 3.393 for obtaining the Born
kernel and must resort to purely numerical solutions of the wave equation.
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Fig. 3.8 Cross-section views of the time-domain Born kernels for the whole-space structural
model. From top to bottom, left to right, are time-domain kernel amplitudes at ti = 1.25 s, 1.5 s,
1.75 s and 2.0 s. Black star: source location; black triangle: receiver location. Gray scale shows ker-
nel amplitude (lighter: positive; darker: negative) at every spatial location x on the cross-section.
Note that in 3D the kernel is shaped as an ellipsoid with the source and the receiver located at its
two focal points.

3.5.1.2 Born Approximation

Whether the Born series in Eq. 3.377 converges or not depends upon the norm of
the Fredholm integration kernel K(x, x′, ω) given in Eq. 3.376. The Born series con-
verges if the condition in Eq. 3.361 is satisfied. Unlike the Born kernel (Eq. 3.380),
the Fredholm kernel involves the difference between the actual and the reference
structural models Δo(x, ω), which is usually unknown in tomography studies.
Instead of analyzing the norm of the Fredholm kernel, we take a more intuitive
approach and try to give qualitative conditions under which the first two terms on
the RHS of Eqs. 3.377 or 3.378 can provide a good approximation to the LHS of
Eqs. 3.377 or 3.378. This first-order approximation

û(x, ω) ≈ ˆ̃u(x, ω)+
∫

V

dV (x′) ˆ̃G(x, ω;x′)Δo(x′, ω) ˆ̃u(x′, ω) (3.394)

⇒ Δû(x, ω) ≈
∫

V

dV (x′) ˆ̃G(x, ω;x′)Δo(x′, ω) ˆ̃u(x′, ω) (3.395)
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Fig. 3.9 An incident plane wave in the whole-space structure model ˆ̃u(x, ω), a cylindrical object
with radius a and the wavefield inside the cylinder û(x, ω).

is often called the Born approximation. A time-domain formula can be obtained
by ignoring the second- and higher-order terms on the RHS of Eq. 3.378. Note that
Eqs. 3.394 or 3.395 is called an “approximation” because we have neglected higher-
order terms on the RHS of the Born series (Eq. 3.377). The Born kernel (Eq. 3.380),
which appears on the RHS of Eq. 3.395 still provides the exact first-order Fréchet
derivative of the waveform with respect to o(x, ω) (Sect. 3.5.1.1) and there is no
approximation to this first-order Fréchet derivative itself. In practice the Green’s
function and the forward wavefield in the Born kernel can be computed using
approximate solutions to the wave equation, e.g., ray-theoretic solutions as in the
generalized Radon transform (e.g., Beylkin 1985), but this type of approximations
are different from the Born approximation discussed here.

Consider a cylindrical object with radius a embedded inside a whole-space struc-
tural model with constant wave velocity c0 (Fig. 3.9). The difference between the
refractive index inside the cylinder and that outside the cylinder is Δr . The incident
wave is a plane wave propagating in the direction of the unit vector n̂ and we have

ˆ̃u(x, ω) = Ae−ik̃n̂·x, (3.396)

where “·” represents the Euclidean dot product. The wavefield inside the cylinder
propagates either slower or faster than the incident wave depending upon Δr . We
can approximate the wavefield inside the cylinder as

û(x, ω) ≈ Ae−ik̃(1+Δr)n̂·x. (3.397)

The accumulative phase change through the cylinder is therefore

Δφ = k̃Δr × 2a = 2π

λ̃
Δr × 2a = 4πaΔr

λ̃
. (3.398)

A necessary condition for the Born approximation to be valid is that the accumula-
tive phase change is small, i.e., we require

Δφ = 4πaΔr

λ̃
� π ⇒ aΔr � λ̃

4
. (3.399)

For a fixed wavelength λ̃ there are three scenarios under which the condition in
Eq. 3.399 can be satisfied. One possibility is to have small scatterers (i.e., small a)
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with possibly large material contrast (i.e., large Δr). A second possibility is to have
very small material contrast (i.e., small Δr) but the size of the scatterer might be
large (i.e., large a). And a third possibility is that both the size of the scatterer and
the material contrast are small. For fixed a and Δr , Eq. 3.399 can also be satisfied by
increasing the wavelength λ̃, which can often be achieved through low-pass filtering
(e.g., Bunks et al. 1995; Sirgue and Pratt 2004).

If the approximation in Eqs. 3.394 or 3.395 is valid, we have established an
approximate linear relation between the waveform difference Δû(x, ω) and the dif-
ference in material property Δo(x′, ω). The waveform difference can be computed
by simply subtracting the model-predicted (i.e., synthetic) waveform computed in
the reference structural model ˆ̃u(x, ω) from the observed waveform û(x, ω) at loca-
tions of the receivers. The Born kernel (Eqs. 3.380 or 3.386) can be computed by
convolving the forward wavefield from the source with either the RGTs or the time-
reversed adjoint Green’s functions (Sect. 3.5.1.1), which are also computed in the
reference structural model. For a given data set and a given reference structural
model, it is therefore possible to set up a linear inverse problem based on the Born
approximation (Eq. 3.395) to solve for the difference in material property between
the actual and the reference structural models.

3.5.2 The Anisotropic Viscoelastic Wave Equation

Consider the anisotropic viscoelastic wave-equation operator defined in Eq. 3.204,

Lx,t [u (x, t)]i = ρ (x)
∂2ui (x, t)

∂t2

−
3∑

j,k,l=1

∂

∂xj

[∫ +∞

−∞
dτΨijkl (x, t − τ )

∂uk (x, τ )

∂xl

]
= fi (x, t), (3.400)

and the equation for the reference media defined by ρ̃(x) and Ψ̃ijkl(x, t),

L̃x,t

[
ũ (x, t)

]
i
= ρ̃ (x)

∂2ũi (x, t)

∂t2

−
3∑

j,k,l=1

∂

∂xj

[∫ +∞

−∞
dτ Ψ̃ijkl (x, t − τ )

∂ũk (x, τ )

∂xl

]
= fi (x, t), (3.401)

where ũi (x, t) is the wavefield in the reference media. The material differences are
given by [

Δρ(x)

ΔΨijkl(x, t)

]

≡
[

ρ(x)− ρ̃(x)

Ψijkl(x, t)− Ψ̃ijkl(x, t)

]

, (3.402)

and the wavefield difference is

Δui(x, t) ≡ ui (x, t)− ũi(x, t). (3.403)
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Subtract Eq. 3.401 from Eq. 3.400, considering the definitions in Eqs. 3.402 and
3.403, we obtain

L̃x,t [Δu (x, t)]i = ρ̃ (x)
∂2Δui (x, t)

∂t2

−
3∑

j,k,l=1

∂

∂xj

[∫ +∞

−∞
dτ Ψ̃ijkl (x, t − τ )

∂Δuk (x, τ )

∂xl

]
= −Δρ(x)

∂2ui (x, t)

∂t2

+
3∑

j,k,l=1

∂

∂xj

[∫ +∞

−∞
dτΔΨijkl (x, t − τ )

∂uk (x, τ )

∂xl

]
. (3.404)

Using the representation theorem in Eq. 3.326, we obtain

ui (x, t) = ũi(x, t)

+
∫ T

0
dt ′
∫

V

dV (x′)
3∑

j=1

G̃ij (x, t;x′, t ′)
[

−Δρ(x′)
∂2uj (x′, t ′)

∂t ′2

]

+
∫ T

0
dt ′
∫

V

dV (x′)
3∑

j,k=1

∂G̃ij (x, t;x′, t ′)
∂x ′k

3∑

l,m=1

[

−
∫ +∞

−∞
dτΔΨjklm

(
x′, t ′ − τ

) ∂ul

(
x′, τ

)

∂x ′m

]

, (3.405)

where G̃ij is the Green’s tensor computed in the reference media. We can apply
Eq. 3.359 to the integral Eq. 3.405 and obtain the Born series for the anisotropic
viscoelastic wave equation

ui (x, t) = ũi(x, t) (3.406)

−
∫

V

dV (x′)
3∑

j=1

G̃ij (x, t;x′, 0) ∗ ∂2ũj (x′, t)
∂t2 Δρ(x′)

−
∫

V

dV (x′)
3∑

j,k,l,m=1

∂G̃ij (x, t;x′, 0)

∂x ′k
∗ ∂ũl

(
x′, t
)

∂x ′m
∗ΔΨjklm

(
x′, t
)

+
∫

V

dV (x′2)
3∑

j=1

G̃ij (x, t;x′2, 0) ∗
[
Δρ(x′2)

∂2

∂t2

]

{∫

V

dV (x′1)
3∑

k=1

G̃jk(x′2, t;x
′
1, 0) ∗

[

Δρ(x′1)
∂2ũk(x′1, t)

∂t2

]

+
∫

V

dV (x′1)
3∑

n,o,p,q=1

∂G̃jn(x′2, t;x′1, 0)

∂x ′1o

∗
[

ΔΨnopq

(
x′1, t

) ∗ ∂ũp

(
x′1, t

)

∂x ′1q

]}
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+
∫

V

dV (x′2)
3∑

j,k,l,m=1

∂G̃ij (x, t;x′2, 0)

∂x ′2k

∗
[

ΔΨjklm

(
x′2, t

) ∗ ∂

∂x ′2m

]

{∫

V

dV (x′1)
3∑

k=1

G̃lk(x′2, t;x′1, 0) ∗
[

Δρ(x′1)
∂2ũk(x′1, t)

∂t2

]

+
∫

V

dV (x′1)
3∑

n,o,p,q=1

∂G̃ln(x′2, t;x′1, 0)

∂x ′1o

∗
[

ΔΨnopq

(
x′1, t

) ∗ ∂ũp

(
x′1, t

)

∂x ′1q

]}

+ · · · .

Here I have used the translation-invariance in time of the Green’s tensor to convert
the integrations over time to temporal convolutions, denoted using “∗” in Eq. 3.406.

The first- and higher-order Fréchet derivatives of the waveform ui (x, t) with
respect to material properties ρ(x) and Ψjklm(x, t) at the reference structural model
ρ̃(x) and Ψ̃jklm(x, t) can be obtained from Eq. 3.406. For a fixed receiver location
x = xr and time t , the Born kernel for the density ρ(x) can be expressed as

K
ρ
B(x|xr, t) = −

3∑

j=1

G̃ij (xr, t;x, 0) ∗ ∂2ũj (x, t)

∂t2 (3.407)

= −
3∑

j=1

∂2G̃ij (xr , t;x, 0)

∂t2 ∗ ũj (x, t) (3.408)

= −
3∑

j=1

∂G̃ij (xr , t;x, 0)

∂t
∗ ∂ũj (x, t)

∂t
. (3.409)

Here I have replaced x′ with x and the expressions in 3.407, 3.408 and 3.409 are
equivalent. The Born kernel for the rate of relaxation at a given time τ , Ψjklm(x, τ ),
can be expressed as

K
Ψjklm

B (x|xr, t, τ ) = −
∫

dt ′
∂G̃ij (xr , t − t ′;x, 0)

∂xk

∂ũl

(
x, t ′ − τ

)

∂xm

. (3.410)

Here I have replaced x′ with x. If the material is perfectly elastic, we have

Ψjklm(x, τ ) = cjklm(x)δ(τ ), (3.411)

the Born kernel for cjklm(x) can then be expressed as

K
cjklm

B (x|xr, t) = −∂G̃ij (xr , t;x, 0)

∂xk

∗ ∂ũl (x, t)

∂xm

. (3.412)

The Green’s tensor G̃ij (xr , t;x, 0) inside the Born kernels can be replaced with the
RGT G̃ji(x, t;xr , 0) if we use the reciprocity relation in Eq. 3.306 and we obtain

K
ρ
B(x|xr, t) = −

3∑

j=1

∂G̃ji(x, t;xr , 0)

∂t
∗ ∂ũj (x, t)

∂t
, (3.413)
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for the Born density kernel,

K
Ψjklm

B (x|xr , t, τ ) = −
∫

dt ′
∂G̃ji(x, t − t ′;xr , 0)

∂xk

∂ũl

(
x, t ′ − τ

)

∂xm

, (3.414)

for the viscoelastic rate-of-relaxation and

K
cjklm

B (x|xr, t) = −∂G̃ji(x, t;xr , 0)

∂xk

∗ ∂ũl (x, t)

∂xm

, (3.415)

for the elastic moduli. If we use Eq. 3.297 instead, we can replace G̃ij (xr , t;x, 0)

with the time-reversed adjoint Green’s tensor G̃
‡
ji (x, t;xr , 0) (Eq. 3.345, Sect. 3.4.1)

and we obtain

K
ρ
B(x|xr, t) = −

3∑

j=1

∂G̃
‡
ji(x, t;xr , 0)

∂t
∗ ∂ũj (x, t)

∂t
, (3.416)

K
Ψjklm

B (x|xr , t, τ ) = −
∫

dt ′
∂G̃

‡
ji(x, t − t ′;xr , 0)

∂xk

∂ũl

(
x, t ′ − τ

)

∂xm

, (3.417)

K
cjklm

B (x|xr, t) = −
∂G̃

‡
ji(x, t;xr , 0)

∂xk

∗ ∂ũl (x, t)

∂xm

. (3.418)

If the second- and higher-order terms on the RHS of the Born series (Eq. 3.406)
are ignored, we obtain the Born approximation for the anisotropic viscoelastic wave
equation.
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Chapter 4
Data Sensitivity Kernels

The previous chapter is centered around Green’s functions and adjoint Green’s
functions. I have shown that the solutions of the forward problems can be rep-
resented using Green’s functions and explicit formulas are given for computing
Fréchet derivatives of the waveform with respect to the moment tensor density of the
seismic source and the rate-of-relaxation and density of the structural model using
either receiver Green’s tensors (RGTs) or time-reversed adjoint Green’s tensors. For
the anisotropic viscoelastic wave equation, we can combine Eqs. 3.342, 3.413 and
3.414 and write

δus
i (xr , t) =

∫
dτ

∫

V

dV (x)
3∑

j,k=1

∂Gji(x, t − τ ; xr , 0)

∂xk

δms
jk(x, τ )

−
∫

V

dV (x)
3∑

j=1

∂Gji(x, t; xr , 0)

∂t
∗ ∂us

j (x, t)

∂t
δρ(x)

−
∫

dτ

∫

V

dV (x)
3∑

j,k,l,m=1

{ ∫
dt ′

∂Gji(x, t − t ′; xr , 0)

∂xk

∂us
l

(
x, t ′ − τ

)

∂xm

δΨjklm (x, τ )

}
, (4.1)

where I have applied the reciprocity principle (Eq. 3.306), the Green’s tensor and the
forward wavefield are computed using the reference source and structural models1

and the superscript s is an index for the seismic source that generates the forward
wavefield. In Eq. 4.1, we can also replace the Green’s tensor with the time-reversed
adjoint Green’s tensor by applying Eqs. 3.297 and 3.345. This formulation based
on Green’s functions will allow us to analyze the computational costs of differ-
ent implementations more easily and will make explicit both the connections and
the differences between the adjoint-wavefield method (e.g., Tarantola 1988b; Pratt

1 Here I have dropped the˜on top of the Green’s tensor and the forward wavefield used in Eqs. 3.413
and 3.414 to reduce clutter.
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1999; Pratt and Shipp 1999; Tromp et al. 2005; Tape et al. 2009; Fichtner 2010; Liu
and Gu 2012) and the scattering-integral method (e.g., Zhao et al. 2005, 2006; Chen
et al. 2007a, b; Chen 2011) for full-3D waveform tomography (F3DT).

Unlike travel-time observations, seismic waveforms are highly nonlinear with
respect to seismic velocity models and this strong nonlinearity often exhibits itself
as numerous spurious local minima on objective functions defined in terms of wave-
form differences. An early numerical example of such nonlinearity was presented in
(Gauthier et al. 1986), in which the objective function was defined as the energy of
the time-domain differences between the observed and the corresponding synthetic
waveforms, i.e., ‖ū(t)− u(t)‖L2

, where ū(t) is the observed waveform and u(t) is
the corresponding synthetic waveform. For such strongly nonlinear optimization
problems, gradient-based descent algorithms can stagnate at a local minimum with-
out converging to a useful model, unless the starting model is already close enough
to the global minimum. In such a situation, the Fréchet derivatives, even though they
can be computed accurately using purely numerical solutions of the 3D wave equa-
tion, are not useful for achieving global convergence. It is therefore important to
consider other types of misfit measures that are more linear with respect to seismic
velocity models.

In this chapter, I will focus on an issue that is highly important for solving seismic
inverse problems: the construction of Fréchet kernels for different types of wave-
form misfit measures and for different types of parameterizations of source and
structural models. I will show that the Fréchet kernels for any types of waveform
misfit measures with respect to any model parameters can be constructed using
the primary kernels derived in the previous chapter and summarized in Eq. 4.1.
The calculations involved in this chapter will be demonstrated using the software
F3DWI.

4.1 Definition

A certain parameterization of the unknown (target) earth structure and seismic
source models can be combined into a model vector m. The vector-valued displace-
ment field computed using m for the s-th seismic source can be denoted as us(x, t).
The synthetic displacement field computed using a reference source and structural
model m̃ can be denoted as ũs (x, t). For each pair of ũs(x, t) and us(x, t) we can
introduce a finite set of scalars, indexed using n, that quantify the misfits between
ũs(x, t) and us(x, t),

dsn ≡ Dn

(
ũs(x, t)

) [
us (x, t)

]
. (4.2)

Here Dn is a map defined using the reference displacement field ũs(x, t) and applied
on the target displacement field us (x, t). Since it maps us(x, t), which is a vector-
valued function of space and time, to a scalar dsn ∈ C, Dn can be called a data
functional. A data functional must satisfy the condition

Dn

(
ũs (x, t)

) [
ũs(x, t)

] = 0, (4.3)
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i.e., it must be zero when us(x, t) = ũs(x, t). The observed displacement wavefield
can be denoted as ūs (x, t) and when us(x, t) = ūs (x, t), we have

d̄sn ≡ Dn

(
ũs(x, t)

) [
ūs (x, t)

]
. (4.4)

Using Eqs. 4.2 and 4.4, we can define the difference

�dsn ≡ d̄sn − dsn = Dn

(
ũs(x, t)

) [
ūs (x, t)

]−Dn

(
ũs (x, t)

) [
us (x, t)

]
. (4.5)

This difference takes on the value of d̄sn when the target wavefield is identical to
the reference wavefield, i.e.,

�dsn = Dn

(
ũs(x, t)

) [
ūs (x, t)

]−Dn

(
ũs(x, t)

) [
ũs (x, t)

]

= Dn

(
ũs(x, t)

) [
ūs (x, t)

] = d̄sn, (4.6)

considering Eq. 4.3. And when the target wavefield is identical to the observed
wavefield, we have

�dsn = Dn

(
ũs (x, t)

) [
ūs (x, t)

]−Dn

(
ũs (x, t)

) [
ūs(x, t)

] = 0. (4.7)

We can evaluate the Fréchet derivative of the data functional dsn with respect to m
at the reference model m̃ and we have

δdsn =
∫

V

dV (x)
∫ T

0
dtK(x, t|m̃) · δm(x, t), (4.8)

where m̃(x, t) denotes the reference source and structural models, “·” denotes the
Euclidean dot product and the integration kernel of the Fréchet derivative K(x, t|m̃)
evaluated at the reference source and structural models m̃(x, t) is called the data sen-
sitivity kernel (Backus and Gilbert 1968). Since d̄sn has no dependence on m(x, t),
the Fréchet kernel of �dsn with respect to m(x, t) at the reference model m̃(x, t)
can be expressed as

δ�dsn = −δdsn = −
∫

V

dV (x)
∫ T

0
dtK(x, t|m̃) · δm(x, t). (4.9)

In Sect. 4.2, I will discuss the construction of the data sensitivity kernels for any
data functionals by applying the chain rule of the Fréchet derivative (Eq. 3.152).
In Sect. 4.3, I will discuss how to construct the data sensitivity kernels for model
parameterizations other than the rate-of-relaxation tensor or the stiffness tensor
through linear combinations of the primary kernels.
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4.2 Data Functionals

The discrepancies between the reference wavefield ũs(x, t) and the corresponding
target wavefield us(x, t) can be quantified in infinitely many different ways. For
example, we can use the difference between the time-domain waveforms on the i-th
component of the r-th receiver at time tn as a data functional, i.e.,

dsn = Dn

(
ũs (x, t)

) [
us (x, t)

]

=
∫

V

dV (x)
∫ T

0
dt

3∑

p=1

δ(x− xr )δ(t − tn)δip

[
us

p(x, t)− ũs
p(x, t)

]

= us
i (xr, tn)− ũs

i (xr , tn), (4.10)

where xr is the location of the rth receiver, δip is the Kronecker delta and δ( ) denotes
the Dirac Delta function.

Multiple components on the same receiver can be involved in a single misfit
measurement. In the example above, suppose the difference is taken on the radial
component, then we have

dsn = Dn

(
ũs (x, t)

) [
us (x, t)

]

=
∫

V

dV (x)
∫ T

0
dt

3∑

p=1

δ(x− xr )δ(t − tn)
3∑

i=1

γiδip

[
us

p(x, t)− ũs
p(x, t)

]

=
3∑

i=1

γiu
s
i (xr, tn)−

3∑

i=1

γiũ
s
i (xr , tn), (4.11)

where γ1 = sin (θ ), γ2 = cos (θ ), γ3 = 0 and θ is the angle between the radial and
the x2 (e.g., north) directions.

A single data functional can also involve the displacement at multiple spatial
locations, multiple time samples and/or multiple frequency samples. In practice the
data functional can also involve operations that are nonlinear with respect to us (x, t)
and much more complex than the simple subtraction used in Eqs. 4.10 and 4.11. But
no matter how complex the data functional is, it is always possible to construct the
Fréchet derivative of the data functional with respect to the target wavefield as long
as all the operations involved in the data functional are given. The integration kernel
of this Fréchet derivative was named the seismogram perturbation kernel (SPK) in
(Chen et al. 2007a). In (Chen et al. 2007a), I defined the SPK as the time-dependent,
space-independent Fréchet kernel of the data functional with respect to the target
waveform on a fixed component at a fixed receiver location. The same concept can
be generalized to account for data functionals that involve the full target wavefield.
Using Eq 3.145, the action of the Fréchet derivative Ddsn on a small wavefield
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perturbation δus (x, t) can be computed as

[
Ddsn

]
δus(x, t) = lim

α→0

Dn

(
ũs
) [

us + αδus
]−Dn

(
ũs
) [

us
]

α
. (4.12)

The integration kernel of the operator Ddsn is defined as the vector-valued, space-
and time-dependent wavefield perturbation kernel (WPK) Jsn(x, t) and we have

δdsn =
∫

V

dV (x)
∫ T

0
dtJsn(x, t) · δus (x, t)

=
∫

V

dV (x)
∫ T

0
dt

3∑

p=1

J sn
p (x, t)δus

p(x, t). (4.13)

For the example shown in Eq. 4.11, the WPK for this data functional can be
expressed as

J sn
p (x, t) = δ(x− xr )δ(t − tn)γp. (4.14)

Because this data functional is linear with respect to the target wavefield us(x, t),
the WPK does not depend on us(x, t). For data functionals that are nonlinear with
respect to us(x, t), the corresponding WPKs should have dependence upon us(x, t).

4.2.1 Data Functionals for ∇ × u and ∇ · u

For sensors that measure a certain transform of the displacement field, for instance,
the rotational sensors that measure the curl of the displacement ∇ × u at fixed loca-
tions (e.g., Cochard et al. 2006, Lee et al. 2009a, b), the data functional can be
defined using the reference rotational field w̃s (x, t) ≡ ∇ × ũs (x, t) and applied on
the target rotational field ws(x, t) ≡ ∇ × us(x, t), i.e.,

dsn ≡ Dn

(
w̃s(x, t)

) [
ws(x, t)

]
. (4.15)

The action of the Fréchet derivative Ddsn on δus(x, t) can therefore be computed as
[
Ddsn

]
δus (x, t) = lim

α→0

{
Dn

(∇ × ũs
) [∇ × (us + αδus

)]

−Dn

(∇ × ũs
) [∇ × us

] }
/α. (4.16)

The WPK can be constructed in two steps. In the first step, we introduce the
integration kernel J′(x, t) such that

δdsn =
∫

V

dV (x)
∫ T

0
dtJ′(x, t) · [∇ × δus(x, t)

]
, (4.17)

where I have used the linearity of the curl operator∇× (us + δus ) = ∇×us +∇×
δus = ws + δws and the integration kernel J′(x, t) is the Fréchet kernel of the data
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functional with respect to the target rotational field ws (x, t). In the second step, we
use Eq. 3.199 to transfer the curl operator from δus(x, t) to J′(x, t),

δdsn =
∫

V

dV (x)
∫ T

0
dt
[∇ × J′(x, t)

] · δus(x, t)

=
∫

V

dV (x)
∫ T

0
dtJsn(x, t) · δus (x, t). (4.18)

Here I have defined the WPK for the data functional dsn with respect to us(x, t) as

Jsn(x, t) ≡ ∇ × J′(x, t), (4.19)

and I have assumed that the surface term
∫
∂V Q · ênda(x) = 0, which can be satisfied

by choosing the boundary of the volume ∂V away from all receiver locations.
For sensors that measure the divergence of the displacement field ∇ ·us(x, t), the

data functional can be defined using the reference divergence field and applied on
the target divergence field, i.e.,

dsn ≡ Dn

(∇ · ũs(x, t)
) [∇ · us (x, t)

]
. (4.20)

We denote the Fréchet kernel of dsn with respect to the divergence field ∇ · us (x, t)
as J ′(x, t), then we have

δdsn =
∫

V

dV (x)
∫ T

0
dtJ ′(x, t)

[∇ · δus (x, t)
]

. (4.21)

Using Eq. 3.196, we obtain

δdsn =
∫

V

dV (x)
∫ T

0
dt
[−∇J ′(x, t)

] · δus(x, t)

=
∫

V

dV (x)
∫ T

0
dtJsn(x, t) · δus (x, t), (4.22)

where we have defined the WPK of dsn with respect to us (x, t) as

Jsn(x, t) ≡ −∇J ′(x, t), (4.23)

and the surface term
∫
∂V Q · ênda(x) can always be made zero.

4.2.2 Filtered RGT

In practice, the RGTs used in constructing the primary kernels in Eq. 4.1 are usually
filtered using a finite-bandwidth source-time function. From a theoretical point-
of-view, using a finite-bandwidth source-time function instead of a Dirac delta
function may improve the numerical behavior of the wave-equation solver in certain
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numerical algorithms for solving differential equations. From a practical point-of-
view, before measuring the discrepancies between the observed seismogram and
the corresponding synthetic seismogram, both seismograms are usually low-pass or
band-pass filtered using the same filter. To account for this filtering step in the corre-
sponding data sensitivity kernels, we need to convolve the same filter to the primary
kernels and derive the WPK from the filtered synthetic seismogram. Convolving
the filter to the primary kernels is equivalent to using this filter as the source-time
function of the RGT.

In Eq. 3.349, the filtered RGT is denoted as Ǧji(x, t; xr , 0) and the source-time
function used for computing the RGT (or RSGT) is denoted as h(t). If we replace the
RGT on the RHS of Eq. 4.1 Gji (x, t; xr , 0) with the filtered RGT Ǧji (x, t; xr , 0),
the LHS of Eq. 4.1 δus

i (xr , t) must also be replaced with δǔs
i (xr , t), where

ǔs
i (xr , t) = us

i (xr , t) ∗ h(t) (4.24)

is the displacement seismogram filtered using h(t) (Eq. 3.348). In this situation, the
data functional can be constructed to quantify the discrepancies between the filtered
reference wavefield and the filtered target wavefield,

ďsn = Dn

( ˇ̃us (x, t)
) [

ǔs (x, t)
]
, (4.25)

where the filtered reference wavefield is

ˇ̃us
i (x, t) = ũs

i (x, t) ∗ h(t). (4.26)

The WPK corresponding to the data functional in Eq. 4.25 must also be constructed
using the filtered reference wavefield ˇ̃us (x, t). If this WPK is denoted as J̌sn(x, t),
then we have

δďsn =
∫

V

dV (x)
∫ T

0
dt J̌sn(x, t) · δǔs (x, t), (4.27)

where the filtered wavefield perturbation can be expressed as

δǔs
i (xr , t) = h(t) ∗ δus

i (xr , t) (4.28)

=
∫

dτ

∫

V

dV (x)
3∑

j,k=1

∂Ǧji(x, t − τ ; xr , 0)

∂xk

δms
jk(x, τ )

−
∫

V

dV (x)
3∑

j=1

∂Ǧji(x, t; xr , 0)

∂t
∗ ∂us

j (x, t)

∂t
δρ(x)

−
∫

dτ

∫

V

dV (x)
3∑

j,k,l,m=1

{ ∫
dt ′

∂Ǧji(x, t − t ′; xr , 0)

∂xk

∂us
l

(
x, t ′ − τ

)

∂xm

δΨjklm (x, τ )

}
.
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Equation 4.28 gives the filtered primary kernels. Note that the filtered RGT
Ǧji(x, t; xr , 0) is also computed using the reference structural model and I have
dropped the “ ˜” used in Chap. 3 to reduce clutter. The RGTs used in constructing
the data sensitivity kernels in this chapter are all filtered RGTs and I will drop the “
ˇ” in the following to reduce clutter.

4.2.3 The Chain Rule

The data functional maps the target wavefield us (x, t) to a scalar in C and the
anisotropic viscoelastic wave-equation solver allows us to map the source and struc-
tural models ms

jk(x, τ ), ρ(x) and Ψjklm (x, τ ) to the target wavefield us (x, t). The
Fréchet kernel of the target wavefield with respect to source and structural models
are given by the primary kernels derived in Chap. 3 and summarized in Eq. 4.1. The
Fréchet kernel of the data functional with respect to the target wavefield is given by
the WPK (Eq. 4.13). The Fréchet kernel of the data functional with respect to source
and structural models can be obtained by composing the primary kernels with the
WPK (Eq. 3.152).

For the moment tensor density of the source we have

δdsn =
∫

V

dV (x)
∫ T

0
dt

3∑

p=1

J sn
p (x, t)

∫
dτ

∫

V

dV (x′)
3∑

j,k=1

∂Gjp(x′, t − τ ; x, 0)

∂x ′k
δms

jk(x′, τ )

=
3∑

j,k=1

∫
dτ

∫

V

dV (x′)
{∫

V

dV (x)
∫ T

0
dt

3∑

p=1

J sn
p (x, t)

∂Gjp(x′, t − τ ; x, 0)

∂x ′k

}
δms

jk(x′, τ ), (4.29)

and the Fréchet kernel of the data functional with respect to ms
jk(x, t) can be

expressed as

K
ms

jk

dsn (x, t) =
∫

V

dV (x′)
∫ T

0
dτ

3∑

p=1

J sn
p (x′, τ )

∂Gjp(x, τ − t; x′, 0)

∂xk

, (4.30)

where I have switched the roles of x and x′ (i.e., x ↔ x′) and the roles of t and τ

(i.e., t ↔ τ ).
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For the density ρ(x), we have

δdsn = −
∫

V

dV (x)
∫ T

0
dt

3∑

p=1

J sn
p (x, t)

⎡

⎣
∫

V

dV (x′)
3∑

j=1

∂Gjp(x′, t; x, 0)

∂t
∗ ∂us

j (x′, t)
∂t

δρ(x′)

⎤

⎦

= −
∫

V

dV (x′)
{∫

V

dV (x)
∫ T

0
dt

3∑

p=1

J sn
p (x, t)

3∑

j=1

∂Gjp(x′, t; x, 0)

∂t
∗ ∂us

j (x′, t)
∂t

}
δρ(x′), (4.31)

and the corresponding Fréchet kernel can be expressed as

K
ρ
dsn(x) = −

∫

V

dV (x′)
∫ T

0
dt

3∑

j,p=1

J sn
p (x′, t)

∂Gjp(x, t; x′, 0)

∂t
∗ ∂us

j (x, t)

∂t
, (4.32)

where I have switched the roles of x and x′ (i.e., x ↔ x′).
For the rate-of-relaxation tensor Ψjklm(x, t) we have

δdsn = −
∫

V

dV (x)
∫ T

0
dt

3∑

p=1

J sn
p (x, t)

∫
dτ

∫

V

dV (x′)

3∑

j,k,l,m=1

[∫
dt ′

∂Gjp(x′, t − t ′; x, 0)

∂x ′k

∂us
l

(
x′, t ′ − τ

)

∂x ′m
δΨjklm

(
x′, τ

)
]

= −
3∑

j,k,l,m=1

∫

V

dV (x′)
∫

dτ

{∫

V

dV (x)
∫ T

0
dt

3∑

p=1

J sn
p (x, t)

∫
dt ′

∂Gjp(x′, t − t ′; x, 0)

∂x ′k

∂us
l

(
x′, t ′ − τ

)

∂x ′m

}
δΨjklm

(
x′, τ

)
, (4.33)

and the corresponding Fréchet kernel can be expressed as

K
Ψjklm

dsn (x, t) = −
∫

V

dV (x′)
∫ T

0
dτ

3∑

p=1

J sn
p (x′, τ )

∫
dt ′

∂Gjp(x, τ − t ′; x′, 0)

∂xk

∂us
l

(
x, t ′ − t

)

∂xm

, (4.34)
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where I have made the changes x ↔ x′ and t ↔ τ . If the material is elastic, the
Fréchet kernel with respect to cjklm(x) can be expressed as

K
cjklm

dsn (x) = −
∫

V

dV (x′)
∫ T

0
dt

3∑

p=1

J sn
p (x′, t)

∂Gjp(x, t; x′, 0)

∂xk

∗ ∂us
l (x, t)

∂xm

. (4.35)

Combining Eqs. 4.29–4.34, the perturbation of the data functional δdsn is related to
the perturbations in the source and structural models, parameterized in terms of the
moment tensor density, the mass density and the rate-of-relaxation tensor, as

δdsn =
∫

V

dV (x)
∫ T

0
dt

3∑

j,k=1

K
ms

jk

dsn (x, t)δms
jk(x, t)

+
∫

V

dV (x)Kρ
dsn(x)δρ(x)

+
∫

V

dV (x)
∫ T

0
dt

3∑

j,k,l,m=1

K
Ψjklm

dsn (x, t)δΨjklm (x, t) . (4.36)

For elastic models, Eq. 4.36 can be modified as

δdsn =
∫

V

dV (x)
∫ T

0
dt

3∑

j,k=1

K
ms

jk

dsn (x, t)δms
jk(x, t)

+
∫

V

dV (x)Kρ
dsn(x)δρ(x)

+
∫

V

dV (x)
3∑

j,k,l,m=1

K
cjklm

dsn (x)δcjklm (x) . (4.37)

Note that in Eqs. 4.29–4.35, the Green’s tensor Gjp and the forward wavefield from
the sth source us

l are all computed using the reference source and structural model
m̃ and I have dropped the˜on top of the Green’s tensor and the forward wavefield to
reduce clutter.

4.2.4 Time-Domain Waveform Differences

Consider the data functional defined in Eq. 4.11, whose WPK is given in Eq. 4.14.
This data functional was used in e.g., (Gauthier et al. 1986; Tarantola 1988b). Bring
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Eq. 4.14 into Eq 4.32, we obtain the Fréchet kernel of dsn with respect to the density
ρ(x), i.e.,

K
ρ
dsn(x) = −

∫

V

dV (x′)
∫ T

0
dt

3∑

j,p=1

δ(x′ − xr )δ(t − tn)γp

∂Gjp(x, t; x′, 0)

∂t
∗ ∂us

j (x, t)

∂t

= −
3∑

j,p=1

γp

∫ T

0
dtδ(t − tn)

∂Gjp(x, t; xr , 0)

∂t
∗ ∂us

j (x, t)

∂t
. (4.38)

Bring Eq. 4.14 into Eqs. 4.34 or 4.35, we obtain the Fréchet kernel of dsn with
respect to the rate-of-relaxation or the elastic moduli, i.e.,

K
Ψjklm

dsn (x, t) = −
∫

V

dV (x′)
∫ T

0
dτ

3∑

p=1

δ(x′ − xr )δ(τ − tn)γp

∫
dt ′

∂Gjp(x, τ − t ′; x′, 0)

∂xk

∂us
l

(
x, t ′ − t

)

∂xm

= −
3∑

p=1

γp

∫
dt ′

∂Gjp(x, tn − t ′; xr , 0)

∂xk

∂us
l

(
x, t ′ − t

)

∂xm

, (4.39)

K
cjklm

dsn (x) = −
∫

V

dV (x′)
∫ T

0
dt

3∑

p=1

δ(x′ − xr )δ(t − tn)γp

∂Gjp(x, t; x′, 0)

∂xk

∗ ∂us
l (x, t)

∂xm

= −
3∑

p=1

γp

∫ T

0
dtδ(t − tn)

∂Gjp(x, t; xr , 0)

∂xk

∗ ∂us
l (x, t)

∂xm

. (4.40)

In the case that the waveform difference is taken on the velocity seismogram
instead of the displacement seismogram, we have

δdsn =
∫

V

dV (x)
∫ T

0
dt

3∑

p=1

J sn
p (x, t)δu̇s

p(x, t)

= −
∫

V

dV (x)
∫ T

0
dt

3∑

p=1

J̇ sn
p (x, t)δus

p(x, t), (4.41)

where the “ ˙ ” indicates time derivative and I have applied integration-by-parts at
the second equality. Equation 4.41 indicates that we only need to replace the WPK
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Fig. 4.1 Cross-section views of the data sensitivity kernels for the time-domain waveform differ-
ences at three different time samples on the x1 component of the half-space example. The location
of the cross-section in this and the following half-space kernel figures is identical to that in Fig. 3.3.
First column: synthetic seismogram (black solid lines) and the location of the time sample (vertical
dash lines and title of the plot); second column: data sensitivity kernel with respect to the relative
perturbation in P-velocity δα/α; third column: data sensitivity kernel with respect to the relative
perturbation in S-velocity δβ/β; fourth column: data sensitivity kernel with repsect to the relative
perturbation in density δρ/ρ. The locations of the source 100001 and the reciever IN.RC01 are
the same as those shown in Fig. 3.3 and the cross-section views are perpendicular to the source-
receiver plane at iy=40. The synthetic seismogram shown on the first column is identical to that
in Fig. 2.12a.

for the displacement seismogram J n
p (x, t) with −J̇ n

p (x, t) to obtain the WPK for the
same data functional applied on the corresponding velocity seismogram.

Figure 4.1 shows cross-section views of the data sensitivity kernels at three dif-
ferent time samples on the x1-component synthetic seismogram of the half-space
example. The computation of the synthetic seismograms, the forward wavefields for
the explosive source 100001 and the RSGTs for the receiver IN.RC01 were dis-
cussed in Sects. 2.2.8 and 3.4.3. The x1-component synthetic velocity seismogram
shown on the first column of Fig. 4.1 is identical to that shown in Fig. 2.12a. The
data sensitivity kernels shown in Fig. 4.1 are not for the rate-of-relaxation tensor or
the elastic moduli as shown in Eqs. 4.39 and 4.40, but for relative perturbations in
the P- and S-velocities, δα/α and δβ/β, and the relative perturbation of the density
δρ/ρ. The conversion from the kernels in Eqs. 4.38–4.40 to those shown in Fig. 4.1
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will be discussed in Sect. 4.3. The data sensitivity kernel is a measure of the sensitiv-
ity of the data functional to the model parameters. If the kernel with respect to some
model parameter is zero at a certain spatial location, any perturbations of the model
parameter at that location will not change the misfit measurement produced by the
data functional. On the other hand, if the kernel with respect to some model param-
eter has a nonzero value at a spatial location, perturbations to the model parameter
at that location will change the misfit measurement produced by the data functional.
Therefore the spatial pattern of the kernel depends upon both the data functional and
the particular model parameter. The first time sample (top row, Fig. 4.1) is located
on the direct-arriving P-wave, therefore the sensitivity with respect to P-velocity
perturbation δα/α is much stronger than the sensitivity with respect to S-velocity
δβ/β. The second time sample (middle row, Fig. 4.1) lies on the surface-reflected
P-wave (PP) and the sensitivity kernel with respect to δα/α clearly indicates the
propagation path of this arrival. The third time sample (bottom row, Fig. 4.1) lies
on the P-to-S converted wave. The leg from the source to the free surface is a P-
wave, therefore the sensitivity to δα/α is much stronger (second column, bottom
row, Fig. 4.1). The leg from the free surface to the receiver is an S-wave, therefore
the sensitivity to δβ/β is much stronger (third column, bottom row, Fig. 4.1).

4.2.5 Frequency-Domain Waveform Differences

It is also possible to measure the waveform differences in the frequency-domain
(e.g., Pratt et al. 1998; Pratt 1999; Sirgue and Pratt 2004; Brenders and Pratt 2007).
The Fourier transform is usually applied on a selected segment of the time-domain
seismogram. The time window used for isolating the segment can be denoted as
Wn(t), the data functional at frequency ωn can be expressed as

dsn = Dn

(
ũs (x, t)

) [
us (x, t)

]

=
∫

V

dV (x)
∫

dt

3∑

p=1

δ(x− xr )e−iωnt
3∑

i=1

γiδipWn(t)
[
us

p(x, t)− ũs
p(x, t)

]

=
3∑

i=1

γiû
s
i (xr , ωn)−

3∑

i=1

γi
ˆ̃us
i (xr , ωn), (4.42)

where ûs
i (xr , ωn) and ˆ̃us

i (xr , ωn) are Fourier transforms of the windowed target and
reference seismograms, i.e.,

ûs
i (xr , ωn) =

∫
dte−iωnt

[
Wn(t)us

i (xr , t)
]
, (4.43)

ˆ̃us
i (xr , ωn) =

∫
dte−iωnt

[
Wn(t)ũs

i (xr , t)
]

. (4.44)
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This data functional is also linear with respect to the time-domain target wavefield
and the corresponding WPK is given by

J sn
p (x, t) = δ(x− xr )e−iωntWn(t)γp. (4.45)

Bring Eq. 4.45 into Eqs. 4.32, 4.34 and 4.35, we obtain

K
ρ
dsn(x) = −

∫

V

dV (x′)
∫ T

0
dt

3∑

j,p=1

δ(x− xr )e−iωntWn(t)γp

∂Gjp(x, t; x′, 0)

∂t
∗ ∂us

j (x, t)

∂t

= −
3∑

j,p=1

γp

∫ T

0
dte−iωntWn(t)

∂Gjp(x, t; xr , 0)

∂t
∗ ∂us

j (x, t)

∂t
, (4.46)

K
Ψjklm

dsn (x, t) = −
∫

V

dV (x′)
∫ T

0
dτ

3∑

p=1

δ(x′ − xr )e−iωnτWn(τ )γp

∫
dt ′

∂Gjp(x, τ − t ′; x′, 0)

∂xk

∂us
l

(
x, t ′ − t

)

∂xm

= −
3∑

p=1

γp

∫ T

0
dτe−iωnτWn(τ )

∫
dt ′

∂Gjp(x, tn − t ′; xr , 0)

∂xk

∂us
l

(
x, t ′ − t

)

∂xm

, (4.47)

K
cjklm

dsn (x) = −
∫

V

dV (x′)
∫ T

0
dt

3∑

p=1

δ(x′ − xr )e−iωntWn(t)γp

∂Gjp(x, t; x′, 0)

∂xk

∗ ∂us
l (x, t)

∂xm

= −
3∑

p=1

γp

∫ T

0
dte−iωntWn(t)

∂Gjp(x, t; xr , 0)

∂xk

∗ ∂us
l (x, t)

∂xm

. (4.48)

An example of the WPK (Eq. 4.45) for the half-space example is shown in
Fig. 4.2. It is for the direct-arriving P-wave on the x1-component synthetic seis-
mogram from the source 100001 to the receiver IN.RC01. The time window is
a Tukey (tapered cosine) window (Harris 1978), which is 3-s (100 samples) long
with the first and last 0.375 s (12.5 %) equal to parts of a cosine function. The fre-
quency ωn is fixed at 2 Hz (4π rad/s). If the frequency-domain waveform difference
is measured on velocity seismograms instead of displacement seismograms, we can
apply Eq. 4.41 and replace the WPK given in Eq. 4.45 J sn

p (x, t) with−J̇ sn
p (x, t) and

obtain the corresponding data sensitivity kernels.
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Fig. 4.2 The WPK, as given in Eq. 4.45, for the direct-arriving P-wave on the x1-component
synthetic seismogram from the source 100001 to the receiver IN.RC01. Solid line: the real
part; dash line: the imaginary part. The time window Wn(t) is a Tukey window and the frequency
ωn = 4π .

Examples of the data sensitivity kernels for the direct-arriving P, the surface-
reflected PP and the surface-converted PS waves on the x1-component synthetic
seismogram from the source 100001 to the receiver IN.RC01 in the half-space
example are shown in Figs. 4.3, 4.4 and 4.5. Spatial variations of the sensitiv-
ity depend upon both the propagation paths of the different seismic arrivals and
also the frequency ωn. Different from the frequency-domain Born kernels shown in
Fig. 3.7, the data sensitivity kernels shown in Figs. 4.3, 4.4 and 4.5 have compact
spatial extent, which is a result of the finite-width time window Wn(t) applied on
the synthetic seismogram. Consider a scatterer located very far off the propagation
path of, say, the direct-arriving P-wave, since the time window has a finite duration
(3 s in our example), the wave scattered by this scatterer will not be able to reach
the receiver within the finite-width time window because the scattered wave has to
travel a much longer distance than the direct-arriving P-wave, therefore this scatterer
has zero contribution to the sensitivity of the direct-arriving P-wave. The frequency-
domain Born kernels shown in Fig. 3.7 do not have the restrictions imposed by the
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Fig. 4.3 Cross-section views of the real and imaginary parts of the data sensitivity kernels for
the frequency-domain waveform differences measured at two different frequencies on the P-wave
of the x1-component synthetic velocity seismogram from the source 100001 to the receiver
IN.RC01. First row: the real-part kernels at 1 Hz; second row: the imaginary-part kernels at 1 Hz;
third row: the real-part kernels at 2 Hz; bottom row: the imaginary-part kernels at 2 Hz. The first
column shows the time-domain synthetic seismogram (row 1 and 3) and the amplitude spectrum
of the selected waveform (row 2 and 4). The frequencies at which the kernels were computed are
indicated with the vertical lines on the amplitude spectrum. The amplitudes of the kernels shown
in Figs. 4.3, 4.4 and 4.5 have been normalized by the frequency and the maximum amplitudes of
the selected waveforms.

finite-width time window, therefore every scatterer inside the volume can contribute
to the sensitivity at a single frequency.

4.2.6 Broadband Cross-Correlation Measurements

The time shift between an isolated waveform on the observed displacement seis-
mogram ūs

i (xr , t) and the corresponding waveform on the reference synthetic
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Fig. 4.4 The format is identical to that in Fig. 4.3. The data sensitivity kernels shown here are for
the PP-wave on the x1-component synthetic seismogram from the source 100001 to the reciever
IN.RC01.

displacement seismogram ũs
i (xr , t) can be estimated by maximizing the cross-

correlation between the two waveforms (e.g., Woodward and Masters 1991). The
same procedure can also be applied on velocity seismograms. An example of the
measurement process is illustrated in Fig. 4.6 using two velocity seismograms. To
make the misfit measurement, one first isolates the waveforms on the reference syn-
thetic seismogram and the observed seismogram through time-domain windowing
and obtains the windowed waveforms Wn(t) ˙̄us

i (xr , t) and Wn(t) ˙̃us
i (xr , t), where the

dot˙denotes the time derivative. The auto-correlation of Wn(t) ˙̃us
i (xr , t) has its max-

imum at delay time zero, i.e., �t = 0. The maximum of the cross-correlation
between the windowed observed velocity Wn(t) ˙̄us

i (xr , t) and the windowed refer-
ence synthetic velocity Wn(t) ˙̃us

i (xr , t) gives the broadband cross-correlation delay
time �T sn. For the example shown in Fig. 4.6, the observed P-wave arrives earlier
than the reference synthetic P-wave, therefore the broadband cross-correlation delay
time �T sn is negative. For band-limited signals, the broadband cross-correlation
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Fig. 4.5 The format is identical to that in Fig. 4.3. The data sensitivity kernels shown here are for
the PS-wave on the x1-component synthetic seismogram from the source 100001 to the reciever
IN.RC01.

delay time approximates the phase delay at the dominant frequency of the signal
(e.g., Sipkin and Jordan 1980; Gee and Jordan 1992).

The derivation of the WPK for �T sn measured on displacement seismograms
has been given in e.g., (Luo and Shuster 1991; Dahlen et al. 2000). Denoting
the cross-correlation between Wn(t)ũs

i (xr , t) and Wn(t)us
i (xr , t) as Cuũ(t), at the

maximum of the cross-correlation t = δT we have

dCuũ(t)

dt

∣
∣
∣
∣
t=δT

= 0. (4.49)

In the frequency-domain, Eq. 4.49 can be written as
∫

dω(iω) ˆ̃u∗(ω)û(ω)eiωδT = 0, (4.50)
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Fig. 4.6 Upper plot: the reference synthetic velocity seismogram (top) and the observed velocity
seismogram (bottom) and the waveforms selected for making the cross-correlation measurement
(black thick lines). Lower plot: the auto-correlation of the selected waveform on the reference
synthetic (top) and the cross-correlation between the selected waveforms on the reference synthetic
and the observed waveforms (bottom). The maximum on the auto-correlation, which is located at
�t = 0 s, is marked using a black vertical dash line. The maximum on the cross-correlation, which
is at around �t = −0.31532 s, is marked using a black vertical solid line.

where

ˆ̃u(ω) =
∫

dte−iωtWn(t)ũs
i (xr , t), û(ω) =

∫
dte−iωtWn(t)us

i (xr , t) (4.51)

are the Fourier transforms of the windowed displacement seismograms. Consider

û(ω) = ˆ̃u(ω)+ δû(ω) (4.52)

and bring Eq. 4.52 into to Eq. 4.50, we obtain
∫

dω(iω) ˆ̃u∗(ω)
[ ˆ̃u(ω)+ δû(ω)

]
eiωδT = 0. (4.53)
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In Eq. 4.53, we can replace eiωδT with its first-order Taylor expansion 1+ iωδT

and obtain
∫

dω(iω) ˆ̃u∗(ω)
[ ˆ̃u(ω)+ δû(ω)

]
(1+ iωδT ) = 0

⇒
∫

dω(iω) ˆ̃u∗(ω) ˆ̃u(ω)+
∫

dω(iω) ˆ̃u∗(ω)δû(ω)

+δT

∫
dω(iω)2 ˆ̃u∗(ω) ˆ̃u(ω)+

∫
dω(iω)2 ˆ̃u∗(ω)δû(ω)δT = 0. (4.54)

The first term on the LHS of Eq. 4.54 can be re-written as

∫
dω(iω) ˆ̃u∗(ω) ˆ̃u(ω) =

∫
dω(iω) ˆ̃u∗(ω) ˆ̃u(ω)eiω0 = dCũũ(t)

dt

∣
∣
∣
∣
t=0

= 0, (4.55)

which is the derivative of the auto-correlation of the windowed reference synthetic
waveform at delay time zero. Bring Eq. 4.55 into Eq. 4.54 and drop the second-order
term on the LHS of Eq. 4.54, we obtain

δT = −
∫

dω(iω) ˆ̃u∗(ω)δû(ω)
∫

dω(iω)2 ˆ̃u∗(ω) ˆ̃u(ω)
= −

∫
dω
[
iω ˆ̃u(ω)

]∗
δû(ω)

∫
dω
[
iω ˆ̃u(ω)

]∗ [
iω ˆ̃u(ω)

]

= −
∫

dt ˙̃u(t)δu(t)
∫

dt ˙̃u2(t)
, (4.56)

where the dot “˙” denotes the time derivative and I have used the Parseval’s theorem
(Eq. 3.101) in the last equality. Equation 4.56 shows that the WPK for the broad-
band cross-correlation delay time is proportional to the reference synthetic velocity
seismogram and is given by

J sn
p (x, t) = −δ(x− xr )

˙̃us
i (x, t)

∫
dt
[ ˙̃us

i (x, t)
]2 γp, (4.57)

where ˙̃us
i (x, t) is the time derivative of the windowed reference synthetic displace-

ment (i.e., synthetic velocity) on the ith component. Note that here the direction of
the ith component can have oblique angles to the coordinate axes (e.g., the radial
or transverse direction) and γp is simply the cosine of the angle between the direc-
tion of the ith component and the direction of the pth coordinate axis. As discussed
in Sect. 4.2.2, when the RGTs used for constructing the kernels are filtered with a
source-time function h(t), we need to filter the reference synthetic seismogram with
h(t) before using it in constructing the WPK in Eq. 4.57.

A similar analysis can be applied on the cross-correlation delay-time measure-
ment made on the velocity seismograms (e.g., Fig. 4.6). Denote the windowed
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velocity seismograms as v(t) and ṽ(t) and their Fourier transforms as v̂(ω) and ˆ̃v(ω),
Eq. 4.56 can be written in terms of the velocity seismograms as

δT = −
∫

dω
[
iω ˆ̃v(ω)

]∗
δv̂(ω)

∫
dω
[
iω ˆ̃v(ω)

]∗ [
iω ˆ̃v(ω)

] = −
∫

dt ˙̃v(t)δv(t)
∫

dt ˙̃v2(t)
. (4.58)

Since δv(t) = δu̇(t) and ˙̃v(t) is compactly supported, apply integration-by-parts on
the numerator of Eq. 4.58, we obtain

δT = −
∫

dt ˙̃v(t)δv(t)
∫

dt ˙̃v2(t)
=
∫

dt ¨̃v(t)δu(t)
∫

dt ˙̃v2(t)
, (4.59)

and the WPK in Eq. 4.57 can be changed accordingly.
The amplitude anomaly of a selected waveform can also be estimated using the

cross-correlation technique (e.g., Ritsema et al. 2002; Tromp et al. 2005) and the
WPK for the relative amplitude anomaly was derived in (Dahlen and Baig 2002).
The amplitude misfit between the observed waveform and the reference synthetic
waveform is defined as

�Usn = Ā− Ã

Ã
, (4.60)

where the amplitudes are defined as

Ā =
√

1

t ′n − tn

∫
ū2(t)dt, (4.61)

Ã =
√

1

t ′n − tn

∫
ũ2(t)dt. (4.62)

Here ū(t) and ũ(t) are observed and reference synthetic displacement seismograms
multiplied by a time window Wn(t) with its support on

[
tn, t

′
n

]
. Consider the tar-

get displacement seismogram u(t) = ũ(t) + δu(t), the perturbation to the relative
amplitude anomaly can be expressed as

δUsn =
√√
√
√
∫ [

ũ(t)+ δu(t)
]2

dt
∫

ũ2(t)dt
− 1. (4.63)

Ignore the second-order term in Eq. 4.63, we have

δUsn =
√

1+ 2

∫
ũ(t)δu(t)dt
∫

ũ2(t)dt
− 1. (4.64)

Expand the first term on the RHS of Eq. 4.64 in Taylor series and truncate to first
order, we obtain

δUsn =
∫

ũ(t)δu(t)dt
∫

ũ2(t)dt
. (4.65)
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The WPK for the broadband cross-correlation amplitude anomaly is then propor-
tional to the reference synthetic displacement, i.e.,

J sn
p (x, t) = δ(x− xr )

ũs
i (x, t)

∫
dt
[
ũs

i (x, t)
]2 γp. (4.66)

The same analysis can also be applied to velocity seismograms, and Eq. 4.65 can be
modified to

δUsn =
∫

ṽ(t)δv(t)dt
∫

ṽ2(t)dt
. (4.67)

Apply integration-by-parts on the numerator of Eq. 4.67, we obtain

δUsn = −
∫ ˙̃v(t)δu(t)dt
∫

ṽ2(t)dt
. (4.68)

The WPK in Eq. 4.66 can be modified accordingly. Note that the definition of the
amplitude misfit data functional (Eq. 4.60) is different from that used in (Zhao et al.
2005, 2006). In particular, Eq. 4.65 above differs from Eq. (3) in (Zhao et al. 2005)
by a factor of−1/ωa , where ωa is the dominant angular frequency of the waveform.
One consequence of this difference is that the sign of the amplitude data sensitivity
kernels shown in Fig. 4.8 here is different from that shown in (Zhao et al. 2005,
2006).

The WPKs for the broadband cross-correlation delay-time and amplitude
anomaly computed using Eqs. 4.59 and 4.68 for the three arrivals on the x1-
component of the reference synthetic velocity seismogram from 100001 to
IN.RC01 in the half-space example are shown in Fig. 4.7. The corresponding
data sensitivity kernels are shown in Fig. 4.8. The kernels for cross-correlation
delay-time measurements show the counter-intuitive “banana-doughnut” behavior
(i.e., vanishing sensitivity on the ray path and nonzero sensitivity off the ray path)
observed and explained in e.g., (Marquering et al. 1999; Dahlen et al. 2000; Hung
et al. 2000; Zhao et al. 2000).

The shape of the data sensitivity kernels depend upon several factors (Fig. 4.9).
For a fixed forward wavefield from the source, changing the source-time function
(filter) used for computing the RGTs can change the shape of the kernel. Kernels
shown in the top row in Fig. 4.9 were computed using the RGT whose source-time
function was given by the sixth-order low-pass Butterworth filter with the corner at
1.5 Hz (Fig. 2.11) and have a wider first Fresnel zone due to a longer wavelength.
Kernels shown in the center and bottom rows in Fig. 4.9 were computed using the
RGT whose source-time function was given by a fourth-order low-pass Butterworth
filter with the corner at 3.5 Hz and have a narrower first Fresnel zone due to a shorter
wavelength. Whether the measurement is made on the velocity seismogram (top and
center rows in Fig. 4.9) or the displacement seismogram (bottom row in Fig. 4.9)
can have effects on the shape and strength of the side-bands of the kernels. For
the measurement made on the velocity seismogram, the WPK is given by Eq. 4.59,
while for the measurement made on the displacement seismogram, the WPK is given
by Eq. 4.57.
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Fig. 4.7 The WPKs for the broadband cross-correlation delay-time (middle row) and the broad-
band cross-correlation amplitude anomaly (bottom row) for the direct-arriving P-wave (left
column), the PP-wave (middle column) and the PS-wave (right column) on the x1-component
velocity synthetic seismogram from 100001 to IN.RC01 in the half-space example. The wave-
forms used for computing the WPKs of each column are plotted in thick black lines on the top row.
The synthetic seismograms shown on the top row are identical to that shown in Fig. 2.12a.

4.2.7 Frequency-Dependent Phase and Amplitude Misfits

For band-limited signals, the broadband cross-correlation delay time and amplitude
anomaly provide good estimates around the dominant frequency of the waveforms,
but they do not capture the differences in the details of the waveform shapes very
well. One possibility to better account for discrepancies in waveforms for broadband
signals is to measure the phase and amplitude differences at multiple frequencies
across the frequency band. Consider the Fourier transforms of the windowed seis-
mograms in Eq. 4.51, the reference synthetic waveform can be mapped into the
corresponding observed waveform by an exponential operator

ˆ̄u(ω) = ˆ̃u(ω)e−iω[�τp(ω)−i�τq (ω)], (4.69)

where the frequency-dependent phase-delay time �τp(ω) and amplitude-reduction
time �τq (ω) 2 can completely capture the waveform discrepancies between the
observed waveform ū(t) and the corresponding reference synthetic waveform u(t)
within the time window Wn(t).

There are a number of methods for estimating �τp,q(ω) at different frequen-
cies. The Generalized Seismological Data Functionals (GSDF) is an approach for
obtaining approximations of �τp,q(ω) through time-windowing and narrow-band

2 An increase in �τq leads to a decrease in waveform amplitude and �τq has the unit of time,
therefore it is named the amplitude-reduction time.
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Fig. 4.8 The data sensitivity kernels of the broadband cross-correlation delay time (row 1, 3, 5)
and the broadband cross-correlation amplitude anomaly (row 2, 4, 6) for the direct-arriving P-
wave (row 1-2), the PP-wave (row 3-4) and the PS-wave (row 5-6) on the x1-component synthetic
seismogram from 100001 to IN.RC01 in the half-space example. The synthetic seismogram and
the WPKs used for computing these kernels are shown in Fig. 4.7. The kernels shown here do not
have the numerical artifacts discussed in (Zhao et al. 2005).
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Fig. 4.9 Comparisons of data sensitivity kernels for the broadband cross-correlation delay time
measured for the P-wave on the velocity seismograms (top and center rows) and the displacement
seismogram (bottom row), filtered with a low-pass Butterworth filter with corner frequency at
1.5 Hz (top row) and 3.5 Hz (center and bottom rows). From left to right: kernels with respect to
relative perturbations in P- and S-velocity and density. The source-receiver setup is identical to that
in Fig. 4.8.

filtering of the waveform cross-correlations. It was formalized in (Gee and Jordan
1992) and later extended to broadband waveforms in (Chen et al. 2010a). The pro-
cedure for making GSDF misfit measurements was documented in (Gee and Jordan
1992) and (Chen et al. 2007b) and the WPKs for GSDF measurements were derived
in (Chen et al. 2010a). The GSDF-type analysis was extended to the continuous
time-frequency case using the Gabor transform in (Fichtner et al. 2008), in which
the frequency-dependent phase and amplitude differences are quantified using phase
and envelope misfit functions that are continuous in the time-frequency domain. A
technique based on the continuous wavelet transform was presented in (Holschnei-
der et al. 2005; Kulesh et al. 2005). This technique extracts frequency-dependent
phase and amplitude misfits by modeling the deformation of the wavelet transforms
of the seismograms. The continuous wavelet transform allows localization in the
time-frequency domain for selective fitting of portions of the seismogram (Lee and
Chen 2013). In (Bozdağ et al. 2011) the Hilbert transform was applied to derive the
Fréchet kernels of the instantaneous phase and envelope misfit measurements based
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on the adjoint-wavefield method. The literature listed above is far from exhaustive
and new techniques are being actively developed and automated (e.g., Maggi et al.
2009; Lee and Chen 2013).

In the software F3DWI, I adopted an approach similar to that in (Holschneider
et al. 2005). For a pair of frequency-domain observed and synthetic waveforms ˆ̄u(ω)
and ˆ̃u(ω), we can parameterize their frequency-dependent phase difference �φ(ω)
and amplitude discrepancy �ψ(ω) using B-spline functions B(ω) of order four (e.g.,
Gallier 2000),

�φ(ω, p) =
P−1∑

i=0

piB

(
ω − ω0 − i�φ

�φ

+ 3

)
, (4.70)

�ψ(ω, q) =
Q−1∑

j=0

qjB

(
ω − ω0 − j�ψ

�ψ

+ 3

)
. (4.71)

Here the phase difference is related to �τp(ω) through

�τp(ω) = �φ(ω)

ω
, (4.72)

and the amplitude discrepancy is related to �τq(ω) through

�τq (ω) = �ψ(ω)

ω
. (4.73)

The frequency band, in which Eqs. 4.70 and 4.71 are applied, is [ω0, ω1] and we
have

�φ = ω1 − ω0

P − 3
, �ψ = ω1 − ω0

Q− 3
. (4.74)

Finding a set of acceptable model parameters p = (p0, p1, ..., pP−1) and q =(
q0, q1, ..., qQ−1

)
is equivalent to solving an optimization problem, in which we

minimize the objective function

χ2 (p, q) =
∫ T

0

{
ū(t)− F−1

[
e−i�φ(ω,p)−�ψ(ω,q) ˆ̃u(ω)

]
(t)
}2

dt (4.75)

by searching for the optimal p and q. Here F−1 [ ] denotes the inverse Fourier trans-
form. The Levenberg-Marquardt algorithm (i.e., damped least-squares) (Marquardt
1963; Nocedal and Wright 2006; Press 2007) is adopted here to solve this opti-
mization problem. Once the optimal p and q are found, the frequency-dependent
phase difference �φ(ω) and amplitude discrepancy �ψ(ω) can be obtained from
Eqs. 4.70 and 4.71 and the phase-delay time and amplitude reduction time �τp(ω)
and �τq (ω) can be obtained using Eqs. 4.72 and 4.73. The frequency-dependent
group-delay time �τg(ω) can also be recovered from the phase difference �φ(ω).
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The Taylor expansion of the phase difference around a given frequency ωn can be
expressed as

�φ(ω) = ωn�τp(ωn)+ (ω − ωn) �τg (ωn)+ · · · (4.76)

and the group-delay time at ωn can be expressed as

�τg(ωn) = d�φ

dω
(ωn). (4.77)

Therefore the frequency-dependent group-delay �τg(ω) can be obtained through
numerical differentiation of the frequency-dependent phase difference.

In Fig. 4.10 I illustrate the measurement process using a seismogram from
the half-space example. The reference synthetic waveform is the PS-wave on the
x1-component from source 100001 to receiver IN.RC01 and the “observed” seis-
mogram was computed using a velocity model different from the uniform half-space
model constructed in Listing 2.4 (Fig. 4.10a). Once we have found the optimal p
and q parameters, we can apply a phase and amplitude correction, �φ(ω, p) and
�ψ(ω, q), to the reference synthetic waveform through

u(t) = F−1
[
e−i�φ(ω,p)−�ψ(ω,q) ˆ̃u(ω)

]
(t). (4.78)

The corrected reference synthetic waveform u(t) and the observed waveform ū(t)
are shown in Fig. 4.10b. The amplitude spectra of the observed and reference syn-
thetic waveforms are shown in Fig. 4.10c. I have marked the frequencies at which
either the observed or the reference synthetic amplitude falls below 20 % of its peak
amplitude. The reason for doing this is that uncertainties in phase measurements can
become large at frequencies where the signal-to-noise ratios in amplitudes are low
(e.g., Fichtner et al. 2008; Maggi et al. 2009; Lee and Chen 2013). The frequency-
dependent phase-delay time �τp(ω) and group-delay time �τg(ω) measurements
are shown in Fig. 4.10d and the frequency-dependent amplitude-reduction time
�τq (ω) measurements are shown in Fig. 4.10e. It is possible to have cycle-skipping
errors in the phase-delay time �τp(ω) measurements. In (Chen et al. 2007b) I
corrected those cycle-skipping errors by bootstrapping the phase from low fre-
quencies to high frequencies (e.g., Ekström et al. 1997). In (Lee and Chen 2013;
Lee et al. 2014b) we corrected cycle-skipping errors by bootstrapping the phase
from the dominant frequency bilaterally towards lower and higher frequencies using
the broadband cross-correlation delay-time measurement �T sn as the anchor. The
frequency-dependent group-delay time �τg(ω) measurements usually do not have
cycle-skipping errors and can also be used as a reference when choosing the correct
cycles for the phase-delay time measurements.

The WPK for �τp,q(ω) measurements can be derived by considering the target
displacement

u(t) = ũ(t)+ δu(t), (4.79)

in the time-domain or
û(ω) = ˆ̃u(ω)+ δû(ω) (4.80)
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Fig. 4.10 An example of measuring frequency-dependent phase-delay time �τp(ω), group-delay
time �τg(ω) and amplitude-reduction time �τq (ω) using the x1-component seismogram from
100001 to IN.RC01 in the half-space example. a Reference synthetic seismogram (upper) and
observed seismogram (lower), the waveforms selected for making the measurements are plotted
in thick black lines. b The upper two traces show the fit between the selected reference synthetic
waveform (dash line) and the selected observed waveform (solid line), the lower two traces show
the fit between the selected observed waveform (solid line) and the corrected synthetic waveform
(dash line) obtained by applying the optimized phase and amplitude corrections �φ(ω) and �ψ(ω)
to the reference synthetic waveform. c The amplitude spectrum of the observed (dash) and ref-
erence synthetic (solid) waveforms. The two vertical dash lines in (c), (d) and (e) indicate the
frequencies at which either the observed or the reference synthetic amplitude falls below 20 % of
its peak amplitude. d The phase-delay (solid) and group-delay (dash) time measurements. e The
amplitude-reduction time measurements.
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in the frequency-domain. The reference synthetic displacement waveform can be
mapped into the target displacement waveform through

û(ω) = ˆ̃u(ω)e−iω[δτp (ω)−iδτq (ω)]. (4.81)

Bring Eq. 4.80 into the LHS of Eq. 4.81 and expand the exponential on the RHS of
Eq. 4.81 in Taylor series to first-order, we obtain

ˆ̃u(ω)+ δû(ω) = ˆ̃u(ω)
[
1− iωδτp(ω)− ωδτq (ω)

]

⇒ [
iδτp(ω)+ δτq (ω)

] = − δû(ω)

ω ˆ̃u(ω)

⇒ δτp(ω) = −�
[

δû(ω)

ω ˆ̃u(ω)

]

, δτq (ω) = −�
[

δû(ω)

ω ˆ̃u(ω)

]

, (4.82)

where � [ ] and � [ ] represent the imaginary part and the real part, respectively.
Considering Eq. 4.51, we have

δû(ω) =
∫

dte−iωtWn(t)δus
i (xr , t). (4.83)

Bring Eq. 4.83 into Eq. 4.82, we obtain

δτp(ω) = −
∫
�
[

e−iωtWn(t)

ω ˆ̃u(ω)

]

δus
i (xr , t)dt, (4.84)

δτq (ω) = −
∫
�
[

e−iωtWn(t)

ω ˆ̃u(ω)

]

δus
i (xr , t)dt . (4.85)

For a given frequency ω = ωn, the WPKs for �τp,q measured on displacement
seismograms are functions of time t . Denoting the WPK for �τp as J

sn,p
p and the

WPK for �τq as J
sn,q
p , we have

J
sn,p
p (x, t|ωn) = −δ(x− xr )�

[
e−iωntWn(t)

ωn
ˆ̃u(ωn)

]

γp, (4.86)

J
sn,q
p (x, t|ωn) = −δ(x− xr )�

[
e−iωntWn(t)

ωn
ˆ̃u(ωn)

]

γp, (4.87)

where ˆ̃u(ωn) is given by Eq. 4.51, i.e.,

ˆ̃u(ωn) =
∫

dte−iωntWn(t)ũs
i (xr , t), (4.88)

and can be computed by the Fourier transform of the windowed ith-component
reference synthetic displacement seismogram, and γp is the cosine of the angle
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between the direction of the ith component and the direction of the pth coordinate
axis.

The misfit measurements �τp,q can also be made on the velocity seismograms
v̄s
i (xr , t) and ṽs

i (xr , t), in which case Eqs. 4.84 and 4.85 can be modified to

δτp(ω) = −
∫
�
[

e−iωtWn(t)

ω ˆ̃v(ω)

]

δvs
i (xr , t)dt, (4.89)

δτq (ω) = −
∫
�
[

e−iωtWn(t)

ω ˆ̃v(ω)

]

δvs
i (xr , t)dt, (4.90)

where ˆ̃v(ω) is given by

ˆ̃v(ω) =
∫

dte−iωtWn(t)ṽs
i (xr , t). (4.91)

Apply integration-by-parts on the RHS of Eqs. 4.89 and 4.90, we obtain

δτp(ω) =
∫

d

dt
�
[

e−iωtWn(t)

ω ˆ̃v(ω)

]

δus
i (xr , t)dt, (4.92)

δτq (ω) =
∫

d

dt
�
[

e−iωtWn(t)

ω ˆ̃v(ω)

]

δus
i (xr , t)dt . (4.93)

And the expressions for the WPKs in Eqs. 4.86 and 4.87 can be modified according
to Eqs. 4.92 and 4.93.

The WPK for group-delay measurements �τg(ω), denoted as J sn,g(t|ω), can be
obtained by numerically differentiating ωJ sn,p(t|ω) with respect to ω (Xu et al.
2013). Here I have drop the dependence of the WPKs on the spatial coordinate
x and the component index (i.e., the subscript p) to reduce clutter. If we adopt a
central differencing scheme (i.e., the three-point formula) (Press 2007), the WPK
for group-delay at frequency ω = ωn can be approximated as

J sn,g(t|ωn) ≈
[
(ωn +�ω)J sn,p(t|ωn +�ω),

− (ωn −�ω)J sn,p(t|ωn −�ω)
]
/(2�ω), (4.94)

where �ω is a sufficiently small frequency interval. The WPK for phase-delay
time J sn,p(t|ω) is given in Eq. 4.86 for measurements made on displacement seis-
mograms and can be obtained from Eq. 4.92 for measurements made on velocity
seismograms.

Examples of the WPKs for �τp,q,g at two different frequencies for the
three arrivals on the x1-component reference synthetic velocity seismogram from
100001 to IN.RC01 in the half-space example are shown in Fig. 4.11. Com-
pared with the WPKs for the broadband cross-correlation delay-time and amplitude
anomaly shown in Fig. 4.7, the WPKs for �τp,q,g have frequency-dependence and
are also compactly supported in time, which is a result of the finite-width time win-
dow used to isolate the different arrivals. The corresponding data sensitivity kernels
are shown on Figs. 4.12, 4.13 and 4.14.
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Fig. 4.11 Examples of the WPKs of the �τp,q,g measurements at 0.8 and 1.6 Hz for the three
arrivals on the x1-component reference synthetic velocity seismogram from 100001 to IN.RC01
in the half-space example. The second and third rows are WPKs for �τp, the fourth and fifth rows
are WPKs for �τg and the sixth and seventh rows are WPKs for �τq . The second, fourth and sixth
rows are WPKs at 0.8 Hz and the third, fifth and seventh rows are WPKs at 1.6 Hz.
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Fig. 4.12 Data sensitivity kernels of �τp (first and fourth rows), �τg (second and fifth rows)
and �τq (third and sixth rows) at 0.8 Hz (first to third row) and 1.6 Hz (fourth to sixth row)
for the direct-arriving P-wave on the x1-component reference synthetic velocity seismogram from
100001 to IN.RC01 in the half-space example. The WPKs for these kernels are shown on the
first column of Fig. 4.11.

Compared with the data sensitivity kernels for the broadband cross-correlation
phase-delay time shown in Fig. 4.8, the kernels of the frequency-dependent phase-
delay time �τp and group-delay time �τg also exhibit the counter-intuitive
“banana-doughnut” phenomena of vanishing sensitivities on the ray path. This
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Fig. 4.13 Data sensitivity kernels for the PP-wave on the same seismogram as that in Fig. 4.12.
The format is identical to that in Fig. 4.12. The WPKs for these kernels are shown on the second
column of Fig. 4.11.

phenomena for the single-frequency phase-delay time kernels will be analyzed in
Sect. 4.2.8. All data sensitivity kernels are spatially compact, which is also a result
of the finite-width time windows used for isolating the different arrivals. The widths
of the first Fresnel zones and the spatial oscillatory patterns of the kernels depend
upon the frequency ωn at which the misfit measurements are made. The widths
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Fig. 4.14 Data sensitivity kernels for the PS-wave on the same seismogram as that in Fig. 4.12.
The format is identical to that in Fig. 4.12. The WPKs for these kernels are shown on the third
column of Fig. 4.11.

of the first Fresnel zones for the PP-wave and the PS-wave are larger than that
for the direct-arriving P-wave because the propagation distances for the PP-wave
and the PS-wave are longer than that for the direct P-wave. Compared with the
phase-delay kernels, the group-delay kernels show stronger side-bands, which was
also observed in full-wave group-delay kernels for surface waves (Dahlen and Zhou
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2006). The kernels for amplitude-reduction time �τq show positive sensitivity on
the ray path, suggesting an increase in the wave speeds leads to a positive pertur-
bation in amplitude-reduction time, therefore a decrease in amplitude. This result
can be understood in terms of the de-focusing effect, i.e., the background wave is
diffracted away from the ray path when the wave speed there is increased, which
results in a reduction in the amplitude at the receiver.

4.2.8 Rytov Approximation

In Sects. 4.2.4 and 4.2.5, waveform discrepancies are quantified using additive
data functionals, while in Sect. 4.2.7, waveform discrepancies are quantified using
multiplicative data functionals. The linearization of the data functionals defined
in Sects. 4.2.4 and 4.2.5 is essentially the Born approximation (Sect. 3.5.1.2). In
(Chen et al. 2007a, b), we pointed out the connection between the linearization of
the frequency-dependent phase and amplitude misfits defined in Eq. 4.69 and the
Rytov approximation (e.g., Chernov 1960; Woodward 1992a; Snieder and Lomax
1996). The accuracy of the linearization of the data functionals is highly important
in solving seismic inverse problems, which are often formulated as optimization
problems.

Because of the large dimension of the model space and the significant com-
putational cost involved in solving three-dimensional wave equations, it is often
mandatory to use local optimization algorithms, in which case spurious local min-
ima in the objective function can prevent global convergence of a local optimization
algorithm if the starting model is not already very close to the global minimum. The
accuracy of the linearization determines the shape of the objective function. If the
data functionals are exactly linear (or affine) with respect to the model parameters,
the linearization becomes exact and the objective function defined in terms of the
least-squares of the misfits is quadratic and a Newton-type local optimization algo-
rithm might be able to reach the global minimum in one (or a few) iteration(s) from
any starting model. In realistic seismic inverse problems, the data functionals are
usually nonlinear with respect to model parameters, but the shape of the objective
function can still be improved by selecting the data functionals whose linearizations
are more accurate than others.

The accuracy of the Born approximation was analyzed in Sect. 3.5.1.2. It is
a good approximation when the accumulative phase shift between the observed
and the synthetic waveforms is small, i.e., ω0�T sn � 1, where ω0 is the domi-
nant frequency of the waveforms. In transmission tomography that involves long
propagation distances (long as compared with the dominant wavelength), the accu-
mulative phase shift can be large even when the average perturbation of the wave
speeds along the source-receiver path is relatively small. In such situations, the
Born approximation might not be valid and the linearization of the data functionals
defined in Sects. 4.2.4 and 4.2.5 can be poor. The objective function defined in terms
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of those data functionals can have numerous local minima and a local optimization
algorithm can stagnate at a local minimum without converging to a useful model,
even though the exact gradient of the objective function can be computed using the
Born kernels.

The Rytov approximation has a validity regime different from that of the Born
approximation (e.g., Beydoun and Tarantola 1988; Wu and Aki 1988; Wu 1989;
Woodward 1992a; Wu 2003). It does not require the accumulative phase shift to
be small, it only requires the phase shift per wavelength to be small (e.g., Chernov
1960; Snieder and Lomax 1996). I will use the scalar wave equation to demonstrate
the main ideas and adopt the notations in Sect. 3.5.1 in the following. The derivation
follows that in (Wu 2003) with some additional explanations about the intermediate
steps. In the frequency-domain, the ratio between the perturbed wavefield û(x, ω)
and the reference wavefield ˆ̃u(x, ω) can be defined in terms of a complex phase
function ϕ(x, ω),

û(x, ω) = eϕ(x,ω) ˆ̃u(x, ω). (4.95)

Equation 4.95 is called the Rytov transform (e.g., Tatarskiı̆ et al. 1971; Ishimaru
1978). This complex phase function ϕ(x, ω) can be related to the frequency-
dependent phase-delay time and amplitude-reduction time in Eq. 4.69 via

�τq (x, ω) = −� [ϕ(x, ω)]

ω
, �τp(x, ω) = −� [ϕ(x, ω)]

ω
. (4.96)

I will drop the dependence on ω in the following to reduce clutter. Considering
Eq. 3.372, in the frequency-domain Eq. 3.363 can be written as

(
∇2 + k̃2

) ˆ̃u(x) = f̂ (x), (4.97)

where f̂ (x) is the Fourier transform of the source term f (x, t). Considering
Eq. 3.367, in the frequency-domain Eq. 3.362 can be written as

(
∇2 + k̃2

)
û(x) = f̂ (x)− k̃2(r2 − 1)û(x). (4.98)

Bring Eq. 4.95 into Eq. 4.98, we obtain

∇2
( ˆ̃ueϕ

)
+ k̃2 ˆ̃ueϕ = f̂ − k̃2(r2 − 1) ˆ̃ueϕ . (4.99)

Using the identity3

∇2 [a(x)b(x)]= b∇2a + a∇2b + 2∇a · ∇b, (4.100)

3 This identity can be verified by expressing ∇2 [a(x)b(x)] = ∇ · [∇ (ab)] = ∇ · (a∇b + b∇a) =
∇ · (a∇b) + ∇ · (b∇a) = a∇2b + ∇a · ∇b + ∇b · ∇a + b∇2a = a∇2b + b∇2a + 2∇a · ∇b.
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the expression ∇2
( ˆ̃ueϕ

)
in Eq. 4.99 can be expressed as

∇2
( ˆ̃ueϕ

)
= eϕ∇2 ˆ̃u+ ˆ̃u∇2eϕ + 2∇ ˆ̃u · ∇eϕ . (4.101)

The expression ∇eϕ in Eq. 4.101 can be expressed as

∇eϕ = eϕ∇ϕ, (4.102)

and the expression ∇2eϕ in Eq. 4.101 can be expressed as

∇2eϕ = ∇ · ∇eϕ = ∇ · (eϕ∇ϕ
)

= eϕ∇2ϕ +∇eϕ · ∇ϕ

= eϕ∇2ϕ + eϕ∇ϕ · ∇ϕ. (4.103)

Bring Eqs. 4.101, 4.102 and 4.103 into Eq. 4.99, re-arrange the terms, we obtain
(
∇2 + k̃2

) ˆ̃u+ ˆ̃u (∇ϕ · ∇ϕ)+ ˆ̃u∇2ϕ + 2∇ ˆ̃u · ∇ϕ = f̂ − k̃2(r2 − 1) ˆ̃u. (4.104)

Considering Eq. 4.97, Eq. 4.104 can be simplified to

ˆ̃u∇2ϕ + 2∇ ˆ̃u · ∇ϕ = − ˆ̃u
[
k̃2(r2 − 1)+ (∇ϕ · ∇ϕ)

]
. (4.105)

Considering the identity

∇2
( ˆ̃uϕ

)
= ˆ̃u∇2ϕ + 2∇ ˆ̃u · ∇ϕ + ϕ∇2 ˆ̃u, (4.106)

Eq. 4.105 can be re-written as

∇2
( ˆ̃uϕ

)
− ϕ∇2 ˆ̃u = − ˆ̃u

[
k̃2(r2 − 1)+ (∇ϕ · ∇ϕ)

]
. (4.107)

In the absence of the external force, i.e., f̂ (x) = 0 in Eq. 4.97, the term ∇2 ˆ̃u in
Eq. 4.107 can be replaced with −k̃2 ˆ̃u and Eq. 4.107 can be re-written as

(
∇2 + k̃2

) ( ˆ̃uϕ
)
= − ˆ̃u

[
k̃2(r2 − 1)+ (∇ϕ · ∇ϕ)

]
. (4.108)

Under the Rytov validity condition

|∇ϕ · ∇ϕ| �
∣
∣
∣k̃2(r2 − 1)

∣
∣
∣ , (4.109)
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we can ignore the term (∇ϕ · ∇ϕ) on the RHS of Eq. 4.108 and obtain an approx-

imate solution of ϕ(x) using the Green’s function ˆ̃
G(x, ω;x′) in the reference

media,

ϕ(x) ≈ 1
ˆ̃u(x)

∫

V

dV (x′) ˆ̃G(x;x′) ˆ̃u(x′)k̃2(x′)
[
1− r2(x′)

]

= 1
ˆ̃u(x)

∫

V

dV (x′) ˆ̃G(x;x′) ˆ̃u(x′)�o(x′). (4.110)

Equation 4.110 is called the Rytov approximation. The relation between the complex
phase function ϕ(x) and the model parameter �o(x) in Eq. 4.110 is linear and this
linear relation holds when the Rytov validity condition in Eq. 4.109 is satisfied.

The term ∇ϕ in Eq. 4.109 is the change in the complex phase function per unit
distance. The wave-number in the reference media k̃ can be expressed in terms of
the wavelength using Eq. 3.372 and the Rytov validity condition can be written as

∣
∣
∣
∣
∇ϕ · ∇ϕ

k̃2

∣
∣
∣
∣ =
∣
∣
∣
∣
∣
∣

(
λ̃∇ϕ

)
·
(
λ̃∇ϕ

)

4π2

∣
∣
∣
∣
∣
∣
�
∣
∣
∣r2 − 1

∣
∣
∣

⇒
∥
∥
∥λ̃∇ϕ

∥
∥
∥� 2π

√∥
∥r2 − 1

∥
∥. (4.111)

Compare with the Born validity condition in Eq. 3.399, the Rytov validity condition
in Eq. 4.111 does not depend on the size of the scatterer. The term λ̃∇ϕ in Eq. 4.111
is roughly the phase difference over the distance of one wavelength, therefore the
Rytov approximation is valid when the phase difference per wavelength is small.
Compared with the Born validity condition that requires the accumulative phase
difference to be small, the Rytov validity condition is less restrictive.

If we consider an incident plane wave

ˆ̃u(x) = Ãeik̃·x (4.112)

and assume the total wavefield after scattering is still a plane wave

û(x) = Aeik·x, (4.113)

the complex phase function can then be expressed as

ϕ(x) = ln
A

Ã
+ i
(

k− k̃
)
· x, (4.114)

and its spatial gradient is given by

∇ϕ(x) = ∇ ln
A

Ã
+ i
(

k− k̃
)

. (4.115)
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The size of the first term on the RHS of Eq. 4.115 is usually much smaller than the
size of the second term. Therefore we have

∇ϕ · ∇ϕ ≈
∣
∣
∣k− k̃

∣
∣
∣
2 = 4k̃2 sin2 θ

2
, (4.116)

where θ is the scattering angle between the directions of k and k̃. Bring Eq. 4.116
into the Rytov validity condition in Eq. 4.109, we obtain

sin
θ

2
� 1

2

√∣
∣(r2 − 1)

∣
∣ =

√
α̃2(x)− α2(x)

2α(x)
. (4.117)

Equation 4.117 indicates that the Rytov approximation is valid when the scattering
angle is small and is called the small-angle scattering condition. In tomography that
uses transmitted or forward-scattered waves, the scattering angle is usually small
and Eq. 4.117 is often satisfied, therefore the Rytov approximation provides a good
linearization for the complex phase and also the frequency-dependent phase and
amplitude misfits (Eq. 4.96).

The connection between the Rytov and the Born representations can be analyzed
by expanding the exponential term in Eq. 4.95 in Taylor series and comparing with
the Born series in Eq. 3.377 (Heidbreder 1967). Equation 4.95 can be re-written as

û(x) = ˆ̃u(x)

[
1+ ϕ(x)+ ϕ2(x)

2
+ · · · + ϕn(x)

n! + · · ·
]

= ˆ̃u(x)

[

1+
∞∑

n=1

r ′n(x)

]

, (4.118)

where r ′n(x) can be represented using the Rytov approximation in Eq. 4.110 as,

r ′n(x) =
∫

V

dV (x′) ˆ̃G(x;x′)�o(x′)
ˆ̃u(x′)
ˆ̃u(x)

ϕn−1(x)

n! . (4.119)

The Born series in Eq. 3.377 can be re-written as

û(x) = ˆ̃u(x)

[

1+
∞∑

n=1

rn(x)

]

, (4.120)

where rn(x) can be expressed recursively as

rn(x) =
∫

V

dV (x′) ˆ̃G(x;x′)�o(x′)
ˆ̃u(x′)
ˆ̃u(x)

rn−1(x′), and r0 = 1. (4.121)

The zeroth- and first-order terms in Eqs. 4.118 and 4.120 are identical. The second-
order term in the Rytov representation r ′2(x) is generated by using ϕ(x)/2 in
Eq. 4.119, while the second-order term in the Born series r2(x) is generated by
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using r1(x) in Eq. 4.121. Since ϕ(x) = r1(x), the second-order term in the Rytov
representation is obtained by approximating the first-order scattered field through-
out the whole scattering volume V (x′) using half of the first-order scattered field at
the observation point x. Similarly, the nth-order term in the Rytov representation
is obtained by approximating the (n − 1)th-order scattered field through the whole
scattering volume using ϕn−1(x)/n! at the observation point. Therefore the linear
relation given by the Rytov approximation (Eq. 4.110) provides an approximate
treatment of the multiple scattering effects that exist in the second- and higher-order
(i.e., the nonlinear) terms in the Born series. The accuracy of this approximate treat-
ment of multiple scattering is certainly not uniform through the whole scattering
volume. As analyzed above and also in e.g., (Wu 2003), the Rytov approxima-
tion is inappropriate in the backward-scattering regime, where the scattering angle
θ is very large. An intuitive explanation about the differences between the Born
and the Rytov approximations is given in (Wu 2003). The Born approximation is
a superposition of the scattered waves from all parts of the scattering volume. In
the forward-scattering regime, the incident wave propagates together with the scat-
tered waves and they coherently interfere, leading to a linear increase of the total
wavefield. The Born approximation does not account for this coherent interference
effect, therefore has a very limited validity range in the forward direction. However,
in the backward direction, there is no incident wave and the range of coherent inter-
ference among back-scattered (i.e., reflected) waves is limited to λ̃/4, where λ̃ is
the dominant wavelength, due to the two-way travel-time difference. Therefore the
Born approximation has a larger validity range in the back-scattering regime.

A disadvantage of the Rytov approximation is that it needs to be applied to one
wave at a time (e.g., Keller 1969; Woodward 1992a). When it is applied to a super-
position of multiple seismic arrivals, the nonlinear interference effect among the
multiple seismic arrivals can destroy the linear relation between the complex phase
and the structural parameters provided by the Rytov approximation. A numerical
example of this effect is presented in (Holschneider et al. 2005) using two inter-
fering Ricker pulses with different dispersion and attenuation characteristics. In
(Lee and Chen 2013) we have developed an automated seismogram segmentation
and waveform selection technique based on the continuous wavelet transform and
the topological watershed algorithm (Couprie and Bertrand 1997; Couprie et al.
2005). In our technique, the time-domain seismogram is transformed to the time-
frequency domain through the continuous wavelet transform. The time-frequency
domain scalogram (i.e., the squared modulus of the continuous wavelet transform) is
then automatically segmented using the topological watershed algorithm, an image
segmentation algorithm used in e.g., automatic extraction of geographic features
from satellite images (e.g., Quackenbush 2004; Chen et al. 2005b). Each wave
packet obtained from segmenting the observed seismogram is paired with a wave
packet obtained from segmenting the corresponding synthetic seismogram based on
a collection of criteria that measure the similarities among the two wave packets in
the time-frequency domain. On a selected pair of observed and synthetic wave pack-
ets, we make the frequency-dependent phase-delay time and amplitude-reduction
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time misfit measurements (Fig. 4.10). Compared with a purely time-domain wave-
form selection technique (e.g., Maggi et al. 2009) an important advantage of our
technique is that it allows us to separate wave packets arriving at overlapping time
windows but have disjoint frequency-domain or time-frequency-domain supports.
Like many other seismic data processing techniques, our technique also has a hand-
ful of parameters that control the behavior of our workflow and need to be adjusted
manually for different data sets or different types of applications. However, our
recent experiments have shown that even this step can be fully automated with
a nearly zero failure rate by using an importance-aided artificial neural network
(Diersen et al. 2011).

4.2.9 “Banana-Doughnut” Structure of Rytov Phase Kernels

The data sensitivity kernels for the frequency-dependent phase-delay time
(Figs. 4.12, 4.13 and 4.14) also exhibit the counter-intuitive “banana-doughnut”
phenomena (i.e., vanishing sensitivity along the ray path and nonzero sensitivity
off the ray path) as the data sensitivity kernels for the broadband cross-correlation
delay-time (Fig. 4.8). To give a qualitative explanation about this phenomena,
I will use the whole-space scalar wave equation (Eqs. 3.388 and 3.390) as an
example. The linear Rytov approximation in Eq. 4.110 also gives the Fréchet ker-
nel of the complex phase function ϕ(x, ω) with respect to the model parameter
−δo(x, ω) = o(x, ω)− õ(x, ω),

δϕ(x, ω) = − 1
ˆ̃u(x, ω)

∫

V

dV (x′) ˆ̃G(x, ω;x′) ˆ̃u(x′, ω)
[−δo(x′, ω)

]
. (4.122)

Bring the whole-space Green’s function (Eq. 3.388) and the forward wavefield
(Eq. 3.390) into Eq. 4.122, we obtain

δϕ(xr, ω) = 1

4π

∫

V

dV (x)
|xr − xs | e−i ω

c0
(|x−xr |+|x−xs |−|xr−xs |)

|x− xr | |x− xs | [−δo(x, ω)] ,

(4.123)
where xr and xs are locations of the receiver and the point source, respectively and
I have replaced x′ with x and replaced x with xr . If we denote

L = |xr − xs |
|x− xr | |x− xs | , �l = |x− xr | + |x− xs | − |xr − xs | , (4.124)

considering Eq. 4.96, we have

δτp(xr , ω) = 1

4πω

∫

V

dV (x)L sin
(
k̃�l
)

[−δo(x, ω)] , (4.125)

δτq (xr, ω) = − 1

4πω

∫

V

dV (x)L cos
(
k̃�l
)

[−δo(x, ω)] , (4.126)
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where k̃ = ω/c0. The Fréchet kernel of the frequency-dependent phase-delay time
is then given by

Kp(x|xs, xr , ω) =
L sin

(
k̃�l
)

4πω
, (4.127)

and the kernel of the amplitude-reduction time is given by

Kq (x|xs, xr , ω) = −
L cos

(
k̃�l
)

4πω
. (4.128)

Consider the source-receiver configuration shown in Fig. 4.15. We assume that

η2 = y2 + z2 � x2. (4.129)

The distance between the source and the scatterer can then be expanded in Taylor
series and approximated as

|x− xs | = x

√

1+ η2

x2 = x

[

1+ η2

2x2 −
1

8

(
η2

x2

)2

+ · · ·
]

≈ x + η2

2x
. (4.130)

The distance between the receiver and the scatterer can be approximated as

|x− xr | ≈ (d − x)+ η2

2(d − x)
. (4.131)

Bring Eqs. 4.130 and 4.131 into the expression for �l in Eq. 4.124, we obtain

�l ≈ η2

2

[
d

x(d − x)

]
= η2

2ξ
, (4.132)

where

ξ = x(d − x)

d
. (4.133)

If the scatterer is located on the unperturbed ray path, we have |x− xr |+ |x− xs | =
|xr − xs | and �l = 0, therefore the Rytov phase kernel Kp = L sin

(
k̃0
)

/(4πω) =
0. The phase kernel reaches a maximum at k̃�l = π/2. Considering Eqs. 3.372 and
4.132, the condition k̃�l = π/2 is equivalent to

2π

λ̃

η2

2ξ
≈ π

2
⇒ η ≈

√
ξλ̃

2
. (4.134)

When x = d/2, we have ξ = d/4 and

η ≈
√

λ̃d

8
, (4.135)
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Fig. 4.15 Locations of the source xs , the receiver xr and a scatterer x. The source is located at
the origin. The receiver is located on the x-axis of the coordinate system at a distance d from the
source. The scatterer is located at (x, y, z). The source-receiver distance is therefore d. The distance
between the source and the scatterer is |x − xs | =

√
x2 + y2 + z2 and the distance between the

receiver and the scatterer is |x− xr | =
√

(d − x)2 + y2 + z2.

Fig. 4.16 Cross-section views of the frequency-domain Rytov kernels for the scalar wave equation
in the whole-space structure model. Left column: Rytov phase kernels (Eq. 4.127) at 5 Hz (top row)
and 10 Hz (bottom row); right column: Rytov amplitude kernels (Eq. 4.128) at 5 Hz (top row) and
10 Hz (bottom row). The source is located at coordinate (0, 0, 0) and the the receiver is located at
(11, 0, 0). The cross-section view is perpendicular to the source-receiver x − z plane.

which is the width of the first Fresnel zone.
Examples of the Rytov kernels for the scalar wave equation in the whole-space

structural model (Eqs. 4.127 and 4.128) are shown in Fig. 4.16. This type of kernels
were named the Rytov wavepaths in (Woodward 1992b). Unlike the data sensitivity
kernels for the frequency-dependent phase-delay time and amplitude-reduction time
shown in Figs. 4.12, 4.13 and 4.14, the single-frequency Rytov kernels shown in
Fig. 4.16 have infinite spatial extent. In Figs. 4.12, 4.13 and 4.14, the effect of the
finite-width time window used for isolating the particular arrival is built into the
kernel through the corresponding WPK. The spatial extent of the single-frequency
Rytov kernels shown in Fig. 4.16 is not restricted by any windowing operations
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in the time domain. For the Rytov kernels shown in Fig. 4.16, the source-receiver
distance is 11 km, the wave speed is 6 km/s, therefore the width of the first Fresnel
zone (Eq. 4.135) is about 1.3 km at 5 Hz and about 0.9 km at 10 Hz.

4.3 Model Parameterization

In Sect. 4.2.3 I have shown that by using the chain rule for Fréchet derivatives we
can obtain the Fréchet kernels of the data functional with respect to the source and
structural models parameterized using the moment tensor density function and the
rate-of-relaxation tensor. The data sensitivity (Fréchet) kernels are the composition
of the corresponding WPK of the data functional and the primary kernels (Eq. 4.1).
Examples of the WPKs for some widely used data functionals and the corresponding
data sensitivity kernels are shown in Sects. 4.2.4–4.2.7.

In practice, the seismic inverse problem is often under-determined and the
amount and the nature of seismic observations usually do not allow us to resolve
all 21 components of the elastic tensor simultaneously. It is therefore important to
choose parameterizations judiciously such that most of the data can be explained
using a few parameters. In this section I will show that by using the chain rule for
partial derivatives, we can obtain the Fréchet kernels of the data functional with
respect to other types of parameterizations of the source and structural models.
Some of these parameterizations for the structural model might be more meaning-
ful or more amenable to interpretation than the rate-of-relaxation tensor or elastic
tensor. The appropriate choice of the parameterization might also help reduce the
nonlinearity of the inverse problem.

The full fourth-order elastic stiffness tensor cjklm has 81 components. But
because of symmetry conditions similar to those in Eq. 3.201, i.e.,

cjklm = ckjlm = cjkml = clmjk, (4.136)

the total number of independent components is reduced to 21. The number of
independent components can be reduced even further in materials with higher
symmetry.

4.3.1 Bulk Modulus

In fluids, the fourth-order stiffness tensor cjklm is reduced to one elastic parameter,
the bulk modulus κ , and we have

cjklm = κδjkδlm, (4.137)
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where δjk and δlm are the Kronecker delta. The perturbation δcjklm can therefore be
expressed in terms of the perturbation δκ as

δcjklm = ∂cjklm

∂κ
δκ = δjkδlmδκ . (4.138)

Bring the representation of δcjklm in Eq. 4.138 into the last term on the RHS of
Eq. 4.37, we obtain

∫

V

dV (x)
3∑

j,k,l,m=1

K
cjklm

dsn (x)δcjklm (x)

=
∫

V

dV (x)
3∑

j,k,l,m=1

K
cjklm

dsn (x)δjkδlmδκ (x)

=
∫

V

dV (x)
3∑

j,l=1

K
cjjll

dsn (x)δκ (x) . (4.139)

The data sensitivity kernel of the data functional dsn with respect to the bulk
modulus κ(x) is therefore given by

Kκ
dsn (x) =

3∑

j,l=1

K
cjjll

dsn (x). (4.140)

Considering the representation of K
cjklm

dsn (x) given in Eq. 4.35, we can express
Kκ

dsn(x) as

Kκ
dsn(x) = −

∫

V

dV (x′)
∫ T

0
dt

3∑

p=1

J sn
p (x′, t)

3∑

j,l=1

∂Gjp(x, t; x′, 0)

∂xj

∗ ∂us
l (x, t)

∂xl

= −
∫

V

dV (x′)
∫ T

0
dt

3∑

p=1

J sn
p (x′, t)

⎡

⎣
3∑

j=1

∂Gjp(x, t; x′, 0)

∂xj

⎤

⎦ ∗
[

3∑

l=1

∂us
l (x, t)

∂xl

]

= −
∫

V

dV (x′)
∫ T

0
dtJsn(x′, t) · {[∇ ·G(x, t; x′, 0)

] ∗ [∇ · us(x, t)
]}

. (4.141)

In practice, we often invert for the relative perturbation, e.g., δκ/κ , instead of the
absolute perturbation δκ . In such a situation, Eq. 4.138 can be modified to

δcjklm = δjkδlmκ
δκ

κ
, (4.142)

which can also be written as (e.g., Tromp et al. 2005)

δcjklm = δjkδlmκ
δκ

κ
= δjkδlmκδ ln κ . (4.143)
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Equation 4.140 can then be modified to

K ln κ
dsn (x) = κ(x)

3∑

j,l=1

K
cjjll

dsn (x), (4.144)

and Eq. 4.141 can be modified to

K ln κ
dsn (x) = −κ(x)

∫

V

dV (x′)
∫ T

0
dt

3∑

p=1

J sn
p (x′, t)

⎡

⎣
3∑

j=1

∂Gjp(x, t; x′, 0)

∂xj

⎤

⎦ ∗
[

3∑

l=1

∂us
l (x, t)

∂xl

]

= −κ(x)
∫

V

dV (x′)
∫ T

0
dtJsn(x′, t)

· {[∇ ·G(x, t; x′, 0)
] ∗ [∇ · us (x, t)

]}
. (4.145)

Note that the Green’s tensor G and the forward wavefield us in Eqs. 4.141 and 4.145
are computed using the reference structural model and κ(x) is the reference bulk
modulus. I have dropped the ˜ on top of the Green’s tensor, the forward wavefield
and the reference bulk modulus to reduce clutter.

4.3.2 Bulk and Shear Moduli

In isotropic solids, we have two independent elastic parameters. One possibility is
to use the bulk modulus κ and the shear modulus μ and the stiffness tensor can be
expressed as

cjklm =
(

κ − 2

3
μ

)
δjkδlm + μ(δjlδkm + δjmδkl). (4.146)

The perturbation δcjklm can be expressed in terms of the perturbations in the two
moduli as

δcjklm = ∂cjklm

∂κ
δκ + ∂cjklm

∂μ
δμ

= δjkδlmδκ +
(

δjlδkm + δjmδkl − 2

3
δjkδlm

)
δμ. (4.147)

Equation 4.147 can also be written in terms of the relative perturbations

δcjklm = δjkδlmκδ ln κ
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+
(

δjlδkm + δjmδkl − 2

3
δjkδlm

)
μδ ln μ. (4.148)

Bring Eq. 4.148 into the last term on the RHS of Eq. 4.37, we obtain the data sen-
sitivity kernels with respect to the relative perturbations in the two moduli, i.e.,

K ln κ
dsn (x) = κ(x)

3∑

j,l=1

K
cjjll

dsn (x), (4.149)

K
ln μ
dsn (x) = μ(x)

[ 3∑

j,k=1

K
cjkjk

dsn (x)+
3∑

j,k=1

K
cjkkj

dsn (x)

−2

3

3∑

j,l=1

K
cjjll

dsn (x)

]
. (4.150)

Bring Eq. 4.35 into the RHS of Eq. 4.149, we recover Eq. 4.145. Bring Eq. 4.35 into
the RHS of Eq. 4.150, we obtain

K
ln μ
dsn (x) = −μ(x)

∫

V

dV (x′)
∫ T

0
dt

3∑

p=1

J sn
p (x′, t)

{ 3∑

j,k=1

∂Gjp(x, t; x′, 0)

∂xk

∗
[

∂us
j (x, t)

∂xk

+ ∂us
k (x, t)

∂xj

]

−2

3

⎡

⎣
3∑

j=1

∂Gjp(x, t; x′, 0)

∂xj

⎤

⎦ ∗
[

3∑

l=1

∂us
l (x, t)

∂xl

]}

= −μ(x)
∫

V

dV (x′)
∫ T

0
dtJsn(x′, t)

·
{
∇G(x, t; x′, 0):

[
∇us (x, t)+ [∇us(x, t)

]T ]

−2

3

[∇ ·G(x, t; x′, 0)
] ∗ [∇ · us (x, t)

]
}
, (4.151)

where “:” denotes the temporal convolution “∗” and also the summation over both
j and k.

Equation 4.151 can be further simplified if we introduce the deviatoric strain
(Eq. 2.49). We denote the forward strain field from the sth source as

εs ≡ 1

2

[
∇us + (∇us

)T ]
, or εs

jk ≡
1

2

[
∂us

j

∂xk

+ ∂us
k

∂xj

]

, (4.152)
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which is a second-order tensor field. The gradient of the Green’s tensor ∇G or
∂Gjp(x, t; x′, 0)/∂xk is a third-order tensor field. If we introduce

εG
jkp ≡

1

2

[
∂Gjp

∂xk

+ ∂Gkp

∂xj

]
, (4.153)

then for every fixed p, Eq. 4.153 defines a strain field induced by the displacement
field Gjp. The second term inside the square bracket in Eq. 4.153, ∂Gkp/∂xj , is a
transposition of the first two indices (i.e., j and k) in the first term, ∂Gjp/∂xk . If we
denote this transposition using the superscript 213 (e.g., Zhao et al. 2005, 2006), we
can write Eq. 4.153 as

εG ≡ 1

2

[
∇G+ (∇G)213

]
. (4.154)

The corresponding deviatoric strain fields can then be defined as

ε̆s ≡ εs − 1

3
tr
(
εs
)

I or ε̆s
jk ≡ εs

jk −
δjk

3

3∑

l=1

εs
ll , (4.155)

ε̆G ≡ εG − 1

3
tr
(
εG
)

I or ε̆G
jkp ≡ εG

jkp −
δjk

3

3∑

l=1

εG
llp, (4.156)

where I is a 3-by-3 identity tensor, tr (εs) = ∑3
l=1 εs

ll is the trace of the second-

order tensor εs and tr
(
εG
) = ∑3

l=1 εG
llp is the trace for the first two indices of the

third-order tensor εG. It can be verified that

∇G(x, t; x′, 0):
[
∇us(x, t)+ [∇us (x, t)

]T ]

= 2εG(x, t; x′, 0):εs (x, t), (4.157)

and from the definition of the divergence we have

∇ ·G(x, t; x′, 0) = tr
[
εG(x, t; x′, 0)

]
, ∇ · us(x, t) = tr

[
εs(x, t)

]
. (4.158)

Bring Eqs. 4.157 and 4.158 into Eq. 4.151, we obtain

K
ln μ
dsn (x) = −2μ(x)

∫

V

dV (x′)
∫ T

0
dtJsn(x′, t)

·
{
εG(x, t; x′, 0):εs (x, t)− 1

3
tr
[
εG(x, t; x′, 0)

]
∗ tr
[
εs(x, t)

]
}

. (4.159)

It can be verified that the term inside { } in Eq. 4.159 is identical to ε̆G:ε̆s , i.e.,

εG(x, t; x′, 0):εs (x, t)− 1

3
tr
[
εG(x, t; x′, 0)

]
∗ tr
[
εs (x, t)

]

= ε̆G(x, t; x′, 0):ε̆s(x, t). (4.160)
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Combining Eqs. 4.157, 4.158 and 4.160, we have

∇G(x, t; x′, 0):
[
∇us(x, t)+ [∇us (x, t)

]T ]

−2

3

[∇ ·G(x, t; x′, 0)
] ∗ [∇ · us (x, t)

]

= 2

{
εG(x, t; x′, 0):εs(x, t)− 1

3
tr
[
εG(x, t; x′, 0)

]
∗ tr
[
εs(x, t)

]
}

= 2ε̆G(x, t; x′, 0):ε̆s (x, t). (4.161)

Bring Eq. 4.161 into Eq. 4.151, we obtain

K
ln μ
dsn (x) = −2μ(x)

∫

V

dV (x′)
∫ T

0
dtJsn(x′, t)

·
[
ε̆G(x, t; x′, 0):ε̆s (x, t)

]
, (4.162)

where “:” has the same meaning as in Eq. 4.151. Equation 4.162 is consistent with
(Tromp et al. 2005). Note that in Eq. 4.162 both ε̆G and ε̆s are computed in the
reference structural model and μ(x) is the reference shear modulus.

The data sensitivity kernels of the broadband cross-correlation delay time
(Sect. 4.2.6) with respect to the relative perturbations in the two moduli and the
density for the P, PP and PS waves on the x1-component synthetic velocity seismo-
gram from 100001 to IN.RC01 in the half-space example are shown on the top
rows in Figs. 4.17, 4.18 and 4.19. The expressions for the kernels with respect to
the relative perturbations in the bulk modulus and the shear modulus are given in
Eqs. 4.145 and 4.151, respectively. The expression for the kernel with respect to the
relative perturbation in the density is given in Eq. 4.178 in Sect. 4.3.4.

4.3.3 Lamé Parameters

In isotropic solids, the fourth-order stiffness tensor can also be represented using the
two Lamé parameters through

cjklm = λδjkδlm + μ(δjlδkm + δjmδkl), (4.163)

where the first Lamé parameter λ is related to the bulk and shear moduli as

λ = κ − 2

3
μ. (4.164)

The perturbation δcjklm can be expressed in terms of the perturbations in the Lamé
parameters as

δcjklm = ∂cjklm

∂λ
δλ+ ∂cjklm

∂μ
δμ
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Fig. 4.17 Data sensitivity kernels of the broadband cross-correlation delay time with respect to
relative perturbations in the bulk modulus κ (left column, top row) (Eq. 4.145), shear modulus μ

(center column, top row) (Eq. 4.151) and density ρ (right column, top row) (Eq. 4.178), the first
Lamé parameter λ (left column, center row) (Eq. 4.167), the second Lamé parameter μ (center
column, center row) (Eq. 4.168), the density ρ (right column, center row) (Eq. 4.178), the P-wave
velocity α (left column, bottom row) (Eq. 4.185), the S-wave velocity β (center column, bottom
row) (Eq. 4.186) and the denstiy ρ (right column, bottom row) (Eq. 4.175). The data functional is
applied on the P-wave on the x1-component synthetic seismogram from 100001 to IN.RC01 in
the half-space example.

= δjkδlmδλ+ (δjlδkm + δjmδkl)δμ, (4.165)

and in terms of the relative perturbations in the Lamé parameters as

δcjklm = δjkδlmλδ ln λ

+ (δjlδkm + δjmδkl)μδ ln μ. (4.166)

Bring Eq. 4.166 into the last term on the RHS of Eq. 4.37, we obtain the data sensi-
tivity kernels with respect to the relative perturbations in the two Lamé parameters,
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Fig. 4.18 The format is identical to that in Fig. 4.17, except that the data functional is applied on
the PP-wave.

i.e.,

K ln λ
dsn (x) = λ(x)

3∑

j,l=1

K
cjjll

dsn (x),

= −λ(x)
∫

V

dV (x′)
∫ T

0
dtJsn(x′, t)

· {[∇ ·G(x, t; x′, 0)
] ∗ [∇ · us (x, t)

]}
. (4.167)

K̆
ln μ
dsn (x) = μ(x)

⎡

⎣
3∑

j,k=1

K
cjkjk

dsn (x)+
3∑

j,k=1

K
cjkkj

dsn (x)

⎤

⎦

= −μ(x)
∫

V

dV (x′)
∫ T

0
dtJsn(x′, t) ·

{
∇G(x, t; x′, 0)
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Fig. 4.19 The format is identical to that in Fig. 4.17, except that the data functional is applied on
the PS wave.

:
[
∇us (x, t)+ [∇us(x, t)

]T ]
}
, (4.168)

where the “:” has the same meaning as in Eq. 4.151. Considering Eqs. 4.149 and
4.164, we can express K ln λ

dsn (x) in Eq. 4.167 as

K ln λ
dsn (x) = κ(x)− 2

3μ(x)

κ(x)
K ln κ

dsn (x). (4.169)

Considering Eqs. 4.149 and 4.150, we can also express K̆
ln μ
dsn (x) in Eq. 4.168 in

terms of K ln κ
dsn (x) and K

ln μ
dsn (x) as

K̆
ln μ
dsn (x) = K

ln μ
dsn (x)+ 2μ(x)

3κ(x)
K ln κ

dsn (x). (4.170)
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Equations 4.169 and 4.170 indicate that the data sensitivity kernels with respect to
the relative perturbations in the Lamé parameters can be expressed as linear combi-
nations of the data sensitivity kernels with respect to the relative perturbations in the
two moduli. By re-arranging the terms in Eqs. 4.169 and 4.170 we can also express
the kernels of the two moduli in terms of the kernels of the two Lamé parameters.
Note that both K

ln μ
dsn (x) (Eq. 4.162) and K̆

ln μ
dsn (x) (Eq. 4.170) are the data sensitivity

kernels with respect to the relative perturbation in the shear modulus. But depending
upon the choice of the other parameter (i.e., either the bulk modulus κ or the first
Lamé parameter λ), the expressions for K

ln μ
dsn (x) and K̆

ln μ
dsn (x) are different.

The data sensitivity kernels of the broadband cross-correlation delay time with
respect to the relative perturbations in the two Lamé parameters and the density
for the P, PP and PS waves on the x1-component synthetic velocity seismogram
from 100001 to IN.RC01 in the half-space example are shown on the center rows
in Figs. 4.17, 4.18 and 4.19. The expressions for the kernels with respect to the
relative perturbations in the two Lamé parameters are given by Eqs. 4.167 and 4.168,
respectively. The expression for the kernel with respect to the relative perturbation
in the density is given in Eq. 4.178 in Sect. 4.3.4.

For the half-space example, the factor (κ − 2
3μ)/κ in Eq. 4.169 has a constant

value of about 0.6849. Compared with the kernel K ln κ
dsn (x) shown on the left column,

top row in Figs. 4.17, 4.18 and 4.19, the kernel K ln λ
dsn (x) (left column, center row) has

slightly reduced amplitudes, as predicted by Eq. 4.169. For our half-space example,
the factor (2μ)/(3κ) in Eq. 4.170 has a constant value of about 0.3151. Compared
with the kernel K ln μ

dsn (x) shown on the center column, top row in Figs. 4.17, 4.18 and

4.19, the kernel K̆
ln μ
dsn (x) (center column, center row) has some slight imprint having

the shape of K ln κ
dsn (x), which is most obvious for the PS wave kernels (Fig. 4.19), as

predicted by Eq. 4.170.

4.3.4 P- and S-wave Velocities

In isotropic solids, the fourth-order stiffness tensor can also be expressed in terms
of the mass density ρ, the P-wave velocity α and S-wave velocity β, i.e.,

α =
√

κ + 4
3μ

ρ
, β =

√
μ

ρ
, (4.171)

and we have

cjklm =
(
ρα2 − 2ρβ2

)
δjkδlm + ρβ2(δjlδkm + δjmδkl). (4.172)

The perturbation δcjklm can then be expressed as

δcjklm = ∂cjklm

∂ρ
δρ + ∂cjklm

∂α
δα + ∂cjklm

∂β
δβ
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=
[(

α2 − 2β2
)

δjkδlm + β2 (δjlδkm + δjmδkl

)]
δρ

+ 2ρα
(
δjkδlm

)
δα

+ 2ρβ
(
δjlδkm + δjmδkl − 2δjkδlm

)
δβ. (4.173)

or in terms of the relative perturbations as

δcjklm =
[
κδjkδlm + μ

(
δjlδkm + δjmδkl − 2

3
δjkδlm

)]
δ ln ρ

+ 2ρα2 (δjkδlm

)
δ ln α

+ 2ρβ2 (δjlδkm + δjmδkl − 2δjkδlm

)
δ ln β. (4.174)

Bring Eq. 4.174 into the RHS of Eq. 4.37, we obtain the data sensitivity ker-
nels with respect to the relative perturbations in the mass density, P- and S-wave
velocities,

K̆
ln ρ
dsn (x) = ρ(x)Kρ

dsn(x)+ κ(x)
3∑

j,l=1

K
cjjll

dsn (x)

+ μ(x)

⎡

⎣
3∑

j,k=1

K
cjkjk

dsn (x)+
3∑

j,k=1

K
cjkkj

dsn (x)− 2

3

3∑

j,l=1

K
cjjll

dsn (x)

⎤

⎦ , (4.175)

K ln α
dsn (x) = 2ρα2

3∑

j,l=1

K
cjjll

dsn (x), (4.176)

K
ln β
dsn (x) = 2ρβ2

[ 3∑

j,k=1

K
cjkjk

dsn (x)+
3∑

j,k=1

K
cjkkj

dsn (x)− 2
3∑

j,l=1

K
cjjll

dsn (x)

]
. (4.177)

If we define
K

ln ρ
dsn (x) = ρ(x)Kρ

dsn(x), (4.178)

where the expression for K
ρ
dsn (x) is given in Eq. 4.32, considering Eqs. 4.149 and

4.150, Eq. 4.175 can be expressed as

K̆
ln ρ
dsn (x) = K

ln ρ
dsn (x)+K ln κ

dsn (x)+K
ln μ
dsn (x). (4.179)

Considering Eq. 4.149, Eq. 4.176 can be expressed as

K ln α
dsn (x) =

2
(
κ + 4

3μ
)

κ
K ln κ

dsn (x). (4.180)

Considering Eqs. 4.149 and 4.150, we can express K
ln β
dsn (x) in Eq. 4.177 as

K
ln β
dsn (x) = 2

[
K

ln μ
dsn (x)− 4μ

3κ
K ln κ

dsn (x)

]
. (4.181)
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Therefore the data sensitivity kernels with respect to the relative perturbations in P-
and S-wave velocities can be expressed as linear combinations of the data sensitiv-
ity kernels with respect to the relative perturbations in the bulk and shear moduli.
Note that the expression for K̆

ln ρ
dsn (x) (Eq. 4.179) is different from the expression

for K
ln ρ
dsn (x) (Eqs. 4.32 and 4.178) even though both of them are the data sensitivity

kernels with respect to the relative perturbation in the mass density.
Considering Eqs. 4.167 and 4.168, the data sensitivity kernels K̆

ln ρ
dsn (x), K ln α

dsn (x)

and K
ln β
dsn (x) can also be expressed in terms of K ln λ

dsn (x) and K̆
ln μ
dsn (x), i.e.,

K̆
ln ρ
dsn (x) = K

ln ρ
dsn (x)+K ln λ

dsn (x)+ K̆
ln μ
dsn (x), (4.182)

K ln α
dsn (x) = 2(λ+ 2μ)

λ
K ln λ

dsn (x), (4.183)

K
ln β
dsn (x) = 2

[
K̆

ln μ
dsn (x)− 2μ

λ
K ln λ

dsn (x)

]
. (4.184)

On the other hand, the data sensitivity kernels with respect to the relative perturba-
tions in the two Lamé parameters or the two moduli can also be expressed in terms
of the data sensitivity kernels with respect to the relative perturbations in P- and
S-wave velocities.

Consider Eq. 4.176, we can obtain the expression for the data sensitivity kernel
with respect to the relative perturbation in P-wave velocity by bringing Eq. 4.35
into Eq. 4.176, i.e.,

K ln α
dsn (x) = −2ρα2

∫

V

dV (x′)
∫ T

0
dt

3∑

p=1

J sn
p (x′, t)

3∑

j,l=1

∂Gjp(x, t; x′, 0)

∂xj

∗ ∂us
l (x, t)

∂xl

= −2ρα2
∫

V

dV (x′)
∫ T

0
dt

3∑

p=1

J sn
p (x′, t)

⎡

⎣
3∑

j=1

∂Gjp(x, t; x′, 0)

∂xj

⎤

⎦ ∗
[

3∑

l=1

∂us
l (x, t)

∂xl

]

= −2ρ(x)α2(x)
∫

V

dV (x′)
∫ T

0
dtJsn(x′, t)

· {[∇ ·G(x, t; x′, 0)
] ∗ [∇ · us (x, t)

]}
, (4.185)
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which is consistent with Eqs. (16) and (17) in (Zhao et al. 2005)4.
Bring Eq. 4.35 into Eq. 4.177, we can obtain an explicit expression for the data

sensitivity kernel with respect to the relative perturbation in the S-wave velocity,
i.e.,

K
ln β
dsn (x) = −2ρβ2

∫

V

dV (x′)
∫ T

0
dt

3∑

p=1

J sn
p (x′, t)

{ 3∑

j,k=1

∂Gjp(x, t; x′, 0)

∂xk

∗
[

∂us
j (x, t)

∂xk

+ ∂us
k (x, t)

∂xj

]

−2

⎡

⎣
3∑

j=1

∂Gjp(x, t; x′, 0)

∂xj

⎤

⎦ ∗
[

3∑

l=1

∂us
l (x, t)

∂xl

]}

= −2ρβ2
∫

V

dV (x′)
∫ T

0
dtJsn(x′, t)

·
{
∇G(x, t; x′, 0):

[
∇us (x, t)+ [∇us(x, t)

]T ]

−2
[∇ ·G(x, t; x′, 0)

] ∗ [∇ · us (x, t)
]
}
, (4.186)

where “:” denotes the temporal convolution “∗” and the summation over both j and
k. Equation 4.186 can be compared with Eqs. (18) and (19) in (Zhao et al. 2005)5.

Using the definition of the deviatoric strain tensors (Eqs. 4.155 and 4.156) and
the identities in Eqs. 4.157, 4.158, 4.160 and 4.161, we can re-write Eq. 4.186 as

K
ln β
dsn (x) = −2μ(x)

∫

V

dV (x′)
∫ T

0
dtJsn(x′, t)

·
{

2
[
ε̆G(x, t; x′, 0):ε̆s (x, t)

]
− 4

3
tr
[
εG(x, t; x′, 0)

]
∗ tr
[
εs (x, t)

]
}

. (4.187)

4 Note that the Green’s tensor G used in Eq. 4.185 here is the RGT, i.e., the Green’s tensor from the
receiver to the scatterer, while the one used in Eqs. (16)–(17) in (Zhao et al. 2005) is the Green’s
tensor from the scatterer to the receiver. Therefore no transpose operation is applied on the RGT in
Eq. 4.185. The kernel given in Eq. 4.185 is for the relative perturbation δα/α, while the kernels in
Eqs. (16)–(17) in (Zhao et al. 2005) are for the absolute perturbation δα. Therefore Eq. 4.185 has
the factor α2(x), while Eqs. (16)–(17) in (Zhao et al. 2005) have the factor α(x).
5 Note that no transpose operation is needed on the RGT G in Eq. 4.186 here, while the Green’s
tensor used in Eqs. (18)–(19) in (Zhao et al. 2005), which is from the scatterer to the receiver,
needs to be transposed. The kernel given in Eq. 4.186 here is for the relative perturbation δβ/β,
while those in Eqs. (18)–(19) in (Zhao et al. 2005) are for the absolute perturbation δβ. Therefore
Eq. 4.186 here has the factor β2(x), while Eqs. (18)–(19) in (Zhao et al. 2005) have the factor β(x).
Equation 4.186 here and Eqs. (18)–(19) in (Zhao et al. 2005) differ by a minus sign.
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Considering Eqs. 4.162 and 4.145, Eq. 4.187 can be expressed in terms of K ln κ
dsn (x)

and K
ln μ
dsn (x) as

K
ln β
dsn (x) = 2

[
K

ln μ
dsn (x)− 4μ(x)

3κ(x)
K ln κ

dsn (x)

]
, (4.188)

which verifies Eq. 4.181.
The data sensitivity kernels of the broadband cross-correlation delay time with

respect to the relative perturbations in the P- and S-wave velocities and the density
for the P, PP and PS waves on the x1-component synthetic velocity seismogram from
100001 to IN.RC01 in the half-space example are shown on the bottom rows in
Figs. 4.17, 4.18 and 4.19. The expressions for the kernels with respect to the relative
perturbations in the P- and S-wave velocities are given by Eqs. 4.185 and 4.186,
respectively. The expression for the kernel with respect to the relative perturbation
in the density is given in Eq. 4.175.

For the half-space example, the factor 2
(
κ + 4

3μ
)

/κ in Eq. 4.180 is a constant

with the value at about 3.2605. As shown in Figs. 4.17, 4.18 and 4.19, the amplitudes
of the kernels with respect to the relative perturbation in α are about three times
larger than the amplitudes of the kernels with respect to κ , as predicted by Eq. 4.180.
The factor 4μ/(3κ) in Eq. 4.181 is a constant of about 0.6302. We can examine the
kernels for the PS wave on Figs. 4.19. For the S-wave leg from the free surface
to the receiver, the amplitude of K

ln β
dsn (center column, bottom row) is about twice

as large as K
ln μ
dsn (center column, top row) and for the P-wave leg from the source

to the free surface, K
ln β
dsn has a similar shape with K ln κ

dsn (left column, top row) but
with the opposite sign, which is predicted by Eq. 4.181. Unlike the density kernels
shown on the top and center rows in Figs. 4.17, 4.18 and 4.19, the density kernel
K̆

ln ρ
dsn shown on the right column, bottom row in Figs. 4.17, 4.18 and 4.19 has much

smaller amplitudes, as predicted by Eq. 4.179.

4.3.5 Love’s Elastic Parameters (Hexagonal Symmetry)

For anisotropic material with hexagonal symmetry, there are five independent elastic
coefficients, which are often denoted as A,C,L,N,F in Love’s notation (Dziewon-
ski and Anderson 1981; Love 2013). The five Love’s parameters can be related to
the components of the fourth-order stiffness tensor once the orientation of the sym-
metry axis with respect to the geographical coordinate system is determined. In the
seismological literature, a widely used Cartesian coordinate system is the one used
in e.g., (Aki and Richards 2002), with the x1 axis pointing to the North, the x2 axis
pointing to the East and the x3 axis oriented downward. We will call this coordinate
system the A&R coordinate. The coordinate system used in our software package
F3DWI has the x3 axis pointing up, away from the center of the Earth. The two hor-
izontal axes in F3DWI do not have to point to the East and North directions, but for
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Table 4.1 The Voigt convention for assigning components in the fourth-order tensor cjklm to com-
ponents in the 6-by-6 Voigt matrix Cab. As a and b vary from 1 to 6, the indices (j, k) and (l,m)

take on values (1,1), (2,2), (3,3), (2,3) or (3,2), (1,3) or (3,1), (1,2) or (2,1)

jk lm 11 22 33 23= 32 13= 31 12= 21

a b 1 2 3 4 5 6

the sake of simplicity we assume that the x1 axis points to the East and the x2 axis
points to the North in Sects. 4.3.5 and 4.3.6. The coordinate transform between the
A&R coordinate and the F3DWI coordinate is therefore given by the transformation
matrix

R =

⎡

⎢
⎢
⎣

0 1 0

1 0 0

0 0 −1

⎤

⎥
⎥
⎦ . (4.189)

For the fourth-order elastic stiffness tensor c′nopq given in the A&R coordinate
system, its representation in the F3DWI coordinate system is given by

cjklm =
3∑

n,o,p,q=1

RjnRkoRlpRmqc′nopq, (4.190)

where Rjn is the index notation of R in Eq. 4.189. In tensor notation, we have

c = R · R · c′ · RT · RT , (4.191)

where “·” represents tensor contraction, RT is the transpose of R in Eq. 4.189, c
and c′ are the fourth-order stiffness tensor in the F3DWI coordinate system and
the A&R coordinate system respectively. If the coordinate transformation matrix is
different from that shown in Eq. 4.189, Eqs. 4.190 and 4.191 are still applicable. For
an arbitrary coordinate rotation, the matrix R is an orthogonal matrix, i.e., RT R = I,
and we can obtain c′ from a given c by reversing the relation given in Eqs. 4.190
and 4.191, i.e.,

c′ = RT ·RT · c ·R ·R. (4.192)

Because of the symmetry conditions (Eq. 4.136), the stiffness of an anisotropic
medium can be described using a 6-by-6 matrix, often denoted as Cab, instead of
the full fourth-order tensor cjklm. The relation between the components of the Cab

matrix and the components in cjklm is often established following the Voigt conven-
tion (Voigt 1928), as shown in Table 4.1. For a stiffness tensor c′ given in the A&R
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coordinate, the corresponding Voigt matrix is then given by

C =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c′1111 c′1122 c′1133 c′1123 c′1113 c′1112

c′2211 c′2222 c′2233 c′2223 c′2213 c′2212

c′3311 c′3322 c′3333 c′3323 c′3313 c′3312

c′2311 c′2322 c′2333 c′2323 c′2313 c′2312

c′1311 c′1322 c′1333 c′1323 c′1313 c′1312

c′1211 c′1222 c′1233 c′1223 c′1213 c′1212

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4.193)

Considering the symmetry condition c′jklm = c′lmjk (Eq. 4.136), the Voigt matrix
in Eq. 4.193 is symmetric, which allows us to reduce the number of independent
components in the Voigt matrix from 36 to 21. Considering the relation between c′
and c given in Eq. 4.192, the Voigt matrix in Eq. 4.193 can also be expressed in
terms of the components of c in the F3DWI coordinate as

C =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c2222 c2211 c2233 −c2213 −c2223 c2221

c1122 c1111 c1133 −c1113 −c1123 c1121

c3322 c3311 c3333 −c3313 −c3323 c3321

−c1322 −c1311 −c1333 c1313 c1323 −c1321

−c2322 −c2311 −c2333 c2313 c2323 −c2321

c2122 c2111 c2133 −c2113 −c2123 c2121

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4.194)

The data sensitivity kernels with respect to the 21 independent components in the
Voigt matrix in Eq. 4.194 can then be obtained from the data sensitivity kernels with
respect to the corresponding components in the fourth-order stiffness tensor given
by Eq. 4.35.

In the hexagonal case, if the vertical axis x3 in the A&R coordinate is the symme-
try axis, the Voigt matrix in Eq. 4.194 can be expressed in terms of the five Love’s
elastic parameters as (e.g., Babuska and Cara 1991)

C =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A A− 2N F 0 0 0

A− 2N A F 0 0 0

F F C 0 0 0

0 0 0 L 0 0

0 0 0 0 L 0

0 0 0 0 0 N

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4.195)

Comparing Eq. 4.195 with Eq. 4.194, we obtain

c2222 = c1111 = A, (4.196)

c3333 = C, (4.197)
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c1313 = c3113 = c1331 = c3131 = c2323 = c3223 = c2332 = c3232 = L, (4.198)

c2121 = c1221 = c2112 = c1212 = N, (4.199)

c2211 = c1122 = A− 2N, (4.200)

c2233 = c3322 = c1133 = c3311 = F . (4.201)

The perturbations in the relevant cjklm can then be expressed in terms of the
perturbations in the five Love’s elastic parameters as

δc2222 = δc1111 = δA, (4.202)

δc3333 = δC, (4.203)

δc1313 = δc3113 = δc1331 = δc3131

= δc2323 = δc3223 = δc2332 = δc3232 = δL, (4.204)

δc2121 = δc1221 = δc2112 = δN, (4.205)

δc2211 = δc1122 = δA− 2δN, (4.206)

δc2233 = δc3322 = δc1133 = δc3311 = δF . (4.207)

Bring Eqs. 4.202–4.207 into the last term on the RHS of Eq. 4.37 and collect all the
terms containing δA, we obtain the data sensitivity kernel with respect to A, i.e.,

KA
dsn(x) = K

c1111
dsn (x)+K

c2222
dsn (x)+K

c2211
dsn (x)+K

c1122
dsn (x). (4.208)

Collect all the terms containing δC, we obtain the data sensitivity kernel with respect
to C, i.e.,

KC
dsn(x) = K

c3333
dsn (x). (4.209)

Collect all the terms containing δL, we obtain the data sensitivity kernel with respect
to L, i.e.,

KL
dsn (x) = K

c1313
dsn (x)+K

c3113
dsn (x)+K

c1331
dsn (x)+K

c3131
dsn (x)

+ K
c2323
dsn (x)+K

c3223
dsn (x)+K

c2332
dsn (x)+K

c3232
dsn (x). (4.210)

Collect all the terms containing δN , we obtain the data sensitivity kernel with
respect to N , i.e.,

KN
dsn(x) = K

c2121
dsn (x)+K

c1221
dsn (x)+K

c2112
dsn (x)+K

c1212
dsn (x)

− 2K
c2211
dsn (x)− 2K

c1122
dsn (x). (4.211)
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Collect all the terms containing δF , we obtain the data sensitivity kernel with respect
to F , i.e.,

KF
dsn(x) = K

c2233
dsn (x)+K

c3322
dsn (x)+K

c1133
dsn (x)+K

c3311
dsn (x). (4.212)

If we bring Eq. 4.35 into the RHS of Eqs. 4.208–4.212, we can verify the following
relations between the data sensitivity kernels with respect to the P- and S-wave
velocities in the isotropic medium (Eqs. 4.185 and 4.186 in Sect. 4.3.4) and the data
sensitivity kernels with respect to the five Love’s parameters (e.g., Sieminski et al.
2007),

K ln α
dsn (x) = 2ρα2

[
KA

dsn(x)+KC
dsn(x)+KF

dsn(x)
]
, (4.213)

K
ln β
dsn (x) = 2ρβ2

[
KL

dsn(x)+KN
dsn (x)− 2KF

dsn(x)
]

. (4.214)

The hexagonal symmetry case is of considerable practical interest because many
realistic anisotropy problems can be approximated using this relatively simple case.
Because the elastic properties do not vary in the plane perpendicular to the sym-
metry axis, hexagonal symmetry is also called transverse isotropy. If the symmetry
axis is vertical, this type of anisotropy is also called azimuthal isotropy. An exam-
ple of transverse isotropy with a vertical symmetry axis is the apparent anisotropy
produced by fine layering of isotropic sediments inside a sedimentary basin. In such
a situation, the amount of anisotropy is proportional to the vertical variance in the
elastic moduli (Backus 1962). In such a structure, the P-wave velocity depends upon
the incident angle of the wave. The velocity of a refracted P-wave propagating hor-
izontally, denoted as αH , is often larger than the velocity of a reflected P-wave
propagating vertically, denoted as αV . The two P-wave velocities are related to the
Love’s parameters via

αH =
√

A

ρ
, αV =

√
C

ρ
, (4.215)

and the two types of P-waves are often called PH and PV waves, respectively. Hor-
izontally propagating S-waves can have different velocities depending upon their
polarization. The velocity of a horizontally propagating S-wave with horizontal
polarization, denoted as βH is larger than the velocity of a horizontally propagat-
ing S-wave with vertical polarization, denoted as βV . The two S-wave velocities are
related to the Love’s parameters via

βH =
√

N

ρ
, βV =

√
L

ρ
, (4.216)

and the two S-waves are often called SH and SV waves, respectively. For vertically
propagating S-waves, the S-wave velocity does not depend upon the polarization
and equals to βV . Data sensitivity kernels with respect to the two P-wave velocities
and the two S-wave velocities can also be obtained by using the data sensitivity
kernels with respect to the Love’s parameters and the chain rule.
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Table 4.2 The 21 asymptotic parameters as denoted in (Chen and Tromp 2007). The angle ψ is the
local azimuth along the geometric ray path. The 21 asymptotic parameters are grouped according to
the the azimuthal dependence and wave types they control. Subscripts c,s correspond to azimuthal
dependence on cos (lψ) and sin (lψ), respectively, where l = 1, 2, 3, 4

0ψ 1ψ 2ψ 3ψ 4ψ

Quasi-Rayleigh A,C,L,N,F Bc,s ,Gc,s ,Hc,s Ec,s

Quasi-Love L,N Gc,s Ec,s

Quasi-P A,C,L, F Jc,s,Kc,s Bc,s ,Gc,s ,Hc,s Dc,s Ec,s

Quasi-S A,C,L,N,F Kc,s ,Mc,s Bc,s ,Gc,s ,Hc,s Dc,s Ec,s

It is also possible to use other types of parameterizations, such as Thomsen’s
parameters (Thomsen 1986; Chevrot 2006; Panning and Nolet 2008), which can also
be expressed in terms of components of the Voigt matrix Cab. The data sensitivity
kernels with respect to Thomsen’s parameters can also be obtained by using the
partial derivatives of Cab with respect to the five Thomsen’s parameters and the
chain rule.

4.3.6 Asymptotic Parameters (Triclinic Symmetry)

In general anisotropic media with triclinic symmetry, we have 21 independent elastic
parameters. One possible parameterization is to use the 21 independent compo-
nents in the Voigt matrix Cab and it is relatively straightforward to obtain the
data sensitivity kernels with respect to Cab by using the relations between Cab

and components of the fourth-order stiffness tensor cjklm as shown in Eq. 4.194.
A different parameterization that may have more physical meaning is to use the
21 “asymptotic parameters” (Chen and Tromp 2007), which are related to the
azimuthal dependence of the phase velocity for asymptotic wave propagation in
weakly anisotropic media (Smith and Dahlen 1973; Maupin 1985; Montagner and
Nataf 1986; Romanowicz and Snieder 1988; Larson et al. 1998; Chen and Tromp
2007). The 21 asymptotic parameters used in (Chen and Tromp 2007) are listed
in Table 4.2 according to the azimuthal dependences and the wave types these
parameters control. The five Love’s parameters A,C,L,N,F only control the
transverse isotropy with a vertical symmetry axis (Sect. 4.3.5), therefore they do not
introduce azimuthal anisotropy. For surface-wave anisotropy studies, the 13 param-
eters A,C,L,N,F,Bc,s ,Gc,s ,Hc,s, Ec,s determine the transverse isotropy and the
azimuthal anisotropy with 2ψ- and 4ψ-dependence. For body-wave studies, 8 more
parameters Jc,s ,Kc,s ,Mc,s ,Dc,s need to be introduced to determine the azimuthal
anisotropy with 1ψ- and 3ψ-dependence.

The 21 asymptotic parameters used in (Chen and Tromp 2007) can be related
to the 21 independent components of the Voigt matrix in Eq. 4.193 through the
following equations for the 0ψ terms,

A = 3 (C11 + C22) /8+ C12/4+ C66/2, (4.217)
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C = C33, (4.218)

N = (C11 + C22) /8− C12/4+ C66/2, (4.219)

L = (C44 + C55) /2, (4.220)

F = (C13 + C23) /2, (4.221)

the 1ψ terms,

Jc = 3C15/8+ C25/8+ C46/4, (4.222)

Js = −C14/8− 3C24/8− C56/4, (4.223)

Kc = 3C15/8+ C25/8+ C46/4− C35/2, (4.224)

Ks = −C14/8− 3C24/8− C56/4+ C34/2, (4.225)

Mc = (C15 − C25) /4+ C46/2, (4.226)

Ms = (−C14 + C24) /4+ C56/2, (4.227)

the 2ψ terms,

Gc = (C55 − C44) /2, (4.228)

Gs = C45, (4.229)

Bc = (C11 − C22) /2, (4.230)

Bs = C16 + C26, (4.231)

Hc = (C13 − C23) /2, (4.232)

Hs = C36, (4.233)

the 3ψ terms,

Dc = (C15 − C25) /4− C46/2, (4.234)

Ds = (−C14 + C24) /4− C56/2, (4.235)

and the 4ψ terms.

Ec = (C11 + C22) /8− C12/4− C66/2, (4.236)

Es = (C16 − C26) /2. (4.237)

The equations given above are consistent with those in (Babuska and Cara 1991;
Chen and Tromp 2007)6. This set of equations can be solved for the 21 independent
components of the Voigt matrix Cab and we can obtain the expressions for Cab in
terms of the 21 asymptotic parameters. Considering the relation between Cab and

6 Note that the expressions for Js,Ks ,Ms,Gs, Bs,Hs,Ds,Es given here differ from the corre-
sponding equations in (Chen and Tromp 2007) by a minus sign, which is due to differences in
the coordinate system. The coordinate system used here is the A&R coordinate, which is con-
sistent with the one used in Sect. 2.5.3 of (Babuska and Cara 1991), therefore expressions for
Gs,Bs,Hs,Es given here are identical to the corresponding equations given in Sect. 2.5.3 of
(Babuska and Cara 1991).
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the components of the fourth-order stiffness tensor cjklm in the F3DWI coordinate
system given in Eq. 4.194, we can obtain the expressions for cjklm in terms of the
21 asymptotic parameters, i.e.,

c2222 = C11 = A+ Bc + Ec, (4.238)

c1111 = C22 = A− Bc + Ec, (4.239)

c33333 = C33 = C, (4.240)

c1313 = c3113 = c1331 = c3131 = C44 = L−Gc, (4.241)

c2323 = c3223 = c2332 = c3232 = C55 = L+Gc, (4.242)

c2121 = c1221 = c2112 = c1212 = C66 = N − Ec, (4.243)

c2211 = c1122 = C12 = A− 2N − Ec, (4.244)

c2233 = c3322 = C13 = F +Hc, (4.245)

c2213 = c2231 = c1322 = c3122 = −C14 = 2Js + 2Ms +Ds, (4.246)

c2223 = c2232 = c2322 = c3222 = −C15 = −2Jc −Dc, (4.247)

c2221 = c2212 = c2122 = c1222 = C16 = Bs/2+ Es, (4.248)

c1133 = c3311 = C23 = F −Hc, (4.249)

c1113 = c1131 = c1311 = c3111 = −C24 = −Ds + 2Js, (4.250)

c1123 = c1132 = c2311 = c3211 = −C25 = Dc − 2Jc + 2Mc, (4.251)

c1121 = c1112 = c2111 = c1211 = C26 = Bs/2− Es, (4.252)

c3313 = c3331 = c1333 = c3133 = −C34 = 2Js − 2Ks, (4.253)

c3323 = c3332 = c2333 = c3233 = −C35 = −2Jc + 2Kc, (4.254)

c3321 = c3312 = c2133 = c1233 = C36 = Hs, (4.255)

c1323 = c3123 = c1332 = c3132

= c2313 = c2331 = c3213 = c3231 = C45 = Gs, (4.256)

c1321 = c3121 = c1312 = c3112

= c2113 = c2131 = c1213 = c1231 = −C46 = Dc −Mc (4.257)

c2321 = c3221 = c2312 = c3212

= c2123 = c2132 = c1223 = c1232 = −C56 = Ds −Ms . (4.258)

Perturbations of the fourth-order stiffness tensor components δcjklm can now be
expressed in terms of the perturbations of the 21 asymptotic parameters using this
set of equations. Bringing the perturbations δcjklm into the last term on the RHS
of Eq. 4.37 and collect the terms containing the perturbation of each asymptotic
parameter, we can obtain the data sensitivity kernel with respect to each asymptotic
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parameter. The data sensitivity kernels with respect to the five 0ψ terms are identical
to the data sensitivity kernels with respect to the Love’s parameters (Eqs. 4.208–
4.212),

KA
dsn = K

c1111
dsn +K

c2222
dsn +K

c1122
dsn +K

c2211
dsn , (4.259)

KC
dsn = K

c3333
dsn , (4.260)

KN
dsn = K

c2121
dsn +K

c1221
dsn +K

c2112
dsn +K

c1212
dsn

− 2K
c2211
dsn − 2K

c1122
dsn , (4.261)

KL
dsn = K

c1313
dsn +K

c3113
dsn +K

c1331
dsn +K

c3131
dsn

+ K
c2323
dsn +K

c3223
dsn +K

c2332
dsn +K

c3232
dsn , (4.262)

KF
dsn = K

c2233
dsn +K

c3322
dsn +K

c1133
dsn +K

c3311
dsn . (4.263)

Here I have drop the kernel’s dependence on x to reduce clutter. The data sensitivity
kernels with respect to the 1ψ terms, Jc,s ,Kc,s ,Mc,s , can be expressed as

K
Jc

dsn = −2
[
K

c1123
dsn +K

c1132
dsn +K

c2311
dsn +K

c3211
dsn

+K
c2223
dsn +K

c2232
dsn +K

c2322
dsn +K

c3222
dsn

+K
c3323
dsn +K

c3332
dsn +K

c2333
dsn +K

c3233
dsn

]
, (4.264)

K
Js

dsn = 2
[
K

c1113
dsn +K

c1131
dsn +K

c1311
dsn +K

c3111
dsn

+K
c2213
dsn +K

c2231
dsn +K

c1322
dsn +K

c3122
dsn

+K
c3313
dsn +K

c3331
dsn +K

c1333
dsn +K

c3133
dsn

]
, (4.265)

K
Kc

dsn = 2
[
K

c3323
dsn +K

c3332
dsn +K

c2333
dsn +K

c3233
dsn

]
, (4.266)

K
Ks

dsn = −2
[
K

c3313
dsn +K

c3331
dsn +K

c1333
dsn +K

c3133
dsn

]
, (4.267)

K
Mc

dsn = 2
[
K

c1123
dsn +K

c1132
dsn +K

c2311
dsn +K

c3211
dsn

]

−[Kc1321
dsn +K

c3121
dsn +K

c1312
dsn +K

c3112
dsn

+K
c2113
dsn +K

c2131
dsn +K

c1213
dsn +K

c1231
dsn

]
, (4.268)

K
Ms

dsn = 2
[
K

c2213
dsn +K

c2231
dsn +K

c1322
dsn +K

c3122
dsn

]

−[Kc2321
dsn +K

c3221
dsn +K

c2312
dsn +K

c3212
dsn

+K
c2123
dsn +K

c2132
dsn +K

c1223
dsn +K

c1232
dsn

]
. (4.269)
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The data sensitivity kernels with respect to the 2ψ terms, Gc,s, Bc,s ,Hc,s , can be
expressed as

K
Gc

dsn = − [Kc1313
dsn +K

c3113
dsn +K

c1331
dsn +K

c3131
dsn

]

+ [Kc2323
dsn +K

c3223
dsn +K

c2332
dsn +K

c3232
dsn

]
, (4.270)

K
Gs

dsn = K
c1323
dsn +K

c3123
dsn +K

c1332
dsn +K

c3132
dsn

+ K
c2313
dsn +K

c3213
dsn +K

c2331
dsn +K

c3231
dsn , (4.271)

K
Bc

dsn = K
c2222
dsn −K

c1111
dsn , (4.272)

K
Bs

dsn = [Kc2221
dsn +K

c2212
dsn +K

c2122
dsn +K

c1222
dsn

+K
c1121
dsn +K

c1112
dsn +K

c2111
dsn +K

c1211
dsn

]
/2, (4.273)

K
Hc

dsn = K
c2233
dsn +K

c3322
dsn −K

c1133
dsn −K

c3311
dsn , (4.274)

K
Hs

dsn = K
c3321
dsn +K

c3312
dsn +K

c2133
dsn +K

c1233
dsn . (4.275)

The data sensitivity kernels with respect to the 3ψ terms, Dc,s , can be expressed as

K
Dc

dsn = − [Kc2223
dsn +K

c2232
dsn +K

c2322
dsn +K

c3222
dsn

]

+K
c1123
dsn +K

c1132
dsn +K

c2311
dsn +K

c3211
dsn

+K
c1321
dsn +K

c3121
dsn +K

c1312
dsn +K

c3112
dsn

+K
c2113
dsn +K

c2131
dsn +K

c1213
dsn +K

c1231
dsn , (4.276)

K
Ds

dsn = K
c2213
dsn +K

c2231
dsn +K

c1322
dsn +K

c3122
dsn

− [Kc1113
dsn +K

c1131
dsn +K

c1311
dsn +K

c3111
dsn

]

+ K
c2321
dsn +K

c3221
dsn +K

c2312
dsn +K

c3212
dsn

+ K
c2123
dsn +K

c2132
dsn +K

c1223
dsn +K

c1232
dsn . (4.277)

The data sensitivity kernes with respect to the 4ψ terms, Ec,s , can be expressed as

K
Ec

dsn = K
c1111
dsn +K

c2222
dsn − [Kc2121

dsn +K
c1221
dsn

+K
c2112
dsn +K

c1212
dsn +K

c2211
dsn +K

c1122
dsn

]
, (4.278)

K
Es

dsn = K
c2221
dsn +K

c2212
dsn +K

c2122
dsn +K

c1222
dsn

− [Kc1121
dsn +K

c1112
dsn +K

c2111
dsn +K

c1211
dsn

]
. (4.279)
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Expressions above have shown that the data sensitivity kernels with respect to the 21
asymptotic parameters are linear combinations of the data sensitivity kernels with
respect to the components of the fourth-order stiffness tensor. By bringing Eq. 4.35
into the RHS of Eqs. 4.259–4.279, we can obtain explicit expressions for the data
sensitivity kernels with respect to the asymptotic parameters in terms of the RGT
and the forward wavefield.

The data sensitivity kernels of the broadband cross-correlation delay time with
respect to the perturbations in the 21 asymptotic parameters for the P, PP and
PS waves on the x1-component synthetic velocity seismogram from 100001 to
IN.RC01 in the half-space example are shown in Figs. 4.20, 4.21 and 4.22. The
data sensitivity kernels of other types of data functionals, such as shear-wave split-
ting measurements, can be obtained by replacing the WPK for the broadband
cross-correlation delay time with the WPK for the splitting measurements.

In realistic tomographic inversions, it is usually not possible to constrain all 21
asymptotic parameters simultaneously. For a given data set (i.e., a collection of
waveforms that will be used in the inversion), the principle component analysis
(Sieminski et al. 2009) can be used to identify a few asymptotic parameters or a few
linear combinations of the asymptotic parameters that can explain most of the data.

4.3.7 Anelastic Attenuation Quality Factors

The rate-of-relaxation tensor Ψjklm(x, t) (Eq. 3.200) allows us to account for fully
anisotropic and also anelastic material properties. However, in practice anisotropic
anelasticity is usually negligible and it is often sufficient to consider isotropic
anelasticity (e.g., Dahlen and Tromp 1998), which is often characterized using the
bulk and shear quality factors Qκ (x, ω), Qμ(x, ω), or the P- and S-wave quality
factors Qα(x, ω), Qβ (x, ω). These two sets of quality factors are related through
(Dahlen and Tromp 1998; Dahlen and Zhou 2006)

Q−1
α =

(
1− 4

3

β2

α2

)
Q−1

κ +
(

4

3

β2

α2

)
Q−1

μ , (4.280)

Q−1
β = Q−1

μ , (4.281)

where α and β are P- and S-wave velocities (Eq. 4.171). For the constant-Q
absorption-band model (e.g., Liu et al. 1976; Kanamori and Anderson 1977; Dahlen
and Tromp 1998), the quality factors can be considered as frequency-independent
over a wide frequency band, i.e.,

Q−1
κ (x, ω) ≈ Q−1

κ (x), Q−1
μ (x, ω) ≈ Q−1

μ (x). (4.282)

In such a case, the frequency-domain bulk and shear moduli are complex, frequency-
dependent functions and can be expressed as (e.g., Dahlen and Tromp 1998; Tromp
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Fig. 4.20 Data sensitivity kernels of the broadband cross-correlation delay time with respect to the
perturbations in the 21 asymptotic parameters. The data functional is applied on the P-wave on the
x1-component synthetic seismogram from 100001 to IN.RC01 in the half-space example.
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Fig. 4.21 The format is identical to that in Fig. 4.20, except that the data functional is applied on
the PP wave.
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Fig. 4.22 The format is identical to that in Fig. 4.20, except that the data functional is applied on
the PS wave.
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et al. 2005)

κ̂(x, ω) = κ̂(x, ω0)

[
1+ 2

π
Q−1

κ (x) ln
|ω|
ω0
+ iQ−1

κ (x)sgn(ω)

]
, (4.283)

μ̂(x, ω) = μ̂(x, ω0)

[
1+ 2

π
Q−1

μ (x) ln
|ω|
ω0
+ iQ−1

μ (x)sgn(ω)

]
, (4.284)

where ω0 is the reference frequency and sgn( ) is the sign function. The frequency-
dependent complex bulk and shear moduli in Eqs. 4.283–4.284 satisfy κ̂(x,−ω) =
κ̂∗(x, ω) and μ̂(x,−ω) = μ̂∗(x, ω). The perturbations in the bulk and shear moduli
δκ̂ and δμ̂ and the perturbations in the inverses of the quality factors δQ−1

κ and
δQ−1

μ can be related through

δκ̂(x, ω) = κ̂0(x)

[
2

π
ln
|ω|
ω0
+ i sgn(ω)

]
δQ−1

κ (x)

+
[

1+ 2

π
Q−1

κ (x) ln
|ω|
ω0
+ iQ−1

κ (x)sgn(ω)

]
δκ̂0, (4.285)

δμ̂(x, ω) = μ̂0(x)

[
2

π
ln
|ω|
ω0
+ i sgn(ω)

]
δQ−1

μ (x)

+
[

1+ 2

π
Q−1

μ (x) ln
|ω|
ω0
+ iQ−1

μ (x)sgn(ω)

]
δμ̂0, (4.286)

where κ̂0(x) = κ̂(x, ω0), μ̂0(x) = μ̂(x, ω0), δκ̂0 and δμ̂0 are the perturbations to the
bulk and shear moduli at the reference frequency.

The frequency-domain rate-of-relaxation tensor Ψ̂jklm(x, ω) can be expressed in
the form

Ψ̂jklm(x, ω) =
[
κ̂(x, ω)− 2

3
μ̂(x, ω)

]
δjkδlm

+ μ̂(x, ω)
(
δjlδkm + δjmδkl

)+Ψ′jklm(x), (4.287)

where we assume that the anisotropic term Ψ′jklm(x) is purely elastic. The pertur-

bation in the rate-of-relaxation tensor δΨ̂jklm and the perturbations in the quality
factors δQ−1

κ,μ can be related through

δΨ̂jklm(x, ω) = ∂Ψ̂jklm

∂κ̂
δκ̂ + ∂Ψ̂jklm

∂μ̂
δμ̂+ δΨ′jklm(x)

= δκ̂δjkδlm + δμ̂

(
δjlδkm + δjmδkl − 2

3
δjkδlm

)
+ δΨ′jklm(x). (4.288)

Bring Eqs. 4.285 and 4.286 into Eq. 4.288, we obtain

δΨ̂jklm(x, ω) = κ̂0(x)

[
2

π
ln
|ω|
ω0
+ i sgn(ω)

]
δjkδlmδQ−1

κ (x)
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+μ̂0(x)

[
2

π
ln
|ω|
ω0
+ i sgn(ω)

](
δjlδkm + δjmδkl − 2

3
δjkδlm

)
δQ−1

μ (x)

+
[

1+ 2

π
Q−1

κ (x) ln
|ω|
ω0
+ iQ−1

κ (x)sgn(ω)

]
δjkδlmδκ̂0

+
[

1+ 2

π
Q−1

μ (x) ln
|ω|
ω0
+ iQ−1

μ (x)sgn(ω)

]
(
δjlδkm + δjmδkl

)
δμ̂0

+δΨ′jklm(x). (4.289)

In the frequency-domain, Eq. 4.33 can be expressed as

δdsn = −
3∑

j,k,l,m=1

∫

V

dV (x)
∫

V

dV (x′)
∫ T

0
dt

3∑

p=1

J sn
p (x′, t)

F−1

[
∂Ĝjp(x, ω;x′, 0)

∂xk

∂ûs
l (x, ω)

∂xm

δΨ̂jklm (x, ω)

]

, (4.290)

where F−1 [ ] represents the inverse Fourier transform of the angular frequency ω to
time t and I have switched the roles of x and x′ (i.e., x ↔ x′). Bring Eq. 4.289 into
Eq. 4.290 and collect the terms containing δQ−1

κ (x), we obtain the data sensitivity
kernel with respect to Q−1

κ ,

K
Q−1

κ

dsn (x) = −κ̂0(x)
∫

V

dV (x′)
∫

dt

3∑

p=1

J̆ sn
p (x′, t)

⎡

⎣
3∑

j=1

∂Gjp(x, t; x′, 0)

∂xj

⎤

⎦ ∗
[

3∑

l=1

∂us
l (x, t)

∂xl

]

= −κ̂0(x)
∫

V

dV (x′)
∫

dt J̆sn(x, t)

· {[∇ ·G(x, t; x′, 0)
] ∗ [∇ · us(x, t)

]}
(4.291)

where the WPK J̆ sn
p (x′, t) has the form

J̆ sn
p (x′, t) =

∫ T

0
J sn

p (x′, t ′)ψ(t ′ − t)dt ′, (4.292)

and ψ(t) is the inverse Fourier transform of ψ̂(ω) = 2
π

ln |ω|
ω0
+ i sgn(ω), i.e.,

ψ(t) = F−1
[

2

π
ln
|ω|
ω0
+ i sgn(ω)

]
. (4.293)

If we introduce the function

ψ ′(t) = F−1
[

2

π
ln
|ω|
ω0
− i sgn(ω)

]
, (4.294)
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Fig. 4.23 Dash lines: the WPKs of the broadband cross-correlation amplitude anomalies measured
on the P (left), PP (center) and PS (right) waves on the x1-component of the synthetic velocity
seismogram from 100001 to IN.RC01 in the half-space example; solid lines: the WPKs for
the anelastic attenuation kernels obtained by convolving the WPKs shown in dash lines with the
function ψ ′(t) using Eq. 4.296.

whose Fourier transform ψ̂ ′(ω) satisfies ψ̂ ′(ω) = ψ̂∗(ω), then we have

ψ ′(t − t ′) = ψ(t ′ − t), (4.295)

and Eq. 4.292 can be re-written as

J̆ sn
p (x′, t) =

∫ T

0
J sn

p (x′, t ′)ψ ′(t − t ′)dt ′ = J sn
p (x′, t) ∗ ψ ′(t). (4.296)

As pointed out in (Tromp et al. 2005), when the physical dispersion, represented
by the term 2

π
ln |ω|

ω0
in Eq. 4.294, is ignored, J̆ sn

p (x′, t) is the Hilbert transform of
J sn

p (x′, t). We use the WPK for the broadband cross-correlation amplitude anomaly

as an example. Figure 4.23 shows the J̆ sn
p (x′, t) functions and also the J sn

p (x′, t)
functions in Eq. 4.296 for the broadband cross-correlation amplitude anomaly mea-
sured on the P, PP and PS waves on the x1-component synthetic velocity seismogram
from 100001 to IN.RC01 in the half-space example. The reference frequency
ω0 = 2π was used in the calculation. The J sn

p (x′, t) functions (dash lines) shown in
Fig. 4.23 are identical to those shown on the bottom row in Fig. 4.7.

Bring Eq. 4.289 into Eq. 4.290 and collect the terms containing δQ−1
μ (x), we

obtain the data sensitivity kernel with respect to Q−1
μ ,

K
Q−1

μ

dsn (x) = −μ̂0(x)
∫

V

dV (x′)
∫

dt

3∑

p=1

J̆ sn
p (x′, t)

{ 3∑

j,k=1

∂Gjp(x, t; x′, 0)

∂xk

∗
[

∂us
j (x, t)

∂xk

+ ∂us
k (x, t)

∂xj

]

−2

3

⎡

⎣
3∑

j=1

∂Gjp(x, t; x′, 0)

∂xj

⎤

⎦ ∗
[

3∑

l=1

∂us
l (x, t)

∂xl

]}

= −2μ̂0(x)
∫

V

dV (x′)
∫

dt J̆sn(x, t) ·
[
ε̆G(x, t; x′, 0):ε̆s(x, t)

]
, (4.297)
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Fig. 4.24 Data sensitivity kernels of the broadband cross-correlation amplitude anomaly with
respect to Q−1

κ (left column) and Q−1
μ (right column) for the P (top row), PP (center row) and

PS (bottom row) waves on the x1-component synthetic velocity seismogram from 100001 to
IN.RC01 in the half-space example.

where J̆ sn
p (x′, t) is given in Eq. 4.292, ε̆s and ε̆Gare deviatoric strain fields given

in Eqs. 4.155 and 4.156 and “:” has the same meaning as in Eq. 4.162. Compar-
ing Eq. 4.291 with 4.145 and Eq. 4.297 with 4.151, we can see that except for
the differences in the WPK J̆ sn

p (x′, t) and the reference bulk and shear moduli κ̂0
and μ̂0, the data sensitivity kernels with respect to the bulk and shear quality fac-

tors K
Q−1

κ

dsn and K
Q−1

μ

dsn are identical to the data sensitivity kernels with respect to the

relative perturbations in the two moduli K ln κ
dsn and K

ln μ
dsn , respectively. Figure 4.24

shows examples of K
Q−1

κ

dsn and K
Q−1

μ

dsn for the broadband cross-correlation amplitude
anomaly (Sect. 4.2.6) measured on the P, PP and PS waves on the x1-component syn-
thetic velocity seismogram from 100001 to IN.RC01 in the half-space example.
In this calculation, the reference structural model was elastic.
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When the reference model is purely elastic, the reference quality factors sat-
isfy Q−1

κ,μ(x) = 0 and the reference bulk and shear moduli κ(x) and μ(x) are real,
frequency-independent functions. Equation 4.289 can be simplified to

δΨ̂jklm(x, ω) = κ(x)

[
2

π
ln
|ω|
ω0
+ i sgn(ω)

]
δjkδlmδQ−1

κ (x)

+μ(x)

[
2

π
ln
|ω|
ω0
+ i sgn(ω)

](
δjlδkm + δjmδkl − 2

3
δjkδlm

)
δQ−1

μ (x)

+δjkδlmδκ + (δjlδkm + δjmδkl

)
δμ+ δΨ′jklm(x). (4.298)

Bring Eq. 4.298 into Eq. 4.290 and collect the terms containing δκ and δμ, respec-
tively, we obtain the data sensitivity kernels with respect to the two moduli K ln κ

dsn

and K
ln μ
dsn evaluated at the reference moduli. The expressions for K ln κ

dsn and K
ln μ
dsn are

identical to those given in Eqs. 4.145 and 4.151. When inverting amplitude misfit
measurements for quality factors using the kernels in Eqs. 4.291 and 4.297, it is
often necessary to account for focusing/de-focusing effects caused by elastic het-
erogeneities not included in the reference model. A joint inversion that combines

K
Q−1

κ

dsn and K
Q−1

μ

dsn with K ln κ
dsn and K

ln μ
dsn may allow us to recover the quality factors

unbiased by elastic focusing/de-focusing effects.
When the reference model is anelastic, Q−1

κ,μ(x) in Eq. 4.289 are the inverses
of the reference quality factors and κ̂0(x) and μ̂0(x) are the reference moduli at
the reference frequency ω0. Sine we often have Q−1

κ,μ(x) � 1, Eq. 4.289 might be
approximated as

δΨ̂jklm(x, ω) ≈ κ̂0(x)

[
2

π
ln
|ω|
ω0
+ i sgn(ω)

]
δjkδlmδQ−1

κ (x)

+μ̂0(x)

[
2

π
ln
|ω|
ω0
+ i sgn(ω)

](
δjlδkm + δjmδkl − 2

3
δjkδlm

)
δQ−1

μ (x)

+δjkδlmδκ̂0 +
(
δjlδkm + δjmδkl

)
δμ̂0 + δΨ′jklm(x). (4.299)

In such a case, data sensitivity kernels with respect to κ̂0 and μ̂0 are identical to
Eqs. 4.145 and 4.151, respectively. When the condition Q−1

κ,μ(x) � 1 does not
hold, we need to compute the data sensitivity kernels with respect to κ̂0 and μ̂0
using Eq. 4.289. For the relative perturbation in the bulk modulus at the reference
frequency κ̂0 we have

K
ln κ̂0
dsn (x) = −κ̂0(x)

∫

V

dV (x′)
∫ T

0
dtJsn(x′, t)

· {[∇ ·G(x, t; x′, 0)
] ∗ [∇ · us(x, t)

]}

−κ̂0(x)Q−1
κ (x)

∫

V

dV (x′)
∫ T

0
dt J̆sn(x′, t)

· {[∇ ·G(x, t; x′, 0)
] ∗ [∇ · us (x, t)

]}
, (4.300)
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where J̆sn(x′, t) is given in Eq. 4.292. And for the relative perturbation in the shear
modulus at the reference frequency μ̂0 we have

K
ln μ̂0
dsn (x) = −2μ̂0(x)

∫

V

dV (x′)
∫

dtJsn(x′, t) ·
[
ε̆G(x, t; x′, 0):ε̆s (x, t)

]

−2μ̂0(x)Q−1
μ (x)

∫

V

dV (x′)
∫

dt J̆sn(x′, t) ·
[
ε̆G(x, t; x′, 0):ε̆s(x, t)

]
, (4.301)

where ε̆s and ε̆Gare deviatoric strain fields given in Eqs. 4.155 and 4.156 and “:”
has the same meaning as in Eq. 4.162.

4.3.8 Finite Moment Tensor (FMT)

For a general moment source mjk(x, t), Eqs. 3.339 or 3.346 gives the synthetic dis-
placement seismogram at receiver location xr and time t . As discussed in Sect. 3.4.2,
it is possible to invert for mjk(x, t), as a tensor-valued function of both space and
time, using either equation. Since both equations are linear with respect to mjk(x, t),
the Fréchet kernel of the data functional with respect to mjk(x, t) can be obtained
by directly composing the integration kernel in Eqs. 3.339 or 3.346 with the corre-
sponding WPK (Eq. 4.30). In practice, we may choose to invert for certain integral
properties of the seismic source. One possibility is to use the spatial- and tem-
poral polynomial moments of source-space-time distribution to characterize the
source (e.g., Backus 1977a, b). If we assume that the moment density mjk(x, t)
is everywhere proportional to a constant seismic moment tensor Mjk , i.e.,

mjk(x, t) = Mjk

∫ t

−∞
f (x, t ′)dt ′, (4.302)

where f (x, t) is the source-space-time function and Mjk is independent of space and
time, we can then define the spatial and temporal polynomial moments of f (x, t) as

μ(0,0) =
∫

dV (x)
∫

dtf (x, t) ≡ M0, (4.303)

μ(0,1) =
∫

dV (x)
∫

dtf (x, t) (t − t0) ≡ t1, (4.304)

μ(1,0) =
∫

dV (x)
∫

dtf (x, t) (x− x0) ≡ x1, (4.305)

μ(0,2) =
∫

dV (x)
∫

dtf (x, t) (t − t0)
2 , (4.306)

μ(1,1) =
∫

dV (x)
∫

dtf (x, t) (t − t0) (x− x0) , (4.307)
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μ(2,0) =
∫

dV (x)
∫

dtf (x, t) (x− x0) (x− x0)
T , (4.308)

where t0 is the reference time and x0 is the reference location. Note that the source-
space-time function f (x, t) defined in Eq. 4.302 is the moment-rate function in time,
therefore it is compactly supported in time. Equation 4.304 defines the centroid time
t1 relative to the reference time t0 and Eq. 4.305 defines the centroid location x1
relative to the reference location x0. If we replace t0 and x0 in Eqs. 4.306–4.308
with the centroid time and centroid location t1 and x1, respectively, we obtain

μ̂(0,2) =
∫

dV (x)
∫

dtf (x, t) (t − t1)
2 ≡

(
Tc

2

)2

, (4.309)

μ̂
(1,1) =

∫
dV (x)

∫
dtf (x, t) (t − t1) (x− x1) ≡ μ̂(0,2)vd, (4.310)

μ̂
(2,0) =

∫
dV (x)

∫
dtf (x, t) (x− x1) (x− x1)

T ≡ U�UT , (4.311)

where Tc is the characteristic duration, vd is the directivity velocity vector (Ben-
Menahem 1961; McGuire et al. 2002), the 3-by-3 diagonal matrix � contains the
eigenvalues of the second-order spatial moment μ̂(2,0) and U is an orthogonal matrix
of eigenvectors. For a planar rectangular rupture, the eigenvalue matrix � can be
expressed as

� =

⎡

⎢
⎢
⎣

Lc/2 0 0

0 Wc/2 0

0 0 0

⎤

⎥
⎥
⎦ , (4.312)

where Lc is the characteristic length of the rupture and Wc is the characteristic width
of the rupture. The directivity velocity vector vd should lie on the plane of a simple
planar rupture. We can define a dimensionless directivity parameter

D ≡ |vd | Tc

Lc

(4.313)

to measure the magnitude of the directivity effect. For a perfectly symmetric rupture
(e.g., a bilateral rupture) we have D = 0 and for a perfectly unilateral rupture we
have D = 1. In (Chen et al. 2005) we named the spatial and temporal polynomial
moments up to degree-2 the finite moment tensor (FMT).

The FMTs for a set of global large earthquakes (Mw ≥ 7) were inverted in
(McGuire et al. 2001, 2002) using low-frequency teleseismic data and it was shown
that the global large earthquakes are predominantly unilateral. The FMTs for local
small- to medium-sized earthquakes (2.5 ≤ Mw ≤ 5) were estimated in (Chen et al.
2005, 2010b) using local broadband waveform data. In particular, in (Chen et al.
2010b) we have shown the possibility of resolving the fault plane ambiguity of local
small earthquakes by detecting the constructive/destructive interference effects due
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to μ̂
(2,0). The fault plane ambiguity is intrinsic to the point-source centroid moment

tensor (CMT) representation. For large earthquakes with many aftershocks, it is pos-
sible to resolve this ambiguity by using aftershock hypocenters. This ambiguity can
also be resolved using the directivity vector if the source has detectable directivity
effects (e.g., Mori and Hartzell 1990; Mori 1996; Hellweg and Boatwright 1999;
Okada et al. 2001; McGuire 2004). For small earthquakes without significant direc-
tivity effects, the technique based on μ̂(2,0) as documented in (Chen et al. 2010b)
provides a viable approach for resolving this ambiguity.

To obtain the partial derivatives of the data functional with respect to the FMT
parameters, we bring Eq. 4.302 into Eq. 3.339 and obtain

ui(xr , t) =
∫

V

dV (x)
3∑

j,k=1

∂Gji(x, t; xr , 0)

∂xk

∗mjk(x, t)

=
∫

V

dV (x)
3∑

j,k=1

MjkF−1

{
∂Ĝji(x, ω;xr, 0)

∂xk

[
f̂ (x, ω)

iω
+ c1(x)δ(ω)

]}

=
∫

V

dV (x)
3∑

j,k=1

MjkF−1
{[

1

iω

∂Ĝji(x, ω;xr , 0)

∂xk

+ c2(x)δ(ω)

]

f̂ (x, ω)

+c1(x)
∂Ĝji(x, ω;xr , 0)

∂xk

δ(ω)− c2(x)f̂ (x, ω)δ(ω)

}

=
∫

V

dV (x)
∫

dt ′
3∑

j,k=1

MjkHkji (x, t − t ′; xr , 0)f (x, t ′), (4.314)

where f̂ (x, ω) is the Fourier transform of the source-space-time function f (x, t)
(Eq. 4.302), Ĝji (x, ω;xr, 0) is the Fourier transform of the RGT Gji(x, t; xr , 0),
F−1 { } represents the inverse Fourier transform and the third-order tensor
Hkji(x, t; xr , 0) is defined as (e.g., Backus 1977a)

Hkji (x, t; xr , 0) ≡ F−1

[
1

iω

∂Ĝji(x, ω;xr , 0)

∂xk

+ c2(x)δ(ω)

]

=
∫ t

−∞
∂Gji(x, τ ;xr , 0)

∂xk

dτ . (4.315)

In Eqs. 4.314 and 4.315, c1(x) is the DC component of f (x, t) and c2(x) is the
DC component of ∂Gji(x, t; xr , 0)/∂xk and I have used the integration property of
the Fourier transform. We can expand Hkji (x, t − t ′; xr , 0) in Taylor series at the
reference location x = x0 and the reference time t ′ = t0 and truncate the Taylor
series to second order,

Hkji (x, t − t ′; xr , 0) ≈ Hkji(x0, t − t0;xr , 0)− (t ′ − t0)
∂Hkji

∂t
(x0, t − t0;xr , 0)
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+(x− x0) · ∇Hkji(x0, t − t0;xr , 0)+ (t ′ − t0)2

2

∂2Hkji

∂t2 (x0, t − t0;xr , 0)

−(t ′ − t0)(x− x0) · ∇ ∂Hkji

∂t
(x0, t − t0;xr , 0)

+1

2

[
(x− x0)(x− x0)T

]
:∇∇Hkji(x0, t − t0;xr , 0). (4.316)

Bring Eq. 4.316 into Eq. 4.314, we obtain

ui(xr , t) ≈
[
M0 − μ(0,1) ∂

∂t
+ μ(1,0) · ∇

+ μ(0,2)

2

∂2

∂t2 − μ(1,1) · ∇ ∂

∂t
+ μ(2,0)

2
:∇∇

]
ũi(x0, t − t0;xr ), (4.317)

where

ũi(x0, t − t0;xr ) =
3∑

j,k=1

MjkHkji (x0, t − t0;xr , 0) (4.318)

is the synthetic displacement seismogram due to a point source located at x = x0,
t ′ = t0 with the seismic moment tensor Mjk . Note that the gradient operator ∇ in
Eqs. 4.316 and 4.317 is with respect to the source coordinate x in Hkji (x, t−t ′; xr , 0)
and the gradient is evaluated at the reference location x = x0. Equation 4.317 is
consistent with Eq. 2.11 in (Backus 1977a) and also the frequency-domain form,
Eq. (11) in (McGuire et al. 2001), which was derived in (Dahlen and Tromp 1998).
The partial derivatives of the displacement waveform due to a finite source with
respect to the FMT parameters can then be read directly from Eq. 4.317. The change
in the waveform δui(xr , t) due to the FMT parameters can be expressed as

δui(xr , t) = ui (xr , t)− ũi(x0, t − t0;xr ) ≈
[
M0 − 1− μ(0,1) ∂

∂t
+ μ(1,0) · ∇

+ μ(0,2)

2

∂2

∂t2 − μ(1,1) · ∇ ∂

∂t
+ μ(2,0)

2
:∇∇

]
ũi (x0, t − t0;xr ). (4.319)

Bring Eq. 4.319 into Eq. 4.13, we obtain the change of the data functional dsn due
to perturbations in the FMT parameters,

δdsn =
∫

V

dV (x′)
∫ T

0
dt

3∑

p=1

J sn
p (x′, t)δus

p(x′, t)

=
∫

V

dV (x′)
∫ T

0
dt

3∑

p=1

J sn
p (x′, t)

[
M0 − 1− μ(0,1) ∂

∂t

+μ(1,0) · ∇ + μ(0,2)

2

∂2

∂t2 − μ(1,1) · ∇ ∂

∂t
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+μ(2,0)

2
:∇∇

]
ũp(x0, t − t0;x′). (4.320)

The partial derivatives of dsn with respect to the FMT parameters are then given by

∂dsn

∂M0
=
∫

V

dV (x′)
∫ T

0
dt

3∑

p=1

J sn
p (x′, t)ũp(x0, t − t0;x′), (4.321)

∂dsn

∂μ(0,1) = −
∫

V

dV (x′)
∫ T

0
dt

3∑

p=1

J sn
p (x′, t)

∂ũp

∂t
(x0, t − t0;x′), (4.322)

∂dsn

∂μ
(1,0)
i

=
∫

V

dV (x′)
∫ T

0
dt

3∑

p=1

J sn
p (x′, t)

∂ũp

∂xi

(x0, t − t0;x′), (4.323)

∂dsn

∂μ(0,2)
= 1

2

∫

V

dV (x′)
∫ T

0
dt

3∑

p=1

J sn
p (x′, t)

∂2ũp

∂t2
(x0, t − t0;x′), (4.324)

∂dsn

∂μ
(1,1)
i

= −
∫

V

dV (x′)
∫ T

0
dt

3∑

p=1

J sn
p (x′, t)

∂2ũp

∂xi∂t
(x0, t − t0;x′), (4.325)

∂dsn

∂μ
(2,0)
ij

= 1

2

∫

V

dV (x′)
∫ T

0
dt

3∑

p=1

J sn
p (x′, t)

∂2ũp

∂xi∂xj

(x0, t − t0;x′). (4.326)

The partial derivatives applied on ũp(x, t − t0;x′) on the RHS of Eqs. 4.322–4.326
can be approximated using a differencing scheme. If we express ũp(x, t−t0;x′) using
the RSGTs (Sect. 3.4.2), the spatial partial derivatives on the RHS of Eqs. 4.322–
4.326 involve the first- and second-order spatial derivatives with respect to the
source coordinate x, evaluated at the reference location x0. The RSGTs around the
source location can be stored during the wave-propagation simulations in F3DWI
(Sect. 3.4.3). The first- and second-order spatial derivatives of the RSGTs can
therefore be approximated through a differencing scheme.

Here I use the whole-space synthetic wavefield due to a moment source, e.g.,
Eq. 4.29 in (Aki and Richards 2002), to calculate some examples of the partial
derivatives of the frequency-dependent phase-delay time �τp(ω) and amplitude-
reduction time �τq (ω) (Sect. 4.2.7) with respect to the FMT parameters. In
Fig. 4.25, I show the spatial variations of the partial derivatives of �τp,q measured

on the direct-arriving P wave at 2 Hz with respect to μ
(1,0)
1 , μ

(1,1)
1 , μ

(2,0)
11 , μ

(2,0)
12

and μ
(2,0)
13 on a spherical receiver surface centered on the reference point source,

which is located at the origin of the coordinate system (i.e., x-east, y-north, z-up).
The reference point source has an explosive source mechanism and a source-time
function given by Eq. 2.122 (Fig. 2.7). The spherical receiver surface has a radius of
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Fig. 4.25 Spatial variations of the partial derivatives of the frequency-dependent phase-delay time
�τp(ω) (left column) and amplitude-reduction time �τq (ω) (right column) with respect to μ

(1,0)
1

(top row), μ
(1,1)
1 (second row), μ

(2,0)
11 (third row), μ

(2,0)
12 (fourth row), μ

(2,0)
13 (bottom row).
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11.1803 km. The P- and S-velocity and density of the whole-space structural model
is 6.5 km/s, 3.5 km/s and 3.0 g/cm3.

A perturbation in μ
(1,0)
1 produces an infinitesimal shift of the centroid location

along the x-axis towards the east, which reduces the travel-time (hence a decrease
in phase-delay time) and increases the amplitude (hence a decrease in amplitude-
reduction time) for receivers on the east side of the reference point source. The
decrease in travel-time on receivers to the east is caused by reduced source-receiver
distances and the increase in amplitude on those receivers is due to the geometric
spreading effect. A perturbation in μ

(1,1)
1 is linked to the effect of source directiv-

ity along the x-axis. Suppose we have an infinitesimal-length unilateral line source
lying along the x-axis, centered at the origin and propagating from west to east.
The travel-time is reduced (hence a decrease in phase-delay time) on receivers to
the west and increased (hence an increase in phase-delay time) because the rup-
ture initiates from the west and propagates to the east. The amplitude is increased
(hence a decrease in amplitude-reduction time) on receivers to the east because of
the constructive interference effect in the direction of rupture propagation. The spa-
tial variations in the partial derivatives with respect to components of μ(2,0) can be
explained by the constructive and destructive interference effect (Chen et al. 2005,
2010b). For finite-size vertical planar ruptures, the amplitude-reduction time rela-
tive to the point-source synthetic waveform has a cos (2θ ) dependence on azimuth
θ with two minima located at 90o and 270o from the strike. A more careful analysis
of the partial derivative’s azimuthal and also frequency dependence can be found in
(Chen et al. 2010b).

Note that the expressions of the partial derivatives given in Eqs. 4.321–4.326
are different from those given in (McGuire et al., 2001; Chen et al., 2005, 2010b),
but they are in fact mutually consistent. In (McGuire et al. 2001; Chen et al. 2005,
2010b) the partial derivatives are expressed in terms of the τp,q of the reference
point-source synthetic seismogram, while the same partial derivatives are expressed
in terms of the time-domain point-source synthetic waveform in Eqs. 4.321–4.326
above. The advantage of the expressions in Eqs. 4.321–4.326 is that the effects of
localization in the time and frequency domain (e.g., windowing in time domain)
are explicitly accounted for through the use of the WPK of the corresponding data
functional. And expressions in Eqs. 4.321–4.326 can be easily generalized to other
types of data functionals.

In practice, it is often necessary to invert for the CMT, which is a subset of the
FMT parameters, before inverting for the second-order polynomial moments. In
Sect. 3.4 I have shown that the RSGT gives the Fréchet kernel of the displacement
with respect to the spatial-temporal moment tensor density function mjk(x, t). And
in Sect. 3.4.3 I have shown that the RSGT around the source region can be stored
during the wave-propagation simulation in F3DWI. For the point-source CMT rep-
resentation, if we truncate the RHS of Eq. 4.317 to first-order and bring in Eq. 4.318,
we obtain

ui(xr , t) ≈
[
M0 − μ(0,1) ∂

∂t
+ μ(1,0) · ∇

]
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3∑

j,k=1

MjkHkji(x0, t − t0;xr , 0), (4.327)

which gives the partial derivative of the displacement ui (xr, t) with respect to the
scalar moment M0, the six independent elements of the symmetric seismic moment
tensor Mjk and also the centroid time μ(0,1) and the centroid location μ(1,0) relative
to the reference time t0 and reference location x0. The partial derivatives of any
data functional with respect to the CMT parameters can therefore be obtained by
composing the corresponding WPK with the partial derivatives of the displacement
with the CMT parameters. These partial derivatives can be used in a gradient- or
Hessian-based iterative optimization algorithm to search for the optimal CMT (e.g.,
Zhao et al. 2006).

Depending upon the restrictions applied on the CMT, the total number of inde-
pendent CMT parameters is limited to 8–10, which allows applications of global
optimization algorithms such as the Bayesian-based grid-search algorithm given in
(Lee et al. 2011). In (Lee et al. 2011) the rapid calculation of synthetic seismo-
grams due to a large number of possible CMT parameters in the model space was
enabled by the use of RSGTs and reciprocity, which is encapsulated in the script
rgt2syn.py under the py directory in F3DWI. The usage of rgt2syn.py has
been discussed in Sects. 2.2.7 and 3.4.3. The calculation can be easily parallelized
on a variety of parallel computing platforms with minimal inter-processor commu-
nication overhead. The technique demonstrated in (Lee et al. 2011) provides not
only estimates of the CMT parameters in a 3D structural model, but also the uncer-
tainties in the estimated CMT parameters, in (near-)real-time when combined with
real-time access to telemetered digital data streams from the seismic network.

4.4 Software

The calculation of data sensitivity kernels involves the script setup_ker.py
in the py directory and the parallel binary executable ker in the bin directory.
The output files of ker are in binary format and the sequential binary executable
rdker in the bin directory can be used to convert them into ASCII text files,
which can be plotted using other data visualization software such as MATLAB. A
critical input to the kernel calculation is the WPK for the specific data functional
used in the inversion. Several MATLAB scripts are provided to generate the WPKs
for the data functionals discussed in Sect. 4.2. Other inputs to the kernel calcula-
tions include the forward wavefield, i.e., spatial-temporal strain and particle velocity
fields (Eq. 2.125), from the source and also the RSGTs from the receiver, whose
calculations have been discussed in Sects. 2.2 and 3.4.3. In the following I will use
examples to demonstrate the basic usage of the codes related to kernel calculations.

I will start with re-producing the kernels shown in Fig. 4.8, which are the data
sensitivity kernels of the broadband cross-correlation delay time and amplitude
anomaly (Sect. 4.2.6) with respect to the relative perturbations in P- and S-velocity
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and density (Sect. 4.3.4) for the P, PP and PS waves on the synthetic velocity seis-
mogram from 100001 to IN.RC01 in the half-space example. For this example,
the parameter file param_HS.dat (Sect. 2.2.3) is identical to that shown in List-
ing 2.5. The source-receiver list srlst (Sect. 2.2.4.1) consists of the first three
lines shown in Listing 2.6, i.e., the receiver line for IN.RC01, the source line for
100001 and the source line for the body-force source IN.RC01.1 in the x1 direc-
tion and at the location of IN.RC01. The procedure for generating the forward
wavefield from 100001 and the RGT from IN.RC01.1 is identical to that shown
in Listing 2.17. We need to execute the following commands in the terminal under
the project JOBS directory,

proc_srlst.py param_HS.dat 1 3
set_sr_grd.py param_HS.dat
set_ker_grd.py param_HS.dat
setup_awp.py param_HS.dat FWF 1 3

and then run the parallel binary executable awp inside the sub-directory
FWF/100001 to generate the forward wavefield for 100001

cd ../FWF/100001
mpiexec -n 8 -f ~/tools/mpi/share/myhosts ./awp

and then run awp in the sub-directory FWF/IN.RC01.1 to generate the RSGT for
IN.RC01.1.

cd ../IN.RC01.1
mpiexec -n 8 -f ~/tools/mpi/share/myhosts ./awp

After the forward wave-propagation simulation for 100001 is completed, the
synthetic velocity seismograms from 100001 to IN.RC01 can be obtained by
executing the following command under the project JOBS directory,

fwf2syn.py param_HS.dat 2 2 1 1

and the synthetic seismograms are stored in the file SYN/100001/IN.RC01.rot.
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Fig. 4.26 The time window used for selecting waveforms from the complete synthetic seismogram.
At time t1 and t4, the window tapers to zero and at time t2 and t3, the window increases to 1. The
tapering parts of the window between t1 and t2 and between t3 and t4 follow a cos2 function.

4.4.1 WPK File

We can calculate the WPK for the broadband cross-correlation delay time
and amplitude anomaly discussed in Sect. 4.2.6 using the MATLAB function
wpk_bbxcorr.m, which is included in F3DWI, together with a few other MAT-
LAB functions for computing the WPKs of other data functionals discussed in
Sect. 4.2. The function wpk_bbxcorr.m is written according to Eqs. 4.59 and
4.68 in Sect. 4.2.6. The definition of this function is in the following,
function [sconv,wpkt,wpka]=wpk_bbxcorr(syn,stf_grn,dt,ntskp,w)

It takes four inputs. The first input syn is a simple one-column vector containing the
synthetic velocity seismogram at every time sample. The second input stf_grn
is the source-time function used for computing the RGT and has the same format
as shown in Listing 2.7 (without the comments). For the half-space example, this
source-time function is plotted in Fig. 2.11. The third input dt is simply the time-
sampling interval used in the wave-propagation simulations and can be found in the
parameter file (Line 12, Listing 2.5). The fourth input ntskp is the decimation rate
in time and can also be found in the parameter file (Line 24, Listing 2.5). The fifth
input w is a four-element vector for the time window used to select the target seismic
waveform on the complete synthetic seismogram. The four numbers inside w are t1,
t2, t3 and t4, as shown in Fig. 4.26.

The first output of this function sconv is a two-column vector. Its second col-
umn is the input synthetic seismogram syn convolved with the source-time function
used in computing the RGT stf_grn. The reason for computing this convolution
was explained in Sect. 4.2.2. The first column of sconv is the time axis of the
convolved synthetic. The second output wpkt is a one-column vector containing
the WPK for the broadband cross-correlation delay time. The first two numbers in
wpkt are the starting and ending indices of the non-zero part of the WPK. They
should coincide with the indices corresponding to t1 and t4 (Fig. 4.26). The time-
series for the WPK starts at the third number in wpkt. The third output wpka is a
one-column vector containing the WPK for the broadband cross-correlation ampli-
tude anomaly and has the same format as wpkt. Both wpkt and wpka are derived
from the convolved synthetic sconv, as discussed in Sect. 4.2.2.
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1 6 998
2 1.510000e+02 1.510000e+02 2.840000e+02 2.840000e+02 4.010000e+02

4.010000e+02
3 2.510000e+02 2.510000e+02 3.570000e+02 3.570000e+02 4.840000e+02

4.840000e+02
4 0.000000e+00 −0.000000e+00 0.000000e+00 −0.000000e+00 0.000000e

+00 −0.000000e+00
5 . . .

Listing 4.1 The first four lines inside an example WPK file. This WPK file is for the broadband
cross-correlation delay time and amplitude anomaly measured on the P, PP and PS waves of the
half-space example.

Table 4.3 The ordering of the WPKs inside the WPK file for the half-space example shown in
Listing 4.1

Column number WPK

1 Broadband cross-correlation delay time for P

2 Broadband cross-correlation amplitude anomaly for P

3 Broadband cross-correlation delay time for PP

4 Broadband cross-correlation amplitude anomaly for PP

5 Broadband cross-correlation delay time for PS

6 Broadband cross-correlation amplitude anomaly for PS

The WPKs need to be written into an ASCII text file, which will be used as an
input to ker. An example of the WPK file is shown in Listing 4.1. The two numbers
shown on line 1 are the number of WPKs inside the file and the number of time
samples of each WPK. For the example shown in Listing 4.1, there are six WPKs
inside the file and each WPK has 998 time samples. The six WPKs correspond to
the 6 columns from line 2 to the end of the file. The six WPKs shown in Listing 4.1
are for the two types of data functionals (i.e., the broadband cross-correlation delay
time and amplitude anomaly) applied on the three different arrivals (P, PP, PS) on
the x1-component synthetic velocity seismogram from 100001 to IN.RC01 in the
half-space example. In practice it is often a good idea to put all the WPKs derived
from the same synthetic seismogram into a single file. The kernel calculation in
ker involves reading the forward wavefield and the RGT from disk into processor’s
memory. For the different WPKs derived from the same synthetic seismogram, ker
reads the same forward wavefield and the same RGT. By combing those WPKs into
a single file, ker will read the forward wavefield and the RGT only once for all
those WPKs, which reduces the average I/O overhead.

An example MATLAB driver script wpk_bbxcorr_hs.m for computing the
WPKs using the function wpk_bbxcorr.m and writing out the ASCII WPK file
for the half-space example is included in F3DWI. A snippet of the output file gen-
erated by this driver script is shown in Listing 4.1. The ordering of the 6 WPK
columns is listed in Table 4.3.
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Note that the MATLAB function and script discussed in this section can be easily
re-written using a compiled language (e.g., C/C++ and FORTRAN) and parallelized
for efficiency. In practice, the total number of WPKs used in a realistic tomo-
graphic inversion can easily exceed millions and the calculation of WPKs needs
to be repeated for every iteration of the inversion algorithm. The computational
efficiency of this step is therefore highly important.

4.4.2 Kernel Calculation

The data sensitivity kernels are usually not as oscillatory as the wavefields used
for computing the kernels and in practice we often regularize our inversion through
damping, which allows us to sample the kernels on a mesh that is sparser than the
mesh used for the wave-propagation simulations. The grid decimation rate in the
x1, x2 and x3 direction can be adjusted by changing the values assigned to NXSKP,
NYSKP and NZSKP, respectively, in the parameter file (Table 2.2, Listing 2.5,
Sect. 2.2.3). For the half-space example, the mesh used for the wave-propagation
simulations has a grid spacing of 200 meters (Listing 2.1, Listing 2.3, Sect. 2.2.1).
For the examples in this section, I have set NXSKP, NYSKP and NZSKP to 4, which
means that the kernels are sampled on a uniform mesh with 800-meter grid spacing.

The kernel calculations involve temporal convolutions between the forward
wavefield and the RGT at every spatial grid point (e.g., Eqs. 4.32 and 4.35). The
accuracy of this temporal convolution operation depends upon the time sampling
interval for storing the forward wavefield and the RGT, which is controlled by the
value assigned to NTSKP in the parameter file (Table 2.2, Listing 2.5, Sect. 2.2.3). It
is usually sufficient to have ten time samples per minimum period. For the half-space
example, the time sampling interval for the wave-propagation simulations is 0.015 s
(Listing 2.5) and the maximum frequency is around 1.5 Hz. I have set NTSKP to 2
such that the time sampling interval for storing the forward wavefield and the RGT
is 0.03 s, which gives more than 20 time samples per minimum period. The param-
eter file used in this section is identical to that shown in Listing 2.5. Every time
we make a change to NXSKP, NYSKP and NZSKP in the parameter file, we need to
re-run the script

set_ker_grd.py param_HS.dat

in the terminal under the project JOBS directory and re-compute all the forward
wavefields and the RGTs by running awp.

Note that the kernels can also be sampled on a non-uniform mesh by modifying
the script set_ker_grd.py (Sect. 2.2.5). For example, in certain applications we
may wish to sample the kernels on a denser mesh at shallower depths and gradually
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Table 4.4 The meanings of the first nine command-line arguments to the script setup_ker.py

Argument Meaning

1 The full-path of the parameter file

2 The line number in the source-receiver list for the source

3 The line number in the source-receiver list for the receiver

4 Component number, 1: x1, 2: x2, 3: x3 (Up), 4: Radial, 5: Transverse

5 The full-path of the WPK file

6 The kernel thresholding factor kthresh (see text)

7 Spatial grid buffer size gbuff (see text)

8 Temporal buffer size tbuff (see text)

9 Model parameterization flag (Table 4.5)

increase the spatial sampling interval at larger depths. In such situations, the script
set_ker_grd.py can be modified to output non-uniformly distributed recording
grid points.

The python script setup_ker.py in the py directory can be used to set up
the correct environment for running the parallel binary kernel calculation code ker
in the bin directory. For the half-space example, the following command can be
executed in the terminal under the project JOBS directory.

setup_ker.py param_HS.dat 2 1 1~/wrk/F3DWI/HS/KER0/
100001_IN.RC01.1/bbxcor.wpk 1e4 6900 484 2 1 2 3

The complete command must be typed on a single line in the terminal. This
script takes a variable number of command-line arguments. Depending upon the
model parameterization used, the number of command-line arguments can range
from 10 to 31. In practice it is often a good idea to write a driver script that
calls setup_ker.pywith automatically generated command-line arguments. The
meanings of the first nine arguments are listed in Table 4.4.

The component number specified on the fourth argument (Table 4.4) can take on
five different values in the current implementation. The number 1, 2 or 3 specifies
the x1-, x2- or the x3-component of the box coordinate. The number 4 specifies the
radial component, which is defined as from the source to the receiver. The number
5 specifies the transverse component, which is defined as clockwise from the radial
direction by 90o and forms a left-hand system with the x3 and the radial directions.
In the half-space example, we are using the WPKs derived from the x1-component
synthetic seismogram for the kernel calculation, therefore the fourth argument is set
to 1.

The data sensitivity kernel, as a function of space, has highly variable amplitudes
and usually has the largest amplitudes at the vicinity of the source and the receiver.
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The kernel threshold factor kthresh on the sixth argument (Table 4.4) allows
us to apply a threshold based on kernel amplitudes. Suppose the maximum ampli-
tude of a kernel K(x) is Kmax. If at a certain spatial location x we have |K(x)| <

Kmax/kthresh, then the kernel value at x is treated as zero when ker writes out
the kernel output file in a sparse matrix format.

Inside the kernel calculation code ker, the reading of the forward wavefield and
the RGT is buffered to reduce the I/O overhead. The spatial and temporal buffer
sizes gbuff and tbuff specified on the seventh and eighth argument (Table 4.4)
determine the total amount of data each reading operation will load from disk into
memory. To reduce the total number of reads, it is desirable to set gbuff and
tbuff to large numbers. However, on modern distributed-memory parallel com-
puting systems (Sect. 1.4), the total amount of memory accessible by each processor
is usually limited and it takes some experimentation to find the optimal buffer sizes
for different parallel computing systems.

For gbuff, a good number to start with is the number of kernel recording grid
points in each sub-mesh (Sect. 2.2.5). For the half-space example, this number can
be found on the first line of the HSGRDRECprocID files inside the project VM
directory (i.e., the value assigned to the key MEDIA in the parameter file, Line 7,
Listing 2.5), where procID is the 9-digit ID composed of (ipx, ipy, ipz)
for identifying the different sub-meshes (Sect. 2.2.2). This number can be differ-
ent for different sub-meshes and we can choose the largest one as our first try for
gbuff. The Linux command for finding this number is

head -q -n 1 ../VM/HSGRDREC0* | sort -n | tail -n 1

which should be executed in the terminal under the JOBS directory. In this exam-
ple, I have set gbuff to 6900, which works on my Linux box. If ker gives
Segmentation Fault during the run on your system, you may want to reduce
the gbuff value until ker does not complain.

For tbuff, a good first try is the largest number on line 3 of the WPK file (List-
ing 4.1). For the half-space example, the largest number shown on line 3 in Listing
4.1 is 484, therefore I have set the eighth argument to 484 as well. If ker gives
Segmentation Fault on your system, you may have to reduce this number
until ker can successfully complete.

The possible values for the model parameterization flag on the ninth argument
and also the meanings of the following arguments are summarized in Table 4.5. For
the half-space example, the model parameterization flag is set to 2, which selects the
isotropic model parameterized using the P- and S-velocity and density (Table 4.5).
I have set the 10th, 11th and 12th arguments to 1, 2 and 3, respectively, which
indicates that ker will compute and output K ln α

dsn , K
ln β
dsn and K̆

ln ρ
dsn . If we would

like to obtain K ln α
dsn and K

ln β
dsn only, we can remove the 12th argument. If we would
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Table 4.5 The model parameterization flag on the ninth argument to setup_ker.py, the
corresponding model parameterization and the meaning of the arguments following

Flag Parameterization Arguments following

0 Isotropic model parameterized using the
bulk and shear moduli and density
(Sect. 4.3.2)

1: K ln κ
dsn , 2: K

ln μ
dsn , 3: K

ln ρ
dsn

1 Isotropic model parameterized using the
two Lamé parameters and density
(Sect. 4.3.3)

1: K ln λ
dsn , 2: K̆

ln μ
dsn , 3: K

ln ρ
dsn

2 Isotropic model parameterized using the
P- and S-velocity and density
(Sect. 4.3.4)

1: K ln α
dsn , 2: K

ln β
dsn , 3: K̆

ln ρ
dsn

3 Transversely isotropic model with a
vertical symmetry axis parameterized
using the five Love’s parameters
(Sect. 4.3.5)

1: KA
dsn , 2: KC

dsn , 3: KN
dsn , 4: KL

dsn , 5: KF
dsn

4 Fully anisotropic model parameterized
using the 21 asymptotic parameters
(Sect. 4.3.6)

1: KA
dsn , 2: KC

dsn , 3: KN
dsn , 4: KL

dsn , 5:

KF
dsn , 6: K

Jc

dsn , 7: K
Js

dsn , 8: K
Kc

dsn , 9: K
Ks

dsn ,

10: K
Mc

dsn , 11: K
Ms

dsn , 12: K
Gc

dsn , 13: K
Gs

dsn ,

14: K
Bc

dsn , 15: K
Bs

dsn , 16: K
Hc

dsn , 17: K
Hs

dsn ,

18: K
Dc

dsn , 19: K
Ds

dsn , 20: K
Ec

dsn , 21: K
Es

dsn ,

22: K
ln ρ
dsn

like to obtain K
ln β
dsn only, we can set the tenth argument to 2 and remove the fol-

lowing arguments. The same usage is also applicable to other values of the model
parameterization flag.

Note that there is not a flag value corresponding to the kernels of anelastic

attenuation quality factors K
Q−1

κ

dsn and K
Q−1

μ

dsn (Sect. 4.3.7) in Table 4.5. To com-

pute K
Q−1

κ

dsn and K
Q−1

μ

dsn , we only need to set the model parameterization flag to 0
and change the WPKs according to Sect. 4.3.7. I have included a MATLAB script
wpk_bbxcora_Q.m in F3DWI to show how to change the WPK for the broad-
band cross-correlation amplitude anomaly (Sect. 4.2.6) for the P, PP and PS waves
on the x1-component synthetic velocity seismogram from 100001 to IN.RC01 in
the half-space example. The calculations in wpk_bbxcora_Q.m follow Eq. 4.296
in Sect. 4.3.7. The modified WPKs for the three waveforms are shown in Fig. 4.23

and the data sensitivity kernels K
Q−1

κ

dsn and K
Q−1

μ

dsn for the three waveforms are shown
in Fig. 4.24.

The script setup_ker.py will generate the correct directory structure
and also the input files for ker. It will create the directory KER under
the current project work directory (key WRKDIR in the parameter file, Line
3, Listing 2.5), if it does not exist yet, and also a sub-directory named
as sourceID_receiverID.componentID inside KER. For the half-space
example, the sourceID is 100001, the receiverID is IN.RC01 and the
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1 2 ! model parameter i za t i on f l a g
2 1 1 1 ! kerne l se l ec t i on f l a g
3 / home/ pochen / wrk /F3DWI /HS/VM/XYZGRD ! f u l l path o f mesh f i l e
4 / home/ pochen / wrk /F3DWI /HS/VM/HSGRD ! path to m a t e r i a l p rope r t i es
5 / home/ pochen / wrk /F3DWI /HS/FWF/100001/ ! path to forward wave f i e ld
6 / home/ pochen / wrk /F3DWI /HS/FWF/ IN .RC01 ! path to RGT
7 / home/ pochen / wrk /F3DWI /HS/KER/100001 _IN .RC01 . 1 / wpk ! WPK f i l e
8 / home/ pochen / wrk /F3DWI /HS/KER/100001 _IN .RC01 . 1 / ker ! output
9 201 40 ! h o r i z o n t a l g r i d l o c a t i o n o f source

10 40 40 ! h o r i z o n t a l g r i d l o c a t i o n o f rece i ve r
11 4 4 4 ! g r i d decimat ion ra tes i n x , y , z
12 1 ! component ID : 1−x , 2−y , 3−z , 4− r ad i a l , 5− t ransverse
13 0 ! v isco
14 1e4 ! kthresh
15 6900 484 ! gbuf f , t b u f f

Listing 4.2 The kernel input file for the half-space example.

componentID is 1 (i.e., the fourth argument to setup_ker.py) and this sub-
directory is named as 100001_IN.RC01.1. The sourceID and receiverID
are identical to those given on the second column of the source-receiver list file
(Listing 2.6). Inside this sub-directory, setup_ker.py will create two symbolic
links: ker, which points to the parallel binary executable ker in the bin direc-
tory, and wpk, which points to the WPK file specified in the fifth argument to
setup_ker.py (Table 4.4). And setup_ker.pywill also create an ASCII text
file ker.in, which is the master input file for ker.

The content of the kernel input file ker.in created by setup_ker.py for the
half-space example is shown in Listing 4.2. Line 1 is the model parameterization flag
specified in the 9th argument to setup_ker.py. Line 2 consists of a set of flags
indicating which kernel should be computed. For the model parameterization flag
of 2, three types of kernels can be computed, K ln α

dsn , K
ln β
dsn and K̆

ln ρ
dsn (Table 4.5). If

we require only K ln α
dsn , the first number on line 2 should be set to 1 and the other

two numbers should be set to 0. If we require only K
ln β
dsn , the second number on

line 2 should be set to 1 and the other two numbers should be set to 0. For the
example shown in Listing 4.2, we require all three types of kernels, therefore all
three numbers are set to 1. These flags in ker.in have been set automatically
by setup_ker.py when I specified the 9th-12th arguments. Line 3 is the full
path of the mesh file XYZGRD (line 5, Listing 2.5). Line 4 is the full path and the
prefix of the material property files (line 7, Listing 2.5). Line 5 specifies the path
to the forward wavefield from the source. Line 6 specifies the path to the RGT
from the receiver. Line 7 is the full path to the WPK file, which is now the full
path of the symbolic link wpk created by setup_ker.py. Line 8 specifies the
path and the prefix of the kernel output files. Line 9 and 10 are the horizontal grid
indices of the source and the receiver, respectively, which should be identical to
the corresponding values inside the srlst.grd file (Listing 2.11, Sect. 2.2.4.2).
Line 11 consists of the values assigned to NXSKP, NYSKP and NZSKP (line 21–23,
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Listing 2.5). Line 12 is the component number specified in the fourth argument to
setup_ker.py (Table 4.4). Line 13 is the value assigned to the key VISCO in
the parameter file (line 17, Listing 2.5). Line 14 is the kthresh value specified
in the sixth argument to setup_ker.py (Table 4.4). Line 15 consists of the two
buffer sizes, gbuff and tbuff, specified in the eighth and ninth arguments to
setup_ker.py, respectively (Table 4.4).

We can run the parallel binary executable ker from inside the sub-directory
KER/100001_IN.RC01.1 by typing the following command in the terminal,

mpiexec -n 8 -f ~/tools/mpi/share/myhosts ./ker ker.in

The total number of processors used in the command above is eight, which is
the same as the total number of processors used in the wave-propagation simula-
tions (Sect. 2.2.6) and also the same as the number of sub-meshes. The number
of processors used in the kernel calculation can be fewer than the number of sub-
meshes. In such a case, some or all of the processors will have to compute the
kernels for more than one sub-mesh. The kernel calculation involves essentially a
temporal convolution and a temporal integration at each spatial grid point. This cal-
culation is easily parallelized, as the calculations on different grid points have no
inter-dependence, therefore incur zero inter-processor communication overhead on
distributed-memory computer clusters, as well as different types of co-processors or
accelerators (e.g., GPU, Intel Xeon Phi).

4.4.3 Kernel Output and Visualization

After ker successfully completes its calculations, a set of binary files named as
kerprocID are generated under the sub-directory KER/100001_IN.RC01.1.
Here the prefix ker was specified on line 8 of ker.in (Listing 4.2) and the
procID is the nine-digit number for identifying the sub-meshes. This set of files
store the kernel values at grid points x where the absolute value of the kernel
|K(x)| ≥ Kmax/kthresh (Table 4.4) and Kmax is the maximum absolute value of
the kernel throughout the whole mesh. If a sub-mesh has no kernel values above the
threshold Kmax/kthresh, then no output file will be written for that sub-mesh.
It is therefore possible that the number of kernel output files is less than the total
number of sub-meshes.

Inside the kernel output file for a sub-mesh, the kernel values are stored inside a
nnz-by-3 matrix, where nnz is the total number of non-zero (i.e., above the thresh-
old) kernel values inside the sub-mesh. The format of this matrix resembles the
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coordinate list (COO) format 7 for storing sparse matrices. The first column of this
matrix stores the row number, irowt, the second column stores the column num-
ber, icol, and the third column stores the actual kernel value. The row number
irowt corresponds to the column number of the WPK inside the WPK file that
was used as the input to ker (line 6, Listing 4.2). For the half-space example, we
have six WPKs (i.e., broadband cross-correlation delay-time and amplitude anomaly
for the P, PP and PS waves) and three different kernel types (i.e., K ln α

dsn , K
ln β
dsn and

K̆
ln ρ
dsn ), therefore we have 18 different kernels in total. The row number irowt will

range from 1 to 6 with one corresponding to the WPK for the broadband cross-
correlation delay-time of the P wave and six corresponding to the WPK for the
amplitude anomaly of the PS wave (Table 4.3). The column number icol is com-
puted using the following formula
icol = ikx+nkx*(iky-1)+nkx*nky*(ikz-1)+nkx*nky*nkz*
(iktype-1),
where (ikx, iky, ikz) are the global grid indices in the kernel recording
mesh (Sect. 2.2.5), nkx, nky and nkz are the total number of recording grid points
in the x1, x2 and x3 directions, respectively, and iktype is an index for the differ-
ent kernel types (Table 4.5). For the half-space example, the total number of grid
points NX, NY and NZ are 240, 76, 180 (Listing 2.3) and the grid decimation rates
NXSKP, NYSKP and NZSKP are set to 4 (line 21–23, Listing 2.5), therefore nkx,
nky and nkz are 60, 19 and 45, respectively. Since the model parameterization
flag is 2 and I have selected all three kernel types (line 1–2, Listing 4.2), iktype
ranges from 1 to 3 with 1 corresponding to K ln α

dsn and 3 corresponding to K̆
ln ρ
dsn . If

I had selected two kernel types by changing line 2 in Listing 4.2 to, say, 0 1 1,
then iktype would range from 1 to 2 with 1 corresponding to K

ln β
dsn and 2 corre-

sponding to K̆
ln ρ
dsn . This particular format for storing the kernel output is chosen to

minimize the I/O overhead when loading all kernels from disk to memory for solv-
ing the Gauss-Newton normal equation using our highly optimized parallel LSQR
code.

The kernel output files are written in binary format. If we would like to convert
them into an ASCII text file, we can use the sequential binary executable rdker
in the bin directory. Our parallel LSQR code reads the binary kernel output files
directly. The conversion to an ASCII text file is merely for visualization purposes.
To use the rdker utility, we can execute the following two commands under the
sub-directory KER/100001_IN.RC01.1 in the terminal.

cat ker????????? > ker_all
rdker ker_all 60 19 45 3 > bbxcor.ker2

7 The COO format stores a list of (row, column, value) tuples.
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1 2 1 1 4.23408e−13 1 3
2 2 1 1 1.99032e−14 1 4
3 3 1 1 −5.20901e−13 1 3
4 3 1 1 9.6122e−14 1 4
5 3 1 1 −6.22554e−15 1 5
6 4 1 1 −3.06489e−13 1 3
7 4 1 1 −3.43248e−14 1 4
8 4 1 1 −1.30518e−14 1 5
9 5 1 1 1.34905e−13 1 3

10 5 1 1 −2.08818e−14 1 4

Listing 4.3 The first 10 lines inside the ASCII kernel output file. The non-zero kernel values are
not ordered in any specific way.

The first command is for concatenating the binary kernel output files for different
sub-meshes into a single binary file, named ker_all here, which is then used
as the first command-line argument to rdker in the second command. The com-
mand cat is a utility of the Linux/Unix operating system. Our parallel LSQR code
can read the concatenated binary file ker_all as well. Once ker_all is gener-
ated, the individual kernel files for each sub-mesh ker????????? can be deleted
from the disk to reduce the total number of files. The binary executable rdker
in bin takes five command-line arguments. The first argument is the binary ker-
nel file ker_all, the second, third and fourth arguments are nkx, nky and nkz,
respectively. The fifth argument is the total number of kernel types stored in the
binary kernel file. For the half-space example, nkx, nky and nkz are 60, 19 and
45, respectively, as computed above. And we have 3 types of kernels stored in
ker_all. The output of rdker is re-directed into the ASCII output file, named
bbxcor.ker2 here. This ASCII text file has six columns. The first three columns
are for ikx, iky and ikz, i.e., the grid indices of the non-zero kernel value in
the kernel recording mesh. The fourth column is for the kernel value at that grid
point. The fifth column is for iktype, i.e., the type of the kernel. The sixth column
is for irowt, which is the index for the WPK. A snippet of bbxcor.ker2 for
our half-space example is shown in Listing 4.3. I have included a MATLAB func-
tion read_ker.m in F3DWI for reading the ASCII kernel output file generated
by rdker into a 6-dimensional MATLAB matrix, which can then be plotted using
the MATLAB driver script ker_bbxcorr_plot.m also included in F3DWI. The
definition of the function read_ker.m is in the following
function K=read_ker(kerfnam,nkx,nky,nkz,nktype,nwpk)
The first input is the full path of the ASCII output file generated by rdker. The
second to fourth inputs are nkx, nky and nkz, respectively. The fifth input is the
total number of kernel types. The sixth input is the total number of WPKs. The fig-
ure generated by the driver script ker_bbxcorr_plot.m should be similar to
that shown in Fig. 4.8.
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1 / home/ pochen / wrk /HS/VM/
2 11
3 −118 33.50
4 −118 33.73
5 50000
6 35500
7 50
8 16 8 16

Listing 4.4 Input file to the mesh generation code for the larger mesh.

4.4.4 More Kernel Examples

The examples we have been discussing so far only use eight CPU cores and can be
completed on a single desktop (or laptop) computer. The F3DWI code is capable
of scaling to more than tens of thousands of cores. I will expand the volume of the
half-space structural model to about 50 km in the x1 direction and to about 25 km in
the x2 direction and keep the dimension in the x3 direction unchanged. I will reduce
the grid spacing for wave-propagation simulations from 200 to 50 m. The resulting
mesh has over 371 million grid points and I will use 2048 cores on the Blue Gene/Q
system Mira at ALCF (Sect. 2.2).

The input file to the binary executable FD_GRID_XYZ_rect (Sect. 2.2.1) for
this larger mesh is shown in Listing 4.4. Snippets in the corresponding mesh file
XYZGRD is shown in Listing 4.5. To satisfy the CFL stability condition in the wave-
propagation simulation, I have reduced the time-sampling interval from 0.015 s
to 0.00375 s. The spatial decimation rates for the uniform recording grid points
NXSKP, NYSKP and NZSKP are all set to 4 (the value here can be increase to
16 without significant loss of kernel resolution) and the temporal decimation rate
NTSKP is set to 2. The parameter file is shown in Listing 4.6.

4.4.4.1 S-Wave From a Double-Couple Source

I have added a double-couple source 100002 to the source-receiver list. The mod-
ified source-receiver list srlst is shown in Listing 4.7. The source-time function
is kept the same as shown in Fig. 2.7 and Listing 2.7. The double-couple source
100002 is located at the same location as the explosive source 100001, which I
have been using in previous examples. The source-type flag for 100002 on col-
umn 7, line 4 is 4, which indicates that column 8–13 in the following specifies the
moment tensor in the box coordinate (Table 2.3, Sect. 2.2.4.1). This moment tensor
was generated by a double-couple source with 45o dip, 45o rake and a strike in the
direction of the x2-axis of the box coordinate. Every time we change the source-
receiver list file, we need to re-run the following two scripts in the terminal under
the project JOBS directory.
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1 1008 512 720 ! Global g r i d numbers NX, NY, NZ
2 16 8 16 ! Chunks (# o f proc . ) i n X, Y, Z
3 63 64 45 ! Grid numbers per chunk NXT, NYT, NZT
4 407110.70348136901 3706961.4617379787
5 407357.58726096048 3732510.2644716040
6 457705.22787301656 3732023.7439901000
7 457458.34409342508 3706474.9412564747
8 720 −0.0000000000000000
9 719 −50.000000000000000

10 718 −100.00000000000000
11 .
12 .
13 .
14 3 −35850.000000000000
15 2 −35900.000000000000
16 1 −35950.000000000000

Listing 4.5 The first ten lines and the last three lines in the mesh file generated for the larger mesh.

1 BINDIR = / home/ pochen / F3DWI/ b in
2 SCRIPTDIR = / home/ pochen / F3DWI/ py
3 WRKDIR = / home/ pochen / wrk /HS
4 JOBDIR = / home/ pochen / wrk /HS/JOBS
5 XYZGRD = / home/ pochen / wrk /HS/VM/XYZGRD
6 UTMZONE = 11
7 MEDIA = /home / pochen / wrk /HS/VM/HSGRD
8 MINIMUM VELOCITY = 3500.0
9 MAXIMUM VELOCITY = 6500.0

10 SOURCE RECEIVER LIST = / home/ pochen / wrk /HS/JOBS/ s r i n f o / s r l s t
11 TMAX = 15.0
12 DT = 0.00375
13 CFL = 0.9792
14 USEPML = 1
15 PMLCOEF = 3.5
16 BOUNDARY NODE NUMBER = 10
17 VISCO = 0
18 SOURCE STENCIL SIZE IN X = 1
19 SOURCE STENCIL SIZE IN Y = 1
20 SOURCE STENCIL SIZE IN Z = 1
21 NXSKP = 4
22 NYSKP = 4
23 NZSKP = 4
24 NTSKP = 2

Listing 4.6 The parameter file used for the larger mesh.

proc_srlst.py param_HS.dat 1 7
set_sr_grd.py param_HS.dat
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1 0 IN .RC01 1 160 257 256
2 0 SF .RC02 1 160 257 720
3 0 SF .RC03 1 804 257 720
4 1 100002 1 804 257 256 4 −0.707106781186547 0

0.707106781186547 0.5 0 0.5 /home/ pochen / wrk /HS/JOBS/ s r i n f o /
src_hs . dat

5 2 IN .RC01.2 1 160 257 256 −2 0 1 0 / home/ pochen / wrk /HS/JOBS/
s r i n f o / imp_hs . dat

6 2 SF .RC02.3 1 160 257 720 −2 0 0 1 / home/ pochen / wrk /HS/JOBS/
s r i n f o / imp_hs . dat

7 2 SF .RC03.3 1 804 257 720 −2 0 0 1 / home/ pochen / wrk /HS/JOBS/
s r i n f o / imp_hs . dat

Listing 4.7 The modified source-receiver list for the half-space example. A double-couple point
source is added on line 4. The body-force sources associated with two surface receivers are added
on line 6–7. The receiver lines associated with the two surface receivers are added on line 2–3.

I will be computing data sensitivity kernels for the S-wave from 100002 to the x2-
component of the receiver IN.RC01. Therefore I will need the forward wavefield
from 100002 and the RGT for IN.RC01.2. To set up the directories for the for-
ward wavefield calculation for 100002 and the RGT calculations for IN.RC01.2,
I will need to execute the following command in the terminal under the projectJOBS
directory.

setup_awp.py param_HS.dat FWF 4 5

This command generates two sub-directories under the project FWF directory:
100002 and IN.RC01.2. Afterwards, I will need to run the parallel binary
executable awp to generate the wavefields following the instructions given in
Sect. 2.2.6. On Mira, parallel jobs must be submitted to the job scheduling sys-
tem (Footnote 27) and the parallel job launcher is different from the one installed on
my Linux box. Such supercomputers usually have detailed user’s guide, which can
be consulted with when running parallel jobs on them.

After the wave-propagation simulations are completed, the synthetic seismo-
grams from 100002 to IN.RC01 can be extracted by executing the following
command in the terminal under the JOBS directory (Sect. 2.2.7)

fwf2syn.py param_HS.dat 4 4 1 1

and the synthetic seismograms are stored inside the file IN.RC01.rot under the
sub-directory SYN/100002/. The synthetic velocity seismograms on the x1, x2
and x3 components of IN.RC01 are shown in Fig. 4.27.
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Fig. 4.27 Three-component synthetic velocity seismograms from the double-couple source
100002 to IN.RC01 in our half-space example with the larger mesh. Top trace: x1 component;
center trace: x2 component; bottom trace: x3 component. The S-wave on the x2 component (black
thick line on center trace) is used for computing the WPK.

1 2 3998
2 1.134000e+03 1.134000e+03
3 1.427000e+03 1.427000e+03
4 0.000000e+00 −0.000000e+00
5 . . .

Listing 4.8 The first four lines inside the WPK file for the double-couple S-wave example.

I will use the WPKs for the broadband cross-correlation delay time and amplitude
anomaly (Sect. 4.2.6) for computing the data sensitivity kernels in this example. The
WPKs can be generated using the MATLAB function wpk_bbxcorr.m as shown
in Sect. 4.4.1. The WPKs for the delay time and amplitude anomaly derived from
the S-wave shown in Fig. 4.27 are plotted in Fig. 4.28 and a snippet of the generated
WPK file, named bbxcor_S.wpk, is shown in Listing 4.8.

To set up the environment for the kernel calculations, I can execute the following
command in the terminal under the JOBS directory
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1 2
2 1 1 1
3 / home/ pochen / wrk /HS/VM/XYZGRD
4 / home/ pochen / wrk /HS/VM/HSGRD
5 / home/ pochen / wrk /HS/FWF/100002/
6 / home/ pochen / wrk /HS/FWF/ IN .RC01
7 / home/ pochen / wrk /HS/KER/100002 _IN .RC01 . 2 / wpk
8 / home/ pochen / wrk /HS/KER/100002 _IN .RC01 . 2 / ker
9 804 257

10 160 257
11 4 4 4
12 2
13 0
14 1e7
15 3072 1427

Listing 4.9 The kernel input file for our double-couple S-wave example.

setup_ker.py param_HS.dat 4 1 2 /home/pochen/wrk/HS/
JOBS/srinfo/bbxcor_S.wpk 1e7 3072 1427 2 1 2 3

where the values for gbuff and tbuff were found using the method discussed
in Sect. 4.4.2. The model parameterization flag on the 9th argument is set to 2,
which means that I am computing the data sensitivity kernels with respect to the rel-
ative perturbations in P- and S-velocity and density (Table 4.5). The sub-directory
KER/100002_IN.RC01.2 is then generated by setup_ker.py, together with
the kernel input file. The kernel input file ker.in generated by setup_ker.py
is shown in Listing 4.9. The data sensitivity kernels can then be obtained by running
ker. The kernel output files can be concatenated into a single file using the follow-
ing command inside the sub-directory KER/100002_IN.RC01.2

cat ker????????? > ker_all

and the individual kernel output files for each sub-mesh can then be deleted. The
ASCII kernel output file can be generated by executing the following command
inside the sub-directory KER/100002_IN.RC01.2

rdker ker_all 252 128 180 3 > bbxcor_S.ker2
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Fig. 4.28 The WPKs for the broadband cross-correlation delay time (left) and amplitude anomaly
(right) computed from the selected S-wave shown in Fig. 4.27.

and this ASCII file bbxcor_S.ker2 can be read into MATLAB using the
function read_ker.m and plotted.

The source-receiver plane cross-section views of the two data sensitivity ker-
nels are shown in Fig. 4.29. Note that the amplitude kernel in Fig. 4.29 differs
from that shown in (Zhao et al. 2005) by a minus sign, which is due to the differ-
ences in the definition of the amplitude misfit (Sect. 4.2.6). Compared with the data
sensitivity kernels for the P-wave shown in Fig. 4.8, the S-wave kernel for delay-
time in Fig. 4.29 also exhibits the counter-intuitive “banana-doughnut” phenomena.
The Fresnel zone of the S-wave kernels in Fig. 4.29 is narrower than the Fresnel
zone of the P-wave kernels in Fig. 4.8 because of the shorter wavelength of the S-
wave (Eq. 4.135, Sect. 4.2.9). Unlike the P-wave kernels for the explosive source
shown in Fig. 4.8), the kernels shown in Fig. 4.29 are not symmetric with respect
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Fig. 4.29 Cross-section views of the data sensitivity kernel for the broadband cross-correlation
delay time (left) and amplitude anomaly (right) with respect to relative perturbations in S-velocity
for the S-wave on the x2-component synthetic velocity seismogram from 100002 to IN.RC01
in our half-space example. The cross-section lies in the source-receiver plane perpendicular to the
x2 direction.

to the source-receiver path, which is due to the S-wave radiation pattern from the
double-couple source used in the calculation.

4.4.4.2 Rayleigh Wave From a Vertical Body-Force

I will solve the Lamb’s problem in the half-space structural model. Two receivers
SF.RC02 and SF.RC03 are placed at the surface (Fig. 3.3) and an upward vertical
body-force source is applied at SF.RC03 and the synthetic velocity seismograms
are recorded at SF.RC02. The data sensitivity kernels will be computed for the
Rayleigh wave on the vertical component of SF.RC02 and we therefore need the
RGT for the x3 component of SF.RC02. The source-receive list file for this exam-
ple is shown in Listing 4.7. The vertical body force applied on SF.RC03 is on line
7 and the body-force source for the RGT of SF.RC02 is on line 6. The receiver line
for SF.RC02 is line 2. Since the source-reciever list file is kept unchanged from that
used in Sect. 4.4.4.1, I do not need to re-execute the scripts proc_srlst.py and
set_sr_grd.py. For this example, I have changed the spatial grid decimation
rate NXSKP, NYSKP and NZSKP in the parameter file to 8 (line 21–23, Listing 2.5)
and re-executed the script set_ker_grd.py (Sect. 2.2.5). To set up the direc-
tories for the forward wave-propagation simulations for SF.RC03 and the RGT
calculations for SF.RC02, I can execute the following command in the terminal
under the project JOBS directory.

setup_awp.py param_HS.dat FWF 6 7

This command generates two sub-directories under the project FWF directory:
SF.RC02.3 and SF.RC03.3 and I need to run the parallel executable awp to
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generate the forward wavefield and the RGT. After the wave-propagation simula-
tions are completed, I can extract the synthetic velocity seismograms by executing
the following command in the JOBS directory.

fwf2syn.py param_HS.dat 7 7 2 2

The synthetic velocity seismograms on the x1, x2 and x3 components of SF.RC02
are stored in the file SF.RC02.rot under the sub-directory SYN/SF.RC03.3
and are plotted in Fig. 4.30. The dominant waveform on the vertical-component
synthetic velocity seismogram is a Rayleigh wave.

For this example, I will use the WPKs for the frequency-dependent phase
and amplitude misfits (Sect. 4.2.7) at 0.5 and 2.0 Hz. A MATLAB function
wpk_dtau.m is included to generate the WPKs for the frequency-dependent
phase-delay time, group-delay time and amplitude-reduction time. The definition
of this function is the following
function [sconv, Jp, Jg, Jq]=wpk_dtau(syn,stf_grn,dt,
ntskp,w,F),
and it is written according to Eqs. 4.92, 4.93 and 4.94 in Sect. 4.2.7. It takes six
inputs. The first five inputs have the same meaning as in the wpk_bbxcorr.m
function discussed in Sect. 4.4.1. The last input F is a vector containing a list of
the frequencies at which the frequency-dependent misfit measurements are made.
In this example, F contains two numbers: 0.5 and 2.0, for the two frequencies at
which the kernels will be computed. The first output sconv has the same mean-
ing as that in wpk_bbxcorr.m (Sect. 4.4.1). The second to fourth outputs are
the WPKs for the frequency-dependent phase-delay, group-delay and amplitude-
reduction time, respectively, in the same format as the second and third outputs of
wpk_bbxcorr.m (Sect. 4.4.1). The WPKs for the Rayleigh wave on the vertical-
component synthetic velocity seismogram from SF.RC03 to SF.RC02 (Fig. 4.30)
are shown in Fig. 4.31. The WPKs can be written into an ASCII text file in the
format specified in Sect. 4.4.1. A snippet of the WPK file, which is stored in the
file JOBS/srinfo/dtau_R.wpk is shown in Listing 4.10. The ordering of the
6 columns inside the WPK file is such that the first three columns correspond to
the WPKs of the phase-delay, group-delay and amplitude-reduction time at 0.5 Hz,
respectively, and the last three columns correspond to the WPKs of the phase-delay,
group-delay and amplitude-reduction time at 2.0 Hz, respectively.

I will compute the data sensitivity kernels of the frequency-dependent phase-
delay time, group-delay time and amplitude-reduction time with respect to pertur-
bations in the 21 asymptotic parameters (Sect. 4.3.6). To set up the directory for
kernel calculations, I can execute the following command under the JOBS directory
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Fig. 4.30 Three-component synthetic velocity seismograms from the vertical body-force source
applied at SF.RC03 to the receiver SF.RC02 in the half-space model. Top trace: x1 component;
center trace: x2 component; bottom trace: x3 component. The thick black solid line on the bottom
trace shows the waveform used for computing the WPKs.

1 6 3998
2 1.134000e+03 1.134000e+03 1.134000e+03 1.134000e+03 1.134000e+03

1.134000e+03
3 1.667000e+03 1.667000e+03 1.667000e+03 1.667000e+03 1.667000e+03

1.667000e+03
4 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

−0.000000e+00
5 . . .

Listing 4.10 The first 4 lines inside the WPK file generated for the frequency-dependent phase
and amplitude data functionals on the vertical-component Rayleigh wave.

setup_ker.py param_HS.dat 7 2 3 /home/pochen/wrk/HS/
JOBS/srinfo/dtau_R.wpk 1e7 384 1667 4 1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16 17 18 19 20 21 22



294 4 Data Sensitivity Kernels

8 9 10 11 12 13

J 3p
0.5 Hz

8 9 10 11 12 13

2 Hz

8 9 10 11 12 13

J 3g

8 9 10 11 12 13

8 9 10 11 12 13

J 3q

Time (s)
8 9 10 11 12 13

Fig. 4.31 The WPKs for frequency-dependent phase-delay time (top row), group-delay time (cen-
ter row) and amplitude-reduction time (bottom row) at 0.5 Hz (left column) and 2 Hz (right
column). The synthetic velocity waveform used for computing these WPKs is shown in thick black
solid line in Fig. 4.30.

Here I have set the model parameterization flag to 4 and the kernels for all
21 asymptotic parameters will be computed (Table 4.5). The temporal buffer
size tbuff is set to 1667 here, which is obtained from the third line in the
WPK file (Listing 4.10) and the spatial buffer size gbuff is set to 384 here,
which is obtained using the command shown in Sect. 4.4.2. The sub-directory
KER/SF.RC03.3_SF.RC02.3 is then generated, which also contains the ker-
nel input file ker.in (Listing 4.11), a soft link to the WPK file (Listing 4.10) and
a soft link to the parallel binary executable ker. The kernel output files can be con-
catenated into a single binary file, converted into an ASCII file using rdker and
plotted using MATLAB. Map-views and cross-section views of the data sensitiv-
ity kernels for the three different data functionals at two different frequencies with
respect to the asymptotic parameter L are shown in Fig. 4.32. Map-views of the data
sensitivity kernels for the phase-delay time at 2.0 Hz with respect to the perturba-
tions in the 21 asymptotic parameters are shown in Fig. 4.33. The source-receiver
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1 4
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 / home/ pochen / wrk /HS/VM/XYZGRD
4 / home/ pochen / wrk /HS/VM/HSGRD
5 / home/ pochen / wrk /HS/FWF/SF .RC03 . 3 /
6 / home/ pochen / wrk /HS/FWF/SF .RC02
7 / home/ pochen / wrk /HS/KER/SF .RC03.3_SF .RC02 . 3 / wpk
8 / home/ pochen / wrk /HS/KER/SF .RC03.3_SF .RC02 . 3 / ker
9 804 257

10 160 257
11 8 8 8
12 3
13 0
14 1e6
15 384 1667

Listing 4.11 The kernel input file for our Rayleigh wave example.

geometry used in this example can be useful when computing data sensitivity ker-
nels for misfit measurements derived from the ambient-noise Green’s function (e.g.,
Chen et al. 2010a; Xu et al. 2013; Lee et al. 2014b).

Note that the data sensitivity kernels with respect to the anisotropic parame-
ters shown in this example were computed in an isotropic reference model. Both
the forward wavefield and the RGT were computed in the isotropic half-space
structural model using awp. This type of data sensitivity kernels can be used for
deriving anisotropic perturbations to an isotropic reference model. The forward
wave-propagation simulation code awp does not account for anisotropy at the cur-
rent stage. If data sensitivity kernels with respect to anisotropic parameters for
an anisotropic reference model are needed, we will need to use a forward wave-
propagation simulation code that can account for anisotropy to calculate the forward
wavefield from the source and the RGT for the receiver. The formulations given in
Sects. 4.3.5 and 4.3.6 are still applicable under such circumstances.

4.4.4.3 Head Waves

I will compute the data sensitivity kernels for head waves refracted along an internal
velocity interface. The source-receiver geometry and the problem set-up are sum-
marized in Fig. 4.34 and are identical to those in (Zhang et al. 2007). The modeling
volume is discretized into a uniform mesh with 400-m grid spacing. The input file
to the mesh generation code FD_GRID_XYZ_rect is shown in Listing 4.12 and
a snippet of the output file XYZGRD is shown in Listing 4.13. For this example, I
have about 11 million grid points and I will be using 256 processors on Mira. The
velocity model for this layer-over-half-space structural model can be obtained by
modifying the codes shown in Listing 2.4 to add a logical construct for assigning
the velocity and density values based on the value of izg.
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Fig. 4.32 Data sensitivity kernels of the frequency-dependent phase and amplitude misfits with
respect to the asymptotic parameter L for the vertical-component Rayleigh wave shown in
Fig. 4.30. Left column: kernels at 0.5 Hz; right column: kernels at 2.0 Hz. a–d kernels for
frequency-dependent phase-delay time δτp ; e–h kernels for frequency-dependent group-delay time
δτg ; i–l kernels for frequency-dependent amplitude-reduction time δτq . a, b, e, f, i, j map-views of
the kernels at the depths of maximum sensitivity, which is about 1.6 km at 0.5 Hz and about 400 m
at 2.0 Hz; c, d, g, h, k, l cross-section views perpendicular to the source-receiver plane.
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Fig. 4.33 Map-views of the data sensitivity kernels for the 2-Hz phase-delay time with respect to
the perturbations in the 21 asymptotic parameters. The map-views are at the depths of the kernel’s
maximum amplitudes.

The source-receiver file has 3 lines (Listing 4.14). The source 100003 is
set to be an explosive source with the source-time function given in the file
src_hw.dat, which has the same format as explained in Sect. 2.2.4.1. This
source-time function was generated using Eq. 2.122 with c1 = 20 and c2 = 2. I
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Fig. 4.34 The layer-over-half-space seismic velocity model and the source-receiver geometry used
for computing the data sensitivity kernels for head waves. The spatial dimension is 112 km in x1,
120 km in x2 and 50 km in x3. This figure shows the cross-section view in the source-receiver plane
perpendicular to the x2 direction. The velocity interface is at 21.4-km depth. The P- and S-velocity
and density are 5207 m/s, 3189 m/s and 2950 kg/m3, respectively, for the top layer, and 9058 m/s,
5307 m/s and 3992 kg/m3, respectively, for the bottom layer. The source 100003 (black star) is
located at 18-km depth and the receiver IN.RC04 (black circle) is located at 6.4-km depth. Both
the source and the receiver are located at x2= 60 km. The source-receiver horizontal distance is
88 km.

1 / home/ pochen / wrk /HW/VM/
2 11
3 −118.00000 31.0000
4 −118.00000 32.1000
5 111000
6 49000
7 400
8 8 8 4

Listing 4.12 The input file to the mesh generation code for the head wave example.

will be computing the data sensitivity kernels for the vertical-component synthetic
velocity seismogram from 100003 to IN.RC04, therefore I will need the RGT for
the x3 component of IN.RC04. The body-force source for this RGT is on line 3
of Listing 4.14. The source-time function for this body-force source is identical to
that used in the previous half-space examples (Fig. 2.11). The second line in Listing
4.14 is the receiver line for IN.RC04.

The parameter file for the head-wave example is shown in Listing 4.15. The time
sampling interval is set to 0.02 s on line 12. The total duration of the synthetic
seismograms is set to 20 s on line 11. The spatial grid decimation rate is set to 2
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1 280 312 128 ! Global g r i d numbers NX, NY, NZ
2 8 8 4 ! Chunks (# o f proc . ) i n X, Y, Z
3 35 39 32 ! Grid numbers per chunk NXT, NYT, NZT
4 404529.66513544734 3429832.8747296482
5 405665.76867925981 3554227.4743449953
6 517260.92396119499 3553208.2689150157
7 516124.82041738252 3428813.6692996686
8 128 −0.0000000000000000
9 127 −400.00000000000000

10 126 −800.00000000000000
11 . . .

Listing 4.13 The first ten lines in the mesh output file for the head-wave example.

1 1 100003 1 30 156 83 4 1 1 1 0 0 0 / home/ pochen / wrk /HW/JOBS
/ s r i n f o / src_hw . dat

2 0 IN .RC04 1 250 156 112
3 2 IN .RC04.3 1 250 156 112 −2 0 0 1 / home/ pochen / wrk /HW/JOBS/

s r i n f o / imp_hw . dat

Listing 4.14 The source-receiver list for the head-wave example.

in each direction on line 21–23 and the temporal decimation rate is set to 2 on line
24.

After the input files are set up correctly, I can execute the following sequence of
scripts in the project JOBS directory

proc_srlst.py param_HW.dat 1 3
set_sr_grd.py param_HW.dat
set_ker_grd.py param_HW.dat
setup_awp.py param_HW.dat FWF 1 1
setup_awp.py param_HW.dat FWF 3 3

which will then create two sub-directories FWF/100003 and FWF/IN.RC04.3
under the project FWF directory for the wave-propagation simulations using awp.
After the wave-propagation simulations are completed for the forward wavefield
from 100003 and the RGT for IN.RC04, I can extract the synthetic velocity
seismograms by executing the following command in the JOBS directory

fwf2syn.py param_HW.dat 1 1 2 2
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1 BINDIR = / home/ pochen / F3DWI/ b in
2 SCRIPTDIR = / home/ pochen / F3DWI/ py
3 WRKDIR = / home/ pochen / wrk /HW
4 JOBDIR = / home/ pochen / wrk /HW/JOBS
5 XYZGRD = / home/ pochen / wrk /HW/VM/XYZGRD
6 UTMZONE = 11
7 MEDIA = /home / pochen / wrk /HW/VM/HWGRD
8 MINIMUM VELOCITY = 3189.0
9 MAXIMUM VELOCITY = 9650.0

10 SOURCE RECEIVER LIST = / home/ pochen / wrk /HW/JOBS/ s r i n f o / s r l s t
11 TMAX = 20.0
12 DT = 0.02
13 CFL = 0.9792
14 USEPML = 1
15 PMLCOEF = 3.5
16 BOUNDARY NODE NUMBER = 10
17 VISCO = 0
18 SOURCE STENCIL SIZE IN X = 1
19 SOURCE STENCIL SIZE IN Y = 1
20 SOURCE STENCIL SIZE IN Z = 1
21 NXSKP = 2
22 NYSKP = 2
23 NZSKP = 2
24 NTSKP = 2

Listing 4.15 The parameter file for our head-wave example.

and the synthetic seismograms are stored in the file SYN/100003/IN.RC04.rot.
The head wave on the vertical-component synthetic velocity seismogram is shown
in Fig. 4.35.

The WPKs for the broadband cross-correlation delay time and amplitude
anomaly (Sect. 4.2.6) can then be computed from the synthetic waveform shown
in Fig. 4.35 using the MATLAB function wpk_bbxcorr.m (Sect. 4.4.1).
And the WPKs are shown in Fig. 4.36. The WPKs are stored inside the file
JOBS/srinfo/bbxcor_HW_loh.wpk. The directory for the kernel calcula-
tions can then be generated using the following command in the JOBS directory.

setup_ker.py param_HW.dat 1 2 3 /home/pochen/wrk/HW/
JOBS/srinfo/bbxcor_HW_loh.wpk 1e7 5760 376 2 1 2 3

Here I am computing the data sensitivity kernels with respect to relative pertur-
bations in the P- and S-velocity and density. This command will generate the
sub-directory KER/100003_IN.RC04.3, the kernel input file (Listing 4.16) and
the two soft links pointing to the WPK file and the parallel binary executable ker.
After executing the kernel calculation code ker, the binary kernel output files can
be concatenated into a single binary file, converted into ASCII format and plotted.
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Fig. 4.35 Head waves on the vertical-component synthetic velocity seismograms from 100003
to IN.RC04. Black dash line: synthetic seismogram generated using the layer-over-half-space
model shown in Fig. 4.34; red solid line: synthetic seismogram generated using the structural
model whose P- and S-velocity in the bottom layer have a positive gradient of 0.02 km/s/km with
depth.

The data sensitivity kernels of the broadband cross-correlation phase delay time and
amplitude anomaly with respect to P-velocity are shown in Fig. 4.37. As pointed
out in (Zhang et al. 2007), the sensitivity is located mostly on only one side of the
refracted ray path below the velocity interface and can be characterized as a “split
banana-doughnut” kernel.

I now modify the layer-over-half-space velocity model shown in Fig. 4.34 so
that the P- and S-velocity inside the bottom layer increase linearly with depth from
9058 m/s and 5307 m/s at the velocity interface with a gradient of 0.02 km/s/km.
At the bottom of our modeling volume the P- and S-velocity reach 9650 m/s and
5899 m/s, respectively. This velocity model can also be generated by modifying
the codes shown in Listing 2.4. The modified velocity model, as a function of
depth, is shown in Fig. 4.38. The forward wavefield from 100003 and the RGT
for IN.RC04 can be re-computed using this “layer-over-gradient” velocity model
and the synthetic seismogram is plotted in Fig. 4.35. This velocity gradient in the
bottom layer can cause dispersion in the head wave. The data sensitivity kernels of
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Fig. 4.36 The WPKs of the broadband cross-correlation delay time (left) and amplitude anomaly
(right) for the head wave generated using the layer-over-half-space model (black dash lines) and
the head wave generated using the model with the bottom layer having a positive gradient of
0.02 km/s/km with depth.

the broadband cross-correlation misfits computed using the “layer-over-gradient”
velocity model (Fig. 4.39) are highly similar to those computed using the layer-
over-half-space velocity model (Fig. 4.37), except that the sensitivity has extended
slightly to larger depths for kernels computed using the “layer-over-gradient” model
(Fig. 4.39). For this dispersive headwave we can compute the data sensitivity ker-
nels of the frequency-dependent phase and amplitude misfits (Sect. 4.2.7). I have
computed the WPKs at 1.0 and 2.0 Hz using wpk_dtau.m (Sect. 4.4.4.2) and
re-computed the data sensitivity kernels. Figure 4.40 shows the data sensitivity ker-
nels of the frequency-dependent phase-delay time with respect to P-velocity at 1.0
and 2.0 Hz. At higher frequencies the width of the first Fresnel zone is narrower
and sensitivity is compressed more towards the velocity interface. The shape of
the frequency-dependent phase-delay time kernels still shows the “split banana-
doughnut” character with the sensitivity mostly located below the refracted ray path.
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1 2
2 1 1 1
3 / home/ pochen / wrk /HW/VM/XYZGRD
4 / home/ pochen / wrk /HW/VM/HWGRD
5 / home/ pochen / wrk /HW/FWF/100003/
6 / home/ pochen / wrk /HW/FWF/ IN .RC04
7 / home/ pochen / wrk /HW/KER/100003 _IN .RC04 . 3 / wpk
8 / home/ pochen / wrk /HW/KER/100003 _IN .RC04 . 3 / ker
9 30 156

10 250 156
11 2 2 2
12 3
13 0
14 1e7
15 5760 387

Listing 4.16 The kernel input file for our head-wave example.

Fig. 4.37 Cross-section views of the data sensitivity kernels of the broadband cross-correlation
delay time (upper) and amplitude anomaly (lower) for the head wave shown as black dash lines in
Fig. 4.35 with respect to the relative perturbation in P-velocity. Left column: cross-sections in the
source-receiver plane perpendicular to the x2 axis; right column: cross-sections mid-way between
source and receiver (x1 = 56 km) perpendicular to the x1 axis. The black dash lines indicate the
velocity interface at 21.4 km depth (Fig. 4.34).

The fringe patterns shown in Fig. 4.40 are due to the narrow-band nature of the
frequency-dependent phase-delay misfit.
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Fig. 4.38 The P- and S-velocity as functions of depth in the “layer-over-gradient” model. The
top layer has constant P- and S-velocity with values identical to those shown in Fig. 4.34 and
the bottom lay has a constant positive gradient of 0.02 km/s/km with depth. The velocities in the
bottom layer increase from 9058 m/s and 5307 m/s at the interface to 9650 m/s and 5899 m/s at
the bottom of our model.
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Fig. 4.39 Cross-sections of the data sensitivity kernels for the broadband cross-correlation delay
time (top row) and amplitude anomaly (bottom row) with respect to P-velocity. Left column: cross-
sections on the source-receiver plane perpendicular to the x2 axis; center column: cross-sections
mid-way between source and receiver and perpendicular to the x1 axis; right column: sensitivity
along the vertical dash lines shown on the center column for the “layer-over-half-space” struc-
tural model (black dash lines) and the “layer-over-gradient” structural model (red solid lines), the
vertical axis is depth and the horizontal axis is the value of the data sensitivity kernel. The hori-
zontal black dash lines on the left and center columns show the location of the velocity interface
at 21.4 km depth.

Fig. 4.40 Cross-sections of the data sensitivity kernels for the frequency-depedent phase-delay
time with respect to P-velocity at 1.0 Hz (top row) and 2.0 Hz (bottom row). Left column: cross-
section at the source-receiver plane perpendicular to the x2 axis; right column: cross-section at the
plane mid-way between source and receiver and perpendicular to the x1 axis.
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Chapter 5
Optimization Algorithms

Solutions to seismic inverse problems are often implemented using optimization
algorithms, in which we search for an optimal model that can minimize the discrep-
ancies between model predictions and actual observations and also satisfy some
constraints simultaneously. The theoretical framework developed in Chaps. 3 and
4 allows us to discuss and compare existing optimization algorithms for full-3D
waveform inversion, to analyze their advantages and disadvantagnes, and may also
inspire the development of new algorithms in the future. As we will see in this
chapter, this theoretical framework is quite general. It encompasses gradient-based
optimization algorithms, in which the gradient of the objective function can be com-
puted using the adjoint-wavefield (AW) method, and also Hessian-based algorithms,
in which an approximate Hessian can be constructed through the scattering-integral
(SI) method. It also allows us to use objective functions defined using any types of
waveform misfit measure, as well as any model parameterization that is suitable for
the problem at hand.

When discussing optimization algorithms, we need to distinguish between local
optimization and global optimization. As mentioned in Sect. 4.2.8, for fully three-
dimensional tomographic inversions it is often mandatory to use local optimization
algorithms because the model space is large and the computational cost for solving
the three-dimensional (visco)elastic wave equation is high. At a local optimal model,
the objective function is smaller (suppose we are solving a minimization problem)
than at all other feasible models nearby in model space. Local optimization algo-
rithms cannot guarantee to find the global optimal model, which is the model with
the smallest objective function value among all feasible models. For convex opti-
mization problems, and particularly for linear optimization, the local optimal model
is also the global optimal model. And as discussed briefly in Sect. 4.2.8, it is possi-
ble to make our full-3D tomography problem more convex through the appropriate
choice of the data functionals used for quantifying waveform discrepancies. For
general nonlinear problems, local solutions are not always global solutions. In this
chapter, I will only discuss local optimization algorithms. I note, however, that many
global optimization algorithms require solutions of many local optimization prob-
lems and in such situations our discussion on local optimization algorithms here is
still relevant. The model space can be reduced, sometimes significantly, through a
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judicious choice of regionalization (e.g., Käufl et al. 2013). The computational cost
for solving three-dimensional wave equations are reducing rapidly, especially with
the advent of energy-efficient many-core co-processors (Sect. 1.4). It is possible
that global optimization algorithms can be adopted for solving full-3D tomography
problems in the not-too-distant future.

Most classical deterministic local optimization algorithms are iterative. They
start with an initial guess and proceed to a sequence of gradually improving esti-
mates following a certain updating strategy that utilizes information about the
objective function at the current iteration or accumulated through several iterations.
And those local optimization algorithms can be classified based on their updating
strategies. Throughout the iterative process, the definition of the objective function
(e.g., the observations used for defining the objective function) is fixed. In realistic
full-3D waveform inversions, the amount (and/or the time-frequency-domain extent,
the types of the data functionals) of observed waveforms used in the inversion often
increases with iteration as the model improves and the model-predicted (i.e., syn-
thetic) seismograms are capable of fitting more of all available observed waveforms
(e.g., Tape et al. 2010; Lee et al. 2014b). This means that not only the value, but
also the definition of the objective function can change from iteration to iteration
in realistic full-3D waveform inversions. We therefore need to be cautious when
adopting optimization algorithms that use information accumulated through more
than one iteration, as the objective function from a previous iteration may have a
quite different definition from the objective function at the current iteration.

In the following I will discuss two classes of local optimization algorithms that
have been successfully applied to solve full-3D tomography problems using real
seismic waveform data.

5.1 The Scattering-Integral (SI) Method

The scattering-integral (SI) method is based on the Gauss–Newton algorithm
(e.g., Pratt et al. 1998) for solving least-squares problems. It explicitly constructs
the approximate Hessian matrix using the data sensitivity kernel for every misfit
measurement. This method is named after the integrals used in constructing the
data sensitivity kernels (Chen et al. 2007a), which are referred to as the “scattering-
integral”. Similar integrals, but different types of Green’s functions and forward
wavefields, have been used for constructing Born kernels and Rytov kernels in
an extensive literature related to diffraction tomography (e.g., Devaney 1981; Wu
and Toksöz 1987; Woodward 1992a, b) and inverse scattering (e.g., Beylkin 1985;
Bleistein et al. 2001). The scattering-integral has also been used in computing data
sensitivity kernels in global seismology, in which the Green’s functions and for-
ward wavefields are often computed in one-dimensional reference structural models
through normal mode summation or using asymptotic ray theory (e.g., Dahlen et al.
2000; Zhao et al. 2000; Zhao and Jordan 2006). The extension of this technique
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to fully three-dimensional isotropic elastic reference models and broadband cross-
correlation measurements was implemented in (Zhao et al. 2005; Zhao and Jordan
2006) based on the use of reciprocity and RGTs. In Chap. 3, I have shown that
the requirement on reciprocity can be removed by replacing the RGTs with the
time-reversed adjoint Green’s tensors. In Chap. 4, I have extended the SI method to
arbitrary data functionals and also anisotropic and anelastic kernels. The SI method
was successfully applied to image the structure of the Los Angeles Basin using P-
and S-waves from local small earthquakes at frequencies up to 1.2 Hz in (Chen
et al. 2007) and to image the crustal structure of Southern California using body-
and surface-waves from local earthquakes and surface-waves from ambient-noise
Green’s functions at frequencies up to 0.2 Hz in (Lee et al. 2014b).

5.1.1 The Gauss–Newton Algorithm

The least-squares problem is so pervasive among many disciplines and a huge liter-
ature has been developed for its solution. The main approach is the Gauss–Newton
algorithm. In least-squares problems, we consider an objective function that is the
sum of squares, i.e.,

f (x) = 1

2

m∑

j=1

r2
j (x), (5.1)

where x ∈ Rn are the parameters we are trying to optimize. Each rj (x) is often
referred to as the “residual”, which is an individual measurement of the discrepancy
between a prediction made using a model and the corresponding actual observation.
This special form of f (x) in Eq. 5.1 often makes least-squares problems easier to
solve than general optimization problems. In order to see why this is the case, we
first introduce a residual vector, i.e.,

r(x) = [r1(x), r2(x), . . ., rm(x)]T, (5.2)

which is a column vector with m rows and maps Rn to Rm. The objective function
in Eq. 5.1 can be re-written as

f (x) = 1

2
‖r(x)‖2

2 , (5.3)

where ‖ ‖2 is the L2-norm. The Jacobian matrix A(x) is the m × n matrix of the
first-order partial derivatives of the residuals, i.e.,

A(x) =
[
∂rj

∂xi

]

j=1,2,···m;i=1,2,···n
=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∇r1(x)T

∇r2(x)T

...

∇rm(x)T

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (5.4)
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where∇rj (x) =
[

∂rj
∂x1

,
∂rj
∂x2

, · · · ,
∂rj
∂xn

]T
is a column-vector with n rows and ∇rj (x)T

is a row-vector with n columns. The gradient and Hessian of the objective function
f (x) can then be expressed in terms of the Jacobian matrix as

∇f (x) =
m∑

j=1

rj (x)∇rj (x) = A(x)T r(x), (5.5)

H(x) = ∇∇f (x) =
m∑

j=1

∇rj (x)∇rj (x)T +
m∑

j=1

rj (x)∇∇rj (x)

= A(x)T A(x)+
m∑

j=1

rj (x)∇∇rj (x). (5.6)

If the first-order derivatives of the residuals can be evaluated, the Jacobian matrix is
available, which gives not only the gradient of the objective function (Eq. 5.5), but
also the first term A(x)T A(x) in the Hessian (Eq. 5.6), without the need to calculate
any second-order derivatives of rj (x). This availability of part of the Hessian from
only first-order derivatives of the residuals is a special feature that is unique to least-
squares problems. In practice, the term A(x)T A(x) is often the dominant term in the
Hessian, either because the residuals are small (i.e., rj (x) is small), or because the
residuals are close to affine (e.g., linear with respect to x) near the solution (i.e.,
∇∇rj (x) is small), or both. In the standard Newton’s method for optimization, the
descent direction at the kth iteration, δxk , is obtained by solving the normal equation

∇∇f (xk)δxk = −∇f (xk). (5.7)

For least-squares problems we can approximate the Hessian ∇∇f (xk) using its first
term A(x)T A(x) and arrive at the Gauss–Newton normal equation

A(xk)T A(xk)δxk = −A(xk)T r(xk). (5.8)

It can be verified that as long as the Jacobian A(xk) has full rank and the gradient
is nonzero, the direction δxk obtained by solving Eq. 5.8 is always descending,
therefore suitable for a line search 1. Once the Gauss–Newton normal Eq. 5.8 is
solved, we can update the solution using

xk+1 = xk + cδxk, (5.9)

where the constant scalar c can be 1 or the optimal step length determined through
the line search. The procedure can be iterated until a pre-specified convergence
criterion is met.

1 Once a descent direction is given, the line search determines how far we should move along the
descent direction, i.e., the optimal step length along the descent direction. The other widely used
technique is known as the “trust region” method.
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Extensions of the Gauss–Newton algorithm can be understood in terms of the
different approximations made on the second term of the Hessian (Eq. 5.6). The
very successful Levenberg-Marquardtalgorithm (Levenberg 1944; Marquardt 1963)
is based on replacing the second term in the Hessian (Eq. 5.6) with a scaled identity
matrix, i.e.,

H(x) ≈ A(x)T A(x)+ cI, (5.10)

where c is a scalar constant. This approach provides a remedy to the Gauss–Newton
algorithm when the Jacobian is rank-deficient, or nearly so. When c is very large,
the normal Eq. 5.7 approaches

cIδxk = −∇f (xk), (5.11)

and we recover the steepest-descent algorithm. When c is very small, we recover
the Gauss–Newton algorithm. Marquardt also gave another approximation. Instead
of using the scaled identity matrix, the matrix

D = [Dij

] =
{(

AT A
)
ii

if i = j

0 if i 	= j
(5.12)

is used. This choice avoids some problems when the parameters are of very different
scales. It is also possible to use a combination of both matrices, i.e.,

H(x) ≈ A(x)T A(x)+ cI+ D, (5.13)

where c is a small constant. An approximation to the second term can also be
constructed based on the secant equation (e.g., Dennis et al. 1981). Consider the
second-order derivative of the residual ∇∇rj , at two consecutive iterations k and
k + 1, we have

∇∇rj (xk+1) (xk+1 − xk) = ∇rj (xk+1)− ∇rj (xk). (5.14)

Since we do not have ∇∇rj (xk+1), we can construct an approximation, (Sj )k+1,
which mimics the behavior of ∇∇rj (xk+1) over the step from k to k+1. We require
that this approximation should also satisfy Eq. 5.14, i.e.,

(
Sj

)
k+1 (xk+1 − xk) = ∇rj (xk+1)−∇rj (xk). (5.15)

The RHS of Eq. 5.15 is merely a subtraction of the j th row of the Jacobian matrices
between the two consecutive steps. Denote the approximation to the second term in
the Hessian

∑m
j=1 rj (x)∇∇rj (x) for the (k + 1)th step as Bk+1, then it must satisfy

Bk+1 (xk+1 − xk) =
m∑

j=1

rj (xk+1)
(
Sj

)
k+1 (xk+1 − xk)

=
m∑

j=1

rj (xk+1)
[∇rj (xk+1)−∇rj (xk)

]

=
[
A (xk+1)

T − A (xk)
T
]

r (xk+1) . (5.16)
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Equation 5.16 is not enough to constrain Bk+1 uniquely and additional conditions
(e.g., Bk+1 must be symmetric) can be imposed to obtain an explicit formula for
Bk+1 (Dennis et al. 1981).

For problems with large residuals or large ∇∇rj , the various extensions of the
Gauss–Newton algorithm may provide better convergence rate than the Gauss–
Newton algorithm before reaching a neighborhood of the optimal solution (i.e.,
during earlier iterations). When the second term in the Hessian is negligible (i.e.,
small residual or small ∇∇rj or both), the Gauss–Newton algorithm has quadratic
convergence rate, which is faster than the superlinear or linear convergence rate of
the conjugate-gradient, the steepest-descent and other quasi-Newton algorithms. It
is also possible to combine the Gauss–Newton algorithm with other types of algo-
rithms (e.g., BFGS) to construct hybrid algorithms, in which the Gauss–Newton
update is taken if the reduction in the objective function is sufficiently large and a
BFGS-type update is taken otherwise (e.g., Fletcher 2013).

5.1.2 F3DT-SI

Full-3D tomography based on the scattering-integral method (F3DT-SI) uses the
Gauss–Newton algorithm to minimize a quadratic objective function defined in
terms of the waveform misfit measurements and model regularization, i.e.,

χ2 (m, mk) = �dT (m, mk) C−1
d �d (m, mk)

+ (m−mk)
T C−1

m (m−mk), (5.17)

and the spatially discretized structural model m is updated through a finite series of
perturbations, i.e.,

mk+1 = mk +�mk, k = 0, 1, 2, . . . ,K . (5.18)

In Eq. 5.17, �d is a column vector composed of the data functional differences �dsn

(Eq. 4.5), Cd is a positive-definite data covariance matrix and Cm is a positive-
definite model covariance matrix. The kth model update �mk is constructed by
minimizing this quadratic objective function at the kth reference model mk .

There are statistical motivations for choosing such an objective function. It might
be reasonable to assume that the individual misfits �dsn are independent and iden-
tically distributed with a certain Gaussian probability density function. Under such
an assumption, the likelihood of a given collection of misfits can be expressed in
terms of the product of the Gaussian distribution for every misfit in this collection.
The exponent of the likelihood has the form −�dT C−1

d �d, which is the negative
of the first term on the RHS of Eq. 5.17. If we use the maximum likelihood estimate,
the likelihood is maximized when �dT C−1

d �d is minimized. If there are corre-
lations among the individual misfits, the likelihood can be expressed in terms of
a general multivariate Gaussian distribution with a non-diagonal data covariance
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matrix Cd . A priori constraints can also be incorporated into the analysis using the
Gaussian-Bayesian framework and can give rise to the second term on the RHS of
Eq. 5.17. Detailed derivations based on statistical inference can be found in e.g.,
(Tarantola 2005).

The Jacobian matrix at the kth iteration is then given by

A (mk) =
[

∂�dsn (m, mk)

∂m

]∣∣
∣
∣
m=mk

= −
[
∂dsn (m, mk)

∂m

]∣∣
∣
∣
m=mk

= −Kk, (5.19)

where Kk is the kernel matrix whose rows are the spatially discretized data sensi-
tivity kernels of the data functionals dsn evaluated at the reference model mk . The
gradient of the objective function (i.e., the Fréchet derivative of χ2 with respect to
the structural model m) at the kth iteration can then be expressed using the kernel
matrix as

∇mχ2 (m, mk)

∣
∣
∣
m=mk

= −KT
k C−1

d �d (mk, mk) . (5.20)

Considering Eq. 4.3, we have

�dsn (mk, mk) = d̄sn − dsn (mk, mk) = d̄sn, (5.21)

where d̄sn is the misfit between the observed wavefield and the synthetic wavefield
computed using the reference structural model at the kth iteration mk . Equation 5.20
indicates that the gradient of the objective function is in fact a data-weighted super-
position of individual data sensitivity kernels and the misfit data is given by d̄sn.
Equation 5.20 has implications for the adjoint-wavefield method, as we will see in
Sect. 5.2. The Gauss–Newton approximation of the Hessian can be expressed using
the kernel matrix as

Hk ≈ KT
k C−1

d Kk + C−1
m . (5.22)

The Gauss–Newton normal equation for the kth iteration is then given by
(

KT
k C−1

d Kk + C−1
m

)
�mk = KT

k C−1
d dk, (5.23)

where the column vector dk is composed of d̄sn and �mk is the kth model update
(Eq. 5.18). It can be verified that the Gauss–Newton normal Eq. 5.23 is identical to
the normal equation of the following linear least-squares problem

min
�mk

∥
∥
∥
∥
∥

[
C−1/2

d Kk

C−1/2
m

]

�mk −
[

C−1/2
d dk

0

]∥∥
∥
∥
∥

2

2

. (5.24)

Therefore the nonlinear least-squares optimization problem defined in Eq. 5.17
can be solved by repeated solution of the linear least-squares problem defined in
Eq. 5.24.
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5.1.3 Scalable Parallel LSQR (SPLSQR)

The Gauss–Newton normal Eq. 5.23 or the linear least-squares problem in Eq. 5.24
can be solved using a variety of linear system solvers (e.g., Cholesky factorization,
QR factorization, singular-value decomposition, conjugate-gradient). When the lin-
ear system is very large, iterative methods that solve the linear least-squares problem
in Eq. 5.24 directly can be highly efficient. In such iterative methods, we only need
the ability to perform successive matrix-vector multiplications with the Jacobian
and its transpose without having to form the Gauss–Newton approximate Hessian
explicitly. A highly successful iterative method is the Least Squares with QR fac-
torization (LSQR) algorithm as described in (Paige and Saunders 1982). The LSQR
algorithm is a member of the conjugate-gradient family of Krylov subspace iterative
methods. It uses an iterative Lanczos process to construct orthonormal vectors in the
model and data spaces. It is one of the most popular linear system solvers used in
seismic tomography due to its efficiency and stability in solving large, sparse and
ill-conditioned problems (e.g., Nolet 1985; Iyer and Hirahara 1993).

Implementations of the LSQR algorithm on distributed-memory computer clus-
ters have been discussed previously in e.g., (Baur and Austen 2004; Liu et al. 2006;
Balay et al. 1997, 2014a, b). These traditional implementations can have significant
inter-processor communication overhead depending upon the structure of the lin-
ear system. Such inter-processor communication overhead can significantly limit
the parallel scalability of the code. To address the scalability problem in tradi-
tional implementations, we have developed a new scalable parallel implementation
optimized for the seismic tomography problem in (Huang et al. 2012, 2013; Lee
et al. 2013). We call this new implementation “Scalable Parallel LSQR” (SPLSQR).
SPLSQR has a scalable inter-processor communication volume distributed among
a fixed or a modest number of neighboring processors. The largest linear system we
have solved using SPLSQR has over 38 million columns, 261 million rows and 144
billion non-zeros. We were able to solve this linear system for 300 LSQR iterations
on 12,000 cores on the IBM iDataPlex system (code named “Yellowstone”) at the
NCAR-Wyoming Supercomputing Center (NWSC) in less than 5 min of wall-time.

Technical details about SPLSQR have been documented in (Huang et al. 2012,
2013; Lee et al. 2013). In (Lee et al. 2013), we gave a thorough analysis of the entire
algorithm, as well as realistic performance evaluations obtained from our F3DT-SI
application in Southern California (Lee et al. 2014b, Chap. 6). There are a number
of innovative features in SPLSQR and among them three are critical for scalabil-
ity. First, on distributed-memory computer clusters, each processor stores only a
portion of the complete matrix and vectors in its own memory. Therefore how to
partition the matrix and vectors among the processors affects both the computa-
tional load on each processor and the inter-processor communication overhead. We
partition the kernel matrix C−1/2

d K in Eq. 5.24 (here we have dropped the itera-
tion index k to reduce clutter) according to columns (i.e., different processor owns
a range of columns of C−1/2

d K) and partition the damping matrix C−1/2
m accord-

ing to rows. This data partitioning scheme can significantly reduce inter-processor
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communication overhead for highly under-determined linear systems (Lee et al.
2013). Second, unlike the kernel matrix C−1/2

d K, whose non-zero pattern can be
highly irregular depending upon the distribution of seismic sources and receivers,
the model discretization and some other factors, the damping matrix C−1/2

m is usu-
ally highly sparse and has specific structures. The inter-processor communication
overhead depends upon this internal structure of the damping matrix. In (Lee et al.
2013) we have shown that in order to minimize the inter-processor communication
overhead it is important to re-order C−1/2

m such that its bandwidth is as small as pos-
sible (i.e., as close to a diagonal matrix as possible). Three, the overall performance
of the code depends upon the amount of data stored on each processor (i.e., memory
balance), the number of calculations performed by each processor (i.e., computation
balance) and also the number of inter-processor communications for each proces-
sor (i.e., communication balance). Our load-balancing scheme takes into account all
three factors. When partitioning the kernel matrix according to columns, we ensure
that the number of nonzeros on each processor is about the same (i.e., memory and
computation balance). The re-ordered damping matrix is partitioned according to
rows at the same time as we partition the kernel matrix to give a rough estimate
of the inter-processor communication overhead. The resulting partition provides a
good compromise among all three factors.

We have compared the performance of SPLSQR with the parallel LSQR imple-
mentation in the Portable, Extensible Toolkit for Scientific Computation (PETSc)
library (Balay et al. 1997, 2014a, b), a widely used, highly optimized parallel lin-
ear algebra library. SPLSQR shows significant speed-up compared to PETSc for
our F3DT-SI application in Southern California. On Yellowstone we were able to
obtain about 17 times of speed-up using 2400 cores and about 74 times of speed-up
using 9600 cores (Lee et al. 2013). When comparing the total wall-time spent only
on inter-processor communication, the speed-up was about 62 times on 2400 cores
and about 201 times on 9600 cores. SPLSQR has also been ported to distributed-
memory computer clusters equipped with GPU accelerators and obtained significant
speed-up compared with its purely CPU implementation (Huang et al. 2012). The
optimization and implementation of SPLSQR are tailored to the specific needs of
our seismic tomography problem and may not be applicable to more general lin-
ear systems encountered in other fields. The LSQR code in PETSc is suitable for a
wider class of problems.

5.1.4 The Roughing Operator

When solving the linear least-squares problem in Eq. 5.24 using iterative linear
system solvers, such as the LSQR algorithm, we need to specify specific forms for
the data-weighting matrix C−1/2

d and the damping (or regularization) matrix C−1/2
m .

The data-weighting matrix can often be determined from a certain noise model for
the misfit measurements used in the inversion. Examples about how to construct
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such noise models for frequency-dependent phase and amplitude misfits measured
on earthquake seismograms were shown in e.g., (Chen et al. 2007; Lee et al. 2014b)
and examples for misfit measurements made on ambient-noise Green’s functions are
shown in (Lee et al. 2014b). In the absence of a robust noise model, we can assume
that C−1/2

d is the identity matrix, which will give all misfits equal weights.

The damping matrix C−1/2
m is sometimes called the roughing operator (e.g.,

Tarantola 2005), as its inverse C1/2
m is often a smoothing operator. By using a rough-

ing operator for C−1/2
m in Eq. 5.24 we are imposing our prior information on the

inversion, which is that, in the absence of other information, the model perturbation
�mk should be smooth in space. By minimizing Eq. 5.24, we are penalizing spa-
tially rough model perturbations among all possible solutions. One possible choice
for such a roughing operator is the Laplacian ∇2 = ∇ ·∇ (e.g., deGroot-Hedlin and
Constable 1990; Sambridge 1990; Tarantola 2005). If we would also like to penal-
ize model perturbations that are too large, we can include the identity operator I into
C−1/2

m . In practice, we can use a linear combination of the identity operator and the
Laplacian, i.e.,

C−1/2
m = θ1I+ θ2∇2, (5.25)

where the regularization parameters θ1,2 can be chosen based on the trade-off
between model smoothness/norm and the fit to the data. If the model perturba-
tion �mk is discretized on a uniform grid, the Laplacian can be approximated
numerically using spatial finite-differencing operators. For other types of model dis-
cretizations, it is also possible to explicitly construct numerical approximations of
Eq. 5.25.

The smoothing operator C1/2
m corresponding to the roughing operator in Eq. 5.25

has connections with the exponential model covariance function. To see this, we
consider the one-dimensional stationary exponential covariance function

f (|x − y|) = e−2πθ |x−y|, (5.26)

where θ is a parameter proportional to the inverse of the correlation length. We
would like to find the function, g(|x − z|), such that for any h(y) we have

∫ ∞

−∞
dxg(|x − z|)

∫ ∞

−∞
dyf (|x − y|)h(y) = h(z). (5.27)

Equation 5.27 implies that
∫ ∞

−∞
dxg(|x − z|)f (|x − y|) = δ(y − z), (5.28)

The Fourier transform of 5.26 over x can be evaluated explicitly as

f̂ (ξ ) = 1

π

θ

θ2 + ξ2 e−iξy, (5.29)
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whose amplitude is known as the Lorentzian function. Using the inverse Fourier
transform, we can express f (|x − y|) as

f (|x − y|) = f (|y − x|) = 1√
2π

∫ ∞

−∞
dξe−iξx

(
1

π

θ

θ2 + ξ2
eiξy
)

. (5.30)

Bring Eq. 5.30 into Eq. 5.28, we obtain

∫ ∞

−∞
dξ

[
1√
2π

∫ ∞

−∞
dxe−iξxg(|x − z|)

](
1

π

θ

θ2 + ξ2
eiξy
)
= δ(y − z). (5.31)

Considering Eq. 3.94, the Fourier transform of g(|x − z|) over x must be

ĝ(ξ ) =
√

π

2

θ2 + ξ2

θ
e−iξz (5.32)

in order to satisfy Eq. 5.28. The inverse Fourier transform of Eq. 5.32 can then be
expressed as

g(|x − z|) = πθδ(x − z)− π

θ
δ′′(x − z), (5.33)

where δ′′(x) is the second-order derivative of the Dirac delta function with respect to
x. The first term on the RHS of Eq. 5.33 is the identity operator scaled by πθ , which
is proportional to the inverse of the correlation length. The second term on the RHS
of Eq. 5.33 is the one-dimensional Laplacian (integration-by-parts twice) scaled
by −π/θ , which is proportional to the correlation length. The function g(|x − z|)
is in fact the one-dimensional roughing operator corresponding to the exponential
covariance function in Eq. 5.26.

5.1.5 Annihilator Matrix

In inversions that involve multiple types of model parameters we may wish to max-
imize the sensitivities to some types of model parameters while minimizing the
sensitivities to other types of model parameters. For instance, when inverting for
structural parameters, the misfit measurements are also affected by errors in the
assumed source parameters. The partial derivatives of the misfits with respect to
the source parameters can be computed and we may formulate a joint inversion
that includes perturbations to both structural parameters and source parameters as
the unknown �mk . The effects of the unknown perturbations to the source param-
eters can be projected away by using the annihilator matrix. The same approach
can be applied to remove the effects of any types of unwanted model parameters,
as long as the Fréchet kernels of the misfits with respect to those model param-
eters can be computed. These unwanted model parameters are sometimes called
nuisance parameters and the procedure for projecting away their effects on the mis-
fits is called denuisancing, which has been used to remove path effects in relative
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earthquake source relocation techniques (e.g., Jordan and Sverdrup 1981) and FMT
inversions (Chen et al. 2005). Similar techniques have also been well studied in the
context of ordinary least squares (OLS) for estimating the unknown parameters in
linear regression models (e.g., Montgomery et al. 2012).

To simplify notation, we can re-write Eq. 5.24 in the following form

K�m =
[

K1 K2

]
[

�m1

�m2

]

= K1�m1 +K2�m2 = d, (5.34)

where I have dropped the iteration index k to reduce clutter, �m1,2 are two types of
unknown model parameters and K1,2 are their corresponding kernel sub-matrices.
Suppose we would like to annihilate the effects of �m2 from Eq. 5.34, we first
construct the projection matrix

P = K2

(
KT

2 K2

)−1
KT

2 . (5.35)

The annihilator matrix is then given by

Q = I− P. (5.36)

Left-multipling Q on both sides of Eq. 5.34, we obtain

QK1�m1 + (I− P)K2�m2 = Qd

⇒ QK1�m1 +
[

K2 −K2

(
KT

2 K2

)−1
KT

2 K2

]
�m2 = Qd

⇒ QK1�m1 = Qd. (5.37)

Equation 5.37 does not have �m2. In Eq. 5.35, the projection matrix is defined in
terms of one particular form (i.e., the left inverse) of the Moore-Penrose pseudoin-
verse (e.g., Campbell and Meyer 2009), which we denote as K+2 in the following,
i.e.,

K+2 =
(

KT
2 K2

)−1
KT

2 . (5.38)

The inverse
(
KT

2 K2
)−1

in Eq. 5.38 exists when K2 has full column rank. If we
left-multiply K+2 on K2, we obtain

K+2 K2 =
(

KT
2 K2

)−1
KT

2 K2 = I. (5.39)

If K2 has full row rank, then
(
K2KT

2

)−1
exists and the pseudoinverse can be

computed as

K+2 = KT
2

(
K2KT

2

)−1
. (5.40)

The pseudoinverse given in Eq. 5.40 is called the right inverse. If we right-multiply
K+2 on K2, we obtain

K2K+2 = K2KT
2

(
K2KT

2

)−1 = I. (5.41)
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It can be shown that the Moore-Penrose pseudoinverse is defined and unique for all
matrices and can always be computed through singular-value decomposition (e.g.,
Campbell and Meyer 2009). The projection matrix in Eq. 5.35 can then be written
in terms of the pseudoinverse as

P = K2K+2 , (5.42)

and it can be shown that the identities

PK2 = K2K+2 K2 = K2, (5.43)

K+2 P = K+2 K2K+2 = K+2 (5.44)

always hold. The annihilator matrix Q defined in Eq. 5.36 always exists and is the
orthogonal projector onto the null-space of K+2 . The analysis above can also be
extended to complex matrices, in which case the transpose needs to be replaced
with the Hermitian (conjugate) transpose.

Once the annihilator matrix Q is constructed, the application of Eq. 5.37 involves
left-multiplying Q with K1 and d, which produces linear combinations of the
data sensitivity kernels in K1 on the LHS and also linear combinations of misfit
measurements in d on the RHS.

The double-difference seismic source re-location technique (e.g., Waldhauser
and Ellsworth 2000, 2002) can be obtained by treating perturbations to structural
parameters as the nuisance parameters and project away their effects using the anni-
hilator matrix constructed from the Fréchet kernels of the misfits with respect to the
structural parameters. In the conventional double-difference technique, two events
separated by a large distance needs to be linked together through a series of interme-
diate pairs (e.g., Got et al. 1994). Using the formulation given here, the annihilator
matrix can automatically account for such situations. If we concatenate the linear
system (Eq. 5.37) obtained by projecting away the path effects with the original
linear system (Eq. 5.24) we can solve for source locations and structural parame-
ters jointly and we have obtained a full-wave version of the double-difference ray
tomography method given in e.g., (Zhang and Thurber 2003). As mentioned at the
beginning of this section, the same technique can also be used to project away effects
of unwanted source parameters and/or structural parameters in tomography studies.

5.2 The Adjoint-Wavefield (AW) Method

The adjoint-state method, which has been driving rapid advances in other disciplines
(e.g., Bengtsson et al. 1981; Bennett 1992; Daley 1993; Malanotte-Rizzoli 1996;
Wunsch 1996; Kalnay 2003), was adopted to solve seismic imaging problems in
some early work of e.g., (Bamberger et al. 1977, 1982) and formalized in the space-
time domain in e.g., (Tarantola 1984, 1988a) and in the space-frequency domain
in e.g., (Pratt et al. 1998; Pratt 1999). It has been successfully applied in seismic
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exploration industry for more than a decade. It was adapted to large-scale passive-
source tomography studies in (Tromp et al. 2005), in which extensions to different
types of data functionals and connections with finite-frequency kernels were made.
In seismic inverse problems, the state variable is the wavefield, therefore we use the
term “adjoint-wavefield” method (AWM) instead of the more general term “adjoint-
state” method.

The adjoint-wavefield method can be derived using different approaches. A
detailed derivation of AWM based on the Lagrange multiplier method, which is
commonly employed to solve optimal control problems with strong constraints
imposed by partial-differential equations (e.g., Akcelik et al. 2002, 2003; Biegler
2003), has been documented in (Liu 2006). In the Lagrange multiplier method the
objective function defined in terms of waveform misfit measurements is minimized
and the seismic wave equation, as well as its initial/boundary conditions, is included
into the objective function using Lagrange multipliers. Variations with respect to the
Lagrange multipliers and the application of the Karush–Kuhn–Tucker (KKT) con-
ditions lead to the forward and adjoint wave equations and also a set of equations
for updating model parameters.

A more general formulation based on the variational data assimilation approach
was given in (Chen 2011). This formulation provides a weakly-constrained general-
ized inverse, in which the dynamic model (i.e., the wave equation and its associated
initial/boundary conditions) is allowed to contain errors and the solution of the
inverse problem does not have to satisfy the dynamic model exactly. The strongly-
constrained inverse, which is identical to the conventional AWM, can be obtained as
a limiting case, in which the errors in the dynamic model approach zero. In meteo-
rology and oceanography it has been shown that one can obtain non-physical model
parameters as a result of neglecting errors in the dynamic model (e.g., Zupanski
and Zupanski 2006). The effects of neglecting errors in the dynamic model in seis-
mic inverse problems have not been fully investigated in the literature. However,
it is clear that our deterministic dynamic model is not perfect and it is difficult, if
possible at all, to fully eliminate all its deficiencies. The impact of the errors in
the dynamic model, in particular the impact on the estimation of model param-
eters, needs to be evaluated, especially when the procedure for solving seismic
inverse problems is becoming more and more precise. The weakly-constrained vari-
ational data assimilation approach formulated in (Chen 2011) provides a systematic
means to accommodate errors in the dynamic model when solving seismic inverse
problems.

The derivation given in the following is not based on the Lagrange multiplier
method or the variational data assimilation approach. Instead, I will use the adjoint
representation theorem (Eq. 3.335) formulated in Sect. 3.3.3.3. As we will see in the
following, the application of the adjoint representation theorem can significantly
simplify the derivation of the adjoint method for computing the gradient of the
objective function (Sect. 5.2.1) and also for computing the Hessian-vector product
(Sect. 5.2.3).
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5.2.1 The Gradient

In Sect. 5.1.2 we have seen that the gradient of the objective function∇mχ2 (m, mk)

evaluated at the reference model mk can be expressed as the data-weighted super-
position of the data sensitivity kernels for every misfit in the data set (i.e., Eq. 5.20).
Since at the reference model we have �dsn = d̄sn (Eq. 5.21), we can re-write
Eq. 5.20 as

∇mχ2 (m, mk)

∣
∣
∣
m=mk

= −KT
k C−1

d dk, (5.45)

where the column vector dk is composed of d̄sn for the kth iteration. In the fol-
lowing, I will drop the iteration index k to reduce clutter. If we consider the model
parameters composed of density and elastic moduli,

m(x) =
[

ρ(x)

cjklm(x)

]

, (5.46)

the corresponding data sensitivity kernels were given in Eqs. 4.32 and 4.35. If we
denote

C−1
d d = d̃ =

[
d̃sn
]
, (5.47)

the RHS of Eq. 5.45 can be expressed as

−KT C−1
d d = −

[ ∑
sn K

ρ
dsn(x)d̃sn

∑
sn K

cjklm

dsn (x)d̃sn

]

. (5.48)

Bring Eqs. 4.32 and 4.35 into the RHS of Eq. 5.48, we obtain

−
∑

sn

K
ρ
dsn(x)d̃sn =

∑

s

3∑

j=1

∫ T

0
dτ

∂2us
j (x, τ )

∂τ 2

⎡

⎣
∫

V

dV (x′)
∫ T

0
dt

3∑

p=1

∑

n

d̃snJ sn
p (x′, t)Gjp(x, t − τ ; x′, 0)

⎤

⎦ , (5.49)

−
∑

sn

K
cjklm

dsn (x)d̃sn =
∑

s

∫ T

0
dτ

∂us
l (x, τ )

∂xm

∂

∂xk

⎡

⎣
∫

V

dV (x′)
∫ T

0
dt

3∑

p=1

∑

n

d̃snJ sn
p (x′, t)Gjp(x, t − τ ; x′, 0)

⎤

⎦ , (5.50)

where I have replaced the temporal convolution operator “∗” with time integrals
and used Eqs. 3.407–3.409 in Eq. 5.49. Equations 5.49 and 5.50 are based on the
reciprocity relation, which was used when deriving the data sensitivity kernels in
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Chap. 3 and 4. As mentioned in Sects. 3.4.1, 3.5.2 and at the beginning of Chap. 4,
more general formulas that do not rely on reciprocity can be obtain by replacing
Gjp(x, t−τ ; x′, 0) with the time-reversed adjoint Green’s tensor G

‡
jp(x, t−τ ; x′, 0)

(Eq. 3.345) and Eqs. 5.49 and 5.50 can then be written as

−
∑

sn

K
ρ
dsn(x)d̃sn =

∑

s

3∑

j=1

∫ T

0
dτ

∂2us
j (x, τ )

∂τ 2

⎡

⎣
∫

V

dV (x′)
∫ T

0
dt

3∑

p=1

∑

n

d̃snJ sn
p (x′, t)G†

jp(x, τ − t; x′, 0)

⎤

⎦ , (5.51)

−
∑

sn

K
cjklm

dsn (x)d̃sn =
∑

s

∫ T

0
dτ

∂us
l (x, τ )

∂xm

∂

∂xk

⎡

⎣
∫

V

dV (x′)
∫ T

0
dt

3∑

p=1

∑

n

d̃snJ sn
p (x′, t)G†

jp(x, τ − t; x′, 0)

⎤

⎦ . (5.52)

If we define the adjoint source field as

[
f s

p

]†
(x′, t) =

∑

n

d̃snJ sn
p (x′, t), (5.53)

then Eqs. 5.51 and 5.52 can be expressed as

−
∑

sn

K
ρ
dsn(x)d̃sn =

∑

s

3∑

j=1

∫ T

0
dτ

∂2us
j (x, τ )

∂τ 2

⎡

⎣
∫

V

dV (x′)
∫ T

0
dt

3∑

p=1

[
f s

p

]†
(x′, t)G†

jp(x, τ ; x′, t)

⎤

⎦ , (5.54)

−
∑

sn

K
cjklm

dsn (x)d̃sn =
∑

s

∫ T

0
dτ

∂us
l (x, τ )

∂xm

∂

∂xk

⎡

⎣
∫

V

dV (x′)
∫ T

0
dt

3∑

p=1

[
f s

p

]†
(x′, t)G†

jp(x, τ ; x′, t)

⎤

⎦ . (5.55)

The terms inside the square brackets on the RHS of Eqs. 5.54 and 5.55 are in the
form of the first term on the RHS of the adjoint representation theorem, Eq. 3.335,
which means that if we use the adjoint source field in Eq. 5.53 as the source
and solve the adjoint (visco)elastic wave equation coupled with the homogeneous
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adjoint initial/boundary conditions backwards in time, the resulting adjoint wave-

field
[
us

j

]†
(x, τ ) will be identical to the terms in the square brackets in Eqs. 5.54

and 5.55. Therefore as a result of Eq. 3.335 we have

[
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j

]†
(x, τ ) =

∫

V

dV (x′)
∫ T

0
dt
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[
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p
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(x′, t)G†

jp(x, τ ; x′, t)
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∫

V
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0
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3∑
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[
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p

]†
(x′, t)G†

jp(x, τ − t; x′, 0)

=
∫

V

dV (x′)
3∑

p=1

[
f s

p

]†
(x′, τ ) ∗G

†
jp(x, τ ; x′, 0) (5.56)

and Eqs. 5.54 and 5.55 can be expressed in terms of
[
us

j

]†
(x, τ ) as

−
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s
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∣
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⎦ , (5.57)
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⎥
⎦ , (5.58)

where I have applied integration-by-parts at the second equality in Eq. 5.57 and
the integrals over τ are expressed as correlations “⊗” at zero-lag (e.g., Tarantola
1988b). The terms inside the square brackets on the RHS of Eqs. 5.57 and 5.58 are
sometimes called the event kernel for the s-th source in the literature. The gradient
of the objective function is obtain through the summation of all event kernels (i.e.,
the summation over the source index s).

As shown in Eq. 5.53, the adjoint source field used for generating the adjoint
wavefield of the s-th source is a data-weighted superposition of the WPKs for the
s-th source. As shown in Eqs. 5.57 and 5.58, the gradient of the objective func-
tion can be constructed through two wave-propagation simulations per source: one
forward simulation and one adjoint simulation. The gradient with respect to den-
sity is obtained by summing the zero-lag temporal correlation between the forward
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particle-velocity field and the adjoint particle-velocity field for each source. The
gradient with respect to elastic moduli is obtained by summing the zero-lag tempo-
ral correlation between the forward strain field and the adjoint strain field for each
source. Derivations of the gradient with respect to other types of model parame-
ters, including anelastic attenuation and anisotropy, based on the adjoint method are
straightforward based on formulations given in Sect. 4.3 and have been documented
in e.g., (Tarantola 1988b; Tromp et al. 2005; Liu and Tromp 2006; Sieminski et al.
2007).

When solving for the adjoint wavefield, if we would like to step forward in time,
rather than backward in time, we need to reverse the time axis of the adjoint source
field by making the change t → T − t , i.e.,

[
f s

p

]†
(x′, t) =

∑

n

d̃snJ sn
p (x′, T − t), (5.59)

and after the simulation completes, we then need to reverse the time axis of the
resulting wavefield by making the change t → T − t again. To understand
why the two time-reversal operations are necessary to obtain the adjoint wave-

field
[
us

j

]†
(x, t), consider the temporal convolution in Eq. 5.56 between the adjoint

source field and the adjoint Green’s tensor, which I abbreviate as f †(τ ) ∗ G†(τ ).
In the frequency domain, the convolution can be expressed as multiplication
f̂ †(ω)Ĝ†(ω). By stepping forward in time, we are multiplying with the conjugate of

the adjoint Green’s tensor
[
Ĝ†(ω)

]∗
. To get back the correct result, we can conjugate

the adjoint source and then conjugate the product, i.e.,
{[

f̂ †(ω)
]∗ [

Ĝ†(ω)
]∗}∗ =

f̂ †(ω)Ĝ†(ω). The conjugation on the adjoint source corresponds to the time rever-
sal of the adjoint source field in the time domain. The conjugation on the product
corresponds to the time reversal of the simulation results in the time domain.

At the current stage of computational technology, full-3D (visco)elastic seismic
wave-propagation simulations are still computationally expensive. An important
advantage of the adjoint method for constructing the gradient of the objective func-
tion is that the number of wave-propagation simulations are independent of the
number of receivers and the number of misfit measurements on each seismogram.
The summation over receiver and misfit indices, which are included in the index n

in the formulation above is accounted for in the adjoint source field. For tomogra-
phy studies involving a large number of receivers and misfit measurements, but a
limited number of sources, the adjoint method is highly efficient for constructing
the gradient of the objective function.

In principle, the adjoint method can also be used to construct the Jacobian
matrix, which is composed of the data sensitivity kernel for each misfit measure-
ment (Eq. 5.19), and also the approximate Hessian (Eq. 5.22). The calculation will
involve two simulations per misfit measurement. In realistic tomography studies
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involving a large number of misfit measurements, the computational cost for con-
structing the Jacobian using the adjoint method can become prohibitive and the
scattering-integral method is more preferable. A more in-depth analysis of the com-
putational cost associated with both the adjoint method and the scattering-integral
method was presented in (Chen et al. 2007a).

5.2.2 F3DT-AW

The gradient of the objective function computed using the adjoint method can
be conditioned before being used in a conjugate-gradient, quasi-Newton or other
types of gradient-based optimization algorithms (e.g., Tarantola 1988b; Fichtner
et al. 2009; Tape et al. 2010; Chen 2011). Such a conditioning step can be highly
important for improving the convergence rate of the optimization algorithm. The
theoretical justification for this conditioning step can be made based on the model
covariance operator Cm (e.g., Tarantola 1988b; Chen 2011), which describes our a
priori assumptions about the model perturbation. If we denote the gradient, which
is a function of space, as Km

χ2 (x), the conditioned gradient can be written as

K̃m
χ2 (x) =

∫

V

dV (x′)Km
χ2 (x′)Cm(x, x′). (5.60)

The model covariance is usually a smoothing operator (Sect. 5.1.4) and Eq. 5.60 can
often be implemented efficiently through a spatial convolution (filtering). One issue
in conditioning the gradient is how to deal with the excessively large sensitivities
in close proximity of the sources and the receivers. Some techniques have been
developed to address this issue by taking into account the geometric spreading effect
in the gradient (e.g., Fichtner et al. 2009).

In practice, the conditioned gradient is discretized in space and the gradient with
respect to different model parameters can be concatenated into a single column
vector, which we denote in the following as K̃k for the kth iteration. In a typical
conjugate-gradient algorithm, the descent direction at the kth iteration, denoted as
Pk, is constructed from the descent direction at the (k − 1)-th iteration, Pk−1, and
the gradient of the kth iteration K̃k using the formula

Pk = −K̃k + bkPk−1, (5.61)

where bk is a scalar computed from the gradients of the previous and the current
iterations. For the first iteration, the descent direction is set to the negative gradient,
therefore the first iteration is always a steepest-descent iteration. There are at least
five widely-used, different choices for computing the scalar bk in Eq. 5.61. The
original Fletcher-Reeves formula (Fletcher and Reeves 1964),

bk = K̃T
k K̃k

K̃T
k−1K̃k−1

, (5.62)
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the one due to Polak and Ribière (1969),

bk =
K̃T

k

(
K̃k − K̃k−1

)

K̃T
k−1K̃k−1

, (5.63)

the one due to Hestenes and Stiefel (1952) and also known as the Beale-Sorenson
formula (Sorenson 1969; Beale 1972),

bk = −
K̃T

k

(
K̃k − K̃k−1

)

(
K̃k − K̃k−1

)T

Pk−1

, (5.64)

the one due to Dai and Yuan (1999),

bk = − K̃T
k K̃k

(
K̃k − K̃k−1

)T

Pk−1

, (5.65)

and the one due to Hager and Zhang (2005),

bk =
(

Yk−1 − 2Pk−1
YT

k−1Yk−1

YT
k−1Pk−1

)T
K̃k

YT
k−1Pk−1

,

where Yk−1 = K̃k − K̃k−1. (5.66)

Once the descent direction is obtained, a line search can be performed to find the
optimal step length ak along the descent direction and the model vector can be
updated to the next iteration,

mk+1 = mk + akPk . (5.67)

In practice, a quadratic (or cubic) interpolation for the line search is often sufficient
for finding the optimal step length ak (e.g., Tromp et al. 2005). A modification
of the nonlinear conjugate-gradient algorithm is to restart the iterations by setting
bk = 0 after certain criteria are met (Powell 1977). The restart procedure refreshes
the search by erasing old information from previous iterations and taking a steepest
descent step. Some restart criteria have been provided in the literature (e.g., Powell
1977; Dai and Yuan 2001).

The Hager–Zhang formula (Eq. 5.66) seems to give the best numerical results
for a quite large class of problems (Hager and Zhang 2005). There are numerical
evidences that the Fletcher-Reeves formula (Eq. 5.62) can become slower than the
steepest-descent algorithm after the iteration enters a region in which the objective
function is quadratic (e.g., Powell 1976). Under such circumstances the Polak–
Ribière formula (Eq. 5.63) is preferred. Using the Polak–Ribière formula, if a very
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small step is taken at a certain iteration, the next descent direction will be close to
the negative gradient (i.e., a steepest descent iteration).

Despite the simple structure of the conjugate-gradient algorithm, its performance
is often very good, especially for large-scale problems. Its implementation is quite
straightforward and highly amenable to automation using scientific workflow tools
(e.g., Zhang et al. 2013).

5.2.3 Hessian-Vector Product

As mentioned in the end of Sect. 5.2.1, for tomography studies involving a large
number of misfit measurements, it may not be practical to explicitly evaluate the
Jacobian (therefore the Hessian) using the adjoint method. However, as shown
in e.g., (Akcelik et al. 2002, 2003), the adjoint method can be used to evaluate
the Hessian-vector product p = Hq very efficiently, where H = KT K is the
Gauss–Newton approximate Hessian in Eq. 5.22. In this section, I will use the rep-
resentation theorem (Eq. 3.326) and the adjoint representation theorem (Eq. 3.335)
to shown how this calculation can be done through one forward simulation and one
adjoint simulation per source.

The Hessian-vector product can be written as

p =
(

KT K
)

q = KT (Kq) (5.68)

and we first consider the term inside the parenthesis Kq. Suppose the vector q is
made up by a fourth-order tensor corresponding to the elastic moduli and we denote
it as qjklm(x). The matrix-vector multiplication Kq involves the spatial integral
over V (x) and the summation over j, k, l,m. Bring in the data sensitivity kernel
for elastic moduli (Eq. 4.35), we have

Kq = −
∫

V

dV (x′)
∫ T

0
dt

3∑

p=1

J sn
p (x′, t)

⎡

⎣
∫

V

dV (x)
∫ T

0
dτ
∑

jk

∂G
†
jp(x, τ ; x′, t)

∂xk

∑

lm

∂us
l (x, τ )

∂xm

qjklm(x)

⎤

⎦ , (5.69)

where I have replaced the RGT with the time-reversed adjoint Green’s tensor and
used Eq. 3.345 to replace the time-reversed adjoint Green’s tensor with the adjoint
Green’s tensor and I have replaced the temporal convolution operator “∗” with the
time integral over τ . Apply Eq. 3.297, we have

G
†
jp(x, τ ; x′, t) = Gpj (x′, t; x, τ ). (5.70)

We can introduce the moment source

mjk(x, τ ) =
∑

lm

∂us
l (x, τ )

∂xm

qjklm(x). (5.71)
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Bring Eqs. 5.70 and 5.71 into Eq. 5.69, we obtain

Kq = −
∫

V

dV (x′)
∫ T

0
dt

3∑

p=1

J sn
p (x′, t)

⎡
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∫

V

dV (x)
∫ T

0
dτ
∑
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∂Gpj (x′, t; x, τ )

∂xk

mjk(x, τ )

⎤

⎦ , (5.72)

where the term inside the square bracket is in the form of the second term in the
representation theorem (Eq. 3.326). If we denote the term inside the square bracket
as wp(x′, t), i.e.,

wp(x′, t) =
∫

V

dV (x)
∫ T

0
dτ
∑

jk

∂Gpj (x′, t; x, τ )

∂xk

mjk(x, τ ), (5.73)

then wp(x′, t) can be obtained by solving the forward elastic wave equation coupled
with the homogeneous initial/boundary conditions using the moment source given
by Eq. 5.71 as the source. The term Kq can then be expressed as

Kq = −
∫

V

dV (x′)
∫ T

0
dt

3∑

p=1

J sn
p (x′, t)wp(x′, t) ≡ e = [esn

]
, (5.74)

which is a vector, denoted as e, indexed by s, n.
We now consider the term KT e, whose calculation is similar to the gradient

calculation shown in Sect. 5.2.1. This matrix-vector multiplication involves the sum-
mation over s, n. Bring in the expression for the data sensitivity kernels (Eq. 4.35)
and replace the RGT with the time-reversed adjoint Green’s tensor, we obtain

KT e =
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K
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⎦ . (5.75)

If we introduce the adjoint source field

[
f s

p

]†
(x′, t) =

∑

n

esnJ sn
p (x′, t), (5.76)

then Eq. 5.75 can be re-written as
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⎤

⎦ , (5.77)
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and the term inside the square bracket is in the form of the first term of the adjoint
representation theorem (Eq. 3.335). If we denote the term inside the square bracket

as
[
ws

j

]†
, i.e.,

[
ws

j

]†
(x, τ ) =

∫

V

dV (x′)
∫ T

0
dt

3∑

p=1

[
f s

p

]†
(x′, t)G†

jp(x, τ ; x′, t), (5.78)

then [ws
j ]† can be obtained by solving the adjoint elastic wave equation coupled

with the homogeneous adjoint initial/boundary conditions backwards in time. The
matrix-vector multiplication KT e can then be expressed as the zero-lag temporal
correlation

KT e =
∑

s

∫ T

0
dτ

∂us
l (x, τ )

∂xm

∂
[
ws

j

]†
(x, τ )

∂xk

≡ pjklm(x) = p, (5.79)

where the vector p is also made of a fourth-order tensor similar to the elastic moduli
and can be written in index form as pjklm(x).

Note that the derivation above can also be extended to density-like q, in which
case Kq will involve only the spatial integral over V (x) and wp(x′, t) will be
computed using a body-force source.

In (Akcelik et al. 2002, 2003) the Hessian-vector product is used as a matrix-free
solution to the Gauss–Newton normal equation. If the Gauss–Newton normal equa-
tion is solved using a conjugate-gradient-type iterative algorithm, then each iteration
involves the Hessian-vector product, which can be carried out using the forward
and adjoint wave-propagation simulations as derived above, instead of explicitly
forming the Jacobian matrix. The computational cost for this approach can be
quite high, as it replaces cheaper matrix-vector multiplications with more expensive
wave-propagation simulations. The benefit is that it does not require large amounts
memory to store the complete Jacobian matrix, which can be very large in realistic
tomography studies (Lee et al. 2013). The computational cost of this approach is
also analyzed and compared with F3DT-SI and F3DT-AW in (Chen et al. 2007a).
The Hessian-vector product can also be used in resolution analysis (e.g., Fichtner
and Trampert 2011).

5.2.4 Software

The calculation of the gradient of the objective function using the adjoint method
involves three basic steps: (1) constructing the adjoint source field for the s-th source
(Eq. 5.59); (2) running awp using the adjoint source field constructed in step (1) as
the source; and (3) running the parallel binary executable awm. These three steps
need to be repeated for every source in the data set and the results generated by awm
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need to be conditioned and summed to give the gradient of the objective function at
the current iteration. In the following, I will demonstrate how to use F3DWI for the
adjoint calculations using the half-space example.

5.2.4.1 Adjoint Source Field

The adjoint source field for the s-th source is also specified as a source line in the
source-receiver list file srlst. I’ll use the explosive source 100001 in our half-
space example to demonstrate the specifications.

Suppose we have made broadband cross-correlation delay-time measurements
on the P-waves arriving at the x1-components of the two receivers: IN.RC01 and
SF.RC02 (Fig. 3.3). The adjoint source field for 100001 therefore involves the
time-reversed WPKs for the broadband cross-correlation delay time measured on
the x1-component velocity seismograms at the two receiver locations. Here we have
assumed that the synthetic seismograms from 100001 to IN.RC01 and SF.RC02
have already been computed. The source line for this adjoint source field in srlst
is shown on line 6 of Listing 2.6 and descriptions about the format were included in
Sect. 2.2.4.1. The first column on this line is set to 2, indicating that the body-force
sources are applied at receiver locations. The second column is a unique source ID,
which can be arbitrary and I set at 100001.adj to indicate that it is the adjoint
source field for 100001. The grid flag on the third column is set to 2, indicating
that it is a finite source involving 2 point sources. The fourth column specifies the
full-path of the text file 100001.adj describing the two point sources making
up the adjoint source field for 100001. The content of this text file is shown in
Listing 2.10 and the format is identical to that in srlst.

The source-time function files IN.RC01.1.adj and SF.RC02.1.adj in the
last column of Listing 2.10 contain the time-reversed WPKs for the two broadband
cross-correlation delay-time measurements. The generation of the WPK files were
discussed in Sect. 4.4.1. If we use the MATLAB function wpk_bbxcorr.m, in
addition to the five inputs discussed in Sect. 4.4.1 we can specify a sixth input,
which is the misfit measurement �T sn in seconds (Sect. 4.2.6). The output wpkt
will then contain the time-reversed WPK for broadband cross-correlation delay time
multiplied with �T sn in the source-time function file format (Listing 2.7). If we
specify a seventh input, which is the broadband cross-correlation amplitude anomaly
measurement �Usn (Sect. 4.2.6), the output wpka will contain the time-reversed
WPK for the broadband cross-correlation amplitude anomaly multiplied with �Usn

in the source-time function file format (Listing 2.7). Since we do not have real misfit
measurements, we will assume that �T sn = 1.0 at both receivers and specify the
sixth input to wpk_bbxcorr.m as 1.0. The output wpkt can be directly saved
into the text files shown in the last column of Listing 2.10.

If the misfit measurement is made on the radial (transverse) component, the
eighth column in Listing 2.10 should be set to the cosine of the angle between the
radial (transverse) direction and the x1 direction of the box coordinate and the ninth
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column in Listing 2.10 should be set to the cosine of the angle between the radial
(transverse) direction and the x2 direction of the box coordinate.

5.2.4.2 Adjoint Wavefield

After the adjoint source field is constructed, I need to execute the script
proc_srlst.py to convert the adjoint source field into the source file that can
be read by awp. Under the project JOBS directory, using the source-receiver list
srlst as shown in Listing 2.6, I can execute the following command in the
terminal

proc_srlst.py param_HS.dat 1 8

where lines 7 and 8 not shown in Listing 2.6 are the receiver line for SF.RC02 and a
source line for a body-force in the x1 direction at SF.RC02. Even though only line
6 is used in this example, I still included all the other lines in srlstwhen executing
proc_srlst.py to ensure that the output files generated by proc_srlst.py
are still consistent with other examples shown previously. After executing this com-
mand, the source file for the adjoint source 100001.adj will be stored inside the
JOBS/srinfo and named 100001.adj.src. Snippets of this source file are
shown in Listing 2.13.

After the source file is generated, I need to set up the correct directory structure
for running awp. The script setup_awp.py, which has been used before when
computing forward wavefields from sources and RGTs from receivers, can also be
used for adjoint wavefield simulations. I can execute the following command under
project JOBS directory in the terminal

setup_awp.py param_HS.dat AWF 6 6

where the second command-line input has been changed from FWF in previous
examples to AWF. The directory AWF will then be generated under the project direc-
tory and a sub-directory named 100001.adj will be created under AWF. Then
I can run awp from inside the sub-directory 100001.adj in the same way as
in previous examples. The resulting wavefield is the adjoint wavefield prior to the
time-reversal operation. The time-reversal will be carried out by awm, which will be
discussed in Sect. 5.2.4.3.

5.2.4.3 Event Kernel

The zero-lag correlation between the forward and the adjoint wavefields for one
source is sometimes called the “event kernel”. The summation of all event kernels
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gives the gradient of the objective function (Eqs. 5.57 and 5.58). The event kernels
for each source can be computed using the parallel binary executable awm inside the
bin directory. To set up the correct environment for running awm, a python script
setup_awm.py is included in the py directory.

The syntax for using setup_awm.py is very similar to that for
setup_ker.py, which I discussed in Sect. 4.4.2. To set up the environment for
computing the event kernel of 100001 with respect to relative perturbations in P-
and S-velocity and density, I can execute the following command under the JOBS
directory in the terminal

setup_awm.py param_HS.dat 2 6 2 1 2 3

where the first command-line argument is the parameter file, the second is the
line number for the source of the forward wavefield in srlst (Listing 2.6), the
third is the line number for the adjoint source in srlst, the fourth to the last
command-line arguments have identical format as the ninth to the last arguments
in setup_ker.py (Table 4.5, Sect. 4.4.2). In this particular example, the model
parameterization flag on the fourth argument is set to 2, which means that I am
choosing the isotropic model parameterized using the P- and S-velocity and density.
The fifth–seventh argument indicate that the event kernels with respect to relative
perturbations in P- and S-velocity and density will be computed. This command will
create the AWM directory under the project directory and a sub-directory 100001,
which is the ID of the source for the forward wavefield in srlst, under the AWM
directory. Inside the sub-directory AWM/100001, it will create a symbolic link
awm, which points to the binary executable awm in the bin directory, and a text
input file awm.in, which will be read by awm. The content of awm.in for this
example is shown in Listing 5.1. The first two lines inside this file have identical
format as the first two lines in the kernel input file (Listing 4.2). The third line is
the full-path and the prefix for the kernel recording grid generated by the script
set_ker_grd.py (Sect. 2.2.5). The fourth line is the full-path to the reference
structural model (i.e., the value assigned to the key MEDIA in the parameter file, line
7, Listing 2.5). The fifth and sixth lines are the full-path and prefix for the forward
wavefield generated by 100001 and the adjoint wavefield (before time-reversal)
generated by the adjoint source 100001.adj. The seventh line is the full-path and
prefix for the output event kernel files that will be generated by awm. The eighth line
shows the number of sub-meshes in each dimension (Fig. 2.9). The ninth line shows
the number of grid points in each dimension inside each sub-mesh. These numbers
are the grid points used in the wave-propagation simulations, not the kernel record-
ing grid points. The tenth line shows the total number of time steps in the forward
and adjoint wavefields and the time-sampling interval after temporal decimation by
the factor NTSKP (line 24, Listing 2.5). The 11th line shows the spatial decimation
rate NXSKP, NYSKP and NZSKP (line 21–23, Listing 2.5).
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1 2
2 1 1 1
3 / home/ pochen / wrk /F3DWI /HS/VM/HSGRDREC
4 / home/ pochen / wrk /F3DWI /HS/VM/HSGRD
5 / home/ pochen / wrk /F3DWI /HS/FWF/100001/ output_vlm /SX96PV
6 / home/ pochen / wrk /F3DWI /HS/AWF/100001. adj / output_vlm /SX96PV
7 / home/ pochen / wrk /F3DWI /HS/AWM/100001/ ker
8 2 2 2
9 120 38 90

10 500 0.03
11 2 4 2

Listing 5.1 The input file for the event kernel calculation used in the half-space example.

After the correct environment has been set up, I can execute the following command
in the terminal from inside AWM/100001

mpiexec -n 8 -f ~/tools/mpi/share/myhosts awm awm.in

and a set of files named as SX96PVprocID.rt, where procID is the 9-digit
sub-mesh (or processor) ID, are created inside the full-path specified on line 6 in
Listing 5.1 and a set of files named as kerprocID are created inside the full-
path specified on line 7 in Listing 5.1. Both sets of files are in binary format.
The set of SX96PVprocID.rt files contain the adjoint wavefield (after the time-
reversal) generated by the adjoint source 100001.adj. The set of kerprocID
files contain the event kernels saved on the kernel recording grid points.

If we would like to examine the event kernels, an optional step is to run the
sequential binary executable ker_collect in the bin directory to combine the
kerprocID files for all the sub-meshes into a binary file that can be loaded into
MATLAB and plotted. From inside AWM/100001, I can execute the following
command in the terminal

ker_collect awm.in

which uses the same input file awm.in (Listing 5.1) as the only command-line
argument. For our example, this command will create 3 binary files ker_001,
ker_002 and ker_003, which are for the event kernels on the full kernel record-
ing grid with respect to relative perturbations in P-velocity, S-velocity and density,
respectively. These three binary files can be loaded into MATLAB using the func-
tion read_awm.m
function K=read_awm(kfnam,nkx,nky,nkz)
which takes 4 input arguments. The first input kfnam is the file name of the binary
event kernel file generated by ker_collect, e.g., ker_001. The second to the
fourth input arguments are the total number of kernel recording grid points in each
dimension, which can be obtained by dividing the total number of grid points in each
dimension used in the wave-propagation simulations (line 2, Listing 2.3) by NXSKP,
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Fig. 5.1 Event kernels of broadband cross-correlation delay-time with respect to relative pertur-
bations in κ , μ, ρ (top row), λ, μ, ρ (center row) and α, β, ρ (bottom row) for 100001 in the
half-space example).

NYSKP and NZSKP, respectively. The event kernels for this example are shown in
the bottom row of Fig. 5.1. I also calculated the event kernels with respect to the
bulk, shear moduli and density (top row, Fig. 5.1) by setting the model parameter-
ization flag to 0 when executing setup_awm.py and also the event kernels with
respect to the two Lamé parameters and density (center row, Fig. 5.1) by setting
the model parameterization flag to 1. As predicted by Eq. 5.45, the event kernel for
100001 shown in Fig. 5.1 is a data-weighted superposition of the data sensitiv-
ity kernels for all misfit measurements of 100001. The anisotropic event kernels
with respect to the five Love’s parameters (Sect. 4.3.5) and with respect to the 21
asymptotic parameters (Sect. 4.3.6) can also be computed by setting the model
parameterization flag to 3 and 4, respectively. Figure 5.2 shows the anisotropic
event kernels of the broadband cross-correlation delay time with respect to the 21
asymptotic parameters. The spatial distributions of the anisotropic sensitivities are
different for the two different propagation paths involved in this example.
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Fig. 5.2 Anisotropic event kernels of broadband cross-correlation delay time with respect to the
21 asymptotic parameters for 100001 in the half-space example.
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Chapter 6
CVM-S4.26

Southern California is an ideal natural laboratory for testing the F3DWI methodol-
ogy and software that I have discussed in previous chapters. In this chapter I will
discuss the 3D seismic velocity model that En-Jui Lee and I have constructed for
the Southern California crust, CVM-S4.26. Some background information about the
different CVMs in Southern California and some model validation results have been
documented in Sect. 2.3. The technical details about our entire inversion process has
been documented in (Lee et al. 2014b). Some more extensive model validation tests
have been documented in (Lee et al. 2014a, b). In this chapter, I will mainly focus on
descriptions of the various features in CVM-S4.26. Some features have been imaged
before in previous localized studies conducted by other research groups and those
features are now rendered in full-3D at small scale lengths in CVM-S4.26. Some
features, especially in the mid- and lower-crust, are new and their interpretations are
under study.

6.1 Background

The Southern California continental margin has experienced a complex tectonic
evolution. Through geologic times, it has undergone four different continental
margin configurations (e.g., Ernst and Rubey 1981; Burchfiel et al. 1992): the
Atlantic-type rifting margin in late Precambrian and early Paleozoic; the Japanese-
type subduction margin with off-shore island arcs in late Paleozoic and early
Mesozoic; the Andean-type classic subduction margin in late Mesozoic and early
Cenozoic; the present-day California-type transform margin dominated by the dex-
tral San Andreas Fault system. The long, intense tectonic activities have led to highly
complex crustal geologic structures. The oldest rock found in this region is over
1.5 billion years old and has undergone numerous cycles of metamorphism. Some
recent volcanic activities have produced highly fresh basalt, which just started to
weather. The materials in sedimentary rocks in this region can have highly diverse
origins. The conformance to known geologic features is therefore a critical test of
any seismic velocity model for this region constructed through tomography.

c© Springer International Publishing Switzerland 2015 345
P. Chen, E.-J. Lee, Full-3D Seismic Waveform Inversion, Springer Geophysics,
DOI 10.1007/978-3-319-16604-9_6



346 6 CVM-S4.26

Southern California is one of the best instrumented regions throughout the world.
Instruments for recording local earthquakes, such as the Wood-Anderson torsion
seismometer and the Benioff short-period seismometer, were installed at a few
sites in this region in the 1920’s and 1930’s. The number of instrumented sites
increased slowly from the 1930’s through the 1970’s. Several large earthquakes
occurred in this region during this period of time, which caused damages and
also highlighted the need for better instrumentation. The Southern California Seis-
mic Network (SCSN), a cooperative seismic network now part of the California
Integrated Seismic Network (CISN), was formed in the 1970’s. The SCSN was com-
posed of about 250 short-period instruments through much of the 1980’s and 1990’s.
It was gradually supplemented by a network of digital stations with both broad-
band and strong-motion sensors under the TERRAscope program (e.g., Kanamori
et al. 1991) and the TriNet program (e.g., Hauksson et al. 2001) in the 1990’s and
2000’s. When I started working on the full-3D tomography for Southern Califor-
nia crustal structure in 2007, the total number of broadband digital seismometers
accessible through SCSN reached more than 200. The SCSN has been providing a
wealth of high-fidelity waveform recordings of ground motion during earthquakes.
More than 38,000 seismograms with high signal-to-noise ratios from local small to
medium-sized earthquakes, which are common in Southern California, were used
in deriving CVM-S4.26 (Lee et al. 2014b). The continuous-time seismic records
provided by SCSN allow extraction of approximate Green’s functions between two
stations through cross-correlations of ambient seismic noises (e.g., Shapiro 2004;
Shapiro et al. 2005; Ma et al. 2008). The ambient-noise Green’s functions (ANGF)
allow us to fully exploit the high density of SCSN and are highly complementary
to the earthquake waveform recordings. More than 12,000 ANGFs were used in
deriving CVM-S4.26 (Lee et al. 2014b).

6.1.1 Convergence Rate

The full-3D tomography that En-Jui Lee and I have carried out and documented in
(Lee et al. 2014b) involves an iterated cycle of wave-propagation simulation, misfit
measurement, kernel calculation and inversion. The number of waveforms, the time-
frequency extent of those waveforms, the types of the misfit measurements and the
inversion algorithm (i.e., F3DT-AW or F3DT-SI) can be different from iteration to
iteration. The CMT solutions for the earthquake sources used in our tomography
study were inverted at selected iterations (Lee et al. 2011). In (Lee et al. 2014b) we
used the term “tomographic navigation” (Fig. 2 in Lee et al. 2014b) to represent this
hands-on iterative process.

The first two iterations carried out by myself in 2007–2008 were based on the
F3DT-SI method. The starting model was CVM-S4. The total number of observed
waveforms that the synthetics were capable of fitting were quite limited and the size
of the linear system in the Gauss-Newton normal equation was quite small. I used
the LSQR code from the PETSc library to solve the Gauss-Newton normal equation
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as I did in (Chen et al. 2007). In early 2009, En-Jui joined my research group at
University of Wyoming and we started to work on the inversion together.

As the structural model improved, the total number of waveforms that the syn-
thetics were capable of fitting increased and the linear system of the Gauss-Newton
normal equation was becoming larger. The LSQR code from the PETSc library was
not scalable at large core-counts and we started to develop a more scalable par-
allel LSQR code with our collaborators: Liqiang Wang and his students from the
Computer Science Department at University of Wyoming, John Dennis from the
National Center for Atmospheric Research (NCAR) and Galen Arnold from the
National Center for Supercomputing Applications (NCSA). In the meanwhile, we
switched from the F3DT-SI method to the F3DT-AW method in our inversion since
the F3DT-AW method does not require solving a large linear system (Sect. 5.2.2).
From iteration 3 to iteration 20 we used the AW method, which provided moderate
and consistent misfit reduction (Fig. 2 in Lee et al. 2014b) and also improvements
in our structural model for most of the early iterations. The disk storage cost and the
I/O overhead were negligible during the F3DT-AW iterations.

The improvements in waveform fits we could obtain from the F3DT-AW itera-
tions decreased quickly after iteration 16 (Fig. 2 in Lee et al. 2014b). The relative
misfit reduction compared with the previous iteration was only about 0.8 % by iter-
ation 20 and the small improvements in the structural model might not justify the
computational cost for further iterations. One possibility for us at that point was
to stop the iterations. In fact, the accumulative misfit reduction compared with the
starting model CVM-S4 was already close to 70 % at iteration 20. However, our
effort in developing a scalable parallel LSQR code (SPLSQR) was starting to bear
fruits and we published two conference papers in computer science using test data
sets from our Southern California inversion (Huang et al. 2012, 2013). So instead
of stopping the iterations, we decided to switch back to the F3DT-SI method and
try out our scalable parallel LSQR code SPLSQR using our full Southern California
data set (Sect. 5.1.3).

Iteration 21 to 26 were carried out using the F3DT-SI method again (Fig. 2 in
Lee et al. 2014b). The linear system of the Gauss-Newton normal equation was more
than 450 times larger than the one I solved in (Chen et al. 2007). The performance of
SPLSQR was highly impressive and we were able to achieve nearly two orders-of-
magnitude performance improvement when comparing with the LSQR code in the
PETSc library (Lee et al. 2013). The relative waveform misfit reduction increased
from about 0.8 % in iteration 20 to about 14 % in iteration 21 (Fig. 2 in Lee et al.
2014b). By iteration 26, the relative misfit reduction compared with iteration 25
was about 3 % and the accumulative misfit reduction reached nearly 80 %. The 18
F3DT-AW iterations accounted for about 40 % accumulative misfit reduction and
the 6 F3DT-SI iterations accounted for the other 40 %.

However, one cannot draw the conclusion that three F3DT-AW iterations are
equivalent to one F3DT-SI iteration based on these numbers. The first two F3DT-SI
iterations accounted for nearly 30 % accumulative misfit reduction. If I had car-
ried out the first two iterations using the F3DT-AW method instead of the F3DT-SI
method, the accumulative misfit reduction could have been comparable to 30 %.
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The reason is that when the starting model is far from the optimal, the Gauss-
Newton approximate Hessian might not be a satisfactory approximation to the exact
Hessian and the convergence rate of the Gauss-Newton algorithm approaches that
of the steepest descent algorithm, which is identical to the first iteration of the
conjugate-gradient algorithm as discussed in Sect. 5.2.2.

The sharp increase in relative misfit reduction at iteration 21 (Fig. 2 in Lee et al.
2014b) could be due to the faster convergence rate of the Gauss-Newton algorithm.
During those later iterations, we were primarily dealing with small eigenvalues of
the Hessian, which might be associated with small-scale features in the structural
model. The conjugate-gradient algorithm tends to get one eigenvalue (several if they
are very closely clustered together) at each iteration. The contribution of one small
eigenvalue to the overall misfit reduction could be quite small, which makes it diffi-
cult to decide if we should continue to iterate. The Gauss-Newton algorithm tends to
get a group of eigenvalues at each iteration. The combined contribution from many
small eigenvalues to the overall misfit reduction could be significant. The F3DT-SI
method may have allowed us to extract the small-scale features in CVM-S4.26 more
easily.

En-Jui defended his PhD thesis with flying colors and graduated in December
2013 and is now a post-doctoral scholar at the Southern California Earthquake Cen-
ter (SCEC) working on further improving the crustal structure in central California.
At the current stage my own effort is shifting towards updating the crustal structure
model throughout the state-wide California. CVM-S4.26 is now incorporated into
the starting model of the state-wide inversion. In future iterations, anisotropy, and
possibly anelastic attenuation, will be included into the inversion.

6.1.2 Data Functionals

Another important aspect of our tomographic navigation process was the selection
of waveforms and the type of data functionals at different iterations. All earth-
quake seismograms were band-pass filtered using a Butterworth filter with corners
at 0.02 Hz and 0.2 Hz. The average spectrum of all ANGFs show two peaks at
around 0.065 Hz and 0.14 Hz, corresponding to the primary and secondary micro-
seisms. In the inversion documented in (Lee et al. 2014b), we treated the ANGFs as
if they were generated by virtual vertical point body-force sources acting at receiver
locations. To simplify the modeling of the source-time functions for the ANGFs,
we separated the two microseism peaks through filtering. Each ANGF was filtered
using two band-pass Butterworth filters, one with corners at 0.03 Hz and 0.1 Hz,
the other with corners at 0.11 Hz and 0.18 Hz. The filtered ANGFs were called
ANGF-low (i.e., filtered with the lower pass band) and ANGF-high (i.e., filtered
with the higher pass band) in (Lee et al. 2014b). The ANGF-low and ANGF-high
were treated as two independent data sets in our inversion.

In early iterations, we mainly used broadband cross-correlation delay time
(Sect. 4.2.6) measured on well-recognized body-wave phases (e.g., P/Pnl and S
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waves) from earthquakes and some well-isolated surface-wave arrivals from earth-
quakes and ANGFs. For some strongly dispersed surface waves, we also used the
frequency-dependent group-delay time (Sect. 4.2.7). Both types of data functionals
are relatively insensitive to errors in focal mechanisms of the earthquake sources
(e.g., van Leeuwen and Mulder 2010; Xu et al. 2013) and usually do not require
corrections for possible cycle-skipping errors. In early iterations (i.e., when the
structural model was poor) and in some regions (e.g., the southern San Joaquin
Basin), the kinematic shift between synthetic and observed waveforms could be
quite large (up to several tens of seconds for propagation paths of 200 km and
longer) and those two types of data functionals allowed us to invert those large
kinematic shifts in a robust way efficiently.

As the structural and earthquake source models improved in later iterations, we
switched to frequency-dependent phase delay time misfits (Sect. 4.2.7) measured
on a much wider class of seismic phases. As discussed in Sect. 4.2.8, the better
linearization provided by the Rytov approximation for the complex phase of a trans-
mitted wave assumes that the phase misfits are measured one wave at a time. If the
phase misfits are measured on a mixture of arrivals, the advantage of the Rytov
approximation can disappear. Therefore to improve the linearity of the inversion, it
is important to segment the seismograms and isolate individual waveforms before
making the frequency-dependent phase-delay misfit measurements.

Many automated waveform selection algorithms have been developed in the
past (e.g., Ritsema and van Heijst 2002; Sigloch and Nolet 2006; Lawrence and
Shearer 2008). They usually pick time windows around certain seismic phases pre-
dicted by seismic ray theory in a one-dimensional structural model. For F3DT, the
waveform selection process can no longer be limited to ray-theoretic predictions of
conventional seismic phases and needs to be extended to accommodate waveforms
generated through complex wave propagation processes in a highly heterogeneous
3D earth structural model. An automated waveform selection algorithm for F3DT
based on the time-domain short-term average/long-term average ratio (STA/LTA)
curve and a set of waveform selection criteria was presented in (Maggi et al. 2009).
A purely time-domain waveform selection algorithm may have difficulty in sepa-
rating waves arriving at overlapping time windows. En-Jui and I have developed
a time-frequency domain seismogram segmentation and waveform selection algo-
rithm based on the continuous wavelet transform and the topological watershed
transform (Lee and Chen 2013). This algorithm allowed us to automatically separate
waves with disjoint supports in either the time domain or the frequency domain or
the time-frequency domain and helped us to improve the convexity of the objective
functions through the iterations.
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6.1.3 Model Evaluation

For nonlinear inverse problems, we do not have a general theory for the appraisal of
the estimated model. If the model space is sufficiently small and the solution of the
forward problem is sufficiently fast, we can adopt a stochastic sampling approach to
investigate the resolution and the reliability of the estimated model (e.g., Tarantola
2005). But for F3DT in general, the model space is too large and the solution of the
forward problem is too expensive at the current stage of the computing technology.
The dimension of the model space can be reduced significantly if regionalization
is adopted in the parameterization and Monte-Carlo-type stochastic searching algo-
rithms can be adopted for both the estimation of the model and its appraisal (e.g.,
Käufl et al. 2013). Such an approach might also be applicable in Southern California.
As shown in Fig. 4 in (Lee et al. 2014b), the Southern California crust is composed
of only a handful of blocks and within each block, the structure is approximately
one-dimensional (i.e., depth-dependent), and the different blocks are bounded by
either active faults or recognizable boundaries.

In (Lee et al. 2014b) we adopted a pragmatic approach for model assessment by
comparing 2D cross-sections extracted from the 3D CVM-S4.26 with 2D velocity
profiles obtained from previous active-source studies conducted by other research
groups. Among the 14 cross-sections we have compared with, CVM-S4.26 shows
better agreement with those active-source studies than CVM-S4 and CVM-H11.9 in
general. Another important feature of CVM-S4.26 is its conformance with known
fault structures, even though the faults were not built into our starting model
CVM-S4 or our model parameterization. CVM-S4.26 also shows good correla-
tion with local geology, different types of geophysical field measurements (e.g.,
gravity and magnetic surveys) and receiver-function studies. It was the consistency
with so many independent evidences all combined that gave us the confidence in
CVM-S4.26.

We note that model validations based on the fits to earthquake waveforms not
included in the inversion, as done in e.g., (Tape et al. 2010), may not be as “inde-
pendent” as we may expect. Even though those waveform data were not used in
the inversion, the source-receiver paths (thereby the sampling pattern through the
structure) might not be truly independent of the inversion data because small to
medium-sized earthquakes tend to repeat in small clusters on faults with simi-
lar locations and focal mechanisms and the receivers are usually fixed in space.
In the inversion for CVM-S4.26, we made extensive effort to improve the spatial
coverage of our earthquake data by selecting earthquake seismograms with good
signal-to-noise ratio and source-receiver paths that provide a fairly even coverage of
the entire modeling volume, which leaves very little room for testing CVM-S4.26
using truly independent earthquake seismograms. With that being said, CVM-S4.26
does provide much better fits to waveforms not used in our inversion than CVM-S4
and CVM-H11.9. The waveform fitting tests documented in (Lee et al. 2014a) and
Sect. 2.3.3 are based on the two recent earthquakes not used in deriving CVM-S4.26
or CVM-H11.9. The wave-train used for computing the RWM (Eq. 2.126) extends
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from the first-arriving P-wave to the end of the surface wave, which also includes
waveforms not used in the inversion. Recently, we have applied the same analy-
sis to about 28,000 earthquake seismograms with relatively poor signal-to-noise
ratio. The RWM values are generally worse for all three CVMs due to the poorer
signal-to-noise ratio, but CVM-S4.26 still outperforms the other two CVMs.

Since the Gauss-Newton approximate Hessian (i.e., the Jacobian) is explicitly
constructed in the F3DT-SI iterations, it might be tempting to use it for resolution
analysis. However, we need to be highly cautious when following this path. First, the
approximate Hessian is computed for a single iteration, therefore it is a local esti-
mate, not a global estimate. The full inversion involving all 26 iterations is nonlinear
and a local Hessian may not tell us much about the uncertainty of the full nonlinear
inversion. Second, the objective function of the 26th iteration was defined in terms
of phase misfits measured on selected waveforms (Sect. 4.2.7), not the waveform
differences (Sects. 4.2.4 and 4.2.5). But the fact is that CVM-S4.26 can fit not only
the phase, but also the waveforms of more than 50,000 earthquake seismograms
and ANGFs from the first-arriving P wave to 30 s after the surface wave almost
wiggle-by-wiggle (Lee et al. 2014a, b). The nonlinear constraints imposed by the
waveforms, both used and not used in our inversion, are generally much stronger
than the linear (or quasi-linear) constraints imposed by the phase of selected wave-
forms at a single iteration. The smallest checker size we were able to reliably recover
in our checkerboard tests for the 26th iteration was around 10 km (Appendix F in
Lee et al. 2014b). However, in our inversion some sharp velocity gradients with
scale-lengths less than 10 km emerged through the 26 iterations and are consistent
with known fault structures.

In (Lee et al. 2014b), the resolution analysis was limited to the checkerboard
tests using the Gauss-Newton approximate Hessian computed for the broadband
cross-correlation delay time and frequency-dependent phase-delay time for all the
earthquake waveforms and ANGF waveforms used in the 26th iteration. The pri-
mary purpose for the checkerboard tests was to show that by including the ANGFs
and using the frequency-dependent phase-delay time we were able to improve the
resolution of the 26th iteration, perhaps significantly, comparing with inversions
using the broadband cross-correlation delay time and earthquake waveforms only.
However, the checkerboard tests for the 26th iteration may not provide a reliable
estimate of the true resolution of the entire nonlinear inversion process involving all
iterations.

6.2 Model Description

Map-view plots of the S-velocity, P-velocity and Poisson’s ratio at 12 different
depths evenly distributed between 2 km and 24 km for CVM-S4, CVM-S4.26 and
CVM-H11.9 are shown in Figs. 6.1, 6.2 and 6.3. The map-view plots of S-velocity
at 2-km, 10-km and 20-km depths are identical to those shown in Fig. 6.3a of (Lee
et al. 2014b). The map-view plots of S-velocity at other depths and the map-view
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plots for P-velocity and Poisson’s ratio for CVM-S4.26 have not been published
before. The entire modeling volume in our inversion for CVM-S4.26 was about
768-km long, 496-km wide and 50-km deep. It was discretized into a uniform mesh
with 500-m grid spacing.

6.2.1 CVM-S4.26 and CVM-S4 Comparison

In general, the differences between CVM-S4.26 and our starting model CVM-
S4 are large. The most visible difference lies in the Southern San Joaquin Basin,
where CVM-S4 is relatively unconstrained. The maximum S-velocity perturbation
with respect to CVM-S4 reaches 40 % inside the basin. Such a large perturbation
was not obtained from a single iteration, but accumulated through many iterations,
which suggests that our iterative tomographic navigation process was effective in
accounting for the nonlinearity in structural inversions. At mid- and lower-crustal
depths, CVM-S4.26 generally enhances the large-scale velocity gradient already
existing in CVM-S4 and also adds many small-scale heterogeneities that are absent
in CVM-S4. In regions with relatively poor data coverage, especially south of the
US-Mexico border, south of the Imperial Valley, close to the offshore southwest
boundary of our tomography box, at depths larger than about 26 km, the differences
between CVM-S4.26 and the starting model CVM-S4 are generally small. As dis-
cussed in Sect. 5.1.4, in the absence of of data constraints, we explicitly enforced
the model perturbation to be smooth and small during our inversion through model
regularization.

6.2.2 CVM-S4.26 and CVM-H11.9 Comparison

In general, the correlation between CVM-S4.26 and CVM-H11.9 is higher at shal-
lower depths. In regions with similar data coverage (e.g., the Los Angeles Basin
and surrounding areas), both models show similar structural patterns (e.g., at 2-
km depth in Figs. 6.1, 6.2 and 6.3). However, CVM-S4.26 generally has stronger
velocity variations (i.e., blue is bluer and red is redder in CVM-S4.26 than in CVM-
H11.9) and more small-scale heterogeneities. Generally speaking, CVM-S4.26 is a
rougher model with more structural details and CVM-H11.9 is a smoother model.

6.2.2.1 Starting Model Differences

Some of the differences between CVM-S4.26 and CVM-H11.9 can be attributed
to the differences in the starting models. CVM-H11.9 was derived from an earlier
version of the CVM-H series maintained at SCEC. The large-scale background
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Fig. 6.1 Map-view of S-velocity at 2-km depth in CVM-S4 (top), CVM-S4.26 (center) and CVM-
H11.9 (bottom). Warm colors indicate lower velocities and cold colors indicate higher velocities.
Black solid lines: faults, coast lines and political boundaries. Map-view plots at 4–24 km depths
with 2-km interval are shown in the following pages.
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Fig. 6.1 (continued)
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Fig. 6.1 (continued)
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Fig. 6.1 (continued)
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Fig. 6.1 (continued)
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Fig. 6.1 (continued)
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Fig. 6.1 (continued)
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Fig. 6.1 (continued)
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Fig. 6.1 (continued)
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Fig. 6.1 (continued)
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Fig. 6.1 (continued)
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Fig. 6.1 (continued)
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Fig. 6.2 Map-view of P-velocity at 2-km depth in CVM-S4 (top), CVM-S4.26 (center) and CVM-
H11.9 (bottom). Warm colors indicate lower velocities and cold colors indicate higher velocities.
Black solid lines: faults, coast lines and political boundaries. Map-view plots at 4–24 km depths
with 2-km interval are shown in the following pages.
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Fig. 6.2 (continued)
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Fig. 6.2 (continued)
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Fig. 6.2 (continued)
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Fig. 6.2 (continued)
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Fig. 6.2 (continued)
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Fig. 6.2 (continued)
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Fig. 6.2 (continued)
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Fig. 6.2 (continued)



374 6 CVM-S4.26

Fig. 6.2 (continued)
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Fig. 6.2 (continued)
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Fig. 6.2 (continued)
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Fig. 6.3 Map-view of Poisson’s ratio at 2 km depth in CVM-S4 (top), CVM-S4.26 (center) and
CVM-H11.9 (bottom). Warm colors indicate higher Poisson’s ratio and cold colors indicate lower
Poisson’s ratio. Black solid lines: faults, coast lines and political boundaries. Map-view plots at
4–24 km depths with 2-km interval are shown in the following pages.
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Fig. 6.3 (continued)
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Fig. 6.3 (continued)
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Fig. 6.3 (continued)
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Fig. 6.3 (continued)
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Fig. 6.3 (continued)
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Fig. 6.3 (continued)
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Fig. 6.3 (continued)
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Fig. 6.3 (continued)
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Fig. 6.3 (continued)
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Fig. 6.3 (continued)
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Fig. 6.3 (continued)
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model used in both the CVM-S and the CVM-H series was based on the ray-travel-
time tomography model of (Hauksson 2000). But the basin structures embedded in
this common background regional model in the CVM-S and the CVM-H series were
derived from different data sources. CVM-S mainly used rule-based basin structural
models that relate seismic velocities to the age and depths of sediments and the
rules were derived primarily from well-log data (Magistrale et al. 1996, 2000). The
basin structures in CVM-H were determined from a large collection of sonic logs
and seismic reflection profiles provided by the petroleum exploration industry (Süss
and Shaw 2003). There are also other differences in the starting models, including
differences in the Moho depth, the upper-mantle structure, the “geotechnical layer”
very near the free surface and the density model. But these differences in the starting
model probably do not have much effect on the differences between CVM-S4.26 and
CVM-H11.9 shown in Figs. 6.1, 6.2 and 6.3.

6.2.2.2 Data Differences

In principle, F3DT-SI and F3DT-AW are physically equivalent, as we can derive one
from the other mathematically. CVM-S4.26 was obtained through a combination of
F3DT-SI and F3DT-AW and CVM-H11.9 was derived through F3DT-AW (Tape
et al. 2010). Even though the starting models are different, if the data sets used in
both inversions are identical, we may still expect that they should converge to a
similar final model. The inverse problem is still non-unique of course, but the large-
scale features should be well-constrained by the data sets. However, the data sets
used in the two inversions were quite different. In the inversion for CVM-S4.26
(Lee et al. 2014b), about one quarter of the total misfit measurements used in the
last (26th) iteration were derived from ambient-noise Green’s functions (Appendix
A in Lee et al. 2014b), which were not used in the inversion for CVM-H11.9 (Tape
et al. 2010).

The exact correspondence between data set differences and model differences
is difficult to establish, as it may require inversions of the two different data sets
separately from a common starting model and the entire iterative tomographic nav-
igation process is nonlinear. Some first-order effects of including ANGFs into the
inversion can be estimated by examining the spatial distributions of the earthquake
sources and receivers used in both inversions (Fig. 1 in Lee et al. 2014b and Fig. 2 in
Tape et al. 2010). The earthquakes used in both inversions were mainly clustered on
and around major faults. Regions with fewer earthquakes include the southern San
Joaquin Basin, the southern Sierra Nevada, the Walker Lane Belt east of southern
Sierra Nevada, the western Mojave, the Basin and Range province to the southeast
of the Mojave block and the western Peninsular ranges. The differences between
CVM-S4.26 and CVM-H11.9 also tend to be larger in these regions. In the inversion
for CVM-S4.26, ANGFs provided additional data coverage in conjunction with any
existing earthquake data in these regions, while in the inversion for CVM-H11.9, the
structures in these regions were constrained by the sparser earthquake data alone.
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Figure A3 in (Lee et al. 2014b) shows the distribution of the frequency-dependent
phase-delay misfits used in the last iteration of our inversion as a function of fre-
quency and data type (i.e., earthquake or ANGF). The proportion of the misfits
derived from ANGFs generally increases at lower frequencies. Small- to medium-
sized earthquakes, such as those used in our inversion, usually cannot generate
large amounts of low-frequency energy, which limits the signal-to-noise ratio, as
well as the number of usable misfits, for earthquake data at lower frequencies. The
average amplitude spectrum of the ANGFs (Fig. A1 in Lee et al. 2014b) shows sig-
nificant energy at frequencies as low as 0.02 Hz, which highly complements the
amplitude spectra of small- to medium-sized earthquakes used in our inversion.
In CVM-S4.26, structures at larger depths were mainly constrained by a combi-
nation of earthquake body-wave data with relatively long propagation paths and
low-frequency surface-wave data from ANGFs and medium-sized earthquakes. In
the inversion for CVM-H11.9, only earthquake data from local small- to medium-
sized earthquakes were used, which could limit the resolution of the model at larger
depths. In general, the differences between CVM-S4.26 and CVM-H11.9 increase
with depth, as shown in Figs. 6.1, 6.2 and 6.3.

There are also differences in the data functionals used in the two inversions,
which can be quite important on the effective utilization of all available waveform
data. As mentioned in Sect. 6.1.2, in early iterations, the observed and synthetic
waveforms might be poorly aligned (i.e., large kinematic error) in regions where the
starting model has large errors (e.g., the southern San Joaquin Basin). It might be
tempting to reject those waveforms from the inversion all together based on certain
waveform selection criteria (e.g., Maggi et al. 2009; Lee and Chen 2013). How-
ever, by using the broadband cross-correlation delay time and frequency-dependent
group-delay time, which are mostly immune to cycle-skipping errors, we were
able to include those poorly-aligned waveform pairs into our inversion, thereby
improving the utilization of the available data. The linearization of the data func-
tional can be highly important in such situations, as discussed in Sect. 4.2.8. When
the kinematic error is large, the time- or frequency-domain waveform differences
(Sects. 4.2.4 and 4.2.5) are not the suitable data functionals.

After the large kinematic errors were corrected, switching to the frequency-
dependent phase-delay misfit with a very dense sampling over the entire frequency
band was also important in fully utilizing all available waveform information in
the data. In (Lee et al. 2014b), we made frequency-dependent phase-delay mis-
fit measurements at 19 different frequencies evenly distributed between 0.02 Hz
and 0.2 Hz. If the sampling over the frequency band is not dense enough, we may
leave valuable waveform information unutilized. An extreme case is the broad-
band cross-correlation delay time, which gives only a single misfit measurement
over the entire frequency band and cannot fully capture subtle differences in the
waveforms. The checkerboard tests shown in Fig. F1 in (Lee et al. 2014b) (by com-
paring the last column with the first column) show the differences between inverting
the broadband cross-correlation delay time and inverting the frequency-dependent
phase-delay time measured at the 19 sampling frequencies using all waveforms in
our last iteration. The misfits at different frequencies can be weighted differently in
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the inversion according to their uncertainties given by the noise model (Appendix E
in Lee et al. 2014b).

6.2.2.3 Algorithmic Differences

In the 18 AW iterations for deriving CVM-S4.26, our procedure was generally con-
sistent with that given in (Tromp et al. 2005; Tape et al. 2007, 2010). There might be
some minor differences in how the event kernels were conditioned in our procedure
from that in (Tape et al. 2010). To reduce the excessively large sensitivities in the
vicinity of the sources and receivers, we adopted the technique in (Fichtner et al.
2009), which conditions the event kernel by accounting for the geometric spreading
effect. The gradient of the objective function, obtained by summing all conditioned
event kernels, was smoothed by convolving with a three-dimensional spatial Gaus-
sian function following (Tape et al. 2007, 2010). The horizontal and vertical widths
of the Gaussian function were adjusted separately to maximize the misfit reduction
for the current iteration. The widths of the Gaussian function were generally reduced
with iteration.

By switching to the SI method at iteration 21, we were able to significantly
accelerate the convergence rate of our inversion for CVM-S4.26. As discussed in
Sect. 6.1.1 and in (Lee et al. 2014b), one iteration of the Gauss-Newton algorithm
during the later stage of our inversion might account for many AW iterations based
on the conjugate-gradient algorithm. In (Tape et al. 2010), a total number of 16 AW
iterations were carried out, while in (Lee et al. 2014b) we have carried out 18 AW
iterations and 6 SI iterations so far. Some of the differences between CVM-S4.26
and CVM-H11.9 might be just due to the fact that the total number of iterations car-
ried out in (Lee et al. 2014b) was larger than that in (Tape et al. 2010). Those later
iterations may account for some of the differences in small-scale heterogeneities
between CVM-S4.26 and CVM-H11.9.

6.2.2.4 Earthquake Source Parameter Differences

In (Lee et al. 2014b), the procedure to account for errors in the earthquake source
parameters can be roughly separated into two stages. In the first stage (iteration 1
to 14, Fig. 2 in Lee et al. 2014b), only ANGFs and seismograms from earthquakes
with highly robust CMT solutions were used to correct large-scale errors in the
structural model. In the second stage (iteration 15 to 26), CMT solutions for all
earthquakes used in the inversion were inverted at some selected iterations using
the updated structural model (Lee et al. 2011). The phase data of the ANGFs in
Southern California are known to be quite robust and many ambient-noise tomog-
raphy results have been obtained using these data (e.g., Shapiro et al. 2005). By
inverting misfits obtained mainly from the ANGFs in the first stage, we were able
to correct large-scale errors in the structural model without using seismograms from
earthquake sources with highly uncertain CMT solutions. In the second stage, when
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inverting for the CMT solutions, the synthetic Green’s functions were computed
from the updated structural model, therefore the inverted CMT solutions were not
significantly biased by any large-scale errors in the structural model.

6.2.2.5 Summary

Among all the differences between the two inversions documented in (Lee et al.
2014b) and (Tape et al. 2010), respectively, the difference in data (Sect. 6.2.2.2)
might be the most important factor for explaining the differences between CVM-
S4.26 and CVM-H11.9. The difference in data includes the difference in the
seismogram types (i.e., earthquake seismograms and ANGFs in Lee et al. 2014b
and earthquake seismograms only in Tape et al. 2010) and also the difference in the
data functionals used in both inversions. The difference in the inversion algorithm
(Sect. 6.2.2.3) probably ranks the second in explaining the differences between
CVM-S4.26 and CVM-H11.9. The difference in how the earthquake source param-
eters were handled might rank the third. The difference in the starting model might
rank the fourth.

In addition to the differences discussed above, there are also other differences,
such as those in the wave-equation solver (i.e., AWP-ODC in Lee et al. 2014b and
SPECFEM3D in Tape et al. 2010). Details of AWP-ODC were given in Chapter 2
and the exact configuration used in our inversion for CVM-S4.26 was explained
in Appendix B in (Lee et al. 2014b). Given the same velocity model, differences
in synthetic seismograms generated using AWP-ODC and those generated using
SPECFEM3D were likely to be very small at frequencies below 0.2 Hz. The effects
of topography and the curvature of the Earth, which were not accounted for in
AWP-ODC but included in SPECFEM3D, were also likely to be negligible at such
low frequencies.

CVM-S4.26 reveals strong crustal heterogeneities throughout Southern Califor-
nia. Many features in CVM-S4.26 show good correlation with regional geology and
tectonics. In the following, I will point out some interesting features in CVM-S4.26
that have not been well imaged in previous crustal-scale tomography studies but are
consistent with geology and local studies.

6.2.3 Southern Walker Lane Belt

The Walker Lane belt was defined in (Stewart 1988) as the triangular region separat-
ing Sierra Nevada from the Great Basin bounded by the Garlock fault in the south.
In our tomography box for CVM-S4.26, the southernmost Walker Lane belt is a
100-km-wide zone north of the Garlock fault bordering southeastern Sierra Nevada
(Fig. 6.4). Previous researchers have suggested that the Miocene Basin and Range
extension has been gradually encroaching into the Sierra Nevada and the present-
day Sierra Nevada range front (Sierra Nevada Fault Zone in Fig. 6.4) is the western
boundary of the Basin and Range province (e.g., Surpless et al. 2002). Recent GPS
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Fig. 6.4 S-velocity in CVM-S4.26 (upper-left), CVM-S4 (lower-left) and CVM-H11.9 (lower-
right) compared with the geologic map (upper-right) around the Owens Valley and Death Valley
region. The color range is identical to that in Fig. 6.1.
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and earthquake data have shown that the Walker Lane belt is actively accommo-
dating the relative motion between the Sierra Nevada block and the stable North
American interior through transtensional deformation (e.g., McClusky et al. 2001;
Unruh et al. 2003). GPS data have shown that the Walker Lane belt and the East-
ern California Shear Zone south of the Garlock fault together accommodate about
20–25 % of the present-day relative plate motion between the Pacific and North
American plates (e.g., Miller et al. 2001; Hammond and Thatcher 2007). Based
on these observations, researchers have suggested that the Walker Lane belt is the
northernmost extension of the Gulf of California rift. The eastern margin of the
Sierra Nevada block will be the future plate boundary and the Sierra Nevada block
will be transferred to the Pacific plate, as has Baja California (e.g., Faulds and Henry
2008; Jayko and Bursik 2012).

In general, the structures at shallow depths in CVM-S4.26 are well correlated
with surface geology. In Fig. 6.4, the S-velocities at 2-km depth in the three CVMs
are compared with a geologic map1 for this region. Several strong low-velocity
anomalies imaged in CVM-S4.26 are correlated with (from north to south) the Long
Valley Caldera, the Big Pine Volcanic Fields, the Indian Wells Valley (China Lake)
and the Searles Lake. Several strong high-velocity anomalies imaged in CVM-S4.26
are correlated with the Inyo Batholith in the White Mountains, the Precambrian
rocks in the Panamint Range and the Precambrian and Paleozoic rocks in the
Grapevine Mountains to the northeast of the Northern Death Valley Fault Zone.
In general, low-velocities in CVM-S4.26 are correlated with Quaternary deposits,
Tertiary and Quaternary volcanic rocks in the geologic map, while high-velocities
in CVM-S4.26 are correlated with Precambrian and Paleozoic rocks and Meso-
zoic plutonic and batholithic rocks. The Owens Valley is separated from the Sierra
Nevada Batholith to the west by a sharp velocity gradient along the Sierra Nevada
Fault Zone. The Northern Death Valley Fault Zone also lies along a strong velocity
contrast in CVM-S4.26. The correlation between CVM-S4.26 and the surface geol-
ogy in this region is quite remarkable, especially when considering that this region is
already close to the northeastern boundary of our tomography box. In our inversion,
the velocity structures in this region were mainly constrained by data from earth-
quakes located to the south of this region and ANGFs from both permanent and
temporary broadband stations in and around this region (Fig. 1 in Lee et al. 2014b).

In Figs. 6.5, 6.6 and 6.7, I show cross-sections of the S-velocity, P-velocity
and Poisson’s ration in CVM-S4.26 along 13 profiles crossing the southernmost
Walker Lane belt. The same cross-sections for CVM-S4 and CVM-H11.9 are shown
in Figs. 6.8–6.13. On average, the velocities in CVM-S4.26 are lower than those
in CVM-S4 and the Poisson’s ratio is higher in CVM-S4.26 than that in CVM-
S4 in this region. At mid- to lower-crustal depths, this region has below-average

1 The geologic maps used in this chapter were obtained from the California Geological Sur-
vey (http://www.quake.ca.gov/gmaps/GMC/stategeologicmap.html). A detailed explanation about
the different rock types in the geologic maps can be found at http://www.quake.ca.gov/gmaps/
images/GMC_Explanation.pdf.

http://www.quake.ca.gov/gmaps/images/GMC_Explanation.pdf
http://www.quake.ca.gov/gmaps/images/GMC_Explanation.pdf
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Fig. 6.5 Cross-sections of S-velocity in CVM-S4.26 along 13 profiles (A-M) across the Walker
Lane belt. The map-view at upper-left corner shows S-velocity at 2-km depth and the color-scale
is identical to the 2-km map-view in Fig. 6.1. The color-scale for the cross-sections is shown in the
lower-left corner.
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Fig. 6.6 Cross-sections of P-velocity in CVM-S4.26 along the 13 profiles (A-M) across the Walker
Lane belt. The format is identical to that in 6.5.
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Fig. 6.7 Cross-sections of the Poisson’s ratio in CVM-S4.26 along the 13 profiles (A-M) across
the Walker Lane belt. The format is identical to that in 6.5.
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Fig. 6.8 Cross-sections of S-velocity in CVM-S4 along the 13 profiles. The format is identical to
that in Fig. 6.5.
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Fig. 6.9 Cross-sections of P-velocity in CVM-S4 along the 13 profiles. The format is identical to
that in Fig. 6.6.
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Fig. 6.10 Cross-sections of the Poisson’s ratio in CVM-S4 along the 13 profiles. The format is
identical to that in Fig. 6.7.
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Fig. 6.11 Cross-sections of S-velocity in CVM-H11.9 along the 13 profiles. The format is identical
to that in 6.5.
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Fig. 6.12 Cross-sections of P-velocity in CVM-H11.9 along the 13 profiles. The format is identical
to that in Fig. 6.6.
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Fig. 6.13 Cross-sections of Poisson’s ratio in CVM-H11.9 along the 13 profiles. The format is
identical to that in Fig. 6.7.
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velocities and above-average Poisson’s ratio (Figs. 6.1, 6.2 and 6.3). As will be
shown in Sects. 6.2.3.1 and 6.2.3.2, at some locations, CVM-S4.26 is in broad
agreement with other localized tomography studies, which also imaged mid- and
lower-crustal low-velocity anomalies. The interpretations offered in those local-
ized studies, which include magmatic and hydrothermal activities, perhaps resulting
from asthenospheric upwelling beneath this region (e.g., Gazel et al. 2012; Putirka
et al. 2012), may also be applicable for explaining other mid- and lower-crustal
low-velocity anomalies in this region. A more recent attenuation tomography of
the western United States based on the ambient-noise Green’s functions (Lawrence
and Prieto 2011) has imaged a zone of high-attenuation extending from the Walker
Lane south to the Salton Trough. In the lower crust, the high-attenuation zone in the
Walker Lane belt was correlated with the low-viscosity compliant zone accommo-
dating a large amount of strain (Hammond et al. 2009) and at shallow crustal depths,
the high attenuation was interpreted to be from the increased scattering caused by
extensive fractures in this region.

6.2.3.1 Long Valley Caldera

The low-velocity anomaly correlated with the Long Valley Caldera has a diameter
of only about 25 km (about 1/40 of the length of our entire tomography region)
(Fig. 6.14) and is located very close to the northeastern corner of our tomography
box (Fig. 6.4) and we were still able to resolve it through our inversion.

At shallow depths the Long Valley Caldera is filled with the Bishop tuff (i.e.,
solidified volcanic ashes) from a massive, caldera-forming eruption occurred about
0.76 Ma (Hill 2006). Smaller erruptions fed by the residual magma chamber
occurred in 500 Ka, 300 Ka and 100 Ka (Bailey 1976; Hildreth 2004). In 110-40 Ka,
volcanic activities shifted to the west forming the Mammoth Mountain. In 40 Ka to
about 300 years ago, volcanic activities shifted towards north, forming the Mono-
Inyo Craters. Since 1978, the Long Valley Caldera has been experiencing intense
unrest with strong earthquake swarms, thermal activities and swelling in the middle
of the caldera (e.g., Langbein 2003; Prejean et al. 2003; Hill and Prejean 2005).

There have been geodetic and seismicity evidences supporting the hypothesis that
the magma source is in the shallow crust (e.g., Battaglia et al. 1999; Prejean et al.
2002; Battaglia et al. 2003a, b; Langbein 2003; Tizzani et al. 2009). Ray-travel-time
tomography using local earthquakes and receiver function analysis (Seccia et al.
2011) revealed a shallow high-velocity anomaly beneath the central-southern sec-
tion of the resurgent dome, an elongated low-velocity anomaly in the upper crust and
a broad low-velocity volume in the mid-crust. The data set used in our inversion did
not allow us to resolve the shallow high-velocity anomaly, but the broad mid-crustal
low-velocity anomaly is quite clear in CVM-S4.26 (Fig. 6.14) and is also in broad
agreement with the teleseismic ray-travel-time tomography results in (Weiland et al.
1995). The cross-sections shown in Fig. 6.14 are at about the same locations as in
(Seccia et al. 2011). The same cross-sections for CVM-S4 and CVM-H11.9 are
shown in Fig. 6.15.



6.2 Model Description 405

Fig. 6.14 The cross-section views show P- (top row) and S-velocity (center row) and Poisson’s
ratio (bottom row) in CVM-S4.26 along A-A’ (left column), B-B’ (center column) and C-C’ (right
column). The map-view plot at the upper-left corner shows the S-velocity in CVM-S4.26 at 2-km
depth.
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Fig. 6.15 The same cross-sections for CVM-S4 and CVM-H11.9. The format and color-scale are
identical to those in Fig. 6.14.
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6.2.3.2 Indian Wells Valley—Coso Geothermal Area

The Indian Well’s Valley (Fig. 6.4) was also imaged as a prominent low-velocity
anomaly on Profile P2 shown in Plate 1b of (Fliedner et al. 2000) and cross-section
views of the P- and S-velocity along this profile for CVM-S4.26, CVM-S4 and
CVM-H11.9 were shown in Fig. 7 in (Lee et al. 2014b). This low-velocity anomaly
associated with the Indian Wells Valley is also consistent with the ray-travel-time
tomography results obtained using local earthquakes (Hauksson and Unruh 2007).
In (Hauksson and Unruh 2007), the low-P-velocity anomaly associated with the
sediments in the Indian Wells Valley is most prominent in the upper 2-km and was
imaged down to 4-km depth in some areas. This result is also consistent with the
borehole data presented in (Monastero et al. 2002), which shows about 2-km of
Tertiary sediments lying above Mesozoic crystalline basement, and also the gravity
data analyzed in (Black et al. 2002), which shows that the sediments may reach
3-km depth in some areas.

The tomography result in (Hauksson and Unruh 2007) also shows low-P-velocity
anomaly associated with late Cenozoic sediments in the Searles Lake down to at
least 2-km depth, which is also consistent with our results shown in Fig. 6.4.

The Poisson’s ratio in the Indian Wells Valley and the Searles Lake is unusually
low in all three CVMs (2-km map-view in Fig. 6.3). Such a low Poisson’s ratio
is rare for sediments (e.g., Brocher 2005). However, it is consistent with the Vp/Vs
tomography result in (Hauksson and Unruh 2007). The explanation given in (Hauks-
son and Unruh 2007) was unusual geological conditions, which may include high
silica content and textural characteristics of the sediments, such as poor sorting.

In (Hauksson and Unruh 2007), a low-P-velocity anomaly was imaged in the
depth range of 8 to 12 km beneath the Coso geothermal field. A set of map-view
and cross-sections of P- and S-velocity, Vp/Vs ratio and Poisson’s ratio associ-
ated with this low-velocity anomaly were shown in Figs. 9 and 10 in (Hauksson
and Unruh 2007). In Figs. 6.16, 6.17 and 6.18, I show the map-views and cross-
sections extracted from CVM-S4.26, CVM-H11.9 and CVM-S4, respectively, at
about the same locations as in (Hauksson and Unruh 2007). The mid-crustal low-
velocity body is also well imaged in CVM-S4.26 (Fig. 6.16). In CVM-H11.9
(Fig. 6.17), this low-velocity anomaly is shown as a vertical extrusion from the
surface, rather than a more or less isolated low-velocity body as in Fig. 6.16 and
in (Hauksson and Unruh 2007). The low-velocity body in the map-view plots in
Fig. 6.16 appears shifted slightly to the north when compared with the correspond-
ing map-view plots shown in (Hauksson and Unruh 2007). This might be due to
the variable topography of the top surface of this low-velocity body in CVM-S4.26,
as shown in the cross-section views in Fig. 6.16. The correlation in Poisson’s ratio
between CVM-S4.26 and CVM-H11.9 is quite high down to about 15-km depth and
is also in broad agreement with that in (Hauksson and Unruh 2007). Below 15-km
depth, the Poisson’s ratio in CVM-S4.26 has better correlation with that in (Hauks-
son and Unruh 2007) than with the Poisson’s ratio in CVM-H11.9. This mid-crustal
low-velocity anomaly is not well imaged in CVM-S4 (Fig. 6.18).
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Fig. 6.16 The map-view plots (top row) show the S-velocity (left), P-velocity (center) and Pois-
son’s ratio (right) at 10-km depth beneath the Coso geothermal area in CVM-S4.26. Locations of
the two cross-sections, A-A’ and B-B’, are plotted on the S-velocity map-view. Cross-section plots
show the S-velocity (top row), P-velocity (center row) and Poisson’s ratio (bottom row) along A-A’
(left column) and B-B’ (right column).

Earlier results that suggest the presence of a mid- to lower-crustal low-velocity
body beneath the Coso geothermal area were obtained using teleseismic data in
(Reasenberg et al. 1980), using receiver functions in (Wilson et al. 2003). One pos-
sible interpretation suggested in previous studies was the presence of partial melting
associated with a magma chamber.
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Fig. 6.17 Map-views and cross-sections extracted from CVM-H11.9. The format and color-scale
are identical to those in Fig. 6.16.

6.2.3.3 Owens Lake

To the north of the Coso Mountains lies the Owens Lake, which is shown as a
low-velocity anomaly in Fig. 6.4. Owens Lake was over 200 feet deep during the
Pleistocene and is now a playa due to the loss of recharge water through climate
change, irrigation and diversion of water from the Owens Valley to the Los Angeles
Aqueduct (e.g., Von Huene et al. 1963). Gravity and seismic survey in the southern
Owens Valley indicates that the depth to the bedrock ranges from about 1 km to
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Fig. 6.18 Map-views and cross-sections extracted from CVM-S4. The format and color-scale are
identical to those in Fig. 6.16.

about 3 km below the surface and the sediments are particularly thick east of the
Alabama Hill near Lone Pine and beneath Owens Lake (Kane and Pakiser 1961).

The sediments filling the Owens Valley were eroded from the surrounding moun-
tain ranges. The Owens Valley is a typical graben on the western edge of the Basin
and Range province, formed by the transtensional forces pulling the western part
of California away from the stable North American interior (e.g., Faulds and Henry
2008; Jayko and Bursik 2012). The surrounding mountain ranges have been under-
going significant uplifting (e.g., Ducea and Saleeby 1996; Fliedner et al. 1996;
Wernicke et al. 1996; Ducea and Saleeby 1998; Zandt et al. 1998), exposing the
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granitic plutons making up the core of the mountains to active weathering and ero-
sion by ice, water and other forces. The resulting sediments have been carried down
to the adjacent deep valleys.

The cross-section G in Fig. 6.5 shows a high-velocity anomaly beneath the
Owens Lake basin. If this high-velocity anomaly also has higher density, as sug-
gested in e.g., (Brocher 2005), the subsidence of the Owens Lake basin may have
been driven, perhaps in part, by the isostatic response.

6.2.3.4 Panamint Range

The strongest high-velocity anomaly in CVM-S4.26 in this region is at the Panamint
Range (Fig. 6.4), which is closely related to the formation of the Death Valley
immediately to the east. The metamorphic rocks on the surface of the range have
greenschist facies, representing a burial depth of around 10 km in the Jurassic
(Labotka and Albee 1990).

Several hypotheses about the formation of the Death Valley and the Panamint
Range have been discussed in the literature and they often involve low-angle detach-
ment faulting (e.g., Stewart 1983; Wernicke et al. 1988; Snow and Wernicke 2000)
and/or strike-slip pull-apart mechanisms (e.g., Burchfiel and Stewart 1966; Topping
1993; Serpa and Pavlis 1996; Miller and Prave 2002; Norton 2011). In the low-angle
detachment faulting models, the Panamint Range was originally located on top or
to the east of the Black Mountains, which is presently on the east of the Death Val-
ley. The Panamint Range was part of the hanging wall and the Black Mountains
were on the footwall. The detachment fault transported the Panamint Range west-
ward for over 80 km to its current location. In the strike-slip pull-apart models, the
detachment surfaces are normal faults linking the strike-slip faults.

The more recent interpretation in (Norton 2011) argues for a two-stage process.
In the first stage (Miocene-Early Pliocene), the Panamint Range was formed as a
large metamorphic core complex that exhumed mid- and lower-crustal rocks. This
type of core complexes were proposed in studying extensional deformation in the
Basin and Range province. In the second stage (last 3 Ma) the Death Valley was
formed as a strike-slip pull-apart basin.

6.2.4 Southern Sierra Nevada

Our tomography box for CVM-S4.26 covers the southern portion of the Sierra
Nevada Batholith (SNB) (Fig. 6.19). The SNB, together with the Southern Cali-
fornia Batholith (SCB) (e.g., Luffi et al. 2009) and the Peninsular Ranges Batholith
(PRB) (e.g., Schmidt et al. 2002) to the south, are part of the Cordilleran batholithic
belt. The bulk of the batholithic belt was emplaced during the Mesozoic as a result of
prolonged subduction of oceanic plates beneath the southwestern edge of the North
American plate (e.g., Dickinson 1981).
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Fig. 6.19 S-velocity at 2-km depth in CVM-S4.26 (a), CVM-S4 (c) and CVM-H11.9 (d) compared
with the geologic map (b) in and around the southern Sierra Nevada. The color scale is identical to
that in the 2-km map-view in Fig. 6.1.
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The S-velocity at 2-km depth in CVM-S4.26 shows good correlation with sur-
face geology in this region (Fig. 6.19). In CVM-S4.26, the southern SNB shows
above-average velocities and the eastern (i.e., the Sierra Nevada Fault zone) and
western (i.e., the Sierra Nevada Foothills) boundaries of the high-velocity region
associated with the southern SNB are well aligned with the boundaries of the SNB
in the geologic map. At the southern end of the SNB, the surface distribution of the
batholith extends southwestward along the Garlock fault and then bends northwest-
ward along the San Andreas Fault in the geologic map (Fig. 6.19b). In CVM-S4.26,
the narrow high-velocity anomaly associated with this batholith “tail” (Fig. 6.19a)
follows almost exactly the same path as in the geologic map. The narrowest part of
the batholith “tail” is less than 10-km wide.

Inside the high-velocity region associated with the SNB, there are a few low-
velocity areas. One low-velocity anomaly is located around the Isabella Lake.
Previous hydrologic studies have revealed extensive fracture networks associated
with inter-connected faults in the crystalline bedrocks of the Kern Plateau (Howard
et al. 1997; Ostdick 1997), especially in regions northeast of the Isabella Lake
(Thyne et al. 1999). The lowest velocities inside this low-velocity anomaly in
CVM-S4.26 is also located at about the same area (Fig. 6.19a).

6.2.4.1 SNB Mafic Cumulates

Geological and geochemical evidences suggest that the SNB is composed of a west-
ern domain and an eastern domain and the western domain has compositions that
are more mafic than its eastern counterpart (e.g., Saleeby et al. 2003). One of the
observations that have been used to support this interpretation in e.g., (Saleeby et al.
2003) is a well-exposed belt of intrusives lying between latitudes 36 oN and 37 oN
(Fig. 6.19a), where a series of ring-dike complexes have been carefully studied
in e.g. (Mack et al. 1979; Saleeby and Sharp 1980; Clemens-Knott and Saleeby
1999; Clemens-Knott et al. 2000). The ring-dike complexes, which are considered
to be relics of Early Cretaceous basalt-andesite stratovolcanic centers, are composed
of olivine-bearing hydrous mafic and ultramafic cumulates and crescent- to ring-
shaped dikes of gabbronorite and pyroxene quartz gabbrodiorite. In CVM-S4.26,
a strong high-velocity anomaly lies at the same location as the exposed belt of
intrusives (Fig. 6.19a). This high-velocity anomaly in CVM-S4.26 also correlates
very well with gravity and magnetic anomalies in this region (e.g., Fig. 3b in Lee
et al. 2014b).

In three-dimension, this belt of intrusives exposed on the surfaces appears to
be connected with a much larger high-velocity body extending to at least 25-km
depth. In Figs. 6.20–6.22, I show cross-section views of the S-velocity, P-velocity
and Poisson’s ratio in CVM-S4.26 along 9 parallel profiles crossing the southern
SNB. The same cross-sections for CVM-S4 and CVM-H11.9 are also shown in
Figs. 6.23–6.28. The color scales used for plotting these cross-sections are identical
to those used in Figs. 6.5–6.13 in Sect. 6.2.3. A high-velocity body with thickness
over 20 km lies under the surface exposures of the intrusives and extends west-
wards underneath the southern San Joaquin Basin. In general, the Poisson’s ratio
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Fig. 6.20 Cross-section views of the S-velocity in CVM-S4.26 along 9 parallel profiles (A-I). The
map-view on the upper-left corner shows the S-velocity at 2-km depth in the color scale identical
to that in the 2-km map-view of Fig. 6.1. The color scale for the cross-sections is displayed in the
lower-left corner and is identical to that used in Fig. 6.5. Black dots on the cross-sections indicate
the approximate lateral extent of the high-velocity body. Black dash lines on the map-view are
obtained by connecting the black dots on the cross-sections.

of this high-velocity body is below-average and much lower than those encoun-
tered under the southern Walker Lane Belt and eastern SNB. A rough estimate of
the lateral extent of this high-velocity body is indicated using thick dash-lines on
the map-views in Figs. 6.20–6.22 and also using black dots on the cross-sections in
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Fig. 6.21 Cross-sections of P-velocity in CVM-S4.26. The format is identical to that in Fig. 6.20.

Figs. 6.20–6.22. The lateral extent of this high-velocity body can also be examined
on the 14- to 24-km map-views in Figs. 6.1 and 6.2.

Cross-sections passing through this thick high-velocity body have been obtained
before through 2D active-source refraction tomography in (Fliedner et al. 2000) (see
P5, P6 in Fliedner et al. 2000 and Fig. 7 in Lee et al. 2014b). This high-velocity body
was not well-imaged along P1 in (Fliedner et al. 2000) due to poor ray-path coverage
passing through this high-velocity body (gray area in P1 in Fliedner et al. 2000). In
CVM-S4.26, this high-velocity body is well imaged in full-3D (Figs. 6.20–6.22 and
P1, P5 and P6 in Fig. 7 in Lee et al. 2014b).
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Fig. 6.22 Cross-sections of Poisson’s ratio in CVM-S4.26. The format is identical to that in
Fig. 6.20.

The compositional differences between the western and the eastern SNB can be
attributed to the differences in the pre-batholithic metamorphic framework (e.g.,
Saleeby et al. 2003), which was composed of Paleozoic oceanic lithosphere to the
west and the North American Proterozoic lithosphere to the east (Kistler and Peter-
man 1973; DePaolo 1981; Saleeby et al. 1987; Kistler 1990; Chen and Tilton 1991;
Clemens-Knott et al. 1991; Coleman et al. 1992; Pickett and Saleeby 1994; Sisson
et al. 1996). The Early Cretaceous batholith of the western domain was generated
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Fig. 6.23 Cross-sections of S-velocity in CVM-S4. The format is identical to that in Fig. 6.20.

primarily in a depleted mantle regime and ascended through an oceanic lithosphere
that had been sutured with the North American lithosphere. Its composition was
primarily mafic and similar to intro-oceanic arcs (Saleeby et al. 2003).

In CVM-S4.26, this thick high-velocity body is connected with a much thin-
ner, slab-like high-velocity layer further to the west (Figs. 6.20–6.22). The western
boundary of the thick high-velocity body (black dash lines and black dots in
Figs. 6.20–6.22) was drawn at the estimated location of this connection. This thin
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Fig. 6.24 Cross-sections of P-velocity in CVM-S4. The format is identical to that in Fig. 6.20.

high-velocity layer may have a different interpretation from the thick high-velocity
body and will be discussed in Sect. 6.2.5.

To the east of the thick high-velocity body, the mid- to lower-crustal seis-
mic velocities in CVM-S4.26 are generally below the laboratory measurements
of felsic granulite (e.g., Christensen and Mooney 1995) and resemble those
under the southern Walker Lane Belt (Figs. 6.5–6.7). The active-source studies in
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Fig. 6.25 Cross-sections of Poisson’s ratio in CVM-S4. The format is identical to that in Fig. 6.20.

(Fliedner et al. 2000) also found below-average mid-crustal P-velocities under
mostly the eastern SNB and one explanation suggested in (Fliedner et al. 2000)
was increased temperature due to a heat pulse from the mantle. Considering our
results in the southern Walker Lane Belt, such a heat pulse may have been gener-
ated by the very recent asthenospheric upwelling (e.g., Gazel et al. 2012; Putirka
et al. 2012). However, different from the southern Walker Lane Belt, a persistent
high-velocity layer lies at about 10-km depth underneath the eastern SNB (e.g., pro-
file D-H in Fig. 6.20), perhaps because the lithosphere degradation process is only
partly complete under eastern Sierra Nevada, as suggested in e.g., (Putirka et al.
2012).
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Fig. 6.26 Cross-sections of S-velocity in CVM-H11.9. The format is identical to that in Fig. 6.20.

6.2.4.2 Tehachapi Anomaly

Thermobarometric constraints show that the crustal section of the southernmost
Sierra Nevada is tilted (e.g., Fig. 6 in Saleeby et al. 2003) with the level of
exposure increasing from about 0.2-GPa pressure condition (about 6-km depth) at
the southern region of Cretaceous-Paleogene orogenic plateau (e.g., House et al.
2001) to about 1-GPa pressure condition (about 30-km depth) at western Tehachapi
mountains (e.g., Malin et al. 1995). This tilted crustal section has allowed direct
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Fig. 6.27 Cross-sections of P-velocity in CVM-H11.9. The format is identical to that in Fig. 6.20.

observations of the mid- to lower-crustal batholithic rocks (Moore 1959; Saleeby
1981, 1990; Clemens-Knott 1992; Saleeby et al. 2003).
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Fig. 6.28 Cross-sections of Poisson’s ratio in CVM-H11.9. The format is identical to that in
Fig. 6.20.

In Figs. 6.29–6.31, I show cross-sections of the S-velocity, P-velocity and Pois-
son’s ration in CVM-S4.26 along 7 profiles crossing the Tehachapi mountains and
the surroundings. The same cross-sections in CVM-S4 and CVM-H11.9 are shown
in Figs. 6.32–6.37. Along profiles B-D, the velocity contours bend upward between
the White Wolf Fault and the Garlock Fault (Figs. 6.29–6.30), which is consistent
with the findings in the active-source reflection/refraction studies along the CAL-
CRUST profile in the same region (Malin et al. 1995). The CALCRUST study found
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Fig. 6.29 Cross-sections of S-velocity in CVM-S4.26 along the 7 profiles (A-G). The map-view
on the upper-left corner shows the S-velocity at 2-km depth in the same color-scale as the 2-km
map-view in Fig. 6.1. The color-scale for the cross-sections is shown on the lower-left corner. The
black dots on the cross-sections show the locations of the surface traces of faults. The black dots at
horizontal distance of about 65 km are for the Garlock Fault. The black dots at horizontal distance
of about 45 km on profile B-D are for the White Wolf Fault. The black dots left of the Garlock
fault on profile E-G are for the Kern Canyon Fault. Locations of the faults are shown on Fig. 6.19.
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Fig. 6.30 Cross-sections of P-velocity in CVM-S4.26 along the 7 profiles (A-G). The format is
identical to that in Fig. 6.29.

that the batholithic rocks dip northward as a tilted slab underneath the southern San
Joaquin Basin. The velocity contours also show some sharp discontinuities, which
might be correlated with subsurface faults in this region. A low-velocity layer lies
between the upper crust and the lower crust on profile C-G in Figs. 6.29–6.30. The
minimum velocity inside this low-velocity layer is reached at about 12- to 14-km
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Fig. 6.31 Cross-sections of Poisson’s ratio in CVM-S4.26 along the 7 profiles (A-G). The format
is identical to that in Fig. 6.29.

depth underneath the Tehachapi mountains, which can also be seen on the 12- and
14-km map-views in Figs. 6.1 and 6.2. This mid-crustal low-velocity layer is cor-
related with a zone of laterally discontinuous reflectors found in the CALCRUST
study (Malin et al. 1995). The geologic map shows Tertiary volcanic rocks around
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Fig. 6.32 Cross-sections of S-velocity in CVM-S4 along the 7 profiles (A-G). The format is
identical to that in Fig. 6.29.

the Tehachapi mountains on the surface (Fig. 6.19b). The strong mid-crustal low-
velocity anomaly underneath the Tehachapi mountains might be related to magmatic
activities. This mid-crustal low-velocity layer extends south into the Mojave block
on profile C-G in Figs. 6.29–6.30, which might be correlated with the reflector K in
the COCORP study (Cheadle et al. 1986).
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Fig. 6.33 Cross-sections of P-velocity in CVM-S4 along the 7 profiles (A-G). The format is
identical to that in Fig. 6.29.

6.2.5 Southern San Joaquin Basin

The southern San Joaquin Basin (SSJB) is the southern tip of the Great Valley,
which is a relic forearc basin formed in the Andean-type convergent continental mar-
gin during Mesozoic and Paleogene (e.g., Dickinson 1981; Ernst and Rubey 1981).
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Fig. 6.34 Cross-sections of Poisson’s ratio in CVM-S4 along the 7 profiles (A-G). The format is
identical to that in Fig. 6.29.

The Great Valley Sequence mainly consists of Mesozoic and Cenozoic mudstones,
sandstones and conglomerates deposited in deep ocean, slope, shelf and subaerial
environments (Bailey et al. 1970; Dickinson and Rich 1972; Ingersoll 1982). In
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Fig. 6.35 Cross-sections of S-velocity in CVM-H11.9 along the 7 profiles (A-G). The format is
identical to that in Fig. 6.29.

Fig. 6.38, I show a comparison of the 2-km S-velocity map-views of the three CVMs
with the geologic map in and around SSJB. The three-dimensional geometry of the
basin and velocity structures underneath the basin in CVM-S4.26 can be seen on
the cross-section views in Figs. 6.39–6.41. The same cross-sections for CVM-S4
and CVM-H11.9 are shown in Figs. 6.42–6.47.
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Fig. 6.36 Cross-sections of P-velocity in CVM-H11.9 along the 7 profiles (A-G). The format is
identical to that in Fig. 6.29.

6.2.5.1 Basin Geometry

The SSJB is mostly absent in our starting model CVM-S4 (Figs. 6.38, 6.42–6.44). It
is well constructed in our model CVM-S4.26 through our iterative full-3D tomog-
raphy process (Figs. 6.38, 6.39–6.41). At shallow depths, the low-velocity region
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Fig. 6.37 Cross-sections of Poisson’s ratio in CVM-H11.9 along the 7 profiles (A-G). The format
is identical to that in Fig. 6.29.

associated with the SSJB shows excellent correlation with the distribution of sedi-
ments (Fig. 6.38). The bottom of the basin is relatively flat and marked by a sharp
velocity gradient at around 8–10 km depth. The average P-velocity, S-velocity and
Poisson’s ratio inside the basin in CVM-S4.26 are about 4.2 km/s, 2.2 km/s and
0.31, respectively. On the west side, the SSJB extends slightly across the surface
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Fig. 6.38 S-velocity at 2-km depth in CVM-S4.16 (a), CVM-S4 (c) and CVM-H11.9 (d) compared
with the geologic map (b) in the southern San Joaquin Basin. The color scale is identical to that in
the 2-km map-view in Fig. 6.1.

trace of the San Andreas Fault into the Salinian block. The western boundary of the
basin dips to the east. On the east side, the SSJB is bounded by the western Sierra
Nevada Foothills on the surface. Except at very shallow depths (< 2 km), the east-
ern boundary of the basin dips to the west. To the south, the SSJB extends slightly
across the surface trace of the White Wolf Fault and stops at the surface trace of the
Garlock Fault. The southern boundary dips to the north.
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Fig. 6.39 Cross-sections of the S-velocity in CVM-S4.26 along the 7 profiles (A-G) crossing the
southern San Joaquin Basin. The map-view on the upper-left corner shows the S-velocity at 2-km
depth in the same color-scale as the 2-km map-view in Fig. 6.1. The color-scale for the cross-
sections is shown on the lower-left corner. The black dots on the cross-sections show the locations
of the surface traces of San Andreas Fault.

6.2.5.2 Great Valley Ophiolite

The high-velocity anomalies underneath the SSJB have different origins. The thicker
high-velocity body lying under the eastern side of the basin was interpreted as the
mafic western SNB generated in Early Cretaceous in Sect. 6.2.4.1. In addition to
the evidences mentioned in Sect. 6.2.4.1, the Lower Cretaceous petrofacies in the
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Fig. 6.40 Cross-sections of the P-velocity in CVM-S4.26 along the 7 profiles (A-G) crossing the
southern San Joaquin Basin. The format is identical to that in Fig. 6.39.

Great Valley Sequence show abundant detritus derived from this mafic western SNB
(Dickinson and Rich 1972). A rough estimate of the western extent of this mafic
SNB underneath the SSJB was drawn on Figs. 6.20–6.22.

The mafic western SNB is connected with a thinner, slab-like high-velocity layer
lying under the western part of the SSJB (profile B-D in Fig. 6.39). The maxi-
mum P-velocity and S-velocity inside this thin high-velocity layer reach 7.2 km/s
and 4.2 km/s, respectively, at around 20-km depth. The velocities beneath this thin
high-velocity layer reduce slightly and then increase again at the Moho. In gen-
eral the Poisson’s ratio is slightly higher in this thin high-velocity layer than in the
mafic western SNB (Fig. 6.41). This thin high-velocity layer might be associated
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Fig. 6.41 Cross-sections of the Poisson’s ratio in CVM-S4.26 along the 7 profiles (A-G) crossing
the southern San Joaquin Basin. The format is identical to that in Fig. 6.39.

with the Great Valley Ophiolite (GVO) (Bailey et al. 1970; Page 1981; Godfrey
and Klemperer 1998). It has been suggested that the GVO was formed by back-
arc spreading behind an east-facing arc and the arc and the back arc “docked” on
the continental margin during the Nevadan orogeny in southern Great Valley (e.g.,
Godfrey and Klemperer 1998). This thin high-velocity layer in CVM-S4.26 might
be the obducted oceanic crust.



436 6 CVM-S4.26

1.5

2

2.5

3

3.5

4

Fig. 6.42 Cross-sections of the S-velocity in CVM-S4 along the 7 profiles (A-G) crossing the
southern San Joaquin Basin. The format is identical to that in Fig. 6.39.

6.2.6 Southern Coast Ranges

Our tomography box covers the southern portion of the Coast Ranges, which
belongs to the Monterey terrane (i.e., the region bounded by the Pacific Ocean on the
west, the San Andreas Fault (SAF) on the east, Cape Mendocino on the north and
the Transverse Ranges on the south) as defined in (Ducea et al. 2009). The Monterey
terrane has its origin in southern California and was translated to its current location
by the San Andreas Fault system in Neogene (Page 1981; Saleeby 2003). It is mainly
composed of the Salinian block and the Nacimiento block (e.g., Fig. 1 in Ducea et al.
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Fig. 6.43 Cross-sections of the P-velocity in CVM-S4 along the 7 profiles (A-G) crossing the
southern San Joaquin Basin. The format is identical to that in Fig. 6.39.

2009). The Salinian block was part of the Sierra-Mojave-Peninsular batholith belt
and might have been located on the west of the Mojave block in pre-SAF time (Ross
1976, 1984; Hall 1991; Silver and Mattinson 1986; Saleeby 2003). The Nacimiento
basement mainly consists of Franciscan Complex rocks (Gilbert 1973; Hall 1991),
which are metamorphosed trench sediments. There are outcrops of the Coast Range
Ophiolite structurally above the Franciscan units in the Nacimiento block (Vedder
et al. 1983; Shervais et al. 2004).

In Fig. 6.48, I show a comparison of the 2-km S-velocity map-views of the
three CVMs with the geologic map in and around the southern Coast Ranges.
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Fig. 6.44 Cross-sections of the Poisson’s ratio in CVM-S4 along the 7 profiles (A-G) crossing the
southern San Joaquin Basin. The format is identical to that in Fig. 6.39.

Low-velocity anomalies in CVM-S4.26 are well correlated with distributions of
sediments. The high-velocity anomaly between the Nacimiento-Rinconada Fault
and the San Juan Fault Zone is correlated with outcrops of the Salinian basement
(Fig. 2 in Ducea et al. 2009). The intermediate- to high-velocities on the west of the
Nacimiento Fault north of the Pismo Beach might be correlated with outcrops of the
Franciscan Complex of the Nacimiento block (Fig. 2 in Ducea et al. 2009). Cross-
section views of the S-velocity, P-velocity and Poisson’s ratio in CVM-S4.26 along
8 profiles crossing the southern Coast Ranges are shown in Figs. 6.49–6.51. The
same cross-sections for CVM-S4 and CVM-H11.9 are shown in Figs. 6.52–6.57.
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Fig. 6.45 Cross-sections of the S-velocity in CVM-H11.9 along the 7 profiles (A-G) crossing the
southern San Joaquin Basin. The format is identical to that in Fig. 6.39.

6.2.6.1 Salinian Block

The dominant low-velocity feature inside the Salinian block is the Cuyama Basin
lying at the southern tip of the Salinian block. It is mostly absent in our start-
ing model CVM-S4 (Fig. 6.48c), but well imaged in CVM-S4.26 (Fig. 6.48a).
The Cuyama Basin includes thick Upper Cretaceous through Quaternary sedi-
mentary sequence in the Carrizo Plain, the Caliente Range and the thinner sed-
iments in the Cuyama Valley (Davis et al. 1988). To the west of the Ozena
Fault, the sediments become thinner (Figs. 6.49–6.50). The sedimentary section



440 6 CVM-S4.26

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

Fig. 6.46 Cross-sections of the P-velocity in CVM-H11.9 along the 7 profiles (A-G) crossing the
southern San Joaquin Basin. The format is identical to that in Fig. 6.39.

in the Cuyama Basin consists of marine clastic rocks of late Cretaceous, Pale-
ocene and Eocene and thick Middle and Upper Cenozoic sedimentary rocks
deposited in marine and subaerial environments (Davis et al. 1988). The bot-
tom of the basin is marked by sharp velocity gradients in CVM-S4.26 and
the maximum thickness of the Cuyama Basin is about 5 km (Figs. 6.49–6.50),
which is in broad agreement with the cross-sections in (Davis et al. 1988).
The average P- and S-velocity inside the basin are about 4.4 km/s and 2.4 km/s,
respectively, and the average Poisson’s ratio is about 0.3.
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Fig. 6.47 Cross-sections of the Poisson’s ratio in CVM-H11.9 along the 7 profiles (A-G) crossing
the southern San Joaquin Basin. The format is identical to that in Fig. 6.39.

To the north of the Cuyama Basin, between the Nacimiento-Rinconada Fault and
the San Juan Fault, is a region where the Salinian basement crops out (Ducea et al.
2009). This region is shown as a high-velocity anomaly in CVM-S4.26 (Fig. 6.48,
profile B-D in Figs. 6.49–6.50). The Salinian basement is mostly composed of mid-
Cretaceous granite plutons mixed with older high-temperature metasedimentary
rocks. The average composition of the Salinian arc in the upper crust is gran-
odiorite (Ross 1975). In CVM-S4.26, the upper-crustal high-velocity block lying
underneath the Salinian basement outcrops has maximum P- and S-velocity of
about 6.2 km/s and 3.7 km/s, respectively, which is roughly consistent with the
granodiorite composition (Christensen 1996).
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Fig. 6.48 Map-views of the S-velocity at 2-km depth in CVM-S4.26 (a), CVM-S4 (c) and CVM-
H11.9 (d) compared with the geologic map (b) in and around the southern Coast Ranges. The color
scale is identical to that in the 2-km map-view in Fig. 6.1.

6.2.6.2 Nacimiento Block

To the west of the Nacimiento Fault and north of the Santa Ynez Fault is the
Nacimiento block (Fig. 6.48), which is also known as the Sur-Obispo composite
terrane (Vedder et al. 1983; Hall 1991; Ducea et al. 2009). The basement mainly
consists of Franciscan Complex rocks with fragments of Late Jurassic Coast Range
Ophiolite (Hopson et al. 1981; Vedder et al. 1983; Shervais et al. 2004). The
sedimentary cover is mostly Uppermost Cretaceous to Cenozoic (Hall 1991).

In CVM-S4.26, the dominant feature is the low-velocity region associated with
the Santa Maria Basin (Fig. 6.48, profile C-G in Figs. 6.49–6.51) in the Pliocene
to Quaternary fold and thrust belt (Namson and Davis 1990). It is mainly com-
posed of Lower Miocene through Quaternary volcanic, volcaniclastic, deep-marine,
shallow-water and nonmarine sedimentary rocks (Namson and Davis 1990). The
basin extends to the southern Santa Lucia Range in the north and to the western
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Fig. 6.49 Cross-sections of the S-velocity in CVM-S4.26 along the 8 profiles (A-H) crossing the
southern Coast Ranges. The map-view on the upper-left corner shows the S-velocity at 2-km depth
in the same color-scale as the 2-km map-view in Fig. 6.1. The color-scale for the cross-sections
is shown on the lower-left corner. The black dots on the cross-sections show the locations of the
surface traces of San Andreas Fault (SAF), the Rinconada Fault (RF) and the Hosgri Fault Zone
(HFZ). Locations of the faults are marked on Fig. 6.48.

Santa Ynez Mountains in the south and it is bounded by the San Rafael Mountains
to the east and extends westward to the offshore region (Fig. 6.48). The bottom of
the basin is marked by sharp velocity gradients in CVM-S4.26 and has a highly vari-
able depth with maximum depth exceeding 6 km (profile C-G in Figs. 6.49–6.51).
The average P-velocity and S-velocity inside the basin are about 4.8 km/s and
2.5 km/s, respectively, and the average Poisson’s ratio is about 0.32. The lowest
velocities and highest Poisson’s ratio are reached at around the center of the basin,
which overlies a high-velocity body with maximum P- and S-velocity exceeding
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Fig. 6.50 Cross-sections of the P-velocity in CVM-S4.26 along the 8 profiles (A-H) crossing the
southern Coast Ranges. The format is identical to that in Fig. 6.49.

6.1 km/s and 3.8 km/s, respectively (between profile E and F in Figs. 6.49–6.50).
The seismic velocities of this high-velocity body are in agreement with the labora-
tory measurements of the ophiolite at Point Sal (Nichols et al. 1980). Outcrops of
the Coast Range Ophiolite are found in the Santa Lucia and San Rafael Mountains
and west of the town of Santa Maria (Ducea et al. 2009). This high-velocity body
might be a fragment of the Coast Range Ophiolite. The subsidence of the Santa
Maria Basin may have been driven, perhaps in part, by the isostatic response.

At about mid-crustal depth (17 km), a low-velocity layer extends from the
Nacimiento block eastward into the Salinian block (profile D-H in Figs. 6.49–6.51).
The velocities and thickness of this low-velocity layer vary from profile to profile.
On average, the thickness is about 5 km, the P-velocity is 5.8-6.0 km/s and the S-
velocity is 3.0–3.2 km/s. Perhaps this low-velocity layer is related to the schist of
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Fig. 6.51 Cross-sections of the Poisson’s ratio in CVM-S4.26 along the 8 profiles (A-H) crossing
the southern Coast Ranges. The format is identical to that in Fig. 6.49.

Sierra de Salinas (Barth et al. 2003; Kidder and Ducea 2006; Ducea et al. 2009),
which crops out southwest of the Salinas Valley lying slightly to the north of our
tomography box. The Sierra de Salinas schist, as well as the Pelona, Orocopia
and Rand schists in the Mojave and San Gabriel region, represent the accretion
wedge and/or forearc sediments underplated beneath the continental arc during the
Laramide shallow subduction (e.g., Jacobson et al. 2000; Saleeby 2003; Ducea et al.
2009). The Sur Fault, which is the northern extension of the Nacimiento Fault, has
been interpreted as a major late Cretaceous thrust fault that brought the Salinian
block outboard over the accretionary wedge (Hall 1991; Ducea et al. 2009). The
Nacimiento Fault might have played a similar role in late Cretaceous as the Sur
Fault to the north.

In the lower-crust, there are fragments of high-velocity bodies with maximum
P- and S-velocity exceeding 7.0 km/s and 4.1 km/s, respectively (Figs. 6.49–6.50).
These high-velocity bodies might be due to variations in the Moho depth (i.e., our
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Fig. 6.52 Cross-sections of the S-velocity in CVM-S4 along the 8 profiles (A-H) crossing the
southern Coast Ranges. The format is identical to that in Fig. 6.49.

inversion was trying to accommodate variations in the Moho depth by adding high-
velocity bodies around the Moho in the starting model). Another possibility is that
they represent trapped fragments of the oceanic crust associated with the Farallon
plate and/or the younger Monterey plate (e.g., Miller et al. 1992).

6.2.7 Transverse Ranges

The Transverse Ranges province consists of young east-west trending mountain
ranges and valleys that clearly traverse the northwest-southeast tectonic grain in
most of the southern California. The western Transverse Ranges (Fig. 6.58) are
bounded by the Santa Ynez Mountains (Santa Ynez Fault) on the north and the
Channel Islands—Santa Monica Mountains (Santa Monica Fault) on the south.
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Fig. 6.53 Cross-sections of the P-velocity in CVM-S4 along the 8 profiles (A-H) crossing the
southern Coast Ranges. The format is identical to that in Fig. 6.49.

Between the two mountain ranges lie the Ventura Basin and its off-shore exten-
sion, the Santa Barbara Channel. This region is bounded by the San Andreas Fault
on the east and by the off-shore Santa Lucia Escarpment on the west.

The Los Angeles Region Seismic Experiment phase I and II (LARSE-I&II)
active-source seismic survey lines crossed the western Transverse Ranges along
two different profiles. Detailed comparisons between cross-sections of CVM-S4.26,
CVM-S4 and CVM-H11.9 along the LARSE-I&II profiles with the 2D refraction
tomography models from LARSE-I&II (Lutter et al. 1999, 2004) have been doc-
umented in (Lee et al. 2014a, b). In general, at the upper- to mid-crustal depths,
CVM-S4.26 shows better agreement with the LARSE-I&II refraction tomography
results than the other two CVMs (Fig. 8 in Lee et al. 2014b and Fig. 1 in Lee et al.
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Fig. 6.54 Cross-sections of the Poisson’s ratio in CVM-S4 along the 8 profiles (A-H) crossing the
southern Coast Ranges. The format is identical to that in Fig. 6.49.

2014a). At mid- to lower-crustal depths, CVM-S4.26 shows structural features that
are well correlated with the deep reflectors mapped in e.g., (Fuis et al. 2003).

The Eastern Transverse Ranges block (Fig. 6.59) is bounded by the San Andreas
Fault on the southwest and the Pinto Mountain Fault on the north. The southern
and eastern boundaries do not exactly coincide with single fault traces. The eastern
boundary follows approximately the low-to-high S-velocity transition in Fig. 6.59a,
which is roughly aligned with the Sheep Hole Fault. The southern boundary is
approximately along the Salton Creek Fault between the Orocopia Mountains on
the north and the Chocolate Mountains on the south. Previous studies suggest that
the southern boundary is a zone of complex distributed strain with possibly non-
rigid deformation (e.g., Richard 1993; Dickinson 1996). In the Chocolate Mountains
south of the Salton Creek Fault, there still exist east-west-trending sinistral faults



6.2 Model Description 449

1.5

2

2.5

3

3.5

4

Fig. 6.55 Cross-sections of the S-velocity in CVM-H11.9 along the 8 profiles (A-H) crossing the
southern Coast Ranges. The format is identical to that in Fig. 6.49.

that are typical in the eastern Transverse Ranges (e.g., Darin and Dorsey 2013).
The southern boundary is also located around a low-to-high S-velocity transition on
Fig. 6.59a.

The exact tectonic mechanisms for producing the Transverse Ranges are still
a major research topic in current geological studies in this region. One possible
mechanism involves clockwise rotations of crustal blocks associated with the devel-
opment of the San Andreas Fault system followed by north-south convergence. By
mid-Miocene, the development of the San Andreas Fault system had produced sig-
nificant transrotational deformation in this region (e.g., Luyendyk et al. 1980; Bird
and Rosenstock 1984; Hornafius et al. 1986; Humphreys and Hager 1990; Luyendyk
1991; Dickinson 1996). In the western Transverse Ranges, paleomagnetic data sug-
gest cumulative clockwise rotation of about 70o–90o (e.g., Kamerling and Luyendyk
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Fig. 6.56 Cross-sections of the P-velocity in CVM-H11.9 along the 8 profiles (A-H) crossing the
southern Coast Ranges. The format is identical to that in Fig. 6.49.

1985; Terres and Luyendyk 1985; Hornafius et al. 1986; Luyendyk 1991), which is
in agreement with earlier geological studies of disrupted lithotectonic belts (e.g.,
Jones et al. 1976; Crouch 1979) and sediments of the Eocene Poway Group (Yeats
et al. 1974). For the eastern Transverse Ranges, paleomagnetic data record about
40o of clockwise rotation between 10 and 4.5 Ma (Carter et al. 1987; Powell 1993;
Richard 1993; Dickinson 1996) which is in agreement with geophysical constraints
in (Langenheim and Powell 2009). In Pliocene to Pleistocene, the southern seg-
ment of the Pacific-North America plate boundary shifted eastward into the Gulf
of California and the plate boundary had to break a new path across southern Cali-
fornia (e.g., Atwater and Stock 1998). This reconfiguration of the plate boundary
produced substantial transpressional deformation that uplifted and deformed the
Transverse Ranges to their current state (e.g., Luyendyk et al. 1980; Dickinson
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Fig. 6.57 Cross-sections of the Poisson’s ratio in CVM-H11.9 along the 8 profiles (A-H) crossing
the southern Coast Ranges. The format is identical to that in Fig. 6.49.

1996). One consequence of the block rotations was the opening of Neogene basins
at the join of the rotated and unrotated blocks (e.g., Luyendyk et al. 1980). This
mechanism explains, maybe in part, the opening of some of the sedimentary basins
along the north and south borders of the Transverse Ranges, such as the Santa
Maria Basin (Sect. 6.2.6.2), the Cuyama Basin (Sect. 6.2.6.1) and the Los Ange-
les Basin (Sect. 6.2.8.1) (Blake Jr et al. 1978; Luyendyk et al. 1980). An alternative,
core complex-like crustal extension mechanism was also suggested to explain the
opening of some of these basins in e.g., (Crouch and Suppe 1993).

In the western Transverse Ranges, surface rock types include Mesozoic ophiolitic
and Franciscan rocks, Mesozoic through Paleogene shelf sediments of the Great
Valley type and Neogene sedimentary and volcanic rocks (e.g., Keller and Prothero
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Fig. 6.58 S-velocity at 2-km depth in CVM-S4.26 (b), CVM-S4 (c) and CVM-H11.9 (d) compared
with the geologic map (a) of the western Transverse Ranges region. The color-scale is identical to
that in the 2-km map-view in Fig. 6.1.
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Fig. 6.59 S-velocity at 2-km depth in CVM-S4.26 (a), CVM-S4 (c) and CVM-H11.9 (d) compared
with the geologic map (b) of the eastern Transverse Ranges region. The color-scale is identical
to that in the 2-km map-view in Fig. 6.1. Black stars indicate the epicenters of several major
earthquakes in this region.

1987). The S-velocity at 2-km depth in CVM-S4.26 shows good agreement with sur-
face distribution of sediments and rock types (Fig. 6.58). The correlation among the
3 CVMs is also quite high at shallow depths. The seismic velocities in CVM-S4.26
are also well correlated with gravity and magnetic anomalies in this region (e.g.,
Fig. 3b in Lee et al. 2014b), which also show the east-west trend of the geomorphic
features. In the eastern Transverse Ranges, surface rock types include Pliocene and
Quaternary sediments, Proterozoic and Mesozoic plutonic and metamorphic rocks
(Powell 1981, 1982; Langenheim and Powell 2009). A series of large and medium-
sized earthquakes occurred in the eastern Transverse Ranges during the 1980’s and
early 1990’s (Fig. 6.59), including the 1986 M6.0 Palm Springs earthquakes, the
1992 M6.1 Joshua Tree earthquake, the 1992 M7.3 Landers earthquake, the 1992
M6.5 Big Bear earthquake and the 1999 M7.2 Hector Mine earthquake. These large
earthquakes and the numerous aftershocks following them may have disturbed the
velocity structures in this region.

In addition to the cross-sections along the LARSE I&II profiles shown in (Lee
et al. 2014a, b) in Figs. 6.60–6.62 I show cross-sections of CVM-S4.26 along 13
north-south profiles crossing the western Transverse Ranges and 10 north-south pro-
files crossing the eastern Transverse Ranges. The same cross-sections for CVM-S4
and CVM-H11.9 are shown in Figs. 6.63–6.68.
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Fig. 6.60 Cross-sections of the S-velocity in CVM-S4.26 along the 23 profiles (A-W) crossing
the western and eastern Transverse Ranges. The map-view on the upper-right corner shows the
S-velocity at 2-km depth in the same color-scale as the 2-km map-view in Fig. 6.1. The color-scale
for the cross-sections is shown on the lower-left corner.
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Fig. 6.61 Cross-sections of the P-velocity in CVM-S4.26 along the 23 profiles (A-W) crossing the
western and eastern Transverse Ranges. The format is identical that in Fig. 6.60.
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Fig. 6.62 Cross-sections of the Poisson’s ratio in CVM-S4.26 along the 23 profiles (A-W) crossing
the western and eastern Transverse Ranges. The format is identical that in Fig. 6.60.
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Fig. 6.63 Cross-sections of the S-velocity in CVM-S4 along the 23 profiles (A-W) crossing the
western and eastern Transverse Ranges. The format is identical that in Fig. 6.60.
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Fig. 6.64 Cross-sections of the P-velocity in CVM-S4 along the 23 profiles (A-W) crossing the
western and eastern Transverse Ranges. The format is identical that in Fig. 6.60.
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Fig. 6.65 Cross-sections of the Poisson’s ratio in CVM-S4 along the 23 profiles (A-W) crossing
the western and eastern Transverse Ranges. The format is identical that in Fig. 6.60.



460 6 CVM-S4.26

1.5

2

2.5

3

3.5

4

Fig. 6.66 Cross-sections of the S-velocity in CVM-H11.9 along the 23 profiles (A-W) crossing
the western and eastern Transverse Ranges. The format is identical that in Fig. 6.60.
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Fig. 6.67 Cross-sections of the P-velocity in CVM-H11.9 along the 23 profiles (A-W) crossing
the western and eastern Transverse Ranges. The format is identical that in Fig. 6.60.
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Fig. 6.68 Cross-sections of the Poisson’s ratio in CVM-H11.9 along the 23 profiles (A-W) crossing
the western and eastern Transverse Ranges. The format is identical that in Fig. 6.60.
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6.2.7.1 Ventura Basin—Santa Barbara Channel

The Ventura Basin lies in the main structural downwarp of a major fold and thrust
belt that developed in late Pliocene (Keller 1995). The offshore extension of the
structural downwarp is the Santa Barbara Channel. The sedimentary sequence
mainly consists of Cretaceous to Pleistocene, mostly marine, sediments. In our start-
ing model CVM-S4, the Ventura Basin is associated with a low-velocity anomaly
(Figs. 6.63–6.64). Compared with our starting model, CVM-S4.26 has slightly
higher velocities (i.e., positive perturbation) inside the Ventura Basin and much
lower velocities in the Santa Barbara Channel (Figs. 6.60–6.61). This extension of
the low-velocity anomaly from the Ventura Basin to the Santa Barbara Channel was
also observed in the adjoint tomography in (Tape et al. 2010), in which an earlier
version of CVM-H without the Santa Barbara Channel sedimentary basin was used
as the starting model.

The relative perturbations between CVM-S4.26 and CVM-S4 show correlations
with geological units surrounding the Ventura Basin (Fig. 6.58). To the east of the
basin, positive perturbations are observed in the Topatopa Mountains, the Soledad
Basin and the Sierra Pelona and negative perturbations are observed in the Santa
Clarita Valley. To the southeast of the basin, negative perturbations are observed
in the Santa Susana Mountains and the Simi Valley, which also contains thick
sediments, and positive perturbations are associated with the Santa Monica Moun-
tains and the San Fernando Valley. South of the Santa Monica Mountains, negative
perturbations are associated with the offshore Santa Monica Basin.

6.2.7.2 San Bernardino Basin

The San Bernardino Basin is located next to the northwest edge of the eastern Trans-
verse Ranges (Fig. 6.59). It was formed as a pull-apart structure between the San
Andreas Fault and the San Jacinto Fault Zone in Pleistocene (Morton and Matti
1993). The sediments inside the basin are mainly Tertiary and Quaternary alluvial
deposits (Dutcher and Garrett 1963). Compared with our starting model CVM-S4,
the velocities inside the basin and to the northeast of the basin were reduced by 10–
15 % while the velocities to the southwest of the basin were increased by 5–10 % in
CVM-S4.26. At shallow depths, the velocities inside and around the basin in CVM-
S4.26 are more consistent with the basin model of (Süss and Shaw 2003). The basin
stops abruptly to the southwest along the San Jacinto Fault Zone. The sharp basin
boundary is more obvious in CVM-S4.26 than in CVM-H11.9. The thickness of the
sediments reduces more gradually toward northeast.

The basin geometry in CVM-S4.26 is more consistent with the one determined
using water well and seismic refraction data in (Frankel 1993) and also with the
model obtained using potential field and seismic data in (Anderson et al. 2004) than
the basin geometries in CVM-S4 and CVM-H11.9. The basin models in (Frankel
1993; Anderson et al. 2004) and CVM-S3 (an earlier version of the CVM-S series
velocity model for Southern California) were used in wave-propagation simulations
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for the 1999 M7.1 Hector Mine earthquake in (Graves and Wald 2004). In that
study, the synthetic seismograms computed using the basin models of (Frankel
1993; Anderson et al. 2004) provided substantially better fit to the observed seismo-
grams at frequencies up to 0.5 Hz than those computed using CVM-S3, which did
not have the more complex basin geometries present in the other two basin models.

6.2.8 Inner Continental Borderland

The Inner Continental Borderland (ICB) is the region bounded by the western Trans-
verse Ranges (Santa Cruz Island Fault—Santa Monica Fault) on the north, by the
California Outer Continental Borderland (East Santa Cruz Basin Fault) on the west
and by the Peninsular Ranges on the east (Fig. 6.69). It includes the Los Ange-
les Basin, where the Los Angeles Metropolitan area lies. The Outer Borderland to
the west and the western Transverse Ranges to the north are mainly composed of
the Great-Valley-type forearc-basin sequence. The ICB has a quite different com-
position. Studies on the rock outcrops, core samples from oil wells and seismic
reflection/refraction profiles have shown that the ICB basement is mainly composed
of medium- to high-grade metamorphic rocks known as the Catalina Schist (e.g.,
Crouch and Suppe 1993, Bohannon and Geist 1998; ten Brink et al. 2000).

Several mechanisms have been suggest for the origin of the ICB. One possibility
is that the ICB was emplaced by northward translation of an exotic terrain along
strike-slip faults (e.g., Vedder 1987). The recent transpressional deformation in the
region may have brought mid- and lower-crustal rocks to shallow depths (e.g., Mann
and Gordon 1996).

The model proposed in (Crouch and Suppe 1993) relates the formation of the ICB
with the clockwise rotation of the western Transverse Ranges. Because the western
Transverse Ranges block was deeply embedded in the continent and the rotation was
mostly around a northern pivot point, a gap opened on the east side of the rotating
block. This gap was then filled from below by igneous rocks and the metamorphosed
Franciscan accretionary wedge rocks underplated during the subduction of the Far-
allon Plate. This upwelling process was similar to the metamorphic core complex
extensions found in the Basin and Range Province and elsewhere (e.g., Wernicke
et al. 1992). The Catalina Schist is therefore the exhumed Franciscan rocks, orig-
inally buried at mid-crustal depths. The layers above the Franciscan rocks, which
were mainly Great Valley forearc sequence and its underlying Coast Range Ophi-
olite basement, now comprise the Santa Monica Mountains and Simi Hills to the
north and San Joaquin Hills to the east of the ICB. The faults surrounding the ICB,
including the Newport-Inglewood Fault and the Whittier-Elsinore Fault, were origi-
nally high-angle normal faults terminating at a major landward-dipping detachment,
along which the lower Franciscan layer was separated from the upper Great Valley
forearc and its ophiolite basement layers.

In Fig. 6.69, I show comparisons of the S-velocity at 2-km depth in CVM-S4.26,
CVM-S4 and CVM-H11.9 with a geologic map in the ICB region. The geologic map
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Fig. 6.69 S-velocity at 2-km depth in CVM-S4.26 (a), CVM-S4 (c) and CVM-H11.9 (d) compared
with the geologic map (b) of the Inner Continental Borderland region. The color-scale is identical
to that in the 2-km map-view in Fig. 6.1.

does not cover the submerged areas. In the onshore areas, low-velocities in CVM-
S4.26 show good correlation with the distribution of sediments on the geologic map.
The Los Angeles Basin is shown as the major low-velocity anomaly on all three
CVMs. In the offshore areas, CVM-S4.26 shows more pronounced low-velocity
anomalies that are correlated with offshore basins than the other two CVMs. One
of the high-velocity anomalies in CVM-S4.26 is located around the Santa Catalina
Island and might be associated with the Catalina Schist outcrops that have been
extensively studied in e.g., (Woodford 1924; Bailey et al. 1941; Platt 1975; Legg
1991). In Figs. 6.70–6.72, I show cross-sections along 11 profiles crossing the ICB
region in CVM-S4.26. The same cross-sections for CVM-S4 and CVM-H11.9 are
shown in Figs. 6.73–6.78.

6.2.8.1 Los Angeles Basin

The sediments inside the Los Angeles Basin are up to 10 km thick and consist
of Upper Cretaceous marine clastic rocks, a thick section of Tertiary marine sedi-
mentary and volcanic rocks and Quaternary marine and nonmarine clastic deposits
(Wright 1991). In (Chen et al. 2007), a 3D crustal structure model for the Los
Angeles Basin area, LAF3D, was obtained through full-3D tomography based on
the scattering-integral method (F3DT-SI) using CVM-S3 as the starting model. The
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Fig. 6.70 Cross-sections of the S-velocity in CVM-S4.26 along the 11 profiles (A-K) crossing
the Inner Continental Borderland. The map-view on the upper-right corner shows the S-velocity
at 2-km depth in the same color-scale as the 2-km map-view in Fig. 6.1. The color-scale for the
cross-sections is shown on the lower-right corner. Major faults are shown as black dots on the
cross-sections. Elsinore Fault (EF), Newport-Inglewood Fault (NIF), Palos Verdes Fault (PVF),
Rose Canyon Fault (RCF), Santa Cruz Island Fault (SCIF), Santa Cruz—Santa Catalina Ridge
Fault (SCSCRF).



6.2 Model Description 467

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

Fig. 6.71 Cross-sections of the P-velocity in CVM-S4.26 along the 11 profiles (A-K) crossing the
Inner Continental Borderland. The format is identical to that in Fig. 6.70.
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Fig. 6.72 Cross-sections of the Poisson’s ratio in CVM-S4.26 along the 11 profiles (A-K) crossing
the Inner Continental Borderland. The format is identical to that in Fig. 6.70.
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Fig. 6.73 Cross-sections of the S-velocity in CVM-S4 along the 11 profiles (A-K) crossing the
Inner Continental Borderland. The format is identical to that in Fig. 6.70.
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Fig. 6.74 Cross-sections of the P-velocity in CVM-S4 along the 11 profiles (A-K) crossing the
Inner Continental Borderland. The format is identical to that in Fig. 6.70.
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Fig. 6.75 Cross-sections of the Poisson’s ratio in CVM-S4 along the 11 profiles (A-K) crossing
the Inner Continental Borderland. The format is identical to that in Fig. 6.70.
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Fig. 6.76 Cross-sections of the S-velocity in CVM-H11.9 along the 11 profiles (A-K) crossing the
Inner Continental Borderland. The format is identical to that in Fig. 6.70.

seismograms used in that inversion had a maximum frequency of 1.2 Hz, which is
significantly higher than the frequency band used for deriving CVM-S4.26, which
was up to 0.2 Hz. LAF3D shows structural details that do not exist in CVM-S4.26.
A general observation made in (Chen et al. 2007) was that LAF3D slightly increased
the velocities inside the basin and decreased the velocities around the border of the
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Fig. 6.77 Cross-sections of the P-velocity in CVM-H11.9 along the 11 profiles (A-K) crossing the
Inner Continental Borderland. The format is identical to that in Fig. 6.70.
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Fig. 6.78 Cross-sections of the Poisson’s ratio in CVM-H11.9 along the 11 profiles (A-K) crossing
the Inner Continental Borderland. The format is identical to that in Fig. 6.70.



6.2 Model Description 475

basin, which brought CVM-S3 into better agreement with the Harvard model for this
basin (Süss and Shaw 2003). The perturbations between CVM-S4.26 and CVM-S4
are still consistent with this general observation made in (Chen et al. 2007). Positive
perturbations are observed in the interior of the basin and negative perturbations
are observed around the basin boundary. At shallow depths, in areas southwest
of the Newport-Inglewood Fault extending towards the Rose Canyon Fault and in
the San Pedro Bay extending offshore, the velocities have been reduced by more
than 10 % in CVM-S4.26 compared with CVM-S4 (Fig. 6.69). In particular, the
velocities around the San Joaquin Hills were increased slightly and those around
the Capistrano syncline are reduced. These perturbations also brought the basin
structure closer to that in (Süss and Shaw 2003).

Beneath the basin, CVM-S4.26 has a high-velocity layer with P- and S-velocity
exceeding 7.0 km/s and 4.2 km/s, respectively (profile E-H in Figs. 6.70–6.71).
This high-velocity layer is not visible in CVM-S4 or CVM-H11.9 (Figs. 6.73–6.74,
6.76–6.77), but can be seen on the active-source refraction tomography model along
the LARSE-I profile (e.g., Fig. 8 in Lee et al. 2014b; Lutter et al. 1999). This high-
velocity layer might be fragments of the Coast Range Ophiolite basement originally
sandwiched between the Great Valley forearc basin on the top and the Franciscan
accretionary wedge on the bottom. If this high-velocity layer also has high density,
the formation of the Los Angeles Basin may have been driven, perhaps in part, by
the isostatic response.

6.2.8.2 Offshore Region

The offshore region in ICB is believed to be underlain by mainly Catalina Schist,
which is composed of mainly metamorphosed Franciscan accretionary wedge (e.g.,
Vedder 1987; Crouch and Suppe 1993; ten Brink et al. 2000). Beneath the sediments
and above the Moho, the average P-velocity in CVM-S4.26 is between 5.5 km/s and
6.0 km/s (average S-velocity in CVM-S4.26 is between 3.2 km/s and 3.4 km/s),
which is in broad agreement with the results in (ten Brink et al. 2000) and also con-
sistent with laboratory measurements of the Pelona Schist around the Mojave region
(Pellerin and Christensen 1998), which is believed to be similar to the Catalina
Schist. This schist layer extends from the ICB eastward, passing underneath the
Los Angeles Basin and goes into the Mojave Desert (Sect. 6.2.9.2; Fig. 10 in Lee
et al. 2014b).

Several large offshore faults can be correlated with strong velocity gradients on
the cross-sections for CVM-S4.26. For instance, the Santa Cruz—Santa Catalina
Ridge Fault might be dipping landward and can be correlated with sharp bends on
the velocity contours on profile B-F in Figs. 6.70–6.71. The San Clemente Fault
might also be correlated with sharp bends in the velocity contours (profile G-K in
Figs. 6.70–6.71). The East Santa Cruz Basin Fault might also be correlated with the
velocity contours in all the profiles shown in Figs. 6.70–6.71.
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6.2.9 Mojave Desert Region

The Mojave Desert region (Fig. 6.79) is bounded to the southwest by the San
Andreas Fault, to the north by the Garlock fault and to the east by the southern
extension of the Death Valley fault zone (e.g., Glazner et al. 2002). It contains the
Eastern California Shear Zone (ECSZ), a set of northwest-trending dextral faults
along the western edge of the Basin and Range Province. The ECSZ and the Walker
Lane Belt north of the Garlock Fault accommodate up to 25 % of present-day rel-
ative motion between the Pacific and the North American plates (e.g., McClusky
et al. 2001; Unruh et al. 2003).

In pre-Neogene time, the Salinian block (Sect. 6.2.6.1) and the San Gabriel ter-
rane were immediately adjacent to the western Mojave block (e.g., Huffman 1972;
Saleeby 2003). Collectively, the Mojave, Salinian, San Gabriel and the immedi-
ately adjacent southern Colorado River Desert basement complexes were termed
the Mojave Desert—Salinian Batholith (MSB) in (Saleeby 2003) and the South-
ern California Batholith (SCB) in (Luffi et al. 2009). Different from the Sierra
Nevada Batholith to the north and the Peninsular Ranges Batholith to the south, the
batholithic root under most of SCB was tectonically removed by the shallow seg-
ment of the Farallon plate during the Laramide orogeny from latest Cretaceous to
early Paleogene (e.g., Coney and Reynolds 1977; Dickinson and Snyder 1978; Bird
1988; Saleeby et al. 2003; Saleeby 2003). Thermobarometric constraints indicate
that the depth of the tectonic truncation was at 0.8–1.0 GPa (about 30-km depth)
conditions (e.g., Sharry 1981; Pickett and Saleeby 1993; Jacobson 1995). During
mid- to late-Laramide time, regions affected by the flat slab experienced vigor-
ous gravitational and extensional collapse facilitated by water-induced weakening
and retrograde metamorphism in the overlying quartzofeldspathic batholithic crust
(e.g., Wernicke et al. 1987; Malin et al. 1995; Saleeby 2003). The high water-flux
is thought to come from the underplated schist protolith (Bebout and Barton 1989).
The tectonic erosion of the batholithic root and the denudation of the overlying
mid- to upper-crustal felsic batholith tapered the thick batholithic column to a much
thinner section and uplifted the remaining batholithic column and the underplated
schist to upper- and mid-crustal depths (e.g., Malin et al. 1996; Saleeby et al. 2003;
Saleeby 2003). From about 70 Ma to about 20 Ma, the mid- to lower-crust and
mantle lithosphere under western Mojave were reconstructed (Luffi et al. 2009). In
Early Miocene between about 24 Ma and 18 Ma, the central Mojave experienced
east-west extension and volcanism, which resulted in the central Mojave metamor-
phic core complex (e.g., Glazner et al. 1989; Walker et al. 1990; Martin et al. 1993;
Fletcher et al. 1995; Glazner et al. 2002). From about 12 Ma to present, the Mojave
region has experienced right-lateral shear along strike-slip faults, which may have
accommodated up to 100 km of slip so far (e.g., McQuarrie and Wernicke 2005).

In Fig. 6.79, I show comparisons of the S-velocity at 2-km depth in CVM-
S4.26, CVM-S4 and CVM-H11.9 with a geologic map of the Mojave Desert region.
Low-velocity anomalies in CVM-S4.26 are well correlated with distribution of sedi-
ments and Tertiary to Quaternary volcanic rocks. Low-velocity anomalies east of the
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Fig. 6.79 S-velocity at 2-km depth in CVM-S4.26 (b), CVM-S4 (c) and CVM-H11.9 (d) compared
with the geologic map (a) of the Mojave Desert region. The color-scale is identical to that in the
2-km map-view in Fig. 6.1.
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Camp-Rock—Homestead Valley—-Emerson Fault Zone might be due to the higher
heat flow caused by Quaternary volcanism (e.g., Bonner et al. 2003; Luffi et al.
2009). Outcrops of the Pelona-Orocopia-Rand (POR) schists were found around the
northern and southwestern boundaries of the Mojave block. The location of the Oro-
copia Mountains was shown in Fig. 6.59. Other POR outcrop locations are indicated
on Fig. 6.79. The high-velocity anomaly located at the Rand Mountains might be
related to the Tehachapi anomaly (Sect. 6.2.4.2), if the left-lateral slip on the Garlock
fault is restored. This possible correlation is also visible at larger depths (e.g., 12-km
and 14-km map-views in Figs. 6.1–6.2). In Figs. 6.80–6.82, I show cross-sections of
S-velocity, P-velocity and Poisson’s ratio in CVM-S4.26 along 13 profiles crossing
the Mojave Desert region. The same cross-sections for CVM-S4 and CVM-H11.9
are shown in Figs. 6.83–6.88.

6.2.9.1 Antelope Valley

The Antelope Valley is mainly filled with Quaternary and Tertiary volcanic and
sedimentary rocks. Much of the 2-km thick sedimentary section may have been
deposited during the Quaternary (e.g., Ponti 1985). The Quaternary basin sedi-
ments were mainly derived from the Transverse Ranges on the southwest and the
Tehachapi Mountains to the northwest. Compared with CVM-S4, the velocities in
CVM-S4.26 are reduced in the central part of the valley and the basin is extended
more to the northeast along the Garlock Fault (Fig. 6.79). In addition to the cross-
sections shown in Figs. 6.80–6.82, the cross-section along the LARSE-II profile,
which also crosses the Antelope Valley, is shown in Fig. 8 in (Lee et al. 2014b).
Along the LARSE-II profile, CVM-S4.26 shows that the thickness of the sediments
reaches the maximum in the central valley and reduces on both the north and the
south sides of the valley, which is in broad agreement with the 2D refraction tomog-
raphy results of (Lutter et al. 2004) and also results in oil-test wells presented in
(Fuis et al. 2003).

6.2.9.2 POR Schist

In CVM-S4.26, there is a pervasive low-velocity layer existing at 12–17 km depth.
This low-velocity layer is observed under western Mojave, southernmost Sierra
Nevada, the Salinian block and the San Gabriel terrane. It is most pronounced under
western Mojave. The lateral extent of this low-velocity layer coincides with regions
affected by the shallow Farallon slab during the Laramide orogeny (e.g., Saleeby
2003). The average P- and S-velocities in this layer are reduced by about 11 % com-
pared with the average velocities in the layer above and the average Poisson’s ratio
increases about 8 % (Fig. 10 in Lee et al. 2014b). The average velocities and Pois-
son’s ratio in this low-velocity layer are similar to those found in the Catalina Schist
in the Inner Continental Borderland (Sect. 6.2.8.2). The depth of this mid-crustal
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Fig. 6.80 Cross-sections of the S-velocity in CVM-S4.26 along the 13 profiles (A-M) crossing the
Mojave Desert region. The map-view on the upper-right corner shows the S-velocity at 2-km depth
in the same color-scale as the 2-km map-view in Fig. 6.1. The color-scale for the cross-sections
is shown on the lower-right corner. Major faults are shown as black dots on the cross-sections.
Garlock Fault (GF), Lockhart–Lenwood Fault (LF), San Andreas Fault (SAF), San Gabriel Fault
(SGF).
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Fig. 6.81 Cross-sections of the P-velocity in CVM-S4.26 along the 13 profiles (A-M) crossing the
Mojave Desert region. The format is identical to that in Fig. 6.80.
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Fig. 6.82 Cross-sections of the Poisson’s ratio in CVM-S4.26 along the 13 profiles (A-M) crossing
the Mojave Desert region. The format is identical to that in Fig. 6.80.

low-velocity layer in the San Gabriel region coincides with strong mid-crustal
reflectors mapped in e.g., (Ryberg and Fuis 1998). This mid-crustal low-velocity
layer might be related to the underplated Franciscan accretionary wedge sediments
metamorphosed into the POR schist.
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Fig. 6.83 Cross-sections of the S-velocity in CVM-S4 along the 13 profiles (A-M) crossing the
Mojave Desert region. The format is identical to that in Fig. 6.80.
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Fig. 6.84 Cross-sections of the P-velocity in CVM-S4 along the 13 profiles (A-M) crossing the
Mojave Desert region. The format is identical to that in Fig. 6.80.
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Fig. 6.85 Cross-sections of the Poisson’s ratio in CVM-S4 along the 13 profiles (A-M) crossing
the Mojave Desert region. The format is identical to that in Fig. 6.80.
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Fig. 6.86 Cross-sections of the S-velocity in CVM-H11.9 along the 13 profiles (A-M) crossing the
Mojave Desert region. The format is identical to that in Fig. 6.80.



486 6 CVM-S4.26

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

Fig. 6.87 Cross-sections of the P-velocity in CVM-H11.9 along the 13 profiles (A-M) crossing the
Mojave Desert region. The format is identical to that in Fig. 6.80.
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Fig. 6.88 Cross-sections of the Poisson’s ratio in CVM-H11.9 along the 13 profiles (A-M) crossing
the Mojave Desert region. The format is identical to that in Fig. 6.80.
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In CVM-S4.26, there exists a high-velocity layer immediately above the mid-
crustal low-velocity layer within the 5–10 km depth range. The average P- and
S-velocities in this high-velocity layer reach 6.7 km/s and 3.9 km/s, respectively,
under southernmost Sierra Nevada and western Mojave. This high-velocity layer
might have a significant amount of garnet granulite residues resulting from the par-
tial melting of hydrous mafic to intermediate composition rocks at about 1.0 GPa
(around 33-km depth) conditions (Saleeby et al. 2003). It was lying in the lower
crust just above the seismic Moho and escaped the flat-slab tectonic truncation
and was later uplifted to its current depth after the orogenic collapse. The low- to
intermediate-velocity layer lying above the high-velocity layer may correspond to
remaining felsic granitic rocks, which may have been highly attenuated during and
after the orogenic collapse (Yan et al. 2005).

Below the mid-crustal low-velocity layer in western Mojave, the average P- and
S-velocities in CVM-S4.26 are consistent with substantial portions of metabasalt.
Laboratory measurements of P-velocity for the Pelona Schist range from 5.8 km/s
for metaclastic rocks to 6.4 km/s for metabasaltic rocks (Pellerin and Christensen
1998) and there are indications that the proportion of the metabasalt increases
with depth (e.g., Yan et al. 2005). Geochemical data from xenoliths in the Mojave
region show evidences of MORB-like material lying under western Mojave (Luffi
et al. 2009). It might be possible that substantial portions of oceanic crust from the
Farallon plate were scrapped off and remain under western Mojave when the Far-
allon plate encountered the North American Craton during the Laramide shallow
subduction (e.g., Luffi et al. 2009).

6.2.10 Peninsular Ranges—Salton Trough Region

The Peninsular Ranges Batholith (PRB) is part of the Mesozoic batholith belt
emplaced along the western Cordilleran margin of North America. The entire PRB
extends from south of the western Transverse Ranges to the southern end of the
Baja California peninsula. Only the northern segment of the PRB is covered by
our tomography box for CVM-S4.26 (Fig. 6.89). The PRB is highly heterogeneous.
The plutons of the PRB have composition ranging from gabbro to granite with the
predominant rock type of tonalite (e.g., Larsen 1948; Silver and Chappell 1988).
Geochemical analysis shows that the PRB can be divided into compositionally dis-
tinct western and eastern sections along geochemical, mineralogic, isotopic and
geophysical potential-field discontinuities (e.g., Gastil 1975; Baird and Miesch
1984; Todd and Shaw 1985; Langenheim et al. 2014). The western section is
older and more mafic and has a wide range of compositions commonly includ-
ing gabbros. The younger eastern section is more felsic and lacks gabbros. Several
hypotheses have been proposed to explain the lateral variations within the PRB (e.g.,
Schmidt et al. 2002). One possibility is that the western and eastern sections were
emplaced at two separate subduction zones and then accreted together in Cretaceous
(e.g., Gastil et al. 1978). An alternative explanation is that the Mesozoic batholith
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Fig. 6.89 S-velocity at 2-km depth in CVM-S4.26 (a), CVM-S4 (c) and CVM-H11.9 (d) com-
pared with the geologic map (b) of the Peninsular Ranges–Salton Trough region. The color-scale
is identical to that in the 2-km map-view in Fig. 6.1.

was emplaced across a pre-existing ocean-continental lithosphere transition (e.g.,
Walawender et al. 1991).

In Fig. 6.89, I show S-velocity at 2-km depth in the three CVMs compared with a
geologic map for the Peninsular Ranges and Salton Trough region. The correlation
between CVM-S4.26 and CVM-H11.9 is quite high for this region. CVM-S4.26
shows stronger lateral heterogeneities and CVM-H11.9 is relatively smoother.
Cross-sections of S-velocity, P-velocity and Poisson’s ratio along 7 profiles cross-
ing the PRB and the Salton Trough in CVM-S4.26 are shown in Figs. 6.90–6.92.
The same cross-sections for CVM-S4 and CVM-H11.9 are shown in Figs. 6.93–
6.98. CVM-S4.26 shows more heterogeneities in PRB. In the eastern section, the
Moho becomes shallower towards east, which is consistent with results in (Ichinose
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Fig. 6.90 Cross-sections of the S-velocity in CVM-S4.26 along the 7 profiles (A-G) crossing the
Peninsular Ranges and Salton Trough region. The map-view on the upper-left corner shows the
S-velocity at 2-km depth in the same color-scale as the 2-km map-view in Fig. 6.1. The color-scale
for the cross-sections is shown on the lower-left corner. Major faults are shown as black dots on
the cross-sections. Elsinore Fault (EF); San Jacinto Fault (SJF); San Andreas Fault (SAF).

et al. 1996). The laterally averaged velocity-depth profiles for the western and east-
ern sections were shown in Fig. 4 in (Lee et al. 2014b) and the western section has
higher average velocities, consistent with a more mafic average composition.

The actively rifting Salton Trough was linked with the Gulf of California during
late Miocene and early Pliocene and was later isolated from the gulf by sediments
deposited by the Colorado River (Metzger 1968). The Salton Trough includes, from
north to south, the Coachella Valley, the Salton sea, the Imperial Valley and the
Mexicali Valley in Mexico (Fig. 6.89). Cross-sections of the three CVMs along the
active-source Salton Seismic-Imaging Project (SSIP) lines 1, 3, 4, 5 and 6 were
shown in Fig. 9 in (Lee et al. 2014b). The basin structures in CVM-S4.26 are in
broad agreement with the P-velocity model obtained from 2D refraction tomography
along those lines. Compared with our starting model CVM-S4, the velocities in
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Fig. 6.91 Cross-sections of the P-velocity in CVM-S4.26 along the 7 profiles (A-G) crossing the
Peninsular Ranges and Salton Trough region. The format is identical to that in Fig. 6.90.

the Salton sea and the Imperial Valley area were reduced by up to 20 % above 5-
km depth and increased by 5–10 % below 5-km depth in CVM-S4.26. The Salton
Trough region has relatively high thermal gradient, which can cause metamorphism
in deep sediments. The relatively high velocities below about 5-km depth may come
from metamorphosed sediments (Fuis and Mooney 1990). The velocities above 5-
km depth in CVM-S4.26 are more consistent with the basin model of (Lovely et al.
2006), in which an extensive set of sonic logs from petroleum wells in the Imperial
Valley and results from a seismic refraction study (Fuis et al. 1984) were used to
constrain the basin structure.
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Fig. 6.92 Cross-sections of the Poisson’s ratio in CVM-S4.26 along the 7 profiles (A-G) crossing
the Peninsular Ranges and Salton Trough region. The format is identical to that in Fig. 6.90.
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Fig. 6.93 Cross-sections of the S-velocity in CVM-S4 along the 7 profiles (A-G) crossing the
Peninsular Ranges and Salton Trough region. The format is identical to that in Fig. 6.90.
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Fig. 6.94 Cross-sections of the P-velocity in CVM-S4 along the 7 profiles (A-G) crossing the
Peninsular Ranges and Salton Trough region. The format is identical to that in Fig. 6.90.
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Fig. 6.95 Cross-sections of the Poisson’s ratio in CVM-S4 along the 7 profiles (A-G) crossing the
Peninsular Ranges and Salton Trough region. The format is identical to that in Fig. 6.90.
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Fig. 6.96 Cross-sections of the S-velocity in CVM-H11.9 along the 7 profiles (A-G) crossing the
Peninsular Ranges and Salton Trough region. The format is identical to that in Fig. 6.90.
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Fig. 6.97 Cross-sections of the P-velocity in CVM-H11.9 along the 7 profiles (A-G) crossing the
Peninsular Ranges and Salton Trough region. The format is identical to that in Fig. 6.90.
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Fig. 6.98 Cross-sections of the Poisson’s ratio in CVM-H11.9 along the 7 profiles (A-G) crossing
the Peninsular Ranges and Salton Trough region. The format is identical to that in Fig. 6.90.
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